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Human movement is based on the healthy function of α-motoneurons, a
type of nerve cell found in the spinal cord that triggers muscle contrac-
tion. Neuromuscular feedback mechanisms like stretch reflexes modulate
α-motoneuron and, therefore, muscle activity. Eliciting the stretch re-
flex is a way of influencing the activity of α-motoneurons and simultane-
ously recording their reaction. Human α-motoneuron activity can only be
recorded indirectly. This thesis aims to overcome this limitation by using
an in-silico approach, i. e., computational modelling and simulations, to
investigate mechanisms underlying α-motoneuron activity during stretch
reflexes that can not be accessed in vivo. Motoneurons are simulated us-
ing an equivalent electric circuit model. Driven by open questions from
experimental research, two aspects of the stretch reflex are addressed.
First, the in-silico study reveals a non-linear multi-variable influence of
experimental and physiological parameters on in-vivo estimates of ex-
citation reflex amplitudes. Second, the simulation results suggest that
a specific ion channel can facilitate postinhibitory excitation, an unex-
plained phenomenon repeatedly observed in α-motoneurons. In addition,
a concept for extending the computational model to include sensory or-
gan models is presented. The in-silico approach provides guidance for
the design and interpretation of experimental studies, and the findings
on the design of model interfaces can open up new application areas for
stretch reflex and neuromuscular system models.

C
B
M

-1
5
(2

0
2
4
)

In
-s
il
ic
o
an

al
y
si
s
of

α
-m

ot
on

eu
ro
n
s
d
u
ri
n
g
st
re
tc
h
re
fl
ex
es

L
.
S
ch

m
id

Laura Schmid ISBN 978-3-946412-15-1

1







Insights into human alpha-motoneuron

discharge properties during stretch reflexes –

an in-silico approach

Von der Fakultät Bau- und Umweltingenieurwissenschaften

der Universität Stuttgart zur Erlangung der Würde

einer Doktor-Ingenieurin (Dr.-Ing.)
genehmigte Abhandlung

Vorgelegt von

Laura Schmid, M.Sc.

aus

Reutlingen

Hauptberichter: Prof. Oliver Röhrle, PhD
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Abstract

All everyday movements are based on the healthy function of α-motoneurons. Motoneur-
ons are nerve cells, and a particular type of motoneurons found in the spinal cord are
α-motoneurons. What makes α-motoneurons unique is that their axons (nerve fibres
via which signals are transmitted) leave the spinal cord to activate muscles. Motoneurons
have been the subject of intensive research for decades, and today, we know their relevance
in physiological movement control and certain diseases.
The entity of an α-motoneuron and the muscle fibres it innervates is called a motor unit

and forms the smallest controllable unit of movement generation. The activity of a motor
unit is the result of the interplay between the components of the neuromuscular system.
Movements are not carried out strictly according to a pre-prepared plan but are constantly
adapted to the circumstances. To this end, a large number of sensory organs, e. g., muscle
spindles, permanently record the status of the neuromuscular system. Afferent nerves
transfer the sensory information to the α-motoneurons and other parts of the central
nervous system. In response, α-motoneurons adjust their activity, ultimately resulting in
a change of muscle force. This feedback system allows us to perform complex movements
in a changing environment. Reflexes are a central part of this feedback system. A reflex
describes the process of a signal from sensory organs being transmitted to the central
nervous system and evoking a rapid response. An essential class of reflexes relevant to
movement control are stretch reflexes. Stretch reflexes are elicited by muscle spindles,
which are sensitive to length changes of the muscle tissue and affect the activity of the
stretched muscle and other muscles acting on the same joint.
Eliciting the stretch reflex is a way of influencing the activity of α-motoneurons and

simultaneously recording their reaction. Human α-motoneuron activity can be recorded
indirectly from the muscles they activate. Skeletal muscles are controlled by electrical
signals, i. e., action potentials, generated by the α-motoneurons. The action potentials
travel along the muscle fibres, initiating the contraction. The frequencies with which
α-motoneurons discharge action potentials are related to the resulting muscle force. The
propagation of the action potentials along the muscle fibres generates an electric field,
which can be recorded using electromyography. As every action potential in the skeletal
muscles is preceded by an action potential of the corresponding α-motoneuron, the recor-
ded signals can be used to conclude the activity of the α-motoneurons.
Although α-motoneuron reflex responses are often stereotypical, many factors influence

their strength, and they considerably contribute to movement control. As the activity of
motoneurons can only be recorded indirectly, these influences have yet to be quantified.
As a result, the function of reflexes in movement control and the role of α-motoneurons in
neuromuscular diseases are still insufficiently understood. Computer simulations can be
used here to supplement and expand the knowledge gained from experimental studies.
In this work, we use an in-silico approach, i. e., computational modelling and simu-

lations, to investigate the physiological mechanisms underlying α-motoneuron activity
during stretch reflexes that can otherwise not be accessed. In particular, we investigate
how motoneuron properties and the experimental conditions influence the discharge beha-
viour of α-motoneurons in two stretch reflex pathways: the excitatory monosynaptic and
the reciprocal inhibition pathway. We simulate motoneurons using an equivalent electric
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circuit model. In the model, the motoneuron’s spatial structure is summarised in two
compartments representing the soma and dendrite. The time course of the motoneuron
membrane potential and the generation of action potentials emerge from the dynamics of
selected ion channels using the Hodgkin-Huxley modelling approach.
Motoneuron reflex responses can be recorded using electromyography. In particular,

the discharge times of the action potentials (spikes) are recorded. The thereby obtained
spike trains are commonly analysed by peristimulus analysis. In detail, the peristimulus
timehistogram (PSTH) counts discharges relative to the stimulus time, and the peris-
timulus frequencygram (PSF) shows their instantaneous discharge frequencies. From the
cumulative sums of both the PSTH and the PSF, the reflex amplitude can be obtained as
an estimate of the reflex strength. The state-of-the-art method to obtain the reflex amp-
litude is manual evaluation, which is not feasible for many motoneurons simulated under
different conditions. Therefore, we introduce a method for the automated determination
of reflex amplitudes at the beginning of this thesis. The developed algorithm enables
objective evaluation of large amounts of data, which can be obtained from simulations
and future experimental studies.
Driven by open questions from experimental research, two aspects of the stretch reflex

are addressed in detail. First, the influence of experimental and physiological paramet-
ers on in-vivo estimates of excitation reflex amplitudes is analysed. The size of reflex
amplitudes obtained from in-vivo recordings of motor units is commonly used to ad-
dress topics of basic research and clinical questions. Previous studies showed that the
motoneuron properties and the experimental conditions influence the reflex amplitude.
However, these influences and their possible interactions have yet to be quantified or
weighted. It is also not known whether the PSTH and PSF are equally affected. The in-
silico study performed within this work revealed a non-linear multi-variable influence of
motoneuron properties and external conditions (motoneuron discharge frequency, random
membrane potential fluctuations and stimulus strength) on reflex amplitudes. Thereby,
the PSTH and PSF are differently sensitive to these influencing factors. We derive re-
commendations for designing and interpreting experimental studies from the simulation
results.
The second aspect of this thesis addresses an unexplained pattern that repeatedly occurs

during the inhibitory part of the stretch reflex. Postinhibitory excitation is a transient
overshoot of a motoneuron’s baseline firing rate following an inhibitory stimulus and can
be observed in vivo in human motor units. However, the biophysical origin of this phe-
nomenon is still unknown, and both reflex pathways and motoneuron properties have
been proposed. We want to investigate if a specific ion channel, i. e., a hyperpolarisation-
activated inward current (h-current) channel, can cause postinhibitory excitation. There-
fore, the motoneuron model is extended to consider h-currents. In addition, spike trains
of human motor units from the tibialis anterior muscle during reciprocal inhibition are
analysed and compared to the simulation results. The simulations revealed that the
activation of h-currents by an inhibitory postsynaptic potential can cause a short-term
increase in a motoneuron’s firing probability. Based on the results, we speculate that
α-motoneurons can be excited by an inhibitory stimulus under certain conditions. Hall-
marks of h-current activity, as identified from the modelling study, were found in 50 %
of the human motor units that showed postinhibitory excitation. This study proposes
that h-currents can facilitate postinhibitory excitation and act as a modulatory system
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to increase motoneuron excitability after a strong inhibition.
In order to increase the range of research questions that can be addressed using an in-

silico approach, a concept for extending the computer model to include models of sensory
organs, i. e., muscle spindles, is presented. We compare two strategies for coupling the
required models. The first approach transforms the continuous spindle frequency into a
discrete spike train, and for every spike, a current is injected into the motoneurons. The
second approach uses a conversion factor to transform the frequency into a current dir-
ectly. We also investigate how data from reflex experiments can be used to parametrise the
coupling parameters (gains). After determining the gains for both interface approaches,
the PSTH and PSF in response to different mechanical stimuli are compared to exper-
imental data. With appropriate gains, both approaches can predict the short-latency
response of the monosynaptic stretch reflex. However, the gains determined from one
type of stretch experiment fail to quantitatively predict the reflex amplitude in response
to other types of stretch. The results emphasise that both the interface approach and the
data used for parametrisation must be selected precisely for the respective application.
In summary, this thesis shows how motoneuron properties and the experimental condi-

tions contribute to the discharge behaviour of α-motoneurons during two example stretch
reflex pathways. The in-silico approach enhances the understanding of the system be-
haviour, which cannot be obtained in-vivo. The findings must now be transferred to ex-
perimental studies to profit fully from the interplay between experiment and simulation.
Specifically, the gained insights on the PSTH and PSF metrics characteristics should be
used to re-investigate or re-evaluate in-vivo motoneuron reflex responses using improved
study protocols. Further, in-vitro studies should quantify the actual contribution of h-
currents to postinhibitory excitation. The findings on the design of model interfaces can
open up new application areas for stretch reflex and neuromuscular system models.
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Zusammenfassung

Alle alltäglichen Bewegungen baiseren auf der gesunden Funktion von α-Motoneuronen.
Motoneuronen gehören zu den Nervenzellen. Eine spezielle Art von Motoneuronen sind die
α-Motoneuronen, welche sich im Rückenmark finden. Einzigartig an α-Motoneuronen ist,
dass ihre Axone (Nervenfasern, über die Signale übertragen werden) das Rückenmark
verlassen, um Muskeln zu aktivieren. Motoneuronen sind seit Jahrzehnten Gegenstand
intensiver Forschung und heute wissen wir um ihre Bedeutung für die physiologische
Bewegungskontrolle und bestimmte Krankheitsbilder.
Die Einheit aus einem α-Motoneuron und den von ihm innervierten Muskelfasern wird

als motorische Einheit bezeichnet und bildet die kleinste kontrollierbare Einheit der Bewe-
gungserzeugung. Die Aktivität einer motorischen Einheit ist das Ergebnis des Zusammen-
spiels der Komponenten des neuromuskulären Systems. Bewegungen werden nicht streng
nach einem vorgefassten Plan ausgeführt, sondern ständig an die Gegebenheiten ange-
passt. Zu diesem Zweck registrieren eine Vielzahl von sensorischen Organen, zum Beispiel
Muskelspindeln, permanent den Zustand des neuromuskulären Systems. Afferente Ner-
ven leiten die sensorischen Informationen an die α-Motoneuronen und andere Teile des
zentralen Nervensystems weiter. Als Reaktion darauf ändern die α-Motoneuronen ihre
Aktivität, was letztendlich zu einer Veränderung der Muskelkraft führt. Dieses Rück-
kopplungssystem ermöglicht es uns, komplexe Bewegungen in einer sich verändernden
Umgebung auszuführen. Reflexe sind ein zentraler Bestandteil dieses Systems. Ein Re-
flex beschreibt den Vorgang, bei dem ein Signal von sensorischen Organen an das zentrale
Nervensystem weitergeleitet wird und eine schnelle Reaktion hervorruft. Eine wesentliche
Klasse von für die Bewegungskontrolle relevanten Reflexen sind die Dehnungsreflexe, die
in dieser Arbeit betrachtet werden. Dehnungsreflexe werden durch Muskelspindeln aus-
gelöst, die auf Längenänderungen im Muskelgewebe reagieren. Über verschiedene Sig-
nalwege beeinflussen sie sowohl den gedehnten Muskel als auch andere Muskeln, die am
selben Gelenk ansetzen.
Das Auslösen eines Dehnungsreflexes ist eine Möglichkeit, die Aktivität von α-Moto-

neuronen experimentell zu beeinflussen und gleichzeitig ihre Reaktion aufzuzeichnen. Die
Aktivität der α-Motoneuronen kann indirekt als elektrisches Signal in der Muskulatur er-
fasst werden. Die Ansteuerung von Skelettmuskeln erfolgt über elektrische Signale, die so-
genannten Aktionspotentiale. Die Aktionspotentiale werden von α-Motoneuronen erzeugt
und breiten sich entlang der Muskelfasern aus, wo sie die Muskelkontraktion auslösen.
Dabei hängt die Entladungsrate, mit der die Motoneuronen die Aktionspotentiale gene-
rieren, mit der erzeugten Muskelkraft zusammen. Wenn sich Aktionspotentiale entlang
der Muskelfasern ausbreiten, treten in der Muskulatur bioelektrische Felder auf, die mit-
tels Elektromyografie aufgezeichnet werden können. Da jedem Aktionspotential in der
Skelettmuskulatur ein Aktionspotential des entsprechenden α-Motoneurons vorausgeht,
können die aufgezeichneten Signale genutzt werden, um Rückschlüsse über die Aktivität
der α-Motoneuronen zu ziehen.
Obwohl Reflexe oft stereotypisch ablaufen, wird ihre Stärke von vielen Faktoren be-

einflusst und sie tragen erheblich zur Bewegungskontrolle bei. Da die Aktivität der Mo-
toneuronen nur indirekt erfasst werden kann, sind diese Einflüsse bisher kaum quantifi-
ziert. Dadurch sind die Funktionsweise von Reflexen in der Bewegungsansteuerung und
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die Rolle der α-Motoneuronen bei verschiedenen neuromuskulären Erkrankungen noch
unzureichend verstanden.
Hier können Computersimulationen zum Einsatz kommen und das aus experimentel-

len Studien gewonnene Wissen ergänzen und erweitern. In dieser Arbeit wird ein in-
silico-Ansatz verwendet. Das beutetet, dass wir computergestützte Modellierung und
Simulationen nutzen, um die physiologischen Mechanismen zu untersuchen, die der Ak-
tivität von α-Motoneuronen während Dehnungsreflexen zugrunde liegen und die sonst
nicht zugänglich sind. Insbesondere wird untersucht, wie die Eigenschaften der Mo-
toneuronen und die Versuchsbedingungen die Entladungseigenschaften während der Re-
flexantworten beeinflussen. Dabei betrachten wir zwei Signalwege des Dehnungsreflexes:
den erregenden monosynaptischen Dehnungsreflex und den reziproken Hemmungsreflex.
Die α-Motoneuronen werden mit Hilfe eines elektrischen Ersatzschaltbildes modelliert.
Die räumliche Struktur des Motoneurons wird dabei in zwei Kompartimenten zusam-
mengefasst, die das Soma und den Dendriten repräsentieren. Der zeitliche Verlauf des
Motoneuronen-Membranpotentials und die Generierung von Aktionspotentialen ergibt
sich aus der Dynamik ausgewählter Ionenkanäle unter Verwendung des Hodgkin-Huxley-
Modellierungsansatzes.
Reflexantworten von α-Motoneuronen können mittels Elektromyographie aufgezeich-

net werden. Dabei werden insbesondere die Zeitpunkte der Aktionspotentiale (Entladun-
gen) erfasst. Die so gewonnenen Daten zu den Entladungsraten werden in der Regel mit
Hilfe der Peristimulus-Analyse ausgewertet. Dabei zählt das Peristimulus-Zeithistogramm
(peristimulus timehistogram, PSTH) die Anzahl der Aktionspotentiale relativ zur Stim-
uluszeit, und das Peristimulus-Frequenzgramm (peristimulus frequencygram, PSF) zeigt,
mit welcher Frequenz die Aktionspotentiale jeweils auftreten. Aus den jeweiligen kumula-
tiven Summen über das PSTH und das PSF lässt sich die Reflexamplitude als Schätzwert
für die Reflexstärke ermitteln. Üblicherweise wird die Reflexamplitude manuell bestimmt.
Dies ist jedoch für viele Motoneuronen, die unter verschiedenen Bedingungen simuliert
werden nicht praktikabel. Daher stellen wir zu Beginn dieser Arbeit eine Methode zur
automatisierten Bestimmung der Reflexamplituden vor. Der entwickelte Algorithmus
ermöglicht eine objektive Auswertung großer Datenmengen, wie sie aus Simulationen und
zukünftigen experimentellen Studien gewonnen werden können.
Angeregt durch offene Fragen der experimentellen Forschung werden zwei Aspekte des

Dehnungsreflexes im Detail behandelt. Zunächst wird der Einfluss experimenteller und
physiologischer Parameter auf in-vivo-Schätzungen der Reflexamplituden eines erregenden
Reflexes analysiert. Die Größe von Reflexamplituden wird häufig in der Grundlagen-
forschung verwendet, aber auch um klinische Fragen zu adressieren. Bisherige Studien
haben gezeigt, dass die Eigenschaften der Motoneuronen und die Versuchsbedingungen
die Reflexamplitude beeinflussen. Diese Einflüsse und ihre möglichen Wechselwirkungen
sind jedoch noch nie quantifiziert oder gewichtet worden. Es ist auch nicht bekannt,
ob das PSTH und das PSF gleichermaßen beeinflusst werden. Die im Rahmen dieser
Arbeit durchgeführte in-silico-Studie zeigt einen nicht-linearen, multivariablen Einfluss
der Motoneuronen-Eigenschaften und der aufgebrachten Bedingungen (Entladungsfre-
quenz, zufällige Membranpotentialschwankungen und Reizstärke) auf die Reflexamplitu-
den. Dabei sind das PSTH und das PSF unterschiedlich empfindlich für diese Ein-
flussfaktoren. Aus den Simulationsergebnissen werden Empfehlungen für die Gestaltung
und Interpretation experimenteller Studien abgeleitet.
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Der zweite Aspekt, der in dieser Arbeit untersucht wird, betrifft ein bisher unerklärtes
Muster, das wiederholt während des hemmenden Teils des Dehnungsreflexes auftritt. Die
postinhibitorische Erregung ist eine vorübergehende überhöhte Aktivität eines Motoneu-
rons nach einem inhibitorischen Reiz und kann in menschlichen motorischen Einheiten in
vivo beobachtet werden. Der biophysikalische Ursprung dieses Phänomens ist jedoch
noch unbekannt. Zur Erklärung wurden sowohl Reflexwege als auch Motoneuronen-
Eigenschaften vorgeschlagen. Wir untersuchen, ob ein spezifischer, von hyperpolarisierten
Membranpotentialen aktivierter Ionenkanal, der sogenannte h-Kanal, eine postinhibito-
rische Erregung verursachen kann. Daher wird das Motoneuronen-Modell erweitert, um
h-Kanäle zu berücksichtigen. Darüber hinaus werden Daten zu Entladungsraten mensch-
licher motorischer Einheiten des Tibialis Anterior Muskels während der reziproken Hem-
mung analysiert und mit den Simulationsergebnissen verglichen. Die Simulationen er-
gaben, dass die Aktivierung von h-Kanälen durch ein hemmendes postsynaptisches Poten-
tial eine kurzfristige Erhöhung der Entladungswahrscheinlichkeit eines Motoneurons be-
wirken kann. Auf Grundlage der Ergebnisse spekulieren wir, dass α-Motoneuronen unter
bestimmten Bedingungen durch einen hemmenden Reiz erregt werden können. In 50 % der
experimentell untersuchten motorischen Einheiten, die eine postinhibitorische Erregung
aufwiesen, wurden die in der Modellierungsstudie identifizierten Merkmale der h-Kanal-
Aktivität gefunden. Die Ergebnisse legen nahe, dass h-Kanäle die postinhibitorische Er-
regung fördern und nach einer starken Hemmung als modulierendes System zur Erhöhung
der Erregbarkeit von Motoneuronen wirken können.
Um die Bandbreite der Forschungsfragen zu erweitern, die mit einem in-silico-Ansatz

behandelt werden können, wird ein Konzept zur Erweiterung des Computermodells um
Modelle von sensorischen Organen vorgestellt. Wir vergleichen zwei Strategien zur Kopp-
lung eines Motoneuronen- mit einem Muskelspindel-Modell. Dabei wird außerdem unter-
sucht, wie Daten aus Reflexexperimenten zur Parametrisierung der Kopplungsparameter
verwendet werden können. Der erste Ansatz wandelt die kontinuierliche Spindelfrequenz
in eine Abfolge von diskreten Entladungszeitpunkten um, und für jede Entladung wird
eine festgelegte Menge elektrischen Stroms in die Motoneuronen injiziert. Der zweite
Ansatz verwendet einen Umrechnungsfaktor, um die Frequenz direkt in einen Strom
umzuwandeln. Zunächst werden die relevanten Parameter für beide Schnittstellenansätze
bestimmt. Anschließend werden das PSTH und das PSF für verschiedene mechanische
Reize mit experimentellen Daten verglichen. Mit geeigneten Kopplungsparametern kann
das Modell unter Nutzung beider Ansätze die typische Reflexantwort des monosynapti-
schen Dehnungsreflexes vorhersagen. Die unter Verwendung von einer Art des Dehnungs-
reizes ermittelten Kopplungsparameter sind jedoch nicht in der Lage, die Reflexamplitude
als Reaktion auf andere Arten von Dehnungen quantitativ vorherzusagen. Die Ergebnisse
unterstreichen, dass sowohl der Schnittstellenansatz als auch die zur Parametrisierung
verwendeten Daten spezifisch für die jeweilige Anwendung gewählt werden müssen.
Zusammenfassend zeigt diese Arbeit, wie Motoneuronen-Eigenschaften und die experi-

mentellen Bedingungen das Entladungsverhalten von α-Motoneuronen während des Deh-
nungsreflexes beeinflussen. Der in-silico-Ansatz verbessert das Verständnis des System-
verhaltens über die Erkenntnisse hinaus, die mit einem in-vivo-Ansatz gewonnen werden
können. Die neu gewonnenen Erkenntnisse müssen nun auf experimentelle Studien über-
tragen werden, um das Zusammenspiel von Experiment und Simulation optimal zu nutzen.
Insbesondere sollten die Schlussfolgerungen über die charakteristischen Eigenschaften der
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PSTH- und PSF-Metriken genutzt werden, um Reflexreaktionen in vivo mit verbesserten
Studienprotokollen erneut zu untersuchen beziehungsweise neu zu evaluieren. Darüber
hinaus sollten in-vitro-Studien den tatsächlichen Beitrag der h-Kanäle zur postinhibitori-
schen Erregung quantifizieren. Die Nutzung der Erkenntnisse zur Gestaltung von Modell-
schnittstellen kann neue Anwendungsbereiche für Modelle des Dehnungsreflexes und des
neuromuskulären Systems erschließen.
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Nomenclature

Subscripts and superscripts

Symbol Description

∞ steady-state

C coupling

cap capacitive

d dendrite compartment

ex extracellular

H h-channel/HCN-channel

i index

in intracellular

inj injected

ion ionic

Kf fast potassium ion channel

Ks slow potassium ion channel

L leakage ion channel

m membrane

Na sodium ion channel

s soma compartment

Symbols

This table is arranged with Greek characters first, followed by Latin and calligraphic
letters. Small letters precede capital letters.

Symbol Unit Description

α ms−1 ion channel gate forward rate

β ms−1 ion channel gate backward rate

λ cm length constant

τ ms time constant

Φ mV potential

a cm radius

b - a parameter

cm µF cm−1 transverse membrane capacitance

C µF capacitance

Cm µF cm−2 specific membrane capacitance per unit area
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d cm diameter

E mV equilibrium potential

fspindle Hz muscle spindle frequency

F Cmol−1 Faraday’s constant

g mS conductance

g mS maximum conductance

G mScm−2 specific conductance per unit area

G mScm−2 maximum specific conductance per unit area

h - sodium channel inactivation gate

I µA electric current

J µAcm−2 electric current density

k - reference value for the cumulative sum

l cm length

L - electrotonic length

m - sodium channel activation gate

n - potassium channel activation gate

N counts number

NMN counts number of motoneurons

p - p-value (statistics)

P ms−1 permeability

PSC µA postsynaptic current

q - potassium channel activation gate

ri kΩ cm−1 longitudinal resistance of the cytoplasm

Ri kΩ cm cytoplasm resistivity

rm kΩ cm transverse membrane resistance

Rm kΩ cm2 specific membrane resistance

RN kΩ cm2 input resistance

s - h-channel activation gate

S - cumulative sum

S - cumulative sum vector

t ms time

T K absolute temperature

Vhalf mV ion channel half-maximum activation potential

Vm mV membrane potential

Vovershoot mV overshoot potential

Vrest mV resting potential

Vslope mV ion channel slope factor potential

Vstep mV step potential

w - a general ion channel gate variable
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x cm distance/position

X - an arbitrary ion

y - an arbitrary variable

ȳ - an arbitrary mean value

z counts number of electrons

R Jmol−1K−1 universal gas constant

Acronyms

Symbol Description

AP Action potential

AHP Afterhyperpolarisation

AMI Agonist-antagonist myoneural interface

Ca2+ Calcium ion

Cl− Chloride ion

CoV Coefficient of variation

CUSUM Cumulative sum

e. g. exempli gratia (for example)

EMG Electromyogram

EPSP Excitatory postsynaptic potential

FF-type Fast fatigable motor unit type

FR-type Fast fatigue resistant motor unit type

HCN Hyperpolarization-activated cyclic nucleotide-gated non-
selective cation

HDsEMG High-density surface electromyogram

Ia primary muscle spindle afferent

Ib Golgi-tendon organ afferent

i. e. id est (that is)

II secondary muscle spindle afferent

IISP Interspike interval superposition plot

IPSP Inhibitory postsynaptic potential

ISI Interspike interval

K+ Potassium ion

LIF Leaky integrate-and-fire

MN Motoneuron

MVC Maximum voluntary contraction

Na+ Sodium ion

ODE Ordinary differential equation
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PIC Persistent inward current

PSC Postsynaptic current

PSF Peristimulus frequencygram

PSP Postsynaptic potential

PSTH Peristimulus timehistrogram

S-type Slow motor unit type
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1 Introduction

“The terminal path may, to distinguish it from internuncial common paths,
be called the final common path. The motor nerve to a muscle is a collection of such

final common paths.”

Sir Charles Scott Sherrington1 (1906)

1.1 Motivation

Running, jumping, dancing, eating a piece of cake – none of it would be possible without
motoneurons. Motoneurons are nerve cells responsible for movement generation, and α-
motoneurons in particular are a type of motoneuron located in the spinal cord (Burke
et al., 1977). What makes α-motoneurons unique is that their axons (nerve fibres via
which signals are transmitted) leave the spinal cord to activate muscles, making them
the “final common path” of movement generation. Motoneurons have been the subject
of intensive research for decades, and we know their relevance today. The pathological
loss of α-motoneurons leads to paralysis, severely impairs quality of life and can even
be fatal (O’Donovan and Falgairolle, 2022). However, the physiological function of the
α-motoneurons enables us to execute the various movements required for an active life.
The entity of an α-motoneuron and the muscle fibres it innervates is called a motor unit

and forms the smallest controllable unit of movement generation (Liddell and Sherrington,
1925). The activity of a motor unit is the result of the complex interplay between the
components of the neuromuscular system. Movements are not carried out strictly accord-
ing to a pre-prepared plan but are constantly adapted to the circumstances (Kandel et al.,
2013). To this end, sensory organs, e. g., muscle spindles and Golgi-tendon organs, per-
manently monitor the current state of the neuromuscular system. Afferent nerves transfer
the sensory information to the central nervous system. The signals are transmitted to the
α-motoneurons in the spinal cord directly or through several other neurons. In response,
the α-motoneurons adjust their activity, ultimately resulting in a change of muscle force
(Kandel et al., 2013). This feedback system allows us to perform complex movements
in a dynamic environment. Reflexes are a central part of this feedback system. A reflex
describes the process of a signal from sensory organs being transmitted to the central
nervous system and evoking a rapid response (Pierrot-Deseilligny and Burke, 2005).
Different reflex pathways involve α-motoneurons, but the most known might be the

knee-jerk reflex. A tap on the patella tendon yields a rapid extension of the knee joint.
The muscle contraction that produces the knee extension is a reflex response to the stretch
applied to the muscle by the tendon tap. This and other rapid reactions to stretching a
muscle are known as stretch reflexes. The sensory organs associated with stretch reflexes
are the muscle spindles, which are, in every muscle, located in parallel to the muscle fibres
(Macefield and Knellwolf, 2018).
Reflex responses of human α-motoneurons can be recorded indirectly as an electrical

1Sir Charles Scott Sherrington (*27 November 1857, †4 March 1952) was rewarded the Nobel Prize in
Physiology or Medicine 1932 for his discoveries regarding the functions of neurons.
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signal in the muscle. Motoneurons and muscle fibres communicate via electrical signals,
the so-called action potentials. Action potentials emerge from the activity of ion channels
in the motoneuron’s cell membrane. An action potential produced by an α-motoneuron is
transferred via the axon to the muscle fibres of the respective motor unit. Then, the action
potential propagates along the muscle fibre, initiating the contraction. The frequencies
with which α-motoneurons discharge action potentials are related to the resulting muscle
force (De Luca and Hostage, 2010). The propagation of the action potentials along the
muscle fibres generates an electric field, which can be recorded using electromyography
(EMG). Since every action potential of a muscle fibre is preceded by an action potential
in the corresponding α-motoneuron, the recorded signals can be used to draw conclusions
about the activity of the α-motoneurons.
Eliciting the stretch reflex is one way of influencing the activity of α-motoneurons and

simultaneously recording their reactions. The advantage of EMG recordings is that
they can be performed in vivo, i. e., in the living organism. Thereby, the activity of α-
motoneurons can be observed in their physiological environment and under physiological
conditions. However, the method is indirect and only records the final result of the reflex
mechanism. Insights on the processes within the α-motoneuron can be obtained using
the in-vitro approach. Here, the activity of single α-motoneurons is recorded, e. g., with
microelectrodes outside the organism. This way, input-output relationships can be de-
termined, albeit under conditions that do not necessarily correspond to the physiological
situation.
Although reflex responses are often stereotypical, their strength can be modulated by

many factors such that they create complex patterns and coordinate movements (Kandel
et al., 2013). Due to the limitations of current experimental techniques, these influences
have hardly been quantified to date. As a result, the functioning of reflexes in movement
control and the pathophysiology of associated neuromuscular diseases are still poorly un-
derstood. Over the past decades, computer models have been developed to overcome the
limitations of experimental methods. In-silico studies describe experiments performed on
a computer based on computational modelling and simulation. The in-silico approach
offers several advantages over in-vivo and in-vitro studies. The internal system proper-
ties are known, and the input parameters can be controlled completely. Further, there
are no limitations concerning the signal quality, recording times or available recording
technologies. Therefore, in-silico studies can provide otherwise unfeasible insights.
In this work, we use computational modelling and simulations to investigate physiolo-

gical mechanisms underlying α-motoneuron activity during stretch reflexes that can oth-
erwise not be accessed. Thereby, we build on the large basis of modelling approaches
that were developed in the last decades. At the same time, we rely on in-vivo data with
which we compare the model predictions to draw conclusions about physiological pro-
cesses. As a result, this work contributes to a better understanding of in-vivo recordings
of α-motoneuron activity during stretch reflexes, which can lead to a better understanding
of movement generation in general and, eventually, of pathological disorders concerning
the neuromuscular system.
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1.2 State of the art

Computational modelling of physiological systems can be divided into two primary cat-
egories: phenomenological and biophysical approaches. Phenomenological models focus
on describing input-output relationships to fit experimental data without delving into
the underlying mechanisms, essentially adopting a “black-box” methodology. In con-
trast, biophysical models use available knowledge to describe the mechanisms underlying
a physiological process. Phenomenological models are valuable for simplifying complex
processes and may be necessary when computational resources are limited. However,
mechanistic models are crucial for comprehending behaviours in complex systems.
Modelling the behaviour of motoneurons during stretch reflexes requires at least two

model components. These are a motoneuron model and a model representing the sensory
input. Muscle spindle models can provide an estimate of the sensory input to motoneurons
during stretch reflexes. This section describes state-of-the-art (α-)motoneuron models,
muscle spindle models, and stretch reflex models and their applications. This section is
partly based on Haggie, Schmid et al. (2023).

1.2.1 Computational motoneuron modelling

Computational models representing motoneuron behaviour exist on many levels of ab-
straction. Two fundamentally different approaches can be distinguished. The first ap-
proach is based on a phenomenological description of the input-output behaviour of the
motoneurons. Thereby, a quantity representing the input is projected via a mathem-
atical function onto a quantity representing the resulting activity of the motoneurons.
For example, a sigmoid transfer function or a weighted sum can be used to describe the
input-output behaviour of a population of motoneurons (e. g., Li et al., 2015; Raphael
et al., 2010). Due to its fast computation, this approach is especially suited to model
large networks of neurons. Input-output functions can also be employed to predict the
discharge frequencies of individual motoneurons (e. g., Fuglevand et al., 1993; Heckman
and Binder, 1991). For example, these models have been used to investigate muscle fa-
tigue (Potvin and Fuglevand, 2017) or the adaptation of the neuromuscular system in
response to exercise (Altan, 2022).
The second modelling approach aims to predict individual motoneuron spiking (dischar-

ging) based on the motoneuron membrane’s characteristic behaviour. Two main classes
of spiking models can be distinguished: threshold-crossing and compartmental models.
Threshold-crossing models describe the sub-threshold time course of the membrane po-
tential and how, by integration of inputs, the membrane potential approaches the spike
threshold. These models refrain from explicitly describing the time course of the ac-
tion potential. Instead, when the threshold is reached, the firing time is registered, the
membrane potential is reset, and the integration process starts again.
Different possibilities exist to describe the sub-threshold membrane potential trajectory,

the most commonly used being probably the so-called leaky integrate-and-fire model. It
was first introduced by Lapicque (1907). The behaviour of the motoneuron membrane is
described by a capacitor in parallel with a resistor. Consequently, the membrane potential
decays without inputs to the resting state (leaky behaviour). Researchers extended the
model to consider e. g., more physiological membrane potential time courses, refractory
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times or history-dependent effects (e. g., Burkitt, 2006; Herrmann and Gerstner, 2002).
Threshold-crossing models do not consider the activity of individual ion channels and

neglect the spatial dimensions of the motoneuron. Compartmental models were developed
to overcome these limitations. Two features characterise them: they consider the mo-
toneuron’s anatomical structure and spatial dimension and assign specific properties and
ion channels to the respective parts of the neuron. Thereby, the signal propagation within
the motoneuron is commonly modelled using the cable equation and the equivalent cylin-
der theory (see Section 3.3 and Rall, 1962a,b). Active firing behaviour can be incorporated
by modelling voltage-gated ion channels based on the framework developed by Hodgkin
and Huxley (see Section 3.2 and Hodgkin and Huxley, 1952d). The resulting models in-
tegrate input signals based on the respective compartment’s membrane properties, and
action potentials arise from the function of voltage-gated conductances. Compartmental
motoneuron models differ in the number of compartments and conductances (e. g., Booth
et al., 1997; Cisi and Kohn, 2008; Elias and Kohn, 2013; Negro and Farina, 2011; Powers
et al., 2012; Taylor and Enoka, 2004). Many compartmental models inherently account
for physiological motoneuron principles like the size principle and the onion skin prin-
ciple (see Section 2.3.3). They provided insights into the contribution of different ion
channels to complex motoneuron discharge patterns (e. g., Booth et al., 1997; Powers
et al., 2012; Taylor and Enoka, 2004), or into control strategies of the central nervous
system (e. g., Negro and Farina, 2011). They were also successfully incorporated into
neuromuscular system models (e. g., Dideriksen et al., 2015; Elias et al., 2014; Kapardi
et al., 2022).

1.2.2 Computational muscle spindle modelling

Muscle spindles are sensitive to muscle stretch and stretch velocity (Macefield and Knell-
wolf, 2018). Various phenomenological models have been developed to describe the rela-
tionship between muscle stretch and changes in muscle spindle activity (Prochazka and
Gorassini, 1998b and references therein). While these models successfully reproduce ex-
perimental muscle spindle firing frequencies across different stretch velocities, they do not
consider the modulation of spindle sensitivity by the fusimotor system (see Section 2.4.1).
Maltenfort and Burke (2003) proposed a phenomenological model that calculates muscle

spindle firing frequencies in response to muscle stretch and fusimotor activation. There-
fore, separate discharge frequencies are computed for passive stretch and the two types of
fusimotor input (static and dynamic). These contributions are combined, with the higher
rate partially inhibiting the lower rate before being added to the passive contribution. An
updated version of the model was published during the research for this work (Schmid
et al., 2022).
Mileusnic et al. (2006) and Lin and Crago (2002b) both developed semi-physiological

models by explicitly representing the anatomical structure of the spindle, including the
three intrafusal fibre types and their effects on the primary and secondary afferent activity,
as well as their sensitivity to fusimotor input. In the physiological spindle, the contri-
butions of each intrafusal fibre to the overall firing frequency are non-linearly combined,
resulting in the suppression of lower frequencies by higher ones, a phenomenon known as
occlusion (Banks, 1994; Schäfer, 1974). Mileusnic et al.’s model appropriately accounts
for this, whereas Lin and Crago’s model completely suppresses the lower frequency in
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favour of the higher one.
Blum et al. (2020) introduced a sophisticated muscle spindle model based on the

physiological contraction mechanism of intrafusal fibres and their interaction with the
muscle-tendon complex. This model can predict many experimentally observed patterns
of muscle spindle activity without explicitly modelling them. It was recently supplemen-
ted by a spike generation model, which is currently still under development (Housley
et al., 2024).

1.2.3 Computational modelling of the stretch reflex

Existing computational models of the stretch reflex differ in their components and the
pathways they consider (see Section 2.4). Some approaches focus on a single pathway of
the stretch reflex, e. g., the monosynaptic stretch reflex (e. g., Chaud et al., 2012; Schuur-
mans et al., 2009). Others consider the interaction of an agonist and an antagonist muscle
and include the monosynaptic as well as reciprocal inhibition pathway (e. g., Dideriksen
et al., 2015; Sreenivasa et al., 2015). Sensory signals from secondary muscle spindle af-
ferents or Golgi-tendon organs can also be included (e. g., Raphael et al., 2010; Stienen
et al., 2007).
As shown in Sections 1.2.1 and 1.2.2, numerous approaches exist to model the behaviour

of the two central components of the stretch reflex, i. e., motoneurons and muscle spindles.
Commonly, motoneurons are described using a Hodgkin-Huxley type model and muscle
spindles using the model of Mileusnic et al. (2006) (e. g., Chaud et al., 2012; Dideriksen
et al., 2015; Elias et al., 2014). Both modelling approaches require solving a set of ordinary
differential equations. When computational resources are limited, motoneurons can al-
ternatively be described using leaky integrate-and-fire models, and muscle spindle activity
can be represented by the model of Prochazka and Gorassini (1998b) (e. g., Moraud et al.,
2016; Schuurmans et al., 2009; Sreenivasa et al., 2015; Stienen et al., 2007). Especially
when several reflex pathways are considered, the motoneuron models are often replaced
by phenomenological descriptions summarising the activity of the entire motoneuron pool
(e. g., Li et al., 2015; Pithapuram and Raghavan, 2022; Raphael et al., 2010). Employ-
ing a muscle spindle model to obtain the afferent signals is not always necessary. When
assuming values for the afferent input derived from experimental studies, only modelling
the motoneurons is sufficient (e. g., Herrmann and Gerstner, 2002; Jones and Bawa, 1997;
Matthews, 1999, 2002; Piotrkiewicz et al., 2009; York et al., 2022).
The purpose of computational stretch reflex models ranges from delivering explanations

for specific experimental observations, e. g., motoneuron behaviour in response to muscle
stretch (e. g., Chaud et al., 2012; Schuurmans et al., 2009), to investigating the effect of
specific interventions, e. g., electrical epidural stimulation after spinal cord injury (Moraud
et al., 2016). Further, computational stretch reflex models are often used to investigate
control strategies of the nervous system to perform a particular motor task, e. g., (postural)
stability (e. g., Dideriksen et al., 2015; Elias et al., 2014; Stienen et al., 2007).
Existing studies usually used a minimal amount of output variables. Often, they con-

sidered summarised output variables, e. g., the activity of the entire motoneuron pool
or an estimate of the resulting muscle force, calculated from a Hill-type muscle model
(e. g., Chaud et al., 2012; Dideriksen et al., 2015; Elias et al., 2014). Others investigated
the activity of a single motoneuron in response to an afferent signal (e. g., Herrmann
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and Gerstner, 2002; Jones and Bawa, 1997; Matthews, 1999, 2002; Piotrkiewicz et al.,
2009). None of these studies analysed the contribution of individual motoneurons to the
motoneuron pools’ stretch reflex response. However, experimental recordings from single
motoneurons are widely available, and the field can benefit from insights from computa-
tional models.
Considering the parametrisation of stretch reflex models, there is no standard proced-

ure. While motoneuron and muscle spindle models can be validated using appropriate
experimental data, this data is not readily available for stretch reflex models. In partic-
ular, how much afferent feedback contributes to the total input to motoneurons has yet
to be discovered. In the literature, this contribution is, for example, arbitrarily defined,
physiologically informed by in-vitro studies or fitted to obtain a desired mechanical out-
put (e. g., Dideriksen et al., 2015; Elias and Kohn, 2013; Lin and Crago, 2002a; Raphael
et al., 2010; Zhang et al., 2009). Nevertheless, the variety of models for motoneurons,
muscle spindles and reflex pathways in the literature provides a pool from which to draw.
Thus, this thesis mainly builds on existing models and adapts them if necessary.

1.3 Objectives and Outline

This thesis aims to provide novel insights into human α-motoneuron behaviour during
stretch reflexes. The behaviour of the α-motoneurons is assessed regarding their dis-
charge properties or spike trains, as these can be recorded in vivo. However, the internal
parameters and conditions leading to a particular discharge pattern cannot be accessed
in vivo. Therefore, we want to use computational models to address open questions from
experimental research. This work focuses on three key aspects:

• The reflex amplitude of motor units is often used to derive statements about signals
delivered to α-motoneurons. However, experimental studies relating the monosyn-
aptic stretch reflex amplitude and the motoneuron size have shown contradictory
results (e. g., Awiszus and Feistner, 1993; Binboğa and Türker, 2012; Heckman and
Binder, 1988; Mazzocchio et al., 1995; Semmler and Türker, 1994). These studies
emphasise that the contributions of influencing factors to the reflex amplitude are
not sufficiently understood. Using a motoneuron model, we want to investigate how
different experimental conditions and the motoneuron size influence in-vivo estim-
ates of excitatory reflex amplitudes. From this, we derive suggestions for the design
of experimental studies.

• Postinhibitory excitation is a phenomenon repeatedly observed when exciting the
reciprocal inhibition pathway of the stretch reflex in vivo. Postinhibitory excitation
is characterised by a transient overshoot of the motor unit activity following the
inhibition. The biophysical origin of this phenomenon is still unknown, and both
reflex pathways and intrinsic motoneuron properties have been proposed. Using a
motoneuron model, we aim to investigate whether hyperpolarisation-activated ion
channels can cause postinhibitory excitation.

• A biophysical model of stretch reflex pathways can be applied in many basic physiology
and clinical research areas. In order to increase the range of research questions that
can be addressed, a concept for extending the utilised motoneuron model to include
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models of sensory organs, i. e., muscle spindles, is presented. This concept should
serve as a basis for future modelling studies.

To achieve these goals, we use current models from the literature where applicable. An
appropriate model selection and model parametrisation and a well-founded interpreta-
tion of the results are only possible with a sound background knowledge of the relevant
physiology. Therefore, this introductory chapter is followed by a chapter presenting the
basic physiology of neuromechanics (Chapter 2). Thereby, the focus lies on the bioelec-
tric behaviour of cells, the specific properties of α-motoneurons and the stretch reflex
pathways relevant to this work.
Chapter 3 describes the motoneuron model used in this work and its theoretical found-

ation. The choice of a suitable model depends on several factors. First, the model must
consider the structures of interest, e. g., a specific ion channel. Second, the model output
variables must be relatable to experimentally observable variables. Third, the required
computational resources should be limited to a bearable amount. The experimentally
observed quantity considered in this work is the collection of individual motor unit spike
trains obtained from reflex experiments. Accordingly, we use a spiking motoneuron model.
Further, the contribution of specific ion channels to how motoneurons integrate input
signals is relevant to the aspects addressed by this thesis. Consequently, we use a com-
partmental model with ion channels. To reduce the computational cost and to keep the
number of ion channels to a minimum, a two-compartment model with six conductances,
from which three are voltage-gated, is employed (Cisi and Kohn, 2008; Negro and Farina,
2011).
Reflex responses are commonly quantified by peristimulus analysis (e. g., Yavuz et al.,

2014). Thereby, two different metrics are available, the peristimulus timehistogram
(PSTH) and the peristimulus frequencygram (PSF). Those are presented in Chapter 4
together with the basics of the experimental procedures. The gold standard for determ-
ining reflex amplitudes from peristimulus analysis is manual evaluation. However, that
would be unfeasible for this work’s extensive number of motoneurons and experiments.
Consequently, an algorithm for automatically determining reflex amplitudes is presented.
Chapter 5 addresses the size of excitatory reflex amplitudes. While different factors

influencing the reflex amplitude have been qualitatively determined, their quantitative
influence is unknown. Further, potential differences between PSTH and PSF are not
known. Using a model of an α-motoneuron pool, we investigate the influence of the
experimental conditions and the motoneuron size on in-vivo estimates of the monosynaptic
stretch reflex amplitude determined from the PSTH and PSF.
Chapter 6 aims to decipher the motoneuron behaviour during the reciprocal inhibition

reflex. In particular, we investigate why motor units occasionally show postinhibitory
excitation, a phenomenon of unclear origin. A computational motoneuron model is used to
clarify if an internal motoneuron property, i. e., hyperpolarisation-activated ion channels,
can cause this behaviour.
The above investigations can be performed solely using motoneuron models. However,

many research questions require employing a more complete model of the neuromuscular
system. Thus, in Chapter 7, a motoneuron pool model is coupled with a muscle spindle
model to build a model of the stretch reflex. Two coupling approaches are presented and
parametrised. The predictive power of the two approaches concerning different types of
applied stretches is tested by comparison to experimental data.
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This work closes with a summary of the main findings and an outlook addressing
implications and future directions for computational modelling, experimental studies and
clinical applications (Chapter 8). The different sets of parameters used for the motoneuron
models are summarised in Appendix A.

1.3.1 List of publications

The research leading to the results presented in this thesis has previously been published
in the following articles.

Schmid, L., Klotz, T., Siebert, T., and Röhrle, O. (2019a). Characterisation of elec-
tromechanical delay based on a biophysical multi-scale skeletal muscle model. Frontiers
in Physiology, 10:1270.

Schmid, L., Klotz, T., Siebert, T., and Röhrle, O. (2019b). Simulating electromechan-
ical delay across the scales – relating the behavior of single sarcomers on a sub-cellular
scale and the muscle-tendon system on the organ scale. PAMM, 19(1):e201900312.

Schmid, L., Klotz, T., and Yavuz, U. Ş. (2022). Spindle model responsive to mixed
fusimotor inputs: an updated version of the maltenfort and burke (2003) model. Physiome.
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Frontiers in Physiology, 14.

Schmid, L., Klotz, T., Röhrle, O., Powers, R. K., Negro, F., and Yavuz, U. Ş. (2024).
Postinhibitory excitation in motoneurons can be facilitated by hyperpolarisation-activated
inward currents: A simulation study. PLOS Computational Biology, 20(1):1–22.

Homs-Pons, C., Lautenschlager, R., Schmid, L., Ernst, J., Göddeke, D., Röhrle, O.,
Schulte, M. Coupled simulations and parameter inversion for neural system and electro-
physiological muscle models. GAMM-Mitteilungen, e202370009.
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2 Fundamentals of Neuromechanics

Human movement is generated by the interaction of the neural system with the musculo-
skeletal system. Therefore, an interdisciplinary approach combining neurophysiology and
biomechanics, i. e., neuromechanics, is required to understand the underlying principles.
This chapter summarises the fundamentals of neuromechanics that are the basis of the
topics discussed in this thesis. Section 2.1 starts with a short overview of the structures
and mechanisms involved in movement generation. Section 2.2 describes cell-to-cell com-
munication, including the electrical activity of cells and the central element of information
transport, i. e., the so-called action potential (AP). Motoneurons as a central element of
motor control are introduced in Section 2.3. Motoneurons and muscle fibres are organ-
ised in functional units, so-called motor units. Motor units and their role in feed-forward
control of muscle activity are described in Section 2.3.2. Finally, Section 2.4 describes
how feedback control of muscle activity is achieved via sensory organs and spinal reflex
pathways.

2.1 The generation and control of movement

This section is based on Enoka (2008) and Kandel et al. (2013), which are recommended
for further reading on neuromechanics and neurophysiology.
The generation and control of movement rely on the interplay between the structures

and organs of the neural and the musculoskeletal system. It involves the interaction
between multiple structures, including the motor cortex, spinal cord circuits, skeletal
muscles, and sensory organs (Figure 2.1). Intended movements are planned in the motor
cortex area of the brain. From there, corresponding signals are transmitted to neurons in
the spinal cord. In the spinal cord, the signals might pass several intermediate neurons,
so-called interneurons, until they finally reach α-motoneurons. Each α-motoneuron is
connected to specific muscle fibres, forming a functional unit called the motor unit. When
activated by their respective α-motoneuron, the muscle fibres of a motor unit contract.
The muscle fibres are arranged in parallel so that all active motor units contribute to the
muscle force acting on a joint via a tendon. Thereby, muscles can only actively contract
but not elongate. Thus, at least two muscles are required to move a joint. These opposing
muscles are called agonist and antagonist. Muscles that act on the same joint in the same
direction are called synergists.
Sensory organs permanently monitor the current status of the musculo-tendinous struc-

tures and send feedback to the spinal cord and brain. For example, muscle spindles lie par-
allel to the muscle fibres and are sensitive to length changes of their parent muscle (Mace-
field and Knellwolf, 2018). Golgi-tendon organs are located at the musculo-tendinous
junction and are sensitive to muscle fibre contraction (Anderson, 1974; Schoultz and
Swett, 1972). The sensory signals provide the α-motoneurons with information on joint
and limb position, which is then used to adjust the control command.
Two basic directions of information flow are relevant to the control of movements. To

describe these, we need to introduce the central and peripheral nervous systems. The
central nervous system includes the brain and the spinal cord. The peripheral nervous



10 2 Fundamentals of Neuromechanics

system includes all neural structures anatomically located outside the brain and spinal
cord. Signals from the central nervous system towards peripheral nervous system struc-
tures are called efferent signals, while signals travelling in the opposite direction are called
afferent signals. Signal transmission in both directions is based on the ability of neuronal
cells to generate and transmit electrical signals (Section 2.2).
Because α-motoneurons integrate control signals from the brain as well as sensory

signals from the periphery to provide the final activating signal for muscle fibres, they
play a central role in motor control and are discussed in more detail in Section 2.3.
The signalling pathway from a sensory organ via an afferent nerve to the pool of α-

motoneurons and via an efferent nerve back to the muscle fibres is called a reflex arc.
Reflexes produce stereotypical responses to sensory signals, but they can also be adapted
to the intended task and play a central role in movement control. Reflexes are well suited
to investigate α-motoneuron behaviour in vivo and help us to understand basic principles
of motor control. The stretch reflex, which is mediated by muscle spindles, is described
in detail in Section 2.4.

Spinal cord 
with α-motoneuronsBrain with 

motor cortex
neurons

Muscle 
with muscle fibres

Golgi-tendon 
organ

Muscle 
spindle

Afferent pathways

Efferent 
pathways

Figure 2.1: Schematic representation of the structures involved in movement generation. Blue
colours highlight motor units, i. e., α-motoneurons and associated muscle fibres. Arrows mark
the directions of signal transmission.

2.2 Excitable cells

This chapter is based on Aidley (1998), which is also recommended for further reading on
the physiology of excitable cells.
Cells build the functional organisational units of life. The coordinated action of organs

is only possible through cells communicating with each other. Cells that can exchange
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electrical signals rapidly are summarised as excitable cells. They contain nerve, muscle and
sensory cells, i. e., the cells involved in producing coordinated movements. Even though
they are specialised for different tasks, excitable cells share some essential characteristics,
which are described in this section. Excitable cells have a cell membrane that controls
the flow and exchange of ions between the inside and outside of the cell. The resulting
potential changes are the electrical signals used by excitable cells to transmit information
within the cell, to other cells and other parts of the body. This section describes the
functioning and structure of the cell membrane and explains how its properties lead to
the establishment of a potential difference. Further, two particular states of the membrane
potential are described in more detail, i. e., the resting potential and the action potential.

2.2.1 The structure of the cell membrane

Every cell has a membrane that separates the inner of the cell from the outside. The
cell membrane of excitable cells controls the location and flow of ions into and out of
the cell through its anatomical structure and embedded proteins. The cell membrane
consists of a bilayer of phospholipids with a hydrophilic head and a hydrophobic tail. The
phospholipids are arranged so that the hydrophobic tails are towards the centre and form
a hydrophobic core, while the hydrophilic heads form the inner and outer surfaces of the
membrane (Figure 2.2). Ions within and outside the cell are dissolved in water, and the
hydrophobic core of the membrane builds a barrier to the diffusion of ions.
Usually, the concentration of ions outside and inside the cell differs (Figure 2.2). Con-

sequently, a potential difference or voltage is established across the membrane. We define
the membrane potential or membrane voltage Vm as the difference between the potential
at the inside of the cell membrane, i. e., in the intracellular space, Φin, and the potential
at the outside of the membrane, i. e., in the extracellular space, Φex:

Vm = Φin − Φex . (2.1)

It is an accepted convention to define the potential of the extracellular space as Φex = 0.
A notable characteristic of the cell membrane of excitable cells is its capacitive beha-

viour. That means, when a current step is applied to cross the cell membrane, the change
in membrane potential will not follow immediately but with a delay (Figure 2.3). Simil-
arly, when the current is turned off, the membrane potential will not immediately return
to its resting value. The delay with which the membrane reacts can be quantified by
fitting an exponential function to the time course. The time constant of that exponential
is often used to characterise an excitable cell.
While the cell membrane itself is a barrier to ions, the movement of ions across the

membrane is enabled by integrated proteins, i. e., ion channels and ion pumps. The
relation of the intra- and extracellular concentration of ions is subject to two driving forces:
the chemical driving force is a function of the concentration gradient, and the electrical
driving force is a function of the potential difference between intra- and extracellular space
(Figure 2.2). Ion channels passively transport ions according to their electrochemical
gradient, i. e., the process requires no expenditure of metabolic energy (Johnston and
Wu, 1995). In contrast, ion pumps transport ions against their electrochemical gradient
under consumption of energy (Johnston and Wu, 1995). Ion channels can be in different
conformations, determining whether they are in an open or closed state. The transition
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Figure 2.2: The phospholipid bilayer structure of the cell membrane (grey) with one ion channel
(blue) embedded. The distribution of K+ (blue), Na+ (green) and Cl− (pink) ions as well as
other anions (white) in the intra- and extracellular space is schematically shown. The inside of
the membrane is negatively charged, and the outside is positively charged. The ion channel is
open and transmissive to K+ ions. Two opposing forces act on K+ ions: the electrical gradient
(black arrow) and the chemical gradient (blue arrow).

between the states is called gating. The gating can depend on the membrane potential or
the presence of other ions, e. g., Ca2+, or on mechanical stimuli. Ion channels are usually
selective to one or several specific ions. Numerous ion channels exist, which differ in their
electrophysiological properties (Hille, 2001). Further, the occurrence, location and density
of channel (sub-)types varies between neuron types (Hille, 2001).

2.2.2 Resting potential

The membrane potential is determined by the concentration of ions on both sides of the
cell membrane. At a specific ratio of ions in the intra- and extracellular space, the cell
reaches a steady state. In this state, the net ion flux across the membrane is zero. The
corresponding membrane potential is called resting potential. The resting potential of
neurons is mainly determined by three types of ions: sodium (Na+), potassium (K+)
and chloride (Cl−). These ions are present in different concentrations in the intra- and
extracellular space (Table 2.1).
The resting membrane potential of a cell evolves due to the equilibrium potentials of the

ions and the membrane’s conductance to those ions. At the so-called equilibrium potential
of a specific ion, the chemical and electrical driving forces are balanced, i. e., there is no
net exchange of ions between the inside and outside. The equilibrium potential E of any
ion X can be calculated from the Nernst equation:

EX =
RT
zF

ln

(
[X]in
[X]ex

)
. (2.2)

Therein, R is the universal gas constant (R ≈ 8.314 Jmol−1K−1), T is the absolute
temperature in Kelvin, z is the number of electrons transferred, F is Faraday’s constant
(F ≈ 9.648× 104Cmol−1) and [X] the concentration of ion X inside and outside the cell.
Typical equilibrium potentials for neurons can be found in Table 2.1.
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Figure 2.3: The capacitive behaviour of excitable membranes. a) Qualitative time course of
the membrane potential in response to a current step shown in b).

The resting potential is additionally defined by the membrane’s permeability to the
present ion types. The Goldman-Hodgkin-Katz equation considers the permeability P
of the membrane for different ions in units of m s−1 and their intra- and extracellular
concentrations to calculate the resting potential, Vrest:

Vrest =
RT
F

ln
PK[K

+]ex + PNa[Na
+]ex + PCl[Cl

−]in
PK[K+]in + PNa[Na

+]in + PCl[Cl
−]ex

. (2.3)

Since the membrane at rest is most permeable to K+, the resting potential establishes
close to the K+ equilibrium potential. In nerve cells the resting potential is typically
−60mV to −70mV (Aidley, 1998). The resting potential is stabilised and maintained by
the Na+-K+-pump. This ion pump transports Na+ and K+ against their electrochemical
gradient by consuming energy (Kandel et al., 2013).

Table 2.1: Typical ionic concentrations and Nernst potentials of different ion types in the squid
axon (Aidley, 1998).

Ion
Ionic concentration (mmol) Nernst potential (mV)

extracellular intracellular

Na+ 440 50 +55

K+ 20 400 -75

Cl− 560 108 -41
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2.2.3 Action potential

The membrane potential at rest changes when ions move across the membrane. Thereby,
a shift towards a more positive value is called depolarisation, while a shift towards a more
negative value is called hyperpolarisation. Excitable cells use a specific type of massive
depolarisation for communication, i. e., the action potential (AP). An AP is triggered
whenever the current input into a cell (via synapses, see Section 2.3.1) exceeds a certain
threshold. The threshold is typically about 10mV to 15mV above the resting potential
(Aidley, 1998).
The described mechanism of AP generation is based on Kandel et al. (2013) and visual-

ised in Figure 2.4. If injected currents depolarise the membrane potential to a value that
exceeds the excitation threshold, voltage-gated Na+ channels open and a massive influx of
Na+ depolarises the membrane potential towards the Nernst-potential of Na+ (+55mV).
This depolarisation triggers two processes: (1) the gradual inactivation of Na+ channels,
reducing the inflow of Na+ and (2) the opening of voltage-gated K+ channels, leading to
an outflow of K+. Both processes repolarise the membrane potential towards the resting
potential. The K+ channels remain open a few milliseconds after reaching the resting
potential, resulting in a transient hyperpolarisation of the membrane potential. Each AP
is followed by a refractory period, during which the cell is not or only hardly excitable.
The refractory period can be divided into two parts. The absolute refractory period dir-
ectly follows the AP and is characterised by Na+ channels still being inactive. During this
period, it is impossible to elicit a new AP. The absolute refractory period is followed by
the relative refractory period. During this period, some Na+ channels are no longer inac-
tivated, but a fraction of potassium channels are still open. During the relative refractory
period, an AP can only be elicited by stimuli much higher than usual. The refractory
period sets an upper limit to the frequency with which a neuron can produce APs. In
α-motoneurons the AP itself typically lasts about 1ms to 2ms and the refractory period
about 5ms (Enoka, 2008).
Several characteristics of the AP are of particular importance for motor control. APs

show all-or-none behaviour. That means whenever the depolarisation reaches the threshold,
an AP is elicited. It does not play a role by how much the threshold was exceeded. Fur-
ther, the AP always has the same shape, which does not change while transported over
long distances (see Section 2.3.1).
A single Na+ and K+ channel can explain the generation of APs. These are also the

most critical channels for nerve cell function. However, many more channels influence the
membrane potential and the specific shape of the AP depending on the nerve cell type.
Examples are subtypes of K+ channels, as utilised in the model described in Section 3.4
and hyperpolarisation activated channels permeable to Na+ and K+ (HCN channels) as
utilised in Section 6.2.1.

2.3 α-Motoneurons

This section provides an overview of the morphological and electrophysiological properties
of α-motoneurons, their functional organisation in motor units and the associated control
strategies of the neuromuscular system, i. e., recruitment and rate coding.
That the efferent nerves (axons) of α-motoneurons leave the spinal cord and innervate
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Figure 2.4: Schematic illustration of the generation of action potentials. The membrane poten-
tial is shown in black, and the relative opening of sodium (Na+) and potassium (K+) ion channels
in green and blue, respectively. (1) Resting potential: The Na+ (green) and K+ (blue) ion chan-
nels are closed (a). (2) Depolarisation: When reaching the excitation threshold, Na+ channels
open and cause a strong influx of Na+ (b). In turn, voltage-gated K+ channels open and cause
an outflow of K+ (c). (3) Repolarisation: The Na+ channels inactivate while the K+ channels
stay open (d). (4) Hyperpolarisation: When the membrane potential returns to resting poten-
tial, the Na+ channel inactivation is removed, and the Na+ channels close. With a certain delay,
the K+ channels also close (a). in: intracellular space. ex: extracellular space.

muscle tissue makes them unique amongst neurons (Burke, 2022). α-motoneurons are
distinguished from two other motoneuron types in the spinal cord: β- and γ-motoneurons.
The α-motoneurons exclusively innervate striated muscle fibres, which produce forces
that lead to movement. In contrast, γ-motoneurons exclusively innervate specialised,
so-called intrafusal muscle fibres, which are located within the muscle spindle sensory
organs (Burke, 2022) (see Section 2.4.1). Noteworthy, β-motoneurons innervate both
intra- and extrafusal (striated) muscle fibres. However, only little is known about them
(Banks, 1994). Other terms denoting α-motoneurons are e. g., spinal motoneurons, lower
motoneurons or, less specifically, motoneurons or motor neurons. In this work, the terms
α-motoneuron and motoneuron are used equivalently.
Like most neurons, a motoneuron comprises a soma, dendrites and an axon (Figure 2.5).

Dendrites branch out in a tree-like fashion and receive incoming signals from other neur-
ons via synapses. Typically, motoneurons have about ten dendrites (Cullheim et al.,
1987). The soma is the cell’s body and contains the nucleus (which contains the genetic
information) and the cell organelles. In the soma, incoming signals are summarised, and
action potentials are produced if sufficient input is available. The axon transmits the
action potential to the muscle fibres of the respective motor unit (see Section 2.3.2).
The α-motoneurons are located in so-called columns in the ventral horn of the spinal

cord (Burke et al., 1977). With soma diameters of 40µm to 70µm, they are amongst the
largest neurons in the central nervous system (Burke et al., 1977; Cullheim et al., 1987).
The resting membrane potential of motoneurons is approximately −65mV to −75mV
(Fleshman et al., 1988; Gustafsson and Pinter, 1984; Zengel et al., 1985).
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2.3.1 Signal transmission in α-motoneurons

The α-motoneuron structure enables unidirectional signal transmission, i. e., receiving
signals on the dendrites and sending signals via the axon. Motoneurons receive many
inputs of different signs (excitatory or inhibitory), sizes and also at different locations
on the dendrites. Synapses transfer incoming signals to the motoneuron. Thereby, the
action potential of the presynaptic cell triggers the release of a messenger agent, the so-
called neurotransmitter. The neurotransmitter overcomes the minimal cleft between the
pre- and postsynaptic cell and attaches to ion channels on the postsynaptic side (Kandel
et al., 2013). Depending on the type of channel, this leads to an increase or decrease of
the membrane potential of the postsynaptic cell and thus brings the motoneuron closer
to the AP threshold (excitation) or further away from it (inhibition).

muscle fibre

neuromuscular junction

myelin sheat

soma

nucelus

dendrite

synapse

axon

Figure 2.5: Schematic drawing of a motoneuron and its muscle fibres, building the motor unit.

Common to all incoming signals is that they travel towards the soma and are thereby
integrated spatially and temporally. The membrane time constant (see Section 2.2.1)
determines the amount of temporal summation of inputs arriving at the same sight within
a short time. If the signal that arrived first has not entirely decayed, it will be added
to the signal that arrives later. The motoneuron’s length constant determines how much
the amplitude of a postsynaptic potential declines while it travels along the dendritic tree
towards the soma (see Section 3.3).
When an AP is generated in the soma, it travels down the axon. The axon’s cell

membrane is constructed as described in Section 2.2. The AP is the stimulus to elicit a
new AP in the neighbouring membrane patch. In this way, the AP is regenerated and
travels without loss. Due to the refractory period, the axon can only be excited in one
direction, thus preventing the AP from travelling backwards. A motoneuron’s axon has a
myelin sheath (Figure 2.5) that acts like an insulation and allows an AP to stimulate the
membrane several millimetres away (Kernell, 2006). Through this, large AP conduction
velocities of 70m s−1 to 120m s−1 can be obtained (Kandel et al., 2013).
The motor axon transmits every motoneuron AP to the muscle fibres of the respective

motor unit. The functional contact between a motoneuron’s axon and the muscle fibres is
called neuromuscular junction (Eccles, 1948). The neuromuscular junction is a particular



2.3 α-Motoneurons 17

type of synapse, which uses acetylcholine as its neurotransmitter (Kandel et al., 2013).
Acetylcholine binding to its receptor channels on the muscle fibre membrane causes a
rapid depolarisation of the muscle fibres’ membrane. In healthy individuals, this always
triggers an AP in the muscle fibre, which travels along the fibre to initiate contraction
(Kandel et al., 2013).
The fact that every AP of a motoneuron causes an AP in a muscle fibre is fundamental

to this work. In short, it allows the conclusion that for every AP observed in a muscle
fibre, there must have been an AP in the respective motoneuron. This provides the unique
opportunity to measure discharge times of human motoneurons in vivo (see Section 4.1).

2.3.2 Functional organisation in motor units

Motor units form the controllable units of movement generation. Liddell and Sherrington
defined the term motor unit in 1925. A motor unit comprises a motoneuron and the muscle
fibres it innervates. The number of muscle fibres belonging to a motor unit, i. e., the
innervation number, can range from less than ten to more than thousand (Heckman
and Enoka, 2012). The muscle fibres are also called the muscle unit of the motor unit.
The group of motoneurons that controls the muscle fibres of one muscle is called the
motor nucleus or motoneuron pool (Burke et al., 1977). The number of motor units and,
therefore, the size of a muscle’s motoneuron pool ranges from about ten to several hundred
(Heckman and Enoka, 2012).
The size of motor units differs considerably within a muscle, as do the intrinsic proper-

ties of the corresponding motoneurons and muscle units. Based on the close correlation
between the electrical properties of motoneurons and the mechanical properties of the as-
sociated muscle fibres, Burke et al. (1973) determined three types of motor units: slow (S),
fast fatigue resistant (FR) and fast fatigable (FF) (Burke et al., 1973). The motoneurons
of S-type motor units have small cell bodies, a high input resistance and a low recruitment
threshold. The corresponding muscle units slowly contract, produce little force and are
very fatigue-resistant (Kernell, 2006). On the other end of the spectrum, motoneurons of
FF-type motor units have large cell bodies, low input resistance and a high recruitment
threshold. The corresponding muscle units are fast contracting, produce high forces and
are easily fatigable (Kernell, 2006). The innervation number usually increases from S-type
to FF-type motor units.
Note that the contractile properties of motor units can also be classified based on their

histochemical fibre type composition. Commonly, three classifications are used, type-I, -
IIA, and -IIB, which approximately correspond to the S-, FR-, and FF-type classifications
we use in this work.
Even though classified in distinct groups, the motor unit properties build a continuum

(Powers and Binder, 2007). The motor unit properties usually distribute exponentially
within a muscle, with many S-type and few FF-type motor units (Gustafsson and Pinter,
1984; Heckman and Binder, 1988; Powers and Binder, 1985; Zengel et al., 1985). For
further reading on motor units, see Heckman and Enoka (2012).
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2.3.3 Recruitment and rate coding

The activation of motor units ultimately leads to the generation of muscle force. Thereby,
the central nervous system uses two strategies to modulate the force that is produced by
a specific muscle: recruitment and rate coding. Recruitment increases the number of
active motor units, and rate coding increases the activity of a specific motor unit. With
increasing excitatory synaptic input to a pool of α-motoneurons, motor units are usually
recruited in an ordered manner, from smallest (low-threshold, S-type) to largest (high-
threshold, FF-type), following Henneman’s size principle (Henneman et al., 1965a,b).
The size principle is a direct consequence of Ohm’s law. Small motoneurons have a
higher input resistance and, for the same amount of current applied, experience stronger
increases in membrane potential than large motoneurons with low input resistance. At the
same time, increasing synaptic input leads to an increasing frequency of action potentials
generated by a specific motoneuron. Small motoneurons, recruited earlier, usually fire
action potentials at higher rates than large motoneurons. This is known as the onion
skin principle (De Luca and Hostage, 2010). Figure 2.6 illustrates the size and onion
skin principle. There is evidence that in voluntary contractions and at high forces, small
motor units experience a saturation of their firing rate (Monster and Chan, 1977). It is
essential to mention that recent evidence suggests that Henneman’s size principle might
be a simplification and that more complex patterns of motor unit recruitment are possible
(Marshall et al., 2022).
The size and onion skin principle describes the rough basic principle of muscle force

control. There are different ways to fine-tune motoneuron excitability. One is the amplific-
ation of synaptic inputs by persistent inward currents (PICs, Binder et al., 2020; Heckman
et al., 2005). PICs are mediated by persistent Ca2+ or Na+ currents, and the respective
channels are widely expressed on the surfaces of motoneurons (Binder et al., 2020). PICs
show slow activation and slow or no inactivation (Binder et al., 2020). PICs were recently
discovered, but they are found to play a role in more and more aspects of motoneuron
physiology. For example, PICs cause hysteresis, which means that motoneurons are de-
recruited at lower input levels than recruited (Binder et al., 2020).

2.4 The stretch reflex

According to Kandel et al. (2013) reflexes have traditionally been viewed as “stereotyped
responses to specific stimuli that are generated by simple neural circuits in the spinal
cord or brain stem”. Newer research, however, suggests that reflexes not only provide
stereotyped responses but are highly flexible, can be regulated and contribute significantly
to motor control (Kandel et al., 2013). What all reflexes have in common is that they
cannot be controlled voluntarily. Since the reaction time of the brain is in the range of
150ms to 200ms, reflex responses are limited to responses within this period (Kernell,
2006).
The most known reflex might be the knee-jerk reflex. A tendon tap near the patella

yields a quick extension of the knee joint. The muscle contraction, which yields the
knee extension, is a reflexive reaction to the stretch applied to this muscle by the tendon
tap. Stretch reflexes comprise a variety of quick responses to mechanical stimuli. Since
muscle stretches are omnipresent during daily movements, stretch reflexes are central to
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Figure 2.6: Visualisation of orderly recruitment and rate coding. In black, spike trains of ten
exemplary α-motoneurons (MN) are shown (left axis). With increasing synaptic input (grey,
right axis), successively more α-motoneurons are recruited, and the spike frequency of already
recruited α-motoneurons increases. [modified from Haggie, Schmid et al. (2023) under CC BY
4.0]

movement control. In human muscles, stretch is mainly detected by specialised sensory
organs, the muscle spindles (Macefield and Knellwolf, 2018).
Responses to mechanical perturbations should be fast and not counterproductive. There-

fore, inter-muscle coordination of reflexes is essential. The stretch reflex comprises dif-
ferent reflex pathways, affecting the stretched muscle and its antagonist. Three central
components of the stretch reflex are decisive for this work and are described in more
detail. This is, the muscles spindles (cf. Section 2.4.1), the monosynaptic stretch reflex
pathway (Section 2.4.2) and the reciprocal inhibition pathway (Section 2.4.3).

2.4.1 Muscle spindles

The muscle spindle is a receptor sensing the intrafusal muscle fibre length change, provid-
ing stretch feedback to the neuromuscular system (Macefield and Knellwolf, 2018). The
number of muscle spindles in human muscles varies between less than ten and more than
a thousand (Banks, 2006).
Each muscle spindle consists of a bundle of specialised, so-called intrafusal, muscle

fibres lying in parallel with the regular (extrafusal) muscle fibres of the parent muscle
(Figure 2.7, Macefield and Knellwolf, 2018). The intrafusal fibres are distinguished as
bag1, bag2 and chain fibres (Ovalle and Smith, 1972). They have different viscoelastic
properties that make them differently sensitive to muscle length and length changes.
Two types of afferent axons innervate muscle spindles, the so-called primary (Ia) and

secondary (II) sensory endings (Figure 2.7). Ia afferents have a larger diameter than II
afferents and a faster action potential conduction velocity (Kandel et al., 2013). Ia affer-
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Figure 2.7: Schematic drawing of a muscle spindle. Three types of intrafusal fibres (bag1,
bag2, chain) are arranged in parallel to extrafusal muscle fibres. Ia afferents innervate all
intrafusal muscle fibres, and II afferents innervate bag2 and chain fibres. Efferent γ-dynamic
axons innervate bag1 fibres and γ-static axons innervate bag2 and chain fibres. (Macefield and
Knellwolf, 2018; Ovalle and Smith, 1972)

ents reach conduction velocities of 80m s−1 to 100m s−1 (Boyd and Kalu, 1979; Heckman
and Binder, 1988). Ia afferents form monosynaptic connections to α-motoneurons of the
same (homonymous) muscle, which makes them unique among sensory afferents (Stauffer
et al., 1976; Watt et al., 1976). Ia and II afferents connect di- and polysynaptically to the
homonymous and other (heteronymous) muscles, i.e., synergists and antagonists (Scott
and Mendell, 1976; Watt et al., 1976).
The importance of the muscle spindle is underlined by the fact that it is the only peri-

pheral sensory organ that is controlled by the central nervous system (Ellaway et al., 2015).
In detail, the so-called fusimotor system modulates muscle spindle activity. The fusimotor
system comprises two types of spinal neurons, static and dynamic γ-motoneurons, which
modulate the spindles’ sensitivity and, thereby, ensure that spindles remain responsive
during muscle contraction (Macefield and Knellwolf, 2018; Matthews, 1962).
Muscle spindles detect length changes of the intrafusal fibres. Thereby, the responses of

Ia and II afferents to muscle stretch differ. In relaxed muscles, there is a linear relationship
between joint angle and firing rate as well as between joint angle velocity and firing
rate (e. g., Day et al., 2017; Grill and Hallett, 1995; Kakuda, 2000). However, this is
no longer the case if the stretch exceeds a specific value (Day et al., 2017; Kakuda, 2000)
and whilst the muscle is contracting (Hulliger et al., 1985).

2.4.2 The monosynaptic stretch reflex

The stretch reflex involves a monosynaptic pathway that is mediated by muscle spindle
Ia afferents. In detail, when a muscle is stretched, the muscle spindles increase their
activity and monosynaptically excite the homonymous motoneurons via their Ia afferents
(Figure 2.8, Kandel et al., 2013). The monosynaptic stretch reflex can, e. g., be elicited
by applying a mechanical perturbation to the muscle, i. e., by tendon jerk, or by direct
electrical stimulation of the nerve. The electrically evoked monosynaptic stretch reflex is
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Figure 2.8: Illustration of the stretch reflex pathways. A lengthening of the agonist muscle
(red) is registered by muscle spindles (green zick-zack). In response, the muscle spindles activ-
ate populations of neurons (circles) in the spinal cord via synapses (triangles). Thereby, the
monosynaptic stretch reflex pathway (green) leads to an activation of the agonist muscle. The
disynaptic reciprocal inhibition pathway (blue) leads to the inhibition of the antagonist muscle
(pink). [modified from Homs-Pons et al. (2024) under CC BY 4.0]

also called Hoffmann-reflex or H-reflex.
The reflex response caused by the monosynaptic pathway is the fastest neuromuscular

reflex response that can be observed and is called short-latency or M1 response. The
short-latency response is well detectable in experimental recordings. A cat motoneuron
has an estimated 1000-2000 Ia afferent synapses (Fyffe, 2001) and the excitatory Ia input
to motoneurons contributes to a considerable extent to muscle activation (Gandevia et al.,
1990; Hiebert and Pearson, 1999). Therefore, since its discovery, the stretch or H-reflex has
been utilised as both a diagnostic and a research tool (Pierrot-Deseilligny and Mazevet,
2000). The monosynaptic stretch reflex is the subject of Chapters 5 and 7.

2.4.3 The reciprocal inhibition reflex

Reciprocal inhibition is, as the monosynaptic pathway, a component of the stretch reflex.
In contrast to the monosynaptic stretch reflex, the reciprocal inhibition pathway affects
heteronymous muscles that act as antagonists to the muscle the spindles are located in
(Kandel et al., 2013). In detail, when muscle spindles are activated, the afferent path-
ways excite interneurons in the spinal cord, which subsequently inhibit α-motoneurons of
the antagonist muscle (Crone et al., 1987; Kudina, 1980). Consequently, the reciprocal
inhibition pathway is disynaptic (Figure 2.8).
As part of the stretch reflex, reciprocal inhibition ensures that the antagonist does

not counteract the contraction of the agonist. Reciprocal inhibition plays a central role
in coordinating voluntary movements since relaxation of the antagonist enhances the
movement efficiency (Kandel et al., 2013). The reciprocal inhibition reflex is the subject
of Chapter 6.
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3 Computational Modelling of
Motoneurons

The motoneuron models relevant to this work are derived and described in this chapter.
After introducing the sign conventions used in the mathematical models (Section 3.1), the
modelling approach used to describe the active spiking behaviour of motoneurons, i. e., the
Hodgkin-Huxley model is introduced in Section 3.2. The cable theory, which serves as
a basis to include the spatial dimension of motoneurons, is the subject of Section 3.3.
Finally, in Section 3.4, the compartmental motoneuron model that serves as the basis for
this work is presented in detail.

3.1 Sign conventions for motoneuron models

Sign conventions used to describe membrane voltages and currents usually differ between
experimental studies and computational models. The membrane potential is defined as
the potential difference between the extracellular and the intracellular space (see Equa-
tion 2.1). Since it is a relative measure, two decisions need to be made. First, a refer-
ence potential needs to be defined. In physiological measurements, the potential in the
extracellular space is usually defined as zero, such that a negative resting potential of
approximately −70mV is measured. In contrast, in computational models, the resting
potential is usually defined as zero, and all potentials are given with respect to the resting
potential. This is also applied within this work. Second, the sign needs to be defined. We
treat the potential such that a depolarisation from the resting potential corresponds to a
positive sign and a hyperpolarisation to a negative sign. Hodgkin and Huxley introduced
the opposite sign convention in their work (Hodgkin and Huxley, 1952d). The equations
and parameters have been adjusted in this work to be consistent with the convention
described above.
The sign must also be defined for electric currents induced by the movement of ions.

An outward movement of positive charge across the membrane corresponds to a positive
current for ionic currents. In contrast, for an external current applied to a cell, a current
that depolarises the cell, i. e., corresponding to the flow of positive charge into the cell, is
defined as positive.

3.2 The Hodgkin-Huxley model of excitable

membranes

In a series of papers, Sir Alan L. Hodgkin and Sir Andrew F. Huxley described the
electric current flow across the membrane of a nerve fibre, i. e., the giant axon of the
squid (Hodgkin and Huxley, 1952a,b,c; Hodgkin et al., 1952).1 In a final publication,

1Together with Sir John C. Eccles they were awarded the Nobel Prize for Physiology or Medicine
1963 “for their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the
peripheral and central portions of the nerve cell membrane”.
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Figure 3.1: The equivalent electric circuit model of an excitable membrane according to
Hodgkin and Huxley (1952d). The membrane voltage is denoted by Vm and the membrane
capacitance by Cm. The leakage channel is represented by a battery representing the leakage
equilibrium potential EL and a conductance GL. Accordingly, the potassium (K) and sodium
(Na) ion channels are represented by the respective equilibrium potentials, EK and ENa, and
voltage-gated conductances, GK and GNa, respectively.

they summarised the results of the preceding papers and presented a mathematical model
for the electrical behaviour of the cell membrane (Hodgkin and Huxley, 1952d).
From their measurements, Hodgkin and Huxley concluded that the electrical behaviour

of the neuron membrane can be described by an equivalent electric circuit composed of a
capacitor in parallel to three ionic currents, which are mediated by sodium ions, potassium
ions and other ions (Figure 3.1). The flow of ions across the membrane is determined by
the membrane’s permeability for a specific ion, represented by a conductance, and the
driving force, represented by a battery.
The model became known as the Hodgkin-Huxley model and has been widely used

and refined since its development. It was successfully employed to describe a variety
of excitable cells, e. g., motoneurons (e. g., Cisi and Kohn, 2008; Negro and Farina,
2011; Powers et al., 2012), brain neurons (e. g., Traub et al., 1991) or smooth muscle
cells (e. g., Bursztyn et al., 2007). Since it also serves as the theoretical basis for the
motoneuron model used within this work, the underlying equations are derived in this
chapter. This section is based on Hodgkin and Huxley (1952d) if not stated otherwise.

3.2.1 Mathematical description of the Hodgkin-Huxley model

Hodgkin and Huxley found that the total current density that flows across a patch of the
cell membrane Jm is composed of a capacitive component, Jcap, and an ionic component,
Jion:

Jm = Jcap + Jion . (3.1)

The capacitance C describes the ability to separate charges. It is defined as the ratio
between the electric charge and the potential. The capacitive current density is described
by the membrane capacitance per unit area Cm and the rate of change of the membrane
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voltage:

Jcap = Cm
dVm

dt
. (3.2)

The ionic current density is equivalent to the sum of the currents mediated by Na+, JNa,
K+, JK, and a leakage current, JL:

Jion = JNa + JK + JL . (3.3)

The leakage current summarises currents mediated by other ions, mainly chloride. The
current mediated by a specific ion X, JX, can be described by Ohm’s law, using the con-
ductance per unit area (the inverse of the resistance per unit area) GX and the difference
between the membrane potential and the ion’s equilibrium potential EX:

JX = GX (Vm − EX) . (3.4)

The equilibrium potential is the potential at which the electrical and chemical gradients
are balanced, and the net ion flow across the membrane is zero. The Nernst Equation
(Equation 2.2) describes the equilibrium potential.
In summary, the equation describing the equivalent circuit of the Hodgkin-Huxley model

yields:

Cm
dVm

dt
= −GNa (Vm − ENa) − GK (Vm − EK) − GL (Vm − EL) . (3.5)

We can consider that so-called gates2 regulate the conductance of ion channels (Nelson,
2005). A gate can be in permissive or non-permissive state. The fraction of gates in
permissive or non-permissive state determines the overall conductance of the channel
(Nelson, 2005). We define a specific gating variable w as the fraction of gates in permissive
state, such that w ∈ [0, 1]. Thus, at some point in time t, w(t) gates are in permissive
state, while 1 − w(t) gates are in non-permissive state. The rates at which gates change
from permissive to non-permissive and back are called αw(Vm) and βw(Vm) and depend
on the membrane voltage:

1 − w(t)
αw(Vm)−−−−→←−−−−
βw(Vm)

w(t) .

The unit of the rates αw and βw is ms−1 and they are described by first-order kinetics:

dw

dt
= αw(Vm)(1 − w) − βw(Vm)w . (3.6)

The description of how the rates depend on membrane voltage must be empirically de-
termined for every ion channel type (Section 3.2.2).
One or several gating variables can describe an ion channel depending on the channel

type. The overall conductance of a certain channel GX is described by the product of its
individual gating variables wi:

GX = GX

∏
i

wi , i ∈ N . (3.7)

2With the knowledge available at that time, Hodgkin and Huxley could not relate the flow of ions across
cell membranes to channel proteins. Instead, they hypothesised not closer specified “particles” within
the membrane to be responsible for the ion transport (Hodgkin and Huxley, 1952d). Nevertheless, the
empirically determined gate model serves as a valid description of voltage-dependent conductances.
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Thereby, GX is the maximum conductance when all gates are in the permissive state.
When measuring the time course of the membrane’s conductance to K+ and Na+,

Hodgkin and Huxley (1952d) found that they could describe it best by using four similar
gating variables for K+ (n) and also four gating variables but of two types for Na+ (m, h):

GK = GKn
4 , (3.8)

GNa = GNam
3h . (3.9)

Thereby, n and m are so-called activation gates, while h describes an inactivation gate
(Nelson, 2005).
In summary, the Hodgkin-Huxley model of the electrical behaviour of the cell membrane

is described by a system of four coupled ordinary differential equations (ODEs):

Cm
dVm

dt
= −GNam

3h (Vm − ENa) − GKn
4 (Vm − EK) − GL (Vm − EL) , (3.10)

dm

dt
= αm(Vm)(1 − m) − βm(Vm)m, (3.11)

dh

dt
= αh(Vm)(1 − h) − βh(Vm)h , (3.12)

dn

dt
= αn(Vm)(1 − n) − βn(Vm)n . (3.13)

3.2.2 Parameters for the Hodgkin-Huxley model

Hodgkin and Huxley determined the parameters for their model from a series of voltage-
clamp experiments (Hodgkin and Huxley, 1952a,b,c; Hodgkin et al., 1952). In voltage-
clamp experiments, two electrodes are inserted into the cell; one measures the membrane
voltage, and the other applies a current. The current that crosses the cell membrane
can be estimated by measuring the current required to hold the membrane potential at a
specific value.
The parameters of the Hodgkin-Huxley model consist of constant and voltage-dependent

parameters. The constant parameters are summarised in Table 3.1 and include the mem-
brane capacitance, the equilibrium potentials and the maximum conductances of the ion
channels.
The voltage-dependent rates αw and βw, which determine the opening and closing of

the ion channels, are fitted to experimental data. Therefore, Equation (3.6), governing
the gates w, is reformulated to rely on values that can be more readily determined from
experimental data, i. e., a steady-state value w∞ and a time constant τw:

dw

dt
=

w − w∞

τw
. (3.14)

When the membrane voltage is clamped at a specific value Vm, the gate in the permissive
state will reach a steady-state value w∞, which can be expressed in terms of the rates αw

and βw:

w∞ =
αw(Vm)

αw(Vm) + βw(Vm)
. (3.15)
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Table 3.1: Constant parameters for the model by Hodgkin and Huxley (1952d). Potential
values are given relative to a resting potential of −75mV.

Parameter Symbol Value

Specific capacitance of the cell membrane (µF cm−2) Cm 1

Na+ equilibrium potential (mV) ENa 115

Na+ maximum specific conductance (mS cm−2) GNa 120

K+ equilibrium potential (mV) EK −12
K+ maximum specific conductance (mS cm−2) GK 36

Leakage equilibrium potential (mV) EL 10.613

Leakage specific conductance (mS cm−2) GL 0.3

The time course for approaching w∞ is characterized by a time constant τw(Vm), which
can also be related with αw and βw:

τw(Vm) =
1

αw(Vm) + βw(Vm)
. (3.16)

By measuring w∞ and τw at different values of the membrane potential and using Equa-
tions (3.15) and (3.16), the voltage-dependent rates αw and βw can be determined. Expo-
nential functions are fitted to the empirically collected data to obtain continuous voltage-
dependent rate formulations. The resulting voltage-dependent functions are:

αn(Vm) = 0.01
10 − Vm

exp
(
10−Vm

10

)
− 1

, (3.17)

βn(Vm) = 0.125 exp

(−Vm

80

)
, (3.18)

αm(Vm) = 0.1
25 − Vm

exp
(
25−Vm

10

)
− 1

, (3.19)

βm(Vm) = 4 exp

(−Vm

18

)
, (3.20)

αh(Vm) = 0.07 exp

(−Vm

20

)
, (3.21)

βh(Vm) =
1

exp
(
30−Vm

10

)
+ 1

. (3.22)

For the sake of clarity, the units of the parameters are omitted in Equations 3.17 to 3.22.
The membrane potential Vm is in units of millivolt, and the rates α and β are in units
of ms−1. For more details on the experimental procedure and the fitting method, see
Hodgkin and Huxley (1952d).
An action potential and the corresponding time courses of the gating variables in

the Hodgkin-Huxley model are shown in Figure 3.2. A CellML-implementation of the
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Figure 3.2: An action potential in the Hodgkin-Huxley model. a) Time course of the membrane
potential. b) Time course of the gating variables of the sodium (m, h) and potassium (n) ion
channels.

Hodgkin-Huxley model, as presented here, can be downloaded from the Physiome model
repository website3.
Today, the current-voltage relation of single ion channels can be recorded using the

patch-clamp method (Hamill et al., 1981)4. This method considerably increased the
amount and predictive quality of ion channel models. While the methods for determ-
ining the parameters have progressed, the general approach developed by Hodgkin and
Huxley is still used today.

3.3 The equivalent cylinder model of passive

electrical membrane properties

The Hodgkin-Huxley model describes the current flow across a patch of the cell membrane.
However, neurons have spatial dimensions and broadly branched dendrites. Incoming sig-
nals travel from where they arrive at a dendrite to where the action potential is generated
in the soma. The passive propagation of electrical signals within the cell and without
the influence of the voltage-dependent properties of the membrane is called electrotonic
spread. The electrotonic current spread within the cell can be described by equivalent
cylinder models based on the cable theory.
In this section, the basic principles of the cable theory are derived. Then, we describe

how equivalent cylinders can represent motoneurons and how these principles are applied
to a two-compartment motoneuron model.

3.3.1 The cable equation

An equivalent electric circuit, as shown in Figure 3.3, can describe the passive electrotonic
properties of a cable-like structure. We assume that the current only flows in x-direction

3https://models.physiomeproject.org/exposure/5d116522c3b43ccaeb87a1ed10139016
4Erwin Neher and Bert Sakmann were awarded the Nobel Prize in Physiology or Medicine 1991 “for

their discoveries concerning the function of single ion channels in cells”.
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Figure 3.3: Schematic representation of the cable model. a) A neuronal structure can be
represented by a cylinder (cable) with radius a. The cable is divided into unit lengths. b)
The equivalent electric circuit represents a neuron’s passive cable properties. Each unit length
of the cable is represented by a capacitance cm and a resistance rm. The unit-length circuits
are connected by resistances ri representing the resistance of the cytoplasm. A short circuit
represents the extracellular space. The current flows along x.

and that the radial current is zero. The transverse membrane resistance rm, the transverse
membrane capacitance cm and the longitudinal resistance of the cytoplasm ri determine
the current flow along the cable. These quantities refer to unit length (cm) and do not
depend on the membrane potential. Instead of specifying the resistance and capacitance
in terms of the unit length, they are often specified in terms of the unit area. The
corresponding quantities, Rm, Cm and Ri, are obtained using the radius of the cable a:

rm =
Rm

2πa
, (3.23)

cm = 2πaCm , (3.24)

ri =
Ri

πa2
. (3.25)

The membrane potential in the cable structure is a function of time t and distance x:

1

ri

∂2Vm

∂x2
= cm

∂Vm

∂t
+

Vm

rm
. (3.26)

Equation (3.26) is called the cable equation.
Here, we introduce two additional variables. The time constant τ describes how fast
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the membrane potential changes after current injection:

τ = rmcm = RmCm . (3.27)

The larger τ , the slower the membrane potential will change in response to a current
injection. Note that the time constant is independent of the cable radius. The length
constant λ describes how far the injected current will flow:

λ =

√
rm
ri

=

√
aRm

2Ri

. (3.28)

The larger λ, the further the current will spread. Using Equations (3.27) and (3.28),
Equation (3.26) can be rearranged to:

λ2∂
2Vm

∂x2
= τ

∂Vm

∂t
+ Vm . (3.29)

For a more detailed derivation of the cable equation, see e. g., Johnston and Wu (1995).

3.3.2 The equivalent cylinder model

A description of the electrotonic properties of a motoneuron using the cable equation
requires approximating the cell’s morphology by cylindrical segments of uniform diameter
and solving the cable equation for each segment. Considering the complexity of the dend-
ritic structure and the need for boundary conditions for each segment or branch, this is
not an efficient method. To overcome this issue, Wilfrid Rall derived a method to collapse
the complex dendritic structure into a single equivalent finite cylinder (Rall, 1962a,b). He
showed that the entire dendritic tree can be collapsed into one single compartment when
Rm and Ri are uniform across all dendritic branches, all terminal branches end at the
same electrotonic length from the soma, and the diameters obey the “3/2 power rule”
(see Equation 3.31).
The electrotonic length L of a cylindrical branch corresponds to its physical length l

divided by its length constant λ:

L =
l

λ
. (3.30)

The length constant λ is defined in Equation (3.28). The “3/2 power rule” requires that
the diameter of a parent branch dparent is related to the diameters of the daughter branches
ddaughter according to:

d
3/2
parent =

∑
d
3/2
daughter . (3.31)

For a detailed derivation of the equivalent cylinder model, see Rall (1962b) and Rall
(1962a).

3.3.3 Equivalent cylinder model for a two-compartment
motoneuron

The previous section describes how to represent the branched dendritic tree of a neuron us-
ing a single cylinder. Based on this model, Rall et al. (1992) developed a two-compartment
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motoneuron model and determined its electrotonic parameters based on experimental data
by Fleshman et al. (1988). The model consists of one compartment representing the col-
lapsed dendritic structure and one compartment representing the soma.
For the two-compartment model, several electrotonic parameters are required, namely

the specific membrane resistances of the soma and the dendrite, Rs
m and Rd

m, respectively,
the specific capacitance of the membrane, Cm, and the cytoplasm specific resistance, Ri.
Additionally, the length and diameter of each compartment need to be defined.
Most studies reported that the specific capacitance of the cell membrane, Cm, is re-

latively invariant and has a value of 1 µF cm−2 (Burke et al., 1994; Fleshman et al.,
1988). The same applies to the cytoplasm specific resistance Ri, which is reported to
be 70Ω cm (Barrett and Crill, 1974; Burke et al., 1994; Fleshman et al., 1988). Values
for the specific membrane resistances of the dendrite and soma cannot be measured dir-
ectly but can be obtained following the procedure described by Fleshman et al. (1988)
and Rall et al. (1992). In short, the input resistance of a motoneuron, the time con-
stant of the membrane potential decay in response to a short current pulse and the cell
morphology are quantified from experiments. For details on the experimental procedure,
see e. g., Fleshman et al. (1988). Equivalent cylinder models are created for the dendrite
and the soma. Using this model and assuming that Rs

m < Rd
m, values for R

s
m and Rd

m are
searched such that the calculated whole-cell input resistance and the time constant match
the experimental measurements. Thereby, a step-wise increase of the specific resistance
from soma to dendrite is assumed. This so-called step-model is widely applied, e. g., by
Cisi and Kohn (2008) and Powers et al. (2012).

3.4 A two-compartment model of a motoneuron pool

Based on the equivalent electric circuit model developed by Hodgkin and Huxley (1952d)
(Section 3.2) and the work by Fleshman et al. (1988) and Rall et al. (1992) on equival-
ent cylinder models (Section 3.3), Cisi and Kohn (2008) developed a two-compartment
motoneuron model, which was later adapted by Negro and Farina (2011). The model
considers a soma compartment, a lumped dendrite compartment and three voltage-gated
conductances. As in the original Hodgkin and Huxley model, the voltage-gated conduct-
ances include the Na+ and K+ conductance. The model further considers an additional
slow K+ conductance, also called the delayed rectifier, that mainly determines the hy-
perpolarisation period of the action potential. An entire motoneuron pool is created by
selecting the appropriate parameters.
This model forms the foundation for the studies conducted in Chapters 5, 6, and 7, and

its detailed description is provided in this section5.

3.4.1 Mathematical description of the motoneuron pool model

The motoneuron model is described by an equivalent electric circuit with two membrane
compartments (soma and lumped dendrite) and six conductances, from which three are
voltage-gated (Figure 3.4). Both soma and dendrite compartments have a leakage con-
ductance, and a coupling conductance connects the two compartments. The voltage-gated

5The model was published in CellML format (for a single neuron) by Röhrle et al. (2019).



32 3 Computational Modelling of Motoneurons
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Figure 3.4: The electric circuit of the two-compartment motoneuron model by (Negro and
Farina, 2011). Each compartment comprises a capacitance C, and the compartments are coupled
via a conductance gC. Leakage (L), sodium (Na), slow (Ks) and fast (Kf) potassium ion channels
are represented by a battery and a (voltage-gated) conductance. The current source Isinj rep-
resents an externally applied current. Vm denotes the membrane potential. Soma and dendrite
quantities are denoted by the superscript letters ‘s’ and ‘d’, respectively.

conductances are exclusively located in the soma and include a Na+ as well as a fast and
a slow K+ conductance. The membrane potential in each compartment is described by:

CddV
d
m(t)

dt
= −IdL − IdC , (3.32)

CsdV
s
m(t)

dt
= −IsL − IsC − Iion + Isinj . (3.33)

Therein, Vm denotes the membrane voltage and C the membrane capacitance. The su-
perscript letters ‘s’ and ‘d’ denote the soma and dendrite compartments, respectively. IC
describes the coupling current between the two compartments, whereby IdC = −IsC and IL
describes a leakage current. Iion summarises the currents through the voltage-gated ion
channels and is defined in Equation (3.43). Isinj represents an external or injected current.
The membrane capacitance and the coupling and leakage currents are obtained from

the electrotonic parameters of the neuron. The compartments are assumed to have a
cylindrical shape with sealed ends. The outer surface of the cylindrical compartment,
described by length l and radius a, together with the specific conductance of the cell
membrane, Cm, determine the total capacitance in each compartment:

Cd = 2π ad ld Cm , (3.34)

Cs = 2π as ls Cm . (3.35)

The leakage current in the dendrite is determined by the membrane potential in the
dendrite compartment, V d

m, the equilibrium potential of the leakage channel, EL, and the
size-dependent leakage conductance, gdL:

gdL =
2π ad ld

Rd
m

, (3.36)

IdL = gdL
(
V d
m − EL

)
. (3.37)

Therein, Rd
m denotes the specific resistance of the dendrite membrane in units of kΩ cm−2.
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Accordingly, the leakage current in the soma is given by:

gsL =
2π as ls

Rs
m

, (3.38)

IsL = gsL (V s
m − EL) . (3.39)

Therein, Rs
m denotes the specific resistance of the soma membrane in units of kΩ cm−2.

The coupling current between the two compartments is described by:

gC =
2

Ri ld

π (ad)2
+ Ri ls

π (as)2

, (3.40)

IdC = gC
(
V d
m − V s

m

)
, (3.41)

IsC = gC
(
V s
m − V d

m

)
. (3.42)

Therein, Ri is the resistivity of the cytoplasm in units of kΩ cm.
The ionic current is described by three voltage-gated conductances: a Na+ conduct-

ance (Na), a K+ conductance with fast dynamics (Kf) and a K+ conductance with slow
dynamics (Ks):

Iion = ḡNam
3h (V s

m − ENa) + ḡKfn
4 (V s

m − EK) + ḡKsq
2 (V s

m − EK) . (3.43)

As proposed by Hodgkin and Huxley (1952d), the Na+ conductance is modelled with two
different voltage-dependent gating variables, m for activation and h for inactivation. The
K+ conductances are each modelled with one voltage-dependent gating variable, n and q,
respectively (both are activation gates). Multiplying the maximum specific conductance
G with the area of the soma compartment yields the maximum conductance values ḡ.
Note that Equations (3.32) to (3.43) are adopted from (Cisi and Kohn, 2008).
The gating variables m, n, h and q are determined by forward and backward rates

α and β as in Equations (3.14) to (3.16). Note that Cisi and Kohn (2008) adopted a
simplified mechanism to describe the gating variables based on Destexhe (1997). Thereby,
rectangular current pulses approximate the ODEs describing the gating variables. This
approach simplifies the original formulation and reduces computational effort. However,
this approximation is not suited to describe the sub-threshold contribution of ion channels,
which is essential in this work.
Within this thesis, we follow Negro and Farina (2011) who adopted the model proposed

by Cisi and Kohn (2008) and replaced the approximation of the gating variables with
the formulation based on Traub et al. (1991). Traub et al. (1991) modelled the channel
dynamics based on the formalism derived by Hodgkin and Huxley (1952d) as described in
Equations (3.14), (3.15) and (3.16). They developed their model to simulate guinea pig
hippocampal pyramidal neurons. Thus, Negro and Farina (2011) adapted the parameters
to represent typical motoneuron behaviour (see Section 3.4.3).
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The Na+ channel dynamics are governed by Equations (3.44) to (3.47):

αm =
0.32 (13 − V s

m)

exp
(

13−V s
m

5

)
− 1

, (3.44)

βm =
0.28 (V s

m − 40)

exp
(

V s
m − 40
5

)
− 1

, (3.45)

αh = 0.128 exp

(
17 − V s

m

18

)
, (3.46)

βh =
4

exp
(

40−V s
m

5

)
+ 1

. (3.47)

The dynamics of the fast K+ channel (Kf) are governed by Equations (3.48) and (3.49):

αn =
0.032 (15 − V s

m)

exp
(

15−V s
m

5

)
− 1

, (3.48)

βn = 0.5 exp

(
10 − V s

m

40

)
. (3.49)

The dynamics of the slow K+ channel (Ks) are governed by Equations (3.50) and (3.51):

αq =
3.5

exp
(

55−V s
m

4

)
+ 1

, (3.50)

βq = 0.025 . (3.51)

For the sake of clarity, the units of the parameters are omitted in Equations (3.44) to
(3.51). The membrane potential Vm is in units of millivolt, and the rates α and β are in
units of ms−1. For each motoneuron, a system of six coupled ODEs has to be solved. For
methods to solve ODEs, see e. g., Chapra and Canale (2010).

3.4.2 Parameters for the motoneuron pool model

In this section, we describe how a population of motoneurons is built based on the two-
compartment model presented in the previous section. Further, we provide the parameters
for a motoneuron pool.
Motoneuron properties are closely related to motoneuron size (see Section 2.3.2). How-

ever, some parameters are similar for all motoneurons. Considering the presented model,
these are the specific membrane capacitance Cm, the cytoplasm resistivity Ri, the specific
conductances and the equilibrium potentials of the ion channels (Table 3.2).
The parameters determining the compartment size, as well as the specific resistance of

the cell membrane, vary across the motoneuron pool. Typically, these properties are expo-
nentially distributed between S-type and FF-type motoneurons (Gustafsson and Pinter,
1984; Powers and Binder, 1985). In this work, we order the motoneurons according to
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Table 3.2: Constant parameters of the motoneuron pool. Parameters are adopted from Cisi
and Kohn (2008) if not indicated otherwise.

Parameter Symbol Value

Membrane specific capacitance (µF cm−2) Cm 1∗

Cytoplasm resistivity (kΩ cm) Ri 0.07∗∗

Na+ equilibrium potential (mV) ENa 120

K+ equilibrium potential (mV) EK −10
Leakage equilibrium potential (mV) EL 0

Maximum specific Na+ conductance (mS cm−2) GNa 30

Maximum specific fast K+ conductance (mS cm−2) GKf 4

Maximum specific slow K+ conductance (mS cm−2) GKs 16

∗Burke et al. (1994); Cole (1972); Fleshman et al. (1988) ∗∗Barrett and Crill (1974); Burke et al. (1994)

their cell size and assume that the size increases exponentially from S-type to FF-type mo-
toneurons. Consequently, a size-parameter b of a specific motoneuron i is determined by
an exponential distribution between the respective parameter of the smallest motoneuron,
bsmall, and the largest motoneuron blarge (Enoka and Fuglevand, 2001; Fuglevand et al.,
1993; Negro and Farina, 2011):

bi = bsmall +
blarge − bsmall

100
exp

(
ln(100)

i

NMN

)
. (3.52)

Therein, NMN is the number of motoneurons in the pool. Values for the model parameters
are provided in Table 3.3.
Most parameters of motoneuron models cannot be obtained directly from humans.

Thus, Cisi and Kohn (2008) mainly used data from cats to parametrise their model.
While some parameters can be directly obtained from experiments, others were chosen
such that the overall model behaviour shows good accordance with experimental data,
e. g., the current-frequency relation and the shape of the afterhyperpolarisation (AHP),
i. e., the hyperpolarisation phase following an action potential. The electrotonic paramet-
ers are based on the step model by Rall et al. (1992) (see Section 3.3.3). Note that Cisi
and Kohn (2008) used a piece-wise linear interpolation between the smallest and largest
motoneuron’s parameters. In this work, we follow Negro and Farina (2011) and use the
exponential interpolation described by Equation (3.52).

3.4.3 Behaviour of the motoneuron pool model

In this section, we present the fundamental characteristics of the behaviour of the mo-
toneuron model. The time course of the membrane potential and the gating variables,
the electrophysiological parameters of the motoneuron pool, and its firing characteristics
are addressed.
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Table 3.3: Parameters that vary across the motoneuron (MN) pool. Values are given for the
smallest and the largest MN of the pool. Parameters are adopted from Cisi and Kohn (2008).

Parameter Symbol
Value

Smallest MN Largest MN

Soma diameter (cm) ds 77.5× 10−4 113× 10−4

Soma length (cm) ls 77.5× 10−4 113× 10−4

Soma specific resistance (kΩ cm−2) Rs
m 1.15 0.65

Dendrite diameter (cm) dd 41.5× 10−4 92.5× 10−4

Dendrite length (cm) ld 0.55 1.06

Dendrite specific resistance (kΩ cm−2) Rd
m 14.4 6.05

Simulation

The simulations were performed with MATLAB R2021a (9.10.0.2015706). We chose a
motoneuron pool size of 200 motoneurons. To solve the resulting system of 6x200 ODEs,
we used MATLAB’s ode23 solver (an adaptive, single-step, explicit Runge-Kutta solver,
Shampine and Reichelt, 1997) and an absolute and relative error tolerance of 1 × 10−5.
The solver uses optimised time steps within chosen intervals of 0.1ms.

Membrane potential time course and gating variables

The membrane potential time course of an exemplary motoneuron from the pool is shown
in Figure 3.5 for a constant injected current. The exact figure shows the gating variables
during two interspike intervals. The Na+ activation gate, m, closely follows the membrane
potential, especially during the action potential. In contrast, the Na+ inactivation gate,
h, quickly declines during the action potential and returns to almost the maximum value
closely after the action potential. The K+ activation gates, n and q, decline after the
action potential, but the q-gate declines more slowly than the n-gate.

Electrophysiological parameters

Electrophysiological parameters that can be compared to experimental data include the
rheobase, the input resistance, the membrane time constant and the shape of the AHP.
The rheobase corresponds to the minimum current, applied for infinite duration, that
causes a single action potential. In the simulation, the current pulse was applied for
500ms. When no action potential could be elicited, the current was increased by 0.1 nA.
To obtain the membrane time constant, a constant current of 1 nA was applied for
a duration of 100ms. Then, an exponential of the form b1 ∗ [1− exp (−t/b2)] + b3 ∗
[1− exp (−t/b4)] was fitted to the rising phase of the membrane potential using the non-
linear least-squares method. The membrane time constant corresponds to the larger value
of [b2, b4]. The input resistance RN can be analytically derived from the motoneuron para-
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Figure 3.5: Membrane potential and gating variables for one interspike interval of a simulated
motoneuron. a) Time course of the membrane potential. b) Gating variables for the sodium
(m, h) and the fast (n) and slow (q) potassium ion channels. The data was obtained from the
smallest motoneuron in the pool and with a constant injected current of 5 nA.

meters:

RN =
1

gsL +
gdL gC

gdL + gC

. (3.53)

The AHP characteristics were determined from the injection of a short (0.5ms), supra-
threshold (50 nA) current pulse. Thereby, the AHP amplitude corresponds to the min-
imum value of the membrane potential relative to the prestimulus value. The AHP half
decay time is the time that elapses from reaching the minimum AHP to reaching half
the difference to the resting potential. The AHP duration was set to the time after an
action potential when the membrane potential in mV reached the prestimulus value with
an accuracy of three digits to the right of the decimal point.
The electrophysiological parameters obtained for the smallest and largest motoneuron

of the pool, respectively, are provided in Table 3.4. We also provide corresponding values
from experimental studies (Caillet et al., 2022b; Zengel et al., 1985) for comparison. The
values for all electrophysiological parameters compare well between the experiment and
simulation. Only the AHP duration is considerably shorter in the experimentally recorded
FF-type motoneurons.

Firing characteristics

Simulated motoneurons start discharging action potentials when sufficient input current
is injected into their soma compartment. When applying a constant drive, smaller mo-
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Table 3.4: Electrophysiological parameters of the simulated motoneuron (MN) pool and typical
ranges for cat MNs. For the simulated MNs the values for the smallest and largest MN of the
pool are provided. Experimental data corresponds to averaged values for S- and FF-type MNs
obtained from 19 studies on cat MNs (Caillet et al., 2022b). For afterhyperpolarisation (AHP)
amplitude and half-decay time, data is taken from Zengel et al. (1985). Consider there is an
inverse relationship between MN size and electrophysiological parameter for all parameters but
the rheobase (Caillet et al., 2022b).

Parameter
Simulation Experiment

smallest MN largest MN S-type FF-type

Rheobase (nA) 3.6 19.4 2.3 36.6

Input resistance (MΩ) 2.2 0.5 4.0 0.4

Membrane time constant (ms) 11.6 5.6 10.2 2.9

AHP amplitude (mV) 6.0 4.3 4.9 3.0

AHP half decay time (ms) 36.1 26.4 44.0 18.0

AHP duration (ms) 145.1 128.3 158.7 44.2

toneurons in the pool fire action potentials with a faster frequency than larger motoneur-
ons. This behaviour is exemplarily shown in Figure 3.6. The frequency is defined as
the inverse of the time elapsed between consecutive action potentials. Noticeably, the
first spike has a faster frequency than the following. This phenomenon is called spike
frequency adaptation and is consistently observed in motoneurons (Powers et al., 1999).
Several physiological mechanisms seem to contribute to it (Powers et al., 1999). In the
model, spike frequency adaptation is mainly caused by AHP summation due to incom-
plete activation of the K+ current following the first action potential. Over the following
interspike intervals, the slow K+ conductance sums up and gradually increases the AHP
amplitude.
The discharge frequency of a motoneuron increases with increasing input current. The

steady-state current-frequency relation for the entire pool of 200 motoneurons is shown in
Figure 3.7a. The steady-state frequency corresponds to the mean frequency during con-
stant application of the respective input current for 2000ms. Here, we can observe two
basic physiological principles. First, the more current is injected, the more motoneurons
start firing, i. e., are recruited. Second, the firing rate of already recruited motoneur-
ons increases with increasing current. This means the model inherently accounts for
Hennemann’s size principle and the onion skin principle (De Luca and Hostage, 2010;
Henneman et al., 1965a,b).
The current-frequency relation can typically be divided into three sections. At recruit-

ment, cat motoneurons usually discharge with a frequency in the range of 5Hz to 25Hz
(Kernell, 2006). The following increase in discharge frequency for increasing current is
initially very steep. This segment is called the sub-primary range and is characterised
by irregular discharges (Jensen et al., 2018; Kudina, 1999; Kudina and Alexeeva, 1992).
All simulated motoneurons show a sub-primary range. The sub-primary range is followed
by the primary range, which is characterised by a smaller slope and is also shown by all
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Figure 3.6: Membrane potential time course and instantaneous frequency of the simulated
motoneurons. a) Membrane potential time course of the smallest motoneuron (MN) from the
pool. b) Membrane potential time course of MN 160 of a pool of 200 MNs. c), d) Instantaneous
frequencies of the spikes shown in (a) and (b). Injected drive is 10 nA for both motoneurons.

simulated motoneurons (Kernell, 1965). The slope increases for further increasing input
currents, marking the beginning of the secondary range (Kernell, 1965). This transition
is usually very sharp in experimental recordings (Kernell, 1965). In Figure 3.7a small
motoneurons (blue) reach the secondary range at approximately 25 nA. The larger mo-
toneurons (red) only reach the primary range for the input currents shown. For inputs
currents above 32 nA, the smallest motoneurons of the pool show a sudden and vertical
increase in firing frequencies, reaching unphysiologically high values of approximately
450Hz (not shown in the figure).
The corresponding slopes of the current-frequency relations are shown in Figure 3.7b.

For frequencies of approximately 10Hz to 90Hz the slope is within the range of experi-
mentally recorded values, i. e., 1Hz nA−1 to 4Hz nA−1 in the primary and 3Hz nA−1 to
8Hz nA−1 in the secondary range (Granit et al., 1966; Kernell, 1965). The sub-primary
range is characterised by slopes of up to 24Hz nA−1. For frequencies above 100Hz, the
slopes reach unphysiologically high values.
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Figure 3.7: a) Current-frequency relation of the simulated motoneuron (MN) pool. b) Slope
of the current frequency relation. Small MNs are shown in blue, and large MNs in red. Shown
is every tenth MN from a pool of 200 MNs.
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3.4.4 Limitations of the motoneuron pool model

As shown in the previous section, the motoneuron pool model qualitatively and quant-
itatively predicts many aspects of motoneuron behaviour. In this section, we discuss
the model’s limitations in terms of its comparability to experimental data and how well
the model represents the physiological system. The significance of these limitations with
regard to the model applications is discussed in the respective chapters.
For all considered properties, the simulated motoneurons show a smaller range of values

than reported from experimental studies. However, the experimental data mainly rep-
resents a collection of values obtained from motoneurons of different hindlimb muscles.
A physiological motoneuron pool is not expected to cover the entire range found across
muscles. When comparing the model behaviour to motoneuron recordings from humans,
it must be considered that the model was parametrised using cat data. Firing rates of
cat motoneurons are reported to be approximately 1.5 times faster than those of human
motoneurons (Manuel et al., 2019).
The motoneuron pool shows characteristic behaviour such as spike-frequency adapta-

tion and a partitioned current-frequency relation. However, the simulated motoneurons
produce unphysiologically high firing frequencies for very large input currents. Instead
of stopping firing or frequency saturation, as observed in experimental studies (Kernell,
2006), the motoneuron membrane potential permanently depolarises. This can be attrib-
uted to the model’s lack of an absolute refractory period. Consequently, the motoneuron
pool model should only be used with inputs leading to maximum firing rates of less than
90Hz.
The utilised model reduces the morphological complexity of the motoneuron into two

lumped compartments and only considers a subset of the ion channels found in motoneur-
ons. While the model can correctly predict many aspects of motoneuron activity, some
properties are not considered. Using a single dendrite compartment does not allow for
studying the effect of inputs delivered to different parts of the dendritic tree. Further,
motoneuron dendrites contain voltage-gated ion channels, i. e., persistent inward currents
(PICs). PICs are assumed to be highly active during normal muscle contraction and
influence the current-frequency relation and recruitment of motoneurons (Binder et al.,
2020). Ca2+-mediated PICs can be included using, e. g., the approach by Elias and Kohn
(2013). Further compartments or ion channels can be included following e. g., Powers
et al. (2012).
The empirical approach developed by Hodgkin and Huxley enables the description of

graded ion channel opening and closing. More complex models consider the underlying
chemical reactions, but this is not necessary when studying motoneuron and not channel
behaviour. Approaches to model the ion channel behaviour are reviewed by Destexhe and
Huguenard (2000).

3.5 Representation of motoneuron input signals

Motoneurons receive many excitatory and inhibitory input signals from different sources,
e. g., the motor cortex, sensory afferents or spinal interneurons. With regard to a mo-
toneuron model, this raises the question of where to apply these inputs and how to
determine them. The first question is tackled using effective synaptic inputs, described
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in Section 3.5.1. The latter question is addressed by dividing the input into different
components (Section 3.5.2).

3.5.1 The concept of effective synaptic current

As described in Section 2.3.1 motoneurons receive incoming signals via their dendrites.
98 % to 99 % of a motoneuron’s synapses are located on the dendrites (Fyffe, 2001).
The resulting postsynaptic potentials travel to the soma, changing their amplitude and
summing with other arriving potentials. Based on the observation that only potentials
eventually reaching the soma contribute to reaching the threshold for an action potential,
Heckman and Binder (1988) introduced the concept of the effective synaptic current. The
effective synaptic current corresponds to the current that arrives in the soma. Only this
current is relevant for recruitment and rate coding (Heckman and Binder, 1988).
In this work, we will generally inject currents into the soma compartment of the model

and assume that those are effective synaptic currents. The soma injected current corres-
ponds to Isinj in (3.33).

3.5.2 Common and independent input

Motoneurons receive many inputs from different parts of the nervous system. Some inputs
are shared amongst the pool, while others are individual to each motoneuron. Motoneur-
ons of the same pool receive a strong common input that mainly determines the muscle
force (Negro et al., 2016b). This common input was shown to contain frequency compon-
ents of approximately 15Hz to 35Hz and makes up the largest proportion of motoneuron
inputs (Conway et al., 1995; Halliday et al., 1998; Negro et al., 2016b). Other synaptic
inputs, which are unique to each motoneuron, decorrelate the motoneurons within a pool
and are, e. g., associated with recurrent or sensory pathways in the spinal cord (Maltenfort
et al., 1998). These inputs are also called independent inputs.
In motoneuron modelling studies, the input is commonly modelled as a constant mean,

which determines the force level and is common to all neurons of the pool. In addition,
common and independent noise components are added. Therefore, filtered zero-mean
Gaussian noise can be used. The common noise is usually band-pass filtered (15Hz to
35Hz) and the independent noise is low-pass filtered (< 100Hz). (e. g., Negro and Farina,
2011)
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4 Quantification of Reflex Responses
Using Peristimulus Analysis

Knowledge of information transmission through neural pathways is the basis for under-
standing their function in physiology and pathophysiology. Stretch reflexes are a class of
neural pathways fundamental to motor control. This chapter summarises the basic prin-
ciples of recording single motor unit activity in reflex pathways, focusing on non-invasive
techniques that can be applied in vivo.
A reflex describes the process of an afferent signal from sensory organs being transmitted

to the central nervous system and evoking a rapid response (Pierrot-Deseilligny and Burke,
2005). Motor unit reflex activity is used as a tool in many fields. Thereby, the size
and duration of the reflex response are used as a biomarker. Basic physiology research
utilises reflex recordings to broaden the knowledge on the connectivity of spinal pathways
(e. g., Burke, 1999; Yavuz et al., 2018) and to estimate the (relative) size and time course
of postsynaptic potentials (PSPs) (for a review, see Powers and Türker, 2010b). Reflex
pathways are also used to investigate the physiology and pathophysiology of, e. g., ageing
and spasticity (e. g., Aloraini et al., 2015; Biering-Sørensen et al., 2006; Nadler et al.,
2002). Further, the size of different reflex responses is used for diagnosis, monitoring,
and treatment of different diseases, e. g., stroke, spasticity, spinal cord injuries and other
neurological disorders of the brain (e. g., Chen et al., 2003; Cruccu and Deuschl, 2000;
Nadler et al., 2004).
Since motor unit reflex responses cannot be directly recorded in vivo, researchers de-

veloped several indirect measurement techniques based on electromyogram (EMG) record-
ings. Peristimulus analysis has been established as a mode of representation and analysis
of the recorded data. Thereby, motor unit activity in the form of spike trains is analysed
with respect to the time of the reflex stimulus.
This chapter overviews peristimulus analysis techniques for quantifying motor unit and

motoneuron reflex responses. Section 4.1 provides a brief overview of the recording modal-
ities and Section 4.2 describes the methods of peristimulus analysis. Peristimulus analysis
can be applied to both excitatory and inhibitory reflexes and is used in Chapters 5, 6 and
7 of this work. Finally, Section 4.3 presents an algorithm that automatically determines
the reflex size and that will be employed in Chapters 5 and 7 of this work.

4.1 Recording of motor unit reflex responses

Different experimental methods are employed to evoke and record stretch reflexes in vivo
(Figure 4.1). Direct recordings from human motoneurons in vivo are impossible. However,
every action potential of a motoneuron causes an action potential in the muscle fibres of the
respective motor unit. The sum of these single fibre action potentials is called motor unit
action potential and can be regarded as an amplified version of the motoneuron activity.
This signal can be recorded using EMG. Two methodically different recording modalities
are available. For intramuscular EMG, needle or fine-wire electrodes are inserted into the
muscle (Figure 4.1C, Merletti and Farina, 2009). This method allows recording motor unit
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action potentials from a single or several motor units (Merletti and Farina, 2009; Muceli
et al., 2022). During surface EMG, electrodes are placed on the skin above the muscle
belly, where they record the summed activity of several motor units (Figure 4.1D, Merletti
and Farina, 2016). Sophisticated decomposition algorithms in combination with densely
packed grids of electrodes (high-density surface EMG) allow extracting the activity of
single motor units from this summed signal (e. g., Del Vecchio et al., 2020; Farina and
Holobar, 2016).
Reflexes can be elicited by presenting a supra-threshold stimulus to the appropriate

sensory organ. In this work, we focus on the stretch reflex, which is evoked by mechanical
stimulation of muscle tissue. Muscle spindles react to the mechanical stimulus by changing
their activity, which, in consequence, modulates the afferent input to α-motoneurons and,
finally, muscle activity (Macefield and Knellwolf, 2018). Two methods are commonly used
to evoke the stretch reflex. A mechanical stimulus can be applied to the muscle-tendon
unit, e. g., by enforcing a sudden movement of the joint (Figure 4.1A, e. g., Yavuz et al.,
2014). The joint movement mechanically translates into a stretch of the muscle fibres,
which the muscle spindles observe. An afferent nerve transmits the sensory signal to
the motoneurons, where it causes an excitatory postsynaptic potential (EPSP) (Stauffer
et al., 1976; Watt et al., 1976). Alternatively, the reflex can also be evoked by electrical
stimulation of the afferent nerve (Figure 4.1B, e. g., Yavuz et al., 2018). Note that the
H-reflex is not exactly analogue to the mechanically evoked reflex due to the differences
in the stimulation modalities.
In reflex experiments, subjects are usually instructed to maintain a certain level of

constant, isometric contraction of the target muscle. EMG sensors permanently record
the activity of the target muscle.

A

B

D

C
Signal 

processing
motor unit
spike trains

Figure 4.1: Schematic setup of a stretch reflex experiment. The reflex (green pathway) can
be elicited by either a mechanical perturbation of the corresponding joint (A) or electrical
stimulation of the afferent nerve (B). The intramuscular (C) or surface (D) electromyogram
can record motor unit activity. Motor unit spike trains can be obtained from both recording
methods by applying appropriate signal processing methods. [modified from Homs-Pons et al.
(2024) under CC BY 4.0]
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4.2 Peristimulus analysis of reflex responses

In peristimulus analysis, a reflex pathway is considered a stimulus-response circuit. That
means when the system is stimulated at one point, an effect can be measured at another
point and in temporal relation to the stimulus. For this reason, motor unit/motoneuron
activity is evaluated with respect to the stimulus time, which is usually defined as time
zero. Typically, a time window of 150ms to 400ms before and after the stimulus applic-
ation is considered. The prestimulus time period provides an estimate for the baseline
activity, which is used as a reference. After the stimulation, only the first 200ms are
of interest for reflex studies because later responses can theoretically be influenced by
voluntary actions (Kandel et al., 2013).
At the beginning of EMG-based reflex studies, the reflex strength was directly determ-

ined from surface EMG recordings. However, the surface EMG amplitude cannot be
directly correlated with the activity of single motoneurons (Keenan et al., 2006). Today,
we use spike trains of single motor units. The spike trains contain the time points of
the occurrence of action potentials and, thus, provide a direct correlate of motoneuron
activity. They can be obtained from surface and intramuscular EMG (Yavuz et al., 2015).
The spike trains are typically analysed by two means. The peristimulus timehistogram
(PSTH) shows the temporal occurrence of spikes with respect to the stimulus time, and
the peristimulus frequencygram (PSF) displays the instantaneous discharge frequency of
the spikes. Both methods are described in detail in Sections 4.2.1 and 4.2.2, respectively.

4.2.1 The peristimulus timehistogram (PSTH)

The PSTH is based on counting the occurrence of spikes in defined time bins with respect
to the stimulus time. Gerstein and Kiang (1960) first used the PSTH to describe the dis-
charge behaviour of neurons. They observed that appropriate stimuli change the temporal
distribution of neuron spikes. However, these changes occur with a certain variability and
latency and are thus difficult to see in a spike train recorded from a single stimulation
experiment. The PSTH is constructed by counting the occurrence of spikes (or events) in
time bins of defined width and with respect to stimulus time (Figure 4.2). Thereby, the
stimulus time is defined as time zero. This process is repeated for several stimuli (usually
several tens or hundreds), and the spike counts are summed for all stimuli.
The PSTH reflects the probability of a neuron to discharge with respect to the time of

the stimulus. In Figure 4.2, the PSTH of an example neuron is shown. The peak at time
zero indicates an increased firing probability at the time of the stimulus. Considering
that an increased or decreased firing probability is not automatically synonymous with
motoneuron excitation or inhibition is essential. Instead, synchronisation effects can also
lead to peaks or troughs in the PSTH (Türker and Cheng, 1994). The limitations of
PSTH are discussed in detail in Section 4.4.1.

4.2.2 The peristimulus frequencygram (PSF)

The PSF is a scatter plot of the instantaneous discharge frequency of spikes with respect
to the stimulus time. Bessou et al. (1968) first introduced it to analyse muscle spindle
activity. Türker and Cheng (1994) first applied this technique to motor units in reflexes.
As in the PSTH, a pattern becomes visible when adding several tens or hundreds of spike
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Figure 4.2: Visualisation of peristimulus analysis. a) Single motor unit spike trains from N
reflex experiments. b) In the peristimulus timehistogram (PSTH), every motor unit spike is
reflected by an event count relative to the stimulus time. c) In the peristimulus frequencygram
(PSF), the instantaneous frequency of every spike is plotted with respect to the stimulus time.
The stimulus time corresponds to time zero. Counts and frequencies of n spike trains are overlaid
in the same plot to recognise an activity pattern.

trains to the scatter plot (Figure 4.2). The PSF assumes a positive relation between a
motoneuron’s discharge frequency and the net current reaching its soma (Heckman and
Binder, 1988; Powers and Binder, 2007; Powers et al., 1992; Schwindt and Calvin, 1973).
Under this assumption, any significant change in the PSF reflects the sign and profile
of the net input current. Consequently, the PSF can distinguish between a change in
motoneuron activity and motoneuron synchronisation (Türker and Cheng, 1994; Yavuz
et al., 2014). Thereby, it overcomes the limitations of the PSTH (see Section 4.4.1).
Note that also other frequency-based methods were proposed in the literature, e. g., the

interspike interval superposition plot (IISP, e. g., Awiszus et al., 1991). This method
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plots the duration of the interspike interval with respect to the stimulus time. Since the
duration of the interspike interval is the reciprocal of the frequency, the IISP provides
the same information as the PSF, whereby a decrease in the IISP is correlated with an
increase in input current.

4.2.3 The cumulative sum (CUSUM)

Quantifiable biomarkers, which can be extracted from reflex responses, are e. g., the reflex
amplitude, latency and duration. Obtaining those values requires unified criteria for
determining the beginning and end of a reflex response (Lavigne et al., 1983). Today,
the respective cumulative sums (CUSUM) of the PSTH and PSF are mainly used for this
purpose. The CUSUM method is widespread to visualise small but persistent trends that
are not easily visible in the raw data. Ellaway (1978) first applied the CUSUM method
in neuroscience.
To obtain the CUSUM of the Nth value a reference value k is subtracted from each

value yi in the histogram and the resulting values are summed consecutively (Ellaway,
1978):

S(N) =
N∑
i=1

(yi − k) . (4.1)

Usually, the prestimulus mean value is used as the reference value k.
Any deflection of the CUSUM S from zero indicates a difference from the prestimulus

mean activity. In detail, values are permanently higher than the prestimulus mean as long
as the CUSUM increases. Accordingly, the values are lower than the prestimulus mean
as long as the CUSUM decreases. Thereby, the slope of the CUSUM curve corresponds
to the difference between the current value and the reference value.
Normalising the CUSUM by the number of delivered stimuli (No. of Stim) gives a metric

that can be used to compare experiments. Consequently, the CUSUM is ususally provided
in units of counts/No. of Stim for the PSTH and Hz/No. of Stim for the PSF, respectively.
Alternative but equivalent units are, e. g., counts/PSP or counts/trigger.
Based on the CUSUM, Türker et al. (1997) defined a significance threshold for reflex

responses. The largest absolute prestimulus deflection from zero was used as a symmet-
rical error box, i. e., as a threshold in the positive and negative direction. Poststimulus
deflections of the CUSUM that exceed this error box in either direction are accounted as
significant reflex responses.
Building on the error box approach, Brinkworth and Türker (2003) introduced the

turning points of the CUSUM as indicators for the onset and the end of a reflex response.
In detail, not the crossing of the error box determines the onset of the reflex response, but
the point where the CUSUM begins to rise/decrease to exceed the error box (Figure 4.3).
Accordingly, the end of the reflex is where the sign of the slope changes again. Although
the method introduced by Brinkworth and Türker (2003) was intended for automatic
evaluation, manual evaluation is the current gold standard. Reflex onset and end often
deviate from the mathematical definition of a turning point when it seems appropriate to
the examiner.
The reflex onset and end in the PSTH- and PSF-CUSUM determine the characteristic

values of a reflex response. The reflex latency corresponds to the time difference between
the stimulus and the reflex onset. Accordingly, the reflex duration corresponds to the
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time difference between reflex onset and end. The difference of the CUSUM values at
reflex onset and end equals the reflex amplitude (Figure 4.3).
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Figure 4.3: Example of how the reflex amplitude is determined manually from the cumulative
sum (CUSUM) of the peristimulus timehistogram (PSTH) and the peristimulus frequencygram
(PSF). a) PSTH of a reflex response. b) PSTH-CUSUM. c) PSF of a reflex response. d) PSF-
CUSUM. The reflex onset is marked with a star (∗), and the reflex end is marked with a cross
(×). The reflex amplitude corresponds to the difference in the CUSUM at reflex onset and end
(arrow). Time zero corresponds to the time of the stimulus application.

4.3 Automatic evaluation of reflex amplitudes

In experimental studies, the reflex amplitudes are usually determined manually from the
PSTH and/or the PSF and the respective CUSUMs. For EMG signals, in contrast, there
exist numerous approaches for automatic detection of the reflex onset (e. g., Staude and
Wolf, 1999; Vaisman et al., 2010). The turning point method, described in Section 4.2.3,
was initially introduced as an automatic method to quantify reflex responses from EMG
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signals (Brinkworth and Türker, 2003). Nevertheless, manual determination became the
standard when applying the method to peristimulus data. In this work, the reflex amp-
litudes of several hundred motoneurons are evaluated under numerous experimental con-
ditions. A manual evaluation is not suitable for this purpose.
This section describes and compares two algorithms for determining the reflex amp-

litude. An expert researcher from the field verified the results. Additionally, a semi-
automated validation procedure is introduced, which will be used for the investigations
in Chapter 5.

4.3.1 Algorithms for determining the reflex amplitude

We present two algorithms for the determination of the reflex amplitude. Both algorithms
are based on peristimulus analysis and can determine reflex amplitudes from both the
PSTH- and the PSF-CUSUM. The algorithms take the PSTH, the PSF and the number
of delivered stimuli as inputs. Thereby, the bin size of the PSTH and the pre-and post-
stimulus periods are determined from the input data. Then, the CUSUM is computed
from both the PSTH and the PSF, using Equation (4.1) and the prestimulus mean value
as a reference value. The prestimulus mean value ȳ is calculated from

ȳ =
1

N

N∑
i=1

yi , (4.2)

with N values from the prestimulus time period (t < 0). To reduce small deflections
from the PSF-CUSUM, only the last CUSUM value per 1ms time bin is considered
(Figure 4.4c). The PSTH- and the PSF-CUSUM are normalised by the number of stimuli.
The threshold for a significant reflex (error box) is calculated for the PSTH and the

PSF as the maximum absolute deflection of the CUSUM from zero during the prestimulus
time (Türker et al., 1997). Both presented algorithms use the slope of the CUSUM to
determine the reflex onset and end. Since the CUSUM is a discrete quantity, the slope
of the CUSUM Ṡ is approximated by the difference between adjective elements of the
CUSUM vector S. If the CUSUM is of length N , the approximation of the slope yields

Ṡ ≈ [S(2)− S(1) S(3)− S(2) ... S(N)− S(N − 1)] . (4.3)

The onset and the end of the reflex response can now be obtained from the CUSUM
and its approximated slope. Therefore, two different methods are applied. The first
approach determines the turning points of the CUSUM to mimic the manual evaluation
process closely. The second approach uses the size of the CUSUM slope to indicate a
reflex response’s beginning and end.

Reflex amplitude determination based on the CUSUM turning points

The so-called turning points often serve as an orientation during the manual evaluation
of the reflex amplitude (Brinkworth and Türker, 2003). As shown in Figure 4.3, the point
where the CUSUM begins to rise/decrease to exceed the significance threshold marks the
beginning of the reflex response. Similarly, the following point where the CUSUM changes
its slope marks the end of the reflex response.



50 4 Quantification of Reflex Responses Using Peristimulus Analysis

In the evaluation algorithm, the CUSUM’s first execution of the significance threshold
is chosen as a starting point. From there, the previous and the following changes in the
CUSUM slope are determined. These are the turning points, and the reflex amplitude is
determined as the difference between the CUSUM values of the turning points.

Reflex amplitude determination based on the CUSUM slope

The second method uses the slope of the CUSUM, i. e., the “steepness” of the reflex re-
sponse, as the indicator for the reflex onset and end. Therefore, a threshold is determined,
similar to the CUSUM error box. The largest absolute deflection from zero of the ap-
proximated slope of the CUSUM defines the reflex threshold, and any point above the
threshold is considered to be part of the reflex response.
Figure 4.4 visualises the procedure. First, the algorithm searches the poststimulus time

of the CUSUM slope for values exceeding the threshold. If found, the first such point
marks the onset of the reflex response (Figure 4.4, 1.). The next sub-threshold value of
the CUSUM slope marks the end of the reflex response (Figure 4.4, 2.). The algorithm
verifies that the CUSUM values of the detected reflex response exceed the CUSUM error
box and confirms that the response is a significant reflex (Figure 4.4, 3.). If the reflex
response is approved, the reflex amplitude is computed as the difference of the CUSUM
values at the reflex onset and end (Figure 4.4, 4.). If the reflex response is not approved,
the motoneuron is discarded from the analysis.

4.3.2 Assessment of the performance of the algorithms

The reflex amplitudes determined with both algorithms are shown for one exemplary
simulation with 200 motoneurons in Figure 4.5. The amplitudes determined by the two
algorithms are different in most cases. The reflex amplitudes are generally higher with
the turning point algorithm. This trend is more striking for the PSF than the PSTH.
The mean reflex amplitudes determined from the PSTH-CUSUM with the slope and turn-
ing point algorithms are 0.3 counts/No. of Stim and 0.319 counts/No. of Stim, respectively.
The mean reflex amplitudes determined from the PSF-CUSUM with the slope and turning
point algorithms are 1.061Hz/No. of Stim and 1.336Hz/No. of Stim, respectively.
Figure 4.6 shows the reflex onset and end determined manually and with the different

evaluation methods. The reflex onset and end differ according to the two methods. In the
PSTH-CUSUM, the reflex onset is determined earlier with the turning point algorithm,
while the end is detected earlier with the slope algorithm. Consequently, the reflex amp-
litude is larger with the turning point algorithm. However, the difference in amplitude is
negligible compared to the size of the error box. The manual evaluation coincides with
the turning point method.
In the PSF-CUSUM, the slope algorithm also detects a later onset and an earlier end

and, thus, a smaller amplitude than in the manual evaluation. For the reflex onset, the
turning point algorithm and manual evaluation coincide, while for the end, the time point
determined by the turning point algorithm is significantly later and at a higher CUSUM
value than with the slope algorithm or according to manual evaluation. Consequently,
the reflex amplitude determined with the turning point algorithm is significantly larger
than in the manual evaluation.
An expert researcher from the field, who published several studies using the reflex
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Figure 4.4: Visualisation of the algorithm using the CUSUM slope to determine the reflex
amplitude. Shown are the PSTH-CUSUM (a), its slope (b), the PSF-CUSUM (c) and its slope
(d), all for an exemplary motoneuron. 1. The reflex onset corresponds to the time when the
slope of the CUSUM exceeds the threshold. 2. The reflex end corresponds to the time when
the slope of the CUSUM returns to values below the threshold. 3. The CUSUM values must be
ensured to exceed the threshold for significant reflexes. 4. The reflex amplitude is determined
as the difference between the CUSUM values at the reflex onset and end.

amplitude, favours the slope method over the turning point method for two reasons: (i) it
is more robustly applicable to the PSF-CUSUM and (ii) the steep increase in CUSUM is,
from a physiological point of view, a better marker for the reflex onset than the onset of
a positive slope of any value before exceeding the significance threshold (turning point).
If the increase in CUSUM at the beginning of the reflex is small, it cannot be ensured
that this increase is related to the reflex stimulus. By defining a slope threshold, random
increases in motoneuron activity as they appear during the baseline are not considered
reflex responses.
In summary, the slope algorithm was rated superior to the turning point algorithm.

Therefore, the slope algorithm is used to evaluate the simulation results.
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Figure 4.5: Reflex amplitudes determined with turning point (green) and slope (blue) al-
gorithm. Reflex amplitudes determined from PSTH (a) and PSF (b). Results are shown for
200 motoneurons, numbered from smallest to largest. Note that not all 200 motoneurons show
a significant reflex amplitude.

4.3.3 A semi-automated validation method for reflex amplitudes

A semi-automated assessment is adopted to exclude wrong assignments of reflex amp-
litudes. First, an automated exclusion of motoneurons is executed, followed by a visual
inspection of the detected reflex responses. Thereby, the plausibility of the reflex re-
sponses is rated based on the reflex latency, i. e., the reflex onset time with respect to the
stimulus.
In the analysis, only regularly firing motoneurons are included. We ensure this by

excluding motoneurons with a mean baseline discharge frequency of less than 7Hz or a
coefficient of variation of the baseline interspike interval of more than 35 %. The coefficient
of variation is defined as the ratio of the standard deviation to the mean. Further, reflex
responses are automatically excluded when the reflex onset is outside a time window of
[−5ms, 15ms] around the stimulus time. Since we do not consider conduction delays, we
can be sure that the reflex response must occur in this time period.
The remaining motoneurons are visually inspected. For every simulation, graphs show-

ing the detected reflex responses are examined. In detail, the PSTH- and the PSF-
CUSUMs are plotted together with the corresponding reflex onset and end for 20 mo-
toneurons in each graph (Figures 4.7 and 4.8). Motoneurons with a reflex response that
is not a short-latency response are manually excluded. In the example of Figure 4.8,
motoneurons 110, 114 and 115 should be excluded.
The slope algorithm and the semi-automated inspection of the resulting reflex amp-

litudes were applied to all simulations performed for Chapter 5. In short, the simulations
mimic the monosynaptic stretch reflex by injecting excitatory current kernels into a pool
of 200 motoneurons. The motoneurons were simulated using the model described in Negro
and Farina (2011) and Section 3.4, respectively. Different baseline activities and different
stimulus amplitudes were used. For a more detailed description of the simulations, see
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Figure 4.6: Comparison of the reflex onset and end determined with different evaluation meth-
ods. Shown are the PSTH-CUSUM (a) and its slope (b), as well as the PSF-CUSUM (c) and
its slope (d). The reflex onset is marked with an asterisk (∗), and the reflex end is marked with
a cross (×) for the slope algorithm (green), the turning point algorithm (blue) and the manual
evaluation (pink). Note that the PSTH and the PSF examples stem from different motoneurons.

Section 5.1.
In total, 42 simulations were performed. The algorithm determined reflex amplitudes

from PSTH-CUSUM for 9056 motoneurons. Only one motoneuron was removed after
visual inspection, corresponding to 0.01 % of the motoneurons. The algorithm detected
8276 motoneurons with a significant reflex response in the PSF-CUSUM. From these,
40 motoneurons were discarded after visual inspection, corresponding to 0.48 % of the
motoneurons.
The algorithm performed worst for simulations with a high background activity and a

relatively low stimulus intensity. In one specific simulation, only 100 stimuli were applied
(usually 200 stimuli were applied). In this simulation, we discarded one reflex response
from the PSTH-CUSUM and ten out of 20 PSF-CUSUM reflex amplitudes. Across all
other simulations, we never removed more than four reflex amplitudes from the PSF-
CUSUM. When the noise input to the motoneurons was omitted in the simulations, all
reflex amplitudes were approved.
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Figure 4.7: Example for the visual inspection of reflex amplitudes determined from the cu-
mulative sum of the peristimulus timehistogram (PSTH-CUSUM). Shown are motoneurons 101
to 120 of a pool of 200. The red asterisk marks the reflex onset, and the red cross marks the
reflex end. Peristimulus time in ms is shown on the x-axes and y-axes show PSTH CUSUM in
counts/No. of Stim.

4.4 Discussion

The assessment of motoneuron reflex amplitudes in vivo relies on indirect methods based
on recorded motor unit spike trains. The spike trains are commonly analysed using
peristimulus analysis. We presented two modes of peristimulus analysis: the PSTH and
the PSF. The limitations of these methods are discussed in Section 4.4.1.
Systematic investigations of reflex responses using computer simulations require an

automated evaluation method. We presented and assessed two algorithms determining
the reflex amplitude. The outcomes and implications for future studies are discussed in
Section 4.4.2.

4.4.1 Limitations of peristimulus analysis

Several studies showed that secondary and later peaks and troughs in the PSTH can be
caused by synchronisation of the neurons with respect to the stimulus (Awiszus et al.,
1991; Türker and Powers, 1999, 2003; Yavuz et al., 2014). When an excitatory stimulus
causes an action potential, the motoneuron will, from then on, discharge action potentials
at multiples of the current interspike interval. Thus, secondary and later peaks in the
PSTH can erroneously be interpreted as medium- or long-latency components of the
reflex response. Something similar can happen after an inhibitory stimulus. By delaying
the action potential, the inhibitory stimulus synchronises the motoneurons, which results
in a peak in the PSTH. This peak might be misinterpreted as a period of excitation
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Figure 4.8: Example for the visual inspection of reflex amplitudes determined from the cumu-
lative sum of the peristimulus frequencygram (PSF-CUSUM). Shown are motoneurons 101 to
120 of a pool of 200. The red asterisk marks the reflex onset, and the red cross marks the reflex
end. The area with the marks is enlarged for motoneuron 110. Peristimulus time in ms is shown
on the x-axes and y-axes show PSF CUSUM in Hz/No. of Stim. Missing red marks indicate that
no significant reflex response was detected for motoneurons 116 to 120.

even though an inhibitory postsynaptic potential (IPSP) was applied (Moore et al., 1970;
Türker and Powers, 1999). The same problem applies to using the CUSUM obtained from
the PSTH (Türker and Powers, 2003). Consequently, the PSTH can only provide reliable
information on the short-latency component of a reflex response.
After its introduction, it was proposed that the PSF method is free of the errors associ-

ated with probability-based methods as the PSTH (Türker and Cheng, 1994). Over time,
it has been shown that the PSF is also affected by history-dependent events. Türker and
Powers (1999) showed that the second spike after applying a PSP can still be influenced.
In detail, depending on the timing of the PSP with respect to the last discharge, the
second spike after an EPSP can be discharged with a lower frequency than the baseline
activity. Accordingly, the second spike after an IPSP can show a history-dependent in-
crease in firing rate. Türker and Powers (1999) suggested that these secondary effects
can be explained by the summation of the conductance underlying the post-spike afte-
rhyperpolarisation. In contrast to the synchronisation errors in the PSTH, this effect is
real and does reflect actual motoneuron membrane characteristics. However, it has to be
considered that this effect does not reflect further arriving PSPs.
Studies comparing the discussed methods suggest considering both the PSTH and the

PSF and the CUSUM of both metrics (Türker and Powers, 1999, 2003). Nevertheless,
recently, Türker (2022) challenged an article published a year earlier that claims to have
discovered a new firing characteristic of motoneurons based on a secondary peak in the
PSTH. However, they did not show the PSF, which could have provided further insight.
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This example shows that there are still pitfalls and uncertainties in interpreting reflex
experiments using peristimulus analysis.

4.4.2 The use of an automatic evaluation method

We proposed and compared two algorithms for determining the reflex onset and end from
the PSTH- and the PSF-CUSUM. An experienced researcher in the field assessed the
results. The turning point algorithm aims to mimic the manual evaluation. However, it
often detects the reflex end too late in the PSF-CUSUM. The slope algorithm introduced
a new criterion for the reflex onset and end by comparing the slope of the CUSUM to
the values during the baseline. This method robustly detects the reflex responses in the
PSTH- and the PSF-CUSUM. The slope algorithm is suitable for the PSTH and the
PSF, and, in addition, the new slope-based criterion has a physiological meaning. These
arguments lead to the selection of the slope algorithm to evaluate reflex responses from
simulated motoneurons within this work.
The developed algorithm performs well for the examined monosynaptic stretch reflex

simulation experiments. However, it might not be applicable to other types of simulations
or experimental data. Further, consider that a method working in healthy individuals does
not guarantee that it will work with pathological signals, which might have very different
characteristics. Herein, we used stimuli that reflect a large compound EPSP, as we expect
from a short stretch of the muscle or the electrical stimulation of the afferent nerve. These
stimuli induce short reflex responses with a sharp rising phase and an abrupt end. These
characteristics make these stimuli well-suited for the slope algorithm. However, we expect
that the slope algorithm works less well with slower reflex responses, e. g., in response to
a sinusoidal stretch.
This chapter additionally introduced a semi-automated validation procedure to avoid

including unreasonable or faulty results in the evaluation. The process of visually inspect-
ing 20 motoneurons at once and only confirming or removing motoneurons is much faster
than determining each reflex amplitude manually. Therefore, the procedure is worth the
extra effort. The visual inspection also confirmed that the algorithm robustly detects
reflex amplitudes in the PSTH-CUSUM. A low number of stimuli and noise hamper the
correct assignment of reflex responses in the PSF-CUSUM. However, the total number
of manually removed motoneurons was low compared to the overall number of reflex re-
sponses. If the latency criterion, i. e., the considered reflex onset times, was tightened,
the number of manually removed values could be further reduced. However, this requires
knowledge about the expected delay of the reflex onset. These characteristics can well be
estimated in the simulation but are subject to uncertainties in the experiment.
Manual evaluation is always subjective and depends on the experience of the exam-

iner. Koutris et al. (2016) found that the inter-examiner results were fair-to-good to
excellent for a CUSUM-based analysis of the EMG signal. Nevertheless, robust eval-
uation algorithms for reflex experiments have the potential to accelerate research and
make it more objective. Emerging technologies like improved decomposition algorithms,
high-density intramuscular EMG or magnetomyography, will likely increase the number
of motor units that can be decomposed from in-vivo recordings (Klotz et al., 2023; Muceli
et al., 2022). A large number of recorded motor units per subject in combination with
an automated evaluation method allows the inclusion of more subjects per study, makes
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studies from different research groups more comparable and can broaden the applicability
as an experimental and clinical measure.
The algorithm presented in this section was tailored for the specific application using

short stimuli and simulated data. However, similar problems exist in many areas, includ-
ing medical applications. Therefore, methods that work for EMG should be tested for
their applicability to peristimulus data. Further, methods from other fields, e. g., change
point detection in heart or brain activity recordings, could be adapted for reflex studies
(Aminikhanghahi and Cook, 2017).
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5 Factors Influencing In-Vivo
Estimates of Excitation Reflex
Amplitudes in Motoneuron Pools

Spinal reflexes are a central component of motor control. Recording responses to artifi-
cially evoked reflexes is a common tool for studying motoneurons in vivo. Thereby, the
size of the reflex response of a motoneuron is commonly quantified by the reflex amplitude
(Chapter 4). In addition to the long-standing use of the reflex amplitude in basic research
(e. g., Burke, 1999; Powers and Türker, 2010b; Yavuz et al., 2018), there are efforts to use
the reflex amplitude in clinical settings (e. g., Cruccu and Deuschl, 2000; Nadler et al.,
2004). This wide usage underscores the need to systematically study the relation between
the biophysical mechanisms of reflex processing in the neuromuscular system and the size
of in-vivo reflex amplitude estimates. Understanding in-vivo measures is essential for
correct physiological interpretations and diagnoses.
The most commonly used methods to determine the motoneuron reflex amplitude are

the peristimulus timehistogram (PSTH) and the peristimulus frequencygram (PSF). Both
methods are based on delivering multiple reflex stimuli and on the statistical analysis of
motoneuron activity with respect to the time of the reflex stimulus. The PSTH is based
on counting spikes in time bins with respect to the stimulus time, and the PSF shows the
instantaneous frequencies of the spikes (see Section 4.2 and Gerstein and Kiang, 1960;
Türker and Cheng, 1994).
The size of the reflex response is commonly assumed to be correlated with the size

of the synaptic input, i. e., the postsynaptic potential (PSP). For example, for single
motoneurons, Türker and Powers (1999) found a linear relationship between excitatory
postsynaptic potential (EPSP) size and reflex amplitude. Further studies showed how the
PSP size could be determined from PSTH peaks; however, the relations varied between
motoneurons, and the best method differed between applied conditions, e. g., the discharge
frequency (for a review, see Powers and Türker, 2010a). In brain slice experiments, the
time course or shape of the PSP was better reflected by the PSF than the PSTH (Türker
and Powers, 1999, 2003).
All attempts to find a uniformly applicable “formula” for determining the magnitude

of synaptic inputs from in-vivo recordings have not been successful to date. However,
the efforts have successfully identified the factors contributing to PSP-evoked changes in
motoneuron firing characteristics. Those include

• the magnitude and duration of the afterhyperpolarisation (AHP, Powers and Türker,
2010b);

• the time course of the firing threshold Matthews (2002), which varies within the
interspike interval in a way that it follows the membrane potential trajectory of the
afterhyperpolarisation (Calvin, 1974; Powers and Binder, 1996);

• random membrane potential fluctuations, i. e., noise (Herrmann and Gerstner, 2002;
Matthews, 1999; Piotrkiewicz et al., 2009);
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• persistent inward currents (PICs, Powers and Türker, 2010b);

• and the background discharge frequency (Herrmann and Gerstner, 2002; Jones and
Bawa, 1997; Matthews, 1999).

In summary, current reflex analysis methods provide a relative estimate of PSP size
under constant conditions and when considering a single motoneuron. Researchers found
that the relationship between PSP size and reflex response is influenced by intrinsic mo-
toneuron properties, such as e. g., AHP and threshold and also by external conditions
determined by central and peripheral inputs (Herrmann and Gerstner, 2002; Matthews,
1999, 2002; Powers and Türker, 2010b). With current methods, these influences and their
possible interactions can neither be quantified nor weighted. Because less attention has
generally been paid to the PSF, we do not know whether the PSF and PSTH are equally
affected by the abovementioned factors. In addition, it has been my personal experience
at lectures and conferences that the reflex behaviour of motoneurons is not intuitive and
even experienced researchers in this field have difficulties interpreting results.
Investigations of motoneuron reflex behaviour in human subjects suffer from two signi-

ficant drawbacks: (i) it is difficult to impossible to control the conditions completely, and
(ii) only a small number of motoneurons can be recorded per subject. One way around
this is animal studies, where the postsynaptic potentials can be measured (e. g., Türker
and Powers, 1999). However, animal experiments are costly and limited to relatively few
neurons. Computer models offer advantages here. Not only can the conditions be con-
trolled entirely, but models also allow the evaluation of internal variables inaccessible in
experiments. Therefore, many of the factors mentioned above influencing the PSP amp-
litude were identified in simulation studies (e. g., Herrmann and Gerstner, 2002; Jones
and Bawa, 1997; Matthews, 1999, 2002; Piotrkiewicz et al., 2009). However, these studies
have looked at single motoneurons, and no conclusions can be drawn about how the reflex
amplitude behaves across the motoneuron pool.
Therefore, this chapter aims to analyse how the reflex amplitude is distributed across a

motoneuron pool and how it can be related to the EPSP size. We use a motoneuron pool
model with 200 motoneurons as presented in Section 3.4 and simulate the monosynaptic
stretch reflex, which is the most studied human muscle reflex (e. g., Yavuz et al., 2014). In
the model, we investigate the influence of the following parameters on the reflex amplitude:

• EPSP size,

• size-related motoneuron properties,

• baseline discharge frequency

• and random membrane potential fluctuations, i. e., noise.

We compare the reflex amplitudes determined from the PSTH and the PSF to identify
differences between the methods. The ultimate goal is to guide the development of re-
flex experiments that can provide distinct insights into neuromuscular physiology. This
concerns, e. g., the number of stimuli or the force level to be used.
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5.1 Simulation of reflex responses

We simulated excitatory reflex responses of a motoneuron pool. This section summarises
the computational model, the simulation protocol and the numerical implementation.

5.1.1 Motoneuron pool model

A pool of 200 motoneurons was simulated. This number corresponds to a typical estim-
ate of motor units in the human tibialis anterior muscle, which is often used for reflex
experiments (Duchateau and Enoka, 2022).
Motoneurons were simulated using the model by Negro and Farina (2011), described

in detail in Section 3.4. In short, each motoneuron is represented by a two-compartment
(soma and dendrite) equivalent electric circuit model. The soma compartment contains
three voltage-gated conductances (Na+, slow and fast K+) and a leakage conductance.
The dendrite compartment contains a single leakage conductance. The parameters were
exponentially distributed to obtain a motoneuron pool, as described in Section 3.4.2.
Consequently, the pool contains many small, low-threshold and few large, high-threshold
motoneurons.

5.1.2 Simulation protocol

The simulation mimics a reflex experiment eliciting the monosynaptic stretch reflex. Ex-
perimentally, the stretch reflex can be triggered by mechanically perturbing the muscle or
by electrical stimulation of the afferent nerve (see Section 4.1). During sustained muscle
contractions, the cumulative monosynaptic Ia afferent input mediates a short-latency re-
flex response of the motoneurons (Kandel et al., 2013).
Motoneurons receive multiple inputs from supraspinal and peripheral sources. The

majority of the inputs is common to all motoneurons and mainly determines the force
output (Negro et al., 2016b). Other synaptic inputs decorrelate the motoneurons (Mal-
tenfort et al., 1998). Thus, the overall motoneuron input was composed of three parts:
(i) a common drive that is similarly applied to all motoneurons, (ii) an independent drive
individual to each motoneuron and (iii) the reflex stimulus that is again common to all
motoneurons (Figure 5.1).
The common drive (i) was represented by a constant mean value mainly determining

the discharge frequency and a zero-mean band-pass filtered Gaussian noise (15Hz to
35Hz, Conway et al., 1995; Halliday et al., 1998; Negro and Farina, 2011). The common
drive mainly accounts for the constant force applied throughout the experiment. The
independent input (ii) was modelled as zero-mean low-pass filtered Gaussian noise (<
100Hz, Negro and Farina, 2011). The filtering was performed with a first- and second-
order Butterworth filter, respectively (Rao and Swamy, 2018). The standard deviation of
the common noise was fixed to 20% of the mean drive, and the standard deviation of the
independent input was scaled to account for 20% of the total noise (Negro et al., 2016b).
This choice yielded values for the coefficient of variation (CoV) of the interspike interval
(ISI) within the physiological range for all applied force levels (10% < CoV ISI < 30%,
Matthews, 1996; Moritz et al., 2005). The coefficient of variation is defined as the ratio
of the standard deviation to the mean.
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The relation between the mean drive to a motoneuron pool and the total muscle force
is generally unknown. We used the fraction of motoneurons from the pool, which shows
sustained activity, as a force indicator. The force or contraction strength is commonly
provided as a fraction of the maximum voluntary contraction (MVC). Following exper-
imental data, we assume that 60 % of motoneurons are active at 20 % MVC and all
motoneurons are recruited at 60 % MVC (largest motoneuron fires with 10Hz, Moritz
et al., 2005). As a result, all simulated motoneurons are active when applying a mean
drive of 16.8 nA. By choosing the mean drives between 4 nA to 18 nA, we assume to cover
a range from below 10 % MVC to not more than 70 % MVC.
The reflex stimulus (iii) represents the compound excitatory postsynaptic current (EPSC)

resulting from the stimulation of Ia afferents. Monosynaptic stretch reflex EPSCs were
reported to have relatively short rise times of approximately 1ms (Hochman and McCrea,
1994; Lüscher et al., 1983). The reflex stimulus Istim was modelled as

Istim = I0 ∗
t

1ms
∗ exp

(
1− t

1ms

)
, (5.1)

with a variable amplitude I0, a fixed time constant of 1ms and a duration of 40ms. The
stimulus amplitude I0 varied from 4nA to 10 nA. In each simulation, the stimulus was
applied 200 times with normally distributed interstimulus intervals of 1000± 100ms. All
inputs were linearly summed and applied to the soma compartment of the motoneuron
model, i. e., representing effective synaptic currents (Heckman and Binder, 1988, also see
Section 3.5.1).
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Figure 5.1: Schematic drawing of the inputs to the simulated motoneuron pool. Each mo-
toneuron receives a common input and an excitatory postsynaptic current (EPSC), which are
similar for all motoneurons. In addition, each motoneuron receives an individual independent
noise input. Note that in the figure, the inputs are not scaled with respect to each other.

5.1.3 Numerical implementation

All simulations were performed with MATLAB R2021a (9.10.0.1602886). The motoneuron
model is represented by a system of six ordinary differential equations, which was solved
with MATLAB’s ode23 (single-step, explicit Runge-Kutta solver, Shampine and Reichelt,
1997), an integration interval size of 0.1ms and an absolute and relative error tolerance
of 1× 10−5.
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The simulation was parallelised to shorten the computation time. Therefore, the total
number of stimulus cycles was divided by the number of cores and split accordingly. This
splitting was possible since we assumed that the stimulus cycles are independent. The
mean interstimulus interval of 1000ms is long enough for the motoneurons to return to a
steady state and no longer be influenced by the preceding stimulus. While the initial state
of the motoneuron pool was similar on all cores, the perturbation times and the common
and independent drive were differently initialised on each core. Usually, the simulation
was run on five cores (40 stimuli per core), except for the simulation with 1000 stimuli,
which was run on ten cores (100 stimuli per core).

5.2 Data analysis

The firing times of the simulated motoneurons were analysed using peristimulus analysis.
More specifically, the PSTH and the PSF were calculated. In the PSTH, motoneuron
discharges are counted within time bins and shown relative to the stimulus time. In the
PSF, the instantaneous frequencies of the discharges are displayed with respect to the
stimulus time. Further, cumulative sums (CUSUMs) of the PSTH and the PSF were
calculated. Thereby, the differences between the values and the prestimulus mean value
are cumulatively summed to visualise small but persistent trends in the data. In general,
pre- and poststimulus times of 300ms were considered and the time bin size was 1ms.
For further details on the methods, see Section 4.2.
We did not consider motoneurons with non-stationary firing patterns for the analysis.

Following experimental studies, we assumed that motoneurons with a frequency of less
than 7Hz or a coefficient of variation of the baseline interspike interval greater than 35%
fire too irregular and thus we excluded them from further analysis (e. g., Yavuz et al.,
2018).
The reflex amplitudes were determined from the PSTH- and the PSF-CUSUM. There-

fore, the automatic algorithm presented in Section 4.3 was used. In short, a significant
reflex response is defined as a deflection in CUSUM that exceeds the largest prestimulus
deflection. This definition also corresponds to the criterion most often used in experi-
mental studies (e. g., Yavuz et al., 2014). The onset of the reflex response was determ-
ined by the time at which the steepness of the increase in CUSUM exceeds the steepest
prestimulus slope. Similarly, the end of the reflex response was determined by the time
at which the slope of the CUSUM returns to values below the steepest prestimulus slope.
The reflex amplitude was calculated from the difference of the CUSUM values at reflex
onset and end.
Reflex responses were only considered when the reflex onset occurred within a time

window of [−5ms, 15ms] around the stimulus time to reduce the number of erroneously
assigned reflexes. Since the simulation did not consider conduction delays, earlier events
were assumed to be unrelated to the stimulus, and later events were assumed to no longer
reflect short-latency response. In addition, a manual check was performed. Thereby, reflex
responses that mark later latency responses according to visual inspection were manually
removed (see Section 4.3).
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5.3 Results

First, we tested the predictive power of the simulation by comparing the reflex responses
of the simulated motoneuron pool to recorded motor units. Then, the distribution of
reflex amplitudes across the simulated motoneuron pool was analysed for PSTH and
PSF. Further, we analysed and compared the influence of stimulus size, baseline discharge
frequency, noise inputs and the number of applied stimuli on reflex amplitudes determined
from PSTH- and PSF-CUSUM.

5.3.1 Comparison of simulated and experimental reflex
responses

The PSTH and PSF for the simulated pool of 200 motoneurons were compared to ex-
perimentally recorded motor units from Yavuz et al. (2014) to test the validity of the
computational model. In the experiment, a tap-like mechanical stimulus was used to eli-
cit the stretch reflex, which is assumed to evoke a stimulus similar to what was applied
in the simulation.
The PSTH and PSF for the simulated pool of 200 motoneurons and an exemplary

recorded motor unit are shown in Figure 5.2. During the prestimulus time (time < 0ms),
both the simulated motoneurons as well as the recorded motor unit show a baseline activity
that oscillates around a constant mean value. The mean baseline discharge frequency of
the recorded motor units is 9.3Hz, and the baseline discharge frequency of the simulated
motoneurons ranges from 7.2Hz to 16.5Hz. In the simulated motoneurons, a peak in
the PSTH as well as in the PSF can be observed at stimulus application time (time =
0ms). The delay of the peak in the experimental data is consistent with the conduction
velocity of the nerves. The simulated motoneurons reach maximum frequencies of up to
29.9Hz in the PSF. These values are comparable to the recorded motor unit, which shows
a maximum frequency of 27Hz. The peak sizes in the PSTH cannot be directly compared
since they depend on the number of delivered stimuli, which differs between experiment
and simulation.
The time courses of the PSTH- and PSF-CUSUM are well comparable between sim-

ulated and experimental data (Figure 5.3). Oscillations around zero in the prestimulus
time indicate constant baseline activity. A steep increase after the application of the
stimulus indicates increased discharge activity. In the PSTH-CUSUM, the peak is im-
mediately followed by a decrease due to missing events during the silent period. The
following up and down reflects motoneuron synchronisation. In the PSF-CUSUM, the
values stay approximately constant after the peak, indicating discharge frequencies sim-
ilar to the baseline activity. Note that experimentally recorded motor units often show a
second peak, which marks the long-latency response (Kandel et al., 2013). As we did not
model the respective pathways, we chose a motor unit for comparison that does not show
the long-latency response.
Simulation and experimental CUSUM values can be quantitatively compared since

the CUSUM is normalised to the number of stimuli. In the simulated motoneurons,
the reflex amplitudes range from 0.22 counts/No. of Stim to 0.49 counts/No. of Stim in
the PSTH-CUSUM and from 0.75Hz/No. of Stim to 1.41Hz/No. of Stim in the PSF-
CUSUM, respectively. The exemplarily selected recorded motor unit shows a reflex amp-
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litude of 0.4 counts/No. of Stim in the PSTH-CUSUM (mean for all recorded motor units:
0.241± 0.091 counts/No. of Stim) and 1.36Hz/No. of Stim in the PSF-CUSUM (mean for
all recorded motor units: 0.593 ± 0.555 counts/No. of Stim), respectively. In summary,
the peak sizes in the PSTH-CUSUM and PSF-CUSUM are comparable for simulated and
recorded motoneurons.

5.3.2 Distribution of reflex amplitudes in motoneuron pools

The distribution of reflex amplitudes across the pool of motoneurons was evaluated for
two different drives (6 nA and 16 nA) and four stimulus sizes (4 nA, 6 nA, 8 nA and 10 nA).
The drives resulted in baseline frequencies of approximately 7Hz to 17Hz for the low drive
and 7Hz to 40Hz for the high drive. For the low drive, 148 motoneurons and for the high
drive, 199 motoneurons were included in the analysis.
A higher stimulus size generally caused higher reflex amplitudes for all motoneurons

(Figure 5.4). However, stimulus amplitudes that differ by only 2 nA produced overlapping
reflex amplitudes. A heterogeneous picture emerges when looking at the distribution of
reflex amplitudes across the motoneuron pool. In the low drive condition, the PSTH reflex
amplitudes decrease slightly with increasing motoneuron discharge frequency. In contrast,
the PSF reflex amplitudes are almost constant across the pool (Figure 5.4a, c). In the
high drive condition, the PSTH reflex amplitudes are relatively constant for discharge
frequencies below 30Hz, increase for frequencies above 30Hz and decrease again for the
highest discharge frequencies (Figure 5.4b). The PSF reflex amplitudes monotonically
increase with increasing discharge frequency (Figure 5.4d).
It is further noticeable that the algorithm detected more significant reflex responses in

the PSTH. Especially for the high drive and low stimulus condition, considerably fewer
motoneurons showed a significant reflex response in the PSF. The number of motoneurons
with significant reflex amplitudes in the PSTH and PSF is analysed in more detail in
Section 5.3.3.

5.3.3 Influence of the force level on reflex amplitudes

To investigate the relation between motoneuron reflex amplitude and applied drive in
more detail, we tracked motoneurons across eight drive levels (mean drive 4 nA to 18 nA)
for two stimulus sizes (amplitude 6 nA and 10 nA).
The current-frequency relations of the 200 simulated motoneurons are shown in Fig-

ure 5.5a. All motoneurons show increasing firing rates for increasing drives. With in-
creasing drive, more motoneurons are successively and orderly recruited according to the
size principle (Henneman et al., 1965a,b). The smallest motoneuron (MN 1) increases
its mean baseline frequency from 10.2Hz at 4 nA mean drive to 44.1Hz at 18 nA mean
drive. The largest motoneuron of the pool (MN 200) is recruited with 8.3Hz at a mean
drive level of 16 nA and discharges with 12.2Hz at 18 nA drive. Thereby, the slope of the
current-frequency relation is not constant, but the initial increase is steeper than the later
part.
For all drives and both stimulus amplitudes, the number of motoneurons with signi-

ficant reflex amplitudes in the PSTH was larger than or similar to those in the PSF
(Table 5.1). A high drive and a low stimulus lead to the smallest number of motoneurons
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Figure 5.2: Peristimulus timehistogram (PSTH) and peristimulus frequencygram (PSF) for
simulated motoneurons and an exemplary recorded motor unit in response to short excitatory
stimuli (Yavuz et al., 2014). a) PSTH for a pool of 200 simulated motoneurons. The colour
indicates the motoneuron (MN) index, whereby MN 1 corresponds to the smallest and MN 200
to the largest motoneuron of the pool. b) PSTH for a recorded motor unit. c) PSF for a pool
of 200 simulated motoneurons. Colour coding as in (a). d) PSF for a recorded motor unit. In
the simulation, 200 stimuli were delivered, and 321 stimuli were delivered in the experiment.
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Figure 5.3: Cumulative sum (CUSUM) of peristimulus timehistogram (PSTH) and peristimulus
frequencygram (PSF) for the simulated motoneurons and an exemplary recorded motor unit as
shown in Figure 5.2. a) PSTH-CUSUM for a pool of 200 simulated motoneurons. The colour
indicates the motoneuron (MN) index, whereby MN 1 corresponds to the smallest and MN 200
to the largest motoneuron of the pool. b) PSTH-CUSUM for a recorded motor unit. c) PSF-
CUSUM for a pool of 200 simulated motoneurons. Colour coding as in (a). d) PSF-CUSUM for
a recorded motor unit.
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Figure 5.4: Reflex amplitudes of the motoneuron pool for different stimulus amplitudes. Reflex
amplitudes were determined from the cumulative sum (CUSUM) of the peristimulus timehisto-
gram (PSTH) and the peristimulus frequencygram (PSF) for a pool of 200 simulated motoneur-
ons. Two drive levels (low 6 nA and high 16 nA) and four stimulus amplitudes (4 nA, 6 nA, 8 nA
and 10 nA) were applied. In all simulations, 200 stimuli were delivered. a), b) Reflex amplitude
determined from PSTH-CUSUM. c), d) reflex amplitude determined from PSF-CUSUM.
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Table 5.1: Number of active motoneurons (MNs) and number of MNs with a significant reflex
amplitude for two stimulus amplitudes. Reflex amplitudes were determined from the cumulative
sum of the peristimulus timehistogram (PSTH) and the peristimulus frequencygram (PSF) and
shown for PSTH/PSF. Simulation settings: two stimulus amplitudes (stim, 6 nA and 10 nA).

Drive (nA) 4 6 8 10 12 14 16 18

Active MNs 89 148 169 181 188 193 199 200

6 nA stim 89/89 148/148 168/168 179/174 188/151 193/146 199/91 197/40

10 nA stim 89/89 148/148 168/168 179/179 188/188 193/193 199/199 200/197

with significant reflex responses in the PSF.
As shown before, a higher stimulus leads to higher reflex amplitudes (Figure 5.5). The

reflex amplitudes determined from the PSTH-CUSUM range from 0.07 counts/No. of Stim
to 0.57 counts/No. of Stim for the smaller stimulus amplitude of 6 nA and range from
0.17 counts/No. of Stim to 0.7 counts/No. of Stim for the larger stimulus amplitude of
10 nA. Similarly, the reflex amplitudes determined from the PSF-CUSUM are with
0.11Hz/No. of Stim to 2.02Hz/No. of Stim smaller for the 6 nA stimulus than for the larger
stimulus (0.35Hz/No. of Stim to 6.68Hz/No. of Stim).
The relation of reflex amplitude and drive differs between PSTH and PSF. In the PSTH,

reflex amplitudes generally decrease with increasing drive and start to plateau for drives
higher than 12 nA (Figure 5.5b, c). While the totality of values shows a clear trend for
the pool of motoneurons, individual motoneurons (dots connected by lines) generally do
not show monotonic behaviour.
The PSF reflex amplitudes of small motoneurons first decrease and then increase with

increasing drive (Figure 5.5d, e). In contrast, the reflex amplitudes of larger motoneurons
only decrease with increasing drive. The pool of motoneurons shows relatively similar
reflex amplitudes for low drives, but the range of values increases with increasing drive.
This behaviour is more pronounced for the higher stimulus amplitude. As observed for
the reflex amplitudes in the PSTH, in the PSF, single motoneurons also do not show
consistent trends across drive levels.
In Figure 5.6, the reflex amplitudes determined from the PSTH- and PSF-CUSUM

were normalised by the baseline discharge frequency of the respective motoneuron. This
normalisation yields qualitatively similar courses of the reflex amplitudes for both PSTH
and PSF. That is, the normalised reflex amplitudes saturate for higher drives. Further,
the range of values per drive level becomes narrower, especially for the PSF. Nevertheless,
for the higher stimulus, the value range of reflex amplitudes determined from the PSF-
CUSUM becomes wider again for higher drives (Figure 5.6d, mean drive 16 nA and 18 nA).
It is noticeable that the reflex amplitudes of motoneurons just after recruitment are

consistently higher than those of the rest of the pool. Further, the distribution of reflex
amplitudes across the pool of motoneurons is inconsistent across drive levels. For example,
for the high stimulus and mean drives of 14 nA and 18 nA, the smaller motoneurons
(blue) show the highest PSF reflex amplitudes (Figure 5.6d). In contrast, for the 16 nA
drive, the motoneurons in green colour show the largest PSF reflex amplitudes. Similar
heterogeneities can be found for the PSTH.
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Figure 5.5: Reflex amplitudes of the motoneuron pool for different cortical drives and two sizes
of stimulus amplitudes. a) Current-frequency relations for the pool of simulated motoneurons.
b), c) Reflex amplitudes from peristimulus timehistogram (PSTH) for stimulus amplitudes of
6 nA and 10 nA. d), e) Reflex amplitudes from peristimulus frequencygram (PSF) for stimulus
amplitudes of 6 nA and 10 nA. The colour indicates the motoneuron (MN) index, whereby MN 1
corresponds to the smallest and MN 200 to the largest motoneuron of the pool (every second
MN is shown). In all simulations, 200 stimuli were delivered.
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Figure 5.6: Reflex amplitudes of the motoneuron pool from Figure 5.5 normalised by the mean
baseline discharge frequency. a), b) Normalised reflex amplitudes from peristimulus timehisto-
gram (PSTH) for stimulus amplitudes of 6 nA and 10 nA. c), d) Normalised reflex amplitudes
from peristimulus frequencygram (PSF) for stimulus amplitudes of 6 nA and 10 nA. The colour
indicates the motoneuron (MN) index, whereby MN 1 corresponds to the smallest and MN 200
to the largest motoneuron of the pool (every second MN is shown).
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Table 5.2: Number of active motoneurons (MNs) and number of MNs with a significant reflex
amplitude in simulations without noise input. Reflex amplitudes determined from the cumulative
sum of peristimulus timehistogram (PSTH) and peristimulus frequencygram (PSF) and shown
for PSTH/PSF. Simulation settings: two stimulus amplitudes (stim, 6 nA and 10 nA), no noise
inputs.

Drive (nA) 4 6 8 10 12 14 16 18

Active MNs 51 137 160 173 181 188 193 197

6 nA stim 51/51 137/137 160/160 173/173 181/181 188/188 193/193 197/197

10 nA stim 51/51 137/137 160/160 173/173 181/181 188/188 193/193 197/197

5.3.4 Influence of random membrane potential fluctuations on
reflex amplitudes

In the physiological motoneuron, the membrane potential undergoes random fluctuations,
which we consider by adding noise components to the input signal in the simulation. Here,
we omit these noise components to estimate their effects on the reflex amplitude compared
to the previous simulations. Figure 5.7 shows the reflex amplitudes for eight drive levels,
no noise inputs and two stimulus amplitudes (6 nA and 10 nA). Except for removing the
noise input, the conditions are similar to those in Figure 5.5.
Without the noise input, the baseline frequencies of the motoneuron pool are lower

than with noise input (Figure 5.7a). The range of frequencies shown by the smallest
motoneuron (MN 1) is 8.5Hz to 42.8Hz, and the largest recruited motoneuron is MN 197
of 200. The reflex amplitudes are overall higher than in the simulations with noise input.
For the low stimulus amplitude, reflex amplitudes range from 0.12 counts/No. of Stim to
0.63 counts/No. of Stim for the PSTH and from 0.61Hz/No. of Stim to 3.4Hz/No. of Stim
for the PSF, respectively. For the high stimulus amplitude, the reflex amplitudes range
from 0.21 counts/No. of Stim to 0.74 counts/No. of Stim for the PSTH, and they range
from 1.47Hz/No. of Stim to 7.12Hz/No. of Stim for the PSF. The trends as observed with
noise, i. e., saturating reflex amplitudes for high drive levels in the PSTH and diverging
reflex amplitudes for high drive levels in the PSF, are confirmed in the simulations without
noise (Figure 5.7b-e).
When omitting the noise, less motoneurons are active and consequently, less motoneur-

ons show a significant reflex amplitude (Table 5.2). In Table 5.2, it is noticeable that there
are no differences between PSTH and PSF with respect to the number of motoneurons
with a significant reflex amplitude.

5.3.5 Influence of the number of stimuli on reflex amplitudes

This section investigates the influence of the number of applied stimuli on the reflex
amplitudes. We used a low and a high drive (6 nA and 16 nA), a stimulus amplitude of
6 nA and considered a minimum of 25 and up to 1000 stimuli for the evaluation.
In Figure 5.8, it can be observed that the variability of reflex amplitudes within the

pool becomes smaller when more stimuli are considered. In the low drive condition, the
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Figure 5.7: Reflex amplitudes of the motoneuron pool without noise input. a) Current fre-
quency relations for the pool of simulated motoneurons. b), c) Reflex amplitudes from peristim-
ulus timehistogram (PSTH) for stimulus amplitudes of 6 nA and 10 nA. d), e) Reflex amplitudes
from peristimulus frequencygram (PSF) for stimulus amplitudes of 6 nA and 10 nA. The colour
indicates the motoneuron (MN) index, whereby MN 1 corresponds to the smallest and MN 200
to the largest motoneuron of the pool (every second MN is shown). In all simulations, 200
stimuli were delivered. The noise components of the MN drive were removed.
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Table 5.3: Mean reflex amplitude for the largest motoneurons of the pool and different numbers
of stimuli (No. of Stim). Mean and standard deviation of the reflex amplitude of the motoneurons
firing with 14Hz to 17Hz in the low drive condition and with 35Hz to 39Hz in the high drive
condition, respectively. Simulation settings: Low and high drive (6 nA and 16 nA); stimulus
amplitude 6 nA; 100, 200 and 1000 stimuli considered.

No. of Stim 100 200 1000

Low drive PSTH reflex amplitude
(counts/No. of Stim)

0.289± 0.039 0.289± 0.032 0.323± 0.014

PSF reflex amplitude
(Hz/No. of Stim)

1.062± 0.156 1.040± 0.125 1.221± 0.070

High drive PSTH reflex amplitude
(counts/No. of Stim)

0.235± 0.053 0.225± 0.040 0.224± 0.019

PSF reflex amplitude
(Hz/No. of Stim)

1.679± 0.321 1.860± 0.442 2.009± 0.190

reflex amplitudes are higher when more stimuli are applied. In Table 5.3, the mean reflex
amplitudes for the motoneurons with a mean baseline frequency of 14Hz to 17Hz in the
low drive and of 35Hz to 39Hz in the high drive condition are shown. For 1000 stimuli,
the mean reflex amplitudes are highest and the standard deviations lowest for both drives
and both metrics. Only the mean reflex amplitude determined from the PSTH with the
high drive is relatively constant for all numbers of stimuli.
It is noticeable that there are differences in the number of motoneurons taken into

account. For the lower drive, the number of applied stimuli only influences the number
of motoneurons with a significant reflex amplitude when considering less than 50 stimuli
(Table 5.4). For the higher drive, the number of motoneurons that show a significant
reflex increases with the number of applied stimuli. For the PSTH, the maximum number
is reached for 200 stimuli, and for PSF, it is reached for 600 stimuli. Interestingly, for 900
and 1000 applied stimuli, the number of motoneurons with a significant reflex amplitude
in PSF reduces by one.
To investigate the reasons for this behaviour, the error boxes of the CUSUM, which are

used as the threshold for a significant reflex, are shown in Figure 5.9. For both the PSTH-
and the PSF-CUSUM, the error box size decreases when a higher number of stimuli is
applied. Thereby, the difference between 100 and 200 applied stimuli is approximately as
high as the difference between 200 and 1000 applied stimuli. The error box size plateaus
for approximately 400 stimuli and more.
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Figure 5.8: Reflex amplitudes of the motoneuron pool for different numbers of stimuli. Re-
flex amplitude determined from peristimulus timehistogram (PSTH, a, b) and peristimulus fre-
quencygram (PSF, c, d) and for two drives (low 6 nA and high 16 nA) and different numbers of
stimuli. Stimulus amplitude of 6 nA was constant.
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Figure 5.9: Error box size in CUSUM for different numbers of stimuli. Size of error box
determined from PSTH-CUSUM (a) and PSF-CUSUM (b) for two drives (low 6 nA in black and
high 16 nA in blue) and different number of stimuli. Shown are the mean (lines) and standard
deviation (shaded areas) of the error boxes. Stimulus amplitude of 6 nA was constant. Error
box size corresponds to the mean value over the motoneuron pool.

Table 5.4: Number of motoneurons (MNs) with a significant reflex amplitude for different
numbers of stimuli (No. of Stim). Values are given for PSTH/PSF. Simulation settings: Low
and high drive (6 nA and 16 nA), stimulus amplitude 6 nA, 25 to 1000 stimuli considered. In the
low drive, 147 to 148 MNs and in the high drive, 198 to 199 MNs were included in the analysis
(the number of active MNs differs due to small differences in the mean baseline frequency and
coefficient of variation of the interspike interval due to inclusion of different numbers of data
points).

No. of Stim 25 50 100 200 300 400

Low drive 124/49 147/140 148/147 148/148 147/147 147/147

High drive 120/1 174/8 194/20 198/114 198/158 198/176

No. of Stim 500 600 700 800 900 1000

Low drive 148/148 148/148 148/148 148/148 148/148 148/148

High drive 198/185 198/198 198/198 198/198 198/197 198/197
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5.4 Discussion

In this work, for the first time, the reflex amplitudes determined from the PSTH- and
PSF-CUSUM were analysed for different conditions and an entire pool of simulated mo-
toneurons. This approach enables a detailed analysis of the factors influencing the reflex
amplitude and provides valuable insights for collecting and interpreting experimental data.
Many factors that were previously shown to influence the relation between postsynaptic

potential size and reflex amplitude were considered in the simulations. We employed
different levels of baseline discharge frequency, noise and stimulus amplitude. We further
used a motoneuron model whose channel dynamics reproduce physiological shapes of the
AHP, which also influences the reflex response (Powers and Türker, 2010b; Zengel et al.,
1985).
By comparing the peristimulus graphs (PSTH, PSF and CUSUM) of the simulated mo-

toneurons to experimental recordings of monosynaptic short-latency reflexes, we showed
the capability of the simulation to predict excitatory reflex responses. The qualitative
time course of the reflex response, i. e., constant baseline activity followed by a peak, a
silent period and the return to baseline activity, matches between simulation and exper-
iment. In addition, both the baseline frequencies and reflex amplitudes are comparable
between the simulated and recorded data. It should be noted that the validation applies
only to short latency responses, i. e., the first reflex response following the stimulus. This
study does not make any statement about later reflex responses.

5.4.1 Reflex amplitudes differ between PSTH and PSF

We compared the distribution of reflex amplitudes determined from two metrics (PSTH
and PSF) across the entire pool of motoneurons and under different conditions. We identi-
fied a non-linear multi-variable influence of the motoneuron size and the applied conditions
on the reflex amplitude. The non-linear integration process of motoneurons needs to be
considered to explain this finding. Figure 5.10 shows the membrane potential trajectory
when applying a stimulus with a variable delay relative to the previous discharge. The
probability that a motoneuron will fire an action potential in response to a specific stim-
ulus depends on the current value of the membrane potential at stimulus time. When the
stimulus is delivered at the beginning of the interspike interval (Figure 5.10, pink) and
if it is not sufficient to bring the motoneuron to the threshold, its effect will decay, and
the interspike interval duration will not be affected by the stimulus. In contrast, when
the stimulus is delivered at a time point where it brings the motoneuron to the threshold,
it will immediately cause an action potential (Figure 5.10, blue) and shorten the cur-
rent interspike interval compared to an undisturbed interval (Figure 5.10, black). Stimuli
delivered between those extremes will shorten the interspike interval by a small amount
(Figure 5.10, green). This behaviour was also explained and visualised by e. g., Türker
and Powers (1999) and Powers and Türker (2010a).
In conclusion, the responsiveness of a motoneuron to a stimulus, and thus the reflex

amplitude, depends on the fraction of the interspike interval during which the stimulus
brings the motoneuron to the threshold. This time span depends on motoneuron-specific
properties like the AHP shape and the spike threshold (Jones and Bawa, 1995; Powers
and Türker, 2010a; Zengel et al., 1985) but also on the applied conditions, i. e., baseline
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Figure 5.10: Membrane potential trajectories of one interspike interval with different stimulus
times. The stimulus was applied at the time indicated by coloured arrows. The excitatory
postsynaptic potential increases with membrane potential as the stimulus current amplitude
was held constant. An undisturbed interspike interval is shown in black.

frequency determined by the mean drive, random fluctuations of the membrane potential
determined by noise inputs and the size of the stimulus itself (Herrmann and Gerstner,
2002; Jones and Bawa, 1997; Matthews, 1999; Piotrkiewicz et al., 2009).
Whenever a stimulus is applied during the “excitable” fraction of the interspike interval,

the action potential count in the PSTH is increased by one. Thereby, it does not matter
how much the stimulus shortened the interspike interval. In contrast, the frequency values
in the PSF are directly related to the shortening of the interspike interval in milliseconds.
Thus, they depend on the random timing of the stimulus with respect to the last action
potential. When the interspike interval is only slightly shortened, as expected in conditions
with a large drive and small stimulus amplitudes, the reflex response is more difficult to
detect in the PSF. Consequently, fewer motoneurons show a significant reflex amplitude
under these conditions in the PSF than in the PSTH. This also explains why the variability
among motoneurons of the pool is much higher in the PSF and increases with increasing
baseline frequency.
Considering all performed simulations, more motoneurons showed a significant reflex

response in the PSTH than in the PSF. This difference no longer existed when the noise
was removed from the motoneuron drive. We conclude that the PSF is more sensitive to
noise than the PSTH.
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5.4.2 Characteristics of reflex amplitudes determined from the
PSTH-CUSUM

In the simulated motoneuron pool, the reflex amplitudes determined from the PSTH-
CUSUM increased with increasing stimulus amplitude. For a constant stimulus size,
the reflex amplitudes of the motoneuron pool decreased with increasing drive and finally
plateaued. In general, motoneurons operating closely above their recruitment threshold
have the highest probability of responding to a stimulus. The higher the drive, the
more motoneurons operate far above their recruitment threshold. Further, increasing
drive affects the fraction of the interspike interval during which a specific motoneuron is
excitable for a specific stimulus. Consequently, the distribution of reflex amplitudes across
the motoneuron pool changes with increasing drive. We showed that noise components
in the motoneuron drive generally reduce the reflex amplitude. This observation is in line
with the dependency on the baseline firing rate. Noise inputs increase the baseline firing
rate and, thus, lead to smaller reflex amplitudes.
Matthews (1999) and Herrmann and Gerstner (2002) both reported increased reflex

amplitudes for higher stimulus amplitudes, as shown in this work. Piotrkiewicz et al.
(2009) found an approximately linear relationship between EPSP size and reflex amplitude
for high firing rates. Due to the high variability within the pool and the heterogeneity of
the responses across the applied conditions, we did not attempt to find a linear relationship
between reflex amplitude and stimulus size.
In their modelling studies, Matthews (1999) and Herrmann and Gerstner (2002) found

that the peak of the PSTH-CUSUM first increases with increasing baseline frequency
then decreases and finally plateaus. We could not observe an initial increase in reflex
amplitude for low drives; however, Matthews (1999) considered firing frequencies as low
as 2Hz, which we assumed to be too irregular to consider for analysis. Our findings
are further confirmed by a modelling study by Jones and Bawa (1997), which found
decreasing reflex amplitudes for baseline discharge frequencies increasing from 5Hz to
25Hz. Experimental studies by Kudina (1980) and Jones and Bawa (1995) also found an
inverse relationship between the PSTH peak size and the baseline discharge frequency.
A reduction of the reflex amplitude by noise, as found in our modelling study, was also
observed in the modelling studies of Matthews (1999) and Herrmann and Gerstner (2002).

5.4.3 Characteristics of reflex amplitudes determined from the
PSF-CUSUM

The reflex amplitudes determined from the PSF-CUSUM showed a complex pattern in the
simulation study. Considering the same simulated motoneuron and the same conditions,
the reflex amplitude increased with stimulus size. However, the distribution of reflex
amplitudes across the pool of motoneurons was not constant when increasing the drive,
i. e., the baseline frequency of the pool. Roughly, the reflex amplitude in small motoneur-
ons increased, and the reflex amplitude in large motoneurons decreased with increasing
drive. When normalised by the baseline frequency, the reflex amplitudes for the entire
pool were approximately inversely related to the drive; however, the distribution within
the pool remained heterogeneous. As in the PSTH-CUSUM, noise components in the
motoneuron drive generally reduced the reflex amplitude and the number of motoneurons
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with a significant reflex response.
We used effective synaptic currents as reflex stimuli. Since the effective synaptic cur-

rent is assumed to be directly related to the current-frequency relation, any increase in
motoneuron frequency is supposed to represent the input current (Heckman and Binder,
1988). Türker and Powers (1999) indeed found linear relations between PSF peak size
and stimulus amplitude. In the simulation, it was observed that the normalised PSF
reflex amplitudes rapidly decrease with increasing discharge frequency after recruitment
and plateau for further increases in frequency. The reflex amplitudes of the smallest mo-
toneurons showed another increase for even higher frequencies. This behaviour shows a
close similarity with the slope of the current-frequency relation, which rises steeply just
after recruitment, takes a smaller and approximately constant slope for a large range of
input currents and then increases steeply again (see Figure 5.6a). Together with the ex-
perimental findings, this suggests that the relation between reflex amplitude and input is
indeed approximately linear for firing rates in the linear region of the current-frequency
relation.
Türker and Powers (2005) claimed that “each data point in the PSF is an independent

number and reflects the true value of the membrane excitability at that point in time”.
The simulation results put this statement into perspective. A data point with an increased
frequency in the PSF often only indicates that the stimulus was large enough to bring the
motoneuron to the threshold. Further, since the PSF was shown to be very sensitive to
noise inputs and the random timing of the stimulus, there is a large variability in reflex
amplitudes. As suggested by Türker and Powers (2003), summarising multiple motor
units in the PSF reduces the variability and may overcome this problem to a certain
extent.
In summary, absolute PSF values and the reflex amplitude distribution across the mo-

toneuron pool depend on the motoneurons’ baseline frequencies, the slope of their current-
frequency relations and the random timing of the stimulus. As proposed by e. g., Türker
and Powers (1999) and Powers and Türker (2010a), a model of the membrane potential
trajectory is necessary to estimate the size of the EPSP from the PSF.

5.4.4 Implications for experimental studies

The PSTH and the PSF are established methods, but since their development, the com-
munity discusses their reliability and predictive power. This study showed which factors
shape the reflex amplitude and how the influence of these factors changes across the mo-
toneuron pool and the applied conditions. From this, we derived implications for the
design of experimental studies.
During the primary range of firing, the motoneuron’s average membrane potential tra-

jectory is assumed to reach a constant distance to the threshold toward the end of the
interspike interval so that spikes are triggered by random fluctuations in synaptic noise
rather than by a linear rise to threshold (Kudina, 1999). This corresponds to the range of
relatively low baseline frequencies, where we found considerably higher reflex amplitudes
than when larger drives were applied. This observation suggests using high baseline fre-
quencies, i. e., discard motoneurons e. g., up to 5Hz above their recruitment frequency.
Alternatively, a symmetrical interspike interval histogram could be used as an indicator
for regular firing behaviour as e. g., suggested by Powers and Türker (2010a). However,
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note that as soon as some motoneurons reach the secondary firing range, the slope of
their current-frequency relation changes rapidly and considerably (Kernell, 1965). This
results in another increase in reflex amplitudes as seen e. g., for small motoneurons at the
highest drives considered in this work. Suitable ranges of firing frequencies for human
motoneurons should be defined.
Due to the large variability in reflex amplitude, even among motoneurons with very

similar properties, a single motoneuron’s reflex amplitude is not representative. This can
be overcome by summarising motoneurons with similar frequencies. Consequently, re-
cording many motoneurons with relatively high frequencies is beneficial for the predictive
power of the determined reflex amplitudes. Türker and Powers (2003) showed that more
stimuli and a higher baseline frequency improve the match between PSF and PSP shape.
We confirmed that a high number of reflex stimuli is especially relevant for the PSF.
In contrast, the PSTH is more robust against small numbers of applied stimuli. While
in experimental studies, 100 applied stimuli are often considered sufficient (e. g., Yavuz
et al., 2014), the simulation results suggest applying at least 200 but preferably 400 stim-
uli to reach the plateau size of the error box. Thereby, the number of motor units with
a significant PSF reflex amplitude is expected to increase considerably. We also showed
that applying more than 400 stimuli does not considerably improve the result.
The requirements, i. e., delivering a high amount of stimuli and recording many motor

units at discharge frequencies considerably above their recruitment threshold, are in a
field of tension. Motoneurons generally increase their discharge frequency with increas-
ing force. This behaviour would suggest performing reflex experiments at high forces.
However, maintaining a high force level and delivering many stimuli exclude each other.
Further, fatigue must be considered at high force levels, which adds another contributor
to reflex amplitude. Using motor unit tracking across several experimental trials might
enable delivering a larger number of stimuli and at higher forces than previously possible
(Martinez-Valdes et al., 2017). However, the number of motor units that can be tracked
across all trials tends to decrease with the number of trials (Martinez-Valdes et al., 2017).
If single motor units are not representative and moderate to high forces are desired,

classical intramuscular EMG is not recommended to investigate the reflex strength. In-
tramuscular EMG allows recording only one or two motor units simultaneously and is
challenging to decompose at high forces, such that it is often used at 10 % MVC or below
(Merletti and Farina, 2009; Yavuz et al., 2015). High-density surface EMG (HDsEMG)
provides a better alternative. Yavuz et al. (2015) showed that HDsEMG can be used to re-
cord reflex responses at forces as high as 50 % MVC. Currently, decomposition algorithms
tend to deliver fewer motor units at higher forces. High-density intramuscular EMG elec-
trodes provide another alternative since they allow recording several tens of motor units
with a single electrode (Muceli et al., 2022). However, to the author’s knowledge, they
have not yet been used in reflex recordings.
In summary, it is suggested to select recording techniques that allow the performance

of reflex experiments at moderately high forces and that are, at the same time, suited for
long recording periods to apply as many stimuli as possible. In any case, it is recommen-
ded to discard motor units close above their recruitment threshold. The uncertainty of
the results can be reduced by summarising similar motor units. Understanding the char-
acteristic properties of the PSTH and PSF is crucial to selecting the appropriate analysis
method and for interpreting the results. As suggested by Türker and Powers (2003) we



82 5 Factors Influencing Excitation Reflex Amplitudes in Motoneuron Pools

strongly support that one should always use PSTH in combination with PSF to avoid
misinterpretations due to motoneuron synchronisation.
Lastly, this study pointed out that comparing reflex amplitudes obtained from different

experiments is challenging. Reflex amplitudes are very sensitive to the combination of
motoneuron properties and applied conditions, which are usually not completely known.
Thus, multi-variable analysis or model-based approaches are needed.

5.4.5 Is the reflex amplitude an appropriate tool to determine
the distribution of afferent inputs to the motoneuron
pool?

This work and several previous studies showed that the reflex amplitude is correlated
with the stimulus strength or EPSP size (e. g., Matthews, 1999; Türker and Powers,
1999). This finding led researchers to assume that a motoneuron showing a higher reflex
amplitude than another motoneuron from the same pool received a stronger stimulus. If
this assumption is correct, it would provide a means to study the distribution of afferent
inputs to the motoneuron pool.
Previous research paints a heterogeneous picture of the distribution of Ia monosynaptic

afferent inputs to the motoneuron pool. For example, Binboğa and Türker (2012) found
that the H-reflex amplitude is higher in larger motor units of the human soleus muscle,
while Awiszus and Feistner (1993) found the opposite with a similar experimental setup.
The former hypothesis is, e. g., supported by Heckman and Binder (1988), while the latter
is backed by, e. g., Mazzocchio et al. (1995); Semmler and Türker (1994).
The simulations performed in this work suggest that the assumptions underlying those

studies do not hold. The reflex size only relates to the input size when considering the same
motoneuron under constant conditions. We found that motoneuron size and the baseline
firing frequency modulate the size of the reflex amplitude. For example, in Figure 5.4, we
showed that the reflex amplitudes differ considerably across the motoneuron pool, even
though a uniformly distributed stimulus was applied. The distribution across the pool
also changes with the applied motoneuron drive. Moreover, due to the large variability
of reflex amplitudes among similar neurons, a single motoneuron’s reflex response is not
representative.
It must further be considered that the effective synaptic current, i. e., that eventually

determines action potential generation, only provides an estimate of the actual input
current (Heckman and Binder, 1988). Several processes might modulate the input sig-
nal, e. g., active dendrite conductances (e. g., Binder et al., 2020), recurrent Renshaw
inhibition (Windhorst, 1990) or presynaptic inhibition (e. g., Stein, 1995), about which
statements can hardly be made in vivo. It is also questionable how statements on the
distribution across the motoneuron pool can be made when recording motoneurons at low
forces when larger motor units are not recruited or fire with extremely low and irregular
discharge frequencies.
In conclusion, this study suggests that reflex responses of a motor unit population and

at different forces should be considered to determine input distributions. The distribution
of reflex responses across the pool must be interpreted considering the influence of mo-
toneuron size and baseline firing rates. Comparing the distribution to model predictions
can provide guidance. Since the reflex amplitudes determined from the PSTH-CUSUM
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were shown to be less sensitive to the baseline firing rate, they might be better suited for
statements about the EPSP size.

5.4.6 Implications for neuromuscular modelling

Experimental data on reflex amplitudes is subject to many uncertainties. Nevertheless,
reflex measurements are one of the few methods available to study the behaviour of mo-
toneurons in vivo and in isolation. Therefore, computational models of the neuromuscular
system require data obtained from reflex experiments for model parametrisation and val-
idation. Knowing the limitations of the methods will help in using the data.
The gain of the afferent input to the motoneuron pool is an important parameter when

including reflex pathways and sensory feedback loops in a model of the neuromuscular
system. When the gain shall be determined with the help of experimental data, a mean
value of the reflex amplitude from the PSTH-CUSUM provides a good estimate. Chapter
7 presents an example use case. Reflex amplitudes determined from the PSF-CUSUM are
more sensitive to individual motoneurons’ properties and discharge frequencies and, thus,
are less suggested to fit model results. However, the PSF is suited to study the distinction
between inhibitory and excitatory reflexes, as, e. g., in Chapter 6.
As discussed in the previous section, conflicting findings exist on the distribution of

afferent inputs to the motoneuron pool. In consequence, many modelling studies distrib-
uted Ia feedback uniformly (e. g., Elias et al., 2014; Lin and Crago, 2002a), while others
used stronger Ia feedback for larger motoneurons (e. g., Dideriksen et al., 2015). This
study has raised doubts about the approaches used to determine the distribution. For
the lack of better knowledge, we recommend distributing feedback uniformly or using
optimisation procedures to define the feedback gains for a particular motor task.
Another potential area of application for motoneuron models is the augmentation of

data. Therefore, the parameters of a motor neuron model are first optimised to predict
in-vivo behaviour (Caillet et al., 2022a; Ornelas-Kobayashi et al., 2023). Then, this model
can be used to increase the amount of data for further evaluation.

5.4.7 Limitations

The limitations of the motoneuron model were extensively discussed in Section 3.4.4.
Here, we briefly describe the limitations relevant to this work.
Reducing the branched dendritic structure to a single compartment in the motoneuron

model simplifies the physiological structure of a motoneuron. Dendrites themselves con-
tain ion channels, which were not considered in this model. These channels influence the
shape of an incoming signal on its way to the soma. Especially, PICs can considerably
modulate the motoneuron’s input-output function (Binder et al., 2020). However, due
to their slow time dynamics, we expect no major changes in PIC activity during short
stimuli (Binder et al., 2020). In addition, we assumed the motoneuron inputs to represent
effective synaptic currents that finally reach the soma. Only this current is relevant for
recruitment and rate coding (Heckman and Binder, 1988). Thus, this study only makes
statements about inputs finally reaching the soma. Any modulation by the motoneuron
properties is not considered.
The motoneuron model does not consider threshold variations within an interspike
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interval (Calvin, 1974; Powers and Binder, 1996). The spike threshold was shown to vary
within the interspike interval in a way that it follows the membrane potential trajectory of
the AHP (Calvin, 1974; Powers and Binder, 1996). That is, the threshold is lower at the
beginning of the interspike interval and then increases. In the employed model, the spike
threshold is highest just after the action potential, then decreases and finally plateaus.
Thus, we might overestimate the efficacy of stimuli delivered late in the interspike interval.
The effect of the spike threshold on reflex amplitudes could be investigated by adapting
a spike-response model, as e. g., proposed by Herrmann and Gerstner (2002), to consider
different threshold time courses.
Previous studies showed that the amount of common drive delivered to a motoneuron

pool increases with force level and fatigue (Castronovo et al., 2015). As the motoneuron
model does not show frequency saturation of small motoneurons at high forces (Monster
and Chan, 1977), we limited the drive levels to avoid reaching unphysiological ranges of
the current-frequency relation. Further, we fixed the amount of noise and independent
drive with respect to the mean drive.
We can only make a limited statement about which contraction forces our applied drives

correspond to. In accordance with Moritz et al. (2005), we assumed that 60 % MVC is
reached when the largest motoneuron in the pool fires with 10Hz. This was the case for
the chosen noise inputs with a mean drive of 16.8 nA. Thus, we assume that we covered
approximately a range of below 10 % to not more than 70 % MVC (see Section 5.1.2).
We did not consider nerve conduction delays since we did not model a specific muscle

or pathway. The conduction delay does not affect the reflex amplitude. If reflex latencies
should be considered, appropriate delays can be easily implemented from the known con-
duction velocities of afferent and efferent nerves and the estimated conduction distances
from the muscle to the location of the respective motoneuron pool in the spinal cord.
In this study, the reflex amplitude was exclusively determined from the PSTH- and

PSF-CUSUM time courses. There are other approaches to determine reflex strength that
might also be applicable as, e. g., a moving average on the PSF (e. g., Piotrkiewicz et al.,
2009).

5.4.8 Summary and outlook

We used a computational model of a motoneuron pool to investigate the factors influencing
the reflex amplitudes determined from the PSTH- and PSF-CUSUM. We found a highly
non-linear multi-variable influence of internal motoneuron properties and external condi-
tions on reflex amplitudes. The reflex amplitudes determined from the PSTH-CUSUM
are mainly determined by the “excitable portion” of the interspike interval, which depends
on internal motoneuron properties as well as the applied conditions. Reflex amplitudes
determined from the PSTH-CUSUM are suited for quantitative comparisons between ex-
periments and for estimating the EPSP size when the conditions are known. Reflex amp-
litudes determined from PSF-CUSUM are sensitive to the motoneuron’s current-frequency
relation, which is determined by the motoneuron’s properties and the baseline frequency.
Further, the random timing of the stimulus with respect to the last discharge and the
number of applied stimuli massively influence the reflex amplitudes determined from the
PSF-CUSUM. Reflex amplitudes determined from the PSF-CUSUM are suited to de-
termine the sign of a reflex response and to determine differences between motoneuron
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types.
Reflex amplitudes from single motoneurons were found to be generally not represent-

ative due to the large variability within the motoneuron pool. Instead, it is suggested to
summarise motoneurons with similar baseline discharge frequencies.
This study aimed to fill a gap in the knowledge of the reflex behaviour of single mo-

toneurons. There is a large dark field because of the small number of motor units that can
be recorded or decomposed with current experimental techniques. Emerging techniques
that can capture motor units from deeper regions of the muscle can increase the number
of motor units that can be analysed. For example, high-density intramuscular EMG elec-
trodes are already available and enable simultaneous recording of a relatively large number
of motor units with good signal quality (Muceli et al., 2022). Moreover, new non-invasive
techniques like improved electrode grids for surface EMG, magnetomyography (MMG)
or ultrafast ultrasound are currently being developed and have the potential to provide
more complete motoneuron pool data and validate the predictions made by this study
(Caillet et al., 2023; Ghahremani Arekhloo et al., 2023; Klotz et al., 2023; Rohlén et al.,
2020). Reflex experiments will benefit from improvements in recording and decomposition
technologies.
Re-examining reflex responses using new technologies provides an opportunity to in-

vestigate sex differences and fill a gap in current knowledge. It has been reported that
females may have different motor unit behaviour and use different neuromuscular control
strategies than males (Lulic-Kuryllo and Inglis, 2022).
This study only investigated excitatory reflex responses. Extending this study to inhib-

itory stimuli is expected to provide valuable insights for interpreting, e. g., experiments
on reciprocal inhibition. Further input distributions can be applied in the simulation to
better judge the reflex amplitude as a tool to determine the distribution of afferent inputs
to the motoneuron pool, as discussed in Section 5.4.5. Comparing the reflex amplitudes
determined from the PSTH- and PSF-CUSUM to other techniques, e. g., a moving aver-
age on the PSF (e. g., Piotrkiewicz et al., 2009), the maximum PSF or the rise time and
duration of reflex responses would be a further valuable extension of this study.
The insights gained from this simulation study can not only be applied to muscle reflexes

but, e. g., also to pain reflexes (e. g., Rossi et al., 2003). With an appropriate model of the
underlying mechanism, computer simulations can also help to identify pathological reflex
patterns. A better quantitative understanding of reflex amplitudes has the potential to
assess, e. g., spasticity. Up-to-date measures that can distinguish different levels of severity
of spasticity are still missing (Aloraini et al., 2015; Biering-Sørensen et al., 2006). In light
of this study, considering reflex amplitudes of the entire motoneuron pool is a promising
approach to clinically monitoring disease progression or treatment outcomes.
Especially for clinical applications, keeping the examination time to a minimum is

desirable. The number of required stimuli during the procedure can be reduced by merging
spike trains of two or more similar motor units to create the PSTH and PSF. The similarity
of motor units can be determined based on their recruitment threshold and firing rate
(Gogeascoechea et al., 2023). Another alternative is augmenting the data. Based on a
relatively short recording period, motoneuron models are parametrised to reproduce the
recorded firing behaviour and used to predict the reflex responses (e. g., Caillet et al.,
2022a; Ornelas-Kobayashi et al., 2023).
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6 The Role of h-Currents in
Motoneuron Postinhibitory
Excitation

This chapter was largely published in Schmid et al. (2024).
Sherrington, one of the pioneers of reflex studies, noted in his 1909 studies that “reflex

inhibition of the vastocrureus and other extensor muscles in decerebrate rigidity is fol-
lowed regularly, under certain circumstances, on withdrawal of the inhibitory stimulus, by
a rebound contraction” (Sherrington, 1909). Interestingly, the “rebound contraction” per-
sisted after de-afferentation (Sherrington, 1909). Later, the same phenomenon of motor
unit postinhibitory excitation was reported in several studies (e. g., Aoki and Yamamura,
1980; Kozhina, 1983; Özyurt et al., 2019; Türker and Powers, 1999; Uysal et al., 2019). The
proposed mechanisms include reflex pathways activated by muscle spindles and intrinsic
neuron characteristics originating from the behaviour of specific ion channels. However,
none of these studies has systematically investigated the phenomenon’s origin.
Similar to Sherrington’s findings, we observed a consistent rebound-like excitation fol-

lowing electrically evoked reciprocal inhibition in human tibialis anterior motor units
(Figure 6.1c, Yavuz et al., 2018). Reciprocal inhibition is a component of the stretch re-
flex pathway, which is disynaptically elicited by muscle spindles of an antagonistic muscle
(Figure 6.1a, Crone et al., 1987; Kudina, 1980). Here, reciprocal inhibition was super-
imposed on sustained isometric contractions of the tibialis anterior muscle by electrical
stimulation of the tibial nerve.
Increased excitability elicited by a purely inhibitory stimulus is a well-known phe-

nomenon in different cells of the mammalian neural system, and various ion channels
were found to cause or facilitate this behaviour in vitro (e. g., Aizenman and Linden,
1999; Bertrand and Cazalets, 1998; Dodla et al., 2006; Ito and Oshima, 1965; Kandel
and Spencer, 1961). Therefore, it is surprising that intrinsic motoneuron mechanisms
are rarely considered to explain the postinhibitory increase in activity of motor units in
vivo. Instead, excitatory synaptic inputs based on reflex pathways were lately considered
(e. g., Aoki and Yamamura, 1980; Kozhina, 1983; Özyurt et al., 2019; Uysal et al., 2019).
Ito and Oshima (1965) first described membrane potential overshoots caused by hyper-

polarisation-activated inward currents in cat spinal motoneurons. Takahashi (1990) found
that this current, which is commonly named h-current or Ih, is mediated by sodium and
potassium ions. The corresponding channel family was identified as hyperpolarisation-
activated cyclic nucleotide-gated non-selective cation channels (HCN channels), which
are expressed throughout the soma and dendrites of spinal motoneurons (Milligan et al.,
2006). Here, we refer to this group of channels as h-channels and the corresponding
currents as h-currents.
Based on the large body of evidence for intrinsic postinhibitory excitation mechanisms

from in-vitro studies, we hypothesise that intrinsic motoneuron mechanisms, specifically
h-currents, also contribute to the postinhibitory excitation in motor units observed in vivo
(Figure 6.1b). In this chapter, we analyse the incidence and amplitude of postinhibitory
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excitation in human motor units following electrically elicited reciprocal inhibition of the
tibialis anterior muscle. Then, we use a computational motoneuron model to reproduce
the experimental results and understand the role of h-currents in postinhibitory excitation.
To this end, we employ a compartmental electric circuit model, which is based on previous
works by Cisi and Kohn (2008), Negro and Farina (2011) and Powers et al. (2012). We
analyse and compare the discharge behaviour of both in-silico and in-vivo motoneurons
using the peristimulus frequencygram (PSF, Türker and Cheng, 1994).
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Figure 6.1: Postinhibitory excitation in human motor units. a) Motoneurons (MNs) receive
multiple, typically unknown synaptic inputs (green). Particularly, reciprocal inhibition is me-
diated by interneurons (grey). In humans, recording motor unit spike trains (black) allows for
studying the function of motoneurons. b) The integration of synaptic inputs in motoneurons
is determined by ion channels (blue). c) Peristimulus frequencygram (PSF) of three exemplary
tibialis anterior motor units in response to reciprocal inhibition, elicited by electrical stimulation
of the tibial nerve during sustained isometric contractions. The moving average is shown in blue,
data from Yavuz et al. (2018). It is unclear if the observed postinhibitory excitation is caused
by neural pathways or intrinsic motoneuron properties. [from Schmid et al. (2024) under CC
BY 4.0]
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6.1 Summary of the experimental protocol

Motor unit reciprocal inhibition data from a previous study (Yavuz et al., 2018) were used
to investigate the incidence rate and strength of postinhibitory excitation activity in vivo.
The data were acquired with the approval of the local ethical committee of the University
Medical Center, Georg-August–University of Göttingen (approval date: 1/10/12). The
high-density surface electromyogram (HDsEMG) was recorded (sampling rate: 10 240Hz)
from tibialis anterior muscles during steady isometric contraction at 10% and 20% of the
maximum voluntary contraction (MVC). Stimulating the tibial nerve through monopolar
stimulation electrodes elicited reciprocal inhibition on the tibialis anterior muscle. The
metal pin anode and cathode electrodes were placed on the skin of the popliteal fossa to
stimulate the nerve. The activity of individual motor units was identified by decomposing
HDsEMG data using a blind source separation technique (Holobar and Zazula, 2007;
Negro et al., 2016a). Further details about the experimental protocol and analysis can be
found in Yavuz et al. (2018).

6.2 Computational modelling

For this study, a motoneuron model was developed based on the electric circuit model
described in Section 3.4. Modifications to the model performed for this study are de-
scribed in Section 6.2.1. The model parametrisation is described in Section 6.2.2, and the
performed simulations are presented in Section 6.2.3.

6.2.1 The compartmental neuron model

A single motoneuron was simulated using an electric circuit model based on the mo-
toneuron model proposed in Negro and Farina (2011). A detailed description of this
model can be found in Section 3.4. In short, the in-silico motoneuron consists of two
compartments, i. e., the soma and a lumped dendrite. The soma compartment includes
voltage-gated conductances that describe sodium and slow and fast potassium channels.
Further, both compartments include an additional leakage conductance. For the present
investigation, we added a voltage-gated h-channel conductance in the soma and the dend-
rite compartment (Figure 6.2d). Further, external currents cannot only be applied to the
soma but also to the dendrite compartment. Accordingly, the membrane potential in each
compartment can be described by the following differential equations:

CddV
d
m(t)

dt
= −IdL − IdC − IdH + Idinj , (6.1)

CsdV
s
m(t)

dt
= −IsL − IsC − INa − IKf − IKs − IsH + Isinj . (6.2)

Therein, Vm(t) is the membrane voltage at time t, and C is the membrane capacitance.
The superscripts ‘s’ and ‘d’ denote the soma and the dendrite compartment, respectively.
The currents INa, IKf and IKs describe the flow of ions through sodium and fast and slow
potassium channels, respectively. Further, IC describes the coupling current between the
two compartments whereby IdC = −IsC, IL is a leakage current and Iinj denotes currents
injected into the compartments, e. g., by an external electrode. Currents are modelled



90 6 The Role of h-Currents in Motoneuron Postinhibitory Excitation

and parametrised as described in Negro and Farina (2011). H-channels were found to
be expressed widely across motoneurons. Consequently, they are placed in both soma
and dendrite compartments (Milligan et al., 2006). The mathematical description of the
h-current and its parameters are provided in Equations (6.3) to (6.5).
The h-current, IH, is described by Powers et al. (2012):

IH = ḡH s (Vm − EH) , (6.3)

ds

dt
=

s∞ − s

τH
, (6.4)

s∞ =
1

1 + exp
(

V−Vhalf

Vslope

) . (6.5)

Thereby, EH denotes the reversal potential of the h-conductance and ḡH the maximum
conductance, which is obtained by multiplying the maximum specific h-conductance GH

with the area of the soma compartment. The transient behaviour of the gating variable s
is determined by the voltage-independent time constant τH, the half-maximum activation
potential Vhalf and a slope factor Vslope. Note that Equations (6.3) to (6.5) refer to both
compartments, i. e., Vm corresponds to V s

m and s to ss for the soma compartment and to
V d
m and sd for the dendrite compartment.

6.2.2 Model parametrisation

Following a study by Duchateau and Enoka (2022), we assumed that for the tibialis
anterior muscle and contraction strengths of less than 20% MVC, all recruited and con-
sequently all recorded motor units are of slow type. Model parameters for different motor
unit types have been published by Cisi and Kohn (2008) (see their Table 2). We chose
the input resistance and the size parameters (diameter and length) of both the soma
and the dendrite compartment according to the mean values for slow-type motoneurons
(Table A.4). The size-independent electrophysiological parameters were also adopted from
Cisi and Kohn (2008) (Table 3.2).
Since the h-channel was not considered by either Cisi and Kohn (2008) or Negro and

Farina (2011), we used the implementation by Powers et al. (2012) as a guide. Powers et al.
(2012) used experimental recordings by Larkman and Kelly (1992) for the parametrisation
of the channel and we adopted the time constant as well as the slope factor, i. e., τH = 50ms
and Vslope = 8mV. In contrast to Powers et al. (2012), we assumed that persistent inward
currents play a minor role in our study (Pearcey et al., 2020). Thus, we adapted the
reversal potential EH = 20mV and half-maximum activation potential Vhalf = −20mV
with respect to the original implementation. The selected values agree with experimental
data (Bayliss et al., 1994; Larkman and Kelly, 1992). Note that all potentials are given
relative to the resting potential.
The above parameters determine the temporal dynamics of the h-current. The max-

imum conductance ḡH, which can also be interpreted as the density of h-channels in the
membrane, determines the maximum amount of h-current that can flow across the mem-
brane. Experimental current-clamp studies from Bertrand and Cazalets (1998) and Kiehn
et al. (2000) were used to parametrise ḡH. Therefore, the simulated membrane potential
trajectory in response to injection of hyperpolarising current steps was compared to in-
vitro results. The simulated neuron shows the characteristic undershoot and overshoot
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Figure 6.2: Characteristic behaviour of the computational motoneuron model. a) Membrane
potential time course of the simulated motoneurons without (black) and with h-current (blue) in
response to injection of the current step shown in (b). Membrane potential is given relative to the
resting potential. c) Steady-state membrane potential (Vstep) vs. overshoot membrane potential
(Vovershoot) of the simulated neuron (x) compared to data obtained from Kiehn et al. (2000) (o)
and Bertrand and Cazalets (1998) (△). d) Equivalent electric circuit of the motoneuron model.
Blue colour highlights components added compared to the previous version of the model (Negro
and Farina, 2011). e) Current-frequency relation for the model without (black) and with (blue)
h-currents. [from Schmid et al. (2024) under CC BY 4.0]

at the beginning and end of the applied current step (Figure 6.2a, b), which is typically
attributed to h-currents (e. g., Bayliss et al., 1994; Bertrand and Cazalets, 1998; Ito and
Oshima, 1965; Larkman and Kelly, 1992).
For a quantitative comparison, the steady-state membrane potential just before the

release of the current step, Vstep, was compared to the maximum size of the membrane
potential overshoot after the release of the current step, Vovershoot (Figure 6.2a-c). The
current step was applied for 300ms to reach a steady membrane potential. With a max-
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imum specific conductance of GH = 2mS cm−2 the simulated neuron showed overshoot
potentials of 0.84mV to 6mV in response to current injections that hyperpolarise the
membrane potential by 6mV to 24mV. This is well within the range of values repor-
ted in Bertrand and Cazalets (1998) and Kiehn et al. (2000), i. e., overshoot potentials
of 0.96mV to 9.6mV for potential steps of 5.9mV to 34.5mV (Figure 6.2c). Note that
adding the h-current does not lead to subthreshold oscillations and thus preserves the
integrator nature of the motoneuron model (Fig 6.2a).
Adding the h-current increases the neuron’s resting potential due to an additional inflow

of current, which was also reported by Powers et al. (2012). Consequently, the h-current
model has a decreased rheobase, but the gain of the current-frequency relation is hardly
affected (Figure 6.2e). We ensure comparability between the models by considering the
simulated neurons at the same working point, defined by the frequency.
In order to assess the reliability of the results with regard to uncertainties in the para-

metrisation, exemplary simulations with varied parameters for the time constant τH, max-
imum conductance GH, half-maximum activation potential Vhalf and reversal potential EH

of the h-channel were carried out. Further, variations in motoneuron size and the influence
of artificial persistent inward currents (PICs) were exemplarily tested.

6.2.3 Simulation of reciprocal inhibition

The applied simulation protocol aims to mimic the experimental procedure described
in Section 6.1. Repeated injections of inhibitory current pulses causing an inhibitory
postsynaptic potential (IPSP) imitate the stimulus delivered in the reflex experiment.
The stimuli were applied 200 times with a random interstimulus interval of 1000±100ms.
All simulations were performed with MATLAB R2021a (9.10.0.2015706). The motoneuron
model is represented by a system of eight ordinary differential equations, which was solved
with MATLAB’s ode23 solver (single-step, explicit Runge-Kutta solver, Shampine and
Reichelt, 1997) and an absolute and relative error tolerance of 1× 10−5.
Injected currents drive the activity of the motoneuron model. The input is composed

of up to three components to replicate the experimental protocol: (i) inhibitory current
pulses simulating reciprocal inhibition, (ii) a constant current representing the mean cor-
tical drive to the neuron and determining the contraction strength, (iii) additive noise
representing all afferent and efferent inputs to the motoneuron that are not explicitly
modelled.
Reciprocal inhibition (i) was simulated by injecting a current kernel representing the

compound inhibitory postsynaptic current (IPSC). The postsynaptic current IPSC is de-
scribed by

IPSC = −I0
t

τPSC
exp

(
1− t

τPSC

)
, (6.6)

with t representing the time since the beginning of the current injection. The time constant
τPSC = 4ms was fixed (Curtis and Eccles, 1959), while the amplitude I0 ranged from 2.5
to 15 nA to cover a large range of IPSP strengths. The IPSC was applied for 20ms, as
this, for the chosen amplitudes, achieved the minimum firing rate at a time comparable to
the experiment. The current-induced IPSPs usually last longer than 20ms (Fig 6.4a, b).
The constant input into the neuron (ii) was chosen to obtain different baseline firing

rates of approximately 10, 14, and 18Hz. The noise component (iii) was composed of
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two parts, a zero-mean, band-pass filtered (15Hz to 35Hz) and a zero-mean low-pass
filtered (< 100Hz) white noise (Conway et al., 1995; Halliday et al., 1998). The filtering
was performed with a first- and second-order Butterworth filter, respectively (Rao and
Swamy, 2018). The standard deviation of the noise input was scaled relative to the mean
drive such that the band-pass filtered component accounts for 80 % of the total standard
deviation (Negro et al., 2016b). To investigate the effect of noisy inputs in the investigated
reflex scenario, we applied different noise levels by scaling the total standard deviation of
the summed noise input to 0 %, 12.5 %, and 25 % of the constant input current (ii).
The input components (i) to (iii) were linearly summed and applied to the soma com-

partment, assuming they represent effective synaptic currents (Heckman and Binder, 1988;
Negro and Farina, 2011). To account for the delay caused by the nerve conduction velo-
city, a constant delay of 50ms between the IPSC application and the membrane potential
output was introduced.

6.3 Data analysis

Motoneuron activity is described through discrete discharge times, i. e., a binary spike
train. For the in-vivo experiment, spike trains were reconstructed by the decomposition
of the recorded HDsEMG (for details, see Holobar and Zazula, 2007; Negro et al., 2016a;
Yavuz et al., 2018). In the simulation, the spike trains were directly obtained from the
trajectory of the soma membrane potential.
The firing behaviour of motoneurons before and after stimulation was analysed using

the peristimulus frequencygram (PSF) method (Figure 6.3a). The PSF shows the instant-
aneous discharge rates of motoneurons relative to the stimulus time (see Section 4.2.2 and
Türker and Cheng, 1994). Significant perturbations in discharge rate compared to baseline
activity after the stimulus are likely related to the stimulating event. With increasing
delay between the stimulus and the event, the probability that changes in discharge rate
may reflect other processes increases (Powers and Türker, 2010a; Türker and Powers,
2003; Yavuz et al., 2014). The characteristics of the PSF response are assumed to depend
on the sign and the magnitude of a (reflex-induced) postsynaptic potential (Powers and
Türker, 2010a). As shown in Chapter 5, the PSF is influenced by many factors, which
cannot all be controlled in the experimental setup. Thus, we refrain from a quantitative
comparison with experimental data.
The strength of reciprocal inhibition and the consecutive excitation was determined by

computing the cumulative sum of the PSF (PSF-CUSUM, see Figure 6.3b, Section 4.2.3
and Türker et al., 1996). The PSF-CUSUM allows the measurement of subtle but con-
sistent changes in the instantaneous discharge frequency. It was obtained by cumulatively
summing the difference between the average baseline frequency (−300ms ≤ time < 0ms)
and the instantaneous frequency value of each discharge.
The largest absolute deflection of the PSF-CUSUM from zero during the baseline was

determined as the significance threshold (error box) for reflex responses (Figure 6.3b,
dashed lines). Troughs and peaks exceeding the error box represent significant inhibition
and excitation responses. The response amplitude (inhibition or excitation) was defined
as the difference between two turning points in the PSF-CUSUM (Figure 6.3b, arrows).
The turning points correspond to the start and end points of the monotonous slope of a
significant reflex response and were determined manually (Section 4.2.3). We are aware
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Figure 6.3: Peristimulus analysis for an exemplary selected tibialis anterior motor unit. a)
Peristimulus frequencygram (PSF). b) Cumulative sum of PSF (PSF-CUSUM). The electrical
stimulus to the tibial nerve was applied at time zero. Solid horizontal lines show prestimulus
mean values, and dashed lines mark the significance threshold for reflex responses. Arrows show
the distance between manually determined turning points in PSF-CUSUM, i. e., inhibition and
excitation amplitude. The period of postinhibitory excitation is highlighted with a grey colour.
Data from Yavuz et al. (2018). [modified from Schmid et al. (2024) under CC BY 4.0]

that the duration of the inhibition is relevant. We did not consider the duration since we
always used the same IPSC duration. The PSF-CUSUM was normalised by the number of
delivered stimuli to compare amplitudes across subjects and trials with different numbers
of stimuli. Consequently, the PSF-CUSUM is shown in units of Hz/No. of Stim. It is worth
noting that each deflection from zero directly relates to a change in the motoneuron’s
activity in simulations when the membrane noise is not added.
Recorded motor units were included in the analysis when at least 90 stimuli could be

delivered. For simulated neurons, 200 stimuli were applied.

6.3.1 Statistical analysis

Experimentally recorded motor units were grouped according to their response behaviour
in the first poststimulus interval. The mean baseline discharge rates and the coefficient
of variation of the baseline interspike intervals (CoV ISI) were compared between groups.
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The coefficient of variation is defined as the ratio of the standard deviation to the mean.
The simulation results indicated that motor units respond to the inhibitory stimulus

with excitation in the first poststimulus interval in a stimulus-time dependent manner
(Section 6.4.3). Thus, two groups of motor units were built: motor units with excitation
in the first poststimulus ISI and those without excitation in the first poststimulus ISI.
A motor unit was considered to show excitation when it responded to at least 10 %
of delivered stimuli with a discharge at least one standard deviation higher than the
baseline discharge rate. Mean baseline discharge rates and the coefficient of variation of
the interspike interval were obtained from the PSF for all motor units. Motor units with
a CoV ISI > 35 % were excluded from the statistical analyses (cf. Yavuz et al., 2018). A
visual analysis based on a quantile-quantile plot and a histogram, as well as a Shapiro-
Wilk test, were used to determine if the data was normally distributed (BenSäıda, 2023).
Since the mean baseline discharge rates were normally distributed, they were compared
between the groups using a two-sample t-test (MATLAB Version R2021a 9.10.0.2015706).
The CoV ISI was compared using a Wilcoxon rank sum test (also Mann-Whitney U test)
since the data was not normally distributed (Gibbons and Chakraborti, 2011). In all
tests, the significance level was p < 0.05.

6.4 Results

First, we will describe the postinhibitory excitation pattern observed in human motor
units. Then, we will analyse the conditions under which we observed postinhibitory
excitation in the simulated motoneuron. In the simulated motoneuron, we will determine
the hallmarks of h-current-mediated postinhibitory excitation. The insights will be used
to analyse the experimental data for evidence of h-current activity.

6.4.1 Postinhibitory excitation in human motor units

We examined the incidence and amplitude of postinhibitory excitation in 159 tibialis an-
terior motor units identified during the reciprocal inhibition experiment, i. e., electrical
stimulation of the tibial nerve during sustained isometric contractions. Therefore, we
analysed the peristimulus frequencygram (PSF), which shows the instantaneous discharge
rates of motor units relative to the stimulus time (Türker and Cheng, 1994). The amp-
litude of inhibition and excitation responses was determined from the cumulative sum of
the PSF (PSF-CUSUM) as described in Section 6.3. PSF and PSF-CUSUM of an exem-
plary motor unit are shown in Figure 6.3. In the prestimulus period, the PSF-CUSUM is
characterised by oscillations around zero (Figure 6.3b). A persistent drop in PSF-CUSUM
following the stimulus, which was applied at time zero, indicates the inhibitory response.
Notably, the time delay between the electric stimulus and the onset of the inhibition is
consistent with the axonal action potential conduction velocity. A subsequent sustained
increase in PSF-CUSUM indicates postinhibitory excitation.
In total, 159 motoneurons of 9 subjects were examined. All examined motor units

had a significant inhibition response, and the mean inhibition amplitude was 0.67 ±
0.47Hz/No. of Stim. 89 motor units showed significant postinhibitory excitation, and
the mean amplitude of the postinhibitory excitation was 1.80± 2.08Hz/No. of Stim. The
mean baseline discharge rate of the analysed motor units was 10.12± 1.66Hz.
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6.4.2 Postinhibitory excitation in simulated motoneurons

The results for one exemplary reciprocal inhibition simulation are summarised in Fig-
ure 6.4. Thereby, we directly compared the behaviour of the motoneuron model with the
h-current present (Figure 6.4a) and the h-current knock-out model (Figure 6.4b). Before
applying the inhibitory postsynaptic current (IPSC), both simulated neurons show a sta-
tionary baseline activity, i.e., stable mean discharge rate and interspike interval variability.
Both motoneurons show an inhibitory response, consisting of a silent period followed by
a period of reduced discharge rates, which is apparent by a decrease in the PSF-CUSUM
(Figure 6.4c, d). Although the same IPSC was applied to both computational neurons,
the inhibition amplitude is larger in the neuron without h-current (1.11Hz/No. of Stim
vs. 0.34Hz/No. of Stim). After the inhibition, only the neuron with h-current shows a
significant excitation response (amplitude 0.33Hz/No. of Stim).
To investigate the role of different factors in postinhibitory excitation, we simulated

reciprocal inhibition of the motoneuron with the h-current under various conditions,
i. e., varying the amplitude of the IPSC, the mean drive and the input noise level. Modi-
fying the mean drive and noise level yielded baseline frequencies between 9.99Hz and
18.52Hz and a coefficient of variation of the interspike interval ranging from 0 % to 12 %
respectively (Table 6.1). Notably, increasing the noise also yields a higher baseline dis-
charge rate. This finding can be explained by the fact that higher random oscillations
of the membrane potential are more likely to exceed the depolarisation threshold and,
therefore, trigger action potentials at higher firing rates.
For all conditions, the simulated motoneuron showed an inhibition response with inhib-

ition amplitudes ranging from 0.26Hz/No. of Stim to 1.67Hz/No. of Stim. However, an
excitation response was not always observable. The simulated motoneuron showed postin-
hibitory excitation amplitudes between 0Hz/No. of Stim, i. e., no significant excitation re-
sponse, and 0.64Hz/No. of Stim. Figure 6.5 summarises the results from all simulations.
It can be observed that the excitation amplitude increases with the size of the IPSC. When
fixing both the mean drive and the noise level, the relationship between IPSC size and the
excitation amplitude can be approximated with a linear regression model, especially for
no/low noise and low/medium drive (98% < R2 ≤ 99.9%, Table 6.1). For a fixed IPSC
size, the excitation amplitude was higher for a lower drive, i. e., lower baseline firing rates.
Generally, the amplitude of the postinhibitory excitation decreased with increasing noise
and disappeared under high noise and medium to high drive conditions.
In summary, postinhibitory excitation could only be observed in simulated neurons with

h-currents. Systematically varying the model parameters revealed that the postinhibitory
excitation amplitude correlates with the IPSC size. However, the excitation amplitude is
modulated by the mean drive and the noise level. Increasing the baseline firing rate or
noise decreases the excitation amplitude, even to a degree where excitation is no longer
observed, at low noise and high drive or high noise and medium to high drives.

6.4.3 Postinhibitory excitation is stimulus-time dependent

We used the in-silico model to mechanistically link the observed postinhibitory excitation
responses and the biophysical behaviour of motoneurons. This approach was possible
because the simulation allows us to observe all internal system parameters, e. g., the
membrane potential trajectory, and relate them to each other. The effect of h-currents
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Figure 6.4: Peristimulus analysis for simulated motoneurons. a) Peristimulus frequencygram
(PSF) for a simulated neuron with h-current. b) PSF for a simulated neuron without h-current.
In (a) and (b), the injected inhibitory postsynaptic current (IPSC) and the schematic trajectory
of the induced inhibitory postsynaptic potential (IPSP) are depicted in gray and blue color,
respectively. The actual time course of the membrane potential depends on the membrane
potential value and the size of other inputs at IPSC application time. c) PSF cumulative sum
(PSF-CUSUM) for a simulated neuron with h-current. d) PSF-CUSUM for a simulated neuron
without h-current. The time course of the inhibitory postsynaptic current is shown in grey
colour (amplitude −10 nA). Solid horizontal lines show prestimulus mean values, and dashed
lines mark the significance threshold for reflex responses. Arrows show the distance between two
manually determined turning points in PSF-CUSUM, i. e., inhibition and excitation amplitude.
[modified from Schmid et al. (2024) under CC BY 4.0]

was isolated by comparing the trajectories of the membrane potential of computational
motoneurons with and without h-channel. Here, we considered an exemplary simulation
with a low drive and an IPSC amplitude of −10 nA and a duration of 20ms. To focus on
the effect of the h-current, we also omitted noise inputs in these simulations.
The simulations revealed that when applying an inhibitory current pulse, the instant-

aneous discharge rate of the simulated motoneurons always depends on the time delay
between the stimulus-induced inhibitory postsynaptic potential (IPSP) and the previous
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Figure 6.5: Postinhibitory excitation in different simulation settings. Excitation amplitudes
in relation to inhibitory postsynaptic current (IPSC) amplitude and for three different baseline
discharge rates (low (△), medium (o), and high (x) drive) and with three different amounts of
noise (standard deviation 0 % (a), 12.5 % (b) and 25 % (c) of mean drive). Grey lines show
linear regressions. [from Schmid et al. (2024) under CC BY 4.0]

Table 6.1: Results of the linear regression analysis. Mean frequency and coefficient of variation
of the interspike interval (CoV ISI) of the baseline activity as well as slope and coefficient of
determination (R2) values of the linear regression for nine different combinations of mean drive
and noise input are given. Linear regression was performed using the least-squares method,
provided that more than one data point was available (otherwise marked with n.a.).

Noise Drive Baseline frequency (Hz) CoV ISI (%) Slope (Hz/No. of Stim/nA) R2

No

Low 9.994 0.048 0.042 0.998

Medium 13.995 0.069 0.023 0.997

High 17.994 0.079 0.013 0.993

Low

Low 10.431 8.718 0.03 0.981

Medium 14.153 6.395 0.02 0.999

High 18.026 5.98 n.a. n.a.

High

Low 11.255 12.123 0.011 0.983

Medium 14.602 10.166 n.a. n.a.

High 18.53 10.108 n.a. n.a.



6.4 Results 99

motoneuron discharge tstim (Figure 6.6). Particularly, the model with h-current showed
two opposing responses (Figure 6.6a, b). For large tstim values (Figure 6.6a, green trace),
the next action potential was delayed compared to an unperturbed reference simulation
(Figure 6.6a, black trace), i. e., the neuron was inhibited. In contrast, for a shorter
tstim (Figure 6.6a, blue trace), the interspike interval was shortened compared to the
undisturbed reference simulation, i. e., the neuron was excited. Thereby, the amount of
postinhibitory excitation depends on the exact timing of the IPSP with respect to the
previous spike. The insert in Figure 6.6a shows that the IPSP induced a positive inward
ionic current flux that continued even after the end of the IPSP. Thus, the additional
depolarisation (blue line above the unperturbed black line) is caused by the h-current.
Excitation in response to inhibitory stimuli was observed only in simulations with h-
current. In the model without h-current, the IPSP consistently inhibited the neuron.
Thereby, later IPSPs that prolonged the interspike interval (large tstim) caused a stronger
inhibition than earlier IPSPs (Figure 6.6c, d).
This characteristic time-dependent behaviour of the computational motoneuron with

h-current can also be visualised in the PSF and PSF-CUSUM plots. Therefore, the spike
trains shown in the PSF plots were clustered into two groups. In detail, we separated
spike trains where the instantaneous discharge frequency of the first poststimulus spike
was significantly (by more than one standard deviation) higher or lower than the baseline
discharge rate. Figure 6.7 shows the same data as previously reported in Figure 6.3 and
Figure 6.4. However, spike trains where the first postinhibitory spike shows significant
excitation are visualised in blue (excitation cluster). Spike trains where the first postin-
hibitory spike shows significant inhibition are shown in green (inhibition cluster). The
results of an exemplary simulated motoneuron with h-current are shown in Figure 6.7b, e
and clearly show distinct excitation and inhibition clusters. This behaviour is also evident
from the PSF-CUSUMs of the clustered spike trains (Figure 6.7h). The initial decrease
in overall PSF-CUSUM (black) is caused by the inhibition cluster (green). As expected,
the timing of the prestimulus spikes indicates that the IPSP was delivered late in the
motoneuron’s afterhyperpolarisation period (large tstim, cf. Figure 6.6). The initial inhib-
ition is followed by the excitation response (blue) that ultimately predominates the overall
PSF-CUSUM. The longer latency of the spikes associated with the excitation cluster, as
well as the pattern of the prestimulus spikes, are in agreement with our finding that ex-
citation is observed when the IPSP is delivered early in the afterhyperpolarisation period
of the motoneuron (small tstim). In conclusion, it is possible to find evidence for h-current
activity using PSF analysis.
Hence, we investigated experimentally recorded motor units that showed significant

postinhibitory excitation with the described cluster-based PSF analysis. In total, 45 of
89 motor units with significant postinhibitory excitation showed frequencies significantly
higher than the baseline frequency in the first poststimulus interval (to at least 10 % of
delivered stimuli). The results for an exemplary chosen experimentally recorded motor
unit are shown in Figure 6.7a, d, g. Indeed, one can observe the same characteristic
behaviour as for the simulated motoneuron with h-current, i. e., distinct inhibition and
excitation clusters, whereby the inhibition precedes the excitation.
The mean baseline discharge rate significantly differed between motor units with and

without significant postinhibitory excitation in the first poststimulus interval (p < 0.01).
The mean discharge rate of the motor units with excitation in the first poststimulus ISI was
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Figure 6.6: Analysis of history-dependent interspike interval duration in simulated motoneur-
ons. Top row: model with h-current, bottom row: model without h-current. Baseline frequency
10Hz, no noise, inhibitory postsynaptic current (IPSC) amplitude −10 nA. a), c) Membrane
potential trajectory without stimulus (black, undisturbed interval) and with stimulus applied
at two exemplary time points (blue, green). Dashed arrows mark IPSC application time with
respect to the last discharge (tstim), and solid arrows mark the change of the interspike interval
with respect to the undisturbed interval (∆ ISI). Insert in (a) shows h-current for the shown
interspike intervals between 40ms and 100ms. Here, a positive sign indicates current flux into
the cell. b), d) Change of interspike interval duration (∆ ISI) over time of IPSC application
with respect to the last discharge (tstim). Intervals shown in (a) and (c) are marked with aster-
isks. Dashed lines separate prolonged interspike intervals (inhibition) from shortened interspike
intervals (excitation). [from Schmid et al. (2024) under CC BY 4.0]
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with 9.54± 1.38Hz significantly lower than in the motor units that showed no excitation
in the first poststimulus interval (10.48 ± 1.69Hz, Figure 6.8a). In contrast, the CoV
ISI between the two groups was not significantly different (p = 0.21). The CoV ISI of
the motor units with excitation in the first poststimulus ISI was 0.17 ± 0.06 and that of
the other units 0.18± 0.05 (Figure 6.8b). Note that some motor units showed excitatory
discharges in the second poststimulus interval. However, those motor units were not the
focus of this work.
The analysis was also performed for the simulated neuron without h-current for com-

pleteness. As expected, for the motoneuron without h-current, the number of samples
in the excitation cluster is very low and does not cause a relevant excitation response
(Figure 6.7c, f, i).

6.4.4 Influence of other model parameters on postinhibitory
excitation

The model parameters were varied for exemplary simulation scenarios to assess the ro-
bustness of the identified behaviour. All simulations were performed with a stimulus
amplitude of 10 nA, and the drive was chosen to result in a baseline firing rate of 10Hz.
First, the parametrisation of the h-channel was varied. Thereby, one parameter each
was increased and decreased compared to the default parametrisation. Figure 6.9 shows
the stimulus-time dependent shortening/lengthening of the first poststimulus ISI for the
default parametrisation (black) and the applied parameter variations.
From all parameter variations applied, changing the time constant showed the most

prominent effect (Figure 6.9a) on the interval duration. The fraction and magnitude of
shortened ISIs (excitation) considerably increased when applying a reduced time constant.
In contrast, a longer time constant slightly reduced the fraction of shortened ISIs. How-
ever, note that in the simulation with the prolonged time constant (τH = 100ms) and for
very late stimuli, the effect of h-channel mediated current inflow lasted so long that the
second poststimulus interval was shortened. Variations in maximum specific conductance
and half-maximum activation potential resulted in comparable outcomes (Figure 6.9b, c).
With a higher maximum conductance and a more depolarised half-maximum activation
potential, the fraction of shortened ISIs increased compared to the default values. Almost
no change in ISI length was detectable for stimuli applied shortly after the last action
potential. Reducing the reversal potential of the h-channel to more hyperpolarised values
increased the fraction of shortened intervals. This effect was more pronounced for stimuli
applied shortly after the last action potential.
Second, the motoneuron size properties were varied. A FR-type motoneuron was simu-

lated using the parameters from Cisi and Kohn (2008) (see Table A.4). Since, according
to Manuel et al. (2007), larger motoneurons express the resonant behaviour more, the
maximum specific h-conductance was doubled in one case and maintained in the other.
In Figure 6.10a, it can be seen that none of the modifications had a major influence on
the model behaviour.
Third, the influence of PICs on the rebound behaviour was investigated. Following

Manuel et al. (2007) we introduced a fast PIC with a time constant of 1ms and a slow PIC
with a time constant of 100ms. The fast PIC shifted the entire curve to the left, such that
the most pronounced shortening of the ISI occurs for smaller tstim values (Figure 6.10b).



102 6 The Role of h-Currents in Motoneuron Postinhibitory Excitation

a) b) c)

d) e) f)

g) h) i)

−200 −100 0 100 200
6

8

10

12

14

16

Model without h-current

−200 −100 0 100 200
6

8

10

12

14

16

Model with h-current

−200 −100 0 100 200
6

8

10

12

14

16

P
S
F
(H

z)

Recorded motor unit

−200 −100 0 100 200
6

8

10

12

14

16

−200 −100 0 100 200

−1

−0.5

0

0.5

Time (ms)

−200 −100 0 100 200
6

8

10

12

14

16

−200 −100 0 100 200

−1

−0.5

0

0.5

Time (ms)

−200 −100 0 100 200
6

8

10

12

14

16

P
S
F
(H

z)

−200 −100 0 100 200

−1

−0.5

0

0.5

Time (ms)

P
S
F
-C

U
S
U
M

(H
z/
N
o.

of
S
ti
m
)

first postinhibitory interval, frequency at least one standard deviation above baseline
first postinhibitory interval, frequency at least one standard deviation below baseline
prestimulus mean
all spike trains
cluster of spike trains
cluster of spike trains

Figure 6.7: Cluster-based analysis of peristimulus frequencygram (PSF). PSF and PSF cu-
mulative sum (PSF-CUSUM) for one experimentally recorded motor unit and a simulated mo-
toneuron with and without h-current (data from Figure 6.3 and Figure 6.4). The blue boxes
in panels (a - c) cluster the first postinhibitory spikes that fire at least one standard deviation
above the mean baseline frequency (black line). Accordingly, the green boxes cluster all first
postinhibitory spikes that fire at least one standard deviation below the mean baseline frequency.
d) - f): Clusters of spike trains from which the first poststimulus spikes appear in the blue or
green box, respectively. g) - i): PSF-CUSUM of all spike trains (black) and clusters of spike
trains (blue, green). [modified from Schmid et al. (2024) under CC BY 4.0]
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Figure 6.8: Mean baseline discharge rate (a) and mean coefficient of variation (CoV) of the
baseline interspike intervals (ISI) (b) of experimentally recorded motor units with and without
significant excitation responses in the first poststimulus ISI. The asterisk indicates that mean
values are significantly different between groups (p < 0.01). Error bars mark standard deviations.

The slow PIC reduced the amount of excitation for all stimulation times.
In summary, reducing the time constant of the h-channel resulted in the most pro-

nounced change in the stimulus-time-dependent interval duration. None of the parameter
variations resulted in a change of the qualitative pattern of a stimulus-time-dependent
distinction between lengthened and shortened ISIs. Therefore, it can be concluded that
h-channels lead, within the tested parameter combinations, to stimulus time-dependent
excitation in response to inhibitory stimuli.

6.5 Discussion

We identified an excitatory response that frequently follows a strong reciprocal inhibition
in motor units of the human tibialis anterior muscle. For the first time in motor units
recorded in vivo, we investigated if an intrinsic motoneuron property can cause this phe-
nomenon. Particularly, we hypothesised that a hyperpolarisation-activated inward current
(h-current) may be one of the factors that contribute to this excitatory response pattern.
Using a computational motoneuron model, we showed that the h-current could lead to
an excitation response after an inhibitory stimulus when 1) the IPSP is applied at an
appropriate time window in the neuron’s integration phase, 2) the IPSP has a sufficiently
large amplitude and 3) other inputs to the neuron are small. Further, it was shown that
evidence for hyperpolarisation-activated inward current mediated postinhibitory excita-
tion can be tested in vivo using cluster-based PSF analysis. The integrated evaluation of
both in-vivo and in-silico data presented within this chapter show that h-currents could
be a mechanism that facilitates postinhibitory excitation in motoneurons. These findings
challenge an established paradigm that postinhibitory excitation in motoneurons is dom-
inantly caused by reflex pathways and underlines that intrinsic motoneuron properties
must be considered when interpreting in-vivo reflex experiments.
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Figure 6.9: Stimulus-time-dependent duration of interspike intervals (ISIs) for different para-
metrisations of the h-channel. Change of interspike interval duration (∆ ISI) over time of stimu-
lus application with respect to the last discharge (tstim) for chosen default parametristaion of the
h-channel (black) and parameter variations for the time constant τH (a), the maximum specific
conductance GH (b), the half-maximum activation (H.m.a.) potential Vhalf (c) and the reversal
potential of the h-channel EH (d). Lengthened intervals indicate excitation, while shortened
intervals indicate inhibition of the respective motoneuron. [modified from Schmid et al. (2024)
under CC BY 4.0]

6.5.1 Insights on mechanisms of postinhibitory excitation

A detailed analysis of the in-silico experiments showed that h-currents cause a non-linear,
history-dependent input-output relation for short inhibitory stimuli. Excitation or in-
hibition depends on the delay between the applied IPSP and the previous motoneuron
discharge. H-currents are activated at hyperpolarised membrane potentials (e. g., Lark-
man and Kelly, 1992). Counterintuitively, an IPSP can increase the net current influx
into the cell. If the IPSP is applied when the motoneuron is close to its depolarisation



6.5 Discussion 105

b)a)

Figure 6.10: Stimulus-time-dependent duration of interspike intervals (ISIs) for different para-
metrisations of the motoneuron model. Change of interspike interval duration (∆ ISI) over time
of stimulus (IPSP) application with respect to the last discharge (tstim). Default parameters
are shown in black. a) Variation of the motoneuron size. FR-type motoneurons correspond to
motoneurons with size-dependent parameters according to the mean values for FR-type neurons
in Cisi and Kohn (2008). Version A and B employ a maximum specific h-channel conductance of
GH,A = 2mS cm−2 and GH,B = 4mS cm−2, respectively. b) Influence of persistent inward cur-
rents (PICs) injected into the dendrite compartment of the motoneuron model. PIC dynamics ac-
cording to Manuel et al. (2007). Maximum specific PIC-conductance GPIC = 0.1mS cm−2. Slow
PIC: time constant τPIC = 100ms, reversal potential EPIC = 140mV. Fast PIC: τPIC = 1ms,
EPIC = 120mV. Baseline frequency 10Hz, no noise, inhibitory postsynaptic current amplitude
−10 nA. [from Schmid et al. (2024) under CC BY 4.0]

threshold, the instantaneous effect of the IPSP is dominant. Hence, one will observe
inhibition. However, if the motoneuron is inhibited earlier in the integration phase, the
IPSP-induced additional h-current influx ultimately dominates the IPSP and causes ex-
citation.
Through a cluster-based PSF analysis, the opposing motoneuron responses can be visu-

alised for both in-silico and in-vivo data. Thereby, spike trains are grouped according to
the relative instantaneous discharge rate of the first poststimulus discharge. It was shown
that a considerable fraction of the experimentally recorded motor units showed character-
istic clusters of both excitation and inhibition. The same patterns were observed for the
simulated motoneurons with h-currents. Hence, these findings suggest h-current activity
in human motor units.
The model predicted that the excitation response negatively correlates with a mo-

toneuron’s firing rate and can even become undetectable at high noise levels. This pre-
diction is in line with our in-vivo results. Only those experimentally recorded motor
units with comparably low firing rates showed a significant postinhibitory excitation in
the first poststimulus interval. In this work, the ‘high noise’ condition was characterised
by a coefficient of variation of the interspike interval ranging from 10 % to 12 %. This
range is at the lower end of what was reported for humans (e. g., Matthews, 1996; Mor-
itz et al., 2005). This further explains our finding that the excitation response was not
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observable in all investigated motor units. Long inhibitory stimuli in combination with
high discharge rates might have also prevented Türker and Powers (1999) from observing
excitation in the first poststimulus interval when they used a comparable cluster-based
PSF analysis to investigate the effect of large inhibitory postsynaptic potentials in rat
hypoglossal motoneurons.
Notably, other factors may modulate h-current mediated postinhibitory excitation. For

example, persistent inward currents (PICs) can modulate h-current activity (Manuel et al.,
2007). Adding a fast and a slow PIC to the motoneuron model, we could still observe
history-dependent excitation (Figure 6.10b). However, Even though PICs were shown
to play a minor role during Ia reciprocal inhibition (Pearcey et al., 2020), their role in
postinhibitory excitation should be investigated in future studies.
Postinhibitory excitation of motoneurons is a well-known phenomenon that was re-

peatedly observed both in living humans and for in-vitro preparations (e. g., Özyurt
et al., 2019; Türker and Powers, 1999; Uysal et al., 2019). However, no consensus regard-
ing the biophysical origin of this phenomenon has yet been firmly established. Previously
proposed mechanisms include intrinsic motoneuron properties like summation effects of
the ionic channel conductances that are active during the afterhyperpolarisation (Türker
and Powers, 1999) or neuronal pathways, e. g., Ia and II stretch reflexes (Özyurt et al.,
2019; Uysal et al., 2019). In the presented simulations, we did not consider other neuronal
pathways that potentially contribute to the postinhibitory excitation. Notably, the results
shown in this work only consider the first poststimulus discharge. On this time scale, the
involvement of a neural pathway is unlikely. Nevertheless, we cannot exclude that the
electrical stimulation of the nerve excites additional pathways, which cause an excitat-
ory postsynaptic potential with a short delay and reinforce the postinhibitory excitation.
Regarding other internal mechanisms, we could observe a mild effect of afterhyperpolar-
isation summation in the simulations, leading to increased discharge rates of the second
poststimulus spike. Further, additional simulations with a longer time constant for the
h-channel showed that, under certain circumstances, the h-current could last long enough
to slightly increase the frequency of the second poststimulus discharge of the neuron. Due
to the uncertainty of the parameters, we refrain from a quantitative comparison with
the experimental data. Nevertheless, the notably higher excitation amplitudes in the ex-
perimentally recorded motor units indicate that h-currents are not the only mechanism
playing a role in the postinhibitory excitation phenomenon.
We conclude that h-currents can facilitate postinhibitory excitation observed at the

first poststimulus discharge (e. g., Özyurt et al., 2019; Yavuz et al., 2018). However,
other factors must be considered to fully uncover the complex behaviour of motoneurons
in response to an IPSP. For example, postinhibitory excitation of the second poststimulus
discharge (e. g., Türker and Powers, 1999; Uysal et al., 2019) cannot be fully explained
by h-currents.

6.5.2 Limitations

In this study, we used a computer model to assist the interpretation of empirical observa-
tions from reflex experiments in living humans. However, measuring all model parameters
needed to directly replicate the corresponding in-vivo experiment is currently not feasible.
Thus, the presented simulations are a simplification of the underlying physiology.
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The utilised model reduces the structure of the dendritic tree into a single model com-
partment and does not explicitly describe all channels found in human motoneurons. Nev-
ertheless, previous studies showed that a two-compartment model with a limited number
of conductances can replicate realistic motoneuron firing patterns (Cisi and Kohn, 2008;
Negro and Farina, 2011). Adding h-channels yields the simplest model to address the
posed research question sufficiently. The h-channel modulates the rheobase of the simu-
lated motoneuron. To compare the model with h-currents and the knock-out model, we
adjusted the input current such that both models operate at comparable points of their
current-frequency relation. This guarantees that differences are exclusively attributed to
h-currents. Specifically, the membrane potential and the ion channel gating variables
deviate from each other by less than 10 % on average for identically long interspike in-
tervals. The parametrisation of the h-channel can reproduce the magnitude of membrane
potential overshoots in response to hyperpolarising currents steps as observed in vitro
(Bertrand and Cazalets, 1998; Kiehn et al., 2000). The resulting overall conductivity de-
viates from in-vitro measurements (e. g., Kjaerulff and Kiehn, 2001; Larkman and Kelly,
1992). However, the other conductivities in the model were also chosen to reproduce mac-
roscopic cell behaviour, and thus, they cannot be directly interpreted as channel densities.
To compensate for the temperature difference between the in-vitro experiment and in-
vivo conditions, we followed a time-dynamics correction proposed by Powers et al. (2012).
Although it is impossible to validate the utilised implementation directly, additional sim-
ulations showed that varying the h-channel parameters or motoneuron size does not affect
the general behaviour of the model (Figure 6.9, Figure 6.10a).
Reciprocal inhibition indirectly stimulates the motoneurons through the afferent nerve.

The magnitude of the inhibitory input to the motoneuron caused by interneurons is un-
known. To compare the simulations and experimental data, we chose the amplitude of
the injected current such that the inhibition amplitudes and latencies determined from
the PSF-CUSUM are in the same range as for the experimental study. In this way, we
assume that the injected current produces an IPSP comparable to the in-vivo conditions.
Nevertheless, a quantitative comparison of the postinhibitory excitation amplitudes of
in-silico and in-vivo motoneurons is beyond the scope of this study, also due to the un-
certainties associated with the PSF (see Chapter 5). Contrary to the recommendations
from Section 5.4.4, we included motor units with only 90 delivered stimuli for the analysis.
Therefore, only the averaged reflex amplitudes across all motor units were considered.
Further, instead of explicitly modelling synapses, the input signals represent effective

synaptic currents, i. e., currents that eventually reach the soma. This simplification is
reasonable since only these currents affect the generation of action potentials (Heckman
and Binder, 1988). Still, injecting the inhibitory stimuli into the soma bypasses h-channels
located on the dendrite to a certain extent and, hence, underestimates the effect of h-
channels. Synapses for reciprocal inhibition are located close to the soma (Burke et al.,
1971; Stuart and Redman, 1990), and thus, the thereby introduced error is assumed to
be small.
Postinhibitory excitation is a phenomenon that was repeatedly shown in vitro in dif-

ferent species and cell types and attributed to different mechanisms, e.g., h-channels,
(calcium-activated) potassium conductances, low threshold sodium conductances, delayed
recovery of the sodium inactivation gate (anode break excitation), T-type calcium chan-
nels, or N-methyl-D-aspartate (NMDA) receptors (Aizenman and Linden, 1999; Angstadt
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et al., 2005; Bertrand and Cazalets, 1998; Dodla et al., 2006; Hodgkin and Huxley, 1952d;
Kiehn et al., 2000; Rajaram et al., 2019). One particular strength of computer models
is the possibility of studying the influence of an isolated phenomenon. The family of h-
channels is a likely candidate as its gating variable shows steep slopes for hyperpolarised
membrane potentials, and its time constant allows it to react at the timescale of one
interspike interval (Bayliss et al., 1994; Larkman and Kelly, 1992; Powers et al., 2012).
Note that anode break excitation can be excluded in our model since the sodium inactiv-
ation gate is almost entirely open at resting potential. We cannot rule out the possibility
that one or several of these channel mechanisms may also contribute to the postinhibitory
excitation in motor units. Nevertheless, it highlights that internal motoneuron properties
must be considered to investigate postinhibitory excitation in human motor units.

6.5.3 Functional significance and future directions

We showed that h-current mediated postinhibitory excitation is most pronounced when a
motoneuron operates close to its recruitment threshold and for strong inhibitory stimuli.
This is an interesting finding regarding the functional significance of h-currents. We spec-
ulate that h-currents temporally increase the excitability of a motoneuron and potentially
protect a motor unit from derecruitment. In previous studies, h-currents were shown
to increase the excitability of human motor axons after hyperpolarisation and to play
a role in specific diseases associated with hyperexcitability, e. g., neuropathic pain and
restless legs syndrome (Chaplan et al., 2003; Czesnik et al., 2019; Tomlinson et al., 2010).
Our results indicate that h-currents can act as an ultra-fast and short-term adaptation
mechanism in the motor control system that fine-tunes spinal excitability.
Coupling the motoneuron model with a skeletal muscle model could provide further

insights into the functional role of postinhibitory excitation and its influence on, e. g., force
steadiness and force variability (e. g., Röhrle et al., 2019). Future modelling studies should
further address the possible causes of postinhibitory excitation, each in isolation but in
comparison. Nevertheless, the most promising way to quantify the contribution of h-
currents to postinhibitory excitation is in-vitro studies, also due to the uncertainty of the
channel parameters in the model. This study pointed out that choosing evaluation and
analysis methods that account for activation history is crucial.

6.5.4 Summary and conclusion

We investigated how hyperpolarisation-activated inward currents (h-currents) can con-
tribute to postinhibitory excitation in human motor units. Using a computational model,
we showed that h-currents can shorten interspike intervals in response to strong inhibit-
ory stimuli and, thus, facilitate postinhibitory excitation. This effect is history-dependent
and most pronounced in conditions with low firing rates and low noise, i. e., few other
inputs. Furthermore, this study showed that intrinsic motoneuron properties must be
considered for interpreting reflex responses. The presented PSF cluster method reveals
history-dependent effects. Excitation in the first poststimulus interval after reciprocal
inhibition was found in a significant portion of the analysed human motor units. Ac-
cording to the simulation results, we speculate that the h-current serves as a modulatory
mechanism that increases the excitability of motoneurons.
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7 Interfaces for a Monosynaptic
Stretch Reflex Model

The monosynaptic connection of muscle spindle primary afferents and α-motoneurons is
a distinctive feature of neuromuscular control. Muscle spindles are specialised sensory
organs that sense muscle stretch and stretch velocity. When a muscle is stretched, the
muscle spindles’ afferent signal yields an excitation of the muscles’ α-motoneurons and,
consequently, of the muscle itself (Kandel et al., 2013). For further details on the stretch
reflex, see Section 2.4.2.
The monosynaptic stretch reflex is the only monosynaptic pathway between a sensory

organ and α-motoneurons, representing a central element of motor control (Kandel et al.,
2013). Further, it is the neuromuscular reflex that is best measurable in vivo. This makes
the monosynaptic stretch reflex a central component of any computational model of the
neuromuscular system that aims to address neuromuscular control strategies.
Combining a model of a motoneuron pool and a muscle spindle model to build a model

of the monosynaptic stretch reflex poses some challenges. First, the output variables of
muscle spindle models generally do not match the input variables of motoneuron models.
In detail, muscle spindle models usually create a frequency as output and motoneuron
models take current or voltage as input. Second, the strength of the connection, the
so-called gain, has to be determined.
There is no standard procedure for defining spindle-neuron interfaces or determining

the gains. In the literature, physiologically meaningless gain factors, as well as different
spike-based interface approaches, are used (e. g., Dideriksen et al., 2015; Li et al., 2015;
Schouten et al., 2008; Schuurmans et al., 2009; Zhang et al., 2009). The gains are either
arbitrarily defined, physiologically informed or fitted to obtain some desired force output
(e. g., Dideriksen et al., 2015; Elias and Kohn, 2013; Lin and Crago, 2002a; Raphael et al.,
2010; Zhang et al., 2009).
In this chapter, we want to connect the muscle spindle model by Mileusnic et al. (2006)

with the motoneuron pool model described in Section 3.4. Thereby, the frequency output
of the muscle spindle model needs to be converted into a current value for the motoneuron
pool model. We use experimentally determined reflex amplitudes to determine the gain,
using the knowledge gained in Chapter 5.
In this chapter, we aim to

(i) compare two approaches for the interface between a spindle model and a motoneuron
pool model, namely a conversion factor and a spike-based approach;

(ii) determine the respective gains of both interface approaches based on experimental
recordings of the monosynaptic stretch reflex from Yavuz et al. (2014);

(iii) show that the proposed model qualitatively predicts motoneuron responses to dif-
ferent applied stretch patterns (tap, ramp-and-hold, sinusoidal) for both interface
types.

The utilised models and the interface approaches are presented in Section 7.1. The data
analysis techniques are summarised in Section 7.2. Section 7.3 presents suitable gains
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S1

S2
M

D

CE

polar zone sensory zone

Figure 7.1: Schematic representation of an intrafusal fibre in the muscle spindle model of
Mileusnic et al. (2006). CE: contractile element, D: damping element, M: mass, S1: spring in
the polar zone, S2: spring in the sensory zone.

for the interfaces and compares the simulation outcomes to experimental data. Finally,
implications for future modelling approaches are discussed in Section 7.4.

7.1 Computational modelling of the stretch reflex

The monosynaptic reflex model comprises a motoneuron pool and a muscle spindle model.
Those are briefly described in Section 7.1.1 and Section 7.1.2. Two approaches for the
interface between the two sub-models are presented in Section 7.1.3 (spike-based interface)
and Section 7.1.4 (conversion factor interface).

7.1.1 Muscle spindle model

Muscle spindle primary activity was simulated using the model developed by Mileusnic
et al. (2006). The model computes the afferent nerve’s firing frequency based on the
intrafusal fibres’ mechanical behaviour, the muscle fascicle length and the discharge fre-
quencies of the static and dynamic γ-motoneurons, which adjust the spindle sensitivity.
Inspired by the biological structure of the intrafusal fibres, the intrafusal fibre model

consists of a sensory and a polar zone (Figure 7.1). The polar zone is modelled as a spring
parallel to a contractile element and a damping element. A single spring represents the
sensory zone. The polar zone’s contractile force and damping coefficient are scaled by γ-
motoneuron activity. When a stretch applies to the intrafusal fibre, the mechanical stress
in the components determines the length of the polar and the sensory zones. The stretch
in the sensory zone is multiplied by a scaling factor, transforming it into a frequency
and obtaining the contribution of the intrafusal fibre to the primary afferent firing. All
intrafusal fibre types, i. e., bag1, bag2 and chain fibres, are modelled based on the com-
ponents shown in Figure 7.1. The parameters account for the different properties of the
intrafusal fibre types. Obtaining the firing frequency of the primary afferent is a two-step
process. First, the frequency contributions of the bag2 and chain fibres are summed and
compared to the bag1 frequency contribution. Then, the larger frequency contribution
is summed with a fraction of the smaller. This process accounts for the occlusion effect
observed in experimental studies (Banks, 1994; Schäfer, 1974).
Where possible, Mileusnic et al. (2006) estimated the model parameters directly from
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experimental measurements. The remaining parameters were optimised using cat so-
leus muscle spindle afferent recordings and validated using cat gastrocnemius medialis
muscle spindle afferent recordings. Herein, we adopted all equations and parameters from
Mileusnic et al. (2006) and refer to their publication for further details.

7.1.2 Motoneuron pool model

The same motoneuron pool model previously used in Chapter 5 was used here. Mo-
toneurons were simulated using the model developed by Negro and Farina (2011), which
is presented in detail in Section 3.4. In brief, each motoneuron is characterised by a
two-compartment electric circuit model, representing a soma and a dendrite. The soma
compartment includes three voltage-gated conductances (Na+, slow K+and fast K+) along
with a leakage conductance. The dendrite compartment contains a single leakage con-
ductance.
The parameters were distributed exponentially across the motoneurons to establish a

motoneuron pool, as elaborated in Section 3.4.2. Consequently, this pool consists of many
small, low-threshold motoneurons and only a few large, high-threshold motoneurons. A
total of 200 motoneurons was simulated, corresponding to a typical motor unit count in the
human tibialis anterior muscle (Duchateau and Enoka, 2022). This muscle is frequently
employed in reflex experiments (e. g., Yavuz et al., 2014, 2018).

7.1.3 Spike-based interface

Considering the muscle spindle model of Mileusnic et al. (2006) and the α-motoneuron pool
model of Negro and Farina (2011), a frequency signal has to be converted into an electrical
current, which is injected into the α-motoneurons. Inspired by the physiological principle
of cell-to-cell communication via action potentials, we use a spike train as the interface
variable. In other words, the time-continuous frequency signal is converted into a discrete
spike train that contains the time points of the muscle spindle afferent action potentials.
Then, the spike train is converted into a train of current kernels, which serves as input
for the motoneurons.
We assumed a pool of 50 muscle spindles, all receiving the same stretch input. In human

muscles, we would expect more spindles; however, since the motoneuron pool is fitted to
cat data, we selected a number typical for cat hindlimb muscles (Banks, 2006). Noise was
imposed on the afferent frequency of each muscle spindle to account for variations within
the spindle pool. In detail, the resulting coefficient of variation (CoV) of the spindle
interspike intervals, which is defined as the ratio of the standard deviation to the mean,
matches experimental data, i. e., 8 % in the absence of fusimotor drive (Burke et al.,
1979). Therefore, an initial randomisation factor was defined for every spindle from a
normal distribution with a mean one and a standard deviation of 0.08.
Transforming the continuous frequency into a spike train is visualised in Figure 7.2.

In each time step and for every spindle, the duration of the current interspike interval is
computed and multiplied by the respective randomisation factor. Then, the time since the
last spike tlastAP is compared to the current interspike interval duration for every spindle.
If the difference between the current time and tlastAP is smaller than the current interval
duration, no spike is generated (Figure 7.2a). If the difference between the current time



112 7 Interfaces for a Monosynaptic Stretch Reflex Model

and tlastAP equals or exceeds the current interval duration, a spike is generated and written
to the spindle spike train (Figure 7.2b). Now, tlastAP is updated by the current time and
a new randomisation factor is drawn (Figure 7.2c). Finally, the spike is delayed by the
afferent conduction time (see Section 7.1.5). Note that at the beginning of the simulation,
tlastAP is initialised to a (theoretical) time point in the past based on the interspike interval
duration calculated from the spindle frequency at the initial length.
Each spike resulting from the spindle activity induces a postsynaptic current (PSC)

kernel in the motoneurons. We model the PSC kernel in the shape of an exponential
decay with a time constant of 0.5ms, a duration of 10ms and variable gain I0 (Finkel and
Redman, 1983). The current kernel for one spindle i, PSCi, yields

PSCi = I0 exp

(
t

0.5ms

)
, i ∈ [1, 50] . (7.1)

The postsynaptic current is obtained by convolving the spike train with Equation (7.1).
Since muscle spindles send their feedback to most motoneurons from a pool, the PSCs
from all 50 spindles are linearly summed (Lucas et al., 1984; Mendell and Henneman,
1971; Powers and Binder, 2000). As the weighting of muscle spindle feedback across α-
motoneuron pools is still under debate (see e. g., Section 5.4.5 and Awiszus and Feistner,
1993; Binboğa and Türker, 2012; Heckman and Binder, 1988; Mazzocchio et al., 1995;
Semmler and Türker, 1994), we assume a uniform weighting, i. e., each muscle spindle
is similarly connected to every α-motoneuron. Consequently, the gain I0 is a uniform
parameter. This choice is discussed in Section 7.4.2.

7.1.4 Conversion factor interface

The second approach for the interface between the muscle spindle and the motoneuron
model employs a simple conversion factor. The continuous spindle feedback value fspindle
in units of Hz is multiplied by a physiologically meaningless factor y, making it suitable as
the motoneuron input. The factor y must be chosen of a magnitude so that the resulting
value is in the range of nA. The postsynaptic current PSC yields

PSC = y fspindle . (7.2)

The respective conduction time delays the resulting postsynaptic current value according
to Section 7.1.5. Note that the conversion factor y represents both the gain and the size
of the spindle pool. That means that considering a single representative muscle spindle
is sufficient.

7.1.5 Simulation of the stretch reflex

The stretch reflex experiments by Yavuz et al. (2014), to which we compare the simulation
results, were performed at not more than 20 % of the maximum voluntary contraction
(MVC) force. We simulated low-force muscle contraction by stimulating the entire α-
motoneuron pool with a common input. It consists of a constant input of 5.1 nA and a
band-pass filtered Gaussian noise component (amplitude 0.00 ± 1.02 nA, 15Hz to 35Hz,
Negro and Farina, 2011). Further, each α-motoneuron receives an individual input signal
to account for the stochastic behaviour of the membrane dynamics and individual synaptic
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a)
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c)
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interspike interval duration
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0 timetlastAP t3
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Figure 7.2: Visualisation of the frequency to spike train conversion. a) The time difference
between the current time t1 and the time of the last action potential tlastAP is smaller than the
current interspike interval duration (blue). Thus, no spike is produced at t1. Note that tlastAP

is initialised to correspond to a time prior to the start of the simulation. b) The time difference
between t2 and tlastAP equals the current interspike interval duration. Thus, a spike is produced
at t2. c) tlastAP was updated to correspond to t2. The time difference between t3 and tlastAP is
smaller than the current interspike interval duration. Thus, no spike is produced at t3.

connections (amplitude 0.000±0.255 nA, low-pass filtered Gaussian noise < 100Hz, Negro
and Farina, 2011). The filtering was performed with a first- and second-order Butterworth
filter, respectively (Rao and Swamy, 2018).
The stretch stimuli applied to the muscle spindle model mimic the mechanical perturb-

ations applied to the ankle joint in the experimental recordings by Yavuz et al. (2014).
Three perturbations were applied: a tap-like, a ramp-and-hold and a sinusoidal stretch.
The stretch amplitude, velocity and duration used in the experimental study and the cor-
responding values for the simulation are displayed in Table 7.1. We omitted the fusimotor
drive since its activity patterns in humans are still unknown (Macefield and Knellwolf,
2018). Further, due to the low conduction velocity of γ-axons of less than 45m s−1, we
expect no significant changes in the fusimotor drive during reflex responses (Kandel et al.,
2013; Macefield and Knellwolf, 2018).
The mechanical stimuli were applied 200 times per simulation experiment and with an

inter-stimulus interval of 1000± 100ms. The total motoneuron input corresponds to the
sum of the common and individual input signals representing muscle contraction and the
postsynaptic current emerging from the presented interfaces.
The afferent pathways between muscle spindles and motoneurons and the efferent path-

ways between motoneurons and the neuromuscular junctions delay the transmission of
action potentials. We assumed a one-way anatomical length of the pathways of 1.2m and
normally distributed afferent conduction velocities of 105±10m s−1 for the afferent path-
ways (Heckman and Binder, 1988; Hunt, 1954). This yields conduction times of 11±1ms.
The conduction velocities of the efferent pathways between the α-motoneuron pool and
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Table 7.1: Mechanical perturbation parameters for the muscle spindle model. Parameters from
the experimental study by Yavuz et al. (2014) are provided for comparison. The velocity of the
sinusoidal perturbation is not constant but emerges from the derivative of the sinus function.

Stretch type
Experiment Simulation

Amplitude Velocity Duration Amplitude∗ Velocity∗∗ Duration

Tap 1◦ 100 ◦ s−1 0ms 0.3mm 60mms−1 10ms

Ramp-and-hold 4◦ 200 ◦ s−1 400ms 1.2mm 60mms−1 420ms

Sinusoidal 1◦ n.a. 100ms 0.3mm n.a. 100ms
∗In the muscle spindle model by Mileusnic et al. (2006), the fibre stretch was calculated relative to the
optimal fibre length. We assumed an optimal fibre length of 45mm, a fibre length range of 37mm to
60mm for ankle joint angles between −30◦ and 45◦ and a linear relation between fibre length and joint
angle (Maganaris, 2001). Consequently, a joint rotation of 1◦ corresponds to a fibre stretch of 0.3mm.
∗∗The velocity input for the spindle model was calculated by MATLAB’s gradient function. Even though
the spindle model takes acceleration as an input, we set the acceleration to zero. The sharp transitions in
the modelled perturbation lead to acceleration peaks, which produce unphysiologically high firing rates.

the neuromuscular junctions, i. e., where the spike trains are registered for evaluation, are
exponentially distributed and range from 70m s−1 to 100m s−1 (Heckman and Binder,
1988; Zengel et al., 1985). Accordingly, the efferent conduction delays were exponentially
distributed across the α-motoneuron pool from 12ms to 17ms.

7.1.6 Numerical implementation

All simulations were performed with MATLAB R2021a (9.10.0.1602886). The motoneuron
model is represented by a system of six ordinary differential equations, which was solved
with MATLAB’s ode23 (single-step, explicit Runge-Kutta solver, Shampine and Reichelt,
1997), an integration interval size of 0.1ms and an absolute and relative error tolerance
of 1× 10−5. The muscle spindle model requires solving a system of differential algebraic
equations. We chose an integration interval size of 1ms and MATLAB’s ode15s solver
(variable-step, variable-order solver, Shampine and Reichelt, 1997) with an absolute and
relative error tolerance of 1× 10−5.
The motoneuron and the muscle spindle model were not solved with a common time

step size but successively. The solving scheme is depicted in Figure 7.3. First, the spindle
feedback is calculated for one time step and added to the motoneuron drive. Then, the
motoneuron pool behaviour is computed for the same time span but in smaller time steps.
The simulation was parallelised to reduce computation time, dividing the total number

of stimulus cycles by the number of cores. The mean inter-stimulus interval of 1000ms
provided sufficient time for motoneurons to return to a steady state. Thus, we assumed
that cycles are independent of each other. The initial state of the motoneuron pool
was consistent across all cores. The perturbation times, the common drive, and the
independent drive were initialised differently on each core. The simulation was executed
on five cores, each handling 40 stimuli.
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time

dtspindle

dtmn

spindle feedback

Figure 7.3: Time stepping scheme of the stretch reflex simulation. After every iteration of
the muscle spindle model with time step dtspindle, the spindle feedback is forwarded to the
motoneuron model. Then, ten iterations of the motoneuron model are performed with time step
dtmn.

7.2 Data analysis

We compared the simulation results to experimental stretch reflex data from short-latency
responses in human tibialis anterior muscles (Yavuz et al., 2014). Therefore, we applied
peristimulus analysis to simulated motoneuron spike trains. In detail, we calculated the
peristimulus frequencygram (PSF), i. e., showing the instantaneous discharge frequencies
with respect to the timing of the stimulus, and the peristimulus timehistogram (PSTH),
i. e., depicting the number of discharges per time bin with respect to the timing of the
stimulus. We considered a prestimulus time of 400ms, a poststimulus time of 250ms and
a bin width of 1ms. The reflex strength was quantified by the reflex amplitude, which was
determined from the cumulative sum (CUSUM) of the peristimulus graphs. For further
details on peristimulus analysis, see Section 4.2. The algorithms described in Section 4.3
were employed to determine the reflex amplitudes. The slope algorithm was used for tap-
like stretch stimuli, while the turning point algorithm was used for the ramp-and-hold
simulations (due to better performance in this setting). The responses to the sinusoidal
stretch were only qualitatively evaluated since this stretch pattern causes a so-called long
lasting excitation instead of a short-latency response Yavuz et al. (2014).
Based on the results of Chapter 5, we concluded that the reflex amplitudes obtained

from the PSTH are more suitable for conclusions on the size of the motoneuron input
than the reflex amplitudes determined from the PSF. Thus, we used the PSTH reflex
amplitudes to determine the gains. Nevertheless, the PSF and PSF-CUSUM were qual-
itatively compared to experimental data. We further showed that the reflex amplitude
of a single motoneuron is not representative of the pool. Since the applied activation of
the motoneuron pool is small, i. e., yielding less than 20 % MVC, all active motoneurons
were assumed to have relatively similar properties and can be summarised. Thus, we
considered the mean reflex amplitude from the entire pool. Motoneurons with irregular
firing patterns, i. e., with a CoV of their interspike interval (ISI) of more than 35 % or a
baseline discharge frequency of less than 12Hz, were excluded from the analysis.
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Figure 7.4: Mean peristimulus timehistogram (PSTH) reflex amplitudes of the motoneuron pool
with two interface versions and different gains. a) Mean PSTH reflex amplitude from simulations
with the spike-based interface. b) Mean baseline discharge frequency from simulations with the
spike-based interface. c) Mean PSTH reflex amplitude from simulations with the conversion
factor interface. d) Mean baseline discharge frequency from simulations with the conversion
factor interface.

7.3 Results

First, we compared the simulated reflex amplitudes obtained from the PSTH and for a
tap-like mechanical stimulus with experimental data to determine the gain amplitudes
for both interface approaches. Then, with the determined gains, the PSTH and the
PSF obtained with both interfaces were compared to experimental data for the tap-like,
ramp-and-hold and sinusoidal stimulus.

7.3.1 Determination of the interface gains

The mean reflex amplitudes in the PSTH-CUSUM and the mean baseline discharge fre-
quencies were investigated for different gain values and both interface approaches. From
each simulation experiment, approximately 100 motoneurons were included in the ana-
lysis, varying with the chosen gain.
The mean reflex amplitudes and baseline discharge frequencies obtained with the two

interface approaches are depicted in Figure 7.4. The spike-based interface leads to stronger
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reflex responses for a similar baseline frequency than the conversion factor interface. The
applied range of gain values produces similar reflex amplitudes with both interfaces. How-
ever, the baseline frequencies increase more with the conversion factor interface, indicating
that the spike-based interface contributes less to the baseline frequency and more to the
reflex response.
The mean amplitude of the short-latency response in the experimental data was 0.241±

0.091 counts/No. of Stim (Yavuz et al., 2014). For the spike-based interface, a PSC amp-
litude of 0.3 nA gave the best agreement with the experimental data (reflex amplitude
0.236 counts/No. of Stim, baseline frequency 13.75Hz, CoV ISI 11.6 %). For the conver-
sion factor interface, a gain factor of 5.5×10−5 gave the best agreement (reflex amplitude
0.248 counts/No. of Stim, baseline frequency 14.46Hz, CoV ISI 10.8 %). Notably, for a
relatively large range of gain values, the reflex amplitudes of the simulated motoneurons
are within one standard deviation of the experimental data (approximately ± 30 to 40 %
gain from the best match).
The results shown in the following sections were all obtained with the best matching

gain value, i. e., 0.3 nA for the spike-based interface and 5.5 × 10−5 for the conversion
factor interface.

7.3.2 Comparison with experimental data: tap stimulus

The tap-like stretch pattern, the resulting muscle spindle frequency and the postsynaptic
current for both interfaces are shown in Figure 7.5a, d, g. Between stimuli, a baseline
stretch of one is applied, which yields a baseline spindle frequency of approximately
11Hz. A sharp peak characterises the tap-like perturbation, also reflected in the spindle
frequency. The maximum spindle frequency reached for the tap perturbation was 81.9Hz.
The PSTH and its CUSUM for an exemplary recorded motor unit and a motoneuron

from simulations with both interfaces are shown in Figure 7.6a-d. Both simulations pro-
duce very similar results. The peaks in the PSTH and the PSTH-CUSUM are almost the
same size. The latency of the response is shorter with the spike-based interface. Due to
the different numbers of applied stimuli, absolute PSTH values cannot be compared to
experimental data. However, the size of the peaks in the normalised PSTH-CUSUM is
comparable in the experiment and the simulation. In both the experiment and simulation,
the PSTH peak is followed by a silent period, corresponding to a CUSUM decline.
For the same motoneurons, the PSF and PSF-CUSUM are shown in Figure 7.6e-h.

The baseline discharge frequency is higher in the simulated data. However, the qualitat-
ive pattern is similar, i. e., the frequency increases after the stimulus and a delay, followed
by a silent period and the return to the baseline. As in the PSTH, the peak appears with
a shorter latency using the spike-based interface. The peak in the PSF-CUSUM is con-
siderably higher with the conversion factor interface than with the spike-based interface,
but both peaks are higher than in the experimental data. After reaching the peak, the
CUSUM stays elevated in both simulation and experiment.
In summary, the experiment and the simulations show qualitatively similar patterns

in the PSTH and the PSF. Matching peak sizes of the PSTH were expected since the
PSTH reflex amplitude was used to determine the gains. With the chosen settings, the
simulation overestimates the PSF peak size.
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Figure 7.5: Fibre stretch, Ia afferent feedback and postsynaptic current for three perturbation
types. a) - c) Fibre stretch applied during tap, ramp-and-hold and sinusoidal perturbations. d) -
f) Muscle spindle Ia afferent frequency for the respective perturbation types. g) - i) Postsynaptic
current with the spike-based interface (blue) and the conversion factor interface (green) for the
respective perturbation types.
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Figure 7.6: Peristimulus analysis for a tap-like stimulus. Peristimulus timehistogram (PSTH)
of an exemplary recorded motor unit (a) and a simulated motoneuron with spike-based and con-
version factor interface (b). PSTH-CUSUM of the same recorded motor unit (c) and simulated
motoneuron (d). Peristimulus frequencygram (PSF) of the same recorded motor unit (e) and
simulated motoneuron (f). PSF-CUSUM of the same recorded motor unit (g) and simulated
motoneuron (h). Experimental data by Yavuz et al. (2014).



120 7 Interfaces for a Monosynaptic Stretch Reflex Model

7.3.3 Comparison with experimental data: ramp-and-hold
stimulus

When the ramp-and-hold type of stimulus was applied, the spindle frequency increased
rapidly to a maximum of 179.6Hz during the ramp phase (Figure 7.5e). During the hold
phase, the spindle frequency plateaued at 25.5Hz and declined to baseline values after
the release of the stimulus. Spindle frequencies reached up to 7.6Hz during the baseline
period.
In the recorded human motor units, the mean reflex amplitude of the short-latency

response to a ramp-and-hold stimulus was 0.358± 0.163 counts/No. of Stim (Yavuz et al.,
2014). In the simulation with the spike-based interface, the mean reflex amplitude was
with 0.301 counts/No. of Stim slightly smaller than in the experiment. In contrast, the
mean reflex amplitude with the conversion factor interface was with 0.423 counts/No. of Stim
slightly higher than in the experiment. Note that the reflex amplitudes from the simulated
motoneurons were obtained using the turning point algorithm (see Section 4.3).
The PSTH for an exemplary recorded motor unit and a simulated motoneuron is shown

in Figure 7.7a-d. All graphs show a pronounced poststimulus peak followed by a silent
period. After that, smaller peaks indicate synchronisation, which is more pronounced
in the simulation. With the conversion factor interface, the short-latency peak is higher
and broader than with the spike-based interface. This difference is also reflected in the
CUSUM.
The PSF and PSF-CUSUM for the ramp-and-hold perturbation are shown in Fig-

ure 7.7e-h. As with the tap-like stimulus, the baseline frequency is higher in the simu-
lations. Both simulated and recorded motoneurons show a pronounced peak followed by
a silent period. Then, discharge frequencies gradually return to baseline, which is more
distinct in the recorded motor unit. Further silent periods occur, especially in the simu-
lation, indicating motoneuron synchronisation. The maximum firing frequencies with the
conversion factor interface are considerably higher and reach values similar to those of
the recorded motor unit. Several successive saddle points characterise the PSF-CUSUM
curves. Thereby, the value of the first saddle point of the spike-based interface is compar-
able to the first saddle point of the experiment. The first saddle point of the conversion
factor interface is much higher and reaches values comparable to the second saddle point
of the recorded motor unit.

7.3.4 Comparison with experimental data: sinusoidal stimulus

When a sinusoidal stretch was applied to the muscle spindle model, the frequency in-
creased to a maximum of 71.2Hz, then decreased and, after an undershoot, gradually
returned to baseline values of approximately 8.1Hz (Figure 7.5f). Thereby, both the as-
cent and the descent are less steep than with the tap or ramp stimulus. This lack of
steepness is also why one cannot determine a short-latency response. Therefore, we only
qualitatively compare the outcomes to experimental data.
Figure 7.8a-d shows the PSTH and PSTH-CUSUM for an exemplary recorded motor

unit and simulated motoneuron. With a delay after the stimulus, the PSTH increases,
which is better visible in the CUSUM graph. The PSTH and the CUSUM time courses
are comparable for the simulations and the experimental recording. The conversion factor
interface gives a higher reflex response when comparing the interfaces.
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Figure 7.7: Peristimulus analysis for a ramp-and-hold stimulus. Peristimulus timehistogram
(PSTH) of an exemplary recorded motor unit (a) and a simulated motoneuron with spike-based
and conversion factor interface (b). PSTH-CUSUM of the same recorded motor unit (c) and
simulated motoneuron (d). Peristimulus frequencygram (PSF) of the same recorded motor
unit (e) and imulated motoneuron (f). PSF-CUSUM of the same recorded motor unit (g) and
simulated motoneuron (h). Experimental data by Yavuz et al. (2014).
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The PSF and PSF-CUSUM also agree qualitatively between simulations and experi-
mental recordings (Figure 7.8e-h). Here, the conversion factor interface also produces a
higher reflex response.

7.4 Discussion

This chapter investigated different options for designing the coupling between the muscle
spindle model by Mileusnic et al. (2006) and the motoneuron pool model by Negro and
Farina (2011). Although the muscle spindle model of Mileusnic et al. (2006) is computa-
tionally demanding, requiring the solution of a system of differential algebraic equations,
its comprehensiveness makes it the model of choice. By using the relative stretch of the
muscle fibres rather than the absolute length as input, the Mileusnic model can be ap-
plied to different muscles. In addition, it reproduces experimental data very well over a
wide range of stretch scenarios by accounting for rate saturation and non-linear occlu-
sion. For a more elaborate discussion of the individual models, please refer to the original
publications (Mileusnic et al., 2006; Negro and Farina, 2011).
We compared two different interface approaches to couple the models. One approach

was based on a conversion factor, and the other mimicked the physiological process of
spike train generation. We were able to show that both approaches, with appropriate
gains, can well predict the short-latency response of the monosynaptic stretch reflex in
response to a tap-like perturbation. With the gains determined from the tap experiment,
reflex responses to ramp-and-hold and sinusoidal stretches could be predicted qualitatively
but not quantitatively.

7.4.1 Comparison of interface approaches and gain
determination

Using both interface approaches, we could reproduce the experimentally determined reflex
amplitudes in response to a tap-like stimulus. However, for the same amplitude, the
baseline frequency and the CoV of the interspike interval were higher with the spike-
based interface. This discrepancy can be attributed to the additional noise generated by
the randomised spikes. In both interface configurations, an increased gain leads to higher
reflex amplitudes and baseline frequencies. Nevertheless, this relationship was not linear,
which can be attributed to the non-linear current-frequency relation of motoneurons (see
Section 3.4.3). The reflex latency was shorter with the spike-based interface as increasing
the spindle frequency triggers a spike quickly, whereas the effect gradually accumulates
with the conversion factor.
Regarding the gain determination, we chose the stretch reflex amplitude as the target

parameter in this work. In Chapter 5, we showed that a single motoneuron’s reflex
amplitude is not representative of the pool. Thus, we considered the mean reflex amplitude
of all simulated motoneurons and recorded motor units. We only used the reflex amplitude
determined from the PSTH since it was shown to be less influenced by random factors
than the reflex amplitude determined from the PSF. Excluding motoneurons with baseline
frequencies below 12Hz, we followed another suggestion from Chapter 5, i. e., to exclude
motoneurons that fire just above their recruitment threshold. We did not exclude motor
units from the experimental recordings (see Section 7.4.2 for discussion).
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Figure 7.8: Peristimulus analysis for a sinusoidal stimulus. Peristimulus timehistogram (PSTH)
of an exemplary recorded motor unit (a) and a simulated motoneuron with spike-based and con-
version factor interface (b). PSTH-CUSUM of the same recorded motor unit (c) and simulated
motoneuron (d). Peristimulus frequencygram (PSF) of the same recorded motor unit (e) and
simulated motoneuron (f). PSF-CUSUM of the same recorded motor unit (g) and simulated
motoneuron (h). Experimental data by Yavuz et al. (2014).
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The spike-based interface approach aims to mimic the physiological process of neuronal
communication via action potentials. We chose the number of spindles according to a
typical value for cat hindlimb muscles (Banks, 2006). We obtained the best fit with
the experimental stretch reflex amplitudes using a gain of 0.3 nA. The amplitude of
postsynaptic currents evoked by single Ia afferent impulses was found to range between
0.5 nA to 2 nA (Finkel and Redman, 1983), which is slightly higher but of the same
magnitude as our value. Missing sources of inhibitory input might be a reason for this
discrepancy (see Section 7.4.2). The gain of the conversion factor interface does not have
a physiological equivalent.
When we applied a ramp-and-hold stimulus, the gains determined from the tap-like

stimulus scenario could not reproduce the experimentally determined reflex amplitudes.
The conversion factor interface overestimated the reflex amplitude, while the spike-based
interface underestimated the experimental results. As shown in Chapter 5, the reflex
amplitude depends on the timing of the postsynaptic current with respect to the last action
potential of the motoneuron. This uncertainty factor disappears when using a continuous
input since the interspike interval is shortened more reliably, resulting in a larger reflex
amplitude. This explanation is supported by the simulations with a sinusoidal stretch,
where the conversion interface also yielded higher reflex responses than the spike-based
interface.
The results of this study suggest that it is crucial to choose gains specific to the interface

approach and movement scenario. Beyond that, experimental studies found reflex gains
to be task-specific. For example, Johannsson et al. (2017) found differences in H-reflex
amplitude between subjects when standing upstairs and downstairs. Pinar et al. (2010)
showed that H-reflex amplitude varies with the task and the availability of visual control.
These findings support our conclusion that reflex gains parametrised for one type of
movement are not generally transferable to other movements.
In the literature, the gains were usually chosen to reproduce global target paramet-

ers like muscle force or joint position (e. g., Elias et al., 2014; Lin and Crago, 2002a;
Raphael et al., 2010; Schouten et al., 2008). Thereby, interface approaches similar to the
conversion factor interface are more common (e. g., Li et al., 2015; Raphael et al., 2010;
Schouten et al., 2008; Zhang et al., 2009), but the spike-based interface was also used be-
fore (e. g., Dideriksen et al., 2015; Elias et al., 2014; Schuurmans et al., 2009). However,
none of the studies compared different approaches or explored their transferability to other
scenarios. Here, both interfaces enable the qualitative prediction of a motoneuron pool’s
monosynaptic stretch reflex response. As seen in Figure 7.5 the continuous interface can
be interpreted as a smoothed or averaged version of the spike-based interface.
The major advantage of the conversion factor interface is its easy implementation. This

makes it especially suitable for large-scale simulations with many components. Thus, it is
employed in the neuromuscular system model proposed in Homs-Pons et al. (2024). The
spike-based approach is suitable for investigating processes related to action potential
generation. For example, in the simulation, it could be observed that a strong stimulus
synchronises spindles. Possible implications of this effect on motor control can only be
investigated with an interface approach that considers the activity of individual spindles.
The core of the spike-based interface is transforming the continuous frequency value

into a discrete spike train. Often, a Poisson process is used for this (e. g., Schuurmans
et al., 2009; Vannucci et al., 2017). However, normal Poisson processes do not account
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for neuronal refractoriness. Since they favour shorter interspike intervals, they cannot
be used to describe realistic muscle spindle interspike interval distributions (Burke et al.,
1979; Gerstner et al., 2014; Nordh et al., 1983). Thus, a renewal process is preferable.
Thereby, spikes are generated with a stochastic intensity that depends on the time since
the last spike (Ross, 2014). Note that the approach described in Section 7.1.3 yields similar
results as a renewal process. Interestingly, efforts are currently being made to develop a
completely biophysically based spindle model that directly generates spike train (Housley
et al., 2024). If this model proves advantageous, the spike-based interface can be used for
coupling it to a motoneuron model.
In conclusion, selecting the interface and the relevant data for parametrisation relies on

several factors. Some aspects to consider, though certainly not an exhaustive list, include
the model’s inherent characteristics, the adaptability and computational complexity of
the framework in which the model is deployed, and the specific research question.

7.4.2 Limitations

Limitations to discuss here address the muscle spindle model, the motoneuron model
and the interface. Regarding the stretch input for the muscle spindle model, we used a
simple linear relation to relate the joint angle perturbation and the muscle fibre stretch
(Table 7.1). This simplification neglects the tendon’s mechanical and lever arm proper-
ties. Moreover, we omitted the acceleration input since the sudden changes in stretch
velocity led to unphysiologically high acceleration and spindle frequency values. Most
spindle models do not consider acceleration, and its use is at least questionable. Using
the Mileusnic spindle model, Vannucci et al. (2017) found that in realistic motion scen-
arios, the acceleration input only affected the spindle frequency by about 1 %. We also
omitted the fusimotor drive. It is uncertain what it looks like, and due to the low con-
duction velocity of the γ-axons, we assume that it only contributes to the steady-state
behaviour of the spindle and does not change during stimulus application (Kandel et al.,
2013; Macefield and Knellwolf, 2018). For a detailed discussion of the muscle spindle
model and its comparison with experimental recordings, see Mileusnic et al. (2006).
We distributed the muscle spindle feedback uniformly to the motoneuron pool. There

are conflicting findings concerning the distribution of Ia afferent activity on motoneurons.
For example, Binboğa and Türker (2012) found that the H-reflex amplitude is higher in
larger motor units of the human soleus muscle, while Awiszus and Feistner (1993) found
the opposite with a similar experimental setup. In consequence, many modelling studies
distribute Ia feedback uniformly (e. g., Elias et al., 2014; Lin and Crago, 2002a). In
contrast, Dideriksen et al. (2015) used stronger Ia feedback in larger neurons. It was
already discussed in Section 5.4.5 that reflex experiments have limited predictive power
with respect to the distribution of afferent inputs into the motoneuron pool. Therefore,
a uniform distribution is as good as any other distribution until more reliable data is
available.
The motoneuron baseline frequency was higher in the simulations than in the experi-

ment. The motoneuron model was parametrised with cat data, and the discharge frequen-
cies of cat motoneurons are generally higher than those of human motoneurons (Manuel
et al., 2019). The gain of the current-frequency relation, an important determinant of the
reflex amplitude, is assumed to be lower in humans than in cats (Manuel et al., 2019).
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Since the muscle spindle frequencies also differ between humans and cats, a quantitative
comparison of reflex amplitudes is fraught with many uncertainties that cannot be easily
resolved. Further, the criterion for excluding motoneurons with a low baseline discharge
frequency was more stringent for the simulated motoneurons than for the recorded motor
units. This decision is justifiable for a conceptual study such as this. However, if actual
questions are addressed, the data for parametrisation should be selected carefully.
Reflex pathways are subject to modulation, e. g., by recurrent inhibition of motoneur-

ons and presynaptic inhibition of Ia afferents (Baldissera et al., 2011). Further, persist-
ent inward currents can amplify sensory inputs, changing the reflex gain (Binder et al.,
2020). These effects were not considered in the model. Moreover, motoneurons also show
medium- and long-latency responses to stretch reflexes (Kandel et al., 2013). The respect-
ive pathways are still under debate and were not considered in this model (e. g., Grey
et al., 2001; Schuurmans et al., 2009). While these pathways play no role in the short-
latency response, they contribute to the later parts of the reflex responses, especially
during ramp-and-hold and sinusoidal perturbations. In the simulation, the synchronisa-
tion of motoneurons was stronger than in the experimental recordings. This finding can
likely be attributed to a lack of further synaptic inputs that would have a desynchronising
effect. Other limitations of the motoneuron model are discussed in Section 3.4.4.
In the physiological system, the monosynaptic reflex pathway is a closed loop. That is,

the response of motoneurons to the sensory signal affects the muscle’s contraction force
and, therefore, its length. This length change, in turn, affects the sensory signal. However,
due to the conduction delays, this would not affect the short-latency response.

7.4.3 Future directions

A computational model of the stretch reflex offers a variety of possibilities to investigate
physiological and pathological aspects of stretch reflexes, e. g., their role in ageing and
spasticity (e. g., Aloraini et al., 2015; Biering-Sørensen et al., 2006; Nadler et al., 2002).
The results of this chapter represent a starting point for integrating the stretch reflex into
a model of the neuromuscular system.
Closing the loop, i. e., including a model for muscle contraction, will enable us to relate

motoneuron reflex behaviour with more global output parameters like muscle force. In
addition, muscle models can estimate the fibre stretch as input for the muscle spindle
model. Chaud et al. (2012) and Dideriksen et al. (2015), for example, employed sim-
plified one-dimensional Hill-type muscle models to close the stretch reflex loop. These
models can only provide an averaged estimate of muscle stretch. In contrast, three-
dimensional (continuum-mechanical) muscle models can estimate the spatial distribu-
tion of fibre stretch throughout the muscle (e.g., Blemker et al., 2005; Heidlauf and
Röhrle, 2014; Johansson et al., 2000; Röhrle et al., 2008). However, incorporating a
three-dimensional muscle model within a neuromuscular system framework massively in-
creases the computational costs. Thus, specialised frameworks built for high-performance
computers are required (Homs-Pons et al., 2024; Maier, 2021).
Both presented interface approaches can be used to include other sensory pathways.

Considering an antagonistic muscle enables us to consider the reciprocal inhibition path-
way, which is also triggered by muscle spindles. Further, Golgi-tendon organs can be
added to incorporate the Ib reflex pathways. Models for Golgi-tendon organs exist in the
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literature (e. g., Crago, 2018; Song et al., 2008). The challenge is to find suitable data
for the parametrisation. The reciprocal inhibition pathway can be assessed experiment-
ally (Yavuz et al., 2018). In contrast, Ib reflex data is sparse and isolating the pathway
is difficult since the respective spinal interneurons are not exclusively used by Ib affer-
ents (Jankowska et al., 1981; Rogasch et al., 2011). Aiming to reproduce global output
parameters such as muscle force or joint position can ensure reasonable parametrisation.
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8 Conclusion and Outlook

“Essentially, all models are wrong, but some are useful.”

George Edward Pelham Box1

8.1 Summary and key findings

This PhD thesis aimed to investigate human α-motoneuron discharge properties during
stretch reflexes using an in silico approach. Human physiology is inherently hierarch-
ical and acts across multiple length and time scales. Therefore, this work aimed not
to model the physiological system in all its complexity but rather to represent partial
aspects of reality well enough to make valuable statements and predictions. Recording re-
flex responses of single motoneurons in vivo requires delivering the reflex stimulus several
hundred times. Consequently, a motoneuron model with a reasonable computational cost
is required to conduct the relevant in-silico experiments. We chose a two-compartment
Hodgkin-Huxley type model to simulate the α-motoneuron pool. The model considers a
soma and a dendrite compartment and predicts the time course of the membrane poten-
tial in response to input currents by considering the behaviour of significant ion channels.
Therefore, the chosen model balances computational simplicity and physiological correct-
ness. We simulated motoneuron reflex responses in both the monosynaptic and reciprocal
inhibition pathways of the stretch reflex.
The motoneuron reflex responses were analysed using the peristimulus timehistogram

(PSTH) and the peristimulus frequencygram (PSF). The strength of the reflex response,
i. e., the reflex amplitude, was determined from the cumulative sums (CUSUMs) of both
metrics. This work evaluated more than 10 000 motoneuron reflex responses. This
amount made manual evaluation of reflex amplitudes, the gold standard method, un-
feasible. Therefore, we developed an algorithm that automates the evaluation of reflex
amplitudes. To assess the validity of interpretations drawn from the peristimulus analysis,
we investigated how the PSTH and PSF reflex responses are influenced by the motoneuron
size and the experimental conditions. Therefore, we simulated excitatory reflexes in the
motoneuron pool under numerous conditions.
In addition to the motoneuron behaviour in excitatory reflexes, we also investigated

the reciprocal inhibition reflex. In experimental studies, an excitation of unknown ori-
gin was occasionally observed following the inhibition response. We hypothesised that
hyperpolarisation-activated inward currents (h-currents) contribute to this postinhibitory
excitation. We added the respective ion channel to the motoneuron model and investig-
ated its role in postinhibitory excitation. As the PSF and not the PSTH can distinguish
changes in motoneuron discharge frequency from synchronisation, only the PSF was used
in this study. A novel evaluation method, which is based on separating spike trains in the
PSF, was introduced to visualise history-dependent effects on the reflex response.
The above investigations could be performed without explicitly modelling the sens-

1George Edward Pelham Box (18 October 1919 – 28 March 2013) was a British mathem-
atician/statistician.
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ory organs delivering the signals causing reflex responses. More sophisticated in-silico
investigations of the neuromuscular system may require considering the overall system,
including sensory organs and muscles. Therefore, in the last chapter of this work, the
foundation was laid for including the stretch reflex in a model of the neuromuscular sys-
tem. Two approaches to designing the interface to a muscle spindle model were presented
and compared.
The simulations and analyses in this work provide novel insights into the mechanisms

of motoneuron behaviour during stretch reflexes and the methods for recording them in
vivo. The key findings of this thesis are listed and summarised below:

• Regarding the detection of significant reflex responses, the steepness of the reflex
response, determined by the CUSUM of the PSTH or the PSF, is a suitable indicator
for the onset and end of the reflex response when using a short and strong excitatory
stimulus. This indicator can be used to determine the reflex amplitude using an
algorithm instead of a manual evaluation.

• Using the computational model, we showed that motoneuron properties and ex-
perimental conditions influence in-vivo estimates of motoneuron reflex responses,
determined from the CUSUMs of the PSTH and the PSF, in a highly non-linear
way. We concluded that reflex amplitudes determined from the PSTH-CUSUM
are better suited to investigate motoneuron inputs. Reflex amplitudes determined
from the PSF-CUSUM are suited to determine the sign of a reflex response and to
investigate the excitability of motoneurons based on their size.

• We derived advice for the design of experimental studies investigating motoneuron
reflex responses. Since reflex amplitudes from single motoneurons were generally
not representative of the pool, we suggest summarising motoneurons with similar
baseline discharge frequencies. Further, motoneurons acting shortly above their
recruitment threshold show very non-linear behaviour with respect to reflex stimuli,
and they should be excluded from the analysis.

• Hyperpolarisation-activated inward currents can contribute to postinhibitory ex-
citation in human motor units. Using the computational model, we showed that
h-currents can shorten interspike intervals in response to strong inhibitory stimuli
and facilitate postinhibitory excitation. This effect is stimulus-time dependent and
most pronounced in conditions with low firing rates and low noise, i. e., when few
other inputs into the motoneuron are present.

• We used findings from the simulation study to analyse the reflex responses of recor-
ded human motor units. Excitation in the first poststimulus interval after reciprocal
inhibition was found in a significant portion of the motor units. We conclude that
h-currents serve as a modulatory system that can increase motoneuron excitability.

• Integration of the stretch reflex into a neuromuscular system model requires coup-
ling of the motoneuron model with a spindle model. An interface approach based
on spike trains and an approach based on a conversion factor is suitable when ap-
propriate data is used for the parametrisation. However, identifying suitable data
for parametrisation poses a significant challenge, especially regarding pathways that
are less accessible than the monosynaptic stretch reflex.
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In summary, motoneuron internal properties and experimental conditions contribute to
the reflex behaviour of α-motoneurons. Common reflex evaluation methods are prone to
history-dependent effects. This was shown for both the excitatory monosynaptic stretch
reflex simulated in Chapter 5 and the reciprocal inhibition reflex studied in Chapter 6.
We conclude that detailed analyses using the PSTH and PSF and taking spike train
history into account are advisable. Further, computational models can help identify the
determinants of good study design and choose appropriate analysis methods.

8.2 Outlook

In the sense of the quote of George Edward Pelham Box, the models employed in this
work helped to identify potential discrepancies between what we think we know and what
may be true. The simulation results challenge our current knowledge and provide an
idea of what we might have overlooked. We need to transfer the findings to experimental
studies to capitalise on this. These will either confirm the findings from the simulations
or generate new hypotheses, which, in turn, will provide an impetus for further in-silico
studies. The knowledge gained must be translated into clinical applications for patients
to benefit from the research. We therefore conclude with perspectives for modelling
approaches, experimental studies and clinical applications.

8.2.1 Perspectives for neuromuscular system modelling

The simulations carried out within this work laid the foundation for further in-silico
investigations, as already discussed in the relevant chapters. In short, the study on factors
influencing in-vivo estimates of excitation reflex amplitudes in motoneuron pools (Chapter
5) can be extended to analyse inhibitory reflex responses. It is also essential to evaluate
how well other estimates of reflex strength, e. g., the reflex duration or metrics that are
not based on the peristimulus CUSUM, can represent the input signal.
In Chapter 6 of this work, we showed that postinhibitory excitation in motoneurons

may be facilitated by several factors, from which we investigated the contribution of h-
currents in detail. Future studies should also explore the role of other structures, including
additional ion channels and sensory pathways.
System models allow for investigating behaviours emerging from the interrelations of its

components. Simple reflex models can be extended to models considering more aspects of
the neuromuscular system, e. g., muscle spindles or Golgi-tendon organs and their respect-
ive pathways or muscle and joint mechanics. Models for these components are available
from the literature. When coupling two or more models, new interface variables emerge
that need to be parametrised. In Chapter 7, this challenge was exemplarily addressed for
coupling the motoneuron pool and a muscle spindle model.
The findings on model coupling and parametrisation can be transferred to Golgi-tendon

organ models. Golgi-tendon organs are sensitive to muscle force and inhibit homonymous
muscles (Anderson, 1974; Jami, 1992). There exist models for single Golgi-tendon organs,
but the summed activity of all Golgi-tendon organs was shown to sufficiently represent
muscle force (Prochazka and Gorassini, 1998a; Reinking et al., 1975). Accordingly, en-
semble models representing all Golgi-tendon organs of a muscle were primarily developed
(e. g., Crago, 2018; Lin and Crago, 2002a; Mileusnic and Loeb, 2009). The interface
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approaches presented in Chapter 7 can be applied for the coupling with a motoneuron
pool model. Golgi-tendon organs activate di- or polysynaptic pathways (Jami, 1992).
When using the spike-based approach, interneurons can explicitly be modelled, as e. g., in
Cisi and Kohn (2008); Dideriksen et al. (2015). Alternatively, the conversion factor in-
terface can represent the interneuronal pathway and thereby simplify the integration of
Golgi-tendon organ models.
Skeletal muscle mechanics can be described by one- and three-dimensional, i. e., con-

tinuum mechanical, models. Both modelling approaches can predict active and passive
muscle behaviour and, thus, provide input signals for sensory organ models (e. g., Blemker
et al., 2005; Heidlauf and Röhrle, 2014; Röhrle et al., 2008; Schmitt et al., 2019). While
one-dimensional models provide a single averaged estimate for fibre stretch and muscle
force, three-dimensional models provide spatial distributions of stretch and stress. An
approach for using these values as inputs to sensory organ models is described in Haggie,
Schmid et al. (2023). In short, locations need to be assigned to the sensory organs. Then,
the required input variables, e. g., , stretch, stretch rate or tension, can be obtained from
the respective locations. While Golgi-tendon organs are located at the musculotendin-
ous junctions (Schoultz and Swett, 1972), muscle spindles are spread across the muscle
(Kokkorogiannis, 2004). Estimates of total muscle force for ensemble Golgi-tendon organ
models can also be obtained from three-dimensional models by summarising local stresses
across a defined area representing the musculotendinous junction.
Considering a system with more than one muscle, e. g., agonist and antagonist, increases

the number of neuronal pathways to be considered. Muscles are not only mechanically
coupled via joints, but they also exchange neural feedback (Kandel et al., 2013). In
addition to receiving sensory inputs from numerous sources, spinal motoneurons also
bridge the gap between the motor cortex area of the brain and the muscles (Lemon,
2008). Consequently, α-motoneurons are a central component when studying the effect
of cortical processes on muscle activity, and reflex pathways are a relevant element in a
model of the corticomusular pathway, as e. g., proposed by Haggie, Schmid et al. (2023).
The different combinations of components in a model describing (parts of) the neur-

omuscular system have in common that the data required for the interface parametrisation
can usually not be directly recorded in vivo and suitable targets for the model paramet-
risation have to be defined. Therefore, coupling sub-models within the neuromuscular
system remains a challenge.
Implementation of neuromuscular system models brings further challenges. Holistic

models of the neuromuscular system usually contain components that are mathematic-
ally described by different classes of equations, e. g., algebraic, ordinary or partial dif-
ferential equations, and act on different lengths and time scales. Simulating, e. g., reflex
experiments, requires simulating the system’s behaviour for several minutes. Efficient
implementation of multi-scale and/or multi-component models requires parallelisation
of algorithms and access to high-performance computers (Bradley et al., 2018; Maier
et al., 2019). There exist many specialised software tools for the individual components,
e. g., neurons or muscles (for an overview, see e. g., Haggie, Schmid et al., 2023). There are
also approaches to provide platforms that enable the integration of various components
of the neuromuscular system, but they are complex to use (e. g., Maier, 2021).
In addition to high-performance computing, another approach addressing the complex-

ity of the simulations is model order reduction methods or surrogate models (e. g., Homs-
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Pons et al., 2024; Mordhorst et al., 2017). Surrogate models can be the answer to the
challenge of real-time simulations. Real-time computing is, e. g., required when using
model predictions to control prostheses or exoskeletons (e. g., Eilenberg et al., 2010;
Lotti et al., 2020).
Models of the neuromuscular system can be applied to numerous fields of research. In

the remainder of this section, selected visions are presented in more detail. Concerning the
stretch reflex, a major unknown is the contribution of the fusimotor drive to the muscle
spindle and reflex activity. The fusimotor activity cannot be recorded in vivo. Con-
sequently, there is an ongoing debate on the role of fusimotor drive in natural movements
(Dimitriou, 2022). Computational models might help to clarify the role(s) of fusimo-
tor drive, e. g., its potential contribution to the task-dependent modulation of reflexes
(Dimitriou, 2022). Another unresolved question is how exactly muscle spindles encode in-
formation and contribute to coordinated movements and how their spatial position within
the muscle influences this process (Day et al., 2017; Knellwolf et al., 2019; Kokkorogiannis,
2004). Addressing this question requires a three-dimensional muscle model to obtain the
spatially heterogeneous distribution of muscle fibre stretch (e. g., Blemker et al., 2005;
Heidlauf and Röhrle, 2014; Röhrle et al., 2008).
In addition to questions of basic physiology, many questions concerning pathological

conditions are still open. Invasive changes, such as an amputation, severely disrupt the
finely tuned neuromuscular system. Conventional amputation techniques destroy the
mechanical link between agonist and antagonist muscles in the residual limb (Greitemann
et al., 2016; Ovadia and Askari, 2015). In consequence, the sensory feedback pathways
are also impaired. A new procedure, the so-called agonist-antagonist myoneural interface
(AMI) aims to maintain the natural mechanical and sensory coupling between two residual
muscles after limb amputation (Herr and Carty, 2021). The AMI approach reconnects
the residual muscles by an (artificial) tendon (Herr and Carty, 2021). Preliminary studies
indicate that the procedure indeed preserves the sensory feedback (Sreenivasa et al., 2015).
However, many aspects still need to be clarified. For example, it is unknown how the
tension in the connecting tendon, i. e., determining the muscles’ pre-stretch, influences the
interaction of the muscles in an AMI construct. In Homs-Pons et al. (2024), a modelling
approach is presented to address this problem. These simulations and experiments can
contribute to a better understanding of the procedure and improve surgery outcomes.
The developers of the AMI also envision that the AMI improves the control of prostheses

(Herr et al., 2021). Until today, despite all technical advancements, prosthesis acceptance
is unsatisfactorily low, mainly due to lack of comfort and function (Smail et al., 2021).
Restoring sensory perception could revolutionise the field; however, the technology is still
in its infancy (Cimolato et al., 2023; Farina et al., 2023; Kim et al., 2023). Neuromuscu-
lar system models can generate estimations of sensory stimulation paradigms surpassing
vibrotactile feedback, which is presently employed (Witteveen et al., 2015).
Computational models can be used not only to address particular research questions

but also to generate virtual subject populations, which can enrich or augment data that
is difficult to obtain experimentally. Also, simulations can be used for teaching/learning
fundamental mechanisms in physiology.
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8.2.2 Perspectives for experimental studies

This work shows how simulation and experimental studies can complement each other.
When addressing the reciprocal inhibition experiment in Chapter 6, the research question
emerged from an unexplained phenomenon observed in experimental studies. The per-
formed simulations offer a potential explanation that now requires confirmation through
experiments. In-vitro studies are the most promising approach in this case.
When addressing the monosynaptic stretch reflex in Chapter 5, we used a simulation

of a motoneuron pool to emphasise the pitfalls in interpreting experimental data. From
this, we derived recommendations on how to improve experimental study designs to per-
form meaningful experiments. The future of in-vivo reflex experiments should be driven
by increasing the number of recordable motor units and the range of forces at which
reflex experiments are performed. Both can be achieved by applying recently developed
or emerging technologies, e. g., improved electrode grids for the surface electromyogram
(EMG), high-density intramuscular EMG, motor unit tracking, magnetomyography or
ultrafast ultrasound (Caillet et al., 2023; Ghahremani Arekhloo et al., 2023; Klotz et al.,
2023; Martinez-Valdes et al., 2017; Muceli et al., 2022; Rohlén et al., 2020). Re-examining
reflex responses also offers the opportunity to address unknown or poorly understood as-
pects of reflex activity, such as differences between the sexes or pathological changes.
Further, the conclusions drawn in Chapter 5 can be used to re-evaluate and re-interpret
already collected data.
If more motor units can be recorded in vivo, the time-intensive manual evaluation of the

data becomes a hurdle. Algorithms are required to determine the onset and end of reflex
responses automatically and reliably. The approach applied in this work, i. e., using the
slope of the PSTH- and PSF-CUSUM, showed promising results when applied to short
excitatory stimuli. The suitability of this approach to evaluate experimental data needs to
be investigated. In a preliminary study, it showed agreement with the manual evaluation
for tap-like and ramp-and-hold mechanical stimuli. However, the performance using sinus-
oidal mechanical and electrical stimuli was unsatisfactory2 (Grupp, 2023). Here, further
investigations, including more datasets, are required. Therefore, the potential of signal
processing techniques used in other fields working with similar signals should be invest-
igated. This field of research can benefit considerably from interdisciplinary cooperation.

8.2.3 Perspectives for clinical applications

The use of computational modelling and simulations in clinical practice has two facets.
One is the transfer of knowledge gained from simulations into clinical applications, and
the other is the integration of simulations into clinical processes.
Investigating motor unit reflex responses using peristimulus analysis can provide de-

tailed insights into pathological changes in motoneuron behaviour. So far, these methods
are part of basic research in physiology but not of the clinical routine. Using reflex amp-
litude estimates as a diagnostic tool must be fast and easy for clinical routine. Based
on this work, three aspects seem especially crucial. First, the provided approach for the
automatic and fast determination of reflex amplitudes must be generalised for different
reflex types. Second, the number of required stimuli and, consequently, the examination

2This was shown in a Bachelor thesis by Teresa Grupp.
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time must be reduced for reflex experiments. This can be achieved by merging spike
trains of similar motor units or augmenting data using motoneuron models (e. g., Caillet
et al., 2022a; Ornelas-Kobayashi et al., 2023). Third, large-scale multi-component com-
puter simulations must be used to increase further the understanding of reflex pathways
and their contribution to physiological and pathological motor control.
A survey amongst clinicians conducted in 2020 and 2021 demonstrated the potential

of computational modelling and simulations for future clinical use. Although the study
is not representative, and there is probably a bias towards clinicians who have been in
contact with the field of simulations, there are some promising findings. The two most
frequently mentioned areas of application for simulations were planning of interventions
and teaching/training (Lesage et al., 2023). Patient-specific simulations of the neuromus-
cular system are made more difficult by the poor accessibility of the neuronal structures.
Nevertheless, computational models, e. g., of reflex pathways or the AMI, can be used for
teaching and training. From a simulation engineering point of view, it is encouraging that
most clinicians surveyed see a future role for modelling and simulation experts in clinical
premises (Lesage et al., 2023). If the two fields work together more closely, there is a
substantial potential mutual benefit, similar to what is already practised today between
simulation engineers and experimentalists.
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A Motoneuron Model Parameters

This appendix summarises the motoneuron model parameters used in this work.

Motoneuron pool model

Tables A.1 and A.2 show the motoneuron pool model parameters used in Chapters 4, 5
and 7.

Table A.1: Constant parameters of the motoneuron pool. Parameters are adopted from Cisi and
Kohn (2008) if not indicated otherwise. This table corresponds to Table 3.2 in the manuscript.

Parameter Symbol Value

Membrane specific capacitance (µF cm−2) Cm 1∗

Cytoplasm resistivity (kΩ cm) Ri 0.07∗∗

Na+ equilibrium potential (mV) ENa 120

K+ equilibrium potential (mV) EK −10
Leakage equilibrium potential (mV) EL 0

Maximum specific Na+ conductance (mS cm−2) GNa 30

Maximum specific fast K+ conductance (mS cm−2) GKf 4

Maximum specific slow K+ conductance (mS cm−2) GKs 16

∗Burke et al. (1994); Cole (1972); Fleshman et al. (1988) ∗∗Barrett and Crill (1974); Burke et al. (1994)

Table A.2: Parameters that vary across the motoneuron (MN) pool. Values are given for the
smallest and the largest MN of the pool. Parameters are adopted from Cisi and Kohn (2008).
This table corresponds to Table 3.3 in the manuscript.

Parameter Symbol
Value

Smallest MN Largest MN

Soma diameter (cm) ds 77.5× 10−4 113× 10−4

Soma length (cm) ls 77.5× 10−4 113× 10−4

Soma specific resistance (kΩ cm−2) Rs
m 1.15 0.65

Dendrite diameter (cm) dd 41.5× 10−4 92.5× 10−4

Dendrite length (cm) ld 0.55 1.06

Dendrite specific resistance (kΩ cm−2) Rd
m 14.4 6.05
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Motoneuron model with h-channel

Tables A.3 and A.4 show the parameters for the motoneuron model with h-channel used
in Chapter 6.

Table A.3: Constant parameters of the motoneuron model with h-channel. Parameters are
adopted from Cisi and Kohn (2008) if not indicated otherwise.

Parameter Symbol Value

Membrane specific capacitance (µF cm−2) Cm 1∗

Cytoplasm resistivity (kΩ cm) Ri 0.07∗∗

Na+ equilibrium potential (mV) ENa 120

K+ equilibrium potential (mV) EK −10
Leakage equilibrium potential (mV) EL 0

H-current Equilibrium potential (mV) EH 20‡

Maximum specific Na+ conductance (mS cm−2) GNa 30

Maximum specific fast K+ conductance (mS cm−2) GKf 4

Maximum specific slow K+ conductance (mS cm−2) GKs 16

Maximum specific h-conductance (mS cm−2) GH 2‡‡

∗Burke et al. (1994); Cole (1972); Fleshman et al. (1988) ∗∗Barrett and Crill (1974); Burke et al. (1994)

‡Bayliss et al. (1994); Larkman and Kelly (1992) ‡‡Bertrand and Cazalets (1998); Kiehn et al. (2000)

Table A.4: Parameters for the motoneuron model with h-current. Parameters correspond to
the mean values of S-type and FR-type motoneurons in Cisi and Kohn (2008).

Parameter Symbol S-type FR-type

Soma diameter (cm) ds 80× 10−4 85× 10−4

Soma length (cm) ls 80× 10−4 85× 10−4

Soma specific resistance (kΩ cm−2) Rs
m 1.1 1

Dendrite diameter (cm) dd 52× 10−4 73× 10−4

Dendrite length (cm) ld 0.615 0.745

Dendrite specific resistance (kΩ cm−2) Rd
m 12.55 8.825
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