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Abstract

We present an approach for visual analysis of high-dimensional measurement data with varying sampling rates as routinely
recorded in intensive care units. In intensive care, most assessments not only depend on one single measurement but a plethora
of mixed measurements over time. Even for trained experts, efficient and accurate analysis of such multivariate data remains
a challenging task. We present a linked-view post hoc visual analytics application that reduces data complexity by combining
projection-based time curves for overview with small multiples for details on demand. Our approach supports not only the analy-
sis of individual patients but also of ensembles by adapting existing techniques using non-parametric statistics. We evaluated the
effectiveness and acceptance of our approach through expert feedback with domain scientists from the surgical department using
real-world data: a post-surgery study performed on a porcine surrogate model to identify parameters suitable for diagnosing
and prognosticating the volume state, and clinical data from a public database. The results show that our approach allows for
detailed analysis of changes in patient state while also summarizing the temporal development of the overall condition.

Keywords: information visualization, visualization, methods and applications, visual analytics

CCS Concepts: * Applied computing — Health care information systems; * Mathematics of computing — Time series analysis;
Dimensionality reduction; * Human-centered computing — Information visualization; Visual analytics

1. Introduction

In a modern clinical setting, patients in an intensive care unit (ICU)
are closely monitored by multiple medical devices. This multitude
of measurements has to be communicated for interpretation, either
to medical personnel for progressive analysis (monitoring), or—as
in our context—to medical researchers for post-hoc analysis (ex-
periments). Humans have difficulties aggregating more than three
quantities, especially under the presence of uncertainty [GASM17].
However, multiple parameters are often needed to provide an overall
impression of the condition of a patient. Only considering a combi-
nation of changes in multiple parameters will hint toward important
transitions of the whole homoeostatic system. For instance, individ-
ual parameters might seem uncritical if considered independently,
but in conjunction, can indicate an imminent circulatory shock.

Ideally, an illustration of patient state would be based on the en-
tirety of time-varying interacting variables, without having to rely
on a set of specific, pre-defined parameters. Moreover, such an ap-

proach would reveal high-dimensional processes clearly without be-
ing overly specific and still provide fine-grained details on demand.
In practice, one of the primary problems with multivariate time-
varying data is the conceptual and physical limitation of straightfor-
ward visualisation techniques: most established approaches, such as
scatter plot matrices, do not scale well enough to support the assess-
ment of more than a few variables due to visual clutter and required
mental effort to draw the right conclusions. In response to this ob-
servation, many expert users resort to univariate visualisation tech-
niques and (over-)simplifying derived characteristic quantities that
take little advantage of the human visual system.

In this work, which is an extension of an earlier workshop pa-
per [BSP*20], we propose a visualisation approach that facilitates
the exploration and analysis of multi-dimensional, time-dependent
ICU data based on time curves [BSH*16, vdEHBvW16], small mul-
tiples [Tuf92] and comparative views for an ensemble of subjects.
We showcase our approach using real-world data obtained from an
experimental surgery study performed on a porcine surrogate model

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


https://orcid.org/0000-0003-3175-0464
https://orcid.org/0000-0001-5771-3966
https://orcid.org/0000-0002-4618-4349
https://orcid.org/0000-0002-3318-5326
https://orcid.org/0000-0002-0402-7708
https://orcid.org/0000-0003-1174-1026
https://orcid.org/0000-0002-1445-7568
http://creativecommons.org/licenses/by-nc-nd/4.0/

274 N. Brich et al. / Visual Analytics of Multivariate Intensive Care Time Series Data

o gl o ‘VT

96 h Recording at
0.0003-2 Hz

Subjects in Intensive Care Unit

Visual analysis and comparison of multiple subjects

im, ,"i‘v,x"‘}u.;v o
L J'M‘.U.‘wh,n,

P>
D
-
i —

Visualization of overall state progression and details for single subjects

Figure 1: Our visual analytics application for multivariate medical data applied to data obtained during an experiment with porcine subjects
attached to multiple medical devices in an intensive care unit. The overall state progression over the set of measurements per animal is shown
as time-curve-inspired plots. A line plot showing a selected measurement and small multiples composed of selection-dependent line plots
allow for state comparison and in-depth analysis. For an ensemble of multiple subjects, a time curve boxplot allows to compare subjects.

(Figure 1). To compute our time curves, we have analysed various
projection techniques regarding their suitability for our application.
Additionally, an unsupervised machine learning model—a Con-
volutional Variational Autoencoder (CVAE)—was implemented to
better account for non-linearity and uncertainty in time curves.
To disambiguate self-shadowing and resolve occlusion of the time
curve, we implemented a linked 3D visualisation in which the time
curve is visualised in a space—time cube. Different colouring modes
for the time curve facilitate tracking single variables and connecting
trends in the overall patient status with these variables. To compare
patient states and drill down into details, our application allows the
user to select multiple data points in time that, together with a user-
defined temporal context, are then shown using small multiples. To
quantify the similarity of changes of a specific variable at different
time points, the point-to-point Pearson correlation can be shown.
The contributions within our web-based visualisation application
can be summarized as follows: the visual analysis approach to high-
dimensional and time-varying ICU data, the adaption of various vi-
sualisation techniques using z-score and data-depth-based statistics
to ease outlier analysis, a domain-driven generative data model to
evaluate the applicability of various dimensionality reduction (DR)
algorithms to ICU measurements and a discussion containing expert
feedback as well as an outlook for clinical surveillance.

2. Related Work

Although the visualisation of high-dimensional and time-varying
data has been investigated intensively and has been reviewed in
many extensive surveys [AMST11, KH13, LMW*17], it is still an
active area of research. Classical multivariate visualisations such as
parallel coordinate plots and scatter plot matrices are either a poor
fit for visualising multivariate time series, or only suitable for spe-
cific tasks like finding correlations between single variables. Thus,
tailored task-driven visualisation methods are needed [Munl5] to
facilitate an effective visual analysis of complex multivariate time-
varying data. Since we are dealing with a number of time-varying
input dimensions exceeding the capabilities of classical multivariate
visualisation, we briefly review suitable approaches.

Dimensionality reduction. DR methods compute a low-
dimensional representations from high-dimensional data, which
are often easier to visualise and interpret than high-dimensional
data. A typical example of this is principal component analysis
(PCA) [Hot33, Pea0l], which computes a linear projection based
on variance. Another widespread technique is multi-dimensional
scaling (MDS) [BGOS5], which optimizes for representing high-
dimensional distances in a low-dimensional space. Generally, there
is neither a perfect solution nor a uniquely defined global opti-
mum for globally preserving distances. Thus, many techniques that
use neighbourhood information instead of distance have been de-
veloped. A popular example is the computationally expensive t-
Distributed Stochastic Neighbour Embedding (t-SNE) [vdMHOS],
which optimizes using entropy, generally leading to a misrepresen-
tation of global distances in the embedding. However, t-SNE and
other non-linear techniques excel at separating clusters. A more re-
cent approach is Uniform Manifold Approximation and Projection
(UMAP) [MHM 18], which aims at reducing this misrepresentation
of distant data points by using a Riemann manifold.

Vernier et al. [VGdS*20] investigated a wide variety of DRs re-
garding their feasibility towards multivariate temporal data. Our ap-
plication guides the data-driven choice of DR technique, based on
approaches from research on quantification and visualisation of pro-
jection error [SSK10, HAF13, WSA*16]. To gain a better under-
standing of the overall suitability of the DR techniques for our ap-
plication, we use a domain-specific generative data model for eval-
uation purposes [SNEA*16] (Section 5.2). Vernier et al. found ev-
idence that variational autoencoders [KW13] are a suitable choice
for DR of multivariate temporal data. Since it depends on the data
and the research question, which of these approaches is most suit-
able, our application offers the choice between linear (focusing on
temporal change) and non-linear techniques (focusing on clusters).

Visualisation of multivariate time series. Our medical visual
analysis application was inspired by several techniques to visualise
multivariate time series that leverage DR: Jaeckle er al. [JFSK16]
use temporal MDS to project non-temporal dimensions into a single
dimension while retaining one display dimension for the mapping
of the time component. This results in an optimal depiction of the
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progressing time, but impedes the distinction of different states,
since they are plotted on only one axis. As we want to provide an
intuitive overview of differences in patient states, the utilization
of the two major axes for non-temporal components seems like a
better choice. Bach ef al. [BSH*16] concurred with this assessment
and developed the time curve concept. They used metric MDS to
project the high-dimensional data in two dimensions while illus-
trating the temporal succession by connecting consecutive points
using a Bézier curve. A similar approach was previously presented
by Bernard et al. [BWS*12], who used PCA. Concurrently to Bach
et al., van den Elzen et al. [vdEHBvW16] developed a similar tech-
nique to visualise temporal evolution of graphs. These techniques
can be classified as connected scatter plots, which follow the same
idea of connecting temporally consecutive data points, but do not
use DR and date back to 1790 [HKF16]. An example is the work
of Grottel et al. [gro14], who map time to line density in traditional
scatter plots and parallel coordinates. Recently, time curves have
been used by Hinterreiter ez al. [HSS*21] to analyse solutions in
problem-solving tasks. We adopt the concept of time curves and
integrate it into our exploratory data analysis application. Due to the
oscillating nature of the ICU data, we extend the original concept
of time curves with filtering. We use this filtering step to declutter
the data—and, consequently, the resulting visualisation—and to
remove outliers. Our application can handle not only single data
sets but also multiple ones to compare the ensemble members.

For the analysis of multiple data sets, we extend the time
curve visualisation with the notion of data depth and curve box-
plots [MWK14]. Data depth acts as a measurement to describe how
central a single data point is within the whole data set: the higher
a data depth, the more central a given data point is [CANROS].
While data depth was already successfully applied to time series
[LPR09, LPSLG14], we explore the application of this concept to
time curves.

Medical visualisation. Ordonez et al. [OndL*10] explored the
usage of star charts for visualising ICU data. While this works rea-
sonably well for a small number of variables, visual scalability is
limited. In the course of the increasing digitalization, the visual-
isation of electronic health records (EHR) has gained much atten-
tion. Zhang et al. [ZMG*10] proposed a visual analytics framework
that unifies EHR information for use in emergency rooms. While
it also shows time-varying multidimensional data, their approach
is not scalable and assumes discrete patient states and transitions,
not numerical measurements. Similarly, Rind et al. [RAM*11] pre-
sented a tool for the visual analysis of long-term medical records
of patients with chronic diseases. Their application case is differ-
ent from ours since the data are more sparsely sampled over much
longer periods of time. Ten Caat et al. [CMROS5] introduced the con-
cept of tiled parallel coordinates for multi-channel EEG data. While
their data are more similar to ours, they just have multiple sensors of
the same type that all measure at the same frequency. They also use
aggregation over the whole measurement time, which is not suitable
in our case.

3. Medical Background

In this section, we summarize the experiment we used to eval-
uate our approach and the required clinical background knowl-

edge [PKK*14, Pet18, KPT*18]. Preliminary research showed in-
sufficient knowledge regarding the assessment of the volume state in
clinical practice for hospitalized patients. The volumeneed-analysis
(VNA) study was conducted to answer research questions regarding
the reliable assessment of volume states in a clinical context. One
such question is whether it is possible to predict states and potential
problems by observing measurable quantities of the organism so that
doctors can proactively intervene, instead of being forced to react.
To this end, a set of ICU devices commonly found in a clinical con-
text was used to obtain the measurements. However, the setup was
far more comprehensive than a regular setup in a hospital, providing
almost complete knowledge about the volume state of subjects.

The VNA study was conducted using 10 fully anaesthetised pig
surrogates in accordance with ethical guidelines. In total, the experi-
mental setup measured roughly 250 parameters over roughly 4 days
each, with two experiments being ended prematurely. Recorded
parameters include a variety of cardiovascular parameters such as
blood pressure and heart rate, blood gas analysis results such as ion
and carbohydrate concentrations, as well as general parameters like
weight and diuresis volume. Initially, the animals were given de-
fined amounts of fluid using intravenous infusions to reach an in-
creased fluid state. Then, fluid supply was stopped, and the body
fluid was reduced through diuretics. The fluid state was assessed at
defined states by performing a variety of tests. All measurements
were collected from a set of nine devices via manufacturer inter-
faces or wiretapping. While some devices sample adaptively, the
average sampling rate varies between ! /3500 Hz (blood gas analysis)
and 1-2 Hz (bedside monitors). All devices are synchronized to an
accuracy of approximately 1 s.

4. Requirements

The measurement data already defined the quantity structure (see
Section 3); therefore, we can focus the requirement analysis on the
functionality. The high-level goal of our collaboration is to provide
an orthogonal approach to visual analysis of individual measure-
ments. In line with our experts, we argue that a loss of information
to gain insights into high-dimensional processes is justifiable: as our
primary use case is the post-hoc analysis of ICU data, our system
cannot cause harm to the subjects. Thus, the following goals and re-
quirements were defined iteratively during multiple design sessions
and on-site meetings together with our medical domain experts:

R1 The main objective is to be able to tell whether the patient is
in a stable state or not. Since a patient does not necessarily
have to be within the ideal parameter ranges, communication
of change rates and state comparison is more important than
absolute values.

R2 Both the aggregate of change and individual changes can be of
interest. Therefore, the visualisation application should allow
for both a top-down and a bottom-up exploration of the data.

R3 Robust statistical methods should be used to guide the search
for interesting patterns and relevant behaviour—some param-
eters are heavy-tailed distributed and oscillating.

R4 Medical researchers have high expectations regarding sanity-
checking and explanation of phenomena due to the nature of the
medical domain—easy interpretation without a strong mathe-
matical background is of major interest.
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R5 It should be possible to put individual patients in the context
of an ensemble to assess if a patient is representative or excep-
tional.

5. Visualisation of ICU Data

Our goal was to combine several visualisation approaches in one ap-
plication tailored to medical experts. In this section, we describe the
techniques we use as components and their adaption to our specific
application. In accordance with the visualisation pipeline [Mor13],
this includes data cleansing, an evaluation of DR algorithms, and
a description of the visual mappings, which consist of filtered time
curves and small multiples composed of line plots for in-depth anal-
ysis and comparison of patient states, as well as time curve boxplots
for ensemble analysis (Figure 1).

5.1. Data cleansing and preprocessing

We cleanse the data beforehand to remove measurement errors. We
remove erroneous samples using a list of user-defined error codes,
filter inaccurate samples, and remove categorical time series and
those that have a constant value. To identify and remove outliers,
we have explored various techniques, such as the Savizky-Golay fil-
ter [SG64] that approximates a variable using a polynomial. While
this filter removes severe outliers, it also introduces artificial values
and thus conflicts with R4. We opted for a z-score-based filter that
classifies values as outliers that are not contained in the hull spanned
by the moving average and standard deviation.

All considered DR techniques require a uniform sampling, i.e.
all components of a high-dimensional point have to be defined. Due
to the high variance in sampling rates, a simple downsampling ap-
proach would lead to massive loss of data. In line with recommen-
dations from our medical experts, we do not use interpolation to fill
in missing values since this would introduce a possibly invalid as-
sumption about the measured quantities. Therefore, we unify sam-
pling rates across all time series. Given a user-specified sampling
rate, we down-sample time series with a higher sampling rate than
the chosen one and up-sample time series with a lower sampling
rate, respectively. Missing values are filled via forward-filling (i.e.
the last valid value is used until the next valid value is reached). Our
medical experts approved of this strategy. If a measurement starts
at a later point in time, we apply backward-filling, as there are no
earlier samples available.

5.2. Dimensionality reduction

Time curves project a time-varying high-dimensional space into
a two-dimensional space, where time is not part of the DR, i.e.
(t,R") — (¢, R?). Time is added again after the DR by connect-
ing the points in chronological order using lines. Therefore, we had
to choose a suitable DR technique. To evaluate the DR, we use a
generative data model [SNEA*16], since the data from the VNA
experiment contains unknown trends and patterns. Our data gener-
ator emulates the properties of the expected real-world multivariate
time series using a combination of sinusoidal functions and piece-
wise linear ones. To justify the validity of our generator, we refer to
the parameter range of the devices used during the experiment, as

well as expert feedback. Thus, the resulting time series are represen-
tative of experimental measurements, as they contain variables with
repeating patterns of varying frequency and amplitude (e.g. pulse,
respiration) in conjunction with aperiodic, linearly changing quan-
tities (e.g. temperature, weight). This approach allows us to estab-
lish a link between the parameters of the generative model and the
output of the DR algorithm. This link is established through an eval-
uation metric: for PCA, it is the length of the first two components;
for MDS, it is stress. For non-linear techniques, interpretation of
the resulting dimensions is inappropriate. This form of sensitivity
analysis would not be possible using only a few data sets with un-
known properties. Moreover, the generative data model helps us to
do sanity checking and allows users to familiarize themselves with
the application using easy-to-understand data (R4).

For evaluation, we generated six synthetic time series. To model
physiological processes, which often exhibit oscillating behaviour,
the synthetic data sets are sinusoidal curve ensembles with varying
frequency, amplitude and phase. Generally, we found that MDS us-
ing Euclidean distances represents long distances better than short
ones, causing the beginning and end to be slightly deformed. Note
that we used metric MDS with the SMACOF algorithm [dL77],
which—in contrast to classical MDS [Tor52]—differs from PCA.
Moreover, MDS tends to introduce loops that are not present in the
data, which might be caused by non-optimal flipping and rotation
while iterating (unfavourable local optima). PCA, on the other hand,
shows the oscillating behaviour of the data while separating dissim-
ilar clusters of time series. We investigated the influence of varying
frequency, amplitude and phase (model parameters). We found that
amplitude and phase had little impact on projection quality, while
varying frequencies quickly degraded projection quality (see sup-
plement for details). While both metric MDS and PCA are linear
techniques, we suspect that suboptimal preconditioning leads to fa-
voring PCA. Considering both aspects, we rate PCA as the suitable
default and more defensive choice for DR in our application (R3).
This is in line with van den Elzen et al. [vdEHBvW16], who used
PCA to facilitate interpretation of the resulting dimensions, and t-
SNE for the analysis of clusters. When a more cluster-oriented ap-
proach is desired, we offer UMAP as a non-linear DR method. It
yields comparable results to t-SNE while exhibiting a more desir-
able performance profile.

CVAEs are an unsupervised machine learning method utilizing
an encoder—decoder architecture, each consisting of several layers,
and a variational constraint connecting the encoder and decoder. Our
data preparation and layer design is inspired by Ali et al. [AJXW19]
and the Keras documentation [C*15]. Similarly to Ali et al., we par-
tition the multivariate data set into snapshots, i.e. fixed time intervals
with a stride of one. The encoder component reduces the snapshot
with each succeeding layer of nodes until a bottleneck is reached,
which forms the latent space of the representation. Symmetrically
to the encoder, the decoder takes input from the latent space and,
with succeeding layers, reconstitutes the original amount of dimen-
sions. The reconstituted snapshot is then compared with the orig-
inal snapshot using the mean square error (MSE). The quality of
the training is expressed by the reconstruction loss (i.e. MSE) and
the entropy loss (here, the Kullback—Leibler divergence). Minimiz-
ing those losses using a gradient descent allows the autoencoder to
learn the multi-dimensional structure of the data set, encoding it in
the latent space. Due to the layer architecture, an autoencoder can

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.



N. Brich et al. / Visual Analytics of Multivariate Intensive Care Time Series Data 277

®  Time Curves

(@ Subject 1 Subject 2 Subject n
Vi Vy Vg Vi Voo Vg Vi Voo Vg

-l -« -

o [Nl - 2 [ |

‘EE-E EEE NN
T 1t 1t

. . . . Dimensionality reduction
Normalize variables using z-transformation ¥

(PCA)

Figure 2: Schematic of the normalization and principal component
analysis (PCA) projection for multiple subjects. (1) Subjects are nor-
malized individually using a z-transformation. 2) The data frames
are concatenated, and (3) PCA is subsequently performed on this
concatenated data frame ensuring identical loadings allowing com-
parison of individual subjects.

represent non-linear structures, which contrasts it to PCA. Training
means fitting the entire data set in this context. Accordingly, the re-
sulting latent space represents the entire data set as a set of variables
that contain a notion of compressed and simplified (dis-)similarity
of the original data points. Since our bottleneck is variational, our
latent space models Gaussian distributions, i.e. mean and standard
deviation. This allows compensating for a certain amount of fuzzi-
ness, making the training process more robust. To obtain a visual-
isation from this latent space, we employ PCA. Note that adding a
CVAE does not improve results per se: convolution is a great tool
for analysing oscillating signals but has to be taken with a grain
of salt when applied to variables without meaningful spatial rela-
tionship [VGdS*20]—even though there can be correlation. Thus,
we apply the convolution only on the temporal axis. In summary,
our application offers three different DR methods to allow for three
different analysis paths: PCA maintaining global distances and rela-
tions, CVAE in combination with PCA to leverage its non-linearity
to accommodate for highly complex regions in the time curve, and
UMAP for cluster analysis. The ensemble analysis (R5) requires a
collective DR of multiple subjects. Here, we apply z-transform in-
dividually to each subject prior to DR. The DR is then performed
for all subjects at once, allowing for comparisons of subjects (Fig-
ure 2). Consequently, and for a meaningful comparison, the same
set of dimensions must be used for each subject.

5.3. Time curve visualisation

Filtering. The DR algorithms embed each multi-dimensional data
point of the data set into a two-dimensional space. To obtain a time
curve, these 2D data points are connected in chronological order.

Since all DR algorithms emit rather cluttered time curves for real-
world as well as generated data, it became clear that we had to re-
duce the complexity of the curves to cope with visual clutter. There-
fore, we smooth the emitted data using a Bartlett-window moving
average. The width of the moving window determines the degree of
smoothing, which can be adjusted by the user. Obviously, filtering
introduces a loss of information (R4). Hence, we devised different
ways to compensate for this loss of information.

One option is to encode the density of data for a given region
before smoothing with colour (Figure 3, left). We use a Gaussian

Figure 3: Time curves for subject VNA0OO4 with constant width and
colour-coded density (left), and with data point density in proximity
encoded as width (right). The curves are colour-coded according to
the time since the start of the measurement. Both curves are filtered
using the average of a moving window. The background is coloured
by point density (| high to low).

kernel in conjunction with kernel density estimation to generate
a smoother density visualisation. This map allows assessing how
many time points lie in the proximity of a time curve segment and,
thus, enables the viewer to draw conclusions about the velocity of
changes in the system. The other option is a mapping of variables
onto the width of time curve itself (Figure 3, right).

Space-time cube. Time curves often self-intersect, which can
make it difficult to follow the course of the curve. To remedy this
problem, we also render the time curve in a space-time cube. Space-
time cubes are a common representation in geospatial visualisa-
tion to show the temporal progression of a path on a map by using
the third dimension to display time. However, while the space-time
cube helps to alleviate this specific issue, it also has inherent prob-
lems [BDA*17]. Thus, we only use the space-time cube as an auxil-
iary view alongside the planar time curve to support getting a more
complete understanding of the state progression through the 3D vi-
sualisation (see Figure 8). To improve spatial perception, we render
the curve in the space-time cube as a shaded tube and add a grid
as well as a shadow of the curve on the bottom plane. Temporally
evenly spaced perpendiculars originating at the curve further add to
the spatial perception.

Colour mapping. We use the colour channel to map additional
data values in both planar and 3D time curve representation. Two
ways of mapping the elapsed time to the curve were implemented:
one showing the time using a sequential colour scale, and one us-
ing a discrete quantized scale. Two further colour modes map de-
rived values to the time curves that enhance the analysis (see Fig-
ure 4). In the first mode, the user can supply a value range per
variable (R2), which represents the expected—or desired—value
range for a healthy subject. The time curve can be coloured per
variable, with upward and downward deviations displayed in dis-
crete percentage increments. Alternatively, a combined mode for all
variables is available that colours each time point according to the
variable that exhibits the strongest deviation. The second additional
colour mode is a change-point-based colouring. At change points,
the trend of a variable becomes different from earlier time segments.
This allows for a direct comparison of the overall patient state and
whether an observed change in overall patient state coincides with
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Figure 4: Left: Expected value colouring shown on systolic blood
pressure. User-supplied expected value ranges for the variables are
used for colouring. Right: Change point colouring shown on heart
rate. Colour change (m/1" ) illustrates that the preceding and suc-
ceeding intervals are substantially different for the chosen variable.

(1)

Figure 5: Schematic of functional band depth. The band (grey),
indicating the most representative functions (bounding functions,
black). The blue function is included, i.e. belonging to the group of
most representative function, whereas the red one is not included,
and thus is less representative for the ensemble of functions.

a change point in a given variable (R1, R2). The change points of
each variable are calculated using the Ruptures package [TOV20].

5.4. Time curve boxplots and scarf boxplots

When plotting multiple time curves in a single visualisation, the
result is often dominated by visual clutter even for relatively low
numbers of curves. Especially the overlapping curves are challeng-
ing to assess, rendering it difficult to see which one of the curves is
representative. Therefore, we extract a representative hull that en-
closes a centrally outward ordered share of curves. To establish this
order, we resort to a class of order-statistical metrics called data
depth [CANROS] that describe how central an element is within an
ensemble. In this context, centrality can be understood as represen-
tativeness. We use a metric called functional band depth [LPR09],
which builds on functional bands. A functional band B; consist of
k > 2 functions f;, (¢ € I) with restriction interval /:

fi
Bi| | : ={t.y):rel, mn f,.(r) <y < max f(} (1)
. re[1,k] re[l,k]
fi
A function lies between other functional bands if it is enclosed by
the respective minimum and maximum values, as shown in Figure 5.

Filtered time curves e -
Convex hulls of filtered time curves Traditional
and median time curve boxplot

Figure 6: Visual metaphor of the boxplot as applied to time curves.
The cluttered view of eight time curves is simplified by represent-
ing curves as areas corresponding to different quantiles: The 50%
quantile (dark grey) corresponds to the box of the boxplot, while the
80% quantile (light grey) corresponds to the whiskers. The purple
time curve is the most representative one (by functional data depth),
and thus corresponds to the median line in the boxplot.

Formally, we can count this condition using an indicator function x
with true — 1 and false — 0 to define band depth D, ;.

: ; Ja
k -1 J
Du(f) =Y. (") x|t fonirenca|| || ]|@
j=2 J =1 fa

This formula first counts how often a function f; is contained in
bands of length /. The number of actual inclusions is then put in re-
lation to the possible ones. The process is repeated from bands of
length 2 to up to bands of length k. A smaller k is more sensitive to
variation, whereas a larger k is the more resilient to small fluctuation.
Note that Equation (1) can also be expressed as a convex combina-
tion, which emphasizes the enclosing nature of the isosurfaces that
can be defined on this metric, i.e. our enclosing hull. While data
depth has been used to reduce visual clutter and design boxplots
for quite some time [SG11, MWKI14], it has not been applied to
dimension-reduced curves yet. In this application, the calculation of
the functional band depth is performed on the high-dimensional, z-
transformed data. The enclosing hulls are then generated, according
to the order established by data depth, from smoothed time curves
after DR. Figure 6 shows our time curve boxplot that covers the 50%
and 80% quantile of most representative time curves, allowing the
omission of all time curves included in this quantile. Consequently,
recognizing which curves are outliers and which ones are represen-
tative for the whole ensemble is easily possible. Figure 6 shows this
concept applied to an ensemble of eight curves. By showing the two
quantiles (50% and 80%) and the most representative curve (which
corresponds to the median), we follow the well-known design of a
standard boxplot.

As the containment of a curve in the box area not only depends
on being at the correct position, but on being at the correct position
at a specific point in time, it becomes difficult to judge when a given
curve is not included in the curve box area. Hence, we provide an
accompanying scarf boxplot (Figure 7) that depicts box inclusion
over time, with dark grey and light grey markers indicating the in-
clusion in the respective quantile. Since the scarfs are temporally
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Figure 7: Scarf boxplot illustrating representativeness over time
from left to right for each subject that is not included in the inner
quantile box plot area. Colours and labels correspond to the ones
in the main time curve boxplot, while the dark grey and light grey
markers indicate inclusion in the respective boxplot area.

aligned, it is easy to judge when a curve is representative and or not
in comparison to other curves.

5.5. Details using small multiples

The purpose of the time curve visualisation is to give an overview
of the progression of patient state (R1). While it allows for identi-
fying potentially interesting points in time, it is not intended for a
detailed analysis of individual parameters (R2). Given the unavoid-
able projection error, loss of information, and the sanity checking
requirements (R4), we show details on demand in small multiples
of unprotected data dimensions. Thus, an auxiliary line plot that de-
picts values over time and several small line plots allows for easy
superimposition of small time-spans. For each line plot, the user
can select a different data variable in a drop-down menu. Users can
select between 1 and N points on the time curve or auxiliary plot.
Each selected point corresponds to an identically coloured polyline
in each of the small line plots. Respective time series are centered to
the selected time point, showing backward and forward temporal de-
velopment of the data (Figure 8). The user can select the time delta
that is used for the abscissa. The temporal interval is also drawn
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as a semi-transparent window in the auxiliary line plot (Figure 8).
This allows the user to get an impression of temporal change in in-
dividual dimensions by comparing the values at different points in
time. It also allows for comparing the progression of different data
dimensions and, consequently, to infer interdependency and corre-
lation. The line plots relate to requirement R2, since they facilitate
the individual inspection of each line plot while the small multiples
view also allows for investigating localized trends and patterns.

6. Description of the Visualisation System

We implemented our visualisations described in Section 5 as a
client-server web-based application. Costly calculations are per-
formed server side while the presentation of the results is facilitated
client side. This enables access from different terminal devices—a
scenario commonly found in a hospital setting.

The server was implemented using Python. The Flask frame-
work [MRLU] was used to communicate with the HTMLS
client page. For data filtering and sampling, we use Pandas data
frames [Mo10]. Keras [C*15] and Tensorflow [ABC*16] were uti-
lized for the CVAE, while scikit-learn [PVG*11] was used for PCA.
The client-side visualisation and UI was built with the Vue.js frame-
work, and the D3 library [BOH11]. For the WebGL-based rendering
of the 3D space-time cube, Three.js was used.

The system features two distinct views: the first view is meant for
analysing a single subject and offers features for an in-depth post-
hoc analysis. The second view offers comparative visualisations for
an ensemble of multiple subjects.

Figure 8 shows the single-subject mode. The collapsible menu to
the left is used to select a data set and configure most of the visual-
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Figure 8: Overview of the single-subject mode (right) and expandable menu (left). The time curve shows patient state progression (top left;
2D time curve plot (D) and space-time cube 2)). An auxiliary line plot shows a single time series, with time in hours (3). Three samples are
selected (red, brown and blue) to showcase linking. Dark grey lines and markers with custom labels are used to annotate interesting point in
time (e.g. peaks in specific measurement variables). The small line plots (&) show superimposed time intervals (in seconds) based on selected
points, for one selected variable each; the width of the bar in the auxiliary line plot corresponds to the, identically coloured, time segment in
the small line plots. The shown variables can be selected freely from the variables used for projection. The correlation table (5) compares two
points in time that are indicated as red markers in the auxiliary view and the 2D time curve.
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isation pipeline including data selection, processing and choice of
DR technique. This mode features a patient state progression visu-
alised as a filtered time curve and space-time cube visualisation, a
large auxiliary line plot, and four small selection-relative line plots.
A drop-down menu above the time curve visualisation allows for
the selection of a variable that is encoded onto the width of the time
curve. Alternatively, constant width and spatial point density can be
chosen. A second drop-down allows the user to choose between the
colour modes explained in Section 5.3. The filled circle ® indicates
the starting point of the curve, the dotted circle © the endpoint. To
scrutinize the progression of individual variables, a large auxiliary
line plot is shown below the filtered time curve. The visualised vari-
able can be chosen in the drop-down menu above the plot. Right of
the time curve visualisations, small selection-centric line plots are
shown. All plots are linked views that support hovering and selec-
tion as well as annotating time points with labels. Selecting points
on either the time curve or in the auxiliary line plot will determine
the point in time that is shown in the small selection-relative line
plots. These plots show the temporal surroundings of the selected
time points over the chosen variables. In addition to the four small
multiple line plots, a second way to compare segments of the curve
was implemented: a pair of time points on the curve can be selected
(red markers @ in Figure 8). The Pearson correlation coefficients
are calculated for each variable of the two selected points over an
equally sized window (R3). The coefficients are listed in a table,
which can be sorted by correlation or significance.

The multi-subject mode has an analogous menu for data load-
ing and selection, with additional inputs for the quantiles of the
time curve boxplot computation. The main view is a time curve plot
showing an ensemble of (filtered) time curves as well as the time
curve boxplot. It supports toggling the visibility of individual en-
semble members and the enclosing curve boxplots (Section 5.4). To
further inspect a specific subject, the user can switch to the single-
subject view of this subject by selecting it in the legend. Since the
superimposed time curves depict the similarity of the samples in-
stead of a temporal alignment, we added a scarf plot below the time
curves to illustrate box inclusion over time. It only shows subjects
that are not included in the inner quantile range. Thus, representa-
tiveness can be analysed both in terms of values and time.

7. Results and Discussion

In this section, we detail several examples and investigations that
showcase that our presented visual analysis approach is a promis-
ing tool for medical research concerned with ICU data. We also
highlight how these use cases relate to the user requirements. For
the single-subject mode, a set of 82 parameters from the data de-
scribed in Section 3 was used. For the multi-subject mode, we
present the results for nine animal subjects (one animal was omitted
due to short experiment duration) using a set of nine relevant pa-
rameters each. We also evaluated the applicability of our approach
to other ICU data sets using publicly available data from Phys-
ioNet [GAG*00]: MIMIC-III-Waveform [JPS*16, MMV*20] and
MGH/MF-Waveform [WFTR91]. We also investigated the poten-
tial of our visual analysis approach by gathering feedback from our
domain experts during development and by conducting structured
feedback interviews with independent medical professionals.

pe2i17.56%

S s = -2 otz 4 oW b 1 L S i E)
pe1: 26.70% Per: 23.00% Remaining Var. : 63%

Figure 9: Juxtaposition of the time curve and the net weight of the
subject over the whole 94 h (left) and shortened to the last 62 h
(right). Time curves smoothed were with a window size of 150 (Fig-
ure 3 shows the same curve with a windows size of 50).

Single-subject mode. Figure 9 shows the filtered time curve of
subject VNAOO4. The most prominent feature is the significant and
rapid change in status during the first 20 h, indicated by the com-
paratively small temporal change as shown by the small change in
colour and the large difference in state (patient stability: R1). While
it is difficult to pinpoint, our medical experts have identified this
segment of the curve as the onset of anaesthetics and the implanta-
tion of measuring devices that put a strain on the homoeostatic sys-
tem of the animal. Using the auxiliary plot and the small multiples
(R2), we could identify several variables (e.g., heart rate, glucose
and blood pressure) that might explain this rapid change in the time
curve. The dense region at the end of the time curve signifies that
the patient state does not change as drastically anymore but only
fluctuates slightly around a stable state.

During the VNA study, all subjects were infused with high
amounts of liquids over an interval to be then depraved of liquids.
This change can be seen in the continuous weight monitoring. The
points at which the administration of liquids is either started or
stopped leads to noticeable bends in the time curve. As shown in
Figure 9, three of the five administration changes are in a hairball-
like region, roughly between 32 and 94 h. In these 62 h, the observed
subject reaches a stable state, indicating that the variables do not
change considerably. This stabilization can also be seen in several
variables (e.g. heart rate, glucose and blood pressure).

To disambiguate the hairball, the time curve was restricted to this
temporal window of 62 h (see Figure 9, right). The aforementioned
bends in the time curve can be narrowed down to the fact that the
amount of liquids excreted from or added to the organism are sub-
stantial (2.7 and 8.3 kg), straining the organism. Thus, it is expected
that the state as a whole—represented by the time curve—will show
a noticeable reaction (R2).

To test our approach more systematically, we enriched the VNA
data set with patterns corresponding to—exaggerated—scenarios
encountered in real life. One such scenario is the sudden and re-
peated change of a few variables, e.g. a rapid increase in heart rate.
A sudden change in some variables should lead to deviations of
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Figure 10: Artificial oscillations induced in eight (top left) and 16
(top right) of the 82 variables of VNAO04 lead to loop-like patterns
in the resulting time curve, while the rest of the curve changes only
marginally. This test shows that time curves are a robust and intu-
itive approach for the analysis of time-varying multivariate data.

considerable magnitude at the corresponding positions. This is sim-
ulated by enriching an interval in a subset of values with sinusoidal
functions (Figure 10 bottom). These should produce periodically
similar patient states resulting in periodically similar positions in the
time curve (i.e. loop-like structures). The peaks induced by the os-
cillations should indicate a substantially altered overall state, lead-
ing to noticeable deviations from the original time curve trajectory.
This effect can be seen in the marked segments in Figure 10, which
also shows that the effect is amplified when increasing the number
of variables that are simultaneously enhanced with sinusoidal pat-
terns.

Another scenario concerns repetitions in patient state, e.g. large-
scale cyclic behaviour. To simulate such behaviour, a data set was
replicated and concatenated, so that it contained multiple identical
copies of itself. DR was performed as usual. As expected, identical
patient states are plotted at identical position, and thus the expected
time curve exhibits cyclic patterns (see supplementary material).

To demonstrate the applicability of our approach to other ICU
data with different, more general characteristics, we applied the sin-
gle patient analysis to data from PhysioNet [GAG*00]: the MIMIC-
III waveform data set [MMV*20] and the MGH/MF waveform data
set [WFTRO1], which are openly available measurements of typical
parameters recorded in daily clinical routine. While the MIMIC-
IIT data set spans longer time-frames (long-term intensive care), the
MGH data set spans only shorter time-frames. This displays the abil-
ity of our presented application to handle different types of data,
especially with regard to varying length of the time series.

Figure 11 showcases an exemplary analysis of a ~150-h patient
record from the MIMIC-III waveform data set using our presented
application. When all 15 variables are included in the projection,
a prominent peak can be seen (Figure 11, m). Using the auxiliary
plots, we explored the variables and found possible reasons in two
ECG records. After these records were removed, this peak is no

longer present, supporting the hypothesis that these two were the
reason for the peak. Several other features now become more promi-
nent: a bi-partition of the whole structure, and a deflection of the
time curve (@ and W, respectively). We analysed these features in the
same way as the first peak, revealing oxygen saturation (SpO2) and
blood pressure as the main candidates for these features. Removing
the oxygen saturation led to a less pronounced partition of the curve,
while removing the blood pressure removes the loop. Afterwards, a
last prominent loop-like feature can be seen (m), which, however,
can not easily be related to a single variable but instead traced back
to a combination of multiple variables. This could indicate a medi-
cally significant, complex process, warranting further exploration.

We also compared time curves generated using only PCA (Fig-
ure 3) to ones using CVAE coupled to PCA and UMAP (Figure 12).
The most notable feature is the change in the representation of larger
distances. While PCA correctly identifies the first few hours as a
phase of drastic change, it does not show the smaller changes in the
later phase particularly well. CVAE as well as UMAP also correctly
identify this early trend, however, due to their non-linearity, scale it
down. This allows for a higher resolution of the more fine-grained
changes in the later stage. While this leads to a more pronounced
visualisation of smaller changes when using the CVAE, the linear-
ity of PCA might make it easier to judge global similarities. UMAP
typically generates more pronounced local clusters along the time
curve compared to CVAE. Hence, the users can choose between the
methods in our application, based on their preference.

Multi-subject mode. As shown in Figure 6, the time curve box
plot allows the user to assess the representativeness of the subjects
(RS). Figure 13(a) shows the multi-subject view, where each time
curve represents one of the nine animal subjects. Six of these nine
subjects (Figure 13(b)) were part of a temperature control experi-
ment [Pet18]: VNAOOI m and VNAQOO2 m had no active temper-
ature control management, VNAOO3 ® and VNAOO4 m had their
temperature adjusted manually by ICU staff using a hot air blanket,
VNAOO7 m and VNAOOS m were subject to automated tempera-
ture control using a hot air blanket. As subject VNA(0O2 m had a
reduced experiment duration of 57 h [Pet18]—compared to 69 h for
the remaining subjects—the analysis is also restricted to this 57-
h window.

The group for which the temperature was not actively adjusted
(VNAOO1 mand VNAOO2 m) exhibits rather different progressions
of their respective time curves (Figure 13(c)). The time curves of the
manually adjusted group (VNAOO3 mand VNA(OO4 m) show a more
similar trend (Figure 13(d)). The progression of the subjects with au-
tomatically adjusted temperature (VNAOO7 m and VNAOO8 m) is
the most similar (Figure 13(e)). Although temperature is only one of
the nine included variables, it seems that the subjects can be grouped
by the applied temperature adjustment. Actively adjusting the tem-
perature may improve homoeostasis management, which is in turn
visible in the time curve representing the organism state.

The feasibility of the multi-subject mode was also tested on a
subset of the MGH/MF waveform data set [WFTR91] consisting
of 16 patients (mgh002-mgh021, with mgh012, mgh014, mgh017
and mgh018 being omitted due to missing variables). As the data
contained events assumed to be application and removal of the mea-
surement devices, heavily skewing the projection, the tool’s func-
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Figure 11: Analysis of a patient record from the MIMIC-III data set using our application (patient: p042075, 15 variables). The time curve
exhibits a strong peak (%) caused by a peak in two out of three ECG recordings (one is shown below). After these two variables are excluded,
the bifurcated structure is revealed more clearly (W), which is at least partially caused by the oxygen saturation, as the bifurcation becomes
less prominent after removing the SpO2 variable. Lastly, two loop structures are visible (m, m). While one (M) can be removed by excluding
two variables containing blood pressure data, the last one (M) seems to be induced by multiple variables, warranting further inspection.
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Figure 12: Time curves for VNAOO4 created using UMAP (left) and
our CVAE model coupled to PCA (right). See Figure 3 for PCA.

tionality to restrict the time series was used to cut-off beginning and
end of the time series. When displaying the complete time curve en-
semble, cluttering is prohibiting any analysis (Figure 14, left). Our
proposed time curve boxplot visualisation can be used to declutter
the visualisation significantly, while still retaining some informa-
tion, like the identity and shape of the most representative curve
(Figure 14, centre). Inspection of the outliers—time curves that are
not wholly contained either of the percentile ranges—shows that not
only spatial but also temporal inclusion are of relevance when calcu-
lating the functional data depth (Figure 14, right). The scarf boxplot
below visualises the true extents of inclusion in the respective hulls,
both temporal and spatial. It reveals that the yellow curve showing
subject mgh020 is quite often within the 50th percentile range, but
only for very short durations, which might be an interesting aspect
suggesting a more detailed inspection of the individual variables.
The orange curve representing subject mgh013 is always in the 80th
percentile range but only rarely in the 50th one, suggesting that this
patient might be overall more dissimilar to the most representative
patient, but has no strong occasional deviations like mgh020.

Expert feedback. To estimate the utility in clinical practice, we
collected feedback from our expert co-authors as well as four med-
ical doctors from the local university hospital. The latter were nei-

ther involved in the development of our application, nor had any
other contribution to this work. They saw our tool for the first time
in the feedback session. The feedback from these experts was col-
lected in structured feedback sessions of about 1 h each, in which
they were given introductions, performed three tasks and were asked
eight questions. During the tasks, we used a think-aloud protocol. In
the first task, the users were presented with a projected time curve
with two distinctive points selected and were asked to find possi-
ble reasons for this behaviour, essentially performing a top-down
workflow (R2). The second task was set up for a bottom-up work-
flow, with a distinctive point being selected in a single variable us-
ing the auxiliary line plot. Finally, the users were presented with
the multi-subject setup described above and were asked to eval-
uate if the temperature groups defined by the experimental setup
can be validated by the time curves course. The eight questions
were designed with the requirements in mind to get a measure of
the general usefulness of the tool (see supplementary material for
screenshots of the prepared starting points for each task and the
questions).

Overall, the users clearly understood the presented time curve as
a representation of the overall patient state and its progression. All
users mentioned its primary benefit in the use as a patient overview,
as the tools and workflows mentioned as current clinical practice
(e.g. Excel, SPSS) mainly utilize single parameters, often reduced
to a few statistical key figures (i.e. mean and median), making it
difficult to judge the overall patient state. One of the independent
experts explicitly noted that such a visual analysis tool is ‘exactly
what we need’. They rated the combination of detail plots (auxil-
iary and small multiples) and time curve as highly usable to judge
the overall stability of a patient (R1). While the users understood
the general concepts of the DR methods, several of them pointed
out that—in part due to the complexity and unfamiliarity of DR—
some training is needed to fully exploit the potential of the system,
especially if it was to be used in a live environment.

All users were also successful in judging the stability of patients
when used in a multi-subject scenario (RS). One expert noted that,
due to time constraints and the large amount of generated data,
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Figure 13: (a) An ensemble of nine animal subjects shown as filtered time curves. (b) The six subjects that were part of the temperature control
experiment. (c) Subjects VNAOOI W and VNAOO2 m: no active temperature control. (d) VNAOO3 m and VNA0OO4 WM: manual temperature control.
(e) VNAOO7 m and VNAOOS m: automated temperature control. Each time curve results from the same nine parameters of each subject.

mghoo7

Figure 14: Ensemble of 16 patients from the MGH/MF data set.
A naive overview of all time curves is quite cluttered (left). Our
time curve boxplot (centre: combined with the most central time
curve; right: only outliers) allows for detailed analysis based on
functional data depth. Bottom: Scarf boxplot showing detailed in-
Sformation about inclusion of the curves for the respective quantile
hulls.

retrospective analysis rarely happens in clinical practice, although it
would be important. They reckoned that the fast overview provided
by our application—especially the time curves—could enable more
frequent retrospective case analyses, which they expect to be highly
useful. The top-down approach was favoured by most users. How-
ever, all users were also successful in using the bottom-up approach.
One user even preferred this way of working, indicating the func-
tionality of both approaches (R2).

When asked about the handling of missing data, the users gen-
erally either had a strong preference for the chosen method (Sec-
tion 5.1, R4), or did not have a clear preference, mentioning pros
and cons for either: our approach and smooth interpolation. Fur-
thermore, clearly communicated and user-controllable filtering was
strongly preferred as well, as even values perceived as ‘faulty’ could
yield helpful medical insights.

One user noted that curve visualisations, especially as space-
time cubes, are not commonly used for ICU data in the medical
domain. However, they were shown to be beneficial for solving
complex tasks in other domains [KDA*(09]. In general, the addi-
tional auxiliary functions (i.e. space-time cube, correlation view and
colour/width modes) were less frequently used. However, some of
the experts explicitly noted that they consider them interesting and

useful and presume that they would apply them more often after
more extended use. Nevertheless, only two of them rated the space-
time cube as not useful. Regarding possible additions, the inclusion
of the value corridor in the auxiliary view (as already implemented
by colour-coding for the time curve) was mentioned multiple times.
Multiple users reckon that it would be beneficial to allow for the
display of multiple variables in the auxiliary plot. Some users ex-
pressed the need for a guide to more easily find variables that exhibit
significant features for time points selected in the time curve.

In conclusion, our application shows high potential and accep-
tance by medical experts, not only for the post-hoc analysis of ex-
perimental data, but also for fast and convenient retrospective anal-
ysis. Based on the expert feedback we collected, it seems to satisfy
the increasing demand for analysis tools to cope with the increasing
data output and complexity of medical surveillance devices.

8. Conclusion and Outlook

We presented a web-based visual analytics application for multivari-
ate, time-varying ICU surveillance data. Due to the large amount
of data, a comprehensive view on the patient state progression is
quite difficult and traditional visualisations like line charts fail to
adequately present the data. Our application uses DR to visualise
these high-dimensional data as time curves to provide an overview
of this progression of the patient state over time. The time curves are
shown as a 2D plot and in a space-time cube. Since ICU data can
have missing or erroneous values and parameters with varying sam-
pling rates, we extended the time curves using filtering and smooth-
ing. To prevent misinterpretation of the smoothed time curve and to
show the density of the input data, the underlying data can be shown
as colour-coded density in the background. A small multiples view
shows details on demand about the individual dimensions as line
plots and allows users to select and compare different points in time.
Our visual analysis application also provides methods to facilitate
the comparison of multiple patients by projecting their individual fil-
tered time curves into one two-dimensional space. Furthermore, the
system can depict an ensemble as time curve boxplots that summa-
rize typical time curves while highlighting outliers. The time curve
boxplots are complemented by a scarf boxplot that shows at which
points in time the outlier curves deviate from the box. We evalu-
ated our application with real-world data and structured feedback
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session with medical experts, who consistently rated our applica-
tion as useful and see a definite potential for further developments.

In the future, we also want to extend the scope of our application
to live data, which would allow for monitoring of patients in the hos-
pital. To this end, our application has to be improved and retargeted
in several ways: first, it has to be ensured that the time curve does
not change too drastically when adding new samples and recalculat-
ing the DR. One possible avenue is the adaption of projection tech-
niques to allow for the progressive addition of data points. Several
interesting approaches to avoid frequent, global recalculations have
been proposed for streaming data (e.g. [FCS*20]). Improving pro-
jection quality, e.g. through landmark-based guidance as proposed
by Vernier et al. [VCT21], is an active field of research. Its transfer-
ability to our application requires further investigation.
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