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EnzymeML is an XML-based data exchange format that supports the

comprehensive documentation of enzymatic data by describing reaction

conditions, time courses of substrate and product concentrations, the

kinetic model, and the estimated kinetic constants. EnzymeML is based on

the Systems Biology Markup Language, which was extended by implement-

ing the STRENDA Guidelines. An EnzymeML document serves as a con-

tainer to transfer data between experimental platforms, modeling tools,

and databases. EnzymeML supports the scientific community by introduc-

ing a standardized data exchange format to make enzymatic data findable,

accessible, interoperable, and reusable according to the FAIR data princi-

ples. An application programming interface in Python supports the integra-

tion of software tools for data acquisition, data analysis, and publication.

The feasibility of a seamless data flow using EnzymeML is demonstrated

by creating an EnzymeML document from a structured spreadsheet or

from a STRENDA DB database entry, by kinetic modeling using the mod-

eling platform COPASI, and by uploading to the enzymatic reaction kinet-

ics database SABIO-RK.

Introduction

Enzyme catalysis and enzymology provide a powerful

toolbox for sustainable synthesis routes and innovative

solutions for bio-based chemistry. A better under-

standing of cellular biochemistry and the comprehen-

sive biochemical characterization of the desired

enzyme-catalyzed reaction enable novel approaches in

enzyme engineering and process development [1].

Standardization of reporting of enzymatic data and

metadata is considered to be pivotal to accelerating

bioprocess development and reducing costs [2], facili-

tating sharing, analysis, and reuse of data and thus

enabling quality control and reproducibility of experi-

ments [3]. Therefore, a major challenge for enzymol-

ogy and biocatalysis lies in the current practices of
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dealing with experimental data in academic laborato-

ries [4]. In most academic research groups, data acqui-

sition, curation, and documentation are performed

manually without a universally accepted standard

across laboratories. Data and metadata are typically

stored in ad hoc repositories, such as paper lab note-

books, spreadsheets in different formats, and

semistructured text files containing custom annota-

tions. Experimental or computational data are often

poorly annotated, lacking a complete description of

the acquisition and analysis procedures, or associated

metadata. Despite previous efforts to address these

issues [5], raw data are rarely available in machine-

readable, even less in machine-actable format, prevent-

ing their further analysis and third-party validation.

As it stands, the process of data acquisition, data anal-

ysis, and documentation is time-consuming and error-

prone, as is the recovery and interpretation of legacy

data in most academic laboratories. Consequently,

both the quality and the completeness of data and

metadata solely rely on the experimenter’s expertise

and care.

Recent meta-research results indicate that the repro-

ducibility crisis in the biomedical sciences is caused by

the lack of standards in reporting and sharing experi-

mental protocols, results, and data [6,7]. This is also

true for enzymology and biocatalysis. An empirical

analysis of published papers investigating enzyme func-

tion illustrates how critical information for the repro-

ducibility of experimental finding is missing in the

literature [8]; the missing information includes the con-

centration of enzyme and/or substrates, the composi-

tion of the entire buffer systems including the identity

of counter-ions, pH values, and assay temperatures.

The incompleteness of metadata prevents the inter-

pretation of inconsistent data arising from different

studies. An example of such variability is demon-

strated in a large global benchmark study [9], in which

the variability of a dissociation constant for a protein–
protein interaction determined by 150 participants

using a general protocol exceeded its average value.

When investigators were given detailed fixed protocols,

the dissociation constants still varied up to 20%

[10,11]. This kind of irreproducibility is commonplace

in enzymology and has an essential impact on subse-

quent research.

In response to the reproducibility crisis, the scientific

community is developing and adopting new guidelines

for reporting experimental protocols and statistical

analysis. Scientific journals are responding accordingly

[12], and there has been a recommendation to modify

the academic reward system by recognizing scientists

who aligned with best practices for reproducible

research [13]. Initiatives such as the German National

Research Data Infrastructure develop an infrastructure

for standardized research data exchange [14], the Stan-

dards in Laboratory Automation consortium (SiLA)

provide a framework for the exchange, integration,

sharing, and retrieval of electronic laboratory informa-

tion (https://sila2.gitlab.io/sila_base/), and data reposi-

tories such as Zenodo and Dataverse enable data

sharing [15]. Efforts in standardization and data repro-

ducibility have been long established in other ‘omics

fields, with standard exchange formats for transcrip-

tomics [16], proteomics [17], and metabolomics [18] data

becoming increasingly developed and adopted over the

last twenty years. However, in biocatalysis and enzymol-

ogy exchange standards or software support to aid data

analysis, management, and sharing is still absent, and

raw experimental data such as the time dependency of

substrate or product concentration, derived data such as

kinetic parameters, and metadata such as reaction con-

ditions or the kinetic model are typically reported in

plain text, figures, or tables [19]. Currently, kinetic

parameters and corresponding information about the

reactions, enzymes, and experimental conditions are

extracted and annotated manually from scientific publi-

cations and inserted into databases such as SABIO-RK

[20] or BRENDA [21] to structure and standardize the

data. Missing information such as unambiguous exter-

nal identifiers is added manually by database curators.

As a first step for the standardized reporting of enzyme

function data, the enzymology and biocatalysis commu-

nity has established the Standards for Reporting Enzy-

mology Data (STRENDA) Guidelines, which provide

the minimum information necessary to describe assay

conditions and enzyme activity data [22,23]. Currently,

more than 55 international biochemistry journals have

included adherence to the STRENDA Guidelines in

their instructions for authors reporting enzymology

data. As the guidelines are rarely enforced by the jour-

nals and as essential information is still omitted in the

literature, the web-based software tool STRENDA DB

was developed that incorporates the guidelines [24].

STRENDA DB has been established as a public data-

base to support authors checking the completeness of

their data upon submission of their manuscript and to

provide public access to data on reaction conditions and

kinetic parameters of an experiment. However, the

upload of data is performed manually via a graphical

user interface, and the process from data acquisition to

kinetic modeling and publication is still time-consuming

and error-prone. Most importantly, original data such

as the measured time course of substrate and product

concentrations is not reported or has to be extracted

from figures, thus preventing the reuse of original data
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for kinetic modeling. Not only is published data incom-

plete and inaccessible, but also unpublished research

data and metadata are stored by research group mem-

bers with insufficient documentation and annotation. In

addition, the current data management prevents

researchers from upscaling their experimental designs to

high-throughput biocatalytic approaches by using pipet-

ting robots [25] or flow reactors [26], and hinders the

comprehensive study of the multidimensional parameter

space of biocatalytic reactions.

Here, we introduce EnzymeML, a data exchange

format for biocatalysis and enzymology, which makes

enzyme data findable, accessible, interoperable, and

reusable in accordance to the FAIR data principles

[27]. An application programming interface (API) pro-

vides a Python library to integrate applications and

databases and to enable a seamless data flow from the

bench to kinetic modeling tools and publication plat-

forms. The machine-actable EnzymeML document on

data and metadata of an enzymatic reaction could

serve as a micropublication, supplementing the respec-

tive scientific paper.

Principles of EnzymeML

EnzymeML has been designed to support data acquisi-

tion, data analysis, and sharing of data by providing a

standardized exchange format for enzymatic data

(Fig. 1). EnzymeML is written in eXtensible Markup

Language (XML) and comprises the most relevant

data and metadata from measurement and modeling.

Given the ubiquity of XML, vast amounts of software

are available that read, write, manipulate, and process

XML documents. More importantly, XML allows for

the specification of a machine-actable schema, which

ensures interoperability. The central core of Enzy-

meML is the Systems Biology Markup Language

(SBML), an established data format in systems biology

for sharing, evaluating, and developing models of bio-

chemical reaction networks [28]. Furthermore, Enzy-

meML extends SBML toward the inclusion of

measurement data as comma-separated files (CSV),

which together with the XML part are an integral part

of the resulting EnzymeML archive. Interoperability

with existing software tools and databases is achieved

by applying a common terminology and vocabulary

that allow the integration of data from various sources

for subsequent processing, because many of the con-

cepts supported by SBML—educts, products, reac-

tions, modifiers, reaction rates—are common to

enzymology and biocatalysis. However, EnzymeML

goes beyond SBML because it serves to describe the

effect of enzyme sequence and reaction medium to an

enzymatic reaction.

Fig. 1. Structure of an EnzymeML document. An EnzymeML document is a ZIP container in OMEX format and contains the experiment file

(SBML) with the metadata of the experiment, the kinetic model, and the estimated kinetic parameters, and the measurement files (CSV)

with the time courses of substrate and product concentrations. The manifest file (XML) lists the content of the ZIP container.
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EnzymeML implements the STRENDA guidelines

For the complete machine-actable description of an

enzymatic experiment, the STRENDA Guidelines were

incorporated. In addition, metadata on the experi-

ments and the kinetic model were included, resulting

in a comprehensive data exchange format that com-

prises 71 attributes (Table 1). The current version of

EnzymeML includes all STRENDA fields with a con-

trolled vocabulary or values and excludes fields with

plain text such as experiment methodology, in order to

make EnzymeML structured and machine actable.

EnzymeML was built within the framework of

several internationally recognized standards

SBML is a widely used XML-based markup language

and describes almost 50% of the attributes (Table 1).

MathML was applied to describe the equation of the

kinetic model [28], and the guidelines on Minimal

Information Required in the Annotation of Models

(MIRIAM) [29] were applied for the consistent anno-

tation of components such as reactants, products, and

enzymes, using terms from external data repositories

such as ChEBI [30] and UniProt [31]. A controlled,

relational vocabulary of terms, the Systems Biology

Ontology (SBO) [32], was used to define reactants,

inhibitors, activators, parameters, and the kinetic

model. All files are combined into a single document

using the OMEX format [33]. Furthermore, Enzy-

meML uses the Distributions package for SBML Level

3 (http://sbml.org/Documents/Specifications/SBML_

Level_3/Packages/distrib) to support the specification

of ranges of initial concentrations.

EnzymeML is extensible

EnzymeML-specific attributes are added to SBML

using the “annotation” element, which supports meta-

data specific to enzymology to be added to the XML

document whilst maintaining compatibility with

SBML. EnzymeML documents are valid SBML files

and can therefore be used and manipulated by many

software tools that support the SBML format.

EnzymeML is platform independent

XML has been designed to store and transfer data,

and is fully agnostic to the operating system and sup-

ported by different programming languages. Comma-

Separated Values (CSV) is a platform-independent text

file format, which was designed for storing and trans-

porting data structured in tables. CSV-formatted files

can be read by the modeling platform COPASI [34]

and by spreadsheet editors such as Excel. All compo-

nents of EnzymeML are self-descriptive (SBML,

MathML, OMEX), which makes EnzymeML human

readable and machine actable.

EnzymeML is modular

EnzymeML was developed as a container for experimen-

tal and modeling data, supporting a seamless data flow

between different applications (Fig. 2). Data obtained

from an experiment and metadata on experimental con-

ditions can be stored by the experimentalist in a spread-

sheet, which is convertible into EnzymeML using the

API. Longer term, it is hoped that electronic lab note-

books, laboratory information management systems, and

enzymology software will support the format. The Enzy-

meML document contains sufficient experimental data to

allow for the estimation of the kinetic parameters by

modeling platforms such as COPASI [34], BioCatNet

[35], or MatlabTM. Kinetic parameters can then be

included in the EnzymeML document. As a consequence,

enzyme assay data may be easily reanalyzed and checked

with a range of data fitting algorithms, increasing

reusability and confidence in both the experimental data

and reported kinetic parameters.

EnzymeML enables data publication in

compliance with FAIR principles

An EnzymeML document stores comprehensive infor-

mation about data and metadata of an enzymatic

experiment: the experimental conditions, the time

course of substrate and product concentration, the

kinetic model, and the estimated kinetic parameters,

thus making the experiment and its analysis repro-

ducible. Upon publication, it is recommended to use

EnzymeML documents as supplementary material. By

depositing EnzymeML documents on platforms such

as FAIRDOMHub [36] or Dataverse [37] using a digi-

tal object identifier, EnzymeML documents are find-

able and accessible. EnzymeML documents also

include references to the scientific publications from

which they arose, providing contextual information.

Structure of EnzymeML documents

An EnzymeML document is a ZIP container in the

widely used OMEX format [33]. It consists of three file

types: a file using SBML to describe the experimental

reaction conditions, the kinetic model, and the kinetic

parameters, CSV (comma-separated values)-formatted

files to store the time courses of substrate and product
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Table 1. List of attributes derived from the STRENDA

recommendations. Mandatory fields are marked with an asterix (*).

STRENDA guidelines EnzymeML

List level 1A

Identity of the enzyme

Name of reaction catalyst* SBML Species:Name

EC number EnzymeML Protein:ECNumber

Sequence accession

number

EnzymeML Protein:seqAcc

Organism/species and strain EnzymeML Protein:organism

Additional information on the enzyme

Isoenzyme (variant) Not included

Tissue Not included

Organelle Not included

Localization Not included

Post-translational

modification

Not included

Preparation

Description Not included

Artificial modification Not included

enzyme or protein purity Not included

Metalloenzyme Not included

Storage conditions

Storage temperature Not included

Atmosphere if not air Not included

pH Not included

At which temperature was

the pH measured?

Not included

Buffer and concentrations

(including counter-ion)

Not included

Metal salt(s) and

concentrations

Not included

Other components Not included

Enzyme/protein

concentration

Not included

Assay conditions

Substrate purity Not included

Measured reaction* SBML Reaction:name

Assay temperature EnzymeML Conditions:temperature

Assay pressure Not included

Atmosphere if not air Not included

Assay pH EnzymeML Conditions:pH

Buffer and concentrations* SBML Species:name/

initialConcentration

Metal salt(s) and

concentrations*

SBML Species:name/

initialConcentration

Other assay components* SBML Species:name/

initialConcentration

Coupled assay components Not included

Substrate and concentration

ranges*

SBML Species:name/

initialConcentration

EnzymeML InitConcs:initConc

Enzyme/protein

concentration*

SBML Species:name/

initialConcentration

Varied components EnzymeML InitConcs

Total assay mixture ionic

strength

Not included

Table 1. (Continued).

STRENDA guidelines EnzymeML

Activity

Initial rates of the reaction

measured*

SBML KineticLaw:localParameter

Enzyme activity* SBML KineticLaw:localParameter

Methodology

Assay method Not included

Type of assay Not included

Reaction stopping Not included

Direction of the assay Not included

Reactant determined Not included

Additional material desirable

Free metal cation SBML:Species Modifer

Reaction equilibrium

constant*

SBML KineticLaw:localParameter

List level 1B

Required data for all enzyme functional data

Number of independent

experiments

EnzymeML:listOfMeasurements

Precision of measurement Not included

Referring to subunit or

oligomeric form

Not included

Data necessary for reporting kinetic parameters

kcat SBML KineticLaw:localParameter

Vmax SBML KineticLaw:localParameter

kcat/Km SBML KineticLaw:localParameter

Km SBML KineticLaw:localParameter

S0.5 SBML KineticLaw:localParameter

Coefficients of cooperativity SBML KineticLaw:localParameter

How was the given

parameter obtained

SBML KineticLaw:localParameter

Model used to determine

the parameters

SBML KineticLaw:localParameter

Substrate inhibition (Ki

value)

SBML KineticLaw:localParameter

Data required for reporting inhibition and activation data

Time-dependence and

reversibility

SBML KineticLaw:localParameter

Inhibition types (reversible,

irreversible)

SBML KineticLaw:localParameter

Additional data in EnzymeML beyond STRENDA guidelines

Product(s)* SBML Species:Name

Time course data of

substrate and product

CSV

CSV column definition* EnzymeML:format

Replicate definition* EnzymeML:replica

Amino acid sequence* EnzymeML Protein:sequence

General kinetic model SBML KineticLaw:localParameter

InChI identifier for

substrates and products

EnzymeML:inchi

SMILES identifier for

substrates and products

EnzymeML:smiles

Literature reference:

PubMed ID

EnzymeML:pmid

Literature reference: DOI EnzymeML:doi

Literature reference: URL EnzymeML:url
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concentrations, and a manifest file lists the content of

the ZIP container (Fig. 1).

The experimental conditions are reported according

to the STRENDA recommendations, the kinetic model

is described by using MathML and SBML in the

experiment file (Fig. S1). This file also describes

the format of the CSV-formatted file, which contains

the raw time course data. Instead of using headers to

describe columns, the complete CSV-formatted file

description is done within the SBML file. This

approach has the advantage of enabling a comprehen-

sive description of each column, such as measured spe-

cies, units, and data types, instead of a single header.

The SBML file uses two elements, notes and annota-

tion. A notes tag contains human-readable information

as plain text, whereas an annotation tag contains

structured, machine-actable information. Notes and

annotation tags are used to add information, which is

required by the STRENDA Guidelines, but not

included in SBML, such as protein sequence, pH, or

temperature. Thus, this file is a valid SBML document,

which contains additional information on enzyme-

catalyzed reactions. Furthermore, any information that

is not machine-readable but required by the

STRENDA Guidelines or not part of the data model

can be included to the OMEX archive as an arbitrary

file (e.g., methodology or figures). An extensive

description of the EnzymeML document structure is

available in theSupporting Information.

EnzymeML application programming
interface

Although EnzymeML is semi-human-readable, the

user is not expected to read or write EnzymeML

documents directly, but to use software to generate

EnzymeML documents, which can then be used as a

standardized exchange format to transfer data between

applications (Fig. 2). APIs to read, write, edit, and

visualize EnzymeML have therefore been developed,

using the popular programming language Python, to

support the development of such software tools. The

library PyEnzyme was built based on its respective

SBML counterpart libSBML. To simplify the imple-

mentation of the libraries for enzyme-catalyzed reac-

tions, the terminology of enzymology and biocatalysis

is used, hiding the more systems biology focused

SBML terms, while maintaining full compatibility with

the SBML format.

The adaption of the API to an application is

enabled by an additional thin layer, which maps the

objects of the API to the equivalent objects defined

within the respective application. Thus, by editing a

template, the functionality of reading and writing of

EnzymeML can be easily incorporated into an appli-

cation without the need to modify the API. For five

applications (COPASI import/export, STRENDA DB

export, BioCatNet export, SABIO-RK import, simu-

lation of time course data), application-specific thin

API layers are provided (TL_COPASI, TL_STREN-

DAML and TL_BioCatNet, respectively). Because

the API enables batch processing, management of

enzymatic data is scalable, and high throughput

strategies of experimentation and data analysis

become feasible. By data export in formats such as

Pandas DataFrame, large datasets could be analyzed

by novel analysis methods based on machine learn-

ing.

Upon reading, writing, and visualization of Enzy-

meML documents, the API controls data

Fig. 2. Integration of software tools. The

EnzymeML document serves as a container

to transfer data between tools such as

experimental platforms, modelling tools,

and databases for the publication of

enzymatic experiments. The EnzymeML API

consists of a Python library PyEnzyme and

provides read and write functionalities to

the applications. The API is adapted to each

application by an application-specific thin

API layer.
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completeness and consistency, such as checking the

definition of reactants and proteins upon reading or

writing of a reaction, or by checking that scalar

properties such as pH are within the necessary

range. A specific validation tool guarantees compati-

bility with SBML. Further application-specific valida-

tion tools have been added, such as a STRENDA

DB validator to check for compatibility with the

STRENDA Guidelines. For more details, readers

can find a description of the API below and the

Supporting Information.

PyEnzyme provides a functionality to validate an

EnzymeML document by using an EnzymeML valida-

tion object. The validation object specifies the minimal

requirements of a database for all fields present in an

EnzymeML document and is hosted at the database.

Prior to upload of an EnzymeML document to a data-

base, the validation object is read by PyEnzyme and

the compliance of the EnzymeML document with the

data model of the database is checked by validating

that all mandatory fields are provided by the Enzy-

meML document. Furthermore, field-specific contents

such as value ranges, controlled vocabularies, and

ontologies are checked. Database providers can specify

mandatory fields and field-specific contents by using

the EnzymeML validation spreadsheet (https://github.

com/EnzymeML/PyEnzyme/tree/main/templates), which

is converted to an EnzymeML validation object.

Application of EnzymeML

The power of EnzymeML is demonstrated by selected

applications for experimental enzymologists, modelers,

and software developers (Fig. 3).

Creating EnzymeML documents from
structured spreadsheets

In the absence of a standard format, experimentalists

typically store their experimental time course data in

a spreadsheet following an ad hoc structure.

Recently, a CSV-formatted spreadsheet, the BioCat-

Net template [35], was proposed to store and report

experimental data on enzyme-catalyzed reactions

according to the STRENDA Guidelines. The API

was used to convert the BioCatNet spreadsheet, con-

taining time course data on substrate and product

concentration and comprehensive information as the

reaction conditions, to EnzymeML. Initially, each

field of the respective spreadsheet template was

extracted via a thin API layer (TL_BioCatNet) and

further processed by the API to an object layer.

Fig. 3. Applications of EnzymeML. The PyEnzyme API was used for the conversion of a BioCatNet spreadsheet to an EnzymeML

document (1) using the Thin Layer TL_BioCatNet. Furthermore, a STRENDA-DB entry was converted to an EnzymeML document by using

the Thin Layer TL_STRENDA (2) and uploaded to the database SABIO-RK (3). Finally, this EnzymeML document was used to simulate and

add time course data (4) for a parameter estimation using COPASI (4).
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Finally, the objects were written to an EnzymeML

document (see SI Chapter 3.1).

Creating EnzymeML documents from
STRENDA DB entries

STRENDA DB is a database on enzyme-catalyzed

reactions, which covers the most important informa-

tion on reaction conditions and kinetic parameters

[24]. The API was used to create an EnzymeML docu-

ment from a STRENDA DB entry via a STRENDA

DB-specific thin API layer (TL_STRENDA) to the

object layer using the PyEnzyme library. The resulting

EnzymeML document was then created by the API

(see SI Chapter 3.2).

Upload of EnzymeML documents to
SABIO-RK

SABIO-RK is a curated database that contains infor-

mation about biochemical reactions, their kinetic rate

equations with parameters, and experimental condi-

tions [20]. An already existing SBML parser for the

upload of SBML models in SABIO-RK was extended

to read the additional annotations in EnzymeML to

allow the import of EnzymeML documents and to cre-

ate a new SABIO-RK entry in the internal curation

interface (see SI Chapter 3.3). SABIO-RK curators

check the new SABIO-RK entries for consistency and

completeness according to the SABIO-RK require-

ments before they are finally submitted to the public

SABIO-RK database.

Editing of EnzymeML: simulation of
time course data from kinetic
parameters

STRENDA-DB entries provide for an enzyme-

catalyzed reaction the kinetic parameters KM and kcat
assuming a Michaelis–Menten model and the concen-

tration range of the substrate. However, they are

lacking information on the product and on the time

course of substrate or product concentrations. PyEn-

zyme was used to add the product and time course

data to the EnzymeML document (see SI Chapter

3.4). By a single function in the API, the time course

of substrate concentrations was simulated from the

kinetic parameters for initial concentrations from 0 to

0.5 mM for a time interval of 200 s to visualize

kinetic behavior and study the effect of kinetic

parameters.

Kinetic modeling of EnzymeML data
by COPASI

COPASI is a modeling and simulation environment,

which supports the OMEX format [34]. Using the

PyEnzyme library and a COPASI-specific thin API

layer (TL_COPASI), the time course data (measured

concentrations of substrate or product) are loaded into

COPASI. Within COPASI, different kinetic laws are

applied, kinetic parameters are estimated, and plots

are generated to assess the result. The selected kinetic

model and the estimated kinetic parameters are then

added to the EnzymeML document (see SI Chapter

3.5).

Outlook

For many years, researchers worldwide from various

disciplines have recognized that data published in the

literature are not reliable unless the full set of informa-

tion required is provided [23]. Therefore, the FAIR

principles were introduced to encourage the compre-

hensive documentation of structured metadata in all

stages of their life cycle in order to guarantee repro-

ducibility of experiments and to enable reuse of results.

A discipline-specific standard data exchange format

such as EnzymeML therefore provides three function-

alities to optimize research in biocatalysis and enzy-

mology: it allows the experimentalist to collect data

and metadata in a structured format for data analysis;

it allows project partners to transfer data and meta-

data between different sites and different applications;

and it enables findable and reusable publication and

archiving of data and metadata [38].

Currently, data flow from laboratory to publication

is a challenging and complex process involving diverse

processing stages, and numerous steps of data refor-

matting and manual input. Such manual approaches

are becoming increasingly unsustainable, especially in

the light of recent advances in miniaturization and

robotics, which have enabled the intensive, high-

throughput screening of enzymes and process condi-

tions [39]. Such technological advances foster the dis-

covery of novel enzymatic systems and the (retro-)

synthetic design of enzyme-catalyzed reaction cascades

through integration of systematic data acquisition,

data analysis, and simulation [40].

In a fully digitalized biocatalytic laboratory, an elec-

tronic lab notebook supports researchers at the bench

to plan experiments and to collect experimental data

and metadata [41,42], all laboratory devices are con-

nected by a common standard [43], various modeling
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and data analysis tools are combined to analyze the

data [34,35,44], and the results are uploaded to search-

able repositories without manual intervention [20,24].

With the integration of EnzymeML, the interoper-

ability and compatibility of the tools and databases

will be improved, and possible current limitations and

inconsistencies in the data models of the repositories

will be resolved. In the future, EnzymeML will be

combined with other standards to enrich the data

model and to connect disciplines that are relevant to

enzymology. Incorporating AniML [43] or SiLA

enables access to laboratory devices, and ThermoML

[42] offers a comprehensive description of the reaction

medium.

The introduction of EnzymeML as a uniform trans-

port container for experimental data and metadata will

encourage the development of software infrastructure

built on this standardized format to greatly simplify

the process of analyzing and publishing enzymology

data, supporting the increasing experimental through-

put, and ultimately promoting the digitalization of the

fields of enzymology and biocatalysis [14].
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