
Citation: Elwert, M.; Ramsaier, M.;

Eisenbart, B.; Stetter, R.; Till, M.;

Rudolph, S. Digital Function

Modeling in Graph-Based Design

Languages. Appl. Sci. 2022, 12, 5301.

https://doi.org/10.3390/

app12115301

Academic Editors: Enrico Vezzetti,

Yosoon Choi and Radu Godina

Received: 23 February 2022

Accepted: 18 May 2022

Published: 24 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Digital Function Modeling in Graph-Based Design Languages
Michael Elwert 1,*, Manuel Ramsaier 2, Boris Eisenbart 3 , Ralf Stetter 4 , Markus Till 4 and Stephan Rudolph 5

1 ifm ecomatic GmbH, 88079 Kressbronn, Germany
2 CFEngineering GmbH, 88250 Weingarten, Germany; manuel.ramsaier@cfengineering.de
3 School of Architecture and Design, Swinburne University of Technology, Hawthorne, VIC 3122, Australia;

beisenbart@swin.edu.au
4 Faculty of Mechanical Engineering, Ravensburg-Weingarten University (RWU), 88250 Weingarten, Germany;

ralf.stetter@rwu.de (R.S.); markus.till@rwu.de (M.T.)
5 Institute of Aircraft Design, University of Stuttgart, 70569 Stuttgart, Germany; rudolph@ifb.uni-stuttgart.de
* Correspondence: michael.elwert@ifm.com

Featured Application: Multicopter.

Abstract: The main focus of this paper is the integration of an integrated function modeling (IFM)
framework in an engineering framework based on graph-based design languages (GBDLs). Over
the last decade, GBDLs have received increasing attention as they offer a promising approach for
addressing several important challenges in engineering, such as the frequent and time-consuming
transfer of data between different computer aided engineering (CAE) tools. This absorbs significant
amounts of manual labor in engineering design projects. GBDLs create digital system models at a
meta level, encompassing all relevant information concerning a certain product design and feeding
this into the relevant simulation tools needed for evaluating the impact of possible design variations
on the performance of the resulting products/parts. It is possible to automate this process using
digital compilers. Because of this, it is also possible to realize systematic design variations for a
very large number of parameters and topological variants. Therefore, these kinds of graph-based
languages are a powerful means for creating a large number of viable design alternatives and for
permitting fast evaluation processes against the given specifications. While, thus far, such analyses
tend to be based on a more or less fully defined system, this paper proposes an expansion of the
applicability of GBDLs into the domain of product functions to cohesively link conceptual with
embodiment design stages. This will also help with early systematic, automated generation and
the validation of design alternatives through relevant simulation tools during embodiment design.
Further, it will permit the automated exploration of function paths and enable extended analysis
possibilities, such as the detection of functional bottlenecks, while enhancing the traceability of the
design over the development process. For these extended analysis possibilities, a function analysis
tool was developed that adopts core ideas of the failure mode and effects analysis (FMEA). In this,
the functional distinction between function carriers and function-related processes allows the goal-
directed assessment of component reliabilities and the detectability and importance of processes in a
technical system. In the paper, the graph-based modeling of functions and the function analysis tools
are demonstrated on the example of a multicopter.

Keywords: function modeling; systems engineering; digital engineering; graph-based design

1. Introduction

Function modeling enables engineers in product development to synthesize, elab-
orate, concretize, evaluate, communicate and discuss technical problems and solutions,
and even to explore and understand potential failure mechanisms in complex systems [1].
The functional domain links the requirements for technical systems to possible solution

Appl. Sci. 2022, 12, 5301. https://doi.org/10.3390/app12115301 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115301
https://doi.org/10.3390/app12115301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5595-0327
https://orcid.org/0000-0001-5112-997X
https://doi.org/10.3390/app12115301
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115301?type=check_update&version=2

Appl. Sci. 2022, 12, 5301 2 of 28

concepts and is therefore of paramount importance for digital product development pro-
cesses. Current investigations show that system architectures created from the functional
domain are nearly identical to the architecture of real systems [2]. In the field of digital
function modeling, generic libraries for functions were developed [3] and were formulated
as object-oriented models using the well-known Systems Modeling Language (SysML) [4].
The central advantages of this formulation are, on the one hand, the improvement of model
consistency and traceability and, on the other hand, the integration of simulation processes
in order to provide the possibility of an early evaluation of concept variants [4]. In spite
of these advantages, the integration of the functional domain into current digital product
development processes in industry has not been addressed sufficiently yet. This paper
investigates the possibility of using GBDLs for this endeavor. One major advantage of this
integration is the opportunity of automated analyses in this domain, such as fault tree anal-
yses (FTA—compare Riestenpatt gen. Richter and Rudolph [5]) and fault propagation path
analyses, which could facilitate the estimation, planning and management of engineering
change significantly [6].

Essentially, the determination of a suitable solution to a design problem can be un-
derstood as an ongoing interplay between reasoning about what is required and what
particular combination of possible solution elements will be able to provide for this, and
how [7,8]. Determining a suitable solution is, consequently, an iterative process that con-
sists of phases with a main emphasis on analyzing, and phases with a main emphasis on
gradually synthesizing the potential solution(s). It is important to note that some features
or constraints of the solution(s) may require a redefinition of the problem, either partial
or complete [9]. These kinds of iterations are not limited to specific design stages, but can
be present through large process segments or even the entire design process. This kind
of iteration needs to be connected with a continuous update of the product and process
models that represent the concerned information [10]. In order to support this endeavor,
several models and processes were proposed over the last several years; these models and
processes specifically aim to coherently model functions and solutions. The models aim
to create links between the conceptual and the subsequent design stages (i.e., they aim
to bridge the gap between qualitative information on an abstract level and increasingly
quantitative information on more concrete levels) in a traceable manner.

These models and processes include the System Modeling Language (SysML), the
Object–Process Methodology (OPM, [11]), Function Analysis Diagrams [12], Computational
Functional Basis [13–16], and the Integrated Function Modeling (IFM) Framework [17].
The application of such models was investigated by several research teams [18–20]. In
general, these models and processes still remain at an abstract level for the description
of the resulting technical system. It is important to note that these models and processes
primarily focus on the product structure and that they describe its sub-systems, parts and
their functional or physical links on an abstract level. It is highly desirable to transfer
this information into simulation tools that are used for system evaluation and verification.
However, this transition is currently realized by means of a manually executed data transfer
into independent calculation tools or into other Computer-Aided Engineering (CAE) tools
such as 3D modeling environments, Finite Element Analysis (FEA) systems for analyzing
structural safety and for deflection studies, Multi-Body Systems (MBS) for kinematic and
kinetic studies, as well as systems for the analysis of thermodynamics, electromagnetic
performances or the likes. Additionally, the situation is aggravated by the fact that the
results from the mentioned CAE tools are currently not efficiently and effectively linked
with each other to permit seamless cross-validation, because usually several data formatting
and exchange problems are present [21].

As stated above, current engineering processes are characterized by a large amount of
manual data transfer and an incomplete and often inconsistent linkage between different
kinds of engineering information. One promising approach to address these challenges and
issues are GBDLs. Like other design languages, this language creates a digital meta-model
of the system, which allows the storage of all relevant information concerning a design

Appl. Sci. 2022, 12, 5301 3 of 28

solution. This system model can be fed into different CAE tools that are applied in order to
simulate and evaluate the consequences of certain variations of the design on the resulting
performance of the product. This process can be performed in an automated manner by
means of digital compilers and allows the analysis of systematic product design variations
for a large number of parameters and parameter settings. Consequently, GBDLs can be
characterized as a powerful means of synthesizing feasible design alternatives and for rapid
comparison and selections processes. These processes can be performed much quicker than
the manual design process of an engineering team.

Parameter variation and the computing of those variations primarily applies to the
later stages of the product development process, when quantitative product information
is available. In order to realize the full potential of GBDLs, it is desirable to expand their
applicability into the domain of product functions. In order to achieve this, it is intended
to realize cohesive links (or associations) in the form of integrative function modeling,
starting with the requirements and functional level and ranging to product structures
with GBDL models. This should assist in closing the gap between the early phases of
product development, within which the product information is still rather abstract, and the
systematic design synthesis and validation phase with powerful CAE tools, within which
the product information has to be concrete. Consequently, the focus of this paper is on the
implementation of system modeling that spans both the functional level and expands into
a detailed design of the product geometry and structure (Figure 1).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 30

a design solution. This system model can be fed into different CAE tools that are applied
in order to simulate and evaluate the consequences of certain variations of the design on
the resulting performance of the product. This process can be performed in an automated
manner by means of digital compilers and allows the analysis of systematic product de-
sign variations for a large number of parameters and parameter settings. Consequently,
GBDLs can be characterized as a powerful means of synthesizing feasible design alterna-
tives and for rapid comparison and selections processes. These processes can be per-
formed much quicker than the manual design process of an engineering team.

Parameter variation and the computing of those variations primarily applies to the
later stages of the product development process, when quantitative product information
is available. In order to realize the full potential of GBDLs, it is desirable to expand their
applicability into the domain of product functions. In order to achieve this, it is intended
to realize cohesive links (or associations) in the form of integrative function modeling,
starting with the requirements and functional level and ranging to product structures with
GBDL models. This should assist in closing the gap between the early phases of product
development, within which the product information is still rather abstract, and the sys-
tematic design synthesis and validation phase with powerful CAE tools, within which the
product information has to be concrete. Consequently, the focus of this paper is on the
implementation of system modeling that spans both the functional level and expands into
a detailed design of the product geometry and structure (Figure 1).

Figure 1. Focus of the paper.

Currently, several research groups worldwide are investigating several aspects of
model-based systems engineering (MBSE). The research outcomes have allowed the re-
publishing of the well-known guideline VDI/VDE 2206 as a draft under the redesigned
title “Development of cyber-physical mechatronic systems (CPMS)” [22]. This guideline
supports engineers in the development of cyber-physical mechatronic systems by means
of presenting and explaining the main logical relationships. The central content of the new
VDI 2206 is represented as an updated and extended V-model and depicts an inherent
flow describing the logic of the development of cyber-physical mechatronic systems [23].
In this flow logic, a successive transition of product information from requirements over
a functional architecture and logic architecture to the physical architecture is visible; this
general successive architecture development is also visible in earlier design ontologies,
such as the function–behavior–structure ontologies [7]. One central aim of this paper is
the support of the development of the functional architecture, but an intensive, sensible
and executable connection to the requirements and more concrete forms of product and
process models is aspired to.

Figure 1. Focus of the paper.

Currently, several research groups worldwide are investigating several aspects of
model-based systems engineering (MBSE). The research outcomes have allowed the re-
publishing of the well-known guideline VDI/VDE 2206 as a draft under the redesigned
title “Development of cyber-physical mechatronic systems (CPMS)” [22]. This guideline
supports engineers in the development of cyber-physical mechatronic systems by means of
presenting and explaining the main logical relationships. The central content of the new
VDI 2206 is represented as an updated and extended V-model and depicts an inherent flow
describing the logic of the development of cyber-physical mechatronic systems [23]. In
this flow logic, a successive transition of product information from requirements over a
functional architecture and logic architecture to the physical architecture is visible; this
general successive architecture development is also visible in earlier design ontologies,
such as the function–behavior–structure ontologies [7]. One central aim of this paper is the
support of the development of the functional architecture, but an intensive, sensible and
executable connection to the requirements and more concrete forms of product and process
models is aspired to.

Appl. Sci. 2022, 12, 5301 4 of 28

In the following section, the research question is formulated and the research approach
explained. In Section 3, the state of the art in relation to the selected function modeling
approach and of GBDLs is introduced. The linking of these two approaches on a conceptual
level is described in Section 4, whereas a combined application of these two approaches is
elucidated in Section 5 on the basis of a multicopter, which is a technical system that can
only be developed and operated employing interdisciplinary processes. Finally, Section 6
summarizes the results and presents promising directions for further research. The structure
of the paper is also presented in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 30

In the following section, the research question is formulated and the research ap-
proach explained. In Section 3, the state of the art in relation to the selected function mod-
eling approach and of GBDLs is introduced. The linking of these two approaches on a
conceptual level is described in Section 4, whereas a combined application of these two
approaches is elucidated in Section 5 on the basis of a multicopter, which is a technical
system that can only be developed and operated employing interdisciplinary processes.
Finally, Section 6 summarizes the results and presents promising directions for further
research. The structure of the paper is also presented in Figure 2.

Figure 2. Structure of the paper.

2. Research Question and Research Approach
This paper aims to combine function modeling with GBDLs in order to link the func-

tional and product structural domains. The research described follows the Design Re-
search Methodology (DRM) framework, as proposed by Blessing and Chakrabarti [24]. In
this case, it is possible to identify four stages of research (Figure 3).

Figure 3. Research stages.

The presented research focuses on the exploration of a novel approach in product
development processes, i.e., the integration of a function modeling framework in an engi-
neering framework based on GBDLs. This kind of research may be characterized as a re-
search activity type five (compare [24] and [25]). In this case, support for product devel-
opment processes is generated based on product development process understanding.
The main innovative part is the digital integration of functional and product structural
domains using GBDLs. The research clarification is based on the state of the art (Section
3).

Figure 2. Structure of the paper.

2. Research Question and Research Approach

This paper aims to combine function modeling with GBDLs in order to link the
functional and product structural domains. The research described follows the Design
Research Methodology (DRM) framework, as proposed by Blessing and Chakrabarti [24].
In this case, it is possible to identify four stages of research (Figure 3).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 30

In the following section, the research question is formulated and the research ap-
proach explained. In Section 3, the state of the art in relation to the selected function mod-
eling approach and of GBDLs is introduced. The linking of these two approaches on a
conceptual level is described in Section 4, whereas a combined application of these two
approaches is elucidated in Section 5 on the basis of a multicopter, which is a technical
system that can only be developed and operated employing interdisciplinary processes.
Finally, Section 6 summarizes the results and presents promising directions for further
research. The structure of the paper is also presented in Figure 2.

Figure 2. Structure of the paper.

2. Research Question and Research Approach
This paper aims to combine function modeling with GBDLs in order to link the func-

tional and product structural domains. The research described follows the Design Re-
search Methodology (DRM) framework, as proposed by Blessing and Chakrabarti [24]. In
this case, it is possible to identify four stages of research (Figure 3).

Figure 3. Research stages.

The presented research focuses on the exploration of a novel approach in product
development processes, i.e., the integration of a function modeling framework in an engi-
neering framework based on GBDLs. This kind of research may be characterized as a re-
search activity type five (compare [24] and [25]). In this case, support for product devel-
opment processes is generated based on product development process understanding.
The main innovative part is the digital integration of functional and product structural
domains using GBDLs. The research clarification is based on the state of the art (Section
3).

Figure 3. Research stages.

The presented research focuses on the exploration of a novel approach in product
development processes, i.e., the integration of a function modeling framework in an
engineering framework based on GBDLs. This kind of research may be characterized
as a research activity type five (compare [24] and [25]). In this case, support for product
development processes is generated based on product development process understanding.
The main innovative part is the digital integration of functional and product structural
domains using GBDLs. The research clarification is based on the state of the art (Section 3).

Appl. Sci. 2022, 12, 5301 5 of 28

The analysis of the state of the art led to the formulation of the central research aim: . . .
to explore in which manner and with what tools and processes may effective and efficient functional
modeling in engineering companies be enabled by means of the application of GBDLs.

The first descriptive study (Figure 3) is carried out by means of a detailed analysis
of industrial product development processes in the scope of a larger project carried out
between several universities in the south of Germany (Ravensburg-Weingarten University,
Reutlingen University, Technical University of Ulm, Albstadt-Sigmaringen University and
University of Stuttgart) and several industrial companies located in the south of Germany,
which aimed at establishing the full product lifecycle in the digital domain. The prescriptive
study develops the innovative approach results in the combination and application of
integrated function modeling (specifically the IFM Framework) and graph-based design
languages (GBDLs, specifically DC43); both chosen approaches are described further in
Sections 4 and 5. This prescriptive study is followed by a second descriptive study focusing
on the evaluation of the combination and application.

In this paper and the underlying research, the IFM Framework was selected as an
integrated function model that might be appropriate for linking with an engineering
framework based on a combination of a certain kind of Unified Modeling Language (UML)
modeling with the design compiler DC43, as an approach to implement graph-based design
languages. A multitude of function modeling approaches exist, with each having their own
respective advantages and disadvantages in terms of the visual or logical representation of
the functional structures of a technical system. Equally, each was found to offer a specific
perspective in terms of the functional representation of a system. Comprehensive reviews
of such models can be found in [26–33]. The IFM Framework was selected first, because
it conceptually integrates the most common perspectives among extant function models,
thus creating a comprehensive functional description of a system (see [10]). Secondly, both
the IFM Framework and the chosen design compiler 43 as GBDL are independent from
particular software platforms, and both are equally comprehensive representation tools
in their domain. This is expected to facilitate their subsequent integration. What is more,
the IFM Framework already encompasses initial structural modeling in relation to abstract
function carriers, which serves as a suitable starting point for the integration into more
in-depth structural modeling using GBDLs, as shown below. Therefore, the central research
question can be formulated as: In what way can the IFM Framework and graph-based design
languages be combined to achieve holistic digital design processes and traceability of design solutions
between functional and product structural level design?

The general underlying concepts of the presented research are the concept of function
modeling, i.e., an abstract description of the intentions of a technical system; the concept
of the use of a function modeling framework, i.e., a conscious interconnection of the
different information entities describing the function of a technical system; the concept of
graph-based design languages, i.e., a knowledge representation of a technical system in
the form of a graph; and the concept of a design compiler, i.e., a software component that
is able to generate a design graph from knowledge presented in the form of vocabulary
and grammar.

The central methodological research approach is the analysis of the possibilities
and limitations of two frameworks (the integrated function modeling framework and
an engineering framework based on GBDLs), an identification of common and different
entities, the development of connection possibilities and an evaluation of the resulting
combined framework.

It is important to note that the main emphasis of the research described in this paper
is on the methodical and structural aspects of the integration of the IFM framework into
an engineering framework based on GBDLs—a larger share of the research is prescriptive.
The sample product multicopter was used for the development of these aspects to analyze
the applicability and merit—a descriptive research step—and to explain the different
integration issues and solutions. Multicopters are unmanned aerial vehicles (UAVs) with
an immense application potential due to their capability to hover at a certain position and to

Appl. Sci. 2022, 12, 5301 6 of 28

start from nearly any surface. Central parameters concerning the design of a multicopter are
the topology (quadrocopter, hexacopter, octocopter, etc.), the flying and lifting performance,
the manufacturing cost and its structural integrity [34]. An important issue is that the
manufacturing of multicopters and additive manufacturing in combination with topology
optimization has led to rigid, lightweight structures [35]. The design of a multicopter
is always a multi-domain problem, as the controllability and trajectory generation are
directly connected with the flight performance that is a consequence of the design of the
multicopter [36].

3. State of the Art
3.1. IFM Framework

The IFM Framework originates from cross-disciplinary research into the abstract
visualization and representation of a system and its functionality to permit the linking of
different, discipline-specific perspectives into design in one common model. It provides
a modeling approach describing the functionality of a system that is coupled with a
structural modeling approach of this system. The IFM Framework uses an understanding
of function as the intended behavior of a technical system that it needs to exhibit to fulfil its
purpose. In the framework, integration is enabled by means of linking different types of
contents, which are usually addressed in discipline-specific and cross-disciplinary function
models. For instance, the intended behavior can be modeled as distinct (transformation)
processes describing relevant activities and steps, states and their changes through the
shown behavior and so forth (see Table 1), where different disciplines are known to favor
one over the other [17]. The respective pieces of information that describe the functionality
from a distinct viewpoint are presented in different views, which are briefly described in
Table 1. The system’s overall functionality is thus represented through the combination
of views, each describing function through specific descriptors: the process flow view
describes functionality as a sequence of (transformation) processes, the state view describes
functionality through consecutive state changes, etc. The adjacent placement of the six
views (see Figure 4) supports their parallel development. The adjacent placement also
enables verification of whether the views are mutually consistent. Views are modular and
may be added or omitted depending on whether or not they are required by the designers
involved in a specific development project at hand. This permits flexible, demand-specific
tailoring of the framework to match modeling demands and preferences.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 30

Use case view
The main aim of the use case view is to indicate the involvement or asso-
ciation of processes in the different use cases.

Effect view

The main aim of the effect view is to represent the effects that enable cer-
tain processes. The effects are provided by actors. For every process
block included in the process flow view, a separate effect view can be
generated.

Interaction
view

The main aim of the interaction view is to map the bilateral impacts be-
tween actors and operands and also their complementary contributions
or other kinds of dependency between them in the realization of use
cases and associated processes. The interaction view represents the struc-
ture of the system.

Figure 4. The IFM Framework. Reprinted with permission from [17].

The process flow view, which is placed in the center (Figure 4), visualizes the flow of
transformation and interaction processes using common arrow-type modeling to indicate
temporal sequence (or parallelism) between individual processes. The remaining views
comprise matrices equivalent to the well-known design structure matrices (DSM) and en-
compass the remaining entities, which are related to the functionality of the system, and
their interdependencies. Entities comprise use cases, transformation and interaction pro-
cesses, states and effects as well as operands and actors. Each of these entities (within their
dedicated view, as outlined in Table 1) is logically linked to the processes in the centrally
placed process flow view.

As will be illustrated further down, what this effectively means is that, for every pro-
cess, the state view will provide the states and their changes related to it. The actor view
illustrates which specific abstract function carriers (technical sub-systems, parts or ani-
mate beings) will carry out the specific process and state changes, respectively, and so
forth. Together, all views and their contents permit the designers to visualize all facets of
a system’s functionality in a systematic and logically interlinked matter, without requiring
the use of specialized software environments.

Use cases, as an entity in the framework, represent different scenarios or sequences
of events that describe the application of the technical system for a specific purpose; to
illustrate, a smartphone may be used for making calls, writing text messages, accessing
the internet and so much more—in the IFM Framework, each of these scenarios would be

Figure 4. The IFM Framework. Reprinted with permission from [17].

Appl. Sci. 2022, 12, 5301 7 of 28

Table 1. Associated views in the IFM Framework. Reprinted with permission from [17].

View Description

Process flow view

The main aim of the process flow view is to visualize the flow of
sequential or parallel processes that are related to one specific use
case in a qualitative manner. These processes may be interaction
or transformation processes. For every use case, a set of views is
generated, which is associated with the use case. In the horizontal
direction, process blocks are arranged from left to right for
enabling a direct link to the actor view below. Vertically, the
process flow is visualized in relation to time; this corresponds to
the gradual evolution of states in the associated state view.

State view
The main aim of the state view is to represent the states from the
initial state to the final state of both operands and actors and also
of the changes of states associated with the related processes.

Actor view

The main aim of the actor view is to indicate the involvement of
one or more actors in the realization of processes. The
involvement of these actors can be active or passive. The actors
can be part of the system or can be in the surrounding of
the system.

Use case view The main aim of the use case view is to indicate the involvement
or association of processes in the different use cases.

Effect view

The main aim of the effect view is to represent the effects that
enable certain processes. The effects are provided by actors. For
every process block included in the process flow view, a separate
effect view can be generated.

Interaction view

The main aim of the interaction view is to map the bilateral
impacts between actors and operands and also their
complementary contributions or other kinds of dependency
between them in the realization of use cases and associated
processes. The interaction view represents the structure of
the system.

The process flow view, which is placed in the center (Figure 4), visualizes the flow of
transformation and interaction processes using common arrow-type modeling to indicate
temporal sequence (or parallelism) between individual processes. The remaining views
comprise matrices equivalent to the well-known design structure matrices (DSM) and
encompass the remaining entities, which are related to the functionality of the system,
and their interdependencies. Entities comprise use cases, transformation and interaction
processes, states and effects as well as operands and actors. Each of these entities (within
their dedicated view, as outlined in Table 1) is logically linked to the processes in the
centrally placed process flow view.

As will be illustrated further down, what this effectively means is that, for every
process, the state view will provide the states and their changes related to it. The actor
view illustrates which specific abstract function carriers (technical sub-systems, parts or
animate beings) will carry out the specific process and state changes, respectively, and so
forth. Together, all views and their contents permit the designers to visualize all facets of a
system’s functionality in a systematic and logically interlinked matter, without requiring
the use of specialized software environments.

Use cases, as an entity in the framework, represent different scenarios or sequences
of events that describe the application of the technical system for a specific purpose; to
illustrate, a smartphone may be used for making calls, writing text messages, accessing
the internet and so much more—in the IFM Framework, each of these scenarios would be
considered a different use case, and very different functionality is required to realize each
of them. Transformation processes describe processes of technical and/or human origin
that result in a change of the state of either operands or actors for every use case. The

Appl. Sci. 2022, 12, 5301 8 of 28

operands are specifications of energy, material and signals. The actors are technical systems
(hard- and/or software), such as assemblies and components, which actively or passively
contribute to the fulfilment of functions, as well as human beings who may be involved
in carrying out a function. Furthermore, the notion of “actors” includes relevant parts of
the surrounding that provide influences onto the system. Finally, the term “interaction
processes” describes “cross-boundary” interactions between different actors that jointly
contribute to the fulfilment of functions (similar to Eder and Hosnedl [37], Andreasen [38],
Andreasen et al. [39], Eder [40], Hubka and Eder [41], and Hundal [42]). What this means is
that some processes can only be carried out through interaction from the outside (by actors
that are external to the system under development); thus, these processes are visualized
as part of a use case, but formally separated from processes that need to be supported by
the system to be developed itself. Figure 5 shows the specific entity-relations in the IFM
Framework using a UML-based diagram. A single instance of a system modeled with the
IFM Framework creates an integrated function model (IF model hereafter).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 30

considered a different use case, and very different functionality is required to realize each
of them. Transformation processes describe processes of technical and/or human origin
that result in a change of the state of either operands or actors for every use case. The
operands are specifications of energy, material and signals. The actors are technical sys-
tems (hard- and/or software), such as assemblies and components, which actively or pas-
sively contribute to the fulfilment of functions, as well as human beings who may be in-
volved in carrying out a function. Furthermore, the notion of “actors” includes relevant
parts of the surrounding that provide influences onto the system. Finally, the term “inter-
action processes” describes “cross-boundary” interactions between different actors that
jointly contribute to the fulfilment of functions (similar to Eder and Hosnedl [37], Andre-
asen [38], Andreasen et al. [39], Eder [40], Hubka and Eder [41], and Hundal [42]). What
this means is that some processes can only be carried out through interaction from the
outside (by actors that are external to the system under development); thus, these pro-
cesses are visualized as part of a use case, but formally separated from processes that need
to be supported by the system to be developed itself. Figure 5 shows the specific entity-
relations in the IFM Framework using a UML-based diagram. A single instance of a sys-
tem modeled with the IFM Framework creates an integrated function model (IF model
hereafter).

Figure 5. Domain diagram of the entity relations in the IFM Framework. Reprinted with permission
from [17].

In principle, as the IFM Framework uses interlinked matrices, designers may start
with any view to start modeling a system. This is particularly true when an existing sys-
tem is modeled; for novel design projects, it might not be clear in every case where to start.
Logically, designers could initiate employing the IFM by deriving the central use cases
that the future technical system will have to fulfil from the given system requirements.
Subsequently, the designer would determine the main processes for the use cases and
would gradually detail them. This, in turn, will permit determining some of the involved
operands and integrating some already known actors. Afterwards, the mentioned views
may be gradually filled with more and more information up to a point that the system
will be known well enough in order to be able to determine the mutual interactions among
all involved actors and/or operands to fill the interaction view. By the end, a comprehen-
sive description of the technical system on a functional level will have been created.

3.2. Graph-Based Design Languages Implemented with UML and DC43
This section explains the engineering framework, which is expanded with the inte-

grated function modeling framework.

Figure 5. Domain diagram of the entity relations in the IFM Framework. Reprinted with permission
from [17].

In principle, as the IFM Framework uses interlinked matrices, designers may start
with any view to start modeling a system. This is particularly true when an existing system
is modeled; for novel design projects, it might not be clear in every case where to start.
Logically, designers could initiate employing the IFM by deriving the central use cases
that the future technical system will have to fulfil from the given system requirements.
Subsequently, the designer would determine the main processes for the use cases and
would gradually detail them. This, in turn, will permit determining some of the involved
operands and integrating some already known actors. Afterwards, the mentioned views
may be gradually filled with more and more information up to a point that the system will
be known well enough in order to be able to determine the mutual interactions among all
involved actors and/or operands to fill the interaction view. By the end, a comprehensive
description of the technical system on a functional level will have been created.

3.2. Graph-Based Design Languages Implemented with UML and DC43

This section explains the engineering framework, which is expanded with the inte-
grated function modeling framework.

3.2.1. General Objectives of an Engineering Framework

In the development of a complex technical system, often hundreds or even thousands
of engineers have to contribute with their processes, ranging from creative thinking about
computer-aided design (CAD) geometry description to simulation and verification tasks.
The objects in these processes are components of the technical system and its abstract rep-
resentation, but are also representations of performance, quality, cost and manufacturing

Appl. Sci. 2022, 12, 5301 9 of 28

processes as well as operation process information. These objects dispose of numerous
mutual relationships; an engineering framework seeks to represent a large share of this
information in a sensible, interconnected way that facilitates effective and efficient pro-
cesses for the involved engineers. Engineering frameworks seek to reduce unnecessary or
inefficient activities, which may be caused, amongst other factors, by information deficits,
insufficient communication, interface problems, data conversion necessities, inconsistencies
and redundancies.

Over the last decades, numerous approaches were proposed in engineering design sci-
ence and adjacent research fields that may contribute to engineering frameworks. Notable
are the scientific outcomes in the research area computational design synthesis (CDS), which
also cover the early, abstract stages of the development process (e.g., [43]). The methods
and tools of design automation (e.g., [44]) focus on the more concrete stages of this process,
but can nevertheless contribute to an engineering framework. In recent years, research
activities concern the development of cyber-physical systems (CPSs) and cloud-based
systems (e.g., [45]). On a system development level, several strategies, methods and tools
were proposed in the area of model-based systems engineering (MBSE) (e.g., [46]). This
paper focuses on a specific engineering framework based on graph-based design language,
which has the distinct objective of allowing the creation and evaluation of a topological
diverse solution field while still enabling effective and efficient development processes.

3.2.2. General Concept and Entities of Graph-Based Design Languages

Graph-based design languages are an approach to formulating the entities of a techni-
cal system, the processes within and in the surrounding of this technical system, and the
processes that lead to this technical system in a consistent manner, which provides multiple
possibilities to process the formulated information. The term “graph-based” means that
a graph is employed that consists of nodes and edges. A graph is usually described as a
representation of a set of objects where some pairs of objects are connected by links (or
associations). The so-called “nodes” of a graph are mathematical abstractions and serve as
abstract placeholders for real objects (e.g., components of the example multicopter product).
The connections between these interconnected objects are also represented by abstractions;
these are usually called “edges”. Figure 6 represents the structure of a design graph for the
“multicopter” sample product (adapted from [47]).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 30

Figure 6. Structure of a design graph.

On the basis of prior work, Rudolph [48] and co-workers have developed a consistent
system to represent product geometry and other forms of product information using
graphs, and have developed a GBDL that can be described by means of the underlying
design language process (Figure 7—adapted from [49]).

Figure 6. Structure of a design graph.

On the basis of prior work, Rudolph [48] and co-workers have developed a consistent
system to represent product geometry and other forms of product information using graphs,
and have developed a GBDL that can be described by means of the underlying design
language process (Figure 7—adapted from [49]).

Appl. Sci. 2022, 12, 5301 10 of 28
Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 30

Figure 7. Graph-based design language process.

Figure 7. Graph-based design language process.

Appl. Sci. 2022, 12, 5301 11 of 28

The geometry (concrete geometrical model) can be abstracted to its objects (e.g., rigger,
motor) and their abstract geometry. These objects can be represented in UML classes (with
attributes and operations), which represent the vocabulary of the design language and
constitute the nodes of the design graph (Figure 6). The objects are organized using an
appropriate UML diagram—the class diagram. This diagram represents the structure both
by expressing inheritance (e.g., from abstract geometrical classes such as cylinder or cuboid)
and multiple associations (e.g., the fact that an object is a part of a module). The structure
constitutes the edges in the design graph. This structured vocabulary can be used together
with rules expressed in UML activity diagrams in order to create the geometrical model of
the future product. It is important to note that all information concerning a certain technical
system is stored within the engineering framework based on GBDLs, not just metadata.

3.2.3. Implementation of Graph-Based Design Languages with UML and DC43

One possible way to implement GBDLs is to map the product information into vo-
cabulary and rules—this mapping can be based, for example, on the unified modeling
language (UML). In this case, objects are represented in UML class diagrams and rules in
UML activity diagrams. Rudolph [48] developed a potential way to process this kind of
GBDL implementation in a so-called design compiler—the Design Compiler 43™ (DC43)
by IILS mbH, Trochtelfingen, Germany; the engineering framework used in this research is
based on this possibility. The main entities of this engineering framework are shown in
Figure 8 (adapted from [50]).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 30

The geometry (concrete geometrical model) can be abstracted to its objects (e.g., rig-
ger, motor) and their abstract geometry. These objects can be represented in UML classes
(with attributes and operations), which represent the vocabulary of the design language
and constitute the nodes of the design graph (Figure 6). The objects are organized using
an appropriate UML diagram—the class diagram. This diagram represents the structure
both by expressing inheritance (e.g., from abstract geometrical classes such as cylinder or
cuboid) and multiple associations (e.g., the fact that an object is a part of a module). The
structure constitutes the edges in the design graph. This structured vocabulary can be
used together with rules expressed in UML activity diagrams in order to create the geo-
metrical model of the future product. It is important to note that all information concern-
ing a certain technical system is stored within the engineering framework based on
GBDLs, not just metadata.

3.2.3. Implementation of Graph-Based Design Languages with UML and DC43
One possible way to implement GBDLs is to map the product information into vo-

cabulary and rules—this mapping can be based, for example, on the unified modeling
language (UML). In this case, objects are represented in UML class diagrams and rules in
UML activity diagrams. Rudolph [48] developed a potential way to process this kind of
GBDL implementation in a so-called design compiler—the Design Compiler 43™ (DC43)
by IILS mbH, Trochtelfingen, Germany; the engineering framework used in this research
is based on this possibility. The main entities of this engineering framework are shown in
Figure 8 (adapted from [50]).

Figure 8. Basic concept of the chosen implementation of graph-based design languages.

The individual components of the technical system are represented as UML classes;
these classes represent the objects that construct the future product. These components
are usually arranged in ontologies. In this context, ontologies are understood as orga-
nized, annotated, hierarchical and related arrangements of engineering entities that are
intended to represent certain aspects of engineering knowledge. The classes that represent

Figure 8. Basic concept of the chosen implementation of graph-based design languages.

The individual components of the technical system are represented as UML classes;
these classes represent the objects that construct the future product. These components are
usually arranged in ontologies. In this context, ontologies are understood as organized,
annotated, hierarchical and related arrangements of engineering entities that are intended
to represent certain aspects of engineering knowledge. The classes that represent the objects
can be connected in the UML class diagram by means of different associations (Figure 9).

Appl. Sci. 2022, 12, 5301 12 of 28

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 30

the objects can be connected in the UML class diagram by means of different associations
(Figure 9).

Figure 9. Entities and associations in the UML class diagram of a graph-based design languages.

The start of this vocabulary is the technical product as well as its assemblies and its
parts. The example product is a multicopter—a multicopter has a mission that it is de-
signed to accomplish, which can be split into use cases (UseCase). These use cases may
include specifications of possible payloads or admissible operation times. From the point
of view of engineering, one may differentiate between structural components combined
in the Modules of the chassis and propulsion system. These modules can be divided into
smaller segments or parts of the multicopter—the Objects. In the multicopter example,
the chassis module is composed of a centerplate, riggers and landing gears, whereas the pro-
pulsion system module consists of motors, propellers and batteries. These objects are the
main parts of the multicopter on a certain hierarchical level. The prominent model used
for describing the “vocabulary” is the well-known class diagram of UML. Figure 9 repre-
sents the class diagram of the “Multicopter Design Language”. Some classes—shown at
the top of Figure 9 and highlighted in orange—indicate a connection to another class dia-
gram; these connections are intended to extend the functionality of this specific design
language. All links in blue are associations, whereas other kinds of links are drawn in
black and end with a triangle. These other kinds of links indicate inheritance, whose
meaning can be characterized as “is a”. As shown in Figure 9, each Object inherits from
the superclass Element and each Module inherits from the superclass Aggregation. The
Element class manages the links to the shortcut classes of Cylinder, Cuboid, Position and
Transform, which are illustrated in orange. These classes are imported classes and are
connected to another class diagram (in the given case, the geometry class diagram). It is
important to note that all Objects can be linked with associations (otherObject) and can
contain attributes and operations. These associations, attributes and operations may rep-
resent the functionality of the technical system. For instance, the UseCase “hold position”
depends, amongst other things, on the thrust of the rotors and the stiffness of the riggers.
During the development of graph-based design languages, the class Process was added,
as it enables the representation of further important relationships and functionalities.

The classes are instantiated employing so-called UML model transformations (rules).
In the engineering framework, a sequence of rules can be modeled in a UML activity dia-
gram. The information stored in these diagrams is processed in the Design Compiler 43™
(DC43). This compiler uses this information to generate the design graph. From this cen-
tral meta-model of the system, additional models (e.g., geometry models in generic CAD

Figure 9. Entities and associations in the UML class diagram of a graph-based design languages.

The start of this vocabulary is the technical product as well as its assemblies and
its parts. The example product is a multicopter—a multicopter has a mission that it is
designed to accomplish, which can be split into use cases (UseCase). These use cases may
include specifications of possible payloads or admissible operation times. From the point
of view of engineering, one may differentiate between structural components combined
in the Modules of the chassis and propulsion system. These modules can be divided into
smaller segments or parts of the multicopter—the Objects. In the multicopter example,
the chassis module is composed of a centerplate, riggers and landing gears, whereas the
propulsion system module consists of motors, propellers and batteries. These objects are the
main parts of the multicopter on a certain hierarchical level. The prominent model used for
describing the “vocabulary” is the well-known class diagram of UML. Figure 9 represents
the class diagram of the “Multicopter Design Language”. Some classes—shown at the top
of Figure 9 and highlighted in orange—indicate a connection to another class diagram;
these connections are intended to extend the functionality of this specific design language.
All links in blue are associations, whereas other kinds of links are drawn in black and end
with a triangle. These other kinds of links indicate inheritance, whose meaning can be
characterized as “is a”. As shown in Figure 9, each Object inherits from the superclass
Element and each Module inherits from the superclass Aggregation. The Element class
manages the links to the shortcut classes of Cylinder, Cuboid, Position and Transform,
which are illustrated in orange. These classes are imported classes and are connected to
another class diagram (in the given case, the geometry class diagram). It is important to note
that all Objects can be linked with associations (otherObject) and can contain attributes and
operations. These associations, attributes and operations may represent the functionality of
the technical system. For instance, the UseCase “hold position” depends, amongst other
things, on the thrust of the rotors and the stiffness of the riggers. During the development of
graph-based design languages, the class Process was added, as it enables the representation
of further important relationships and functionalities.

The classes are instantiated employing so-called UML model transformations (rules).
In the engineering framework, a sequence of rules can be modeled in a UML activity
diagram. The information stored in these diagrams is processed in the Design Compiler
43™ (DC43). This compiler uses this information to generate the design graph. From this
central meta-model of the system, additional models (e.g., geometry models in generic

Appl. Sci. 2022, 12, 5301 13 of 28

CAD formats, simulation models such as models for finite element analyses (FEA)) for
multibody system (MBS) analyses or for computer-aided planning (CAP) or reports in
office tools can be generated in a fully automated manner. In the multicopter project, it was
possible to create several generic models (Figure 10—adapted from [49]).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 30

formats, simulation models such as models for finite element analyses (FEA)) for multi-
body system (MBS) analyses or for computer-aided planning (CAP) or reports in office
tools can be generated in a fully automated manner. In the multicopter project, it was
possible to create several generic models (Figure 10—adapted from [49]).

Figure 10. Design graph with digital models.

The design compiler is able to process all abstraction levels of a design language in a
manner that is detailed enough to create sufficient information for elaborate simulation
models. This capability may lead to an automated product development process within
this unified framework.

The main difference between this framework based on GBDLs and conventional
product development can be described based on the characteristic that a single product
manifestation is not designed, but that a large “family” of product variants is designed
automatically. Thus, it is important to note that the automated design of a product family
instead of a single product necessitates a novel mindset on the part of the involved de-
signer and may, therefore, be understood as a paradigm shift. The implementation of the
design language is the engineer’s skill and depends on his/her experience; the creation of
the different engineering models is “mechanistic” work for the compiler. In this process,
the design compiler executes design rules formulated in UML activity diagrams and can
automatically derive the analysis models needed for respective design domains (CAD,
MBS, FEA, etc.). The information content of both the graph and the engineering models is
not limited to geometry. The graph and the engineering models can also contain infor-
mation concerning functions, material(s), physical loads, etc.

3.2.4. Applications of the Framework of Graph-Based Design Languages and DC43
The engineering framework provides a powerful environment for design engineers

because of the possibility of automating the systematic variation, simulation and calcula-
tion and to feed and integrate all relevant CAE tools. It permits automated machine exe-
cution and also the documentation and reuse of design and manufacturing knowledge,
because this knowledge is included in the automated model generation, simulation and
calculation. Consequently, the engineering framework allows the generation of a vast
number of design alternatives. The generation of alternative solutions can be based on
parameter variation across multiple simulation tools, but also on topological variation and
can be carried out in a fast and automated manner [48,51–55]. Figure 11 illustrates the
successful applications of GBDLs.

Figure 10. Design graph with digital models.

The design compiler is able to process all abstraction levels of a design language in a
manner that is detailed enough to create sufficient information for elaborate simulation
models. This capability may lead to an automated product development process within
this unified framework.

The main difference between this framework based on GBDLs and conventional
product development can be described based on the characteristic that a single product
manifestation is not designed, but that a large “family” of product variants is designed
automatically. Thus, it is important to note that the automated design of a product family
instead of a single product necessitates a novel mindset on the part of the involved designer
and may, therefore, be understood as a paradigm shift. The implementation of the design
language is the engineer’s skill and depends on his/her experience; the creation of the
different engineering models is “mechanistic” work for the compiler. In this process,
the design compiler executes design rules formulated in UML activity diagrams and can
automatically derive the analysis models needed for respective design domains (CAD, MBS,
FEA, etc.). The information content of both the graph and the engineering models is not
limited to geometry. The graph and the engineering models can also contain information
concerning functions, material(s), physical loads, etc.

3.2.4. Applications of the Framework of Graph-Based Design Languages and DC43

The engineering framework provides a powerful environment for design engineers
because of the possibility of automating the systematic variation, simulation and calculation
and to feed and integrate all relevant CAE tools. It permits automated machine execution
and also the documentation and reuse of design and manufacturing knowledge, because
this knowledge is included in the automated model generation, simulation and calculation.
Consequently, the engineering framework allows the generation of a vast number of design
alternatives. The generation of alternative solutions can be based on parameter variation
across multiple simulation tools, but also on topological variation and can be carried out in
a fast and automated manner [48,51–55]. Figure 11 illustrates the successful applications
of GBDLs.

Appl. Sci. 2022, 12, 5301 14 of 28Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 30

Figure 11. Successful applications of graph-based design languages [53–55].

One of the central advantages of GBDLs is that the “members” of the mentioned va-
riety of included design alternatives may not only be different in terms of certain design
parameters, but may also be topologically different. It is a main advantage of using GBDLs
in connection with a design compiler that it is possible to realize fully automated processes
that may contain calculation and simulation steps. This decisive characteristic enables the
creation of a multitude of possible and feasible product configurations. Because of this, it
also enables the realization of optimization cycles that may lead to a certain product con-
figuration that may represent an optimum or close-to-optimum solution in a multi-dimen-
sional solution space. In this context, the term “multi-dimensional” may refer to both the
requirements space and the solution space. The ability to find optimum solutions is spe-
cifically advantageous for the product development of systems with many configuration
possibilities, e.g., wire harnesses or pipe systems (e.g., exhaust systems) [55]. Another cen-
tral advantage results from the ability to incorporate multiple physical domains; it is, for
instance, possible to simultaneously address several issues, such as the mass and moment
balance as well as the thermal validation of a satellite.

The advantages of GBDLs mentioned above can only be used completely if these
methods are employed covering all stages of product concretization and all phases of the
lifecycle of technical systems. Additionally, issues such as the fault tolerance of systems
and fault-tolerant design can be addressed. One important objective of employing these
methods and the underlying framework is to accelerate innovation. Another central ob-
jective of this employment is to develop appropriate knowledge representations. Through
this, an automated processing of the product lifecycle can be enabled, which realizes more
human-independent technological process integration and therefore improves
knowledge storage and transfer in product development processes.

3.2.5. Aspects of Graph-Based Design Language Representation for Function Modeling
The most important aspects of the representation of technical systems in this engi-

neering framework for function modeling can be found in the vocabulary, the structure
and the sequence of rules. The representations contain information such as product com-
ponents (objects), which can be understood as actors and associations, attributes, opera-
tions and processes, as well as structure and state information. This information is suitable
for allowing the linking and integration of the IFM Framework. This linking and integra-
tion will be discussed in the next section.

4. Linking the Two Approaches
This section discusses the systematic approach for the linking of the integrated func-

tion modeling framework and the engineering framework, firstly on a general level and
secondly applied to the multicopter example. Initially, we provide a comparison of the
two approaches in order to identify the entities that are present in either approach, thus
potentially serving as connectors/points of transition of information between them. From

Figure 11. Successful applications of graph-based design languages [53–55].

One of the central advantages of GBDLs is that the “members” of the mentioned
variety of included design alternatives may not only be different in terms of certain design
parameters, but may also be topologically different. It is a main advantage of using GBDLs
in connection with a design compiler that it is possible to realize fully automated processes
that may contain calculation and simulation steps. This decisive characteristic enables the
creation of a multitude of possible and feasible product configurations. Because of this,
it also enables the realization of optimization cycles that may lead to a certain product
configuration that may represent an optimum or close-to-optimum solution in a multi-
dimensional solution space. In this context, the term “multi-dimensional” may refer to both
the requirements space and the solution space. The ability to find optimum solutions is
specifically advantageous for the product development of systems with many configuration
possibilities, e.g., wire harnesses or pipe systems (e.g., exhaust systems) [55]. Another
central advantage results from the ability to incorporate multiple physical domains; it is, for
instance, possible to simultaneously address several issues, such as the mass and moment
balance as well as the thermal validation of a satellite.

The advantages of GBDLs mentioned above can only be used completely if these
methods are employed covering all stages of product concretization and all phases of the
lifecycle of technical systems. Additionally, issues such as the fault tolerance of systems
and fault-tolerant design can be addressed. One important objective of employing these
methods and the underlying framework is to accelerate innovation. Another central objec-
tive of this employment is to develop appropriate knowledge representations. Through
this, an automated processing of the product lifecycle can be enabled, which realizes more
human-independent technological process integration and therefore improves knowledge
storage and transfer in product development processes.

3.2.5. Aspects of Graph-Based Design Language Representation for Function Modeling

The most important aspects of the representation of technical systems in this engineer-
ing framework for function modeling can be found in the vocabulary, the structure and the
sequence of rules. The representations contain information such as product components
(objects), which can be understood as actors and associations, attributes, operations and
processes, as well as structure and state information. This information is suitable for allow-
ing the linking and integration of the IFM Framework. This linking and integration will be
discussed in the next section.

4. Linking the Two Approaches

This section discusses the systematic approach for the linking of the integrated func-
tion modeling framework and the engineering framework, firstly on a general level and
secondly applied to the multicopter example. Initially, we provide a comparison of the two
approaches in order to identify the entities that are present in either approach, thus poten-
tially serving as connectors/points of transition of information between them. From this,
we then further identify eventual gaps that need to be overcome through the conceptual

Appl. Sci. 2022, 12, 5301 15 of 28

adaptation of either approach or through building new transitional connectors, respectively.
Finally, the proposed conceptual integration is applied to the multicopter example as an
initial application evaluation (see [14]).

4.1. Graph-Based Design Languages Implemented with UML and DC43

In the IFM Framework described in Section 3.1, functionality is represented using the
entities process, operand, state, effect and actor. In the engineering framework described
in Section 3.2, functionality is mainly represented with the entities object and process,
and is additionally expressed with the associations between objects and attributes and the
operations of objects. The most important entities of both approaches and their counterparts
are shown in Table 2.

Table 2. Entities in both approaches and their counterparts (state prior to linking activities).

Entities in the IFM Framework Entities in the Engineering Framework Based on
UML, GBDL and DC43

State (of operands) Implicitly represented in attributes and operations

Operand Implicitly represented in attributes and operations

Effect Not yet represented

States (of actors) Implicitly represented in attributes and operations

Actors (inheritance and hierarchy not
expressed) Object

Process Process

Use case UseCase

Not yet expressed Requirement

System under consideration TechnicalSystem

Transformation and interaction
processes Not yet represented

Stakeholders Not yet represented

Environment Implicitly represented in attributes and operations

Technical (Sub-)System Module

Not yet represented Aggregation

Not yet represented Element

Not yet represented Imported classes (e.g., from geometry diagram)

It is important to note that this table reflects the state prior to the linking activities
described subsequently. The entities described in the IFM Framework focus on the aim
to represent all aspects of the functionality of the technical systems, whereas a prominent
focus of the entities represented in the engineering framework based on UML, GBDL
and DC43 is a representation that allows the compilation of geometrical models. In this
framework, certain aspects of the product logic were also represented; these are related to
the functionality of the technical system. For linking both approaches, entities were first
identified that were the same or similar in both frameworks. The next scientific activities
aimed to explicitly represent entities of the IFM Framework in the engineering framework,
which were only implicitly expressed until then. For instance, the representation of the
states of a technical system, which before was “hidden” in attributes, was realized as
explicit classes in the UML class diagram and the associations were reworked accordingly.
One example is that the states of the operand “energy” are part of the simulation of the
overall trust when checking the functionality “able to lift off” (see [49]); still, these states
and the operand are not explicitly represented in the class diagram. Finally, the entities,
which were not represented originally, were newly created and integrated into the class

Appl. Sci. 2022, 12, 5301 16 of 28

diagram of the engineering framework and sensible associations were defined. To represent
the linking of both concerned approaches, the initial class diagram illustrated in Figure 5
was remodeled in UML for enabling its use in the engineering framework based on UML,
GBDLs and DC43. The respective class diagram is shown in Figure 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 30

trust when checking the functionality “able to lift off” (see [49]); still, these states and the
operand are not explicitly represented in the class diagram. Finally, the entities, which
were not represented originally, were newly created and integrated into the class diagram
of the engineering framework and sensible associations were defined. To represent the
linking of both concerned approaches, the initial class diagram illustrated in Figure 5 was
remodeled in UML for enabling its use in the engineering framework based on UML,
GBDLs and DC43. The respective class diagram is shown in Figure 12.

Figure 12. UML class diagram for function modeling in DC43.

In Figure 12, the entities, which were already represented and modeled in the IFM
Framework, are integrated with the classes and instantiations represented and modeled
in the engineering framework based on GBDLs. Following the proposed logic of the im-
plementation endeavor, the next gaps/differences between the two approaches need to be
addressed.

One example of a difference between the engineering framework and the original
IFM Framework is that the engineering framework can be used for engineering require-
ments [54]. Therefore, the class “Requirement” was added. In the UML class diagram, the
requirements have a direct link to the use cases. Because of this, it can be determined
which use case of the technical system fulfils which requirement concerning this system,
and also which functional requirements are not yet covered by any use case within the
given class diagram (see [54]). In addition, it was necessary to expand and update several
links, associations and interfaces in order to match the given UML environment; these
changes are highlighted in red in Figure 12.

The objective of this GBDL is to integrate an existing IFM Framework into the engi-
neering framework based on UML in a fully automatic manner. This UML-based frame-
work allows the automated processing of the given function model, ultimately leading to
the generation of automated geometry synthesis and verification scenarios.

4.2. Application to the Multicopter Example
In this section, the applicability of the expanded class diagram, which was developed

to allow the integration of the IFM Framework into the engineering framework, is evalu-
ated and tested by means of an application following the example of a product family of
multicopters (see [49]), as shown in Figure 13 (adapted from [50]).

Figure 12. UML class diagram for function modeling in DC43.

In Figure 12, the entities, which were already represented and modeled in the IFM
Framework, are integrated with the classes and instantiations represented and modeled
in the engineering framework based on GBDLs. Following the proposed logic of the
implementation endeavor, the next gaps/differences between the two approaches need to
be addressed.

One example of a difference between the engineering framework and the original
IFM Framework is that the engineering framework can be used for engineering require-
ments [54]. Therefore, the class “Requirement” was added. In the UML class diagram, the
requirements have a direct link to the use cases. Because of this, it can be determined which
use case of the technical system fulfils which requirement concerning this system, and
also which functional requirements are not yet covered by any use case within the given
class diagram (see [54]). In addition, it was necessary to expand and update several links,
associations and interfaces in order to match the given UML environment; these changes
are highlighted in red in Figure 12.

The objective of this GBDL is to integrate an existing IFM Framework into the engineer-
ing framework based on UML in a fully automatic manner. This UML-based framework
allows the automated processing of the given function model, ultimately leading to the
generation of automated geometry synthesis and verification scenarios.

4.2. Application to the Multicopter Example

In this section, the applicability of the expanded class diagram, which was developed
to allow the integration of the IFM Framework into the engineering framework, is evaluated
and tested by means of an application following the example of a product family of
multicopters (see [49]), as shown in Figure 13 (adapted from [50]).

Appl. Sci. 2022, 12, 5301 17 of 28
Appl. Sci. 2022, 12, x FOR PEER REVIEW 18 of 30

Figure 13. Basic structure of a multicopter, its CAD model and its concrete realization.

From a mechanical point of view, a multicopter is a fairly simple technical system
that receives its ability for stable flight primarily as a consequence of powerful control
engineering. The simplest possible basic structure of a multicopter can be realized with a
circular arrangement of four rotors, which are arranged within an angle of 90 degrees
between each other (see Figure 13). The motors, which are driving these rotors, are usually
mounted on a lightweight frame. This frame is usually equipped with a landing gear and
appliances for fitting the electronics and the components of the power supply. It is possi-
ble to vary many parameters of the multicopter, such as rotor size and rotor blade pitch,
motor torque and battery capacity. However, it is also possible to vary the number of ro-
tors and motors and to create, for instance, hexacopters and octocopters. This multicopter
product family was chosen in this paper as it combines mechanical and electrical design
as well as control engineering, and has been used repeatedly in the past as a suitable ex-
ample for digital modeling in design engineering. Additionally, the multicopter family
serves as an example for investigating lightweight design development in GBDLs. The
specific challenge with lightweight design is to develop, simulate and optimize geome-
tries that dispose of a frame structure that is very rigid in order to be able to suppress
oscillations and to enable enhanced flight control. For the purpose of deriving a superior
design, this multicopter is modeled using GBDLs (see [47]) in order to allow the investi-
gation of multiple configurations (e.g., octocopter) as well as of the performance of multi-
domain simulations. For a functional representation of this multicopter family, it is man-
datory to consider the fact that several use cases (starting, hovering, descending, etc.) have
to be taken into account. The consideration of the use cases will initially allow the collec-
tion of necessary processes and will lead to the formulation of a list of processes. An ex-
ample of a process is process 2, “distribute energy according to need”, that describes the dis-
tribution and control of the electricity for the electrical motors that drive the rotors of the
multicopter; this description is abstract and is on a solution-neutral level. The different
processes that are formulated in the function model of the multicopter are listed in Table
3.

Table 3. IF model processes of the function model of the multicopter.

Number Process
1 Starting system
2 Distributing energy according to stated need
3 Sending steering command
4 Sending steering command via remote
5 Calculating flightpath and motor engagement
6 Increasing or decreasing rotation speed of drive motors
7 Tracking position

Figure 13. Basic structure of a multicopter, its CAD model and its concrete realization.

From a mechanical point of view, a multicopter is a fairly simple technical system
that receives its ability for stable flight primarily as a consequence of powerful control
engineering. The simplest possible basic structure of a multicopter can be realized with
a circular arrangement of four rotors, which are arranged within an angle of 90 degrees
between each other (see Figure 13). The motors, which are driving these rotors, are usually
mounted on a lightweight frame. This frame is usually equipped with a landing gear and
appliances for fitting the electronics and the components of the power supply. It is possible
to vary many parameters of the multicopter, such as rotor size and rotor blade pitch, motor
torque and battery capacity. However, it is also possible to vary the number of rotors and
motors and to create, for instance, hexacopters and octocopters. This multicopter product
family was chosen in this paper as it combines mechanical and electrical design as well
as control engineering, and has been used repeatedly in the past as a suitable example
for digital modeling in design engineering. Additionally, the multicopter family serves
as an example for investigating lightweight design development in GBDLs. The specific
challenge with lightweight design is to develop, simulate and optimize geometries that
dispose of a frame structure that is very rigid in order to be able to suppress oscillations
and to enable enhanced flight control. For the purpose of deriving a superior design,
this multicopter is modeled using GBDLs (see [47]) in order to allow the investigation of
multiple configurations (e.g., octocopter) as well as of the performance of multi-domain
simulations. For a functional representation of this multicopter family, it is mandatory to
consider the fact that several use cases (starting, hovering, descending, etc.) have to be
taken into account. The consideration of the use cases will initially allow the collection of
necessary processes and will lead to the formulation of a list of processes. An example of a
process is process 2, “distribute energy according to need”, that describes the distribution and
control of the electricity for the electrical motors that drive the rotors of the multicopter;
this description is abstract and is on a solution-neutral level. The different processes that
are formulated in the function model of the multicopter are listed in Table 3.

The developed IFM of the multicopter family is described in Figures 14–16. As
explained in Section 3.1, the IFM Framework offers a maximum of five views on the
technical system; Figure 14 illustrates an excerpt of the state view for the example of
the multicopter.

Appl. Sci. 2022, 12, 5301 18 of 28

Table 3. IF model processes of the function model of the multicopter.

Number Process

1 Starting system

2 Distributing energy according to stated need

3 Sending steering command

4 Sending steering command via remote

5 Calculating flightpath and motor engagement

6 Increasing or decreasing rotation speed of drive motors

7 Tracking left

8 Tracking rate of ascent or descent

9 Tracking roll rate and roll angle

10 Holding position

11 Landing multicopter

12 Switching system off

13 Distributing forces

Appl. Sci. 2022, 12, x FOR PEER REVIEW 19 of 30

8 Tracking rate of ascent or descent
9 Tracking roll rate and roll angle
10 Holding position
11 Landing multicopter
12 Switching system off
13 Distributing forces

The developed IFM of the multicopter family is described in Figures 14–16. As ex-
plained in Section 3.1, the IFM Framework offers a maximum of five views on the technical
system; Figure 14 illustrates an excerpt of the state view for the example of the multicop-
ter.

Figure 14. State view of the IF model (excerpt).

The state flow initially starts with the state “resting on ground” of the component
“Chassis Frame” and illustrates the possible processes that may lead to another state of
the component. For instance, a combination of the processes P1, P2 and P13 can lead to
another state, i.e., the state may change “in flight, distributing forces”, which is also a state
of the component “Chassis Frame”. A detailed look at these processes and their intercon-
nections can be fostered by means of the process flow view (Figure 15, adapted from [50]).

Figure 14. State view of the IF model (excerpt).

Appl. Sci. 2022, 12, 5301 19 of 28Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 30

Figure 15. Process flow view of the IF model (simplified).

In the process flow view in Figure 15, the processes, which are also described in the
state view (Figure 14), are linked with oriented connections. Through this, the interplay
of the processes becomes transparent. Certain decision points may also be included in this
process flow view. It is important to note that each process in the technical system is real-
ized by means of actors (see Section 3.1); the connection of the actors to the respective
processes can be described in the actor view (Figure 16).

Figure 16. Actor view of the IFM model (X indicates active actors and O indicates passive actors).

In the actor view shown in Figure 16, a differentiation between active actors that are
indicated by an “X” (e.g., the actor “Battery” in the process “distribute energy according to
need”) and passive actors that are indicated by an “O” (e.g., the actor “Battery” in the pro-
cess “start system”) is possible. This differentiation supports the identification of actors

Figure 15. Process flow view of the IF model (simplified).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 30

Figure 15. Process flow view of the IF model (simplified).

In the process flow view in Figure 15, the processes, which are also described in the
state view (Figure 14), are linked with oriented connections. Through this, the interplay
of the processes becomes transparent. Certain decision points may also be included in this
process flow view. It is important to note that each process in the technical system is real-
ized by means of actors (see Section 3.1); the connection of the actors to the respective
processes can be described in the actor view (Figure 16).

Figure 16. Actor view of the IFM model (X indicates active actors and O indicates passive actors).

In the actor view shown in Figure 16, a differentiation between active actors that are
indicated by an “X” (e.g., the actor “Battery” in the process “distribute energy according to
need”) and passive actors that are indicated by an “O” (e.g., the actor “Battery” in the pro-
cess “start system”) is possible. This differentiation supports the identification of actors

Figure 16. Actor view of the IFM model (X indicates active actors and O indicates passive actors).

The state flow initially starts with the state “resting on ground” of the component
“Chassis Frame” and illustrates the possible processes that may lead to another state of the
component. For instance, a combination of the processes P1, P2 and P13 can lead to another
state, i.e., the state may change “in flight, distributing forces”, which is also a state of the
component “Chassis Frame”. A detailed look at these processes and their interconnections
can be fostered by means of the process flow view (Figure 15, adapted from [50]).

In the process flow view in Figure 15, the processes, which are also described in the
state view (Figure 14), are linked with oriented connections. Through this, the interplay
of the processes becomes transparent. Certain decision points may also be included in
this process flow view. It is important to note that each process in the technical system is

Appl. Sci. 2022, 12, 5301 20 of 28

realized by means of actors (see Section 3.1); the connection of the actors to the respective
processes can be described in the actor view (Figure 16).

In the actor view shown in Figure 16, a differentiation between active actors that are
indicated by an “X” (e.g., the actor “Battery” in the process “distribute energy according
to need”) and passive actors that are indicated by an “O” (e.g., the actor “Battery” in the
process “start system”) is possible. This differentiation supports the identification of actors
that are especially active. One may notice that the actors are already concrete system
elements, indicating the transition to the more concrete levels of the successive architec-
ture development over the functional and logical architecture to the physical architecture
(see Section 1).

In the representation in Figure 16, the developed connection between the IFM Frame-
work and the engineering framework based on GBDLs becomes particularly visible. The ac-
tor view represents a concise system model that achieves a direct connection of the function-
oriented processes with the actors, which are, amongst others, the objects/components
in the engineering framework and their later instantiation. The model described in the
actor view can serve as a basis for the further product development steps of the technical
system under consideration. Employing the different views of the IF model, which were
illustrated presciently, the GBDL generates a design graph in an automatic manner. The
design graph of the function model of the multicopter is shown in Figure 17 (adapted from
Elwert et al. [50]).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 30

that are especially active. One may notice that the actors are already concrete system ele-
ments, indicating the transition to the more concrete levels of the successive architecture
development over the functional and logical architecture to the physical architecture (see
Section 1).

In the representation in Figure 16, the developed connection between the IFM Frame-
work and the engineering framework based on GBDLs becomes particularly visible. The
actor view represents a concise system model that achieves a direct connection of the func-
tion-oriented processes with the actors, which are, amongst others, the objects/compo-
nents in the engineering framework and their later instantiation. The model described in
the actor view can serve as a basis for the further product development steps of the tech-
nical system under consideration. Employing the different views of the IF model, which
were illustrated presciently, the GBDL generates a design graph in an automatic manner.
The design graph of the function model of the multicopter is shown in Figure 17 (adapted
from Elwert et al. [50]).

Figure 17. Design graph of the function model of the multicopter.

Based on the UML model of the technical system, several analyses may be performed
automatically, such as reasoning tests (Section 5). The starting point is the central data
model, which represents information in the form of a design graph. From this high-level
model, several interfaces may allow the generation of generic models that are usually do-
main-specific, e.g., geometry models in CAD data formats or simulation models in typical
CAE data formats. Figure 10 indicates some of the generic models that were generated in
the earlier phases of the product development of the multicopter. Therefore, the IF model
combined with GBDLs leads to an engineering framework that allows the generation of
the abstract logical structure of a technical system. This kind of structure enables the au-
tomated creation of multi-domain models. In the described framework based on GBDLs,
these multi-domain models also contain detailed geometrical information. These multi-
domain models allow the analysis and exploration of a large product variety, i.e., a large
number of possible, sensible and feasible product configurations; a large product portfolio
can be analyzed and evaluated. Domain-specific models, which were created from the
design graph using interfaces (Figure 10), can be employed for verifying the functions that
were demanded in the requirements. In the requirements of the multicopter, for instance,
a certain rate of climbing is desired. This functional requirement can be verified by means
of a simulation using a control model. Another requirement is that the main frame needs
be able to withstand the combined loads from the lifting forces of the four or more rotors.
The fulfillment of the requirement can be evaluated with a finite element analysis (FEA)
model. Other requirements can concern non-technical aspects such as economical aspects.
For instance, a cost target may be defined in an early stage of the design phase. All com-
ponents are defined in the automated design process, and for certain components that are

Figure 17. Design graph of the function model of the multicopter.

Based on the UML model of the technical system, several analyses may be performed
automatically, such as reasoning tests (Section 5). The starting point is the central data
model, which represents information in the form of a design graph. From this high-level
model, several interfaces may allow the generation of generic models that are usually
domain-specific, e.g., geometry models in CAD data formats or simulation models in
typical CAE data formats. Figure 10 indicates some of the generic models that were
generated in the earlier phases of the product development of the multicopter. Therefore,
the IF model combined with GBDLs leads to an engineering framework that allows the
generation of the abstract logical structure of a technical system. This kind of structure
enables the automated creation of multi-domain models. In the described framework
based on GBDLs, these multi-domain models also contain detailed geometrical information.
These multi-domain models allow the analysis and exploration of a large product variety,
i.e., a large number of possible, sensible and feasible product configurations; a large product
portfolio can be analyzed and evaluated. Domain-specific models, which were created from
the design graph using interfaces (Figure 10), can be employed for verifying the functions
that were demanded in the requirements. In the requirements of the multicopter, for
instance, a certain rate of climbing is desired. This functional requirement can be verified by
means of a simulation using a control model. Another requirement is that the main frame

Appl. Sci. 2022, 12, 5301 21 of 28

needs be able to withstand the combined loads from the lifting forces of the four or more
rotors. The fulfillment of the requirement can be evaluated with a finite element analysis
(FEA) model. Other requirements can concern non-technical aspects such as economical
aspects. For instance, a cost target may be defined in an early stage of the design phase. All
components are defined in the automated design process, and for certain components that
are not procured externally, manufacturing process are chosen. From the central design
graph, the bill of materials (BOM) and the cost simulation are also created via appropriate
interfaces. This simulation can evaluate whether the cost target can be achieved and can
discard design variations that do not achieve these targets.

Additionally, employing the integrated IF model it is feasible to identify which actors
have achieved their intended functions and which have not. Additionally, based on simula-
tion it is possible to determine whether the fulfilment of the desired function and behavior
objectives is within the range of given design goals. In case a new product configuration
is to be explored, this should enable the engineers to focus immediately on the necessary
changes for complying with all given requirements. In this context, a multi-objective
optimization process based on, e.g., pareto front analyses can lead to systems with an opti-
mum fulfillment of a number of requirements. Currently, in many engineering disciplines,
superstructure-based optimization and selection approaches are being investigated and
applied [56,57]. In these examples, alternative solutions are described in a superstructure
representation and an optimal configuration is found by means of numerical simulation. In
the presented research, the general topic of finding the optimum solution from alternatives
generated by the GBDL was addressed, e.g., by means of pareto fronts. An optimization
based on a superstructure representation could be an interesting addition and will be a
topic for further research. Novel investigations of the function model are already possible
in the given form, and this is discussed in the subsequent section.

5. Exemplary Application of the Combined Model

The combined model allows novel investigations of the function model. Three gen-
eral approaches are briefly illustrated subsequently, which showcase the merit of the
combined approach.

The first approach is a function path analysis, which allows, for instance, to assign
risks to certain functions. This analysis can be applied to improve functions, processes and
function carriers that are especially important for the overall system function. This also
allows analysis of the consequences of engineering changes.

The second is a parametric function analysis, which allows, for instance, the iden-
tification of bottlenecks, e.g., components of a technical system that are part of several
processes (i.e., they are involved in the fulfilment of a large number of functions and, hence,
failure of these function carriers is likely to have a severe impact on the system). Design
improvements that address these bottlenecks can lead to systems that are more robust and
fault-tolerant.

The final approach is a function change effect analysis, which allows, for instance,
to assess the consequences of an engineering change of one or more function on other
functions. An assessment of the consequences of such changes can be an important tool to
develop system-specific redesign strategies.

It is important to note that other analysis approaches would be possible. This section
of the paper will concentrate on the function path analysis. This analysis adopts some ideas
of the Failure Modes and Effects Analysis (FMEA) (see, e.g., Carlson [58]). In an FMEA,
three components are multiplied in order to calculate the risk in form or a risk priority
number (RPN):

Severity (S): the severity indicates the effect of a certain failure on the systems customer;
it is described on a 10-point scale from 1 (no effect) to 10 (hazardous effect).

Occurrence (O): the occurrence indicates the probability of a certain failure; it is
described on a 10-point scale from 1 (failure unlikely, no failure history) to 10 (failure
almost certain).

Appl. Sci. 2022, 12, 5301 22 of 28

Detection (D): the detection indicates the probability to detect the failure before it has
an effect (during all phases including conception, design, testing, production, end-of-line-
testing, and operation (even by the customer him-/herself)); it is described in a 10-point
scale from 1 (proven detection methods already available in the concept stage) to 10 (no
known detection method available).

For the development of the function path analysis, there is also the Failure Modes,
Effects and Criticality Analysis (FMECA) ([59], respectively MIL-STD-1629A). In this anal-
ysis, the criticality is calculated by multiplying the item unreliability, the mode ratio of
unreliability and the probability of loss for each failure mode of a certain component,
and by summing up the criticality of a failure mode of this component. This allows the
identification of critical components—the function path analysis aims at a more abstract
level of the design process and aims to identify critical or risky functions. It is proposed to
add an analysis to the function model in the engineering framework that analyses three
entities, as follows.

An assessment is made of how important the process of a certain function (see process
flow view in Figure 4) for the fulfilment of the overall system function; this assessment
is described as severity (S) on a 10-point scale from 1 (not at all important for the overall
system functionality) to 10 (absolutely essential for the overall system functionality).

An assessment is made of how probable it is that a circumstance in which a certain
process can fail is detected before the failure occurs; this assessment is described as detection
(D) on a 10-point scale from 1 (the possibility of failure will definitely be detected before
the occurrence) to 10 (no detection method for the possibility of failure exists).

An assessment is made of how reliable the actors—the function carriers—are; this
assessment is initially described as actor failure probability on a continuous scale from
0 (the probability of this actor to fail is infinitely low) to 1 (the actor will definitely fail);
this assessment can then be automatically transferred to a process occurrence (O) on a
continuous scale from 0 (the probability of this process to be affected by actor failure is
infinitely low) to 10 (this process will definitely be affected by actor failure).

It is important to note that two of the entities use the core of a function—the process—
for the assessment and only one entity uses the actors. Figure 18 shows an exemplary
assessment for the multicopter example.

The assessments in Figure 18 were carried out by the development engineers based
on their experience and on the reliability information available for some of the compo-
nents. The assessment of process severity (A) and process detectability (A) result from
the experience of the involved engineers. For instance, the high process severity (A) for
process 2 “distribute energy according to need” is a result of the fact that the operation
of the multicopter is impossible without this process. The assessment of the actor failure
probabilities (C) is based on a combination of general engineering experience and informa-
tion concerning a certain actor (e.g., vendor reliability information); for instance, the high
actor failure probability of actor 11 “rotor” is a result of the damage possibilities during the
flight. From this assessment, the process SOD (severity, occurrence, detection) values can
be calculated (Figure 19).

From the results in Figure 19, it is obvious that the processes Process 2 “distribute
energy according to need”, Process 5 “Calculate flightpath and motor engagement” and Process 13

“distribute forces” have the highest SODs (in the given example, a SOD of 125 was considered
to be critical). If one intends to improve the overall functionality of the multicopter, these
processes, as well as the functions they are part of and the actors (function carriers) that
realize these processes, are a good place to start.

Appl. Sci. 2022, 12, 5301 23 of 28
Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 30

Figure 18. Assessment in a function path analysis. Visible are process severity values (A), the process
detectability values (B), the actor failure probabilities (C) and the process occurrence values (D).

The assessments in Figure 18 were carried out by the development engineers based
on their experience and on the reliability information available for some of the compo-
nents. The assessment of process severity (A) and process detectability (A) result from the
experience of the involved engineers. For instance, the high process severity (A) for pro-
cess 2 “distribute energy according to need” is a result of the fact that the operation of the
multicopter is impossible without this process. The assessment of the actor failure proba-
bilities (C) is based on a combination of general engineering experience and information
concerning a certain actor (e.g., vendor reliability information); for instance, the high actor
failure probability of actor 11 “rotor” is a result of the damage possibilities during the
flight. From this assessment, the process SOD (severity, occurrence, detection) values can
be calculated (Figure 19).

Figure 18. Assessment in a function path analysis. Visible are process severity values (A), the process
detectability values (B), the actor failure probabilities (C) and the process occurrence values (D).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 30

Figure 19. Process severity, occurrence, detection (SOD) values for the multicopter.

From the results in Figure 19, it is obvious that the processes Process 2 “distribute en-
ergy according to need”, Process 5 “Calculate flightpath and motor engagement” and Process 13
“distribute forces” have the highest SODs (in the given example, a SOD of 125 was consid-
ered to be critical). If one intends to improve the overall functionality of the multicopter,
these processes, as well as the functions they are part of and the actors (function carriers)
that realize these processes, are a good place to start.

During the exemplary application, the specific working style when applying an en-
gineering framework based on GBDLs was obvious. A paradigm shift can be observed as
the product is not designed in a conventional manner—instead, a family of products is
“programmed”. Earlier research has found a certain reluctance of the main stakeholder—
the designers—to describe products based on UML or SysML [18–20]. The designers in
this project were younger engineers trained in the engineering framework and were open
to this kind of change. The integration of the IFM Framework did not impair their product
development processes.

The main aspects that are specific to the presented example are the connection of two
different engineering frameworks, leading to a rich and integrated knowledge represen-
tation of an abstract function model in an engineering framework, and the utilization of
this integrated function model for a function path analysis, which allows the identification
of critical processes and functions.

As mentioned above, a multicopter is a fairly complex technical system that requires
a control system for realizing its central functions. Consequently, a relatively high level of
functional interconnection is present in a multicopter. Integrated function modeling ena-
bles the capture of those interconnections and an integration in an engineering framework
allows further functional analyses and the generation of functionally diverse system to-
pologies and configurations. Another specialty of the given system is the necessity to re-
alize a lightweight design—this necessity concerns all function carriers (actors). The func-
tion path analysis allows the identification of critical processes and can support designers
in their decision as to how much weight to invest in certain function carriers.

6. Discussion and Conclusions
6.1. Research Contribution

In the last decades, several engineering models were proposed that share the central
objective to coherently allow the modeling of functions and solutions [3,4,43,47] (for an

Figure 19. Process severity, occurrence, detection (SOD) values for the multicopter.

Appl. Sci. 2022, 12, 5301 24 of 28

During the exemplary application, the specific working style when applying an engi-
neering framework based on GBDLs was obvious. A paradigm shift can be observed as the
product is not designed in a conventional manner—instead, a family of products is “pro-
grammed”. Earlier research has found a certain reluctance of the main stakeholder—the
designers—to describe products based on UML or SysML [18–20]. The designers in this
project were younger engineers trained in the engineering framework and were open to
this kind of change. The integration of the IFM Framework did not impair their product
development processes.

The main aspects that are specific to the presented example are the connection of two
different engineering frameworks, leading to a rich and integrated knowledge representa-
tion of an abstract function model in an engineering framework, and the utilization of this
integrated function model for a function path analysis, which allows the identification of
critical processes and functions.

As mentioned above, a multicopter is a fairly complex technical system that requires a
control system for realizing its central functions. Consequently, a relatively high level of
functional interconnection is present in a multicopter. Integrated function modeling en-
ables the capture of those interconnections and an integration in an engineering framework
allows further functional analyses and the generation of functionally diverse system topolo-
gies and configurations. Another specialty of the given system is the necessity to realize a
lightweight design—this necessity concerns all function carriers (actors). The function path
analysis allows the identification of critical processes and can support designers in their
decision as to how much weight to invest in certain function carriers.

6. Discussion and Conclusions
6.1. Research Contribution

In the last decades, several engineering models were proposed that share the central
objective to coherently allow the modeling of functions and solutions [3,4,43,47] (for an
overview, see [60]). This follows the increasing digitalization of engineering design pro-
cesses and the desire to be able grasp the functionality and structure—and their respective
interrelations—of a system under development in a single or interrelated model. Such
a model would permit the concurrent development and adaptation of what the system
is meant to achieve (i.e., its functionality) and how—this is to say, by what technical or
human means (i.e., its structure)—it is going to achieve this. The advantages would be
substantial in terms of tracking and predicting engineering change efforts, as well as for
documentation and behavioral simulation and prediction. From an existing structure,
links can be established to prominent engineering simulation tools; thus, by extension, the
coherent implementation of a model coupling functional and structural modeling digitally
will permit a digital chain from initial functional considerations during conceptual design
until engineering simulation in the detail design stages. A rather small number of modeling
approaches have been proposed that already link function-oriented modeling with system
structural modeling, such as Unified or System Modeling Language (SysML/UML [3,4,61])
or Object-Process Methodology (OPM [11]), and also commercial tools, such as Catia (Das-
sault Systems, Vélizy-Villacoublay, France) and many others. However, these approaches
are usually rather specific and limited in their scope and/or they are reliant on a particular
software environment and a prescribed formalism; in addition, they tend to remain at
an abstract level for the description of the resulting technical system, which retains the
mentioned barriers between the model and engineering simulation. This paper presents
a decisive step forward in this respect using the Integrated Function Modeling (IFM)
Framework [17] as a starting point that is to be coupled with structural modeling—fully
digitalized—using an executable graph-based modeling language, specifically Design Com-
piler 43 (DC43). Graph-based languages have the benefit of not being reliant on a specific
software environment in visualizing/modeling the content and avoiding so-called “vendor
lock-in”, but, in fact, generate a meta or system model that serves as backend, giving the
engineering designer the freedom to choose which specific tools they use to do the actual

Appl. Sci. 2022, 12, 5301 25 of 28

system modeling in. This may indeed be SysML and other approaches if these are preferred
by the designers.

In this work, we propose an integration of the IFM Framework with DC43 for the
targeted integration of functional and structural modeling. Essentially, we make use of the
entities already covered in the IFM Framework and expand the related Entity Relations
Diagram strategically to permit the targeted integration, as outlined in Section 4. Specifically,
expansions include the addition of a hierarchical requirement structure and detailed object
structures that inherit from general classes, e.g., developing geometrical features. One
issue arising with this integration might be increased computational costs. However, the
information stored in the IFM is mainly relationships between entities that are present in the
GBDL anyway and text based small data entities; consequently, this issue is not considered
to be critical. Another issue might be the challenge to store a large share of the data and
expertise within a unified data model. In current product development processes, these
data and expertise are already collected and stored in numerous models, but frequently
these models are interconnected and cannot be used to build up an integrated knowledge
base. As mainly the interconnections are missing, this issue was also not considered to be
critical. The effort is sensible and it is feasible to integrate at least the relevant information
in the unified central data model.

The presented research has the main intention to expand the possibilities to employ
function modeling approaches in the automated generation of different product configu-
rations. In this context, not only parametrical differences, but also topological differences
may be present with the developed product portfolio. This paper explains how function
modeling may be carried out with the IFM Framework approach, but then translated
into a fully digitalized structural model with DC43. DC43 automatically translates the
created IF model into a UML model in the backend, and this UML model may be used
for automated reasoning tests based on the function model. A particular asset of the
explained application of GBDLs is the capability to automatically create feasible design
alternatives and to automatically simulate their characteristics and behavior. This permits
the rapid comparison of design alternatives and the selection of the “fittest” alternative. A
further asset of the application of GBDLs, especially in comparison with other powerful
approaches based on SysML [61] instead of UML, is that the approach allows the generation
of detailed geometrical models in generic data formats directly from a central data model,
which is formulated in the form of a design graph. The application of GBDLs creates an
abstract digital system model that sensibly incorporates all relevant information concerning
a design. This information may be transferred into relevant simulation tools, for instance
for finite element analysis, computational flow dynamics and the likes; therefore, this
allows a detailed evaluation of the impact of a proposed design variation. To illustrate and
validate the proposed integration, we used the example of a multicopter. The generated
model not only allowed us to successfully model the multicopter at the functional and
structural level, but it further permitted us to use the model for detailed risk analysis using
the format of common FMEA. Obviously, FMEAs have been successfully used in industry
for decades. The presented work supports a stronger integration with the product model
and an automatic generation. Many other analysis methods can be thought of that the
underlying model could be fed into for design consideration and selection/comparison of
design alternatives.

Two central research gaps are addressed by the formal and conceptual integration of
the IFM Framework into an engineering framework based on GBDLs. On the one hand,
the integration results in the possibility of linking more quantitative modeling aspects
with abstract design information, for instance use cases, processes, and the states of actors
and operands. Thus, it directly addresses the mentioned gap of having a traceable, digital
design chain from conceptual design considerations to system behavioral simulation. On
the other hand, this integration can eventually enhance the reasoning regarding how cer-
tain components in a detailed design may affect the overall fulfilment of certain functions.
Additionally, by extension, this integration could permit systematic prediction and man-

Appl. Sci. 2022, 12, 5301 26 of 28

agement around engineering change management, which is a critical endeavor for most
engineering companies.

6.2. Limitations and Future Work

While the multicopter is considered a suitable validation case as a proof of concept
or application validation, respectively (see [24]), more work is necessary in the future in
order to achieve (or at least thoroughly evaluate) the proposed solution’s applicability.
This will involve moving on to more complex systems. Another question that has not
been addressed in this article is the question how the modeling of systems that are not
just technical—i.e., that also involve human or other animate beings, which could be the
case in services and product service systems—would work effectively. Exactly how it
would translate cannot be answered easily, as services or product service system (PSS)
processes, especially when carried out by humans rather than technical means, are more
qualitative by nature. However, research has already produced the initial means for process
simulation (see, e.g., the Cambridge Advanced Modeller [62]). Therefore, we assume
that this is possible in principle, and future research will address this particular issue in
detail. Additional aspects of further research are to increase the automation level and
expand the cross-domain modeling capabilities. Future application possibilities include
automated reasoning test on the functional level, which will range from plausibility checks
to simulations of the parametrical and topological relations between the different elements
of the function model.

Author Contributions: Conceptualization: M.E., M.R., B.E., R.S., M.T. and S.R.; methodology: M.R.,
B.E., R.S. and S.R.; investigation and simulation: M.E. and M.R.; writing—original draft preparation,
M.E., B.E. and R.S.; writing—review and editing, M.R., M.T. and S.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partly funded in the scope of the Digital Product Life Cycle (ZaFH)
project (information available at: https://dip.rwu.de/ (accessed on 22 May 2022)), which is supported
by a grant from the European Regional Development Fund and the Ministry of Science, Research, and
the Arts of Baden-Württemberg, Germany (information available at: https://efre-bw.de/ (accessed
on 22 May 2022)). Further parts were supported in the scope of the project “Automatisierter Entwurf
eines geometrischen und kinetischen digitalen Zwillings einer Rohbaufertigungsanlage für die
Virtuelle Inbetriebnahme (TWIN)”, which is funded by the German Federal Ministry of Education
and Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gladysz, B.; Spandl, L.; Albers, A. A Function- and Embodiment-Based Failure Analysis Method for an In-Depth Understanding

of Failure Mechanisms. In Proceedings of the 21st International Conference on Engineering Design, ICED17, Vancouver, BC,
Canada, 21–25 August 2017.

2. Wilschut, T.; Etman, L.F.P.; Rooda, J.E.; Vogel, A. Generation of a function-component-parameter multi-domain matrix from
structured textual function specifications. Res. Eng. Des. 2018, 29, 531–546. [CrossRef]

3. Kruse, B.; Münzer, C.; Wölkl, S.; Canedo, A.; Shea, K. A Model-Based Functional Modeling and Library Approach for Mechatronic
Systems in SysML. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information
in Engineering Conference 2012, Chicago, IL, USA, 12–15 August 2012.

4. Kruse, B.; Shea, K. Design Library Solution Patterns in SysML for Concept Design and Simulation. Procedia CIRP 2016, 50, 695–700.
[CrossRef]

5. Genannt Richter, M.R.; Rudolph, S. A scientific discourse on creativity and innovation in the formal context of graph-based design
languages. In Proceedings of the 13th Anniversary “Heron Island” Conference Workshop on Computational and Cognitive
Models of Creative Design (HI’19), Heron Island, QLD, Australia, 15–18 December 2019.

6. Wichmann, R.; Eisenbart, B.; Gericke, K.; Lux, B. Concept comparison: A function integrity indicator. In Proceedings of the
International Design Conference DESIGN’20, Cavtat, Croatia, 23–26 May 2022. [CrossRef]

https://dip.rwu.de/
https://efre-bw.de/
http://doi.org/10.1007/s00163-018-0284-9
http://doi.org/10.1016/j.procir.2016.04.132
http://doi.org/10.1017/dsd.2020.70

Appl. Sci. 2022, 12, 5301 27 of 28

7. Gero, J.S.; Kannengiesser, U. The Function-Behaviour-Structure Ontology of Design. In An Anthology of Theories and Models of
Design: Philosophy, Approaches and Empirical Explorations; Chakrabarti, A., Blessing, L.T.M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2014.

8. Chakrabarti, A.; Bligh, T.P. A Scheme for Functional Reasoning in Conceptual Design. Des. Stud. 2001, 22, 493–517. [CrossRef]
9. Braha, D.; Reich, Y. Topological Structures for Modeling Engineering Design Processes. Res. Eng. Des. 2003, 14, 185–199.

[CrossRef]
10. Eckert, C.; Albers, A.; Bursac, N.; Chen, H.; Clarkson, P.; Gericke, K.; Gladysz, B.; Maier, J.; Rachenkova, G.; Shapiro, D.; et al.

Integrated Product and Process Models: Towards an Integrated Framework and Review. In Proceedings of the 20th International
Conference on Engineering Design-ICED2015, Milan, Italy, 27–30 July 2015.

11. Dori, D. Object-process Analysis: Maintaining the Balance between System Structure and Behavior. J. Log. Comput. 1995, 5,
227–249. [CrossRef]

12. Aurisicchio, M.; Bracewell, R.; Armstrong, G. The Function Analysis Diagram: Intended Benefits and Coexistence with Other
Functional Models. Artif. Intell. Eng. Des. Anal. Manuf.–AIEDAM 2012, 27, 249–257. [CrossRef]

13. Caldwell, B.W.; Sen, C.; Mocko, G.M.; Summers, J.D. An Empirical Study of the Expressiveness of the Functional Basis. Artif.
Intell. Eng. Des. Anal. Manuf. (AI EDAM) 2011, 25, 273–287. [CrossRef]

14. Hirtz, J.; Stone, R.B.; Szykman, S.; McAdams, D.; Wood, K.L. Evolving a Functional Basis for Engineering Design. In Proceedings
of the ASME Design Engineering Technical Conference: DETC2001, Pittsburgh, PA, USA, 9–12 September 2001.

15. Sen, C.; Summers, J.D.; Mocko Gregory, M. A Formal Representation of Function Structure Graphs for Physics-based Reasoning.
J. Comput. Inf. Sci. Eng. 2013, 13, 021001. [CrossRef]

16. Szykman, S.; Racz, J.; Sriram, R. The Representation of Function in Computer-Based Design. In Proceedings of the International
Conference on Design Theory and Methodology–DTM, Las Vegas, NV, USA, 12–16 September 1999.

17. Eisenbart, B.; Gericke, K.; Blessing, L.; McAloone, T. A DSM-based Framework for Integrated Function Modeling: Concept,
Application and Evaluation. Res. Eng. Des. 2016, 28, 25–51. [CrossRef]

18. Bone, M.; Cloutier, R. The Current State of Model Based Systems Engineering. Results from the OMG SysML Request for
Information 2009. In Proceedings of the 8th Conference on Systems Engineering Research, Hoboken, NJ, USA, 17–19 May 2010.

19. Borches, P.; Bonnema, G.M. System Evolution Barriers and How to Overcome Them! In Proceedings of the 8th Conference on
Systems Engineering Research, Hoboken, NJ, USA, 17–19 May 2010.

20. Torry-Smith, J. Designing Mechatronic Products. Achieving Integration by Means of Modelling Dependencies. Ph. D. Dissertation,
Technical University of Denmark, Copenhagen, Denmark, 2013.

21. Sztipanovits, J.; Koutsoukos, X.; Karsai, G.; Kottenstette, N.; Antsaklis, P.; Gupta, V.; Goodwine, B.; Baras, J.; Wang, S. Toward a
Science of Cyber-Physical System Integration. Proc. IEEE 2012, 100, 29–44. [CrossRef]

22. VDI/VDE 2206—Entwurf: Entwicklung Cyber-Physischer Mechatronischer Systeme (CPMS); Beuth: Berlin, Germany, 2020.
23. Gräßler, I.; Hentze, J. The new V-Model of VDI 2206 and its validation. At Automatisierungstechnik 2020, 68, 312–324. [CrossRef]
24. Blessing, L.T.M.; Chakrabarti, A. DRM, a Design Research Methodology; Springer: London, UK, 2009.
25. Kohn, A. Entwicklung einer Wissensbasis für die Arbeit mit Produktmodellen. Ph.D. Thesis, Lehrstuhl für Produktentwicklung

der Technischen Universität München, Garching bei Muenchen, Germany, November 2013.
26. Erden, M.S.; Komoto, H.; van Beek, T.J.; D’Amelio, V.; Echavarria, E.; Tomiyama, T. A review of function modeling: Approaches

and applications. Artif. Intell. Eng. Des. Anal. Manuf. 2008, 22, 147–169. [CrossRef]
27. Crilly, N. The role that artefacts play: Technical, social and aesthetical functions. Des. Stud. 2010, 31, 311–344. [CrossRef]
28. Vermaas, P. The coexistence of engineering meanings of function: Four responses and their methodological implications. Artif.

Intell. Eng. Des. Anal. Manuf. 2013, 27, 191–202. [CrossRef]
29. Eisenbart, B.; Gericke, K.; Blessing, L. An analysis of functional modeling approaches across disciplines. Artif. Intell. Eng. Des.

Anal. Manuf. 2013, 27, 281289. [CrossRef]
30. Howard, T.; Culley, S.; Dekoninck, E. Describing the Creative Design Process by the Integration of Engineering Design and

Cognitive Psychology Literature. Des. Stud. 2008, 29, 160–180. [CrossRef]
31. Tomiyama, T.; van Beek, T.J.; Alvarez Cabrera, A.A.; Komoto, H.; D’Amelio, V. Making Function Modeling Practically Usable.

Artif. Intell. Eng. Des. Anal. Manuf. (AI EDAM) 2013, 27, 301–309. [CrossRef]
32. Ulrich, K.; Eppinger, S.D. Product Design and Development; McGraw-Hill Higher Education: New York, NY, USA, 2008.
33. Vermaas, P. A Conceptual Ambiguous Future for Engineering Design. Cph. Work. Pap. Des. 2010, 2, 59–64.
34. Nvss, S.; Esakki, B.; Yang, L.J.; Udayagiri, C.; Vepa, K.S. Design and Development of Unibody Quadcopter Structure Using

Optimization and Additive Manufacturing Techniques. Designs 2022, 6, 8. [CrossRef]
35. Goh, C.D.; Agarwala, S.; Goh, G.L.; Dikshit, V.; Sing, S.L.; Yeong, W.Y. Additive manufacturing in unmanned aerial vehicles

(UAVs): Challenges and potential. Aerosp. Sci. Echnology 2017, 63, 140–151. [CrossRef]
36. Eliker, K.; Zhang, G.; Grouni, S.; Zhang, W. An Optimization Problem for Quadcopter Reference Flight Trajectory Generation. J.

Adv. Transp. 2018, 2018, 6574183. [CrossRef]
37. Eder, W.; Hosnedl, S. Design Engineering: A Manual for Enhanced Creativity; CRC Press: Boca Raton, FL, USA; London, UK; New

York, NY, USA, 2008.
38. Andreasen, M.M. The Theory of Domains. In Understanding Function and Function-to-From Evolution: Workshop Report, CUED/C-

EDC/TR 12; Ullman, D., Blessing, L.T.M., Wallace, K., Eds.; Engineering Design Centre: Cambridge, UK, 1992; pp. 21–47.

http://doi.org/10.1016/S0142-694X(01)00008-4
http://doi.org/10.1007/s00163-003-0035-3
http://doi.org/10.1093/logcom/5.2.227
http://doi.org/10.1017/S0890060413000255
http://doi.org/10.1017/S0890060410000442
http://doi.org/10.1115/1.4023167
http://doi.org/10.1007/s00163-016-0228-1
http://doi.org/10.1109/JPROC.2011.2161529
http://doi.org/10.1515/auto-2020-0015
http://doi.org/10.1017/S0890060408000103
http://doi.org/10.1016/j.destud.2010.04.002
http://doi.org/10.1017/S0890060413000206
http://doi.org/10.1017/S0890060413000280
http://doi.org/10.1016/j.destud.2008.01.001
http://doi.org/10.1017/S0890060413000309
http://doi.org/10.3390/designs6010008
http://doi.org/10.1016/j.ast.2016.12.019
http://doi.org/10.1155/2018/6574183

Appl. Sci. 2022, 12, 5301 28 of 28

39. Andreasen, M.M.; Howard, T.; Bruun, H. Domain Theory, its Models and Concepts. In An Anthology of Theories and Models of
Design: Philosophy, Approaches and Empirical Explorations; Chakrabarti, A., Blessing, L.T.M., Eds.; Springer: Berlin, Germany, 2014.

40. Eder, W. Aspects of Analysis and Synthesis in Design Engineering. In Proceedings of the Canadian Engineering Education
Association, Halifax, NS, Canada, 27–29 July 2008.

41. Hubka, V.; Eder, W. Theory of Technical Systems: A Total Concept Theory for Engineering Design; Springer: Berlin/Heidelberg,
Germany; New York, NY, USA; Tokyo, Japan, 1988.

42. Hundal, M. A Systematic Method for Developing Function Structures, Solutions and Concept Variants. Mech. Mach. Theory 1990,
25, 243–256. [CrossRef]

43. Muenzer, C.; Shea, K. Simulation-Based Computational Design Synthesis using Automated Generation of Simulation Models
from Concept Model Graphs. J. Mech. Des. 2017, 139, 071101. [CrossRef]

44. Rigger, E.; Vosgien, T. Design Automation State of Practice—Potential and Opportunities. In DS 92, Proceedings of the DESIGN
2018 15th International Design Conference, Dubrovnik, Croatia, 21–24 May 2018; Marianovic, D., Štorga, M., Škec, S., Bojčetić, N.,
Pavković, N., Eds.; The Design Society: Glasgow, UK, 2018. [CrossRef]

45. Pivoto, D.G.S.; de Almeida, L.F.F.; da Rosa Righi, R.; Rodrigues, J.J.P.C.; Baratella Lugli, A.; Alberti, A.M. Cyber-physical systems
architectures for industrial internet of things applications in Industry 4.0: A literature review. J. Manuf. Syst. 2021, 58, 176–192.
[CrossRef]

46. Laing, C.; Davida, P.; Blanco, E.; Dorel, X. Questioning integration of verification in model-based systems engineering: An
industrial perspective. Comput. Ind. 2020, 114, 103163. [CrossRef]

47. Ramsaier, M.; Holder, K.; Zech, A.; Stetter, R.; Rudolph, S.; Till, M. Digital Representation of Product Functions in Multi-
copter design. In Proceedings of the 21st International Conference on Engineering Design-ICED17, Vancouver, BC, Canada,
21–25 August 2017.

48. Rudolph, S. Übertragung von Ähnlichkeitsbegriffen. Habilitation Thesis, Fakultät Luft- und Raumfahrttechnik und Geodäsie,
Universität Stuttgart, Stuttgart, Germany, 2002.

49. Ramsaier, M.; Spindler, C.; Stetter, R.; Rudolph, S.; Till, M. Digital Representation in Quadrocopter Design along the Product
Life-Cycle. In Proceedings of the CIRP ICME, Ischia, Italy, 20–22 July 2016.

50. Elwert, M.; Ramsaier, M.; Eisenbart, B.; Stetter, R. Holistic Digital Function Modelling with Graph-Based Design Languages. In
Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019;
Cambridge University Press: Cambridge, UK, 26 July 2019; Volume 1, pp. 1523–1532.

51. Kröplin, B.; Rudolph, S. Entwurfsgrammatiken–Ein Paradigmenwechsel? Prüfingenieur 2005, 26, 34–43.
52. Holder, K.; Zech, A.; Ramsaier, M.; Stetter, R.; Niedermeier, H.-P.; Rudolph, S.; Till, M. Model-Based Requirements Management

in Gear Systems Design Based on Graph-Based Design Languages. Appl. Sci. 2017, 7, 1112. [CrossRef]
53. Zech, A.; Stetter, R.; Holder, K.; Rudolph, S.; Till, M. Novel approach for a holistic and completely digital represented product

development process by using graph-based design languages. Procedia CIRP 2019, 79, 568–573. [CrossRef]
54. Holder, K.; Rudolph, S.; Stetter, R.; Salander, C. Automated requirements-driven design synthesis of gearboxes with graph-based

design languages using state of the art tools. Forsch. Ing. 2019, 83, 655–668. [CrossRef]
55. Vogel, S.; Rudolph, S. Automated Piping with Standardized Bends in Complex Systems Design. In Complex Systems Design &

Management, Proceedings of the Seventh International Conference on Complex Systems Design & Management, CSD&M Paris 2016, Paris,
France, 13–14 December 2016; Springer: Berlin/Heidelberg, Germany, 2017. [CrossRef]

56. Mencarelli, L.; Chen, Q.; Pagot, A.; Grossmann, I.E. A review on superstructure optimization approaches in process system
engineering. Comput. Chem. Eng. 2020, 136, 106808. [CrossRef]

57. Vollmer, N.I.; Al, R.; Gernaey, K.V.; Sin, G. Synergistic optimization framework for the process synthesis and design of biorefineries
Front. Chem. Sci. Eng. 2022, 16, 251–273. [CrossRef]

58. Carlson, C.S. Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes Using Failure Mode and Effects Analysis;
John Wiley & Sons: Hoboken, NJ, USA, 2021.

59. Lipol, L.S.; Haq, J. Risk analysis method: FMEA/FMECA in the organizations. Int. J. Basic Appl. Sci. 2011, 11, 74–82.
60. Chakrabarti, A.; Shea, K.; Stone, R.; Cagan, J.; Campbell, M.; Vargas Hernandez, N.; Wood, K.L. Computer-based design synthesis

research: An overview. J. Comput. Inf. Sci. Eng. 2011, 11, 021003-1. [CrossRef]
61. OMG. OMG Systems Modeling Language (OMG SysMLTM) Specification. Available online: http://www.omg.org/spec/SysML/

1.3/ (accessed on 22 May 2022).
62. Wynn, D.; Nair, S.M.T.; Clarkson, P.J. The P3 Platform: An Approach and Software System for Developing Diagrammatic

Model-based Methods in Design Research. In Proceedings of the ICED 2009, Palo Alto, CA, USA, 24–27 August 2009.

http://doi.org/10.1016/0094-114X(90)90027-H
http://doi.org/10.1115/1.4036567
http://doi.org/10.21278/idc.2018.0537
http://doi.org/10.1016/j.jmsy.2020.11.017
http://doi.org/10.1016/j.compind.2019.103163
http://doi.org/10.3390/app7111112
http://doi.org/10.1016/j.procir.2019.02.102
http://doi.org/10.1007/s10010-019-00322-z
http://doi.org/10.1007/978-3-319-49103-5_9
http://doi.org/10.1016/j.compchemeng.2020.106808
http://doi.org/10.1007/s11705-021-2071-9
http://doi.org/10.1115/1.3593409
http://www.omg.org/spec/SysML/1.3/
http://www.omg.org/spec/SysML/1.3/

	Introduction
	Research Question and Research Approach
	State of the Art
	IFM Framework
	Graph-Based Design Languages Implemented with UML and DC43
	General Objectives of an Engineering Framework
	General Concept and Entities of Graph-Based Design Languages
	Implementation of Graph-Based Design Languages with UML and DC43
	Applications of the Framework of Graph-Based Design Languages and DC43
	Aspects of Graph-Based Design Language Representation for Function Modeling

	Linking the Two Approaches
	Graph-Based Design Languages Implemented with UML and DC43
	Application to the Multicopter Example

	Exemplary Application of the Combined Model
	Discussion and Conclusions
	Research Contribution
	Limitations and Future Work

	References

