
Institute of Formal Methods in Computer Science

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelor Thesis

Fully-polynomial-time
Approximation Schemes for the

Euclidean Shortest Path Problem

Axel Schneewind

Course of Study: Informatik B. Sc.

Examiner: Prof. Dr. Stefan Funke

Supervisor: Prof. Dr. Stefan Funke

Commenced: November 15, 2023

Completed: May 16, 2024

Abstract

The shortest path problem is a well-studied problem in computer-science. For transport
networks, there exist natural graph representations and highly efficient algorithms
that can compute shortest paths on millions of nodes within milliseconds. In contrast,
computing shortest paths in space (e.g. in R2) poses some challenges.

Shortest path computations in space have applications in robotics, naval routing or
video games. As shortest paths in a continuum are hard to compute (with the Eu-
clidean shortest-path problem in 3D even proven to be NP-hard), approximations can be
necessary to obtain acceptable runtimes.

In this thesis, an approximation scheme is studied that guarantees solutions with cost
at most (1 + ε) times the optimum. It uses a triangulation of the domain and, given ε,
construct a discretization. By performing a Dijkstra search, one can then approximate
shortest paths with the given quality guarantee. This scheme is implemented and its
practicality evaluated on larger instances.

2

Contents

1 Introduction 5
1.1 Problem statement . 5

1.1.1 Shortest path on polyhedral surface problem 5
1.1.2 Euclidean shortest path problem (2-dimensional) 5
1.1.3 (Fully) Polynomial-time approximation scheme 6

1.2 Related work . 6

2 Theory 8
2.1 Euclidean shortest path problem . 8

2.1.1 Bending . 8
2.1.2 Edge-using segments in shortest paths 9
2.1.3 Consequences for shortest-path computations 9

2.2 General approach of the approximation scheme 10
2.3 Discretization based on a planar subdivision 11

2.3.1 Placement of Steiner points . 13
2.3.2 Mapping points to Steiner intervals 13

2.4 Approximation quality . 14
2.4.1 Quality of face-crossing segments 14
2.4.2 Quality of approximated paths 16
2.4.3 Maximal bending angle of discrete paths at Steiner points 17

2.5 Size of the discretization . 18
2.5.1 Number of Steiner points depending on angles 18
2.5.2 Number of Steiner points depending on vertex radii 20

2.6 Properties of planar subdivisions . 20
2.6.1 Quality of paths on a delaunay-triangulation 20
2.6.2 Refining of triangulations . 20
2.6.3 Inner angles of planar subdivisions 21

2.7 Pruned djikstra search . 21
2.7.1 Selecting neighbors from subcones 23
2.7.2 Time complexity of the pruned search 24
2.7.3 Quality of the pruned search . 25

3

3 Implementation 27
3.1 Implicit graph representation . 27

3.1.1 Datastructure for the triangulation 28
3.1.2 Steiner point placement . 28
3.1.3 Semi-explicit representation . 30

3.2 Dijkstra search . 31
3.2.1 Generating outgoing segments 32
3.2.2 Generation of ε-spanners . 33
3.2.3 Search of neighbors on the current search direction 34

3.3 Datastructure for the shortest path tree 37
3.3.1 Partial storage of the tree . 37

3.4 Geometric functions . 38
3.4.1 Norm . 38
3.4.2 Angle . 38

4 Evaluation 40
4.1 Methodology . 40

4.1.1 Problem instances . 40
4.1.2 Experiments . 42

4.2 Graph sizes and space demand . 43
4.2.1 Number of points inserted on skinny triangles 48

4.3 Performance and solution quality . 49
4.3.1 Graph representations . 49
4.3.2 Pruning . 50
4.3.3 One-to-all queries . 53
4.3.4 One-to-one queries . 55

5 Future work 61

6 Conclusion 62
6.1 Advantages and shortcomings of the approximation scheme 62
6.2 Final remarks . 63

Bibliography 64

4

1 Introduction

Computation of shortest paths is a well-studied field in computer science. Network-
constrained shortest paths in particular have gotten a lot of attention from researchers,
that resulted in highly optimized algorithms that are applicable to navigation in road
networks or public transport. Geometric shortest path computations, where the domain
is not restricted to a discrete graph have gotten less attention, despite having applications
in e.g. robotics, geo-information systems, naval routing or video games. The Euclidean
shortest path problem, which is studied in this thesis, is about finding an optimal path
in multidimensional space (e.g. R2), restricted by polygons that define obstacles.

1.1 Problem statement

This work is mainly based on an algorithm presented for the shortest path on polyhedral
surface problem (SPPS) , which is applied to the Euclidean shortest path problem (ESPP).
In the following, these problems will be defined as well as the concept of polynomial-time
approximation schemes.

1.1.1 Shortest path on polyhedral surface problem

Given the surface P of a polyhedron (consisting of non-convex faces), nonzero weights
wi for its faces fi ∈ FP and two vertices s, t ∈ VP , find the path Π∗ from s to t on P
with minimal cost. The cost is defined as the weighted sum of Euclidean distances.
[AMS00]

1.1.2 Euclidean shortest path problem (2-dimensional)

Given a subset S ⊆ R2 (i.e. the domain) and two vertices s, t ∈ VP , find the path Π∗

from s to t that remains on S and has minimal euclidean length.

5

1 Introduction

s t

Figure 1.1: example of a shortest path avoiding obstacles

S can be defined as a polyhedral surface P. In this thesis, s, t are restricted to lie on
edges of P . Vertices of P that are at the boundary between S and R2 \ S will be referred
to as obstacle or boundary vertices.

1.1.3 (Fully) Polynomial-time approximation scheme

For problems with high time complexity, it is sometimes desired to obtain lower runtimes
in exchange for lower solution quality. A polynomial-time approximation scheme
[ACG+12] is a method that finds a solution where the cost is bounded by a constant
factor (1 + ε) times the optimum with polynomial time complexity in the problem size.
Fully-polynomial-time approximation schemes are also required to have time complexity
polynomial in 1/ε.

1.2 Related work

Various contributions have already been made to the field, notably exact approaches
using visibility graphs or wavefront propagations. Approximation schemes pose an
alternative where ’good enough’ solutions are found with potentially less computational
effort.

A visibility graph can be constructed in O(n log n + E) time, where E is the number of
edges of the visibility graph [GM91]. Such a graph can then be used to compute shortest
paths in O(n log n + E). However, the upper bound of E ∈ Θ(n2) causes algorithms
searching such a graph to have similar worst-case runtimes. For this upper bound,
consider the inside of a convex polyhedron with n vertices: The visibility graph for such
an instance is the complete graph Kn, which has n(n−1)

2 ∈ Θ(n2) edges.

6

1 Introduction

A different class of algorithms relies on the continuous Dijkstra method, which works
similarly to wavefront propagation over time [HS99]: At time t, a wavefront contains
all vertices with distance to s at most t. The shape of the wavefront is defined by a set
of wavelets, i.e. a circular arc with radius t − t′ around a vertex with distance t′ in the
wavefront. These arcs change based on wavefront-wavefront- and wavefront-obstacle-
collisions.

This method can be used for constructing a shortest path map, i.e. a subdivision of
free space such that all points in a cell have the same sequence of vertices on their
path to a starting point s. Hence, this type of algorithm solves a more general problem
than visibility-based algorithms, which only provide information on a discrete set of
vertices.

A theoretically optimal algorithm with O(n log n) runtime based on the continuous
dijkstra has been found [HS99]. However, no robust implementation of this approach is
currently known.

A third class of relevant algorithms is the class of approximation algorithms, such as
the one this thesis is based on [AMS00]. This approximation scheme is described for
the general shortest path on polyhedral surface problem and approximates solutions of
quality (1+ε) times the optimum in O

(
n
ε

log
(

1
ε

) (
1√
ε

+ log(n)
))

time. On an unweighted

surface, the algorithm runs in O
(

n
ε

log
(

1
ε

)
log(n)

)
. The scheme derives a discretization

graph from a polyhedral surface (such as a planar subdivision), which guarantees (1+ε)-
approximation of shortest paths. This graph can then be used to perform normal dijkstra
searches, which potentially allows for similar optimizations as a network-constrained
search.

The approximation scheme can also be applied to three-dimensional domains, in which
the shortest path problem is NP-hard [MS04].

This thesis aims to provide an implementation of this approximation scheme, adapted to
the two-dimensional Euclidean shortest path problem, and evaluate its practicality.

7

2 Theory

In this chapter, the theory behind the problem and the approximation scheme of
[AMS00], is explained.

2.1 Euclidean shortest path problem

As this work is based on an approximation scheme for the weighted shortest path on
polyhedral surface problem, it is important to examine the relation between these
problems.

First, an instance of the Euclidean shortest path problem can be stated as an instance of
the SPPS problem, given a planar subdivision P of a subset of R2 (represented by an
undirected planar graph). However, there are certain properties of Euclidean shortest
paths in R2, which allow for simpler/more efficient algorithms than in the case of the
SPPS problem:

2.1.1 Bending

In a weighted domain, shortest paths can be subject to bending at any point between
differently weighted regions, comparable to the phenomenon in optics. One can easily
find an instance where the shortest path between two points bends.

In the example in Figure 2.1, the path vpv′ with cost |vp|w1 + |pv′|w2 ≤ 101
√

2
2 is cheaper

than the non-bending path vv′ with cost w1|vv′| = 100 (assuming the sides of the square
have length 1).

In contrast, for Euclidean shortest paths, bending can only occur at (convex) boundary
vertices. Intuitively, this can be seen as follows: Consider the path vpv′ between v and v′

where v, p, v′ ∈ R2 are three points in 2D-space. Assume that p is not a boundary vertex,
then p can be shifted towards the line vv′ without vpv′ intersecting an obstacle. The new
path vpv′ is shorter and thus cheaper than the old one. Hence, a path where bending
occurs at a non-boundary point, cannot be optimal.

8

2 Theory

v v′

p
w1 = 100

w2 = 1

w0 = ∞

Figure 2.1: a bending path vpv′ between v and v′

In consequence, a shortest path from s to t can be defined as Π∗(s, t) = sv1 . . . vkt, where
all vi are obstacle vertices. When considering paths on the faces of a planar subdivision
P , such a path can contain additional non-bending points pj on EP between the bending
points vi (when the path crosses different faces).

2.1.2 Edge-using segments in shortest paths

As shown in Figure 2.1, an optimal path on a weighted planar subdivision can partially
use an edge between two regions.

This is not the case for unweighted Euclidean shortest paths: An optimal path Π∗(v, v′),
where v, v′ do not lie on e, either uses the entire edge, intersects it in a single point, or
does not intersect it at all. If a shortest path used an edge e partially, this would directly
imply bending at a non-boundary point.

2.1.3 Consequences for shortest-path computations

The above properties allow for shortest-path computations based on a visibility
graph, i.e. a graph GV = (VV , EV) where VV is the set of boundary vertices and
EV = {(u, v)| segment uv does not intersect obstacles}. Optimal paths between bound-
ary vertices then consist entirely of edges in EV .

Alternatively, an algorithm finding shortest paths in weighted polyhedral surfaces can
be optimized by not checking paths with bending in free space. This is the approach
followed in this work.

9

2 Theory

2.2 General approach of the approximation scheme

The authors of [AMS00] provide a way to discretize a weighted polyhedral surface P,
which can also be applied to planar subdivisions (i.e. planar graphs (VP , EP)) on subsets
of R2. The presented approach places Steiner points on the edges in EP , resulting in
a Graph Gε = (Vε, Eε). These Steiner points are connected as follows: {pi, pi+1} ∈ Eε

for neighboring Steiner points on the same edge, {v, pj} ∈ Eε for each vertex in VP
neighboring a Steiner point, {v, pj} ∈ Eε for each vertex in VP and a Steiner point pj

that can be reached by crossing a face, and {pi, qj} ∈ Eε for any pair of Steiner points
that can be connected by crossing a face.

[AMS00] do not require the face-crossing segments between vertices and Steiner points.
these are included in this thesis to allow for approximations closer to optimal paths
(where bending occurs exactly in boundary vertices, which is not the case for the
weighted problem). These segments do not change the scaling of the graph sizes and
quality guarantees.

These points have to be placed in a way that ensures a given quality constraint on
shortest paths approximated using Gε. Intuitively, when considering two points a and b

on the edges that border the same face, it must be possible to approximate the segment
ab by snapping to the closest Steiner points p1, p2 such that |p1, p2| ≤ (1 + ε)|ab|. As |ab|
gets smaller when a and b lie close to the same vertex, Steiner points have to be placed
closer around vertices. To require only finitely many points, some region around a vertex
has to be ignored when inserting points.

The authors of [AMS00] formalize this by the following definitions:

Definition 2.2.1 (Discrete Path)
a discrete path Π̃(v1, v2) between nodes v1, v2 ∈ VP is a path consisting only of nodes ṽ ∈ Vε.
The shortest discrete path is the shortest of all paths Π̃(v1, v2) and denoted by Π̃∗(v1, v2).

Definition 2.2.2 (ε-short path)
a discrete path Π̃(v1, v2) is called ε-short if cost(Π̃(v1, v2)) ≤ (1 + ε)|Π∗(v1, v2)| for the
corresponding shortest path Π∗(v1, v2).

Formally, the construction of Gε has to ensure that for any shortest path Π∗ starting
and ending on edges of P, there exists a discrete path Π̃∗ in Gε with cost at most
(1 + ε) · |Π∗|.

The following section (section 2.3) describes the construction of Gε. Then, the quality
guarantee of paths in Gε is explained in section 2.4. For the stated time complexity, a
method of pruning is necessary, which is described in section 2.7.

10

2 Theory

e1

αv

αw
v w

u1

u2

M

Figure 2.2: e with Steiner points determined by the minimal angles αv, αw

2.3 Discretization based on a planar subdivision

[AMS00] provides a way to construct Gε which will be explained in this section. As they
consider the shortest-path problem with weighted faces (which are not required to be
triangles), their definitions are more general than required here. Thus, some definitions
will be omitted or simplified.

Definition 2.3.1 (distances to edges)
For any point p on an edge e ∈ EP , let

d(p) = min
e′∈EP \EP (p)

|pe′|

where |pe′| is the distance from point p to the edge e′ and EP(p) is the set of edges incident
to p. For an edge e ∈ EP , let d(e) = supp∈e d(p). [AMS00]

For an edge e = (v, w) of a triangulation, this distance function can be defined over the
interval [0, 1] such that for a point p = v + x · (w − v), the equality d(x) = d(p)

|vw| holds: Let
αv, αw be the minimal angles between e and other edges at v and w, then:

(2.1) d : [0, 1] → R : x 7→ min{sin(αv) · x, sin(αw) · (1 − x)}

An angle larger than π/2 has to be treated as π/2 because d(p) is defined by the distance
to the respective endpoint in that case.

Definition 2.3.2 (vertex-vicinity)
[AMS00] define a radius for a vertex v ∈ VP (in the unweighted case) as follows:

r(v) = d(v)
5

11

2 Theory

where d(v) is the minimal distance between v and an edge reachable by crossing a face
incident to v.

The vertex-vicinity S(v) of v is the polygon of the points at distance εr(v) on the incident
edges in EP .

The relative value r(v)
|vw| will be referred to as rvw in the following.

Definition 2.3.3 (Middle point M of an edge e)
[AMS00] define M as a point with d(M) = d(e).

While M is not necessarily defined uniquely for general polyhedral surfaces, it is for
triangulations. The position of that point M with maximal distance to other edges can
be expressed in terms of αv, αw: The relative position mvw = |vM |

|vw| between v and w is

(2.2) mvw = 1
1 + sin(αv)

sin(αw)

This can be found by calculating the intersection mvw of sin(αv) · x and sin(αw) · (1 − x),
which has to be the maximum of d(x):

sin(αw) · (1 − mvw) = sin(αv) · mvw

1 − mvw

mvw

= sin(αv)
sin(αw)

1
mvw

− 1 = sin(αv)
sin(αw)

1
mvw

= sin(αv)
sin(αw) + 1

mvw = 1
1 + sin(αv)

sin(αw)

12

2 Theory

2.3.1 Placement of Steiner points

On each edge e = (v, w) ∈ EP , with mid point M , the points p1, . . . , pk are inserted
into the graph Gε. To fullfill the (1 + ϵ)-criterion, they need to be placed such that the
following holds [AMS00]:

|vp1| = ε · r(v),
|pi−1pi| = ε · d(pi−1) ∀1 < i < j,

pj = M,

|pipi+1| = ε · d(pi+1) ∀j < i < k,

|pkw| = ε · r(w)

With that, the relative position xi = |vpi|
|vw| of a Steiner point pi on e can be defined

non-recursively as

xi =


(1 + ε sin(αv))i−1 · εrvw, if 1 ≤ i < j

mvw, if i = j

1 − (1 + ε sin(αw))k−i · εrwv, if j < i ≤ k

(2.3)

[AMS00] also use such definitions to estimate |vpi| in their proofs. Using this explicit
formula, the coordinates of a Steiner point can be computed in constant time. This
definition is equivalent to the one above, which can be shown inductively as follows:

Proof 2.3.1

x1 = (1 + ε sin(αv))0 · εrvw = εr(v)
|vw|

= |vp1|
|vw|

xi = (1 + ε sin(αv))i−1 · εrvw

= (1 + ε sin(αv)) · (1 + ε sin(αv))i−2 · εrvw

= (1 + ε sin(αv))xi−1

= xi−1 + εd(xi−1) = |vsi−1| + εd(pi−1)
|vw|

= |vsi−1| + |si−1si|
|vw|

= |vsi|
|vw|

The case j < i works analogously.

2.3.2 Mapping points to Steiner intervals

With the computation of Steiner point coordinates defined, the inverse is described here:
Given a point q = v + x · (w − v) (i.e. lying on edge (v, w)), the index i has to be found

13

2 Theory

such that q lies between the Steiner points pi and pi+1 on e (i.e. on the Steiner interval
(pi, pi+1)). This can be done as follows:

Assume that q lies between v and M , then

i := max
{⌊

log1+ε sin(αv)

(
x

εrvw

)⌋
+ 1, 0

}
Similarly, for q between M and w, then

i := min
{⌊

k − log1+ε sin(αw)

(1 − x

εrwv

)⌋
, k
}

This index can be computed in constant time. i = 0 corresponds to points q that lie
between v and p1, and i = k to points between pk and w.

The first equation can be obtained by solving x = (1 + ε sin(αv))i−1 · εrvw for i and
flooring. The second one works analogously.

2.4 Approximation quality

In this section, the quality of paths on Gε is examined. By construction, the following
hold [AMS00]:

Lemma 2.4.1
Let s be a face crossing segment that goes through the interval (pi, pi+1), then

|pipi+1| ≤ ε|s|

Lemma 2.4.2
Let s = (a, b) be a face crossing segment where b lies on the interval (pi, pi+1), then

∠piapi+1 ≤ π

2 ε

2.4.1 Quality of face-crossing segments

First, the local quality of discrete segments needs to be shown, i.e. that for a single
face-crossing segment, there exists a ε-short segment in Gε. Three cases have to be
considered:

14

2 Theory

a

b

p

q

p′

q′

π∗̃π
v w

u

Figure 2.3: path between points on triangle edges

a

b

p1

q
q′

π∗π̃
v w

u

Figure 2.4: path between points on triangle edges

1. a face crossing segment ab, where a lies between the neighboring Steiner points
p, p′ and b between q, q′. Figure 2.3 shows the segment ab and the neighboring
discrete counterparts pq, pq′, p′q, p′q′. [AMS00] show that

max{min{|pq|, |pq′|}, min{|p′q|, |p′q′|}} ≤ (1 + ε)|ab|

which means that for both p and p′, an ε-short segment can be found.

2. a face crossing segment ab, where a lies between p1 and w in the vertex vicinity of
w and b between the Steiner points q, q′ (see Figure 2.4). For this case, [AMS00]
show that

max{|p1q|, |p1q
′|} ≤ (1 + ε)|ab| + εr(w)

3. a face crossing segment ab, where a lies on the Steiner interval (p1, w) and b on
(q1, v) (see Figure 2.5). For this case, [AMS00] show that

|p1q1| ≤ |ab| + ε(r(v) + r(w))

a

b

p1

q1

π∗

π̃

v w

u

Figure 2.5: path between points on triangle edges

15

2 Theory

Π∗(S(v), S(v′))

Π̃∗(v, v′)
v v′p1

pn

S(v)
S(v′)

Figure 2.6: discrete and continuous paths between two vertex vicinities

Case 1 can also be extended to sequences of face-crossing segments: For each sequence
s1, . . . , sl of face crossing segments that do not intersect vertex-vicinities, there exists a
sequence s̃1, . . . s̃l of discrete segments such that

∑ |s̃i| ≤ (1 + ε)∑ |si|.

[AMS00] define a segment ab and a discrete segment pq as neighboring, if a lies on the
same edge as p with no other Steiner point in between (the same has to hold for b).
Similarly, two sequences of segments s1, . . . , sn and s̃1, . . . , s̃n are called neighboring if
each segment si neighbors its corresponding discrete segment s̃i.

2.4.2 Quality of approximated paths

For entire paths Π [AMS00] show an upper bound of (1 + 3ε), (higher due to the r(v)
terms in case 2 and case 3 and due to edge-using segments). In the unweighted case, a
slightly better upper bound can be shown. The proof from [AMS00] is briefly stated in
the following, adapted to the fact that an optimal path does not partially use edges:

Consider the shortest path Π∗(S(v), S(v′)) that joins two arbitrary points in the vertex
vicinities S(v), S(v′) and the shortest neighboring discrete path Π̃(v, v′) = vp1 . . . pnv′,
where p1 . . . pn are Steiner points. p1 is part of the vertex vicinity of v and pn of v′.

For the path p1 . . . pn, the inequality |p1 . . . pn| ≤ (1 + ε)|Π∗(p1, pn)| directly follows from
case 1: With |Π̃(p1, pn)| = ∑

i |s̃i|, the upper bound holds as |s̃i| ≤ (1 + ε)|si| for each
discrete segment s̃i and its continuous counterpart si.

This does not hold for the weighted case: There, the optimal path Π∗(p1, pn) can also
use edges partially. For an edge-using discrete segment s̃j, [AMS00] bound the cost by
|s̃j| ≤ |sj| + ε|sj−1|, where sj−1 is the preceding face-crossing segment. As a result, when
summing up all costs, this sj−1 can be counted twice (once for s̃j and once for s̃j−1) and
the quality guarantee for p1 . . . pn can only be shown to be 1 + 2ε.

16

2 Theory

The segments p1p2 and pn−1pn fall into case 3 (or case 2 if v, v′ are part of the same
triangle). Additionally, the segments vp1 and pnv′ contribute ε(r(v) + r(v′)) to the
distance. With that combined, one gets

|Π̃(v, v′)| ≤ (1 + ε)|Π∗(S(v), S(v′))| + 2ε(r(v) + r(v′))

To get the final quality guarantee, the term ε(r(v) + r(v′)) has to be bounded: [AMS00]
state that r(v) + r(v′) ≤ 1

2 |Π∗(S(v), S(v′))|. Therefore

|Π̃(v, v′)| ≤ (1 + 2ε)|Π∗(S(v), S(v′))|

As an optimal path can be represented by a sequence of such paths Π∗(s, t) =
sΠ∗(S(s), S(v1))Π∗(S(v1), S(v2)) . . . Π∗(S(vn), S(t))t the statement from above also ap-
plies to an entire discrete path Π̃ = Π̃(s, v1)Π̃(v1, v2) . . . Π̃∗(vn, t):

|Π̃∗(s, t)| ≤ (1 + 2ε)|Π∗(s, t)|

2.4.3 Maximal bending angle of discrete paths at Steiner points

While in a weighted domain, large bending angles can occur at Steiner points, this does
not hold in the unweighted case. For the weighted domain, [AMS00] prove bounds on
such angles, depending on the involved face weights using Snell’s law. For an unweighted
domain, such a bound can be found as follows:

Let a, b be arbitrary points on the edges reachable from edge e, where ab intersects e

between the Steiner points p and p′. By 2.4.2, the angle ∠(ap, ap′) between segments
ap and ap′ is at most π

2 ε. Therefore, also the angles ∠(ap, ab) and ∠(ap′, ab) are smaller.
Symmetrically, this holds for ∠(bp, ba) and ∠(bp′, ba) too.

For p∗ ∈ {p, p′}, consider the triangle ap∗b. As seen above, the inner angles ∠bap∗,∠p∗ba

are below π
2 ε. Therefore, ∠ap∗b ≥ π − 2π

2 ε and the bending angle between ap∗ and p∗b

can be bounded by
π − (π − 2π

2 ε) = πε

As a result, when given ap∗, one only has to search the outgoing segments with bending
angles below πε to find one required for approximating ab. Further, when given both ap

and ap′, one can find paths to both Steiner points neighboring b.

17

2 Theory

2.5 Size of the discretization

[AMS00] provide an upper bound for the number of points inserted on an edge of
a polyhedral surface: For an edge e = (v, w), they define a value C(e) < D(e) :=
4(|e|/d(e)) log(|e|/

√
r(v)r(w)) which is constant for a fixed graph instance, and the

maximal number of points inserted as 3 + C(e)1
ε

log 2
ε
.

They also show that the maximal number of Steiner points inserted into the whole
surface P is bounded by C̃(P) |EP |

ε
log 2

ε
, where C̃(P) ≤ 3 + 1

|EP |
∑

e∈EP C(e).

With that, the degree of a Steiner point on edge e can be bounded by

4 +
∑

e′∈EP visible from e

(
3 + C(e′)1

ε
log 2

ε

)
∈ O(1

ε
log 1

ε
)

where the 4 counts the neighboring Steiner points and the vertices in VP , that can be
reached by crossing a face.

Therefore, the size of the graph scales as follows:

|Vε| ∈ O
(

n

ε
· log 1

ε

)
|Eε| ∈ O

(
n

ε2 ·
(

log 1
ε

)2)

As the performance of shortest-path computations depends on the size of Gε and as the
values C(e) can grow arbitrarily large (depending on P), further estimates on the size
of Vε are provided here.

2.5.1 Number of Steiner points depending on angles

Assuming that αv = αmin for the minimal angle αv at v, the given upper bound D(e)
scales with αmin as follows:

D(e) ≥ 2
sin(αmin) log

(
52

sin(αmin)

)

and as a result

D(e) ∈ Ω
(

1
sin(αmin) log

(
1

sin(αmin)

))

⊆ Ω
(1

αmin

log
(1

αmin

))

18

2 Theory

v w

u

|e| ≥ d(v)

|e| · sin(αv) ≥ d(w)

αv
αw ≥ αv

Figure 2.7: triangle with a small angle αv

Proof 2.5.1
By definition in Equation 2.1 we have

d(e)
|e|

≤ sin(αmin)

(equivalently |e|
d(e) ≥ 1

sin(αmin)). Recall that r(v) = d(v)/5. Assuming αmin = αv gets
arbitrarily small, we have r(v) ≤ |e| and d(w) ≤ |e| sin(αmin) (as depicted in Figure 2.7)√

r(v)r(w)
|e|

=

√
d(v)·d(w)

52

|e|

≤

√
d(v)·sin(αmin)|e|

52

|e|

≤

√
|e|·sin(αmin)|e|

52

|e|

≤
√

sin(αmin)
52

resulting in log
(

|e|√
r(v)r(w)

)
≥ 1

2 log
(

52

sin(αmin)

)
.

It is not known however, if the number of points actually scales with Θ(D(e)).

From the calculations above, an upper bound B(t) on the number of face-crossing
segments on a triangle t ∈ Gε with minimal inner angle α can be derived. Consider
the two sides e, e′ of t that enclose α. The numbers k, k′ of Steiner points on these
edges each can be bounded by D(e) ≈ D(e′) computed from α. As the set of Steiner
points inserted on e and e′ forms the full bipartite graph Kk,k′, it contributes up to
2 · D(e) · D(e′) face-crossing segments to |Eε|. Therefore, the upper bound from above
has to be squared:

B(t) ∈ Θ
(1

sin(α)

)2

log
(

1
sin(α)

)2


19

2 Theory

2.5.2 Number of Steiner points depending on vertex radii

The number of points inserted also depends on the relative node radius values rvw,
which can be low even for triangles with large inner angles: This can occur e.g. for an
equilateral triangle where an edge borders an arbitrarily skinny triangle.

The worst-case scaling of k in the minimal rvw on an edge can be estimated by:

k ≥ log1+ε sin(αv)(mvw/rvw)

∈ Θ
(

log
(1

rvw

))
As a result, the number of Steiner points scales with this rvw, although not as strongly as
in the minimal angles.

2.6 Properties of planar subdivisions

For the size of the discretization graph and the quality of solutions, the following
properties of planar subdivisions are important.

2.6.1 Quality of paths on a delaunay-triangulation

[Xia11] showed that the stretch factor for delaunay triangulations is less than 1.998.
Equivalently, when using a triangulation without any additional points inserted, shortest
paths can be approximated with cost of at most 1.998 times the optimum. In other words,
a (1 + 0.998)-approximation is guaranteed without any additional computations.

2.6.2 Refining of triangulations

A Delaunay-triangulation has the property that it maximizes the minimal inner angles
of its triangles. However, this minimal angle can still be small depending on the set of
points triangulated.

As seen in section 2.5, the number of points inserted scales with the minimal inner
angles of P. For this reason, it is desirable to have a planar subdivision that ensures
some lower bound on inner angles.

This can be achieved by starting with a triangulation of the boundary vertices and adding
additional vertices such that all triangles have sufficiently large inner angles.

20

2 Theory

2.6.3 Inner angles of planar subdivisions

Through the inner angles of the faces, the structure of the underlying planar subdivision
strongly influences the number of Steiner points that have to be added. As seen in
section 2.5, it is desirable to have a subdivision where all inner angles are at least π/2.

In general, for faces with f sides, the sum of inner angles is (f − 2)π and as a result,
the minimal inner angle cannot be larger than (f − 2)π/f . For a triangle, the sum
of inner angles is π, so the smallest of those three angles cannot be larger than π/3
(i.e. 60◦). For faces with f ≥ 4 sides, the upper bound on the minimal inner angle is
(f − 2)π/f ≥ π/2.

For this reason, planar subdivisions that consist of faces with at least 4 sides can result
in smaller graph sizes and might be more well-suited for this approximation scheme.

2.7 Pruned djikstra search

Unlike planar graphs (e.g. road networks), the described Graph Gε has the property
that a node’s degree is not bounded by some small constant but grows depending on ε

(and the values C(e)). [AMS00] provide a way of reducing the number of edges that are
checked when performing a search, while still fulfilling 7ε-correctness.

Definition 2.7.1 (Geodesic path)
A geodesic path Π = v1v2 . . . is a path that is locally optimal i.e. changing a single node vi

cannot improve the quality.

Intuitively, this approach reduces the number of outgoing segments for a node p ∈ Vε,
by using information about the already found discrete path Π̃(a0, p). In particular, it
is known that geodesic path only bends at boundary vertices. For this reason, most of
the outgoing segments of a Steiner point p cannot approximate a geodesic path as the
resulting discrete path would bend too much.

Definition 2.7.2 (Cone)
For a segment ab, the cone Cone(a, b, θ) is defined as the set of segments s ∈ Eε, that are
incident to b and where the angle between s and ab is at most θ.

Definition 2.7.3 (ε-spanner)
A ε-spanner Coneε(a, b, θ) is defined by a partitioning of Cone(a, b, θ) into nonempty
subcones ci that have angles not exceeding πε

2 . Coneε(a, b, θ) consists of the shortest edge ei

of each ci. This set contains at most
⌈

2θ
πε

⌉
elements. [AMS00]

21

2 Theory

v

w

u

p

a

Figure 2.8: an ε-spanner at bending point p over the points on edges (v, w), (w, u), with
subcones highlighted in yellow and orange

[AMS00] show an important property of ε-spanners: For any segment s = (p, q) ∈
Cone(a, p, θ), there exists a segment s̃ = (p, q′) ∈ Coneε(a, p, θ) such that

(2.4) |pq′| ≤ |pq| and |pq| ≤ |pq′| + |q′q| ≤ (1 + πε

2)|pq|

In other words, searching ε-spanners instead of all neighbors reduces the solution quality
by at most (1 + πε

2). They define a class of paths C∗(a0), that (in the unweighted case)
contains all 7ε-short paths starting at a0:

Definition 2.7.4 (C∗(a0))
C∗(a0) contains each e incident to a0.
A path Π̃ = a0 . . . ai−1ai is contained in C∗(a0) if a0 . . . ai−1 ∈ C∗(a0) and the last segment
(ai−1, ai) is part of the class Cone∗(a0 . . . ai−1). [AMS00]

It remains to define Cone∗(Π̃) for Π̃ = a0a1 . . . ai−1ai. As [AMS00] define it for the
weighted problem, a simplified definition is used here:

1. ai ∈ VP and ai is a boundary vertex. Then Cone∗(Π̃) consists of the ε-spanner
Coneε(ai−1, ai, π) and a segment to each steiner point of S(ai).

2. ai ∈ VP and ai is not a boundary vertex. Let aj be the last boundary vertex (or a0 if
none) on Π̃. Then Cone∗(Π̃) contains the shortest segments from the subcones left
and right of the ray ajai. It also contains a segment to each steiner point of S(ai).

3. ai ∈ Vε \VP . Let aj be the last boundary vertex (or a0 if none) on Π̃. Then Cone∗(Π̃)
contains the shortest segments from the subcones left and right of the ray ajai.

For the weighted SPPS problem, case 3 requires an ε-spanner over the maximum
bending angle of a discrete geodesic path at any Steiner point. As this angle is π

ε
(see

22

2 Theory

p

v

q

a

w

q′

q′′

Figure 2.9: The path segment apq over a non-bending-point where q lies on edge (v, w)

subsection 2.4.3) in the unweighted case, such an ε-spanner consists of only one subcone
to the left and one to the right of the ray from aj to ai.

Another difference is that for the weighted SPPS problem, omnidirectional ε-spanners
are generated not for boundary vertices but instead for any Steiner point that neighbors
a vertex of P. Simplifying this by only generating ε-spanners for boundary vertices
reduces the number of ε-spanners, which then scales with the number of boundary
vertices instead of their degree. These ε-spanners still fullfill the property described
above (Equation 2.4).

Further, for the weighted SPPS problem, each case requires searching another cone
defined by preceding edge-using segments (if any). In other words, if a point al is part
of the discrete path to ai and these points are connected by edge-using segments, an
ϵ-spanner with the direction of alai is also generated. As for the ESPP, the direction of
the approximated path is already defined by the direction of the last bending point aj to
ai, this can be omitted here.

2.7.1 Selecting neighbors from subcones

Note that the shortest segment pq in a subcone is always the one that is ’most orthogonal’
to the target edge, i.e. the angle between pq and vw is closest to π/2. This can result in
a high bending angle at p (e.g. if the direction ajp and vw are almost parallel). Thus,
selecting q such that the bending angle at p is minimal might lead to better results. This
method is not proven to guarantee a bound on solution quality. However, this method
can be implemented more efficiently and is therefore included in the implementation.

23

2 Theory

2.7.2 Time complexity of the pruned search

The size of the set Cone∗(Π̃) to check for the different cases 1, 2 and 3 can be bounded
by:

1.
∣∣∣Cone∗(Π̃)

∣∣∣ ≤ deg(ai) +
⌈

1
ε

⌉
∈ O(ε−1)

2.
∣∣∣Cone∗(Π̃)

∣∣∣ ≤ deg(ai) + 2 ∈ O(1), amortized over all vertices

3.
∣∣∣Cone∗(Π̃)

∣∣∣ ≤ 4 ∈ O(1)

For a boundary vertex v (1), an outgoing segment is generated for each edge in EP
that is incident to v. For a boundary vertex v (2), an outgoing segment is generated for
each edge in EP that is incident to v, and two for the Steiner interval intersected by the
current search direction. For a Steiner point p 3, two outgoing segments are generated
for the Steiner interval intersected by the current search direction and up to two for the
neighboring Steiner points on the same edge as p.

The total number of edges to check when performing a one-to-all search is

∑
a∈Vε

|Cone∗(a)| ≤ n ·
(

max
v∈VP

deg(v) +
⌈1

ε

⌉)
+ 4 · m

ε
log

(2
ε

)

∈ O
(

n

ε
log

(1
ε

))
as also stated by [AMS00]. In the weighted domain, the number of outgoing segments
of Steiner points (case 3) is not constant but in O(ε−1/2), resulting in O(n

ε3/2 log(2
ε
))

edges.

In general, the complexity of a dijkstra search can be described by Θ(|E| + |V | · log |V |)
using the theoretically optimal Fibonacci heap as a priority queue.

For the weighted case, the complexity of the pruned search can be analyzed using
|V | = |Vε| ∈ O(n

ε
log 1

ε
) as estimated in section 2.5 and |E| ∈ O(n

ε
3
2

log 1
ε
) as given above.

This results in a theoretical complexity of [AMS00]

O
(

n

ε
3
2

log
(1

ε

)
+ n

ε
log

(1
ε

)
log

(
n

ε
log

(1
ε

)))
⊆O

(
n

ε
log

(1
ε

)
·
(

1√
ε

+ log
(

n

ε
log

(1
ε

))))

⊆O
(

n

ε
log 1

ε

(
1√
ε

+ log n

))

24

2 Theory

The last simplification step is due to

n

ε
log

(1
ε

)
log

(
1√
ε

+ n

ε
log

(1
ε

))
= n

ε
log

(1
ε

)(
log(n) + 1√

ε
+ log

(1
ε

)
+ log log

(1
ε

))

where the log(1
ε
)-terms are dominated by 1√

ε
.

[AMS00] states (without proof) that for the unweighted case, this simplifies to
O
(

n
ε

log 1
ε

log n
)
. It is not clear why that is the case, as the calculation above yields

O
(

n
ε

log 1
ε

(
1 + log

(
n
ε

log(1
ε
)
)))

, where (by log log 1
ε

being dominated by log n
ε
) one

would expect a resulting complexity of

O
(

n

ε
log

(1
ε

)
log

(
n

ε

))

In both weighted and unweighted domains, the complexity without pruning would be
defined by the full set of edges Eε (see section 2.5), as also stated by [AMS00]:

O
(

n

ε
log 1

ε
log

(
n

ε
log 1

ε

)
+ n

ε2 log
(1

ε

)2)

⊆O
(

n

ε
log 1

ε

(
log

(
n

ε
log 1

ε

)
+ 1

ε
log

(1
ε

)))
⊆O

(
n

ε
log 1

ε

(
log(n) + log

(1
ε

)
+ log log

(1
ε

)
+ 1

ε
log

(1
ε

)))
⊆O

(
n

ε
log 1

ε

(
log(n) + 1

ε
log

(1
ε

)))

2.7.3 Quality of the pruned search

The pruned search does not find the shortest of all possible paths, but only the shortest
in the subset C∗(a0). Consequently, the quality guarantee for the pruned search gets
worse. [AMS00] provide a quality guarantee of 1 + 15ε on paths found by the pruned
search in the weighted case.

From Equation 2.4, it follows that the shortest path in C∗(a0) to any node a is at most
1 + πε/2 times as long as the shortest of all paths from a0 to a.

With the improved quality of approximated paths in the unweighted case, the quality
guarantee with pruning also improves. The proof that [AMS00] provides is stated below
with the updated quality guarantee.

25

2 Theory

Let a0 be the source node and Π̃∗(a0, a) be the shortest discrete path to a found by the
pruned search (assuming ε ≤ 1). Let C(a0) be the set of all paths starting at a0:

|Π̃∗(a0, a)| = min{|Π| : Π ∈ C∗(ao)}
≤ (1 + επ/2) min{|Π| : Π ∈ C(ao)}
≤ (1 + επ/2) · (1 + 2ε)|Π∗(a0, a)|
≤ (1 + επ/2 + 2ε + πε2)|Π∗(a0, a)|
≤ (1 + 7ε)|Π∗(a0, a)|

The quality guarantee thus improves to 1 + 7ε. For a given ε, one can also calculate the
factor with ε2 included, to get a slightly better guarantee.

26

3 Implementation

The described algorithms and data structures are implemented in C++20 and provided
at [Sch24]. The computations are implemented using only constructs of the standard
library.

3.1 Implicit graph representation

The described discretization requires a representation by a suitable data structure. In
the following, a data structure with memory complexity of O(|VP | + |EP |) is presented,
which is independent of the actual size of the graph Gε. Note that an explicitly stored
graph would require Θ(|Vε| + |Eε|) space.

The data structure consists of the triangulation P, and information on Steiner point
placement for each edge. Information such as coordinates, sets of outgoing segments
and their lengths is computed on demand. A node p ∈ Vε can be identified by (e, i)
where e is the edge p lies on and i the index of p on that edge.

For shortest-path computations, efficient handling of the following queries is neces-
sary:

• the coordinates for v ∈ Vε

• the length for e ∈ Eε

• the set of edges e ∈ Eε where e is incident to a given v ∈ Vε. This requires:

– for a boundary vertex, the set of edges that can be reached by crossing a face

– for an edge e ∈ EP , the set of edges that can be reached by crossing a face

The presented implementation provides O(1) access to the first two queries and computes
the sets of outgoing segments in O(l) (where l is the number of outgoing segments).

27

3 Implementation

3.1.1 Datastructure for the triangulation

P is represented by two directed edge lists E1, E2, such that for an undirected edge
{v1, v2} of P, its directed counterparts (v1, v2) and (v2, v1) each reside in one of the two
edge lists. These edge lists are implemented by an offset array (mapping nodes to the
index of their first outward edge) and the actual list of edges with an edge (v1, v2) being
represented by the entry (v2). An undirected edge e = {v1, v2} is identified by its index
in E1.

The information on how to place Steiner points is stored in a separate list. The entry for
an edge e ∈ P is stored at the same index as its entry in E1, removing the need for an
additional mapping.

Mapping edges to reachable edges

As shortest path computations require access to the edges that can be reached by
crossing a face, a tuple (ej, ek, el, em) is stored for each edge e, where the edges e, ej, ek

and e, el, em form the two triangles adjacent to e. All neighbors of a Steiner point p on e

lie on those four edges.

Alternatively, one could store the edges for each face and the two indices of the adjacent
faces for each edge. For planar subdivisions with faces consisting of higher numbers
of vertices/edges, this approach could reduce the space demand. For a triangulation,
however, it requires storing 4 indices per edge (the two face indices and the indices of
e stored for each adjacent face), which does not reduce memory demand. Due to its
higher computational overhead, this approach is not followed.

Mapping vertices to reachable edges

Similar information is stored for each vertex in VP : A list of edges that can be reached
from a vertex by crossing a face is stored using an offset array.

3.1.2 Steiner point placement

To compute the position of Steiner points p ∈ Vε \ VP as described in Equation 2.3, it
suffices to store a few values per edge: For each e = (v, w) the tuple

(rvw, rwv, mwv, (1 + ε sin(αv)), (1 + ε sin(αw)), k, m)

28

3 Implementation

is stored, where k is the number of Steiner points points and m the number of points
between v and M (including v).

The position of any node pj ∈ Vε (where p0 = v, pk+1 = w) then can be computed by

pj =



v j = 0
v + rvw(1 + ε sin(αv))j · (w − v) 1 ≤ j < m

v + mvw · (w − v) j = m

w + rwv(1 + ε sin(αw))j−k−2 · (v − w) m < j ≤ k

w j = k + 1

The total size of the graph can be computed without an explicit representation using

|Vε| = |VP | +
∑

e∈EP

ke

and for the (directed) edges

|Eε| =
∑

e∈EP

2 · (ke + 1) +
∑

e,e′∈EP
e′ visible for e

ke · k′
e +

∑
v∈Vε

e∈Eε visible for v

2ke

counting the edge-using (first sum) and face-crossing segments (second sum for edges
connecting Steiner points and third for connecting vertices to Steiner points).

To improve the performance of computing powers, the values ln(1 + ε sin(α)) are stored
instead of (1 + ε sin(α)). This allows for a potentially faster power computation using
std::exp instead of std::pow. Analogously, computation of log1+ε sin(α) can be performed
using std::log and dividing by the stored ln value.

The (1 + ε sin(α))-values are represented by the double datatype. Note that this represen-
tation is wasteful as the value is always in the interval [1, 2], and in consequence, the sign
and exponent are the same for almost all possible values. Storing ε sin(α) could provide
more precision, or allow using smaller datatypes at similar precision. However, to avoid
the overhead associated with transforming between the different representations, this
approach is not pursued here.

Per default, the number of Steiner points per edge is limited to 231, due to using int

values for k and m. If this limit is exceeded for any edge, the implementation reports an
error. Where not stated otherwise, this limit is sufficient for graph instances used for the
experiments.

Finally, the precomputation of the described values can be performed in O(|VP |). First,
the rvw-values can be computed by iterating over all vertices and checking the distances

29

3 Implementation

to the reachable edges which can be looked up as described above. As each edge in EP
is only seen by two vertices, the number of computed distances is in O(|EP |). As the
≤ 4 reachable edges and their endpoints can be looked up, computing the angles αv, αw

for a single edge takes constant time. From these, the values mvw and (1 + ε sin(α)) can
be computed. Computing k, m for a single edge is also possible in O(1), analogously
to subsection 2.3.2 as the required values are already known. In consequence, values
for Steiner point placement can be computed in O(|EP |) (= O(|VP |) due to planarity of
P).

Table-based storage of information on Steiner points

An alternative for implementing Steiner point placement (which is not implemented)
works as follows: Consider the Steiner points between v, M . Their relative positions xi

only depend on rvw, (1 + ε sin(αv)) (see Equation 2.3). The values (1 + ε sin(αv))i can
be stored for classes of values for sin(αv). Each edge e is then mapped to the classes
of sin(αv), sin(αw). When computing the coordinates of such a point pi, one can simply
look up the value (1 + ε sin(αv))i−1 and multiply it with rvw. The resulting coordinates
can be computed via linear interpolation between v and w.

This approach does not provide the exact placement of Steiner points as described
in subsection 2.3.1. By computing the relative values using sin(αl) for the class of
values in [sin(αl), sin(αr)], the Steiner points are placed at least as close to each other
as the placement according to Equation 2.3, making it a valid placement for satisfying
(1 + ε)-correctness.

Compared to the semi-explicit representation from above, this approach involves more
computations when computing coordinates, but potentially requires less memory. Com-
pared to the fully implicit representation, it involves less computations (in particular,
does not require computing powers) and requires more memory.

3.1.3 Semi-explicit representation

As the graph size is mainly dominated by the set of edges, storing these is not feasible
for a small ε. Storing the coordinates of Steiner points is less space-demanding. For this
reason, the implementation provides the option to keep Steiner point coordinates in an
offset-array-based data structure which is filled when reading the graph. The offset-array
maps each edge to the index of the first Steiner point p1 on that edge, such that a point’s
coordinates can be accessed by a key of the form (e, i). This list of coordinates holds
two double-values per node of Vε and an index for each edge in EP , therefore requiring
|Vε| · 16B + |EP | · 4B of memory (O (|Vε| + |EP |)).

30

3 Implementation

This removes the overhead of computing the coordinates while performing the search.
In consequence, computing the length of a segment only requires a single Euclidean
distance computation.

3.2 Dijkstra search

Below, the pseudocode for the implemented dijkstra search routine is listed.

1 distance := infinity for each vertex

2 parent := undefined for each vertex

3 last_bending_point := src for each vertex

4

5 distance[s] := 0

6 parent[s] := s

7 last_bending_point[s] = s

8

9 while Q is not empty:

10 u := extract_min(Q)

11

12 N := outgoing segments of u given last_bending_point[u]

13 for (u,n) in N:

14 cost = distance[u] + distance(coordinates(u), coordinates(n))

15 if cost <= distance[n]:

16 distance[n] := cost

17 parent[n] := u

18 if u is boundary vertex:

19 last_bending_point[n] = u

20 push(Q, (n,cost))

For Q, a std::priority_queue is used, which is based on a binary heap (for GCC). As it does
not provide a decrease-key operation, nodes with updated cost are simply reinserted.
As improving distances are updated when inserting entries into the queue, it is not
necessary to update these values when pulling.

The neighbors of a node are selected according to section 2.7, with further implementa-
tion details stated below. The set of neighbors depends on the direction that a node is
reached from. As the parent of a node can be arbitrarily close and bending can occur
due to discretizing, deriving the direction from the last boundary vertex on the path to v

is more stable.

Finally, for storing information about the visited nodes (cost, parent node, last bending
point), a data structure is presented below (section 3.3), which grows dynamically
with the size of the search tree and provides efficient access.

31

3 Implementation

(a) without pruning (b) pruning

(c) pruning (minimal angles)

Figure 3.1: shortest-path-trees (yellow) for the pruning variants at ε = 1/8

3.2.1 Generating outgoing segments

As the discretization graph is represented implicitly, the set of outward edges of a node
p ∈ Vε cannot be simply looked up when searching for neighbors of p. For this reason,
distances to the neighbors have to be computed when required. For each neighbor that
should be added, the coordinates are computed as described in Equation 2.3 and then
used to determine the Euclidean distance from the current node to the neighbor. This
distance is then used as the cost for that segment.

Concerning pruning, the implementation provides three variants:

• no pruning: searches all edges in Gε

• pruning: searches all edges in Gε according to section 2.7

• pruning with minimal bending: searches all edges in Gε according to section 2.7,
but selects neighbors from subcones with least bending instead the shortest ones

32

3 Implementation

1 angle = epsilon * pi/2

2 output = {}

3 # face-crossing segments

4 for each edge e2 reachable from v:

5 x = intersection of ray(face_crossing_predecessor[v], v) with e2

6 if x lies on e2:

7 ql, qr = steiner interval of x

8 output += cone_left(v, e2, ql, angle)

9 output += cone_right(v, e2, qr, angle)

10

11 # edge-using segments

12 for each edge e2 incident to v:

13 q = steiner point on e2 neighboring v

14 output += (v, q)

Figure 3.2: selecting neighbors for a vertex v in VP

1 output = {}

2 # face-crossing segments

3 for each edge e2 reachable from v:

4 output += epsilon_spanner(v, e2)

5

6 # edge-using segments

7 for each edge e2 incident to v:

8 q = steiner point on e2 neighboring v

9 output += (v, q)

Figure 3.3: selecting neighbors for a boundary vertex v in VP

The generation of the list of neighbors for a node p is described in this section. Figure 3.2
describes the selection of outgoing segments for vertices in VP , Figure 3.3 for boundary
vertices, and Figure 3.4 for Steiner points.

3.2.2 Generation of ε-spanners

cone_left, cone_right, epsilon_spanner denote the subroutines for selecting neighbors
from subcones and generating an ε-spanner over an edge. These differ for the two
variants of pruning.

cone_left(p, e, q, angle) selects one segment pq′ where q′ lies on e (left or equal to
q) and has an angle lower than the given one. When selecting neighbors by minimal
bending angle, cone_left simply returns the point q. When selecting neighbors by minimal
distance, a linear search is performed over the points q′ left of q and the closest one

33

3 Implementation

1 angle = epsilon * pi/2

2 output = {}

3 # face-crossing segments

4 e := edge that p lies on

5 for each edge e2 reachable from e:

6 x = intersection of ray(face_crossing_predecessor[p], p) with e2

7 if x lies on e2:

8 ql, qr = steiner interval of x

9 output += cone_left(p, e2, ql, angle)

10 output += cone_right(p, e2, qr, angle)

11

12 # edge-using segments

13 ql,qr = steiner points neighboring p on e

14 output += (p, ql)

15 output += (p, qr)

Figure 3.4: selecting neighbors for a Steiner point p

returned. This could potentially be implemented in O(1) without linear search, which is
omitted here. cone_right works symmetrically.

epsilon_spanner(p, q, e) selects the set of segments that make up the ε-spanner from p

over the points on edge e. This is done by starting at q and iterating over the points to
the left and to the right of q. When iterating over the points, a new subcone is recognized
by the angle between the current segment and the first segment of the previous subcone
exceeding the angle of επ/2. When selecting by minimal bending angle, the segment
of the first point q′ of each subcone is selected. When selecting by distance, the closest
point q′ from each subcone is used. Both variants have linear complexity in the number
of points on the target edge e. Theoretically, this could be improved by using exponential
search for finding the start of the next subcone. As the runtime is mainly dominated
by neighbor generation for Steiner points, which does not involve this routine, this is
omitted.

3.2.3 Search of neighbors on the current search direction

The construction of Cone∗(Π̃), (with Π̃ = s . . . a . . . p) requires finding the Steiner inter-
val, which is intersected by the ray starting at p in the direction given by a parent in Π̃
(see Figure 2.9). It is important to find such an interval with minimal computational
demand.

34

3 Implementation

Let q be the intersection of the ray from a over p and the edge e = (v, w). Let the points
on e be positioned in order v, q1, . . . , qk, w. The corresponding steiner points qi, qi+1 have
to be found such that q lies between these points.

One can either find q (defined by x ∈ [0, 1] : q = v + x(w − v)) and map it to the index of
the corresponding steiner interval (subsubsection 3.2.3, subsubsection 3.2.3), or search
the set of steiner points on e directly(subsubsection 3.2.3).

The variant mainly used in the benchmarks is the first one.

Computing line intersections from parameter representations

The required value x can be computed by finding the intersection of the lines from p

to q and v to w. These are defined by their parameter representations p + x′ · dp and
v + x · dv, with dp = p − a, dv = w − v. From the solution (x, x′), x is the desired value.

The problem can be formulated as a linear equation system:

p + x′ · dp = v + x · dv

x′ · dp − x · dv = v − p(
−dv1 dp1

−dv2 dp2

)
·
(

x

x′

)
= v − p

(
x

x′

)
=
(

−dv1 dp1

−dv2 dp2

)−1

· (v − p)
(

x

x′

)
= 1

−dv1 · dp2 + dp1 · dv2

(
dp2 −dp1

dv2 −dv1

)
· (v − p)

Then we have

x := 1
−dv1 · dp2 + dp1 · dv2

· ((v1 − p1)dp2 − (v2 − p2)dp1)

This computation requires O(1) time and only requires floating point addition, multipli-
cation and division.

Using angles

Intuitively, this method considers two triangles: The one consisting of p, v, w and the
one consisting of p, v, q. Here, the coordinates of q are not known, and the direction of

35

3 Implementation

the ray ap is used instead. Using the law of sines, the ratio of |vq|
|vw| is computed, which is

the desired value x.

Let γ := ∠vpq, which is computed from the angle between the directions of ap and
pv. Let α := ∠qvp, which can be computed from the positions p, v, w. Let θ := ∠pqv =
π − γ − α.

In general, the law of sines states that for a triangle with sides a, b, c and the respective
opposite angles α, β, γ the equation |a|

sin(α) = |b|
sin(β) = |c|

sin(γ) holds. Applied to the triangle
pvq, it follows that

|vq|
sin(γ) = |pv|

sin(θ)
which can be rewritten to

x := |vq|
|wv|

= |pv|
|wv|

· sin(γ)
sin(θ)

This computation requires O(1) time. However, the required computation of angles can
make it rather costly.

Binary search with orientation test

A third method is searching for the steiner point qi ∈ Vε that has the smallest angle
∠pqi, ap between the lines pqi and ap. Equivalently, one can search for qi with the
smallest value of | sin(∠pqi, ap)|. This can be done by performing a binary search using
the sign of sin(∠pqi, ap) as an orientation test for whether the solution lies left or right
of the tested element.

Instead of computing the sine of the angle between pqi and ap, one can select a direction
d orthogonal (either to the left or right) to ap and compute the cosine. This direction
d is chosen such that a higher value cos(∠pqi, d) corresponds to higher indices i. By
that construction, the sign of cos(∠pqi, d) serves as an orientation test for whether the
solution has lower or higher index than i.

Selecting d can be done by rotating ap to the right and multiplying with the sign of
(w − v) · d, as that ensures that d ⊥ ap and (w − v) · d > 0.

Computing the cosine of the angle between two direction vectors u, v in R2 can be done
efficiently using the scalar product:

cos(∠(u, v)) = u · v

|u||v|

As only the sign of the cos-value is required, dividing by the product of norms can be
omitted.

36

3 Implementation

This method results in O(log k) runtime. An iteration using the given orientation test is
cheap as it only requires a single dot product computation. For low numbers of steiner
points, this method might be faster than the O(1) alternatives.

3.3 Datastructure for the shortest path tree

The search in Gε requires a data structure that holds a distance value d(v) and the parent
parent(v) for each node v that is visited.

For one-to-all searches, an array of size |Vε| can be used in combination with an offset
array I that contains the indices of the first point for each edge.

For one-to-one searches, where the search does not necessarily visit all nodes, the list
can grow dynamically. When inserting information for a node p which lies on an edge e

with k Steiner points, k entries are appended to the list and the index of e in I updated
to point to the first one.

This data structure combines the space-efficiency of a map-based data structure with
the performance of array-based ones, as no hashing is required. Additionally, this data
structure should provide good data locality, as the neighbors of the most recently visited
nodes are likely to appear at the end of the list.

3.3.1 Partial storage of the tree

With a shortest-path-tree being a subgraph of Gε with up to |Vε| nodes, its memory
demand can be too high for larger graph instances at lower ε-values. To solve this, a
data structure can be used which discards tree information as soon as it is not needed
for further computations.

Let w = maxe∈EP {|e|} be the length of the longest edge in the triangulation. Let d be
the distance from the source node to the closest node in the queue. Then nodes with
distance lower than d − w cannot be reached by any node that is still in the queue. Thus,
distance values for closer nodes can be discarded. To keep information on the shortest
path tree, the distance and parent id are written to a file when a node is removed from
the queue. When only requiring distances for a subset of nodes, it is also possible to only
output these.

This functionality is implemented by a hashmap that maps an edge to a list of distances
for the Steiner points placed on it. Additionally, a priority-queue is used which contains
information on when the information for an edge can be discarded. Whenever an edge

37

3 Implementation

is seen for the first time by assigning a distance to a point on it, an entry for its Steiner
points is created in the map. The edge is then inserted into the priority queue, with the
distance of the point as its priority. Whenever a node is removed from the search queue,
the data structure is informed of this new distance d and edges with priorities lower
than d − 2w removed from the hashmap.

This data structure is also implemented and functional, but not benchmarked.

As the use of a hashmap creates some overhead due to hashing, the data structure
could be optimized by using an array-based approach as described above. However, this
requires the removal of elements to be implemented, which is omitted.

3.4 Geometric functions

The presented algorithms require the implementation of angle und norm computations,
which are briefly explained here.

3.4.1 Norm

For distances between points p, q, or equivalently the norm of the vector q − p is
implemented using the euclidean norm:

norm_squared((x, y)) = x2 + y2

norm((x, y)) =
√

x2 + y2

When calculating products or ratios of distances, the number of calls to std::sqrt is
reduced by using the squared norm for intermediate results and computing the root in
the last step.

3.4.2 Angle

An angle ∠uv between two vectors u = (x1, y1) , v = (x2, y2) is computed via

θ = min
{∣∣∣∣arctan

(
y1

x1

)
− arctan

(
y2

x2

)∣∣∣∣ , 2π −
∣∣∣∣arctan

(
y1

x1

)
− arctan

(
y2

x2

)∣∣∣∣}
using std::atan2 from the C++ standard library.

38

3 Implementation

Faster computation of Cosines between vectors

The cosine of the angle between to vectors can be computed using the dot product,
without the need for calls to std::atan2:

cos(∠uv) = u · v

|u| · |v|

39

4 Evaluation

To evaluate the practicality of the presented implementation, some experiments are
conducted on real-world instances.

4.1 Methodology

The implementation is compiled using GCC at version 11.4.0 with optimization flags
-O3 -ffast-math. The benchmarks are run on an Intel Core i5-9500 CPU clocked at
3.00GHz with 64GiB memory.

In the following, ε refers to the value used for discretization, the solution quality is
therefore bounded by the factor 1 + 7ε.

4.1.1 Problem instances

The used instances are based on parts of the global coastlines dataset from Open-
StreetMap. From the points and coastline information, a constrained Delaunay trian-
gulation is generated. The coordinates are projected via the wgs84-projection and the
resulting values interpreted as x, y-values in Euclidean space.

For refinement, the triangle-package [She96] is used to generate triangulations with
inner angles of minimum 25◦ = 5π

36 , where applicable. For some graph instances (namely
pata and medi), this implementation does not terminate when generating refined meshes.
An alternative method of refinement is also used, which does not always ensure any
bounds on inner angles but works more reliably on the available graph instances.
In particular, this implementation can create skinny triangles near boundary edges,
resulting in larger discretization graphs.

The following instances are used:

1. aegaeis: the aegaeis sea, with latitudes in (34.0343, 40.9997) and longitudes in
(22.0001, 28.0000):

40

4 Evaluation

a) aegaeis-triangle: a refined version, consisting of 522985 vertices and 816249
triangles, refined using the triangle-package.

b) aegaeis-ref : a refined version, consisting of 556965 vertices and 873611
triangles.

c) aegaeis-unref : an unrefined version, consisting of 208885 vertices and 218875
triangles.

d) aegaeis-vis: a visibility graph, consisting of 556965 vertices and 313816822
edges.

This graph consists of two unconnected components, causing some queries to
have no solution, these are manually removed. Further, although the coastline
information of aegaeis-unref and aegaeis-vis is equal, the boundaries differ in the
ocean, where the graphs were cut out. This also causes different shortest paths
for some queries, which are manually removed as well. Both methods of refining
generate a similar number of vertices and faces, the inner angles of these faces
differ as shown below.

2. milos: an island in the Aegaeis sea, with latitudes in (36.508614, 36.8876) and
longitudes in (24.09291, 24.71498):

a) milos-ref : a refined version, extracted from the aegaeis-triangle graph, consist-
ing of 47610 vertices and 74795 triangles.

b) milos-unref : an unrefined version, extracted from the aegaeis-unref graph,
consisting of 19447 vertices and 21025 triangles.

c) milos-explicit-ε: explicit representations of the discretization graph generated
from milos-ref for ε ∈ {1, 1/2, 1/4}.

As these instances are generated by selecting a subset of vertices and faces from
the aegaeis-instances, the area covered by the triangulation differs between the ref
and unref graphs (see Figure 4.1). For this reason, only the ref instance is suited
for comparison to explicit.

3. medi: the Mediterranean sea, with latitudes in (29.99434, 40.76925), and longi-
tudes in (-0.72809, 36.21847)

a) medi-ref : a refined version, consisting of 826150 vertices and 1291659 trian-
gles.

b) medi-vis: a visibility graph, consisting of 826150 vertices and 721394892
edges.

41

4 Evaluation

(a) milos-ref (b) milos-unref (c) milos-ref-explicit-1

Figure 4.1: the different milos instances

This instance is larger than aegaeis, with ∼ 1.48 times the number of nodes and
more than ∼ 2.30 times the edges. This number of edges is higher because this
instance has large open areas, where high numbers of vertices are pairwise visible.

4. patagonia: the western coast of the Patagonia region in Chile and Argentinia, with
latitudes in (-55.86781, -39.08036) and longitudes in (-80.43261, -69.90562). In
contrast to the aegaeis-instance, this graph consists of more small obstacles and
smaller visible areas.

a) pata-ref : a refined version, consisting of 2303943 vertices and 3543559
triangles.

b) pata-vis: a visibility graph, consisting of 2303943 vertices and 315653758
edges.

For the pata-instance, the size of Gε grows too large for shortest path computations
to be possible with this implementation. For ε = 1/2, the |Vε| is already at
> 1, 27 · 1015, which makes storing a shortest-path-tree unrealistic. For this reason,
it is not included in the results.

4.1.2 Experiments

The first aspect to evaluate is the size of discretization graphs for a fixed instance,
depending on ε. For this, the required information on steiner point placement is
computed to extract the number of nodes and edges. The results of this experiment are
listed at section 4.2.

Another aspect concerning graph sizes is the scaling of a discretization graph with the
minimal inner angle of the graph instance. For this experiment, a class of graph instances
consisting of a triangle with a small inner angle is used (see subsection 4.2.1).

As the performance depends on some implementation details of the pruned search, these
are compared as well (see subsection 4.3.2). Similarly, the performance differences

42

4 Evaluation

10−1010−810−610−410−2100

ε

107

109

1011

1013

1015

1017

1019
|V

ε
|

|Vε| for aegaeis-ref

estimate for |Vε| = |V | +
∑

D(e) for aegaeis-ref

|Vε| for aegaeis-triangle

estimate for |Vε| = |V | +
∑

D(e) for aegaeis-triangle

|Vε| for aegaeis-unref

estimate for |Vε| = |V | +
∑

D(e) for aegaeis-unref

Figure 4.2: |Vε| for refined and unrefined aegaeis graphs

between implicit, explicit and semi-explicit (nodes only) representations are measured
(see subsection 4.3.1).

To evaluate the performance and solution qualities on larger instances, one-to-all and
one-to-one computations are performed on the different graph instances (i.e. triangula-
tions with different ε-values and the respective visibility graph). For this, the aegaeis and
medi instances are used. The approximated distances are then compared to the exact
distances computed in the visibility graph.

4.2 Graph sizes and space demand

The scaling of graphs in ε is examined for the aegaeis graph. The maximum number of
Steiner points per edge is set to 263 ≈ 9.223 · 1018 and indices stored in 64-bit integers.
This maximum is never exceeded here.

Figure 4.2 shows the scaling for the aegaeis-graph and estimates for the number of
points (as calculated in section 2.5) for angles α = 5π

36 ≈ 25◦ and the respective numbers
of edges. As the unref and ref graphs contain lower inner angles, these estimates are not
upper bounds and are exceeded. The plots of a graph’s size and the respective estimate

43

4 Evaluation

appear parallel on the logarithmic scale, suggesting that the sizes scale similarly to the
estimate multiplied with some constant.

Note the lower values at ε < 10−11. These are caused by overflows during counting, as
64-bit integers are used (with the highest representable value being 264 − 1 ≈ 1.84 · 1019).
At such graph sizes, storing 1 byte per node would exceed the maximum amount of
memory addressable on 64-bit architectures.

The distributions of inner angles for the aegaeis instances are plotted in Figure 4.3a.
These are generated by iterating over all faces and counting the angles that fall into
bins of size π

200 ≈ 1.8◦. As can be seen in the plot, the angles concentrate at small
values for the unrefined version. These increase the number of points inserted and could
potentially cause arithmetic issues. For the refined graphs, most angles fall into the
interval [π/4, π/2]. For aegaeis-ref, there are still smaller angles contained, although not
as many as for aegaeis-unref. Similar distributions can be seen with the radius values
rvw, which also affect the number of points inserted. For the unrefined graph, these are
mostly values close to 0. In contrast, for aegaeis-triangle, very few values below 0.02 are
present.

The distributions over the number of points inserted per edge can be seen in Figure 4.3c.
For the refined versions, the number of points per edge show a relatively narrow
distribution, while for the unrefined version, the values are distributed more broadly
with higher values occurring more often. These high values of log(k) explain the higher
graph size for aegaeis-unref.

Figure 4.4 shows the exact numbers of nodes and edges the discretizations based on
aegaeis have. For comparison, the size of the visibility graph and its memory requirement
are included as well.

Additionally, the memory requirement for storing all nodes explicitly is included. As
the implicit graph representation has O(1) space complexity in ε, the memory usage
remains constant at ~180MiB for the triangle/ref -instance and at ~60MiB for unref. The
semi-explicit representation stores two double values per node, an additional memory
demand of |Vε| · 16B is to be expected, which roughly matches the measured numbers.
Figure 4.5 shows the graph sizes for smaller values of ε ∈ {2−6, 2−10, . . . , 2−34}. For the
number of edges, overflows seem to occur on the edge counts at ε < 226.

Between the different aegaeis instances, the sizes differ greatly. For unref, the number
of nodes is about 10 times as high as for the triangle-instance, despite the triangulation
being far smaller. Between ref and triangle the sizes differ too, by a factor of ∼ 5
although the sizes of the triangulations are very similar.

The reason for this is that there are a few edges in the ref and unref instances where
a high number of Steiner points is placed. To explain the high values of |Vε| and |Eε|,

44

4 Evaluation

0 1 2 3
0

5000

10000

15000

20000

aegaeis-unref

0 1 2 3
0

50000

100000

150000

200000

250000

aegaeis-triangle

0 1 2 3
0

10000

20000

30000

40000

50000

60000

aegaeis-ref

(a) angles, aegaeis

0.00 0.05 0.10 0.15 0.20
0

20000

40000

60000

80000

100000

120000

aegaeis-unref

0.00 0.05 0.10 0.15 0.20
0

25000

50000

75000

100000

125000

150000

175000

200000

aegaeis-triangle

0.00 0.05 0.10 0.15 0.20
0

20000

40000

60000

80000

100000

120000

aegaeis-ref

(b) rvw, aegaeis

0 10 20
0

2500

5000

7500

10000

12500

15000

17500

20000

aegaeis-unref

0 10 20
0

50000

100000

150000

200000

250000

300000

aegaeis-triangle

0 10 20
0

50000

100000

150000

200000

aegaeis-ref

(c) distribution over log2(k) of the number k of points per edge at ε = 1/4

Figure 4.3: distributions over the different values affecting graph sizes

45

4 Evaluation

ε |Vε| |Eε| memory semi-explicit[KiB]
4 15.61 × 106 14.34 × 1012 491.46 × 103

2 32.13 × 106 64.32 × 1012 757.12 × 103

1 67.56 × 106 286.64 × 1012 1.32 × 106

1/2 144.40 × 106 1.27 × 1015 2.51 × 106

1/4 310.45 × 106 5.60 × 1015 5.11 × 106

1/8 668.51 × 106 24.60 × 1015 10.71 × 106

1/16 1.44 × 109 107.54 × 1015 22.73 × 106

1/32 3.08 × 109 468.38 × 1015 -
1/64 6.59 × 109 2.03 × 1018 -

(a) aegaeis-ref

ε |Vε| |Eε| memory semi-explicit[KiB]
4 28.54 × 106 1.19 × 1012 541.71 × 103

2 63.44 × 106 5.44 × 1012 1.09 × 106

1 140.54 × 106 24.73 × 1012 2.30 × 106

1/2 309.62 × 106 111.64 × 1012 4.94 × 106

1/4 677.79 × 106 500.74 × 1012 10.70 × 106

1/8 1.47 × 109 2.23 × 1015 23.15 × 106

1/16 3.19 × 109 9.90 × 1015 -
1/32 6.86 × 109 43.70 × 1015 -
1/64 14.69 × 109 191.97 × 1015 -

(b) aegaeis-unref

ε |Vε| |Eε| memory semi-explicit[KiB]
4 2.90 × 106 33.63 × 106 307.96 × 103

2 5.24 × 106 92.63 × 106 331.48 × 103

1 10.18 × 106 323.60 × 106 404.15 × 103

1/2 21.94 × 106 1.43 × 109 587.03 × 103

1/4 49.78 × 106 7.17 × 109 1.02 × 106

1/8 115.18 × 106 37.94 × 109 2.05 × 106

1/16 266.34 × 106 201.75 × 109 4.41 × 106

1/32 610.83 × 106 1.06 × 1012 9.80 × 106

1/64 1.38 × 109 5.43 × 1012 21.88 × 106

(c) aegaeis-triangle

ε |V | |E| memory[KiB]
0 556.97 × 103 313.82 × 106 6.00 × 106

(d) aegaeis-vis

Figure 4.4: exact graph sizes for aegaeis

46

4 Evaluation

ε |Vε| |Eε|
2−6 1.38 × 109 5.43 × 1012

2−10 32.98 × 109 3.07 × 1015

2−14 703.33 × 109 1.40 × 1018

2−18 14.07 × 1012 4.96 × 1018

2−22 270.06 × 1012 4.57 × 1018

2−26 5.04 × 1015 8.01 × 1018

2−30 92.18 × 1015 1.61 × 1018

2−34 1.66 × 1018 17.05 × 1018

Figure 4.5: aegaeis-triangle with smaller values of ε

ε |Vε| |Eε| memory semi-explicit[KiB]
4 19.02 × 106 13.68 × 1012 668.24 × 103

2 38.91 × 106 61.43 × 1012 992.15 × 103

1 81.74 × 106 274.17 × 1012 1.65 × 106

1/2 175.32 × 106 1.22 × 1015 3.11 × 106

1/4 378.88 × 106 5.37 × 1015 6.30 × 106

1/8 820.61 × 106 23.61 × 1015 13.21 × 106

1/16 1.77 × 109 103.35 × 1015 28.12 × 106

1/32 3.83 × 109 450.59 × 1015 -
1/64 8.22 × 109 1.96 × 1018 -

(a) medi-ref

ε |V | |E| memory[KiB]
0 826.15 × 103 721.39 × 106 13.78 × 106

(b) medi-vis

Figure 4.6: exact graph sizes for medi

consider a few edges in aegaeis-ref at ε = 0.5 that have the largest number of points
placed on them: There is 1 edge with > 224, 2 with > 223, 3 with > 222 and 3 with > 221

points. These already contribute at least 224 +2 ·223 +2 ·222 +3 ·221 ≈ 48 ·106 nodes to Vε.
Assuming that two of these edges border the same triangle, > (222)2 = 244 ≈ 1, 8 · 1013

face-crossing segments have to be expected for that triangle alone. These numbers
already lie in the order of magnitude of the measured numbers. In consequence, the
number of nodes and edges measured is mainly dominated by a few triangles with small
inner angles.

47

4 Evaluation

10−1410−1210−1010−810−610−410−2100

sin(αmin)

102

105

108

1011

1014

1017

|V
ε
|

|Vε=1.0|
D(e), ε = 1.0
|Vε=0.5|
D(e), ε = 0.5
|Vε=0.25|
D(e), ε = 0.25
|Vε=0.125|
D(e), ε = 0.125

(a) number of nodes placed

10−1410−1210−1010−810−610−410−2100

sin(αmin)

104

109

1014

1019

1024

1029

1034

|E
ε
|

|Eε=1.0|
B(t), ε = 1.0
|Eε=0.5|
B(t), ε = 0.5
|Eε=0.25|
B(t), ε = 0.25
|Eε=0.125|
B(t), ε = 0.125

(b) number of edges

Figure 4.7: graph sizes of the skinny triangle △αmin

Further, with these few edges, the margin of error due to imprecise angle computations
for |Vε|, |Eε| is very high. Other methods of angle computation could potentially result
in very different graph sizes (in particular the different numbers of edges).

4.2.1 Number of points inserted on skinny triangles

To examine how the number of steiner points scales with sin(αmin), as described in
Equation 2.3, the following type of instances is used: A single triangle △α between the
points a = (0.0, 0.0), b = (1.0, 0.0), c = (0.0, sin(α)).

For ε ∈ {0.125, 0.25, 0.5, 1.0} and α = 2−i, 0 ≤ i < 48, such instances are generated and
the size of the graph is computed. This way, the results in Figure 4.7 are obtained. For
this experiment, the limit on Steiner points per edge is set to 263 ≈ 9.223 · 1018 and
indices are stored in 64-bit integers.

Figure 4.7 shows the graph sizes and estimates derived using section 2.5 on the respective
angle. For the examined values of ε, the number of nodes scales similarly to the estimate
multiplied by some constant. As a result, graph sizes can be expected to scale with the
inner angles as described in section 2.5. The same holds for the number of edges. As
expected it scales roughly with the estimate, i.e. the square of the node count. At 1019,
overflows occur while counting and therefore these values can be ignored.

48

4 Evaluation

ε nodes edges file size [MiB]
1 931.50 × 103 28.70 × 106 1.07 × 103

1/2 2.01 × 106 128.13 × 106 4.94 × 103

1/4 4.54 × 106 645.43 × 106 24.77 × 103

Figure 4.8: graph and file sizes for milos-explicit-ε

4.3 Performance and solution quality

As the performance and potentially the solution qualities depend on some implemen-
tation details of the pruned search, these are compared here. On the milos graph, a
random set of 50 source vertices is selected from the boundary vertices and one-to-all
computations performed with different configurations. These vary by the following
parameters:

• pruning: either no pruning, pruning according to section 2.7 or pruning where
neighbors are selected such that bending angles are minimal.

• graph representation: either implicit, semi-explicit (with coordinates stored) or
fully explicit

• neighbor selection: selecting the steiner interval intersected by the current search
direction can be performed using parameter representations(param), law of sines
(trig) or binary search (binary)

These configurations are compared in subsection 4.3.1 and subsection 4.3.2.

To measure the performance on larger instances, one-to-all and one-to-one queries are
performed on aegaeis and medi, see subsection 4.3.3 and subsection 4.3.4.

4.3.1 Graph representations

Due to the high number of nodes and edges of the discretization graphs, a smaller graph
is chosen for evaluating explicit representations and comparing search configurations.
This smaller graph (milos-ref) is extracted from the aegaeis-triangle-instance. For this
subgraph (still represented by a triangulation), the information on Steiner point place-
ment is computed as described in subsection 3.1.2. The resulting graph is then written
to a text file containing the coordinates of all nodes and edges represented by the indices
of their endpoints and length. These graphs are identical to their implicitly represented
counterparts. Such a graph file can be read into an adjacency-list-based graph data
structure for shortest path computations and memory measurement.

49

4 Evaluation

storage ε graph [MiB] graph+tree [MiB]
explicit 0.25 12 427.50 12 499.30
explicit 0.5 2484.97 2520.59
explicit 1.0 599.84 602.00
implicit 0.25 17.20 215.07
implicit 0.5 17.24 123.65
implicit 1.0 17.12 81.43
semi-explicit 0.25 93.62 306.90
semi-explicit 0.5 54.68 168.96
semi-explicit 1.0 36.92 103.22

Figure 4.9: memory demand for the different graph representations

The graph sizes are summarized in Figure 4.8. The memory demand (Figure 4.9) is
measured once with the graph datastructures initialized, and once with graph and
search datastructures after a one-to-all computation. As already established, the memory
demand of the implicit representation is constant in ε, with the measured demand being
far lower than the ones of the explicit graph representations.

As can be seen from the tables, storing the full graph (i.e. nodes and edges) explicitly,
requires far more memory than the fully implicit representation. For larger graphs,
one should not expect explicit representations to be applicable. The semi-explicit
representation (storing only the nodes) however, only moderately increases the memory
requirement. This can also be seen for the aegaeis-triangle instance (Figure 4.4), where
a fully explicit representation would not be practical.

The search performance of the different graph representations is compared in Figure 4.10.
The measured timings show the performance benefits of relying on explicitly stored
nodes and edges. The fully explicit graph can be searched about in about ∼ 30% less
time than for the implicit representation (without pruning). The semi-explicit graph
representation provides an improvement of ∼ 15% compared to the implicit one. With
pruning, it is still ∼ 10%.

4.3.2 Pruning

The different methods of pruning and computing intersections are compared in Fig-
ure 4.10. The table shows the average query time and the number of edges in Eε that is
checked during the search.

50

4 Evaluation

storage pruning intersections ε edges checked time[ms]
explicit none 0.25 645.43 × 106 14 951.6
implicit none binary 0.25 643.82 × 106 23 238.4
implicit none param 0.25 643.82 × 106 22 703.3
implicit none trig. 0.25 643.82 × 106 23 337.5
implicit prune binary 0.25 43.67 × 106 6557.9
implicit prune param 0.25 28.54 × 106 3505.1
implicit prune trig. 0.25 21.18 × 106 4167.0
implicit min-angle binary 0.25 43.32 × 106 4717.3
implicit min-angle param 0.25 25.98 × 106 2266.6
implicit min-angle trig. 0.25 19.05 × 106 3168.4
semi-explicit none binary 0.25 643.82 × 106 19 253.9
semi-explicit none param 0.25 643.82 × 106 18 606.2
semi-explicit none trig. 0.25 643.82 × 106 19 291.4
semi-explicit prune binary 0.25 43.67 × 106 4469.2
semi-explicit prune param 0.25 28.54 × 106 2684.9
semi-explicit prune trig. 0.25 21.18 × 106 3540.0
semi-explicit min-angle binary 0.25 43.32 × 106 3566.8
semi-explicit min-angle param 0.25 25.98 × 106 1955.8
semi-explicit min-angle trig. 0.25 19.05 × 106 2976.2

Figure 4.10: query times for different configurations

ε vertices segments boundary vertices segments
0.25 27.04×103 268.25×103 22.34×103 453.28×103

0.5 27.81×103 274.60×103 22.42×103 353.69×103

1.0 29.01×103 285.00×103 22.61×103 352.94×103

ε Steiner points segments
0.25 4.51×106 25.26×106

0.5 1.96×106 10.87×106

1.0 885.20×103 4.83×106

Figure 4.11: numbers of nodes of the different types and the respective outgoing seg-
ments that are searched with min-angle-pruning

51

4 Evaluation

pruning ε mean max
prune 0.25 1.003 61 1.015 24
prune-min-angle 0.25 1.001 35 1.035 61
prune 0.5 1.007 89 1.032 25
prune-min-angle 0.5 1.002 96 1.055 60
prune 1.0 1.012 75 1.046 01
prune-min-angle 1.0 1.006 88 1.050 47

Figure 4.12: mean and max values over the qualities compared to the unpruned case

Pruning variants

The numbers of visited edges in the unpruned case correspond to the total number of
edges in Gε, as expected. These numbers show the benefit of pruning as it reduces this
number to less than ∼ 1

15 . Without pruning, the average number of outgoing edges that
are checked per node is ∼ 144.67. With pruning and the param neighbor selection, that
number is reduced to ∼ 6.44.

For smaller values of ε, one can expect even stronger reductions, as the degree of a
Steiner point scales with ε−1 log ε−1, while the number of edges checked with pruning
stays constant. Also, for instances that contain edges with larger values for C(e), the
pruning can be expected to reduce the number of edges more strongly. This is the case
because the number of searched segments per node does not scale with its degree in Gε,
as seen in subsection 2.7.2.

Figure 4.11 lists the numbers of nodes and outgoing segments for the different types of
nodes. For ε = 0.25, the average number of segments are ∼ 10.10 for vertices, ∼ 12.33
for boundary vertices and ∼ 5.59 for Steiner points. This roughly matches the estimates
from subsection 2.7.2: These numbers are a bit higher than the estimate, which can
be explained by the way outgoing segments are selected: While the outgoing segments
ending on one reachable edge are selected such that each lies in a different subcone of
the ε-spanner, this is not the case for segments ending on different edges. Segments
ending on different edges can actually belong to the same subcone.

The quality for the entire computed trees is checked too: For every query, the distance
for each node is divided by the distance computed without pruning. The mean and
maximum of these ratios is listed in Figure 4.12. Here, both pruning variants show a
good solution quality, with the worst ratio being 1, 05047 at ε = 1.0, which is better than
the theoretical ratio of (1 + πε/2). As a result, the pruning does not cost much in terms
of quality for this graph. Further, the measured qualities are far better when pruning for

52

4 Evaluation

minimal bending angles, with the mean deviations being less half as large as for default
pruning.

Neighbor selection

The different methods of selecting the neighbors on the current search direction also
result in different numbers of visited edges as seen in Figure 4.10: This number is the
largest for binary and lowest for param. The reason for these differences is that the
checks for whether an edge is actually intersected work differently: Binary search simply
adds neighbors for each visible edge in EP , without checking if that edge is intersected by
the current search direction. For the alternatives, such a check is performed. Apparently,
for the parameter representations, this check accepts more edges. It is not clear why
that is the case.

The performance difference between the different methods of selecting the neighbors on
the current search direction can be explained by these different numbers of edges and
the differences in computational overhead. When comparing these for the unpruned
case, the difference is negligible. When pruning for minimal bending angles, using the
parameter representations performs better than the alternatives.

4.3.3 One-to-all queries

For evaluating the performance on larger instances, one-to-all dijkstra computations
are performed on 5 randomly selected vertices in P and a few metrics collected. This
smaller number of queries is chosen as results for one-to-all don’t vary as much as for
one-to-one computations and due to the higher computational effort.

As the ref - and unref - instances are larger (see Figure 4.4), the benchmarks are only run
with ε ≥ 0.25, while for triangle smaller values ε ≥ 0.0625 are included.

The extracted metrics include:

• total runtime

• memory demand after search tree is complete

Figure 4.13 lists the query times for the different instances of aegaeis and medi. The
rows with ε = 0 represent the query times for the visibility graph, and ε = ∞ the
respective triangulation without steiner points. As the tables show, the query times for
ε = 1.0 already exceed the times on the visibility graph. This is to be expected due to
the different graph sizes. However, the query times achieved here would not be possible
without pruning due to the large number of edges (see Figure 4.4).

53

4 Evaluation

ε mean[ms] max[ms]
0 1240.0 1252.0
0.25 123 993.4 125 287.0
0.5 56 276.8 57 486.0
1 26 063.0 26 565.0
inf 1344.8 1352.0

(a) aegaeis-ref

ε mean[ms] max[ms]
0 1240.0 1252.0
0.25 311 756.1 318 039.0
0.5 137 586.0 138 967.0
1 62 162.8 63 418.0
inf 420.9 432.0

(b) aegaeis-unref

ε mean[ms] max[ms]
0 1240.0 1252.0
0.0625 141 999.2 143 807.0
0.125 62 270.2 63 472.0
0.25 26 755.2 27 047.0
0.5 12 190.0 12 400.0
1 5964.0 6057.0
inf 1362.0 1373.0

(c) aegaeis-triangle

ε mean[ms] max[ms]
0 2993.6 3272.0
0.25 154 767.2 155 662.0
0.5 69 498.0 70 552.0
1 32 784.4 33 063.0
inf 2208.8 2215.0

(d) medi-ref

Figure 4.13: one-to-all query times

ε mean[MiB] max[MiB]
0 6032.3 6032.3
0.25 10 020.5 10 074.9
0.5 4728.0 4772.7
1 2338.6 2359.7
inf 255.4 255.4

(a) aegaeis-ref

ε mean[MiB] max[MiB]
0 6032.3 6032.3
0.25 20 796.2 20 832.6
0.5 9534.6 9563.2
1 4384.4 4396.6
inf 89.9 90.1

(b) aegaeis-unref

ε mean[MiB] max[MiB]
0 6032.3 6032.3
0.0625 8264.9 8272.9
0.125 3685.4 3706.0
0.25 1702.8 1714.5
0.5 862.2 866.5
1 506.1 512.4
inf 242.7 242.9

(c) aegaeis-triangle

ε mean[MiB] max[MiB]
0 13 859.7 13 875.4
0.25 12 168.2 12 175.1
0.5 5730.9 5832.7
1 2868.3 2868.4
inf 362.1 362.1

(d) medi-ref

Figure 4.14: memory requirement for one-to-all searches

54

4 Evaluation

ε mean max
∞ 1.044 00 1.117 20
1.0 1.018 00 1.074 90
0.5 1.010 00 1.079 90
0.25 1.005 00 1.065 70

Figure 4.15: approximation quality for aegaeis-ref

As can be expected, the computation on the visibility graph performs slightly worse on
medi than on aegaeis, as the visibility graph has more edges. However, it still performs
better than the approximation scheme.

Figure 4.14 lists the memory demand for the different instances of aegaeis and medi. For
ref and unref, the memory demand after the search (in particular, with the shortest path
tree over Vε stored) quickly grows similarly large as for the computation on the visibilty
graph. For aegaeis-triangle, memory demand grows more slowly, matching the smaller
graph size.

The quality of the entire trees is included only for the ref instance, as triangle and
unref slightly differ from the visibility graph in some regions and therefore do not have
comparable distances. The quality is computed by iterating over the entire tree and
dividing each distance by the corresponding distance computed with the visibility graph.
The mean and maximum over these ratios are kept.

For aegaeis-ref (see Figure 4.15) the qualities are far better than the theoretic guarantee.
Without steiner points, distances are already approximated a factor of at most 1.1172.

A possible explanation for these low values is that for paths lying between vertex vicinity,
the quality bound of 1 + ε applies (when not considering the pruning). These paths can
make up larger portions of the full paths and as a result the possible 1 + 2ε derivation
can have a weaker effect. Further, due to the property of Delaunay-triangulations having
a spanning factor of lower than 2, the graph without Steiner points already provides
good results.

4.3.4 One-to-one queries

This experiment is intended to measure the performance of computing shortest paths
instead of full shortest-path trees on larger instances. For each graph, a set of 100
source-target pairs is randomly selected from the boundary nodes. For these pairs, the
shortest paths are computed with A∗ based on the beeline distance. These computations
are run with min-angle pruning and without storing coordinates explicitly.

55

4 Evaluation

0.0 0.03125 0.0625 0.125 0.25 0.5 1.0 inf
ε

0

10000

20000

30000

40000

tim
e

[m
s]

(a) aegaeis-triangle

0.0 0.125 0.25 0.5 1.0 inf
ε

0

5000

10000

15000

20000

tim
e

[m
s]

(b) aegaeis-ref

0.0 0.25 0.5 1.0 inf
ε

0

10000

20000

30000

40000

50000

tim
e

[m
s]

(c) aegaeis-unref

Figure 4.16: Boxplots over query time for different values of ε

For each query, the ratio |Π̃∗|/|Π∗| is computed to examine the approximation qual-
ity. In contrast to one-to-all queries, where the distances are not comparable for all
graph instances, the paths for the evaluated queries do not differ between the graph
instances.

For 2 of these queries, the implementation did not find a path on the unref graph
and for 3 on ref. It is not known why that is the case, possibly due to an error in the
implementation. These appear as ∞ in the quality statistic.

Query times

Figure 4.16 shows distributions over query times for the different tested values of ε.
These numbers are also listed in Figure 4.18. These boxplots consist of the median,

56

4 Evaluation

lower and upper quartile and the minima/maxima. The exact solution using the visibility
graph is denoted by ε = 0, and the triangulation without steiner points by ε = ∞.

As can be seen, the times greatly increase with lower values for ε, similar to the one-to-all
searches. However, the distributions also show that A∗ can strongly reduce the query
times. For a one-to-all search on aegaeis-triangle at ε = 1/16, the maximal time was
∼ 142s, while for the one-to-one searches the maximum lies at ∼ 62s, and the median at
∼ 3.14s. These lower numbers can be explained by the lower numbers of nodes visited,
and by the fact that high numbers of Steiner points concentrate on a few edges (as seen
in section 4.2). For random shortest path queries and A∗, these edges are less likely to
be visited. This shows that A∗ can be applied to greatly reduce the size of the search
and therefore improve the query times.

The query times also lie closer to the times for the visibility graph, with median query
time for aegaeis-triangle at ε = 0.25 being almost equal to the median time required on
the visibility graph.

Solution quality

Figure 4.17 shows the distributions of the ratio of the approximated by exact cost |Π̃∗|
|Π∗| .

The exact numbers are listed in Figure 4.19. The theoretical quality guarantee is 1 + 7ε

but the measured approximation qualities are closer to 1. For aegaeis-triangle, the
measured qualities with ε = 1 are better than (1 + 3

100ε), while for ε = 0.03125 the factor
is still lower than (1 + 1

10ε). This suggests that the qualities more closely resemble the
theoretical guarantee for smaller ε-values.

Between the different instances, a quality difference can be seen: For the unrefined
graph, solutions are worse than for the refined graphs (with aegaeis-triangle delivering
the best results).

57

4 Evaluation

0.0 0.03125 0.0625 0.125 0.25 0.5 1.0 inf
ε

1.00

1.01

1.02

1.03

1.04

1.05

1.06

ra
tio

(a) aegaeis-triangle

0.0 0.125 0.25 0.5 1.0 inf
ε

1.00

1.02

1.04

1.06

1.08

ra
tio

(b) aegaeis-ref

0.0 0.25 0.5 1.0 inf
ε

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

ra
tio

(c) aegaeis-unref

Figure 4.17: Boxplots over solution qualities for different values of ε

58

4 Evaluation

ε mean min q0.25 median q0.75 max
0.0 574.3 26.0 284.3 522.5 916.5 1136.0
0.25 17 682.2 7.0 1854.0 6415.5 20 715.3 154 263.0
0.5 7975.3 11.0 847.0 2903.0 9630.0 70 929.0
1.0 3899.9 5.0 620.5 1872.0 4682.0 32 716.0
inf 52.0 0.0 19.5 46.0 71.0 231.0

(a) aegaeis-unref

ε mean min q0.25 median q0.75 max
0.0 574.3 26.0 284.3 522.5 916.5 1136.0
0.125 13 765.1 0.0 743.0 2923.0 10 700.5 119 905.0
0.25 6446.5 0.0 395.0 1300.0 4551.5 57 041.0
0.5 2667.0 0.0 180.0 571.5 2047.0 24 920.0
1.0 1473.0 1.0 95.5 398.0 1406.8 11 779.0
inf 543.3 15.0 290.5 489.0 842.8 1080.0

(b) aegaeis-ref

ε mean min q0.25 median q0.75 max
0.0 574.3 26.0 284.3 522.5 916.5 1136.0
0.03125 17 227.3 0.0 1679.0 7349.0 19 708.0 147 744.0
0.0625 7065.6 1.0 660.3 3137.0 8419.8 62 385.0
0.125 3027.1 0.0 257.0 1226.5 3431.8 25 035.0
0.25 1236.0 0.0 113.0 528.0 1401.0 10 703.0
0.5 592.6 0.0 62.0 260.0 714.8 4733.0
1.0 300.2 0.0 38.3 165.0 386.3 2296.0
inf 93.7 1.0 15.3 56.5 131.8 530.0

(c) aegaeis-triangle

Figure 4.18: distributions of query times [ms]

59

4 Evaluation

ε mean min q0.25 median q0.75 max
0.0 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00
0.25 inf 1.000 07 1.000 63 1.000 95 1.001 38 inf
0.5 inf 1.000 19 1.001 51 1.002 14 1.003 14 inf
1.0 inf 1.000 49 1.003 13 1.005 20 1.006 93 inf
inf 1.074 49 1.010 21 1.057 43 1.070 20 1.087 22 1.177 64

(a) aegaeis-unref

ε mean min q0.25 median q0.75 max
0.0 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00
0.125 1.000 34 1.000 11 1.000 24 1.000 31 1.000 40 1.001 09
0.25 1.001 07 1.000 45 1.000 87 1.001 02 1.001 25 1.002 19
0.5 1.002 97 1.001 63 1.002 48 1.002 96 1.003 30 1.006 15
1.0 1.008 24 1.005 03 1.006 97 1.008 01 1.009 16 1.013 90
inf inf 1.000 30 1.021 85 1.028 84 1.037 70 inf

(b) aegaeis-ref

ε mean min q0.25 median q0.75 max
0.0 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00 1.000 00
0.03125 1.000 09 1.000 01 1.000 02 1.000 04 1.000 06 1.002 46
0.0625 1.000 17 1.000 05 1.000 09 1.000 11 1.000 16 1.002 81
0.125 1.000 36 1.000 15 1.000 29 1.000 34 1.000 41 1.000 98
0.25 1.001 14 1.000 64 1.000 93 1.001 09 1.001 28 1.002 33
0.5 1.003 31 1.001 70 1.002 72 1.003 29 1.003 85 1.005 62
1.0 1.009 57 1.006 17 1.007 99 1.009 30 1.010 48 1.021 26
inf 1.043 80 1.025 60 1.039 28 1.044 10 1.048 59 1.063 34

(c) aegaeis-triangle

Figure 4.19: distributions of solution qualities

60

5 Future work

The presented implementation is developed purely for the 2D Euclidean shortest path
problem, but could be extended to more general cases.

Firstly, the implementation could be extended to support planar subdivisions consisting
of faces other than triangles. As described in subsection 2.6.3, these could be more well
suited for the described approximation scheme. This would require some modifications
to the presented implementation: For a face with a higher number of sides, the middle
point M as described in the theory section is not defined uniquely. One would have to
compute the two outermost points M, M ′ and place Steiner points equidistantly between
them. Further, modifications to the data structure for the edge-to-edge relationships
would be necessary. As seen in subsection 4.2.1, inner angles have a great effect on the
graph sizes, and as stated in section 2.6, faces with more sides can have larger inner
angles. Therefore, this approach could drastically reduce graph sizes.

Further, the implementation could be extended to use weighted faces, which would
require the simplifications of section 2.7 to be adapted and a data structure for the face
weights to be added. On a weighted domain, the approach of using a visibility graph is
not directly applicable and therefore this approximation scheme might be more relevant
for that problem.

Approximating shortest paths in 3D space is possible too, [AMS00] present a way to
derive a discretization from a tetrahedralization, also supporting weighted tetrahedra.
The discretization places Steiner points on faces, leaving vertex and edge-vicinities empty.
As they state, the number of points on a face scales with ε−3 ln ε−1, and in consequence,
an implicit graph representation would likely be required for an implementation with
reasonable memory demand.

As the approximation scheme mainly relies on a Dijkstra search, the known speed-up
techniques can potentially be applied too. Guided search with A∗ has already been
applied in this implementation. To reduce the sizes of search trees, one could also use
A∗ with landmarks. A∗ with landmarks cannot be trivially applied to a discretization
Gε, because that would require precomputing landmark distances for all Steiner points
and therefore require too much memory. One would have to come up with a way to
compute heuristic values for Steiner points from the landmark distances of vertices of
VP , and ensure that these do not overestimate distances.

61

6 Conclusion

This thesis provides an implementation for the approximation scheme described by
[AMS00]. The general definitions have been translated into an implicit graph repre-
sentation. Estimates for the scaling of the discretization in properties of P (mainly the
inner angles) have been provided and experimentally confirmed. Further, an existing
method of pruning the search is adapted and simplified using properties of Euclidean
shortest paths in an unweighted domain. The experiments have shown that such
pruning is necessary for obtaining acceptable query times. The experiments have also
shown that the implicit graph representation poses a ∼ 30% overhead for the presented
implementation.

The approximation quality on the evaluated problem instances has been shown to be far
better than the theoretical guarantee of (1 + 7ε). By more thorough analysis, one could
possibly show better quality guarantees for the unweighted problem. Having a better
quality guarantee would allow for using smaller discretizations.

In the following, the main advantages and disadvantages are summarized.

6.1 Advantages and shortcomings of the approximation
scheme

The size of the discretization has been shown to have a strong dependency on inner
angles of P . Because of that, for suboptimal graph instances (like the unrefined graphs),
the size of the discretization graph can grow too fast for low query times to be possible.
These high graph sizes also prevent explicit graph representations to be possible with
acceptable memory demands. In consequence, the presented approximation scheme
requires triangulations to provide lower bounds on inner angles.

For the presented instances, performing searches on an explicitly stored visibility graph
can provide far lower query times, at the expense of higher space demand. On the other
hand, the possibility of using a space-efficient implicit graph representation can make
the approximation scheme more suitable for certain use cases, e.g. when a graph has a
large number of pairwise visible vertices.

62

6 Conclusion

Another advantage of the approximation scheme is that it can be applied to more general
problems than a visibility graph, as seen in the previous section. In particular, for
problems where a visibility graph cannot be used, this approximation scheme might be
more relevant.

6.2 Final remarks

As shown in this thesis, the approximation scheme can be implemented and applied
to moderately sized planar subdivisions. The implementation provided here shows far
inferior performance to computations on visibility graphs especially when computing
entire shortest-path-trees. Even one-to-one query times on the examined instances
quickly exceeding the 10s mark, in contrast to query times below 0.5s for a visibility
graph.

This low performance is mainly due to the large size of the discretizations. A promising
approach for reducing these graph sizes is the usage of more general polyhedral surfaces,
with faces other than triangles, as these could greatly increase the inner angles and thus
reduce graph sizes. Further, if better quality guarantees for the unweighted Euclidean
shortest path problem could be shown, smaller discretizations could be used.

The approximation scheme’s lightweight implicit graph representation can make it
applicable for instances where a visibility graph would grow too large to be stored
explicitly. Also, this approximation scheme can be applied to more general problems
where a visibility graph does not suffice. For these problems (mainly the weighted and
three-dimensional variants), this approximation scheme might be more relevant for
further research.

63

Bibliography

[ACG+12] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi. Complexity and approximation: Combinatorial optimization
problems and their approximability properties. Springer Science & Business
Media, 2012 (cit. on p. 6).

[AMS00] L. Aleksandrov, A. Maheshwari, J.-R. Sack. “Approximation algorithms
for geometric shortest path problems.” In: Proceedings of the thirty-second
annual ACM symposium on Theory of computing. 2000, pp. 286–295 (cit. on
pp. 5, 7, 8, 10–18, 21, 22, 24, 25, 61, 62).

[GM91] S. K. Ghosh, D. M. Mount. “An Output-Sensitive Algorithm for Computing
Visibility Graphs.” In: SIAM Journal on Computing 20.5 (1991), pp. 888–
910. DOI: 10.1137/0220055. eprint: https://doi.org/10.1137/0220055.
URL: https://doi.org/10.1137/0220055 (cit. on p. 6).

[HS99] J. Hershberger, S. Suri. “An Optimal Algorithm for Euclidean Shortest Paths
in the Plane.” In: SIAM Journal on Computing 28.6 (1999), pp. 2215–
2256. DOI: 10 . 1137 / S0097539795289604. eprint: https : / / doi . org /
10 . 1137 / S0097539795289604. URL: https : / / doi . org / 10 . 1137 /
S0097539795289604 (cit. on p. 7).

[MS04] J. S. B. Mitchell, M. Sharir. “New results on shortest paths in three dimen-
sions.” In: Proceedings of the Twentieth Annual Symposium on Computational
Geometry. SCG ’04. Brooklyn, New York, USA: Association for Computing
Machinery, 2004, pp. 124–133. ISBN: 1581138857. DOI: 10.1145/997817.
997839. URL: https://doi.org/10.1145/997817.997839 (cit. on p. 7).

[Sch24] A. Schneewind. Euclidean shortest path approximation. Mar. 2024. URL:
https://github.com/AxelSchneewind/euclidean-shopa-approximation.git
(cit. on p. 27).

[She96] J. R. Shewchuk. “Triangle: Engineering a 2D Quality Mesh Generator and
Delaunay Triangulator.” In: Applied Computational Geometry: Towards
Geometric Engineering. Ed. by M. C. Lin, D. Manocha. Vol. 1148. Lecture
Notes in Computer Science. From the First ACM Workshop on Applied
Computational Geometry. Springer-Verlag, May 1996, pp. 203–222 (cit. on
p. 40).

64

https://doi.org/10.1137/0220055
https://doi.org/10.1137/0220055
https://doi.org/10.1137/0220055
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1137/S0097539795289604
https://doi.org/10.1145/997817.997839
https://doi.org/10.1145/997817.997839
https://doi.org/10.1145/997817.997839
https://github.com/AxelSchneewind/euclidean-shopa-approximation.git

[Xia11] G. Xia. “The Stretch Factor of the Delaunay Triangulation Is Less Than
1.998.” In: CoRR abs/1103.4361 (2011). arXiv: 1103.4361. URL: http:
//arxiv.org/abs/1103.4361 (cit. on p. 20).

All links were last followed on May 15, 2024.

https://arxiv.org/abs/1103.4361
http://arxiv.org/abs/1103.4361
http://arxiv.org/abs/1103.4361

Declaration

I hereby declare that the work presented in this thesis
is entirely my own. I did not use any other sources and
references than the listed ones. I have marked all direct
or indirect statements from other sources contained
therein as quotations. Neither this work nor significant
parts of it were part of another examination procedure.
I have not published this work in whole or in part before.
The electronic copy is consistent with all submitted hard
copies.

place, date, signature

	1 Introduction
	1.1 Problem statement
	1.1.1 Shortest path on polyhedral surface problem
	1.1.2 Euclidean shortest path problem (2-dimensional)
	1.1.3 (Fully) Polynomial-time approximation scheme

	1.2 Related work

	2 Theory
	2.1 Euclidean shortest path problem
	2.1.1 Bending
	2.1.2 Edge-using segments in shortest paths
	2.1.3 Consequences for shortest-path computations

	2.2 General approach of the approximation scheme
	2.3 Discretization based on a planar subdivision
	2.3.1 Placement of Steiner points
	2.3.2 Mapping points to Steiner intervals

	2.4 Approximation quality
	2.4.1 Quality of face-crossing segments
	2.4.2 Quality of approximated paths
	2.4.3 Maximal bending angle of discrete paths at Steiner points

	2.5 Size of the discretization
	2.5.1 Number of Steiner points depending on angles
	2.5.2 Number of Steiner points depending on vertex radii

	2.6 Properties of planar subdivisions
	2.6.1 Quality of paths on a delaunay-triangulation
	2.6.2 Refining of triangulations
	2.6.3 Inner angles of planar subdivisions

	2.7 Pruned djikstra search
	2.7.1 Selecting neighbors from subcones
	2.7.2 Time complexity of the pruned search
	2.7.3 Quality of the pruned search

	3 Implementation
	3.1 Implicit graph representation
	3.1.1 Datastructure for the triangulation
	3.1.2 Steiner point placement
	3.1.3 Semi-explicit representation

	3.2 Dijkstra search
	3.2.1 Generating outgoing segments
	3.2.2 Generation of -spanners
	3.2.3 Search of neighbors on the current search direction

	3.3 Datastructure for the shortest path tree
	3.3.1 Partial storage of the tree

	3.4 Geometric functions
	3.4.1 Norm
	3.4.2 Angle

	4 Evaluation
	4.1 Methodology
	4.1.1 Problem instances
	4.1.2 Experiments

	4.2 Graph sizes and space demand
	4.2.1 Number of points inserted on skinny triangles

	4.3 Performance and solution quality
	4.3.1 Graph representations
	4.3.2 Pruning
	4.3.3 One-to-all queries
	4.3.4 One-to-one queries

	5 Future work
	6 Conclusion
	6.1 Advantages and shortcomings of the approximation scheme
	6.2 Final remarks

	Bibliography

