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Abstract: We address the challenging application of 3D pore scale reactive flow under varying
geometry parameters. The task is to predict time-dependent integral quantities, i.e., breakthrough
curves, from the given geometries. As the 3D reactive flow simulation is highly complex and
computationally expensive, we are interested in data-based surrogates that can give a rapid prediction
of the target quantities of interest. This setting is an example of an application with scarce data,
i.e., only having a few available data samples, while the input and output dimensions are high. In
this scarce data setting, standard machine learning methods are likely to fail. Therefore, we resort
to greedy kernel approximation schemes that have shown to be efficient meshless approximation
techniques for multivariate functions. We demonstrate that such methods can efficiently be used in the
high-dimensional input/output case under scarce data. Especially, we show that the vectorial kernel
orthogonal greedy approximation (VKOGA) procedure with a data-adapted two-layer kernel yields
excellent predictors for learning from 3D geometry voxel data via both morphological descriptors or
principal component analysis.

Keywords: machine learning; kernel methods; two-layered kernels; porous media; breakthrough
curves

MSC: 68T05; 65D15; 46E22; 76S05

1. Introduction

The reactive flow in porous media plays an important role for many industrial, en-
vironmental and biomedical applications. Since the reactions occur at the pore scale, 3D
pore scale simulations are very important. At the same time, pore scale measurements are
difficult or impossible, and usually, some averaged quantities are measured. One such
quantity of interest that can be measured is the breakthrough curve, i.e., the time-dependent
integral of the species over the outlet. These breakthrough curves can be computed from a
reaction–advection–diffusion equation on a porous medium, which is numerically solved.
However, this usually leads to very high computational costs, which might be prohibitively
high in a multiquery application, e.g., optimization of the geometry of the porous medium.
In that case, a surrogate model for the full order simulation model (FOM) is required. A
promising way of obtaining an adequate surrogate model is the use of machine learning
(ML) techniques. ML techniques are nowadays widely spread and employed for a variety of
tasks, including the estimation of damage for buried pipelines [1] or automatic vision-based
sewer inspection [2]. ML algorithms are developed and tested for porous media flows with

Mathematics 2024, 12, 2111. https://doi.org/10.3390/math12132111 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12132111
https://doi.org/10.3390/math12132111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-1240-9229
https://doi.org/10.3390/math12132111
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12132111?type=check_update&version=1


Mathematics 2024, 12, 2111 2 of 17

different complexity. The literature in this area is very rich, and we cite some exemplary
papers simply to point to the place of our research. Numerous papers discuss predicting
permeability from microscale geometry. For example, see [3–5] and the references therein.
At the next level of complexity, e.g., in [6], the capability of using deep learning techniques
has been shown in the case where the velocity field is predicted from the morphology of
a porous medium. On the same topic, improvement is achieved by incorporating coarse
velocities in the learning process, see [7]. In the last decade, the application of ML tech-
niques for the simulation of passive and reactive transport has rapidly grown. One of the
directions in this case is using ML to predict reaction rates when those are very expensive
in the case of complex reactions. This can be implemented without taking into account the
geometry, see e.g., [8–10], or predicting the rate from structure features, see, e.g., [4,11,12],
to name just a few. Recently, the potential of using machine learning models as surrogates
for predicting breakthrough curves for varying physical parameters, i.e., Damköhler and
Peclet numbers, on a fixed porous medium geometry [13] has been reported.

In the current paper, we address the task of predicting the breakthrough curves for
varying geometries of the porous medium with fixed Damköhler and Peclet numbers. Our
work is in the same direction as that of [4,11], but there are essential differences. In [11], ML
addresses the impact of the structural features on the effective reaction rate to overcome
the limitation of the well-mixing assumption. Pore scale reactive flow in an inert skeleton
is considered there. In [4], pore scale colloid transport is considered as a part of a filtration
problem. Steady-state problems are solved. In our case, our pore scale geometry is in fact a
two scale media, as the active washcoat particles are nanoporous. We consider the diffusion
of the species within the washcoat, where the reaction occurs. Furthermore, while the other
papers discuss different neural network algorithms, we consider a kernel-based method,
namely, VKOGA. To the best of our knowledge, such studies have not yet been discussed
in the literature.

Because of the computationally demanding simulation of the FOM, we are limited
to a scarce data regime as we can only afford to compute a few samples. Furthermore,
the input dimension (the number of elements of the discretization of the porous medium)
and the output dimension (the number of time steps used during the FOM simulation) are
very high. This yields a challenging task for machine learning techniques [14]. For this
purpose, greedy kernel approximation schemes [15,16] have been shown to be efficient.
These meshless approximation techniques can be combined with deep learning techniques
to yield two-layered kernels [17,18], which have also already been successfully applied for
certified and adaptive surrogate modeling for heat conduction [18], as well as surrogate
modeling of chemical kinetics [8].

Our work is organized as follows: In Section 2, we introduce the underlying equations
of the 3D porous medium reaction–advection–diffusion model. In Section 3, we give an
overview on greedy kernel methods and two-layered kernels. The numerical experiments
are provided in Section 4, and we conclude our work in Section 5.

2. Problem Formulation
2.1. Geometry

In the current paper, we consider artificially generated voxel-based geometries on the
unit cube Ω = [0, 1]3 as geometries for porous filter fragments. These consist of the solid
skeleton, Ωs, free pores, Ω f , and effective porous space (washcoat or unresolved porosity
region) Ωw. Accordingly, we assume that the porous geometry sample can be represented
as a union of non-overlapping domains Ω = Ωs ∪ Ω f ∪ Ωw. Each of the domains Ωw, Ω f
is represented as a union of non-overlapping volume voxels:

Vi,j,k = [(i − 1)h; ih)× [(j − 1)h; jh)× [(k − 1)h; kh), i, j, k = 1, . . . , Nh, h = 1/Nh,

where Nh is the number of voxels in each dimension. This leads to a uniform grid with
NV = 1503 elements (voxels). The assignment of the voxels to the three subdomains is
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stored within two boolean arrays (a third one is not necessary as it can be calculated from
the other two). That means each porous sample is represented by a vector z ∈ {0, 1}2NV .

Depending on the application and the production process, the structure of the porous
space in real filters could be strongly irregular and highly anisotropic. Nevertheless, for
certain types of filters, the micro structure of porous media could be represented as a
combination of regular shaped nanoporous granules and solid binder material [19]. We
use this representation to reconstruct the porous domain Ω f and the washcoat domain
Ωw and later, using existing experimental data on porosity, to generate a series of artificial
porous geometries that could be used as models for real filter fragments. The size of each
sample in voxels, Nh = 150, is chosen according to a representative volume element (RVE)
study on the one hand and the amount of computational work to generate enough data for
training on the other hand. In order to generate each porous sample, we use an analytical
spheres piling algorithm for the washcoat region, then voxelize analytical spheres and
distribute voxelized solid material (binder) uniformly and randomly, covering the washcoat
skeleton surface. The main varying parameter during the generation of the samples was the
washcoat volume fraction ϵw; thus, in order to generate each sample, the target value of ϵw
was set, but depending on geometry realization, the resulting value of ϵw for a generated
sample could differ by more than 5%. A typical porous sample generated with this two-step
procedure with porosity ϵ = 0.553 is depicted in Figure 1.

Figure 1. Isometric (left) and middle plane (right) view of a typical porous sample; colors:
brown—washcoat (Ωw), grey—solid (binder, Ωs), white (transparent)—free pores (Ω f ), green—inlet
boundary section, opposite of the (non-visible)—outlet section. GeoDict visualization [20].

In addition to the typical porous geometry characterization parameters, such as poros-
ity ϵ, phase volume fraction (for washcoat) ϵw, and phase specific surface area (for free
pores) AS, we also compute the integral Minkowski parameters as morphological features.
A complete list of parameters with their definitions for each porous sample can be found in
the supplementary Appendix A. In total, 59 artificial porous samples were generated for
further processing. The geometry generation time per sample varied greatly depending on
the porosity, from the minimum of 6 wall-clock seconds (wcs) to the maximum of 222 wcs,
with the average of 111 wcs for a system with 40 cores Intel Xeon CPU E5-2600 v2, 2.8 GHz.
On the contrary, the time for evaluation of geometric parameters was almost the same for
all samples and did not exceed 2 wcs.

Both the generation and parameter evaluation phases for each geometry were per-
formed with the GeoDict software (Release 2022) [20] and Python scripts.

2.2. Governing Equations for FOM

Different approaches can be used to describe the flow and transport of chemical
species through the porous medium at the pore-scale. Many of them are based on solving
convection–diffusion–reaction (CDR) equations for the species transport and (Navier–)
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Stokes equations for the bulk flow. Thus, we consider, as the FOM solution in the current
paper, the solution of the CDR equation for a species of interest and additionally assume,
based on typical filtration application conditions, that (i) flow Reynolds numbers are
sufficiently small Re ≪ 1 and Stokes equations are valid for any sub-region of the pore
space Ω f , and (ii) the concentration of the species of interest, c, is much smaller than
the bulk mixture concentration. Although these are rather strict assumptions, they work
well for catalytic filtration applications and are in fact the standard in this field. This
justifies a one-way coupling approach when the solution of the flow equations can be
decoupled from the species transport equation. We also restrict ourselves to scalar CDR
equations with a linear source term. This type of source term can be used to describe a first
order sorption–desorption process in porous media (Henry isotherm). According to the
aforementioned assumptions, the CDR equation for species concentration, c ≥ 0, can be
written in dimensionless form as

∂tc − ∆c + PeL ∇ · (vc) + DaL c = 0, x ∈
(

Ω f ∪ Ωw

)
, t > 0, (1)

where DaL, PeL are the parameters: DaL = kR L
D is the piece-wise-constant Damköhler

number, PeL = uin L
D is the Peclet number, L, D > 0 are the characteristic length and

diffusion coefficient, respectively; uin is the inlet velocity, kR(x) ≥ 0 is the reaction rate
constant and reaction occurs only in the washcoat region:

kR(x) =

{
0, x ∈ Ω f ,
kr > 0, x ∈ Ωw.

In Equation (1), the characteristic diffusion time was used as a time scale. Moreover,
we fix the parameter values, (PeL, DaL) = (5, 0.1), and thus, consider only a convection-
dominated regime for each geometry. For the numerical solution, Equation (1) was com-
plemented with zero initial conditions, Dirichlet conditions for the inlet boundary section
and zero Neumann conditions for the outlet boundary section and all other boundaries,
see Figure 1. Based on the solution of Equation (1), a quantity of interest, the break-
through curve, can be evaluated as an integral concentration over the outlet section of the
geometry, Γoutlet:

a(t) =
∫

Γoutlet

c(x, t) dσ. (2)

For the velocity v within Equation (1), the stationary Stokes equations in Ω f
were considered:

µ∆v = ∇p,

∇ · v = 0,
(3)

where p : Ω f → R is the pressure and µ ∈ R+ is the dynamic viscosity of the gas mixture.
Velocity inlet–pressure outlet boundary conditions were used for system Equation (3).

Thus, at the first step of the overall solution procedure, the velocity field v was
determined as a solution of system Equation (3). In the second step, due to (ii), using
the predetermined velocity field, the concentration field c and integral Equation (2) were
computed. Both steps were performed with the PoreChem software (Release 1.0 beta) [21].

3. Kernel Methods

Kernel methods [22] comprise versatile tools for scattered data approximation, re-
volving around the notion of a symmetric kernel k : Ωd × Ωd → R. An important type
of kernel is given by strictly positive definite kernels, i.e., kernels such that the so-called
kernel matrix k(XN , XN) = (k(xi, xj))

N
i,j=1 is positive definite for any choice of pairwise

distinct points XN = {xi}N
i=1 ⊂ Ωd, N ∈ N. In the context of machine learning, the set XN
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is often referred to as the training set Xtrain, i.e., XN = Xtrain. In the following, we focus on
the popular class of radial basis function kernels on Ωd ⊆ Rd, which can be expressed as
k(x, x′) = ϕ(∥x − x′∥) using a radial basis function ϕ : R → R. Popular instances of such
kernels are given by the following:

k(x, x′) = e−ϵ2||x−x′ ||2 Gaussian kernel,

k(x, x′) = (1 + ϵ||x − x′||)e−ϵ||x−x′ || Matérn 1,

k(x, x′) = (3 + 3ϵ||x − x′||+ ϵ2||x − x′||2)e−ϵ||x−x′ || Matérn 2,

which are also later on used in Section 4. As we do not know about the regularity of the
target function, we apply kernels that are infinitely smooth (Gaussian kernels) or finitely
smooth (Matérn kernels) in order to cover various possible regularities of the target function.
The parameter ϵ is the so-called shape parameter, which allows us to tune the width of
these kernels.

Given not only the input data {xi}N
i=1 but also the corresponding (possibly vector-

valued) target values {fi}N
i=1 ⊂ Rb, b ≥ 1, a well known representer theorem states that the

optimal least squares kernel approximant is given by

sN(x) =
N

∑
i=1

αik(x, xi), (4)

with coefficients {αj}N
j=1 ⊂ Rb. These coefficients can be computed directly by solving the

regularized linear equation system (k(XN , XN) + λI)α = y, where α ∈ RN×b and y ∈ RN×b

refer to a collection of the coefficients and target values in arrays. The regularization pa-
rameter λ ≥ 0 allows us to steer the robustness to outliers/noise versus the approximation
accuracy in the training points. The value λ = 0 corresponds to kernel interpolation. For
this case λ = 0, the assumption on the strict positive definiteness of the kernel still ensures
the solvability of the system.

Greedy kernel approximation: In order to obtain a sparse kernel model, one strives
to have a smaller expansion size n ≪ N within Equation (4). For this, greedy algorithms
can be leveraged, which select a suitable subset of centers Xn from XN . For this, they start
with X0 = {} and iteratively add points from XN to Xn as Xn+1 := Xn ∪ {xn+1}, according
to some selection criterion. While there are several selection criteria in use in the literature,
we focus on the f -greedy selection criterion, which reads

xn+1 := argmaxxi∈XN\Xn
|fi − sn(xi)|.

This residual-based selection criterion incorporates the data point of the largest error,
i.e., directly aims at minimizing the maximal absolute error of the kernel model. An efficient
implementation of such greedy kernel algorithms is provided by the VKOGA package [15],
and a comprehensive analysis of the convergence of such greedy kernel algorithms was
provided in [16]. Because of the greedy strategy, VKOGA is often a superior method
compared to other kernel-based strategies. Other methods for obtaining sparse, kernel-
based models are sparse Gaussian processes [23,24], support vector regression (SVR) [25]
or the reduced support vector set approach [25]. The computational efficiency of VKOGA
kernel models is shown, for example, in [26], where a comparison of VKOGA with support
vector machines was performed, which revealed that VKOGA results in sparser models
and, hence, less computational time for training. Similarly, less computational time for
prediction was observed in [13], where Gaussian processes and VKOGA were compared.
In [27], a comparison of VKOGA and SVR over other ML techniques was performed in a
turbulent flow prediction scenario. The study revealed that those kernel methods gave the
best performance regarding the quality of the approximated discrete-time dynamics.
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Two-layered kernels: In order to incorporate feature learning into kernel models, we
make use of two-layered kernels [17,18]: These make use of a base kernel k, as given above,
and combine it with a matrix A ∈ Rd×d, such that the two-layered kernel is given by

kA(x, x′) = k(Ax, Ax′) = ϕ(∥A(x − x′)∥). (5)

With this, the two-layered kernel can be optimized to the given data ({xi}N
i=1, {fi}N

i=1)

by optimizing the first layer matrix A ∈ Rd×d. Thus, this two-layered structure may
considerably improve the performance of the kernel model, especially for medium- to
high-dimensional input data, where an equal importance of all features is highly unlikely.
The strength of two-layered kernel models and their superior performance over shallow
kernel models has been observed, for example, when applied to heat conduction [18] or
when used as a surrogate model for chemical kinetics [8]. We investigate whether this
behavior can also be observed for our current problem. For the optimization of the matrix
A, we employ the fast-gradient-descent-based mini-batch optimization proposed in [17]
and extended it to vector valued target values b > 1 in [18]. The overall idea is to leverage
an efficiently computable leave-one-out cross validation (LOOCV) error loss, which, thus,
makes the kernel generalize well to the unseen data. In particular, this cross validation
error loss makes use of both input and target values, i.e., it is a supervised optimization.

The matrix A makes the two-layered kernel kA even more interpretable: The large
singular values with corresponding right singular vectors within the singular value de-
composition of the matrix A correspond to the more important features within the data set,
while the smaller singular values with the corresponding right singular vectors correspond
to the less important features within the data set.

In the following Section 4, we make use of the notion “single layered kernel” to refer
to the standard kernel k, while we make use of the notion “two-layered kernel” to refer to
(optimized) kernels kA.

4. Numerical Experiments

In this section, we present the numerical experiments. The goal is to approximate
breakthrough curves Equation (2) from voxel data, which characterizes the geometry of
the porous medium. As explained in Section 2, the voxel data are described by a vector
z ∈ {0, 1}2NV . In our numerical experiment, we choose NV = 1503. We discretize a
breakthrough curve a(t) on an equidistant temporal grid ti, i = 1, . . . , nt, as the vector
a := (a(ti))

nt
i=1 ∈ Rnt with nt = 500 time steps.

We compare two different kernel-based models for learning the breakthrough curves
(see Figure 2), in which either morphological features (MF) prescribed by expert knowledge
(see Appendix A) are extracted or principal component analysis (PCA) features are learned
from the data using a PCA. The kernel function k is chosen to be either a shallow one-
layered or a two-layered kernel. We refer to these models in the scope of our paper as
MF-1L-kernel and MF-2L-kernel or PCA-1L-kernel and PCA-2L-kernel, depending on the
depth of the kernel (one-layered/two-layered) and whether we extract morphological
features or PCA features.

Both types of models (MF) and (PCA) are based on a feature map Φ : R2NV → Rnf

with nf features and a kernel function k : Rd ×Rd → R with d = nf, such that the resulting
kernel models using the single-layer or the two-layered kernels are given as

sn(z) =
n

∑
i=1

αik(Φ(z), Φ(zi)), respectively, sn(z) =
n

∑
i=1

αik(AΦ(z), AΦ(zi)), (6)

with coefficients αi ∈ Rb, b = nt and centers zi ∈ {0, 1}2NV for i = 1, . . . , n. The expan-
sion size n is fixed to n = 10. Choosing smaller values for n would worsen the results
presented in the next subsections considerably, while increasing n would only influence
the approximation quality on the test set slightly.
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Figure 2. Two feature extraction-strategy-based models to approximate breakthrough curves from
voxel data: Model with morphological features (MF), and model with PCA features (PCA).

All of these models involve hyper-parameters, which are listed in Table 1. Suitable
values for the hyper-parameters are determined via an LOOCV on the training data set.
Note that in the cases where two-layered kernels are applied, no LOOCV for the shape
parameter is performed, and instead, the matrix A is optimized using the procedure
described in the previous section. The kernel function and the regularization parameter are
determined via LOOCV in both cases.

Table 1. Hyper -parameters of the kernel function k, shape parameter ϵ and regularization parameter
λ used during LOOCV of the MF-based models and PCA-based models.

Hyper-Parameter Values

kernel fun. Matérn 1, Matérn 2, Gaussian kernel

Shape parameters 1, 1/2, 1/4, 1/8, 1/16, 1/32

Regularization parameters 0, 10−2, 10−3, 10−4, 10−5, 10−6

In the following, we discuss the generation of the training and test data (Section 4.1),
the training and results of the (MF) models based on morphological features (Section 4.2)
and of the (PCA) models based on PCA features (Section 4.3).

4.1. Training and Test Data

In total, we consider ns = 59 samples X := {zi}ns
i=1 of voxel data zi and the corre-

sponding time-discretized breakthrough curves ai (see Figure 3). The breakthrough curves
ai are obtained by solving Equations (1) and (3) based on the geometry described by the cor-
responding voxel data zi. The average computational cost of solving Equations (1) and (3)
for one sample is 7514 wcs with a standard deviation of 286 wcs on a workstation with two
Intel Xeon Gold 6240R (48 cores in total).
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Figure 3. All breakthrough curves ai(t) computed from the voxel data zi for i ∈ {1, . . . , 59}. Different
colours correspond to breaktrough curves computed from different geometries.

We use an approximate 80–20% training–test split, which results in ns,train = N = 47
training samples Xtrain = XN and ns,test = 12 test samples Xtest with X = Xtrain ∪ Xtest and
Xtrain ∩ Xtest = ∅. To demonstrate robustness with respect to the choice of the training–test
split, we consider three different random splits, where we use the same three random splits
to measure the performance of each model. As an error measure, we use a relative error on
the test set

erel =
1

|Xtest|

√√√√ ∑
zi∈Xtest

||ai − sN(zi)||2
||ai||2

. (7)

4.2. Kernel Models on Morphological Features

Because of the high dimensionality of the input space, it is necessary to apply some
reduction technique before training the machine learning model. In this section, we extract
n f = 6 morphological geometry features that describe the porous medium. These are the
porosity, the washcoat volume fraction, the volume of free pores, the surface area for the
free pores, the integral of mean curvature of the free pores and the integral of total curvature
of the free pores. For further information on how they are computed, see supplementary
Appendix A. Thus, the machine learning model can be represented by setting Φ = ΦMF in
Equation (6) ΦMF : R2NV → Rn f the mapping that computes the morphological features
from a given geometry.

For the first experiment, we use shallow kernels and present the approximated break-
through curves in Figure 4. We observe that except for the red outlier curve in the bottom
diagram, all curves are well approximated. This corresponds to the relative test error
presented in Table 2, where we see that for the first two data splits, a relative error of
approximately 0.01% can be achieved; whereas, for the third split, we only achieve an error
of approximately 0.42%. We further observe from Table 2 that for the first two data splits,
exactly the same hyper-parameters (kernel function, shape parameter and regularization
parameter) are chosen. However, they are chosen differently for the third data set, which
may be due to the red outlier curve being part of the test set for the third data split.
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Figure 4. MF-1L-kernel: Predicted breakthrough curves on the test set Xtest for three different
training–test splits. Solid: Breakthrough curves, dotted: predictions. The different colors correspond
to the different breakthrough curves.

Table 2. MF-1L-kernel: Relative error (7) and the selected hyper-parameters from Table 1 for three
different training–test splits (0–2).

Split Rel. Err. Kernel Fun. Shape Parameter Reg. Par.

0 1.49 ·10−3 Matérn 1 1.00 1.00·10−2

1 1.60·10−4 Matérn 1 1.00 1.00·10−2

2 4.23·10−3 Matérn 1 2.50·10−1 1.00·10−4

average 1.51·10−3

For the next experiment, we included two-layer optimization of the kernel model
and present the approximated breakthrough curves in Figure 5. We observe that a similar
approximation quality can be achieved using two-layered kernels. All breakthrough curves
except for the red outlier curve in the bottom diagram are well approximated. The relative
test error (see Table 3) is slightly improved for the third data split. However, for the first
and second split, it becomes slightly worse. We observe that similar to the experiment with
shallow kernel models, for each data split, the Matérn 1 kernel is selected and that for the
third split, a smaller regularization parameter is selected than for the first and second one.
To compare the shape transformations by the first layer, we present the first layer matrix A
in Table 3. For an easier comparison, the matrix A is visualized using the color-map at the
bottom of the table. We observe that the matrices look very similar for each data split.
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Figure 5. MF-2L-kernel: Predicted breakthrough curves on the test set Xtest for three different
training–test splits. Solid: Breakthrough curves, dotted: predictions. The different colors correspond
to the different breakthrough curves.

Table 3. MF-2L-kernel: Relative error (7) and the selected hyper-parameters from Table 1 for three
different training–test splits (0–2).

Split Rel. Err. Kernel Fun. A Reg. Par.

0 1.54·10−4 Matérn 2 1.00·10−3

1 2.37·10−4 Matérn 2 1.00·10−3

2 3.99·10−3 Matérn 1 1.00·10−4

average 1.46·10−3
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4.3. Kernel Models on PCA Features

Next, we use the PCA to define a feature map Φ. In order to be comparable to the
previous experiment, we choose the number of features as nf = 6. Following the idea
of the PCA [28], we choose the PCA feature map ΦPCA(z) = UT

nf
z based on the first nf

left-singular vectors Unf ∈ R2NV×nf of the matrix Z := (z)z∈Xtrain ∈ R2NV×ns,train via the SVD

Z = UΣVT with Unf := U(:, : nf) (8)

and set Φ = ΦPCA in Equation (6) (technical note: The voxel data are saved as a boolean
array z ∈ {0, 1}2NV . To compute the SVD, we convert these data to a floating point number,
which is why Z ∈ R2NV×ns,train ).

In Figure 6, we present the prediction of the breakthrough curves for the PCA-1L-
kernel model on the test set Xtest for the three different randomized training–test splits.
We observe that many of the breakthrough curves are well approximated and a mean
relative error of approximately 0.5–1.3% (see Table 4) can be achieved. However, some
breakthrough curves are badly approximated, especially the two blue curves for the first
data split. We observe that three different kernels, three different shape parameters and
three different regularization parameters are chosen for each data split. We further observe
from Section 4.3 that nf = 6 is also a suitable choice in the sense that a small test error is
achieved for that setting compared to higher and smaller values of nf.
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(d) Train and Test error over nf

Figure 6. PCA-1L-kernel: (a–c): Predicted breakthrough curves on the test set Xtest for nf = 6 and
three different training–test splits. Solid: Breakthrough curves, dotted: predictions. The different
colors correspond to the different breakthrough curves. (d): Relative test and train error (Equation (7))
over nf.



Mathematics 2024, 12, 2111 12 of 17

Table 4. PCA-1L-kernel: Relative error (7) and the selected hyper-parameters from Table 1 for three
different training–test splits (0–2).

Split Rel. Err. Kernel Fun. Shape Parameter Reg. Par.

0 9.62·10−3 Matérn 1 6.25·10−2 1.00·10−3

1 4.77·10−3 Gaussian
kernel 6.25·10−2 1.00·10−4

2 1.34·10−2 Matérn 2 2.5·10−1 1.00·10−2

average 9.26·10−3

For the next experiment, we consider the PCA-2L-kernel model. The results for the
analogous experiments to the previous paragraph are presented in Figure 7. We chose
again nf = 6 to be consistent with the previous experiments. However, as we observe in
Section 4.3, for nf = 3, slightly better results could have been achieved.
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(d) Relative test and train error over nf

Figure 7. (a–c): Top and left: Predicted breakthrough curves on the test set Xtest for nf = 6 and three
different training–test splits. Solid: Breakthrough curves, dotted: predictions. The different colors
correspond to the different breakthrough curves. (d): Relative test and train error (Equation (7))
over nf.

We observe that the results from the shallow kernel models are considerably improved
by using two-layered kernels. The relative errors from Table 5 can be reduced to 0.08–0.7%,
and we do not observe badly approximated curves for the first data split anymore. Com-
pared to the the MF-2L-kernel experiments from the previous section, we also observe that
the approximation qualities are quite similar. This means that the PCA features transformed
by the first layer of the two-layered kernel are able to describe the geometry almost as well
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as the morphological features. This shows the strength of two-layered kernels, as the PCA
feature extraction is purely data-based, and no expert knowledge had to be used.

Table 5. PCA-2L-kernel: Relative error (7) and the selected hyper-parameters from Table 1 for three
different training–test splits (0–2).

Split Rel. Err. Kernel Fun. A Reg. Par.

0 7.94·10−4 Matérn 1 1.00·10−3

1 1.10·10−3 Matérn 2 1.00·10−2

2 7.05·10−3 Matérn 1 1.00·10−4

average 2.98·10−3

We further observe from Table 5 that, again, similar hyper-parameters are selected
for each data split. For example, the same kernel (Matérn 1) was selected for the first and
third data split. Moreover, we see similarities in the first layer matrices A of the kernels.
For all three matrices, the entries in the left upper 3 × 3 block are considerably larger than
the other entries, which means that the first three modes are the important ones. Compared
to Table 3, there are larger differences between the first layers. This can be explained by the
fact that in contrast to the MF-feature map, the data-based PCA-feature map is different for
all three data splits. This is due to the linear mappings defined by the PCA modes being
different in each split.

Lastly, we compare the mean errors averaged over the three different training–test
splits in Table 6. We observe that the models based on morphological feature extraction
work very well in combination with both one-layered and two-layered kernels. In contrast,
combining one-layered kernels with PCA feature extraction yields an average error that is
almost one order of magnitude larger. This error is considerably improved by applying
two-layered kernels, and almost the same accuracy as with the morphological feature
extraction is achieved.

Table 6. Mean relative test errors, averaged over the three training–test splits.

1L 2L

MF 1.51·10−3 1.46·10−3

PCA 9.26·10−3 2.98·10−3
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4.4. Runtime Discussion

In this subsection, we compare the runtimes of the different methods in Table 7. We
compare the time needed for the computation of the feature map added to the feature
extraction time on the test set (first column), the time needed for LOOCV, the training time
of the final model and the evaluation time on the test set. Note that the full order model
solves and the morphological feature extraction are performed on a different machine
(workstation with two Intel Xeon Gold 6240R (48 cores in total)) than the PCA feature
extraction and kernel model training (performed on a computer with 64 GB RAM and a 13th
Gen Intel i7-13700K processor) due to licensing limitations. We observe that the LOOCV for
the two-layered models is way more expensive than for the shallow models, which is due
to the optimization of the first layer. However, it is still considerably lower (approximately
30 times for the MF-2L-kernel and 7 times for the PCA-2L-kernel) than the generation
of a single training sample (7514 wcs). Furthermore, the LOOCV time and final model
training of the MF-kernel models is less expensive than the training on the morphological
features. However, the computation of the PCA feature map is less expensive than the
computation of the morphological features. Moreover, the evaluation time of the PCA-
kernel models is larger than the evaluation of the MF kernel models. Since the computation
of the morphological features i.e., the evaluation of ΦMF takes approximately 2 wcs per
sample, the MF approaches have a larger overall evaluation time (summing evaluation time
of MF extraction and MF-1L-kernel/MF-2L-kernel). Compared to the FOM, this results in
a speed-up of almost 6 orders of magnitude for the PCA kernel models and 3 orders of
magnitude for the MF kernel models. Nevertheless, in both cases, the evaluation times are
considerably lower than the computation of the training samples.

Table 7. Runtime comparison of the machine learning methods in wcs averaged over the three
training–test splits.

Model Feat. Map LOOCV Time Final Model
Train Time Eval. Time

FOM - - - 9.02·104

MF extraction 9.40·101 - - 2.40·101

MF-1L-kernel - 5.90·100 9.95·10−4 2.91·10−4

MF-2L-kernel - 2.01·102 2.12·10−1 2.67·10−4

PCA feat. map
comp. 1.28·101 - - -

PCA-1L-kernel - 2.29·101 1.36·10−3 1.83·10−1

PCA-2L-kernel - 9.18·103 8.63·10−1 2.13·10−1

5. Conclusions and Outlook

In this work, we demonstrated how breakthrough curves can be predicted from the
geometry of a 3D porous medium. We presented two approaches on how to treat the
high dimension of the input data: For the first approach, we computed morphological
features of the geometries and learned a mapping from these morphological features to the
breakthrough curves. For the second approach, we computed PCA features of the geometry
data set and learned a mapping from these PCA features to the breakthrough curve.

We observed that the MF approach worked well in combination with one-layered ker-
nels and that both approaches worked well in combination with two-layered kernels. This
is compelling, as the morphological features used in the study are well-known informative
and predictive quantities for porous media, and in contrast, the PCA feature extraction
approach is purely data-based. Thus, the results indicate the strength of using two-layered
kernels, as they automatically adapt to the relevant features. We further observed that
the scarce-data situation did not prevent these approaches from easily predicting the
high-dimensional outputs.
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The future work will focus on how ideas from convolutional neural networks can be
combined with the framework of deep multi-layered kernels. Moreover, we will investigate
whether data augmentation (rotating/reflecting geometry samples without changing the
breakthrough curves) can further improve the PCA-feature approach while avoiding the
computation of expensive FOM solutions.
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Appendix A

In the following, morphological features, i.e., geometry parameters are listed that were
computed based on the voxel representation of the porous samples. We assume that we
already have a voxel representation of the domain Ω and its subsets Ω f , Ωw, Ωs, where
Ω f , Ωw, Ωs are the free pores, washcoat and solid domains, respectively.

1. Porosity ϵ:

ϵ :=
|Ω f |
|Ω| .

2. Washcoat volume fraction ϵw:

ϵw :=
|Ωp|
|Ω| .

3. Volume of the free pores V:
V := |Ω f |.

4. Surface area for the free pores phase S:

S := |∂Ω f |.

5. Integral of mean curvature for free pores phase, c f . For smooth surfaces, this quantity
is usually defined by the integral

c f :=
1
2

∫
∂Ω f

(
1
k1

+
1
k2

)
ds,

here, ds is a surface element of ∂Ω f , and k1 and k2 are the two principal curvatures
from the respective surface element. Since the boundaries of the voxelized geometry
are piece-wise flat, the software package computes an approximation of this quantity
for our phase boundaries.

6. Integral of total curvature for free pores phase, ct f . For smooth surfaces, this quantity
is usually defined by the integral

ct f :=
∫

∂Ω f

(
1

k1k2

)
ds,

https://doi.org/10.18419/darus-4227
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here, ds is a surface element of ∂Ω f , and k1 and k2 are the two principal curvatures
from the respective surface element. The software package computes an approxima-
tion of this quantity for our piece-wise flat phase boundaries.
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