
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

Optimization of Intra-Node
Communication in HPC Systems:

Development and Implementation of
a Zero-Copy API

Nils Imho�

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Dirk Pflüger

Supervisor: Dr. Martin Bernreuther,
Dr. Christian Simmendinger

Commenced: February 1, 2024

Completed: April 30, 2024

Abstract

The landscape of High Performance Computing (HPC) is dynamic and intra-node communication
e�ciency has emerged as a critical factor in system performance. This thesis presents the Zero-Copy
Application Programming Interface (ZCom), which utilizes cross-partition memory (XPMEM)
technology to improve data transfer within shared memory environments. As such ZCom has also
minimised the data replication which is usual associated with Message Passing Interface (MPI)
operations, reducing the communication overhead, hence, leading to an improved computational
e�ciency.

An extensive performance test with microbenchmarks as well as the MiniGhost benchmark suite
shows that ZCom significantly improves communication e�cacy especially in weak and strong
scaling cases with respect to other MPI-based approaches. The approach taken by ZCom, which
facilitates direct memory access among processes represents a paradigm move towards minimized
data movement and thus makes it an innovative solution in HPC communications.

The potential of ZCom is clear from the performance improvements observed; however, this thesis
also identifies the current deficiencies with the evaluation of ZCom which is performed with a
small set of applications and benchmarks. This fact highlights the need for more studies aimed at
the generalization of ZCom and its influence on various HPC systems and architectures. The said
work sets a very solid ground for future development that intends to optimize the performance and
scalability of intra-node communication in HPC environments.

3

Das HPC-Umfeld ist dynamisch und die Kommunikationse�zienz innerhalb der Knoten ist zu einem
entscheidenden Faktor für die Systemleistung geworden. Die Arbeit präsentiert die Zero-Copy
Application Programming Interface (API) ZCom, welche auf der XPMEM-Technologie basiert, um
den Datentransfer in Shared-Memory-Umgebungen zu optimieren. Deshalb minimierte ZCom auch
die Datenreplikation, die normalerweise mit MPI-Operationen verbunden ist und dadurch wurde
der Kommunikationsaufwand reduziert und die Rechene�zienz verbessert. Um die Kommunika-
tionse�zienz in schwachen und starken Skalierungsfällen im Vergleich zu anderen MPI-basierten
Ansätzen deutlich zu verbessern, zeigen umfangreiche Leistungstests mit Mikrobenchmarks sowie
der MiniGhost-Benchmark-Suite, dass ZCom ausgezeichnet ist. Der Ansatz, den ZCom verfolgt,
ermöglicht Prozessen einen direkten Zugri� auf Speicher und führt zu einem Paradigmenwechsel
hin zur Minimierung der Datenbewegung. Deshalb ist es eine innovative Lösung für die HPC-
Kommunikation. Durch die beobachteten Verbesserungen in der Leistung wird das Potenzial von
ZCom deutlich; jedoch werden auch aktuelle Mängel bei der Bewertung von ZCom identifiziert, da
nur eine geringe Anzahl von Anwendungen und Benchmarks durchgeführt wurde. Es ist erforderlich,
weitere Studien durchzuführen, um die Verallgemeinerung von ZCom und dessen Auswirkungen
auf verschiedene HPC-Systeme und -Architekturen zu untersuchen. Die Arbeit, legt eine sehr
Grundlage für künftige Entwicklungen dar, welche darauf abzielen, die Leistung und Skalierbarkeit
der internen Knotenkommunikation in HPC-Umgebungen zu optimieren.

4

Contents

1 Introduction 15

2 Background 17
2.1 Multiprocessors . 17
2.2 Distributed Systems . 17
2.3 Message Passing . 17
2.4 Message Passing Interface (MPI) . 18
2.5 Remote Memory Access . 24
2.6 Shared Memory . 25
2.7 Overview of Address Space Mapping Mechanisms 27
2.8 Shared Memory in MPI . 30

3 Related Work 31
3.1 Developing Optimal Shared Address Space Reduction Collectives for Multi-

/Many-core Architectures . 31
3.2 Contributions and Future Work . 32
3.3 Process-in-Process . 32
3.4 Casper . 33
3.5 OpenSHMEM . 34

4 Designing a zero copy shared memory API 37
4.1 Address Space Mapping Mechanisms . 37
4.2 ZCom API Architecture . 38
4.3 ZCom_init . 39
4.4 Synchronization Mechanism . 41
4.5 Fortran Interface . 43
4.6 Comparative analysis . 43

5 Performance Evaluation 49
5.1 Experimental Setup . 49
5.2 Microbenchmarks . 49
5.3 MiniGhost Benchmark . 55

6 Conclusion 59
6.1 Discussion of Limitations . 59
6.2 Counterarguments . 59
6.3 Future Research . 60
6.4 Final Remarks . 60

Bibliography 61

5

List of Figures

2.1 Two-Sided Communication in MPI . 20
2.2 Persistent Communication in MPI . 22
2.3 XPMEM – Cross-Partition Memory [Has19] . 28

4.1 Flowchart of the ZCom_init function. 48

5.1 Point-to-point synchronization [Van16] . 52
5.2 Results of the Sync_p2p kernel benchmark . 52
5.3 Results of the Sync_p2p kernel benchmark with higher Grid Size 53
5.4 Sync_p2p kernel benchmark ZCom compared with OpenMP 54
5.5 Weak scaling benchmark results comparing ZCom and MPI communication methods. 57
5.6 Strong scaling benchmark results highlighting the performance improvements of

ZCom over standard MPI. 57
5.7 Communication time comparison between MPI and ZCom, showing the reduced

overhead with ZCom. 58

7

List of Tables

4.1 Comparison of ZCom API with MPI, Process-in-Process (PiP), Casper, and
OpenSHMEM . 47

5.1 Communication methods comparison . 50

9

Listings

4.1 Example Usage of the ZCom API . 42

11

Acronyms

API Application Programming Interface. 4

BSP Bulk Synchronous Parallel. 55

ccNUMA cache-coherent Non-Uniform Memory Access. 25

CMA Cross Memory Attach. 27

HPC High Performance Computing. 3

IPC Inter-process communication. 37

KNEM Kernel-assisted Mechanism. 27

LiMIC Linux Memory Interconnect. 27

MESI Modified, Exclusive, Shared, Invalid. 25

MESIF Modified, Exclusive, Shared, Invalid, Forward. 26

MOESI Modified, Owner, Exclusive, Shared, Invalid. 26

MPI Message Passing Interface. 3

PiP Process-in-Process. 9

UCT UCX Communication Transport. 28

UCX Unified Communication X. 27

UMA Uniform Memory Access. 25

XPMEM cross-partition memory. 3

13

1 Introduction

The area of HPC is going through a major change with the introduction of advanced GPU
architectures into HPC systems. This modification has improved node performance greatly and
increased computational capability to a huge extent. Though the internal communication structure of
such systems has improved significantly, these systems do not have a proper internal communication
infrastructure which is a major bottleneck in overall system performance.

MPI continues to be the main communication standard in HPC systems. However, the traditional
implementations of MPI are not very well-suited for multi-core and many-core systems of today. The
conventional method consists of multiple-copying of data through all the system, OS, and hardware
levels, which results in delays and wastes too much CPU resource. This problem becomes more
severe in the systems having advanced multicore CPUs and GPUs, as the gap between computational
power and data movement speed results in huge bottlenecks.

On the other hand, XPMEM resolves the problem of memory sharing between processes, which
makes data transfers more e�ective in shared memory environments. A process can map to the
memory bu�er of a remote process, what allows to access directly the remote memory, avoids data
duplication. This way eliminates the overhead on data transfers and gets rid of the delays.

This thesis aims to enhance inter-process communication e�cacy in shared memory settings by
developing and implementing a zero-copy API based on XPMEM technology. Stated di�erently,
this API is designed to seamlessly integrate with the existing MPI software, facilitating a smooth
transition to the zero-copy procedure. The e�ciency of the API and any potential implications on
HPC systems will be clarified by evaluating its performance in terms of microbenchmarks and
real-world applications.

Outline

The thesis is structured as follows

Chapter 2 – Background: Examines the common methods for message passing and shared memory
mapping.

Chapter 3 – Related Work: Provides an overview of the literature pertaining to the themes ad-
dressed in this thesis.

Chapter 4 – Designing a zero copy shared memory API: Presents the design and implementa-
tion of the Zero-Copy API.

Chapter 5 – Performance Evaluation: Discusses the results of the implementation and the per-
formance of the Zero-Copy API.

Chapter 6 – Conclusion: Summarizes the thesis and o�ers a perspective on future research.

15

2 Background

The chapter o�ers a comprehensive summary of the key technical aspects of prevalent message
forwarding and shared memory mapping techniques. The chapter is partitioned into two segments.
The initial segment presents a comprehensive summary of the fundamental technical aspects of
prevalent message passing techniques. The second section presents a comprehensive summary of
the key technical aspects of shared memory mapping techniques.

2.1 Multiprocessors

Multiprocessor systems utilize a divided memory architecture and employ hardware or software
locks to regulate memory access. In these systems, communication commonly takes place through
shared memory. Distributed memory multiprocessors possess a distinctive structure in which each
processor possesses its own cache and address space, and communication occurs through remote
memory operations. These systems are extensively utilized in contemporary HPC contexts because
of their cost-e�ciency [HB11].

2.2 Distributed Systems

A distributed computer connects several individual computers over a network to solve a problem.
The connected nodes (computers) share the computation. The nodes use message passing for
communication. Unlike parallel computers, distributed computers do not share a storage pool
[TV17].

2.3 Message Passing

Message passing is a method used by parallel processes to communicate and synchronize with each
other. A message passing architecture is a system of communication primitives and synchronization
primitives. These primitives serve as a pictorial representation of the fundamental parts of the
underlying hardware. Memory in systems that have shared memory communication primitives
act as an interface for data exchange between processes. Data transference in distributed memory
systems is made possible by communication primitives that utilize the Remote Memory’s Get and
Put operators. The migration of a software to another multiprocessor architecture usually involves
only compilation. [SOH+98].

17

2 Background

On the contrary, distributed memory system rely on an alternative method. Here, each process
has its own private memory, and communication takes place through explicit message passing.
Messages are transmitted and received by processes using separate operations that are usually named
as “remote memory Get and Put operations”. Memory-to-memory data transfers between processes,
across the boundaries of local memories are also performed through such operations. These means
involve shifting the information stored in the memory of one process to another, across the limit
of local memories. This complexity of the communication architecture is intrinsic, since it does
require deliberate coordination and data exchange protocols and makes it unlike shared memory
systems. Yet, it has benefits in scalability and is particularly suitable for systems of large-scale,
distributed computing where processes are distributed between several physical machines.

One of the main advantages of message conveyance is flexibility. It allows for a smooth migration
of applications between various multiprocessor architectures with minimal changes. In the realm
of HPC e�cient functioning of applications with many hardware configurations is a necessity.
Specifically, message passing is a form of inter-process communication that abstracts the concrete
characteristics of the hardware that is being used. It provides a portable and e�ective way for
processes to communicate with one another even if they are using shared or distributed memory
systems.

2.4 Message Passing Interface (MPI)

The MPI-Forum was founded in 1992 after a workshop titled SStandards for Message Passing in
Distributed Memory Environments,"which was organized by the Center for Research in Parallel
Computation. The forum originally consisted of eighty attendees from forty organizations [Wal92].
The objective of this initiative is to create a widely agreed and publicly accessible standard for
exchanging messages. The first MPI-1 standard was issued by the MPI-Forum in August 1994.
This standard covers a wide range of topics, such as point-to-point communication, collective group
operations, process groups, communication domains, process topologies, environment management,
and contains bindings for Fortran and C. The document does not include detailed information on
how to carry out the implementation. Instead, it expects the implementers to modify the standard
according to their particular hardware and consider its distinctive characteristics [For94].

The introduction of this standard resulted in the development of several implementations, including
MPICH, created by Argonne National Laboratory [MPICH], and Open MPI [Open MPI], which
is a collaborative project involving FT-MPI from the University of Tennessee, LA-MPI from Los
Alamos National Laboratory, and LAM/MPI from Indiana University, as well as contributions
from the PACX-MPI team at the University of Stuttgart. The MPI-1.1 standard, which aimed to
resolve uncertainties and mistakes in the MPI-1.0 specification, was published in 1995 [MPI-1.1-95].
Subsequently, in 1997, the MPI-2 standard was created. This standard included functionalities such
as dynamic process management, input/output operations, one-sided communications, and C++
bindings [MPI-2-97].

The MPI-3.0 standard was finalized by the MPI-Forum in 2012 [MPI-3-12]. This version presented
issues about backward compatibility for the first time. The update improved the ability to
communicate in one direction using shared memory models and added non-blocking functions
and neighborhood collectives to the collective communication options, which are designed for
certain process topologies. Additionally, it added the MPI_Count data type, which is used for large

18

2.4 Message Passing Interface (MPI)

contiguous derived data types. It also included Fortran 2008 bindings, replacing the previous C++
bindings with C bindings. Several sophisticated features of MPI-2 were marked as obsolete in the
MPI-3.0 release.

The MPI-3.1 standard was completed in 2015, including small improvements and changes to
MPI-3.0 [MPI-3.1-15]. The standardization of MPI-4.0 was finalized and made available in June
2021 [MPI-4-21].

Presently, a substantial amount of parallel applications rely extensively on the MPI Continual
progress in the HPC industry is expected to lead to improvements in MPI designs and parallel
programming paradigms, which will further advance and optimize HPC applications.

2.4.1 Basic concepts of MPI

MPI is grounded in the concept that parallel processes operate within separate address spaces,
necessitating explicit communication for data transfer. The core of this communication is a bilateral
operation comprising a ’send’ action from the source process and a ’receive’ action by the destination
process [SOH+98].

Sending and Receiving: In MPI, the sending process needs to specify the data it intends to transmit,
including its start address and length (usually in bytes), and identify the target process. Conversely,
the receiving process must be prepared with a local memory area to accommodate incoming data.
It also needs information about the size of this area and the identity of the sending process. This
mutual understanding ensures seamless and e�cient data transfer between processes [PF12].

Message Matching: Another level of functionality in MPI is message ’matching’. Utilizing an
integer identifier or label is one method for doing this. This guarantees that the delivery of a message
with a matching label is the sole condition for a receive operation to be deemed successful. For
this reason, this label has to be included as a parameter in the operations of both the sender and
the recipient. Furthermore, it might be advantageous in a receive operation to explicitly indicate
the sender [PF12]. Hence, the protocols for transmitting and receiving data are often specified as
send(address, �ength, destination, tag) and receive(address, �ength, source, tag, act�en).
The variables ßourceänd "tag"may be used to filter the incoming messages or as placeholders to
accept messages from any sender or with any label. The field äctlen"represents the actual length of
the received message [PF12].

Message Bu�er: An MPI message bu�er is defined by a triplet (address, count, datatype), which
specifies the beginning address, the number of elements (count), and the datatype of the message.
This architecture enables adaptability and accuracy in specifying the content and dimensions of the
message to be sent or received [SOH+98].

Process Designation: MPI operates using the concept of process groups. Each process inside a
group is assigned a distinct identifier known as a process number or rank. By default, all processes
in a MPI program are part of a main group and are assigned sequential numbers inside this group
[PF12].

19

2 Background

Communicators: In MPI, a communicator is a combination of the context and group ideas, defining
the communication environment for processes. Communicators have a crucial role in many MPI
activities, including both individual and group communications. The parameters ”destination” or
”source” in these operations always correspond to the process number inside the group connected
with the particular communicator [SOH+98].

The evolution of MPI, from its initial version MPI-1 to the latest MPI-4.1, mirrors its adaptability
and responsiveness to the dynamic landscape of HPC. This evolution reflects in the way MPI
has influenced parallel programming paradigms and architectures [SOH+98]. Importantly, it also
impacts the implementation and e�ciency of advanced technologies like the Zero-Copy API, which
is pivotal in optimizing data transfer methods in HPC systems. MPI’s widespread adoption in
parallel computing and its continuous development remain essential to the progress and e�ciency
of data management and communication in HPC environments [SOH+98].

2.4.2 Two-Sided Communication in MPI

Two-sided communication is a fundamental concept in the MPI that underpins many parallel
computing operations. The sender and the recipient are two processes that explicitly interact in this
communication model, which is also referred to as point-to-point communication. This contrasts
with one-sided communication, where one process can access or modify the data of another without
the explicit involvement of the second process [PF12].

Basic Mechanism: In two-sided communication, the process initiating the communication is known
as the sender, and the process receiving the data is the receiver. The sender explicitly specifies the
destination process for the message, while the receiver explicitly specifies the source from which it
expects to receive a message (see Figure 2.1). This paradigm necessitates the active involvement of
both the sender and the recipient in the process of communication [PF12].

locallocal

promototed

promototed

P0 P1

Figure 2.1: Two-Sided Communication in MPI

Send Operations: MPI provides various send operations, each catering to di�erent requirements
and scenarios. These include [PF12]:

20

2.4 Message Passing Interface (MPI)

• MPI_Send: A standard blocking send operation. The sender may block until the MPI system
has enough information to ensure that the message can be sent. It does not necessarily mean
the message is synchronously sent, as the operation may complete before the receiver has
started to receive the message.

• MPI_Bsend: A bu�ered send operation that returns immediately, allowing the sender to reuse
the bu�er. Although the message is held in an internal bu�er until it is ready for reception,
this does not ensure that it was sent at the time of return.

• MPI_Ssend: A synchronous send where the sender blocks until the receiver starts receiving
the message, ensuring that both parties are synchronized in the communication process.

• MPI_Isend: An immediate, non-blocking send operation in which the transmission process
commences before the recipient begins receiving the message, and the function returns
instantaneously.

• MPI_Ibsend: An immediate, non-blocking bu�ered send, combining the characteristics of
MPI_Bsend with the non-blocking nature of MPI_Isend.

• MPI_Issend: An immediate, non-blocking synchronous send, allowing the sender to proceed
without waiting for the receiver to begin receiving, yet ensuring synchronization as in
MPI_Ssend.

• MPI_Rsend: A ready send operation where the sender assumes the receiver is ready to receive
the message immediately. This requires careful coordination as the receiver must be prepared
to handle the incoming message.

• MPI_Sendrecv: A combined operation that allows simultaneous send and receive actions,
facilitating direct communication exchanges between a pair of processes.

• MPI_Send_init: A send operation that is initialized but not started, designed for later execution,
providing flexibility in managing the communication timeline.

Receive Operations: Similarly, MPI provides various receive operations [SOH+98]:

• MPI_Recv: A standard receive operation, blocking until the specified message is received.

• MPI_Irecv: An immediate (or non-blocking) receive, where the function returns immediately,
and the actual receive happens asynchronously.

• MPI_Recv_init: A receive operation that is initialized but not started, allowing for later
execution.

Matching Send and Receive: A critical aspect of two-sided communication is the matching
of send and receive operations. For a successful data transfer, the sender’s and receiver’s tags,
communicators, and message sizes must match. This ensures that messages are correctly routed to
their intended destinations and that the right messages are received by each process [SOH+98].

Synchronization: Two-sided communication inherently provides synchronization mechanisms.
When a process performs a blocking send or receive operation, it waits for the corresponding
receive or send operation to start or complete. This synchronization can be crucial for ensuring data
integrity and proper sequencing of operations in parallel applications [SOH+98].

21

2 Background

MPI Init MPI Init

MPI Send init

MPI StartMPI Start

MPI Recv init

MPI Wait Sync MPI Wait

MPI Start MPI StartStart Communiction

P0 P1

Figure 2.2: Persistent Communication in MPI

Use Cases: Two-sided communication is widely used in scenarios where communication patterns
are well-defined and predictable. It is particularly suited for algorithms where processes need to
exchange data in a coordinated manner, such as in matrix multiplication, sorting algorithms, and
other data-parallel tasks [SOH+98].

In summary, two-sided communication in MPI is a powerful and versatile model for data exchange
in parallel computing. It provides a clear and structured approach to message passing, with various
options for sending and receiving operations to cater to di�erent needs and scenarios.

2.4.3 Persistent Communication

Persistent Communication Requests in MPI framework is designed to optimize and facilitate
repeated communication patterns among processes. It achieves e�ciency by allowing the setup of
communication parameters to be done once and reused multiple times.

22

2.4 Message Passing Interface (MPI)

Persistent Communication Requests in MPI is centered around the concept of persistent requests.
These requests encapsulate all the necessary information for a communication operation, such as the
sender and receiver information, the bu�er location, and the data size and type. Here is a detailed
breakdown of the mechanisms [Mes23]:

1. Initialization: Persistent requests are initialized using specific MPI functions that corre-
spond to di�erent types of communication operations. For example, MPI_Send_init and
MPI_Recv_init are used to initialize persistent requests for send and receive operations,
respectively. During this phase, all the parameters required for the communication are
specified, including the source and destination ranks, the communication bu�er, and the
message tag.

2. Activation: Once a persistent request is initialized, it is not immediately active. It needs
to be activated using the MPI_Start or MPI_Starta�� function. This step signals MPI to
begin the communication operation based on the parameters defined during the initialization
phase. Importantly, a persistent request can be activated multiple times, allowing for repeated
communication without re-specifying the communication parameters.

3. Completion Checking: Similar to other MPI communication operations, the status of a
persistent communication request operation may be verified using test or wait functions, such
as MPI_Test, MPI_Wait, and their variations. Before accessing or altering the data in the bu�er,
these procedures ensure that the communication has been completed. .

4. Deallocation: Once a persistent request is no longer necessary, it should be released using
the MPI_Request_free function. It is essential to do this step in order to prevent resource leaks
and guarantee that MPI can recover any resources linked to the request.

The primary benefit of persistent communication requests lies in its e�ciency and performance
optimization for applications with repetitive communication patterns. By reducing the overhead
associated with repeatedly specifying communication parameters, applications can achieve signifi-
cant performance improvements. Additionally, persistent communication requests simplifies the
implementation of complex communication patterns, making code easier to read and maintain.

In summary, persistent communication requests in MPI provides an e�cient mechanism for
managing repeated communication operations, o�ering both performance improvements and coding
simplicity for suitable applications.

2.4.4 One-sided Communication

One-sided communication represents a significant advancement in MPI, introducing a Remote
Memory Access (RMA) model. This communication paradigm enables a process to directly access
memory segments of another process for reading, writing, or updating, without requiring active
participation from the target process. For these remote accesses to be e�ective, they must be coupled
with appropriate synchronization operations. This model is applicable to both shared-memory
multiprocessors and distributed memory systems [TRH00].

23

2 Background

In MPI’s one-sided communication, the initiating process, known as the source, solely undertakes
RMA operations, supplying all necessary parameters for the communication. This contrasts with
two-sided, point-to-point exchanges where both processes are actively involved in the communication.
The target process, whose memory is accessed remotely, plays a passive role in this setup [TRH00].

Explicit synchronization is required in one-sided communication, allowing for optimization by
spreading the overhead across multiple operations. Processes must allocate a portion of their
memory, termed ’window memory’, for access by other processes. MPI facilitates this through
communication windows, optimizing the placement of window memory in shared memory systems
for e�cient access [TRH00].

2.5 Remote Memory Access

In the context of MPI, the memory allocated for remote access by a process is structured as a
’window’. The properties of each window include the location of the memory segment (whether in
local or global memory), its size, and a displacement unit that aids in calculating o�sets inside the
window [OS1].

Global memory for remote access is often allocated using the MPI_A��oc_mem function, whereas local
memory allocation may be done using normal allocation techniques. A group of memory windows
linked to a MPI communicator forms a window object, which is created using the MPI_Win_create

function. This object contains information on the specific windows, their current locking state, and
the group of processes that are permitted to access them [OS1].

One-sided communication within MPI is organized into phases referred to as epochs, specifically
termed exposure epochs or access epochs [OS2]. In an exposure epoch, a process makes its window
accessible to one or several other processes. Conversely, during an access epoch, a process may
access windows that others have made available. The transition between these epochs is regulated
by synchronization operations, with MPI o�ering three main types of synchronization: Fence,
Dedicated synchronization, and Locks [OS2].

2.5.1 Fence

The Fence action serves as a synchronized mechanism for all processes linked to a window object.
It begins a window sharing period that is started by the MPI_Win_fence function so that the processes
can see each other’s windows. The period is finished by performing another Fence operation, which
guarantees the completion of all RMA procedures [JRS16]. This procedure is especially valuable
in situations when processes interact with numerous windows, use MPI_A��reduce to determine the
number of operations directed at their window, while local synchronization verifies the completion
and coherence of the operations [OS2].

24

2.6 Shared Memory

2.5.2 Dedicated Synchronization

This synchronization strategy is designed to target a certain group of processes. The process
initiates an exposure epoch by using the MPI_Win_post function. This allows other processes to
access its memory during this phase using the MPI_Win_start function. The actions of the other
processes may be finalized using the MPI_Win_comp�ete function. Prior to progressing, it is crucial to
fulfill any Return Merchandise Authorization (RMA) requests that are aimed at a certain timeframe
[Mes23].

2.5.3 Locks

Locks o�er a passive target synchronization method. A remote process can open an access epoch
with an individual or shared lock, and it can be closed with an unlock call. This ensures the
completion of all RMA requests in both the source and target. Locks are granted based on the
current status of the target window, balancing the needs for shared and exclusive access [Mes23].

2.6 Shared Memory

Shared memory is a crucial element in the design of multiprocessor systems, which have a unified
physical address space that can be accessed by several CPUs. There are two principal types of
architectures distinguished by their memory management techniques: systems with uniform memory
access (Uniform Memory Access (UMA)) and systems with cache-coherent non-uniform memory
access (cache-coherent Non-Uniform Memory Access (ccNUMA)).

2.6.1 Cache Coherence

In computing architectures where multiple CPU caches are operating simultaneously, cache
coherence is essential. In the UMA and ccNUMA systems, it is crucial. Inadequate coherence
strategies can lead to data inconsistencies and computational errors because separate processors’
caches might not update appropriately in response to actions from other processors. To guarantee
that every cache in the system presents the same view of the memory, cache coherence protocols
are put into place [Hag11].

A fundamental protocol used for enforcing cache coherence is the Modified, Exclusive, Shared,
Invalid (MESI) protocol, which organizes cache lines into four distinct states to reflect their condition
within the cache system [Hag11]:

• Modified: Indicates that the cache line is solely present in the current cache and has been
modified from its original condition in the main memory.

• Exclusive: The cache line has not been changed and is only present in the current cache.

• Shared: The cache line is found in at least one other cache and remains unmodified.

• Invalid: The current cache contains an invalid cache line.

25

2 Background

The MESI protocol manages transitions between these states e�ciently, ensuring data integrity and
minimizing the risk of data staleness. Transitions between these states are triggered by specific
actions such as reads, writes, or synchronization activities, which are all monitored by the coherence
protocol [Hag11].

Additional protocols like Modified, Owner, Exclusive, Shared, Invalid (MOESI), Modified, Exclusive,
Shared, Invalid, Forward (MESIF), and the Illinois protocol, which are tailored to meet specific
system requirements and architectural features, introduce further optimizations and improvements.
To reduce the load on main memory, the MOESI protocol, for instance, adds a ”Owned” state that
permits a cache line to be modified and shared simultaneously. This allows the cache that owns the
line to fulfill read requests from other caches [Hag11].

E�ective implementation of cache coherence significantly reduces the overhead associated with
maintaining consistency across multiple caches, thereby optimizing system performance. This
ensures that all processors operate with the most up-to-date data, enhancing the scalability of
multiprocessor systems and facilitating e�cient data sharing among numerous processors [Hag11].

As computational architectures advance, especially with the proliferation of multi-core and many-
core architectures, the role of sophisticated cache coherence protocols becomes increasingly crucial.
These protocols are key to optimizing the performance and e�ciency of contemporary computing
environments, a�ecting both application throughput and system responsiveness [Hag11].

2.6.2 UMA Systems

The fundamental architecture of UMA systems involves processors interconnected via a common bus,
such as the Front-Side Bus (FSB), through which they also access memory. Chipsets, responsible
for memory module control and interfacing with other node components, play a vital role in these
systems. However, UMA systems face inherent bandwidth limitations as the number of FSBs
or sockets increases. To alleviate this, non-blocking crossbar switches providing point-to-point
connections between sockets and memory modules are often incorporated [Hag11].

2.6.3 ccNUMA Systems

In ccNUMA architectures, processor cores are grouped into Locality Domains (LDs), each with
e�cient access to its local memory. These LDs are interconnected, facilitating transparent memory
access across di�erent processors. The scalable bandwidth of ccNUMA systems makes them
particularly suited for multi-processor configurations [Hag11].

Despite their advantages, ccNUMA systems face challenges such as the localization problem, where
performance can be impacted by non-local memory accesses, and potential conflicts arising from
concurrent memory accesses by processors from di�erent LDs. Addressing these issues involves
careful consideration of data access patterns and limiting each processor’s data access predominantly
to its respective LD [Hag11].

In summary, shared memory architectures, encompassing both UMA and ccNUMA systems, play a
pivotal role in modern multiprocessor systems. Their e�ective utilization hinges on sophisticated
cache coherence mechanisms and architectural considerations to ensure e�cient, consistent memory
access across multiple processors [Hag11].

26

2.7 Overview of Address Space Mapping Mechanisms

2.7 Overview of Address Space Mapping Mechanisms

In distributed systems and high-performance computing, memory allocation is critical. Address
space mapping techniques improve performance by making it easier for processes to allocate
memory e�ciently, particularly when sending large amounts of messages back and forth. Linux
Memory Interconnect (LiMIC) [JSCP05], Kernel-assisted Mechanism (KNEM) [GM13], and
Cross Memory Attach (CMA) [Vie14] are three prominent methods for mapping address spaces
with the kernel. Every one of these solutions uses a di�erent operational methodology and has
unique properties. Additionally, XPMEM, a technique for sharing memory space between partitions,
provides a distinct and di�erent approach.

2.7.1 LiMIC (Linux Memory Interconnect)

LiMIC is designed to e�ciently map segments of a communicating process’s memory into the
kernel space. This approach allows the receiver process to directly copy the sender’s pages, which
are mapped into the kernel, into its local address space. The primary advantage of LiMIC is its
ability to reduce the need for intra-node, large message memory copies, which can be a significant
bottleneck in distributed systems. However, one downside of LiMIC is the overhead associated
with system calls for each user-level data transfer [JSCP05].

2.7.2 KNEM (Kernel-assisted Mechanism)

KNEM, another kernel-assisted mechanism, enhances direct memory transfers between application
processes. While not detailed in the context provided, KNEM operates similarly to LiMIC and
CMA by facilitating e�cient memory sharing and reducing the overhead in large message transfers.
Like LiMIC, it also incurs system call overheads, impacting performance at scale [GM13].

2.7.3 CMA (Cross Memory Attach)

Linux kernel 3.2 established CMA, which provides similar functionality as LiMIC via two new
system functions. These calls facilitate the sharing of memory regions across processes, hence greatly
lowering the need for memory duplication in communications inside a single node. Nevertheless,
like LiMIC, CMA’s dependence on system calls might result in additional costs. In addition, both
LiMIC and CMA conduct mapping and unmapping of pages at the level of individual pages, which
might result in reduced speed when transferring big messages [Vie14].

2.7.4 UCX (Unified Communication X)

The communication framework called Unified Communication X (UCX) is created to give distributed
applications and glshpc systems high-performance and scalable communication capabilities. It
o�ers a unified API that abstracts the details of various underlying communication technologies, such
as shared memory, RDMA (Remote Direct Memory Access), and network sockets [SVL+15].

27

2 Background

2.7.5 UCT (UCX Communication Transport)

UCX Communication Transport (UCT) is a component of the UCX framework that provides a
low-level API for direct communication between processes. It is designed to facilitate e�cient data
transfer mechanisms across di�erent types of hardware, including GPUs and networking devices.
UCT supports a variety of communication methods, such as active messages, tag matching, and
RDMA operations, allowing developers to optimize the communication according to the needs of
their specific applications.

One of the strengths of UCT is its ability to o�er direct access to the communication hardware,
thereby reducing the overheads typically associated with high-level abstractions and system calls
in traditional communication methods. This direct access capability enables high throughput and
low latency communication, which is crucial for performance-critical applications in HPC and
distributed systems [SVL+15].

2.7.6 XPMEM

XPMEM [Hje], which stands for "cross-partition memory,ïs a more sophisticated technique in this
field. It enables processes to allocate certain sections of their memory for the purpose of sharing
with other processes. The architecture of XPMEM consists of a library that operates at the user
level and a kernel module. This combination provides a smoother and more adaptable method for
mapping address spaces.

Sender’s
Address-

space

Sender’s
Address-

space

Receiver’s
Address
Space

Receiver’s
Address
Space

Create Shared
address-space

segment

xpmem_make()
xpmem_get()

xpmem_attach()

 Direct LD/ST

Figure 2.3: XPMEM – Cross-Partition Memory [Has19]

Kernel Module At the core of XPMEM is its kernel module, which is responsible for the low-level
operations of memory sharing. This module manages the interactions with the system’s memory
management unit (MMU) and handles the necessary permissions and security checks for shared
memory access [Hje].

User-Level Library: Complementing the kernel module is the user-level library. This library
provides a set of APIs that applications can use to interact with XPMEM, simplifying the process
of memory sharing. The user-level abstraction allows application developers to utilize XPMEM
functionalities without delving into the complexities of kernel-level operations [Hje].

28

2.7 Overview of Address Space Mapping Mechanisms

XPMEM’s operation revolves around the concept of creating ’segments’ of memory that can be
shared between processes. These segments are portions of a process’s address space that it makes
available to other processes. The sharing mechanism involves a series of steps (illustrated in
Figure 2.3 [Hje]):

1. Creating a Memory Segment (xpmem_make): A process that intends to share a part of its
memory calls the xpmem_make() function. This function registers a specified memory region with
XPMEM and returns a unique handle. This handle represents the shared memory segment and is
used for subsequent operations.

2. Obtaining Access to a Memory Segment (xpmem_get): A di�erent process, which needs
access to the shared memory, uses the handle obtained from xpmem_make() and calls xpmem_get().
This function returns another handle, specific to the receiving process, which it will use for accessing
the shared memory.

3. Connecting the Memory Segment (xpmem_attach): In order to receive access to the shared
memory, the receiving process must use the xpmem_attach() function, providing the handle acquired
by xpmem_get(). The shared memory segment can be mapped more easily into the process’s
address space thanks to this function, allowing the process to access the memory as if it were a part
of its own address space. The operating system specifies the specific virtual address to which the
segment is mapped.

4. Direct Load and Store Operations: After the memory segment is connected, the receiving
process may immediately access and modify the shared memory.

5. Detaching and Releasing Memory Segments: Processes can detach from shared memory
segments when they no longer need access, and the original process can revoke the shared memory
segment when it is no longer needed.

6. E�ciency: XPMEM enables direct memory sharing without the need for copying data between
processes, significantly reducing overhead in large-scale data transfers.

7. Flexibility: Its user-level library provides a simple and flexible interface for applications to share
memory, making it easier to integrate into various software architectures.

8. Scalability: XPMEM [Hje] is particularly beneficial in distributed systems and high-performance
computing environments, where e�cient resource utilization is crucial.

In summary, XPMEM is a powerful tool for shared memory operations in distributed computing
environments. Its combination of kernel-level e�ciency and user-level simplicity makes it
an invaluable resource for applications requiring fast and flexible memory sharing capabilities,
particularly in high-performance and parallel computing contexts [Hje].

In conclusion, while LiMIC [JSCP05], KNEM [GM13], and CMA [Vie14] provide foundational
mechanisms for kernel-assisted address space mapping, XPMEM stands out with its user-friendly
approach and e�cient memory sharing capabilities. These mechanisms are pivotal in optimizing
performance in distributed computing systems, particularly where large-scale data handling and
inter-process communication are involved.

29

2 Background

2.8 Shared Memory in MPI

MPI is widely recognized for its distributed memory model, but it also supports shared memory
programming. This capability allows processes (ranks) on the same node to communicate more
e�ciently by accessing a common memory region, which is typically within a compute node
[Rab].

2.8.1 The Role of MPI_Comm_split_type

To aid in shared memory programming, MPI provides the MPI_Comm_sp�it_type function. This
function groups ranks that share a physical memory domain into the same communicator, using the
shared memory type, MPI_COMM_TYPE_SHARED, during the communicator split process [Rab].

Practical Steps [Rab]

1. Initial Setup: Initialize the MPI environment and ensure all necessary modules are loaded.

2. Using MPI_Comm_split_type: Begin by splitting the global communicator into smaller,
shared memory communicators.

MPI_Comm shared_comm;
MPI_Comm_sp�it_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &shared_comm
õ!);

3. Working Within the Shared Memory Communicator: Perform shared memory optimiza-
tions and operations within the shared_comm communicator.

4. Synchronizing and Managing Shared Memory: Use MPI and/or other shared memory
constructs for e�ective data management and synchronization.

5. Finalizing: Ensure a clean shutdown by finalizing the shared memory communicator and the
MPI environment.

MPI_Comm_free(&shared_comm);
MPI_Fina�ize();

Advantages and Use Cases

Shared memory grouping in MPI is beneficial for hybrid programming, optimizing intra-node data
sharing and communication. It is essential for HPC applications and large-scale simulations that
require e�cient shared data access [Rab].

30

3 Related Work

An overview of the current state of research on shared memory communication, zero-copy
communication, and XPMEM application in HPC systems is given in this chapter. Three sections
make up the literature review, each of which focuses on a di�erent paper related to the research
question.

3.1 Developing Optimal Shared Address Space Reduction Collectives
for Multi-/Many-core Architectures

The article "Designing E�cient Shared Address Space Reduction Collectives for Multi-/Many-cores"
[HCB+18] presents an advanced exploration into optimizing MPI collective operations—specifically
MPI Reduce and MPI Allreduce—on modern multi-core and many-core architectures. Utilizing
the shared address space model on XPMEM, the study introduces novel, zero-copy designs that
significantly enhance the e�ciency of data transfer and computation within nodes by avoiding
intermediate data copies.

3.1.1 Zero-Copy Design Strategy

The shared memory segment can be mapped more easily into the process’s address space thanks to
this function, allowing the process to access the memory as if it were a part of its own address space.
Through the use of XPMEM for direct memory access, the designs allow processes to directly
access and modify data in peer processes’ address spaces on the same node, thereby establishing a
zero-copy environment. This method drastically reduces the latency associated with data movement
and minimizes the overhead introduced by traditional memory copying techniques [HCB+18].

3.1.2 Performance Benchmarking and Analysis

To validate the e�ectiveness of these new designs, extensive benchmarking was conducted across
several architectures, including Intel Broadwell, Knights Landing, and IBM OpenPOWER. The
performance improvements were quantified through latency measurements in Reduce and Allreduce
operations, which showed up to a threefold decrease. Additionally, runtime improvements in
scientific and deep learning applications, such as MiniAMR and the AlexNet neural network, were
documented, demonstrating up to 37% and 19% reductions, respectively.

31

3 Related Work

3.1.3 Theoretical Modeling

The research [HCB+18] includes a theoretical model to assess the impact of the proposed zero-copy
designs on collective communication operations. This model o�ers a quantitative framework
to analyze the balance between communication and computation, aiding in the prediction of
performance gains under various system configurations. To predict the scalability and e�ciency of
the collective operations, the model makes use of parameters like message size, number of processes
per node, and system architecture.

3.2 Contributions and Future Work

The paper [HCB+18] not only showcases significant improvements in MPI collective operations but
also sets the groundwork for future research in scalable and e�cient HPC systems. It proposes
a shift in the traditional approach to designing collective operations by emphasizing a shared
address space model that can dynamically adapt to the evolving landscape of high-performance
architectures.

The ongoing research aims to further these initial findings by scaling the proposed designs to larger
clusters and exploring their e�ectiveness on additional computing architectures and interconnects.
This work is critical in advancing the state-of-the-art in HPC middleware, with implications for
future exascale computing systems where e�ciency in both computation and communication is
critical.

3.3 Process-in-Process

The paper "Process-in-process: techniques for practical address-space sharing" introduces a novel
method called PiP, which facilitates shared virtual address space (VAS) environments in parallel
computing. Unlike traditional multiprocess and multithread models that rely on message passing or
operating system support, PiP employs Position-Independent Executables (PIE) and the d�mopen()

function from Glibc to dynamically load program binaries into the same VAS, thus enhancing
address-space sharing.

3.3.1 Technical Details of Process-in-Process (PiP)

PiP [HSG+18] enhances shared-memory communication within MPI runtimes, reduces MPI
multithreading overhead, and supports data-sharing in scientific computing. It o�ers improvements
in memory e�ciency, reduced performance overhead, and scalability. The fact that PiP only runs in
user space increases its portability for use in massive supercomputing applications and makes it
easier to integrate with other runtime systems like MPI and OpenMP. Improved communication
performance is supported by this integration for applications involving HPC.

32

3.4 Casper

3.3.2 Architecture and Implementation

The PiP technology enables the allocation of many processes to a unified Virtual Address Space
(VAS), giving each process the ability to access both its own exclusive storage and the storage of
other processes within the same space. This architecture integrates the advantages of multiprocess
and multithread models by o�ering process isolation in addition to shared-memory benefits. The
execution of PiP entails a ”root process” that has the Virtual Address Space (VAS) and has the
ability to generate several "PiP tasks". These jobs have the ability to run distinct applications
inside the same Virtual Address Space (VAS), which is not a common feature in ordinary thread
architectures.

3.3.3 Performance Evaluation

Performance assessments demonstrate that PiP reduces the synchronization overhead typical of other
parallel execution models and minimizes page faults associated with traditional memory-sharing
techniques. The use of PIE and d�mopen() facilitates the independent yet shared loading of tasks and
their dependencies into the VAS, optimizing the use of computational resources and reducing the
setup time and memory footprint compared to methods requiring multiple independent processes.

3.4 Casper

The paper, titled "Casper: An Asynchronous Progress Solution for MPI One-Sided Communica-
tion,ïntroduces a method called "Casper"that addresses the issue of asynchronous progress in MPI
one-sided communication on systems with multiple cores. In order to enable software participation
in RMA operations and enable progress on the target side without interfering with hardware-based
RMA operations, Casper employs background ghost processes. The study provides a comparison
between Casper and conventional thread- and interrupt-based asynchronous progress models. The
performance improvements of Casper are shown using microbenchmarks and a practical chemical
application. The research evaluates Casper’s performance on several platforms and provides
improvements in load balancing. Furthermore, the study examines how Casper ensures both
precision and e�ectiveness in complex systems and provides valuable observations on the impact of
asynchronous progress in various scenarios.

3.4.1 Casper’s E�ciency and Scalability

The e�cacy of Casper is showcased through microbenchmarks and the utilization of a production
chemistry application, NWChem, to exhibit substantial enhancements in asynchronous progress. The
paper also investigates the e�ects of various RMA implementations, load balancing optimizations,
and the scalability of Casper. Moreover, the research o�ers valuable insights into the e�ects
of asynchronous progress in intricate applications, emphasizing its importance, particularly in
situations where communication occurs more often and computation time decreases. The paper
examines the comparison between Casper and di�erent thread-based approaches, emphasizing the
benefits of Casper in enhancing communication overlap and performance [SPH+15].

33

3 Related Work

3.5 OpenSHMEM

OpenSHMEM, an open standard for SHMEM (SHared MEMory) libraries, emerged from the
need for a standardized approach to programming in PGAS (Partitioned Global Address Space)
environments. Originally developed for supercomputers to exploit the high-speed network interfaces
and shared memory architectures, SHMEM libraries provided a set of APIs for e�cient data transfer
and synchronization among parallel processes. OpenSHMEM’s inception was motivated by the
desire to unify these libraries under a common standard, enhancing portability and scalability across
various hardware and software platforms [CCP+10].

The adoption of the PGAS model, which OpenSHMEM exemplifies, represents a significant shift in
parallel computing. PGAS o�ers a global memory space accessible by all processes, simplifying
the programming model compared to traditional message-passing interfaces. This model facilitates
a more intuitive development process, enabling programmers to focus on the computational aspects
of their applications rather than the intricacies of data communication [CCP+10].

3.5.1 Key Features and Advantages

OpenSHMEM’s design is characterized by several key features that contribute to its e�ectiveness in
parallel computing. Its symmetric memory model allows for direct access to global shared memory,
reducing the overhead associated with data movement. Communication primitives, such as put and
get operations, along with collective operations, provide a robust mechanism for data exchange
and synchronization among processes. These features are complemented by OpenSHMEM’s
synchronization mechanisms, including barriers and locks, which ensure correct program execution
in concurrent environments.

Its API simplifies the development of parallel applications by abstracting the complexities of
direct memory access and communication. This simplicity, coupled with the e�ciency of its
communication primitives, can lead to significant improvements in application performance.
Additionally, programs created with OpenSHMEM can be readily adapted to run on a range of
hardware architectures, from multicore processors to large-scale supercomputers, thanks to the
model’s support for scalability and portability [CCP+10].

3.5.2 Technical Architecture and Components

OpenSHMEM leverages a highly optimized technical architecture to maximize performance in
parallel computing environments. At its core, OpenSHMEM provides a library of functions that
facilitate memory management and communication between processes running on distributed
memory systems. This section delves deeper into the technical components and the functionality of
the OpenSHMEM library.

34

3.5 OpenSHMEM

Memory Management

OpenSHMEM implements a symmetric heap memory model, where each process allocates and
accesses memory in a global address space. This allows for direct memory access (DMA)
capabilities, which bypass the operating system to accelerate data transfer speeds. The symmetric
heap is dynamically managed, allowing runtime allocation and deallocation, which is critical for
adapting to varied workload sizes.

Communication Primitives

The library o�ers an extensive array of communication primitives that are fine-tuned for enhanced
performance:

• Put and Get Operations: Employed for one-sided communication, these operations enable a
process to write data to (put) or read data from (get) the memory of a remote process without
requiring the remote process’s active participation.

• Atomic Operations: In concurrent access scenarios, these operations are essential to maintain-
ing data integrity. Building counters, locks, and other synchronization mechanisms requires
the ability to perform atomic operations like fetch-and-add, swap, and compare-and-swap,
which OpenSHMEM makes possible.

• Collective Operations: OpenSHMEM includes a variety of collective functions like
shmem_barrier_a��(), shmem_broadcast(), and shmem_reduce(). These functions are designed
to synchronize data uniformly across all processes or to execute tasks such as reductions and
broadcasts e�ectively.

Synchronization Mechanisms

Synchronization in OpenSHMEM is designed to ensure consistency and coordination among
processes:

• Barriers and Locks: Barriers are used to coordinate and synchronize all processes at certain
places in the program, guaranteeing that no process advances until all others have reached the
barrier. Locks enforce mutual exclusion, guaranteeing that only a single process may access
a critical region at any one moment. This is crucial for preventing race situations.

• Fence and Quiet Operations: These operations are used to ensure the ordering and
completion of memory operations. shmem_fence() guarantees the ordering of delivery of
put and get operations, while shmem_quiet() ensures that all outstanding puts and gets are
completed before proceeding.

35

3 Related Work

Programming Model Enhancements

OpenSHMEM also includes extensions to support more complex data structures and programming
paradigms:

• Derived datatypes: Similar to MPI, OpenSHMEM can define complex datatypes to better
map to the memory layout of user-defined structures, enabling more e�cient data transfers.

• Dynamic Tasking: Recent extensions to OpenSHMEM propose the inclusion of dynamic
tasking capabilities, allowing more flexibility in distributing workloads among processes
dynamically based on runtime decisions.

36

4 Designing a zero copy shared memory API

Inter-process communication (IPC) is critical in enhancing the performance of distributed computer
systems. The core of scalability is data movement e�ciency. Improved intra-node communication
between processes is the goal of Thw Zero Copy API ZCom, which is discussed in the following
section. Zero-copy communication occurs via shared memory. The API is intended to address
the trade-o�s and overhead that characterize bilateral communication protocols such as MPI. The
ZCom API utilizes XPMEM extension (Cross-Partition Memory) to facilitate the direct memory
access between processes thus reducing data transfer overhead and latency. The supplied text
provides a presentation of structure, contents, and main features of the ZCom API. It highlights the
capability of the API to speed up the performance of parallel applications in HPC environments.
The resultant API includes a total of six methods related to communication channel initialization,
read-write synchronization, and cleanup. The ZCom API has been optimized to be easily used
within the currently popular parallel programming models such as MPI with the goal of improving
the e�ciency and scalability of inter-node data sharing. The API is designed with simplicity,
e�ectiveness, and flexibility as the driving principles; the greatest e�ort here is directed at reducing
communication overhead and maximizing e�ciency in HPC environments.

4.1 Address Space Mapping Mechanisms

The choice of using XPMEM [Hje] in the zero-copy API as opposed to other shared memory
solutions such as LiMIC, KNEM, or CMA, is grounded on several considerations. Mapping a
memory region in LiMIC, o�ered by the LiMIC library, directly into the kernel of a communicating
process is allowed. Due to this manipulation, the data transfer between the processes is facilitated,
since the receiving process gets the access to the pages, which are being mapped in the kernel.
Although, this way, there is less need to copy large amount of data inside a node, every system
call that is associated with each transaction impacts the overall performance. KNEM provides
such approach by allowing shared memory access between processes that can show performance
gains in some cases. CMA, which was only introduced with Linux kernel 3.2, further possibilitize
these features by two new system calls which enable e�cient transfer of large areas of memory.
Despite the fact that CMA helps to increase the performance by decreasing the number of particular
operations, the overhead of system calls is a major problem, especially for frequent or big data
transfer. Furthermore, the LiMIC, KNEM, and CMA approaches all su�er from the granularity of
the page size when mapping and unmapping, which may have negative impact on performance for
large message transfers.

On the contrary, XPMEM o�ers a better approach to shared memory access through permitting
a more direct and versatile manner of sharing and accessing memory areas between processes.
XPMEM allows programs to map remote pages directly to their address space avoiding numerous
system calls employed through a user library and a kernel module. The main XPMEM functions,

37

4 Designing a zero copy shared memory API

xpmem_make(), xpmem_get(), and xpmem_attach(), are the way of how to share and access
memory segments, which dramatically increase the transfer e�ciency and minimize overhead. This
dominance in simplicity, e�ciency, and flexibility positions XPMEM as the desirable solution for
developing a zero-copy API that aims to minimize data transfer overhead and maximize performance
in HPC environments.

4.2 ZCom API Architecture

Many HPC applications rely on the MPI point-to-point communication techniques, which are
covered in chapter 2. These mechanisms require additional memory copies, which add to the
superfluous tra�c on the memory bus. We have created a straightforward communication API by
utilizing the shared address space design philosophy seen in XPMEM. The fundamental concept is
that all MPI processes inside a node can directly access each other’s application vectors when they
are engaged in communication. Without additional transmissions via point-to-point channels, each
participant process is able to execute computation and communication on both local (own data) and
remote rank applications vectors.

Three steps make up communication using our zero-copy API. The first step is necessary to establish
the exchange information. The real communication operation takes place in the second phase. The
data structures utilized for information exchange are to be deleted in the third stage.

1. Initialization: The first step is to initialize the communication channels. This is achieved
through the ZCom_init_c function that creates the shared memory segments, synchronization
counters, and communication channels. In addition to that, the function also selects the
location of the victim processes and makes communication channels for them. The input is a
set of data bu�ers, their sizes, MPI communicator, target process ranks, and the number of
target processes. It provides the same with related addresses and channels IDs to perform
operations of communication. The linked addresses are the shared memory segment addresses
of the target processes. They work as receiving bu�ers for the source process. The channel
IDs are used to make the channel identification process.

2. Communication: The second step is the communication step. This is done through the
ZCom_can wrote, ZCom_have_written and ZCom_can_read, ZCom_have_read operation. The
function ZCom_can_write tests whether the source process has the write permission on the
target process shared memory bu�er, and the function ZCom_can_read looks for the read
permission on the source process shared memory bu�er. Since the shared bu�er of the target
process has been written by the source process, it is up to the ZCom_have_written function
to be called; then, after the target process has read from the shared bu�er of the source
process, the ZCom_have_read function is called. The assemblies in the functions contain
synchronization of read and write operations between the processes using counter techniques
to ensure data consistency while blocking false sharing. These canals take as input parameters
id of channels as input variable. ZCom_can_write is used to hold the incrementing target
process’s read counter, and ZCom_can_read is used to increment the target process’s write
counter because the source process’s read counter is being incremented. ZCom_have_written
compares the source process write counter notation to that of the target process read counter,
whereas ZCom_have_read calculates the target read counter against the source process write

38

4.3 ZCom_init

counter. Response 1 shall be considered as a sign that the comparison is correct and the
operation of communication is to be accomplished one by one. The comparison function
returns 0 when communication is not possible either because end device is unknown, the
remote unit does not accept the communication request or the remote unit settings does not
match with the communication parameters.

3. Cleanup: The third step is to clean up of the resources associated with the communication
channels. This is achieved by invoking the function ZCom_c�eanup, which detaches from
the shared memory segments and discards the segment IDs. This functionality also takes
advantage of synchronization counters that see to it that all operations has been done and
there is no data in flight. The input of the function is the channel IDs and it returns an error
code after the success or failure of the cleanup operation.

4.3 ZCom_init

Initialises ZCom channel for IPC through shared memory specifying the destination processes. This
method sets up shared memory segments for bu�ers, organizes read and write operations in terms
of sync counters, and controls communication channels among the processes, ensuring that all
intended processes have the required shared resources. The system utilizes XPMEM for memory
sharing optimization and MPI for inter-process communication so that it can easily adapt to both
shared and distributed memory architectures. Here is a step-by-step breakdown of the ZCom_init_c

function’s operation (compare Figure 4.1)

1. Parameter Reception: The function commences by accepting a multitude of critical
parameters: a list of data bu�ers (buffer), their respective sizes (buffer_size), an MPI
communicator (comm), target process ranks (target_ranks), the number of target processes
(num_targets), and storage locations for attached addresses and channel IDs. The most crucial
information about the shared data and the planned communication processes are captured by
these parameters..

2. Process Locality Verification: A critical step of verifying that all target processes are situated
on the same physical host. This verification is imperative for the feasibility of shared memory
access. If any target process is on a di�erent host, the function aborts the initialization,
signaling an error due to the infeasibility of shared memory usage across di�erent hosts.

3. Environment Setup: The function enhances communication e�ciency for processes on the
same physical host by dividing the processes based on shared memory accessibility by using
the MPI communicator. This step is crucial for e�ciently harnessing the shared memory
capabilities.

4. Bu�er Adjustment for Shared Memory Alignment: One of the most critical operations
performed by the ’ZCom_init_c’ function involves adjusting the given bu�ers to align with
the system’s memory page boundaries. This adjustment is essential for the e�cient use of
shared memory, as it ensures that memory accesses are optimized for hardware performance.
Here’s how this process unfolds:

39

4 Designing a zero copy shared memory API

• For each bu�er intended for communication, the function calculates the starting address
of the bu�er and aligns it to the nearest lower page boundary. This alignment is
necessary because shared memory segments must start at page boundaries to be shared
e�ectively across processes.

• After determining the aligned start address, the function calculates the end address of
the bu�er, ensuring that it includes the entire bu�er while also aligning it to the nearest
upper page boundary. This step might extend the memory segment slightly beyond the
original bu�er size, but it is crucial for maintaining alignment constraints.

• The total size of the memory segment that must be shared is then obtained by deducting
the aligned start address from the aligned end address, which yields the size of the
aligned memory segment.

• A shared memory segment is created for this aligned bu�er, allowing for e�cient and
direct access by the target processes. The alignment to page boundaries ensures that the
operating system can e�ciently manage these memory segments, leading to improved
performance in data sharing and communication.

• Finally, any necessary adjustments to the pointers and sizes in the communication
channel structures are made to reflect the aligned addresses and sizes. This ensures that
when processes access the shared memory, they are accessing the correct locations and
sizes, thereby preventing any potential data corruption or access violations.

This bu�er adjustment step is pivotal in the initialization of communication channels as it
directly impacts the e�ciency and reliability of data sharing between processes. By aligning
bu�ers to memory page boundaries, the ’ZCom_init_c’ function maximizes the performance
benefits of shared memory communication, thereby enhancing the overall performance of the
high-performance computing application.

5. Shared Memory Segmentation: For each bu�er designated for communication, the function
creates a shared memory segment for the aligned bu�er, accessible to the target processes.
This shared memory mechanism is facilitated via XPMEM technology, allowing direct
memory segment access across processes on the same node.

6. Channel and Segment Information Distribution: Through MPI’s collective communication
capabilities, particularly the MPI_A��toa��v function, the function distributes the segment IDs
created in the shared memory segmentation step among all target processes. This ensures
each process is aware of the segment IDs necessary for establishing direct memory access to
the bu�ers of its communication partners.

7. Attach shared memory segments to target processes: The function links the shared memory
segments to the target processes, enabling them to directly access the shared memory. The
enclosed addresses are kept for future communication actions, guaranteeing that the processes
are prepared for e�ective data exchange and synchronization.

8. Synchronization Mechanism Initialization: The function sets up synchronization counters
for each communication channel, essential for coordinating read and write operations between
the processes, ensuring data consistency, and preventing race conditions.

40

4.4 Synchronization Mechanism

9. Communication Channel Establishment: For each target process, the function finalizes the
creation of a communication channel, involving assigning a unique channel ID and attaching
the process to the shared memory segment corresponding to its bu�er. The attached address
and channel ID are stored for later communication operations.

10. Error Handling and Cleanup: Throughout the initialization process, the function meticu-
lously checks for errors. In case of failure, such as memory allocation errors, issues in shared
memory segment creation, or process locality problems, the function gracefully aborts the
initialization, cleans up any partially allocated resources, and returns a specific error code
indicating the failure type encountered.

11. Success Indication: Upon successful completion of all steps, the function sets the error code to
indicate success, signifying that the communication channels have been correctly established
and the processes are ready for e�cient data sharing and synchronization operations.

4.4 Synchronization Mechanism

ZCom API for managing shared-memory communication between two processes, denoted as Rank
A and Rank B. At the core of this mechanism is the SharedData.sync_counters array, which consists
of four elements used to synchronize read and write operations between the ranks.

Here is what each element represents in the synchronization process:

1. Rank A written (sync_counters[0]): This counter is incremented by Rank A after it
completes a write operation. It serves as an indicator for Rank B that new data has been
written and is available for reading.

2. Rank B read (sync_counters[1]): This counter is incremented by Rank B once it finishes
reading the data written by Rank A. It acts as an acknowledgment to Rank A that the data has
been read, allowing Rank A to perform subsequent write operations if needed.

3. Rank B written (sync_counters[2]): Similar to sync_counters[0], this counter is used by
Rank B to indicate that it has completed a write operation, notifying Rank A that there is new
data to read.

4. Rank A read (sync_counters[3]): This functions like sync_counters[1], where Rank A
increments the counter after reading the data written by Rank B, signaling to Rank B that the
data has been successfully read.

The arrows in the diagram show the flow of operations: Rank A writes data and waits for Rank B to
read it (indicated by the interaction with sync_counters[0] and sync_counters[1]), while Rank B
writes data and waits for Rank A to read it (indicated by sync_counters[2] and sync_counters[3]).
This synchronization mechanism ensures that both ranks can communicate e�ciently, with a clear
indication of when data is written and read, thus preventing data race conditions and ensuring
consistency in shared-memory communication.

41

4 Designing a zero copy shared memory API

Example Usage of the ZCom API

The example (see 4.1) illustrates the initialization and usage of ZCom API in a distributed system
controlled by MPI. The main operations described are setting up communication channels, writing
to these channels and cleanup activities. During the setup phase, each process identifies its
communication targets, excluding itself, and bu�ers for message passing. Then, the ZCom_init_c

function is used to initialize channels for communication with each target, depending on the
MPI communication world. In particular, the communication example illustrates a case where
one process (rank 0) writes data to another process (rank 1) using the ZCom API. The function
ZCom_can_write_c checks if the channel can be written to followed by the actual write, then a
confirmation with ZCom_have_written_c. At the end, the example is followed by clean-up stage
when all the allocated resources are deallocated and MPI is finalized, providing a nice shutdown of
the application.

Code Example

#inc�ude "ZCom_comm.h"
#inc�ude <mpi.h>
#inc�ude <stdio.h>
#inc�ude <std�ib.h>

#define SHARE_SIZE 1024

int main(int argc, char *argv[]) {
int err, rank, size, *channe�_ids, **send_buffers;
size_t *buffer_sizes;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

// Setup communication targets and buffers
int num_targets = size - 1, *target_ranks = ma��oc(num_targets * sizeof(int));
send_buffers = ma��oc(num_targets * sizeof(int *));
buffer_sizes = ma��oc(num_targets * sizeof(size_t));
for (int i = 0, j = 0; i < size; i++) {

if (i != rank) {
target_ranks[j] = i;
send_buffers[j] = ma��oc(SHARE_SIZE);
buffer_sizes[j] = SHARE_SIZE;
j++;

}
}

// Initia�ize ZCom channe�s
void **attached_addrs = ma��oc(num_targets * sizeof(void *));
channe�_ids = ma��oc(num_targets * sizeof(int));
ZCom_init_c((void **)send_buffers, buffer_sizes, MPI_COMM_WORLD, target_ranks, num_targets

õ! , attached_addrs, channe�_ids, &err);

// Examp�e communication (rank 0 writes to rank 1)

42

4.5 Fortran Interface

if (rank == 0) {
for (int i = 0; i < num_targets; i++) {

if (target_ranks[i] == 1 && ZCom_can_write_c(channe�_ids[i], &err)) {
*send_buffers[i] = rank * 100;
ZCom_have_written_c(channe�_ids[i], &err);

}
}

}

// C�eanup and fina�ize
ZCom_c�eanup_c(channe�_ids, num_targets, MPI_COMM_WORLD, &err);
for (int i = 0; i < num_targets; i++) free(send_buffers[i]);
free(send_buffers);
free(buffer_sizes);
free(target_ranks);
free(channe�_ids);
free(attached_addrs);
MPI_Fina�ize();
return 0;

}

Listing 4.1: Example Usage of the ZCom API

4.5 Fortran Interface

The ZCom API is made to work with a variety of programming languages and to fit in well with
pre-existing parallel programming paradigms, such as MPI. To do this, we o�er Fortran interface to
the ZCom API, enabling Fortran applications to leverage the zero-copy communication features of
the API. The Fortran interface contains the required module and subroutine definitions that allow
for Fortran programs to invoke the ZCom API functions and conduct zero-copy communication.
The interface is straightforward and user-friendly enabling Fortran programmers to easily use the
ZCom API and its e�ective shared memory communication facilities. For the Fortran support we
have implemented two wrapper functions for the ZCom API, which are in C one for the initializing
and one for the cleaning of the ZCom API. This wrappers are required as Fortran does not handle
MPI_Comm type, which is needed for ZCom API. Thus the wrapper functions are utilized to map
the MPI_Comm type into an integer type that is compatible with Fortran.

4.6 Comparative analysis

In this section of the comparative analysis, the ZCom API is carefully compared to technologies
that are commonly used in the field of HPC communication. In order to comprehend the complex
performance, integration capabilities, scalability, memory management e�ciencies, technolog-
ical foundations, error handling mechanisms, and validation practices of these communication
technologies, this assessment is organized around a set of carefully selected criteria 4.1.

43

4 Designing a zero copy shared memory API

4.6.1 Evaluation Criteria

The following criteria are used to assess the performance and integration capabilities of HPC
communication technologies: The results are shown in Table 4.1.

• Performance Enhancement and E�ciency: This criterion assesses the capacity of each
technology to mitigate communication latency and enhance the overall performance metrics,
which is pivotal in HPC settings.

• Integration with Existing Systems: This evaluates the ease and compatibility with which
these technologies can be integrated into prevailing HPC ecosystems, ensuring seamless
interaction with established protocols.

• Scalability: The ability of the technology to sustain or improve performance as the system
scales up in size and complexity is critically analyzed under this parameter.

• Memory Management: This involves a thorough examination of how each technology
approaches memory operations, with a focus on optimizing shared memory interactions and
direct memory access strategies.

• Underlying Technology and Design Approach: The foundational technological choices
and their design rationale are scrutinized, highlighting how these decisions are suited to meet
the demands of contemporary HPC architectures.

• Error Handling and Fault Tolerance: This criterion looks into the robustness of the
technology in managing communication errors and maintaining data integrity under failure
conditions.

• Testing and Validation: The methods and practices employed to empirically validate the
e�ectiveness and reliability of the technology in real-world HPC applications are considered
here.

4.6.2 Comparative Analysis

In this section, we compare the ZCom API with other prominent HPC communication technologies,
including MPI, PiP, Casper, and OpenSHMEM, based on the evaluation criteria outlined above.

MPI

The traditional MPI uses the send-and-receive model which, though suitable for distributed
computing, forces multiple copies of data between the application bu�ers and system bu�ers. This
adds large overhead, especially to large data transfers as it uses both time and system resources,
thus leading to increased latency. Unlike, ZCom uses a zero-copy technique supported by shared
memory that allows direct memory access between processes. This approach cuts the requirement
of intermediate data copies, thereby, decreasing latency and improving utilization of bandwidth.

The e�ciency improvement is most pronounced in intra-node communications when data locality
can be completely leveraged. ZCom also works on improving scalability by eliminating unnecessary
copies of the memory as well as through the shared memory that allows direct access. Its architecture

44

4.6 Comparative analysis

facilitates communication continuing indefinitely, unlike the approach of the MPI which usually
checks communication progress using specific functions. This property enables ZCom to provide
faster communication in shared memory environments, thus showcasing its abilities to enhance
performance and resource utilization in high-performance computing applications.

E�cient Shared Address Space

Hashmi et al. propose an approach that improves co-operative work in multi-/many-core systems.
The ZCom API system containing the zero-copy mechanism significantly decreases the intranode
communication overhead, which gains big improvement especially in the processing of the large
workloads, thus satisfying the performance improvement requirement. Hashmi et al. methodology,
which integrates with MVAPICH2 MPI library, satisfies the integration criterion in terms of the
compatibility with popular HPC platforms. They also pay attention to scalable communication
primitives and e�cient caching mechanisms that cover scalability and memory management criteria,
proving a deep understanding of shared memory in HPC settings.

Process-in-Process (PiP) Techniques

Shared address space utilization is improved by a flexible execution model in PiP. The design
philosophy of ZCom is compatible with the approach of PiP in the optimization of shared
memory, which addresses the memory management criterion by minimizing the data transfers and
improving performance e�ciency. Although PiP is made flexible through user-level design and
portability across di�erent computing environments, ZCom is focused at enhancing the intra-node
communication, especially in shared memory systems, hence delivering targeted performance
improvements in HPC applications.

Casper’s Asynchronous Progress Model

Casper addresses the issue of asynchronous MPI Remote Memory Access progress, which impacts
performance scalability in many-core architectures. This matches the scalability and underlying
technology requirement. Even though ZCom optimizes intra-node data transfers, it follows the same
aim of communication e�ciency as Casper does just through a di�erent conceptive framework.
Casper’s design is capable of handling the integration with MPI and compatibility and demonstrates
a strong architecture that can handle the challenges of asynchronous operations handling in the
current HPC settings.

OpenSHMEM

One of the principal roles of OpenSHMEM [SVP+14], as an open-source interface, is to support
one-sided communications which is essential in HPC. This model allows the processes to access the
memory in a remote manner without the peer processor. It uses RDMA (Remote Direct Memory
Access) for better data transfer performance, decrease of CPU intervention, scalability, and reduced
large-scale computing latency.

45

4 Designing a zero copy shared memory API

Library supports di�erent communication modalities, like point-to-point, collective communications,
and synchronization operations. The API of it is complete and includes the operations put, get,
and atomic memory on di�erent nodes. These operations are vital for ensuring integrity and
synchronization of processes in a distributed system. Finally, OpenSHMEM o�ers memory barriers
and collective synchronization for all operations on shared data to be done before any process
continues, which is necessary to maintain the integrity and correctness of parallel computations
[SVP+14].

Also, OpenSHMEM is dedicated to memory management, which is evident in its symmetric heap
and such objects, support. In this model, each process can allocate and manage memory which
is shared with all other processes, thereby making the programming and execution of distributed
applications simpler by enforcing the global view of memory, but at the same time having the ability
to take advantage of local optimizations by the individual process [SVP+14].

The standardization of OpenSHMEM has helped to bring interworking between OpenSHMEM
libraries, making it easy the user to use any OpenSHMEM. The Committee for the OpenSHMEM
Specification is very active in creating new versions and extensions of the standard that would be
able to run on new hardware architectures and emergent memory models, thus enabling it to follow
the rapid progression of the computing technology [SVP+14].

ZCom compared with OpenSHMEM Unlike OpenSHMEM’s [SVP+14] comprehensive concept,
ZCom brings more specialized solutions to zero-copy shared memory communication diseases
that improve communication within the node by the best use of shared memory space. While
within a single node data can be exchanged between the running processes without the need to
copy it between bu�ers, this feature is especially useful for applications that need to achieve high
throughput and low-latency communication between threads or processes within a same physical
machine [SVP+14].

Comparative Analysis The comparative analysis brings out how the specialized approach of
ZCom is in line with and departs from the existing and emerging technologies such as OpenSHMEM.
Each technology has its unique strengths, and the operational focuses, ZCom being just one of
them, as a result, bring variety into design qand communication strategies of the HPC. The above
detailed analysis highlights the position ZCom occupies within this eco-system, demonstrating its
ability to enhance performance e�ciency in specialized intra-node communication situations. The
inter-operation of OpenSHMEM’s global memory model and ZCom’s intra-node optimizations
shows a complete solution for inter-node and intra-node communications issues in the modern HPC
systems.

46

4.6 Comparative analysis

Table 4.1: Comparison of ZCom API with MPI, PiP, Casper, and OpenSHMEM

Feature ZCom MPI PiP Casper OpenSHMEM

Communication
Model

G# H# G# G#

Memory
Management

G# H# H# G#

Scalability G# H# H#

Target Application G# G# G# H#

Distinct Features G# G# G# H#

47

4 Designing a zero copy shared memory API

Call init

Yes

No1.
Are the parameters valid? return with error

Yes

2.
Are the target local

3. create Shared MPI
Window

return with error
No

5. create xpmem
segment

6.exchange segment
info

4. adjust buffer to page

7. attach xpmem
segment

8. init sync_counters

9. store infos in channel

10. return recv
addresses & channel ids

Figure 4.1: Flowchart of the ZCom_init function.

48

5 Performance Evaluation

The chapter is focused on the performance evaluation of the ZCom API, using microbenchmarks
and real-world applications. The assessment is done on a multi-core architecture and the results,
show the e�ectiveness and scalability of the ZCom API in di�erent situations. The performance
measures include the latency, throughputs, and scalability. These two metrics are then contrasted
against the standard communication modes used by traditional methods so as to underline the
benefits of zero-copy communication in HPC environments. The latter also considers the impact of
the ZCom API in the performance of real-world applications, such as scientific simulations and data
analytics to demonstrate its practical applicability in the area of high-performance computing.

5.1 Experimental Setup

The performance test is carried out on Hawk supercomputer, an HPC machine designed in a
multi-core model. The system is built on the AMD EPYC Rome 7742 processor, which has 64
cores per CPU and runs at a base 2.25 GHz. A 5632-node system, with each node having 256 GB
RAM.

5.2 Microbenchmarks

The microbenchmarks are designed for evaluating latency and throughput of the ZCom API in various
communication contexts. Another set of benchmarked items are point-to-point communication,
collective communication and synchronization operations. The results demonstrate the e�ciency
and scalability of the ZCom API in di�erent communication patterns and sizes of the messages.

5.2.1 Ping-Pong Latency

The complete round trip time of a small message communication between two processes is what
the ping-pong latency benchmark evaluates. The results reveal that the ZCom API has very low
overhead and low latency for small message sizes which is why it is suitable for low-latency
communication in HPC applications. So, the table data provides a performance comparison of
di�erent communication methods where an average time and acceleration factor are determined
using the standard MPI Two-Sided approach as a baseline.

• Standard MPI Two-Sided gives the average execution time of 0.000692 milliseconds and
is used as the benchmark with the acceleration factor of 1.00. This approach is typical for
MPI applications where the communication is both sending and receiving messages between
processes.

49

5 Performance Evaluation

• MPI One-Sided achieves a slightly longer average time of 0.001048 milliseconds with an
acceleration factor of 0.66 against the baseline. It signals that MPI One-Sided is slower
in this particular scenario. The One-Sided MPI, also known as Remote Memory Access
(RMA), has been designed specifically for cases when one process can access the memory of
another process directly, without involving this process in communication. This approach is
developed to provide the more transparent and even quicker data transfer.

• ZCom is observed to take an average time of 0.000029 milliseconds and therefore, a speeding
factor of 23.86 and hence, is the superior of MPI that is standard. The note “shared memory,
significantly faster”, indicates that ZCom applies the shared memory method to accelerate
communication, and that is more e�ective for those sorts of tasks.

The results revealed a very big contrast between the performances of these communication
approaches. Despite the fact that a well-established MPI Two-Sided communication is a common
practice, some alternatives such as ZCom, can provide a significant performance boost, especially
in cases where fast communication is crucial. The type of communication that is being used can
severely impact the overall e�ciency and speed of data processing in a distributed computing
environment.

Communication Method Average Time (ms) Acceleration Factor
(Compared with Standard MPI (MPT))

Standard MPI Two-Sided 0.000692 1.00
MPI One-Sided 0.001048 0.66
ZCom 0.000029 23.86

Table 5.1: Communication methods comparison

5.2.2 Sync_p2p kernel

PRK, or Parallel Research Kernels suite [Lab], is a set of parallel benchmarks aimed at testing the
performance of parallel computing systems. Pipeline kernel is an integral part of Parallel Research
Kernels (PRK) suite and it intends to evaluate and benchmark the performance of point-to-point
synchronization mechanisms in distributed computing frameworks. This kernel represents a situation
of the pipelined algorithm execution across a 2D grid, with the main emphasis on performance
behavior of communication and synchronization in parallel computing environments.

Methodology

For HPC, the kernel is implemented using MPI, in accordance with best practices for parallel
programming. It is intended to assess the e�ciency of data synchronization among the distributed
processes, an important part of the parallel computation applications that need iterative updates
based on the adjacent data points [Lab].

50

5.2 Microbenchmarks

Grid Partitioning and Communication

With respect to the Pipeline kernel, the two-dimensional grid is distributed between MPI processes
through a strip-wise decomposition in the first dimension. This separation makes it possible to use
a distributed processing strategy where each process is in charge of a certain area of the grid. The
kernel permits grid line grouping as an option, which optimizes communication by limiting the
number of times that inter-process messages have to be exchanged. Synchronization is carried out
by exchanging boundary values between the adjacent processes, which provides data integrity in
the distributed grid [Lab].

Computational Model

Computational core of the kernel performs iterative update of grid values, using computational
stencil that includes the values of the adjacent points. This model typifies a diversity of scientific
computing applications in which local computations are a�ected by the data points located near
them [Lab].

Performance Measurement and Analysis

The performance metrics of the Pipeline kernel include the total run time and the throughput of
point-to-point synchronizations. In these metrics you can find information about the e�ectiveness of
synchronization and communication overhead in the distributed processes. In addition, the kernel
performs the computation result’s correctness validation by comparing certain grid values with
predetermined verification values, which contributes to the correctness of the algorithm [Lab].

The informal description of the Pipeline kernel is augmented with a graphical representation
depicting the synchronization mechanism among distributed threads in a computational grid [Lab].
The graph represents the stripwise decomposition of the grid across threads (Thread 0 to Thread
3), and displays the data flow direction to sync. This visualization underlines the kernel’s core
principle: point-to-point communication between neighbouring threads for updating grid values
reflecting the essence of the algorithms distributed compute and synchronization strategy.

The Pipeline kernel brings an important angle to the performance e�ects of point-to-point synchro-
nization in distributed systems. Through concentrating on communication and synchronization,
this allows for a frame to be created for the assessment and tuning of parallel algorithms and
system, focusing on the role of attaining e�ective communication mechanisms in achieving glshpc
environments [Lab].

Messurements and Results

Rate vs. Number of Ranks

The performance analysis involves comparing two methods: MPI (initial) and Zcom (updated),
based on their execution rates (in MFlops/s) and average processing time, against the number of
ranks.

51

5 Performance Evaluation

Thread 0 Thread 1 Thread 2 Thread 3

m

n

j

i

Granularity very fine,
no data parallelism

Figure 5.1: Point-to-point synchronization [Van16]

Figure 5.2: Results of the Sync_p2p kernel benchmark

• Initial Observation: The MPI method shows a steady increase in the rate as the number of
ranks increases, indicating linear scaling behavior. This suggests that the method scales well
with the increased computational load.

• Updated Method: The Zcom method displays an inconsistent pattern initially, with a
decrease in performance at a lower rank count but then showing a significant increase at
higher ranks. It surpasses MPI considerably in performance, particularly beyond 64 ranks,
indicating superior scaling and e�ciency in processing.

52

5.2 Microbenchmarks

Average Time vs. Number of Ranks

• Initial Trends: The MPI method shows a gradual increase in average processing time as the
ranks increase, which is an expected trend as the computation becomes more demanding.

• Updated Performance: Zcom outperforms MPI consistently across all rank counts in terms
of average time, starting o� with a lower average time and maintaining better e�ciency as
the ranks increase.

Rate vs. Grid Size

Figure 5.3 delineates the computational rate (in MFlops/s) against the increasing grid sizes for both
the MPI and ZCom methods. The data plotted on a logarithmic scale shows that both methods
exhibit improved performance rates as grid sizes increase. For ZCom, the performance rate starts
at approximately 9668 MFlops/s for a grid size of 10002 elements and escalates to about 37728
MFlops/s for 320002 elements, demonstrating a strong scaling e�ciency with increasing data
volume. Similarly, the MPI method begins at 3752 MFlops/s and reaches up to 36080 MFlops/s
under the same conditions. ZCom consistently outperforms MPI across all grid sizes, highlighting
its superior e�ciency in handling larger and more complex computational grids in sync_p2p kernel
applications.

This analysis provides crucial insights into the scalability of both methods, particularly underscoring
ZCom’s ability to e�ciently manage larger datasets, a key factor in its superior performance in
high-demand parallel computing environments.

Figure 5.3: Results of the Sync_p2p kernel benchmark with higher Grid Size

Conclusion

From the analysis, Zcom is more e�cient and scales better with the number of ranks, particularly
notable at higher ranks. Although Zcom’s performance at lower ranks starts o� inconsistently, it
quickly surpasses MPI’s, showcasing its capability to handle large-scale parallel processing more
e�ectively.

53

5 Performance Evaluation

5.2.3 ZCom vs. OpenMP

Figure 5.4 contrasts the performance of the ZCom method with OpenMP across di�erent numbers
of ranks/threads using the Synch_p2p, focusing on computational rates (MFlops/s) and average
processing times. The plotted data reveals:

Figure 5.4: Sync_p2p kernel benchmark ZCom compared with OpenMP

• Rate vs. Number of Ranks/Threads: Certainly, ZCom and OpenMP exhibit a rise in the
performance ratios with the increasing number of ranks/threads. Zcom starts at rank 2 at 265
MFlops/s and scales rapidly to 2808 MFlops/s at 64 ranks which shows that it has a very high
scalability. However, OpenMP starts at 18.5 MFlops/s and scales up to 416.9 MFlops/s at
128 threads with more limited scalability compared to ZCom.

• Average Time vs. Number of Ranks/Threads: For both approaches, the average computation
times reduce with the increase of the ranks/threads, hence, better parallelization e�ciency.
Despite di�erences the OpenMP times are in all cases higher than the ZCom times, starting
from nearly four seconds at two ranks and rising only a little, to 0.00216 seconds at sixty-four
ranks. The average times of the OpenMP, while starting quite close to each other at 2 threads,
change more dramatically to 0.000332 seconds at 128 threads.

The ranks’ evaluation of performances turns into a comparative ranking analysis of ZCom as such,
its scalability and e�ciency. ZCom is faster than OpenMP both in terms of computation speed and
having low average processing times which facilitates its capability of performing high demand
parallel processing tasks.

54

5.3 MiniGhost Benchmark

5.3 MiniGhost Benchmark

5.3.1 Mini Ghost Kernel

The miniGhost benchmark [BVH], that is one of the components of the Mantevo project [HDC+09],
is a small-sized application designed exclusively for the study of boundary exchange mechanisms
in scientific parallel computing ambits using stencil calculations. The central concern is the
computational patterns of di�erence stencils, which are commonly associated with scientific
computations of solving partial di�erential equations (PDEs) with numerical methods.

In the realm of parallel computing, these calculations often necessitate the division of the geographical
area into smaller subdomains which, in turn, mandates the exchange of halo or border data between
the subdomains commanded by di�erent processes. This is in line with the Bulk Synchronous
Parallel (Bulk Synchronous Parallel (BSP)) model, where communication optimization is achieved
by packing the data together to reduce the number of messages sent, taking advantage of the
bandwidth and latency of the inter-node communications.

miniGhost is a proxy which is used to analyze the performance and communication patterns of
larger scientific applications on current and emerging high-performance computing architectures. It
provides an opportunity to study numerous computational and communication models and to create
new parallelization strategies and hardware features.

The tool can work in various modes which are: pure communication (interconnect stress testing) and
integrated with computation, to emulate the real-world scientific applications’ mode of operation.
This flexibility is an important feature of miniGhost and makes it useful for performance profiling
and investigation of the e�ects of di�erent hardware and software configurations in a controlled,
scalable, and reproducible manner [BVH].

Boundary Exchange Mechanism

The main purpose of the miniGhost is the emulation of boundary exchange, which is a significant part
of parallel stencil computations. If the computational domain is split into several processors, every
subdomain has to communicate with the edges or boundary data between the neighboring zones.
Such a practice, critically important for the simulation’s coherence over the whole computational
domain, is called halo or ghost cell exchange. miniRADAR helps researchers try di�erent approaches
of this data exchange to maximize performance on di�erent hardware configurations [BVH].

Performance Exploration

miniGhost evaluates e�ects of alternative hardware and communication strategies on stencil
computation performance. It emulates the cognitive load of the applications that are more intricate
and thus it enables investigators to separate and analyze the consequences of several architectural
features and programming models on such computations [BVH].

55

5 Performance Evaluation

Scalability Analysis

miniGhost allows users to test the scalability of di�erent parallel processing architectures when
carrying out stencil computations. This involves the research of messaging interfaces and communi-
cation protocols, how to improve data transfer between nodes and the tradeo� between computation
and communication in a variety of settings [BVH].

Proxy for Larger Applications

An example of miniGhost as a proxy app is a quite good illustration of the operation of the more
complex scientific code. miniGhost achieves this by modeling the important characteristics of
these larger applications, enabling developers and researchers to predict how changes in computing
architectures, software designs, or hardware configurations will impact the performance of full-scale
applications [BVH].

Development and Testing Platform

This tool provides an environmental probe for fresh programming paradigms, message passing
schemes, and architecture-specific enhancements. miniGhost can serve as a tool for developers
to investigate various types of parallelism such as task decomposition, data distribution, and
synchronization mechanisms, when finding the best solution for specific hardware configurations
[BVH].

In general, miniGhost is a powerful toolkit, which provide the scientific computing community an
opportunity to analyze and optimize the performance of stencil-based parallel computations. It acts
to bridge the gap that exists between the performance models and the implementable performance
on current and future computing systems [BVH].

5.3.2 MiniGhost Weak Scaling Benchmark

The weak scaling benchmark tests [BVH] the behavior of the ZCom API in terms of increasing
the number of processes while keeping the work-load constant for process. This test is critical in
analyzing the response of the ZCom API in terms of the e�ciency of the system with respect to
computation and communication scaling.

5.3.3 MiniGhost Strong Scaling Benchmark

On the other hand, the strong scaling benchmark citeminighost evaluates the ability of the ZCom
API to decrease the execution time with the increase of processes when the total problem size
remains constant. The findings show the benefits of ZCom in high-load situations where productive
communication is vital for minimizing execution time.

56

5.3 MiniGhost Benchmark

Figure 5.5: Weak scaling benchmark results comparing ZCom and MPI communication methods.

Figure 5.6: Strong scaling benchmark results highlighting the performance improvements of ZCom
over standard MPI.

57

5 Performance Evaluation

5.3.4 Communication Time and Performance Report

The communication time comparison between MPI miniGhost [BVH] version and ZCom provides
ZCom with better performance in all aspects of communication: the operation of packing, shipping,
delivery and unpacking data. A comprehensive evaluation of these findings proves the superiority
of ZCom zero-copying in intra-node communications.

Figure 5.7: Communication time comparison between MPI and ZCom, showing the reduced
overhead with ZCom.

In addition, the overall performance time comparison justifies the fact that ZCom is faster that
traditional communication means, particularly with the increase in the number of processes.
Comparison of execution times under varying numbers of processes shows the best scalability and
e�ectiveness of ZCom.

5.3.5 Conclusion

The comprehensive performance evaluation using the MiniGhost benchmarks underscores ZCom’s
strengths in handling large-scale parallel processing more e�ectively than traditional MPI commu-
nication methods. ZCom showcases benefits in both weak and strong scaling scenarios, cementing
its position as a e�cient approach in the realm of high-performance computing, particularly for
applications that require frequent and intensive communication among processes.

58

6 Conclusion

The goal of this was to improve the intra-node communication in HPC systems by introducing a zero
copy API. Using XPMEM technology, ZCom provides a significant improvement of data transfer
e�ectiveness in shared memory environments by removing the extensive data replication that is com-
mon in the classical MPI-based approaches. Performance assessments made with microbenchmarks
and MiniGhost benchmark application indicate that ZCom can resolve communication overhead,
enriching scalability and performance of HPC systems.

6.1 Discussion of Limitations

With an evaluation of ZCom API, it is noticed that various technical constraints are identified
that may a�ect its universal usage and functionality in various high-performance computing
environments. In particular, ZCom requires some hardware features that could be missing on old
systems and make it di�cult to use in the legacy network. In addition, there although ZCom has a
number of performance benefits in latency reduction and scalability, these benefits are likely to
decrease for large number of nodes. The complexity in both operating and deploying ZCom is
also a major challenge, especially for simplicity and stability systems. Furthermore, complexity of
the approach and the necessity of its constant support can scare away those users who like simple,
well-documented solutions. ZCom is not only advanced over communication e�ciency in high
performance computing but also allows the consideration of research directions in the future. This
is the quest for the creation of adaptive algorithms that can sense and adapt to di�erent hardware
configurations and development of user interfaces which would facilitate easier integration and
wider spread of the applications. Such improvements would compensate for the existing limitations
and provide access to a new generation of multifunctional communications systems.

6.2 Counterarguments

Although the ZCom API provides increased benefits over traditional methods like MPI in certain
cases, sometimes the traditional methods may still be the preferred choice. For example, in
cases where the communication style is intermittent, or does not significantly a�ect the overall
performance, the overhead of introducing a zero-copy API may not be worth the change. Stability
and predictability of such environments make traditional methods real winners with their time tested
reliability and the broad support ecosystem. Additionally, traditional communication methods have
become mature and hence a level of credibility that ZCom and other new technologies are still striving
to achieve. Traditional approaches are provided with extensive documentation and community
support, which are a treasure trove of resources that ZCom lacks at this moment. In addition,
the financial and logistical impacts of new technologies such as ZCom that may need massive

59

6 Conclusion

capital flows in new hardware or software cannot be also forgotten. These characteristics make
traditional methods suitable for many organizations, especially those that are working with very tight
budgets. In considering such aspects, it is obvious that ZCom though, o�ering hopeful prospects to
the development of HPC communications, but it is also confronted with serious di�culties and
skepticism that has to be overcame. This recognition not only increases the peer-review countenance
of the research but also reveals the complexity of the choice of suitable communication technologies
in di�erent computing environments. Through considering such limitations and counter-arguments,
this study acknowledges the complex compromises HPC development is entwined with, o�ering a
balanced view crucial for the discipline’s ongoing evolution.

6.3 Future Research

Directions of research are diverse in the future and provide a large number of possibilities of further
improvement of ZCom API. The immediate steps could include enhancing the evaluation of ZCom
for a larger number of HPC systems representing various types of computational architectures
and application domains. This would give a better perspective of universality of an API and its
performance in di�erent computational environments.

Besides that, the interoperability of ZCom with the latest progresses of HPC technologies such as
top-of-the-line GPUs and new interconnects will be crucial. Such integration attempts will allow
for the assessment of how the API can evolve and function, thus establishing a strong argument on
how data-intensive activities will be handled in the upcoming computing environments.

As well, ZCom itself could be enhanced to be more (in)compatible and suitable (employable) for
standard HPC workflows. Its compatibility and user-friendliness will be improved, which would
also make it more popular among the HPC community. A hybrid communication model which
takes advantage of the zero-copy property of ZCom as well as the traditional MPI model is likely to
o�er a versatile and highly e�cient solution which suits the HPC applications of the current era
with its diversity.

6.4 Final Remarks

Essentially, the ZCom API represents a qualitative improvement in node communication e�ciency in
HPC systems. The importance of ZCom can be expected to increase as computational requirements
grow and e�orts to achieve performance optimization continue. This research success paves the
way to a higher computational power which reflects a path that High Performance Computing may
take in the future.

60

Bibliography

[BVH] R. Barrett, C. Vaughan, M. Heroux. MiniGhost: A Miniapp for exploring boundary
exchange. ���: https://www.spec.org/acce�/Docs/miniGhost.v1.0.pdf (visited
on 02/18/2024) (cit. on pp. 55, 56, 58).

[CCP+10] B. M. Chapman, T. Curtis, S. S. Pophale, S. W. Poole, J. A. Kuehn, C. Koelbel,
L. Smith. “Introducing OpenSHMEM: SHMEM for the PGAS community”. In:
International Conference on Partitioned Global Address Space Programming
Models. 2010. ���: https://api.semanticscho�ar.org/CorpusID:11871925 (cit. on
p. 34).

[For94] M. P. Forum. “MPI: A Message-Passing Interface Standard”. In: (1994) (cit. on
p. 18).

[GM13] B. Goglin, S. Moreaud. “KNEM: a Generic and Scalable Kernel-Assisted Intra-
node MPI Communication Framework”. In: Journal of Parallel and Distributed
Computing 73 (Feb. 2013), pp. 176–188. ���: 10.1016/j.jpdc.2012.09.016 (cit. on
pp. 27, 29).

[Hag11] G. Hager. Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, 2011 (cit. on pp. 25, 26).

[Has19] J. e. a. Hashmi. Design and Characterization of Shared Address Space MPI Collec-
tives on Modern Architectures. 2019. ���: https://jahanzeb-hashmi.github.io/
fi�es/ta�ks/ccgrid19.pdf (visited on 02/18/2024) (cit. on p. 28).

[HB11] M. Hübner, J. Becker. Multiprocessor system-on-chip: Hardware design and tool
integration. Springer New York, 2011, pp. 1–270. ����: 9781441964595. ���:
10.1007/978-1-4419-6460-1 (cit. on p. 17).

[HCB+18] J. M. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, D. K. Panda. “Design-
ing E�cient Shared Address Space Reduction Collectives for Multi-/Many-cores”.
In: 2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 2018, pp. 1020–1029. ���: 10.1109/IPDPS.2018.00111 (cit. on pp. 31, 32).

[HDC+09] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,
A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, R. W. Numrich. Improving
Performance via Mini-applications. Tech. rep. SAND2009-5574. Sandia National
Laboratories, 2009 (cit. on p. 55).

[Hje] N. Hjelm. xpmem @ github.com. ���: https://github.com/hje�mn/xpmem (visited
on 02/18/2024) (cit. on pp. 28, 29, 37).

61

https://www.spec.org/accel/Docs/miniGhost.v1.0.pdf
https://api.semanticscholar.org/CorpusID:11871925
https://doi.org/10.1016/j.jpdc.2012.09.016
https://jahanzeb-hashmi.github.io/files/talks/ccgrid19.pdf
https://jahanzeb-hashmi.github.io/files/talks/ccgrid19.pdf
https://doi.org/10.1007/978-1-4419-6460-1
https://doi.org/10.1109/IPDPS.2018.00111
https://github.com/hjelmn/xpmem

Bibliography

[HSG+18] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, Y. Ishikawa. “Process-
in-process: techniques for practical address-space sharing”. In: Proceedings of
the 27th International Symposium on High-Performance Parallel and Distributed
Computing. HPDC ’18. Tempe, Arizona: Association for Computing Machinery,
2018, pp. 131–143. ����: 9781450357852. ���: 10.1145/3208040.3208045. ���:
https://doi.org/10.1145/3208040.3208045 (cit. on p. 32).

[JRS16] J. Je�ers, J. Reinders, A. Sodani. “Chapter 16 - PGAS programming models”. In:
Intel Xeon Phi Processor High Performance Programming (Second Edition). Ed. by
J. Je�ers, J. Reinders, A. Sodani. Second Edi. Boston: Morgan Kaufmann, 2016,
pp. 369–382. ����: 978-0-12-809194-4. ���: https://doi.org/10.1016/B978-0-
12-809194-4.00016-8. ���: https://www.sciencedirect.com/science/artic�e/
pii/B9780128091944000168 (cit. on p. 24).

[JSCP05] H.-W. Jin, S. Sur, L. Chai, D. Panda. “LiMIC: support for high-performance MPI
intra-node communication on Linux cluster”. In: July 2005, pp. 184–191. ����:
0-7695-2380-3. ���: 10.1109/ICPP.2005.48 (cit. on pp. 27, 29).

[Lab] I. Labs. Parres/kernels: This is a set of simple programs that can be used to explore
the features of a parallel platform. ���: https://github.com/ParRes/Kerne�s
(visited on 02/18/2024) (cit. on pp. 50, 51).

[Mes23] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 4.1. Nov. 2023. ���: https://www.mpi-forum.org/docs/mpi-4.1/mpi41-
report.pdf (cit. on pp. 23, 25).

[MPI-1.1-95] MPI: A Message-Passing Interface Standard. 1995. ���: https://www.mpi-

forum.org/docs/mpi-1.1/mpi-11-htm�/mpi-report.htm� (visited on 02/14/2024)
(cit. on p. 18).

[MPI-2-97] MPI-2: Extensions to the Message-Passing Interface. 1997. ���: https://www.mpi-
forum.org/docs/mpi-2.0/mpi-20-htm�/mpi2-report.htm� (visited on 02/14/2024)
(cit. on p. 18).

[MPI-3-12] MPI: A Message-Passing Interface Standard Version 3.0. 2012. ���: https:

//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (visited on 02/14/2024)
(cit. on p. 18).

[MPI-3.1-15] MPI: A Message-Passing Interface Standard Version 3.1. 2015. ���: https:

//www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf (visited on 02/14/2024)
(cit. on p. 19).

[MPI-4-21] MPI: A Message-Passing Interface Standard Version 4.0. 2021. ���: https:

//www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf (visited on 07/20/2021)
(cit. on p. 19).

[MPICH] MPICH | High-Performance Portable MPI. ���: https://www.mpich.org/ (visited
on 02/14/2024) (cit. on p. 18).

[Open MPI] Open MPI: Open Source High Performance Computing. ���: https://www.open-
mpi.org/ (visited on 02/14/2024) (cit. on p. 18).

[OS1] MPI topic: One-sided communication. ���: https://pages.tacc.utexas.edu/
~eijkhout/pcse/htm�/mpi-onesided.htm� (visited on 07/20/2021) (cit. on p. 24).

62

https://doi.org/10.1145/3208040.3208045
https://doi.org/10.1145/3208040.3208045
https://doi.org/https://doi.org/10.1016/B978-0-12-809194-4.00016-8
https://doi.org/https://doi.org/10.1016/B978-0-12-809194-4.00016-8
https://www.sciencedirect.com/science/article/pii/B9780128091944000168
https://www.sciencedirect.com/science/article/pii/B9780128091944000168
https://doi.org/10.1109/ICPP.2005.48
https://github.com/ParRes/Kernels
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-4.1/mpi41-report.pdf
https://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html
https://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html
https://www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/mpi2-report.html
https://www.mpi-forum.org/docs/mpi-2.0/mpi-20-html/mpi2-report.html
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpich.org/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-onesided.html
https://pages.tacc.utexas.edu/~eijkhout/pcse/html/mpi-onesided.html

[OS2] One-Sided Communication. ���: https://docs.orac�e.com/cd/E19061-01/hpc.
c�uster6/819-4134-10/1-sided.htm� (visited on 02/18/2024) (cit. on p. 24).

[PF12] M. Passing, I. Forum. “MPI : A Message-Passing Interface Standard”. In: (2012)
(cit. on pp. 19, 20).

[Rab] R. Rabenseifner. One-sided communication and the MPI shared memory. Available
at: https://fs.h�rs.de/projects/par/mooc/mooc-2/mooc2-week3-4.pdf. (Visited
on 02/18/2024) (cit. on p. 30).

[SOH+98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra. MPI-The Complete
Reference, Volume 1: The MPI Core. 2nd. (Revised). Cambridge, MA, USA: MIT
Press, 1998. ����: 0262692155 (cit. on pp. 17, 19–22).

[SPH+15] M. Si, A. J. Peña, J. R. Hammond, P. Balaji, M. Takagi, Y. Ishikawa. “Casper: An
Asynchronous Progress Model for MPI RMA on Many-Core Architectures”. In:
2015 IEEE International Parallel and Distributed Processing Symposium (2015),
pp. 665–676. ���: https://api.semanticscho�ar.org/CorpusID:11659715 (cit. on
p. 33).

[SVL+15] P. Shamis, M. G. Venkata, M. G. Lopez, M. B. Baker, O. Hernandez, Y. Itigin,
M. Dubman, G. Shainer, R. L. Graham, L. Liss, Y. Shahar, S. Potluri, D. Rossetti,
D. Becker, D. Poole, C. Lamb, S. Kumar, C. Stunkel, G. Bosilca, A. Bouteiller.
“UCX: An Open Source Framework for HPC Network APIs and Beyond”. In:
2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. 2015,
pp. 40–43. ���: 10.1109/HOTI.2015.13 (cit. on pp. 27, 28).

[SVP+14] P. Shamis, M. G. Venkata, S. Poole, A. Welch, T. Curtis. “Designing a High
Performance OpenSHMEM Implementation Using Universal Common Communi-
cation Substrate as a Communication Middleware”. In: OpenSHMEM and Related
Technologies. Experiences, Implementations, and Tools. Ed. by S. Poole, O. Her-
nandez, P. Shamis. Cham: Springer International Publishing, 2014, pp. 1–13. ����:
978-3-319-05215-1 (cit. on pp. 45, 46).

[TRH00] J. Tra�, H. Ritzdorf, R. Hempel. “The implementation of MPI-2 one-sided com-
munication for the NEC SX-5”. In: SC ’00: Proceedings of the 2000 ACM/IEEE
Conference on Supercomputing. Dec. 2000, pp. 1–1. ����: 0-7803-9802-5. ���:
10.1109/SC.2000.10023 (cit. on pp. 23, 24).

[TV17] A. S. Tanenbaum, M. Van Steen. Distributed Systems. CreateSpace Independent
Publishing Platform, 2017. ����: 1543057381 (cit. on p. 17).

[Van16] R. Van der WÚngaart. The parallel research kernels, a tool for parallel systems.
2016. ���: https://www.nas.nasa.gov/assets/nas/pdf/ams/2016/AMS_20161013_
VanDerWijngaart.pdf (visited on 02/18/2024) (cit. on p. 52).

[Vie14] J. Vienne. “Benefits of Cross Memory Attach for MPI libraries on HPC Clusters”. In:
Proceedings of the 2014 Annual Conference on Extreme Science and Engineering
Discovery Environment. XSEDE ’14. Atlanta, GA, USA: Association for Computing
Machinery, 2014. ����: 9781450328937. ���: 10.1145/2616498.2616532. ���:
https://doi.org/10.1145/2616498.2616532 (cit. on pp. 27, 29).

[Wal92] D. W. Walker. “Standards for message-passing in a distributed memory environ-
ment”. In: (Aug. 1992). ���: https://www.osti.gov/bib�io/7104668 (visited on
02/14/2024) (cit. on p. 18).

https://docs.oracle.com/cd/E19061-01/hpc.cluster6/819-4134-10/1-sided.html
https://docs.oracle.com/cd/E19061-01/hpc.cluster6/819-4134-10/1-sided.html
https://fs.hlrs.de/projects/par/mooc/mooc-2/mooc2-week3-4.pdf
https://api.semanticscholar.org/CorpusID:11659715
https://doi.org/10.1109/HOTI.2015.13
https://doi.org/10.1109/SC.2000.10023
https://www.nas.nasa.gov/assets/nas/pdf/ams/2016/AMS_20161013_VanDerWijngaart.pdf
https://www.nas.nasa.gov/assets/nas/pdf/ams/2016/AMS_20161013_VanDerWijngaart.pdf
https://doi.org/10.1145/2616498.2616532
https://doi.org/10.1145/2616498.2616532
https://www.osti.gov/biblio/7104668

Declaration

I hereby declare that the work presented in this thesis is entirely
my own and that I did not use any other sources and references
than the listed ones. I have marked all direct or indirect statements
from other sources contained therein as quotations. Neither this
work nor significant parts of it were part of another examination
procedure. I have not published this work in whole or in part
before. The electronic copy is consistent with all submitted copies.

place, date, signature

	1 Introduction
	2 Background
	2.1 Multiprocessors
	2.2 Distributed Systems
	2.3 Message Passing
	2.4 Message Passing Interface (mpi)
	2.5 Remote Memory Access
	2.6 Shared Memory
	2.7 Overview of Address Space Mapping Mechanisms
	2.8 Shared Memory in MPI

	3 Related Work
	3.1 Developing Optimal Shared Address Space Reduction Collectives for Multi-/Many-core Architectures
	3.2 Contributions and Future Work
	3.3 Process-in-Process
	3.4 Casper
	3.5 OpenSHMEM

	4 Designing a zero copy shared memory api
	4.1 Address Space Mapping Mechanisms
	4.2 ZCom api Architecture
	4.3 ZCom_init
	4.4 Synchronization Mechanism
	4.5 Fortran Interface
	4.6 Comparative analysis

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Microbenchmarks
	5.3 MiniGhost Benchmark

	6 Conclusion
	6.1 Discussion of Limitations
	6.2 Counterarguments
	6.3 Future Research
	6.4 Final Remarks

	Bibliography

