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Abstract: Dynamical decoupling (DD) is a promising technique for mitigating errors in near-term
quantum devices. However, its effectiveness depends on both hardware characteristics and algorithm
implementation details. This paper explores the synergistic effects of dynamical decoupling and
optimized circuit design in maximizing the performance and robustness of algorithms on near-term
quantum devices. By utilizing eight IBM quantum devices, we analyze how hardware features
and algorithm design impact the effectiveness of DD for error mitigation. Our analysis takes into
account factors such as circuit fidelity, scheduling duration, and hardware-native gate set. We also
examine the influence of algorithmic implementation details, including specific gate decompositions,
DD sequences, and optimization levels. The results reveal an inverse relationship between the
effectiveness of DD and the inherent performance of the algorithm. Furthermore, we emphasize the
importance of gate directionality and circuit symmetry in improving performance. This study offers
valuable insights for optimizing DD protocols and circuit designs, highlighting the significance of a
holistic approach that leverages both hardware features and algorithm design for the high-quality
and reliable execution of near-term quantum algorithms.

Keywords: dynamical decoupling; quantum error mitigation; quantum circuit design; near-term
quantum devices

1. Introduction

Near-term quantum (NISQ) devices [1] hold immense potential but face hurdles in
accuracy and reliability due to inherent noise arising from environmental fluctuations,
imperfect gate operations, and qubit interactions. Moreover, limitations in qubit count
and connectivity restrict the complexity of achievable quantum circuits. Robust error
mitigation techniques [2] are therefore crucial for unlocking the full potential of NISQ
devices. Dynamical decoupling (DD) [3–6] stands out as a powerful approach for NISQ
devices due to its simplicity and low resource overhead. It mitigates decoherence errors
by applying a carefully designed sequence of control pulses during idle periods of the
qubits. These pulses effectively suppress the unwanted interaction between qubits and their
environment, protecting the desired quantum state. DD has been demonstrated in various
quantum systems, including spins [7–12], superconducting qubits [5,13,14], and trapped
ions [15]. The effectiveness of DD extends beyond decoherence suppression as it can also
mitigate crosstalk [13,16–19] and coherent errors [20].

Numerous DD sequences have been developed, with prominent examples including
Carr–Purcell (CP) [21], Carr–Purcell–Meiboom–Gill (CPMG) [22], XY4 [23–26], KDD [27],
and Uhrig dynamical decoupling (UDD) [28]. However, the effectiveness of different
sequences varies significantly [29]. Prior work has shown that the CPMG sequence out-
performs the CP sequence [4]. Additionally, higher-order sequences generally outperform
lower-order sequences [4,29], but optimizing pulse intervals within CPMG and XY4 se-
quences can achieve comparable performance [29]. In the context of the quantum approx-
imate optimization algorithm (QAOA) [30–34], DD sequences like CP, CPMG, and XY4
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significantly enhance performance, while KDD shows worse performance on IBM quantum
processing units (QPUs) [35]. Combining DD sequences with pulse-level optimization in
QAOAs can further improve performance [35]. While DD sequences mitigate errors, these
additional control pulses can also introduce errors such as gate infidelities or crosstalk. To
address this trade-off, adaptive approaches have been explored [36], which estimate the
potential benefit of DD for each qubit combination and selectively apply DD to the subset
that offers the most benefit. Furthermore, recent work has explored the use of empirical
learning schemes for enhancing DD effectiveness on quantum processors [37], leverag-
ing data-driven techniques to optimize the implementation of DD sequences, leading to
improved error suppression capabilities.

Despite significant research on DD sequences, the interplay between their effective-
ness and specific algorithm implementations on real hardware remains underexplored.
This study bridges this critical gap by investigating how factors such as transpilation
efficiency [38–42], circuit structure [43,44], and gate decompositions [44,45] influence DD
performance on IBM QPUs. By analyzing how these implementation details interact with
the chosen DD sequence, we uncover synergistic effects that enhance overall algorithm
performance on hardware. This focus on codesigning hardware and software offers deeper
insights than separate studies of DD or individual circuit optimization techniques. We
focus on the CPMG sequence due to its established effectiveness, robustness [4], and good
performance for QAOAs on IBM QPUs [35].

Our analysis of results from eight IBM QPUs demonstrates an inverse relationship
between the initial performance of the algorithm without DD and the effectiveness of DD.
While DD generally enhances performance and robustness, circuits with inherently higher
fidelity and shorter execution times benefit less from DD than those with lower initial
performance. Moreover, factors such as hardware-native gates of QPUs, the chosen gate
decomposition strategy, and the optimization level can also influence the effectiveness
of DD. Additionally, using gates with consistent directionality and maintaining circuit
symmetry during design lead to improved performance. These findings emphasize the
importance of a holistic approach that considers both hardware and software optimization
for the successful execution of algorithms with DD on NISQ devices, providing valuable
insights for optimizing DD protocols and designing more robust quantum algorithms.

This paper is structured as follows. Section 2 outlines the methodology, presenting
the benchmark circuits and metrics used to evaluate algorithm performance. Hardware
considerations and a proposed synergistic design approach combining both hardware and
algorithmic factors are also described. Section 3 then analyzes the results, exploring the
impact of various hardware factors, including circuit fidelity, schedule duration, and native
gate sets, as well as algorithmic factors, including different implementations, DD sequences,
and optimization levels. Finally, Section 4 discusses the key findings and concludes.

2. Methodology

We experimentally investigate the impact of hardware and algorithmic factors on the
effectiveness of dynamical decoupling in superconducting quantum processes. Hardware
factors, such as circuit fidelity, schedule duration, and native gate sets, define the funda-
mental capabilities of a quantum device. Conversely, algorithmic factors encompass the
design choices made during algorithm implementation (specific sequence of quantum op-
erations), error suppression strategy (selection of a DD sequence), and circuit optimization
techniques. These algorithmic choices ultimately determine how efficiently the inherent
capabilities of the hardware are utilized for optimal performance. Understanding these
factors can potentially improve the practical implementation of algorithms on near-term
quantum devices.

2.1. Benchmark Circuits and Metrics

We first present benchmark circuits used in our demonstration and metrics employed
to assess algorithm performance and DD effectiveness.
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2.1.1. QAOA for Portfolio Optimization

We employ QAOAs for portfolio optimization as benchmarks. The portfolio optimiza-
tion problem aims to select the optimal portfolio from all available options to maximize
expected returns while minimizing financial risk. The QAOA has the potential to address
this challenge [46–48]. The cost Hamiltonian, which describes the portfolio optimization
problem for n available assets, is expressed as [47]

Ĥc =
n−1

∑
i=1

n

∑
j=i+1

ci,jẐiẐj −
n

∑
i=1

kiẐi. (1)

The parameters ci,j and ki in Equation (1) depend on factors specific to the portfolio op-
timization problem, such as the covariance matrix and the return vector. In particular,
ci,j =

λ
2 (qσij + A) and ki =

λ
2

[
A(2B − n) + (1 − q)µi − q ∑n

j=1 σij

]
, where λ is the global

scaling factor, q is risk preference, σij is the covariance between assets i and j, A is the
penalty factor, B is the number of assets to be chosen, and µi is the expected return of asset i.
The terms ẐiẐj and Ẑi correspond to the ZZ interaction on qubits (i, j) and Pauli Z operator
acting on qubit i, respectively. The mixer Hamiltonian is given by [30]

Ĥm =
n

∑
i=1

X̂i, (2)

where X̂i is the Pauli X operator acting on qubit i. After a QAOA depth of p, the total
system evolves to |ψ⟩ = ∏

p
j=1 e−iγj Ĥc e−iβ j Ĥm |ψ0⟩, where |ψ0⟩ is the eigenstate of the mixer

Hamiltonian. The aim of the QAOA is to find 2p parameters (β1, ..., βp, γ1, ..., γp) that
minimize the expectation value of the cost Hamiltonian F = ⟨ψ|Ĥc|ψ⟩. We define the
approximation ratio of the QAOA as

r =
F − Fmax

F0 − Fmax
, (3)

where F0 represents the optimal value and Fmax signifies the worst-case value.
Our study uses a QAOA with qubit numbers ranging from 3 to 12 and a depth of 1.

To establish a baseline for experimental results, we present the simulation results conducted
in a noise-free environment with Qiskit’s Qasm simulator in Table 1. The version of Qiskit
used throughout this paper is 0.45.3. All data use 30,000 circuit repetitions (shots). We
observe that the approximation ratio and success probability decrease as the number of
qubits increases.

Table 1. Noise-free simulation results of the quantum approximate optimization algorithm (QAOA)
for portfolio optimization using Qiskit’s Qasm simulator with 30,000 shots.

Number of Qubits 3 4 5 6 7 8 9 10 11 12

Approximation ratio 0.9751 0.4342 0.3776 0.3734 0.3589 0.3144 0.2806 0.3241 0.2933 0.3161
Success probability 0.9747 0.1536 0.1131 0.0422 0.0227 0.0124 0.0065 0.0057 0.0018 0.0006

2.1.2. Metric Definition

To quantify the impact of noise, we introduce two normalized metrics: the normalized
approximation ratio (NAR) and the normalized success probability (NSP). These metrics
are defined as

NAR = rϵ/r0, (4)

NSP = pϵ/p0, (5)
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where rϵ and pϵ represent the approximation ratio and success probability obtained under
noise conditions. r0 and p0 denote corresponding values obtained from the simulated
noise-free case (Table 1). For the same problem instances, we use identical values of r0 and
p0 for evaluation. Due to noise, the NAR and NSP typically exhibit values less than one.
However, in rare instances, these metrics may exceed unity, indicating that specific noise
patterns or randomness enhance performance compared to the simulated noise-free case.

Without any error mitigation being applied, the NAR and NSP for algorithms execut-
ing on real noisy quantum devices are given by

NARB = rb/r0, (6)

NSPB = pb/p0, (7)

where B represents results obtained from real hardware without error mitigation. rb and
pb represent the corresponding approximation ratio and success probability, respectively.
When a specific error mitigation strategy, such as the DD sequence, is applied, the NAR
and NSP are given by

NARDD = rd/r0, (8)

NSPDD = pd/p0, (9)

where DD denotes the application of DD sequences. rd and pd represent the approximation
ratio and success probability, respectively, with error mitigation. To assess DD effectiveness
in error mitigation, we introduce two additional metrics: ∆NAR and ∆NSP. These metrics are
defined as the difference between the corresponding values obtained with and without
DD sequences:

∆NAR = NARDD − NARB, (10)

∆NSP = NSPDD − NSPB. (11)

A positive value for ∆NAR and ∆NSP indicates a successful improvement in performance
resulting from the utilization of DD sequences.

We further introduce the concept of error mitigation success rate (EMSR) to quantify
the robustness of an error mitigation strategy. EMSR is defined as the percentage of experi-
mental trials where error mitigation improved the outcome compared to no mitigation. A
high EMSR indicates consistent performance improvement while a low EMSR suggests
limited effectiveness or potential performance degradation. We employ two EMSR metrics
in this study, EMSRAR and EMSRSP, depending on whether the approximation ratio or suc-
cess probability is used. Positive values of ∆NAR and ∆NSP contribute to increased EMSRAR

and EMSRSP, respectively.

2.2. Hardware Considerations

This section provides information about the IBM quantum devices used in our ex-
periments. The QPUs with 27 qubits, namely ibmq_mumbai, ibmq_kolkata, ibm_cairo,
and ibmq_ehningen, operate using basis gates {CX, ID, RZ, SX, X}, where ID represents
identity gate, RZ performs a single qubit rotation around the z-axis, X is the NOT gate,
and SX is the square root of X. On the other hand, the QPUs with 127 qubits, specifically
ibm_kyoto, ibm_cusco, ibm_brisbane, and ibm_sherbrooke, utilize basis gates {ECR, ID,
RZ, SX, X}, where ECR is the echoed cross-resonance gate.

Figure 1a illustrates the schedule of a native CX gate on ibm_cairo. This implemen-
tation employs a single-pulse gate duration of 112 dt and a cross-resonance (CR) gate
duration of 544 dt, leading to a total duration of 1312 dt, where dt represents the system
cycle time. In contrast, Figure 1b depicts the schedule of a native ECR gate on ibm_cusco.
Here, the single-pulse and CR gate durations are 88 dt and 416 dt, respectively, resulting
in a shorter total duration of 920 dt. The CX gate is typically implemented using one ECR
gate and multiple single-qubit gates. A further decomposition of the CX gate into ECR
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and single-pulse gates at pulse level enables the elimination of single-pulse gates during
circuit optimization [44]. Additionally, CX-based IBM QPUs, where CX is the native gate,
support the operation of CX in two directions. On the other hand, ECR-based QPUs, where
ECR is the native gate, typically only support the ECR gate in one direction. Consequently,
quantum circuits designed for these latter devices need to be decomposed into sequences
of gates that include only the supported direction of the ECR.

(a)

(b)

Figure 1. Schedule of hardware-native two-qubit gates: (a) CX gate on qubit pair (0,1) of ibm_cairo,
and (b) echoed cross-resonance (ECR) gate on qubit pair (0,1) of ibm_cusco. The system cycle time
(1 dt) is 2/9 ns ≈ 0.22 ns in ibm_cairo, while it is 0.50 ns in ibm_cusco. Di represents the drive channel
acting on qubit i, and Uj is the control channel for a corresponding qubit pair (c, t) driving the control
qubit c at the frequency of the target qubit t.

2.3. Synergistic Design Approach

This section describes a synergistic design approach for maximizing the performance
and robustness of algorithms on near-term quantum devices. This approach acknowledges
the critical interplay between the hardware’s capabilities and the design choices made in
the software implementation. The quality of algorithm implementation directly affects the
performance. Key aspects include the efficiency of transpilation processes, specific gate
types used, and the overall symmetry of the algorithm structure. For instance, studies
have shown that the algorithm-oriented qubit mapping (AOQMAP) method [42] offers
advantages in transpilation for variational quantum algorithms (VQAs) [49] compared to
popular compilers such as Qiskit [50] and Tket [51] by introducing fewer two-qubit gates,
maintaining a shallower circuit depth, and promoting higher symmetry [43].

In this study, we utilize the AOQMAP method [42] to efficiently map circuits onto
hardware, aiming to minimize SWAP gates and circuit depth on linear topologies. Sub-
sequently, we examine two implementations of QAOAs for portfolio optimization on
CX-based IBM QPUs. These implementations differ in their choice of gate decompositions
within the algorithms. The first implementation, referred to as CX implementation, directly
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decomposes the gates in the QAOA into basis gates of the QPUs using Qiskit’s transpiler
with optimization level 3. In comparison, the second implementation, referred to as CZ
implementation, initially decomposes gates in algorithms into CZ and single-qubit gates.
Then, Qiskit’s transpiler with optimization level 3 is used to perform optimization and
decomposition into basis gates of QPUs. Previous studies have demonstrated that this CZ
decomposition approach outperforms CX decomposition for ZZ and ZZ-SWAP gates in the
QAOA on IBM QPUs [44]. During implementation, we also explore different optimization
level settings in Qiskit and investigate their impact. To ensure consistency in evaluations,
we employ identical benchmark circuits and parameters. Additionally, we consistently use
30,000 shots for each demonstration. Within the Qiskit framework, we default to using
optimization level 3.

We also investigate the effectiveness of two well-established DD sequences: CPMG
and XY4. As illustrated in Figure 2, the CPMG sequence applies two X pulses separated by a
delay of t

2 , with additional delays of t
4 at the beginning and end. The parameter t represents

the time interval during which the qubit remains idle, excluding the duration of single-
qubit pulses and, in the case of CPMG, two X pulses. In comparison, the XY4 sequence
utilizes two X and two Y pulses, each separated by a delay of t

4 , with additional delays of t
8

at the beginning and end. Additionally, the “alap” (as late as possible) scheduling method,
which schedules the stop time of instructions as late as possible, is used for scheduling
gates and inserting DD sequences throughout our study. Figure 3 showcases the resulting
implementations of a three-qubit QAOA with a CPMG sequence on a 27-qubit QPU
ibm_kolkata using both CX and CZ implementations. Compared to CX implementation,
CZ implementation employs all the same directed CX gates. Additionally, we observe an
X gate inserted between control qubits of CX gates in the CZ implementation, potentially
suppressing idle errors and improving performance. Moreover, CZ implementation shows
improved symmetry compared to CX implementation. By simultaneously optimizing both
hardware and software aspects through careful algorithm design, efficient transpilation
techniques, and DD sequences, it is possible to fully exploit the capabilities of near-term
quantum algorithms.

Y YX X X X

(a) (b)

Figure 2. Two types of dynamical decoupling (DD) sequences: (a) Carr–Purcell–Meiboom–Gill
(CPMG) and (b) XY4. The delay time t represents the idle time of the qubit minus the duration of the
corresponding X or Y pulses.

(a)

(b)

Figure 3. Two implementations of a three-qubit QAOA: (a) CX implementation and (b) CZ imple-
mentation, where both are decomposed and optimized using Qiskit’s transpiler with optimization
level 3. Highlighted yellow boxes represent CPMG sequences.
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3. Results Analysis

This section delves into the examination of multiple factors that influence algorithm
performance and DD effectiveness. These factors are classified into two main categories:
hardware and algorithmic. More specifically, we thoroughly analyze the influence of
circuit fidelity, schedule duration, and native gate set on the performance of DD sequences.
Furthermore, we explore the impact of algorithm implementation, choice of DD sequence,
and level of optimization on algorithm performance and DD effectiveness. The objective
of these analyses is to provide invaluable insights into the design and optimization of
algorithm implementation for achieving efficient execution on quantum devices.

3.1. Impact of Hardware Factors

Our investigation begins by examining how hardware characteristics affect algorithm
performance and DD effectiveness. The CPMG sequence is chosen for our study due to
its widespread adoption and relative simplicity, allowing us to gain fundamental insights.
We analyze these factors using extensive datasets. The experiments involve varying the
qubit counts from 3 to 12 and investigating different combinations of algorithm imple-
mentations, including the CX and CZ versions of the QAOA, as well as optimization
levels 1 and 3 within the Qiskit framework. We conduct these experiments using eight
QPUs, which consist of four 27-qubit devices—ibmq_mumbai, ibmq_kolkata, ibm_cairo,
and ibmq_ehningen—and four 127-qubit devices: ibm_kyoto, ibm_cusco, ibm_brisbane,
and ibm_sherbrooke. These extensive datasets provide a solid foundation for analyzing
the impact of hardware factors on algorithm performance.

3.1.1. Circuit Fidelity

We first explore the impact of circuit fidelity on the performance. The fidelity of
a circuit qc, denoted as Fqc, measures the agreement between the actual operation of
a quantum circuit and its ideal operation. The circuit fidelity can be mathematically
represented as

Fqc = ∏
Gs∈qc

fGs ∏
Gt∈qc

fGt ∏
Gm∈qc

fGm , (12)

where fGs , fGt , and fGm denote fidelities of a single-qubit gate Gs, a two-qubit gate Gt,
and the measurement Gm, respectively, in the circuit. We focus on circuits with fidelities
between 0.01 and 1. This broader range of fidelities establishes a solid basis for investigating
the effectiveness of DD sequences under realistic noise conditions. We analyze various
metrics defined in Section 2.1.2, including NARB, NARDD, NSPB, NSPDD, ∆NAR, and ∆NSP.
The measured data and the corresponding circuit fidelity are fitted using a linear function.
The correlation coefficient Cr and p-value are computed to assess the quality of linear
approximation. Cr measures the strength and direction of the linear relationship, ranging
from −1 (perfect negative correlation) to 1 (perfect positive correlation), with 0 indicating no
association. The absolute value of Cr reflects the correlation strength: very strong (0.9–1.0),
strong (0.7–0.9), moderate (0.4–0.7), weak (0.2–0.4), and very weak (0–0.2). It is important to
note that correlation does not imply causation. The p-value is a complementary statistical
measure that evaluates the strength of evidence against the null hypothesis of no correlation.
A low p-value (typically below 0.05) suggests a statistically significant correlation, possibly
not due to random chance. Linear fitting builds on correlation by determining the best-fit
line equation, enabling predictions based on the observed relationship.

Figure 4 depicts a general trend of improved algorithm performance with increasing
circuit fidelity. DD sequences enhance both the NAR and NSP on average. However, the
NSP exhibits a wider range of variation for a given circuit fidelity compared to the approx-
imation ratio, particularly at lower fidelities. Table 2 presents the average value, fitted
function, correlation coefficient, and p-value for each metric. A stronger correlation is ob-
served between NAR and circuit fidelity compared to NSP, suggesting a more pronounced
dependence of NAR on fidelity. In contrast, the correlation between ∆NSP and circuit fidelity
is very weak, as evidenced by the low value of Cr and high p-value. This suggests that
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the observed decrease in DD effectiveness might be due to random fluctuations or other
factors not captured by circuit fidelity alone. The average improvement in NAR and NSP
due to DD sequences is approximately 0.08. Moreover, the negative coefficients of the
fitted lines for ∆NAR and ∆NSP suggest a potential decrease in DD effectiveness as circuit
fidelity increases.

0.4

0.6

0.8

1.0
NA

R
NARB
NARDD

NARB Fit
NARDD Fit

0.0 0.2 0.4 0.6 0.8 1.0
Circuit fidelity

0.0
0.2
0.4

NA
R

(a)

(c) 0.0

0.5

1.0

1.5

NS
P

NSPB
NSPDD

NSPB Fit
NSPDD Fit

0.0 0.2 0.4 0.6 0.8 1.0
Circuit fidelity

0.5
0.0
0.5

NS
P

(b)

(d)

Figure 4. Impact of circuit fidelity on algorithm performance and DD effectiveness: (a) normalized
approximation ratio (NAR), (b) normalized success probability (NSP), (c) improvement in NAR after
applying DD (∆NAR), and (d) improvement in NSP after applying DD (∆NSP). Higher values of NARB,
NARDD, NSPB, and NSPDD indicate better performance on actual quantum devices. Values exceeding
unity indicate that the performance achieved on the IBM quantum hardware surpasses the results
obtained from the noise-free simulation. Positive values of ∆NAR and ∆NSP demonstrate improvements
due to DD. The CPMG sequence is used for all data points. Each line in the graph represents a linear
fit of the data. The reported EMSRAR and EMSRSP are 85.55% and 66.8%, respectively.

Table 2. Parameters derived from the analysis of Figure 4.

Metric Mean Fit Function Correlation Coefficient p-Value

NARB 0.610 y = 0.572x + 0.317 0.809 0
NARDD 0.687 y = 0.506x + 0.430 0.827 0
NSPB 0.556 y = 0.558x + 0.270 0.530 0
NSPDD 0.631 y = 0.537x + 0.358 0.521 0

∆NAR 0.077 y = −0.065x + 0.111 −0.209 0.00075
∆NSP 0.075 y = −0.021x + 0.086 −0.027 0.66997

3.1.2. Schedule Duration

We now investigate the influence of schedule duration τ and, in particular, the loga-
rithmic transformation of schedule duration ln(τ/dt) on algorithm performance and DD
effectiveness. Schedule duration reflects the total time required to execute a quantum circuit
and depends on the number and execution time of individual gates. Shorter durations
potentially improve circuit fidelity by reducing the system’s exposure to decoherence errors,
but achieving them necessitates faster gates, which can be hardware-limited.

Figure 5 depicts the impact of ln(τ/dt) on the defined metrics using the same datasets
as in Figure 4. We observe that the algorithm performance degrades with increasing sched-
ule duration, while DD effectiveness improves. However, ∆NSP exhibits larger fluctuations
for longer durations, suggesting that while DD sequences mitigate decoherence errors,
potentially improving performance at longer durations, they could also introduce other
error mechanisms, such as operation errors, that counteract this improvement. Table 3
summarizes corresponding parameters. The coefficients of the linear function for NARB,
NARDD, NSPB, and NSPDD indicate a suppressed decay in performance with increasing
schedule duration by applying DD sequences. The correlation coefficients between these
metrics and ln(τ/dt) further support the effectiveness of DD sequences in reducing the
dependence of performance (both NAR and NSP) on schedule duration. ∆NAR exhibits
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a statistically weak correlation with ln(τ/dt), while ∆NSP shows a very weak correlation.
This observation aligns with the findings for circuit fidelity. However, ∆NSP appears more
sensitive to schedule duration compared to circuit fidelity, as indicated by a larger absolute
correlation coefficient (|Cr|) and lower p-value.

Table 3. Parameters derived from the analysis of Figure 5.

Metric Fit Function Correlation Coefficient p-Value

NARB y = −0.238x + 3.136 −0.731 0
NARDD y = −0.196x + 2.764 −0.691 0
NSPB y = −0.254x + 3.253 −0.524 0
NSPDD y = −0.221x + 2.975 −0.464 0

∆NAR y = 0.042x − 0.372 0.295 0
∆NSP y = 0.033x − 0.278 0.092 0.14281
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NARDD

NARB Fit
NARDD Fit
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(a)
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0.5
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P

(b)

(d)

Figure 5. Influence of logarithmic transformation of circuit schedule duration (ln(τ/dt)) on algorithm
performance and DD effectiveness with the same datasets as in Figure 4: (a) NAR, (b) NSP, (c) ∆NAR,
and (d) ∆NSP.

Figure 6a–d illustrate the impact of circuit fidelity and schedule duration on NARDD,
NSPDD, ∆NAR, and ∆NSP, respectively. As observed in Figure 6a, NARDD exhibits degradation
with increasing logarithmic schedule duration (ln(τ/dt)) and decreasing circuit fidelity.
High performance is concentrated in the region where the schedule duration τ is below
e10.5dt and circuit fidelity surpasses 0.5. Conversely, low performance is primarily observed
for τ exceeding e10.5dt and fidelities below 0.5. A similar trend is evident for NSPDD in
Figure 6b. However, unlike NARDD, achieving a high NSPDD value remains feasible even
for longer schedule durations and lower fidelities. This suggests that NSPDD is less sensitive
to these factors compared to NARDD. Figure 6c,d further demonstrate the effectiveness of
DD sequences, particularly at longer durations. This is potentially due to the ability of DD
sequences to mitigate decoherence errors that become more prominent at these timescales.
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Figure 6. Cont.
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Figure 6. Influence of circuit fidelity and ln(τ/dt) on algorithm performance and DD effectiveness:
(a) NARDD, (b) NSPDD, (c) ∆NAR, and (d) ∆NSP.

3.1.3. Native Gate Sets

This section explores the performance of quantum algorithms implemented on two
distinct sets of IBM QPUs. The first set comprises four 27-qubit devices utilizing the CX
gate as their native two-qubit gate, while the second set consists of four 127-qubit devices
employing the ECR gate as their native two-qubit gate.

Benchmark results obtained from the two QPU sets are presented in Figure 7. Table 4
summarizes average values of metrics and parameters derived from the linear fits of these
metrics against the number of qubits. As shown in Figure 7a,b, applying DD sequences
generally improves the NAR and NSP, respectively, for both native gate sets. The highest
performance is achieved with NARECR

DD and NSPECR
DD , which leverages ECR-based QPUs and

incorporates DD sequences. Moreover, QPUs utilizing the ECR gate exhibit consistently
higher baseline performance, NARECR

B and NSPECR
B , compared to those with the CX gate,

NARCX
B and NSPCX

B , even surpassing those with DD sequences, NARCX
DD, and NSPCX

DD. This
observation suggests that the selection of QPUs may be more critical for achieving optimal
performance than relying solely on DD techniques. As shown in Figure 7c,d, DD effective-
ness improves as the qubit count increases for both gate sets. Moreover, the CX gate set
exhibits higher DD effectiveness than the ECR gate set. As illustrated in Figure 7e,f, the ECR
gate produces an overall higher circuit fidelity and lower schedule duration, potentially
contributing to higher performance. Analyzing the proportion of positive outcomes in the
experimental data presented in Figure 7c,d, we observe that the reported values of EMSRAR

and EMSRSP are 92.5% and 72.5% for the CX gate, respectively, whereas the corresponding
values are 75% and 62.5%, respectively, for the ECR gate, suggesting that DD sequences are
more robust in mitigating errors for the CX gate set.

The correlation coefficient presented in Table 4 reveals a very strong negative corre-
lation between NARECR

DD and the number of qubits compared to NARECR
B . Similarly, a very

strong negative correlation is observed between circuit fidelity and qubit count for both
CX and ECR gate sets, indicating a significant decrease in circuit fidelity as the number
of qubits increases. Moreover, we observe a weaker correlation between NSP and qubit
number compared to NAR, implying that the impact of qubit count on success probability
is less pronounced than its effect on approximation ratio. Additionally, the high p-values
for ∆ECR

NAR and ∆ECR
NSP suggest that the effectiveness of DD sequences for ECR gates is more

susceptible to random fluctuations. This can be attributed to the interplay between the
intended decoherence suppression capabilities of DD sequences and the additional gate
errors that they introduce. As shown in Figure 7e,f, circuits utilizing ECR gates demon-
strate higher fidelities while requiring shorter execution times. The inherent advantage
of shorter circuits may limit the potential for further enhancement through the use of DD
sequences. In such cases, incorporating extra DD pulses could even lead to a decrease in
overall algorithm performance.



Entropy 2024, 26, 586 11 of 20

0.4

0.6

0.8

1.0

NA
R

NARCX
B

NARCX
DD

NARECR
B

NARECR
DD

NARCX
B  Fit

NARCX
DD Fit

NARECR
B  Fit

NARECR
DD  Fit

0.00

0.25

0.50

NA
R

CX ECR CX Fit ECR Fit

4 6 8 10 12
Number of qubits

0.0

0.5

1.0

Ci
rc

ui
t f

id
el

ity

CX ECR CX Fit ECR Fit

(a)

(c)

(e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NS
P

NSPCX
B

NSPCX
DD

NSPECR
B

NSPECR
DD

NSPCX
B  Fit

NSPCX
DD Fit

NSPECR
B  Fit

NSPECR
DD  Fit

0.0

0.5

NS
P

CX ECR CX Fit ECR Fit

4 6 8 10 12
Number of qubits

9

10

11

12

ln
(

/d
t)

CX ECR CX Fit ECR Fit

(b)

(d)

(f)

Figure 7. Comparison of two hardware-native gate sets: {CX, ID, RZ, SX, X} and {ECR, ID, RZ, SX,
X}, denoted as CX and ECR gate sets, respectively. Results obtained using four 27-qubit quantum
processing units (QPUs) ibmq_mumbai, ibmq_kolkata, ibm_cairo, and ibmq_ehningen for the CX
gate set, and four 127-qubit QPUs ibm_kyoto, ibm_cusco, ibm_brisbane, and ibm_sherbrooke for
the ECR gate set: (a) NAR, (b) NSP, (c) ∆NAR, (d) ∆NSP, (e) circuit fidelity, and (f) ln(τ/dt). The CPMG
sequence is used for all data points. Each line represents a linear fit to the corresponding data.

Table 4. Parameters derived from the analysis of Figure 7.

Metric Mean Fit Function Correlation Coefficient p-Value

NARCX
B 0.548 y = −0.056x + 0.967 −0.832 0

NARCX
DD 0.656 y = −0.047x + 1.010 −0.812 0

NARECR
B 0.712 y = −0.043x + 1.033 −0.766 0

NARECR
DD 0.771 y = −0.037x + 1.052 −0.911 0

NSPCX
B 0.464 y = −0.068x + 0.976 −0.678 0

NSPCX
DD 0.582 y = −0.051x + 0.967 −0.504 0.00092

NSPECR
B 0.618 y = −0.056x + 1.041 −0.579 0.00009

NSPECR
DD 0.716 y = −0.047x + 1.072 −0.529 0.00044

∆CX
NAR 0.108 y = 0.009x + 0.043 0.27 0.09252

∆ECR
NAR 0.059 y = 0.005x + 0.019 0.167 0.30429

∆CX
NSP 0.118 y = 0.017x − 0.008 0.277 0.08407

∆ECR
NSP 0.098 y = 0.009x + 0.031 0.108 0.50688

Circuit fidelity (CX) 0.539 y = −0.088x + 1.195 −0.984 0
Circuit fidelity (ECR) 0.594 y = −0.082x + 1.211 −0.975 0
ln(τ/dt) (CX) 10.703 y = 0.188x + 9.294 0.891 0
ln(τ/dt) (ECR) 10.577 y = 0.138x + 9.543 0.791 0

Our demonstrations on eight IBM QPUs highlight the importance of circuit fidelity,
schedule duration, and DD sequences in optimizing algorithm performance. As circuit
fidelity decreases and schedule duration increases, DD sequences become increasingly
important for mitigating errors and identifying optimal solutions. Furthermore, the results
suggest that ECR-based QPUs offer advantages over CX-based QPUs. This is primarily
due to the inherently shorter schedule durations and higher circuit fidelities associated
with ECR gates. However, CX-based QPUs benefit more significantly from DD sequences
in terms of error mitigation.
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3.2. Impact of Algorithmic Factors

This section investigates the influence of algorithmic factors on the algorithm perfor-
mance and DD effectiveness. We focus on three key aspects: algorithm implementations,
DD sequence types, and circuit optimization levels.

3.2.1. Algorithm Implementations

We compare the performance of CX and CZ implementations of the QAOA on four
27-qubit IBM QPUs, as detailed in Section 2.3. The CPMG sequence is consistently utilized
throughout this analysis. As shown in Figure 8a,b, CZ implementation with DD sequences
achieves the highest average values for both the NAR (NARCZ

DD) and NSP (NSPCZ
DD). How-

ever, for the NSP at qubit counts exceeding 9, CZ implementation without DD sequences,
NSPCZ

B , outperforms that with DD sequences, NSPCZ
DD, potentially due to the introduction

of significant errors by DD sequences themselves. Furthermore, CX implementation ex-
hibits increasing DD effectiveness as the qubit number grows (Figure 8c,d), whereas ∆NSP

for CZ implementation exhibits a slight decrease. Additionally, EMSRAR and EMSRSP are
consistently higher for CX implementation (92.5% and 80%, respectively) compared to CZ
implementation (75% and 57.5%, respectively), suggesting a higher robustness of DD se-
quences for CX implementation. As depicted in Figure 8e, both CX and CZ implementations
exhibit comparable circuit fidelities. For a larger number of qubits, CX implementation
even achieves slightly higher fidelities. Moreover, CX implementation demonstrates a
consistently shorter schedule duration compared to CZ implementation (Figure 8f). This
difference in schedule duration is attributed to the increased number of single-qubit gates
required by CZ implementation (details in Figure 3).
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Figure 8. Comparison of CX and CZ implementations of QAOA across four 27-qubit IBM QPUs
ibmq_mumbai, ibmq_kolkata, ibm_cairo, and ibmq_ehningen: (a) NAR, (b) NSP, (c) ∆NAR, (d) ∆NSP,
(e) circuit fidelity, and (f) ln(τ/dt). The CPMG sequence is used for all data points. Each line
represents a linear fit of the data.

Table 5 summarizes the average value of each metric along with the linear fit param-
eters extracted from Figure 8. The negative coefficient associated with ∆CZ

NSP suggests a
decrease in DD effectiveness, as measured by success probability, with an increasing qubit
count for CZ implementation. This behavior can be attributed to the intricate interplay
between the optimization landscape and gate errors. As the number of qubits involved in-
creases, the cumulative error introduced by DD sequences becomes more pronounced. This
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significantly alters the optimization landscape, rendering the pre-optimized parameters of
the QAOA in the noiseless case no longer suitable. Furthermore, correlation coefficients
between the NAR (NARB and NARDD) and qubit count reveal that applying DD sequences
weakens the correlation for CX implementation while strengthening it for CZ implementa-
tion. This trend is also observed for NSPB and NSPDD. An additional observation is the high
p-values associated with ∆CZ

NAR and ∆CZ
NSP, indicating the potential dominance of random

fluctuations in these metrics for CZ implementation.

Table 5. Parameters derived from the analysis of Figure 8.

Metric Mean Fit Function Correlation Coefficient p-Value

NARCX
B 0.548 y = −0.056x + 0.967 −0.832 0

NARCX
DD 0.656 y = −0.047x + 1.010 −0.812 0

NARCZ
B 0.638 y = −0.049x + 1.007 −0.850 0

NARCZ
DD 0.691 y = −0.047x + 1.041 −0.885 0

NSPCX
B 0.464 y = −0.068x + 0.976 −0.678 0

NSPCX
DD 0.582 y = −0.051x + 0.967 −0.504 0.00092

NSPCZ
B 0.635 y = −0.041x + 0.940 −0.473 0.00208

NSPCZ
DD 0.653 y = −0.056x + 1.071 −0.589 0.00006

∆CX
NAR 0.108 y = 0.009x + 0.043 0.27 0.09252

∆CZ
NAR 0.053 y = 0.003x + 0.034 0.109 0.50206

∆CX
NSP 0.118 y = 0.017x − 0.008 0.277 0.08407

∆CZ
NSP 0.018 y = −0.015x + 0.132 −0.202 0.21130

Circuit fidelity (CX) 0.539 y = −0.088x + 1.195 −0.984 0
Circuit fidelity (CZ) 0.527 y = −0.089x + 1.195 −0.977 0
ln(τ/dt) (CX) 10.703 y = 0.188x + 9.294 0.891 0
ln(τ/dt) (CZ) 10.799 y = 0.192x + 9.360 0.901 0

The results suggest that although CX implementation offers more advantages in
terms of DD effectiveness, the higher performance of CZ implementation highlights the
significance of circuit structure in executing the QAOA. In certain instances, the inherent
advantage of a more symmetrical circuit structure, as exhibited by CZ implementation,
can outweigh the benefits of strong DD mitigation achieved with CX implementation.
However, the optimal selection of gate decomposition ultimately relies on the specific
algorithm being implemented, the hardware capabilities available, and the desired balance
between overhead caused by DD and potential performance gains.

3.2.2. DD Sequences

This section evaluates the performance of two DD sequences, CPMG and XY4, for mit-
igating decoherence errors during QAOA execution with CX implementation. The evalua-
tion leverages data from seven IBM QPUs. XY4, which employs four single-qubit pulses,
might be more effective for qubits with extended idle times than CPMG, which utilizes
two single-qubit pulses. While DD sequences may introduce crosstalk errors, the use of the
same transpiled circuits minimizes the impact of this potential crosstalk on our evaluation.

Figure 9a,b show that both CPMG and XY4 contribute to improved algorithm perfor-
mance. While CPMG and XY4 achieve comparable NAR values, XY4 exhibits a better NSP
for a larger number of qubits, but with noticeable fluctuations. CPMG and XY4 demonstrate
comparable DD effectiveness for a small number of qubits (Figure 9c,d), with XY4 showing
a slight advantage for larger qubit counts. However, CPMG exhibits greater robustness,
as evidenced by its higher EMSRAR (84.29%) and EMSRSP (75.71%) compared to XY4’s
values (67.14% and 64.29%, respectively). Figure 9e,f illustrate comparable circuit fidelity
and schedule duration for both CPMG and XY4. As before, the data are fitted with a linear
function. The resulting parameters are summarized in Table 6. The coefficients of the
linear function suggest that both CPMG and XY4 effectively suppress the decrease in NAR
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and NSP as the qubit count increases. The correlation coefficients and p-values suggest a
stronger correlation between ∆XY4

NAR and qubit count compared to ∆CPMG
NAR , ∆XY4

NSP, and ∆CPMG
NSP .
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Figure 9. Comparison of CPMG and XY4 sequences across seven IBM QPUs ibmq_mumbai,
ibmq_kolkata, ibm_cairo, ibmq_ehningen, ibm_kyoto, ibm_cusco, and ibm_brisbane: (a) NAR,
(b) NSP, (c) ∆NAR, (d) ∆NSP, (e) circuit fidelity, and (f) ln(τ/dt). Each line represents a linear fit of the
data.

Table 6. Parameters derived from the analysis of Figure 9.

Metric Mean Fit Function Correlation Coefficient p-Value

NARCPMG
B 0.610 y = −0.050x + 0.986 −0.749 0

NARCPMG
DD 0.699 y = −0.044x + 1.029 −0.802 0

NARXY4
B 0.6 y = −0.052x + 0.992 −0.752 0

NARXY4
DD 0.697 y = −0.043x + 1.019 −0.750 0

NSPCPMG
B 0.525 y = −0.061x + 0.986 −0.613 0

NSPCPMG
DD 0.629 y = −0.051x + 1.009 −0.513 0.00001

NSPXY4
B 0.509 y = −0.057x + 0.940 −0.591 0

NSPXY4
DD 0.648 y = −0.044x + 0.975 −0.373 0.00148

∆CPMG
NAR 0.09 y = 0.006x + 0.042 0.189 0.11748

∆XY4
NAR 0.097 y = 0.009x + 0.027 0.23 0.05502

∆CPMG
NSP 0.104 y = 0.011x + 0.023 0.144 0.23425

∆XY4
NSP 0.139 y = 0.014x + 0.035 0.116 0.33818

Circuit fidelity (CPMG) 0.555 y = −0.086x + 1.201 −0.979 0
Circuit fidelity (XY4) 0.55 y = −0.088x + 1.209 −0.981 0
ln(τ/dt) (CPMG) 10.589 y = 0.165x + 9.354 0.851 0
ln(τ/dt) (XY4) 10.586 y = 0.163x + 9.360 0.858 0

The results indicate that DD sequences are generally recommended for improving
circuit performance. They allow for achieving acceptable results in a wider range of circuits.
For instance, the QAOA with DD can reach higher NAR values for more qubits. However,
the effectiveness and robustness of DD sequences can vary. While XY4 offers slightly
better performance improvements in terms of NAR and NSP, CPMG demonstrates higher
robustness as measured by EMSR. This highlights the importance of considering both
performance gains and mitigation robustness when choosing a DD sequence.
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3.2.3. Optimization Levels

We investigate the influence of optimization levels on the performance and DD ef-
fectiveness using five IBM QPUs. Two optimization levels within Qiskit’s transpiler are
considered: level 1 (Opt1) and level 3 (Opt3), representing the default and highest settings,
respectively. It is worth noting that different optimization levels do not affect the number
of two-qubit gates in our demonstration. This is because we are considering benchmark cir-
cuits that have already undergone the AOQMAP approach [42], which effectively ensures
adherence to connectivity constraints and eliminates the need for additional SWAP gates.
In our case, different optimization levels influence the selected qubits for circuit execution
and the count of single-qubit gates, which affects the circuit fidelity and schedule duration.
The CPMG sequence and CX implementation of the QAOA are employed throughout
this analysis.

Figure 10a,b demonstrate that Opt3 with DD sequences achieves the highest overall
performance in terms of NAR and NSP, followed by Opt1 with DD sequences. Without error
mitigation, Opt3 outperforms Opt1 for all tested qubit counts in terms of NAR, whereas,
for NSP, Opt3 exhibits an advantage only for a small number of qubits, with comparable
performance achieved at larger qubit counts. The average improvement in NAR due to DD
(∆NAR) is generally higher for Opt1 compared to Opt3 (Figure 10c). However, for NSP, DD
initially benefits Opt1 more, but this advantage shifts toward Opt3 for larger qubit counts
(Figure 10d). Furthermore, the reported average EMSRAR and EMSRSP are 92% and 74% for
Opt1, respectively, compared to 80% and 60% for Opt3, suggesting a higher robustness of
DD for Opt1. It is important to note that Opt3 exhibits higher circuit fidelity (Figure 10e) and
a shorter schedule duration (Figure 10f), which are crucial for high algorithm performance.
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Figure 10. Comparison of optimization level 1 (Opt1) and optimization level 3 (Opt3) across five
IBM QPUs ibmq_kolkata, ibm_cairo, ibmq_ehningen, ibm_cusco, and ibm_kyoto: (a) NAR, (b) NSP,
(c) ∆NAR, (d) ∆NSP, (e) circuit fidelity, and (f) ln(τ/dt). The CPMG sequence is used for all data points.
Each line represents a linear fit of the data.

The detailed linear fit parameters for the optimization levels are provided in Table 7.
While DD effectively mitigates the decrease in NAR for both Opt1 and Opt3 with increasing
qubits, its impact on NSP differs. For Opt3, DD suppresses the decrease in NSP, whereas,
for Opt1, it appears to exacerbate the decay. The correlation between NSP and qubit count
for Opt1 is very weak (low Cr and high p-value), suggesting minimal influence from qubit
count on NSP for this optimization level. In contrast, Opt1 prioritizes schedule duration,
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exhibiting a stronger correlation with qubit count, while Opt3 prioritizes circuit fidelity,
showing a stronger correlation between fidelity and qubit count.

Table 7. Parameters derived from the analysis of Figure 10.

Metric Mean Fit Function Correlation Coefficient p-Value

NAROpt1
B 0.554 y = −0.052x + 0.946 −0.891 0

NAROpt1
DD 0.657 y = −0.046x + 1.004 −0.886 0

NAROpt3
B 0.618 y = −0.048 + 0.982 −0.720 0

NAROpt3
DD 0.688 y = −0.045x + 1.023 −0.770 0

NSPOpt1
B 0.509 y = −0.050x + 0.885 −0.596 0

NSPOpt1
DD 0.589 y = −0.055x + 0.998 −0.667 0

NSPOpt3
B 0.536 y = −0.060x + 0.988 −0.586 0.00001

NSPOpt3
DD 0.606 y = −0.050x + 0.981 −0.471 0.00056

∆Opt1
NAR 0.103 y = 0.006x + 0.058 0.218 0.12785

∆Opt3
NAR 0.069 y = 0.004x + 0.041 0.126 0.38513

∆Opt1
NSP 0.08 y = −0.004x + 0.113 −0.065 0.65396

∆Opt3
NSP 0.07 y = 0.010x − 0.007 0.136 0.34466

Circuit fidelity (Opt1) 0.417 y = −0.067x + 0.919 −0.729 0
Circuit fidelity (Opt3) 0.559 y = −0.087x + 1.209 −0.973 0
ln(τ/dt) (Opt1) 10.540 y = 0.183x + 9.168 0.919 0
ln(τ/dt) (Opt3) 10.475 y = 0.172x + 9.186 0.901 0

This analysis demonstrates a trade-off between the optimization level and DD effec-
tiveness. While Opt3 offers superior overall performance with DD sequences, Opt1 exhibits
higher DD effectiveness. Furthermore, DD sequences become increasingly beneficial for
Opt3 at larger qubit counts for finding optimal solutions.

4. Discussion and Conclusions

Our comprehensive study, conducted on eight IBM quantum devices, reveals that
the application of dynamical decoupling (DD) sequences can significantly enhance the
performance and robustness of algorithms on near-term quantum devices. However,
the effectiveness of DD sequences varies depending on hardware and algorithmic factors.
A key finding is the observed inverse relationship between DD effectiveness and the
original performance of algorithms without error mitigation. This implies that algorithms
with higher inherent performance (measured without DD sequences) exhibit lower DD
effectiveness. For instance, ECR-based QPUs offer superior native performance but reduced
DD effectiveness compared to CX-based QPUs. Similarly, the CZ implementation of a
QAOA exhibits higher native algorithm performance but lower average DD effectiveness
compared to CX implementation. Moreover, optimization level 3 produces higher algorithm
performance, but level 1 exhibits higher DD effectiveness. This inverse behavior can be
attributed to the fact that algorithms with high performance typically have a lower intrinsic
error rate, including the decoherence errors targeted by DD sequences. Furthermore,
the introduction of DD pulse sequences can lead to new gate operation errors that decrease
algorithm performance and potentially limit their effectiveness for certain algorithms.

DD sequences are typically more effective for algorithms with lower fidelity and a
longer schedule duration, but their impact on approximation ratio and success probability
differs. The results indicate that while algorithms with lower circuit fidelity struggle
to achieve high approximation ratio values, the application of DD sequences allows for
achieving the simulated success probability. This finding suggests a potential methodology
for obtaining the desired probabilities by studying different algorithm implementations
and DD sequences and selecting the measure that minimizes system energy.

Table 8 summarizes the observed effects of investigated hardware and algorithm
factors on the effectiveness and robustness of DD. Without error mitigation, the ECR native
gate set achieves the highest average value of normalized approximation ratio (NARB),
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while the CZ implementation of the QAOA exhibits the highest normalized success proba-
bility (NSPB). However, when applying DD error mitigation, the CX native gate set and CX
implementation of the QAOA demonstrate the greatest increase in NAR, while the XY4
sequence leads to the most significant NSP improvement. Additionally, the linear fit slope
coefficients suggest that circuit fidelity has a stronger influence on approximation ratio,
whereas schedule duration more significantly impacts success probability. Furthermore,
as the qubit count increases, the CX gate set, CX implementation, and XY4 sequence benefit
more from DD mitigation compared to the ECR gate set, CZ implementation, and CPMG
sequence. Notably, the CX implementation exhibits the highest overall robustness for the
DD strategy, followed by the CX gate set and circuit optimization level 1 (Opt1).

Table 8. Impact of hardware and algorithm factors on DD effectiveness and robustness.

Factor Mean Slope Coefficient EMSR
NARB ∆NAR NSPB ∆NSP ∆NAR ∆NSP EMSRAR EMSRSP

Circuit fidelity 0.610 0.077 0.556 0.075 −0.065 −0.021 85.55% 66.80%Schedule duration 0.042 0.033
CX gate set 0.548 0.108 0.464 0.118 0.009 0.017 92.50% 72.50%
ECR gate set 0.712 0.059 0.618 0.098 0.005 0.009 75.00% 62.50%
CX implementation 0.548 0.108 0.464 0.118 0.009 0.017 92.50% 80.00%
CZ implementation 0.638 0.053 0.635 0.018 0.003 −0.015 75.00% 57.50%
CPMG sequence 0.610 0.090 0.525 0.104 0.006 0.011 84.29% 75.71%
XY4 sequence 0.600 0.097 0.509 0.139 0.009 0.014 67.14% 64.29%
Opt1 0.554 0.103 0.509 0.080 0.006 −0.004 92.00% 74.00%
Opt3 0.618 0.069 0.536 0.070 0.004 0.010 80.00% 60.00%

One significant reason for the higher performance of algorithms on ECR-based QPUs
is the inherently higher circuit fidelity and shorter schedule duration. However, another
potential factor could be the inherent advantages of ECR gates. In these devices, ECR gates
are only allowed for one direction, meaning that any two-qubit gate is directly decomposed
into ECR gates with the same direction on the qubit pair. While the hardware-native CX gate
also has a native direction, the reverse direction is supported, requiring additional single-
qubit gates and the hardware-native CX gate for implementation. Directly decomposing
algorithms into one-directional ECR gates could be more advantageous than using CX gates
with bidirectional capability at the gate level and then transforming them into native CX
gates at the hardware pulse level. A similar trend is observed for CZ implementation, which
produces a higher algorithm performance than CX implementation. The CX gate is directed,
whereas the CZ gate is undirected, allowing for the decomposition of all two-qubit gates
with one directed CZ gate on one or more qubit pairs. Utilizing gates in the same direction
could lead to a higher symmetry in the circuit, both in terms of single- and two-qubit
gates, potentially contributing to error suppression and improved algorithmic performance.
This highlights the importance of considering native gate properties at the pulse level
and maintaining circuit structure symmetry during algorithm design. Our findings hold
broad applicability across various quantum algorithms, including the variational quantum
eigensolver (VQE) [52,53]. Prioritizing native gates and maintaining circuit symmetry
during VQE and other quantum algorithm executions can enhance performance and
mitigate errors across diverse quantum computing platforms.

In conclusion, this study demonstrates the significant impact of several factors on
algorithm performance and the effectiveness of error mitigation across eight IBM QPUs.
These factors include circuit fidelity, schedule duration, choice of hardware-native gates,
algorithm implementations, types of DD sequences, and optimization levels. Despite
minimal performance variations between Carr–Purcell–Meiboom–Gill (CPMG) and XY4
sequences, XY4 exhibits a slight advantage in success probability for larger qubit counts.
However, CPMG achieves a higher overall error mitigation success rate, suggesting poten-
tially greater robustness. While the results highlight the general enhancement of algorithm
performance and robustness through the use of DD sequences, achieving significantly
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improved performance relies more critically on factors such as high-quality native gates of
QPUs, symmetric algorithm implementation, and effective circuit optimization techniques.
Therefore, a holistic approach that considers both hardware characteristics and software
optimization strategies is important when designing quantum algorithms to maximize
reliability and efficacy. This study underscores the importance of hardware considerations
and circuit design in enhancing algorithm performance and robustness using DD sequences.
These insights guide the development and optimization of other quantum applications.
Future research directions include investigating the interplay between these factors when
combining DD sequences with other error mitigation strategies, such as zero-noise extrapo-
lation [54,55]. Additionally, exploring the relationship between circuit symmetry and its
effectiveness in suppressing errors could provide valuable insights. Extending this analysis
to other quantum algorithms, such as the VQE and protocols for preparing Greenberger–
Horne–Zeilinger (GHZ) states, holds promise for revealing the broader applicability of
these findings.
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