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1 Introduction

Lateral torsional buckling (LTB) and subsequentmember failure is a realistic risk for glulam

(GL) beam­columns and represents a complex 3­dimensional mechanical behaviour, see

Figure 1. Beam­columns can be designed according to EN 1995­1­1 (2004) and prEN

1995­1­1 (2024) by the simplified kc­km­method or by calculation of internal forces

according to 2nd order theory (T2O; subscript 2 in equations), see Figure 2. The current

drawbacks of the kc­km­method are: (i) the main part of the design equation of the km­

method is a pure regression model that is not fully considering all relevant parameters;

(ii) the mechanical background of the exponent 2 of the bending component of the

Figure 1. Lateral torsional buckling of a GL 24h
beam­column with 600 ⋅ 120 ⋅ 8000 mm³.
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Figure 2. Load­bearing capacity of a GL 24h
beam­column with 600 ⋅ 120 ⋅ 8000 mm³; kc­ km­
method and design with T2O calculations from
EN 1995­1­1 (2004) and prEN 1995­1­1 (2024).



Nx­My,1­interaction in EN 1995­1­1 (2004) was unclear during its revision and therefore

a conservative linear interaction was reintroduced; (iii) the inconsistent imperfection

assumptions discussed by Töpler & Kuhlmann (2023); and (iv) there were no results of

LTB tests on GL beam­columns for validating the design equations.

This paper discusses the analytical background of the nonlinear Nx­My,1­interaction of

the kc­km­method and a mechanical derivation of new equations for the km­method.

The results of 16 full­scale LTB tests on GL beam­columns are presented, which served as

validation for a numericalmodel. An extensive numerical parameter studywas conducted

to investigate the influence of different loading scenarios, cross­sectional dimensions,

andmaterial grades on theNx­My,1­interaction of timber beam­columns. The findings are

compared with current design rules and literature. Finally, a proposal for a modification

of the kc­km­method and the design with internal forces according to T2O is presented,

which increases reliability and allows for a more economic design.

The design for bending and axial compression is addressed in this article. A detailed

report on the investigations is given by Töpler & Kuhlmann (2024) and Töpler (2025).

2 Design methods in Eurocode 5

2.1 Methods according to EN 1995­1­1 (2004)

In case of a geometrically nonlinear calculation of internal forces, e.g., by T2O, the LTB

design with bending and compression can be carried out using Equations (1) and (2).
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For rectangular cross­sections, the size effect on the bending strength at biaxial bending

can be taken into account with kred = 0.7, according to Buchanan et al. (1985) and van

der Put (1991). The positive influence of compressive plasticizing on the cross­sectional

resistance is taken into account by the exponent 2 at the compressive force component,

which was derived by Blaß (1987), Buchanan et al. (1985), and Zahn (1986).

In case of a geometrically linear calculation of internal forces, by 1st order theory (T1O;

subscript 1 in equations), the LTB design can be conducted with Equation (3).
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kc,z is based on the investigations by Blaß (1987), where the effects of geometrical bow

imperfections, structural imperfections, andmaterially nonlinear behaviour (compressive



plasticizing in grain direction) are covered by βc. The exponent 2 corresponds to the

nonlinear interaction ofNz,crit andMy,crit when determining the critical load, as suggested

by Leicester (1988a) and discussed in Section 3.3. km can be calculated for 0.75 < λm,rel ≤
1.4 as proposed by Heimeshoff (1986) with Equation (4).

km = 1.56 − 0.75 λm,rel (4)

Equation (4) is a regression model without mechanical background, which only partially

covers the influence of the height­to­width ratio, material properties, and imperfections.

2.2 Methods according to prEN 1995­1­1 (2024)

In case of a geometrically nonlinear calculation of internal forces, e.g., by T2O, the LTB

design with bending and compression can be carried out using Equations (1) and (2).

In case of a geometrically linear calculation of internal forces, by T1O, somemodifications

were made compared to EN 1995­1­1 (2004). As the mechanical background of the

exponent 2 in Equation (3) was unclear during the revision of Eurocode 5, the linear

Nx­My,1­interaction from, e.g., DIN 1052 (2004) was reintroduced, see Equation (5).

σc,0,d

kc,z fc,0,d
+

σm,y,d

km fm,y,d
≤ 1.0 (5)

Equation (5) is significantly more conservative than Equation (3), see Figure 2. The

kc­method remained unchanged, but Equation (6) for calculating βc was introduced.

βc,y/z =
ez/y

L
⋅ π ⋅ √

3 E0,k

fc,0,k
⋅
fc,0,k

fm,y/z,k
(6)

where ey/z is the equivalent bow imperfection, L is themember length, and E0,k, fc,0,k, and

fm,y/z,k are the characteristic values of the elastic modulus and strengths. Equation (6)

was derived from the differential equations for in­plane buckling with linear Nx­My,2­

interaction, see Schänzlin et al. (2022). In contrast to the βc values given in EN 1995­1­1

(2004), no positive or negative effect of compressive plasticizing in grain direction is

taken into account in Equation (6). km can be calculated with Equations (7) and (8).

km = 1

Φm + √Φ2
m − λ2m,rel

(7)

Φm = 0.5 ⋅ (1 + βΘ + βm ⋅ (λm,rel − 0.55) + λ2m,rel) (8)

βΘ and βm can be determined according to prEN 1995­1­1 (2024) similarly to βc. Equa­

tions (7) and (8) were shaped to resemble the kc­method and are still based on a regres­

sion model without mechanical background.



3 Analytical background

3.1 General

This section contains the analytical background of the interaction equations in EN 1995­

1­1 (2004), see Equations (1), (2), and (3), and a mechanically sound analytical derivation

of new equations for the km­method. Most was already discussed by other authors, but

sometimes in a different or more complex shape, and some so far back in time that they

might not be remembered anymore. Further details are given by Töpler (2025).

3.2 Exponent 2 at the compressive force component

A model presented by van der Put (1991) is employed in this paper to analytically derive

an Nx­My,2­interaction relationship that incorporates plasticizing and to validate the

exponent 2 in Equations (1) and (2).

For a bilinear elastoplastic material behaviour in grain direction and the stress distribu­

tion in Figure 3, the axial compressive force Nx and the bending momentMy,2 can be

calculated with Equations (9) and (10) according to van der Put (1991).

Nx = fc,0 H B +
fm − fc,0

2
⋅ (H − Hpl) ⋅ B (9)
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2
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−
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Figure 3. Distribution of stresses in grain dir­
ection over the cross­sectional height H for a
combined loading by an axial compressive force
Nx and a bending momentMy,2 with bilinear

elastoplastic material behaviour.
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Figure 4. Cross­sectional resistances for a com­
bined loading by an axial compressive force Nx

and a bending momentMy,2 and bilinear elasto­

plastic material behaviour for three timber ma­
terials with different fc,0 and fm.



where fc,0 is the compressive strength (only in Section 3.2 with the mechanically correct

negative sign), fm is the bending strength, H and B are the cross­sectional height and

width, and Hpl is the height of the plastic area. Solving Equation (9) for Hpl and inserting

the result in Equation (10) leads, after some transformations, to the familiar­looking

interaction in Equation (11) with Equations (12) and (13).

( Nx

A fc,0
)

2

− a ⋅ Nx

A fc,0
+

My,2

Wy fm
= b (11)

a = (
5 f2c,0 + 3 fc,0 fm

f2m − fc,0 fm
−

4 f2c,0 − f2m + fc,0 fm

f2m − fc,0 fm
⋅ Nx

A fc,0
) (12)

b =
−3 fc,0 fm − f2c,0

f2m − fc,0 fm
(13)

where A is the cross­sectional area andWy is the elastic sectionmodulus. The interaction

equation thus depends on the ratio of fc,0/fm.

Table 1 provides the values of a and b and the resulting interaction equations, and

Figure 4 illustrates three cases. Figure 4 demonstrates the high impact of the fc,0/fm
ratio on the nonlinearity of the Nx­My,2­interaction relationship. For common values of

fc,0,k and fm,k, the parameters a and b become a > 0 and b ≈ 1, see Table 1. Therefore,

a can be neglected on the safe side (greyed out in Table 1). This results in Equation (14)

which is identical to Equation (1) from EN 1995­1­1 (2004) and prEN 1995­1­1 (2024),

except for the additionalMz,2 component in the standards.

( Nx

A fc,0
)

2

+
My,2

Wy fm
= 1 (14)

This interaction formula is therefore amechanically sound limit criterion for tensile failure

due to combined axial compression and bending, considering compressive plasticizing.

Table 1. Values of a and b and interaction equations for different timber materials with the compress­
ive utilisation ratio μc = Nx/A fc,0 and the bending utilisation ratio μm = My,2/Wy fm.

fc,0/fm
1

[N/mm²]

a
μc = (0, 0.5, 1) b Interaction equation

GL 24c char 2 ­21.0 / 24.0 (0.62, 0.31, 0.01) 0.99 μ2
c −μc(0.62 − 0.61μc) + μm = 0.99

GL 24h char 2 ­24.0 / 24.0 (1.00, 0.50, 0.00) 1.00 μ2
c −μc(1.00 − 1.00μc) + μm = 1.00

GL 30c char 2 ­24.5 / 30.0 (0.44, 0.23, 0.02) 0.98 μ2
c −μc(0.44 − 0.42μc) + μm = 0.98

GL75 char 3 ­59.4 / 75.0 (0.36, 0.20, 0.03) 0.97 μ2
c −μc(0.36 − 0.33μc) + μm = 0.97

GL 24h mean 4 ­40.0 / 33.0 (1.68, 0.85, 0.02) 0.98 μ2
c −μc(1.68 − 1.66μc) + μm = 0.98

Defect­free NS 5 ­45.0 / 80.0 (­0.24,­0.01, 0.22) 0.78 μ2
c + μc(0.24 − 0.46μc) + μm = 0.78

1 If ­fc,0 < fm, the input bending strength for Equations (11) to (13) need to be chosen higher than fm for

actually reaching the bending resistance fm Wy due to the plasticizing.
2 EN 14080 (2013); 3 ETA­14/0354 (2018); 4 Schilling et al. (2021); 5 Norway spruce (NS) DIN 68364 (2003).



3.3 Nonlinear Nx­My,1­interaction for lateral torsional buckling

Leicester (1988a) demonstrated that the Nx­My,1­interaction for LTB is nonlinear. The

derivation is given below.

For LTB of beam­columns, the critical load is given by Equation (15), see Hörsting (2008).

αc,z + α
2
m = 1 (15)

where αc,z = Nx/Nz,crit, αm = My,1/My,crit, Nz,crit is the critical compressive load for

in­plane buckling around the z axis, andMy,crit is the critical bending moment for LTB.

Additionally, for very slender beam­columns, the member resistances approach the

critical loads and kc,z A fc,0 → Nz,crit and km Wy fm → My,crit, where kc,z and km are the

reduction factors from the kc­ and the km­method, A is the cross­sectional area, Wy

is the elastic section modulus, fc,0 is the compressive strength, and fm is the bending

strength. Thus, Equation (15) can be rearranged to Equation (16), which is identical to

the Nx­My,1­interaction for LTB in EN 1995­1­1 (2004), see Equation (3).

Nx

kc,z A fc,0
+ (

My,1

km Wy fm
)

2

→ 1 (16)

No size effect must be applied to fm in this interaction, as it describes the critical load of

very slender beam­columns, which is purely stiffness­dependent.

3.4 Reduction factor km accounting for lateral torsional buckling

Leicester (1988b), Taras (2010), andWilden et al. (2023) discussed a mechanically sound

derivation of the reduction factor km that accounts for LTB. The derivation is given below.

For timber construction, the formulation with bow imperfections ey instead of twist

imperfections eΘ in Equation (25) is new.

The differential equations for LTBwith a constant bendingmomentMy,1, see e.g.,Hörsting

(2008), are the basis of the derivations. By means of the initial functions v2(x) =
v2 ⋅sin(π ⋅x/L) andΘ2(x) = Θ2 ⋅sin(π ⋅x/L), the differential equations can be transformed

into Equations (17) and (18), which are valid at midspan.

G0 Ix Θ2 − My,1 ⋅ (v2 + ey) = 0 (17)

π2

L2
E0 Iz v2 − My,1 ⋅ (Θ2 + eΘ) = 0 (18)

where G0 and E0 are the shear and elastic moduli in grain direction, Ix and Iz are the

respective moments of inertia, v2 and Θ2 are the deformation in y direction and the

rotation around the x axis at midspan, ey and eΘ are the bow imperfection in y direction

and the twist imperfection at midspan, and L is the member length.



The key in the derivation is the assumption that the imperfections are affine to the

1st eigenmode, ey = kv2 and eΘ = kΘ2, where k is a scaling factor. Inserting this into

Equations (17) and (18) and then inserting Equations (17) in (18) results after a few

transformations in Equation (19).

ey

eΘ
=

My,crit

Nz,crit
(19)

A linearMy,2­Mz,2­interaction according to Equation (20) is assumed.

My,2

Wy fm
+

Mz,2

Wz fm
= 1 (20)

Mz,2 can be calculated with Equation (21) according to prEN 1995­1­1 (2024).

Mz,2 =
M2

y,1
G0 Ix

ey +My,1 eΘ

1 − α2
m

(21)

With the coupled imperfections from Equation (19), Equation (21) can be simplified to

Equation (22).

Mz,2 =
αm Nz,crit ey

1 − αm

(22)

The common assumption is made that the geometrically nonlinear LTB behaviour does

not significantly influence the bending moment around the strong axis, andMy,2 = My,1
applies. InsertingMy,2 andMz,2 in Equation (20) leads to a quadratic equation that can

be solved in a similar way to the kc­method, which results in Equations (23) to (25).

km = 1

Φm + √Φ2
m − λ2m,rel

(23)

Φm = 0.5 ⋅ (1 + βm + λ2m,rel) (24)

βm =
ey

L
⋅ H
B

⋅ π
2

⋅ √ E0

G0

(25)

Equations (23) to (25) are similar to the km­method in prEN 1995­1­1 (2024), see Equa­

tions (7) and (8), except for the lack of the βΘ and the (λm,rel − 0.55) components.

The advantage of Equations (23) to (25) is the discussed mechanical background that

Equations (4), (7), and (8) are lacking.



4 Experiments

4.1 General

16 LTB tests with combined axial compression and bending on GL 24h according to EN

14080 (2013) were conducted within the research project IGF 21285 N, see Töpler &

Kuhlmann (2024). Two parameters were varied: the slenderness ratio λm,rel by means

of the member length and height, and the utilisation ratio μc = Nx/Nx,R of the axial

compressive resistance, calculatedwith the kc­method in EN 1995­1­1 (2004), see Table 2.

A more detailed description of the LTB tests is given in Töpler & Kuhlmann (2023).

Table 2. Test program for lateral torsional buckling of glulam GL 24h beams.

Series Number of Length Height x Width λm,rel
1 μc Nx

number specimens [mm] [mm2] [kN]

T04 – T05 2 8000 600 x 120 0.94 0.00 0
T06 – T07 2 8000 600 x 120 0.94 0.20 25
T08 – T09 2 8000 600 x 120 0.94 0.40 50
T10 – T11 2 8000 600 x 120 0.94 0.60 75
T12 – T13 2 6000 480 x 120 0.74 0.00 0
T14 – T15 2 6000 480 x 120 0.74 0.20 35
T16 – T17 2 6000 480 x 120 0.74 0.40 70
T18 – T19 2 6000 480 x 120 0.74 0.60 105

1 Calculated with characteristic material values, taking into account an increase
of E0,05G0,05 by a factor of 1.4 according to DIN EN 1995­1­1/NA (2013).

4.2 Test setup and execution

At one end of the beams, at the front in Figure 1, the horizontal support was formed by

an abutment and a centrally located calotte. At the other end, at the rear in Figure 1,

the horizontal load was applied centrally by a cylinder with a yoke joint. Vertical loading,

vertical supports, and measuring devices are described in Töpler & Kuhlmann (2023). 

First, the axial compressive force was applied force­controlled up to the values given in

Table 2. Secondly, the vertical force was applied displacement­controlled at midspan.

4.3 Results and evaluation

Typical load­deformation curves with the horizontal deformation of the beam axis at

midspan v and the vertical cylinder force Fz are given in Figure 5. The general load­

bearing behaviour is described in Töpler & Kuhlmann (2023). As the axial compressive

force increased, (i) the peak of the load­deformation curve shifted to the left; (ii) the

maximum vertical force Fz decreased; and (iii) the maximum deformations v increased.

The experimentally determined load­bearing capacities are plotted in Figure 6, where

My,1 is the bending moment applied by Fz. Additionally, the characteristic resistances

from the kc­km­method and design with calculations using T2O from EN 1995­1­1 (2004)

and DIN EN 1995­1­1/NA (2013), and the results of FE analyses with the same input

values are given. The FE model is described in Section 5. The bow imperfection was



chosen to be equal to the horizontal eccentricity of the vertical force. Experimentally, an

increase in the compressive force and its utilisation ratio μc from 0% to 60% reduced

the bending load­bearing capacity by about 20%. This confirmed the nonlinearity of the

Nx­My,1­interaction curve of the kc­km­method in EN 1995­1­1 (2004), see Equation (3)

and was supported by the results of comparative calculations with T2O and FE analyses.

The failure behaviour is described in Töpler & Kuhlmann (2023). No influence of the axial

compressive force on the failure mode was detected.
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Figure 5. LTB tests T05, T07, T08, and T10 with λm,rel = 0.94; vertical force Fz plotted over the hori­

zontal deformation of the beam axis at midspan v; circles mark maximum vertical forces.
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Figure 6. Experimentally (Exp) determined load­bearing capacities; characteristic resistances of the
kc­km­method and design with calculations using T2O according to EN 1995­1­1 (2004) and DIN EN
1995­1­1/NA (2013); and characteristic resistances from FE analyses.



5 Numerical simulations

5.1 General

The numerical simulations were conducted for an in­depth analyses of the influence of

the slenderness, the material, and the loading on the Nx­My,1­interaction curves for LTB

with combined axial compression and bending. The numerical analyses were conducted

with solid elements in Abaqus/CAE 2023. A description of the model and its verification

and validation is given in Töpler & Kuhlmann (2023) and Töpler & Kuhlmann (2024).

Single­span beams with fork bearings were investigated, loaded by a constant bending

moment, by a uniform line load at the upper edge of the beam, or by a concentrated load

at midspan at the upper edge of the beam. In addition, the axial compressive force was

varied. The axial compressive force was applied first and kept constant. Afterwards, the

bending moment was applied. For the constant bending moment, an idealised support

in the member axis was modelled. For the uniform line load or the concentrated load, a

realistic support at the lower edge of the beam was created.

GL 24h, GL 30c, and GL75 with the nominal material properties and an anisotropic

material model with elastoplastic behaviour for compression in grain direction and shear

were analysed, see also Töpler & Kuhlmann (2023) and Töpler & Kuhlmann (2024). Shear

was always neglected as a failure criterion in the evaluation of the FE analyses.

Equivalent bow and twist imperfections at midspan of ey = L/1000 and eΘ = 0.5 ⋅
(eΘ,mid + eΘ,supp) with eΘ,supp = 1/100 and eΘ,supp = L/1500H were assumed according

to the investigations in Töpler & Kuhlmann (2023). Cross­sectional height­to­width ratios

of 1, 2, 4, 8, 12, and 16 were modelled with a width of 120 mm. The member length

was varied between 2.5H and 25H or 50H. This resulted in over 17,000 FE analyses.

5.2 Results

5.2.1 Plate bending around the x axis

With an increasing height­to­width (H/B) ratio at the same relative slenderness λm,rel, the

LTB deformation behaviour of the timber beams significantly changed, see Figure 7. At

H/B = 4, no plate bending was observed. At H/B = 12, a strong plate bending around

the x axis occurred, which increased the eigenvalues and the load­bearing capacities

by up to 20% compared to calculations with beam theory. The effect was greatest for

the constant bending moment. With an increasing H/B ratio, the ratio of the plate

bending stiffness to the buckling stiffness of the compression chord decreases, and the

deformation behaviour changes. With regard to this effect, calculations of eigenvalues

and load­bearing capacities based on beam theory, e.g., the design equations in EN

1995­1­1 (2004), provide conservative results for beams with large H/B ratios.

The pronounced plate bending at large H/B ratios is characteristic of the anisotropic

material timber, with its large difference between the elastic moduli in grain direction

and perpendicular to the grain, the large E0/E90 ratio. For isotropic materials such as

steel and concrete, the effect can only be observed at significantly higher H/B ratios.



5.2.2 Cross­sectional warping due to shear forces

Figure 8 displays the reduction factors km calculated from the FE results over the relative

LTB slenderness λm,rel for different utilisation ratios of the axial compressive resistance

μc for loading by a constant bending moment and by a concentrated force. λm,rel was

calculated using prEN 1995­1­1 (2024). Beams subjected to shear forces had significantly

lower load­bearing capacities for L/H < 6. See the drop of km at L/H < 6 in Figure 8b in

comparison with Figure 8a. This can be explained by the fact that shear stresses due

to shear forces led to cross­sectional warping and its obstruction to residual stresses,

secondary stresses, in grain direction. The superposition of these secondary stresses

with the primary stresses from bending increased in the edge bending stresses and thus

reduced the load­bearing capacities, see also Töpler & Kuhlmann (2022a).

The fact that this effect occurred for 3 < L/H < 6 is characteristic of timber with its large

difference between the elastic and shear moduli in grain direction, the large E0/G0 ratio.
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Figure 7. Schematic illustration of lateral torsional buckling deformation behaviours of timber beams.
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Figure 8. Reduction of the load­bearing capacity km from FE analyses over the relative LTB slenderness
λm,rel according to prEN 1995­1­1 (2024) for different utilisation ratios μc; GL 24h and H/B = 4.



5.2.3 Nx­My,1­interaction

At λm,rel > 0.7, the load­bearing capacities, or km, in Figure 8 followed the typical lateral­

torsional buckling curves and decreased with increasing slenderness. With increasing

compressive load, or μc, km decreased nonlinearly, first less, then more.

At λm,rel < 0.7, the influences of (i) shear warping, see Section 5.2.2, (ii) compressive

plasticizing in grain direction, and (iii) the nonlinear interaction relationship of the critical

load, see Equation (15), were overlapping. For beams subjected to shear forces, the

influence of shear warping was decisive, and it significantly reduced the load­bearing

capacity, see Figure 8b. For beams subjected to a constant bending moment, no shear

warping occurred, see Figure 8a. Plasticizing even increased the bending load­bearing

capacity for low compressive forces, km > 1, and decreased km nonlinearly for higher

compressive forces, first less, then more. With increasing λm,rel, the influence of com­

pressive plasticizing decreased, which tended to reduce the load­bearing capacity. This

effect was overlapped by the increasing influence of the nonlinear interaction relation­

ship of the critical load with increasing slenderness. Thus, for high utilisation ratios μc,

despite decreasing compressive plasticizing, there was sometimes an increase in bending

load­bearing capacity with a peak at λm,rel ≈ 0.5 to 0.8.

In­plane buckling occurred for H/B = 1 and LTB for H/B ≥ 2.

Figure 9 presents two typical Nx­My,1­interaction diagrams from FE analyses for two

H/B ratios with varying relative in­plane buckling and LTB slendernesses λc,y,rel and λm,rel.

The relative load­bearing capacities are given as ratios of the bending or compressive

load­bearing capacity to the load­bearing capacity for pure bending or pure compression

(including stability behaviour). Additionally, for H/B = 1, the linear interaction is plotted,
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Figure 9. Relative compressive load­bearing capacity Nx/Nx,R over the relative bending load­bearing

capacityMy,1/My,R from FE analyses; GL 24h and constant bending moment.



and for H/B = 4, the limit condition according to Equation (3) is plotted.

For H/B = 1, a distinctly nonlinear Nx­My,1­interaction occurred for λc,y,rel ≈ 0.3, which

was caused by compressive plasticizing in grain direction, see Figure 9a. With increasing

slenderness, the non­linearity of the Nx­My,1­interaction decreased until it was almost

linear for λc,y,rel = 0.8 (GL75) to 1.2 (GL 24h).  For large slendernesses, the compressive

forces were so small that no (significant) plasticizing occurred.

For H/B ≥ 2, the Nx­My,1­interaction was always distinctly nonlinear, see Figure 9b. At

low slendernesses, the same nonlinear curve as for H/B = 1 occurred as a result of

compressive plasticizing. With increasing slenderness, there was a slight increase in non­

linearity due to the superposition of the influence of compressive plasticizing and the

nonlinear interaction relationship of the critical load, see Equation (15). Subsequently,

the nonlinearity decreased and approached the limit value of the critical load from

Equation (15), which was reached between λm,rel = 0.8 (GL75) and 0.9 (GL 24h). The

load­bearing capacity of slender beams was equal to the critical load.

For significant shear forces, here induced by a concentrated force or a uniform line load,

and 1.0 ≤ λm,rel ≤ 1.5, a reduction in shear stiffness due to shear plasticizing occurred,

which reduced the load­bearing capacity by up to 20%. This “shear plasticizing” due to

local shear cracks was discussed by Töpler & Kuhlmann (2023).

For GL75, due to the high compressive plasticizing, see Töpler & Kuhlmann (2022b),

larger stiffness reductions occurred than for GL 24h and GL 30c. This effect reduced the

non­linearity of the Nx­My,1­interaction curve at low slendernesses compared to GL 24h

in Figure 9.

6 Discussion
For in­plane buckling, H/B ≈ 1, Blaß (1987), Buchanan et al. (1985), and Zahn (1986)

reported similar results as the numerical results in Figure 9a, which yielded a linear

Nx­My,1­interaction for slender members and a nonlinear Nx­My,1­interaction for stocky

members. This is also reflected in the design procedures according to EN 1995­1­1 (2004)

and prEN 1995­1­1 (2024), see Sections 2.1 and 2.2.

For LTB, H/B ⪆ 2, the analytical derivations, see Section 3.3, the experimental results,

see Section 4.3, and the FE results, see Section 5.2.3, confirmed the non­linearity of

the Nx­My,1­interaction for stocky and slender members. In addition to the analytical

derivation of Leicester (1988b), see Section 3.3, Bell & Eggen (2001) presented numerical

calculation results that produced a similar nonlinear interaction relationship. This is also

reflected by the nonlinear Equation (3) from EN 1995­1­1 (2004), but not anymore by

the conservative linear Equation (5) from prEN 1995­1­1 (2024).

The authors are not aware of any investigations concerning the influence of the plate

bending at LTB of timber beams with large H/B ratios. Also, cross­sectional warping

due to shear has not yet been reported, with the exception of the own investigations in

Töpler & Kuhlmann (2022a).



7 Design proposals

For the kc­km­method, it is highly recommended to reintroduce the nonlinear Nx­My,1­

interaction from EN 1995­1­1 (2004), Equation (3), in prEN 1995­1­1 (2024) for an

economic design of timber beam­columns.

For considering the material­dependent stiffness reduction due to compressive plas­

ticizing at in­plane buckling and the shear force­dependent stiffness reduction due to

shear plasticizing at LTB, it is proposed to introduce the coefficients kpl,c and kpl,m and to

modify the formulas of T2O in prEN 1995­1­1 (2024), see Equations (26) to (28).

Mx,2 = π

L
⋅
My,1 kpl,m ey + α

2
m G0 Ix eΘ

1 − αc,z − α2
m

(26)

My,2 =
Nx kpl,c ez +My,1 ⋅ (1 + αc,yδy)

1 − αc,y
(27)

Mz,2 =
(Nxkpl,c +

M2
y,1

G0Ix
⋅ kpl,m) ⋅ ey +My,1eΘ +Mz,1 ⋅ (1 + αc,zδz)

1 − αc,z − α2
m

(28)

For the kc­ and the km­method, it is proposed to include kpl,c and kpl,m in the calculation

of βc and βm by Equations (29) and (30).

βc,y/z = kpl,c ⋅
ez/y

L
⋅ π ⋅ √

3E0,k

fc,0,k
⋅
fc,0,k

fm,y/z,k
(29)

βm = kpl,m ⋅
ey

L
⋅ H
B

⋅ π
2

⋅ √
E0,k

G0,k
(30)

For softwood GL and LVL, βc = 0.1, and βm = 0.01 ⋅ kpl,m ⋅ H/B and for solid timber

made of softwood, βc = 0.2 and βm = 0.02 ⋅ kpl,m ⋅ H/Bmay be used.

kpl,c and kpl,m were determined by curve fitting of Equations (26) to (28) to the FE results,

see Töpler & Kuhlmann (2024). For softwood, kpl,c = 1 should be assumed. For beech,

a value of kpl,c ≈ 4 at ey/z = L/1000 is plausible, see Töpler & Kuhlmann (2022b). For

softwood without significant shear forces, kpl,m = 1 and with significant shear forces,

kpl,m = 6 should be assumed. Further research on determining kpl,c for wood species

other than softwood and specifying kpl,m for shear forces is required.

For the km­method, it is proposed to apply the mechanically derived Equations (23)

and (24). Additionally, a limit value can be introduced for design practice, above which

km < 1.0, i.e. LTB, should be taken into account, see Equation (31).

Φm = 0.5 ⋅ (1 + βm ⋅ (λm,rel − 0.7) + λ2m,rel) (31)



The limit criterion 0.7 was determined based on the point where km = 0.9 in calculations

using T2O, see Töpler & Kuhlmann (2024).

For considering the increase in edge bending stresses due to cross­sectional warping, it

is recommended to introduce a respective clause in prEN 1995­1­1 (2024):

(x) The increase in edge bending stresses due to shear­induced cross­sectional warping

should be taken into account for members with significant bending and shear stresses in

the same plane and L/H < 6. This may be done by analyses with membrane theory.

Simplified formulas for considering the increase in bending stress could be determined

by further experimental and numerical investigations.

Figures 10a and 10b exemplary present the ratio of the reduction factors by the kc­km­

method and by calculations using T2O with the proposed changes to results from FE

analyses, km,prop/km,FEA, over λm,rel for GL 24h, H/B = 8, and a constant bending mo­

ment or a concentrated force at midspan. For λm,rel > 1.2, the load­bearing capacities

according to the design methods and FE analyses are very similar. Minor deviations for

concentrated forces and high μc result from the general application of kpl,m, although

shear plasticizing decreases with increasing μc. For λm,rel < 1.2 and constant bending

moment, the kc­km­method is clearly on the safe side at high μc, as the positive effects

of compression plasticizing are not fully considered. For λm,rel < 1.2 and concentrated

forces, the importance of the limiting criterion L/H ≥ 6 for the application of the beam

theory is demonstrated. Both the limit criterion L/H ≥ 6 and kpl,m could be formulated

in more detail to take into account the influence of the utilisation ratio μc.

The proposed modifications of the design procedures in prEN 1995­1­1 (2024) enable a

more economical and reliable design of timber beam­columns prone to LTB.
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Figure 10. Ratio of the reduction factors by the design proposals in Section 7 to the reduction factors
from FE analyses, km,prop/km,FEA, over the relative LTB slenderness λm,rel for different utilisation ratios μc;

GL 24h and H/B = 8.



8 Summary and outlook

This paper is based on the investigations described in Töpler & Kuhlmann (2023).

It is demonstrated analytically that the exponent 2 for considering compressive plasticiz­

ing in the Nx­My,2­interaction equation is on the safe side for common timber materials

and that this interaction equation represents tensile failure for combined bending and

compression, see Section 3.2. Subsequently, an analytical derivation of the nonlin­

ear Nx­My,1­interaction for LTB of slender beam­columns is presented, see Section 3.3.

Finally, a mechanical derivation of the km­method is described, see Section 3.4.

The results of 16 LTB tests on glulam beams made of GL 24h are discussed in Section 4,

which confirmed the nonlinearity of the Nx­My,1­interaction for LTB.

An extensive numerical parameter study covering the reasonable member dimensions,

different timber materials, and loading conditions for an in­depth analysis of the Nx­My,1­

interaction at LTB is described in Section 5. It turned out that plate bending around

the x axis at H/B = 12 increased the eigenvalues and the load­bearing capacities by up

to 20%, see Section 5.2.1. For beams with L/H < 6 and subjected to shear forces, a

pronounced cross­sectional warping due to shear stresses appeared and significantly

reduced the load­bearing capacities, see Section 5.2.2. Generally, in­plane buckling

occurred for H/B = 1 and LTB for H/B ≥ 2. The FE results confirmed the non­linearity of

the Nx­My,1­interaction for LTB. For significant shear forces, a reduction in shear stiffness

due to shear plasticizing occurred, which reduced the load­bearing capacity by up to 20%.

This was in line with the experimental results reported in Töpler & Kuhlmann (2023).

Based on the analytical, experimental, and numerical investigations, design proposals are

presented in Section 7 that (i) consider the stiffness reduction due to compressive and

shear plasticizing at LTB; (ii) contain mechanically derived equations for the km­method;

and (iii) implement a limit criterion to account for the negative effect of shear warping

on the edge bending stresses. But foremost, the nonlinear Nx­My,1­interaction for LTB

from EN 1995­1­1 (2004) was confirmed.

In a subsequent publication, the shear verification for LTB of GL beams will be discussed.
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