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1. Introduction 

The laser is already well established as a manufacturing tool 
in many serial production processes. Since the laser is a very 
versatile tool [1], it is also well suited for the use in highly 
versatile and efficient manufacturing systems [1,2] which are 
becoming more and more important, especially for small batch-
size manufacturing [2-6]. The model-based prediction of 
process constraints is essential to find reliable process 
parameters with reasonable effort. The combination of physical 
models with machine learning (ML) in the form of physics-
informed machine learning models [7-10] represents a 
promising solution for this task. Gaussian processes (GPs) 
possess some properties which make them a favorable choice 
for the use in the machine learning part of such a model. GPs 
are able to model quasi arbitrary functions, are probabilistic 
models, and they usually perform good in sparse data situations, 
which is beneficial when acquiring the training data is 
expensive, as can often be the case in laser processing. 

Such a physics-informed hybrid model has already been 
successfully used to predict the threshold of deep-penetration 
laser welding [11]. Despite the advantages that result from 
using such a model, still cases can be observed where the model 
predictions, including the confidence region, also include 
values that are not consistent with physical boundary conditions 
(i.e., negative values for the threshold of deep-penetration laser 
welding in that case) [11].  

Applying additional output constraints to the model is one 
approach that can be used to enforce that the model predictions 
are consistent with physical boundary conditions and therefore 
to further increase the accuracy of the model predictions. 
Output warping [12] is a method that can be applied for this task 
when Gaussian processes (GPs) are used for the models. This 
allows to incorporate the output constraints directly into the GP 
framework of the model and therefore to maintain all the 
beneficial properties of a GP model. 

Therefore, this paper presents the application of output 
warping to constrain the outputs of a physics-informed hybrid 
model to further increase the consistency of the model with 
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physical boundary conditions. The required adaptions to the 
model are shown and the approach is demonstrated at the 
example of a hybrid model for the prediction of the threshold 
of deep-penetration laser welding. The model results are 
discussed and compared to results of an existing hybrid model 
without output constraints. 

2. Materials and Methods 

Modelling of the threshold of deep-penetration laser welding 
is considered. The model is based on a physics-informed hybrid 
model fHM = fPM + fDM, where ML is applied to model the 
deviations between a physical model fPM and experimental 
results by a difference model fDM using a GP model, as already 
applied in [11]. To extend this model, the approach of warped 
GPs [12] is applied to constrain the model outputs. In order to 
be able to apply output warping to the hybrid model, the model 
has to be adapted in such a way, that the outputs of fHM are 
directly modelled by a GP. This can be achieved by directly 
integrating fPM as the mean function into a GP model (i.e. 
m(x) = fPM), which is equivalent to modelling the differences to 
fPM with a GP with a zero mean function (m(x) = 0) [13]. 
Therefore, the physics-informed hybrid model with output 
constraint fCHM is modelled by a GP whose prior for the mean 
function is the physics-based model  
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for the threshold of deep-penetration laser welding. Eq. (1) 
describes the value of P/d at which the onset of deep-
penetration laser welding occurs for the case of a circular beam 
with uniform intensity distribution (also known as “top-hat”), 
as given by eq. (11) in [14]. Here, d is the diameter of the laser 
beam on the work piece surface, P the laser power, A the 
absorptivity and λth the thermal conductivity of the material. T0

is the ambient temperature (assumed to be 20 °C) and TV the 
evaporation temperature of the material. Pe = (d·v)/κ is the 
Péclet number, with v the welding speed and κ = λth/(ρ·cp) the 
thermal diffusivity, where cp is the specific heat capacity and ρ
the density of the material. 

A squared exponential kernel function 
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is used, where θscale is an output scale parameter, and xm and 
xn are two j-dimensional vectors, each containing a set of j input 
features for the GP model for one data point. Automatic 
relevance determination (ARD) is applied where separate 
length scale parameters θl,i are used for each of the j input 
features. Assuming a homoscedastic noise with variance 𝜎𝜎��
results in the covariance matrix C having elements [15] 

𝐶𝐶���𝒙𝒙�,𝒙𝒙�� = 𝑘𝑘�𝒙𝒙�,𝒙𝒙��+ 𝜎𝜎�� ∙ 𝛿𝛿��,  (3)

where δmn is the Kronecker delta. 

Output warping is applied to constrain the outputs of fCHM to 
values that are consistent with physical boundary conditions, in 
this case to positive values. For this purpose, the natural 
logarithm is used for the warping function fW and the targets in 
the observation space yt are transformed through fW to obtain 
the targets in the latent space 

𝑧𝑧� = ln�𝑦𝑦��.  (4)

For a new test point xN+1, the median of the prediction of fCHM

in the observation space is given by [12] 

𝑦𝑦����𝒙𝒙���� = 𝑓𝑓����𝑧𝑧̅�𝒙𝒙����� = exp�𝑧𝑧̅�𝒙𝒙�����,  (5)

where [13,15] 
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is the mean of the prediction of the warped GP in the latent 
space with m(xN+1) = ln(fPM). The vector zt comprises the 
observed target values in the latent space at the input points xn

for the N data points used to train the model, and the vector k
comprises the elements k(xn, xN+1) for n = 1, …, N.  

The bounds of the confidence region (± one standard 
deviation) in the observation space in which approximately 
68 % of the predictions lie are given by [12] 

𝑦𝑦���±��𝒙𝒙���� = 𝑓𝑓����𝑧𝑧�̅𝒙𝒙���� ± 𝜎𝜎� = exp�𝑧𝑧�̅𝒙𝒙���� ± 𝜎𝜎�, (7)

where [15] 

𝜎𝜎� = 𝑐𝑐 − 𝒌𝒌� ∙ 𝑪𝑪�� ∙ 𝒌𝒌  (8)

is the variance of the predictions of the warped GP in the 
latent space, and the scalar c = k(xN+1, xN+1) + 𝜎𝜎��. 

The input features x = (λth, TV, A, Pe, v, d, ρ) of fCHM are 
standardized individually, i.e. scaled to result in a distribution 
with zero mean and unit variance for the training data. For the 
calculation of fPM as the mean function of the GP, the respective 
input features are rescaled to the original physical values first.  

The model hyperparameters θscale, θl,i, and 𝜎𝜎�� are optimized 
for the training of the GP model, using the ‘Adam’ optimizer 
with a learning rate of 0.1, minimizing the negative log 
likelihood given the output of the GP model and the training 
data. Experimental data of the threshold of deep-penetration 
laser welding for 1 µm lasers with a top-hat intensity 
distribution available in literature [16-18] are used for the 
training and testing of the model. The data comprise a wide a 
range of materials and process parameters. The ranges of 
material properties and process parameters covered by the data 
are given in Table 1. 

Table 1. Ranges of process parameters and material properties covered by the 
experimental data. 

Property or parameter range 

λLaser in µm 1.03 – 1.064 
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d in µm 100 - 1680 

P in W 75 - 15800 

v in m/min 3 - 100 

Pe ≈ 0.1 - 700 

λth in W/(m·K) 14.8 - 401 

ρ in kg/m³ 2700 - 8960 

3. Results 

Only the case of extrapolation is considered in the following. 
The model was trained with all experimental data with 
d = 100 µm – 600 µm (resulting in 91 training data points) and 
predictions were made for the remaining experimental data with 
d = 1680 µm (resulting in 18 test data points). 

The results of the hybrid model without output constraint 
[11] (fHM) are shown in Fig. (1) by the green triangles. The error 
bars indicate the confidence region given by the standard 
deviation obtained from the corresponding GP model. It can be 
seen that the confidence regions of the predictions of fHM

include negative values for the threshold condition for deep-
penetration laser welding in some cases, which is physically 
implausible. This is especially the case for predictions that are 
close to the physically plausible limit of the deep-penetration 
threshold (i.e., close to zero). It is worth noting that the black-
box ML model (purple circles in Fig. 1) predicts the same value 
in all cases. This behavior is to be expected, since a GP model 
with a constant mean function as prior was used for the black-
box ML model, and the GP model defaults to its prior in the 
case of extrapolation. 

Fig. 1. Results of the hybrid model without output constraint, data from [11]. 
Black circles: experimental data; green triangles: results of the physics-
informed hybrid model fHM; purple circles: results of a black-box ML model 
fBB. Error bars represent the standard deviation obtained from the respective 
GP model. 

The results of the physics-informed hybrid model with
output constraint (fCHM) are shown in Fig. (2). The blue squares 
show the median of the predictions of fCHM (given by eq. (5)) 
and the error bars indicate the confidence region of the model 
predictions, given by eq. (7). The predictions of fCHM coincide 
with the results of the physics-based model fPM, which is also to 
be expected, since the GP model defaults to fPM as the prior for 

its mean function in this case. In contrast to fHM, however, it can 
be seen that the confidence regions of the predictions of fCHM

only cover positive values, even for predictions close to the 
physically plausible limit of the deep-penetration threshold. 
This shows that the compliance of the model with physics could 
be further improved by applying the output constraint to the 
model. Furthermore, it can be seen that the confidence regions 
of the model predictions are asymmetric for fCHM, which results 
from the mapping through the non-linear warping function fW. 

Fig. 2. Results of the hybrid model with output constraint. Black circles: 
experimental data; red triangles: results of the physics-based model fPM; blue 
squares: results of the physics-informed hybrid model with output constraint 
fCHM. Error bars indicate the confidence region given by the standard 
deviation obtained from the GP model. 

4. Conclusion 

In conclusion, we have demonstrated the application of 
output warping to constrain the outputs of a physics-informed 
hybrid model to further improve the compliance of the model 
with physics, limiting the model predictions, including the 
confidence interval, to physically plausible values. 
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