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Zusammenfassung

Die durch Pflanzenviren hervorgerufenen Ertragsausfälle sind beträchtlich. Es wird geschätzt,

dass die jährlichen Verluste bis zu 15 Milliarden USD betragen. Unter den 34 verschiedenen

Familien der Pflanzenviren nehmen die Potyviridae eine besondere Stellung ein, da sie mit

198 definierten und möglichen Vertretern, also etwa einem Drittel aller bekannten

Pflanzenviren, die zahlenmäßig größte Familie ist (Ward und Shukla, 1991; Brunt, 1992). Die

Potyviridae werden in die Genera Potyvirus, Bymovirus, Ipomovirus, Rymovirus und nicht

definierte Potyviren unterteilt. Von diesen ist der Genus Potyvirus mit gegenwärtig 128 Arten

(117 definierte und 11 mögliche) derjenige mit den meisten Arten. Potyviren werden in der

Regel durch Vektoren, also Aphiden, Milben oder bodenbürtige Pilze, übertragen. Ihr sicherer

Nachweis ist eine essentielle Voraussetzung für die Resistenzzüchtung, die Virusfreimachung

sowie Bekämpfung der Viren. Für verschiedene Potyviren sind Resistenzgene bekannt, für

andere wird nach ihnen gesucht. Allerdings kann der Prozeß ihrer Einkreuzung in Sorten sehr

langwierig sein. Oftmals werden dadurch auch unerwünschte Eigenschaften, bis hin zur

Anfälligkeit für andere Viren, mit übertragen. Daher gewinnen gentechnische Verfahren zur

Verbesserung der Resistenz zunehmend an Bedeutung. Da die Akzeptanz bisher üblicher

Verfahren über die pathogenvermittelte Resistenz (pathogen derived resistance) noch nicht

gegeben ist, sind alternative Ansätze gefragt. Das Anliegen der vorliegenden Arbeit war es,

die Grundlagen für einen solchen Ansatz zu schaffen. Dafür sollten die neuesten

Entwicklungen auf dem Gebiet der Antiköpertechnik genutzt werden. Es war in den letzten

Jahren gelungen, die Gene für die variablen Regionen von Antikörpern zu klonieren und in

Form aktiver, verkleinerter Moleküle neu zu kombinieren. Diese sogenannten "single chain

variable fragment antibodies " (scFv) haben ihr Potential in der Diagnose inzwischen

demonstriert. Sie fanden, wenn auch vorerst noch vereinzelt, bereits Einzug in die pflanzliche

Virologie und zwar zum einen als Diagnosemittel aber auch zur Verbesserung der Resistenz.

Dafür wurden die entsprechenden Gene für scFv in Pflanzen zur Expression gebracht. Bisher

wurden dafür nur scFv eingesetzt, die mit viralen Hüllproteinen (CP) reagierten. Wir wollten

dieses Verfahren nutzen, um mit Hilfe entsprechender scFv ein für die Vermehrung von Viren

essentielles Enzym, die RNA-abhängige RNA-Polymerase (RdRp) zu blockieren. Dieses

Enzym entspricht bei Potyviren dem NIb. Man kann erwarten, dass ihre Blockierung bereits

die frühesten Stadien der Virusvermehrung unterbrechen würde. Um das Prinzip universell

gestalten zu können, wurden bei der Herstellung der scFv Zielsequenzen ausgewählt, die für

die RdRp aller Potyviren charakteristisch sind. Von diesen vermuten wir, dass sie für die

Aktivität des Enzyms essentiell sind.
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Gleichzeitig sollte der diagnostische Werte der gegen das NIb und Hüllprotein (CP)

gewonnenen monoklonalen Antikörper (MAb) - letztere dienten für Vergleichszwecke -

sowie daraus entwickelten scFv eingeschätzt werden.

Prinzipiell gibt es drei Möglichkeiten, scFv herzustellen:

! über fertige Banken,

! über die mRNA induzierter Milzzellen oder

! über MAb.

Wir wählten den letzten Weg, da uns Banken nicht zur Verfügung standen.

1 Identifizierung konservierter Regionen von NIb und CP

 

 Alle zum Zeitpunkt der Analyse in der EMBL-Datenbank verfügbaren Sequenzdaten für das

NIb von Potyviren wurden mit Hilfe eines Computerprogramms (DNASIS, Hitachi) genutzt,

um die entsprechenden Aminosäuresequenzen abzuleiten und zu vergleichen. Damit die

ausgewählten, stark konservierten Regionen eine ausreichend hohe Antigenität aufweisen,

sollten sie länger als 20 Aminosäuren sein. Es konnten drei größere Bereiche identifiziert

werden:

 Region 1 (R1): ANKTRTFTAAPLDTLLGGKVCVDDENNQFY,

 Region 2 (R2): LPEGWVYCDADGSQFDSSLTPYLINAVL und

 Region 3 (R3): NLYTEIVYTPILTPDGTIVKKFKGNNSGQPSTVVD NTLMV.

 Die Motive FTAAP (R1), DGSQFD (R2) und GNNSGQPS (R3) waren dabei perfekt

konserviert, während bei den anderen Aminosäuren in Abhängigkeit vom Virus in einigen

Fällen eine oder zwei Aminosäuren verschieden sein konnten. Die unterstrichenen Teile der

Sequenzen wiesen dabei die höchste Immunogenität auf. Entsprechende Peptide, z. T.

gekoppelt mit Rinderserumalbumin als immunologisch inertem Träger und Verstärker der

Immunantwort, wurden synthetisiert.

 Für das CP von Potyviren konnten zwei stark konservierte Regionen nachgewiesen

werden:

 MVWCIENGTSPD und ENTERHTA, die im Kern- bzw. C-terminalen Bereich des Proteins

lokalisiert sind. Diese wurden als "multiple antigen peptide" (MAP) synthetisiert. Dazu

wurden vier Moleküle über Lysin miteinander gekoppelt. Wir erwarteten so eine

Verbesserung der Immunogenität.
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2 Überexpression eines R1-R2-R3-Fusionsproteins und des potato virus Y-NIb in

Escherichia coli

 

 Um die Reaktivität der gegen die Peptide gewonnenen MAb testen zu können, war es

erforderlich, geeignete rekombinante Proteine herzustellen.

 Als erstes wurden DNA-Fragmente synthetisiert, die für die Regionen eins bis drei

kodierten, und nacheinander in das Plasmid pGEM3 kloniert. Das resultierende Insert R1-R2-

R3 wurde in pET30a kloniert und das Protein in E. coli überexprimiert.

 Für die Klonierung des nativen NIb wurde von Gesamt-RNA ausgegangen, die aus

PVYN-infizierten Nicotiana tabacum-Pflanzen isoliert worden war. Mit Hilfe spezifischer

Primer gelang die Amplifikation des NIb-Gens durch RT-PCR. Es wurde anschließend in

pCR-SCRIPT SK (+) kloniert und sequenziert. Für die Expression wurde das Insert in

pET30a/E. coli BL21 (DE3) pLysS retransformiert und exprimiert. Die meisten der Klone

erwiesen sich als instabil, da das NIb offensichtlich toxisch für E. coli ist. Von einem stabilen

Klon gelang die Expression des NIb.

 
Abb. 1: Expression des rekombinanten NIb in E. coli BL21 (DE3) pLysS und Darstellung seines
Reinheitsgrades nach Afinitätschromatographie.
a: Coomassie Brilliant Blau-gefärbtes SDS-Polyacrylamidgel von Gesamtproteinen. Bahn 1: mit IPTG
induzierte Zellen, Bahn 2: nicht induzierte Zellen, Bahn 3: IPTG-induzierte Zellen mit pET30a ohne
Insert, Bahn 4: nicht induzierte Zellen mit pET30a ohne Insert, Bahn 5: Zellen ohne Plasmid, Bahn M:
vorgefärbter Proteinmarker.
b: Coomassie Brilliant Blau-gefärbtes SDS-Polyacrylamidgel mit über IMAC gereinigtem
rekombinantem NIb. Bahn 1: Durchfluß von Ni2+-Säule; Bahn 2: Gesamtextrakt aus E. coli; Bahn 3-6:
Eluate, Fraktionen 1, 2, 7 und 8; Bahn 7-8: Mischung der Fraktionen 1-4 bzw. 5-8, über PEG
konzentriert; Bahn M: vorgefärbter Proteinmarker.

 

 Beide rekombinanten Proteine wurden über Affinitätschromatographie an

immobilisierten Metallionen (immobilzed metal-ion affinity chromatography, IMAC; hier

Ni2+ als Gegenion) gereinigt und für die Testung eingesetzt. Der Nachweis der Expression des
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NIb und die Überprüfung seiner Reinheit nach Chromatographie sind in Abbildung 1

dargestellt.

 
3 Gewinnung von MAb gegen synthetische Peptide
 

 Als Fusionspartner wurden die Myelomzelllinien SP2/0-Ag 14 bzw. X 63-Ag 8.653

verwendet.

 Tabelle 1:   Zusammenfassung der Eigenschaften der gegen das NIb gewonnenen MAb.

 A405nm -Werte im PTA-ELISA

 Synthetische
Peptide

 Recombinan
-tes Protein

 Blattextrakte aus infizierten Pflanzen

Zellku

l-tur-

über-

stand

Spezi-

fisch

für

Peptid

 R1  R2  R3  RP1-3  NIb   PVY  gesund  PVA  PPV  PVV  TuMV

 1G5  R1  1.16  0.11  0.09  0.03  0.03  0.03  0.07  nt∗  nt  nt  nt

 2C3  R1  1.66  0.12  0.10  0.03  0.03  0.26  0.30  nt  nt  nt  nt

 2G10  R1  1.33  0.10  0.08  0.33  0.33  1.92  1.32  1.89  1.88  1.88  1.79

 3C6  R1  1.13  0.12  0.11  0.82  0.32  0.45  0.07  0.47  0.38  0.33  0.27

 3G4  R1  1.24  0.11  0.10  0.75  0.66  0.25  0.07  0.26  0.23  0.25  0.23

 1B7  R2  0.16  1.69  0.19  1.08  0.68  0.25  0.08  0.34  0.22  0.24  0.26

 1C8  R2  0.14  1.94  0.15  1.55  0.55  0.37  0.15  0.45  0.37  0.37  0.33

 1G12  R2  0.12  1.80  0.11  0.85  0.78  0.30  0.07  0.39  0.30  0.33  0.31

 1B9  R2  0.22  1.41  0.21  0.06  0.02  0.20  0.14  nt  nt  nt  nt

 3B4  R3  0.16  0.11  0.32  0.05  0.02  0.04  0.05  nt  nt  nt  nt

 3E11  R3  0.11  0.10  0.31  0.04  0.01  0.04  0.05  nt  nt  nt  nt

∗ nt = nicht getestet; RP1-3 = recombinantes Protein R1-R2-R3; Die synthetischen Peptide, das
rekombinante R1-R2-R3 und NIb wurden in einer Konzentration von 2 µg/ml verwendet. Der Isotyp
aller MAb war IgM.
 

 Aus den verschiedenen Fusionsexperimenten resultierten 11 Hybridomzelllinien, die

MAb gegen die konservierten Regionen des NIb sekretierten. Ihre Reaktivität mit den

korrespondierenden Antigenen verschiedenen Ursprungs wurde bestimmt. Die Ergebnisse

sind in Tabelle 1 dargestellt. Vier der MAb, 1G12, 3G4, 1B7 und 3C6, die gegen die Peptide

R1 bzw. R2 gewonnen worden waren, reagierten sowohl im Western blot als auch ELISA

spezifisch mit den NIb verschiedener Potyviren.
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 Unter den gegen die CP-spezifischen MAP-Peptide hergestellten Hybridomazelllinien

konnten vier identifiziert werden, die spezifische MAb sekretierten. Diese reagierten jedoch

im PTA-ELISA unspezifisch mit Presssaft aus gesunden Pflanzen. Wurde für das Beschichten

ein polyklonales Antiserum gegen das PVY eingesetzt, so ließ sich der MAb 5B3 auch für

den Nachweis des PVY mittels DAS- bzw. TAS einsetzen, da kaum noch Reaktionen mit

gesundem Material auftraten.

 Die Ergebnisse demonstrierten, dass es prinzipiell möglich ist, Peptide für die

Gewinnung von MAb einzusetzen, die mit spezifischen Regionen eines Proteins reagieren

sollen.

 

4 Gewinnung von MAb gegen das rekombinante NIb und das CP des PVY
 

 Im Ergebnis der Versuche wurden verschiedene MAb gegen das rekombinante NIb sowie das

CP des PVY gewonnen. Ihre Eigenschaften sind in Tabelle 2 dargestellt. Es konnte gezeigt

werden, dass sie für den Nachweis einer PVY-Infektion geeignet sind. Der gegen das PVY

CP gerichtete MAb 1D6 wies alle zehn im PTA- und TAS-ELISA getesteten Isolate des PVY

nach. Dabei ergaben die Isolate C, To1 und oGA im Western blot schwächere Signale (Abb.

2). Er weist weder im PTA-/TAS-ELISA noch Western blot Kreuzreaktionen mit anderen

Potyviren auf, wie den getesteten potato virus A und V, watermelon virus 2, plum pox, lettuce

mosaic, maize dwarf mosaic, turnip mosaic, ryegrass mosaic, barley yellow mosaic und

barley mild mosaic virus.

 

 Abb. 2: Western blot-Analyse der CP verscchiedener PVY-Isolate auf N. glutinosa.
 Bahn 1: Isolat A91; Bahn 2: Isolat M3; Bahn 3: Isolat NTN; Bahn 4: Isolat CH 605; Bahn 5: Isolat
oGA; Bahn 6: Isolat To1; Bahn 7: Tomaten; Bahn 8: Isolat C; Bahn M: vorgefärbter Proteinmarker.
Proben extrahiert mit 50 mM Tris-HCl-Puffer, pH 6.8.
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 Tabelle 2: Charakteristika und Reaktivität mono- und polyklonaler Antikörper gegen NIb

und CP des PVY

Isotyp A405nm Values in PTA-ELISA / TAS-ELISA Zellkultur-

Überstand/

Seren

Specifis

ch für

antigen
Schwere

Kette

Leichte

Kette

Überexprimi

ertes NIb

(2µg/ml)

Extrakte aus

PVY- infizierten

Blättern (1:50)

Extrakte aus

nicht infizierten

Blättern (1:50)

1C8 NIb µ κ 1.25† / 0.35‡ 0.73 / 0.27 0.65 /0.19

1D8 NIb µ κ 1.14 / 0.32 0.67 / 0.15 0.58 / 0.11

2F5 NIb µ κ 1.39 / 0.42 0.92 / 0.33 0.13 / 0.18

2F10 NIb µ κ 1.32 / 0.39 1.05 / 0.32 0.16 / 0.18

2E11 NIb µ κ 1.63 / 0.48 1.12 / 0.43 0.11 / 0.15

3B10 NIb µ λ 1.20 / 0.37 0.96 / 0.16 0.03 / 0.09

1D6 CP γ κ 0.03 / 0.04 1.35 / 1.56 0.03 / 0.05

Serum M NIb       1.35 / nt        1.27 / nt       0.53 / nt

Serum R1 NIb       2.18 / nt        0.66 / nt       0.17 / nt

Serum R2 NIb       2.32 / nt        0.73 / nt       0.22 / nt

 
 Serum M = Antiserum von für die Gewinnung von Milzzellen immunisierter Maus, vor Gebrauch
1:500 verdünnt; Seren R1 and R2 = Kaninchenantiseren, vor Gebrauch 1:1000 verdünnt; nt = nicht
getestet. Die A405nm-Werte wurden nach 1 h Substratinkubation bei Raumtemperatur gemessen. †
A405nm-Werte für den PTA-ELISA, ‡ A405nm-Werte für den TAS-ELISA. Systemisch infizierte Blätter
wurden 14 dpi getestet.
 

5 Dynamik der Expression des NIb und des CP

 

 Der zeitliche Verlauf des Auftretens des CP und des NIb wurde an PVYN-infizierten N.

glutinosa und N. occidentalis untersucht. Beide Proteine ließen sich in systemisch infizierten

Blättern 5 dpi sowohl durch Western blot als auch ELISA nachweisen. Im Falle des Isolates

1427 konnte das NIb bereits eine Tag vor dem CP nachgewiesen werden. Beim Isolat oGA

ließen sich CP und NIb erst 7 dpi nachweisen. Ähnliche Ergebnisse sind für das TEV

beschrieben worden. Die Daten lassen den Schluß zu, dass sich verschiedene Isolate

verschieden schnell in den Wirten vermehren und ausbreiten. Es konnte weiterhin beobachtet

werden, dass in den älteren Blättern geringere Mengen der RdRp als in den jüngeren

angereichert wurden. Das spricht für eine aktivere Vermehrung des Virus in den jüngeren,

systemisch infizierten Blättern. Gleichzeitig waren die Absorptionswerte im ELISA für PVY-
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 infizierte N. glutinosa-Pflanzen höher als für N. occidentalis (Abbildung 3). Das traf sowohl

für das CP als auch die RdRp zu.

 

 
 
 Abb. 3:  Zeitlicher Verlauf des Auftretens von NIb und CP in verschiedenen Wirten und Blättern.
 pi: l. Blatt, lokal infiziert; si: 2. Blatt, systemisch infiziert; g: N. glutinosa;  o: N. occidentalis; CP,
NIb: Testung auf CP oder NIb. Die Pflanzen wurden mit dem Stamm PVY CH 605 inokuliert. Die
Werte für die gesunde Kontrolle betrugen für das NIb = 0.12±0.15, für das CP = 0.01±0.05.
Probenanzahl (N) = 10. Für den Nachweis des NIb wurde der Kulturüberstand des MAb 2E11 (1:1
verdünnt) genutzt, für das CP der gereinigte MAb 1D6 (1mg/ml, 1:1000 verdünnt). Die A405nm-Werte
wurden nach 1 h Substratinkubation bei Raumtemperatur gemessen.

6 Klonierung und Überexpression der scFv-Gene in E. coli

 

 ScFv-Antikörper bestehen aus den variablen Fragmenten (Fv) der leichten und schweren

Kette eines Antikörpermoleküls und sind über einen Peptidspacer miteinander verbunden.

Dieser ist in der Regel 15 Aminosäuren groß und ermöglicht eine korrekte Faltung des

Moleküls, so dass es sich mit dem Antgen verbinden kann. Für die Klonierung der Fv konnten

wir von publizierten Sequenzen für die angrenzenden Bereiche ausgehen und entsprechende

Primer synthetisieren. Ausgangspunkt für die Klonierung war mRNA, die aus die

entsprechenden MAb produzierenden Hybridomazellen gewonnen wurden. Die cDNA wurde

mit Hilfe von Zufallsprimern generiert. Ausgehend von dieser cDNA erfolgte dann die

separate PCR-Amplifikation der Fv der schweren und leichten Kette. Dafür wurden

Primerpaare eingesetzt, die an Bereiche der konstanten 3'- oder 5'-Regionen binden, die an die
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Fv angrenzen. Es waren degenerierte Primer zu wählen, da diese konstanten Regionen

gewisse Variationen in der Nukleinsäuresequenz aufweisen. Der 5'-Primer für die schweren

Kette enthält außerdem die Sequenz für ein Leader-Peptid. Die über PCR erhaltenen

Fragmente wurden kloniert und sequenziert. Anschließend erfolgte zwecks Überexpression in

E. coli eine Reklonierung in weitere Plasmide/Phagemide (pSEX81, pOPE101, pCANTAB

5E). Auf diese Weise konnten sowohl an der Phagenoberfäche exponierte als auch lösliche

scFv gewonnen werden. Diese banden an die entsprechenden Antigene. Dabei zeigten beide

rekombinante Antikörpertypen ein ungefähr gleiches Bindungsverhalten. Allerdings war ihre

Affinität geringer als die der nativen MAb. Die Ergebnisse dieser Versuche sind in Tabelle 3

zusammengefaßt.

 Der für das PVY-CP spezifische scFv F1 erreichte bei Expression in E. coli einen Anteil

von 17% am Gesamtprotein (Abbildung 4). Das spricht für eine sehr hohen Expressionsrate.

Allerdings mutierte die rekombinante DNA dieses Klons sehr stark, so dass vor der Induktion

stets auf eine starke Repression zu achten war.

 Die hier gewonnenen scFv-Antikörpergene werden die Grundlage für den Gentransfer

in verschiedene Pflanzen bilden. In diesem Zusammenhang müssen sie wahrscheinlich mit

verschiedenen Signalpeptiden oder Retentionssignalen versehen werden. Das kann

erforderlich sein, um sie in definierte Zellkompartimente einzuschleusen, als auch, um sie zu

stabilisieren.

 Tabelle 3: Vergleich der Nachweisempfindlichkeit für das PVY-CP im PTA-ELISA bei

Verwendung von nativen MAb und scFv

PTA-ELISA Competition-ELISAMAb/

ScFv Ag—ScFv —AP Ag—MAb—AP Ag—ScFv —AP Ag—MAb—AP

1D6 0.52 1.15 0.12 0.55

2E11 0.35 0.83 0.07 0.41

7C5* 0.04 0.05 nt nt

1B7 0.23 0.68 0.06 0.32

1G12 0.26 0.78 0.07 0.33

3G4 0.25 0.66 0.06 0.32

 
 *Der MAb 7C5 weist im PTA-ELISA und Western blot das CP des PVY nicht nach, reagiert jedoch
mit ihm im TAS-ELISA, wenn für das Beschichten der Platten ein polyklonales Antiserum verwendet
wird. Die A405nm-Werte für 1B7, 1G12, und 3G4 wurden für das rekombinante NIb als Antigen
erhalten, die Werte für 1D6 und 2E11 mit Saft aus PVY-infizierten N. glutinosa-Pflanzen. Die
Messung erfolgte nach 1 h Inkubation bei Raumtemperatur.
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 a b
 
 Abb. 4: Optimierung der Expression von scFv in E. coli.
 a: Gesamtproteinextrakte, analysiert auf einem 12%igen Gel, gefärbt mit Coomassie Brilliant Blau.
 Bahn 1: nicht induzierte Zellen mit Konstrukt pOPE-scFv-myc/His-tag (Klon F1); Bahn 2: induzierte
Zellen mit Plasmid pOPE ohne scFv-DNA; Bahn 3: induzierte Zellen mit Konstrukt pOPE-scFv-
myc/His-tag (Klon F1); Bahn 4: Proteinmarker; Bahn 5: nicht induzierte Zellen mit Plasmid pOPE-
scFv (K3); Bahn 6: induzierte Zellen mit Plasmid pOPE ohne scFv DNA; Bahn 7: induzierte Zellen
mit Konstrukt pOPE-scFv-myc/His-tag-(Klon K3); Bahn M: Proteinmarker.
 b: Gesamtproteinextrakte, analysiert auf einem 12%igen Acrylamid-Gel, geblottet auf PVDF-
Membran und untersucht mit MAb 9E10 (spezifisch für c-myc-tag).
 Bahn 1: induzierte Zellen mit Plasmid pOPE ohne scFv-DNA; Bahn 2: induzierte Zellen mit
Konstrukt pOPE-scFv-myc/His-tag (Klon F1); Bahn 3: nicht induzierte Zellen mit Konstrukt pOPE-
scFv-myc/His-tag (Klon F1); Bahn 4:induzierte Zellen mit Plasmid pOPE ohne scFv-DNA; Bahn 5:
induzierte Zellen mit Konstrukt pOPE-scFv-myc/His-tag (Klon K3); Bahn 6: nicht induzierte Zellen
mit Konstrukt pOPE-scFv-myc/His-tag (Klon K3); Bahn M: Proteinmarker.
 

 

7 Expression von mit bakterieller alkalischer Phosphatase fusionierten scFv in E. coli

Für immunologische Tests kommt eine Reihe von Enzymen zum Einsatz, darunter

insbesondere alkalische Phosphatase (AP), Meerrettich-Peroxidase und ß-Galaktosidase.

Allerdings sind die Kosten für die Koppelung der Antiseren mit den detektierenden Enzyme

hoch. Außerdem kann sich dadurch die Reaktivität der Antikörper verändern und es gibt

Unterschiede zwischen den einzelnen Chargen. Auch hier bieten gentechnische Methoden

interessante Ansätze, die Antikörper zu standardisieren und ihre Herstellung zu verbilligen.

Dazu werden scFv-Gene mit den Genen für die entsprechenden Nachweisenzym fusioniert. In

der Arbeit wurden die Möglichkeiten zur Fusion  des vom PVY-CP-spezifischen MAb 1D6

abgeleiteten scFv (F1) mit bakterieller AP untersucht. Dazu wurde das entsprechende scFv-

Gen in das Plasmid pOPE51-AP im Leserahmen zur bakteriellen AP kloniert. Das
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Fusionsprotein wurde in E. coli überexprimiert (Abbildung 4). Die ungereinigte

periplasmatische Fraktion aus E. coli wurde direkt für den Nachweis des PVY im ELISA

Abb. 4: Western blot zum Nachweis der Überexpression eines scFv-AP-Fusionsproteins in E. coli.
Bahn 1: induzierte Zellen mit scFv-AP-Konstrukt; Bahn 2: nicht induzierte Zellen mit scFv-AP-
Konstrukt; Bahn 3: Zellen mit entsprechendem scFv-Konstrukt (ohne AP) als Kontrolle; Bahn M:
Proteinmarker.

eingesetzt. Es zeigte sich jedoch, dass die katalytische Aktivität dieses Enzyms wesentlich

geringer als die der AP aus Kälberdarm war. Das könnte darauf beruhen, dass die aktive Form

der bakteriellen AP ein Homodimer ist. Wahrscheinlich behindert die Fusion mit dem scFv

die Bildung dieser Homodimere. Inzwischen sind Gene für eine verbesserte Formen der

bakteriellen AP zugänglich, die  eine höhere Aktivität erwarten lassen. Die damit

herstellbaren Konjugate könnten durchaus eine Alternative zu herkömmlichen Reagenzien

darstellen.
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List of Abbreviations

aa amino acid(s)
ADEPT antiboy-directed enzyme prodrug therapy
Ag antigen
AP alkaline phosphatase
Amp ampicillin
B cell bone-marrow-derived lymphocyte
BACK-primer PCR primer complementary to the 5'-end of a DNA template
Bis N,N-methylenebisacrylamide
bp base pairs
BSA bovine serum albumin
CDR complementary determining region
DMF dimethylformamide
DMEM Dulbecco’s modified Eagle’s  medium
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
dpi day post inoculation
DTT dithiothreitol
E. coli Escherichia coli
ECL enhanced chemiluminescence
EDTA ethylenediamine tetra-acetic acid
ELISA enzyme-linked immunosorbent assay
ER endoplasmic reticulum
FCS fetal cattle serum
FOR-primer PCR primer complementary to the 3'-end of a DNA template
HAT hypoxanthine, aminopterin, thymidine
HEPES N-2-hydroxyethylpiperazine-N'-2 ethane sulfonic acid
HPRT hypoxanthine guanosine phosphoribosyl transferase
HPLC high performance (pressure) liquid chromatography
HT hypoxanthine, thymidine
Ig immunoglobulin
IPTG isopropyl-β-D-thiogalactoside
IMAC immobilised metal-ion affinity chromatography
KDEL ER retention signal (aa sequence of the peptide)
LMW low molecule weight
MAb monoclonal antibody
MAP multi-antigenicity peptide
2ME 2-mercaptoethanol
MHC major histocompatibility complex
NTP nucleotide triphosphate
OD optical density
ori origin of replication
PAGE polyacrylamide gel electrophoresis
PBS phosphate-buffered saline
PCR polymerase chain reaction
PEG polyethylene glycol
PMSF phenylmethylsulfonyl fluoride
p-NPP p-nitrophenyl phosphate
poly A polyadenylation signal
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PVDF polyvinylidene fluoride
RAG1/2 recombination active genes
RNA ribonucleic acid
scFv single chain variable fragment or single chain antibody
SDS sodium dodecyl sulfate
TBS tris-buffered saline
TCA trichloracetic acid
TCR T cell receptor
TEMED N,N,N',N'-tetramethylene-ethylenediamine
tet tetracycline
T cell thymus-derived lymphocyte
Tris tris (hydroxymethyl) aminoethane
VDJ variable, diversity, joining gene segments
X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactoside

Acronym Virus name

ACMV artichoke mottled crinkle virus
AMV alfalfa mosaic virus
BaMMV barley mild mosaic virus
BaYMV barley yellow mosaic virus
BCMY bean common mosaic virus
BMV brome mosaic virus
BYMV bean yellow mosaic virus
BrSMV brome streak mosaic virus
ClYVV clover yellow vein virus
CMV cucumber mosaic virus
EMCV encephalomyocarditis virus
JGMV Johnson grass mosaic virus
LMV lettuce mosaic virus
MDMV maize dwarf mosaic virus
PepMoV pepper mottle virus
PRSV papaya ringspot virus
PSbMV pea seed-borne mosaic virus
PStV peanut stripe virus
PPV plum pox virus
PVA potato A virus
PVV potato V virus
PVY potato Y virus
RCNMV red clover necrotic mosaic virus
RNMV rice necrosis mosaic virus
RgMV ryegrass mosaic virus
SMV soybean mosaic virus
TEV tobacco etch virus
TVMV tobacco vein mottling virus
TYMV turnip yellow mosaic virus
TuMV turnip mosaic virus
ZYMV zucchini yellow mosaic virus
WMV watermelon mosaic virus
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1  General introduction and scope of the work

Plant viruses are estimated to cause economic losses worldwide of about 15 billion USD per

annum. The development of effective control strategies is mainly dependent on the

availability of reliable methods of their identification and detection.

Of the 34 different plant virus families Potyviridae is by far the largest and consists of

Potyvirus, Bymovirus, Ipomovirus, Rymovirus genera and unassigned potyviruses. This family

contains 198 definitive and possible members, accounting for more than one third of all

viruses known to infect plant species around the world (Ward and Shukla, 1991; Shukla et al.,

1994; Brunt et al., 1997). The genus Potyvirus is the largest of the four genera and has the

current 128 species (117 definite and 11 tentative species). Potyviruses cause significant

diseases in agricultural, pasture, horticultural and ornamental crops. These viruses are usually

transmitted from plant to plant by vectors, e.g. aphids, mites, and fungi. Successful detection

and control of potyvirus infections are still challenges.

Serological methods play the most important role in detection and identification of

viruses. MAbs have been widely applied for this purpose. So far a number of MAbs have

been developed successfully for the detection and identification of potyviruses. Recently,

recombinant antibodies, e.g. single chain variable fragment (scFv) antibodies, the second

generation of MAbs have been developed and proved to have the potential both in

immunomodulations and in virus disease diagnoses. ScFv antibodies can be produced in

bacteria and plants. High level expression of scFv (Owen et al., 1992; Firek et al., 1993;

Fiedler and Conrad, 1995; Longstaff et al., 1998) as well as whole size antibodies (Hiatt et al.,

1989; De Neve et al., 1993; Voss et al., 1995) in plants, reduces the costs of antibody

production and circumvents the use of animals. Furthermore, recently it has been evidenced

that expression of scFv in transgenic plants can protect plants against virus attack

(Tavladoraki et al., 1993; Fecker et al., 1997; Zimmermann et al., 1998).

1.1  Generation of antibodies in the immune response

The antibody is designed by nature to defend species of mammal against variable foreign

intruders, e.g. viruses, bacteria, and parasites. By combining a set of variant gene cassettes

with unique mutation mechanisms, a variety of more than a billion different sequences

encoding for antibodies can be achieved in the mammalian immune system. The genetic

material for this huge "library" of different antibodies is stored in the B-cell pool of the

lymphatic tissue, which is the source to generate versatility of antibodies in vivo. In
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mammalian species, circulating blood cells have their common origin in a small cluster of

cells that move from the primitive yolk sac to the fetal liver, and finally to the bone marrow,

where they take up permanent residence. These cells are the hematopoietice stem cells, the

undifferentiated cells from which all the other specialized cells in blood develop. Of them B

cells concern with the synthesis of antibodies, and T cells help this process.

After immunization there is usually a progressive increase in the affinity of the

antibodies produced against the immunizing antigen. The high-affinity human/mouse

antibodies to an immunized antigen are naturally selected by the human/mouse's immune

system in a process of affinity maturation. This phenomenon is unique to antibodies (it does

not occur in T cell receptors) and is due to the accumulation of point mutations specifically in

both heavy- and light-chain variable region coding sequences (Walter et al., 1995). These

mutations occur long after the coding regions have been assembled, when B cells are

stimulated by antigen and helper T cells to generate memory cells in the activated center (so-

called germinal center) of a lymphoid follicle in the secondary lymphoid organs. The point

mutations occur at a rate of about one mutation per variable region coding sequence and per

cell generation, which is about a million times greater than the spontaneous mutation rate in

other genes (Alberts et al., 1994). Only a small minority of these point mutations will result in

antigen receptors that have an increased affinity for the antigen. The few B cells expressing

these high-affinity receptors will be able to survive and proliferate, while the other B cells

will undergo apoptosis (programmed cell death) when the B cells are preferentially stimulated

by antigen. As predicted by the clonal selection theory proposed and developed by Nobel

Prize winners, Jerne and Burnet (Burne, 1957, 1959, 1968), B cells within this selected clone

begin their antibody-synthesizing lives by making IgM molecules and inserting them into the

plasma membrane as receptor for antigen. Before they have interacted with antigen, many B

cells switch to make both IgM and IgD molecules as membrane-bound antigen receptors.

Upon stimulation by antigen, some of these cells are activated to secrete IgM antibodies,

which dominate the primary antibody response referred to as primary class of antibody (Alt et

al., 1987). Other antigen-stimulated cells switch to make IgG, IgE, or IgA antibodies

(Milstein et al., 1984); memory cells express one of these three classes of molecules on the

surface, while activated B cells secrete them. The IgG, IgE, and IgA molecules dominate the

secondary antibody response, so collectively they are referred to as secondary classes of

antibodies.

Functional antibody genes do not exist as such in the germline DNA but are somatically

created during maturation of pre-B-cells into mature B cells (Tonegawa, 1983; Chen and Alt,
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1993; Shin et al., 1993; Walter et al., 1995). During B cell maturation, antibody genes are

physically assembled by the translocation and joining of several gene segments to complete

the coding sequences for one heavy chain gene and one light chain gene. While a single B-cell

is committed to make only one set of VDJ genes and one type of light chains, so that a single

B-cell produces an immunoglobulin of only one antigenic specificity (e.g. MAb). During the

life time of this cell it can switch to make a different class of antibody, such as IgG, IgA or

IgE, while retaining the same antigenic specificity (Esser and Radbruch, 1990; Harriman et

al., 1993; Snapper and Mond, 1993). Different B cells are likely to make different antibodies

since the individual antibody gene elements can be somatically rearranged in a number of

different ways, resulting in highly diversified antibody coding sequences (Ravetch et al.,

1981; Rolink and Melchers, 1991; Chen and Alt, 1993). The mammalian immune system has

evolved unique genetic mechanisms that enable it to generate an almost unlimited number of

different light and heavy chains in a remarkably economical way.

1.2  Antibody structure and function

The basic structural unit of an antibody molecule consists of four polypeptide chains, two

identical light (L) chains (each containing about 220 aa) and two identical heavy (H) chains

(each usually containing about 440 aa). The four chains are held together by a combination of

noncovalent and covalent (disulfide) bonds (Fig. 1.1). The whole molecule is composed of

two identical halves, each with the same antigen-binding site, and both light and heavy chains

usually are together to form the antigen-binding surface. The heavy and light chains can be

divided into a variable domain and a constant domain, respectively. The variable region of

light chains, the N-terminal portion of approximately 108 residues, is actually encoded by two

separate gene segments: a variable light chain (VL) segment coding for the amino-terminal 95

residues and a small joining segment (JL) coding for about 13 residues (96-108) at the C-

terminal end of the variable region. The variable region (domain) of a heavy chain (VH)

consists of three gene segments (e.g. V, D, J). Thus apart from V and J segments, VH genes

also use a D (diversity) segment. The D and J segments code for amino acid sequences in the

third hypervariable region (i.e. CDR3) of the heavy chain. The constant domain aa sequences,

which determine biological properties of antibodies, are relatively conserved among

immunoglobulins of a specific class, e.g. IgM, IgG, IgE, IgA, while the variable domains of

an antibody are highly heterogeneous. The variable domain endows the antibody’s binding

specificity and affinity. It can be further subdivided into different regions, the framework
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regions and the complementary determining regions (CDRs). CDRs are divided into CDR1,

CDR2, and CDR3. The framework regions form a scaffold structure referred to as a β-pleated

sheet from which the CDRs loop out. The aa sequences of the CDRs have been shown to be

“hypervariable” and are largely responsible for interacting with the targeted antigen (Davies

and Riechmann, 1996). To engineer a small recombinant antibody with the unique specificity

and affinity of the parent antibody one must be cautious not to disrupt the tertiary structure

and orientation of the CDRs residues.

 
Fig. 1.1: Schematic drawing of an IgG antibody molecule (immunoglobulin) and small antibody
fragments. VL = variable region of light (L) chain; VH = variable region of heavy (H) chain; VL +
VH = variable region; CL + CH1 + CH2 + CH3 = constant regions; (CH2 + CH3)2 = Fc;  VL + CL =
L-chain; VH + CH1 + CH2 + CH3  = H-chain;  VH + CH1 + L chain = Fab;  VH + linker + VL + Tag
= scFv;  SS = disulfide bond.

1.3  Molecular and genetic basis of antibody structure

The human genome is thought to contain fewer than 105 genes, but antibody molecules with

different specificities are approximately 106-8 in a given individual. Therefore, antibody

diversity raises a special genetic question: how can a human being/an animal make more

antibodies than there are genes in its genome?

Antibody gene rearrangements during lymphocyte differentiation, discovered by

Susumu Tonegawa (the Nobelist), provide a simple solution to the above paradox or puzzle.

Briefly, somatic recombination and mutation contribute greatly to an increase in the diversity

of antibodies (Tonegawa, 1983; Wagner and Neuberger, 1996). Antibody genes can move and

rearrange themselves within the genome of a differentiating cell (for loci of H-chain and L-

chain of immunoglobulin genes on chromosomes see references, Cook et al., 1994; Ermert et
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al., 1995; Tomlinson et al., 1995; Frippiat et al., 1997). A variable (V) gene located in one

position in the DNA of an inherited chromosome (the germline), can move to another position

on the chromosome during lymphocyte differentiation. This genetic recombination is

promoted by proteins encoded by two closely linked genes, RAG1 and RAG2, which work

together as a transposase, an enzyme that snips pieces of DNA out of one location in a

chromosome and transposes these pieces elsewhere (Agrawal et al., 1998). This process of

rearrangement during differentiation brings together an appropriate set of genes for the

variable and constant regions. The variable domains are created by the combinatorial

rearrangement of a relatively small number of gene segments, variable (VH), diversity (D) and

joining (JH) segments for the VH domain, and variable (VL) and joining (JL) segments for the

VL domain (Cook and Tomlinson, 1995; Kirschbaum et al., 1996). Together with deletion and

insertion of nucleotides at the segment junction and association of different heavy chains and

light chains, this generates a diverse primary repertoire of antibodies with huge number of

antigen binding specificities. In other words, random recombination of V, (D), J gene

segments and C genes in which an antibody can be coded by a DNA molecule considerably

reduces the amount of genetic information required to encode different antibody molecules.

V(D)J recombination, an unique mechanism mediated by RAG1 and RAG2, is employed to

create an immunoglobulin chain. Two consensus sequences were identified, one is a

palindromic heptamer sequence which always proximal to the linked coding sequence, and

the other is an AT-rich nonamer sequence that always distal to the linked coding sequence.

These heptamer and nonamer consensus sequences are always separated from one another by

a nonconserved spacer sequence of either 12 bp or 23 bp (Kuby, 1997). Together, the

heptamer, nonamer, and spacer sequences define the recombination signal sequences (RSS).

These specific DNA sequences are recognized, cut and rejoined by DNA transposases or

enzyme complexes (Agrawal and Schatz, 1997; Agrawal et al., 1998). At the beginning of an

immunoglobulin gene rearrangement, the transposase creates double-stranded DNA breaks at

the exon/RSS boundaries, effectively excising the intervening double-stranded DNA between

the two exons (Shockett and Schatz, 1999). The exposed DNA ends of joining sequences are

then ligated, creating a "coding joint" that corresponds to a contiguous reading frame running

through the joined exons. Careful examination of the coding joint sequences in mature B cells

has revealed the interesting fact that different coding joints can be created from the same two

exons. In other words, a certain degree of "junctional flexibility" enters into the process of

antibody gene rearrangements, producing multiple coding sequences at the VL-JL, VH-DH, and

DH-JH exon/exon boundaries. Antibody gene rearrangements proceed through a temporal
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cascade of order steps until the rearranged H and L chain genes encode a complete antibody

molecule (Shin et al., 1993; Kuby 1997).

1.4  Monoclonal and recombinant antibodies

1.4.1  Monoclonal antibodies

Monoclonal antibodies, characterized by extraordinary specificity and binding affinity, were

widely used as a unique analytical reagent (Laurino et al., 1999). Because of these two

attributes, the antibodies become a ‘dream’ analytical reagent that is difficult to surpass. Since

the elucidation of the cellular basis of immunology engendering the development of

monoclonal antibodies (hybridoma technology, Fig. 1.2) in the 1970s by Niels K. Jerne,

Georges J. Köhler, and Cesar Milstein, Nobel Price winners all, numerous MAbs with

specificity to cellular, bacterial, and viral proteins have been developed and resulted in a great

impact on medicine and biology (Köhler and Milstein, 1975; Waldman 1991; Chien and

Silverstein, 1993). Application of MAb in biomedical research has substantially contributed

to our understanding of the structural and physiologic components of intra- and extra-cellular

protein interactions (Jin et al., 1992; Mylvaganam et al., 1998). A novel spinoff of

monoclonal antibody technology has been the creation of catalytic antibodies or abzymes

generated by immunizing mice with enzyme transition state analogs (Pollack et al., 1986;

Tramontano et al., 1986; Barbas et al., 1997). Abzymes represent a whole new approach to

the study of enzyme mechanisms and to the creation of useful biological catalysts (Hsieh-

Wilson, et al., 1996; Ma et al., 1998). Recently the development of MAb-based therapeutic

reagents was made progress and well promised (Berkower, 1996; Farah et al., 1998; Panousis

and Pietersz, 1999).

MAb, secreted by a single B-cell, has mono-specificity. It usually reacts with a single

antigen determinant. Polyclonal antiserum recognizes a number of different determinants.

Therefore, the application of MAbs avoids some problems arisen from polyclonal antisera

which cross-react with non-immunized antigens. Although production of MAbs involves a

great deal of work and requires the use of live animals, the advantages of high specificity and

binding ability of MAb make it a valuable tool for identification and isolation of  viruses.

Small antibody fragments were first produced in the late 1950s when Porter isolated Fab

(fragment antigen binding) and Fc (fragment crystallizable) fragments from proteolytically

cleaved rabbit gamma globulins (IgG). This work provided the first evidence that a MAb
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molecule comprises Fab and Fc fragments (Fig. 1.1). Recent advances in understanding of

immunoglobulin structure through three-dimensional studies, using nuclear magnetic

resonance and X-ray crystallography and increased computer-assisted molecular modelling

capabilities, combined with the applications of recombinant approaches and novel selection

methods have led to the evolution of a new class of antibody-like molecules or recombinant

antibodies.

Fig. 1.2: A schematic representation of the production of monoclonal antibodies. HPRT+: cells make
HPRT, can grow in a culture medium containing hypoxanthine, aminopterin and thymidine (HAT
medium). Ig+: cells can secrete immunoglobulins. Anti-Ag X: the antigen used for immunization.
Mouse spleen cells are HPRT+ and Ig+, thus they can survive in HAT medium and can secrete Ig
(antibodies) into culture medium, but they will die in the culture medium after a few days. Mouse
myeloma cells, defective in both HPRT production and Ig secretion, can grow in the culture medium
unlimitedly. However, they do not survive in HAT medium because: (1) aminopterin blocks the cell’s
main biosynthetic pathway for guanosine; (2) the inability of mouse myeloma cells to make enzyme
HPRT prevents them from using the alternative salvage pathway to make nucleic acids. Only the
myeloma cells that obtain HPRT+ Ig+ from the fusion partner mouse spleen cells can grow in HAT
medium. In other words, mouse spleen cells secreting specific Ig can unlimitedly grow in the culture
medium after fusion with mouse myeloma cells, that is ‘immortal’ hybrid, or hybridoma technology.

1.4.2  Recombinant antibodies

Recombinant antibody is generally termed for either the form of the antigen binding Fab or

Fv fragments of an antibody produced from a heterologous source. Enlightening of molecular
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structure of immunoglobulins and sequence data made it possible to develop

immunoglobulin-specific oligonucleotide primers and to use them in conjunction with

polymerase chain reaction (PCR) techniques to clone antibody fragments for generating

recombinant antibodies. The general strategy taken is to isolate the mRNA from mouse

splenocytes or monoclonal antibody-producing hybridoma cells and to reverse transcribe the

immunoglobulin encoding mRNA with a single primer, which binds either the heavy or light

chain antibody gene near the beginning of the constant domain. Reverse transcription of the

mRNA results in the production of immunoglobulin variable region cDNA. The cDNA is then

amplified by PCR with the original 3' constant region primers and the 5' leader signal primers,

binding upstream from the variable region. The immunoglobulin heavy or light chain cDNA

amplified by PCR can be cloned into plasmid or phagemid vectors. Once the immunoglobulin

genes are cloned, they can be rapidly sequenced and are accessible to recombinant techniques.

Thereafter, the diversity of VH and VL chains can be created by DNA shuffling (Stemmer,

1994a, b).

1.4.2.1  Single chain variable fragment (scFv) antibody

ScFv is a man-made product resulting from the development of the current biotechnology and

antibody engineering. The two antigen binding variable regions of the heavy and light chain

(VH and VL, e.g. Fv fragments) are artificially connected by a linker aa peptide (Fig. 1.1),

designated as single-chain variable fragment or single chain antibody (Bird et al., 1988;

Orlandi et al., 1989; Clackson et al., 1991). This resulting scFv facilitates the equal expression

of both Fv fragments in heterologous microorganisms, mammalian cells and plants.

The antigen binding site is made up of the variable domains of light and heavy chains of

a monoclonal antibody. The smallest portion containing an antigen binding site is the variable

fragments (Fv) of an antibody. Several investigations have shown that the Fv fragment has

indeed the full intrinsic antigen binding affinity of one binding site of the whole antibody. The

relative affinity of VH and VL fragments for each other depends on the particular sequence of

the antibody. Low affinity may result in dissociation of the Fv fragment into its components.

To stabilize the association of the recombinant Fv fragments, they were joined with a short

peptide linker and expressed as a single polypeptide chain. A variety of linker peptides,

generally of length 12-25 aa, were tested and did not disturb the proper folding of the VH and

VL domains (Bird et al., 1988; Huston et al., 1988). The most frequently used linker today for

scFv antibodies is (Gly4Ser)3, a single 15 aa peptide (e.g. 12 glycines and 3 serines) that
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bridges the ~4.5 nm (theoretical distance 5.4 nm, Hudson, 1995) gap between the C terminus

of one domain and the N terminus of the other and has a flexible structure with enhanced

mobility (Huston, et al., 1988; Freund et al., 1993). This construction facilitates chain pairing

and minimizes refoldings and aggregations encountered when the two chains are expressed

individually. An NMR comparison of the unlinked Fv fragment of the antibody McPC603

with the corresponding with scFv containing a linker (Gly3Ser)4 (VH-linker-VL constructs) has

shown no perturbation of the folding of the variable domains by the linker (Freund et al.,

1993).

ScFv antibodies have the following advantages:

(1) overcome the problem of dissociation of VH and VL often encountered with Fv fragments,

(2) provide immunologically active molecules of conveniently small size,

(3) can be produced on large scale by fermentation with high purity and at low cost,

(4) can be easily genetically manipulated and the MAb, used to obtain scFv, are immortalized

by this way (some hybridoma cells are unable to generate stable antibodies).

Different forms of scFv exist:

(1) soluble scFv antibody: the molecule is produced as a single polypeptide, this is the most

popular form of scFv antibody, as it shares all advantages of the MAb.

(2) recombinant phage display scFv antibody: the scFv genes are fused to gene3 protein (g3p)

of the phage. This leads to the expression of scFv on the surface of the phage. An

advantage of this form scFv is that the supernatant of the phage-infected bacterial culture

can be directly used in ELISA (Navarro-Teulon et al., 1995). This is useful for screening

specific scFv to target antigens from a scFv library through 3-4 rounds of selection.

However, this kind of scFv may exhibit some cross-reactions (Bird et al., 1988).

(3) dimeric forms of scFv or miniantibody: such molecules preserve the bivalency of native

antibody molecules, which is a very effective means of increasing the functional affinity

(avidity) to the surface of polymeric antigens (Pack et al., 1993; Kipriyanov et al., 1994;

Dübel et al., 1995). ScFv fragments can be linked by a small modular dimerization

domain in the form of one or two amphipathic helices (Pack and Plückthun, 1992). These

miniantibodies assemble in dimeric form in E. coli and the avidity of the best of them is

indistinguishable from a native antibody (Plückthun and Pack, 1997).

(4) fusions of scFv with diagnostic enzymes: a common fusion is that with alkaline

phosphatase. This enables the production of the antibody conjugate in bacteria, which

could decrease the costs of the ELISA reagents (Suzuki et al., 1997).
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(5) bi-specific scFv (diabody): bi-specific antibodies have been used to redirect T

lymphocytes against defined antigens (Ags) on tumor cells. This approach relies on

binding of one arm of the bi-specific antibody to a tumor-associated Ag, while the other

arm, by recognizing the CD3 molecule on T cells, triggers their cytotoxic activity. Cross-

linkage of the TCR-associated CD3 molecule by antibodies immobilized to solid surfaces

or cell membranes or tissues has been found to be a particularly strong activation signal

and occlusion of the neovasculature by antibody-direct targeting of tissue factors may

result in tumor infarction and collapse (Mack et al., 1997).

The small scFv fragments are considered promising for medical and biological

applications because of superior tissue penetration, absence of side reactions involving the

constant domains, as well as easy engineering of fusion proteins, such as scFv-coupled toxins,

the creation of multivalent or bispecific proteins or ADEPT (Hudson et al., 1993; Syrigos and

Epenetos, 1999).

 1.4.2.2  Fab fragments

Construction of Fab fragments is similar to that of scFv.  The difference is that both variable

and constant regions of light chain and heavy chain are still remained (Fig. 1.1). Therefore, a

molecule of recombinant Fab fragments has the complete antigen binding site and scaffold

structure of a natural antibody, which may result in a relative higher avidity than that of the

same scFv in some cases. The thermodynamic stability of the corresponding Fab fragments is

also somewhat higher than that of scFv (Shimba et al., 1995). Although Fab fragments have

these advantages, Fab fragments are usually produced in E. coli at lower functional yields and

do not have the same advantages of small size, especially in multivalent formats (Jung and

Plückthun, 1997). Furthermore, Fab fragments libraries tend to be less stable after selection

(Hoogenboom et al., 1998). Nevertheless, a number of Fab fragments have been developed

and used in immunotherapy and diagnostics so far (Rodrigues et al., 1992; Marasco, 1995;

Choi et al., 1998).

1.4.2.3  CDR ring peptides, potential of smallest synthesized antibodies

The sequence data have shown that the areas of highest natural diversity of antibody

repertoire is in the loop most central to the antigen combining site, the CDR3 of the heavy

chain, while the five other CDRs have limited variations (Kabat et al., 1991; Wilson and
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Stanfield, 1993). Evidence from both biochemical and structural studies of antibody-antigen

interactions suggests that CDR participation in antigen binding is unequal and that some

CDRs (particularly CDR3) make a dominant contribution to the binding energy of an

antibody (Chothia et al., 1989; Kabat and Wu, 1991). This suggests that an isolated CDR may

be sufficient to bind an antigen and retains bio-activity similar to that of its parental antibody.

Synthetic CDR ring peptides could be used as a novel type of medical agents for diseases

treatment (Saragovi et al., 1991; Williams et al., 1991).

1.5  Phage display and antibody evolution in vitro

1.5.1 Phage display mimics B cells for secreting antibodies, an in vitro antibody evolution

The use of currently developed techniques for in vitro selection of molecular interactions

under evolutionary pressure, such as phage display (Smith, 1985; Winter et al., 1994; Dunn,

1996), ribosome display (Mattheakis et al., 1994; Hanes and Plückthun, 1997), yeast surface

display (Boder and Wittrup, 1997) and bacterial display (Daugherty et al., 1998) has provided

a new perspective in the protein/antibody engineering. These selection approaches share a

common requirement: physically connect genotype (DNA sequence, e.g. antibody gene) and

phenotype (protein sequence, antibody) for selection and concurrently induce diversification

between selection rounds (Duenas and Borrebaeck, 1994; Phizicky and Fields, 1995).

Phage display has been most popularly used in today’s antibody engineering (Cortese et

al., 1996; Hoogenboom et al., 1998). Like the natural evolution of antibodies, antibody phage

display alternates between creation of diversity, mutation, and selection and thus speeds up

conditions of antibody evolution in vitro (Fig. 1.3).

Phage display relies on fusing the protein of interest to the minor coat protein of the

phage, the gene3 protein (g3p). This protein consists of three domains of 68 (N1), 131 (N2)

and 150 (CT) aa, connected by glycine-rich linkers of 18 (G1) and 39 (G2) aa, respectively.

The first N-terminal domain, N1, is thought to be involved in penetration of the bacterial

membrane, while the second N-terminal domain, N2, may be responsible for binding of the

bacterial F-pilus (reviewed in Spada et al., 1997). Recently, the structure of the N1-N2

domain complex has been solved at very high resolution (Lubkowski et al., 1998). In phage

display, a ligand (e.g. an antigen) is immobilized and a collection of binding proteins (e.g.

antibodies) are displayed on the phage, that is, provided as fusion to the g3p (Winter et al.,

1994). The essential trick is that the genetic information of the displayed protein is contained
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___________________________________________________________________________

Fig. 1.3: Generation of antibodies in the immune system and by phage display technology. In the
immune system, a germline cell differentiates into mature B cell through V(D)J recombination
mediated by RAG1 and RAG2; the mature B cell proliferates and divides into plasma cells which
secreting antibodies and memory cells (for more detail see section 1.1); similarly, by phage display
technology, antibody gene libraries are generated from germline V-gene segments or B-cells via PCR;
antibodies are displayed on the surface of phages through transformation into E. coli and phage rescue,
specific phage-scFvs are selected by target antigen binding; subsequently, soluble scFvs can be
obtained from different strains of E. coli after infection with phage-scFv or through subcloning. Note:
Heavy chain (H) and light chain (L) are designated as HoLo if in embryonic form and H+L+ if
rearranged. FcR represents Fc receptors (CD16); sIgD: surface IgD, membrane bound form antibody;
sIgM: surface IgM, membrane bound form.

within the phage DNA in the same phage particle and thus, physically connected to the

expressed protein. Antibody phage display requires that a repertoire or library (see below) of

immunoglobulin-encoding genes is cloned into the filamentous phage. The library is

accomplished by amplifying variable region immunoglobulin fragments or germline V-genes.

The PCR products are cloned into a filamentous phage to incorporate a heavy chain and a
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light chain variable region cDNA copy connected by a linker and expressed on the surface of

the filamentous phages (phagebodies). The phages without binding ability will be removed by

washing. The remaining phages are used to infect E. coli for their amplification. The selection

procedure, the so-called panning, can be repeated with increasing stringency to select clones

with the highest affinity (Winter and Milstein, 1991; Mersmann et al., 1998). The cDNA of

these clones can also be randomly or selectively mutated to create a second antibody heavy

and light chain combinatorial cDNA library (Marks et al., 1992; Schier et al., 1996).

A modified version of phage display technology is the selectively infective phages (SIP)

technique (Duenas and Borrebaeck; 1994; Krebber et al., 1995; Spada and Plückthun, 1997).

The advantage of this method is that only those phages that combine with a ligand (e.g.

antigen) are capable of infecting E. coli.

Phage display was initially used to select antibody fragments for simple antigens such

as hen egg lysozyme from human peripheral blood lymphocytes (Ward et al., 1989), but soon

display repertoires of human antibody fragments that recognize tumor cell antigens, viruses,

cellular substrates, abzymes and others were generated (Baca et al., 1997). Because selection

pressure is applied entirely in vitro, this technique has the potential to overcome difficulties

encountered in the in vivo generation of antibodies that are specific for antigens which do not

normally elicit strong humoral responses such as self-antigens or toxins. These in vitro-

derived antibody fragments can be used as polyclonal and monoclonal reagents in ELISA,

western blots, epitope mapping, and immunocytochemistry. An advantage of this technique is

that immunochemical reagents can be obtained without the use of experiment animals.

Genetic fusion and recombinant expression has led to the development of numerous novel

heterologous fusion proteins for research, diagnosis and therapy (Reiter and Pastan, 1996;

Colcher et al., 1998).

1.5.2  Mammalian antibody repertoires and antibody gene libraries

1.5.2.1  Mammalian antibody repertoires

It is estimated that even in the absence of antigen stimulation a human makes up to 1015

different antibody molecules - its pre-immune repertoire or primary antibody repertoire

(Chothia et al., 1992; Alberts et al., 1994; Cook and Tomlinson, 1995). The number of

antibody molecules in a given individual ranges from 106 to 108 in a typical immune response

(Benjamini and Leskowitz, 1991; Williams et al., 1996). The diversity of antibodies is
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generated from a result of multiple V-genes combination and association, as well as junctional

flexibility and insertional diversity (Flanagan and Rabbitts, 1982; Kuby 1997). The primary

antibody repertoire contains a large array of IgM antibodies that recognize a variety of

antigens. The antigen binding sites of many antibodies can cross-react with a variety of

related but different antigenic determinants, and the naive antibody repertoire is apparently

large enough to ensure that there will be an antigen-binding site to fit almost any potential

antigenic determinant albeit with low affinity (Flanagan et al., 1984; Sitnikova and Su, 1998).

This huge repertoire is stored in the B cells of mammals.

1.5.2.2  Antibody gene libraries

One of the most successful applications of phage display has been the selection of monoclonal

antibodies from large phage antibody libraries such as immune, naive and synthetic gene

libraries.

(1) Antibody gene libraries from immunized animals or immune donors

So far the construction of immune libraries from a variety of species has been reported,

including mouse (Chester et al., 1994), human (Barbas et al., 1993), chicken (Davies et al.,

1995), rabbit (Lang et al., 1996) and camel (Arbabi Ghahroudi et al., 1997). This kind of

libraries may be directly created by PCR amplification of the IgG genes of spleen B cells of

mammalian immunized with antigen or from immune donors (Chiang et al., 1989). Many

antibodies may be obtained from the material of a single immunized donor, and synthesized

antibodies can be rapidly multiplied and further manipulated. Active immunization is,

however, not always possible due to ethical constrains, neither always effective due to

tolerance mechanisms towards or toxicity of the antigen involved. In many cases, antibodies

selected from this kind of libraries usually have a lower affinity than that from hybridomas,

but there are some exceptions (Chester et al., 1994; Schier et al., 1996). Ideally, universal,

antigen-unbiased libraries would be available, from which very high affinity antibodies to any

chosen antigen may be directly selected, independent of the immune history.

(2) Antibody gene libraries from non-immunized animals or donors

The naive antibody repertoire contains a large array of IgM antibodies that recognize a variety

of antigens as mentioned above. This naive repertoire of rearranged genes can be cloned by

PCR amplification of  the V-genes from the IgM mRNA of B cells of unimmunized human

donors, from peripheral blood lymphocytes (Marks et al., 1991; Huang et al., 1996), spleen,

bone marrow or tonsil B cells (Vaughan et al., 1996) or from similar animal sources (Gram et
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al., 1992). Antibody gene libraries could also be made from the possible more naive pool of

IgD mRNA. The affinity of antibodies selected from a naive library is proportional to the size

of the library, ranging from Ka 106-7 M-1 for a small library with 3× 107 clones (Marks et al.,

1991; Griffiths et al., 1993), to Ka 108-10 M-1 for a very large repertoire with 1010 clones made

by brute force cloning (Vaughan et al., 1996), which is in line with theoretical considerations.

(3) Synthetic gene libraries

This type of antibody repertoire is constructed artificially, by in vitro assembly of V-gene

segments and D/J segments. V-genes may be assembled by introducing a predetermined level

of randomization of CDR regions into germline V-gene segments (Hoogenboom and Winter,

1992) or rearranged V-genes (Barbas et al., 1992). A set of 49 human VH-segments was

assembled via PCR with a short CDR3 loop (encoding five or eight aa) and a J-region, and

cloned for display as a scFv with a human lambda light chain. Subsequently, the CDR3-

regions were enlarged to supply more length diversity in this loop (Nissim et al., 1994). From

this repertoire, many antibodies to haptens and one to a protein antigen were selected, but

their affinities were in the macromolar affinity level (Hoogenboom and Winter, 1992). To

date, nanomolar affinity antibodies were actually isolated from a largest synthetic library

(Hoogenboom et al., 1998). In theory, the most complex antibody libraries could be

constructed by antibody gene synthesis using random oligonucleotides for all the

hypervariable regions (Little et al., 1995). However, completely random sequences for all

hypervariable regions can not be used, since at least one stop codon would appear in every

antibody statistically.

1.5.3  Limitation of antibody phage display

There are also physical limits to the enrichment in the in vitro selection procedure of phage

display, which limits the size of accessible genetic diversity. It was never reported that a

single selection round was higher than 105 clones per round. A typical phage titre is 106

clones eluted in the first, critical round of selection. Therefore, the total genetic diversity

created by the selection procedure of phage display would be at  most 1011 clones.

To date this limitation can be overcome by ribosome display (Mattheakis et al., 1994;

Hanes and Plückthun, 1997). Ribosome or polysome display is a very recent development of

display approaches, in which a pool of protein molecules is entirely in vitro translated,

displayed, and selected on ribosomes, which circumvents the use of any cells or phages and

overcomes a limited library size. Ribosome display has shown its power in the field of protein
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engineering as well as protein structure, stability, and function studies (Hanes et al., 1998;

Merk et al., 1999).

Finally, it should be mentioned that modern DNA recombinant technology makes it

possible in future to construct a huge antibody repertoire at low cost. However, to date

making monoclonal antibodies by hybridoma technology to some extent is still hard to be

overpassed by other technologies because selection of scFv from hybridoma is a most

straightforward way, which does not need to construct a large library, it is generally easier to

be performed in most popular laboratories and without any license limitation, compared with

the use of commercially available antibody libraries.

1.6  Application of recombinant antibodies

1.6.1  Intracellular expression of scFvs (intrabodies) for gene therapy

The intracellularly expressed single-chain antibodies, so called “intrabodies” represent a new

class of neutralizing molecules with a potential use in gene therapy (Rondon and Marasco,

1997; zu Putlitz et al., 1999). The intrabodies contain an immunoglobulin heavy-chain leader

sequence that targets it to the ER. Intrabodies may be especially well suited to target viral and

cellular proteins trafficking through the secretory system (Marasco, 1995). A good example is

that the cells expressing scFv105, engineered from human monoclonal antibody F105 which

competes with CD4 for binding to gp120 of HIV-1 virus, leads to inhibition of envelope

transport and the release of less-infectious and non-infectious virions. Collectively, it has been

demonstrated that anti-HIV-1 intrabodies can be directed to multiple HIV-1 target proteins

that are present in different sub-cellular compartments in the cell including the ER (Marasco

et al., 1993; Chen et al., 1994a), secretory pathway (Chen at al., 1994b), cytoplasm (Duan et

al., 1994; Duan and Pomerantz, 1994; Mhashilkar et al., 1995) and nucleus (Mhashilkar et al.,

1995). Therefore, the different anti-HIV-1 intrabodies, used either alone or in combination

with other intrabodies or other genetic based strategies, may be useful for the gene therapy of

HIV-1 infection and AIDS (Melnick et al., 1994).

1.6.2  Application of scFvs in diagnostics

Application of 1C3 scFv-gp41 antibody to replace the current use of monoclonal antibodies

and Fab fragments in HIV-1 rapid diagnostic test has firstly demonstrated the effectiveness of
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scFv reagents in the whole blood agglutination assays (Lilley et al., 1994). So far, there are

numbers of scFv reagents widely used in clinical diagnostics. ScFv reagents were firstly

introduced in plant virus diagnosis in 1997 (Harper et al., 1997; Kerschbaumer et al., 1997).

DNA encoding the scFv was sub-cloned into pDAP2 such that a scFv-alkaline phosphatase

fusion protein was produced by transformed bacteria following induction by isopropyl-beta-

D-thiogalactopyranoside (IPTG). The fusion protein was obtained at concentrations of 10

mg/l of Escherichia coli culture medium and these fusion protein preparations were used

directly in ELISA to detect PLRV in sap extracts from infected plants. Two types of this scFv,

i.e. ScFv32-AP (scFv fusion with alkaline phosphatse), scFv CL3D3 (fusion with light chain

constant region, this fusion protein has related high binding ability, compared with non-fusion

of the same scFv molecule when coated in ELISA plates) were generated subsequently

(Harper et al., 1997; Kerschbaumer et al., 1997). They have been routinely used in PLRV

diagnosis in different European laboratories (Legorburu et al., 1998). Recently, a scFv

specific to PVYO strain was selected from the human synthetic VH+VL scFv library produced

by MRC, UK and used in ELISA for viral diagnosis. Its detection limit was equal to that of

monoclonal antibodies (Boonham and Barker, 1998). The advantage of recombinant scFv

reagents is that they can be produced cheaply on large scale and in a high purity.

1.6.3  Potential of scFvs in plant pathology and plant molecular biology

All species of plants do not have an immune system to make antibodies for withstanding an

attack by invading pathogens or offending agents. However, today’s genetic engineering and

transgenic plant technology can transfer antibody genes into plants and then plants can

produce functional antibodies or antibody fragments (i.e. ‘plantibodies’) against the target

agents. In 1993 Tavladoraki and co-workers firstly verified the effects of an AMCV-specific

scFv[F8] antibody transgene on virus infection. In these experiments the virus particles were

challenged on both protoplasts and whole plants which produced specific scFv in cytoplasm.

Protoplasts carrying the scFv[F8] construct accumulated smaller amounts of viral CP and

showed a lower frequency of infection with AMCV, compared with untransformed control,

while protoplasts infected with a heterologous virus, CMV, the infection occurred at the same

level in both transgenic and control lines. Primary transgenic plants developed symptoms

from 5 to 14 days later than did any of the control plants after inoculation of AMCV, and the

progeny (R1) also showed lower virus accumulation. These results demonstrated that

transgenic plants expressing specific scFv could obtain resistance against attack of AMCV
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(Tavladoraki et al., 1993). This pioneer work brought in a new concept of pathogen resistance

research, presenting the first example of antibody-mediated plant resistance. Since then, scFv

against other viruses, such as BNYVV (Fecker et al., 1996), TMV (Zimmermann et al.,

1998), TSWV (Franconi et al., 1999), scFv against a cutinase produced by the fungus Botrytis

cinerea (Schouten et al., 1996) and scFv against mollicutes (phytoplasmas and spiroplasmas),

e.g. corn stunt spiroplasma (Chen and Chen, 1998), stolbur phytoplasma (Le Gall et al., 1998)

were subsequently tested in transgenic plants. In these experiments, for example, one

transgenic tobacco line containing anti-stolbur phytoplasma scFv construct was selected for

challenge inoculation with the stolbur phytoplasma. When grafted on a stolbur phytoplasma-

infected tobacco rootstock, the transgenic tobacco shoots grew free of symptoms and

flowered after 2 months, while normal tobacco shoots showed severe stolbur symptoms

during the same period and eventually died.

So far, trangenic plants expressing scFv against bacterial proteins have not been

reported. Anti-virus scFv transgenic plants documented are all directed to the coat protein of

viruses and the resulting resistance of the host plants has yet to reach the level such that the

host can completely withstand the virus attack. It seems important in overall protection that

targeting expression of scFv into the different compartments within plant. Although the

precise mechanism(s) of the scFv antibody-mediated protection is unclear, the strategy of

‘introducing engineered antibody into plants’ will provide insights into molecular interactions

between virus and the constitutive scFv, leading to elucidation of the in vivo relationships of

the structure and function.

On the other hand, engineered antibodies specific to host cell regulation factors, e.g.

transcription factors, cellular enzymes, metabolites, phytohormones, should provide an

effective means to study physiological processes of plants. Owen and co-workers (1992) has

demonstrated that expression of anti-phytochrome scFv antibodies in transgenic tobacco led

to aberrant control of germination by light. Homozygous seeds showed only 60% germination

in response to continuous red light irradiation compared with 90% in the wild type. Another

example is the use of anti-ABA scFv antibodies, which bind to the phytohormone abscisic

acid. Expression of this scFv resulted in a wilty phenotype of transgenic tobacco (Artsaenko

et al., 1994, 1995).

ScFvs are the smallest immunologically active molecules endowed with the highest

binding capacity to a potential target. They can be directed to any compartment of plant cell

and even the apoplastic space (Firek et al., 1993). To date several signal peptide sequences

have been used for secretory expression of scFv such as PelB-leader (pectate lyase B), PHA-
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leader (phytohaemagglutinin) (Fecker et a., 1996), legumine B4-leader (Fiedler and Conrad,

1995), original murine signal peptide (Voss et al., 1995), a plant amylase signal peptide

(Düring et al., 1990), yeast derived signal peptide (Hein et al., 1991). ScFv molecules are the

most versatile antibody derivatives for regulation of gene expression in different tissues or

cellular compartments of transgenic plants.

1.6.4 Antibodies expressed in plants – an example of the tomorrow’s factory making

bio-agents for all purpose applications

Since the first reports of Agrobacterium-mediated tobacco transformation experiments in

1983 (Zambryski et al., 1983), a number of gene transfer techniques have been reported

subsequently. For instance, particle bombardment (Bruce et al., 1989; Klein et al., 1992),

electroporation (Rhodes et al., 1988), microinjection (Cairns et al., 1978; Klein and

Fitzpatrick-McElligott., 1993) and PEG-mediated transformation of protoplasts (Ye et al.,

1990; Mathur and Koncz, 1998). The rapid development of gene transfer techniques and

tissue culture techniques makes the expression of recombinant proteins in plants to be a

standard approach in molecular biology (Guerineau, 1995; Jones, 1995). To direct the

expression of antibodies in the targeted organs, tissue-specific promoters should be chosen.

The first report that plants can express whole size recombinant antibodies dated to 1989 when

Hiatt and co-workers demonstrated that the functional recombinant antibodies could be

assembled in their progenitor plants by sexually crossing of two plants, one transformed with

heavy and the other with light chain of antibody (Hiatt et al., 1989). The source of the above

immunoglobulin mRNA was a hybridoma line expressing a catalytic IgG1 antibody (6D4)

which binding low molecular weight phosphonate ester (P3) and catalyses hydrolysis of

certain carboxylic esters. Expression of small size antibody, e.g. scFv, can be obtained

directly from the primary transformants. Plant storage organs such as seeds and tubers are

suited for production of scFvs in plant, and even leaves can provide a suitable source

(Artsaenko et al., 1998; Conrad et al., 1998). Targeting of recombinant antibodies has been

shown to be very important not only for interaction with the corresponding antigen, if present

in plant, but also for stabilization and correct folding of the recombinant antibodies. It is

possible to express the desired scFv in different cell compartments including the cytoplasm,

the ER, chloroplasts and the intercellular space. Signal sequences like the ER retention signal

peptide (KDEL) can also result in stabilization of scFv in cytosol (Schouten et al., 1997). This

peptide is nowadays widely used for scFv stabilization. Heterologous expression of
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recombinant antibodies can reach expression levels up to 6.8% of total soluble protein for

scFv-ABA or 4.0% for scFv-ox (Conrad et al., 1998), for a whole size antibody (6D4) 1.3%

of the total soluble protein (Hiatt et. al., 1989). These levels are high enough that a field of

tobacco plants could produce 50-60 kg of recombinant protein per hectare. The transgenic

proteins within the harvested plants are stable at least for a few days at room temperature

(Fiedler et al., 1997). Additionally, recombinant antibodies (e.g. scFvs) are well suited for the

construction of bifunctional molecules, such as fusions to the staphylococcal protein A or to

enzymes (Gandecha et al., 1994). This would facilitate purification of plant-produced scFvs

and improve their usefulness for analytical purposes in plant cell biology and pharmacology.

Transgenic plants offer a number of advantages for production of recombinant

proteins/antibodies (Hiatt, 1990). Plants are easy to grow and their cultivation does not

require specialized equipment or chemicals in contrast to bacteria or animal cells. Plants have

no immune system, therefore, only one antibody-species is expressed as a glycosylated

protein and the absence of animal viruses or bacterial endotoxins and even oncogenes should

provide maximum safety for human beings.

1.7  Genome organization and functions of potyvirus

1.7.1  Genome organization of potyviruses

Potyviruses are flexuous filamentous particles which contain a single positive stranded RNA

of about 10,000 bases, possessing a covalently linked 5'-terminal viral protein (VPg) and a 3'-

terminal poly (A) tail (reviewed in Riechmann et al.,1992). The genomic organization of

potyviruses is illustrated schematically in Figure 1.4. As found for picornaviruses and

comoviruses, the potyvirus genome contains a single open reading frame and is translated as a

large polyprotein precursor (ranging between 340 and 368 kDa, depending on the potyvirus)

which is subsequently cleaved by virus-encoded proteolytic enzymes to yield protein products

of different size (Dougherty and Carrington, 1988). The order of these products from the N

terminus to the C terminus of the polyprotein is: first protein (P1, protease), the helper

component /protease (HC-Pro) protein, third protein (P3), a 6K peptide (6K1), the cylindrical

inclusion (CI) protein (movement protein with RNA helicase activity), a second 6K peptide

(6K2), the nuclear inclusion a protein (NIa, consisting of a VPg and a protease), the nuclear

inclusion b protein (NIb, the RNA dependent RNA polymerase) and the coat protein (CP).

Only two of these, VPg and CP are detectable in virus particles.
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An obvious characteristic of potyviruses is the presence of a long untranslated region

(UTR) at the 5' end of the genome. Its length ranges between 144 (TEV) and 205 (TVMV)

nucleotides. The 5'-UTR is rich in adenine residues and has only a few guanine residues.

Alignment of these regions of PPV, TEV, TVMV and PVY revealed some nucleotide blocks

conserved in the four viruses (Turpen, 1989). The conservation of these sequences in the four

potyvirus RNAs suggests that they could play an important role in the viral encapsidation or

replication (Riechmann et al., 1992).

The 3'-UTR of different potyviruses have been described as heterogeneous in size,

sequence and predicted secondary structure (Turpen, 1989; Quemada et al., 1990). A common

feature of all of them is the presence of AU rich segments and the fact that each sequence can

fold into stable secondary structures (Turpen et al., 1989). The poly (A) tails of the RNA have

been found to be very heterogeneous in length.

Potyviruses lack a cap structure at the 5' end of the genomic RNA but share a genome-

linked protein (VPg) and may perform a so-called cap-independent leaky scanning

mechanism of translation (Fütterer and Hohn, 1996; Simon-Buela et al., 1997).

Fig. 1.4: Genomic organization of potyvirus RNA (not to a scale). The cleavage sites of the different
proteases are indicated by arrows. There is no information about the sequential order of these events of
polyprotein processing.

1.7.2  Functions of potyviral RNA encoded proteins

1.7.2.1  P1 serine proteinase

The P1 protein is a serine-type proteinase which catalyses autoproteolytic cleavage at a Tyr-

Ser or Phe-Ser dipeptide between itself and the helper component-proteinase, HC-Pro

(Verchot et al., 1991, 1992; Yang et al., 1998). The C-terminal 147 aa residues of the P1

protein constitute the complete functional proteinase; the N-terminal 157 aa residues are
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dispensable for proteinase activity (Verchot et al., 1992). In addition to its proteolytic activity,

the P1 protein has been shown to exhibit nonspecific RNA-binding activity (Brantley and

Hunt, 1993; Soumounou and Laliberte, 1994). The RNA-binding properties of P1 are similar

to those described for known movement proteins of plant viruses (Citovsky et al., 1991, 1992;

Schoumacher et al., 1992; Osman et al., 1992, 1993) and it has been suggested that P1 could

also be involved in cell-to-cell transport of virus in plants (Atabekov and Taliansky, 1990;

Dougherty and Semler, 1993). However, it has been demonstrated by mutational and

complementation analysis for another potyvirus, TEV, that the P1 protein plays little role in

virus movement (Verchot and Carrington, 1995a, b). Deletion of the entire P1 coding

sequence had only minor effects on cell-to-cell and long distance transport but considerably

reduced genome amplification of TEV mutants, suggesting that the function of P1 is related to

virus replication. The role of the N-terminal part of P1 in the life-cycle of potyvirus remained

unclear.

1.7.2. 2  HC-Pro protein

Potyviral helper component-proteinase (HC-Pro) is a multifunctional protein involved in

aphid transmission, long-distance movement, polyprotein processing, genome amplification

and symptom expression (Cronin et al., 1995; Kasschau and Carrington, 1995; Blanc et al.,

1998). The active form of HC-Pro is a homodimer (Guo et al., 1999). The N-terminal region

is required for efficient genome amplification and aphid transmission. The C-terminal domain

is a cysteine-type proteinase that autocatalytically cleaves between itself and the P3 protein.

The central region is required for long-distance movement in plants (Wang et al., 1998). It

was found that PVX/potyvirus synergistic disease is caused by interaction of potyviral HC-

Pro and PVX and the central domain regions of HC-Pro are essential for mediating the

synergistic disease when infected with PVX (Shi et al., 1997).

1.7.2.3  P3 protein, 6K1 and 6K2

The whole size of P3 protein function(s) still remain unclear. Immunogold labeling with the

antiserum against the nonstructural P3 protein of TEV showed labels associated with

nucleolus, nucleus, or nuclear inclusion. P3 protein presented in the nucleolus and nucleus

may indicate that it is involved in early stages of viral replication (Langenberg and Zhang,

1997). The two small proteins 6K1 and 6K2 are co-existing with NIa and NIb in nuclear
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inclusion, suggesting that they may play a role in RNA replication or function as NIa

(Restreppo-Hartwig and Carrington, 1994).

1.7.2.4  CI protein

The CI protein contains a nucleotide binding motif typical of RNA helicases of the

superfamily SF2 of RNA viruses (Lains et al., 1990). This motif consists of seven conserved

sequences of VGSGKST from N to C terminus. The function of CI protein was first deduced

from by aa sequence comparisons with several proteins of virus and cellular origins, like elF-

4A, suggesting that these motifs containing viral proteins possess nucleotide binding and

helicase activity (Gorbalenya et al., 1988). Experimental data evidenced that the helicase

activity of CI protein plays a role in virus RNA replication inside the infected cell. A

systematic ultrastructural study across the edge of an advancing infection in PSbMV-infected

pea cotyledons showed the cylindrical inclusion (CI) protein to exist in transient functional

states, and the presence of the CI was linked with an apparent transient reduction in callose in

the vicinity of the plasmodesmata in aiding virions to adjacent cell (Roberts et al., 1998).

Recently, CI protein was analysed genetically using alanine-scanning mutagenesis. Thirty-one

mutations were introduced into the CI protein coding region of modified TEV genomes

expressing either beta-glucuronidase or green fluorescent protein reporters. The subsequent

results provided genetic evidence for a direct role of CI protein in potyvirus intercellular

movement, and for distinct roles of the CI protein in genome replication and cell-to-cell

movement (Carrington et al., 1998).

1.7.2.5  VPg

The 5' ends of potyvirus RNA are not capped with 5'-5' triphosphate methylated nucleotides

as most eukaryotic mRNAs. Like in several other viruses, the genome-linked protein, VPg, is

attached to the 5' end of its genome. It may serve as the primer for viral RNA synthesis

(Shahabuddin et al., 1988), may also be involved in cleavage of the replicative form of RNA

(Tobin et al., 1989). In addition, the VPg is the moiety responsible for the stimulation of

polymerase activity (Fellers et al., 1998b). A naturally occurring variation of several aa in the

VPg of TVMV enabled the virus to overcome va gene resistance in tobacco (Nicolas et al.,

1997), suggesting that changes in configuration of VPg may affect the interaction between

VPg and appropriate host components regarding systemic virus movement. Recently, the
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mechanism of Pisum sativum pathotype-specific resistance to PSbMV was investigated and

the coding region determinant of PSbMV virulence was defined (Keller et al., 1998).

Homozygous recessive sbm-1 peas are unable to support replication of PSbMV pathotype 1

(P-1), whereas biochemically and serologically related pathotype 4 (P-4) is fully infectious in

the sbm-1/sbm-1 genotype. The lack of viral coat protein or RNA in P-1 transfected sbm-

1/sbm-1 protoplasts suggests that sbm-1 resistance is occurring at the cellular level and that

inhibition of cell-to-cell virus movement is not the operating form of resistance. As

experiments to challenge P-1-resistant peas with infectious full-length P-1/P-4 recombinant

clones of PSbMV revealed 21-kDa, VPg of the P4 pathotype determines its virulence, i.e. it is

capable of overcoming sbm-1 resistance. Clones containing the P-1 VPg coding region were

noninfectious to sbm-1/sbm-1 peas. VPg is thought to be involved in potyvirus replication and

its identification as the PSbMV determinant of infectivity in sbm-1/sbm-1 peas is consistent

with disruption of an early P-1 replication event.

1.7.2.6  NIa protease

NIa, together with NIb, forms nuclear inclusion bodies in the cells of most potyvirus-infected

plants. NIa consists of two proteins, the N-terminal VPg and a C-terminal trypsine-like serine

protease. VPg is cleaved from the C-terminal 27K proteinase domain at a suboptimal cleavage

site. The protease cleaves most of the proteins from the precursor protein, such as, the CI-NIa

and NIa-NIb junctions and catalyses the production of CI, NIb and CP by cleaving the P3-CI,

and NIb-CP junctions (Carrington and Dougherty, 1988) (see Fig. 1.4). Additional cleavages,

to release VPg and 6K1 and 6K2 products also occur (Garcia et al., 1992). The protease

recognition site is VXXHQ/A(S). An aa alignment of potyvirus NIa with other virus and

cellular trypsin-like serine proteinase suggested a catalytic triad of histidine, aspartate and

cysteine (Bazan and Fletterick, 1988) with the histidine residue in the substrate binding

pocket characteristic of a Glu-X substrate specificity. Site-directed mutagenesis studies

confirmed the importance of this residues for activity (Carrington et al., 1989). The RNA-

binding activities of Nla protease domain (NIaPro) and full-length Nla protein were similar.

Based on its RNA-binding activity and other known functions, NIaPro or a NlaPro-containing

polyprotein is proposed to serve one or more direct roles during TEV RNA synthesis (Daros

and Carrington, 1997). Recently the role of NIa both in protein cleavage and in cell to cell

movement was evidenced by NIa gene transfer into plants (Maiti et al., 1993; Fellers et al.,

1998a). C-terminal part of NIa of turnip mosaic potyvirus plays roles in the cis-cleavage
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between NIa and NIb. The processing rate of the NIa-NIb junction sequence was decreased

significantly by either V240D or Q243A mutation of NIa protease. The mutation of W212S,

G213S, or I217D abolishing the cleavage at the NIb-CP or 6K1-cylindrical inclusion protein

junction sequence decreased the processing rate to half the level of that of the wild type (Kim

et al., 1998).

1.7.2.7  NIb replicase

The NIb is the RNA-dependent RNA polymerase (RdRp) of the virus. It is responsible for

replication of virus plus and minus RNA molecules (Deiman et al., 1997). There are a few

direct experimental documents of potyviral NIb. One of the causes is mainly due to

difficulties to purify and isolate this protein from the infected cells and due to the lack of a

sensitive serological detection system. The most prominent sequence feature of the NIb is a

glycine-aspartate-aspatate (GDD) motif characteristic for almost all RNA viruses of bacteria,

animals, and plants (Koonin, 1991). By comparison of sequences of the RdRp of positive-

stranded RNA viruses and evolutionary analysis of its recombination events it is possible to

assign all the viruses into classes, orders, families and genera (Bruenn, 1991; Koonin, 1991;

Koonin and Dolja, 1993). Recently experimental evidence for NIb protein possessing an

RdRp activity has been obtained (Hong and Hunt, 1996). It was also found that the NIb

protein interacts with both the NIa protein and the CP in yeast cells. The NIb protein interacts

with the VPg domain of the NIa protein and this interaction requires a functional RNA

attachment site. This interaction may be important for the initiation of viral RNA synthesis in

infected cells. The polymerase activity of the NIb protein can be stimulated by VPg and NIa

proteins. The CP interacts with the NIb in a manner that is sensitive to changes in the highly

conserved GDD motif. The role of this interaction for the enzymatic activity of NIb protein or

the function of CP is unclear, but may involve regulation of viral RNA synthesis in infected

cells (Hong et al., 1995; Fellers et al., 1998a, b). Besides the functions of RNA-dependent

RNA polymerase, the NIb protein of TEV possesses other functions, including nuclear

translocation activities (Li and Carrington, 1993). NIb contains two independent nuclear

localization signals (NLS I and NLS II). NLS I was mapped to a sequence within aa residues

1 to 17, and NLS II was identified between residues 292 and 316. Clustered point mutations

resulting in substitutions of basic residues within the NLSs were shown to disrupt nuclear

translocation activity. These mutations also abolished TEV RNA amplification when

introduced into the viral genome. The amplification defects caused by each NLS mutation
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were complemented in trans within transgenic cells expressing functional NIb. These data

suggest that the NLSs overlap with essential regions necessary for NIb trans-active

function(s). The fact that NIb functions in trans implies that it must interact with one or more

other components of the genome replication apparatus. Clustered point mutations affecting

the conserved GDD motif or NLS II within the central region of NIb, but not mutations

affecting NLS I near the N terminus, reduced or eliminated the interaction. The C-terminal

proteinase (Pro) domain of NIa, but not the N-terminal VPg domain, interacted with NIb. The

effects of NIb mutations within NLS I, NLS II, and the GDD motif on the interaction between

the Pro-domain and NIb were identical to the effects of these mutations on the interaction

between full-length NIa and NIb (Li et al., 1997). NIb is directed to replication complexes

through an interaction with the Pro-domain of NIa.

RdRp is required for viral genome replication. RdRp, probably together with other

components of both virus and cellular sources, forms a replicase-complex to fulfil this process

of viral genome replication. The important role of RdRp in the early events of virus

replication and the sensitivity of this enzyme to the inhibitors were considered as the key

parameters for designing a specific molecule e.g. scFv to inhibit the enzymatic activity of

RdRp. In other words, blocking or inhibition of RdRp activity could provide a more effective

way to interrupt virus replication at the early stages.

1.7.2.8  Coat protein

CP is the major gene product in virions and accounts for 90-95% of the mass of most virus

particles. The structure and function of CP are extensively characterised, and a large number

of CP sequences of potyviruses have been obtained (Puurand et al., 1994; Schukla et al.,

1994; Aleman-Verdaguer et al., 1997; Sakai et al., 1997). The highly conserved central and

C-terminal regions of CP are involved in encapsidating viral RNA. Evidence was found that

assembly of a potyvirus begins near the 5′ terminus of the viral RNA (Wu and Shaw, 1998).

The highly variable N-terminal region displayed on the virus surface is involved in virus-

specific functions or host/vector-virus interactions. Sequence data as well as site directed

mutagenesis experiments confirmed that the conserved DAG motif located at the N terminus

of CP, together with HC-Pro, is responsible for aphid transmission (Atreya et al., 1990) and

long distance movement (Rojas et al., 1997), CP, together with CI, is also responsible for cell

to cell or long distance movement of viruses (Carrington et al., 1998).
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1.8  Serology of potyviral structural protein and nonstructural proteins

Serology of potyvirus CPs has made a great contribution in the understanding of viral

biological properties, and widely used in the virus identification and isolation. A large number

of MAbs have been generated and a series of reliable and sensitive serological methods have

been established (Shukla et al., 1994). The standard of currently used virus classification is at

most based on the serology of coat protein, biological properties and sequence data (Jordan

and Hammond, 1991; Shukla et al., 1994; Jayaram et al., 1998). Since there are certain

amounts of nonstructural components in the virus-infected plants, serology of nonstructural

proteins including RdRp can serve as an additional criterion for the identification and

classification of potyviruses. However, to date there are few experimental data about serology

of potyviral non-structural proteins. Due to the fact that non-structural proteins do not exist in

the virus particles and most of them exist in the virus-infected cells at low concentrations,

these properties make it difficult to produce specific antibodies against them. Despite all

efforts, RdRp have been successfully purified only for a limited number of plant viruses

(Bates et al., 1995). Consequently, only a few monoclonal antibodies (MAb) to viral non-

structural proteins have been produced (Slade et al., 1989; Liu et al., 1999 a, b). The use of a

recombinant protein or synthetic peptides is a strategy to overcome this limitation. Antibodies

to synthetic peptides that correspond to linear segments of a protein can react with the

homologous sequence in the native folded protein provided it is exposed on the surface and

exhibits a structure or conformation similar to the immunizing peptide (Craig et al., 1998).

Broadly cross-reactive antibody probes were successfully generated using synthetic peptides

corresponding to the conserved coat protein regions of potyviruses (Joisson et al., 1992 a, b).

The advantage of the synthetic peptides approach is that the immune response can be directed

to a region of special interest.

1.9  Pathogen-derived resistance and antibody-mediated resistance

In 1986 Powell-Abel and co-workers first demonstrated that transgenic plants expressing a

virus coat protein gene could result in resistance to the virus infection. It was the first

experimental proof of the concept of pathogen-derived resistance (PDR). To date this

principle has been used to confer resistance against many viruses in a broad range of plant

species (Wilson, 1993; Prins and Goldbach, 1996; Wintermantel et al., 1997). In the case of

potyviruses either CP gene (Beachy et al., 1990) or genes for nonstructural protein such as P1
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or P3 (Pehu et al., 1995; Moreno  et al., 1998), HC-Pro, CI, NIa/VPg, NIb genes (Audy et al.,

1994; Guo et al., 1997, 1998; Jones et al., 1998) has been transferred into plants, leading to

different levels of resistance. However, despite of more than a decade’s efforts, no clear

correlation could be made between expression levels of the transgenes and observed virus

resistance levels (Bendahmane et al., 1997). Several reports mentioned high resistance levels

using genes incapable of producing protein, but in these cases, even plants accumulating high

amounts of transgene RNA were not most resistant (Hammond and Dienelt, 1997). Different

models have been proposed to elucidate the mechanism of resistance, such as, the RNA-

mediated resistance mechanism, co-suppression phenomenon and post-transcriptional gene

silencing (Smith et al., 1994; Baulcombe, 1996; Wassenegger and Pélissier, 1998).

PDR approach has successfully applied to generate resistance in a broad range of plant

species. However, the problems that may arise from PDR are

(i) Synergism;

(ii) Genetic recombination and complementation;

(iii) Transcapsidation;

Transcapsidation is the encapsidation of one virus with CP of another virus, which has

been demonstrated to occur when two or more viruses infect the same plants (Rochow, 1970;

Otsuki et al., 1978; Edwards et al., 1990). Since CP influences the transmission properties of

viruses, a risk arises when the genome of a virus infecting a transgenic plant is encapsidated

with CP produced by the transgene. The encapsidated virions might acquire the transmission

characteristics of the transgene virus, which could give the virus temporary access to new

plant species from which it previously had been excluded (de Zoeten, 1991).

Complementation is the process by which a functional gene of one virus corrects for

defectiveness in the same function of another co-infecting virus (Rochow 1977; Osbourn et

al., 1990). Genetic recombination is the exchange of RNA between viral RNAs (Bujarski

and Kaesberg, 1986; Candresse, 1996). Recombination events of this kind in plants

transformed with viral genes could extend the potential for generation of new viruses with

altered biological properties (Greene and Allison, 1994). Synergism, in this context, is the

interaction between an infecting virus and the product of a transgene that results in more

severe symptoms in transgenic plants than in the parental cultivar (Shi et al., 1997; Thomas et

al., 1998). However, the antibody- or plantibody-mediated resistance has the advantages of

specific recognition of viruses by constitutive antibodies and safety to the environment. By

use of antibodies reacting with conserved domains of several viruses the transgenic plants
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would subsequently obtain the broad spectrum resistance. The antibody-mediated resistance

has given a great promise in plant resistance research (see section 1.6.3).

1.10  Scope of the work

The main objective of this thesis research was to engineer single chain variable fragment

antibodies (scFvs) to highly conserved aa motifs of the RNA-dependent RNA polymerase

(RdRp) of potyviruses and to characterize these scFvs, which could be applied to develop a

new strategy for creating plant resistance towards these potyviruses.

To accomplish this goal the following MAbs and corresponding scFvs have been produced:

I. Monoclonal antibodies against the CP of potyviruses as a control. Two synthetic

peptides covering most conserved regions of the potyviral CP and the CP of PVY were

used in mouse immunization for generation of MAbs.

II. MAbs against NIb of potyviruses:

a) generation of MAbs against synthetic peptides. Based on the results of different

computer program analyses, three highly conserved regions of RdRp (i.e. R1, R2,

R3) were predicted with moderate antigenicity, respectively. Synthetic peptides

corresponding to these regions were used in mouse immunizations for generation of

MAbs.

b) Generation of MAbs against a recombinant NIb molecule. The sequence encoding

for PVY NIb was cloned and overexpressed in E. coli. The recombinant protein was

purified by IMAC and used in mouse immunizations for production of MAbs

III. ScFvs were synthesized from the MAbs (hybridomas). Both NIb-specific and CP-

specific scFv genes were cloned and overexpressed in E. coli. The phage displaying

scFv and soluble scFv were capable of binding the target antigens.

The generated antibodies have been characterized for their reactivity with the corresponding

native proteins of potyviruses. At the same time their diagnostic values have been tested.
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2  Results

2.1  Sequence alignments and peptide syntheses

The most antigenic parts of the three highly conserved regions of potyviral NIb were

determined. Their antigenicity estimated by computer analysis (Hopp and Woods, 1981) was

only moderate (Fig. 2.1). The R3 was predicted with the highest index among them.

Peptides representing conserved regions of the potyviral CP sequence were synthesized

as a multi-antigenic peptide (MAP) with the following structures:

S 319: (ENTERHTA)4-K2-K-A-OH.

S 193: (MVWCIEN)4-K 2-K-A-OH.

Although MVWCIENGTSPD is the complete original conserved region, an attempt to

synthesize this sequence failed, since synthesis of N to G residues met difficulties.

2.2  Expression of the R1-R2-R3 fusion protein in E. coli.

The map of the expression cassette for a fusion R1-R2-R3 protein is shown in Figure 2.2a.

The recombinant R1-R2-R3 protein was expressed in E. coli as a soluble protein. The

expression levels of the recombinant protein were definitely lower than it was obtained in the

same system for expressing viral CP. No distinct band could be observed on the Coomassie

brilliant blue stained gels in SDS-PAGE analysis of the total proteins comparing IPTG-

induced cells and non-induced cells. Applying an anti-His tag antibody for Western blotting a

clear band was detected with extracts of IPTG-induced cells expressing fusion R1-R2-R3

peptide, only a faint band was observed in the case of non-induced cells (Fig. 2.3). After

immobilized metal-ion affinity chromotography (IMAC) purification, this antigenic peptide

was used to screen MAb against the three conserved region peptides.
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Fig. 2.1: Conserved regions of NIb protein of potyviruses. The positions of aa correspond to NIb of
PVY. The sequences underlined represent the most antigenic parts, which were chosen for peptide
synthesis. Diagrams below the sequences show the antigenicity profile of the corresponding regions
according to Hopp and Woods (1981).
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Fig.2.2: Maps of recombinant protein expression cassette.
a: The expression cassette of recombinant R1-2-3 protein;
b: The expression cassette of recombiant NIb protein;
pT7 = T7 promotor; R1, R2, R3 = oligonucleotides encoding for R1 peptide, R2 peptide and R3
peptide, respectively; 6× His = His-tag,  NIb = gene encoding truncated NIb protein. Expression vector
pET30a, which harboring the constructs, is not shown.

Fig. 2.3: Detection of recombinant R1-2-3 protein in a Western blot.
Lane 1: non-induced cells containing plasmid with insert; lane 2: IPTG-induced cells containing
plasmid with insert; lane 3: cells containing plasmid without insert; lane M: prestained protein marker.
Signal was revealed by ECL assay using anti-penta-His tag MAb as a primary antibody.

2.3  Expression of the recombinant NIb protein in E. coli

PVY-NIb gene was obtained by RT-PCR (see section 4.2.3), cDNA was cloned into pGEM-

T. Two independent clones were chosen from transformants and sequenced. The sequences of

these two clones were identical (EMBL accession number Y16879). Comparisons between

the sequence of PVY-NIb and the complete nucleotide sequence (EMBL accession number

A08176) revealed that 360 nt were missing at their extreme 3'-ends. In addition, there existed

a deletion of 6 nt at the 5'- terminal NIb and a frame shift leading to an altered 16 aa sequence
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between positions 86-103. Since the clones contained sequences necessary to express all three

regions of interest, no new cloning experiments were conducted.

The map of expression cassette for PVY-NIb is shown in Figure 2.2b. The NIb protein

was expressed as an inclusion body in the bacteria after fractional analysis. The dynamics of

recombinant NIb expression in E. coli showed that the highest amount of expressed NIb

appeared 3 h after induction with 1 mM IPTG revealed by ECL assay, suggesting that long

time induction resulted in degradation of the fusion protein (Fig. 2.4). The recombinant

protein could also be detected by an anti-penta-His monoclonal antibody. A band of 60 kDa

appeared, confirming that NIb was really fused to the His-tag.

Fig. 2.4: Time course of the truncated NIb expression in E. coli BL21 (DE3) pLysS.
Cells were induced with 1 mM IPTG at 28°C. Signal was revealed in Western blot by ECL assay
(Perkin Elmer) using HisProbe-HRP conjugate (1:5000 dilution in TBST). Lane M: prestained protein
marker; lane 1: non-induced cells; lanes 2 – 8: 1 h, 2 h, 3 h, 4 h, 6 h, 8 h and 20 h after induction,
respectively.

The recombinant truncated NIb protein was successfully expressed in vitro and

subsequently purified by IMAC (Fig. 2.5). The purified protein was used for mice

immunization and generation of MAb against NIb.
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a b

Fig. 2.5: Expression of recombinant truncated NIb in E. coli BL21(DE3) pLysS. Proteins were
analyzed by SDS-PAGE, 12% PA gels were stained with Coomassie brilliant blue.
a: analysis of total protein of E. coli. Lane 1: IPTG-induced cells containing pET30a-NIb; lane 2: non-
induced cells containing pET30a-NIb; lane 3: IPTG-induced cells containing pET30a; lane 4: non-
induced cells containing pET30a; lane 5: cells without plasmid; lane M: prestained protein marker.
b: analysis of IMAC-purified recombinant NIb. Lane 1: urea-solubilized bacterial crude extract pellet
flowed through Ni2+-resin column; lane 2: urea-solubilized bacterial crude extract pellet; lanes 3 – 6:
eluates of fraction 1, 2, 7, 8, from Ni2+-resin column; lanes 7, 8: mixture of fractions 1 to 4 and 5 to 8,
respectively, concentrated by PEG treatment; lane M: prestained protein marker.

2.4  Production of antisera to the recombinant NIb of PVY

Polyclonal antisera produced in response to this recombinant protein reacted specifically with

both the recombinant protein and the viral NIb in PVY-infected plants, as shown in Table 2.3.

The first bleeds cross-reacted with healthy plant leaf extracts, the second and the third bleeds

were antigen-specific in PTA-ELISA. The antisera could be diluted up to 1:2000 for the

assay.

2.5  Generation and characterization of MAbs against different regions of NIb

One fusion experiment with BSA-conjugated peptide corresponding to R1 was performed, but

all hybrid clones reacted strongly with BSA. Thus, in subsequent experiments only

splenocytes from mice immunized with the purified peptides were used for hybridization. In

addition, three further fusion experiments with peptide corresponding to R1 were performed.

Supernatant fluids of 17 cell cultures reacted to R1 in PTA-ELISA. Six hybrid cell lines were

selected for cloning and further propagation.
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Table 2.1  Summarized characteristics of hybrid lines established after screening.

A405nm values in PTA-ELISA

Synthetic

peptides

Recombinant

proteins

Leaf extracts of infected plants

Cell

culture

super-

natants

Specific

to

peptide

R1 R2 R3 RP1-3 NIb  PVY Healthy PVA PPV PVV TuMV

1G5 R1 1.16 0.11 0.09 0.03 0.03 0.03 0.07 nt∗ nt nt nt
2C3 R1 1.66 0.12 0.10 0.03 0.03 0.26 0.30 nt nt nt nt
2G10 R1 1.33 0.10 0.08 0.33 0.33 1.92 1.32 1.89 1.88 1.88 1.79
3C6 R1 1.13 0.12 0.11 0.82 0.32 0.45 0.07 0.47 0.38 0.33 0.27
3G4 R1 1.24 0.11 0.10 0.75 0.66 0.25 0.07 0.26 0.23 0.25 0.23
1B7 R2 0.16 1.69 0.19 1.08 0.68 0.25 0.08 0.34 0.22 0.24 0.26
1C8 R2 0.14 1.94 0.15 1.55 0.55 0.37 0.15 0.45 0.37 0.37 0.33
1G12 R2 0.12 1.80 0.11 0.85 0.78 0.30 0.07 0.39 0.30 0.33 0.31
1B9 R2 0.22 1.41 0.21 0.06 0.02 0.20 0.14 nt nt nt nt
3B4 R3 0.16 0.11 0.32 0.05 0.02 0.04 0.05 nt nt nt nt
3E11 R3 0.11 0.10 0.31 0.04 0.01 0.04 0.05 nt nt nt nt

∗ nt = not tested; RP1-3 = recombinant protein R1-R2-R3; synthetic peptides, RP1-3 and NIb were
used at a concentration of 2 µg/ml. Isotype of all MAb was IgM.

One fusion experiment was performed with peptide corresponding to R2. Supernatant fluids

of 15 cell cultures reacted to R2 in PTA-ELISA. Five hybrid cell lines were selected for

cloning and further propagation.

Two fusion experiments were performed with peptide corresponding to R3. Supernatant

fluids of 5 cell cultures reacted to R3 in PTA-ELISA. Two hybrid cell lines were selected for

cloning and further propagation.

To screen MAbs reactivity by Western blotting, 11 MAbs, positive in PTA-ELISA,

were chosen. Four MAbs, 1B7, 1G12, 3C6 and 3G4, showed positive reactions with the

expressed single peptide R1-R2-R3. The others did not show any cross-reaction or a

background activity. MAbs generated to R3, namely, 3B4, 3E11, only weakly reacted with

overexpressed R1-R2-R3 protein after prolonged incubation with the substrate.

The complete recombinant NIb protein was detected by the same 4 MAbs, i.e. 3G4, 3C6

(to R1), 1G12 and 1B7 (to R2). Fig. 2.6. provides an example for the recombinant NIb

detection. Similarly, MAbs 3B4, 3E11 very weakly reacted with the recombinant NIb protein.
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Fig. 2.6: Detection of the recombinant PVY-NIb by Western blotting.
Lanes 1, 6: cells containing plasmid without insert; lanes 2, 7: crude extracts from non-induced cells;
lanes 3, 8: crude extracts from induced cells; lanes 4, 9: 100 ng of purified NIb; lane 5: prestained
protein marker. A: probed with MAb 1G12; B: probed with MAb 3G4.

2.6  Generation and characterization of MAbs to synthetic peptides of CP

Two fusion experiments were performed with peptides S193W4 and S319. In total, 4

hybridoma cell lines were obtained. The properties of MAbs are given in the Table 2.2. It was

shown that these MAbs cross-reacted with healthy plant sap. The MAbs were unsuitable for

PTA-ELISA.

2.7  Generation and characterization of MAbs to recombinant NIb and CP of PVY

Fusion experiments were carried out for both the recombinant NIb protein and the purified CP

of PVY. Seven hybridoma cell lines were further propagated. Their characteristics are shown

in the Table 2.3. The OD values obtained in PTA-ELISA were higher than those in TAS-

ELISA in the case of detection of NIb. Of these MAbs 2E11 and 3B10 were specific to NIb.

The results of PTA-/TAS-ELISA indicated that only MAb 1D6 was specific for PVY-CP.

This MAb and the NIb-specific MAb 2E11 and 3B10 were employed for subsequent virus

detection experiments.



Results
                                                                                                                                                        

37

 Table 2.2 Characterization of monoclonal antibodies obtained against CP-derived synthetic

peptides in PTA-ELISA

A405nm values in PTA-ELISA

Synthetic

peptides

Leaf extracts of infected plants

Cell

culture

superna-

tant

Isotype

S193 S319 PVY PVA TuMV RgMV PPV PVV Healthy

1G9 IgM, κ 1.58 0.12 1.25 1.28 1.02 1.09 1.12 1.19 0.55

5B3 IgM, κ 1.91 0.86 1.42 1.24 1.29 1.15 1.26 1.28 1.12

5F5 IgM, κ 1.63 0.06 1.32 1.35 1.09 1.23 1.20 1.20 0.33

1B5 nd* 0.10 1.15 0.87 0.89 0.91 0.85 0.90 0.90 0.32

*not determined; A405nm values were measured after 1 h substrate incubation at room temperature.

 Table 2.3 Characteristics and reactivity of monoclonal and polyclonal antibodies to NIb and

CP of PVY in ELISA

Isotype A405nm Values in PTA-ELISA / TAS-ELISACell culture

supernatant/

sera

Specific

to

antigen
Heavy

chain

Light

chain

Overexpressed

NIb (2µg/ml)

PVY infected leaf

extracts (1:50)

Healthy leaf

extracts (1:50)

1C8 NIb µ κ 1.25† / 0.35‡ 0.73 / 0.27 0.65 /0.19

1D8 NIb µ κ 1.14 / 0.32 0.67 / 0.15 0.58 / 0.11

2F5 NIb µ κ 1.39 / 0.42 0.92 / 0.33 0.13 / 0.18

2F10 NIb µ κ 1.32 / 0.39 1.05 / 0.32 0.16 / 0.18

2E11 NIb µ κ 1.63 / 0.48 1.12 / 0.43 0.11 / 0.15

3B10 NIb µ λ 1.20 / 0.37 0.96 / 0.16 0.03 / 0.09

1D6 CP γ κ 0.03 / 0.04 1.35 / 1.56 0.03 / 0.05

Serum M NIb       1.35 / nt        1.27 / nt       0.53 / nt

Serum R1 NIb       2.18 / nt        0.66 / nt       0.17 / nt

Serum R2 NIb       2.32 / nt        0.73 / nt       0.22 / nt

Serum M = mouse antiserum from immunized mouse for preparing splenocytes 1:500 diluted before
use; Serum R1 and R2 = rabbit 1 and 2 antisera, 1:1000 diluted before use; nt = not tested. A405nm
values were measured after 1 h substrate incubation at room temperature. † A405nm values in PTA-
ELISA, ‡ A405nm values in TAS-ELISA. Systemically infected leaves were extracted 14 dpi.
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2.8  Detection of the native NIb protein in potyvirus-infected plants

2.8.1  ELISA

Six MAbs raised to R1 or R2 were used to detect NIb of different potyviruses in PTA-ELISA

(Table 2.1). All gave low A405nm values with the heterologous virus, indicating that they can

not be applied for routine diagnosis.

As the PTA-ELISA was more sensitive than TAS-ELISA for NIb detection (see Table

2.3), the specificity and cross-reactivity of each of the MAbs against the recombinant NIb of

PVY was assessed in PTA-ELISA with different isolates of PVY and other potyviruses. The

results are shown in Table 2.4. MAb 2F5 cross-reacted with PVA, PPV and RgMV. MAb

2E11and 3B10 showed a high specificity. MAb 2E11 revealed the highest titer of all MAbs,

up to 100-fold dilution of the cell culture supernatant possible. Consequently, this specific

antibody was used for detecting PVY infections.

Table 2.4 Reactivity of MAbs with PVY isolates and other potyviruses in PTA-ELISA

A405nm values in PTA-ELISACell culture

supernatant PVY

CH

PVY

NT

PVA

Da

PVA

LI

PPV

Jena

TuMV RgMV

Bul

RgMV

Czech

Buffer Healt-

hy

1C8 0.18 0.23 0.06 0.04 0.09 0.03 0.08 0.11 0.01 0.11

1D8 0.18 0.25 0.10 0.07 0.11 0.05 0.10 0.12 0.02 0.13

2F5 0.44 0.58 0.28 0.11 0.30 0.06 0.31 0.31 0.02 0.15

2F10 0.29 0.41 0.12 0.09 0.12 0.12 0.14 0.11 0.02 0.18

2E11 0.78 1.14 0.06 0.03 0.10 0.03 0.06 0.01 0.03 0.10

3B10 0.35 0.38 0.05 0.04 0.07 0.03 0.07 0.05 0.03 0.04

1D6 2.19 1.22 0.01 0.01 0.01 0.01 0.01 0.04 0.01 0.02

PVY CH = PVY CH 605, PVA Da = PVA Datura, PVA LI =PVA Lichte Industrie, RgMV Bul =
RgMV Bulgarian. Virus infected plants were freshly sampled. Plates were coated with 1:50 diluted sap
in coating buffer, 100 µl per well at 4°C overnight. Cell culture supernatants were 1:1 diluted before
use; 1D6 = purified IgG, specific to PVY CP and 1:1000 diluted before use. A405nm values were
measured after 1 h substrate incubation at room temperature.

2.8.2  Western blotting

The four MAbs, 3G4, 3C6 (R1), 1B7, 1G12 (R2), were able to detect a polypeptide with the

expected molecular mass of the NIb protein (~65 kDa) in potyvirus-infected plants. MAb
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1G12 and 3G4 were specific for NIbs of potyviruses since a single band was observed on the

blot (Fig. 2.7 a, c). MAb 1B7 and 3C6 had a similar reactivity, but cross-reacted with a 55

kDa protein (Fig. 2.7 b, d). In some cases, immunoblot assays revealed a large (~100 kDa)

band as well as a small (~30 kDa) band (data not shown). This small band probably results

from the degradation of NIb, since a similar band sometimes was found in a preparation of the

recombinant NIb. The large band may be a complex of the unprocessed NIa-NIb or NIb-CP.

  
a       b

    
c  d

Fig. 2.7: Detection of native NIb proteins in potyvirus-infected plants by Western blot.
a: probed with MAb 3G4; b: probed with MAb 1B7. For both: lane 1: PVY D884; lane 2: TuMV; lane
3: PVA; lane 4: PPV; lane 5: PVV; lane 6: healthy control; lane 7: PVY CH 605; lane 8: purified
recombinant NIb; lane M: protein marker.
c: probed with MAb 1G12. Lane 1: PVY-D884; lane 2: PVY CH 605; lane 3: healthy control; lane 4:
TuMV; lane 5: PVA; lane 6: PPV; lane 7: PVV; lane 8: PVY-NTN; lane M: protein marker.
d: probed with MAb 3C6. Lane 1: healthy control; lane 2: PVY-D884; lane 3: PVY-CH605; lane 4:
TuMV; lane 5: PVA; lane 6: PPV; lane 7: PVV; lane 8: PVY-NTN; lane M: protein marker.
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2.9  Detection of the coat protein in potyvirus-infected plants

2.9.1  ELISA

MAbs generated from synthetic peptides covering conserved regions of potyviral CP cross-

reacted with extracts of healthy plants in PTA-ELISA. Therefore, these MAbs are not suitable

for routine detection of potyvirus infection. Interestingly, one of them, MAb 5B3, cross-

reacted with the extract from healthy N. clevelandii plants in PTA-ELISA, but showed a

specific reaction with CP of PVY in TAS-ELISA, where polyclonal rabbit antisera against

PVY were used for coating the plate. MAb 1D6 reacted with all ten isolates of PVY tested in

PTA- and TAS-ELISA, it did not cross-react with other potyviruses, such as, PVA, PPV,

PVV, LMV, WMV, MDMV, TuMV, RgMV, BaYMV and BaMMV.

2.9.2  Western blot analysis

Of MAbs to CP, only 1D6 could detect CP in Western blot. One or two specific bands could

be seen on the blot corresponding to a size of approximately 39 and 33 kDa (Fig. 2.8a). In

contrast, one or two more bands (Fig. 2.8b) were observed on the blot when extraction buffer

containing 9 M urea was used in sample preparations. The bands of the different size

suggested that there exists a dimer form of CP or unprocessed polyprotein containing CP. An

approximately 20 kDa protein may be a degradation product of the CP. MAb 1D6 showed a

high sensitivity and specificity to all ten isolates of PVY tested, of these isolates, C, and oGA

usually gave a weaker signal. MAb 1D6 could not detect other potyviruses tested by Western

blotting, such as, PVA (B11), PPV (Jena), PVV, LMV, WMV, MDMV, TuMV, RgMV,

BaYMV and BaMMV. This was consistent with the results of PTA/TAS-ELISA. The results

suggested that MAb 1D6 might recognize a linear epitope on the CP of PVY. This property

makes it a valuable reagent in routine detection and identification of PVY infection by a

variety of immunoassays.
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                   a                       b

Fig. 2.8:  Western blot analysis of CPs of different PVY isolates in N. glutinosa plants.
a: extracts of infected leaves with 50 mM Tris-HCl buffer. Lane 1: A91; lane 2: M3; lane 3: NTN;
lane 4: CH 605; lane 5: oGA; lane 6: To1; lane 7: Tomato; lane 8: C; M: prestained protein marker.
b: extracts of infected leaves treated with extraction buffer containing 9 M urea. Lane 1: D884; lane 2:
M3; lane 3: NTN; lane 4: CH 605; lane 5: oGA; lane 6: M3; lane 7: 1427; lane 8: C; lane 9: healthy N.
glutinosa plants; M: prestained protein marker. 5-20% gradient gels containing 0.1% SDS was
prepared for SDS-PAGE.

2.10  Comparison of detection of the viral NIb and CP in PVY-infected plants

Leaf extracts from both PVY-infected and healthy plants were tested in PTA-ELISA using the

two MAbs 2E11 and 3B10 specific to NIb and MAb 1D6 specific to CP of PVY. The results

are shown in Fig. 2.9. All ten isolates of PVY were detected by MAbs 2E11, 3B10 and 1D6.

In any case, MAb 2E11 had higher A405nm values than MAb 3B10. Among PVY isolates only

oGA and NTN had high A405nm values for NIb as well as CP. On the other hand, isolates

1427, To1 and C, showed higher A405nm values for NIbs than that for CPs, while the other

isolates had very high values for the CP and relatively low ones for the NIb.
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Fig. 2.9: Comparison of detection of the viral NIb and CP in leaves of N. glutinosa systemically
infected with different isolates of PVY. Extracts were prepared freshly from the infected plants 12 dpi
for PTA-ELISA. MAb 3B10 and 2E11 are specific to NIb, 1D6 specific to PVY CP. A405nm values
were measured after 1 h substrate incubation at room temperature.

2.11  Temporal expression of potyviral NIb and CP in plants

Time course studies on synthesis of NIb and CP in PVY-infected plants revealed that NIb can

be first detected by PTA-ELISA in systemically infected leaves approximately 5 dpi and

remains detectable up to 28 dpi. It was found that synthesis and accumulation of the viral NIb

and CP in PVY-infected plants were shown to exhibit a similar pattern (Fig. 2.10a). This is in

agreement with the results obtained from the Western blot (Fig. 2.10b)

During the time course study, it was observed that the locally infected leaves could

accumulate less amounts of viral RdRp than that the young systemic leaves (Table 2.5).

Under the same conditions the absorbance values for PVY-infected N. glutinosa plants were

higher than those for N. occidentalis plants. This could be visualized with both CP and NIb

specific MAb.
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a

b   c
Fig. 2.10: Time course studies on expression of the CP and NIb of PVY and NIb of  PVA.
a:  synthesis and accumulation of CP and NIb of PVY in systemically infected leaves of N. glutinosa.
Leaves were freshly sampled (1g fresh leaves was extracted in 0.5 ml of extraction buffer) for PTA-
ELISA. A405nm values were measured after 2 h substrate incubation at room temperature.
b: time course of NIb synthesis in systemically PVY-infected leaves of N. glutinosa revealed by
Western blot. Lane H: healthy; lane M: protein marker. Probed with MAb 3G4, detected by ECL.
c: time course study on NIb synthesis in systemically PVA-infected leaves of N. clevelandii.
Lane H:  healthy; lane M: protein marker. Probed with MAb 1G12, detected by ECL.



Results
                                                                                                                                                        

44

Table 2.5 Temporal synthesis of RdRp and CP in different leaves and host plants

A405nm Values in PTA-ELISA

RdRp CP

Leaves\

plant

dpi

N. glutinosa N. occidentalis N. glutinosa N. occidentalis

l. leaves 1 0.11±0.03 0.02±0.01 0.02±0.01 0.02±0.01

sy. leaves 1 0.07±0.02 0.06±0.02 0.01±0.01 0.00±0.00

l. leaves 3 0.06±0.01 0.03±0.01 0.00±0.00 0.00±0.00

sy. leaves 3 0.07±0.02 0.06±0.02 0.00±0.01 0.00±0.01

l. leaves 5 0.08±0.02 0.06±0.03 0.08±0.04 0.04±0.02

sy. leaves 5 0.14±0.04 0.07±0.03 0.09±0.05 0.05±0.02

l. leaves 7 0.10±0.03 0.06±0.04 0.12±0.05 0.05±0.03

sy. leaves 7 0.21±0.06 0.07±0.04 0.22±0.05 0.06±0.04

l. leaves 10 0.20±0.06 0.08±0.06 0.18±0.07 0.07±0.05

sy. leaves 10 0.35±0.10 0.08±0.08 0.27±0.12 0.07±0.06

l. leaves 14 0.22±0.11 0.08±0.05 0.48±0.17 0.11±0.10

sy. leaves 14 0.55±0.20 0.08±0.10 0.67±0.21 0.15±0.12

l. leaves 16 0.26 ±0.21 0.08 ± 0.05 0.47 ±0.13 0.18 ±0.13

sy. leaves 16 0.67 ±0.25 0.12 ±0.06 1.17 ±0.28 0.35 ±0.18

so. leaves 16 0.29 ±0.12 0.07 ±0.05 0.31 ±0.19 0.29 ±0.15

l. leaves 18 0.27±0.22 0.09±0.08 0.89±0.31 0.19±0.21

sy. leaves 18 0.97±0.29 0.15±0.11 1.23±0.25 0.43±0.24

so. leaves 18 0.33±0.21 0.10±0.09 0.91±0.22 0.21±0.22

l. leaves 21 0.15±0.21 0.12±0.13 0.21±0.19 0.18±0.21

sy. leaves 21 1.05±0.22 0.37±0.26 1.00±0.31 0.45±0.26

so. leaves 21 0.25±0.24 0.28±0.24 0.89±0.32 0.19±0.21

l. leaves = locally infected leaves; sy. leaves = systemically infected young leaves; so. leaves =
systemically infected old leaves; plants were inoculated with PVY CH 605. Healthy control for NIb =
0.12±0.15, for CP = 0.01±0.05. A405nm value =  ! ± 2S (! stands for means, S for standard deviation),
sample numbers (N) =10. Culture supernatant of MAb 2E11 (1:1 dilution) was used to detect NIb,
purified MAb 1D6 (1 mg/ml, 1:1000 dilution) was used for CP detection. A405nm was measured after 1
h substrate incubation at room temperature.
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2.12  Construction of recombinant single chain fragment (scFv) antibody

The procedures of molecular cloning and construction of scFv are represented in the schema

of Figure 2.11.

Fig. 2.11: Synthesis of scFv and construction of scFv gene library. S = signal peptide sequence (e.g.
leader sequence); V = variable region; D = D (diversity) region; J = J (joining) region; CH1, CH2,
CH3 = C (constant) region of H (heavy) chain; Cκ = C region of L (light) chain (κ).

2.12.1  Cloning of immunoglobulin variable region genes

cDNAs were synthesized from individual mRNAs isolated from the respective hybridoma cell

lines 1B7, 1G12, 3G4, 2E11, 1D6, and 7C5. (MAb 7C5, from Dr. F. Rabenstein, BAZ,

Aschersleben, is specific to native PVY, cannot react with denatured PVY, unpublished data).

Heavy and light chain Fv genes were cloned by PCR as described in Materials and Methods.

The results are shown in Fig. 2.12. In some cases, the amount of the VL DNA (e.g. 1B7) was
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not sufficient for the following experiments. For this reason PCR reaction conditions were

optimized to amplify the VL DNA by making use of different enzymes and different

concentrations of DMSO or MgCl2. Addition of DMSO to PCR mixtures containing Pfu DNA

polymerase resulted in the production of a single specific band of the expected size (Fig.

2.13).

a    b      c

       
d  e

Fig. 2.12: Amplification of Fv genes from hybridoma cells by PCR.
a: lane 1: 1D6 VL, ~350 bp; lane 2: 1D6 VH, ~400 bp; lane 3: 7C5VL, ~350 bp; lane 4: 7C5 VH, ~400
bp; lane 5: marker, 100 bp ladder, double intense band corresponds to the size of 800 bp. (5 µl of 50 µl
PCR product was applied onto gel).
b: lane 1: 2E11 VH, ~400 bp; lane 2: 2E11 VL, ~350,; lane 3: marker, 100 bp ladder, double intense
band corresponds to the size of 800 bp. (5 µl of 50 µl PCR product was applied onto gel).
c: lane 1: lacking template cDNA control; lanes 2-3: 3G4 VH ~350-400 bp; lane 4: lacking template
cDNA control; lanes 5-6: 3G4 VL, ~300-350 bp; lane 7: marker, 100 bp ladder, double intense band
corresponds to the size of 800 bp. (lanes 2, 5: 5µl, and lanes 3, 6: 15 µl of 20 µl PCR product were
applied onto gel).
d: lane 1: marker, 1kb plus ladder; lane 2: 1G12 VH, ~350 bp; lane 3: 1G12 VL, ~330; lanes 4, 6: 1B7
VH, ~350 bp; lanes 5, 7: 1B7 VL, ~330 bp; lane 8: marker, 100 bp ladder, double intense band
corresponds to the size of 800 bp. (10 µl PCR product was applied onto gel).
e: reamplification of 1B7 Fv genes by PCR and optimization of annealing temperature. Template
DNA was gel-purified (see Fig. 2.12d); lanes 1, 3, 5, 7: 1B7 VH,  PCR reactions were carried out at
annealing temperatures of 45°C, 55°C, 65°C and 58°C, respectively, lanes 2, 4, 6, 8: 1B7 VL, PCR
reactions were carried out at annealing temperatures of 45°C, 55°C, 65°C and 58°C, respectively.
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Fig. 2.13: Optimization of PCR amplification of 1B7 VL by use of different enzymes and reaction
conditions.
Lane M: 1 kb plus ladder; lane 1: Biotools taq polymerase; lane 2: Taq extender PCR additive; lane 3:
Pfu DNA polymerase; lane 4: AmpliTaq polymerase; lane 5: Expand high fidelity taq polymerase;
lanes 6, 7, 8: different concentrations of MgCl2 (0.5 mM, 3mM, 5mM, respectively), were used in a
PCR reaction with expand high fidelity taq polymerase. In each lane, the left well was subjected with
10 µl of 20 µl PCR product containing 5% DMSO in PCR reaction, the right well subjected with 10 µl
of 20 µl PCR product containing 10% DMSO.

2.12.2  Synthesis of scFv by fusion PCR or from VL and VH combinatory libraries

The above amplified VH and VL genes were linked together with a DNA fragment encoding a

flexible peptide (Gly4Ser)3 via fusion PCR to synthesize scFv genes. The assembled scFvs,

namely, scFv 1D6, scFv 2E11 (Fig. 2.14) and  scFv 7C5 with a size of ~740 bp, were purified

from agarose gels. ScFv 7C5 was cloned into phagemid vector pCANTAB 5E through

restriction enzyme sites Sfi I and Not I, and scFv 1D6, 2E11, 1B7, 1G12, and 3G4 were

cloned into pSEX 81 by Nco I and Not I sites.

For comparison of synthesis of scFv, the respective VL and VH genes of 1B7, 3G4, 2E11,

were cloned into pSEX 81 separately, resulting in a configuration of VH-linker-VL-c-myc-tag-

His-tag.
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     a          b

Fig. 2.14: Assembly of Fv genes into scFv by fusion PCR.
a: lane 1: PCR reaction mixture without VH DNA; lane 2: master mixture without temple DNA; lane
3: scFv 1D6; lane 4: scFv 2E11; lane 5: marker, 100 bp ladder, double intense band corresponds to the
size of 800 bp.
b: lane 1: scFv 1B7; lane 2: scFv 1G12; lane 3: scFv 3G4; lane 4: marker, 100 bp ladder, double
intense band corresponds to the size of 800 bp.

2.13  Size of Fv or scFv libraries

The light chain Fv was ligated into plasmid pSEX 81 and transformed into supercompetent

XL-blue 2 cells. The sizes of the light chain sublibraries for MAb 1B7, 3G4, 2E11 were

approximately 5×105, 8×105, and 2×106, respectively. The sizes of heavy chain sublibraries

cloned into the corresponding light chain sublibraries in XL-blue 2 were 6×105, 1×106, and

2.3×106, respectively. The library size of scFv for 7C5, 1D6, 2E11 was 5.6 ×105, 6.4 ×105,

and 6.8 ×105 in TG1 cells, respectively. The library size of scFv for 1B7, 1G12, 3G4, was

6.1×105, 6.4×105, and 6.7×105 in XL-blue 2 cells. The individual library was kept at –80°C, or

directly used for screening functional scFv.

2.14  Biopanning for selection of functional scFv from the libraries

After two rounds of selection on either PVY or NIb-coated tubes or tubes coated with leaf sap

of PVY-infected plants, from each of 1D6, 2E11 and 7C5 libraries, 120 single colonies

secreting phage scFv antibodies were tested for binding target antigens in phage ELISA.

Some of them gave absorbance values similar to those of the negative control wells coated

with healthy plant sap or BSA, but a proportion gave values two or three times greater than
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background. Representative A405nm values of 20 single colonies derived from each of the

phage scFv are given in Fig. 2.15. The phage scFv gave A405nm values ranging from 0.08 to

0.74 after 1 h substrate incubation at room temperature. The highest A405nm values were given

by an anti-CP-scFv. This was expected as the parent MAb also gave high values. To check the

presence of inserts in the phagmid, PCR and restriction enzyme analysis were performed.

Some of the clones that gave A405nm values below 0.2 did not contain an insert. The positive

clones containing pCANTAB-scFv constructs (see Fig. 2.18a) were used to infect HB2151

cells for expressing a soluble scFv. For soluble expression of scFv genes from the pSEX-scFv

constructs, they were subcloned into pOPE101, the resulting pOPE-scFv constructs (see Fig.

2.18b) were expressed in TG1 or HB2151 cells.

Fig. 2.15: Absorbance values (A405nm) obtained in ELISA of phage-scFv from 20 single colonies tested
after two rounds of selection from the phage display libraries, either 2E11, or 1D6 or 7C5. Wells of
microtiter plates were coated with 5 µg/ml of purified recombinant NIb or virus or sap of PVY
infected plants (1:50 dilution in PBS). A405nm was measured after 1 h of substrate incubation at room
temperature. The values of the negative controls, BSA were 0.08, buffer, 0.05.

The selection of scFv to potyvirus NIb was done following essentially the same

procedures. The purified recombinant NIb and an extract of potyvirus-infected plant were

used as antigen for panning. The representative values of 20 single colonies obtained in

phage-ELISA are shown in Fig. 2.16. The phage scFv gave A405nm values ranging from 0.07

to 0.39 after 1 h substrate incubation at room temperature.
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Fig. 2.16: Absorbance values (A405nm) obtained in ELISA of phage-scFv from 20 single colonies tested
after three rounds of selection from the phage display libraries of either 1B7 or 1G12 or 3G4. Wells of
microtiter plates were coated with 10 µg/ml of the purified recombinant NIb in coating buffer. A405nm
was measured after 1 h of incubation with substrate at room temperature. The values of the negative
controls, BSA, were 0.08, buffer, 0.05.

2.15  Sequences of scFv-clones

For sequencing of the scFv 1D6, three clones with high binding ability in phage–ELISA after

three rounds of panning, five randomly selected from libraries after one time panning, were

investigated. Of them, five clones displayed identical sequences except for one or two point

mutations, and one clone (f1) was mutated back by site-directed mutagenesis. According to

alignments of the sequences, sequence of clone K1, which shares identical sequences with

other four clones, was considered as the parent sequence from hybridoma cells, and

designated as 1D6F1. In addition, another three clones also share high homology with

nucleotide sequence of the parent in part; one had the same variable heavy chain sequence but

with an aberrant rearrangement of variable light chain; the second one had four nucleic acid

differences in VH and misses seven aa in VL, consequently, resulting in a reading frame shift;

the third had a frame shift in both heavy chain and the light chain resulting in an unrelated aa

sequence. The DNA sequence and deduced aa sequence of the scFv 1D6F1 are shown in Fig.

2.17a.

The nucleotide sequences of five clones from scFv 7C5 were determined. Similar to

scFv 1D6, three clones have one to three point mutations, two have the identical sequence.

The sequence of scFv 7C5 is shown in Fig. 2.17b.
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1                              A  60
ATGGCCAAGGTCCAACTGCAGGAGTCTGGAGGAGGTTGGGTGCAACTTGGAGGATCCATG
 M  A  K  V  Q  L  Q  E  S  G  G/E G  W  V  Q  L  G  G  S  M

61 120
AAATTCTCCTGTGTTGCCTCTGGATTCACTTTCAGTAACTACTGGATGAGCTGGGTCCGC
 K  F  S  C  V  A  S  G  F  T  F  S  N  Y  W  M  S  W  V  R

121 180
CAGTCTCCAGAGAAGGGGCTTGAGTGGGTTGCTGAAATTAGATTGAAATCTAATAATTAT
 Q  S  P  E  K  G  L  E  W  V  A  E  I  R  L  K  S  N  N  Y

181 240
GCAACACATTATGCGGAGTCTGTGAAAGGGAGGTTCACCATCTCAAGAGATGATTCCAAA
 A  T  H  Y  A  E  S  V  K  G  R  F  T  I  S  R  D  D  S  K

241 300
AGTAGTGTCTCCCTACAAATGAACAACTTAAGAGTTGAAGACACTGGCATTTATTACTGT
 S  S  V  S  L  Q  M  N  N  L  R  V  E  D  T  G  I  Y  Y  C

301 361
ACGGTGGACCTTGACTACTGGGGCCAAGGCACCACGGTCACCGTCTCCTCAGGTGGAGGC
 T  V  D  L  D  Y  W  G  Q  G  T  T  V  T  V  S  S  G  G  G

361                                                     C  420
GGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGGACATCGAGCTCACTCAGTCTCCA
 G  S  G  G  G  G  S  G  G  G  G  S  D  I  E  L  T  Q  S  P

421 480
TCAATCATGTCTGCATCTCCAGGGGAGAGGGTCACCATGACCTGCAGTGCCAGCTCAAGT
 S  I  M  S  A  S  P  G  E  R  V  T  M  T  C  S  A  S  S  S

481 540
ATACGTTACATATATTGGTACCAACAGAAGCCTGGATCCTCCCCCAGACTCCTGATTTAT
 I  R  Y  I  Y  W  Y  Q  Q  K  P  G  S  S  P  R  L  L  I  Y

541 600
GACACATCCAACGTGGCTCCTGGAGTCCCTTTTCGCTTCAGTGGCAGTGGGTCTGGGACC
 D  T  S  N  V  A  P  G  V  P  F  R  F  S  G  S  G  S  G  T

601 660
TCTTATTCTCTCACAATCAACCGAATGGAGGCTGAGGATGCTGCCACTTATTACTGCCAG
 S  Y  S  L  T  I  N  R  M  E  A  E  D  A  A  T  Y  Y  C  Q

661 720
GAGTGGAGTGGTTATCCGTACACGTTCGGAGAGGGGACCAAGCTGGAAATCAAACGGGCG
 E  W  S  G  Y  P  Y  T  F  G  E  G  T  K  L  E  I  K  R  A

721 726
GCCGCG
 A  A

Fig. 2.17a: Nucleotide and deduced aa sequences of scFv 1D6F1. Three
separate clones shared identity on nucleotide sequence level except for one
base difference between them (G-A, T-C, bold underlined letters indicated in
the sequences). One base exchange resulted in a different aa sequence (K3
G-E, bold letter in the sequence). This aa mutation does not affect the scFv
binding ability.
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1    60
ATGGCCCAGGTGCAGCTGGTGGAGTCAGGGGGAGGTTTAGTGCAGCCTGGAGGGTCCCTG
 M  A  Q  V  Q  L  V  E  S  G  G  G  L  V  Q  P  G  G  S  L

61 120
AAACTCTCCTGTGCAGCCTCTGGATTCACTTTCAGTAGCCATACTATGTCTTGGGTTCGC
 K  L  S  C  A  A  S  G  F  T  F  S  S  H  T  M  S  W  V  R

121 180
CAGACTCCAGAGAAGAGGCTGGAGTGGGTCGCATATATTAGTAATGGTGGTGGTATCACC
 Q  T  P  E  K  R  L  E  W  V  A  Y  I  S  N  G  G  G  I  T

181 240
TCCTATTCAGACACTGTAGAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACACC
 S  Y  S  D  T  V  E  G  R  F  T  I  S  R  D  N  A  K  N  T

241 300
CTGTACCTGCAAATGAGCAGTCTGAAGTCTGAGGACACGGCCATGTATTATTGTTCAAGA
 L  Y  L  Q  M  S  S  L  K  S  E  D  T  A  M  Y  Y  C  S  R

301 360
CATGGGGGTCATTATTACGGCCCGGGGTACTTTGACTACTGGGGCCAAGGGACCACGGTT
 H  G  G  H  Y  Y  G  P  G  Y  F  D  Y  W  G  Q  G  T  T  V

361 420
ACCGTCTCCTCAGGTGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGATCGGAC
 T  V  S  S  G  G  G  G  S  G  G  G  G  S  G  G  G  G  S  D

421 480
ATCGAGCTCACTCAGTCTCCATCTTATCTTGCTGCATCTCCTGGAGAAACCATTACTATT
 I  E  L  T  Q  S  P  S  Y  L  A  A  S  P  G  E  T  I  T  I

481 540
AATTGCAGGGCAAGTAAAACCATTAGCAAATTTTTAGCCTGGTATCAAGAGAAACCTGGG
 N  C  R  A  S  K  T  I  S  K  F  L  A  W  Y  Q  E  K  P  G

541 600
AAAACTAATAAGCTTCTTATCTACTCTGGATCCACTTTGCAATCTGGAACTCCATCAAGG
 K  T  N  K  L  L  I  Y  S  G  S  T  L  Q  S  G  T  P  S  R

601 660
TTCAGTGGCAGTGGATCTGGTACAGATTTCACTCTCACCATCAGTAGCCTGGAGCCTGAA
 F  S  G  S  G  S  G  T  D  F  T  L  T  I  S  S  L  E  P  E

661 720
GATTTTGCAACTGTATTATGTCAACAACATAATGAATACCCGTACACGTTCGGAGGGGGG
 D  F  A  T  V  L  C  Q  Q  H  N  E  Y  P  Y  T  F  G  G  G

721    747
ACCAAGCTGGAGCTGAAACGGGCGGCC
 T  K  L  E  L  K  R  A  A

Fig. 2. 17 b: Nucleotide and deduced aa sequence of scFv 7C5 antibody.
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2.16  Expression of scFv antibodies in E. coli

2.16.1  Total protein analysis of scFv expression

The scFv genes from pSEX 81, were re-cloned into pOPE101 between the leader sequence

pelB of Erwinia carotovora and a detection tag as shown in Fig. 2.18b. The lac-promoter

allows induction of expression of scFv by IPTG, whereas the N-terminal pelB-leader directs

the product to the periplasmic space to allow easy harvest of concentrated fusion protein. In

addition, the sequence encoding an 11 aa product of the c-myc oncogene, which is specifically

detected by MAb 9E10, together with a sequence encoding for six histidine residues, fused to

the C-terminus of scFv, facilitates detection by anti-c-myc antibody and purification via

IMAC in a convenient way.

Fig. 2.18: The arrangement of genes in the various vectors used for expression of scFv antibodies in E.
coli.
plac = lac promoter—for IPTG-induced expression of scFv; g3 = gene 3 of filamentous phage M13;
PelB = signal peptide of pectate lysate B of Erwinia carotovora; VH = variable region of heavy chain;
L = linker, e.g. (GGGGS)3; VL = variable region of light chain; E = E-tag; Myc = c-myc-tag; His =
His-tag. The vectors  pCANTAB 5E and pOPE 101, which harbouring the constructs, are not shown.

The expression of the scFv from pOPE-scFv after induction with 1 mM IPTG is

demonstrated in Fig. 2.19a. A protein of about 31 kDa (calculated size is 28.4 kDa) can be

seen on the stained gels. No band of the same size is observed in the controls. Specific

expression of soluble scFv was further confirmed by Western blot analysis (Fig. 2.19b). The

scFv proteins produced in E. coli were detected by MAb 9E10, which is specific for the c-

myc-tag peptide, fused to the C terminus of the scFv. A protein of approximately 31 kDa,

corresponding to the band visible on the gel, was detected on Western blot, too. No protein

expression was detected in the control cells. A weak band of the same size appeared also

without IPTG induction.
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 Levels of expression of soluble scFv against potyvirus NIb were very low, no distinct

band was seen on actual gels. However, the recombinant protein could be visualized by

applying an enhanced chemiluminescence detection system (Fig. 2.19c).

a      b

       
  c

Fig. 2.19: Analysis of total proteins from different E. coli clones containing pOPE-scFv.
a:  SDS-PAGE, 12% gel was stained with Coomassie brilliant blue; b: Western blot with c-myc-
specific MAb 9E10. Induction of protein synthesis was achieved by addition of IPTG (1 mM). Cells
were grown 5 h at 30°C with vigorous shaking. Non-induced cells were collected before addition of
IPTG. For both, lanes 1, 3 and 5: induced cells of clones K1, K3, and K9 of scFv 1D6, respectively;
lanes 2, 4:  non-induced cells of clones K3 and K9; lane 6: protein marker; lanes 7,  8, 9:  induced cells
of clones K5, K7, K10 of scFv 2E11, respectively; lane 10: non-induced cells of clone K5.
c: detection of expression of scFv derived from synthetic peptides by ECL assay. Lane 1: non-induced
cells; lanes 3: 4: scFv 1B7; lanes 5, 6, scFv 1G12; lanes 7, 8: scFv 3G4; lane 9: protein marker.

2.16.2  Optimization of expression of scFv and extraction

The optimal expression of scFv was observed when the cells were incubated for 5 h at 26°C

after the addition of IPTG (0.4 mM). For example, scFv 1D6 F1, reached up to 17% of total
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soluble protein (Fig. 2.20a); the specificity was revealed by Western blotting (Fig. 2.20b).

scFv 2E11 reached up to 8% of total soluble protein at the same conditions (Fig. 2.21).

a b

Fig. 2.20: Optimization of expression of scFv in E. coli.
a: total protein extracts of cells were analyzed in SDS-PAGE on 12% gel stained with Coomasie
brilliant blue. Lane 1: non-induced cells containing pOPE-scFv-myc/His-tag construct (clone K1 =
1D6F1); lane 2: induced cells containing pOPE plasmid lacking scFv DNA; lane 3: induced cells
containing pOPE-scFv-myc/His-tag construct (clone K1); lane 4: LMW protein marker; lane 5: non-
induced cells containing pOPE-scFv plasmid (K3); lane 6: induced cells containing pOPE plasmid
lacking scFv DNA; lane 7: induced cells containing pOPE-scFv-myc/His-tag (K3); lane M: protein
marker.
b: total protein of cells were analyzed by Western blotting with MAb 9E10. Lane 1: induced cells
containing pOPE plasmid lacking scFv DNA; lane 2: induced cells containing pOPE-scFv-myc/His-
tag construct (K1); lane 3: non-induced cells containing pOPE-scFv-myc/His-tag construct (K1); lane
4: induced cells containing pOPE plasmid lacking scFv DNA; lane 5: induced cells containing pOPE-
scFv-myc/His-tag construct (K3); lane 6: non-induced cells containing pOPE-scFv-myc/His-tag
construct (K3); lane M: protein marker.

Fig. 2.21: Analysis of total protein extracts of E. coli cells containing pOPE-scFv2E11 by SDS-PAGE.
Gel stained with Coomassie brilliant blue.
Lane 1: scFv 2E11 (clone K5), non-induced cells containing pOPE-scFv; lane 2: scFv 2E11 (K5),
induced  cells; lane 3: non-induced scFv 2E11 (K7); lane 4: scFv 2E11 (K7), induced cells; lane M:
protein marker.
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The amount of scFvs secreted into the cultural medium was quite low, even ten times

concentrated, only a faint band was visible on Western blot revealed by anti-myc-antibody. In

order to know the characteristics of scFv expression in E. coli, fractional analysis of their

expression in E. coli was performed. It was found that scFv can exist in periplasmic space, or

as inclusion bodies accumulated in periplasma or in cytoplasm as shown in Fig. 2.22. The

dominant amount was found in the cytoplasmic extract.

Fig. 2.22: SDS-PAGE analysis of fractional expression of scFv in E. coli TG1. 12% gel was stained
with Coomassie brilliant blue.
Lane 1: non-induced cells (1D6F1); lane 2: osmotic shock fraction (1D6 K3); lane 3: periplasmic
extract (1D6 F1); lane 4: cytoplasmic extract (1D6F1); lane 5: periplasmic extract (2E11 K7); lane 6:
cytoplasmic extract (2E11 K7); lane 7: periplasmic extract (1D6 K3); lane 8: inclusion bodies
(1D6F1);  lane M: protein marker.

2.17 IMAC purification and in vitro refolding of scFv

To obtain high quality scFv preparations from E. coli and to compare their activity in relation

to the locations in host cells, IMAC was used to purify scFv from periplasmic fractions,

cytoplasmic extracts, and inclusion bodies (Fig. 2.23a). Three proteins of size, 68 kDa, 31

kDa and 28 kDa, respectively, are observed in the cytoplasmic fraction with a similar

intensity in the gel. The 68 kDa protein, which is one of the most dominant products after

IMAC purification, is assumed to represent a dimeric scFv, the 31 kDa protein is the

monomeric scFv and the 28 kDa protein may be a cleaved scFv or degraded scFv product.

Monomeric scFv is dominant in the periplasmic fraction (Fig. 2.23b, c). Taken into account of

the concentrations of scFv in different cell fractions, it was notable that active scFv molecules

tested in PTA-ELISA are mainly present in the periplasmic fraction, less active scFv
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molecules are from cytoplasmic fraction and inclusions, although the concentration of scFv in

cytoplasma or as inclusions is high than that of scFv in periplasma.

After refolding of isolated scFv in vitro, about 20% of scFv molecules recovered their

binding activity, compared with the values in ELISA and concentrations, using known

amount of purified periplasmic scFv as a standard. The concentrations of purified scFvs were

measured and calculated from their OD280. The yields of scFvs for clones 2E11 and 1D6

expressed in E. coli were approximately 1.3 mg/l and 3.0 mg/l (in periplasmic fraction), 7.0

mg/l and 15.0 mg/l (in cytoplasmic fraction), 3.2 mg/l and 5.0 mg/l (as inclusions),

respectively.

a

b c

Fig. 2.23: SDS-PAGE analysis of scFv after purification from E. coli by IMAC, 12 % gels were
stained by Coomassie brilliant blue.
a: lanes 1-4: eluates from cytoplasmic extract of scFv 1D6; lane 5: protein marker; lane 6: protein
marker; lanes 7-9: eluates from periplasmic extract; lane 10: eluate from inclusion bodies.
b: lanes 1-4: purified scFv 1D6 from periplasm and concentrated by Centriplus Concentrator; lanes 5,
6: protein markers.
c: lanes 1, 2: protein markers; lane 3-6: purified scFv 2E11 from periplasm and concentrated
by Centriplus Concentrator.
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2.18  Expression of scFv-alkaline phosphatase fusion protein in E. coli

For the purpose of rapid diagnosis of PVY, the sequence encoding for scFv 1D6 was

subcloned into a pOPE51-AP as a fusion with alkaline phosphatase. The expression plasmid

was subsequently transferred into E. coli. After expression the fusion protein was detected by

an anti-c-myc antibody on Western blot (Fig. 2.24). The level of expression was lower than in

the case of the non-fused scFv 1D6. The fusion protein could not be effectively separated

from other bacterial proteins in SDS-PAGE, and no distinct band could be observed in

polyacrylamide gels. The A405nm values in PTA-ELISA for scFv-AP fusion protein in the

same amount of cell periplasmic fraction were three times lower than those of the non-fused

scFv. This leads to the suggestion that the alkaline phosphatase affected the tertiary structure

of the scFv, resulting in a lower binding ability. The bacterial alkaline phosphatase activity

was very low (A405nm ≤ 0.1) when 20 µl of the crude periplasmic fraction of scFv-AP fusion

protein was incubated with 100 µl of p-NPP substrate solution, suggesting that active homo-

dimer molecules of alkaline phosphatase were not sufficient for enzymatic activities.

Fig. 2.24: Overexpression of scFv-AP in E. coli as detected by Western blotting. Anti-c-myc-antibody
as secondary antibody and anti-mouse-Ig-AP conjugate as tertiary antibody.
Lane 1: induced cells containing scFv-AP construct; lane 2: noninduced cells containing scFv-AP
construct; lane 3: cells containing scFv construct as a control; lane M: protein marker.

2.19  Comparison of the different antibodies for the detection of virus infection

A series of serological tests revealed that the scFv containing periplasmic space fraction of E.

coli could be used for PTA-ELISA. The inclusions of scFv could recover the binding ability

after purification and in vitro refolding.

Sap of PVY-infected plants or purified recombinant NIb was used for coating plates.

ScFvs were obtained from periplasmic extracts. Detection was performed via the c-myc-tag
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(see section 4.2.18.3). The results of Fig. 2.25 indicated that the phage scFv and the

overexpressed soluble scFv did not reach the expected values obtained with the parent MAbs

in ELISA.

           
a b

Fig. 2.25: Comparison of different antibodies in PTA-ELISA in the detection of target antigens.
a: sap of PVY-infected N. glutinosa plants was 1:10 diluted in coating buffer, 100 µl/well.
b: the purified recombinant NIb (10 µg/ml) in coating buffer, 100 µl/well.
ScFvs were obtained from periplasmic extracts and 1:2 diluted with PBST; Phage-scFvs were used at
1:2 dilution; MAbs were cell cultural supernatants, 1:2 diluted with PBST.
A405nm values were measured after 1 h substrate incubation at room temperature.

In competition ELISAs, both soluble scFv and phage displayed scFv partially (20%)

inhibited the binding ability of the parent MAbs. In contrast, MAbs greatly inhibited binding

ability of the scFv up to 80%. Therefore, most probably they recognized identical epitopes.

The results of ELISA are summarized in Table 2.6.

    Table 2.6  Comparison of MAb and scFv in PTA / Competition-ELISA

PTA-ELISA Competition-ELISAMAb/

ScFv Ag—ScFv —AP Ag—MAb—AP Ag—ScFv —AP Ag—MAb—AP

1D6 0.52 1.15 0.12 0.55

2E11 0.35 0.83 0.07 0.41

7C5* 0.04 0.05 nt nt

1B7 0.23 0.68 0.06 0.32

1G12 0.26 0.78 0.07 0.33

3G4 0.25 0.66 0.06 0.32

*MAb 7C5 does not recognize CP of PVY in PTA-ELISA and Western blot, but in TAS-ELISA if
plates were coated with polyclonal antibodies.  A405nm values of 1B7, 1G12, and 3G4 were obtained
from the recombinant NIb as antigen. A405nm values of 1D6 and 2E11 were from sap of PVY-infected
N. glutinosa plants. A405nm values were measured after 1 h substrate incubation at room temperature.
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3  Discussion

The main goal of the experiments was to develop scFv to highly conserved regions of

potyviral NIb. Such specific antibodies are expected to be a valuable tool of plant virus

resistance manipulation. Blocking the enzymatic activity of the RdRp with specific scFv

would abort the process of virus replication. The question was which residues of NIb are

essential for enzymatic activity and could serve as a target for the generation of antibodies. To

date, no direct data are available on such residues except for the GDD domain (Koonin,

1991). Antisera raised to the peptides containing GDD motif, a hallmark of RdRp, have

demonstrated the ability to inhibit the activity of this enzyme in vitro. The importance of the

“core” RdRp motifs IV, V, and VI (Koonin and Dolja, 1993) for the polymerase activity has

been proven by site-directed mutagenesis of EMCV polymerase (Sankar and Porter, 1992).

Although their actual function is not known, it is thought that these motifs may be involved in

the binding of the NTP substrate (Koonin, 1991). The assumption is that these highly

conserved regions should be essential for the functions of these enzymes (Chou and Fasman,

1979). Therefore, these conserved regions potentially could serve as targets to direct the

synthesis of antibodies. Three synthetic peptides, corresponding to three highly conserved

regions of potyviral RdRp, i.e. R1 peptide contains the “core” RdRp motif, the motif II, R2

peptide includes the motif IV, and R3 peptide is included in the motif V, were used as

antigens. For comparison, synthetic peptides covering most conserved regions of potyviral CP

were employed by following the essential steps applied to peptides of interest.

Currently, there are two principal approaches used to obtain scFv: (i) cloning scFv

genes from hybridoma cells secreting MAb or B-lymphocytes from immunized donors; (ii)

selection from synthetic scFv libraries. In this work the first approach was chosen to generate

scFv as an access to commercially available libraries was not possible at that time and there

were also some limitations for their further application.

3.1  Prediction of antigenicity of peptides derived from NIb

In order to obtain antibodies able to cross-react with the majority of potyviruses, MAbs

should be directed to defined sequences of the NIb. Two possibilities exist to accomplish this

purpose. The first approach is to produce a number of different MAbs and to identify which

of them binds to the regions of interest by appropriate methods. This way is time consuming

and in the case of low immunogenicity of the region the chance to obtain a specific antibody
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would be rather low. The second approach - the use of peptides which take advantage of

immune system to produce antibodies against them, was chosen for this purpose. Synthetic

peptides are widely used in generation of antibodies against target antigens. Epitopes

recognized by antibodies are divided into discontinuous and continuous epitopes (i.e. linear

epitopes). A linear stretch of 5 to 8 residues is believed to constitute a continuous epitope

(Van Regenmortel, 1992). In some publications smaller epitopes comprising three or four aa

were reported (Torrance, 1992; 1994; El Kasmi et al., 1998). β-turns frequently exist in

proteins as elbows jutting out from the main body. The aa residues most frequent occurring in

β-turns are asparagine, aspartic acid, proline and glycine (Chou and Fasman, 1974, 1978).

The high quality of the immune response is attributed to a particularly stable conformation of

the antigenic aa sequence, which is most likely an alpha-helix, especially the amphipathic

helices (Pfaff et al., 1982; Berzofsky and Berkower, 1993).  β-turns or α-helices may have a

greater potential to form highly antigenic epitopes (El Kasmi et al., 1998), but it needs great

efforts to find out conditions for a peptide that forms these structures which correspond to the

native protein. None of the methods nowadays could achieve a high level of correct prediction

(Van Regenmortel, 1992)

Taken into account the above given facts, it was necessary to identify those segments of

the NIb sequence that

•  are highly conserved among all potyviruses

•  consist of at least 5 highly conserved residues

•  have strong antigenic residues.

All sequenced NIb genes of potyviruses available at that time were investigated and their

antigenic properties were analyzed by the Hopp and Woods (1981) algorithm. It was possible

to identify three regions, named R1, R2 and R3, which fulfill the above mentioned

requirements. These regions consist of perfectly conserved motifs, namely, FTAAP (R1),

DGSQFD (R2) and GNNSGQPS (R3), flanked by aa motifs which show little variations in

one or two aa in the case of some viruses. However, the GDD motif was not located in a

highly immunogenic region.

MAbs obtained have strong binding ability to regions R1 and R2, but only weak binding

ability to R3 although several attempts to obtain MAb with high binding ability were

undertaken. The phenomenon that MAb weakly reacted with R3 could not be explained by

the length of the peptides used for immunization as it was comparable with that of other

peptides used. One can speculate that the structures between the native protein and this

corresponding peptide may be greatly different in this region. It is likely that the R3 forms a
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secondary structure, which effectively evokes an immune response. The fact that MAbs to R3

reacted with peptide, but could not react with recombinant proteins in both ELISA and

Western blot suggested that this immunogenic structure may be different from the native

protein or not linear. Although the peptides are very short, they can show a certain secondary

folding (Toiron et al., 1996). A comparison of the probability of different structural forms for

all three peptides is shown in the Appendix. R3 is different from the other two regions in that

it shows a higher probability to form sheets, instead of coils which are preferably formed by

the aa residues of the other two peptides. Probably, the sheet structures predicted have a low

potential to mimic native protein in immune response.

3.2  Antibody isotypes may be antigen-dependent in immune response

A phenomenon was the isotype of MAb formed. Of twenty MAbs obtained from a series of

different experiments on fusion and selection of hybridomas, all belonged to isotype IgM,

when synthetic peptides or the recombinant NIb were used as antigens. Different schedules of

immunizations had been applied, in most cases, three time injections after two-weeks

intervals and one boost injection three days before removing spleens for fusions. The longest

schedule lasted seven months with four injections in an interval of 3 months, 2 months, 1

month, and a final boost before fusion. Nevertheless, in all cases only IgM MAbs were

obtained. In contrast, when purified virus was employed in the same schedule of

immunization, the MAb obtained was of isotype IgG1 (κ), specific to PVY CP. Probably, the

immunogenicity of the conserved synthetic peptides or the recombinant NIb (due to the

insolubility of the latter), is not sufficient to evoke T-cells or helper factors and stimulate B-

cells for further production of the late classes of immunoglobulins. The result suggested that

isotype switch of antibodies in vivo may mainly depend on property of antigens, and be

independent of immunization schedules. The above results are in agreement with the

observations of Goldbaum et al. (1999). In these experiments the affinity and association rate

constants of 23 mouse anti-lysozyme MAbs obtained after short and prolonged

immunizations were measured by plasmon resonance techniques. The affinities, measured

using their Fab, ranged from affinity (Ka ) = 1.1 × 107 to 1.4 × 1010 M-1. Antibody affinity

maturation of the response does not correlate with the length and dose of immunogenic

challenge although higher affinities may result from an accumulation of mutations.

The majority of antigens involved in immune responses are proteins, (i.e. T-dependent

antigens) which require interactive with T cells in order to provoke a response, and only a few
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antigens are capable of activating B cells to produce antibodies in the absence of T cells or

helper factors from T cell. The latter was referred to as T-independent antigens, which share a

number of common properties: (i) large polymeric molecules with multiple, repeating,

antigenic determinants, for instance, polysaccharides; and (ii) mitogenic properties, i.e. at

high concentrations they are able to activate B-cell clones to produce antibody, and such

antigens are called polyclonal activators, like lipopolysaccharides, dextran and ficoll. The T-

independent immune responses generate primarily IgM and do not give rise to memory. In

other words, a second injection of a T-independent antigen leads to the same level of

production of IgM as the first, without increased level or class switch of antibodies. It could

not be excluded that the possibility of the peptides used belongs to T-independent antigens.

Indeed, to produce high affinity antibodies to a particular antigen, the B cell needs T

cell help. T cell-dependent antigens evoke high affinity antibodies. B cells recognize antigen

via their membrane-bound sIg molecule exposed on the cell surface. The protein is then

processed and presented as small peptides on MHC class II molecules (Benjamini and

Leskowitz, 1991; Levelt et al., 1999) to be recognized by T cell receptors. This recognition

will recruit further help from antigen-specific T cells. The response to a T-dependent antigen

then continues via a specific interaction of the B cell with antigen specific T cells in a cognate

(MHC-Ag-TCR) interaction. T cells play a crucial role in guiding the immune response and

the B cell activation via cell-cell interactions and soluble factors (e.g. interleukins). This

communication is in close association with different accessory cells, such as members of the

APC population, contributing to both cell-bound and soluble co-stimulatory molecules. In

view of the above facts, the peptides were conjugated with BSA to increase their antigenicity.

Unfortunately, antisera of mice strongly reacted with BSA, and only weakly reacted with

synthetic peptides. Probably, the much higher antigenicity of BSA buried that of the peptides.

3.3  Overexpression of NIb of PVY in E. coli

Previous work with polyclonal antisera against the recombinant NIb of PPV (kindly gift of

Prof. Dr. Maiss, Uni. Hannover) demonstrated that the A405nm value for NIb in infected plants

was extremely low in ELISA assays. Consequently, an extract of infected plant leaves would

not be suitable for screening reactivity and specificity of different MAbs generated from the

synthetic peptides. To overcome this problem, all three conserved regions of potyviral NIb

and a sequence encoding for NIb of PVY were overexpressed in E. coli as recombinant

proteins to screen reactivity of MAbs. It was rather difficult to obtain stable clones expressing
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the recombinant proteins although several expression systems have been used. However, it

was necessary to test the reactivity of the MAb to a larger protein as the secondary structure

of the protein could prevent interaction as shown for MAb to R3. An attempt to express PVY

NIb failed when NIb was cloned into pThio-His vector. If plasmids contain highly toxic

genes, mutants that retain the plasmid but have lost the ability to express the target gene, for

instance, due to a mutation, can result from the overgrowth of the non-induced cells

expressing the protein. This usually occurs in the phase of uninduced growth of bacteria if the

suppression is not strong enough. The tightly controlled pET and E. coli strain BL21 (DE3)

LysS, a strong restrictive strain, was chosen to express the recombinant NIb protein. It was

observed that approximately 1% of clones stably expressed the target protein, the others were

shown to be unstable. The reason why most of the clones containing the target gene tend to be

unstable is not clear. It is likely that the expressed target protein causes toxic effects on the

host cells by interacting with specific host protein(s). This phenomenon was also observed in

expression of scFv in E. coli TG1 strain. Recently, a similar problem was reported for the

construction of a full length cDNA of PVY (Jakab et al., 1997). The complete cDNA had to

be maintained in the form of two subclones and the whole cDNA sequence of PVY was

reconstructed via ligation before infection. A plasmid containing both fragments was unstable

and consequently resulted in low yields of plasmid DNA. The problem was mainly due to the

expression of the CI gene from upstream prokaryotic promoter-like elements within the PVY

genome.

The toxicity of NIb was evidenced during the process of its expression in E. coli after

induction with IPTG, as the host cells grow very slowly and rapidly died at higher IPTG

concentrations. In addition, NIb could not be isolated from the overnight cultures, suggesting

that the NIb protein was degraded by the host proteases released during cell death.

3.4  Sensitivity of detection of NIb in different NIb preparations and assays

Potyviral NIb is one of the non-structural proteins, and functions as an RNA dependent RNA

polymerase. It is a kind of membrane-associated protein, being favored to form inclusion

bodies in nucleus or nucleolus in the majority of potyvirus-infected plant cells. NIb was

always detectable in the experiments, but the signal or signal-noise ratio was not satisfactory

with currently used methods of both ELISA and Western blotting. It was suspected that one of

problems might originate from the sample preparation. Therefore, three different approaches

were employed in the potyviral NIb preparation from virus-infected N. glutinosa and N.

tabacum plants. The results of Western blot analysis were improved by the use of urea in
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extracts, which leads to three times higher signal for NIb than with the first method described

in Materials and Methods. This approach was also suitable to CP preparations. The detection

signal of NIb increased after phenol extraction, however, the background also increased. This

indicates that the low solubility of NIb leading to a poor yield after extraction may be one of

the causes for insufficient signals in the detection of NIb in potyviral infected plants.

In the same potyvirus-infected plants the A405nm values obtained from CP detection were

usually higher than those of NIb detection. The low values might result from:

1) NIb is incompletely bound to the surface of the ELISA-plates due to its insolubility.

2) linear epitopes of the viral NIb recognized by the antibody were not fully exposed and

thus not accessible to the antibody.

3) Affinity of MAbs raised to peptides may not be sufficient for PTA-ELISA.

According to Riedel et al. (1998), in situ immuno-labeling of potyviral non-structural

proteins was more specific and sensitive than ELISA. NIbs of potyviruses were clearly

localized in the nucleus or cytoplasm of plant cells by polyclonal antiserum specific to NIb of

PPV, however, the A405nm values obtained from DAS-ELISA were very low, less than 0.1

after 20 h substrate incubation, suggesting that the concentration of NIb or soluble NIb in

plant cells was low.

3.5  Viral and host plant RdRps

Both MAb 1G12 and 3G4 recognized the potyviral RdRp specifically in Western blots,

whereas MAb 1B7 and 3C6, against R 1 or R2, cross-reacted with a ~55 kDa host protein in

addition. This host protein might be a subunit of the putative plant host RNA-directed RNA

polymerase (RdRp) which could possess common conserved regions with the viral RdRp

(Schiebel et al., 1993a, b). Recently it was proposed that plant RdRps are involved in plant

defense mechanisms (Jorgensen et al., 1998; Wassenegger and Pélissier, 1998). However, our

MAbs did not react with a cDNA-derived tomato RdRp expressed in E. coli (kindly provided

by Dr. Wassenegger, for reference see Schiebel et al., 1998), suggesting that RdRp from

tomato and PVY may not share the both common regions.

In some cases, a protein of approximately 100 kDa was also detected, which might

represent the uncleaved NIa-NIb protein complex. Similar products of 94 -110 kD were

observed previously in the nuclear inclusions of potyviruses (Martin et al., 1990). For PPV

the terminal aa of a 110 kD product were sequenced showing that it is indeed an unprocessed

NIa-NIb polypeptide (Martin et al., 1990). An uncleaved protease-polymerase precursor has
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been found for cowpea mosaic virus, comovirus. It appears at an early stage of virus

replication. The uncleaved protease-polymerase precursor is thought to be involved in RNA

replication (Martin et al., 1990). The same result was obtained for PVA where it appeared

even before the NIb band became visible. For poliovirus a ribonucleoprotein complex,

composed of a cellular protein and two poliovirus proteins (3Cpro and 3Dpol, functionally

equivalent to potyviral NIa and NIb) forms around the 5' end of RNA, which is required for

positive-strand RNA synthesis but not for negative-strand RNA synthesis (Andino et al.,

1990).

Difficulties in purification of active potyvirus RdRp often limit the investigation of its

functions in virus life cycle. Despite all efforts, only few RdRps have been successfully

purified from a limited number of bacterial, animal, and plant viruses (Bates et al., 1995). The

RdRps of positive stranded RNA viruses are divided into three supergroups (Hodgman, 1989;

Ishihama and Barbier, 1994; Koonin, 1991). The RdRp of potyviruses belongs to supergroup

I.  From this group no RdRp has been purified so far. The best characterised RdRp is that of

bacteriophage Qβ (supergroup II), which was purified to homogeneity. It consists of one

virus-encoded polypeptide and three host polypeptides (Blumenthal and Carmichael, 1979).

RdRps of some plant viruses belonging to supergroup II, turnip crinkle virus (Song and

Simon, 1994) and red clover necrotic mosaic dianthovirus (Bates et al., 1995) as well as

supergroup III, brome mosaic virus (Quadt and Jaspars, 1990), cucumber mosaic virus (Hayes

and Buck, 1990) and alfalfa mosaic virus (Quadt et al., 1993), were successfully purified in

active conformation. MAbs raised against a purified CMV replicase complex, recombinant

CMV 1a or 2a proteins (analogous to potyviral NIa and NIb, respectively), inhibited the RdRp

activity of the purified replicase complex (Hayes et al., 1994).

In systemically infected leaves of N. glutinosa the RdRp of PVY was first detected at 5

dpi by both ELISA and Western blotting. This result is consistent with observations of

Baunoch et al. (1991) and Hajimorad et al. (1996) for tobacco etch potyvirus and peanut

stripe potyvirus, respectively. Three isolates of PVY, e.g. CH 605, 1427, oGA, showed

similar accumulation patterns for both NIb and CP, but their respective A405nm values differed

in PTA-ELISA with  the order from high to low: CH605, 1427, oGA. In addition, of the two

host plants tested, the N. glutinosa always showed higher values than N. occidentalis,

suggesting that N. glutinosa  is a better host for PVY replication than N. occidentalis (refer to

Table 2.5)



Discussion
                                                                                                                                                        

67

3.6  Phage display for selection of functional scFv

Phage display technologies facilitate the selection of functional scFvs from libraries. Phage

displayed scFv can be directly used in ELISA. However, high frequency mutations occur in

variable region genes (V-genes) cloned from hybridoma cells. It was speculated that these

somatic mutated genes of antibodies have toxic effects on  E. coli. This speculation was

supported by others (Winter et al., 1994). In addition, the mutation rate can be enhanced as a

result of leaky expression in E. coli (see Fig. 2.19b, 20b). For this reason tightly repressed

promoters have to be used and culture medium should contain 2% glucose to repress the lac

promoter.

Although hybridomas secreting high affinity antibodies are good sources of mRNA for

cloning of desired V genes, sequences of non-functional rearranged V genes of the hybridoma

cDNA are often obtained by PCR (Larrick et al., 1989; Orlandi et al., 1989). Thus, it was

notable that amplification of the V genes from hybridoma cells, e.g. 1D6, 7C5, 1B7, 1G12,

3G4, gave different PCR products, either VH or VL or both (see Fig. 2.12). One of these

products may have been the amplified products from the fusion partner (Ostermeier and

Michel, 1996). Often, the non-secreting cell line P3-X63-Ag8.653 or SP2/0-Ag14 is used for

the establishment of hybridoma cell lines by the standard fusion techniques (Köhler and

Milstein, 1975). In many cases these hybridoma cells not only transcribe the desired MAb

DNA, but also bear high levels of non-functionally rearranged mRNAs. These mRNAs

represent pseudogenes and can greatly exceed the level of normal antibody mRNA.

Practically, a hybridoma cell line may contain several different cell populations as a result of

recombination during extended culture after limiting dilution. Additionally, modifications

could be generated in the PCR amplication of V genes because the use of degenerate primers

and Taq DNA polymerase. Affinity selection or panning was therefore necessary for isolation

of the V genes with the desired specificity. In our experiments, the functional scFvs to the

target antigen were isolated through two rounds of selection and functional scFvs were highly

enriched. It was shown that high-affinity scFv antibody could be isolated only after one round

of affinity selection (Yuan et al., 1997). Sequential selections mainly appeared to enrich

clones with a higher yield of scFv protein, not necessarily improving the affinity (Clackson et

al., 1991; Yuan et al., 1997). Theoretically, an scFv will have a specificity and sensitivity

similar to those of the parent immunoglobulin molecule. In our cases, scFvs exhibited a

specificity to the target antigen similar to those of the parent MAbs, but they gave lower

sensitivity than the parent MAbs. In general, differences of antibody properties in affinity and
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specificity could result from sequence changes and conformation differences between scFv

and MAb. Sequence changes may occur during the scFv construction procedures, including

RT-PCR, fusion PCR, enzyme digestion and ligation. Even if the sequences of VH and VL in

the scFv are the same as those of an given immunoglobulin molecule, their conformations

may be also different because a scFv molecule has VH and VL artificially coupled by a

flexible peptide linker (G4S)3, while a natural immunoglobulin molecule does not.

Affinity of these scFv antibodies to the target antigen can further be improved by chain

shuffling or by mutation of the VH and VL of a scFv (Marks et al., 1993; Schier et al., 1996). It

was demonstrated that restriction of mutagenesis to the CDRs located in the center of the

antibody combining site can yield increase in affinity (Schier et al., 1996). For instance,

mutation of the VL and VH CDR3 of C6.5 scFv yielded a scFv with a 1230-fold increased

affinity (Schier et al., 1996), which was comparable to values previously reported either for in

vivo or in vitro affinity maturation of antibodies. Picomolar affinity antibody was actually

isolated from CDR3 libraries by DNA shuffling and affinity selection of phage display.

3.7  Expression of scFv in E. coli

Expression of recombinant antibodies in bacteria has become a standard method. However,

success of expressing antibody fragments in E. coli depends on the properties of the antibody

sequence and structure. Different antibody fragments have different expression levels. Some

of them may simply give no expression. For instance, an antibody 4-4-20 had very high

aggregation tendency, which yielded almost no soluble protein after periplasmic expression

(Mallender, et al., 1996); another antibody 4D5 revealed favorable folding properties and high

expression (Eigenbrot et al., 1993). However, some antibody fragments cannot be expressed

in bacterial periplasm, even not as insoluble fractions (Tsumoto et al., 1995). ScFv 7C5 which

failed to express as a soluble protein may have such a property.

In the current study optimal expression levels of scFv 1D6F1 reached up to 17% of total

soluble protein and up to 8% for scFv 2E11. After purification by IMAC the yields of

functional scFv dramatically decreased. Aggregation of the scFv resulting in low yield could

not be prevented by the buffers used in the procedure of the purification. Although different in

vitro refolding methods were attempted (Kipriyanov et al., 1995; Tsumoto, 1998), only 15-

20% of the scFv molecules derived from inclusion bodies (insoluble scFv molecules) could be

refolded correctly as shown by their binding ability to the target antigen, the rest of the scFv

molecules fail to refold and did not bind the target antigen in PTA-ELISA.
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The yields of total protein were satisfactory for most scFv-constructs in strains and

vectors optimized for expression, but the yield of functional, soluble scFv was often poor

because off-pathway aggregates were found during the in vivo folding process (Jung and

Plückthun, 1997). The in vivo folding properties of scFv are mainly dependent on the

sequence of a given antibody. Changes of a few aa can dramatically alter the aggregation

behavior of an antibody (Knappik and Plückthun, 1995). Secretory expression of most scFv

and Fab fragments by E. coli results in production of their aggregated forms in the periplasm

(Field et al., 1990).

Western blots showed many bands of different size from the crude bacterial extracts

when detected with an anti-c-myc-tag antibody. After purification of the expressed products

by IMAC, three bands of approximately 68, 31, 28 kDa in the cytoplasmic fraction, and one

band of 31 kDa in periplasmic space still remained. Probably, the 68 kDa protein represents a

dimeric form of the scFv, the 31 kDa protein the monomer scFv. The small band may be a

product of degradation. The phenomenon of dimerization or even higher oligomerization of

single-chain antibody Fv fragments has been reported previously (Essig et al., 1993; Griffiths

et al., 1993; Whitlow et al., 1994; Kortt et al., 1994; Raag and Whitlow, 1995) and has been

investigated in the context of the linker length (Alfthan et al., 1995; Turner et al., 1997).

Using the same linker length, different antibodies were found to give different multimer

distributions (Griffiths et al., 1993; Raag and Whitlow, 1995). The crystal structures of both a

diabody and a triabody resulting from oligomerization have been determined. The VH domain

of one chain was paired with the VL domain of the other chain and vice versa in the diabody

(Perisic et al., 1994). The triabody had three Fv heads with the polypeptides arranged in a

cyclic, head-to-tail fashion (Pei et al., 1997). The predominant monomer of scFv formed a

dimer after freezing and thawing (Kortt et al., 1994). This phenomenon is called ‘domain

swapping’ (Bennett et al., 1994, 1995). The factors influencing the monomer-dimer

equilibrium were identified recently using the model antibody McPC603 (Arndt et al., 1998).

In particular, (i) the expression methods have a profound effect on formation of dimeric

single-chain Fv fragments; (ii) the presence of the antigen clearly influences the

oligomerization state; (iii) ionic strength and pH influence the rate of the dimer to monomer

conversion. The dimerization state mainly depends on the properties of scFv, some scFvs

favor dimer format, others not.

An alternative approach to obtain recombinant antibody fragments from bacterial is to

produce proteins as cytoplasmic inclusion bodies and then refold the proteins in vitro

(Buchner and Rudolph, 1991). Expression of antibody fragments in the bacterial cytoplasm
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can reach high levels (Martineau et al., 1998). Because of the strongly reducing environment

of the cytoplasm (Gilbert, 1990), it must be assumed that disulfide bonds do not form under

these conditions. In fact, this has been proven by one scFv fragment (Biocca et al., 1995).

Nevertheless, in some cases antibodies are able to bind to their antigen intracellularly in the

cytoplasm (Tavladoraki et al., 1991; Levin et al., 1997; Mhashilkar et al., 1997). However, it

cannot be excluded that only a small fraction of these intrabodies will be folded correctly, and

bind to the antigen. Better results may be achievable and a wider variety of antibodies may be

functional when the scFvs are optimized to fold correctly in a disulfide-free format (Proba et

al., 1998) or in a mutant E. coli (He et al., 1995). In general, up to date, to obtain the correctly

folded molecules of scFv expressed in cytoplasm, refolding in vitro is necessary.

Recently it has been demonstrated that L-form cells of Proteus mirabilis, which lack a

periplasmic compartment and cell wall, can be efficiently used in the production and secretion

of heterologous proteins. Expression of scFv in P. mirabilis L VI and E. coli was directly

compared. The results showed that stable protoplast-type-L-form cells overcome limitations

associated with periplasmic expression of recombinant proteins, e.g. the toxic effect of

heterologous protein on E. coli JM 109. Yields of exression of scFv in P. mirabilis L VI

reached the range of 40 to 200 mg per liter of culture medium (corresponding to volume

yields 33- to 160-fold higher than those with E. coli JM109), depending on sequence of the

individual antibody (Rippmann et al., 1998). Advantages of this cell system are that correct-

folded proteins are secreted directly into the surrounding growth medium and the proteins are

very stable because of the absence of extracellular proteases.

3.8  Activity of scFv-AP fusion protein

To date a number of enzymes have been used in a variety of immunoassays, the most

common enzymes being horseradish peroxidase (HRP), alkaline phosphatase (AP) and β-

galactosidase. Chemical covalent coupling of entire immunoglobulins to enzymes or

fluorochromes facilitates the production of the stable, specific and detectable

immunoconjugates with wide range of applications (Kopetzki et al., 1994). However, the cost

is high. In addition, the cross-linking reagents non-specifically react with the aa side chains of

each individual protein of the conjugate and thus resulting products are heterogeneous

mixtures, with various degrees of binding and enzyme activities.

The recombinant DNA technology facilitates the creation of well defined more effective

molecules. In this work bacterial AP was fused to scFv 1D6 to generate colorimetric
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conjugates. Besides the intention to use the scFv as resistance managing tools their diagnostic

values should be evaluated. In DAS-ELISA the secondary antibody is usually conjugated with

an enzyme, in most cases either AP or HRP. However, conjugation of antibody and enzyme

is expensive. To fuse the scFv coding sequence with the enzyme gene and express scFv-AP

fusion protein would decrease the cost. Until now several genes for bacterial AP are available

which show different activities. The scFv can be fused either to the C- (Kohl et al., 1991) or

N-terminus (Weiss and Orfanoudakis, 1994) of bacterial AP. In our experiments the scFv 1D6

was fused to the C-terminal of AP expressed in the plasmid pOPE51-AP. However, the results

obtained in ELISA using this scFv-AP were not satisfactory. This seems to be mainly a

problem of the low activity of bacterial AP expressed in E. coli as reported by others

(Ducancel et al., 1993; Kopetzki et al., 1994; Weiss and Orfanoudakis, 1994). Probably a

misfolding of the fusion protein leads to lower activity. The enzyme reaction catalyzed by the

fusion protein was much slower than that using conventional enzyme catalysts in the

immunoassay performed (Kopetzki et al., 1994). Indeed, the E. coli AP is a periplasmic

protein, it is only active as a homodimer. Probably, the bifunctional scFv-AP fusion protein

does not favor to form the homodimer and only a few molecules exist as the active dimers,

therefore, decreased the enzymatic activity of E. coli AP. Furthermore, activity of bacterial

AP is usually lower than that of human or animal AP. Recently, it was demonstrated that

plasmids (pPAD2/S and pSKAP/S) containing a mutated E. coli PhoA/S gene (the conserved

aspartate at position 101 of the AP sequence was changed to a serine) produced the AP with

35-fold increased activity (Mandecki et al., 1991; Kerschbaumer et al., 1997; Griep et al.,

1999). The use of the new plasmids to express scFv-AP fusion protein might improve the

sensitivity of detection assays.

3.9  Potential applications of MAb or scFv in disease resistance engineering

Bates et al. (1995) and Hayes et al. (1994) showed that polyclonal antibodies against synthetic

peptides of conserved helicase and polymerase motifs in the 1a and 2a proteins of CMV and

of the GDD motif in RNCMV were inhibitory to the enzymatic activities. The greatest

inhibition was shown by antibodies to a peptide containing the GDD motif.  These results

demonstrated the importance of conserved sequence motifs for the enzymatic activity of viral

RdRp. The RdRps of potyviruses contain the GDD motif and three large highly conserved

regions. Therefore, MAbs obtained to those motifs or regions are good candidates for

blocking the activity of RdRp significantly. Unfortunately, this assumption could not be tested
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experimentally in vitro because trials to purify active RdRp from virus-infected plants were

unsuccessful so far.

Several experiments have shown the potentials of scFv expression in plants for virus

resistance. Compared to pathogen-derived resistance, this method bears no obvious ecological

risks. One can reasonably assume that the expressed proteins are neither toxic nor allergenic

to animals. So far all reported transgenic plants expressing anti-virus scFv were based on the

expression of CP-specific scFv. Protection could be achieved for artichoke mottled crinkle

tombusvirus (Tavladoraki et al., 1993), beet necrotic yellow vein furovirus (Fecker et al.,

1996, 1997), tobacco mosaic tobamovirus (Voss et al., 1995; Zimmermann et al., 1998) and

tospoviruses (Franconi et al., 1999). In general, the level of protection was not satisfactory as

virions still multiplied in plants. One of the causes may be that the molar ratio of CP to scFv

is unfavourable to block the process of RNA packaging during the stage of virions

maturation. Tavladoraki et al. (1993) reported that protoplasts expressing anti-AMCV scFv

accumulated less viral coat protein than the control protoplasts. Similar results were obtained

with anti-TMV scFv24-mediated resistance by Zimmermann et al. (1998). They concluded

that binding of scFv to the component of pathogen affects uncoating or assembly of virus. In

natural infections, the onset of disease often begins with the virus invasion of one or a few

cells, before progeny RNAs move symptomatically from cell to cell until the plant is

systemically infected. Under these circumstances expressing apoplastic scFv is not an

effective way to confer viral resistance. As virus replication takes place in the cytosol

(Wilson, 1993), cytosolic scFvs can directly interfere with viral pathogenesis or replication.

Therefore, cytosolic expression of scFvs is a more effective route to generate virus resistance

(Tavladoraki et al., 1993; Zimmermann et al., 1998). During mechanical inoculation

(Zimmermann et al., 1998), only a few virions penetrated into the cytosol whereas the amount

of virions in the apoplast was significantly higher. However, a significantly higher level of

resistance to TMV was generated by cytosolic expression of TMV-specific scFv24, although

the scFv levels in cytosol were more than 700-fold lower than in the apoplast. This means that

the “correct” localization of scFvs in the plant cell is a prerequisite for the effectiveness of

protection against viral infection.

High level expression of scFv in the cytosol was difficult to obtain. Most of scFvs

expressed in cytosol reached very low levels or remained undetectable (Owen et al., 1992;

Fecker et al., 1996; Schouten et al., 1996). Only a few cytosolic scFvs reached levels of up to

0.2% of total proteins (Tavladoraki et al., 1993; Schouten et al., 1997).  It is likely that the

lack of proteins in the cytosol that promote the formation of disulphide bonds or chaperones
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which facilitate the protein folding leads to the instability of scFvs. Recently it was reported

that fusion of the ER-retention signal peptide (KDEL) to the C-terminal scFvs can improve

the stability of scFvs in the cytosol (Schouten et al., 1997), and probably some of scFvs still

remain in the ER (Bioca et al., 1995).

Based on the current success with cytosolic scFvs binding to the viral CP, production of

scFvs binding to the conserved functional motifs of virus replicases could provide a more

effective way to generate virus resistant plants. In addition, the effectiveness of the antibody-

mediated resistance could be further enhanced by engineering bispecifics or diabodies for

either the replicase or other functional domains of viral proteins.
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4  Materials and Methods

4.1  Materials

4.1.1  Experimental animals

(1) BALB/c mice were used for immunization and generation of monoclonal antibodies.

(2) New Zealand rabbits were used for production of polyclonal antisera.

4.1.2  Plant viruses and their host species for propagation

All virus isolates used in the experiments listed in Table 4.1 are from the collection of viruses

of the Institute of Epidemiology and Resistance, Aschersleben. Plants used for propagation of

viruses were grown at 25°C in a green house. The virus infection was confirmed by symptoms

or by DAS-ELISA.

Table 4.1  Virus isolates and their host plants for propagation

Plant virus Isolate Host plant

PPV Jena (FRG), Jenzig (FRG) Nicotiana clevelandii

PVA Juliniere, Lichte Industrie and Rouge

(The Netherlands)

N. clevelandii

PVV Unknown N. clevelandii

RgMV Bulgaria and Czech Republic Lolium multiflorum

TuMV O/All (Hungary) Brassica chinensis

PVY A91 (FRG), C (Great Britain), CH605 (Switzerland),

D884 (FRG), M3 (FRG), oGA (FRG), TN

(Hungary), To1 (FRG), Tomato (FRG),1427 (FRG),

N. clevelandii,
N. glutinosa,
N. occidentalis,
N. tabacum cv. Xanthi,
Solanum tuberosum

4.1.3  Escherichia coli strains

BL21(DE3): F-ompT [lon] hsdSB (rB
-mB

-) gal dcm (DE3)

BL21 (DE3) pLysS: F-ompT hsdSB (rB
-mB

-) gal dcm (DE3) pLysS (camR)

HB 2151: Ara delta(lac-pro) thi/F' proA+B+ laclq Z deltaM15

JM101: F'traD36 lacIq-delta(lacZ)M15 proA+B+/supE thi delta(lac-proAB)
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JM109: F' traD36 lacIq delta(lacZ)M15 proA+B+/e14-(McrA-) delta(lac-

proAB) thi gyrA96 (Nalr) endA1 hsdR17(rk
-mk

+) relA1 supE44 recA1

TG 1: delta(lac-pro) supE thi hsd delta5/F' traD36 proA+B+ laclq Z deltaM15

TOP10: F' mcrA delta(mrr-hsdRMS-mcrBC) phi80 lacZ deltaM15 deltalacX74

deo recA1 araD139 delta(ara-leu)7697 galU galK rpsL endA1 nupG

XL2-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac[F' proAB laclq

Z deltaM15 Tn10 (Tetr) Amy Camr]a

Note: Some of them were obtained as competent cells from Stratagene, Promega and Novagen.

4.1.4  Plasmids

pALTER®-Ex1 Ampr and Tetr (Promega, Madison WI)

pBluescript SK+ Ampr (Stratagene, Amsterdam Zuidoost)

pCANTAB 5E Ampr (Amersham Pharmacia, Uppsala)

pCR-SCRIPT SK+ Ampr (Stratagene, Amsterdam Zuidoost)

pET30a, b, c Kanr (Novagen, Darmstadt)

pGEM3 Ampr (Promega, Madison WI)

pGEM5Zf+ Ampr (Promega, Madison WI)

pGEM-T Ampr (Promega, Madison WI)

pOPE101 Ampr (Dübel et al., 1992)

pOPE51-AP Ampr  (Dübel et al., 1992)

pSEX81 Ampr (Breitling et al., 1991)

pTHIO-His Ampr (Invitrogene, Groningen)

4.1. 5  Myeloma cells

Myeloma cells  SP2/0-Ag 14 (Schulman et al., 1978)

Myeloma cells  X63-Ag8.653 (Kearney et al., 1979)

4.1.6  Primers and oligonucleotides

Primers and oligonucleotides used in the molecular cloning and sequencing are listed in the

following Tables. All oligonucleotides were synthesized at Biotez, purified by HPLC.
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Table 4.2  cDNA synthesis primers

Name Nucleotide sequence(5'—3') Purpose

PVYNIbFOR TCG ATC GCG ATG TAA TGG TGG AGC AAG C NIb

MOCG12FOR CTC AAT TTT CTT GTC CAC CTT GGT GC IgG12(H)

MOCMFOR TGG AAT GGG CAC ATG CAG ATC TCT IgM(H)

MOCKFOR CTC ATT CCT GTT GAA GCT CTT GAC AAT Ig(CK)

Table 4.3. PCR primers

Name Nucleotide sequence (5'—3') Purpose

PVYNIbBACK CTG CCC GGG ATC CGC ATC TTT CTT G NIb

PVYNIbFOR TCG ATC GCG ATG TAA TGG TGG AGC AAG C NIb

VH1BACK AGG TSM ARC TGC AGS AGT CWG G VH

VH1FOR TGA GGA GAC GGT GAC CGT GGT CCC TTG GCC CC VH

VK1BACK GAC ATT CAG CTG ACC CAG TCT CCA VK

MJK1FORX CCG TTT GAT TTC CAG CTT GGT GCC VK

MJK2FORX CCG TTT TAT TTC CAG CTT GGT CCC VK

MJK4FORX CCG TTT TAT TTC CAA CTT TGT CCC VK

MJK5FORX CCG TTT CAG CTC CAG CTT GGT CCC VK

LINKBACK ACG GTC ACC GTC TCC TCA GGT GGA GGC linker

LINKFOR AGT GAG CTC AAT GTC CGA TCC GCC ACC linker

VH1BACK (SFI) CAT GCC ATG ACT CGC GGC CCA GCC GGC CAT GGC

CSA GGT SMA RCT GCA GSA GTC WGG

VH V-region (Sfi

I/Nco I site)

VK1FOR(NOT) GAG TCA TTC TGC GGC CGC CCG TTT GAT TTC CAG

CTT GGT GCC

VK C-region

(NotI site)

VK2FOR(NOT) GAG TCA TTC TGC GGC CGC CCG TTT TAT TTC CAG

CTT GGT CCC

VK C-region

(Not I site)

VK4FOR(NOT) GAG TCA TTC TGC GGC CGC CCG TTT TAT TTC CAA

CTT TGT CCC

VK C-region

(Not I site)

VK5FOR(NOT) GAG TCA TTC TGC GGC CGC CCG TTT CAG CTC CAG

CTT GGT CCC

VK C-region

(Not I site)

VHBI4FOR GGA GAC GAG GGG GAA AAG CTT TGG GAA GGA CTG

ACT CTC

VH C-region
(Hind III site)

VKBACK (MlU) GCA CGC GTA GAT ATC GAG TCT ACC ACG TCT CCA VK (Mlu I)

VHf1X1FOR CCG GCC ATG GCC AAG GTC CAA CTG CAA CTG CAG

GAG

VH (Nco I)

VHf1X1BACK CGG GGA TCC TGC GGC CGC CCG TTT GAT T VK(Bam/NotI)

VHf1BM TGG GTT GCT GAA ATT AGA T Back- mutation

SCFVFOR TCA TTC TGC GGC CGC CCG T amplify scFv

SCFVBACK ATT GGC CCA GCC GGC CAT G amplify scFv

Note: Degeneracy codes: K = G or T; M = A or C; S = C or G; R = A or G; W = A or T
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Table 4.4  Sequencing and subcloning primers

Name Nucleotide sequence (5'—3') Purpose

Seq-S1 TTC AAC GTG AAA AAA TTA TTA TTC GC VH sequencing

Seq-S3 GCG GTT CAG GCG GAG GTG GCT CTG G VH sequencing

Seq-S4 CGC CAG CCA CCT CCG CCT GAA CC VK sequencing

Seq-S6 TAG TAA ATG AAT TTT CTG TAT GAG G VK sequencing

M13 universal GTA AAA CGA CGG CCA GT Sequencing

M13 reversal AAC AGC TAT GAC CAT G Sequencing

F1BglIIBACK GGA AGA TCT GCC ATG GCC AAG GTC CAA CTG For fusion

scFv with AP

F1BglIIFOR AGC AGA TCT CCG TTT GAT TTC CAG CTT GGT CC For fusion

scFv with AP

Table 4.5  Oligonucleotide sequence encoding for linker (G4S)3

Name Nucleotide sequence (5'—3') Purpose

Linker 1 ACG GTC ACC GTC TCC TCA GGT GGA GGC GGT TCA

GGC GGA GGT GGC TCT GGC GGT GGC GGA TCG GAC

ATC GAG CTC ACT

linker

Linker 2 AGT GAG CTC GAT GTC CGA TCC GCC ACC GCC AGA

GCC ACC TCC GCC TGA ACC GCC TCC ACC TGA GGA

GAC GGT GAC CGT

linker

Note: underlined sequences encoding for (GGGGS)3 linker.

4.1.7  Enzymes

AmpliTaq  polymerase (Perkin Elmer), Expand High Fidelity PCR System (Boehringer

Mannheim), Expand Reverse Transcriptase (Boehringer Mannheim), Klenow enzyme

(Boehringer Mannheim), Proteinase K (Serva), RNase A (Serva), restriction enzymes (from

different suppliers, mainly New England Biolabs), shrimps alkaline phosphatase (Amersham

Pharmacia), T4 DNA polymerase (Gibco BRL), T4 DNA ligase (Gibco BRL), T4

polynucleotide kinase (Gibco BRL).

4.1.8  Antibodies and conjugates

Anti-mouse IgG horseradish peroxidase conjugate (Amersham), anti-mouse IgG+IgM

alkaline phosphatase conjugate (Dianova), anti-c-myc monoclonal antibody 9E10
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(Calbiochem), anti-penta-His tag monoclonal antibody (Qiagen), rabbit anti-PVY-polyclonal

antibody (F. Rabenstein, BAZ, ASL).

4.1.9  DNA and protein markers

1 kb plus DNA ladder (Gibco BRL), 100 bp DNA ladder (Gibco BRL), low molecular weight

standard (Amersham Pharmacia), Prestained protein marker, broad range (New England

Biolabs), Biotinylated SDS-PAGE molecular weight marker (14.4-200 kDa) (Perkin Elmer).

4.1.10  Other reagents and kits

ABTS (Sigma), 33P-dATP (Hartmann Analytics), Altered sites  II in vitro Mutagenesis

system (Promega), boric acid (Roth), DEPC (Sigma), p-NPP (Biomol), Freund’s complete

adjuvant (Sigma), Freund’s incomplete adjuvant (Sigma), GFX columns (Amersham

Pharmacia), hypoxantine (Gibco BRL), aminopterin (Gibco-BRL), thymidine (Gibco BRL),

IPTG, BCIP and NBT (Duchefa), PEG-1500 (Merck), PEG-6000 (Merck), PVP 25 (Serva),

Western-light plusTM chemiluminescent detection system and CSPD  alkaline phosphatase

substrate (Perkin Elmer), mRNA purification kit (Amersham Pharmacia), DNA sequencing

Sequenase  kit (USB), Cy5 AutoRead sequencing kit (Amersham Pharmacia), Quiagen

plasmid purification kit (Quiagen), RNAzol reagent (Gibco BRL), sucrose (Roth), Tris

(Serva), X-gal (Duchefa).

Other chemicals were purchased from Roth, Serva or Sigma chemical companies.

4.1.11  Buffers and media

4.1.11.1 Buffers for electrophoresis, ELISA and Western blot

•  ABTS substrate buffer: add 4.4 mg ABTS in 21 ml of 0.05M citric acid (pH 4.0), prior to

use, add 36 µl of H2O2 to 21 ml of ABTS citric acid solution.

•  Alkaline phosphatase substrate buffer for ELISA: 1 M diethanolamine, 1 mM MgCl2 (pH

9.8).

•  Alkaline phosphatase buffer for Western blot: 100 mM NaCl, 5 mM MgCl2, 100 mM

Tris-HCl (pH 9.5).

•  Binding buffer: 20 mM Tris-HCl, 0.5 M NaCl, 5 mM imidazole, 6 M urea (pH 7.9).
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•  Blocking buffer: 1% skimmed dried milk in PBS.

•  TAE buffer: 40 mM Tris-acetate, 1 mM EDTA (pH 8.0).

•  Coating buffer: 0.05 M sodium carbonate buffer (pH 9.6).

•  Elution buffer: 20 mM Tris-HCl, 0.5 M NaCl, 0.3 M imidazole, 6M urea, (pH 7.9).

•  Extraction buffer for DAS-ELISA: 2% PVP 25 and 0.2% skimmed dried milk in PBS.

•  Extraction buffer for solubilized protein: (9M urea, 4,5% SDS, 7.5% β-mercaptoethanol,

50 mM Tris-HCl, pH 6.8).

•  Iodide Buffer: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA, 4 M NaI.

•  2× Loading Buffer: 100 mM Tris-HCl (pH 6.8), 200 mM dithiothreitol, 4% SDS, 0.2%

bromophenol blue, 20% glycerol.

•  NBT/BCIP stock solution: add 0.35 g NBT in 10 ml of 70% DMF and 0.17 g BCIP in 10

ml of 100% DMF, store at –20°C. Before use, 100 µl NBT and 100 µl BCIP from stock

were added into 10 ml of alkaline phosphatase buffer (pH 9.5) per blot (10×10 cm).

•  PBS: 10 mM Na3/K3PO4, 150 mM NaCl (pH 7.4).

•  PBST: PBS containing 0.05% (v/v) Tween-20.

•  Protein electrophoresis buffer: 25 mM Tris, 192 mM Glycine, 0.1% SDS (pH 8.3).

•  PEG/NaCl: 20%(w/v) PEG-6000, 2.5 M NaCl.

•  TBS: 50 mM Tris-HCl, 150 mM NaCl (pH 7.5).

•  TE buffer: 10 mM Tris-HCl (pH 8.0), 0.1 mM EDTA.

•  TES buffer: 200 mM Tris-HCl (pH 8.0), 0.5 mM EDTA, 500 mM sucrose. Filter sterilize

and store at 4°C. To prepare 1/5× TES, add 1 volume of 1× TES buffer to 4 volumes of

distilled water.

•  Transfer buffer: 39 mM glycine, 48 mM Tris-HCl, 0.037% SDS, 20% methanol ( pH 8.3).

•  Washing buffer: 20 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole, 6M urea (pH 7.9).

4.1.11.2  Growth media for bacteria/phages

All media were autoclaved at 121°C for 15 min, except for special description. Antibiotics

were added to media after cooling down to room temperature, if needed.

•  LB medium: 10 g/l Bacto-tryptone, 5 g/l Bacto-yeast extract, 5 g/l NaCl. For LB Plates:

LB medium with 1.5% agar.

•  2× M9 salts: 12 g/l Na2HPO4, 6 g/l KH2 PO4, 1 g/l NaCl, 2 g/l NH4Cl.
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•  Minimal plates: per liter: 500 ml 2× M9 salts, 500 ml 3% agar. Autoclaved and cool to

<70°C, added follows: 20 ml 20% glucose (filter-sterile), 2 ml 1 M MgSO4, 0.1 ml 1 M

CaCl2, 1 ml thiamine (10 mg/ml, filter-sterile).

•  SOBAG: to 20 g/l of Bacto-tryptone, 5 g/l of Bacto-yeast extract and 0.5 g/l NaCl, add

distilled water to ~900 ml and autoclaved. After the medium has cooled to 50-60°C, add

the follows: 10 ml of sterile 1 M MgCl2, 55.6 ml of 2 M glucose (filter-sterile) and 5 ml of

20 mg/ml ampicilin (filter-sterile). For plates, add 15 g/l of Bacto-agar before autoclaving.

•  Stock solutions: ampicillin (sodium salt): 100 mg/ml in deionized water, store at –20°C,

use at 50-100 µg/ml; Kanamycin (sulfate): 30 mg/ml in deionized water, store at –20°C,

use at 30 µg/ml; Chloramphenicol: 34 mg/ml in ethanol, store at –20°C, use at 34 µg/ml;

1M IPTG (isopropyl β-D-thiogalactopyranoside): add 2.38g IPTG in 10 ml deionized

water, filter sterilize and store at –20°C; X-gal: make a stock solution by dissolving X-gal

in DMF to a 20 mg/ml solution, store at –20°C.

•  Top agarose: 10 % Bacto-tryptone, 0.5% Bacto-yeast extract, 0.5% NaCl, 1% MgCl2⋅6

H2O, 0.7% agarose. Dispensed into 3 ml aliquots. Store solid at 4°C, melt in microwave as

needed.

•  2× TY medium: 17 g/l Bacto-tryptone, 10 g/l Bacto-yeast extract, 5 g/l NaCl.

•  2× TYAG medium: 2× TY medium, 2% glucose (filter sterile) and 100 µg/ml ampicilin.

For TYAG plates add 1.5% Bacto-agar into TYAG medium. Pour plates quickly.

•  2× TYAK medium: 2× TY medium, 2% glucose and 50 µg/ml kanamycin. For TYAK

plates add 1.5% Bacto-agar into TYAK medium.

4.1.11.3 Mammalian cell culture media

•  Growth medium: Dulbecco’s MEM supplemented with 10% FCS and 1× PSG.

•  100× HAT stock solution: 10 mM hypoxantine, 40 µM aminopterin, 1.6 mM thymidine.

•  HAT medium: Dulbecco’s MEM supplemented with 20% FCS, 1× HAT and 1× PSG.

•  100× HT: 10 mM hypoxantine, 1.6  mM thymidine.

•  HT medium: Dulbecco’s MEM supplemented with 20% FCS, 1× HT and 1× PSG.

•  100× PSG: 100 unit/ml penicillin, 100 mg/ml streptomycin, 3 mg/ml glutamine.

Above media were products of Gibco BRL (Gaithersburg MD), purchased from Life

Technologies. Only Dulbecco’s MEM medium was prepared in batches from Dulbecco’s

MEM powder by dissolving in double-distilled water, adjusting pH value with NaHCO3
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powders according to the manufacturer’s instruction. Media were sterilized using Sartorius

filter-sterile system (Sartorius, Göttingen).

4.1.12  Special laboratory equipment and materials

1. ALF Express sequencer (Amersham Pharmacia, Freiburg).

2. Alpha Imager 2000 (Biozym, Hess. Olderndorf).

3. Blotting paper GB 002 (Schleicher & Schuell, Darsel).

4. Centriprep-30 concentrators (Amicon, Beverly MA).

5. CO2 incubator Bio-Center 2001 ( Intra Biosciences, Fernwald).

6. Computer programs: DNAsis (Hitachi), Generunner (Hastings), ALFsequencer

(Amersham Pharmacia), Micrografx picture publisher (Micrografx), Winscan (Heil).

7. CovaLink, PolySorp, and MaxiSorp microtiterplates, Immuno tubes, and Cryo tubes

(Nalgene Nunc International, Wiesbaden-Biebrich).

8. Cybertech Photoscan (Wilfried Heil, Berlin), with white/UV transiluminator (UVP).

9. DC265 Camera (Kodak, Rochester NY).

10. Dialysis tube (Millipore, Bedford MA).

11. Dynatech MR5000 photometer (Dynatech Laboratories, Guernsey Channel Islands).

12. Gel dryer Model 583 (BioRad, Richmond CA).

13. Peltier Thermal Cycler PTC-200 (Biozym, Hess. Olderndorf).

14. PVDF membrane (Roth), Immobilon-P membrane (Millipore, Bedford MA).

15. Semidry electroblotter (BioRad, Richmond CA).

16. Satorius filter-sterile system [stainless steel in-line filter holder SM 16275, pressure tank

SM 17531 and cellulose nitrate filter, 0.2 µm ] (Sartorius, Göttingen).

17. Syringe filters, 0.2 µm, 0.45 µm, and 0.8 µm (Nalgene Nunc International, Wiesbaden-

Biebrich).

18. Ultrasonicator UP 200S (Dr. Hielscher, Stahnsdorf).

19. VacuCap® 90 filter unit, 0.2 µm (GelmanSciences, Ann Arbor MI).

20. X-ray film (Retina, Berlin).
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4.2  Methods

4.2.1  Peptide identification and synthesis

Conserved regions of NIb were identified by comparison of all complete aa sequences of

potyviruses published at that time in EMBL Nucleotide Sequence Database, namely, PVY,

PVA, PPV, TEV, TuMV, ZYMV, TVMV, PepMoV, PSbMV, PStV, JGMV, BCMV, PRSV,

SMV, BrSMV, with the help of computer program DNASIS. Three conserved regions, longer

than 28 aa were identified as follows:

region1 (R1): ANKTRTFTAAPLDTLLGGKVCVDDENNQFY,

region2 (R2): LPEGWVYCDADGSQFDSSLTPYLINAVL and

region3 (R3): NLYTEIVYTPILTPDGTIVKKFKGNNSGQPSTVVDNTLMV,

They are at aa positions 185-214, 240-267, 286-325, for PVY NIb (EMBL sequence database,

accession number A08776), respectively. The underlined parts represent aa which have a

predominantly positive antigenic index, except for most of R2 (17/24 aa with negative index).

The peptides of R1, R2, and R3 were synthesized and purified by HPLC to a purity of ≥95%

(Genosys, Pampisford), respectively. Additionally, to aliquots of the peptides a cysteine

residue was added to the N terminus of each peptide by Genosys company to provide

convenient coupling with bovine serum albumin (BSA) as a carrier. The conserved regions of

the CP of potyviruses were also determined by the above methods. Two highly conserved

regions were identified, one is MVWCIENGTSPD (equivalent to aa 2912-2923 in PVY) and

the other is ENTERHTA (equivalent to aa 3040-3047 in PVY) within C terminus of CP. The

two corresponding peptides were synthesized as a MAP with lysine as a linker molecule

(BioTez, Berlin-Buch).

4.2.2  Construction and overexpression of R1-R2-R3 fusion protein

Oligonucleotides coding for R1, R2, and R3, synthesized with the corresponding restriction

sites, were cloned step by step into pGEM 3 (Promega, Mannheim): R1: EcoR I/Xba I, R2:

Xba I/Pst I, and R3: Nsi I/Pst I. The nucleic acid sequences were verified after each cloning

by sequencing. After digestion with EcoRI/Hind III, the insert coding for the R1-2-3 single

peptide was recloned into pET30a (Novagen, Darmstadt). The sequence of the insert was

checked by sequencing. The map of the expression vector was shown in Figure 4.1a. The

fusion protein R1-R2-R3 was overexpressed in E. coli BL21(DE3) pLysS.
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4.2.3  Molecular cloning of PVY NIb gene and construction of overexpression plasmid

cDNA and double-stranded DNA of NIb were synthesized and amplified from total RNA

according to standard methods (Sambrook et al., 1989). Total RNA was isolated from PVYN-

infected N. tabacum cv. Xanthi using an RNAzol reagent (Gibco, BRL) according to the

manufacturer’s recommendations. The PVYNIbFOR and PVYNIbBACK primers were used

for amplifications. The purified DNA was ligated into pCR-SCRIPT SK (+) (Stratagene,

Amsterdam Zuidoost) and transformed into E. coli XL-2 blue. The NIb gene was subcloned in

frame into the overexpression plasmid pET30a (Fig. 4.1b) and the host strain of E. coli

BL21(DE3) or BL 21 (DE3) pLysS was used in the expression of the recombinant NIb

protein.

            a                   b

Fig. 4.1: Map of expression vector pET30a with R1-2-3 or NIb inserts, MCS = multiple cloning sites:
the order from 5' to 3' end is Nco I, EcoR V, BamH I, EcoR I, Sac I, Sal I, Hind III, Not I, Eah I, Xho
I, a 6 Histine-tag is followed by the Xho I sequence.
a: Sequence encoding for R1-2-3 peptide was cloned into pET30a through EcoRI and Hind III sites.
b: NIb was cloned into pET30a through Sac I and Sal I sites.

4.2.4 Purification of NIb protein by immobilized metal-ion affinity chromatography

(IMAC)

Both recombinant proteins, NIb and R1-2-3, were fused in frame to the His-tag of the plasmid

pET30a, thus enabling purification by IMAC (Hochuli et al., 1988). A chelating Sepharose

column (Amersham Pharmacia, Uppsala) charged with Ni2+ was used for purification. The

induced cells (grown for 3 h after IPTG induction as described above) were harvested by
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centrifugation at 6.200× g for 15 min, resuspended in binding buffer (40 ml buffer for 200 ml

of bacterial culture) and disrupted by ultrasonification (Dr. Hilscher, Stahnsdorf). The

suspension was centrifuged at 39.000× g for 20 min at 4°C. The supernatant was discarded

because the NIb was presented in the insoluble fraction. The pellet was washed twice with 20

ml binding buffer. The pellets were resuspended in binding buffer containing 6 M urea and

incubated on ice for one hour.  After centrifugation at 39.000× g for 20 min, the supernatant

was loaded onto the top of 3 chelating Sepharose columns (each 2 ml bed volume) pre-

balanced with binding buffer containing 6M urea and passed through columns twice. After

several washings with washing buffer, the bound fusion protein was eluted with 9 ml of

elution buffer for each column. Fractions (each 1 ml) were collected and analyzed by PAGE.

The fractions containing NIb were pooled together. For NIb refolding and solubilization,  the

collected fractions were first dialyzed against 50 mM Tris-HCl (pH 7.9) containing 1 M urea,

followed by the same buffer containing 0.25 M urea (without stirring), and finally with

stirring against dialysis buffer without urea. Dialysis was performed overnight at 4°C.

Purified NIb protein was concentrated to an appropriate volume by PEG-15000 treatment.

Quantification of NIb was determined by Bradford method (Bradford, 1976) using BSA

as a standard. This method quantitates the binding of Coomassie brilliant blue to an unknown

protein and compares this binding to that of different amounts of the standard protein. Briefly,

1) add duplicate aliquots of 0.5 mg/ml BSA (5, 10, 15, and 20 µl) into microcentrifuge tubes,

and bring the volume in each tube to 100 µl with 0.15 M NaCl. Prepare 2 blank tubes

containing only 100 µl of 0.15 M NaCl. 2) add 1 ml Coomassie brilliant blue solution to each

tube and vortex, and incubate 5 min at room temperature. 3) measure the A595nm using a 1-cm

pathlength microcuvette (1 ml), and make a standard curve by plotting absorbance versus

protein concentration. Measure the A595nm of the unknown and determine the protein

concentration in the unknown from the BSA standard curve.

4.2.5  Purification of potato virus Y

Mechanically inoculated N. tabacum cv. Xanthi plants were grown for two weeks in a green

house at 25°C. Virus was purified from fresh infected leaf tissue as described by Leiser and

Richter (1978) with modifications. 95 g leaf tissue was homogenized in 450 ml of 50 mM

potassium-citrate buffer (pH 7.0) containing 1 µM PMSF at room temperature. The

homogenate was squeezed through cheesecloth and centrifuged for 15 min at 6.000× g. Triton

X-100 was added into the supernatant to a final concentration of 3% and stirred for 1 h at 4°C.
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The supernatant was layered over a cushion of 20% (w/v) sucrose and centrifuged for 2 h at

45.000× g. The pellet was resuspended in 20 ml of potassium-citrate buffer (pH 7.0),

incubated and stirred on ice for 1 h, then centrifuged for 10 min at 15.000× g. The supernatant

was collected, and the sediments were resuspended in 20 ml of potassium-citrate buffer and

this step was repeated once more. The collected supernatants were layered on an equal

volume of cesium chloride (1 g/ml), and centrifuged in a vertical rotor for 14-16 h at 50.000×

g. The virus bands were collected and sedimented by centrifugation for 2 h at 50.000× g.

Virus particles were resuspended in 0.1 M Tris-HCl buffer (pH 7.0) for further use or kept at

–20°C.

4.2.6  Production of antisera

Each of two rabbits was injected with approximately 0.2 mg of overexpressed purified NIb

mixed with an equal volume of Freund’s complete adjuvant. One week later the rabbits were

immunized with the same amount of the purified NIb mixed with Freund’s incomplete

adjuvant. The third injection was done the same as the second injection. One week after the

last boost injection the rabbits were bled and the titer of sera was evaluated. In total the

rabbits were bled three times with a week’s interval. Three months after the last bleeding the

rabbits were immunized according to the above schedule again.

4.2.7  Development and production of monoclonal antibodies

4.2.7.1 Mice immunization

50 µg of the peptides R1, R2, R3, respectively, mixed with an equal volume of Freund’s

complete adjuvant was injected into the peritoneal cavity of 8 week old BALB/c mice. Two

mice were used for each peptide. The second and third injections with incomplete Freund’s

adjuvant were given at 2-3 week intervals. Ten days after third injection the mice were bled

and the antisera titers were evaluated. One mouse for each antigen with an antibody titer

higher than 1:1000 was boosted with 100-150 µg of the antigen without adjuvant.

The synthetic peptides of S193W3 and S319 as well as the purified recombinant NIb

and coat protein of PVY were used as an antigen, respectively, following the same

immunization scheduled as above.
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4.2.7.2  Cell fusion and selection of hybridoma cell lines

A vial of myeloma cells SP2/0-Ag14 or X63-Ag8.653 was recovered from liquid nitrogen and

immediately put into 37°C water bath. After defrosting the cells were distributed into a 24

well plate or a 20 ml flask with Dulbecco’s MEM supplement with 10% FCS and

macrophages as feeder cells. The cell cultures were put into a CO2 incubator at 37°C. For cell

fusion, about eight 20 ml-flasks of myeloma cells were prepared. It is essential that they are in

logarithmic growth phase and that the cell concentration on the day of fusion is not higher

than 106/ml.

The fusion was carried out 3 days after the boost. Mouse spleen cells were fused with

one of the mouse myeloma cell lines using 45% PEG-1500 (Merck-Schuchardt, Hohenbrunn)

as described by Köhler and Milstein (1975) with modifications. Briefly, the spleen was

removed from a mouse under a sterile hood and disrupted into a single cell suspension in

Dulbecco’s MEM medium without FCS. The cells were spun down at 500× g for 7 min and

resuspended in 40 ml of the above medium, the suspension was divided into two equal parts,

and incubated at 37°C for 15 min. During this period, myeloma cells in logarithmic growth

phase were collected from flasks in growth medium, washed with DMEM once, and pelleted.

They were resuspended in 25 ml of DMEM, mixed with one part of the above spleen cells

(another part can be frozen for a second fusion) in a 50 ml-tube and spun down as above. The

supernatant was discarded, the cell pellets were loosed by gently topping the tube. 1 ml 45%

PEG-1500 solution was added into them within 20 sec drops by drops, at the same time

shaking the tube and again for another 10 sec.  The cells were incubated at 37°C for 90 sec, 1

ml of DMEM with 20% FCS was added over 30 sec, and the suspension was shaken gently

for 30 sec. Subsequently, 10 ml of DMEM was added over 45 sec and a rest of 40 ml rapidly.

The fused cells were spun down at 500× g for 7 min, and gently resuspended in 50 ml of HAT

medium. The fused cells were distributed into three to five 96-well tissue culture plates with

peritoneal macrophages as feeder cells and placed in a CO2 incubator at 37°C.

10-15 days after fusion, hybridomas producing antigen-specific antibodies were

screened by  PTA-ELISA (see section 4.2.8.1). The screening tests were performed four times

during cell growth in HAT selection medium. Positive clones were subcloned twice by the

limiting dilution method. Isotyping of monoclonal antibody was done on culture supernatants

using a mouse monoclonal antibodies isotyping kit (Boehringer Mannheim).
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The hybridoma selection for three synthetic peptides to NIb and two to CP conserved

regions of potyviruses, and for the recombinant NIb and CP of PVY was done following

essentially the same procedure. Only the target antigens used for selection were different.

4.2.7.3  Storage and recovery of hybridoma cells in liquid nitrogen

After resuspension in a mixture of 90% (v/v) FCS and 10% DMSO, cells were pipetted into

vials (~106-7 cells per vial). Vials were placed immediately into a cooling chamber in an ultra-

deep freezer and cooled down at a rate of approximately 1°C per minute. After the cells

reached a temperature of below –60°C, they were transferred directly into the liquid nitrogen

or remained in the freezer. Regardless of how the cells were frozen, it is essential to test-thaw

a vial to make sure that the cells can be recovered. The vials of frozen cells should be thawed

rapidly in a 37°C water bath, and then immediately recovered by centrifugation. Several 10-

fold diluted cells were distributed into wells containing growth medium (RPMI-1640 or

DMEM with 10-15% FCS) with microphages, and cultured in a CO2 incubator at 37°C.

4.2.8  Enzyme-linked immunosorbent assay (ELISA)

4.2.8.1  PTA-ELISA

The plate-trapped antigen (PTA)-ELISA was performed as described by Mowat (1985) with

modifications. Microtiter plate wells (Polysorp, Nunc) were first coated with the target

antigen, as a general rule at a concentration of 2 µg/ml, 100 µl per well. For virus-infected

leaf sap, 10-fold or 50-fold dilution in coating buffer, 100 µl per well, was used. The plates

were incubated overnight at 4°C. After blocking with 1% non fat dry milk in PBS for 1 h at

37°C and 3 washes with PBST, the cell culture supernatants (containing antibodies, in some

cases to be diluted in PBST), 100 µl per well, were added and incubated for 2 h at 37°C. After

4 washes with PBST, alkaline phosphatase conjugated to rabbit anti-mouse IgG + IgM (2000-

fold dilution) was added, 100 µl per well, and the plates were incubated for 1 h at 37°C. After

5 washes, alkaline phosphatase substrate solution (1 mg/ml p-NPP, pH 9.8) was added (200 µl

per well), and the plates were incubated in the dark at room temperature. The A405nm values

were measured in a Dynatech MR5000 photometer.



Materials and Methods
                                                                                                                                                                                    

88

4.2.8.2  DAS-ELISA

The double antibody sandwich (DAS)-ELISA was performed as described by Clark and

Adams (1977) with modifications. Microtiter plates (Maxisorp, Nunc) were first incubated (3-

4 h, 37°C) with polyclonal rabbit antibodies (100-fold dilution with coating buffer).

Subsequently, they were incubated at 4°C 12-16 h with virus-infected plants sap or healthy

plant sap 10-fold diluted in extraction buffer (2% PVP 25, 0.2% skimmed dried milk in PBS).

All subsequent steps (addition of culture supernatants, rabbit anti-mouse conjugate and

substrate) were as described above.

4.2.8.3  TAS-ELISA

The triple antibody sandwich (TAS)-ELISA was performed as described by Al Medaille et al.

(1984) with modifications. The microtitre plates (Maxisorp, Nunc) were first incubated (12-

14 h, at 4°C or 4 h at 37°C) with polyclonal rabbit antibodies (1000-fold diluted in PBS, 100

µl per well) produced against target antigens before blocking with 1% skimmed dried milk in

PBS, and subsequently incubated (2 h, 37°C) with target antigens or virus-infected plant leaf

extracts diluted 10-fold in PBS. All subsequent steps (culture supernatants, anti-mouse

conjugate and substrate) were as described above for PTA-ELISA.

4.2.9  Antigen specificity assays

The antigen specificity of the MAbs was tested in both PTA-ELISA and TAS-ELISA as

described above. The specificity assay was also performed in Western blot, the procedure is

described in the following section.

4.2.10  SDS-PAGE and Western blotting

After denaturation by boiling at 100°C for 3-5 min in loading buffer, proteins obtained from

virus-infected plants or overexpressed recombinant proteins were separated on a 12%

denatured polyacrylamide (PA) gel according to the method of Laemmli (1970). Proteins

were transferred from the gel by electroblotting onto PVDF membrane at 13 V for 2 hours

with transfer buffer using a semi-dry transfer apparatus (Towbin et al., 1979). Membranes
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were blocked with 0.2% I-block (Tropix), and probed with the MAbs. Positive signals were

detected by NBT/BCIP (Sambrook et al., 1989) or by ECL (Gillespie and Hudspeth, 1991).

4.2.11 Detection of RdRp and CP in potyvirus-infected plants

Method 1: Leaf tissues (1 g) of potyvirus-infected plants as tested in PTA-ELISA or healthy

control plants were ground to a fine powder in liquid nitrogen and total proteins were

extracted in 2 ml of the buffer containing 50 mM Tris-HCl pH 7.0; 1% SDS; 1 mM Pefablock

(Roth, freshly added). The extracts were centrifuged at 10.000× g for 10 min. The supernatant

was mixed with protein loading buffer, boiled for 3-5 min. Proteins from equivalent amounts

of leaf tissue extracts or overexpressed NIb were loaded onto a 12% PA gel containing 0.1%

SDS and subjected to electrophoresis (Laemmli, 1970). Proteins blotted onto PVDF

membranes were detected by MAbs specific to RdRp or CP of PVY. The signals were

revealed by the enhanced chemiluminescence system or chromogenic detection (NBT/BCIP).

Method 2: Total protein extraction was performed as described by Baunoch et al. (1991) in

which high concentration of urea (9 M) was employed to extract plant proteins. One gram of

leaf tissue from potyvirus-infected plants or healthy plants was ground to a fine powder in

liquid nitrogen and extracted with 4 ml of extracting buffer (9 M urea, 4.5% SDS, 7.5% β-

mercaptoethanol, 50 mM Tris-HCl, pH 6.8). The extracts were boiled for 10 min and then

centrifuged at 10.000× g for 10 min. Equivalent amounts of 15 µl supernatant were directly

loaded and electrophoresed as above.

Method 3: Protein extraction was carried out as described by Van Etten et al. (1979), which

takes advantage of solubilization of proteins by phenol. Plant tissues were homogenized with

1.5 volumes (w/v) extraction buffer (80 mM Tris-HCl, 1 mM dithiothreitol [DTT], 10 mM

EDTA, 2% SDS, 50 mg/ml PMSF, pH 6.8). After homogenization 1.5 volume of 80% phenol

containing 100 mM ammonium acetate and 10 mM DTT were added to the homogenate. The

extract was clarified by centrifugation at 3000× g for 5 min. The phenol layer was sucked off

and extracted three times with equal volumes of buffer (80 mM Tris-HCl, 1 mM DTT, 10 mM

EDTA, 100 mM ammonium acetate, pH 6.8). Protein was precipitated from the phenol phase

by addition of 5 volumes of methanol containing 100 mM ammonium acetate at –20°C for 2

h. Proteins were collected by centrifugation at 5000× g for 10 min at 4°C, and washed 3 times

with methanol-ammonium acetate buffer and finally one time with acetone. They were

dissolved in loading buffer, boiled for 3-5 min and 15 µl of each sample were subjected to

electrophoresis.
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4.2.12  Time course study of expression of RdRp and CP of potyviruses

In each case ten young  N. glutinosa and  N. occidentalis plants (at the five leaves stage) were

inoculated with PVY isolates CH605, 1427, oGA and five young N. cleverlandii plants were

inoculated with PVA isolate Juliniere. The same inoculation was repeated with new plants

daily for a week. From total seven inoculations locally and systemically infected leaves were

sampled for a PTA-ELISA twice weekly until 4 weeks after the inoculation of the first set

plants. The virus infection was confirmed by DAS-ELISA for coat protein.

4.2.13  Molecular cloning and expression of single chain antibodies in E. coli

4.2.13.1  mRNA purification, cDNA synthesis and PCR amplification of V genes

Standard methods of molecular cloning procedures were performed according to Sambrook et

al. (1989). mRNA was purified from approximately 106 hybridoma cells using mRNA

purification kit (Amersham Pharmacia, Uppsala). cDNA was synthesized from ~5 µg of

mRNA. VH and VL were amplified separately by PCR, 1 U Taq polymerase was used (Note:

other polymerases with proofreading activity can also be used. Taq polymerases may more

effectively amplify all V genes of antibodies by degenerated primers; the automatically

introduced mutations resulting from Taq polymerase synthesis errors during PCR procedure

do not have harmful effects, because proteins/antibodies can also affinity-mature during

cycles of the selection or panning). All primers are listed in Tables 4.2 and 4.3. The cycles

were: 95°C/2min; 30 cycles: 94°C-30 s, 56°C-30 s, 72°C-45 s/ +2 s per cycles; 72°C-5 min;

4°C overnight. The PCR products were analyzed on 2% agarose gel. VH and VL(Κ) DNA

fragments were purified from bands of about 400 bp by using a Qiagen gel extraction kit.

4.2.13.2  Construction of scFv expression plasmids

The VH and VL(Κ) DNA fragments were subsequently joined with a DNA linker fragment

which codes for the peptide (Gly4Ser)3 by a fusion PCR in a 50 µl volume PCR reaction

containing dNTP, each 1 mM, 2.5 mM MgCl2, 20 ng linker (Table 4.5), VH and VL DNA each

50 ng, 1.5 U Taq polymerase (5 U/µl). The cycles were: 95°C 2 min; 7 cycles: 94°C-1.5 min,

72°C-2.5 min. Then 1 µl of VHBACK(SFI) (50 pm/µl) and 2 µl of VKFOR (NOT) mixed
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primers (25 pm/µl) were added. The reaction was immediately continued with 25 cycles:

94°C 1 min, 58°C 1 min, 72°C 2 min; extension at 72°C for 2 min. Once assembled, the

constructed scFv DNA fragments containing Sfi I and Not I restriction sites at the 5' end of

VH and the 3' end of VL, respectively, were gel-purified. If the amount of scFv DNA was not

sufficient, it was further PCR amplified with SCFVFOR/SCFVBACK primers using a Taq-

polymerase with proofreading activity (e.g. Expand high fidelity taq polymerase system,

Roche, Mainheim). Alternatively the method to synthesize scFv was performed as described

by Breitling and Dübel (1997).

The scFv DNA was digested with Nco I or Sfi I and Not I. Purified VH-Linker-VL

constructs were ligated into phagemid vectors (for pCANTAB5E through SfI I and Not I

sites, for pSEX81 through Nco I /Not I sites) in a 10 µl ligation reaction with 1.5 U of T4

DNA ligase for 14-16 h at 16°C. The resulting constructs, designated as pCANTAB-scFv or

pSEX-scFv, were transformed into Epicurian Coli  XL2-Blue ultracompetent cells.

4.2.14  Antibody phage display and cycles of selection

Colonies were washed off from the transformation plates with 100 ml of 2× TY medium

containing 2% glucose and 100 µg/ml ampicillin and bacterial density was adjusted to OD600

≤ 0.3.  The suspension was shaken at 37°C until the culture density reached 0.6. The culture

was divided into two aliquots of 50 ml, one for freeze stock, the other was rescued by adding

helper phage M13KO7 (1010 pfu), and grown for 1 h at 37°C. After centrifugation at 1.500× g

for 15 min at 28°C, the pellet was resuspended in 100 ml of 2× TYAK medium containing

100 µg/ml ampicillin and 50 µg/ml kanamycin, and incubated for 8 h at 37°C. The culture

was centrifuged at 2.500× g for 15 min. The phage antibody was precipitated from 100 ml of

supernatant by adding 20 ml of 20% PEG-6000/2.5 M NaCl keeping for 30 min at 4°C, and

pelleting by centrifugation at 10.000× g for 10 min at 4°C. The pellets were suspended in 15

ml of 2× TY medium and diluted with an equal amount of PBS containing 10% skimmed dry

milk, 0.2% Tween 20 and 0.01% Thimerosal. After centrifugation at 3.000× g for 10 min, the

pellet was discarded. The supernatant was transferred to Immuno tubes, which had been pre-

coated overnight at 4°C with target antigens (e.g. purified NIb, sap of PVY-infected leaves

1:10 diluted in PBS) and incubated for 3 h at room temperature. The tubes were washed 20

times with PBS and another 20 times with PBST. Log-phase TG1 cells grown in LB medium

were added into the tubes and incubated for 2 h at 37°C. The culture was poured onto SOB

plates containing 2% glucose and 100 µg/ml ampicillin and incubated overnight at 30°C.
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Bacteria grown were rescued and the steps described above were repeated for total two-three

rounds of selection.

For ELISA tests, the PEG/NaCl-precipitated antibody phages were resuspended in 1/10

of original volume PBS containing 2% skimmed dried milk.

4.2.15  Phage-ELISA

Phage-ELISA was performed as PTA-ELISA with some modifications. 96 well-microtiter

plates were coated overnight at 4°C with extracts from PVY-infected N. tabacum cv. Xanthi

leaves (1:10 dilution with PBS) or purified NIb. The wells were blocked with 300 µl of 2%

skimmed dried milk in PBS. After 3 washes with PBST, preparations of phages displaying

scFv antibodies (e.g., diluted with 2% skimmed dried milk in PBST) were added into the

wells (100 µl each) and incubated for 2 h at room temperature with gently shaking. After 4

washes with PBST, 100 µl of 1:5000 diluted HRP anti-M13 antibody conjugate (Amersham

Pharmacia, Uppsala) was added per well and incubated for 1 hour at room temperature. After

5 washes with PBST, 100 µl of ABTS substrate were added per well. A405nm values were

measured after 1 h  substrate incubation at room temperature.

4.2.16  DNA sequencing and sequence analysis software

The target scFv genes were subcloned into pGEM-5Zf vector via Nco I and Not I sites, and

transformed into competent cells of bacterial strain JM109.

Selection for transformants was on LB/ampicillin/IPTG/X-Gal plates. Individual white

colonies were transferred into 20 ml of LB medium containing 100 µg/ml ampicillin, shaken

200 rpm/min overnight at 37°C. Plasmids with inserted DNA were prepared for sequencing

using a Quiagen plasmid purification kit.

The nucleotide sequence of scFv 7C5 was obtained manually by use of the USB

sequencing kit with primers Seq-S1, S3, S4, S6 (Table 4.4). Other sequences were determined

on an automatic sequencer (ALFexpress) using the Cy5 AutoRead sequencing kit following

the kit protocol. Cy5 amidite-labelled pUC/M13 forward sequencing and reverse sequencing

primers were used in sequencing PCR reaction.
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4.2.17  Site-directed mutagenesis

One sequenced clone (f1) with a nucleotide mutation at nt position 154 was mutated back in

vitro by site-directed mutagenesis. The insert was amplified with the primers of VHf1X1FOR

and VHf1X1BACK and cloned into pALTER-Ex 1 Vector (Promega, Madison WI). Primer

VHf1BM was designed as a mutagenic oligonucleotide. All procedures of site-directed

mutagenesis were performed according to the manual. The sequences of the in vitro mutations

were checked by the automatic sequencer. The back-mutated insert was re-cloned into

expression plasmid pOPE101 through Nco I and Not I sites.

4.2.18  Expression of soluble scFv in E. coli and optimization of conditions

4.2.18.1  PCR identification of colonies containing scFv inserts

The target scFv genes from pSEX-scFv plasmid were subcloned via Nco I and Not I sites into

pOPE101 to yield pOPE-scFv constructs and the constructs were transformed into TG1 or

HB2151 cells. Positive clones of phage displaying scFv antibodies from pCANTAB-scFv

plasmid were used to re-infect E. coli HB2151 strain. PCR was used to screen and identify the

colonies with inserts. For this purpose specific primers were used.

4.2.18.2  Analysis of E. coli proteins with Coomassie brilliant blue staining and Western

   blotting

A single colony was inoculated into 5 ml of LBGA and incubated overnight at 30°C with

agitation. 0.2 ml of this culture were inoculated into 20 ml of LBA without glucose and

maintained at 30°C until an OD600 ≥ 0.8 was reached. 1 ml of the cell culture was collected as

a non-induced control before adding IPTG to a final concentration of 0.4 mM. Subsequently,

after 2 h, 4 h, 6 h, 8 h or overnight (14-16 h) induction, 1 ml of the culture was collected for

protein analysis in SDS-PAGE, either by Coomassie brilliant blue staining or by Western

blotting.

The procedure for Western blotting was partly described in section 4.2.10. Here, after

blocking PVDF or Immobilon-P membranes with 1% skimmed dried milk, the membranes

were probed with MAb 9E10, and developed with AP conjugated-anti-mouse IgG/IgM

antibody and p-NPP as the substrate.
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The gels after Coomassie brilliant blue staining were covered with cellophane

membrane pre-wetted for 30 min, fixed in a Novey gel dryer and dried at room temperature

for 3-4 days. An alternative is that the gel was covered with cellophane membrane pre-wetted

for 30 min, vacuum dried at 60°C for 2 h in a gel dryer (BioRad, Richmond CA).

The percentage and quantification of target proteins were determined by scanning

Coomassie brilliant blue stained gels with Alpha Imager 2000 or by Bradford method

(Bradford, 1976) using BSA as a standard.

4.2.18.3  Analysis of binding properties of scFv in ELISA

To analyze the binding ability of scFvs, the culture supernatant or periplasmic extract

(osmotic shock fraction) from selected clones was used as primary antibodies in standard

PTA-ELISA. MAb 9E10 was used as secondary antibody, alkaline phosphatase conjugated

anti-mouse IgG/IgM antibody as tertiary antibody, p-NPP as substrate.

To prepare the osmotic shock or periplasmic fraction from E. coli, procedures according

to Skerra and Plückthun (1988) were performed with slight modifications. For each clone,

250 µl of an overnight culture grown at 30°C were inoculated into 25 ml of 2× TYAG

medium. The culture was incubated at 30°C with vigorous shaking until an OD600 = 0.6 was

reached. The cells were spun down by centrifugation at 1500× g at 28°C for 15 min, and

resuspended in 25 ml of fresh 2× TY pre-warmed to 30°C. After adding ampicillin and IPTG

to a final concentration of 100 µg/ml and 0.4 mM, respectively, the incubation was continued

for another 4 h. The cell were spun down as above, the culture supernatant was collected for

ELISA. The pellet was resuspended in 0.5 ml of ice-cold 1× TES and then 0.75 ml of ice-cold

1/5× TES was added (this induced a mild osmotic shock). The slurry was vortexed and

incubated on ice for 1 h. The content was transferred to a microtube and centrifuged at

13.000× g for 10 min. The supernatant (soluble periplasmic proteins) was carefully collected

for ELISA.

4.2.19  Purification and refolding of scFvs

4.2.19.1  Preparation of bacterial culture

2 ml of an overnight culture grown in LBGA at 30°C were used to inoculate 200 ml fresh

LBA. The culture was incubated at 30°C with vigorous shaking until an OD600 = 0.8 was
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reached and cooled down to room temperature.  IPTG was added to a final concentration of

0.4 mM. The culture was incubated at room temperature for 4-5 h with shaking.

4.2.19.2  Isolation of soluble secreted scFv from periplasma

The following procedures were performed as described by Kipriyanov (1994). Bacterial

cultures were centrifuged for 15 min at 6.200× g. The pellets were resuspended in 5% of

initial volume of ice-cold 50 mM TE buffer with 20% sucrose and incubated on ice for 1 h

with occasional stirring. The cell suspension was centrifuged at 30.000× g for 45 min at 4°C,

the supernatant (soluble periplasmic proteins) was carefully collected and dialyzed against 30

mM Tris-HCl, 0.2 mM Pefabloc, 1 M NaCl (pH 7.4) at 4°C.

For IMAC, a column was filled with chelating Sepharose (Amersham Pharmacia,

Uppsala) using 2 ml of resin per 1 l of cell culture, and washed with 5 bed volumes of

distilled water. The Sepharose column was charged with Ni2+ by passing 0.7 bed volumes of

0.1 M NiCl2 through it. The excess of ions was washed away with 3 bed volumes of distilled

water. Then the column was equilibrated with 3 volumes of starting buffer (30 mM Tris-HCl,

1 M NaCl, pH 7.0). The soluble periplasmic proteins were passed 2-3 times over the column.

The column was washed with 10 bed volumes of starting buffer, followed by 20 bed volumes

of starting buffer containing 50 mM imidazole (all steps at 4°C). The bound scFv was eluted

with 3 column volumes of starting buffer containing 250 mM imidazole and dialyzed against

PBS with 0.2 mM Pefabloc at 4°C for two days, with changes of dialyzing buffer.

4.2.19.3  Purification of scFv from inclusion bodies

The bacterial culture (section 4.2.19.1) was centrifuged for 15 min at 6.200× g at 4°C. The

pellet was resuspended in 1/30 of initial volume of ice-cold 50 mM TE buffer, 100 mM NaCl

(pH 7.0). Bacterial cells were lysed by repeated freezing/thawing, followed by sonication on

ice. The lysate was centrifuged at 30.000× g for 30 min at 4°C. The supernatant was collected

and referred to as cytoplasmic extract (procedures of its purification were performed

essentially as above periplasmic proteins). The pellets were resuspended in the same volume

of 50 mM Tris-HCl, 100 mM NaCl (pH 7.0) and centrifuged again at 30.000× g for 30 min at

4°C. The pellet (inclusion bodies) was resuspended in 1/40 of the original volume in 6 M

guanidine hydrochloride (GuHCl), 0.1 M Tris-HCl (pH 7.0). The solubilization was carried

out by continuous shaking overnight at 4°C. The solution was cleared by centrifugation at
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30.000× g for 1 h at 4°C. For IMAC, the solubilized inclusion bodies were loaded onto a

chelating Sepharose column charged with Ni2+and equilibrated with binding buffer containing

6 M GuHCl, 0.1M Tris-HCl, 1 M NaCl (pH 7.0). 5 ml of chelating Sepharose per 1 l of cell

culture were used. After application of the solubilized inclusion bodies, the column was

washed with 10 bed volumes of binding buffer and followed by 20 volumes of 6 M urea, 50

mM Tris-HCl (pH 7.0). The  bound scFv was eluted with 4 column volumes of 6 M urea, 50

mM Tris-HCl, 250 mM imidazole (pH 7.0).

Quantification of proteins was determined by Bradford method (Bradford, 1976) using

BSA as a standard. The concentrations of purified scFv were calculated from the OD280 value,

using the extinction coefficient epsilon1 mg/ml = 1.4837 at 280 nm calculated according to the

Edelhoch method (Pace et al., 1995).

4.2.19.4  In vitro refolding of scFvs derived from inclusion bodies

For refolding of scFv, the above eluted scFv was dialyzed against 1 l of TEA buffer (100 mM

Tris-HCl, 2 mM EDTA, 400 mM L-arginine-HCl, pH 7.0) overnight at 4°C without stirring.

To achieve gradual removal of the denaturing agent (urea), half amount of dialysis solution

was changed with fresh TEA buffer. Then dialysis was continued with stirring, followed by

several changes of dialysis solution. An alternative to optimize renaturation conditions was

employed in a step-wise dialysis system according to procedures of Tsumoto et al. (1998).

4.2.20  Construction of scFv-AP expression plasmid vector

To obtain a fusion of scFv with AP, a Bgl II restriction enzyme site was introduced at both

ends of scFv by PCR using the F1BglIIBACK/FOR primers. The amplified scFv DNA was

digested with Bgl II (compatible with BamH I site, since scFv 1D6 contains two sites for

BamH I). Gel-purified scFv was cloned into pOPE51-AP at its BamH I site to construct

pOPE-scFv-AP, which was expressed in E. coli TG1 strain. The correct orientation of the

insert was verified by restriction enzyme digestion analysis with BamH I. The expressed

scFv-AP was detected by the anti-c-myc-tag antibody 9E10 and purified by IMAC.
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4.2.21 Development of detection systems based on MAb and scFv or scFv fusion

proteins

The purified soluble scFv antibodies with myc-tag or E-tag as well as scFv-AP fusion protein

were used for the following ELISA protocols:

(1) PTA-ELISA: microtiter plates were coated with virus-infected plant sap. After blocking

with 1% skimmed dried milk and washing with PBST, 100 µl of scFvs specific for NIb or

CP was added and incubated for 2 h. Anti-c-myc antibody was used as the secondary

antibody, AP conjugated anti-mouse IgG+IgM antibody as detection antibody and p-NPP

as the substrate.

(2) competition ELISA: based on PTA-ELISA, microtiter plates were coated with the virus-

infected plant sap (1:10 and 1:50 dilution, 100 µl/well) at 4°C for 14-16 h. After 3 washes

with PBST, the plates were first incubated for 2 h with mixture of scFv and MAb, one of

them with a serial dilution up to 50% maximum OD values. After 4 washes, the following

procedures were performed: (i) AP conjugated anti-mouse IgG+IgM antibody was added

in one plate for detection MAb and p-NPP used as the substrate or (ii) mouse anti-c-myc

antibody was added into the other plate for detection of the scFv-myc-tag, then AP

conjugated anti-mouse IgG+IgM antibody. p-NPP was used as the substrate.
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5  Summary

The objective of this work was to engineer single chain variable fragment antibodies (scFvs)

to highly conserved aa motifs of the RNA-dependent RNA polymerase of potyviruses

(RdRp). The expression of scFv genes in plants holds great promise to create novel resistant

crops against potyviral infections. One advantage of this approach is the universal

applicability of such scFv to enhance resistance to several distinct potyviruses. Another

advantage is that scFv-derived transgenic plants are environmentally safe. In addition, scFvs

generated might find wide application in diagnosis of potyviral diseases.

The following results were obtained:

1. Four monoclonal antibodies (MAbs) obtained from synthetic peptides covering two of the

three highly conserved regions of the nuclear inclusion b protein (NIb) of potyviruses

reacted with the NIb of several potyviruses in both Western blot and ELISA.

2. The sequence encoding for the NIb of potato Y virus (PVY) as well as for a synthetic

protein, consisting of a fusion of all three highly conserved NIb regions, was

overexpressed in and purified from Escherichia coli near to homogeneity by immobilized

metal-ion affinity chromatography. The fusion proteins were used to test the reactivity of

MAbs. The overexpressed NIb was used as an antigen for MAb production.

3. MAbs to the recombinant NIb as well as to the coat protein (CP) of PVY were obtained. It

was demonstrated that they can be used to detect PVY infection. Especially, the NIb-

specific MAb 2E11 is a valuable tool to identify virus infection as it could be detect the

virus infection even in the absence of the coat protein.

4. Dynamics of the expression of CP and NIb in PVY-infected Nicotiana glutinosa and N.

occidentalis plants was systematically investigated. Both proteins could be detected in

systemically infected leaves from the fifth day post infection on by ELISA and Western

blotting.

5. ScFv antibodies were generated against CP and NIb from hybridoma cells secreting

MAbs. Expression of scFv 1D6F1, specific for the PVY CP, reached a maximum of 17%

of total soluble proteins in E. coli.

6. Both phage-displayed and soluble scFv showed a similar binding affinity to the target

antigens. The detection sensitivity using scFv was lower than that of the parental MAb.

7. ScFv-alkaline phosphatase (AP) fusion proteins only showed low sensitivity, probably,

due to the low enzymatic activity of the bacterial AP.
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7  Appendix

A. Structure of R1

 Pos aa   STR   HELIX STRAND COIL
   1  R  Coil    0.09  0.03  0.88
   2  T  Coil    0.09  0.22  0.69
   3  F  Coil    0.19  0.27  0.54
   4  T  Coil    0.28  0.33  0.40
   5  A  Coil    0.10  0.40  0.50
   6  A  Coil    0.10  0.17  0.73
   7  P  Coil    0.24  0.18  0.58
   8  L  Coil    0.32  0.13  0.55
   9  D  Coil    0.39  0.15  0.46
  10  T  Coil    0.30  0.30  0.40
  11  L  Coil    0.13  0.43  0.44
  12  L  Coil    0.13  0.43  0.44
  13  G  Coil    0.09  0.16  0.75
  14  G  Coil    0.06  0.21  0.73
  15  K  Strand  0.05  0.61  0.34
  16  V  Strand  0.02  0.83  0.15
  17  C  Strand  0.02  0.83  0.15
  18  V  Strand  0.03  0.66  0.31
  19  D  Coil    0.12  0.26  0.62
  20  D  Coil    0.19  0.14  0.67
  21  E  Coil    0.09  0.02  0.89
  22  N  Coil    0.09  0.02  0.89
  23  N  Coil    0.09  0.02  0.89
  24  Q  Coil    0.11  0.07  0.82
  25  F  Coil    0.07  0.04  0.89

*Prediction accuracy= 66.16%

B. Structure of R2

 Pos  aa  STR   HELIX STRAND COIL
  1  W  Strand  0.05  0.61  0.34

   2  V  Strand  0.02  0.83  0.15
   3  Y  Strand  0.02  0.83  0.15
   4  C  Strand  0.05  0.61  0.34
   5  D  Coil    0.05  0.24  0.71
   6  A  Coil    0.06  0.09  0.85
   7  D  Coil    0.09  0.09  0.83
   8  G  Coil    0.09  0.09  0.83
   9  S  Coil    0.06  0.09  0.85
  10  Q  Coil    0.09  0.16  0.75
  11  F  Coil    0.12  0.26  0.62
  12  D  Coil    0.14  0.19  0.67
  13  S  Coil    0.14  0.19  0.67
  14  S  Coil    0.09  0.22  0.69
  15  L  Coil    0.09  0.22  0.69
  16  T  Coil    0.09  0.09  0.83
  17  P  Coil    0.39  0.15  0.46
  18  Y  Coil    0.40  0.10  0.50
  19  L  Coil    0.40  0.10  0.50
  20  I  Strand  0.32  0.52  0.16
  21  N  Strand  0.29  0.49  0.22
  22  A  Coil    0.28  0.33  0.40
  23  V  Coil    0.14  0.19  0.67
  24  L  Coil    0.19  0.13  0.68

*Prediction accuracy= 64.17%
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C. Structure of R3

Pos aa  STR    HELIX STRAND COIL
1   L  Coil    0.03  0.10  0.87
2   T  Coil    0.03  0.10  0.87
3   P  Coil    0.03  0.10  0.87
4   D  Coil    0.06  0.09  0.85
5   G  Coil    0.03  0.10  0.87
6   T  Strand  0.06  0.48  0.47
7   I  Strand  0.03  0.89  0.09
8   V  Strand  0.05  0.87  0.09
9   K  Strand  0.05  0.93  0.01
10  K  Strand  0.05  0.87  0.09
11  F  Strand  0.01  0.89  0.10
12  K  Strand  0.03  0.66  0.31
13  G  Coil    0.07  0.37  0.57
14  N  Coil    0.03  0.10  0.87
15  N  Coil    0.03  0.10  0.87
16  S  Coil    0.03  0.10  0.87
17  G  Coil    0.03  0.10  0.87
18  Q  Coil    0.03  0.10  0.87
19  P  Coil    0.03  0.10  0.87
20  S  Strand  0.06  0.48  0.47
21  T  Strand  0.03  0.66  0.31
22  V  Strand  0.02  0.83  0.15
23  V  Strand  0.03  0.66  0.31
24  D  Coil    0.07  0.37  0.57

*Prediction accuracy= 80.45%

Probability of secondary structure of synthetic peptides used in immunization.
According to King and Sternberg (1996)
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