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Abstract

The Rheotens experiment is a quasi-isothermal fibre spinning experiment. A polymer melt
presheared in a capillary die is stretched under the action of a constant drawdown force until
rupture of the filament. The experiment results in an extension diagram which describes the
elongational behaviour of a polymer melt and therefore is relevant for many polymer processes
like blow moulding, film blowing, and fibre spinning. Also, the rupture stress of a polymer melt
can be calculated, which is of importance for these industrial applications.

As an extension of the experiment, the local velocity distribution along the fibre can be measured
with a Laser-Doppler Velocimeter (LDA). From this, the shape of the deformed filament as well
as local elongation rates can be derived.

In general, melt strength and drawability depend on the material properties of the melt and on
the processing conditions of the experiment. The existence of Rheotens mastercurves allows to
separate the polymer melt properties from the processing conditions and thus simplifies the des-
cription of elongational behaviour under constant force deformation. The Rheotens mastercurve
reflects structural differences of polymer melts.

Two models to extract the apparent elongational viscosity from a Rheotens experiment are
developed: the analytical model and the similarity model. The apparent elongational viscosity
calculated from Rheotens curves strongly depends on the rheological prehistory in the extrusion
die. The viscosity curve is shifted to lower viscosities and higher extension rates with increasing
extrusion velocity. A large amount of preshear lowers the apparent elongational viscosity to the
level of three times the shear viscosity. Low preshear on the other hand results in an apparent
elongational viscosity, which is of the same order of magnitude as the steady-state elongational
viscosity.

The detailed results of Rheotens experiments including the LDA spinline velocity measurements
are used to benchmark the results of numerical simulation. The integral Wagner constitutive
equation describes viscoelastic flow behaviour and is suitable for this type of analysis. However,
the prediction of the correct amount of extrudate swell is a critical task. While the numerical
simulation matches the experimental results qualitatively, the amount of extrudate swell, and
hence the instantaneous elastic response predicted by the model is overpredicted, as shown for
the example of a HDPE melt.

Rheotens experiments, Rheotens mastercurves, and apparent elongational viscosities calculated
from Rheotens experiments are reported for LDPE, LLDPE, HDPE, PP, PS, and PC melts.
The elongational behaviour of the melts is characterised under conditions which are relevant
for typical industrial processing applications.



Zur Rheologie des Schmelzespinnprozesses

Das Rheotensexperiment

Die Spinnbarkeit von Polymerschmelzen ist von großer Bedeutung für viele Prozesse der Kunst-
stoffverarbeitung. Die Beurteilung des Verstreckverhaltens erfolgt in der Praxis häufig auf Basis
eines technischen Dehnungsdiagramms, bei dem mit Hilfe des von Meissner (1971) entwickel-
ten Dehnungstesters (Rheotens) die Abzugskraft eines extrudierten Stranges als Funktion der
Abzugsgeschwindigkeit ermittelt wird. Es ist bekannt, daß u.U. schon geringe Chargenunter-
schiede eines Polymers zu deutlich verschiedenen Rheotenskurven führen. Weitere Vorteile der
Methode sind einfache Versuchsdurchführung, gute Reproduzierbarkeit und Praxisnähe.

Der Rheotensversuch wurde experimentell weiterentwickelt, indem die lokale Geschwindigkeit
der Polymerschmelze entlang der Spinnstrecke zwischen Düse und Abzugseinrichtung per Laser-
Doppler-Velocimeter (LDA) direkt gemessen wurde. Damit kann zum einen die durch die Dreh-
geschwindigkeit der Abzugsräder hervorgerufene Abzugsgeschwindigkeit der Schmelzestranges
überprüft werden, zum anderen läßt sich so die Geschwindigkeitsverteilung entlang der Spinn-
strecke und damit die lokale Dehngeschwindigkeit ermitteln. Diese wurden für die Modellbil-
dung zur Berechnung von Dehnviskositäten herangezogen und außerdem für die Überprüfung
von Simulationsergebnissen benötigt.

Rheotens Grandmasterkurven

Wegen der komplizierten rheologischen Vorgeschichte der Schmelze vor Austritt aus der Düse
war bisher nur eine qualitative Interpretation unterschiedlichen Dehnverhaltens möglich, etwa
durch Angabe der Schmelzefestigkeit und der maximalen Dehnbarkeit. Bei diesen Untersu-
chungen erfolgte der Vergleich verschiedener Polymerschmelzen bei konstantem Durchsatz. Im
Rahmen dieser Arbeit konnte basierend auf Untersuchungen von Wagner et. al. (1996) gezeigt
werden, daß sich bei Fahrweise mit konstantem Extrusionsdruck in einfacher Weise temperatur-
und molmassen-invariante Rheotens-Masterkurven ergeben. Ausnahmen von der Temperaturin-
varianz, die auf Wandgleiteffekte bzw. Spannungskristallisation zurückzuführen sind, wurden
experimentell gefunden.

Rheotens-Masterkurven erlauben einen direkten, quantitativen Vergleich des Dehnverhaltens
verschiedener Polymerschmelzen bei Beanspruchung mit konstanter Kraft. Damit kann der
Einfluß von Strukturunterschieden der Polymere untersucht werden. Zum Beispiel zeigen ver-
zweigte Polyethylenschmelzen ein deutlich unterschiedliches Kraft-Dehnverhalten abhängig vom
Herstellungsprozeß (Autoklav- oder Rohrreaktor). Auch die Bruchspannung des Schmelzen, die
aus Kraft und Verstreckung am Abrißpunkt der Rheotenskurve berechnet werden kann, ist vom
Aufbau des Netzwerkes aus Molekülketten abhängig und liegt bei linearen Polymeren niedriger
als bei verzweigten. Die im Rheotensversuch gemessene Bruchspannung läßt sich auf Verarbei-
tungsprozesse übertragen.

Im allgemeinen ist die im Rheotensversuch gemessene Abzugskraft eine komplexe Funktion der
Polymereigenschaften, der Geometrie von Extrusionsdüse und Spinnstrecke sowie der Prozeß-
bedingungen (Durchsatz und Abzugsgeschwindigkeit). Die Existenz eines einfachen Verschie-
bungsgesetzes ließ sich nachweisen, das den Einfluß von Geometrie- und Durchsatzänderungen
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auf die Rheotenskurven berücksichtigt. Mit diesem ist es gelungen, Stoff- und Prozeßabhängig-
keit der Rheotenskurven zu trennen. Während die Rheotens-Grandmasterkurve das Stoffverhal-
ten im quasi-isothermen Spinnprozeß beschreibt, enthält der Skalierungsfaktor die Information
über die Prozeßabhängigkeit der Rheotenskurve. Umfangreiche Rheotensmessungen an linearen
und verzweigten Polyethylen-Schmelzen sowie an Polypropylen, Polystyrol und Polycarbonat
belegen die Richtigkeit dieser Überlegungen. Damit besteht die Möglichkeit, die Ausziehfähig-
keit verschiedener Polymerschmelzen unter Praxisbedingungen quantitativ zu vergleichen und
zu werten.

Ableitung der effektiven Dehnviskosität aus dem Rheotensversuch

Ein wichtiges Ziel dieser Arbeit war es, aus den Rheotenskurven effektive Dehnviskositäten
abzuleiten, da die Messung der Dehnviskosität mit einem Dehnrheometer experimentell sehr
aufwendig ist. Dazu wurden zwei Modelle entwickelt: Zum einen ein analytisches Modell von
Wagner et. al. (1996) und zum anderen eine Ähnlichkeitslösung basierend auf der Annahme, daß
die Dehnviskosität im Rheotensversuch einzig eine Funktion der Verstreckung ist. Die Gültigkeit
der Annahmen, auf denen analytisches Modell und Ähnlichkeitsgesetz basieren, konnten durch
die LDA-Messungen experimentell belegt werden.

Die so berechnete effektive Dehnviskosität wird ganz wesentlich durch die rheologische Vorge-
schichte in der Extrusionsdüse beeinflußt, und zwar so, daß der gesamte Viskositätsverlauf mit
zunehmender Extrusionsgeschwindigkeit zu kleineren Dehnviskositäten und größeren Dehnge-
schwindigkeiten verschoben wird. Bei großer Vorscherung wird die scheinbare effektive Dehnvis-
kosität bis auf das Niveau der dreifachen Scherviskosität herabgesetzt. Bei geringer Vorscherung
kann der Rheotensversuch dagegen Anhaltswerte für die Größenordnung der stationären Dehn-
viskosität liefern.

Der Vergleich der effektiven Dehnviskosität, die aufgrund der rheologischen Vorgeschichte pro-
zeßabhängig ist, mit der uniaxialen Dehnviskosität, die an isotropen Proben gemessen wird,
zeigt klar, daß durch Vorscherung die gemessene Dehnverfestigung reduziert wird. Dies ist von
Bedeutung für viele Verarbeitungsprozesse, die von Dehnströmungen dominiert werden, womit
ein Zusammenhang zur industriellen Praxis hergestellt werden konnte.

Numerische Simulation mit integraler Zustandsgleichung

Der Schmelzespinnprozeß ist ein prototypisches Beispiel eines Kunststoffverarbeitungsprozesses:
die Polymerschmelze unterliegt zunächst einer einfachen Scherung in der Extrusionsdüse und
anschließend einer uniaxialen Verstreckung unter Beanspruchung mit konstanter Abzugskraft.
Diese gekoppelte Scher- und Dehnströmung in Verbindung mit der a priori unbekannten freien
Oberfläche des Schmelzestranges macht diesen einfachen Laborversuch zu einem anspruchsvol-
len Testfall für die numerische Simulation. Dabei ist der Einsatz einer geeigneten rheologischen
Zustandsgleichung für viskoelastische Fluide zur Beschreibung des Rheotensversuches notwen-
dig.

Eingesetzt wurde eine rheologische Zustandsgleichung vom Integraltyp nach Wagner (1978) un-
ter Berücksichtigung der Irreversibilität von Netzwerkentschlaufungen. Das verwendete Simula-
tionsprogramm filage von Fulchiron et.al. (1998) für isothermes Schmelzespinnen berücksichtigt
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die Deformationsgeschichte in der Extrusionsdüse. Vereinfachende Annahmen über das Ge-
schwindigkeitsprofil in der Düse (Potenzgesetz) und entlang der Spinnstrecke (eindimensional)
werden getroffen. Damit lassen sich Simulationsrechnungen schnell und mit guter Konvergenz
durchführen. Die Parameter der Zustandsgleichung wurden an rheologische Grundexperimente
in Scherung und Dehnung angepaßt.

Der Vergleich berechneter und gemessener Rheotenskurven zeigt qualitative Übereinstimmung
des Kraft-Dehnverhaltens. Quantitativ ergeben sich allerdings deutliche Abweichungen zwi-
schen Simulation und Experiment, vor allem im Anfangsbereich der Kurven, das heißt die
Strangaufweitung läßt sich nicht korrekt vorhersagen, sondern wird von der Simulationsrech-
nung überschätzt.

Dies läßt sich folgendermaßen interpretieren: das Simulationsmodell beschreibt eine zu starke
Elastizität der Schmelze direkt nach der Düse, was zu einer Überschätzung der Strangauf-
weitung führt. Bei starker Verstreckung wird das Material dagegen zu viskos (und zu wenig
elastisch) beschrieben. Dieses Verhalten liegt in der verwendeten Form des Integralmodelles be-
gründet, das zwar einfache Scherung und uniaxiale Dehnung beschreibt, aber nicht die biaxiale
Dehnung, die bei der Strangaufweitung auftritt. Außerdem bestehen Zweifel daran, ob das
Modell die Irreversibilität der Netzwerkentschlaufung korrekt wiedergibt.

Zusammenfassung

Im Rahmen dieser Arbeit ist es gelungen, den Rheotensversuch, der industriell häufig zum qua-
litativen Vergleich verschiedener Polymerschmelzen eingesetzt wird, auf eine neue wissenschaft-
liche Basis zu stellen. Die Analyse des Kraft-Dehnungsverhaltens beim Schmelzespinnen wird
durch die Existenz von Rheotens-Grandmasterkurven vereinfacht, die es erlauben, das Materi-
alverhalten des Polymers von der Prozeßabhängigkeit des Experiments zu trennen. Zusätzliche
Informationen lassen sich aus der vorgestellten Berechnung der effektiven Dehnviskosität bei
konstanter Kraft gewinnen. Damit wurden die theoretischen Grundlagen der Rheologie des
Schmelzespinnprozesses wesentlich erweitert.

iii



Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftliche Mitarbeiterin
des Instituts für Kunststofftechnologie der Universität Stuttgart von 1996 bis 2000.

Mein herzlicher Dank gilt Herrn Prof. Dr.-Ing. M.H. Wagner für die interessante Aufgabenstel-
lung, die intensive Betreuung und Förderung der Arbeit und viele Gelegenheiten zur Diskussion.

Ich danke Herrn Prof. Dr.-Ing. H.G. Fritz, dem Leiter des Instituts, für die Unterstützung
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Danken möchte ich auch Herrn Prof. Dr.-Ing. habil. M. Piesche für die Übernahme des Mitbe-
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Nomenclature

aM Molar mass shift factor
aT Temperature shift factor
a1, a2 Fitting parameters of the similarity model
acc Acceleration of the drawdown velocity mm/s2

A Cross section of the strand mm2

A0 Cross section of the extrusion die mm2

b Shift factor
C−1 Finger strain tensor
D0 Diamter of the extrusion die mm
DZ Diamter of barrel before extrusion die mm
De Deborah number
E0 Activation energy kJ/mol
E Unit tensor
f Parameter of the double exponential damping function
F Drawdown force of the Rheotens cN
Fp Critical force of analytical model cN
gi Relaxation strength of the discrete relaxation spectrum Pa
G(t) Relaxation modulus Pa
G0(t, t′) Linear viscoelastic relaxation modulus Pa
G′ Storage modulus Pa
G′′ Loss modulus Pa
h Damping function
H(t, t′) Damping functional
I Generalised invariant of the Finger strain tensor
I1 First invariant of the Finger strain tensor
I2 Second invariant of the Finger strain tensor
L Spinline length mm
L0 Die length mm
ṁ Mass flow rate g/min
m0(t, t

′) Linear viscoelastic memory function Pa/s
M Average molar mass g/mol
MS Melt strength cN
MWD Molar mass distribution
n Power law index
n1, n2 Parameters of the double exponential damping function
p Extrusion pressure bar
r Strand radius mm
R General gas constant J/mol K
SR Swell ratio
t time s
tm Characteristic material time s
tpz Characteristic processing time s
T Temperature oC
v Drawdown velocity of the Rheotens mm/s
v0 Extrusion velocity in the die mm/s
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vg Wall slip velocity mm/s
vs Start velocity of the Rheotens experiment mm/s
V Draw ratio
Vp Critical draw ratio of the analytical model
Vs Relative start velocity
x Distance from die along the spinline mm

α Parameter of the PSM damping function
β Parameter for description of the generalised invariant
η Viscosity Pas
η0 Zero shear viscosity Pas
η∗ Complex viscosity Pas
ε Extensional deformation
ε̇ Elongation rate s−1

γ Shear deformation
γ̇ Shear rate s−1

γ̇ap Apparent wall shear rate s−1

λ Stretch ratio
λi Relaxation time of the discrete relaxation spectrum s
ω Frequency s−1

ρ Density g/cm3

σ Tensile stress at the end of the spinline Pa
σB Rupture stress Pa
σp Critical stress of the analytical model Pa
σ Extra stress tensor
τ Shear stress MPa
τap Apparent wall shear stress MPa
τcrit Critical wall shear stress MPa

III



1 Introduction

The Rheotens experiment was developed by Meissner simultaneously with the uniaxial
elongational rheometer [35]. Both instruments are based on the principle of two rotating
wheels, which draw down a polymer melt sample with defined velocity and thereby produce an
elongational deformation. While the elongational rheometer realises a time dependent uniaxial
extension with constant elongation rate starting from a homogeneous, stress-free polymer
sample, the Rheotens performs an elongational experiment under constant force on a melt
pre-sheared in a capillary die.

The Rheotens test results in an extension diagram which describes the elongational behaviour
of a polymer melt and therefore is relevant for many polymer processes like blow moulding,
film blowing, and fibre spinning. The measurement is fast and easy to perform with good
reproducibility. In contrast to experiments with the elongational rheometer, it does not
reach steady-state conditions and realises higher deformation rates, both indicating that this
laboratory experiment is close to processing conditions.

Literature Review

Experiments in elongation are more sensitive to structural differences of polymer materials
than those in shear, which was shown by investigations of the IUPAC Working Party on
Structure and Properties of Commercial Polymers [36]. Therefore, the Rheotens is widely
used for quality control purposes [61]. Also, the force needed to elongate a filament can be
correlated to processing parameters like minimum film thickness and bubble stability in film
blowing [17], [10], [48] and extrusion [60]. From force and draw ratio at the break of the filament
the rupture stress can be calculated, which is a vital parameter for spinning processes and is of
importance in understanding melt fracture phenomena [15], [34].

Even small modifications of the molecular structure of a polymer can be detected by the
Rheotens test. Correlations between melt strength and average molar mass were reported [26].
The reactor technology for the production of polymer samples can be identified by differences
in melt strength [17]. Also the influence of different molecular weight distributions, for example
produced by blending, is reflected in the melt strength [18], [16].

Different attempts were made to convert the tensile force/drawdown speed diagram into a
relation between elongational viscosity and elongation rate, for which a rheological model is
needed. Such analysis was for example presented by Laun and Schuch [32] and later Wagner
et. al. [53]. Also algorithms have been presented using an integral constitutive equation to link
the Rheotens test with steady-state elongational viscosity [30], [14].

Apart from the long known practical applications of the Rheotens test mentioned, a more
fundamental understanding of the experiment has been achieved in recent years. The concept
of Rheotens mastercurves was suggested by Wagner [53], [56], [55], proving that Rheotens curves
are invariant with respect to temperature and average molar mass if compared at constant wall
shear stress in the extrusion die. Moreover, the influence of different die and spinline geometries
can be taken into account by simple scaling laws, separating material behaviour from processing
conditions [51], [52]. This allows comparison of material properties independent of experimental
conditions and enables to correlate the extension diagram to the molecular structure of the melt
[9].
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Objective of this work

The objective of this work is to investigate Rheotens curves of various polymer melts and to
show the differences in melt strength, extensibility, and critical rupture stress. The existence
of various mastercurves will be proven. The experimental data will be correlated with the
molecular structure of the materials, focusing on the difference between linear and branched
polymers, and the effect of molecular weight distribution and long-chain branching. Also, the
relevance of the results for processing will be investigated.

The Rheotens test is a rather simple, isothermal experiment with an axissymmetrical geometry
of the spinline and well defined boundary conditions. Therefore it will be used as a prototype
industrial flow for benchmarking different enhanced constitutive equations and numerical
simulation codes. The critical task, as it turns out, is the correct prediction of extrudate
swell from a given die geometry.

To obtain a more fundamental understanding of the conditions in the spinline, the local velocity
distribution needs to be measured. Based on this information, a more detailed analysis of the
Rheotens test will be used to develop a model which allows to extract the elongational viscosity
from Rheotens measurements.
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2 The Rheotens Experiment

2.1 Experimental Set-up

The following experimental set-up (fig. 2.1) is used for all the experiments described. An
extruder (manufacturer Extrudex, screw diameter 25 mm, screw length 20 D) serves as a melt
feeder, operated in pressure controlled mode. After a cross head (with a channel diameter
DZ of 8 mm) several capillary dies (tab. 2.1) can be assembled. The pressure regulating the
feedback loop is measured in front of the die entry. The flow rate can be kept steady in this
mode without using a gear pump, the deviation is less than ±1 % during half an hour. The
flow rate and hence the extrusion velocity v0,

v0 =
ṁ

ρA0

, (2.1)

with ṁ being the mass flow rate, ρ the melt density, and A0 the cross section of the die, is
measured by weighting the extruder output for at least two minutes.

RHEOTENS

M

P

p      const.

Figure 2.1: Experimental set-up for Rheotens measurements.

The polymer strand is extruded continuously and after a spinline length L is taken up by the
wheels of the Rheotens. In a Rheotens test, these wheels turn with a slowly increasing velocity
v and draw down the polymer strand. The resistance of the material against this drawdown is
then measured by a force balance in the arm onto which the wheels are fixed. This results in
an extension diagram, force F as a function of drawdown velocity v (fig. 2.2). At the start of
the experiment, the velocity of the Rheotens wheels is adjusted in such a way that it is equal
to the actual velocity vs of the strand. Therefore, if a material exhibits extrudate swell at the
die exit, vs is smaller than the extrusion velocity v0 calculated from eq. (2.1). The signal of
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die diameter D0 die length L0 entrance cone

2 mm 60 mm 180o

2 mm 20 mm 180o

2 mm 2 mm 180o

2 mm 60 mm 50o

2 mm 30 mm 50o

2 mm 2 mm 50o

Table 2.1: Capillary dies used for Rheotens experiments.

the force balance is equal to zero at the starting point, as the material is not yet elongated.
The force signal can be calibrated with defined weights. During the experiment the velocity
of the Rheotens wheels is accelerated slowly, and thereby a drawdown velocity v is applied
to the polymer strand. The resulting force signal F is measured until rupture of the strand.
The maximum force at rupture is also referred to as melt strength (MS), while the maximum
velocity is called drawability of the melt.

0 200 400 600 800 1000

v   [mm/s]        

0

5

10

15

20

F
   

[c
N

]  
   

   

LDPE1
T = 190 oC, v0 = 48 mm/s

Drawability

Melt strength

Draw resonance

vs

Figure 2.2: Rheotens curve: Melt strength as a function of drawdown velocity.

At higher draw ratios, the experimental curves start to oscillate, an effect which is called draw
resonance. It is a fluctuation of the fibre diameter in the spinline, which is explained in detail
in [12]. The onset of draw resonance is of practical importance for fibre spinning processes,
where a uniform fibre diameter is required, but will not be considered in the following.
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The acceleration of the drawdown velocity can be varied over a broad range. As can be seen
in fig. 2.3, the acceleration factor acc has an influence on the onset of draw resonance and the
maximum drawability. High acceleration results in higher drawability and later onset of draw
resonance than low acceleration. The curves are compared to a measurement at stationary
condition, where the drawdown velocity is increased manually and a steady state value of the
force signal is obtained after a short time. It is not possible to obtain steady-state values in the
region of draw resonance. Slow acceleration leads to a maximum drawability smaller than values
obtained in steady state, and also is disadvantageous because it increases the measurement time
considerably. High acceleration leads to an increased drawability but difficulties arise due to
the very fast experiment. The intermediate value of acc = 24 mm/s2 was therefore used for all
experiments. The comparison with the stepwise increase of the drawdown velocity demonstrates
that the Rheotens is operated in quasi stationary condition.

0 5 10 15 20 25

V = v/v0   [-]        

0

5

10

15

20

F
   

[c
N

]  
   

   

acc = 120 mm/s2

acc =  60  mm/s2

acc =  24  mm/s2

acc =  6.0 mm/s2

acc =  2.4 mm/s2

stationary condition

LDPE1
T = 190 oC, v0 = 48 mm/s

Figure 2.3: Rheotens curves measured at different accelerations acc of the drawdown velocity,
and by a stepwise increase of the drawdown velocity (stationary condition).

The experiment can be considered to be isothermal, even without a heating chamber around
the polymer strand, if the following conditions are fulfilled: the spinline length L is less than
150 mm, the die diameter D0 is at least 2 mm, and the extrusion velocity v0 is higher than
50 mm/s. For such conditions, the local temperature has been measured by Laun and Reuther
[29] with a mini-thermocouple especially developed for this purpose, confirming a temperature
decrease of less than 15 K. For lower flow rates, strong cooling effects can be observed. This
often is a problem if the Rheotens is used in combination with a capillary rheometer where
the piston length limits the flow rate and duration of the experiment. Dies with a small
diameters also cause cooling problems. To overcome these, a heating chamber would need to
be assembled. Dies with larger diameter are not recommended as a thick polymer strand will
be squeezed strongly in the gap between the Rheotens wheels, causing flow disturbances.

5



The general reproducibility of the experiment is high, as shown in fig. 2.4, where an experiment
has been repeated several times. The starting velocity vs might vary depending on the strand
length below the wheels, which should either be extremely short to avoid an influence of gravity,
or always have the same length. As cutting the strand often results in the strand turning around
the wheels, a defined strand length of around 0.5 m below the wheels is recommended. Here
the influence of the weight of the strand is up to 3 g, certainly depending on the material, and
getting less in the course of the experiment as the fibre is elongated. The main influence of this
weight is on the value of the starting velocity vs, which therefore, and due to the fact that it is
adjusted manually, is not a good reference to characterise the experiment.
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Figure 2.4: Reproducibility of Rheotens measurements.

A major source of error can arise from pressure transducers which are not (well) calibrated.
The pressure transducer needs to be calibrated at the temperature of the experiment, and the
calibration needs to be checked at regular intervals. This is necessary to ensure that for the
same material, same die and same spinline configuration, the mass flow rate can be reproduced
at constant pressure. Otherwise a direct comparison at constant extrusion pressure leads to
misleading results.

The Rheotens originally was developed to test polyolefine melts. This indicates that it is not
necessarily suitable for testing all types of polymeric materials. Resolution and accuracy of
the force signal is limited to ±0.1 cN. Typical spinning materials, and also injection moulding
grades, have a melt strength less than 2 cN, and therefore can not be measured accurately.
Also, low viscosity materials have a tendency to stick to the wheels of the Rheotens disabling
the measurement. Different wheels, for example with a smooth metal surface, can be tried to
overcome this problem, also a solvent or coolant can be applied to avoid sticking. On the other
hand, most film blowing or extrusion grades can be measured without greater difficulties.

The advantages of this experimental set-up, Rheotens plus extruder, can be summarised as
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follows: the extruder provides a continuous process, in which high flow rates and short residence
times can be realised. It can be operated at constant pressure as well as at constant flow
rate. However, it is not suitable for probing small amounts of material. For this purpose, the
combination of a Rheotens with a capillary rheometer is recommended.

There are two types of Rheotens testers available, the design shown in fig. 2.1 with two turning
wheels and the data acquisition program Extens, and the new design with a second pair of
wheels below the first one. This lower pair of wheels does not influence the measurement but
directs the strand downwards to avoid sticking. This can be advantageous for low viscosity
materials, but causes problems for materials with high extrudate swell because then the gap
between the second pair of wheels is too narrow. The maximum velocity of the new Rheotens
was extended to 1800 mm/s compared to the old one which is limited to 1200 mm/s. The new
data acquisition program Rheotens.97 has a higher resolution of force and velocity signal than
Extens. Most of the experiments reported here were measured with the old Rheotens as the
new one was only available from 1999 onwards.

2.2 Evaluation of spinline profiles by means of Laser-Doppler
velocimetry (LDV)

If one wants to derive elongational viscosity values from Rheotens curves, the local elongation
rate ε̇(x) at each point of the spinline needs to be known. This information does not result
from the Rheotens curve directly but can be measured contact-free by optical methods. The
procedure used was to keep the velocity of the Rheotens wheels constant, measure the force at
steady-state condition, and evaluate the velocity of the strand along the spinline with a Laser-
Doppler velocimeter (fig 2.5). The instrument used is a LSV-065 manufactured by Polytec
[43].

RHEOTENS

M

P

p      const.
diode laser

Bragg
cell

detector

lens

�

Figure 2.5: Experimental set-up including Laser-Doppler velocimeter.

A laser beam (wavelength 760 nm, power 10 mW) is splitted into two parts which are focused on
the surface of the flowing polymer melt. The reflected signal is detected by an optical system.
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It is transmitted to the control unit LSV-200 and evaluated by Fast Fourier Transformation,
resulting in an absolute velocity value. The distance between laser and polymer strand is
approximately 100 mm and needs to be focused in such a way that the two laser beams meet
exactly at the centre of the strand surface. With accurate adjustment of the beam it is possible
to measure even colourless polymer melts without adding tracer particles.

The laser is mounted onto a tripod with a scale, so it can be moved up and down along the
spinline. Usually, for a spinline length of 100 mm, measurement points were taken in 5 mm steps
from the die exit downwards to the wheels. The tripod used for the experiments was adjusted
manually with an accuracy of ±1 mm. This could be increased considerably by positioning the
laser with a computer controlled step motor.

Fig. 2.6 gives a typical example of velocity profiles along the spinline for different draw ratios,
while the corresponding Rheotens curve is given in fig. 2.7. It can be seen that close to the die,
the velocity in the spinline is lower than the extrusion velocity v0 due to extrudate swell, but
with higher drawdown velocity swelling is prevented by a higher pulling force. For moderate
draw ratios, the velocity increases nearly linear with the distance from the die, which has been
described as constant strain rate spinning by Shridhar [47]. For higher draw ratios, this increase
is overproportional, resulting in the thinning of the strand radius r, which is shown in fig. 2.8.
The local spinline radius r(x) is calculated from the local velocity v(x) by

r(x) =
D0

2

√
v0

v(x)
(2.2)
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Figure 2.6: Velocity profile along spinline length x for different draw ratios.

As velocity measurements are taken under stationary conditions, no data can be obtained for the
draw resonance region because of velocity and force fluctuations. The velocity at the Rheotens
wheels is measured by two independent methods: (1) by the speed of rotation of the Rheotens
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Figure 2.7: Rheotens curve (stationary condition) derived from fig. 2.6.
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Figure 2.8: Filament radius r along spinline length x derived from velocity profiles of fig. 2.6.
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wheels, which is measured together with the pulling force, and (2) by the optical system. In
the example given in fig. 2.6 and 2.7, the two velocity values agree very well. Still, as can best
be seen in fig. 2.8, the measured velocity values close to the wheels lead to small discontinuities
in the fibre radius, which must be attributed to experimental error. Possible sources of error,
for example slip at the Rheotens wheels, are discussed in the following paragraphs.

Depending on the gap between the Rheotens wheels, it might be impossible to measure the
actual velocity of the polymer between the wheels, as the laser beam has a diameter of around
1.5 mm. If the gap is smaller, for example for materials which do not exhibit extrudate swell
or at high draw ratios, the velocity of the metal wheels is measured instead of the velocity of
the polymer, or no valid signal can be obtained at all. But under constant force extension, the
velocity at a certain distance from the die is independent of the overall spinline length, which
is illustrated in fig. 2.9. It needs to be noted that experiments under constant force conditions
are difficult to perform, as already small variations of the force signal can lead to considerable
changes of the corresponding velocity, which explains the small deviations visible.
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Figure 2.9: Velocity profile for different spinline length L under constant force extension.

The result of fig. 2.9 can be used to overcome the experimental problem of measuring end
effects at the wheels: Only the spinline up to a certain distance from the wheels is taken into
account. The draw ratio corresponding to this reduced spinline length is calculated from the
velocity measurement of the LDA. This spinline length and the corresponding draw ratio are
then used to recalculate the whole Rheotens curve. Uncertainties originating for example from
slip at the wheels are thus eliminated.

If slip is present between the polymer melt and the Rheotens wheels, this alters the shape
of the Rheotens curve considerably. For a material with high extrudate swell, fig. 2.10 shows
the discrepancy between the laser measurement and the real Rheotens wheel velocity at the
end of the spinline, which cannot be attributed to measurement errors only. It indicates that
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Figure 2.10: Velocity profile along spinline. Imposed velocity of the Rheotens wheels is indicated
by open circles. Constant gap between the wheels.
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slip is present between the strand and the wheels. The gap between the Rheotens wheels was
set to 2 mm for all draw ratios. On the other hand, as illustrated in fig. 2.11 for the same
extrusion conditions, the problem of slip at the wheels can be reduced by narrowing the gap
with increasing drawdown. During this experiment the gap was reduced to 1.2 mm for the
highest drawdown force. However, this is only possible if the velocity is increased stepwise, and
not in the automatic acceleration mode.

If Rheotens curves are measured to obtain technological information, quite often it will be
sufficient to do without the time consuming evaluation of the spinline velocity. As high
extrudate swell increases the problem of slip, it is advantageous to reduce swell by using
long extrusion dies and a smooth entry cone for the measurements. Also, measurements with
constant acceleration should be reproduced with a stepwise increase of velocity to probe if slip
influences the result.

However, if more detailed information is demanded, for example to compare the measurements
to simulation results, the velocity distribution along the spinline is an important information
to quantify the predictability of constitutive equations and numerical schemes. Experimental
difficulties with end effects at the wheels should then be overcome by evaluating the draw ratio
at a reduced spinline length and relying on the accuracy of the velocity measurement with the
Laser-Doppler velocimeter rather than the nominal velocity data indicated by the Rheotens.

2.3 Material Characterisation

In the following section, the material properties of the polymers investigated are listed. The
emphasis of the experimental work is on branched low density polyethylene melts (LDPE1 -
LDPE9), but also linear low (LLDPE1 - LLDPE2) and high density polyethylene (HDPE1 -
HDPE2) was investigated. A linear polypropylene (PP1) was compared to a branched one
(PP2). In addition to the semi-crystalline polymers mentioned so far, the amorphous materials
polystyrene (PS1) and polycarbonate (PC1 - PC3) were investigated.

Tabs. 2.2 - 2.7 give an overview of the material properties as given by the material suppliers.
Not all product names and suppliers of the resins can be mentioned due to confidentiality. In
addition, measurements of storage and loss modulus and the complex viscosity of the polymers
are documented in Appendix A. The linear relaxation time spectrum at a reference temperature
of 260 oC for polycarbonate and 190 oC for all other materials is also included into figs A.1 -
A.17.

The material selection was influenced by the shear viscosity level of the melts, as a low viscosity
would cause experimental problems for the Rheotens test, like sticking of the polymer strand to
the wheels of the Rheotens, or a too small force signal. Therefore suitable resins are extrusion,
film blowing, or blow moulding grades, and not injection moulding or spinning materials.

Low Density Polyethylene (LDPE)

The LDPEmelts selected differ in the production process. While LDPE1-LDPE6 were produced
in a tubular reactor, LDPE7-LDPE9 originate from an autoclave reactor, which causes a
different branching structure [23]. LDPE1 was the standard material for the Rheotens test,
as it was used for many basic investigations, like the reproducibility of the experiment. This
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melt is similar to the well known Melt I from the investigations of the IUPAC Working Party on
Structure and Properties of Commercial Polymers [36]. Melts LDPE4 - LDPE9 have the same
density at room temperature. Therefore all differences the materials exhibit can be related to
differences in average molar mass, molar mass distribution, or branching structure.

MFI190/2.16 η0190oC ρ23 oC Mw Mw/Mn Tm

Name Resin
[g/10min] [Pas] [kg/m3] [g/mol] [oC]

LDPE1 Lupolen 1800H/BASF 1.46 17000 919 300000 17.6 108

LDPE2 Lupolen 3020D/BASF 0.25 72400 926 248000 13.4 114

LDPE3 Lupolen 3040D/BASF 0.25 69700 927 215000 11.3 115

LDPE4 0.95 21700 924 119000 4.85

LDPE5 2.1 8240 923 113000 5.82

LDPE6 Lupolen 2410F/BASF 0.7 28800 924 144000 6.7 130

LDPE7 0.3 59100 921 175000 12

LDPE8 0.93 15600 921 130000 5.95

LDPE9 2.1 5740 921 115000 6.8

Table 2.2: Material properties of LDPE melts.

Linear Low Density Polyethylene (LLDPE)

The two LLDPE melts have the same MFI, but were produced with different catalysts and
therefore exhibit a different branching structure. Affinity PL1880 is a polyolefine plastomer
(POP), produced by a metallocene catalyst, while the ethylene octene copolymer Dowlex
NG5056E was produced by a conventional Ziegler-Natta catalyst.

MFI190/2.16 η0190oC ρ23 oC Mw Mw/Mn Tm

Name Resin
[g/10min] [Pas] [kg/m3] [g/mol] [oC]

LLDPE1 PL1880/DOW 1.04 7950 902 116400 2.1 103

LLDPE2 NG5056E/DOW 1.04 12650 920 105000 3 119

Table 2.3: Material properties of LLDPE melts.

High Density Polyethylene (HDPE)

Both high density polyethylene melts have a broad molecular weight distribution and no
measurable amount of long-chain branching. They show similar molecular characteristics but
differ in processing behaviour.

13



MFI190/5 η0190oC ρ23 oC Mw Mw/Mn Tm

Name Resin
[g/10min] [Pas] [kg/m3] [g/mol] [oC]

HDPE1 Stamylan 8621/DSM 0.98 275000 958 205000 34 131

HDPE2 Stamylan X1010/DSM 1.15 71700 957 195000 35 131

Table 2.4: Material properties of HDPE melts.

Polypropylene (PP)

PP1 is a linear polypropylene homopolymer, while PP2 was treated with irradiation and
therefore has long-chain branches. PP2 was thoroughly investigated by Kurzbeck [24], [25].
The material was provided from the University of Erlangen.

MFI230/2.16 η0190oC ρ23 oC Mw Mw/Mn Tm

Name Resin
[g/10min] [Pas] [kg/m3] [g/mol] [oC]

PP1 Novolen 1100H/BASF 2.4 24600 910 163

PP2 3.9 23700 909 586600 9.5 162

Table 2.5: Material properties of PP melts.

Polystyrene (PS)

PS1 is a standard polystyrene and was used as an example for an amorphous material.

MFI200/5 η0190oC ρ23 oC Tg

Name Resin
[cm3/10min] [Pas] [kg/m3] [oC]

PS1 PS 168N/BASF 1.15 97000 1050 100

Table 2.6: Material properties of melt PS1.
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Polycarbonate (PC)

The polycarbonate melts have been investigated in order to correlate their rheological properties
with the results of extrusion experiments by Krohmer [21], [22].

MFI η0260oC ρ23 oC Tm

Name Resin
[g/10min] [Pas] [kg/m3] [oC]

PC1 Lexan/GE 8.7 (300 oC, 2.16 kg) 5810 1200

PC2 Makrolon/Bayer 10.4 (300 oC, 1.2 kg) 1800 1200 148

PC3 Makrolon/Bayer 2.2 (300 oC, 1.2 kg) 14400 1200 148

Table 2.7: Material properties of PC melts.
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3 Rheotens Mastercurves

In the original contribution introducing the Rheotens test [35], Meissner suggested to compare
different materials on the basis of a constant mass flow rate through the extrusion die. This
procedure was followed by many investigators [17], [18], [16], [32], and can be used for a
qualitative comparison of different materials. Effects of branching structure as well as viscosity
differences of the materials can be observed by this method, but they cannot be separated from
each other.

In the following section a concept of mastercurves suggested by Wagner et. al. [53], [56], [52]
is introduced, which is based on comparison of Rheotens curves at constant extrusion pressure
and consequently constant wall shear stress. Using the extrusion pressure as a reference is
derived from investigations e.g. of Han [20], who showed that extrudate swell of a polymer is
temperature dependent if measured as a function of the wall shear rate, and is temperature
independent, if measured as a function of the wall shear stress.

3.1 Temperature Invariant Mastercurves

Verification of Temperature Invariance

Fig. 3.1 shows Rheotens curves F (v) of melt HDPE1 at an extrusion pressure of 95 bar at five
different temperatures. From these, the stress curves σ(v) in fig. 3.2 can be derived. σ is the
real stress at the end of the spinline between the Rheotens wheels,

σ =
F

A
=

F V

A0

, (3.1)

where A is the cross section of the strand at the end of the spinline, A0 the cross section of the
die and V the drawdown ratio,

V =
v

v0

. (3.2)

For thermo-rheologically simple materials, the time-temperature superposition principle is valid
[46]. For semi-crystalline polymers, it can be described by the Arrhenius equation with a shift
factor aT ,

aT = exp

[
E

R

(
1

T
− 1

Tref

)]
, (3.3)

with E being the activation energy, R the gas constant, and T and Tref absolute values of the
temperature in Kelvin.

The flow rate at different temperatures and at constant extrusion pressure is inverse
proportional to aT ,

v0(T ) = a−1
T v0(Tref). (3.4)
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Figure 3.1: Rheotens curves F (v) for melt HDPE1. p = 95 bar, T = 170 oC - 250 oC.
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Figure 3.2: Rheotens curves σ(v) for melt HDPE1. p = 95 bar, T = 170 oC - 250 oC.
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Investigations of Han [20] prove that extrudate swell at the exit of a capillary die is constant
at constant wall shear stress independent of temperature. A swell ratio SR can be defined as

SR =

√
v0

vs
, (3.5)

with v0 being the extrusion velocity and vs the real strand velocity at F = 0, where swelling
occurs undisturbed of the drawdown force. Tab. 3.1 gives the swell ratios for melt HDPE1
corresponding to the Rheotens curves shown in fig. 3.1:

T [oC] v0 [mm/s] vs [mm/s] SR
170 50.2 30.1 1.29
190 69.3 42.5 1.28
210 92.6 57.1 1.27
230 121.1 73.2 1.29
250 158.8 95.2 1.29

Table 3.1: Extrudate swell of melt HDPE1 at p = 95 bar and T = 170 oC - 250 oC.

It can be seen that the swell ratio is indeed the same for all temperatures within experimental
error. So the differences of the Rheotens curves at different temperatures result not from their
swelling behaviour but are caused by the dependence of flow rate on extrusion temperature.
As this is described by the shift factor aT , a mastercurve can be obtained by a shifting
procedure. Dividing the velocity of the Rheotens wheels v by the extrusion velocity v0 causes all
experimental curves to fall together onto a mastercurve, which is given in fig. 3.3 as a function
of the drawdown force F (V ), and in fig. 3.4 as a function of the stress σ(V ) at the Rheotens
wheels.

Temperature invariant Rheotens mastercurves can also be reported for other linear polymers
like PP (fig. 3.5). Exceptions at temperatures close to the melting point are found, which
have been explained as flow-induced crystallisation for example by Ghijsels [16]. Temperature
invariant Rheotens mastercurves exist for long-chain branched polymers like LDPE [56] (fig. 3.6)
as well.

The existence of Rheotens mastercurves has certain experimental advantages: homopolymers
with strongly different melting points or melt indices are directly comparable irrespective of
the melt temperature if investigated at constant pressure, thus avoiding problems with a very
low force signal caused by a low viscosity at high temperatures. Also, the temperature can
be selected in such a way, that no melt fracture is visible on the polymer strand. Melt
strength differences of different homopolymers investigated at constant pressure can directly
be attributed to structural differences of the materials considered.

Exceptions from Temperature Invariance Caused by Wall Slip

In fig. 3.3, a demonstration of temperature invariant Rheotens mastercurves is given for melt
HDPE1 at a pressure of 95 bar. For the same material, Rheotens curves at various temperatures
have been measured at 125 bar (fig. 3.7). Surprisingly, extrusion at 170 oC results in a
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Figure 3.3: Temperature invariant Rheotens mastercurve F (V ) for melt HDPE1. p = 95 bar.
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Figure 3.4: Temperature invariant Rheotens mastercurve σ(V ) for melt HDPE1. p = 95 bar.
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Figure 3.7: Rheotens curves F (V ) for melt HDPE1. p = 125 bar, T = 170 oC - 230 oC.

significantly higher force level than observed at higher temperatures, for which invariance is
found again. In addition, it can be seen that the flowrate for the experiment at 170 oC is
higher than the flowrate at 190 oC. Measuring the output characteristic of the extruder at
170 oC shows that at a pressure of 114 bar, corresponding to an apparent wall shear stress τap
of approximately 0.29 MPa, a sudden change towards wall slip conditions (stick-slip transition)
is visible as the flowrate increases at approximately constant pressure. At higher pressures, the
output characteristic at an extrusion temperature of 170 oC stays above the one at 190 oC.
This indicates that at 170 oC a stick-slip transition occurs at 114 bar.

To investigate wall slip in more detail, additional capillary rheometry was carried out. An
automatic nitrogen pressure driven capillary rheometer (AKVM), which was developed by the
Polymer Laboratory of BASF AG [28], [31] was used for this purpose. The extrusion pressure for
this type of capillary rheometer is imposed by nitrogen gas. Hence the pressure can be measured
and controlled accurately. The mass flow rate is measured directly by the displacement of a
floating piston on top of the polymer melt. Flow curves with imposed pressure can be measured
with high precision.

Following the method of Mooney [40], wall slip is analysed as follows: as long as the material
sticks to the wall, the shear stress/shear rate relation is unique and independent of die radius.
As soon as the material starts to slip at the wall, a dependence of the apparent shear rate on
the die radius R is observed. To calculate the effective wall shear rate, a slip component has to
be subtracted from the apparent shear rate. Stick-slip transition is indicated by an increase of
shear rate at constant shear stress.

For melt HDPE1, capillary rheometry with four different dies was carried out and is reported
in [8]. As a result the critical stress at which the stick-slip transition occurs is confirmed. It
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can be seen in fig. 3.8 that for 170 oC, stick-slip transition is found at a pronounced lower
wall shear stress (approximately 0.29 MPa as in the output characteristic of the extruder) than
for higher temperatures, explaining the deviation of the 170 oC Rheotens curve in fig. 3.7.
This particular wall slip phenomenon has already been described by Wang [59], [58] as low
temperature anomaly for linear polyethylene melts.
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Figure 3.8: Apparent wall shear stress as a function of apparent shear rate for melt HDPE1 at
170 oC, 190 oC, and 210 oC. Surface distortions visible above the stick-slip transition.

A similar effect can be reported for another linear Polyethylene melt, LLDPE2 [8]: again stick-
slip transition causes a sudden deviation of Rheotens curves to higher force levels. But already
at shear stresses below the stick-slip transition this material exhibits partial wall slip (fig. 3.9),
resulting in a gradual deviation of the Rheotens curve from the mastercurve (fig. 3.10). The
effect is temperature dependent, at lower temperatures higher absolute wall slip velocities are
found by Mooney’s method. For this particular material slip has also be reported by Lee and
Mackley [33], who showed that a slip boundary condition is necessary to model extrusion of
LLDPE2 correctly.

Summarising this section it can be said that while for branched polyethylene melts Rheotens
mastercurves are found at constant wall shear stress independent of temperature, linear
polyethylene melts can exhibit wall slip causing deviations from the mastercurve.

3.2 Molar Mass Invariant Mastercurves

A similar argument as above can be used to prove that Rheotens curves of polymer melts
differing in molar mass are invariant with respect to the average molar mass M , if their relative
molar mass distribution MWD is similar. The molar mass shift factor aM is given by
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aM =
η0(M)

η0(Mref )
=

(
M

Mref

)3.4

, (3.6)

where η0 is the zero shear viscosity, which for homopolymers scales with the power 3.4 of the
(weight average) molar mass M .

Again for constant extrusion pressure, the relation

v0(M) = a−1
M v0(Mref ) (3.7)

holds.

Therefore invariance of Rheotens mastercurves with respect to changes of the average molar
mass (for similar molar mass distributions) exist if measurements are taken at constant
extrusion pressure. This means that if Rheotens curves are compared at constant extrusion
pressure and are plotted as tensile force vs. draw ratio, any influence of temperature and
average molar mass drops out.

Differences of Rheotens mastercurves for different grades of the same homopolymer therefore are
only related to differences of molar mass distribution and branching structure. As demonstrated
by Wagner at. al. [56], a higher degree of long-chain branching and a broader molar mass
distribution cause a higher degree of strain hardening. This results in a higher drawdown
force at higher draw ratios, which is in agreement with earlier results from measurements at
constant elongation rate and constant tensile stress of Muenstedt and Laun [41], and Meissner
and Hochstettler [37].

This is demonstrated in fig. 3.11, where a comparison of Rheotens curves for melts LLDPE1
(narrow MWD), LDPE6 (LCB) and HDPE1 (broad MWD) is given. The different amount of
strain-hardening of such materials has been reported by Meissner and Hostettler [37].

To demonstrate the influence of structural differences on melt strength, LDPE grades produced
by different reactor technologies are compared in fig. 3.12. LDPE4, LDPE5, and LDPE6 are
tubular grades while LDPE7 and LDPE8 were produced in autoclave reactors, and therefore
have a different branching structure. The MFR values of the materials differ, but by direct
comparison at the same reference extrusion pressure, it is possible to detect a distinctive
difference in melt strength, leading to the well known result that autoclave materials have
higher melt strength than tubular grades [17], [26]. This can be explained by the difference
in branching structure caused by the production process: Polymers produced in an autoclave
reactor have a more tree-like structure and more long-chain branching, while tubular reactors
produce a more comb-like structure [23].

3.3 Rheotens Supermastercurves

Rheotens experiments are very often performed in combination with a capillary rheometer as a
melt feeder instead of the extruder set-up described in this work. With a capillary rheometer,
one is usually forced to prescribe the flow rate, and not the extrusion pressure in front of the
die. Therefore the concept of Rheotens supermastercurves [56] is now explained which allows
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Figure 3.11: Comparison of Rheotens curves for melts LLDPE1, LDPE6, and HDPE1.
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interpolation of Rheotens diagrams measured at constant flow rate (and measured extrusion
pressure) in such a way, that the Rheotens diagrams for any reference extrusion pressure can
be obtained. A pre-condition for this procedure is, however, that the experiments are carried
out quasi-isothermally, which is usually guaranteed at high enough flow rates.

If Rheotens curves measured at different extrusion pressures are compared, one cannot expect
to find a mastercurve simply by plotting force as a function of draw ratio as in the case of
constant extrusion pressure. One observes increasing melt strength and decreasing drawability
with increasing flow rate (fig. 3.13). Mastercurves can only be found by an additional shifting
procedure. As explained in [56], the stress curves can be shifted horizontally by dividing the
draw ratio by an additional shift factor b. This corresponds to a Rheotens supermastercurve
b · F = f(V/b) (fig. 3.14), where the shift factor b is a function of the flow rate and hence the
extrusion pressure, as illustrated in fig. 3.15 for melt PC1.
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T = 260 oC, L0/D0 = 30mm/2mm/50o, L = 100mm

Figure 3.13: Rheotens experiments at constant temperature and various flow rates for melt
PC1.

As can be seen in fig. 3.15, the shift factor b as a function of flow rate as well as of extrusion
pressure can be fitted by a straight line in a log-log plot. Interpolation for all intermediate
pressures is therefore possible. Melt PC1 can for example be compared to melt PC2 and melt
PC3, at an extrusion pressure of 200 bar (fig. 3.16), which has not been measured for melt PC1.
The shift factor b needed is (from fig. 3.15) b = 0.92. As a result one finds pronounced structural
differences between the three PC types: PC3 has a very low melt strength, which causes it to
be unsuitable for extrusion processes [21], [22], while PC1 as well as PC2 can successfully be
used for profile extrusion.
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3.4 Concept of Grandmastercurves

Experimental Evidence

Finally, the concept of mastercurves is extended to variations of die and spinline geometry
as well as flow rate variation. In fig. 3.17, Rheotens curves for 4 different die and spinline
geometries at 4 flowrates are reported [52]. Tab. 3.2 lists the processing conditions of the
experiments. (These experiments were performed without pressure control, which explains the
differences of flowrate at constant die geometries and pressure. However, all statements derived
from these data remain valid.)

Plotted as a function of the draw ratio (fig. 3.18), all Rheotens curves show a similar shape
and a certain ordering of the curves appears. Initially, the tensile force increases linearly with
the draw ratio and reaches a nearly horizontal plateau at high draw ratios, with differently
pronounced oscillations due to the draw resonance effect. Closer analysis of fig. 3.18 reveals
that for higher extrusion velocities v0, higher drawdown forces (melt strength) and lower draw

Die L0/D0 Spinline L p = 50 bar p = 70 bar p = 90 bar p = 120 bar
15 100 mm 20.4 mm/s 51.7 mm/s 116 mm/s 292 mm/s
15 50 mm 29.5 mm/s 68.5 mm/s 144 mm/s 344 mm/s
30 100 mm 7.0 mm/s 13.6 mm/s 25.3 mm/s 53.2 mm/s
30 50 mm 6.7 mm/s 13.7 mm/s 24.8 mm/s 52.7 mm/s

Table 3.2: Extrusion velocity v0 for Rheotens experiments in fig. 3.17.
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Figure 3.17: Drawdown force F (v) for melt LDPE1, variation of flowrate, die and spinline
geometry.

ratios to break (extensibility) are observed. At high values of v0, the filament can no longer be
extended to break due to the maximum drawdown speed of the Rheotens. A shorter extrusion
die or a shorter spinline length for the same v0, causes higher drawdown forces and lower draw
ratios to break.

If the tensile stress σ instead of the force F is plotted vs. the draw ratio V (fig. 3.19), it is
obvious that all experiments result in similar Rheotens curves, irrespective of the differences
in die and spinline geometry or mass flow rate. As in the case of temperature invariance, a
mastercurve can be found by a horizontal shift. However, the shifting is now done with respect
to the drawdown ratio V , and not to the drawdown velocity v. A shift factor b is defined, by
which all curves are shifted onto a reference curve with b = 1, hence

σ = σ
(
V

b

)
. (3.8)

The result of the shifting procedure is shown in fig 3.20 and leads to a mastercurve, which
now is called grandmastercurve, as it includes flow rate variations as well as different die and
spinline geometries. The shift provides a best fit of the curves between 0.1 and 1 MPa, as
smaller stresses are severely influenced by the weight of the polymer strand below the wheels.
The oscillations in the draw resonance region do not superimpose, as they are influenced not
only by the draw ratio but also by the absolute drawdown velocity.

The grandmastercurve for the drawdown force can be obtained as
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Figure 3.19: Drawdown stress σ(V ) for melt LDPE1. Variation of flowrate, die and spinline
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Figure 3.20: Rheotens grandmastercurve σ(V/b) for melt LDPE1 (reference L0/D0 = 15,
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b F =
σ(V/b)A0

(V/b)
, (3.9)

which describes a shift of the force curves of fig. 3.18 under 45 oC in a log-log plot. The result
is shown in fig. 3.21.

The corresponding shift factors b are presented in fig. 3.22 a) as a function of the extrusion
velocity v0. A value of b greater than 1 means less preshear in the extrusion die compared to
the reference, hence either a lower flow rate for the same die geometry or a longer die for the
same flow rate. b greater than 1 corresponds also to a longer spinline length for the same die
geometry and flow rate as the reference.

Furthermore, an attempt is made to establish a direct connection between b and the processing
conditions. These are reflected by the extrudate swell and hence by Vs, the relative velocity at
the start of a Rheotens curve (for F = 0). It should be noted that VS does not represent the
undisturbed swelling of the material after exiting the die but is influenced by the drawdown,
hence it also changes with the spinline length. This means that VS in the way as it is defined
here, fully represents the processing conditions.

If the shift factor b is plotted as a function of VS (fig. 3.22 b)), it can well be represented by
a linear relationship, even though deviations from the grandmastercurve are significant around
F = 0. (The deviation seen at a very small flow rate is caused by cooling effects.) The shift
factor b can therefore be related directly to the processing conditions.

This result was confirmed by experiments of Laun [29], who reported that for a wide variation
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Figure 3.21: Rheotens grandmastercurve for melt LDPE1.
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of die geometries, Rheotens curves of a LDPE can be shifted onto a grandmastercurve. The
shift factors, plotted as a function of the inverse extrudate swell, also fall onto a straight line.

The existence of Rheotens grandmastercurves allows to separate between material properties,
which are reflected by the grandmastercurve, and processing conditions. The latter are
represented by the shift factor b. Thus, for a given material, the knowledge of the
grandmastercurve and the shift factor b allows prediction of Rheotens diagrams for all processing
conditions. If Rheotens experiments are performed at constant mass flow rate, the shift factor
b for an intermediate extrusion pressure can be obtained by interpolation.

Theoretical Argument

The existence of Rheotens grandmastercurves has been demonstrated experimentally, but can
also be supported by a general theoretical argument suggested by Wagner et. al. [52]. It
includes Rheotens grandmastercurves, supermastercurves, as well as mastercurves.

As seen from fig. 3.17, the measured tensile force F at the take-up is a complex function of the
properties of the polymer melt on the one hand, and of the geometry of die and spinline, as
well as the processing conditions (extrusion pressure p, extrusion velocity v0, melt temperature
T , and drawdown velocity v) on the other hand:

F = F (polymer, geometry, processing conditions). (3.10)

The temperature condition in the spinline is considered to be isothermal, and the effects of
gravity, inertia, air drag, and surface tension are neglected. The tension σ = σ(L) in the
polymer melt at the end of the spinline between the wheels of the Rheotens, depends only on
the rheological prehistory: it is assumed to be a function of the Deborah number De,

σ = σ(De). (3.11)

The Deborah number De is defined as the ratio of a characteristic material time tm to a
characteristic process time tpz. As characteristic material time tm a reference retardation time
can be chosen. The characteristic process time tpz is simply the residence time of a melt particle
in the spinline of length L, i.e., tpz = L/v. Hence,

De =
tm
tpz

=
tm
L/v

, (3.12)

or, in terms of the nondimensional draw ratio,

De =
tm v/v0

L/v0

=
V

L/(v0 tm)
. (3.13)

L/(v0 tm) is equivalent to a draw ratio Vm, therefore

De =
V

Vm
. (3.14)
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Vm corresponds to the draw ratio necessary to extend the melt to a certain characteristic tension
σm, which is used as a reference.

Inserting eq. (3.14) into eq. (3.11) leads to

σ = σ
(
V

Vm

)
= σ(Vr), (3.15)

where Vr is the relative draw ratio

Vr =
V

Vm
. (3.16)

Therefore, if the melt tension σ is plotted as a function of the relative draw ratio Vr, this results
in a mastercurve, which is invariant with respect to changes in the rheological prehistory (melt
temperature, extrusion pressure or mass flow rate, die geometry, and spinline length).

As the drawdown force F is the product of tension σ and cross section A(L) = A0/V at the
take-up of the strand (with A0 being the cross section of the die)

F =
σ A0

V
, (3.17)

invariance of the force-extension diagram is obtained as

Vm F (V ) =
σ(Vr)A0

Vr
= Fr(Vr), (3.18)

from eqs. (3.15), (3.16), and (3.17), i.e., if Vm F is plotted as a function of the reduced draw
ratio Vr.

Instead of determining Vm explicitly for the reference tension σm, one experimental curve is
chosen as a reference curve which is characterised by a specific reference draw ratio Vb. The
measured σ(V ) curves are shifted onto this reference curve. Defining a shift factor b,

b =
Vm

Vb
, (3.19)

the mastercurve for melt tension σ, eq. (3.15), can be expressed as

σ = σ

(
V/b

Vb

)
= σ(V/b), (3.20)

and the mastercurve for the drawdown force corresponding to eq. (3.18) by

b F (V ) =
σ(V/b)A0

V/b
= Fr(V/b). (3.21)
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Eqs. (3.20) and (3.21) are called Rheotens grandmastercurves [52]. They contain as special cases
the Rheotens supermastercurves [56], [55], [51] (invariance with respect to changes in mass flow
rate or extrusion pressure at constant geometry of die and spinline) and Rheotens mastercurves
[53] (invariance with respect to changes of temperature and average molar mass of the polymer
melt at constant extrusion pressure and constant geometry of die and spinline). Their existence
has been demonstrated experimentally for several polymer melts in the preceding sections.

In general, i.e., in the case of Rheotens grandmastercurves, for a given polymer melt the shift
factor b depends on the L0/D0 ratio of the die, the length L of the spinline, and either the die
exit velocity v0 and the melt temperature T or the wall shear stress τ in the die [52], respectively,

b = b(L0/D0, L, v0, T ) = bτ (L0/D0, L, τ). (3.22)

For supermastercurves (i.e., in the case of constant geometry), b depends only on the die exit
velocity v0 and the melt temperature T or the wall shear stress τ in the die, respectively [56],
[55], [51],

b = b(v0, T ) = bτ (τ). (3.23)

In the case of mastercurves at constant extrusion pressure p or constant wall shear stress τ [53],
the shift factor v reduces to

b = 1, (3.24)

as under these process conditions the reference draw ratio Vm is invariant with respect to melt
temperature changes, i.e., Vm ≡ Vb.

Hence, for thermo-rheologically simple materials, a theoretical background for the existence of
Rheotens grandmastercurves, supermastercurves and mastercurves has been given. While the
Rheotens grandmastercurve accounts for the material behaviour of a specific polymer, the shift
factor b is related to the processing conditions of the experiment. Rheotens grandmastercurves
therefore allow a direct and quantitative comparison of the drawability of polymer melts.

3.5 Critical Rupture Stress

The experimental findings reported in the previous sections can also be used to investigate the
rupture stress of the fibres. To do so, a critical rupture stress needs to be defined. While other
authors , e.g. [29], use a fitted, smooth Rheotens curve for the calculation of the rupture stress
in order to overcome the influence of the draw resonance, the maximum stress reached before
breaking of the fibre is defined in this work as the critical stress. An example is given in fig. 3.23
for melt HDPE2. The critical stress is reached at the smallest diameter of the fibre, where the
material fails by brittle fracture [15].

It can be seen that the rupture stress σB is largely independent of extrusion velocity as well as
die and spinline geometry. As shown in fig. 3.24 for HDPE1, σB is not temperature dependent.
The values of σB in figs. 3.24 and 3.25 have been corrected with ρ ·T according to investigations
of Wang [59],
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σB(T ) = σB(T0)
ρ0 T0

ρ T
, (3.25)

with T0 being the reference temperature of 463 K and ρ the melt density. The same result
is found for LLDPE2 (fig. 3.25), except for the crystallisation effect which is visible at low
temperatures.

On the other hand, as illustrated in fig. 3.26 for LDPE2, melt fracture lowers the stress level
at which rupture occurs [7]. This means that the experimental window in which the critical
rupture stress can be investigated by the Rheotens is limited: no surface defects must be visible,
also the maximum velocity of the Rheotens must not be reached.

A comparison of the rupture stress σB of all branched polyethylene melts investigated is given
in fig. 3.27. The autoclave LDPE melts (LDPE7 - LDPE10) show a tendency for a higher
rupture stress than the tubular LDPE melts (LDPE1, LDPE4 - LDPE6) [9], which can be
explained by a higher degree of long-chain branching produced in the autoclave [23]. A true
rupture stress in the range between 1 and 2 MPa is found for all LDPE melts.

Tab. 3.3 lists the rupture stress found for other materials. Linear PE melts as well as linear PP
show a considerably lower rupture stress in the range between 0.5 and 0.6 MPa. The amorphous
materials PS and PC have a rupture stress above 1 MPa, similar to the branched LDPE melts.

Material σB

LLDPE2 0.6 Mpa
PP1 0.6 MPa
PS1 1.2 MPa
PC1 1.4 MPa
PC2 1.2 MPa

Table 3.3: Rupture stress σB for various polymer melts.

In general, the Rheotens experiment provides a suitable means to evaluate rupture mechanisms
and rupture stress. This is not only important for fibre spinning, but also relevant to other
polymer processes. For example, the sharkskin phenomena can be explained by rupture of the
polymer surface at the exit of the extrusion die, as investigated by Rutgers and Mackley [34],
[45].
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Figure 3.23: Rupture stress σB for melt HDPE2 extracted from Rheotens curves σ(V ).
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4 Elongational Viscosity from Constant Force

Deformation Experiments

In a Rheotens experiment, elongation of the polymer melt is performed under the action of a
tensile drawdown force, and not at a prescribed elongation rate. A direct conversion of the
Rheotens diagram, where the tensile force is plotted as a function of the drawdown speed, into
a relation between uniaxial elongational viscosity and elongation rate is not possible. For this,
a rheological model is needed.

In the following, two concepts are introduced, which allow to extract the information on the
elongational viscosity of a polymer melt from Rheotens curves either by use of an analytical
model or by a more general solution. These apparent elongational viscosities calculated
from Rheotens experiments are compared to steady-state viscosities derived from elongational
experiments performed at constant elongation rate, and to shear viscosities.

4.1 Analytical model

The analytical model [52] is based on experimental evidence about the velocity distribution
along the spinline. The data points were measured using the Laser-Doppler-Velocimeter (LDV),
which gives more accurate results than the photographical method which was published in [52].

As can be seen in fig. 4.1, the local velocity increases approximately linearly with the spinline
length x below a critical value of the draw ratio Vp. This linear regime was already reported
by several reserchers, and Sridhar and Gupta [47] termed it ”constant strain-rate spinning”.
For draw ratios higher than Vp, an overproportional increase of the velocity with x can be
observed. Comparing the different spinline profiles in fig. 4.1 shows that the critical draw ratio
Vp is largely independent of the drawdown force, and therefore is a constant in the analytical
model.

Hence the model distinguishes between two regimes, a linear one (1) for V ≤ Vp and a nonlinear
regime (2) for V > Vp, where V increases overproportionally with x.

(1) Linear regime: V ≤ Vp

In the linear regime, the elongation rate ε̇(x) = ∂v(x)/∂x is constant and given by

ε̇ =
v0

L
(V − Vs) (4.1)

Vs = v(x = 0)/v0 is the extrapolated starting point of the drawdown and describes the inverse
of the effective extrudate swell of the filament, caused by the viscoelastic deformation of the
polymer melt in the extrusion die. Vs is assumed to be constant and independent of the
drawdown force F . F is then obtained from the kinematics as

F = Fp
V − Vs

Vp − Vs
. (4.2)
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Figure 4.1: Filament velocity v along the length x of the spinline for LLDPE1. Measurements
(symbols) by LDV, compared to the prediction of the analytical model (lines).

Fp is the drawdown force necessary to achieve the critical draw ratio Vp, and the critical tensile
stress σp at the end of the spinline. This corresponds to a linear increase of the drawdown force
F with increasing draw ratio V up to the critical force Fp, which is illustrated in fig. 4.2 for the
Rheotens curve corresponding to the spinline profiles in fig. 4.1.

This linear increase is called the ”viscoelastic startup” regime due to the fact that the
elongational viscosity increases with increasing deformation, as in the case of constant strain
rate extension. Here, the apparent elongational viscosity can be calculated as

η =
σp

(v0/L) (Vp − Vs)

(
V

Vp

)
, (4.3)

where σp is the melt tension at the critical draw ratio Vp,

σp =
Fp Vp

A0

. (4.4)

(2) Nonlinear regime: V > Vp

The overproportional increase of the velocity for V > Vp can be described by a power-law
dependence of the tensile stress on the extension rate, with a power-law index n < 1:

σ(x) ∼
(
∂v(x)

∂x

)n

(4.5)
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Figure 4.2: Rheotens curve corresponding to the experiments shown in fig. 4.1

As seen in fig. 4.1 this power-law does describe the experimental data quite well. It can also
be supported theoretically: for V > Vp, the melt has reached a quasi steady-state and further
deformation is purely viscous. Thus, the critical draw-ratio Vp indicates the amount of stretch
necessary to reach the quasi steady-state.

Using Huyn and Ballman’s solution for a power-law model [3], the drawdown force F is
calculated as

F = Fp P (V ) (4.6)

with

P (V ) = 1 +
n

(n− 1)

Vp

(Vp − Vs)



(
V

Vp

) (n−1)
n

− 1


 . (4.7)

The extension rate ε̇ = ε̇(L) at the end of the spineline can then be obtained as

ε̇ =
v0

L
(Vp − Vs)

(
V

Vp

) 1
n

P (V ). (4.8)

The apparent elongational viscosity η = η(L) at the end of the spinline is found to be
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η =
σp

(v0/L) (Vp − Vs)

(
V

Vp

) (n−1)
n

. (4.9)

Thus the analytical model has four free parameters: the effective extrudate swell described by
Vs, the critical draw ratio Vp and the corresponding critical tensile force Fp, which indicate the
quasi steady-state, and the power law index n. These parameters are obtained by the following
procedure: Eq. (4.2) and (4.6) are fitted simulataneously to a reference Rheotens curve by use of
a modified Levenberg-Marquardt procedure. The shift factors b for Rheotens curves measured
at different processing conditions are fitted to this reference curve simultaneously. The quality
of the fit is shown in fig. 4.3 for LLDPE1. The reference curve is the one shown in fig. 4.2, and
the processing conditions are indicated in the figure. The following values of the parameters
were found: Vs = 0.77, Vp = 2.3, Fp = 3.6 cN, and n = 0.62.
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Figure 4.3: Comparison of experimental Rheotens curves for melt LLDPE1 and fit by the
analytical model.

The apparent elongational viscosities calculated from the Rheotens curves are presented in
fig. 4.4. The abrupt change of slope at the critical tension σp indicates the transition from the
viscoelastic startup to viscous deformation, and is due to the simplifications of the model. The
power law index n found by fitting the Rheotens data is similar to the one observed in shear.
It can be seen that increasing the rate of preshear (corresponding to increasing the extrusion
velocity v0) leads to a lower level of the apparent elongational viscosity. This also is the key to
the legend of fig. 4.4 and the following plots where apparent elongational viscosity values are
shown: For each die length, the extrusion velocities of the experiments are given, the smallest
v0 corresponds to the highest apparent elongational viscosity curve.
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Figure 4.4: Apparent elongational viscosity for melt LLDPE1 calculated from Rheotens curves
by use of the analytical model. Also shown is the elongational viscosity calculated from RME
data [5] as well as 3 times the shear viscosity.

4.2 Similarity model

This model is based on the assumption that the elongational viscosity in the Rheotens test is
a function of the draw ratio only, i.e. η = η(V ). This is plausible as the drawdown is the
dominant deformation in the Rheotens experiment.

Like the analytical model, this model is based on a detailed knowledge of the velocity
distribution along the spinline (with x = 0 at the exit of the extrusion die and x = L at
the wheels of the Rheotens). This information is mainly needed to calculate the elongation rate
at the end of the spinline (x = L), while the corresponding tensile stress is calculated from the
pulling force and the local diameter at x = L. In the following, we distinguish between two
cases: Vs is independent (1) or dependent (2) on the drawdown force.

(1) Vs is independent of the drawdown force, i.e. Vs = �c

Fig. 4.5 is a sketch of the velocity distribution along the spinline for two different drawdown
forces Fx and FL as a function of x.

Obviously, the following considerations are valid:

(a) Drawdown force FL results in draw ratio VL at length L.
(b) Drawdown force FL results in draw ratio Vx on length x.
(c) Drawdown force Fx results in draw ratio Vx on length L.
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Figure 4.5: LDV measurement of the velocity distribution along the fiber in case Vs = �c.

From the conservation of momentum for constant force along the spinline it follows that

F =
A0 v0

v(x)
σ(x) = �c, (4.10)

leading to

σ(x) =
F

A0 v0

v(x). (4.11)

Assuming that the elongational viscosity is a function of the draw ratio only, the following
constitutive equation is valid:

σ(x) = η(V ) ε̇(x) = η(V )
dv

dx
(4.12)

From (4.11) and (4.12) and subsequent integration the following expression for the force F is
found:

F = A0

v0

x

V (x)∫
Vs

η(V ′) d ln V ′ (4.13)
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Eq. 4.13 is now applied to the considerations (a), (b), (c) above:

from (a) follows FL = A0

v0

L

VL∫
Vs

η(V ′) d ln V ′ (4.14)

from (b) follows FL = A0

v0

x

Vx∫
Vs

η(V ′) d ln V ′ (4.15)

from (c) follows Fx = A0

v0

L

Vx∫
Vs

η(V ′) d ln V ′ (4.16)

The integrals in eqs. (4.15) and (4.16) are equal, therefore

FL x = Fx L or Fx = FL
x

L
or x = L

Fx

FL

, (4.17)

which means that the coordinates x and corresponding forces Fx are simply proportional to
each other. This allows to convert a velocity profile V (x) = V (L Fx

FL
) into a portion of the

Rheotens curve F = F (V ) and vice versa. Therefore this model is called the similarity model.

For the LLDPE experiment shown in fig. 4.1 and 4.2, the resulting force curve calculated from
the spinline velocity profiles according to eq. (4.17) is given in fig. 4.6. The resulting force curve
agrees well with the original Rheotens curve, demonstrating the validity of the similarity model.
Also, as shown in fig. 4.7, the local velocity distribution along the spinline as calculated from
the model agrees with the experimental data. This result has been obtained by calculating Fx

from eq. 4.17 and finding the corresponding Vx on the Rheotens curve fitted by the similarity
model.

From the constitutive equation suggested in (4.12), the apparent elongational viscosity η = η(V )
can be calculated by differentiating eq. (4.13),

η(V ) =
1

A0

L

v0

d F

d ln V
. (4.18)

On the other hand, the following relation for the force is valid,

F =
A0

V
σ =

A0

V
η ε̇, (4.19)

and therefore the elongation rate ε̇ can be expressed as

ε̇ = ε̇(x = L) =
v0

L

(
d ln F

d V

)−1

. (4.20)
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Figure 4.6: Force curve resulting from the conversion of velocity profiles according to the
similarity solution (4.17) for melt LLDPE1.
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Eqs. (4.18) and (4.20) represent a general scheme to convert Rheotens curves into apparent
elongational viscosities. Consistency with the analytical model can be checked in the following
way. If eq. (4.2) for V ≤ Vp and eq. (4.6) for V > Vp are differentiated and inserted into
eqs. (4.18) and (4.20), the resulting expressions for elongation rate ε̇ and viscosity η are found
to be identical to eqs. (4.1) and (4.3) for V ≤ Vp, and eqs. (4.8) and (4.9) for V > Vp. Thus,
the analytical solution is a special case of the similarity model.

The result of this conversion is finally given in fig. 4.8. Due to differentiation of the Rheotens
curve, no discontinuity of the viscosity curve as in the analytical model is found, but in general
the result remains the same. The fitting routine used is again a modified Levenberg-Marquardt
procedure with 4 free parameters: Vs, n, and two fitting parameters a1 and a2. The empirical
relation between force and draw ratio which is used to fit the experimental Rheotens curves is
the following:

F = a1

(
V
Vs

− 1
)

[
1 + a2

(
V
Vs

− 1
)( 1−n

n )
]( n

1−n)
. (4.21)

The following fitting paramters were used to calculate the result in fig. 4.8: a1 = 2.47, a2 = 0.13,
Vs = 0.77, and n = 0.44. The value of n is different than the one from the analytical model,
which is caused by the slightly different shape which the equations for the force of the two
models give.
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Figure 4.8: Apparent elongational viscosity calculated from Rheotens curves by use of the
similarity model for melt LLDPE1. Also shown is the elongational viscosity calculated from
RME data [5] as well as 3 times the shear viscosity.
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(2) Vs is a function of the drawdown force: Vs = Vs(F )

For many polymer melts however, a stronger dependence of the starting velocity on the
drawdown force Vs = Vs(F ) is found, as is illustrated in fig. 4.9 for LDPE2. If this is the
case, neither the analytical model nor the version of the similarity model given above are valid
any more. However, the similarity model can be extended in such a way, that a nin-constant
value of Vs for different drawdown forces can be handeled.
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Figure 4.9: Filament velocity v along the length x of the spinline for melt LDPE2.
Measurements (symbols) by LDV.

Fig. 4.10 gives a sketch of the modified conditions in this case. The stretch ratio λ = V/Vs

is defined with an individual value of Vs, Vs(F ), corresponding to each drawdown force F . A
similar argument as in the case of constant Vs is valid under the assumption η = η(λ).

The force F can be calculated as follows:

F = A0

v0

x

λ(x)∫
1

η(λ′) d ln λ′ (4.22)

Hence the same analogon as in the case of Vs = �c is found:

Fx = FL
x

L
or x = L

Fx

FL
(4.23)

The conversion of velocity profiles into the original Rheotens curve F (V ) is given in fig. 4.11 a)
and compared to the conversion as a function of λ according to eq. (4.23) in fig. 4.11 b). Only
in the case of fig. 4.11 b) a unique curve is found.
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It is important to note that also the original Rheotens curve needs to be replotted as a function
of λ, with each value of the draw ratio V being divided by the corresponding starting draw
ratio Vs, which is given in the table inserted in fig. 4.11 b).

The apparent elongational viscosity η(λ) and the corresponding strain rate ε̇ can be calculated
according to

η(λ) =
1

A0

L

v0

d F

d ln λ
(4.24)

and

ε̇ = ε̇(x = L) =
v0

L

(
d ln F

d λ

)−1

(4.25)

In fig. 4.12 the results are compared of converting the Rheotens curve for melt LDPE2 as a
function of V according to eqs. (4.18) and (4.20), and as a function of λ according to eqs. (4.24)
and (4.25). A difference in the level of the elongational viscosity is visible, but the shape of
the curves is similar. However, the influence of Vs varying with the pulling force F cannot be
neglected.

From a practical point of view, this additional shifting procedure is unfavourable, as the
information on the reduction of swelling by the drawdown force and thus the variation of Vs with
F is not available from the standard Rheotens test. Therefore the Rheotens the experimental
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Figure 4.11: Force curve resulting from the conversion of velocity profiles according to the
similarity solution (4.23) for melt LDPE2. Values Vs(F ) neccessary for the conversion are
indicated.
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Figure 4.12: Apparent elongational viscosity calculated from Rheotens curves by use of the
general solution as a function of V and λ for melt LDPE2. Also shown is the elongational
viscosity calculated from RME data [5] as well as 3 times the shear viscosity.

conditions are investigated under which the similarity solution for constant Vs is valid. These
should be applied, if the main interest of the Rheotens measurement is to extract elongational
viscosities.

For the following melts, velocity profiles have been measured by LDV and are reported in
appendix B: LDPE1, LDPE2, HDPE1, HDPE2, LLDPE1. For the same materials, and
additionally for PP1 and PS1, elongational viscosities have been measured with the extensional
rheometer RME by Bastian [5] (for LDPE1 experimental results of a slightly different material,
Lupolen 1810H from BASF, are used). The normalised elongational viscosity (steady-state
values calculated from the MSF theory) are compared in fig. 4.13 to illustrate the amount of
strain hardening exhibited by the different melts. Also included into fig. 4.13 are data on melt
PP2, which was investigated by Kurzbeck with a Muenstedt type elongational rheometer [24],
[25]. Both LDPE melts (due to long chain branching), as well as melt HDPE1 (presumably due
to a high molecular weight tail) show pronounced strain hardening. Melt PP2 is an example
for a branched polypropylene which also shows significant strain hardening. On the contrary,
the other, linear materials hardly show any strain hardening effect.

Tab. 4.1 illustrates for which materials and which die geometries the similarity assumption
is valid either for constant Vs (case (1)) or for increasing Vs as a function of the drawdown
force (case(2)). Obviously, the similarity assumption is only valid under certain experimental
conditions. Only for LLDPE1, a constant Vs is found for all die geometries. For the
strain hardening materials, the similarity assumption is not valid for all the dies, increasing
discrepancy with increasing L/D ratio of the die is found. To distinguish between LDPE1 and
LDPE2, the swelling behaviour is also taken into account, as the amount of strain hardening is
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Figure 4.13: Normalised steady-state elongational viscosity of different polymer melts.

similar. From experiments at constant extrusion pressure it can be seen that LDPE1 exhibits
more extrudate swell than LDPE2. Hence for the material with higher elasticity, the influence
of the drawdown force on Vs is less pronounced.

In conclusion, either high extrudate swell (caused by high elasticity) or low strain hardening
minimises the influence of the drawdown force on the velocity close to the exit of the
extrusion die. Therefore to calculate elongational viscosities from Rheotens experiments, it
is advantageous to perform measurements by use of short dies which cause a high level of
extrudate swell.

Material L0/D0 = 1 L0/D0 = 15 L0/D0 = 30

LDPE1 Vs = �c Vs = Vs(F ) Vs = Vs(F )

LDPE2 Vs = Vs(F ) - -

HDPE1 Vs = Vs(F ) - -

HDPE2 Vs = Vs(F ) Vs = Vs(F ) Vs = Vs(F )

LLDPE1 Vs = �c Vs = �c Vs = �c
PP1 Vs = Vs(F ) - -

Table 4.1: Validity of the similarity assumption for different materials and die geometries.
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4.3 Comparison of apparent and true elongational viscosity

For comparison of apparent and true elongational viscosities [4], the true steady-state
elongational viscosity is obtained from experimental data of Bastian [5] (with the exception
of melt PP2, where experimental data and material were provided by Kurzbeck [24]). Startup
experiments in uniaxial elongation with the elongational rheometer RME result in transient
elongational viscosity data. These are described by the MSF theory [50], [44], and the plateau
of the steady-state viscosity is fitted to the measurements. Hence the steady-state elongational
viscosity is known and can be compared to the analysis of Rheotens experiments. For some
of the materials it was necessary to shift the steady-state viscosity to the temperature of the
Rheotens experiment by use of the Arrhenius relation.

The comparison is presented for LLDPE1 (fig. 4.8), LDPE1 (fig. 4.14), LDPE2 (figs. 4.12 and
4.15), HDPE1 (fig. 4.16), HDPE2 (fig. 4.17), PP1 (fig. 4.18), PP2 (fig. 4.19), and PS1 (fig. 4.20).
For simplicity, the conversion of Rheotens curves to elongational viscosities was made under the
assumption that Vs is a constant, independent of the drawdown force. Additionally, Appendix C
contains examples for several other LDPE melts, where the comparison to the analytical model
is given (figs. C.1 - C.4). For all examples , the apparent elongational viscosity calculated
from Rheotens experiments shows first a viscoelastic startup behaviour turning into a viscous
power-law behaviour after a critical tension is reached. The power-law index is similar to the
one found in steady-state extension and in shear.

The apparent elongational viscosities extracted from the Rheotens curves obviously do not
match the steady-state viscosity obtained or extrapolated from the RME experiments. This is
caused by the preshear of the material in the extrusion die. High preshear (corresponding to a
high extrusion velocity v0) leads to a lower level of elongational viscosity, which was also found
by the analytical model. The different polymer grades differ in the amount of strain hardening
and also in the amount of reduction of the apparent viscosity due to preshear.

The LDPE melts (figs. 4.14 and 4.15), which have a high degree of long-chain branching,
show pronounced strain hardening, i.e. the true steady-state elongational viscosity shows a
pronounced maximum, before it decreases with increasing deformation rate, in line with the
shear viscosity. The apparent elongational viscosities extracted from the Rheotens curves also
show this strain hardening effect clearly: for low extrusion velocities, the steady-state level is
nearly reached and the shape of the curves is very similar (except for the start-up, which is
much influenced by the absolute value of Vs). For high extrusion velocities the level of the
apparent elongational viscosity is still considerably higher than three times the shear viscosity.
This means that close to typical industrial processing conditions, the strain hardening effect
of LDPE melts remains significant, even after extrusion. This is also true for the long-chain
branched melt PP2 (fig. 4.19). In this case, however, the steady-state elongational viscosity
level is not reached, even at small extrusion velocities. A possible explanation is that the long-
chain branches of this melt are parallised to the backbone of the macromolecule, which causes
the apparent viscosity to drop considerably.

Concerning the linear materials, HDPE1 (fig. 4.16) is a melt which shows some strain hardening
of the true steady-state elongational viscosity. This is drastically reduced by extrusion, and at
higher strain rates, the apparent elongational viscosity derived from Rheotens measurements is
close to three times the shear viscosity, which is also true for HDPE2 (fig. 4.17). For the other
linear materials, LLDPE1, PP1, and PS1 (figs. 4.8, 4.18, 4.20), the apparent viscosities are
found to be inbetween steady-state elongational viscosity and three times the shear viscosity.
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For none of these melts the apparent viscosity is found to be above the steady-state elongational
viscosity, nor is a level below three times the shear viscosity reached within the accuracy of the
model. Hence the steady-state viscosities in elongation and shear limit the polymer rheology
which is found under processing conditions by use of the Rheotens test. This is in agreement
with an earlier statement of Laun and Schuch [32]: ”There is evidence that uniaxial elongation
represents the upper limit of strain hardening, whereas simple shear seems to characterize the
lower limit of strain softening”.
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Figure 4.14: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt LDPE1.
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Figure 4.15: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt LDPE2.
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Figure 4.16: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt HDPE1.
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Figure 4.17: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt HDPE2.
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Figure 4.18: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt PP1.
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Figure 4.19: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt PP2.
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Figure 4.20: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt PS1.
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4.4 Relevant Processing Conditions for the Approximation of

Elongational Viscosities

Finally, the aim is to find test conditions for Rheotens measurements, which result in a good
approximation of the steady-state elongational viscosity. This is done for those melts where the
similarity model was found to be valid for the short die (L0/D0 = 1), LDPE1, LLDPE1, and also
for LDPE2 and HDPE1, where it is only an approximation. It is also attempted for a selection
of LDPE melts (and the results are given in Appendix C), for which a sufficient amount of
experimental data at constant processing conditions (long die L0/D0 = 30) is available.

The following procedure was used and is shown for the example of LDPE1 in detail. A set
of Rheotens curves measured at different flowrates and constant die (L0/D0 = 1) and spinline
geometry is fitted by the similarity model (fig. 4.21). Obviously, the apparent elongational
viscosity calculated from the Rheotens curve with v0 = 15 mm/s is already close to the steady-
state elongational viscosity, but slightly too low. Therefore, the dependence of the shift factor b
on the extrusion velocity v0 is extrapolated to lower flowrates (fig. 4.22). A processing condition
(v0, b) is selected in such a way, that the resulting apparent elongational viscosity matches the
maximum of the steady-state elongational viscosity approximately (fig. 4.23). This can only be
achieved by an iterative procedure. The final result is already included into figs. 4.21 - 4.23,
with a shift factor of b = 1.46 leading to a corresponding extrusion velocity of v0 = 13 mm/s.
This means that a Rheotens curve can be calculated from the supermastercurve, which results
in an apparent elongational viscosity approximating the steady-state viscosity.
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Figure 4.21: Comparison of experimental Rheotens curves for melt LDPE1 and fit by the
similarity model. Also shown is the Rheotens curve (*) from which an approximation of the
elongational viscosity is calculated and shown in fig. 4.23.
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Figure 4.22: Dependence of shift factor b on extrusion velocity v0, needed for shifting of Rheotens
curves onto the grandmastercurve for melt LDPE1.
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Figure 4.23: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt LDPE1. Also shown is the
approximation of the steady-state elongational viscosity (*) calculated from Rheotens curve (*)
shown in fig. 4.21.
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Closer analysis of fig. 4.23 reveals that in the viscoelastic startup region, a viscosity higher than
three times the shear viscosity is predictd. But if shear viscosity data are available, the Trouton
viscosity could be used instead. Although the decrease of viscosity at higher elongation rates
according to the power law is somewhat steeper than the original steady-state elongational
viscosity curve, a combination of three times the shear viscosity (in the range of linear material
behaviour) and the apparent elongational viscosity calculated from the Rheotens curve with
v0 = 13 mm/s (in the range of nonlinear material behaviour) results in a good approximation
of the steady-state elongational viscosity.

Figs. 4.24 - 4.26 present similar results for melts LLDPE1, LDPE2, and HDPE1, where also
Rheotens curves measured by use od the short die with L0/D0 = 1 were the basis of the
calculation. For LLDPE1, no extrapolation to a lower flowrate was necessary, the data for
v0 = 14 mm/s already match the steady-state elongational viscosity. For melts LDPE2 and
HDPE1, extrapolation to lower extrusion velocities was carried out.

Investigation of the processing conditions leading to the Rheotens curve from which the steady-
state elongational viscosity is estimated is necessary, as the main interest certainly is not to
fit the steady-state elongational viscosity but to predict it. For melts LDPE1, LLDPE1, and
LDPE2, a value of v0 around 10 mm/s (± 50 %) for the particular die and spinline geometry
(L0/D0 = 1, L = 100mm) leads to an approximation of the steady-state elongational viscosity.
However, for melt HDPE1 extrapolation to a much smaller flowrate (v0 =1 mm/s) is necessary.

From figs. C.5 - C.9 in Appendix C where the steady-state elongational viscosities for
several LDPE melts are compared to those calculated from Rheotens measurements, the same
magniture of the extrusion flowrate (keeping all other parameters of the experiment constant)
leads to an approximation of the steady-state elongational viscosities. For the long die with
L0/D0 = 30 a value of v0 in the order of 8 mm/s (± 50 %) is found.

In conclusion this means that it is possible to approximate the steady-state elongational
viscosity by analysis of Rheotens experiments. It is recommended to use measurements with a
short die and a wide variation in flowrate. As it is easier to compare the apparent elongational
viscosity of different materials than to predict absolute values of the elongational viscosity,
all other parameters of the experiment, like the barrel before the die, must be kept constant.
It was not possible to define exact processing conditions, which for all materials lead to an
approximation of the steady-state elongational viscosity, but it certainly must be a low flowrate
avoiding high preshear. For LDPE melts, a processing condition can be specified by measuring
a well characterised melt like melt I and by comparing the apparent elongational viscosity to the
steady-state elongational viscosity from the literature [36]. Performing Rheotens experiments
with other LDPE melts at the same conditions (or, to avoid cooling at low flowrates, rather
extrapolating the measurements to this conditions), will then lead to a prediction of elongational
viscosity in the right order of magnitude.
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Figure 4.24: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt LLDPE1. Also shown is the
approximation of the steady-state elongational viscosity (*).
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Figure 4.25: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt LDPE2. Also shown is the
approximation of the steady-state elongational viscosity (*).
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Figure 4.26: Comparison of the steady-state shear and elongational viscosity to the apparent
elongational viscosity calculated from Rheotens curves for melt HDPE1. Also shown is the
approximation of the steady-state elongational viscosity (*).
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5 Numerical Simulation of the Rheotens Test

In this chapter, the detailed knowledge of the velocity distribution along the spinline of the
fibre measured by LDV is used to evaluate the quality of numerical simulation. To do so it is
important to select a constitutive equation which is capable to model the viscoelastic behaviour
of the polymer melt, as elasticity certainly plays a dominant role for the simulation of extrudate
swell. Also, mixed shear and elongational flow has to be taken into account. Therefore the
integral constitutive equation suggested by Wagner [49] has been selected for this analysis, as
it was tested widely for complex flows. It has been used by many researchers to model polymer
melt flow behaviour. For example, Goublomme and Crochet used it to calculate extrudate
swell [19], [11], and Mitsoulis reported results for fibre spinning, film blowing, and film casting
applications [39], [6], [38].

5.1 Integral Constitutive Equation

According to the integral constitutive equation as suggested by Wagner [49], the extra stress
tensor can be expressed as

σ(t) = −pE +

t∫
−∞

m0(t− t′)H(t, t′)C−1(t′) dt′, (5.1)

where p is the isotropic pressure, E the unit tensor, C−1(t′) the relative Finger strain tensor,
m0(t− t′) the memory function, and H(t, t′) the nonlinear damping functional.

The memory function is obtained from linear viscoelastic measurements and described by a
discrete relaxation spectrum with n components,

m0(t− t′) =
∂

∂t′
G0(t− t′) =

n∑
i=1

gi
λi

e
− (t−t′)

λi . (5.2)

The damping functional H(t) is derived from the damping function h(t), describing the nonlinear
behaviour of the polymer melt. Different empirical expressions for the damping function have
been found. The expression of Papanastasiou et. al (PSM) [42] is a function of the generalised
invariant I of the Finger strain tensor,

h(I) =
α

α + I − 3
, (5.3)

with I = βI1 + (1− β)I2, (5.4)

where

I1 = I2 = 3 + γ2 (5.5)
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in simple shear flow, and

I1 = e2ε + 2 e−ε and I2 = e−2ε + 2 eε (5.6)

in uniaxial elongational flow.

From the assumption of the irreversibility of network disentanglement [57], it follows that the
damping functional H(I) can only decrease, therefore

H(I) = Min[h(I)]. (5.7)

Another formulation of the damping function, the double exponential damping function
suggested by Laun [27] is also used,

h = f e−n1
√
I−3 + (1− f) e−n2

√
I−3. (5.8)

The integral constitutive equation (5.1) is capable to describe shear and uniaxial elongational
deformation correctly, but shows deficiencies in biaxial elongation and does not predict a second
normal stress difference [54]. But as the deformation in a spinning experiment is mainly
uniaxial, eq. (5.1) can be used to model the Rheotens test.

As an example, the linear and nonlinear material characterisation of melt HDPE1 is given in
detail. The linear relaxation time spectrum gi, λi (eq. (5.2)) is fitted to mastercurves of the
storage and loss moduli, G′, G′′ (fig. 5.1). These were measured by use of a Rheometrics DSR
200.

The nonlinear material characterisation is a more complicated task. The damping function in
shear was measured directly by step-strain measurements, performed on a RMS 800 in cone-
and-plate geometry at 230 oC, resulting in the relaxation modulus G(t, γ) (fig. 5.2), which
is independent of the shear deformation γ in the range of linear viscoelasticity, i.e. G(t, γ) =
G0(t), and decreases with increasing γ in the nonlinear range. The damping function hγ (fig. 5.3)
is calculated as

hγ(γ) =
G(t, γ)

G0(t)
. (5.9)

Eq. (5.8) represents the damping function expression which best fits the experimental data. In
shear, the first and the second invariant of the finger tensor, I1 and I2 are the same, and the
parameters f = 0.134, n1 = 0.095, and n2 = 0.39 are obtained by fitting the experimental
damping function in fig. 5.3. The parameters are confirmed by the agreement of the prediction
of eq. (5.1) with the steady-state shear viscosity (fig. 5.4). Finally, the parameter β is varied
in such a way that transient elongational viscosity data (fig. 5.5) are well described without
changing the shear parameters. The best fit is obtained by a value of β = 0.2.

65



5 10-2 5 10-1 5 100 5 101 5 102 5 103

ω   [s-1]        

5

103

5

104

5

105

5

G
’, 

G
" 

  [
P

a]
   

   
  

HDPE1
T = 190 oC

gi [Pa] λi [s]
3.776E+05 3.331E-04
1.296E+05 4.391E-03
6.631E+04 2.778E-02
3.096E+04 1.682E-01
1.237E+04 1.024E+00
4.143E+03 6.364E+00
1.238E+03 4.272E+01
3.889E+02 4.575E+02

E0 = 30.1 kJ/mol

Figure 5.1: Mastercurve of storage and loss modulus, G′ and G′′, for melt HDPE1 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure 5.3: Damping function hγ for simple shear flow of melt HDPE1. Experimental data
(symbols) and fit by eq. (5.8) (line).
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Figure 5.4: Steady-state shear viscosity for melt HDPE1 at 190oC. Experimental data (symbols)
and description by integral constitutive equation (5.1) (line).
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Figure 5.5: Transient elongational viscosity for melt HDPE1 at 190oC. Experimental data
(symbols) and description by integral constitutive equation (5.1) (lines).

5.2 The Simulation Program

In principle it is possible to solve a viscoelastic flow problem by a finite element aproach, where
the viscoelastic material behaviour is described by an integral constitutive equation. However,
the integral nature of the constitutive equation coupled with the free surface calculation of
the extrudate swell is likely to cause convergence problems. Also, the calculation is very time
consuming.

Instead, the simulation of the Rheotens test is done here on the basis of a semi-analytical
approach published by Fulchiron et. al. [14] using the program filage developed at the University
of St. Etienne, France, by Fulchiron and Carrot. The simulation is done stepwise, for a constant
drawdown velocity, in analogy to the experiments by LDV.

For a realistic material description, not only the drawdown of the fibre, but also the deformation
history in the extrusion die and the barrel need to be taken into account for the evaluation of
the Finger strain tensor. Hence the velocity field in front of the die exit must be known. In the
work of Fulchiron et. al., this velocity field does not result from a viscoelastic flow simulation,
but is assumed to be a Poiseuille tube flow of a power law fluid, an assumption, which can
be considered to be a realistic assumption. The second kinematic assumption is a constant
axial velocity after the die exit, which certainly is valid after a short distance from the die. The
velocity field description is shown in fig. 5.6. The influence of inertia and air drag are neglected,
gravitational forces are taken into account.

The calculation of the Finger tensor components is done using a procedure presented by Adachi
[1], [2] which is based on the Protean coordinate system described by Duda and Vrentas [13].
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Figure 5.6: Velocity field description for the simulation of isothermal melt spinning (Fulchiron
et. al. [14]).

This method is suited well for the description of steady, axisymmetric flow. Fast convergence of
the simulation is achieved by using a Newton iteration scheme. The program filage of Fulchiron
and Carrot runs on a personal computer without difficulties. The known parameters of the
problem are the volumetric flowrate, the geometrical data, the draw ratio, and the material
parameters for the integral constitutive equation (and additionally the pseudoplasticity index
n of the power law). From this set of data the corresponding drawdown force as well as the
velocity distribution along the spinline are calculated.

5.3 Modelling Results

Figs. 5.7 and 5.8 compare the predicted Rheotens curves for melt HDPE1 to experimental
results for two different dies with L0/D0 = 1 and L0/D0 = 30. It can be seen that for all
flowrates investigated, the simulation matches the experiments qualitatively well, especially
the force level at high draw ratios. However, the starting point of the predicted curves deviates
considerably from the experimental data, indicating that extrudate swell is highly overpredicted
by the integral model.

This is demonstrated in more detail in the following example for melt HDPE1: Fig. 5.9 shows
a) the experimental Rheotens curve measured by step-wise increasing drawdown, and b) the
resulting velocity profile along the spinline from LDV measurements. Fig. 5.10 presents the
corresponding simulation results, and fig. 5.11 a direct comparison of experiment and simulation
for the velocity profile at two point of the Rheotens curve, one with a small (V = 0.6), the other
with a high (V = 5.5) draw ratio. The numerical simulation predicts a higher extrudate swell,
corresponding to a lower draw ratio at drawdown force F = 0, than observed experimentally.
Also, the shape of the predicted Rheotens curve is too steep at low draw ratios and too flat at
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Figure 5.7: Rheotens curves of melt HDPE1 for various flow rates, die L/D = 30. Comparison
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high draw ratios. This is reflected in the velocity profiles: In the experiment, an influence of
the drawdown force on the extrudate swell observed is clearly visible, but this is not predicted
by the simulation. This means that during the experiment swelling is partly compensated by
the drawdown force, while the simulation does hardly show an influence of the drawdown force
on the velocity shortly after the die exit. This is overcompensated at the end of the spinline
length by a fast change of the draw ratio shortly before the take-up wheels.

The results of the numerical simulation of the Rheotens test can be summarised as follows:
The simulation predicts a higher degree of melt elasticity at the die exit than observed
experimentally, resulting in an overprediction of extrudate swell. This is compensated at
high draw ratios by a material response which is more viscous than found by experiments.
There is strong indication that the discrepancies seen between simulation and experimental
evidence have their origin in the formulation of the constitutive equation. A possible reason is
that the integral constitutive equation (5.1) used does not describe biaxial extension correctly,
and extrudate swell represents an equibiaxial extension. Another reason might be that the
formulation of irreversibility used (eq. (5.7)) does not describe the effect of irreversible network
disentanglement correctly, and extrudate swell represents a reversible deformation, where
irreversibility plays a significant role [19], [11]. The result of modelling the Rheotens test clearly
demonstrates the necessity to improve the constitutive modelling of the rheological behaviour
of polymer melts.
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Figure 5.9: a) Rheotens curve for melt HDPE1, experimental data.
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Figure 5.9: b) Velocity profile along Rheotens spinline corresponding to fig. 5.9 a),
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Figure 5.10: a) Rheotens curve for melt HDPE1, result of numerical simulation.
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Figure 5.10: b) Velocity profile along Rheotens spinline corresponding to fig. 5.10 a), result of
numerical simulation.
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Figure 5.11: a) Direct comparison of experiment and numerical simulation: Rheotens curve for
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6 Conclusions

The drawability of polymer melts is of great importance for many polymer processing
applications. The Rheotens test assesses the elongational properties of polymer melts and
results in an extension diagram, which presents the drawdown force of an extruded filament as
a function of the drawdown velocity. The experiment is fast and easy to perform with good
reproducibility and therefore is widely used in industry. It is known to be very sensitive, even
to small changes in the structure of polymer melts. In this work, the Rheotens test was used
to investigate the elongational behaviour of a wide variety of polymers with a special emphasis
on long-chain branched low density polyethylene.

The Rheotens experiment was extended in this work by means of a Laser-Doppler Velocimeter
(LDA) for a direct measurement of the local velocity of the polymer melt along the spinline
between the extrusion die and the take-up device of the Rheotens. This enabled us to verify the
measured drawdown velocity and could be used to derive the shape of the deformed filament.
This additional information was the basis of a model we suggested to calculate the apparent
elongational viscosity from Rheotens curves. It also allows a more detailed comparison between
experimental and simulation results.

The Rheotens test is very often used in a qualitative way: melt strength and drawability of
different polymer melts are compared at a standard processing condition (constant temperature
and flowrate in the extrusion die, and constant die and spinline geometry). However, this
procedure does not fully take into account the complex rheological prehistory in the extrusion
die. It also fails if materials with strongly different melting points or melt flow rates are to be
compared.

The existence of Rheotens mastercurves, shown by Wagner and co-workers [53], [56], [55], can
be used to overcome this problem. If Rheotens curves are compared on the basis of constant
pressure in front of the extrusion die, invariance with respect to temperature and average molar
mass is found. This was verified for a broad range of materials in this work. Furthermore,
exceptions from temperature invariance caused by (temperature-dependent) wall slip in the
capillary die as well as by flow induced crystallisation were found.

Rheotens mastercurves thus allow a direct and quantitative comparison of the elongational
behaviour of different polymer melts under the action of an imposed drawdown force. This can
be used to investigate how structural differences of the macromolecular chains influence the
material properties of a polymer. For example, we found that different production technologies
(tubular versus autoclave reactor) for the polymerisation of low density polyethylene result
in changes of the tensile force/drawdown speed diagram. Also, influences of the structure of
the macromolecular network can be reported on the rupture stress of polymer melts, which is
calculated from the force and draw ratio at rupture. The rupture stress is found to be lower for
linear polymers than for branched ones. The rupture stress measured by Rheotens experiments
is relevant for processing applications.

In general, the drawdown force measured in a Rheotens experiment is a complex function of
polymer melt properties, die and spinline geometry, as well as processing conditions (flowrate
and drawdown velocity). We proved that a simple scaling law exists, which quantifies the
influence of geometry and flowrate modifications on the Rheotens curves. This allows to
separate material behaviour from processing conditions. While the Rheotens Grandmastercurve
describes the polymer properties in a quasi-isothermal spinning experiment, the scaling factor
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gives the information about the processing dependence of the Rheotens curve. In this work,
the validity of this scaling law was demonstrated for linear and branched polyethylene melts,
as well as for polypropylene, polystyrene and polycarbonate. This enabled us to compare melt
strength and drawability of these melts quantitatively.

The calculation of the elongational viscosity from Rheotens experiments was an important
objective of this work, as experiments with elongational rheometers are time-consuming and
more difficult to perform. Two different models to extract elongational viscosities from Rheotens
curves were developed: the analytical model and the similarity model. They are based on the
assumption that the extensional viscosity in an experiment under constant force elongation is
a function of the draw ratio only. The validity of the assumptions on which the analytical and
the similarity model are based could be proved experimentally by LDA measurements.

The apparent elongational viscosity calculated from Rheotens curves strongly depends on the
rheological prehistory in the extrusion die. The viscosity curve is shifted to lower viscosities
and higher extension rates with increasing extrusion velocity. A large amount of preshear
lowers the apparent elongational viscosity to the level of three times the shear viscosity. Low
preshear on the other hand results in an apparent elongational viscosity of the same order of
magnitude as the steady-state elongational viscosity. The processing conditions resulting in a
good approximation of the steady-state elongational viscosity were identified, which enabled us
to predict the elongational viscosity.

The apparent elongational viscosity calculated from Rheotens curves depends on the prehistory
and therefore on processing conditions, while the steady-state uniaxial elongational viscosity is
measured starting from isotropic samples. A comparison of the two viscosities clearly shows
that preshear reduces the level of elongational viscosity considerably. This is of importance for
many processing applications, which are dominated by elongational flows, and links polymer
melt rheology to industrial practice.

Isothermal melt spinning is a prototype industrial flow: the polymer melt is first subjected to
shear flow in the extrusion die, which is followed by uniaxial extension under constant force
in the spinline. This coupling of shear and elongational flow in combination with the a priori
unknown free surface of the filament makes the Rheotens experiment a rather sophisticated
test for numerical simulation. It is necessary to use a viscoelastic constitutive equation for a
realistic flow description.

The calculations were carried out using the integral Wagner constitutive equation assuming
irreversibility of network disentanglement, and the simulation program filage of Fulchiron and
co-workers with simplifications regarding the velocity profile inside the extrusion die. This
allowed fast simulation with good convergence.

Comparison between simulated and measured Rheotens curves showed qualitative agreement of
force/drawdown speed diagrams. However, extrudate swell was quantitatively overpredicted.
This is caused by the formulation of the integral constitutive equation, which needs further
development.

In conclusion, we found the Rheotens experiment to be an appropriate and rather simple means
to assess the elongational behaviour of polymer melts under conditions which are relevant for
typical industrial processing applications. The existence of Rheotens mastercurves simplifies
the description of material behaviour in the spinline: simple scaling laws govern the relationship
between drawdown force and elongation and allow to separate polymer melt properties from
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processing conditions. Furthermore, the theoretical basis of the rheology of the Rheotens test
was extended leading to models by which apparent elongational viscosities can be extracted
from Rheotens measurements.
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[55] M.H. Wagner, V. Schulze, and A. Göttfert. Beurteilung der Spinnbarkeit von
Polymerschmelzen mit Hilfe von Rheotens - Masterkurven. KGK, 49:38 – 43, 1996.
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Figure A.1: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE1 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.2: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE2 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.3: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE3 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.4: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE4 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.5: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE5 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.6: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE6 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.7: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE7 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.8: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE8 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.9: Mastercurve of storage and loss modulus, G′ and G′′, for melt LDPE9 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.10: Mastercurve of storage and loss modulus, G′ and G′′, for melt LLDPE1 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.11: Mastercurve of storage and loss modulus, G′ and G′′, for melt LLDPE2 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.12: Mastercurve of storage and loss modulus, G′ and G′′, for melt HDPE2 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.13: Mastercurve of storage and loss modulus, G′ and G′′, for melt PP1 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.14: Mastercurve of storage and loss modulus, G′ and G′′, for melt PS1 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).

89



10-1 5 100 5 101 5 102 5 103 5

ω [s-1]       

101

5
102

5
103

5
104

5
105

5
106

G
’, 

G
" 

[P
a]

, η
* 

[P
as

]  
   

  

PC1
T = 260 oC

gi [Pa] λi [s]
8.329E+05 9.277E-04
1.679E+05 8.295E-03
3.114E+04 5.395E-02
4.142E+03 3.461E-01
2.607E+02 2.024E+00

Figure A.15: Mastercurve of storage and loss modulus, G′ and G′′, for melt PC1 at 260oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.16: Mastercurve of storage and loss modulus, G′ and G′′, for melt PC2 at 190oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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Figure A.17: Mastercurve of storage and loss modulus, G′ and G′′, for melt PC3 at 260oC.
Experimental data (symbols) and fit by the relaxation time spectrum, gi and λi (lines).
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B LDV measurements and the similarity model

92



0 20 40 60 80 100

x   [mm]        

0

1

2

3

4

5

6

V
 =

 v
/v

0 
  [

-]
   

   
  

T = 190 oC, v0 = 55 mm/s

V = 0.4 / F =   0    cN
V = 0.8 / F =  4.3  cN

V = 1.3 / F = 8.1   cN

V = 1.9 / F = 12.1 cN
V = 2.3 / F = 13.8  cN

V = 2.8 / F = 14.7  cN
V = 3.1 / F = 16.2  cN

V = 3.6 / F = 17.3  cN

V = 4.1 / F = 18.1  cN

V = 5.4 / F = 20.7  cNLDPE1
L0/D0 = 2mm/2mm/50o, L = 95 mm

Figure B.1: a) Filament velocity v along the length x of the spinline for melt LDPE1.
Measurements (symbols) by LDV.

0 1 2 3 4 5 6

V   [-]        

0

4

8

12

16

20

24

F
   

[c
N

]  
   

   

T = 190 oC, v0 = 55 mm/s

LDPE1
L0/D0 = 2mm/2mm/50o, L = 95 mm

Figure B.1: b) Force curve resulting from the conversion of the velocity profiles from fig. B.1 a)
according to the similarity solution for melt LDPE1.
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Figure B.2: a) Filament velocity v along the length x of the spinline for melt LDPE1.
Measurements (symbols) by LDV.
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Figure B.2: b) Force curve resulting from the conversion of the velocity profiles from fig. B.2 a)
according to the similarity solution for melt LDPE1.
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Figure B.3: a) Filament velocity v along the length x of the spinline for melt LDPE2.
Measurements (symbols) by LDV.
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Figure B.3: b) Force curve resulting from the conversion of the velocity profiles from fig. B.3 a)
according to the similarity solution for melt LDPE2.
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Figure B.4: a) Filament velocity v along the length x of the spinline for melt LDPE2.
Measurements (symbols) by LDV.
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Figure B.4: b) Force curve resulting from the conversion of the velocity profiles from fig. B.4 a)
according to the similarity solution for melt LDPE2.
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Figure B.5: a) Filament velocity v along the length x of the spinline for melt LLDPE1.
Measurements (symbols) by LDV.
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Figure B.5: b) Force curve resulting from the conversion of the velocity profiles from fig. B.5 a)
according to the similarity solution for melt LLDPE1.
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Figure B.6: a) Filament velocity v along the length x of the spinline for melt LLDPE1.
Measurements (symbols) by LDV.
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Figure B.6: b) Force curve resulting from the conversion of the velocity profiles from fig. B.6 a)
according to the similarity solution for melt LLDPE1.
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Figure B.7: a) Filament velocity v along the length x of the spinline for melt HDPE1.
Measurements (symbols) by LDV.
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Figure B.7: b) Force curve resulting from the conversion of the velocity profiles from fig. B.7 a)
according to the similarity solution for melt HDPE1.
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Figure B.8: a) Filament velocity v along the length x of the spinline for melt HDPE1.
Measurements (symbols) by LDV.
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Figure B.8: b) Force curve resulting from the conversion of the velocity profiles from fig. B.8 a)
according to the similarity solution for melt HDPE1.
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Figure B.9: a) Filament velocity v along the length x of the spinline for melt HDPE2.
Measurements (symbols) by LDV.
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Figure B.9: b) Force curve resulting from the conversion of the velocity profiles from fig. B.9 a)
according to the similarity solution for melt HDPE2.
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Figure B.10: a) Filament velocity v along the length x of the spinline for melt HDPE2.
Measurements (symbols) by LDV.
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Figure B.10: b) Force curve resulting from the conversion of the velocity profiles from
fig. B.10 a) according to the similarity solution for melt HDPE2.
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C Results of the analytical model and the similarity

model
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Figure C.1: Apparent elongational viscosity for melt LDPE4 calculated from Rheotens curves
by use of the analytical model in comparison to steady-state viscosity.
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Figure C.2: Apparent elongational viscosity for melt LDPE6 calculated from Rheotens curves
by use of the analytical model in comparison to steady-state viscosity.

104



10-3 5 10-2 5 10-1 5 100 5 101 5 102 5

γ, ε [s-1]       

103

5

104

5

105

5

106

η 
[P

as
]  

   
  

3 times shear viscosity 

Elongational viscosity calculated from RME data with the MSF theoryLDPE8
T = 190 oC

Apparent elongational viscosity
calculated from Rheotens curves

Figure C.3: Apparent elongational viscosity for melt LDPE8 calculated from Rheotens curves
by use of the analytical model in comparison to steady-state viscosity.
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Figure C.4: Apparent elongational viscosity for melt LDPE9 calculated from Rheotens curves
by use of the analytical model in comparison to steady-state viscosity.

105



10-3 5 10-2 5 10-1 5 100 5 101 5 102 5

γ, ε [1/s]       

103

5

104

5

105

η 
 [P

as
]  

   
  

3 times shear viscosity
Elongational viscosity calculated from RME data with the MSF theory

v0 = 8mm/s

LDPE1
T = 190 oC

Apparent elongational viscosity
calculated from Rheotens experiments

Figure C.5: Estimated elongational viscosity for melt LDPE1 calculated from Rheotens curves
by use of the similarity model in comparison to steady-state viscosity.
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Figure C.6: Estimated elongational viscosity for melt LDPE4 calculated from Rheotens curves
by use of the similarity model in comparison to steady-state viscosity.
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Figure C.7: Estimated elongational viscosity for melt LDPE6 calculated from Rheotens curves
by use of the similarity model in comparison to steady-state viscosity.
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Figure C.8: Estimated elongational viscosity for melt LDPE8 calculated from Rheotens curves
by use of the similarity model in comparison to steady-state viscosity.
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Figure C.9: Estimated elongational viscosity for melt LDPE9 calculated from Rheotens curves
by use of the similarity model in comparison to steady-state viscosity.
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