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Zusammenfassung 
Das Ziel dieser Arbeit war die Entwicklung einer Methode zur Berechnung der flächenhaften 
Verteilung von Luftverunreinigungen. Atmosphärische Ausbreitungsmodelle modellieren die 
Verteilung von Gasen oder Partikel anhand mathematisch formulierbarer Wirkmechanismen. 
Messergebnisse von Luftverunreinigungen werden nur zur Validierung der berechneten 
Verteilung, bzw. zur Modellentwicklung eingesetzt. Jedoch ist die Verwendung vieler, gut 
verteilter Messdaten als Modelleingabe die einzige Möglichkeit, die tatsächlich existierende 
Verteilung der gesuchten Komponente zu berücksichtigen. Mit einem Netz von 
Passivsammlern kann eine solche Verteilung kostengünstig und zeitgleich erhoben werden. 
Im Rahmen des UNOPS-Projekts “Preliminary Assessment of Ambient Air Quality in 
Cyprus” wurde an 270 Punkten NO2 Passivsammler in sechs Messkampagnen exponiert. Auf 
diese Weise entstand eine gute Datenbasis für die Entwicklung einer Methode, mit der man 
die tatsächlich gemessene Verteilung von Luftverunreinigungen berücksichtigen kann. 
Darüber hinaus sollte man bei einem realitätsnahen Modell die wichtigsten Einflüsse, wie 
etwa die Bevölkerungsdichte oder die Emissionsverteilung miteinbeziehen. Gegenwärtig 
erfüllen drei Verfahren diese Anforderungen: Regressionsmodelle, Interpolation und 
Künstliche Neuronale Netze. Regressionsanalysen sind zwar generell geeignet, kommen hier 
jedoch nicht in Frage, da es sich um eine starre Methode handelt mit sehr vielen theoretischen 
Bedingungen, die man in der Praxis schwer einhalten kann. Die Interpolation ist ein gut 
entwickeltes Standardverfahren, welches auch von der Europäischen Union empfohlen wird. 
Es wurde deshalb im Rahmen dieser Arbeit untersucht, inwieweit man mit dieser Methode 
eine realistische Verteilung von Luftverunreinigungen modellieren kann. Einfache 
Interpolationsalgorithmen eignen sich hierfür nicht, da das Ergebnis stark von der 
geographischen Lage der Messpunkte abhängt. Quellen und Senken zwischen zwei 
Stützpunkten werden vernachlässigt. Eine mögliche Lösung für dieses Problem sind 
Interpolationsalgorithmen wie Cokriging, mit denen man zusätzliche Variablen betrachten 
kann. Jedoch konnte auch hier keine Zufriedenstellende Ergebnisgüte erzielt werden. 
Dennoch ist die Interpolation für eine schnelle Visualisierung von Messungen durchaus 
geeignet. 

Künstliche Neuronale Netze sind derzeit die einzige Möglichkeit, ein Modell unter 
Berücksichtigung der obengenannten Kriterien zu entwickeln. Der heute meistverwendete 
Netzwerktyp im Bereich Luftqualitätsmodellierung ist das sogenannte "Multilayer 
Perceptron", das auch im Rahmen dieser Arbeit zum Einsatz kam. Zwei prinzipielle Kriterien 
beeinflussten die Entwicklung des Modells: Die Netzwerktopologie, also die Anordnung der 
einzelnen Neuronen im Netzwerk, inklusive deren Eigenschaften und vor allem die Wahl der 
Eingangsvariablen. Im Trainingsmodus wurde ein sogenannter kontrollierter Lernalgorithmus 
verwendet, bei dem der Anwender das Netz mit Ein- und bekannten Ausgangsvariablen, also 
Luftverunreinigungsmessungen trainiert. Die Aufgabe des neuronalen Netzes ist das Erlernen  
der zumeist nichtlinearen Zusammenhänge zwischen Ein- und Ausgabe. Zu diesem Zweck 
wurde ein Analysegitter mit 1x1 km Kantenlänge über das Untersuchungsgebiet Zypern 
gelegt und jeder Gitterzelle wurden die entsprechenden Eingabevariablen, wie etwa die UTM-
Koordinaten zugeordnet. Bei den Gitterzellen mit Passivsammlern konnten die 
Zusammenhänge zwischen Eingabe und Ausgabe ermittelt und anschließend auf alle anderen 
Zellen übertragen werden. Im Laufe der Entwicklung wurden alle verfügbaren Variablen in 
uni- und multivariaten Modellen getestet. 

Mit den UTM-Koordinaten als Eingangsdatensatz konnte zunächst eine neuronale 
Interpolation erzielt werden. Das Ergebnis war eine vereinfachte Interpolationskarte mit NO2 
Konzentrationen von 30 bis 40 µg/m³ in den Städten und geringeren Konzentrationen in 
ländlichen Gebieten. Bemerkenswert sind hierbei unrealistische, gerade Streifen von NO2 
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Konzentrationen um 20 µg/m³, welche die Städte Nicosia, Limassol und Larnaka miteinander 
verbinden.  

Anschließend wurde dem Analysegitter ein digitales Höhenmodell angepasst und das 
Netzwerk mit den resultierenden Höhenwerten trainiert. Auch hier traten physikalisch 
unmögliche Werte auf, wie etwa hohe NO2 Konzentrationen in Flusstälern. Dies verdeutlichte 
die Notwendigkeit, bei der Entwicklung nur physikalisch sinnvolle Variablen einzusetzen, 
trotz der Fähigkeit Neuronaler Netzen jegliche Art von Zusammenhängen, auch 
beispielsweise Trivialkorrelationen zu erkennen. In diesem Fall korrelierte das Netzwerk den 
Umstand, dass alle großen Städte Zyperns am Meer liegen (geringen Höhenlage) mit dem 
Auftreten hoher NO2 Konzentrationen. 

Ein sehr wichtiger Einfluss auf die Verteilung von Luftverunreinigungen sind die 
atmosphärischen Ausbreitungsbedingungen. Da alle meteorologischen Parameter ständig 
variieren ist es unmöglich ein mittleres Windfeld zu berechnen. Windstatistiken wären eine 
mögliche Lösung, können jedoch nicht direkt als Eingabe verwendet werden, da es sich im 
Falle der Windrichtung um eine Verteilung von mehreren Werten handelt. Um dennoch die 
Ausbreitungsbedingungen zu berücksichtigen, wurden Abgasfahnen der wichtigsten 
Emissionsquellen in Zypern berechnet. Methodisch kamen hierbei das Gauß-Modell P&K 
3782 und statistische Analyseverfahren wie Regressionsanalysen zum Einsatz. Die Ergebnisse 
wurden mit einem neuen rechnerischen Ansatz auf das Analysegitter verteilt, wobei das 
Konzept der "Distributed Emissions" entwickelt wurde. Mit diesem Input für das Neuronale 
Netz konnte bereits eine sehr genaue NO2 Immissionskarte berechnet werden, auf der die 
Lage der Quellen und deren Emissionsstärken gut wiedergegeben werden. 

Nach den oben beschriebenen univariaten Modellen wurden multivariate Berechnungen 
durchgeführt, um auch noch die vorhandenen weiteren Einflussparametern miteinzubeziehen. 
Alle Modelle mit UTM-Koordinaten und Höhenwerten als Eingabe produzierten wiederum 
unrealistische Verteilungsmuster. 

Das beste Ergebnis konnte mit einem Neuronalen Netzwerk erzielt werden, das mit 
"Verteilten Emissionen" und der Populationsdichte trainiert wurde. Diese 
Modellkonfiguration bewahrte die positiven Aspekte der univariaten Ansätze und machte 
außerdem noch weitere Quellen wie Dörfer deutlich sichtbar. Eine realistische, fein 
strukturierte Immissionskarte von Zypern ist das Resultat dieser Berechnungen.  

Während der gesamten Entwicklungsphase wurden die Modellergebnisse einer ständigen 
statistischen und visuellen Prüfung unterzogen. Wichtigster Bestandteil war hierbei ein 
Testdatensatz aus 50 Passivsammlern zur Überwachung des Trainingsfortschritts und zum 
direkten Vergleich von berechneten und gemessenen NO2-Konzentrationen. Mit dem Modell 
konnte ein Pearson Korrelationskoeffizient von 0,75 erzielt werden. 
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1 Introduction / Aims / Questions 
Strict laws and guidelines together with constant efforts of the scientific community in the 
development of new technologies helped to improve the air quality in western countries to 
date. This positive trend is expected to be partly compensated by the increase of pollution 
sources called forth by a parallel growth of demand for energy. Less developed countries rely 
strongly on poor quality fossil fuel and on technology with high pollutants emission rates.  In 
addition, large parts of the world population are potential new energy consumers often 
neglecting environmental issues. A continuous monitoring of the air pollution level is 
therefore inalienable and the base for adequate actions. Air quality measurements however 
show only a small part of the whole situation and may miss hot spots since they are only valid 
for the site where the measurement units are located. The spatial distribution of the pollutants 
remains unknown since it depends on the actual dispersion conditions and the emission 
strength. A possibility to partly bypass this problem is to use mobile measurement stations 
that can be moved after a certain time [1] or to operate a network of several stations. This is 
however economically not always acceptable. A cost-effective alternative are diffusive 
samplers which can be placed at an almost unlimited number of sites, but the principal 
problem for all methods remain unsolved: Measurements are punctiform, with some minor 
exceptions for special problems. Air quality models can partly fill this gap and therefore are 
essential tools in the development of action plans for improving air quality. Thus, the EU 
Framework Directive 96/62 EC on air quality assessment refers to “the use of other 
techniques of estimation of ambient air quality besides direct measurements” [2]. It is stated, 
that these “other techniques” may be modelling techniques. In preliminary assessment 
member states will designate zones and design measurement networks in each zone according 
to modelling results. Rather than sheer numbers, these results should be presented in an 
intelligible way – in the form of pollutant maps [3,4]. This opens the possibility for a more 
cost-effective and goal-orientated assessment strategy. Measurement stations can be placed on 
sites where limit value exceedances are predicted by the model, which might save investments 
in expensive equipment.  

In the Framework Directive and its Daughter Directives, no special modelling techniques are 
mentioned, whereas single countries have their own provisions on the usage of specific 
models, like “Austal2000” [5] in the German TA-Luft [6]. Equivalent guidelines for European 
right are in preparation. Most of the models are mainly suitable for case scenarios or they are 
limited in their flexibility and their possibility to consider the most important influencing 
factors. To calculate territory covering pollutant maps in high resolution, a method is needed 
that can establish correlations between the pollutant and it’s main influencing factors like the 
dispersion conditions, the strength and location of emission sources and the population 
density. But still measurements are the only way to provide a direct link to the reality. So the 
optimal model should consequently include results from air quality measurements. For most 
of the current approaches this is not case. The aim of the following work is to find such a 
method – a model that enables us to calculate pollutant concentration maps, covering a large 
area like Cyprus.  

During the UNOPS project “Preliminary Assessment of Ambient Air Quality in Cyprus” in 
which the author was involved, measurements and surveys were carried out, providing an 
excellent database for the model development. Of special interest is the diffusive sampling 
programme, carried out at 270 sites over the course of one year.  

Below the eligible established and new modelling approaches, the most promising ones are: 
• regression analysis 
• interpolation algorithms considering additional variables 
• artificial neural networks  
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Artificial neural networks are able to quantify complex relationships of different variables 
without particular preconditions like normal distribution. Comparable to the human brain, 
neural networks are flexible and dynamic, with the ability to learn. A lot of limitations from 
conventional methods do not apply here. That’s why this work mainly investigates the 
possibility to use artificial neural networks for the calculation of distribution maps of air 
pollutants.  

 

1.1 Background information - Project “Preliminary Assessment of 
Air Quality in Cyprus” 

As a new member of the European Union, Cyprus has to meet European legislation. Within 
the field of environmental protection a preliminary assessment of air quality is required, based 
on the Council Directive 96/62/EC. The aim of this air quality policy is to provide a healthy 
environment for inhabitants of Cyprus and to prevent diseases, which can be caused by air 
pollutants especially in the respiratory system of humans. Another target is to offer a clean 
environment to the tourists who come to Cyprus for recreation. To realise this preliminary 
assessment, a project was financed by the US Agency for International Development 
(USAID) and the United Nations Development Programme (UNDP). It was executed by the 
United Nations Office for Project Services (UNOPS) and the Greek and Turkish Cypriot 
Communities. Contractor for carrying out the project was the University of Stuttgart together 
with Cypriot partners.  

The main objectives of the project are as follows: 

• Assessment of the spatial distribution and temporal variation of air pollutants over the 
whole island of Cyprus 

• To assist Cyprus to optimise the ambient air quality monitoring network in order to 
comply with the relevant Directives of the European Union including the reporting to the 
commission 

• To supply the necessary input for the formulation of air pollution management policies in 
Cyprus including preparation of plans on how to meet the EU limits and other EU 
requirements 

• To increase public awareness on the issues of urban and rural air pollution 

Since the air does not recognise borders, measurement programmes over the course of one 
year were carried out in both communities of Cyprus. The tasks were as follows: 

1. Emissions Inventory: Daily emissions of all major line, point and area sources in 
Cyprus  

2. Diffusive Sampling: Spatial distribution of the pollutants NO2, SO2, VOC 
(Volatile Organic Compounds) and O3 at up to 270 categorised sites all over 
Cyprus  

3. Continuous Monitoring: Temporal variation of the most important pollutants with 
fully equipped measurement vans/containers, NOx/O3 background monitoring 
stations, weather stations and VOC measurements at selected sites 

4. Tethered Balloon Measurements: Vertical variation of pollutants and 
meteorological parameters, measured in Nicosia and Limassol 

5. Particulate Matter (PM) Measurements: Spatial and temporal variation of PM, 
including receptor modelling with principal component analysis   
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6. Modelling: Spatial distribution of the pollutants based on diffusive sampling 
results 

7. Air Quality Management: Recommendations on how to meet EU regulations and 
to set up the future monitoring network in Cyprus 

All these tasks are summarized in Figure 1.1. 

 

1.2 Methodical approach 
The aim of this work was to develop a model, with which one is able to calculate the spatial 
distribution of pollutants. According to the project requirements, the model should have the 
following characteristics and abilities:  

• Ability to handle diffusive sampling measurements as model input and not only for 
validation purposes 

• High accuracy of the model results 

• Ability to incorporate the most important parameters, that influence the distribution of air 
pollutants 

• The model should be easy to handle 

• Short computing time and no high hardware requirements 

• Ability to update and enhance the model 
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Figure 1.1. System of air quality assessment as applied during the UNOPS project 
“Preliminary Assessment of Air Quality in Cyprus” [34] 
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The general approach to develop a method that meets these requirements is depicted in 
Figure 1.2. 
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Model configuration 
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Figure 1.2. General approach to model the spatial distribution of air pollutants 

STAGE 5
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2 State of the art in air quality modelling  
As described above, the aim of this work was to develop a model that has certain quality 
characteristics. This presumes that there currently exists no available method that suits this 
demand. In the following state of the art analysis, available methods are checked with regard 
to the required criteria. 

 

2.1 Dispersion modelling 
With dispersion models the dispersion of pollutants starting from one or more emission 
sources that might be point, line or area sources is calculated. Depending on the requirements, 
dispersion models are able to consider the topography, the development, the velocity-, 
turbulence- and temperature-field, chemical and physical alterations and other parameters [7]. 
 
There are different possibilities to classify dispersion models:  

• Mathematical and physical models [8] 

• Mesoscale or microscale models [9] 

• Models with a diagnostic or prognostic flow field pre-processor 

• Simple models with homogenous terrain, models that consider the relief and land usage, 
models that consider the development [7] 

 
Today’s models are usually combined with a pre-processor, which calculates the flow field – 
the end result depends strongly on the beforehand-calculated flow field. For local scale 
considerations, CFD (computational fluid dynamics) models are first choice today [10, 11]. 

Generally it should be emphasized, that the requirements for the input data are very high [12]. 
Their preparation and acquirement usually is very time consuming, as well as the final 
calculation run on the computer, which may take several days depending on the model and the 
regarded problem. 

Table  2.1 gives a summary of the currently available dispersion models. The classification 
here follows the mathematical principle of the method [8, 62].  

 

2.2 Interpolation methods 
In many countries simple interpolation algorithms are officially applied, e.g. Kriging, Inverse 
Distance Weighting, Modified Shepard’s Method and Radial Basis Function. [15] 

Input parameters are the geographical coordinates and the pollutant concentration values. The 
calculated concentrations at a certain site are a function of the distance to the measurement 
points [7]. According to the implemented approach, the number, direction and distance to the 
real concentration values can be considered. With Kriging, it is moreover possible to include 
the spatial variation of the measured concentrations by using variograms [16]. 

One can differentiate between statistical and non-statistical approaches or “exact” (the input 
value is preserved in the output) and “inexact” methods. Single cases are normally not 
considered, the adjusted interpolation parameters are valid for all cases. Therefore, the result 
depends strongly on the geographical location of the measurement sites, that shouldn’t be 
influenced by local emission sources [3]. 
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Table 2.1. Classification and assessment of dispersion models  

Model Type Theoretical 
background Advantages Disadvantages Example 

Gaussian 
models 

 

- Gaussian plume 
model: analytical 
solution of the 
steady-state 
advection-diffusion 
equation [13] 
- Gaussian puff 
model: analytical 
solution of the time-
varying advection-
diffusion equation 
[14] 

- short computing time 
- easy to handle 
- input data requirements 
are low 

 

- theoretical 
simplifications 
(homogeneous 
velocity and 
turbulence field) 

- not suitable for 
hourly values 
- mainly suitable 
for homogeneous 
terrain 

 

 

Austal 86 

P&K 3782 

PROKAS 

Eulerian grid 
models         
(k-models) 

- numerical solution 
of the advection-
diffusion using a finite 
difference technique 

 

- flexibility to process 
flow and turbulence 
inhomogeneities over 
time and space 

- higher-order chemical 
transformation 
considered 
- variable time scale 

- problems treating 
the advection 
(numerical 
diffusion, mass 
deficits, negative 
mass densities) 

- long computing 
time 

- input data 
requirements are 
high  

EURAS 

FITNAH 

REM3 

MITRAS 

Particle  
models 

(Lagrange) 

- the model tracks 
point-like particles 
representing a trace 
species on their path 
- the vector of the 
turbulent velocity is 
varied for each 
particle at each time 
step using a Markov 
process [8] 

- natural phenomena 
involved in turbulent 
diffusion are largely 
reflected 
- no numerical diffusion 
- mass conserving  
- delivers non-negative 
mass densities 
- consideration of 
complex geometry 
- consideration of large 
areas 
- physical and chemical 
alterations considered 

- variable time scale 

- sampling error 
associated with 
the particle count 
- long computing 
time 
- input data 
requirements are 
high 

LASAT, 

AUSTAL2000
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2.3 Interpolation methods considering additional variables 
Beier and Doppelfeld developed a model for the spatial interpolation of air quality data using 
local weight functions normalised by a radius of influence. Outside a circle determined by the 
radius of influence of a measurement site, other monitoring sites are not taken into account for 
the interpolation [17]. 

Another method is called Cokriging, where the correlation of the concentration value with 
another variable is considered. Own tests have shown, that the resulting enhancement doesn’t 
justify the increased effort. 

Drüeke applied the interpolation method Kriging with external drift to model the ozone 
concentration. The additional variable here was the altitude that was used to calculate daily 
ozone averages in an area of 260 km² [18].  

 

2.4 Regression methods 
In general, regression methods are particularly suitable for the calculation of complete 
concentrations fields. The functional correlation of the pollutant with the most important 
influencing factors can be quantified in a linear or non-linear regression formula [46]. 
Prerequisite is, that all independent variables are available for the whole study area. 

Thoma used multiple, linear regressions to formulate statistical models to regionalize NO-, 
NO2- und O3-measurements. The independent variables were the height above sea level, the 
number of days with minimum-temperature-inversions, the ventilation situation, the wind 
velocity, land usage, the number of days with heat stress and others. The calculations were 
carried out in a 250 m-raster, for summer and winter. For NO and NO2, he found out 
correlations with the height above sea level and the total pollution value, resulting in a 
regression model with an r² of 0,3 to 0,5 [19].  

Regression models make high demands to the data collective – statistical preconditions like 
the normal distribution have to be met and there is a high sensitivity to outliers. Figure 2.1 
shows the steps to configure a regression model. 

 

2.5 Applied methods in EU countries 
Now follows a brief summary of methods for the calculation of complete concentrations fields 
officially applied in EU countries to fulfil the recommendation of the EU framework directive 
96/62/EC [2, 15]. 
 

2.5.1 Belgium  
The spatial extend of air pollutant concentrations are interpolated using an “Inverse Distance 
to a Power” algorithm in which a weighting factor inversely proportional to the distance from 
a monitoring station is applied. The results are calculated for 5x5 km squares of a grid that 
covers the complete Belgium territory. 

 
2.5.2 United Kingdom  
Rural concentration maps are produced by the interpolation of air pollution data from 
monitoring sites. At local scale, a box model is applied using relationships between measured 
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concentrations and the values of local pollution statistics. Again the results (background 

concentration levels) are calculated for a grid, in this case with a resolution of 1x1 km.  

2.5.3 Germany 
FLADIS is a modelling system that includes different modelling approaches, which are 
explained below. With Fladis a grided concentration field can be calculated on a time base 
that depends on the available input data from continuous measurements. 

Modelling Approach 1: Interpolation 
For every time step, an interpolation between all available continuous measurement sites is 
calculated.  

Modelling Approach 2: Regression Model 
A statistical regression analysis quantifies the dependence between elevation values and the 
pollutant concentration at the grid cell, where the measurement station is located. Since 
elevation values exist in every grid cell, the obtained dependency can be applied for cells 
where no measurement data are available. This method delivers especially for Ozone good 
values and also for NOx at high concentration levels.  

Input Data Check for normal 
distribution 

1st transformation 
if necessary 

Check for linearity 

2nd transformation 
if necessary  

Check for 
autocorrelation 

3rd transformation if 
necessary  

Linear regression Non-linear regression 

Check of residuals  

Check of regression 
parameters 

Is the model 
statistically correct? 

Figure 2.1. Steps to create a regression model 
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Modelling Approach 3: Gaussian Dispersion Model 
First, FLADIS merges different emissions inventories into a summarized uniform grid. The 
emission inventories may include point, line and area sources. Second, a cluster analysis helps 
reducing the summarized emissions inventory. The reduction is necessary to ensure the 
calculation in an acceptable time. Third, a gaussian dispersion model is applied with which 
the dispersion of the emissions from the clustered sources is calculated. The input 
meteorological data are derived from all available measurements by averaging the wind 
vectors (including speed and direction). Also the topography is considered through a digital 
elevation model. For every method a coefficient of determination is calculated for every time 
step. Finally all results are combined according to this coefficient – the output pollution map 
is a weighted combination of all modelling approaches implemented. 

 

2.5.4 Netherlands 
Air quality data of the Dutch National Monitoring Network are used to estimate the total 
length of city roads where limits are exceeded. The method includes the dispersion model 
“CAR”, a database with input information on roads and a statistical model to extrapolate the 
results for the cities in the database to all cities in the country.  

With a long range Lagrangian transport/deposition model, territory covering maps of PM 10 
concentrations with a resolution of 5 km are produced. In a second step, the difference 
between measured concentrations from the existing monitoring network and the results from 
the dispersion model are calculated and then interpolated on a 5 km grid. Adding the 
difference map to the modelled map generates the final concentration field map.  

 

2.5.5 Guidance report on preliminary assessment under EC air quality 
directives [3] 
According to the above mentioned guidance report, the production of concentration maps is 
the central output of a preliminary assessment of ambient air quality under the framework 
directive 96/62/EC. On these maps, all areas of exceedances or near-exceedances should be 
clearly visible. In chapter 3.4 of the guidance, the use of the diffusive sampling technique is 
recommended to determine the pollutant distribution over a large area. Clear, stepwise 
instructions are given how to carry out the task of diffusive sampling. In this context step 8 is 
of special interest: “Calculate the distribution of the pollution levels by interpolation of the 
measurement made in each grid cell.” 

 

2.5.6 Guidance on Assessment under the EU Air Quality Directives [15] 
The report recommends the interpolation of measurement results to obtain maps of the 
pollutant concentrations. According to the guidance these maps “can be used for the mapping 
of air pollutants over an area in particular for the following applications: Assessment of areas 
exceeding the limit value and of the population exposed; support for the definition of zones; 
classification of a territory in areas of homogeneous air quality; design and optimisation of 
monitoring networks and the control of the effectiveness of abatement measures”.  
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2.5.7 Overview of Methods and Results of the Preliminary Assessment 
of Air Quality in Europe under Directives 96/62/EC [21] 
The European commission has prepared a report where methods and results are summarized. 
Here it is stated, “the primary method for the preliminary assessment used in the countries 
was the analysis of the results of the existing monitoring network. Most respondents used in 
addition mathematical methods ranging from interpolation to computer modelling”. 

 

2.6 Neural Networks 
Neural networks in the field of air quality modelling have already been applied by some 
scientists and have shown promising results. Their functionality is described in chapter 5.2, 
but briefly they can be characterised as a flexible method to recognise complex patterns in a 
multivariate data environment. They fit best in the category of statistical methods. 

M. Gerboles from the “Institute for Environment and Sustainability”, Ispra (Italy) has used a 
multilayer perceptron (MLP) to calculate the distribution of NO2 in Bologna, Italy. His 
calculations were based on 15 continuous monitoring stations and 100 diffusive sampling 
sites, distributed over an area of 120 km². The input variables were: NO/NO2 data from the 
monitoring stations mentioned above, the population density per km², the rectangular 
coordinates and the polar coordinates related to the position of each monitoring station. As 
output variables served the diffusive sampling measurement results – 800 cases for training 
and 400 for testing. Compared to pollutant maps obtained by Kriging interpolation of the 
diffusive sampling results, the NO2 distribution calculated by the neural network shows the 
same patterns with some lack of peak areas [22].  

A. Pellicioni et al. have applied a neural filter to the calculations of a virtual height dispersion 
model. In particular, the predicted concentrations levels were filtered by a multilayer 
perceptron to account for the systematic influence of important variables related with 
atmospheric processes. A comparison between the performances of the dispersion model 
alone and those of the coupled model showed a significant improvement when the neural 
filter was applied [23, 24]. 

The goal of another work was to forecast O3 and NO2 levels with a linear regression model 
and a multilayer perceptron. A comparison of the results from both methods showed, that the 
neural network was able to give better predictions [25].   

H. Omasreiter realised pollutant forecasts with inputs from continuous monitoring stations in 
the area around Stuttgart, Germany. With the help of multilayer perceptrons and Elman 
networks, he established correlations between CO concentrations and other variables like the 
wind speed and traffic data. Furthermore he developed the theory of neural air pollutants 
modelling and included the already existing concept of virtual neural sensors [26]. 

L. Partanen et al. used multilayer perceptrons to calculate punctiform NO2 and PM10 levels 
using meteorological, traffic and air quality data. A conclusion of this work was, that 
dispersion models are better applicable for the prediction of the spatial distribution of air 
pollutants than neural networks. [27] 

Future (24 h later) daily ground level SO2 concentrations in Istanbul were modelled by A. 
Saral and F. Ertürk. A multilayer perceptron was applied to correlate SO2 concentrations with 
a detailed set of meteorological parameters including wind speed, wind direction, pressure, 
temperature, cloudiness, relative humidity, dominant wind direction, solar radiation and data 
on the mixing layer height. Some problems occurred here predicting peak values [28]. 
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F. Liguori correlated CO, SO2 and O3 measurements with traffic and meteorological data 
using a neural network. This work aimed to assess air quality and to implement models for the 
monitoring of severe pollution episodes [29]. 

As an intermediate summary it can be stated that neural networks gain more and more 
importance in the field air quality modelling, especially for the calculation of pollutant 
concentrations at single places. Distribution calculations are rarely realized to date.  

 

2.7 Discussion of the different methods – conclusions for own 
research 

In the previous chapters it has been shown, that a great part of all available modelling 
methods do not include measured pollutant concentrations. They rely on theoretically and 
experimentally explored correlations between the pollutant and other variables like wind data 
or turbulence parameters. Here, measured concentrations serve only for validation purposes. 
The only approaches that base on actual measurements of the modelled species are statistical 
models, interpolation methods and neural networks. With these methods a direct link to the 
measured air pollutants is assured. So which of these three methods fulfils all the 
requirements laid down in chapter 1.2? Interpolation delivers results that look nice but 
neglects important additional parameters like sources and sinks between the measurement 
points, a problem, which only can be solved partly by quasi-multivariate interpolation 
methods. Considering Cokriging e.g., the additional variables only enhance the variogram and 
don’t deliver real correlations [16]. The end result is still mainly determined by the selected 
sampling sites – hot spots may be missed. 

The regression analysis is a method that allows correlating different variables. With a good 
database, it reflects the real situation quite well, since it quantifies the functional correlation 
of the pollutant concentration with the major influence variables. However, as depicted in 
Figure 2.2, it makes high demands on the data quality in terms of basic theoretical 
assumptions. For multiple regression analysis, even a multivariate normal distribution has to 
exist [30, 31, 32]. To meet these preconditions, extensive data transformations and tests have 
to be carried out  [33]. The result will be a rigid formula; the functional correlation of the 
variables might be blurred due to its complexity and non-linearity. 

Finally, neural modelling is a flexible method, which enables one to recognise highly 
complex non-linear correlations. Statistical assumptions like normal distribution are not 
necessary, which makes them easy to handle in principle. The network can be trained with 
real measurement data and updated with new measurements, enhancing its quality and making 
it the ideal method for the purpose of this work. Since this is a relatively new method in the 
field of air quality modelling, basic research work still has to be done. This work here is a 
contribution to this. 

In Figure 2.3 the possible methods and their capabilities regarding the demanded 
characteristics to calculate the spatial distribution of air pollutants are summarized.  
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Neural networks are the only tools that fulfil all characteristics as shown in chapter 1.2 and 
summarized in Figure 2.2.  
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air pollutants  
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3 Local conditions in Cyprus  
 

3.1 Description of the study area Cyprus 
The now following description of the study area Cyprus refers mainly to it’s characteristics 
influencing the spatial distribution of air pollutants. As mentioned above, the model was 
developed for the UNOPS project “Preliminary Assessment of Air Quality in Cyprus”. 

 

3.1.1 General considerations 
Cyprus is located in the east Mediterranean Sea, south of the Turkish coast, crossing the 35th 
longitude and the 33rd latitude. Its diverse geomorphology includes coastal areas, mountains 
of up to 2000 meters height (Troodos mountains, Kyrenia Range), a narrow promontory 
(Karpezia) and a wide plain (Messaoria). In Figure 3.1 the major topographic properties of 
Cyprus in a three dimensional view are shown. 

 

The population concentrates in the major cities being Nicosia, Limassol, Larnaka, Paphos, 
Famagusta and Kyrenia. They are all located at the coast except Nicosia, which is situated in 
the centre of Cyprus on the plane of Messaoria. During summer time, the population grows 
strongly, because of the tourism, which is the most important economic factor.  

 

 

Figure 3.1.Three-dimensional view of Cyprus with the major topographic properties 
and cities – the raising factor is ten  
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Since 1974, Cyprus is divided in two parts by the so called “green line”, which runs from East 
to West in the plane of Messaoria, North of the Troodos mountains passing the old city centre 
of Nicosia. South of this line the Greek Cypriot Community (GCC) is living, northerly the 
Turkish Cypriot Community (TCC).  

 

3.1.2 Meteorological conditions  
Besides the emission sources which are of course the base for the existence of any pollutant in 
the air, the meteorological conditions are the most important factor to influence concentration 
levels. Wind, for example, dilutes the gaseous pollutants, the higher the wind speed the better 
the grade of dilution. Inversion layers on the other hand, force their accumulation. The wind 
direction determines the dispersion direction from the source. The interaction of the different 
influences is very complex and can be reviewed in [33]. A detailed description of the general 
and local meteorological conditions of Cyprus is given in the chapters below.   

 

3.1.1.1 General meteorological considerations 
The mediterranean climate of Cyprus means constantly hot, dry summers from mid May to 
mid September and mild, rainy winters from November to mid March. The transitional 
seasons spring and autumn are characterized by diverse meteorological conditions.  

This can be explained by the pressure system around Cyprus [34]: 

• Summer: Cyprus is influenced by a continental depression over Southwest Asia, which 
extends to Cyprus in the form of a stable trough. Monotonous weather conditions with a 
maximum temperature of 40 °C and more are the result.  

• Winter: This monotony ends in winter due to small depressions crossing the island from 
West to East between the anticyclone of Eurasia and the low-pressure belt of North 
Africa.  

• Spring: The Siberian anticyclone collapses causing a continental depression over 
Southwest Asia, which extends westwards. A similar depression appears over Sahara.  

• Autumn: The Siberian anticyclone starts to develop and the continental depression 
cantered over the southwest Asia starts growing.  

Table 3.1 summarizes synoptic features influencing Cyprus and averages of temperature and 
humidity.  

 

3.1.1.2 Local scale meteorology 
The main synoptic features described in chapter 3.1.1.1 are modified by local processes, 
being:  

• Land-Sea breeze: A phenomenon often observed at the coast. During daytime, the air 
flows from the sea to the land (sea breeze), during nighttime from the land to the sea (land 
breeze). The motor behind this lies in the different thermal properties of landmasses and 
water. Land warms up and cools quickly, while water needs more time to warm up, but is 
able to store this heat longer. This causes local pressure systems driving the winds.  

• Mountain-Valley breeze: During daytime warm air from the valley rises along the 
mountain slope (valley breeze), during nighttime the cool “heavy” air slides down the 
slopes (mountain breeze). 
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Table 3.1. Synoptic features influencing Cyprus averaged over 10 years [34] 

Parameters Winter ^Summer Spring Autumn 

Synoptic 
features 

Small depression crosses 
Cyprus from west to east 

 

Trough over 
Cyprus extending 
from depression of 

southwest Asia 

Influence of 
depression 

over 
southwest 

Asia 

Influence of 
Siberian 

anticyclone 

Mean 
Max 

January 

Mean 
Min 

January 

Lowest 
Min 

January 

Mean 
Max 

July 

Mean 
Min 

July 

Highest

Max 

July 

Mean 
Max 

April 

Mean 

Max 

April 

Mean 
Max 

October 

Mean 
Max 

October

Temperature 

(°C) 

Nicosia  

 15 5 - 3 37 21 43 24 10 28 15 

0800    LST* 

January 

1400 

LST 

January 

0800 

LST 

July 

 

1400 

LST 

July 

0800 
LST 
April 

1400 
LST 

April 

0800 
LST 

October 

1400 
LST 

October

Relative 
Humidity  

(%) 

Nicosia 

 78 52 52 31 63 40 68 44 

*Local sidereal time 

• Inversion layers: The vertical dispersion of pollutants is limited by atmospheric barrier 
layers. The so-called nocturnal surface inversion can lead to an enrichment of pollutants in 
the lowest layer where people are living. In the morning hours this layer is dissolved 
caused by warm air at the ground, which is heated by the sun radiation. An elevated 
inversion layer is limiting the mixing height for the pollutants over Cyprus. In summer 
this mixing height reaches up to 4000 m above ground whereas in fall and wintertime it 
stays below 2000 m. The view from Mount Olympus during nice weather in fall time 
(November 2002) illustrates the vertical extent of the mixing layer with its brown colour 
containing the pollutants emitted from ground level (Figure 3.2). Above this sharp barrier 
layer very clean air can be observed. During aircraft ascents and descents this barrier layer 
separating the polluted mixing layer and the clear free atmosphere above can be seen too 
very clearly. The warm climate and strong solar radiation in Cyprus induces convective 
movements and creates an average mixing layer height of at least 1700 meters, where the 
first inversion layer is located (Figure 3.3). In some cases, the second inversion layer is 
linked with the first, but usually it can be found several hundred meters above and may 
serve as the decisive barrier for mixing processes. This allows a good dispersion and 
dilution of pollutants. In winter however, lifted ground inversions can be observed 
sometimes. As expected, the general inversion layer height in summer increases and 
decreases in winter (Figure 3.3) [34, 35, 64].  

• Topography: As described in chapter 3.1.1, Cyprus has a quite diverse topography, 
which directs the winds physically (Figure 3.4) and causes special meteorological features 
like the mountain-valley breeze. So the wind system in Cyprus is also very diverse with 
distinct local differences in a comparable small area.  
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Figure 3.2. Picture taken at the Troodos Mountains showing a brown mixing layer, were 
all the pollutants are released and a clear, unpolluted layer above which is separated by 
the inversion layer  
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Figure 3.3. Mean annual profile of the inversions over Nicosia at 11 UTC as determined 
by an eight years statistical study of inversions by Meteorological Service Cyprus 1991  
[34]  
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3.2 Air quality measurements  
Within the project “Preliminary Assessment of Ambient Air Quality in Cyprus” an extensive 
measurement programme and surveys were carried out (see chapter 1.1). Herewith, a good 
database for the model development was created. A more detailed description of the tasks that 
are of special interest for this work is given below.  

 

3.2.1 Diffusive sampling 
At 270 sites NO2 diffusive samplers were exposed (see Annex A.1.) in six campaigns over the 
course of one year (July 2002 to July 2003). For the pollutants Ozone, VOC and SO2 the site 
number was reduced since their distribution was expected to be less structured. The samplers 
were primary placed in the major cities, selecting categorized sampling sites to cover all 
major emission sources and characteristic land usage types. For the development of the neural 
net an important issue – it’s generalizing ability increases the more categories are considered. 
Such a categorization is also demanded by the EU, but was refined for project purposes. In 
Table 3.2 the average annual values from all measured components at all site categories are 
shown, reproducing very well what can be expected: The highest values occur in the centre of 
the cities in commercial streets and traffic sites, the lowest in mountainous rural areas. Bold 
numbers indicate exceedances of the actual upper assessment threshold or of future EU limit 
values. For the secondary pollutant Ozone other formation mechanisms apply [33], which is 
why inverse observations can be established here. To verify the results of the diffusive 
sampling campaigns, a comparison of these results with continuous measurements at the same 
site was carried out. In Figure 3.5 this comparison is depicted and it shows a very good 

Assumed general wind direction: 250° 

Figure 3.4. Theoretical wind field over Cyprus assuming a general wind direction of 250° -
after [56] 
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agreement between the two methods. Up to four diffusive samplers were exposed at the same 
time to assure the comparability of the results. No major deviations were observed, although 
the high temperatures in Cyprus might influence the relative uptake rate [36, 37]. So these 
values can be considered as reliable and therefore suitable for model development.  

 
Table 3.2. Average diffusive sampling results for NO2, divided into site categories [34] 

 
Benzene 
average 
in µg/m³

SO2 
average in 

µg/m³ 

 
Ozone 

average in 
µg/m³ 

Site Category 
NO2 

average 
in µg/m³ 

   
commercial           (Municipality Market, Larnaka +  
                                                       Armenias Street +  
                                 Ezekia Papaioannou Str., Nicosia) 

48,7 8,4 16,1 
 
 
- 

urban background 39,7 7,3 11,4 
traffic 38,9 6,7 13,2 

 
60,9 

recreation 32,9 - - - 
residential 23,2 2,8 7,5 74,4 
industrial 22,7 3,5 6,6 92,7 
touristic beaches 19,9 1,0 9,2 77,6 
peripheral 16,8 1,7 4,2 - 
airport 15,0 1,3 5,1 - 
village>700 14,0 1,7 6,9 81,0 
touristic 11,9 2,2 8,5  
sensitive area                            (Akrotiri – Salt Lake) 10,7  - - 
village<700 8,1 1,2 4,8 78,8 
agricultural 7,0 1,6 - 73,4 
mountainous, forests 2,6 0,5 3,2 95,5 
mountainous, no forests               2,0 1,1 2,2 102,6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.5. Quality assurance of NO2 diffusive sampling - comparison of NO2 diffusive 
sampling results and NO2 continuous monitoring. The latter are considered to be correct.   
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Finally in Figure 3.6, the results of all NO2 diffusive sampling campaigns are summarized, 
showing the annual NO2 distribution over Cyprus. As expected, the highest concentrations are 
measured in the big cities. Hot spots are to be found in Nicosia and Limassol. Large rural 
areas like the Troodos mountains and most of the area of the Turkish Cypriot Community are 
more or less unaffected by NO2 due to a lack of emission sources and good dispersion 
conditions. Alone with these results, a very good insight into the NO2 distribution is already 
given. 

 

 

3.2.2 Continuous monitoring 
To observe the temporal variation of the pollutants and meteorological parameters and to 
capture worst cases of maximum concentrations, continuous monitoring stations were placed 
all over Cyprus. All stations were equipped with air quality monitoring instruments for 
recording the concentrations of ozone (O3) and nitrogen oxides (NO, NO2, NOx). Further, 
instruments for measuring the concentrations of carbon monoxide (CO) and sulphur dioxide 
(SO2) were installed in the multi-component stations.  

Mini stations served for investigating and monitoring the distribution of ambient ozone in 
rural background areas. To exclude external influences on the ozone measurements, the mini 
stations were placed at sites where no emission sources e.g. road traffic, power plants or 
residential areas had been close or present at all. By parallel measurement of nitrogen oxides 
at each mini station, influences by emissions from local sources on the ozone concentration 
thus could be identified.  

Figure 3.6. Mean annual diffusive sampling results at 270 sampling sites over Cyprus 
(summer 2002 to summer 2003) 
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The multi-component stations were placed in urban areas with medium to high emission loads 
at traffic or residential sites. Exemplary results can be viewed in Annex A.1. As stated above, 
the results were in good agreement with the diffusive samplers.   

Compared to other European cities, the air quality situation in Cyprus can be regarded as 
problematic as shown for the case of NO2 in Annex A.1. In the countryside, the air quality is 
much better due to the good ventilation and sparse emission sources. 

 

3.2.3 Other measurements 
During the project additional measurements were necessary to complete the preliminary 
assessment in agreement with the European Framework Directive. For the model 
development these measurements couldn’t be implemented directly, but served as valuable 
background information. In detail, these measurements are: Tethered balloon measurements, 
particulate matter measurements and wind measurements. 

The objectives of tethered balloon measurements were to determine the meteorological 
conditions, which are influencing the pollutants distribution within the cities of Cyprus, as an 
example in Nicosia and Limassol. This more specifically addresses the diurnal and nocturnal 
dynamics of mixing heights and the wind systems like the land-sea breeze, which are 
responsible for cleaning urban air and transporting pollutants to the rural areas. In 
combination with the ground level measurements, a description and explanation of the air 
quality situation of the selected cities Nicosia and Limassol was given as shown in Annex 
A.1. [34].  

The complete tethered balloon measurement system was developed at the Institute for Process 
Engineering and Power Plant Technology at the University of Stuttgart for continuous vertical 
soundings of different meteorological parameters and air pollutants (NO2 and O3). VOC and 
particulate matter are measured discontinuously by collecting samples in three different height 
levels. The balloon can be elevated with a special rope up to a height of 1000 m above ground 
level.  

Earlier in this work, the meteorological conditions in Cyprus according to past statistics are 
described. This allows a good insight in the general situation in Cyprus and can be considered 
as valid today. But to assess and quantify the influence of meteorological parameters on 
pollutant concentrations, the measurements have to be carried out at the same time. That’s 
why wind measurements were carried out parallel to continuous pollutant measurements.  

Finally, particulate matter was measured, namely PM10 and PM2,5. Due to long-range 
transport events (Annex A.1.), the usage of diesel fuel and the dryness of the land, particulate 
matter is a problematic pollutant in Cyprus. The measurement devices were placed at sites to 
cover different categories. Together with the results from element analyses using X-RFA and 
AAS devices, a statistical source apportionment was carried out. The principle of this method 
lies in the fact that most sources can be identified by combinations of certain elements or by 
single elements. Herewith, the most important emission sources of PM could be identified 
[34].  
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3.3 Emissions inventory 
The emissions inventory was one of the main phases of the project and was aiming to the 
collection and processing of appropriate data for the estimation of air pollutants emissions 
from different sources. This was the first time that a systematic and coherent inventory was 
performed for the whole island of Cyprus. The methodology, the data collection and the 
calculated emissions for all sources are depicted in the final report of the project [34].  

The air pollution sources being considered are treated as line, point and area sources and 
cover: 

• Emissions due to road traffic  
• Emissions due to the use of industrial boilers  
• Emissions due to dry cleaners  
• Emissions from the hotel industry  
• Emissions due to domestic heating, heating in hospitals/other buildings  
• Emissions due to agricultural activities  
• Emissions due to petrol stations  
• Emissions from airports  

The air pollutants being considered here are: 

• Oxides of nitrogen (NOx) 
• Sulphur dioxide (SO2) 
• Carbon monoxide (CO) 
• Volatile Organic Compounds (VOC) 
• Particulate Matter (PM) 

The calculated emissions were edited for ArcGis, a geoinformation system (GIS), which 
allows visualizing and analysing data regarding their spatial reference. In Figure 3.7 the daily 
emissions of boilers in Cyprus are shown. Five violet spots attract attention. They indicate the 
most important single sources of Cyprus: The power plants of Kyrenia, Dhekelia, Vasilikos 
(Annex A.1.) and Moni and the cement factory of Vasilikos (Annex A.1.).  

The traffic emissions were calculated according to the traffic strength and the relevant 
emission factors from the European database “CORINAIR” as mass emissions per km road 
length [34, 63]. The roads are coloured in maps according to their emission load. An example 
of the traffic sector is presented in Figure 3.8. Here the daily NOx emissions of the traffic 
sector are shown for the city of Limassol. Parallel to the coast, a red line indicates high traffic 
loads in the city centre with commercial and touristic traffic. The thick red line that is directed 
East-West stems from the highway connecting the cities Larnaka, Limassol and Paphos. 

For Nicosia, a new method was developed in a diploma thesis to improve the accuracy of the 
emissions inventory for the traffic sector (see Annex A.1.). The method is based on 
multichromatic high-resolution pictures from Quickbird satellite as shown in Annex A.1.. 
Concretely, the pictures were used to exactly determine the traffic density over the whole city 
without any time delay and without missing any roads [63].  

It was attached importance to prepare the emissions inventory in accordance with the 
requirements of the neural network model, since the emissions inventory obviously is an 
important variable to declare the pollutants distribution.  
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Figure 3.7. Daily NOx emissions of boilers in Cyprus 

Figure 3.8. Daily NOx emissions of road transport sector in Limassol 

NOX Daily Emissions – Traffic Sector 
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3.4 Other influences on the pollutant concentrations  
Chapters 3.1 to 3.3 describe the most important parameters, that influence the spatial 
distribution of air pollutants. There are however also other influences that can be rather 
important depending on the regarded pollutant and on the time and spatial scale: 

• For Ozone - the height above sea level  

• For Volatile Organic Compounds - the vegetation  

• For NOx - forest fires  

• For NO2 - the Ozone concentration (oxidation of NO) 

• etc.  

Many of these additional variables cannot be quantified or measured – only assumptions can 
be made, so they are only conditionally usable.  

It was finally decided to build the model development on the pollutant NO2, since this is the 
only pollutant that was measured at all 270 diffusive sampling sites in Cyprus (see chapter 
3.2). So, for NO2 the most important influence parameters are summarized in Figure 3.9.

Figure 3.9. Factors that influence the spatial distribution of NO2 
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Another important issue on NO2 formation is the so called photostationary equilibrium 
between NO, NO2, O3 and O2, expressed in the photostationary equilibrium:  

 
 

 
c(O3) = c(NO2)/c(NO) *  k2(hv)/k1 

 

These equations show, that the ozone concentration depends on the NO2/NO ratio and on the 
effective light intensity. Near a highly frequented road this ratio remains small and only a 
little amount of ozone is formed. An exception is a process that leads to the photochemical 
smog as first observed in Los Angeles. Here, intense sunlight forces the formation of OH 
radicals and together with hydrocarbons the formation of peroxy radicals that finally oxidize 
NO to NO2. The oxidization of NO via O2 is a very slow process and therefore negligible. 

Ideally a model should incorporate all possible influence parameters, but in practice this is 
hardly possible. The developer has to fall back on available parameters from measurements or 
surveys and digital maps. But first of all, it is important to consider what makes physical 
sense! In this context, the possible input parameters for the model development are: 

• Results of pollutant measurements 

• Emissions inventory 

• Population density 

• Land usage 

• Meteorological data, especially wind speed and wind direction 

• A digital elevation model 

On this database, the development of the neural network was carried out, described in the 
following chapter.  

NO2 + O2    NO + O3 
hv 



4 Interpolation maps  

        25 

4 Interpolation maps  
  

4.1 General modelling approach 
As stated in chapter 2.7, there are only three modelling methods, that enable the user to 
process diffusive sampling measurements – regression analysis, interpolation and neural 
networks. Since interpolation is a widely applied method [15] and delivers fast results, 
interpolation maps were calculated firstly. The intention was to obtain a first insight on the 
pollutants distribution and to see how powerful interpolation algorithms are. In Figure 4.1 the 
general development steps of this work from the measurements to the final neural network 
model are illustrated. 

Diffusive 
sampling 

Monthly 
averages 

Yearly /seasonal 
averages 

NO2 distribution 
map 

Influence 
variables 

Validation of model

Interpolation Interpolation with 
add. variable 

Neural network 

Kriging / IWD* Cokriging 

Sensit. Analysis 

STEP I STEP II STEP III 

Figure 4.1. Steps carried out to model the spatial distribution of NO2 in Cyprus 

*“Inverse Distance to a Power“ interpolation algorithm 
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Linear and non-linear regression analysis was only used to perform a statistical sensitivity 
analysis which included graphics like scatter plots to visualize bivariate dependencies or 
histograms to depict the distribution of a certain parameter.  

Earlier it was decided not to use regression analysis as modelling tool due to its limited 
flexibility and strict theoretical assumptions that cannot be fulfilled practically [30, 31, 33].  

 

4.2 Interpolation 
Interpolation maps were calculated for all major cities, for the seasons and for whole Cyprus. 
Two interpolation results are presented in the following chapter. In Annexes B.1. to B.8 more 
of these maps are shown.  
 

4.2.1 Simple interpolation  
Several interpolation methods were tested using different software tools. The first maps were 
created with “Surfer”, which is very fast and incorporates the most important interpolation 
methods. However, another software was chosen, the geoinformation system “ArcGis”. Using 
the implemented geostatistical analyst, it is not only possible to adapt all necessary 
interpolation parameters, the great advantage is, that one can directly preview what effect has 
a modification like changing the lag size of the variogram. More specifically, one can see the 
percentage of influence of all measurement points at any site and also preview the 
interpolation result in a rough form. A problem here could be that the end result is very 
subjective, since one can produce a vast number of quite different maps using the same input 
data (Annex B.1.). This problem can be partly solved through the cross validation option of 
the geostatistical analyst and also by setting aside a validation data set, which can be done 
quite comfortably.  

In Figure 4.2 the result of an “Inverse Distance to a Power” interpolation of NO2 in Limassol 
is shown. Transition colours were avoided, for not to pretend exactness that doesn’t exist in 
reality. Peak concentrations can be observed in the city centre of Limassol near the coast with 
a heavy traffic load. A look at the NOx emissions inventory of the traffic sector, shown in 
Figure 3.8, confirms this. There is a gradual circular decrease of NO2 pollution, the lowest 
values are predicted north of Limassol - on the map they emerge as two green areas.  

This result can be assessed as follows: 

• The general trend is reproduced quite well, since the database is rather solid – the 
interpolation map of Limassol is based on 20 diffusive sampling sites. 

• The spatial distribution of NO2 depends strongly on the geographical location of the 
sampling sites, which can be concluded from the two green areas, which are two 
sampling points. 

• Interpolation does not care if there are any sources between two interpolation points it 
simply “over-interpolates” such a source. So it does with the highway, the dark thick 
line travelling from the west margin of the map to the east. 

• Interpolation does not regard any obstacles – it passes buildings. 

• The IWD algorithm produces circular shapes, which would mean the wind blowing 
from all directions with the same speed. 
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In Figure 4.3 the annual distribution of NO2 all over Cyprus is depicted. With this large scale, 
the specified disadvantages seem to be blurred, since all major cities emerge quite clearly and 
large parts of Cyprus, where no emissions are located, are in green. But of course the same 
problems discussed for the city interpolation do also occur here. Quite in the centre of the 
map, 25 km north of Limassol, there is a yellow dot with a light green circular surrounding 
caused by one single diffusive sampling point, which was placed near a highly frequented 
road. This shows again that the result depends on the location and in addition it clarifies that 
points, which are influenced by single sources, should not be included in the interpolation. 
This approach is also being demanded by the European Union in the “Guidance report on 
preliminary assessment under EC air quality directives” [3]. Here it is recommended to place 
the diffusive samplers in a way that they are representative for a large area. 

 

 
 
 
 
 
 

Figure 4.2. Mean annual interpolated NO2 distribution in Limassol using an “Inverse Distance 
to a Power” (IWD) interpolation algorithm 
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Nevertheless, the result reproduces quite well general tendencies on a larger spatial scale, as 
confirmed by the cross validation in Figure 4.4. The cross validation of ArcGis works by 
gradually leaving one data point out from the interpolation and estimating it’s value with the 
remaining others. Higher measured NO2 concentrations are underestimated; the points should 
ideally concentrate around the zero line, which indicates a zero prediction error. 

Figure 4.3. Mean annual interpolated NO2 distribution over Cyprus (summer 2002 to 
summer 2003) using an Inverse distance to a power (IWD) interpolation algorithm 
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Figure 4.4. Cross validation of the annual NO2 interpolation map of Cyprus  

Optimal agreement 



4 Interpolation maps  

        29 

4.2.2 Interpolation considering additional variables 
As a conclusion from the previous chapter, it can be stated, that simple interpolation is a 
strongly limited method and should be only used for quick visualization. The greatest 
limitation is, that it doesn’t consider the space between two points, but only their spatial 
distance. In the case of Kriging the “spatial roughness” is also considered, but this doesn’t 
really enhance the result, since it cannot identify additional sources or e.g. obstacles.  

With Cokriging, we have on the first view a method that can consider such important 
influence parameters, but in practice it only uses this additional information to enhance the 
variogram [38]. The general limitations of interpolation remain, as proven by own tests. In 
combination with other methods like regression, interpolation can be an option. In the 
software FLADIS [15], interpolation is an important component and delivers acceptable 
results also in combination with a gaussian dispersion model, with which emission sources 
can be considered.    

At the moment no satisfactory stand-alone method exists to calculate the distribution of air 
pollutants under consideration of the most important parameters. This work treats the 
development of such a method, based on artificial neural networks.  
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5 Neural network modelling 
Artificial neural networks are a very simplified version of real neural networks. The human 
nervous system consists of 1011 to 1012 nerve cells and is able to carry out 1012 to 1013 
“switching processes” - a complexity that cannot be rebuilt technically. Nevertheless, it is 
possible to understand the principles and to reconstruct a few cells that simulate the most 
important processes. In the year 1943, Warren McCulloch and Walter Pitts showed in their 
paper “A logical calculus of the ideas immanent in nervous activity” that even simple neural 
networks are able to calculate any arithmetic or logical function [39]. 1957, Frank Rosenblatt 
et al. developed the first successful neuro-computer, the so-called “Mark 1 perceptron”, which 
was able to recognize simple patterns. Neural networks on the base of backpropagation were 
developed in the early seventies and still are today the most popular networks [40]. 

 

5.1 Biological neural networks 
To understand neural modelling, it is important to know basics about biological neurons. 
Unlike a personal computer, information processing in the brain is not directly influenced 
from outside, only input data are provided. The brain organises the processing of information 
on it’s own and has the ability to modify this process to enhance the results – in other words: 
it learns. The only information it receives from outside is a statement of the environment on 
the quality of the results. A neural network therefore can be described as a “black box” to 
which no interference takes place and whose concrete behaviour is invisible. 

Biological neural networks are built by neurons, which consist in principal of four parts 
(Figure 5.1): 

1. Cell body: Processes the information. 

2. Axon: A fibre that conducts the output signal of the cell body to other neurons. 

3. Synapse: The axon thickens at its end to form the synapse, which links the axon to the 
dendrites of other neurons.  

4. Dendrites: Dendrites receive input signals of other neurons and direct them to the cell 
body. 

 

Synapse Dendrite

Cell body 
 

Nucleus 

   Myelin sheath            

Axon 

Figure 5.1. Biological neuron and its principal components [40]. 



5 Neural network modelling  

        31 

When the impulse from another cell exceeds a specific threshold stimulus, the neuron is 
activated, processes the information and sends a modified impulse using the axon. This 
happens in the human nervous system up to 1013 times per second [40]. The network then 
stimulates e.g. muscles according to the processed information it received from the receptors 
(eye, skin…). Summarized, there are three principal tasks the network has to fulfil (Figure 
5.2): 
 
 
  
 
 
 
 
 
 
By connecting many neurons, a biological neural network is formed. By changing the wiring 
diagram, the thresholds stimuli or the strength of impulses, the network can develop, 
respectively learn. Practically, the synapses are growing or shrinking to strengthen or weaken 
a connection [39, 41].  
 

 

5.2 Artificial neural networks 
The components of an artificial neural network are strongly idealized neurons. Just like their 
biological example, they consist of four principal components: The cell body, the axon, the 
dendrites and the synapses. An artificial neuron has the same principal tasks as biological 
neurons. They are realized trough mathematical functions and vectors, which are connected 
with each other in a chain. In Figure 5.3 the principal functional components of biological 
neuron and their mathematical translation are shown. 

OUTPUT PROCESSING INPUT 

Figure 5.2. The three principal tasks of a neuron 
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Figure 5.3. Principal biological components of neurons and their mathematical 
realization
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One neuron alone doesn’t build a network. A complete artificial neural network consists of 
layers of many single neurons that are connected with each other. The way how neurons are 
organised in layers and connected with each other defines the network topology. The most 
common topology is the so-called multilayer perceptron (Figure 5.4). It is very well 
developed and suitable for most problems, since it has theoretically the ability to approximate 
every continual function [39]. Most authors in the field of air quality modelling used a 
multilayer perceptron [e.g. 22, 23, 24, 26]. 

It consists of one input layer, one output layer and some intermediate layers. Every single 
neuron is connected with the previous layer where it receives its input from and with the 
following layer to which it passes the processed information. There are no feedback 
connections between the different layers – the information flows unidirectional (Figure 5.4).  

 

Of course there exist also many other well-developed network topologies, but they are mainly 
suitable for other purposes. Forecasts of time rows e.g. can be done with the so-called Elman-
network [42] since it includes feedback connections, which memorizes previous values of the 
time row (Figure 5.5). Statistical methods use the comparable “auto regression” [43, 44, 45]. 
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Figure 5.4. Topology of a multilayer perceptron with three principal layers 
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Since this work here is based on a multilayer perceptron, the following comments will refer to 
this network-type.  

In general there are two operation modes:  

1. Training mode: The network learns the functional correlation of the provided input 
and output variables.  

2. Recall mode: The learned correlations are applied to a dataset with unknown outputs. 

During training, the network learns the dependencies of the different variables and finds the 
principles that connect them. In the case of supervised learning, applied in this work, an 
extern “teacher” provides both input and output - the most practicable and fastest method to 
calculate air pollutant concentrations, since the exact outputs are known. Other learning 
concepts require more extensive training and are suitable for other questions [39, 41]. 

 

In detail, the information processing of the applied network is organised in the following way 
[40]: 

1. The user provides input data for the input layer. 
2. The input data are normalized to a value range of 0 to 1. 
3. Random starting weights of each connection in the whole network are being set. 
4. Every neuron in the first intermediate layer multiplies each input value with the starting 

weight and finally summarizes all – the input function ƒi. 
5. The result from the input function is passed to the sigmoid activation function ƒa. 
6. The result from the activation function is passed to the output function ƒo, which creates 

the output. 
7. Now the steps 4 to 6 are repeated with the outputs of the previous layer being the input 

for the following layer. 
8. When the output layer is reached, an output vector is created.  
9. The calculated output is compared with the correct value using the squared distance. An 

error function is calculated.  
10. According to this error function, the weights are adjusted in reverse direction towards 

the input layer. 
11. Steps 1 to 10 are repeated, until a satisfactory error minimum is reached.  

Figure 5.5. Elman network with 
feedback connections 
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This training method is called backpropagation and using the correct terminology, steps 1 to 
9 are called forward-pass and step 10 backward-pass. More concretely, the network 
optimisation is realized by finding the minimum of the error function, which can be depicted 
simplified as a curve with the weights on the x-axis and the errors on the y-axis. Starting the 
training, a random point on the curve is selected, and then the weights are set in a way to 
descent on the curve to find a minimum, ideally the global minimum. This method is called 
gradient descent (Figure 5.6) [40].  

 

Problems with backpropagation [40] 

1. Local minima: When the dimension of the network is growing and more connections 
and neurons are set, the error surface is increasingly jagged. The training could 
therefore end in a local minimum.  

2. Symmetry breaking: If the initialising weights are all the same, the following weight 
adjustments for the connections remain the same. 

3. Flat plateaus: If there is a flat plateau on the error surface, the backpropagation 
stagnates. Many iteration steps are needed, which is the same behaviour when a 
minimum is reached. This could lead to the wrong assumption, that the training has 
been finished successfully. 

4. Oscillation: If the gradient at the margin of a valley is too big, the training can jump, 
respectively oscillate between the two slopes of the valley. 
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Figure 5.6. Training of a backpropagation neural network – gradient descent 
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5.3 Model development  
As aforementioned, the development was carried out with a backpropagation neural network, 
a so-called multilayer perceptron. Developing a new model is an iterative process, where a 
systematic approach is inalienable. It is however not possible to document every single result 
and development step, this would go beyond the scope of this thesis. Only the most important 
results and findings are described below.  

 

5.3.1 Systematic approach 
First of all, the proposed problem was to calculate the annual average NO2 distribution all 
over a large region (in this case Cyprus). As already discussed above, the NO2 concentration 
field depends on certain influences that result from the three basic processes: Emission – 
Transmission – Immission (transition from the air to the receptor). These dependencies can 
be used to declare the searched immission, which leads to the applied approach: The study 
area Cyprus was overlayed by a one by one kilometre grid with each grid cell containing the 
influence parameters and some grid cells – the training cells – containing the influence 
parameters AND the NO2 diffusive sampling results (Figure 5.7). With these training cells the 
functional dependencies are quantified (network training) and afterwards applied to the cells 
where the measured NO2 concentrations are unknown (network recall).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7. Training of a backpropagation neural network – gradient descent 
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5.3.2 Configuration of the neural network  
The model configuration was carried out stepwise regarding different criteria: 

1. Neural network software:  As described before, the chosen software should include a 
model based on backpropagation. Furthermore it should have an interface to supervise 
the training progress, to evaluate the results with respect to the errors and to influence 
the most important training parameters. Since the development was carried out under 
the frame of a project with the duty to deliver a usable model, it should be also easy to 
handle. The finally chosen model was the Windows based application “Qnet2000” 
[48]. 

2. Network topology: Since a neural network can be considered as a black box and no 
real rules for the ideal configuration exist, except some experiences of other authors 
that can’t be transferred completely to other problems, one of the main tasks was to 
find the best possible network topology. This included the amount of intermediate 
layers, the number of neurons and the type of the activation functions. Since the 
software allows 8 hidden layers with unlimited neurons each, the possible 
combinations are huge. 

3. Training parameters: There are some adjustable network parameters, influencing the 
training performance. The most important is the learn rate.  

4. Training variables: A major task of the model development was to find the variables 
that deliver a significant contribution to model the NO2 distribution. High demands 
were made on the data – they had to be available for the whole area of Cyprus and 
reliable, since incorrect values could badly influence the network performance, 
although a neural network is not as sensitive to such values like the regression 
analysis.  

5. Quality assessment: An important issue is to assess the quality of the model outputs, 
whether they agree with real measured values. This finally defines the quality of the 
model, if it makes sense to use it or further develop it in future. Different assessment 
methods were used, being an internal assessment of the modelling software and an 
external assessment including the mapping of a result that passed the internal 
assessment.  

Steps 2 to 4 were carried out quasi-simultaneously, since the results of each step influences 
the approach of the others. To find out how the output reacts on a change of the topology, the 
training parameters and the different variables, a systematic approach was chosen: For each 
training cycle only one characteristic was modified, the others remained the same. In addition 
it was also tested how the network behaves on combinations of parameter changes. With this 
method, general tendencies were found out and constantly checked by using internal 
assessment methods like the rout mean squared deviation of the results and the correlation 
coefficient. This approach is depicted in Figure 5.8.  
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5.3.3 Generalization and memorization 
A test set of 50 cases was set aside for every training run to monitor a possible overtraining. 
50 cases are considered to be statistically significant [47]. Here, the real measured values of 
the test set are compared with the network output and statistical errors are calculated. If the 
error of the test set decreases, the model still generalizes, which means, that it learns the 
correlations, if the error of the test set increases, the network memorizes – it recalls the values 
of the training set. So a test set is very important to find the right point to terminate the 
training, since the error of the training set always decreases. In Figure 5.9 an exemplary error 
course during training is depicted. After approximately 10.000 iterations the root mean square 
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error falls dramatically. This shows, that the network learns the major correlations relatively 
fast – a pattern that was found quite often. Afterwards, a slow but constant error decrease can 
be observed. This could lead to the conclusion that more iterations would improve the model 
performance. 

 

 

Figure 5.10 shows however a different picture: Here, the error course of the test data set is 
shown. The same abrupt error-decrease after 10.000 appears, followed by alternating ascents 
and descents to reach a local minimum after 80.000 iterations. Finally the error decreases 
more or less constantly  - an indicator of overtraining and memorization. Patterns like these 
were observed throughout the whole model development, so that the iteration number was 
limited to 100000.   

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Root mean square error of the normalized model output (NO2) as calculated 
by the neural network software using the training data set with 270 values 
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5.3.4 Optimisation of network topology 
To find out the best network topology, three principal criteria have to be considered:  

1. The number of input neurons: Choosing the best number and types of input neurons 
is the most time consuming part of the optimisation process and will be discussed 
later.  

2. The number of hidden layers and neurons: Authors like Omasreiter [26] and 
Gerboles [22] used only one hidden layer with up to 12 neurons, but own experiences 
have shown that three hidden layers with 3 to 5 neurons each deliver the best results. 
Multi-hidden layer networks tend to grasp complex concepts more easily than 
networks with one layer. One reason for this is that the multi-hidden layer construction 
creates an increased cross-factoring of information and relationships [48]. With the so-
called “hidden node analyser”, the contribution in percentage of every neuron to the 
next layer can be retrieved – an important tool to assess the best network topology. A 
low contribution of a neuron indicates an over dimensioned network and should lead 
to a reduction of neurons. In Table 5.1 an exemplary output of the hidden node 
analyser from a trained network with three hidden layers containing three neurons 
each is shown. Every neuron contributions at least around 30% to the next layer, 
which indicates a well configured network topology. But this alone doesn’t guarantee 
a good performance.  

 

 

 

Figure 5.10. Root mean square error of the normalized model output (NO2) as calculated 
by the neural network software using the test data set with 270 values  
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To assess the performance, the error history of different topologies with the same frame 
conditions has to be regarded. A significant increase or decrease of neurons doesn’t increase 
the network performance as in Figure 5.11 is shown: Configuration 1 with 3 to 5 neurons 
results in the low errors compared to configuration 3 with 9 neurons. Research results have 
shown that the same is valid for the number of hidden layers. Another disadvantage of using a 
larger number of neurons is the increase of computing time. 

 

Average Hidden Node Contribution to Next Layer 
 Network Name:  training coord emi hi pop 
 Iterations:    100000 
 Hidden   
 Layer     Node     Percent Contribution 
 -------        ----      ------------------- 
    1             1         31.99 
    1             2         39.09 
    1             3         28.92 
    2             1         30.60 
    2             2         29.21 
    2             3         40.20 
    3             1         28.80 
    3             2         32.77 
    3             3         38.43 

Table  5.1. Hidden node analyser of a neural network  with three neurons in three 
hidden layers 

0 20000 40000 60000  

Configuration 1 
Hidden layer 1: 3 neurons 
Hidden layer 2: 5 neurons 
Hidden layer 3: 3 neurons 
 
Configuration 2 
Hidden layer 1: 2 neurons 
Hidden layer 2: 2 neurons 
Hidden layer 3: 2 neurons 
 
Configuration 3 
Hidden layer 1: 9 neurons 
Hidden layer 2: 9 neurons 
Hidden layer 3: 9 neurons 
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Figure 5.11. Different network topologies and their history during training – the network 
was trained with the summed NOx emissions and the population   
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3. The activation functions, respectively the output function: As previously shown, the 
neuron’s activation function serves for the purpose of controlling the output signal 
strength for the neuron, except for the input layer which uses the provided input. Four 
different function types are possible: Sigmoid, gaussian, hyperbolic tangent and 
hyperbolic secant. The sigmoid function is mostly applied and agrees best with 
biological neurons. Nevertheless, all of these functions have been tested and finally it 
was discovered that the sigmoid activation function performs best. It can be 
described by the mathematical relationship 1/(1+e-x) and acts as an output gate that 
can be opened (value = 1) or closed (value = 0). Since the function is continuous, it is 
also possible for the gate to be partially opened.  

 

5.3.5 Optimisation of training parameters 
Two factors are used to control the training algorithm’s adjustment of the weights. They are 
the “learning rate coefficient”, eta, and the “momentum factor”, alpha. 

Eta determines the size of the node weights adjustments during training. If the learning rate is 
too fast (i.e., eta is too large), network training can become unstable (oscillation problem). If 
eta is too small, the network will learn at a very slow pace and flat plateaus on the error 
surface could cause a stagnation of learning. With the “Learn Rate Control” (LCR) feature of 
the software Qnet2000, eta can be altered automatically. LRC will drive eta higher or lower in 
a systematic fashion depending on the current learning activity. If the network appears to be 
learning at a relatively slow rate, eta is driven up quickly. Conversely, if the network is 
learning at a fast pace, eta will be held constant or even lower to avoid instabilities. Following 
the recommendations of the software tutorial, the training was started at a low eta without 
LCR. LCR was turned on after 10.000 iterations. Training without LCR didn’t lead to an 
optimisation of the network performance.  

The momentum factor has a smaller influence on learning speeds, but it can influence 
training stability and promote faster learning since it damps high frequency weight changes. 
During the development phase, different momentum factors were tried, but finally the default 
values were applied since they delivered the best results. Practically, the influence of alpha 
was negligible.  

 

5.3.6 Reproducibility 
A very important issue of a model is the question, if its results can be reproduced at any time. 
Since the initialisation of connection weights is always random, every model is unique. 
Therefore, the learned functional correlations of two models with the same frame conditions 
are also always different. The worst case would be symmetry breaking, where all weights are 
the same at start – a hardly probable case. Practically, it was found out that the deviations are 
negligible. Nevertheless, the models should be checked and rerun with a new weight 
initialisation. This was done two to three times for every model. 

Generally speaking, it was found out that neural network modelling is a reproducible method 
if the same frame conditions are set (eta, alpha, topology).  
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5.4 Application of input variables  
The most problematic part of the model development was to find the available variables that 
explain the searched spatial NO2 distribution. These variables had to be formatted or produced 
for every cell of the 1x1km grid Cyprus was overlayed with. From the logical point of view it 
is clear what influences the average NO2 concentration field (see chapter 3.4), but practically 
it is a large-scale task to finally have the data in the desired format or even to obtain them.  

Table 5.2 lists the possible influence data and comments their availability and possible 
contribution to the model. 

  
Table 5.2. Parameters that influence the spatial distribution of NO2 and their possible 
contribution to the model performance 

Input variable Data type Availability Possible contribution to model 

Coordinates 
GIS map from 
cartographical 

service of Cyprus 
Very good 

Neural interpolation of NO2 values – 
same problems like normal 

interpolation 

Height above sea 
level (3d- model) 

GIS map from 
cartographical 

service of Cyprus 

Good - has to be 
generated from 

contours 

Secondary influence of height through 
the vertical distance to the sources 

and to the inversion 

NOx Emissions 
GIS map from 

emissions 
inventory of project 

Good - has to be 
made 

Very important, since these sources 
are also the origin for the secondary 

component NO2  

Population 
density 

GIS map from 
cartographical 

service of Cyprus 

Good - has to be 
altered and 
formatted 

Very important, since the NO2 
concentrations depend largely on 

human activity 

Wind direction 
and wind speed 

Statistics, 
measurements 
during project 

Problematic – 
measurements are 
only point values 

and cannot be taken 
as valid for a whole 

grid cell 

Very important, since it is responsible 
for the dispersion of the pollutants 

Land usage 
Printed maps, 

partly GIS maps, 
Satellite data 

Problematic – no 
good data base 

available, satellite 
data with a rough 

resolution 

Generally very important, but it 
intersects with the variables emissions 

and population density 

 

The central analysis tool for formatting, producing and visualizing the data was ArcGis 8.x.  

 

5.4.1 UTM coordinates 
With the UTM coordinates as input data the neural network can learn the spatial dependency 
of measured NO2 concentrations. Theoretically, the produced output cannot be more than a 
simple interpolation map, since no additional information is provided to the net. In recall 
mode, the UTM coordinates from the centre of every 1x1km grid cell were entered. The 
recall-grid for all models was aligned to the UTM grid starting at 430000E 3820000N and 
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ending at 650000E 396000N. As expected, the result (Figure 5.12) is very similar to a normal 
interpolation with the difference that the actual interpolation (measurement) points are 
blurred. The reason for this behaviour lies in the generalization, the network carries out: It 
learns that certain coordinate combinations result in high NO2 values and others in low values. 
Since the peak levels are to be expected near NO2 emission sources, the map shows red 
colours in and around the major cities and the highway at the south coast. Only the cities of 
Nicosia, Limassol, Larnaka and conditionally Paphos emerge clearly on the map. Kyrenia and 
Famagusta are blurred, since no high NO2 concentrations were measured and a low number of 
measurement (training) points were placed. This lowers the network response to these sites. 
Again, the result depends largely on the chosen measurement sites, since the UTM 
coordinates do only indirectly indicate if there are emission sources in a very generalized way. 
That’s why the result map is only poorly structured, containing clear, simple shapes. 

 

5.4.2 Height above sea level 
Theoretically, the spatial NO2 distribution corresponds indirectly with the height above sea 
level:  

1. Photochemistry: As described above, the so-called photostationary equilibrium 
between NO, NO2, O3 and O2 influences the NO2 distribution. O2 and above all O3 
oxidises NO to NO2 – Ozone therefore promotes the formation of NO2 depending of 
course on the offered amount of NO. It is well known, that the ozone concentration 
directly correlates with the height above sea level [49] and consequently so does 
indirectly the NO2 concentration. Nevertheless this is questionable since there is 
always Ozone in the air and other components like peroxy radicals Volatile Organic 

Figure 5.12. Spatial NO2 distribution as predicted by a neural network, trained only with 
UTM coordinates

NO2 annual mean
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Compounds are also part in this reaction chain. Finally, solar radiation splits NO2 in 
NO and O and positively correlates with the height above sea level. 

2. Mixing layer: Mountainous areas usually are located above the nocturnal ground 
inversion layer. Most of the emission sources are located below this layer; the 
transport of polluted air masses to higher elevations breaks down during night. The 
average concentrations are therefore lower in mountainous areas.  

3. Emission activities: A so called trivial correlation [50, 51] is the fact that on the one 
hand the emission activity of NOx correlates with the land usage and on the other 
hand, the land usage with the height above sea level. Of course, this cannot be 
generalized, but in the case of Cyprus, the major cities are located at the coast, except 
Nicosia, which is situated on the flat plain of Messaoria on a low elevation level. All 
power plants in GCC and the cement factory of Vasilikos are located at the south 
coast, the power plant of TCC at the North coast near Kyrenia. Also the strongly 
frequented highway in GCC is mainly situated at a low height above sea level.  

Considering the facts mentioned above, a good correlation between the height and the NO2 
concentrations (received through diffusive sampling measurements) can be expected. 
Sensitivity analyses confirm this conjecture: Figure 5.13 depicts the dependence of the two 
variables in a scatter plot where a clear non-linear correlation emerges.  
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Figure 5.13. Scatter plot of NO2 concentrations measured by diffusive sampling and the 
height above sea level at the measurement sites 
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The height values from the above sensitivity analysis were directly measured on site with a 
GPS (Global Positioning System) device. The measured altitude values were also used for 
network training, but for the network recall they had to be calculated for every grid cell. To 
achieve this, a digital elevation model (DEM) was calculated by the interpolation of the 
contour information of the cartographic service of Cyprus. For every grid cell an average 
height value was created and then applied to the network. To assure the reliability of the 
digital elevation model, the measured values from the GPS were compared with the 
interpolated results. Since the vertical resolution was chosen as 50m, the comparison resulted 
in a very good agreement. A higher resolution is not practicable, because the heights were 
averaged for every 1x1 km grid cell and the created digital elevation model was based on the 
digital 1:250.000 map of Cyprus. With this resolution, the network could be trained with 40 
height classes – from the low coastal regions and plains to the highest point of Cyprus, Mt. 
Olympus with 1952m above sea level. 

As expected, with the network training it was possible to reproduce the non-linear correlation 
as depicted in Figure 5.13. Agreement statistics calculated by the neural network software 
were accordingly good. The network recall lead to the result map presented in Figure 5.14. On 
the first view it seems to be well structured, but looking more precisely, one can see that the 
actual locations of the major cities are shifted. Some special features of this map reveal which 
correlations the network learned: Paphos at the southwest coast emerges quite clearly in red 
reproducing quite well it’s actual geographical location, but the north and northeast edge of 
Paphos shows three red finger-like structures. This is a place were no emission sources are 
located and no NO2 measurements were taken, they match perfectly with three river valleys 
coming from the Troodos mountains. Obviously the network applied here the above-described 
correlation that the major emission sources are situated at a low altitude, the same problem 
appears at the north-western coast near Lefka.  

Figure 5.14. Spatial NO2 distribution as predicted by a neural network, trained with UTM 
coordinates and the height above sea level 

NO2 annual mean
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Other possible correlations as mentioned above seem to be generally suppressed by this major 
feature. From the physical point of view it can be concluded that there is no justification to 
use the altitude as an input variable for the neural network, although it might optimise the 
statistical error. Later attempts in combination with other variables that were expected to 
compensate the problem showed the same structures.  

 

5.4.3 Wind direction and wind speed 
The dispersion conditions are determined by meteorological parameters like wind speed, wind 
direction and atmospheric stability. Their values directly influence the dilution of air 
pollutants (see also chapter 0). An assessment of air quality therefore always has to include 
the consideration of the local meteorological conditions. Furthermore, seasonal weather 
changes influence human emission activities and cause for example an increased heating 
during winter or additional touristic traffic in summer. These two principals have to be 
considered separately since they underlie different mechanisms. 

• Dispersion conditions: All meteorological parameters are highly dynamic and fluctuate 
permanently. The most important ones wind speed and wind direction can be described 
with meteorological models. Since annual averages are considered, statistics for every grid 
cell should be calculated. For the wind direction, this doesn’t make sense since statistics 
would include distribution parameters (multiple values of one characteristic) that cannot 
be implemented in the neural network as developed in this work. For the wind speed, an 
average value would be practicable, but couldn’t be calculated during this thesis.  

• Emission activities: The consideration of seasonal changes could be carried out by 
calculating two different models – one for winter and one for summer [53]. This requires 
strictly speaking the existence of seasonal input data, which is unfortunately not the case. 
Nevertheless two seasonal models were calculated by training the network with annual 
input data and seasonal diffusive sampling results. This resulted in a satisfactory overall 
network performance. It was correctly calculated, that the NO2 concentrations are higher 
in winter. Only course tendencies could be reproduced here, a complete data set with 
seasonal values can be expected to improve the results significantly. 

Another possibility to include the dispersion conditions in the model is to implement them in 
the emissions inventory for the most important sources in Cyprus as described in the 
following chapter.  

 

5.4.4 NOx emissions 
Special attention was directed to the emissions inventory – its potential contribution to the 
network performance is very high. All serious modelling methods to calculate a spatial 
pollutant distribution like dispersion models or FLADIS include emissions as input. It is 
obvious why: Without emissions there are no air pollutants, so there must exist a correlation 
between the NOx emissions and the searched NO2 concentrations. During the project the first 
coherent emissions inventory for Cyprus was prepared and could be used for this work. Its 
characteristics determine the modelling approach:  

• Quality: Are all important sources included? If sources are omitted, the model 
performance may suffer. Some sources are actually not included in the emissions 
inventory due to difficulties in getting numbers, especially for the northern part of Cyprus. 
Domestic heating and waste burning activities at several unofficial sites (see Annex A.1.) 
could be only partly registered or described qualitatively. So, for some sources rough 
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estimations had to be made, since they would have required extensive surveys and 
additional personnel or project time.  

• Time resolution: Daily or hourly values, weekdays, seasons or months distinguished? 
The time resolution of the model is mainly determined by the emissions inventory and 
partly by the other variables. Here, average daily values valid for the whole year are 
available, representing an average weekday.  

• Spatial resolution: Are the emissions summed in a grid with a certain spatial resolution 
or are line, point and area sources considered?  Are the coordinates known for each 
source? Fortunately, the emissions inventory is divided in the three basic source 
geometries and the spatial locations are known. 

Since the author was involved in the preparation including the realization in a geoinformation 
system, the emissions inventory was prepared to be suitable for the model development.  

As mentioned above, the spatial resolution of the model was chosen to be a 1x1 km grid, so 
the emissions were prepared to match the same grid. Practically, all emission sources that fall 
in a particular grid cell were summed. The area and line sources were proportionately 
converted and assigned according to their length or area. This method assumes however that 
the emissions of all sources directly pass over to ambient air pollutant concentrations in the 
considered grid cell. This is for the majority of sources with relatively low emissions at a low 
height level an acceptable approximation, but for the major sources a strong distortion of the 
real conditions. In reality, the air pollutant leaves the outlet of the source and disperses 
vertically and horizontally according to the present wind and turbulence field. This process is 
called transmission and depends on the source height, the source strength and the dispersion 
conditions. In Figure 5.15 this context is depicted.  

 

In a high source altitude the air pollutants are distributed over a large area and do not affect 
the direct neighbourhood. To count these emission sources to the grid cell of their actual 

Dispersion, chemical transformation 

Figure 5.15. Paths of air pollutants from points of emission to the location of 
influencing ambient air quality 
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geographical position would result in an overestimation of air pollutant concentrations in this 
grid cell.  

For the correlation of ambient air concentrations with emissions, the actual location where the 
emissions touch the ground have to be considered. Usually a dispersion model with a wind 
field processor is the only possibility to calculate the pollutants distribution around a source 
[54]. It is not possible to replace a dispersion model by a neural network, especially when the 
regarded area is topographically structured with different elevations [52]. Moreover, the shape 
of the dispersion plume has to be explicitly given by a mathematical formula. Different 
approaches were used to solve this problem for the major sources in Cyprus. They are 
described below. 

 

5.4.4.1 Methods to determine the plumes of the major sources in Cyprus 
Point sources:  
According to the emissions inventory, the major single point sources of NOx are: The cement 
factory near Vassilikos and the power plants of Moni, Dhekelia, Vassilikos and Kyrenia. All 
important point sources of Cyprus are located at the south coast between Limassol and Agia 
Napa, except the power plant of Kyrenia, which is situated at the north coast. A Gaussian 
dispersion model (“P&K 3782”) was used to calculate the NOx distribution around these 
sources. Since this work serves to find a method based on a neural network it was decided not 
to use a more sophisticated model which would have stretched the development time 
significantly. Another reason is that Gaussian models deliver good results in a flat modelling 
area [13], which is the case here, since the coastal regions are flat in the first approximation. 
Figure 5.16 shows a three dimensional view of Cyprus with the most important point sources. 

 

Figure 5.16. Three-dimensional view of Cyprus with the major point sources – raising 
factor is ten; the stack heights in the map do not reflect their actual heights  
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In addition it is not so important to match the exact shape of the plume since the calculations 
are added after some conversions to the emissions inventory, which has a model input 
resolution of 1x1 km.  

Some of the input parameters for the Gaussian dispersion model had to be calculated or 
estimated due to a lack of information. For all sources the total daily emission of NOx was 
known. For the Vassilikos power plant, the most important parameters were provided by the 
Electric Authority of Cyprus. They are listed in Table 5.3. Similar information was provided 
for the power plant near Kyrenia. Information concerning the other sources could be found in 
the internet but most of the parameters had to be estimated and derived from the available 
ones using known technical specifications [55].  
 

Table 5.3. Emission parameters of the Vasilikos power plant 

Parameter Value 

Stack height 120 m 

Stack diameter 2,9 m 

Gas temperature 125-130 °C 

Pollutant volume flow 83,3 m/s 

Fuel consumption 8 l/s 

SO2 emission rate 146,1 g/s 

SO2 concentration 1753,3 mg/m³ 

Gas flow velocity 12,6 m/s 

 

Besides the operational specifications of the source, wind statistics are a necessary input for 
the dispersion model. For each source a wind statistic was created according to own 
measurements, measurements from the project partners, measurements from the Electricity 
Authority of Cyprus and wind statistics from the Meteorological Service [56]. Wind roses for 
the used measurement stations are shown in Annex B.1.. With the dispersion software the 
concentration field were calculated according to this statistic, so that the result should be 
reflected by the wind rose.  

In Figure 5.17 the mean annual dispersion of NOx around the cement factory near Vassilikos 
as calculated with the modelling software P&K3782 is depicted. In Annex B.1. to B.1. the 
same for the power plants of Dhekelia, Moni, Vasilikos and Kyrenia is shown. 

The highest concentrations occur at the southern part of the plume that crosses the coast to the 
mediterranean sea. Close to the cement factory near Vassilikos, the power plant of Vasilikos 
is situated for which the SO2 distribution was modelled by Joao Ferreira in his master thesis 
with a more sophisticated model - the Particle model Austal 2000 [57]. Here the same wind 
data were used and also a digital elevation model. If the topography would have a great 
influence on the dispersion, the plumes of the two modelling approaches would differ 
significantly, but in fact they match very well (compare Figure 5.17 and Annex B.15).    
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The dispersion modelling results had to be converted afterwards to fit into the emissions 
inventory. For this purpose, all dispersion modelling results were digitised and transferred 
into ArcGis and then converted according to the formula: 

 

  CE=(CI*k*t)/ASt 
 

where 
 

CE … Daily emissions in kg/km² 
CI… Pollutant distribution according to dispersion model in µg/m³ 
k…  Factor for the conversion of m to km  106 

t…  Factor for the conversion of s to day  3600*24 
ASt… Stack area in m²  6,6 m2 

 

It has to be emphasized, that this formula is purely a conversion calculation to perform the 
transition of pollutant concentrations in µg/m³ to “distributed emissions” in kg/km². The 
results were cross-validated with the known total daily emissions of the stack by summarizing 
the values of the distributed emissions according to the covered area. A good agreement could 
be observed here. This method can be considered as a way to weigh the emissions according 
to their source height, which was already tried by other authors, but in a more simplified way 
with statistical methods [58]. With the described approach, a normal emissions inventory can 
be enhanced significantly. In Figure 5.18 the distributed emissions of the Vassilikos cement 
factory are shown. All distributed emissions were finally intersected with the 1x1km grid and 
then included in the emissions inventory.  
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Figure 5.17. Dispersion modelling of the mean annual NOx concentration for the cement 
factory near Vasilikos. Output of Gaussian dispersion model P&K 3782 
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Highways: 
The major line sources in Cyprus are the highways in Cyprus.  They connect the cities 
Nicosia, Larnaka, Limassol, Paphos, Famagusta and Kyrenia and are an important NOx source 
since the main emission source is the traffic sector. 
To assess the influence of the highways on their neighbourhood, an NO2 abatement curve 
could be created by calculating the closest distance of each diffusive sampling point to a 
highway and inserting it into a scatter plot together with the measured NO2 concentrations. A 
clear correlation was found out as shown in Figure 5.19.  
When this curve is intersected with the background value line of 7 µg/m³, which was obtained 
from the site category analysis (Table 3.2), the influence distance of the highway can be 
determined to be 500 m in maximum. Here it is assumed that the diffusive sampling points 
are not influenced by other sources and that to both sides of the roads wind directions and 
speeds are equal. This is an acceptable approximation, since the measurements cover a whole 
year resulting in a good distribution of wind speeds and directions. 

Figure 5.18. Dispersion plume of the cement factory near Vasilikos and 
its distributed NOx emissions – mean annual distribution  

Distributed emissions in kg/km² x day 
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Figure 5.20. Distributed NOx emissions of the highly frequented highways in Cyprus including 
their influence on the environment

Distributed NOx emissions
in kg/km² 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Therefore a buffer of 500 m was applied to each segment of the highways and intersected 
with the 1x1km grid. After this, the area of each intersected buffer was calculated and 
proportionally the emissions were calculated (Figure 5.20) and included as distributed 
emissions to the final emissions inventory.   
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Figure 5.19. Abatement of NO2 with increasing distance to highway 
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Cities: 
On the chosen model scale, 1x1km, cities can be treated as area sources, since all emission 
sources are concentrated densely at a definable area. Most of the sources in a city are 
negligible, but all together they form a very important source that influence greatly the 
vicinity. Depending on the dispersion conditions, a large plume of air pollutants leaves the 
city and affects the suburbs or even a larger area. With the two balloon measurement 
campaigns of the project, the plumes of Nicosia and Limassol could be detected [34]. To 
determine the actual shape of a city plume, the use of a dispersion model is usually the 
appropriate tool. The dense network of diffusive samplers that were exposed during the 
project however allows another approach. It was investigated, whether the distances of the 
diffusive samplers to the cities correlate with the measured NO2 concentration.  After the 
exclusion of locally influenced samplers, a regression analysis was carried out. The functional 
dependency of the two variables could be explained with a logarithmic approach 
(Figure 5.21). The dashed line indicates the average diffusive sampling value of agricultural 
points which can be considered as the background value in non urban places with a low 
population density: 7,0 µg/m³ NO2. The value for mountainous areas cannot be taken, since 
this does not reflect the average value close to a city. The intersection between the logarithmic 
curve and the dashed line can be considered as the influence distance of the city: It is 12 km.  

To calculate the shape of the air pollutant plume, wind statistics from Athalassa were divided 
into 16 wind direction classes. For each class, the average wind speed was calculated and then 
weighted with the frequency of its occurrence. This value then was multiplied with the 
maximal plume length of 12 km, which finally resulted in the plume length for the regarded 
wind direction sector. Therefore, the calculated plume resembles the wind rose from the used 
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wind statistics. This is an acceptable idealisation, since the result is added as “distributed 
emissions” to the coarse 1x1km modelling grid. Basically, the following assumptions were 
made: 

• The shape of the plume is determined by the frequency of wind directions 

• The plume length in each wind direction sector correlates with the wind speed 

• The total plume length correlates also with the total emissions of the city, since less 
emissions are diluted faster  

For the gradual abatement of the distributed emissions, the before determined logarithmic 
regression formula of the curve in Figure 5.21 was converted to calculate “distributed NOx 
emissions” instead of NO2 concentrations. As conversion factor, the ratio of the average NOx 
emissions in kg/km² of Nicosia to the maximum NO2 concentration was used.  

In Figure 5.22, the calculated plume of distributed NOx emissions from Nicosia is shown. 
Black framed squares indicate the analysis grid, black diagonal lines the frontiers of 16 wind 
sectors. In the city, the grid cells are without a frame, they indicate the emissions according to 
the emissions inventory subtracted by the distributed emissions outside Nicosia. 

 

Following the above-mentioned assumptions, the other cities were treated equally (see Annex 
B.1. to view Limassol), with the difference that no own regression curve could be determined, 
since not enough diffusive samplers were available to make a secure statistical statement. 
Instead of this the formula from Nicosia had been fitted. The total plume length was 
calculated using the ratio of the summed emissions of the regarded city to Nicosia. In 
Figure 5.23 all calculated city plumes are summarized.  

Figure 5.22. Dispersion plume of Nicosia with real NOx emissions from emissions 
inventory and the calculated distributed emissions of the plume 
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Total NOx emissions of Cyprus  
Finally all distributed emissions were added to the accordingly reduced “normal” emissions 
inventory and formatted for the training with the neural network. The result is shown in 
Figure 5.24. 

 

5.4.4.2 Sensitivity analysis of NOx emissions 
To assess the possible contribution of NOx emissions to the model performance, the diffusive 
sampling results were compared with the NOx emissions of the regarded grid cell. As 
expected, a good correlation was discovered, shown in Figure 5.25. A power curve with a 
coefficient of determination (r²) of 0,62 could be fitted to the bivariate data distribution. Some 
outliers occur due to locally influenced diffusive samplers, which were not omitted, since the 
neural network should also be able to learn such cases. The origin of these outliers can be 
viewed in Annex B.1., where the maximum value range of diffusive samplers in grid cells 
with more than one sampler is shown. In some cases deviations of around 20 to 50 µg/m³ can 
be observed here. This creates a positive or negative deviation compared to the emission value 
of the regarded grid cell. 
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Figure 5.23. Dispersion Plumes of the large cities in Cyprus containing distributed NOx 
emissions  
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Figure 5.24. All summed NOx emissions in Cyprus including the plumes of the major 
sources
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Figure 5.25. Correlation of NOx emissions and annual NO2 concentrations as measured 
by diffusive sampling  
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Training of the neural network with NOx emissions  
After several test runs, the optimal network topology was found to be three hidden layers with 
5-3-3 neurons per layer. Figure 5.26 shows the result after recalling the trained network. All 
major sources and their plumes are reproduced quite well; minor sources however are hardly 
visible since they are not always represented in the emissions inventory.  The most important 
streets and highways emerge clearly, except the road from Nicosia to Kyrenia, which already 
appears only weakly in the emissions inventory – perhaps an underestimation. Nevertheless 
the author did no additional adjustments since this would have only been a subjective rough 
estimation. East of Limassol, the cement factory and the power plant of Vasilikos cause 
distinct air pollution with concentrations of up to 54 µg/m³.  

 
It should be finally pointed out, that the correlation of NOx and NO2 theoretically cannot be 
perfect, since NOx (nitrogen oxides) contains the two species NO and NO2. But, since 
regarded time scale is one year, it can be assumed that all NO is ultimatively transformed into 
NO2. For some single diffusive samplers near roads, there might be also a significant amount 
of NO in the air, which might lead to an underestimation of NO2 by the model. 

 

 
 

 

Figure 5.26. NO2 concentrations distribution calculated by a neural network that was 
trained with NOx emissions  

Nicosia

Limassol 

Larnaka

Famagusta

Paphos 

NO2 annual mean 



5 Neural network modelling  

        58 

5.4.5 Population density 
The training data on population density was based on the digital GIS maps from the 
cartographical service of Cyprus. Either centre points of all villages or polygons of the district 
boundaries were available. Both geometries would however blur the actual physical 
distribution of inhabitants, which is determined by the settlement and therefore worsen the 
network performance or non-existent correlations would be established. It was necessary to 
improve the digital population density map by digitising the actual extent of all cities and 
villages and assigning the population numbers to these polygons. The digitisation was based 
on a 1:250000 paper map from the year 2000 which is not ideal since there are many built-up 
areas in Cyprus, but a good approximation, since all values are again intersected with the 
1x1km grid. In reality, the extent of the cities and villages should be generally larger. Actual 
satellite photos covering the whole island would be a solution for this problem. Figure 5.27 
shows the enhanced population density map assigned to the 1x1km analysis mask. 

The population density is an indicator for human activity, which is the main cause for NOx 
emissions. Unlike other air pollutants like Particulate Matter the natural sources for NO2 are 
negligible, only special phenomena and events like volcanic activity or forest fires are taking 
place under high temperature conditions, which are necessary for NO emission. High NO2 
concentrations are therefore usually caused by humans. A high population density occurs in 
cities and entails an infrastructure of transport and energy whose base are combustion 
processes. So on the one hand, the population density correlates with the emissions inventory, 
but on the other hand it might reveal less tangible sources and always is an indicator for basic 
land usage characteristics – rural or urban, respectively anthropogenic or natural. Its potential 
contribution to the model performance can be regarded as a supplement and an enhancement 

Figure 5.27. Improved population density map assigned to the 1x1km analysis grid  

Population density 
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to the emissions inventory. An assumption that is confirmed by the sensitivity analysis of this 
variable, depicted in Figure 5.28: The scatter plot with the diffusive sampling results on the y-
axis and the population density on the x-axis shows on the first view a weak correlation with a 
low gradient of the logarithmic regression curve. On a closer view however it becomes clear 
that the general tendencies are reproduced quite well: NO2 concentrations smaller than 10 
µg/m³ only occur at a population density below approx. 1300 inhabitants/km². A reverse 
conclusion cannot be drawn as the highest NO2 concentration is measured at a less crowded 
place of about 600 inhabitants/km². The reasons for this are local emission sources that 
influence this diffusive sampling point, which cannot be reflected by the population density 
but might be compensated by the emissions inventory.  A univariate network training here 
wasn’t necessary, since the previous development steps allowed a forecast what would have 
been the result for this – a map where at populated places the predicted NO2 concentrations 
ascent proportionally to the population density, but due to the distribution pattern in the 
sensitivity analysis, the model would not be able to reproduce high concentrations. A 
significant model enhancement only can be expected in a multivariate environment. 

5.4.6 Land use 
Land usage is an ordinal variable that cannot be quantified. It can be considered as a 
qualitative description of a certain feature. As all diffusive sampling sites were assigned to 
different site categories, a useful step would be to assign these categories to a land usage map. 
Unfortunately, the only available maps were derived from Landsat satellite data, which turned 
out to be too coarse, and its classification was useless for modelling purposes. To prepare an 
own land usage map would have gone beyond the scope of this work. Nevertheless it was 
tried to apply land usage in a simplified form as so called dummy variables “urban/rural” or 
by providing the actual average NO2 value of urban and rural diffusive sampling sites. A level 
shift of the model output was expected but did not occur. Therefore, land use was not directly 
included in the model. 

Figure 5.28. Correlation of population density and annual NO2 concentrations as 
measured by diffusive sampling  
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5.4.7 Combination of input variables (multivariate modelling) 
A univariate model alone cannot precisely predict the NO2 distribution, as there is more than 
one influencing factor (see Figure 3.9). A good model performance could however already be 
established with the emissions inventory as input. This positive result can be explained by two 
reasons:  

• It was not only a “normal” emissions inventory, since the dispersion of the most 
important sources in Cyprus was calculated. The model therefore can be considered as 
multivariate with the additional variables wind speed, wind direction and atmospheric 
stability  

• The emissions are the source for the distribution of NO2 and are therefore the ideal 
training variable 

The weak point of this model is the underestimation of peak values and the neglect of many 
small sources that are hard to cover with a survey. The problem can be only compensated by 
considering additional information. In the previous chapters, the potential contribution to the 
model by the different available input variables has been discussed. Each of them correlates 
directly or indirectly with NO2 concentrations and should for this reason improve the quality 
of the calculations. On the other hand it was also found out that an existing correlation does 
not necessarily create a realistic result, which is the case for the height above sea level. In 
addition it is not clear, how the network responds to the combination of different variables.  

A lot of effort was therefore put into this development step. In the following, different 
variable combinations for the training of the neural network are presented. 
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5.4.7.1 Emissions inventory and UTM coordinates 
A neural network with three hidden layers was trained with the UTM coordinated and the 
emissions inventory, before it’s improvement with the dispersion plumes of the major 
emission sources. The visualisation of the result reveals the problems of this model 
configuration: an unrealistic ellipsoid shaped NO2 plume at about 7 µg/m³ coming from the 
Southeast of Cyprus (Figure 5.29). Similar results always occurred, when the UTM variables 
were included. A possible explanation for this effect is that the neural network recognises 
high pollutant loads at the south coast of Cyprus, especially between Limassol and Dhekelia, 
where the major single sources and a part of the highways are located. In numbers, this can be 
expressed with UTM Northing values below 3870000 and Easting values between 490000 
and 590000. The ellipsoid shape of the plume results most possibly from a generalized neural 
interpolation. In other words, the network generalizes the correlation of high NO2 
concentrations in the above-mentioned coordinate range and at the same time it interpolates to 
the lower polluted Northern part of Cyprus and the Troodos mountains. The emissions of 
Nicosia are obviously not included in this generalisation, as the sum of the emissions at the 
south coast is higher and weighted stronger – the neural interpolation only touches the 
Southern part of Nicosia.  

 

 

 

 

Figure 5.29. NO2 distribution as calculated by neural network trained with NOx emissions 
and UTM coordinates 
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5.4.7.2 Emissions inventory, UTM coordinates and population density 
Adding the population density to the before described model, the output becomes more 
realistic although the plume at the Southwest still is there (Figure 5.30). All attempts to 
include the UTM coordinates in a multivariate model created similar unrealistic plume shapes. 
A fine structured neural interpolation seems to be only possible with a univariate model. It is 
remarkable that the major cities and the single sources are reproduced quite well. Generally, 
the network respond to the emissions inventory was in all tested models very good. 

 

 

 

 

 

 

 

 

 

 

Figure 5.30. NO2 distribution as calculated by a neural network trained with coordinates, 
population density and NOx emissions as input variables 
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5.4.7.3 Emissions inventory, population density and height above sea level 
The univariate training with the height above sea level produced physically impossible results 
as clearly shown in Figure 5.14. This is however not necessarily also true for a multivariate 
model since the neural network may learn the fact that high NO2 concentrations do not 
automatically occur at a low altitude. The possibility is given here to consider additional 
information like the emissions. Yet, the recall of the trained neural network with three hidden 
layers at three neurons each still calculated an unrealistic map as shown in Figure 5.31. Clear 
structures cannot be found, the streets disappear and the city of Limassol is completely 
underestimated, even Famagusta seems to be more polluted. Other attempts to apply the 
altitude were also unsuccessful. 

 

Figure 5.31. NO2 distribution as calculated by a neural network, with height above sea 
level, population density and NOx emissions as input variables  
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5.4.7.4 Emissions inventory and population density 
From the above-described modelling progress the following conclusions can be drawn: 

1. A univariate model cannot fully explain the spatial distribution of NO2, since there are 
more than one influencing factors. 

2. The improved emissions inventory is potentially the most important input variable. 

3. The population density might be a supplementation to the emissions inventory. 

4. Neural interpolation with the UTM coordinates only leads in a univariate environment 
to useful results. 

5. With the height above sea level as input variable, the neural network calculates 
physically incorrect NO2 distribution maps. 

Consequently, the next step is to train a neural network with the improved versions of the 
emissions inventory and the population density map. 

After several tests runs to find the best network topology, a model with three hidden layers 
and 3 – 5 – 3 neurons per layer was finally chosen. Further training parameters were: 

• 500000 iterations in total  

• During the first 10000 iterations, the learn rate control was switched off and eta was set to 
0,01 

• The momentum factor (learning coefficient) was set to 0,8 

• The weight update mode was set to process all training patterns per cycle (offline training)  

In Figure 5.32 the error progress of the test set during training as provided by the neural 
network software is depicted. Since the input data are normalised prior to training and the user 
has no direct influence on the internal error assessment tools of the software, the normalized 
average root mean square error is shown. During the first training iterations the error 
decreases only very slowly due to the fact, that the learn rate control was switched off and the 
learning rate coefficient eta was chosen quite low at 0,01. After 10.000 iterations, the learn 
rate control was turned on and the network learned at a much faster pace driving the error to a 
first local minimum. A second local minimum occurs at 35.000 iterations and the error rises 
again afterwards which could lead to the assumption that the training is finished, but again the 
curve descents to reach the third minimum at 80.000 iterations. 300.000 iterations later, a light 
error decline seems to occur, but this could not be reproduced with a new run and with learn 
rate control feature of the software turned on it is unlikely that the error could reach an equal 
minimum. During the whole development process, overtraining always started latest after 
100.000 iterations.  
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The error progress of the training set (Figure 5.33) shows a similar behaviour: After 210000 
iterations, the error declines gradually and progresses almost parallel to the x-axis. A 
continuation of the training would bring no significant benefit. Considering the fact, that after 
100000 iterations the network tends to memorize the input values, the training should be 
halted exactly at this point.  
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Figure 5.32. Progress of the root mean square error of the network outputs from the 
test set during neural network training with NOx emissions and population density as
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Figure 5.32. Progress of the network output deviation (normalized NO2  values) related to the 
test set during training with NOx emissions and population density as input variables  
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Figure 5.33. Progress of the root mean square error of the network outputs from the 
training set during neural network training with NOx emissions and population density as
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Figure 5.33.  Progress of the network output deviation (normalized NO2  values) related to the 
training set during training with NOx emissions and population density as input variables  
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To assess the topology of the neural network, the hidden node analyser of the model is 
depicted in Table 5.4. The hidden node analyser quantifies the average contribution of each 
neuron to the next layer in other words it describes the activity of a neuron.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

None of the nodes contributes less than 8,5% to the layer’s output signals over all training 
patterns. This indicates a well-configured network topology - the lowest contribution values 
belong to the second hidden layer with 5 neurons, which means a theoretical ideal 
contribution of 20%.  

The relative importance of the two input nodes to the network response could be determined 
by the input node interrogator of the software. As expected, the emissions contributed with 
66,93% most to the networks output, the population density 33,07% - values that justify the 
implementation of both variables in the model.  

Comparing the calculated network outputs with the measured outputs excluding the test data 
set leads to Figure 5.34. The theoretical optimal agreement of the model is indicated with a 
dashed line. Below a measured NO2 concentration of 50 µg/m³, the model calculations are 
very close to reality, the dots scatter continuously along the dashed line with a light tendency 
to overestimation. Two thick black lines indicate the EU annual limit value of 54 µg/m³ as 
laid down in the daughter guideline 1999/30/EC of the framework directive 96/62/EC [59]. 
Other authors experienced similar problems with their models [19]. Above measured 54 
µg/m³, the model significantly underestimates three of four values marked grey. Again the 
reason for this can be found in exceptional influences of single sources that cannot be 
reproduced by the network. All other calculations agree very well with the measurements 
resulting in a Pearson correlation coefficient of 0,75. 

 

Average Hidden Node Contribution to Next Layer 
 Network Name:  training coord emi hi pop 
 Iterations:    100000 
  
 H.Layer   Node   Percent Contribution 
 -------   ----   -------------------- 
    1         1         35.81 
    1         2         28.78 
    1         3         35.41 
    2         1         29.60 
    2         2          8.50 
    2         3         11.39 
    2         4         27.42 
    2         5         23.09 
    3         1         15.00 
    3         2         31.92 
    3         3         53.08 

Table 5.4. Hidden node analyser after training 
the neural network with NOx emissions and 
population density 
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To confirm this good result and exclude memorization, the same procedure was carried out 
for the test data set, the diffusive sampler results that were not used for network training. 
These test values were selected randomly, which is common practice in statistics [e.g. 32, 47]. 
The scatter plot in Figure 5.35 shows similar results as the comparison of the training data set: 
A slight scatter around the dashed line of optimal agreement and two outliers stemming from 
exceptional values from locally influenced diffusive sampling sites. The correlation 
coefficient could be determined as 0,62. These observations are in good agreement with the 
ones in Figure 5.34 – the model can therefore be regarded as statistically robust. 
 
 

Figure 5.34. Quality assurance of the final model – comparison of NO2 diffusive sampling 
results from training data set and modelled NO2 values with n =220 
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Nevertheless, the goal of air quality assessment is to react on limit value exceedances and a 
model should enable the user to correctly predict high NO2 concentrations for this purpose. It 
was therefore tried to increase the network response on such high values by providing 
weighting factors for the training process. With these factors, the modeller can advise the 
network to emphasize on certain training cases. The disadvantages of this method are 
obvious: The choice of a factor is subjective, time-consuming and hardly reproducible for 
other users. All attempts to increase the accuracy through factors failed, as Figure 5.36 makes 
clear. 
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Figure 5.35. Quality assurance of the final model – comparison of NO2 diffusive sampling 
result  from the test data set and modelled NO2 values with n = 50 
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In spite of the implementation of weighting factors during training, measured values above 54 
µg/m³ remain mostly underestimated. Only a slight improvement of the root mean square 
error and a raise of the correlation coefficient to 0,76 could be reached as shown in Figure 
5.36. This doesn’t justify the extra work and the acceptance of the other, above-mentioned 
disadvantages.  

The recall of the trained network with the variables distributed emissions and population 
density finally resulted in the NO2 distribution map, shown in Figure 5.37. A remarkable 
feature of this map is that the major emission sources and their plumes are accurately 
reproduced in terms of their shape, geographical position and strength. Thus the cities of 
Nicosia, Limassol, Paphos, Larnaka, Kyrenia and Famagusta appear very clear. The highest 
NO2 concentrations above 40 µg/m³ (the future EU limit value valid in 2010) occur in Nicosia 
and Limassol. Famagusta is the least polluted city in this row.     

Black circles in Figure 5.37 indicate the major point sources of Cyprus - four power plants 
and one cement factory. Each of them is depicted exactly according to their geographic 
location, their strength and their calculated dispersion plumes. Above all, the cement factory 
of Vasilikos and the power plants of Moni and Vasilikos, marked by an ellipsoid, have a 
significant influence on their vicinity that can be compared thoroughly with a city like 
Famagusta. Significant NO2 concentrations around 30 µg/m³ are caused by these few sources. 

Figure 5.36. Quality assurance of the final model, enhanced with case weightings – 
comparison of NO2 diffusive sampling result and modelled NO2 values with  n = 220  

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

NO2 Concentration - Neural Network

N
O

2 
C

on
ce

nt
ra

tio
n 

- D
iff

us
iv

e 
Sa

m
pl

in
g

Optimal 
agreement 

EU annual 
limit value 

54 µg/m³ 

54 
µg/m³ 



5 Neural network modelling  
 

       70

Another important feature in the map are the highways in the southern part of Cyprus. In 
Nicosia, the highway starts as a thick yellow diffusive line, blurred by other sources and 
proceeds southwards as a clear line. About 10 km outside Nicosia it splits into two parts, one 
that leads directly to Larnaka city and the airport and another one to Limassol. From Larnaka, 
another highway proceeds to Limassol unifying with the other one, after which the two power 
plants of Vasilikos and Moni and the cement factory of Vasilikos blur the highway. The last 
part of the highway is the connection of Limassol with Paphos that is less frequented and 
causes lower NO2 concentrations. More light green occurs here, whereas the average 
concentration around the other highways is about 26 µg/m³ up to 30 µg/m³. The influence of 
the highways might seem to be overestimated as the abatement curve (Figure 5.19) is running 
out after several hundred meters. This blur effect stems from the coarse analysis grid of 
1x1km. Other important line sources that can be found on the map are the connections to the 
holiday resorts, Polis and Aya Napa and also the most important roads to the Troodos 
mountains West of Nicosia and North of Limassol. In the North of Cyprus, the line sources 
are hardly recognisable, although there are indeed strongly frequented roads – a problem that 
already occurred in the emissions inventory and therefore can only be eliminated by 
correcting the emission data. Nevertheless, the connections of Nicosia with the cities of 
Famagusta and Kyrenia can be seen as weak, light green lines.  

Single or agglomerations of light green and yellow dots are distributed all over the air 
pollution map. They reflect smaller and bigger villages and match the population density map 
for which the author digitised the actual geographical extent of all villages. So, these dots 
indicate the location and the NO2 pollution level of these villages ranging from 5 to 26 µg/m³. 
Large gaps with wide green areas of low NO2 pollution can be found in the Troodos 
Mountains at hardly accessible areas with loose surface roads. There are no emissions and the 
pollutants of the cities hardly reach these areas. So, there are only background concentrations.  

Figure 5.37. Mean annual NO2 distribution in Cyprus as calculated by a neural 
network that was trained with NOx emissions and population density 
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Other sources worth mentioning are the airport of Larnaka and the village of Morphou. 

The three dimensional view of the result map is depicted in Figure 5.38. It underlines the 
observations described above: A distinct accumulation of high NO2 pollution at the south 
coast and in the plane of Messaoria with Nicosia in its centre. Green areas can be found in the 
Troodos Mountains and in the Northern part of Cyprus. Due to technical reasons, the grid 
lines of the analysis cells have been omitted and contrast and brightness have been changed to 
better recognise the three dimensional view. That is why the line features appear more clearly 
as in the same result map shown in Figure 5.37 and the colours seem to be brighter. 

 

Based on these maps and the statistical analysis described above, it can be concluded that with 
the neural network model a very realistic map of the NO2 distribution over Cyprus can be 
produced, where the sources and their spatial influences are reflected precisely.  

This observation is valid for the regarded regional scale. It is also of great interest how the 
model performs on a smaller, local scale. A closer view of the result map is therefore 
presented in Figure 5.39. Here, the modelling result for Nicosia is laid over the topographic 
map of Cyprus. Dark shapes in the centre of the map indicate settlement; white and black 
lines mainly symbolize roads. Noticeable are orange to red colours that cover almost the 
whole area of Nicosia, indicating NO2 concentrations higher than 30 µg/m³. Top-level NO2 
concentrations above 40 µg/m³ can be observed in the commercial area. The reason for this 
can be found in high traffic loads and dense settlement towards the city centre of Nicosia. 
Thus, towards the vicinity the colours abate slowly to yellow and green and therefore to lower 
concentrations. An important factor for high concentrations is the dense settlement that causes 
unfavourable dispersion conditions with bad ventilation. In the old city centre, marked with a 
dashed circle, no traffic is allowed on the side of the Greek Cypriot Community, which is why 

Figure 5.38. Three dimensional depiction of the final modelling result of the annual NO2 
distribution in Cyprus  

NO2 annual mean 
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the NO2 concentrations remain below 40 µg/m³. Thus, the direct affect of pedestrian areas on 
the pollution level can be demonstrated.  

In the south east of the city, the recreation place Athalassa Park is located with no emission 
sources, but a still significant pollution level of 26 µg/m³, which agrees with the average value 
for residential areas. Close to Athalassa, the industrial area of Latsia and some important 
roads are located that cause together NO2 concentrations of 30 µg/m³ and more. 

Another industrial area with even a higher loading (red colour) can be found in the North. A 
feeder road that connects Nicosia with the Troodos mountains and the suburbs comes from 
the western corner of the map and emerges clearly with concentrations of up to 19,5 µg/m³, 
whereas the highway to Famagusta appears only weakly due to the low values of emission 
input data. The whole vicinity of Nicosia is overlayed with the calculated average air 
pollution plume of Nicosia which has is maximum extension towards the southeast in 
agreement with the wind statistics. Single sources are blurred as they melt with this plume.  

 

The analysis above shows the suitability of the model for air quality assessment on a local 
scale. To increase the resolution significantly would not be advisable, since phenomena on a 
smaller scale become more and more important which would not be registered in detail in the 
emissions inventory - the accuracy of the model would suffer. For a higher resolution the 
wind field and its interaction with the development and the topography has to be regarded. 

Figure 5.39. Annual average NO2 distribution in Nicosia as calculated by the neural 
network model
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5.4.8 Quality assessment of models and input variables 
A major task of this work was to find out the most suitable variables with which one is able to 
functionally explain the NOx distribution over Cyprus. The internal assessment option of the 
neural modelling software allows observing directly the behaviour of the input neurons. This 
has been described above for the final model. In Table 5.5 the percentage of contribution of 
the different variables to the model performance of some selected models is shown. Contrary 
to what a model is able to declare in a univariate configuration, a multivariate environment 
causes different patterns. In Table 5.5 this can be observed considering the population density: 
Its contribution to the overall network performance in models 3 to 5 equals or even exceeds 
the contribution of the emissions. In models 6 and 7 however the emissions contribute about 
2/3 to the performance. An explanation can be found in the dynamic nature of neural 
networks – a new variable creates different interactions of the weight adjustments during 
learning. High contribution values do not necessarily indicate the physical correctness of 
values as model 3 clarifies with a high contribution value of the altitude. The model quality 
can be assessed considering the standard deviation values and correlation coefficients listed in 
Table 5.5. As described above, statistical numbers can be considered only as a part of the 
assessment methods, which have to include the visualization of the results and physical 
considerations. 
 
 
Table 5.5. Contribution of input variables to the model performance 
 

No. Contribution of Input Variable to Model Performance 
in % 

 

Model 
from 

chapter 
No. 

Longitude Latitude Population 
Density  

Emissions Altitude
Standard 
Deviation 

Correlation 
Coefficient

1 5.4.1 63,78 36,22 - - - 15,74 0,48 
2 5.4.4 - - - 100 - 11,3 0,62 
3 5.4.7.2 29,74 17,82 25,14 27,29 - 10,01 0,67 
4 - 13,58 16,08 20,76 14,98 34,6 9,79 0,66 
5 5.4.7.3 - - 32,21 37,42 32,21 14,97 0,51 
6 5.4.7.4 - - 33,07 66,93 - 8,27 0,75 
7 5.4.7.4 - - 38,3 61,7 - 8,1 0,76 
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5.5 Practical application of the model 
As already stated in the chapters before, this work served to find a method to calculate maps 
of the distribution of air pollutants. But what are the benefits of having such maps and how 
can the model be used in practice? First of all, the model was designed to provide a tool that 
enables policy makers: 

• To react on exceedances of existing limit values – the model allows to locate zones with 
the heaviest average pollution load and to quantify the average exposure of humans and 
nature to different air pollutants 

• To establish locations where emissions reduction measures are necessary 

• To formulate strategies to meet future limit values – trends of NO2 pollution can be 
calculated by providing new emissions inventory data as an update or as forecasts for 
future scenarios 

• To further optimise the monitoring network – continuous monitoring stations should be 
placed according to the calculated air pollution map  

• To assess the effect of measures on air pollution prevention like traffic restrictions or the 
introduction of new fuel quality specifications for power plants or the traffic sector  

• To increase public awareness 

Furthermore, the model fulfils so far the requirements of the European Union: In combination 
with measurements, modelling techniques are recommended by the EU to assess the 
compliance of assessment thresholds in Directive 2000/69/EC [60], to observe zones with 
values one level lower than the limit values in Framework Directive 96/62/EC [2] and to 
provide essential information for the management of the air quality.  
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6 Critical discussion and outlook 

6.1 Critical discussion 
The model development to the final, realistic result was an iterative process where several 
failures had to be accepted and new directions had to be taken. This can be explained only 
partly by the fact that it was a completely new development. The reason for the problems stem 
also from the nature of neural networks as “black boxes” where the user has no direct view 
and influence to what happens during training. At the beginning, frame conditions like the 
network topology and the most important parameters are being set. When the training starts, 
the influence of the user ends with some minor exceptions. This own dynamic a neural 
network develops is partly it’s strength since it is the precondition for learning and partly it’s 
weakness, which can be only compensated by experience of the user. 

Apart from this, the model can be critically evaluated as follows: 

• Quality of the model output and capability of the model: 
With the neural network model realistic pollutant distribution maps on an annual base can 
be calculated. All assessment methods consisting of statistical analysis, internal criteria of 
the neural network software and the physical-visual control proved the high quality of the 
model output. All important emission sources are considered through the emissions 
inventory and the population density which helped to identify small villages that were 
omitted in the survey but certainly contribute to the composition of the air. With a 1x1 km 
resolution, the result map is very fine structured and all sources appear clearly on the map 
– area sources (cities), line sources (highways) and point sources (power plants and a 
cement factory). To achieve the highest possible agreement with the reality, the emission 
sources were distributed prior to the model run with a gaussian dispersion model and a 
statistical approach using the annual wind rose. This resulted in a new concept: The so-
called “distributed emissions”.  

The model principle depends on the availability of diffusive sampling measurements that 
have to be on-hand highly resoluted. Other measurement methods could also be used of 
course, but they are not affordable with the required spacing. For the model presented 
here, 270 diffusive samplers were placed all over Cyprus with a higher density in the 
cities – for example 78 sampling sites in Nicosia (GCC and TCC). This opened the 
possibility for a reliable depiction of the urban air quality at the chosen resolution of 1x1 
km. In rural areas less, widely spaced samplers are sufficient, since there are only a few 
sources, except some villages and roads. Generally speaking, the model calculated 
correctly the highest annual NO2 concentrations in the cities of Nicosia, Limassol, 
Larnaka, Paphos, Kyrenia and Famagusta followed by some important single sources like 
power plants, highways and the airport near Larnaka. A few peak values were 
underestimated as the statistical evaluation showed. The result map also demonstrates the 
model sensitivity related to weak emission sources: Widely unpolluted areas like the 
Troodos mountains are located correctly as well as little villages at a comparable low 
emission rate. The output quality of the model depends mainly on the provided input data. 
The more influencing variables are provided, the higher the quality of the dispersion 
calculation, the more diffusive samplers are exposed  – the better the model output. 
Artificial neural networks have the ability to approximate any function, linear or non-
linear, multivariate or univariate. So if there are any correlations of the implemented 
variables that would help to functionally describe the NO2 concentration, the neural 
network will most likely find them. 
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• All kinds of numerical values can be implemented in the neural network model: 
Since a neural network only calculates mathematical correlations between the provided 
characteristics, there are no limitations in the use of input variables. This opens vast 
possibilities in the development of neural air quality models. Subject to the availability of 
measurement data, a neural network model can be extended without limitations in terms 
of the consideration of quantifiable influences. Different model types are thinkable to 
cover the requirements of particular questions, e.g. to model chemical alterations of highly 
reactive species. 

To calculate the distribution of air pollutants like it was carried out in this work, high 
demands are however made to the input data: They have to be existent for every grid cell 
and based on the same time level unless they are constant like the height above sea level. 
Prior to the actual implementation in the model, big efforts for data preparation are 
necessary to obtain a data set that covers the whole research area (the same is true for 
conventional statistical models or interpolation methods using additional variables). But at 
the same time, the model principle to calculate pollutant concentrations for every grid cell 
based on the realization of correlated characteristics is the precondition for the major 
advantage of the model: The possibility to implement measurement data of the searched 
output, in this case the NO2 concentration as measured with diffusive samplers. This is 
actually the only possible approach for a direct access to the real air quality situation in 
the regarded grid cell. 

A restriction of the model, which may appear at first sight contradictory, lies in the 
difficulty selecting the appropriate input data. Since a neural network has the ability to 
correlate any kind of variables (an improvement of the correlation coefficient occurs 
almost every time when a new variable is implemented), there is a danger of using all 
available data for network training. This may cause an improvement of the statistical 
quality of the model, but also it may cause a physically not justifiable pollutant 
distribution. During development, this occurred with the UTM coordinates and the altitude 
above sea level. Both variables are actually partly justifiable, since there is a physical 
reason for their usage. But this physical justification cannot be applied globally. This 
means in the case of the altitude above sea level that a low altitude value does not always 
directly correlate with a high pollutant concentration. It is true that the major emission 
sources are located at the coastline, but is also true that river valleys are located at a low 
altitude value. The neural network should be able to learn that high pollutant 
concentrations only occur if there are emission sources, which is of course not the case for 
river valleys. Nevertheless, the model predicted high NO2 concentrations in river valleys, 
a problem that might be compensated with more training data or supplemental 
information. A careful check-up of the used input variables is inalienable to assure a 
physical correct model. 

 

• No statistical preconditions for the input data of the neural network model have to 
be fulfilled: 

The method as developed in this work can be generally considered as a statistical model. 
Conventional statistical models were developed on the base of theoretical assumptions 
like the normal distribution or the exclusion of autocorrelation. Practically, tests and 
extensive data conversions are necessary to approximate the compliance with these 
preconditions prior to their implementation in the model. The same applies to the results 
that also have to bear up some statistical tests (e.g. test for heteroscedasticity). Normally 
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the conditions cannot be perfectly met – compromises have to be accepted, whereas neural 
networks are very modest in their requirements to the input data. The only precondition is 
that the input data have to be numerical values – a great advantage compared to statistical 
methods like the regression analysis, since a great part of the data preparation prior to the 
actual model run can be left out.  This saves time and makes neural networks easier to use 
than conventional methods. 

 
• Neural networks versus conventional regression analysis:  

As mentioned above, there are statistical methods that theoretically could replace the 
neural network model, since it “only” calculates correlations of different variables.  Above 
all, the regression analysis would be the method of first choice to develop such a model 
based on conventional statistical methods. Due to the theoretical assumptions that have to 
be kept, conventional statistical methods require a very laborious data preparation. But on 
the other hand, these are established methods and easy to use with software programmes 
like SPSS. Strictly speaking this applies however only for “simple” univariate/multiple 
linear regressions and univariate non-linear regressions. 

Comparable to neural networks are multiple non-linear regressions. They are much more 
complex than the more simple linear and univariate regression approaches and require a 
pre-formulation of a formula which is the starting point for the iterative approximation of 
the best fitting model. Different iteration approaches like Levenberg-Marquart are 
possible. Neural networks however are able to approximate any function, linear or non-
linear, without any greater adjustments. Another advantage is that neural networks are 
much more dynamic compared to the regression analysis. An outlier caused by a 
measurement error or a wrong data entry by the user could dramatically worsen the 
quality of the goodness in a regression model. In a neural network model, this would not 
have such a big effect. According to discussions with other scientists and own experiences 
[53], it can be concluded that neural networks are indeed the most flexible “statistical” 
method, but a well-configured non-linear model based on regression analysis could also 
deliver results that come close to it.  

 
• Neural interpolation versus conventional interpolation: 

In chapter 5.4.1 it was found out that with the UTM coordinates as input data for the 
neural network it is possible to create a neural interpolation of  the NO2 diffusive sampling 
measurements. The obtained NO2 distribution reflected very well the most important 
emission sources, namely the cities, but in a generalized way. It also created unrealistic 
linear and circular/ellipsoid structures. The reason for this behaviour lies in the 
generalization the network carried out: It learned that certain coordinate combinations 
result in high NO2 values and others in low values. All sampling sites influence each 
other; there is no possibility to isolate single sites or groups of sites. This is however 
necessary to reflect the physical dispersion process – in the case at hand, sampling sites at 
the coast are influencing sites far away in the mountains and vice versa. Using only the 
UTM coordinates as input is not the solution for a good neural interpolation.  

Conventional interpolation methods require also the coordinates as input. But here, the 
actual geographic location is used in the algorithm to calculate the distance between the 
different sampling sites. A sphere of influence can be specified that doesn’t have to be 
necessarily circular. In the case of Kriging it is also possible to consider the “spatial 
roughness” of the data set by fitting a variogram.  
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To develop an adequate interpolation method for neural networks, it would be necessary 
to translate the conventional interpolation parameters in a way that they can be used in a 
neural network. Above all these are the distances of the different points to each other, or 
to important emission sources. For this work it was not necessary to develop such a tool 
since the distances to the most important sources are contained in the distributed 
emissions and the final model principle differs from interpolation. 

Using a neural network only as an interpolation tool, it must be stated that conventional 
interpolation methods are more powerful and easier to use at the moment. Software 
programmes like Surfer and ArcGis allow a total control over the interpolation process. 
There are many adjustable parameters that highly influence the final result. 
 

• Neural networks versus dispersion models: 
Dispersion models in combination with a wind field pre-processor simulate how gaseous 
air pollutants or particles leave an emission source and subsequently move towards the 
receptor. Certain important aspects of the dispersion process are parameterised and 
implemented in the model, trying to reproduce the physical reality of the mixing layer. So 
the needed input for this model-type is limited to physical values like wind speed, wind 
direction, emission mass flow rate and topography. The treatment of other important 
influences like the population density is only realizable with big efforts or in combination 
with other methods – a restriction that doesn’t apply to neural networks. Dispersion 
models are very useful to model case studies, how a single or a few emission sources 
affect a defined area. To calculate the complete spatial distribution of air pollutants in a 
large area like Cyprus at a 1x1 km resolution under consideration of all emission sources 
is hardly realizable. It would require carrying out 9.251 dispersion calculations since the 
island of Cyprus covers an area of 9.251 km².  

With neural networks however, the mathematical dependency of any numerical variable 
can be calculated. Practically, the measured concentrations of NO2 are correlated with 
area-wide available secondary information and assigned to a 1x1 km analysis grid. The 
possible size of the research area only depends on the availability of input data, whereas 
the physical process of dispersion cannot be parameterised and implemented. At the 
moment, it is impossible to replace a dispersion model and a wind field model by a neural 
network. 

Artificial neural networks and dispersion models are suitable for different questions, but 
can supplement each other: 

- A neural network can be used as a filter to improve the performance of a 
dispersion model as carried out by Pellicioni et al. [23]. 
- A dispersion model was used in this work to calculate the spatial influence of 
the most important emission sources in Cyprus.  

 
• Grid spacing – representativeness of diffusive sampling measurements: 

For the development of the neural network model, Cyprus was overlayed with a 1x1 km 
analysis grid – a fine resolution since the research area amounts to 9.251 km². Anyhow, a 
problem might be especially in cities that the concentration values in a grid cell may 
fluctuate highly, depending on the distribution of emissions and the dispersion conditions. 
A larger cell spacing increases the probability of irregular distributed emission sources 
with a wide range of emission strengths. So the measured concentration used for training 
may not mirror the average value, which is why the sampling sites should not be directly 
influenced by a single emission source. An outlier could worsen the model performance, 
although neural networks are less sensitive to such a case than conventional statistical 
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models. The statistical evaluation of the model output of this work actually showed a few 
outliers that stem from locally influenced diffusive samplers. 

To reduce the size of the grid cells would not be the appropriate solution, respectively it 
would solve the problem only partly since pollutant concentrations would still fluctuate 
significantly. Considering the microscale range (meter-range), special meteorological 
phenomena like eddies at the lee of a building gain more and more importance. 
Microscale dispersion models still are the only possible approach to model such cases. 

  
• Neural networks are black boxes, no direct interference during training is possible 

with minor exceptions:  
As described in chapter 5.3 the user has only little influence on the weight changes of the 
connections between the neurons. These weight changes simulate the learning process of a 
biological network and represent the shrinking or growing of real synapses. If a 
satisfactory result is reached depends amongst others on how the starting weights are 
initialised and how the learn rate is set. Practically a gradient descent on the error function 
is carried out aiming to reach the global minimum. Local minima, flat plateaus, error 
oscillation and symmetry breaking are possible problems that could occur during training. 
It requires however experience to distinguish during model training if the run indeed has 
reached it’s error minimum or if overtraining, respectively one of the problems mentioned 
above, occurs. This circumstance and the fact that the influence of the user ends after 
setting up the network topology and the training parameters turn artificial neural networks 
into black boxes. In most of the cases however, after some experience in the model usage 
and the distribution of the input data, it is possible to glean the general response of a 
network and the possible correlation of the input data. It is recommended to analyse 
scatter plots prior to the model configuration to reveal obvious correlations among the 
data sample. Knowledge on the physical context of the used input helps to understand the 
results and prevents following a wrong path. In this way it is possible to illuminate the 
black box neural network for the most part.  

 
• The neural network model can’t be used as a standalone tool:  

Earlier it was set fourth that a crucial influencing factor can’t be calculated with a neural 
network – the dispersion conditions. Although meteorological parameters gain more 
importance when a small time or spatial scale is chosen, they also can’t be neglected for 
annual averages as calculated with the model developed in this work. The only exception 
are stable weather conditions with inversion layers and very low wind speeds. Normally 
such barrier layers are built up during nighttime and gradually disappear after sunrise, but 
in some cases, especially in winter, they may continue several days. So a more or less 
static mixing layer is a single phenomenon with a short duration. Considering an annual 
time base and a 1x1 km grid, it is not necessary to include diurnal weather phenomena and 
microscale processes in the calculation of a spatial pollutant distribution. Simplified 
approaches are sufficient to calculate annual statistics. 

At the moment is not possibility to model a wind field with a neural network since too 
many variables have to be considered. Some models like FLADIS simply interpolate the 
wind vectors of available measurement stations to create a wind field. It would be possible 
to carry out a similar neural interpolation, but this would lead to a complete disregard of 
the physical mass exchange processes. Neural or conventional interpolation of wind data 
would only lead to acceptable results in a flat terrain situation and a very dense network of 
wind measurements, which is quite rarely the case. So alternative approaches were 
utilized to provide the necessary input data: For the point sources in Cyprus (mainly 
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power plants) a gaussian dispersion model, for the area sources (cities) and line sources 
(highways) a statistical approach, derived from wind roses. The used statistical approach 
could also be partly solved with a neural network. Moreover, all calculated pollutant 
concentrations had to be converted to the newly conceived “distributed emissions” prior to 
the model run.  

Due to the described problems it is at the moment not possible to present a standalone 
neural network model without the support of other methods or pre-processors that 
however only serve to provide the necessary input data. The final and respectively the 
actual calculation of the pollutants distribution is in fact to be carried out with the neural 
network model. It would be possible furthermore to include all methods in one software 
package, like it is often realized in the case of dispersion models.  

 
• Neural networks are very fast: 

Neural network models are principally developed in two steps: First of all they are trained 
with a set of the searched output variables (in the case of this work NO2 concentrations), 
afterwards the learned correlations are assigned to the area-wide known distributed 
characteristics like emissions and population density where no measurements of the NO2 
concentration exists. This second step is referred to as the “recall mode”. Most of the 
running time consumes the first step since the training procedure is an iterative process. 
When training is initiated, starting weights of the neural connections are randomly set and 
step per step optimised to approximate the searched function. This process may take 
several minutes depending on the network architecture (more input variables, more hidden 
layers and more neurons per layer entail more training time) and the hardware 
specification of the used computer – the power of the CPU is the determinant element 
here, neither large temporary files are created nor the RAM is notably affected. In the case 
of the present work a 1,8 GHz Pentium 4 system was used and the maximum training time 
was about 5 minutes. For the recall mode only a few seconds are required. 

Compared with statistical methods it can be stated that the multiple linear regression 
analysis is much faster, but since a linear correlation is improbable in most cases, a data 
transformation is necessary prior and after the actual regression calculation. A non-linear 
multiple regression analysis takes approximately the same time as neural training, since it 
is also a method based on iteration. Dispersion models are much slower and take at least 
several minutes (Gaussian models) up to several days (Lagrangian models or Eulerian 
models). Restrictively it must be added that the data preparation for the neural network 
model presented here or a comparable regression model require very much time for data 
preparation. This partly compensates the headstart of these methods, but since dispersion 
models are intrinsically useful for case studies, it would be very time consuming to 
consider as many emission sources as it was carried out with the neural network model in 
this work. 

 
• The neural network model can be updated (trained) successively with new 

measurement data and improve it’s calculation: 

It is easily possible to add new influencing variables to the neural network model as well 
as it is possible to feed it with new diffusive sampling results. Normally a neural network 
improves its performance when more training cases are available. On the other hand it is 
recommended to constantly update the database of influencing factors, namely emissions 
inventory and population density. Especially new sources have to be considered in the 
emissions inventory, otherwise the pollutant concentrations of the grid cells in the vicinity 
of the new source would be underestimated since the network has no other information. 
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New, actual pollutant distributions can be calculated by a new training of the neural 
network with diffusive sampling measurement results.  
 

• Reproducibility: 
A very important issue on the possible application of the model in practice is its 
reproducibility. It must me assured that the model always delivers reliable results. 
Theoretically, a neural network model is never 100% reproducible. Since the initialisation 
of connection weights is always random, every model is unique. Therefore, the learned 
functional correlations of two models with the same frame conditions are also always 
different. Training has to be carried out very carefully to avoid the possible traps: Local 
minima, flat plateaus, error oscillation and symmetry breaking. With the used software 
Qnet2000 the LCR-feature (learn control rate) helps to avoid such cases. During the 
development in the context of this work reproducibility never was a problem. 

Restrictions on the model reproducibility may however appear in the case of further 
developments when new variables are implemented. A so far powerful model may suffer 
dramatically when a new variable is added – training may reconfigure the connection 
weights significantly resulting in a completely different model with a poor performance. 
What would at the worst only have no effect at all on a regression model (no significant 
change of model formula, only marginal improvement of the coefficient of determination) 
could highly lessen the quality of a neural network model. 

Other methods suffer comparable problems:  
- Lagrangian dispersion models: The number of simulation particles will usually 

be of many orders of magnitude smaller than the actual number of the trace 
species particles (atoms, molecules, aerosol particles) to be modelled. When 
repeating the same simulation with different random numbers, it can normally 
be observed that the number of simulation particle in a sampling volume and 
hence, also the concentration value determined for the respective grid cell, are 
subject to random fluctuations. Consequently, the result of the dispersion 
calculation is always associated with a certain degree of uncertainty, the 
sampling error.  

- Multiple non-linear regression analysis: The choice of starting values for the 
parameters and the chosen algorithm highly influence the final model. 
Convergence is not always assured. 

Finally it can be concluded, that a neural network is an excellent tool with great advantages 
concerning the ability to learn correlations of different variables. But at the same time it still is 
new and mainly applied by scientists besides its implementation in some fields like satellite 
picture analysis, speech recognition or optical character recognition (OCR). For inexperienced 
users, there is a lack of standardized methods at the moment, but this will change most 
probably in the near future. 

The model presented here enables us to calculate the distribution of NO2 over a large area. 
According to the statistical and qualitative assessment of the result, the model seems to 
reproduce the reality very well. A great advantage is the possibility to feed the model with a 
lot of measurement data; in other methods they are not only used for validation. Unlike 
dispersion models, this characteristic enables the neural network to learn from actual values of 
the investigated area providing a direct link to the reality. But on the other hand, with a neural 
network the shape of a dispersion plume from a power plant cannot be predicted unless there 
exists a dense net of measurement results around such a source. A neural network still cannot 
replace an atmospheric dispersion model, which is why a Gaussian Plume model was used to 
support the calculations. Another limitation is the difficulty to find the best network topology 
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and training parameters. The latter can be partly compensated with the Learn Rate Control 
feature of the used software, whereas the best topology can be only found through tests. 
Another problem encountered was the underestimation of peak values that stem from local 
influences. Some of those miscalculations can be explained by diffusive samplers that do not 
represent the average air pollution of the whole grid cell, since they are influenced by local 
sources. So, the calculations might come closer to the actual average pollution of a grid cell as 
the measurements - an assumption that cannot be proven. This underlines the importance to 
expose diffusive samplers at representative sites uninfluenced by a local source. Exceedances 
of limit values still should be monitored with continuous measurements.  

 

6.2 Outlook 
Although the neural network delivered very good and realistic results, there are still many 
possibilities to expand and enhance it in the future. 

The quality and abilities of the model depend strongly on the provided input data. A first step 
for a further development would be to improve the database, in the case of Cyprus especially 
the emissions inventory of the Turkish Cypriot Community. Moreover, a higher time 
resolution of emissions would open the possibility to calculate seasonal or monthly pollutant 
maps. Daily or hourly calculations are not possible with this method, since the diffusive 
samplers are exposed for about one month. Together with wind field calculations and input 
data from continuous monitoring stations however, such a model would be conceivable. Here, 
the diffusive samplers would serve as pollutant level indicators. Another enhancement of the 
database would be land use maps that can be expected to further differentiate the network 
outputs. Their resolution should be at least 1x1 km. It was stated that the meteorology is a 
very important influence on the distribution of air pollutants. Instead of using statistics for the 
model, which was found to be impossible, the average ventilation conditions, characterised by 
the average wind speed of a grid cell could be calculated using a diagnostic wind field model. 
For models with a higher time resolution the application of stability classes as measured by 
balloon soundings or derived from cloud coverage and ground measurements would be a 
further option. Due to regular weather phenomena like the land-see-breeze or mountain-
valley-breeze a division into a nighttime and daytime model is also thinkable. Of course the 
model is also expandable to other species that can be measured by diffusive samplers. For 
some pollutants like Benzene NO2 is a good indicator, their correlation could be calculated 
with a neural network. This would allow reducing the necessary number of measurement 
sites. But also the influence of other variables, like the altitude in the case of Ozone, should be 
checked here.  

For the future in Cyprus, a net of 270 diffusive samplers is economically not justifiable. With 
the NO2 distribution map it is now possible to strategically place and reduce the number of 
diffusive samplers without loosing the information of the trained network.  New training cases 
will help the network to better understand the correlations. It is strongly recommended to 
select sites with no direct influences of single sources. A grid nesting with a higher resolution 
in the cities would also be a meaningful approach, but only to a limited extent: The pollutants 
distribution in the street network of a city can be only calculated with a micro scale dispersion 
model since the buildings have to be considered [61]. A neural network could be used here as 
a filter to process the result data as described by Pellocioni et al. [23, 24]. 

To sum it up it can be said that the potential of artificial neural networks in the field of air 
quality modelling still isn’t exhausted, but for many problems they will always at best serve 
as a support. 
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7 Summary 
The objective of this work was to develop a method to calculate realistic air pollutants 
distribution maps. Most common state of the art dispersion models are limited in using air 
pollutant measurement data. They are only used for validation of the results - a fact that does 
not limit the importance of this model type which is still first choice for many questions. Yet, 
the usage of many, well distributed measurement data as a model input is the only possibility 
to provide a direct link to the actual air pollution distribution. So the first demand to the 
model was the ability to consider such data in its algorithm. Diffusive samplers are a 
predestined method to assess the spatial distribution of air pollutants, since they are the only 
economic possibility to carry out simultaneous measurements at many places [37]. During the 
UNOPS project “Preliminary Assessment of Ambient Air Quality in Cyprus” NO2 diffusive 
samplers were exposed at 270 sites in six campaigns throughout one year. In this way, an 
excellent database for the model development was created. A second requirement for the 
model was the ability to consider the most important influence parameters, like the emissions 
or the population density – most available methods are limited in this respect. Finally it was 
important that the model could be updated with new data to increase the quality of its 
calculations. 

Three methods were found to generally fulfil these requirements: Regression models, 
interpolation algorithms and artificial neural networks. First, the regression analysis was 
excluded since it is too rigid, too limited to reproduce non-linear correlations and based on too 
many theoretical statistical assumptions that are hard to be kept. Interpolation is a well-
developed standard method that is also recommended by the European Union. It was therefore 
tried to investigate the possibilities that lay in this approach. Simple interpolation failed to 
reproduce a realistic distribution of air pollutants, although exact interpolation algorithms 
preserve the measured values. The result maps depend strongly on the location of the 
measurement site; sources in between are neglected. A possible solution to this limitation are 
interpolation methods that consider additional variables like Cokriging. But still no significant 
improvement could be achieved here. For a quick visualisation, interpolation maps can be 
considered as a good tool.  Finally, artificial neural networks were found out to be the best 
solution.  

In air pollution modelling and comparable fields of neural network application, it is common 
sense that multilayer perceptrons with backpropagation deliver the best results. Such a 
network is implemented in the Windows based software “Qnet 2000” that was finally chosen 
as the development tool. Two principal criteria influenced the configuration of the neural 
network model, which where the network topology and above all the consideration of the 
most important influencing factors – the input variables. In training mode, a so-called 
“controlled learning” was applied, where the user provides the input data together with a set 
of known outputs. The task of the network is to learn the correlation between inputs and 
outputs. For this purpose, an analysis grid of 1x1 km was laid over the research area of 
Cyprus and the most important influencing variables were intersected with this grid. For all 
grid cells with diffusive samplers, the correlations of the annual NO2 concentration with the 
input variables were calculated.  
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First of all a neural interpolation of the diffusive sampler measurements could be established 
by using the UTM coordinates as input. The result was a simplified interpolation map with 
NO2 concentrations around 30 to 40 µg/m³ in the cities and lower concentrations in rural 
areas. Remarkable here are unrealistic straight stripes of medium NO2 concentrations of about 
20 µg/m³ connecting the cities of Nicosia, Limassol and Larnaka where the highest 
concentrations were measured.   

A digital elevation model then was fit to the analysis grid and used as input. Again some 
improbable values like high NO2 concentrations in river valleys were predicted. This clarified 
the necessity to consider physical aspects instead of using any available input variable. In this 
case, the network correlated the fact that all major cities in Cyprus are located at a low 
altitude with the occurrence of high NO2 in these cities. 

A very important influence on the distribution of air pollutants are the dispersion conditions. 
Since all meteorological parameters are constantly varying, it is impossible to calculate an 
average wind field [54]. Statistics would be the only solution, but cannot be used directly as 
input. It is true that an attempt to calculate two different models for winter and summer season 
correctly resulted in higher concentrations in winter, but the overall performance here was not 
satisfactory. The only realizable possibility to include meteorological data was to consider 
case studies for the major emission sources in Cyprus. So the dispersion plumes for the most 
important sources were calculated using annual wind statistics: For the largest cities, the 
power plants, one cement factory and the highways. Applied methods for this purpose were 
the Gaussian dispersion model P&K 3782 and statistical evaluations including regression 
analysis. Finally the plumes were transferred into so-called distributed emissions. Trained 
with this input data, the network reproduced the actual location and strength of all the sources 
that were used as input.  

After using univariate models, multivariate calculations were carried out to depict the 
complex correlations that influence the distribution of air pollutants. All models with UTM 
coordinates again created unrealistic large and regular plumes coming from the south-eastern 
bottom of the map, which lead to their exclusion. The same is true for the altitude. For both 
maps the population density was added with no positive effect.  

Finally, the best result could be established with a model that uses the enhanced emissions 
inventory (the plumes of the most important sources were calculated using wind statistics) 
and the population density as inputs. This configuration preserved the positive aspects of the 
univariate model with emissions and added additional sources like villages, which were 
omitted in the emissions inventory. A realistic, fine structured map was the result. 

Internal and external assessments of the results were carried out during the whole 
development phase such as the monitoring of the prediction error from a test set of input data 
(observation of overtraining), the comparison of the prediction results with diffusive sampling 
measurements and the visualization of the results as GIS maps. The final model lead to a 
Pearson correlation coefficient of 0,75.  
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Annex A 
Local conditions in Cyprus 
Exemplary measurement results and observations from the project “Preliminary Assessment 
of Ambient Air Quality in Cyprus” are shown in this part of the Annex. 
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Annex A.1.. Shelter with diffusive sampler used in the field 
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Annex A.2.. Continuous measurements of NO2 at urban sites – average diurnal courses 
on weekdays 
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Annex A.3.. Comparison of the Air Quality of cities in Europe - Annual mean values 
(Cyprus: 2002/2003, European cities: 2001) 
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Annex A.4..  Balloon sounding results in Nicosia on 8.3.2003 at 21:32 – a lifted ground 
inversion occurs at approx. 50m, which can be clearly seen in the vertical temperature and 
NO2 profiles [34] 
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Annex A.6.. Power plant near Vasilikos 

Annex A.5.. Sahara dust event on 29./30.5.2003. PM10 measurements show a significant 
peak both at a traffic influenced measurement station (General Hospital in Nicosia) and a 
background station (Agia Marina, South of Nicosia and therefore with a one hour shift) [34] 
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Annex A.7.. Cement factory near Vasilikos 

Annex A.8.. Uncontrolled waste burning in Cyprus – a large plume can be seen in the 
middle of the picture, travelling from left to right  
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Annex A.9.. Daily emissions of the traffic sector in Nicosia – improved with traffic data 
from quickbird satellite pictures [63] 
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Annex A.10.. Quickbird satellite picture of Nicosia for car countings [63] 



Annex A - Local Conditions in Cyprus  
 

       92

 

 

 

 

 

 
 
 
Annex B 
Modelling    
In this part of the Annex, detailed interpolation maps of the largest cities in Cyprus and for the 
whole island are shown as well as supplementary information on the method interpolation. 
Summer and winter are differentiated for Nicosia and the whole island, which gives a good 
impression on the seasonal dependencies of the pollutant distribution due to meteorological 
changes and changes in emissions activity. 

For the emission part of the model, a gaussian dispersion calculation of the 5 major sources in 
Cyprus was carried out. The results and other information related to the development of the 
neural network model are also shown here. 
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Annex B.1.. Interpolated NO2 distribution in Cyprus – July to September 2002 and April to 
June 2003

Annex B.2.. Interpolated NO2 distribution in Cyprus – winter 2002/2003 
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Annex B.1.. Interpolated NO2 distribution in Nicosia – July to September 2002 and April to 
June 2003

Annex B.4.. Interpolated NO2 distribution in Nicosia – winter 2002/2003 
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Annex B.5.. Mean annual interpolated NO2 distribution in Limassol 

Annex B.6.. Mean annual interpolated NO2 distribution in Larnaca 
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Annex B.7.. Mean annual interpolated NO2 distribution in Paphos 
 

Annex B.8. Mean annual interpolated NO2 distribution in Kyrenia 
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POWER = 4 

POWER = 2 

Annex B.9.. Inverse distance to a power interpolation of NO2 diffusive sampling results in 
Nicosia (summer average) using two different power values 
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Annex B.10.. Wind roses from selected sites in Cyprus at the south coast near important 
single sources - based on measurements of at least one year in 2001 to 2003 
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Annex B.11.. Dispersion modelling of the mean annual NOx concentration for the power 
plant Dhekelia. Output of Gaussian dispersion model P&K 3782 
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Annex B.12.. Dispersion modelling of the mean annual NOx concentration for the power 
plant “Moni”. Output of Gaussian dispersion model P&K 3782 



Annex B – Modelling  
 

       100

 

 

Vasilikos 
power plant 

                      -5000                              0                              5000         
                X [m] 
 

 
 
 
 
 
 
 

1000 
 

 
Y[m] 0 
 
 
 
 
 
 
 
 

 
 
 
 
 

5000 
 
 
 

mg/m³

Annex B.13.. Dispersion modelling of the mean annual NOx concentration for the power 
plant  “Vasilikos”. Output of Gaussian dispersion model P&K 3782 
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Annex B.14.. Dispersion modelling of the mean annual NOx concentration for the power 
plant  “Kyrenia”. Output of Gaussian dispersion model P&K 3782 
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Annex B.15.. SO2 dispersion modelling of the power plant near Vasilikos with the particle 
model Austal 2000 – annual average 
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Annex B.16.. Dispersion plume of Limassol with real NOx emissions from emissions 
inventory and the calculated virtual emissions of the plume 
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Annex B.17.. Value range of diffusive samplers that are placed in the same grid cell – 
base annual average of NO2 concentration 
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