Charakterisierung der elektromagnetischen Turbulenz im Torsatron TJ-K

Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat) genehmigte Abhandlung vorgelegt von

Kian Rahbarnia

aus Eutin

Hauptberichter: Prof. Dr. U. Stroth
Mitberichter: Prof. Dr. G. Wunner

Tag der mündlichen Prüfung: 15.05.2007

Institut für Plasmaforschung der Universität Stuttgart

2007
Summary

Since the 1950’s one of the main parts in plasma physics research deals with the recovery of energy via controlled nuclear fusion. Up to now two concepts of magnetic plasma confinement are discussed as possible solutions for a fusion reactor: the tokamak [1] and the stellarator [2]. The largest fusion experiment which is now build, the International Thermonuclear Experimental Reactor (ITER) [3], is a tokamak. But for both confinement concepts, radial particle and energy losses due to turbulent transport processes determine the characteristic energy confinement times and therefore also the size of the devices.

Turbulent transport is caused by fluctuations in plasma density, potential, temperature and magnetic field. It can be divided into two parts, the electrostatic and the electromagnetic one. In general, the magnetic part of the turbulent transport is much lower than the electrostatic one. But recent studies especially in tokamak plasmas show that in the plasma core turbulent magnetic fluctuations can play an important role with respect to radial transport [4, 5].

To investigate magnetic fluctuations, a diagnostic system must have a high spatial and temporal resolution. In the hot core regions of fusion plasmas the application of probes is not possible. In contrast, due to the low temperature plasmas in the torsatron TJ-K [6], Langmuir and magnetic probes can be used in the entire plasma volume with a maximum discharge duration of 60 min. The relevant dimensionless parameters of TJ-K plasmas ($\hat{\beta}, \hat{\nu}, \hat{\mu}$) are comparable to those in the edge regions of fusion plasmas [7, 8]. In this respect the investigation of magnetic turbulence in TJ-K is relevant for fusion plasmas, too.

The electromagnetic component of the turbulence is due to the coupling of drift waves [9] to Alfvén waves [10]. The properties of these microscopic fluctuations are comparable to macroscopic Alfvén waves, called Alfvén modes. In fusion plasmas global Alfvén modes can be used for plasma heating. Fast alpha particles, however, can lead to destabilization of these modes and cause a loss of fast ions. As the consequence
the plasma heating efficiency decreases. A better understanding of Alfvén instabilities allows for an optimization of the plasma confinement in stellarators. In this work the conditions of existence and propagation of toroidal Alfvén eigenmodes (TAE) are analyzed as an extension of investigations of the microscopic magnetic turbulence.

To measure magnetic fluctuations magnetic probes were constructed. The probes are able to measure radial and poloidal fluctuations simultaneously. In an Helmholtz coil used for calibration they show a plane frequency response up to 250 kHz. The expected magnetic fluctuations are in the range of 10-200 kHz. The radially movable magnetic probe has no influence on the discharge stability itself. To analyze poloidal mode structures a set of 8 poloidaly arranged Mirnov coils has been designed and arranged around the plasma.

For the first time in a toroidal device magnetic fluctuation spectra have been measured with high spatial and temporal resolution. The spectra show fully developed turbulence with a cascade over 6 decades down to the nano-Tesla range. The fluctuation amplitude decreases by a factor of 10 at increasing the ion mass from hydrogen over helium to argon. The magnetic fluctuations are in the density gradient regions, which gives an independent proof of the drift-wave-like turbulence in TJ-K. The magnetic diffusion coefficient is \(D_{mag} = 10^{-5} \text{ - } 10^{-6} \text{m}^2/\text{s} \) with a normalized fluctuation level of \(\tilde{B}/B_0 \approx 1 \cdot 10^{-6} \). Former studies [11] yielded an electrostatic diffusion coefficient of \(D_{es} = 2 \text{ - } 20 \text{m}^2/\text{s} \), i.e. the turbulent transport in TJ-K is dominated by electrostatic fluctuations as expected for a low-\(\beta \) plasma.

A good agreement of experimental results and those from 3D-turbulence simulation codes DALF3 and GEM3 is found. This confirms the assumption that the magnetic fluctuations can be interpreted as a result of the parallel dynamics of the drift wave turbulence. The theoretical prediction for this process is a scaling of the normalized magnetic fluctuations with respect to the electrostatic ones as \((\tilde{B}/B_0)/\beta \approx e\bar{\phi}/T_e \approx \bar{n}/n \). It has been verified by comparing discharges, where \(\beta \) was decreased by a factor of 16. The expected reduction of the magnetic fluctuations is found in the experiment. However it is stronger than in the DALF3 simulation. A possible reason for this discrepancy might be the slab geometry in the code instead of the toroidal geometry in TJ-K [12].

To investigate the propagation of TAE, poloidal magnetic field disturbances were excited with an exciter loop positioned in the density gradient. Alfvén continua, calculated for the geometry in TJ-K, determine the exciter frequencies in the gap at 70-100 kHz. The expected poloidal mode structure of \(m = 3 \) or \(m = 4 \), however, are not found in the signals measured with the Mirnov coils. In TJ-K, a collisional skin-depth of \(\delta \approx 1 \text{cm} \) leads to a strong divergence of the excited wave in poloidal direction. Hence, the power decreases so that there is no significant peak found in the \(k \)-spectra
at the suitable mode numbers. The fluctuation spectra are dominated by a $m = 0$ mode structure, which belongs to the fundamental mode in a coaxial setup, the TEM$_{00}$, with the plasma being the inner conductor.

The following main results on the electromagnetic component of the turbulence in TJ-K have been achieved:

- A diagnostic system has been developed to measure magnetic fluctuations in the entire plasma volume. A loop antenna has been developed to excite Alfvén waves in the plasma. The resulting mode structure is analyzed by the magnetic probes and a set of 8 poloidally arranged Mirnov coils.

- For the first time magnetic fluctuation spectra have been measured with high spatial and temporal resolution. In different gases (argon, helium, hydrogen) the spectra show a fully developed turbulence with a cascade over several decades. The magnetic fluctuations are in the nano-Tesla range. They are small against the electrostatic fluctuations and account only a for a small fraction of the turbulent transport. The analysis of the β dependence yields the expected decrease of the magnetic fluctuations by increasing the background magnetic field.

- Detailed comparisons of measured spectra with the 3D-turbulence simulation codes DALF3 and GEM3 show a good agreement between measured and simulated data over a broad range of frequencies.

- The investigation of toroidal Alfvén eigenmodes (TAE) showed that due to the skin effect, higher power is needed to excite actively the modes in TJ-K. The analysis of the experimental data showed that a TEM$_{00}$ was excited as in an equal coaxial setup with the plasma being the inner conductor.
Inhaltsverzeichnis

1 Einleitung .. 1

2 Magnetisch eingeschlossene Plasmen 5
 2.1 Grundlagen der Turbulenz 5
 2.1.1 Turbulenz in Flüssigkeiten 6
 2.1.2 Zweiflüssigkeitsgleichungen im Plasma 7
 2.1.3 Driften im Plasma 8
 2.2 Transportprozesse im Plasma 10
 2.2.1 Klassischer und Neoklassischer Transport 10
 2.2.2 Turbulenter Transport 12
 2.2.3 Instabilitäten als Antrieb des turbulenten Transports 14
 2.3 Alfvé-Wellen ... 17
 2.3.1 Scher-Alfvé-Wellen 18
 2.3.2 Alfvén-Kontinua 20

3 Das Torsatron TJ-K .. 25
 3.1 Aufbau und Magnetfeldkonfiguration 25
 3.2 Diagnostiken .. 29
 3.2.1 Das Mikrowelleninterferometer 29
 3.2.2 Die Langmuir-Sonde 30
 3.3 Gleichgewichtsgrößen 33
 3.4 ECR-Heizung und Plasmaparameter 35
4 Diagnostik zur Messung von Magnetfeldfluktuationen 37
 4.1 Funktionsweise einer Magnetfeldsonde 37
 4.2 Konstruktion einer linear verfahrbar Magnetfeldsonde 39
 4.2.1 Die θ-Sonde 39
 4.2.2 Die $r\theta$-Sonde 40
 4.3 Kalibrierung der Magnetfeldsonde in einer Helmholtz-Spule 40
 4.4 Kompensation von elektrostatischen Einstreuungen 42
 4.5 Die Magnetfeldsonde im Plasma 45
 4.5.1 Einfluss der Magnetfeldsonde auf das Plasma 45
 4.5.2 Orientierung der Sonde im Plasma 47
 4.6 Der Mirnov-Sondenkranz 50
 4.7 Verfahren zur Datenanalyse 53

5 Simulation von Plasmaturbulenz 55
 5.1 Der Simulationscode DALF3 55
 5.2 Der Simulationscode GEM3 58
 5.3 Das Simulationsgitter 60
 5.4 Numerische Implementierung einer Magnetfeldsonde 61

6 Magnetfeldfluktuationen in TJ-K 65
 6.1 Fluktuationsspektren 65
 6.2 Radiale Abhängigkeit der Fluktuationen 69
 6.3 Magnetischer Anteil am turbulenten Transport 70
 6.4 Abhängigkeit vom Plasma-β 71
 6.4.1 Skalierung der Fluktuationen mit B_0 72
 6.4.2 B_0-Skalierung im Experiment 73
7 Vergleich von numerischen und experimentellen Daten 77
 7.1 Numerische Simulation eines TJ-K-Plasmas 77
 7.2 Fluktuationsspektren aus DALF3, GEM3 und TJ-K 78
 7.3 Die β-Abhängigkeit in DALF3 80

8 Anregung von Alfvén-Moden 83
 8.1 Die Anregerantenne ... 83
 8.2 Mirnov-Sondenkranz-Messungen 85
 8.2.1 Fluktuationsspektren bei aktiver Anregung 85
 8.2.2 Poloidales Ausbreitungsverhalten der gestörten Komponente 88
 8.3 Radiales und toroidales Verhalten der gestörten Komponente 91
 8.4 Diskussion der Messungen mit Anregerantenne 94
 8.4.1 Anregung oberhalb der Ionencyklotronfrequenz 94
 8.4.2 Ausbreitungsverhalten einer angeregten Alfvén-Welle 94
 8.4.3 Transversale elektromagnetische Mode TEM_{00} 97

9 Zusammenfassung 99

Literaturverzeichnis 103

Danksagung 109

Curriculum Vitae 110

Eidesstattliche Erklärung 111
Kapitel 1

Einleitung

In beiden Einschlusskonzepten spielt der radiale Verlust von Teilchen und Energie die Hauptrolle bei der Bestimmung der Güte des Plasmaeinschlusses. Anfängliche Versuche die hohen experimentell gefundenen Teilchentransporte durch stoßbehafte- te Diffusion zu beschreiben, schlugen fehl. Die Lösung des Problems war ein in der Natur häufig vorkommendes Phänomen: Turbulenz. In Anlehnung an das Verhalten von Turbulenz in Flüssigkeiten auf der Basis der hydrodynamischen Gleichungen wurde durch Hinzunahme elektromagnetischer Kräfte ein Ansatz zur Beschreibung von Plasmaturbulenz entwickelt, die Magnetohydrodynamik (MHD) [13].

Turbulenter oder auch anomaler Transport ist die Hauptursache für radiale Teilchenverluste. Er wird bestimmt durch turbulente Fluktuationen in den Plasmaparame-
tern wie Dichte, Potential, Temperatur oder Magnetfeld. Er setzt sich demnach aus einem elektrostatischen und einem elektromagnetischen Anteil, dessen Charakterisierung Thema der vorliegenden Arbeit ist, zusammen. Im Vergleich zu den elektrostatischen Fluktuationen stellen die Fluktuationen im Magnetfeld meist den geringeren Anteil am turbulenten Transport dar. Allerdings zeigen Messungen in Tokamakplasmen, dass die Rolle der Magnetfeldfluktuationen möglicherweise unterschätzt wird [4, 5]. Ein Problem bei der Beschaffung relevanter Daten ist die schwere Diagnostizierbarkeit der niedrigen Fluktuationen am Magnetfeld.

Diese Kopplung für die Driftwellendynamik eine wichtige Rolle [9]. Die Eigenschaften der Magnetfeldfluktuationen aus der alfvénischen Mikroturbulenzen (kleinskalig) ist mit denen großskaliger Wellenphänomene vergleichbar, da diese als Moden (geschlossene Wellenzüge) im Torus existieren können.

Kapitel 2

Magnetisch eingeschlossene Plasmen

2.1 Grundlagen der Turbulenz

In der Plasmaphysik geschieht die Beschreibung von Turbulenz in Anlehnung an entsprechende Prozesse in Flüssigkeiten und Gasen. Aus diesem Grund beginnt dieser Abschnitt mit einer kurzen Einführung in Basisaspekte der Flüssigkeitstheorie. Anschließend werden grundlegende Gleichungen und Teilchendriften in einem magnetisch
eingeschlossenen Plasma kurz behandelt. Detailliertere Angaben dazu finden sich in Standardwerken zur Einführung in die Plasmaphysik (z.B. [29]).

2.1 Grundlagen der Turbulenz

2.1.1 Turbulenz in Flüssigkeiten

In der Flüssigkeitstheorie wird das Verhalten turbulenter Prozesse durch die folgende Bewegungsgleichung beschrieben:

$$\rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} = -\nabla p + \rho \mathbf{g} + \eta \nabla^2 \mathbf{u}. \quad (2.1)$$

Dies ist die Navier-Stokes-Gleichung für inkompressible Flüssigkeiten ($\nabla \cdot \mathbf{u} = 0$) mit dem Geschwindigkeitsfeld \mathbf{u}. Auf der linken Seite steht die Beschleunigung der Massendichte ρ (hydrodynamische Ableitung). Die rechte Seite bilden die Druckkraft mit dem Druck p, die Schwerkraft mit der Beschleunigung \mathbf{g} und ein Reibungsterm, wobei η die Viskosität ist. Wie stark die Turbulenz innerhalb eines Systems ausgebildet ist, wird durch die Reynolds-Zahl $R_e = \frac{u_0 L}{\nu}$ beschrieben. Bei dem Beispiel einer laminaren Strömung mit der charakteristischen Strömungsgeschwindigkeit u_0 verursachen eingebrachte Störkörper der Länge L mit zunehmender Reynolds-Zahl die Ausbildung von Wirbelstränen (Kármán-Wirbelstränen) und führen schließlich bei hohen Reynolds-Zahlen zu vollständig entwickelter Turbulenz. Die sich dann zufällig ausbildenden Wirbel sind von unterschiedlicher Größe und eine statistische Beschreibung ist notwendig.

Betrachtet man die Energie innerhalb eines turbulenten Systems, so findet man Energie Transfer zwischen den Größenskalen. Bei dreidimensionaler Turbulenz wird die Energie von großen zu kleinen Skalen transportiert. Man unterscheidet drei Bereiche: den Injektionsbereich bei großen Skalen (kleinen Wellenzahlen k), in dem Instabilitäten die Turbulenz mit Energie versorgen, den Dissipationsbereich (große k), in dem der Turbulenz durch Dissipation Energie entzogen und in Wärme umgewandelt wird und den dazwischenliegenden Inertialbereich in dem der Energietransfer zwischen den Skalen stattfindet. Bei einer dreidimensionalen, homogenen und isotropen Turbulenz findet man im Energiespektrum $E(k)$ eine von kleinen zu großen k abfallende Kaskade der Steigung $E(k) \sim k^{-5/3}$ (K41-Theorie von Kolmogorov [30]). Bei zweidimensionalen Systemen, ähnlich magnetisierten Plasmen, in denen die Dynamik parallel und senkrecht zum Magnetfeld getrennt voneinander betrachtet werden können, zeigt die Kaskade zwei Bereiche mit unterschiedlicher Steigung $E(k) \sim k^{-5/3}$ (Bereich I) und $E(k) \sim k^{-3}$ (Bereich II) [31]. In diesem Fall wird die Energie in Bereich I umgekehrt von größeren zu kleineren k und die Enstrophie in Bereich II zu großen k transferiert. Ohne die auftretende Wechselwirkung mit den Randbedingungen eines realen Systems, die der
2.1.2 Zweiflüssigkeitsgleichungen im Plasma

Turbulenz Energie entzieht, würde es zur sogenannten Infrarot-Katastrophe kommen, da ansonsten bei großen Skalen (kleine k) keine Dissipation stattfindet.

2.1.2 Zweiflüssigkeitsgleichungen im Plasma

Die kinetische Gleichung oder Boltzmann-Gleichung

\[
\frac{\partial}{\partial t} f(r,v) + v \nabla \cdot f(r,v) + \frac{F(r,v)}{m} \cdot \nabla_v f(r,v) = \left(\frac{\partial f(r,v)}{\partial t} \right)_{\text{coll}},
\]

beschreibt das Verhalten der Verteilungsfunktion $f = f(x,y,z,v_x,v_y,v_z,t)$ im 6-dimensionalen Phasenraum am Punkt $r = (x,y,z)$ und der Geschwindigkeit $v = (v_x,v_y,v_z)$. $F = q(E + v \times B)$ repräsentiert die elektromagnetischen Kräfte. Auf der rechten Seite der Gleichung steht der Boltzmann-Stoßterm, der ungleich Null wird bei Stößen zwischen unterschiedlichen Teilchen. Stöße zwischen gleichartigen Teilchen haben keinen Einfluss auf Gesamtenergie und Gesamtimpuls im System. Für diesen Fall wird die rechte Seite gleich Null gesetzt und man erhält die Vlasov-Gleichung.

Das Lösen der Vlasov-Gleichung ist immer noch sehr aufwendig. Man betrachtet das Plasma nicht länger als Vielteilchensystem, sondern geht über zum Zweiflügittigkeitsbild, indem die Ionen und Elektronen als eigenständige Flüssigkeiten gekoppelt durch elektrische Felder und Stöße angesehen werden. Um den Übergang vom mikroskopischen Teilchenbild zum makroskopischen Flüssigkeitsbild zu vollziehen, bildet man die Momente der Verteilungsfunktion f und erhält als die ersten drei Momente die Erhaltung der Teilchenzahl, des Impulses und der Energie. Die entsprechenden Integrale ergeben dann die Zweiflüssigkeitsgleichungen

\[
\frac{\partial}{\partial t} n_I + \nabla \cdot (n_I u_I) = 0
\]

und

\[
m_I n_I \left(\frac{\partial}{\partial t} + u_I \cdot \nabla \right) u_I = -\nabla p_I + q_I n_I (E + u_I \times B) + q_I n_I (u_I - u_{II})/\sigma,
\]
wobei I, II die Spezies, q die elektrische Ladung, σ die elektrische Leitfähigkeit, n die Dichte, m die Masse und u die mittlere Geschwindigkeit der Teilchen darstellen. Es handelt sich um die Kontinuitätsgleichung (2.3) und die Bewegungsgleichung (2.4). In (2.3) sind Ionisationsprozesse durch Stöße vernachlässigt worden. Die Klammer auf der linken Seite von (2.4) wird als hydrodynamische Ableitung bezeichnet und beschreibt die zeitliche Änderung der entsprechenden Größe im mitbewegten Plasma. Der Drucktensor auf der rechten Seite der Bewegungsgleichung vereinfacht sich zum Gradienten des skalaren Drucks p. Der mittlere Teil der Gleichung trägt elektromagnetischen Kräften in Form des Lorentz-Terms Rechnung. Der letzte Term auf der rechten Seite beschreibt die Impulsänderung aufgrund von Stößen zwischen unterschiedlichen Teilchenspezies. An dieser Stelle können durch Abweichungen von der Maxwell-Verteilung zusätzlich viskose Dämpfungsterme auftreten. Gleichung (2.4) ist vergleichbar mit der Navier-Stokes-Gleichung (2.1) in der Flüssigkeitstheorie. Die Energieerhaltungsgleichung und der komplette Satz der Maxwell-Gleichungen schließen das System der Zweiflüssigkeitsgleichungen für ein Plasma ab.

Das vorgestellte Gleichungssystem beschreibt selbstkonsistent dynamische Prozesse im Plasma. Es beinhaltet Instabilitäten, wie die Austauschinstabilität und die Driftwelleninstabilität, die als Antrieb der Turbulenz im Plasma in Frage kommen (s. Abschnitt 2.2.3). Ist die Verteilungsfunktion durch Effekte, wie z. B. Landau-Dämpfung [29], nicht mehr Maxwell-verteil, so ist eine Beschreibung mit den aufgeführten Gleichungen nicht mehr möglich. Sämtliche Effekte der Gyrationsträger der Teilchen (s. 2.5) werden vernachlässigt und das Plasma muss thermisch sein.

2.1.3 Driften im Plasma

In einem magnetisierten Plasma kann die Dynamik der Turbulenz senkrecht zum einschließenden Magnetfeld durch Driften verstanden werden. Teilchen mit unterschiedlicher Ladung werden durch die Lorentz-Kraft zu einer Gyrationbewegung um die Magnetfeldlinien gezwungen. Ihr Gyrationsträger oder Larmor-Radius ρ_L und ihre Gyrationfrequenz oder Zyklotronfrequenz ω_c sind gegeben durch

\[
\rho_L = \frac{\sqrt{2mk_B T}}{|q||B|} \quad \text{(2.5)}
\]

\[
\omega_c = \frac{qB}{m} \quad \text{(2.6)}
\]

ρ_L gilt für ein Teilchen (Elektron oder Ion) mit thermischer Geschwindigkeit und der Temperatur T. Tritt eine Kraft \mathbf{F} senkrecht zum Magnetfeld \mathbf{B} auf, reagiert das Teil-
2.1.3 Driften im Plasma

... mit einer Drift \(\mathbf{v}_D \), die senkrecht zur Kraft und zum Magnetfeld gerichtet ist

\[
\mathbf{v}_D = \frac{\mathbf{F} \times \mathbf{B}}{qB^2}.
\]

(2.7)

Die Kraft \(\mathbf{F} \) kann unterschiedlicher Natur sein. Im Folgenden werden die wichtigen Driften dargestellt.

Existiert zusätzlich zum Magnetfeld ein elektrisches Feld \(\mathbf{E} \), ist \(\mathbf{F} = q\mathbf{E} \) und es folgt die \(\mathbf{E} \times \mathbf{B} \)-Drift

\[
\mathbf{v}_{E\times B} = \frac{\mathbf{E} \times \mathbf{B}}{B^2}.
\]

Dieser Drift hängt nicht mehr von der Ladung des Teilchens ab und zeigt daher für Ionen und Elektronen in dieselbe Richtung. Es treten keine resultierenden Ströme auf. Bei zeitlich varierenden elektrischen Feldern \(\dot{\mathbf{E}} \) beobachtet man die Polarisationsdrift

\[
\mathbf{v}_{\text{pol}} = \frac{m_{\text{E}}}{qB^2}.
\]

(2.9)

Die Ladungsabhängigkeit führt in diesem Fall zu dem sogenannten Polarisationsstrom \(\mathbf{J}_p = (m_i + m_e)n\dot{\mathbf{E}}/B^2 \), wobei \(m_i \) und \(m_e \) die Masse der Ionen bzw. Elektronen sind. Er wird aufgrund ihrer höheren Masse hauptsächlich von den Ionen getragen.

In inhomogenen und gekrümmten Magnetfeldern setzt sich die Gesamtdrift \(\mathbf{v}_B \) der Teilchen, die sich auf solchen Magnetfeldlinien bewegen, zusammen aus der Krümmungsdrift \(\mathbf{v}_K \), die aus der Zentrifugalkraft resultiert und der Gradientendrift \(\mathbf{v}_{\nabla B} \), die auf den Magnetfeldgradiennten zurückzuführen ist. Es gilt \(\mathbf{v}_B = \mathbf{v}_K + \mathbf{v}_{\nabla B} \) mit

\[
\mathbf{v}_K = \frac{2W_{||}}{R_K^2} \frac{\mathbf{R}_K \times \mathbf{B}}{qB^2}
\]

(2.10)

\[
\mathbf{v}_{\nabla B} = -W_{\perp} \frac{\nabla \mathbf{B} \times \mathbf{B}}{qB^3}.
\]

(2.11)

Hierbei sind \(R_K \) der Krümmungsradius der Feldlinien und \(W_{||} \) bzw. \(W_{\perp} \) die kinetische Energie der parallelen bzw. senkrechten Bewegung der Teilchen.

Betrachtet man das Plasma im Flüssigkeitsbild so führt die Anwesenheit eines Druckgradienten \(\nabla p \) zur diamagnetischen Drift \(\mathbf{u}_{\text{dia}} \) gegeben durch

\[
\mathbf{u}_{\text{dia}} = -\frac{\nabla p \times \mathbf{B}}{qmB^2}.
\]

(2.12)

Sie zeigt für Elektronen und Ionen in entgegengesetzte Richtungen. Es resultiert der sogenannte diamagnetische Strom \(\mathbf{J}_{\text{dia}} = -\nabla p \times \mathbf{B}/B^2 \).
Häufig können Prozesse im Plasma im Teilchen- und im Flüssigkeitsmodell beschrieben werden. Im Falle der Driftbewegungen zeigt sich, dass nicht jede Drift in beiden Modellen Auftritt. Während die $E \times B$-Drift in beiden Modellen existiert, tauchen die Krümmungsdrift und Gradientendrift nur im Teilchenbild und die diamagnetische Drift dagegen nur im Flüssigkeitsbild auf.

2.2 Transportprozesse im Plasma

2.2.1 Klassischer und Neoklassischer Transport

Allgemein spricht man von diffusivem Transport, wenn die Teilchendichte vom Ort abhängt. Der Zusammenhang zwischen Teilchentransport Γ und dem Dichtegradient ∇n wird durch das \textit{Ficksche Gesetz} beschrieben,

$$\Gamma = -D \nabla n, \quad (2.13)$$

wobei D der Diffusionskoeffizient ist, dessen Abschätzung Aufschluss über die Höhe des Teilchentransports gibt. Beschreibt man die Transportprozesse im Teilchenbild lässt sich der Diffusionskoeffizient direkt durch Anwenden des \textit{Random-Walk-Ansatzes} $D_{RW} = \delta l^2 / 2 \tau$ abschätzen, wobei τ als Schrittzeit für eine Schrittlänge von δl bezeichnet wird \cite{32}.
2.2.1 Klassischer und Neoklassischer Transport

Beim klassischen Transport sind ausschließlich 90°-Stöße zwischen Elektronen und Ionen für den radialen Teilchenversatz verantwortlich. Die Schrittänge \(\delta l \) entspricht dem Larmor-Radius der Elektronen \(\rho_{Le} \) (2.5). Die Schrittzeit ist gegeben durch \(\tau = 1/\nu_e \) mit der Stoßfrequenz

\[
\nu_e = \left(\frac{e^2}{4\pi\varepsilon_0} \right)^2 \frac{8\pi \ln\Lambda n_e}{3\sqrt{3m_e} T_e^{3/2}}.
\]

Hier ist \(\ln\Lambda = 23.4 - 1.15 \log n + 3.45 \log T_e \) für \(T_e < 50 \text{ eV} \) der Coulomb-Logarithmus [33]. Geht man von einer zylindrischen Geometrie in eine toroidale Geometrie über, so wird der klassische Diffusionskoeffizient um die sogenannte Pfirsch-Schlüter-Korrektur erweitert: \(D = (1 + 2\ell^2)\rho_{Le}^2 / 2\tau \). Hier ist \(\ell \) die sogenannte Rotationstransformierte. Ihr Kehrwert gibt an, wie viele toroidale Umläufe eine Magnetfeldlinie ausführt, bevor sie einen poloidal Umlauf vollendet hat. Die Korrektur erhöht den klassischen Transport ca. um einen Faktor 20.

Trotz der Erweiterungen des klassischen Transports durch neoklassische Effekte, reicht das Modell nicht aus, um den experimentell gefundenen hohen Teilchentransport zu erklären. Betrachtet man hingegen turbulente Fluktuationen in den Plasma-Parametern, so zeigt sich, dass diese zu Prozessen führen, die den hohen Transport...
erklären können. Man spricht von turbulentem Transport, der im folgenden Abschnitt beschrieben wird.

2.2.2 Turbulenter Transport

Der turbulente Transport ist folgendermaßen definiert [1]

\[
\Gamma = \langle \tilde{u}_\perp \tilde{n} \rangle + \frac{n}{B_0} \langle \tilde{u}_\parallel \tilde{B} \rangle ,
\]

wobei \(\langle \cdot \rangle \) die Mittelung über eine Flussfläche und \(\tilde{n} \) die Dichtefluktuationen bedeuten. Die fluktuiierende senkrechte Geschwindigkeit \(\tilde{u}_\perp \) im linken, elektrostatischen Anteil ist gegeben durch die \(E \times B \)-Drift \(\tilde{u}_\perp = \tilde{E} / B_0 \) mit dem Hauptmagnetfeld \(B_0 \). Der rechte, magnetische Anteil ist bestimmt durch die fluktuiierende parallele Geschwindigkeit \(\tilde{u}_\parallel \) und die Magnetfeldfluktuationen \(\tilde{B} \). Aufgrund der Tatsache, dass elektrostatische Fluktuationen im Allgemeinen größere relative Amplituden aufweisen als Fluktuationen im Magnetfeld, ist der magnetische Anteil am turbulenten Transport geringer als der elektrostatische Anteil. Eine Abschätzung des elektrostatischen und des magnetischen Diffusionskoeffizienten in Abschnitt 6.3 auf der Basis von gemessenen Potential- und Magnetfeldfluktuationen bestätigt diese Vorhersage.

Ein anschauliches Bild zur Entstehung elektrostatischer Turbulenz bietet die folgende Beschreibung. Eine kleine Störung im Potential \(\tilde{\phi} \), die sich lokal vor einem ungestörten senkrecht zum Magnetfeld ausgerichteteten Dichtegradient \(\nabla n \) befindet, erzeugt nach außen gerichtete Feldfluktuationen \(\tilde{E} \). Es entsteht ein Wirbel, der aufgrund von \(\nabla n \) zunächst zu gleichen Teilen an seiner Ober- bzw. Unterseite Teilchen aus Gebieten niedriger Dichte in Gebiete höherer Dichte und umgekehrt transportiert (Abb. 2.1, links). Ein netto Teilchentransport tritt noch nicht auf. Jedoch bei gleichzeitiger Anwesenheit einer Dichtestörung \(\tilde{n} \) senkrecht zu \(B_0 \) und \(\nabla n \) kann der Wirbel zu ungleichen Teilen Dichte von innen nach außen transportieren und so radialen Transport verursachen. Entscheidend ist die Phasenbeziehung zwischen Potential- und Dichtestörung.
In Abb. 2.1 (Mitte) sind \vec{n} und $\vec{\phi}$ in Phase und es entsteht kein Nettotransport. Nur wenn die beiden Störungen außer Phase sind, bildet sich ein Nettotransport aus (Abb. 2.1, rechts). Die Beschreibung der Driftwellendynamik in Abschnitt 2.2.3 erweitert diesen einfachen Ansatz und bietet ebenfalls ein anschauliche Vorstellung zur Entstehung von Magnetfeldfluktuationen durch parallele Ströme und damit elektromagnetischer Turbulenz.

Radialer Transport durch die magnetische Komponente der Turbulenz kann man folgendermaßen verstehen. Die Anwesenheit von Fluktuationen in den parallelen Strömen und damit das Auftreten von senkrechten Magnetfeldfluktuationen kann lokal eine Zerstörung toroidaler Flussflächen des einschließenden Magnetfeldes erzeugen. Es kommt zur Bildung mikroskopischer Inseln im Magnetfeld [1]. Eine magnetische Insel ist ein geschlossener Flussschlauch, der von der ungestörten Magnetfeldkonfiguration durch eine Separatrix getrennt ist. Es bilden sich sogenannte X-Punkte (Schnittpunkt zweier Flusslinien) aus, an denen es zu radialem Teilchen- und Energieverlusten kommen kann. Die Magnetfeldlinien erfahren einen radialen Versatz, so dass auch die Bewegung der thermischen Elektronen entlang der Feldlinien zusätzlich zur parallelen eine radiale Bewegungskomponente aufweist. Abb. 2.2 veranschaulicht den Versatz einer Magnetfeldlinie δl über die Strecke L aufgrund senkrechter Magnetfeldfluktuationen B_r.

ABBILDUNG 2.1: Links: $E \times B$-Drift durch eine kleine Störung im Potential $\vec{\phi}$, Mitte: \vec{n} und $\vec{\phi}$ sind in Phase. Es entsteht kein Nettotransport. Rechts: Nettotransport, da \vec{n} und $\vec{\phi}$ nicht in Phase
2.2 Transportprozesse im Plasma

Die Ausbildung magnetischer Inseln wird ein Teilchen vom Hauptfeld B_0 um δl über die Strecke L abgelenkt.

2.2.3 Instabilitäten als Antrieb des turbulenten Transports

Die Austauschinstabilität, das Analogon zur Rayleigh-Tayler-Instabilität bei Flüssigkeiten, läuft vor einem senkrecht zum toroidalen Magnetfeld ausgerichteten Druckgradienten ab. Eine Störung in der Dichte breitet sich in Richtung der Krümmungsdrift aus. Es kommt zu einer Ladungstrennung aufgrund derer elektrische Felder entstehen und damit auch $E \times B$-Driften. Im Falle einer günstigen Krümmung (Krümmungsradius ist parallel zum Druckgradient) stabilisiert die $E \times B$-Drift die Störung. Bei einer ungünstigen Krümmung (Krümmungsradius ist antiparallel zum Druckgradient) führt die $E \times B$-Drift dazu, dass die Instabilität weiter anwächst. Die Fluktuationslevel in den Bereichen günstiger bzw. ungünstiger Krümmung (Hochfeld- bzw. Niederfeldseite in toroidaler Geometrie) sind folglich von unterschiedlicher Höhe.
Die Phase zwischen Dichte- und Potentialstörung beträgt $\pi/2$, wobei die Störungen homogen entlang des Magnetfeldes ausgebildet sind. Ihre parallele Wellenlänge ist unendlich, was die Austauschinstabilität im Gegensatz zur Driftwelleninstabilität zu einer rein zweidimensionalen Struktur macht.

Die folgende Beschreibung gibt ein anschauliches Bild der Driftwellendynamik. Instabilitäten der Driftwellen führen zu radialem Teilchentransport [38]. Als Antrieb der Driftwelleninstabilität dient ein senkrecht zum Magnetfeld ausgerichteter Dichtegradient. Man betrachtet eine endlich ausgedehnte Dichtestörung auf einer Magnetfeldlinie, dargestellt in Abb. 2.3 rechts mit $L_\parallel < \infty$ und $L_\parallel \gg L_\perp$, wobei L_\parallel die parallele und L_\perp die senkrechte Ausdehnung der Störung sind. Die Elektronen folgen dem parallelen Dichtegradienten entlang des Magnetfeldes aus der Dichterstörung heraus. Zurück bleiben eine positive Dichte- und Potentialstörung, die bei einer instantanen Antwort der Elektronen in Phase sind (Abb. 2.3 links). Das entstehende elektrische Feld verursacht eine $E \times B$-Drift, die die Dichtestörung an einer Seite kleiner und an der anderen Seite größer werden lässt. Die Driftwelle ist stabil. Sie bewegt sich senkrecht zum Dichtegradienten.
gradienten und zum Magnetfeld mit der diamagnetischen Driftgeschwindigkeit \((2.12)\). Wird die Antwort der Elektronen verzögert durch Resistivität oder magnetische Induktion, ist eine Phasendifferenz zwischen Dichte- und Potentialstörung die Folge. Bei einer negativen Phasendifferenz wird die Driftwelle instabil. Eine von Null verschiedene \(E \times B\)-Drift verstärkt innerhalb des angedeuteten Kästchens in Abb. 2.3 (links) die Dichtestörung. Im Gegensatz dazu führt eine positive Phasendifferenz zur Stabilisierung der Driftwelle. \(L_{\perp}\) skaliert charakteristischerweise mit \(\rho_s = \sqrt{M_i T_e/(eB_0)}\), dem Larmor-Radius der Ionen genommen bei der Elektronentemperatur \(T_e\). Die Elektronen, die sich aus der Dichtestörung entlang der Magnetfeldlinie bewegen, erzeugen einen parallelen Strom, der eine zeitlich veränderliche Magnetfeldstörung induziert. Die Fluktuationen der Magnetfeldstörung sind verantwortlich für den magnetischen Anteil am turbulenten Transport. Ihr Nachweis liefert als Ergänzung zu vorangegangenen Studien eine unabhängige Bestätigung der Annahme, dass in TJ-K Driftwelleninstabilitäten die Turbulenz treiben. Die Vermessung und Analyse der Magnetfeldfluktuationen ist Untersuchungsgegenstand der vorliegenden Arbeit. Eine weiterführende Diskussion über die senkrechte und parallele Dynamik der Driftwelle findet sich in Abschnitt 5.1. Ausführungen über den Turbulenzsimulationscode DALF3 beinhalten eine Beschreibung des Verhaltens der relevanten fluktuierenden Größen in den entsprechenden Gleichungen.

Abb. 2.3 (rechts) zeigt, dass die Dynamik senkrecht zum Magnetfeld durch die Ionen bestimmt wird. Sie bewegen sich mit der Polarisationsdrift aus der Dichtestörung heraus. Wegen der Quasineutralität im Plasma \(\nabla \cdot \mathbf{J} = \nabla \cdot \mathbf{J}_\parallel + \nabla \cdot \mathbf{J}_{\perp} = 0\) muss bei anwachsender senkrechter Ionenströmung der Ausgleichsstrom parallel zum Magnetfeld, der wie bereits beschrieben durch die Elektronen getragen wird, ebenfalls zunehmen. Die Bewegung der Dichtestörung entlang der Magnetfeldlinie wird bestimmt durch die Kopplung an die mit Alfvén-Geschwindigkeit austretenden Elektronen. Die Kopplung wird stark, wenn die senkrechte Ausdehnung der Störung \(L_{\perp}\) vergleichbar ist mit der Ausdehnung des Flussschlauchs und mit \(\rho_s\) [17]. Der Transport der Störung ist dann eine Kombination aus Ionenschallgeschwindigkeit und paralleler Alfvén-Aktivität. In TJ-K wurde ein hoher alfvénischer Anteil an der parallelen Geschwindigkeitskomponente experimentell bestätigt [9]. Alfvén-Wellen können als globale Moden im Torus existieren. Durch aktive Anregung toroidaler Alfvén-Eigenmoden (TAE) können Ausbreitungs- und Existenzbegünstigungen untersucht werden. Die Eigenschaften der Magnetfeldfluktuationen aus der alfvénischen Mikroturbulenz (kleinskalig) sind mit der makroskopischen (großskaligen) Alfvén-Aktivität vergleichbar.
2.3 Alfven-Wellen

Abbildung 2.4: Links: Transversale Alfven-Wellen, Rechts: Longitudinale Alfven-Wellen. k ist der Wellenvektor und zeigt die Propagationsrichtung an. ξ ist die Plasmaauslenkung und B₀ das umgestörte Magnetfeld. (aus [39])

Im Allgemeinen unterscheidet man zwischen der parallel zum Magnetfeld propagierenden transversalen Alfven-Welle und der longitudinalen Alfven-Welle, die sich senkrecht zum Magnetfeld ausbreitet (Abb. 2.4). Wenn B₀ das umgestörte Magnetfeld, k der Wellenvektor und ξ die Plasmaauslenkung sind, dann gilt für die transversale Welle k||B₀ und ξ ⊥ k. Die longitudinale Welle ist bestimmt durch k ⊥ B₀ und ξ||k. In der Literatur werden die transversalen Alfven-Wellen auch Scher-Alfven-Wellen genannt, da sie das Magnetfeld verscheren. In zylindrischer Geometrie spricht man von torsionalen bzw. in Torsusgeometrie von toroidalen Alfven-Wellen. Kompressibilität des Plasmas spielt keine Rolle bei der Ausbreitung von transversalen Wellen, die in diesem Zusammenhang als langsame Alfven-Wellen bezeichnet werden. Im Fall der longitudinalen Alfven-Welle (auch bezeichnet als kompressionale, magnetosonische oder magnetoakustische Welle) trägt die Kompressibilität des Plasmas zu deren Ausbreitungsgeschwindigkeit bei. Wie bereits erwähnt, geschieht die Ausbreitung dieses Wellentyps senkrecht zum Magnetfeld. Da die senkrechte Ausdehnung von Laborplasmen meist klein gegenüber der Ausdehnung entlang der Magnetfeldlinien ist, braucht
die longitudinale Welle eine wesentlich kürzere Zeit zur Durchquerung des Plasmas. Ihre Geschwindigkeit ist zudem noch höher als die der transversalen Welle. Deshalb wird sie auch als schnelle Alfven-Welle bezeichnet.

Scher-Alfven-Moden, wie z.B. toroidale Alfven-Eigenmoden (TAE) können in Fusionsplasmen durch hochenergetische Alphateilchen-Populationen und Neutralteilchenheizung destabilisiert werden. Dies führt zu einer Erhöhung des Verlustes schneller Ionen und damit zu einem Energieverlust, der eine Minderung der Plasmaheizeffektivität zur Folge hat [26, 27].

2.3.1 Scher-Alfven-Wellen

Bei der weiteren Betrachtung wird das Plasma als kalt, stoßfrei und inkompressibel angenommen. Man unterscheidet zwischen den Hintergrund- (Index 0) und Störgrößen (Index 1) im Plasma

\[
\begin{align*}
\mathbf{u} &= \mathbf{u}_1, \quad \mathbf{E} = \mathbf{E}_1, \quad \mathbf{J} = \mathbf{J}_1, \\
\mathbf{B} &= \mathbf{B}_0 + \mathbf{B}_1, \quad \rho = \rho_0 + \rho_1,
\end{align*}
\]

wobei \(\mathbf{B} \) das Magnetfeld, \(\mathbf{E} \) das elektrische Feld, \(\mathbf{u} \) die Flüssigkeitsgeschwindigkeit, \(\mathbf{J} \) ein Strom und \(\rho \) die Massendichte des Plasmas sind. Die Störgrößen sind klein gegen die ungestörten Größen, sodass quadratische Terme von ihnen vernachlässigt werden können. \(\mathbf{B}_0 \) sei homogen und zeige in \(\mathbf{z} \)-Richtung. Der Strom \(\mathbf{J}_1 \), der nicht parallel zu \(\mathbf{B}_0 \) fließt, führt zu einer Kraft, die auf das Plasma ausgeübt wird. Aus der Magnetohydrodynamik folgt die linearisierte Bewegungsgleichung [29]

\[
\rho_0 \frac{\partial}{\partial t} \mathbf{u}_1 = \mathbf{J}_1 \times \mathbf{B}_0,
\]
Im Fall der transversalen Welle (Abb. 2.4, links) erzeugen eine Flüssigkeitsgeschwindigkeit in y-Richtung und ein Strom in x-Richtung eine Magnetfeldstörung \mathbf{B}_1 in y-Richtung, die sich entlang des Magnetfeldes, also in z-Richtung ausbreitet [10]. Ausgehend vom Ohmschen Gesetz $\mathbf{J}_1 = \sigma (\mathbf{E}_1 + \mathbf{u}_1 \times \mathbf{B}_0)$, erhält man für eine unendlich hohe Leitfähigkeit σ: $\mathbf{E}_1 = -\mathbf{u}_1 \times \mathbf{B}_0$. Eingesetzt in das Induktionsgesetz von Faraday $\nabla \times \mathbf{E}_1 = -\partial \mathbf{B}_1 / \partial t$ folgt nach Ausführen der zeitlichen Ableitung $\partial / \partial t$ und Verwenden von (2.18):

$$- \rho_0 \frac{\partial^2}{\partial t^2} \mathbf{B}_1 = \nabla \times \mathbf{J}_1. \tag{2.19}$$

Nimmt man nun die Rotation vom Ampéresche Gesetz $\nabla \times \mathbf{B}_1 = \mu_0 \mathbf{J}_1$, kann man die rechte Seite von (2.19) ersetzen durch $(1/\mu_0) \nabla^2 \mathbf{B}_1$ und erhält die Wellengleichung

$$\nabla^2 \mathbf{B}_1 = \frac{\rho_0}{B_0^2} \frac{\partial^2}{\partial t^2} \mathbf{B}_1. \tag{2.20}$$

Die Lösung der Wellengleichung genügt der linearen Dispersionsrelation von Scher-Alfvén-Wellen

$$\omega = v_A k, \tag{2.21}$$

mit der Frequenz der Welle ω, dem Wellenvektor \mathbf{k} und der Phasengeschwindigkeit v_A, die in diesem Fall in z-Richtung zeigt. v_A wird als Alfvén-Geschwindigkeit bezeichnet und ist gegeben durch

$$v_A = \frac{B_0}{\sqrt{\mu_0 \rho}}. \tag{2.22}$$

Sie hängt lediglich von der Magnetfeldstärke und der Massendichte ab.

Ein einfaches physikalisches Bild der Dynamik von Scher-Alfvén-Wellen lässt sich wie folgt beschreiben. Ausgehend von einer Plasmaauslenkung ξ, der Verschiebung der Massendichte im Plasma, betrachte man ein wellenförmiges Magnetfeld \mathbf{B} (Abb. 2.4, links), das mit ξ in Phase läuft. An den Stellen der maximalen Steigung von \mathbf{B}, ist die Störung des Feldes $\mathbf{B}_1(t, y)$ am größten, da sie die größte Neigung zum ungestörten Magnetfeld \mathbf{B}_0 aufweist. \mathbf{B}_1 oszilliert senkrecht zu \mathbf{B}_0 und ist also um $\pi/2$ zu ξ verschoben. Die zeitliche Variation des Magnetfeldes induziert ein elektrisches Feld $\mathbf{E}_1(t, x)$, das senkrecht zum ungestörten Magnetfeld und zur oszillierenden Komponente steht. \mathbf{B}_1 und \mathbf{E}_1 schwingen in Phase. Das elektrische Feld in Kombination mit dem ungestörten Magnetfeld führt zu einer $\mathbf{E}_1 \times \mathbf{B}_0$-Drift. Sie ist gegenüber \mathbf{B}_1 und \mathbf{E}_1 um π verschoben. Im Vergleich zu ξ hat sie folglich eine Verschiebung um $\pi/2$ und treibt damit die Propagation Welle in z-Richtung an. Aufgrund der zeitlichen Änderung des elektrischen Feldes entsteht eine Polarisationsdrift, die zu einem Polarisationsstrom $J_{1, x}$ in x-Richtung führt. Er läuft in Phase zur Plasmaauslenkung ξ und ist verantwortlich für die Verformung des Magnetfeldes. Einen anschaulichen Vergleich zur Ausbreitung
2.3 Alfén-Wellen

einer transversalen Alfén-Welle bietet das Bild einer in Schwingung versetzten Geigensait. Je stärker das Magnetfeld, also die Saitenspannung, und je geringer die Trägheit, gegeben durch die Massendichte, um so schneller propagiert die Störung.

Die transversale Alfén-Welle breitet sich nur bei Frequenzen unterhalb der Ionenzyklotronfrequenz \(\omega_{ci} = eB/m_i \) aus, wobei \(e \) die Elementarladung, \(B \) das Magnetfeld und \(m_i \) die Ionenmasse sind. Deutlich wird dies in dem erweiterten Ansatz für die Dispersionsrelation, wobei dann für \(\omega \to \omega_{ci} \) die Scher-Alfén-Welle in die Ionenzyklotronwelle übergeht [42]

\[
\omega = v_A k \sqrt{1 - \frac{\omega}{\omega_{ci}}}, \tag{2.23}
\]

In Abb. 2.5 sind die lineare (2.21) und erweiterte Dispersionsrelation (2.23) für Scher-Alfén-Wellen dargestellt. Die Welle existiert unterhalb von \(\omega_{ci} \), wo sie eine Resonanzstelle aufweist. Nur für kleine Frequenzen gibt die lineare Dispersionsrelation (2.21) das Verhalten der Welle gut wieder.

Abbildung 2.5: Linearer Ansatz (2.21) (gestrichelt) und erweiterter Ansatz (2.23) (durchgezogen) der Dispersionsrelation für Scher-Alfén-Wellen. Die Ausbreitung geschieht unterhalb der Ionenzyklotronfrequenz \(\omega_{ci} \).

2.3.2 Alfén-Kontinua

Die Berechnung des Spektrums diskreter Alfén-Wellen (DAW), des Alfén-Kontinuums, geschieht unter Berücksichtigung der Magnetfeldgeometrie. In einem toroidalen Plasma sind DAW charakterisiert durch die Modenzahlen in toroidaler und
2.3.2 Alfvén-Kontinua

poloidaler Ausbreitungsrichtung. Ihre Wellenlängen sind typischerweise größer, als ein toroidaler Umlauf. D.h. sie werden helikal aufgewickelt und ein Wellenzug schließt sich erst nach einigen toroidalen Umläufen (abhängig von ι).

Im einfachen Fall einer Zylindergeometrie kann die Dispersionsrelation für toroidale Alfven-Wellen geschrieben werden als \[\omega^2 = \omega_A^2(r) = \frac{v_A^2(r)}{R_0^2} \left[n + \frac{m}{q(r)} \right]^2, \tag{2.24} \]

wobei n die toroidale Modenzahl und m die poloidale Modenzahl darstellen. R_0 ist der große Plasmaradius und $q = 1/\iota$ der Sicherheitsfaktor mit der Rotationstransformierten ι. Gleichung (2.24) gibt an, wo eine Mode mit gegebener Frequenz und Modenummern m und n resonant existieren kann.

Für TJ-K wurden Alfven-Kontinua mit dem Kontinuums-Code CONTI [44, 26] berechnet. Dabei wurden die realistische Flussflächengeometrie (Abb. 3.3) und typische Entladungsparameter (Abb. 3.6) von TJ-K als Ausgangspunkt genommen. Abb. 2.6 zeigt Kontinuumspektra für eine Helium- und eine Wasserstoffentladung. Die Frequenz f ist aufgetragen über der normierten Flussflächenkoordinate $\psi \sim r^2 = (R-R_0)^2$. Die durchgezogenen Linien geben die ungedämpften Dispersionrelationen der DAW an. Diese Wellen breiten sich jedoch nicht im Plasma aus, da die Kombination von toroidalen und poloidal Modenzahlen eine Kopplung der DAW mit den kompressionalen Alfven-Wellen (CAW) zur Folge hat und die DAW dadurch stark gedämpft werden. Die Lücken (gaps) oder auch freien Frequenzbänder im Alfven-Kontinuum sind im wesentlichen darauf zurückzuführen, dass dicht benachbarte DAW mit verschiedenen poloidalen Modenzahlen m ebenfalls koppeln (Modenkopplung) und sich an den Schnittpunkten im Alfven-Kontinuum gegenseitig auslöschen. In diesen Lücken ist es möglich durch externe Antennen Alfven-Wellen im Plasma anzuregen [45]. In Abb. 2.6 sind die Frequenzbänder gekennzeichnet, in denen sich toroidale Alfven-Eigenmoden (TAE) durch äußere Anregung ausbilden können. Die Farben kennzeichnen unterschiedliche toroidale und poloidale Modenzahlen, deren genaue Aufschlüsselung an dieser Stelle zu viel Platz in Anspruch nehmen würde. Die Modenanalyse hat jedoch ergeben, dass die zu erwartenden TAE eine dominierende Modenstruktur von $n = -1$ und $m = 3$ oder $m = 4$ aufweisen. Der Grund hierfür ist die Tatsache, dass TJ-K eine Rotationstransformierte $\iota(r)$ besitzt, die sich zwischen 1/3 und 1/4 bewegt. Um die vorhergesagten poloidal Moden nachzuweisen, muss eine Sonden-Diagnostik mindestens aus 8 poloidal angeordneten Magnetfeldsonden (Mirnov-Sonden) bestehen (s. Abschnitt 4.6). Die in Kapitel 8 für eine externe Anregung gewählten Frequenzen von 70 kHz in Heliumentladungen und 70 kHz bzw. 100 kHz in Wasserstoffentladungen liegen innerhalb der mit TAE gekennzeichneten Frequenzbänder in Abb. 2.6.
Experimentelle Ergebnisse bei externer Anregung zeigen jedoch nicht die erwartete Alfén-Mode mit berechneter Modenstruktur (s. Kapitel 8). Die gemessenen Signale der Magnetfeldsonden werden dominiert von einer transversalen elektromagnetischen Mode, der TEM_{00} (poloidale Modenzahl $m = 0$) [46]. Dabei handelt es sich um die Grundmode innerhalb eines koaxialen Leiters, wobei in diesem Fall das Plasma die Rolle des Innenleiters übernimmt. Sowohl die experimentellen Befunde, als auch die Abschätzung der vorherrschenden Existenzbedingungen in Kapitel 8 weisen darauf hin, dass die Beobachtung einer resonanten TAE in TJ-K nur bei starker Anregung möglich ist.
2.3 Alfven-Wellen
Kapitel 3

Das Torsatron TJ-K

3.1 Aufbau und Magnetfeldkonfiguration

Das Vakuumgefäss hat die Form eines liegenden Torus. Es hat einen großen Radius von $R = 0.6 \text{ m}$ und einen kleinen Innenradius von $a = 0.175 \text{ m}$. Das Vakuumgefäss des TJ-K ist zugänglich durch 24 Ports (Abb. 3.1): sechs oben (T 1-6), sechs unten (B 1-6), sechs innen (I 1-6) und sechs außen (O 1-6). Bedingt durch die Windungen einer Helikalfeldspule liegen die mit DN 250 ISO-KF-Flanschen (286 mm Durchmesser) bestückten Ports entlang der der Spule gegenüberliegenden Seite. Sie haben toroidale Positionen von 10° (unterer Port), 30° (äußerer Port) und 50° (oberer Port) modulo 60° um den Torus. Die inneren Ports befinden sich bei 0° und haben einen Durchmesser von 95 mm (DN 63 ISO-KF-Flansche).

Die Helikalfeldspule, die sich in sechszähler Symmetrie um den Torus windet, macht das TJ-K zu einem Torsatron mit $l = 1$ und $m = 6$. In Torus-Koordinaten
3.1 Aufbau und Magnetfeldkonfiguration

(Abb. 3.2) ergibt sich ein Windungsgesetz für die Spule von

$$\varphi = \frac{1}{6} (\theta + 0.4 \sin \theta),$$

wobei φ der toroidale und θ der poloidale Winkel des Torus darstellt. Die Helikalfeldspule besteht aus sechs Leiterpaketen mit je 20 Windungen, die in Serie geschaltet sind. Der Strom I_h durch die Spule erzeugt auf der magnetischen Achse eine Flussdichte von $B_0 = I_h \cdot 0.24 \text{ mT/A}$. Bei einem maximalen Strom von 1200 A entspricht dies 288 mT. Zur Kompensation eines Teils der vertikalen Magnetfeldkomponente der Helikalfeldspule wird zusätzlich ein planares Spulenpaar (Vertikalfeldspulen) mit dem Radius $r = 1 \text{ m}$ eingesetzt. Damit ist eine horizontale Positionierung des Einschlussbereichs über das Verhältnis des Stroms durch Helikal- und Vertikalfeldspule $R_{v,h} = I_v/I_h$ möglich. Geschlossene Flussflächen innerhalb des Vakuumgefässes erhält man für $0.49 \leq R_{v,h} \leq 0.63$ [47, 6]. Abb. 3.3 zeigt die mit dem Gourdon-Code [48, 49] berechneten Plasmaformen im poloidalen Querschnitt an den verschiedenen Ports für das üblicherweise verwendete Stromverhältnis $R_{v,h} = 0.57$. Wie bereits erwähnt, besitzt TJ-K eine Rotationstransformierte von $\iota \approx 1/3$. In Draufsicht zeigt das Magnetfeld gegen den Uhrzeigersinn um den Torus.

An Port O4 befindet sich ein Mikrowelleninterferometer zur Bestimmung der lieniengemittelten Dichte. Die Ports O5 und O6 sind mit Langmuir-Sondendiagnostiken bestückt. Es handelt sich um eine 1D-Verfahrenheit beweglich in R-Richtung (O5) und eine 2D-Verfahrenheit beweglich in R- und z-Richtung (Abb. 3.2 zeigt die in TJ-K verwendete Torus-Geometrie). Die 1D-Verfahrenheit an Port T5 ist mit einer Magnetfeldsonde bestückt. Sie ist in z-Richtung verfahrbar. Die Diagnostiken an den Ports O5, O6
3.1 Aufbau und Magnetfeldkonfiguration

Abbildung 3.3: Flussflächenform an verschiedenen Ports für das üblicherweise verwendete Stromverhältnis $R_{e,h} = 0.57$.

und T5 sind durch einen Schieber vom Vakuumschüssel abtrennbar, was eine Auswechselung der Sonden ohne merkliche Beeinträchtigung des Hauptvakuums ermöglicht. Sowohl die Steuerung, als auch die Datenaufnahme der 1D- bzw. 2D-Einheiten werden mit Hilfe von LabView-Programmen durchgeführt. Der an Port O2 befindliche Transientenrekorder dient in dieser Arbeit der Aufnahme von Daten der dort installierten 8 Mirnov-Sonden. Bei den Mirnov-Sonden handelt es sich um auf einen Keramikstutzkörper gewickelte Spulen aus Kupferlackdraht, die außerhalb des Plasmas positioniert werden. Sie sind kranzförmig angeordnet und messen die poloidale Komponente der Magnetfeldfluktuationen. Das Mikrowelleninterferometer sowie die Theorie der Langmuir-Sonde werden in Abschnitt 3.2 getrennt behandelt. Die Magnetfeldsondendiagnostik wird in Kapitel 4 ausführlich diskutiert.

Die Entladungsdauer ist durch die Aufheizung der Spulen, die durch ein Kupferrohrsystem passiv wassergekühlt werden, limitiert. Bei einer für eine 2.45 GHz-Entladung typischen Stromstärke von 300 A, d.h. einem Magnetfeld von 72 mT ist eine maximale Entladungsdauer von 45 Minuten möglich. Eine 8.25 GHz-Entladung kann bei einem Magnetfeld von 1150 A also 276 mT maximal 2 Minuten gefahren werden.

3.2 Diagnostiken

Der folgende Abschnitt beschreibt Diagnostiken, wie Langmuir-Sonden und Mikrowelleninterferometer, die im Rahmen dieser Arbeit zum Einsatz gekommen sind. Es ist zu beachten, dass die Magnetfeldsondendiagnostik in Kapitel 4 ausführlich behandelt wird.

3.2.1 Das Mikrowelleninterferometer

\[
N_P = \sqrt{1 - \frac{\omega_{pe}^2}{\omega^2}},
\]

wobei \(\omega_{pe} = \sqrt{n_e e^2/\varepsilon_0 m_e}\) die Plasmafrequenz und \(\omega\) die Frequenz der Welle ist. Er hängt entscheidend von der Elektronendichte \(n_e\) ab. Bleibt \(n_e\) unterhalb der so genannten Cutoff-Dichte \(n_c = \omega^2 \varepsilon_0 m_e/\epsilon^2\), wird die Mikrowelle nicht reflektiert und kann durch das gesamte Plasma propagieren. In TJ-K wird ein Mikrowellenstrahl mit einer Frequenz von 65 GHz in Referenz- und Signalstrahl geteilt. Mittels einer Hornantenne wird der Signalanteil in das Plasma gestrahlt. Er durchläuft das Plasma, um schließlich von einem Spiegel an der gegenüberliegenden Gefäßinnenwand reflektiert zu werden. Der reflektierte Strahl wird nach erneutem Durchlaufen des Plasmas mit einer zweiten
Hornantenne detektiert und mit dem Referenzanteil, der das Plasma nicht durchlaufen hat, überlagert. Der resultierende Phasenunterschied ergibt sich zu [52]

\[\Delta \phi = \frac{\omega}{2cn_c} \int_L n_e(l)dl. \] (3.3)

Dabei ist \(c \) die Lichtgeschwindigkeit, \(L \) die zurückgelegte Weglänge des Mikrowellenstrahls durch das Plasma (hier: \(L = 2 \cdot 0.17 \) m). Das Interferometer liefert eine der Phasendifferenz \(\Delta \phi \) proportionale Spannung \(U \). Aus der Differenzspannung mit und ohne Plasma \(\Delta U \) folgt schließlich für die liniengemittelte Dichte \(n_e \) [52]:

\[n_e = \frac{\int_L n_e(l)dl}{L} \approx 6.7 \cdot 10^{16} \text{m}^{-3} \cdot \Delta U/V. \] (3.4)

Es sei angemerkt, dass sich mit \(\omega/2\pi = 65 \text{ GHz} \) eine Cutoff-Dichte von \(n_c = 5 \cdot 10^{19} \text{m}^{-3} \) ergibt. Da diese Cutoff-Dichte 2 Größenordnungen oberhalb von typischen Dichten in TJ-K (s. Abb 3.6) liegt, ist das Interferometer im gesamten Plasmavolumen einsetzbar.

3.2.2 Die Langmuir-Sonde

Trägt man den Sondenstrom \(I \) (traditionellerweise \(-I\)) über der Sondenspannung \(U \) auf, ergibt sich die in Abb. 3.4 schematisch dargestellte Sondenkennlinie. Die Kennlinie lässt sich in drei Bereiche unterteilen: Ionensättigungsbereich (I), Elektronenanlaufbereich (II) und Elektronensättigungsbereich (III). In den einzelnen Bereichen kann die Kennlinie durch folgende Gleichungen beschrieben werden:

\[I = I_{i,\text{sat}} = 0.61enS \sqrt{\frac{T_e}{M_i}} \] (3.5)
\[I = I_{i,\text{sat}} + I_{e,\text{sat}} \exp\left(-\frac{e(\phi_p - U)}{T_e}\right) \] (3.6)
\[I = I_{e,\text{sat}} = -enS \sqrt{\frac{T_e}{2\pi m_e}} \] (3.7)
3.2.2 Die Langmuir-Sonde

Dabei sind \(M_i, m_e \) die Ionen- bzw. Elektronenmasse, \(T_e \) die Elektronentemperatur, \(\phi_p \) das Plasmapotential, \(e \) die Elementarladung und \(S \) die effektive Sondenoberfläche. \(S \) kann durch die geometrische Sondenoberfläche angenähert werden, wenn die Debyelänge \(\lambda_D = \sqrt{\varepsilon_0 T_e/e^2 n} \) sehr viel kleiner ist als typische Ausmaße der Sonde \(d \). In diesem Fall kann sie als planar angesehen werden. Befindet sich \(\lambda_D \) in der Größenordnung von \(d \) oder größer, so muss die geometrische Form der Sonde berücksichtigt werden. Korrekturfaktoren finden sich in Ref. [53]. Die Gleichungen (3.5), (3.6) und (3.7) folgen direkt aus der einfachen Sondentheorie für planare Sonden in stoßfreien unmagnetisierten Plasmen. Für die Elektronen wird daher eine Maxwell-Verteilung und die Ionen als kalt angenommen. In diesem Zusammenhang kann ein Plasma als stoßfrei bezeichnet werden, wenn die mittlere freie Weglänge groß gegen \(d \) ist. Es gilt als unmagnetisiert, wenn die Larmor-Radien ebenfalls groß gegen \(d \) sind [54]. Da diese Voraussetzung für TJ-K-Plasmen nicht immer erfüllt ist, sind Dichten und Plasmapotentiale, die aus Kennlinien von Langmuir-Sonden gewonnen wurden, mit Unsicherheiten behaftet.

Aus (3.5) ist ersichtlich, dass der Ionensättigungsstrom u.a. von der Dichte \(n \) abhängig ist. Durch negatives Vorspannen der Sonde ist es möglich, den Ionensättigungsstrom direkt zu messen (Abb. 3.4 Bereich I: Ionensättigungsbereich). In diesem Bereich werden alle Elektronen abgestoßen. In Verbindung mit der aus den Interferometerdaten erhaltenen liniengemittelten Dichte (s. Abschnitt 3.2.1) kann man auf die tatsächliche Plasmadichte \(n \) an der Stelle der Sondenmessung zurückrechnen. Bei weniger starker negativer Spannung gelangen immer mehr Elektronen zur Sonde. Der Elektronenstrom steigt nach (3.6) exponentiell an. Dieser Bereich II (s. Abb. 3.4) wird als Elektronenanlaufbereich bezeichnet. In diesem Bereich liegt auch das sogenann-
3.2 Diagnostiken

Es bildet sich aus, wenn die Sonde ohne Vorspannung dem Plasma ausgesetzt wird. Aufgrund der höheren Mobilität der Elektronen lädt sich die Sonde negativ auf und das entstehende elektrische Feld verhindert das Auftreten weiterer Elektronen. Die entstandene Potentialdifferenz zwischen Sonde und der Gefäßwand ist dann ϕ_{fl}. Das Plasma hat sich gegenüber der Sonde abgeschirmt und es fließt kein Netto-Strom ($I = 0$). Bereich III (Abb. 3.4), der Elektronensättigungsbereich, beginnt ab dem Plasmapotential ϕ_p, dem Potential zwischen Plasma und Gefäßwand. Die Spannung ist nun so hoch, dass sämtliche Elektronen, die sich Richtung Sonde bewegen, diese auch erreichen können. Die Kennlinie knickt im Falle einer planaren Sonde ab und der fließende Strom wird als Elektronensättigungsstrom bezeichnet. In der Praxis werden meistens zylinderförmige Sonden verwendet. Durch die verschiedenen elektrischen...
Felder, die durch die unterschiedlichen Geometrien der Sonde hervorgerufen werden, verändert sich der Elektroneneinfangbereich und damit die effektive Sondenoberfläche. Der Einfluss auf den Verlauf der Kennlinie ist ebenfalls in Abb. 3.4 angedeutet. Ein Knick kann häufig nicht exakt lokalisiert werden.

In Bereich II der Kennlinie liefert eine *Fitformel* die gewünschten Plasmaparameter. Sie ist gegeben durch

$$I = 0.61\, n e S \sqrt{\frac{T_e}{M_i}} \left[1 - \exp \left(-\frac{e(\phi_{fl} - U)}{T_e} \right) \right], \quad (3.8)$$

wobei das Plasmapotential ϕ_p in (3.6) ersetzt wurde durch

$$\phi_{fl} = \phi_p + \frac{T_e}{e} \ln \left(0.61 \sqrt{\frac{2\pi m_e}{M_i}} \right), \quad (3.9)$$

was direkt aus $I = 0$ und $U = \phi_{fl}$ folgt. Man kann Gleichung (3.8) direkt an die gemessene Kennlinie anpassen. Dabei sollte sich der Fitbereich nicht allzu weit über ϕ_{fl} hinaus erstrecken. Als Fitparameter gelten Dichte, Elektronentemperatur und Floatingpotential. Abb. 3.5 unten zeigt beispielhaft eine Kennlinie mit Fit aufgenommen in einem Heliumplasma. In dem Fitbeispiel erhält man für die Dichte $1,7 \cdot 10^{17}\, \text{m}^{-3}$, für die Elektronentemperatur $8,4\, \text{eV}$ und als Floatingpotential $-7\, \text{V}$. Aus diesen Werten lässt sich mit (3.9) ein Plasmapotential von $21\, \text{V}$ errechnen. Vergleicht man dieses mit dem direkt am Knick der Kennlinie abgelesenen Plasmapotential, zeigt sich eine gute Übereinstimmung.

3.3 Gleichgewichtsgrößen

Im Folgenden sollen verschiedene Entladungstypen charakterisiert werden. Es handelt sich um Entladungen in den drei Gasen Argon, Helium und Wasserstoff. Die Plasmarührung wurde bei 2.45 GHz und einem Hauptmagnetfeld von $B_0 = 72\, \text{mT$ bzw. 8.25 GHz
Abbildung 3.6: Gleichgewichtsgrößen im Einschlussbereich der untersuchten Plasmaentladungen (Floatingpotential, Dichte, Elektronentemperatur) bei festem Stromverhältnis $R_V = 0.57$ und unterschiedlichem Gas, Magnetfeld, Heizleistung und Neutralgasdruck (Plasmazentrum bei $R - R_0 = 0.04$ m, Separatrix Hochfeldseite bei $R - R_0 = -0.06$ m und Niederfeldseite bei $R - R_0 = 0.13$ m):

- Ar (2.45 GHz), $B_0 = 72$ mT, 1.8 kW, $3 \cdot 10^{-5}$ mbar
- He (2.45 GHz), $B_0 = 72$ mT, 1.8 kW, $4.5 \cdot 10^{-5}$ mbar
- H (2.45 GHz), $B_0 = 72$ mT, 1.8 kW, $2.6 \cdot 10^{-5}$ mbar
- Ar (8.25 GHz), $B_0 = 276$ mT, 0.6 kW, $2.8 \cdot 10^{-5}$ mbar
- He (8.25 GHz), $B_0 = 276$ mT, 0.6 kW, $3.1 \cdot 10^{-5}$ mbar
- H (8.25 GHz), $B_0 = 276$ mT, 0.6 kW, $2.7 \cdot 10^{-5}$ mbar
3.4 ECR-Heizung und Plasmaparameter

und $B_0 = 276\,\text{mT}$ betrieben. Abb. 3.6 zeigt die Gleichgewichtsprofile in den untersuchten Plasmen. Dargestellt sind Floatingpotential, Dichte und Elektronentemperatur (Plasmazentrum bei $R - R_0 = 0.04\,\text{m}$, Separatrix Hochfeldseite bei $R - R_0 = -0.06\,\text{m}$ und Niederfeldseite bei $R - R_0 = 0.13\,\text{m}$). In den 2.45 GHz-Entladungen ist deutlich zu erkennen, dass die Potential- und Dichteverläufe zentral zugeschitzt sind. Die Temperaturen im Zentrum sind annähernd konstant und nur zum Rand hin etwas erhöht. Dagegen weisen die 8.25 GHz-Plasmen einen unregelmäßigen Verlauf im Floatingpotential bei geringen Werten auf. An der Niederfeldseite fallen die Dichteprofile schneller ab als bei den 2.45 GHz-Entladungen und die Temperaturen sind etwas höher. Im Plasmazentrum jedoch können sie ebenfalls als konstant angesehen werden.

3.4 ECR-Heizung und Plasmaparameter

Mikrowellen werden resonant von Elektronen, die mit der Zyklotronfrequenz $\omega_{ce} = eB/m_e$ gyrieren, absorbiert, was zum Zünden des Plasmas führt. Die Resonanzbedingung erlaubt in TJ-K für 2.45 GHz einen sinnvollen Arbeitsbereich in Bezug auf das Magnetfeld von 70–100 mT und für 8.25 GHz einen Bereich von 200–300 mT. Nachdem das Plasma gezündet hat, findet die weitere Heizung an der Upper-Hybride-Resonanz $\omega_{UH} = (\omega_{pe}^2 + \omega_{ce}^2)^{1/2}$, wobei ω_{pe} die Plasmafrequenz und ω_{ce} die Zyklotronfrequenz sind (s. Tab. 3.1), statt. Die Mikrowelle dringt nicht mehr ins Plasma ein, da sie an der entstandenen Cutoff-Schicht reflektiert wird. Die hohen Temperaturprofile aus Abb. 3.6 sind ein Hinweis hierauf. Aus Dichteprofilen und Magnetfeldverlauf ergibt sich, dass die Lage der Upper-Hybride-Resonanz mit den Maxima der Temperaturprofile übereinstimmt [55]. Dieses wird ebenfalls durch erste Wellenfeldmessungen in [51] bestätigt. Die gemessenen Dichteprofile weisen eine zugespitzte Form auf. Dieses deutet
möglicherweise auf einen nach innen gerichteten Teilchentransport hin. Durch eine weiterführende Analyse der Wellenausbreitung im Plasma ergibt sich, dass eine zentrale Plasmaheizung durch O-X-B-Modenkonversion [56] in TJ-K vernachlässigbar ist [51].

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formel</th>
<th>2.45 GHz</th>
<th>8.25 GHz</th>
<th>Einheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debye-Länge</td>
<td>(\lambda_D = \sqrt{\varepsilon_0 k_B T_e / n e^2})</td>
<td>42</td>
<td>53</td>
<td>([10^{-6}] \text{m})</td>
</tr>
<tr>
<td>Cutoff-Dichte</td>
<td>(n_c = \omega_c^2 \varepsilon_0 m_e / e^2)</td>
<td>0.74</td>
<td>8.45</td>
<td>([10^{17}] \text{m}^{-3})</td>
</tr>
<tr>
<td>Zyklotronfrequenz (e)</td>
<td>(\omega_{ce} = eB / m_e)</td>
<td>13.0</td>
<td>49.0</td>
<td>([10^9] \text{rad/s})</td>
</tr>
<tr>
<td>Zyklotronfrequenz (i)</td>
<td>(\omega_{ci} = eB / m_i)</td>
<td>0.2-7.0</td>
<td>0.7-26.0</td>
<td>([10^6] \text{rad/s})</td>
</tr>
<tr>
<td>Plasmafrequenz (e)</td>
<td>(\omega_{pe} = \sqrt{n e^2 / \varepsilon_0 m_e})</td>
<td>28.1</td>
<td>25.2</td>
<td>([10^9] \text{rad/s})</td>
</tr>
<tr>
<td>Plasmafrequenz (i)</td>
<td>(\omega_{pi} = \sqrt{n_i e^2 / \varepsilon_0 m_i})</td>
<td>0.1-0.7</td>
<td>0.1-0.6</td>
<td>([10^9] \text{rad/s})</td>
</tr>
<tr>
<td>Larmor-Radius (e)</td>
<td>(\rho_{Le} = \sqrt{2 m_e k_B T_e / eB})</td>
<td>0.13</td>
<td>0.04</td>
<td>([10^{-3}] \text{m})</td>
</tr>
<tr>
<td>Larmor-Radius (i)</td>
<td>(\rho_{Li} = \sqrt{2 m_i k_B T_i / eB})</td>
<td>2.0-13.0</td>
<td>0.5-3.0</td>
<td>([10^{-3}] \text{m})</td>
</tr>
<tr>
<td>thermische Geschwindigkeit (e)</td>
<td>(v_{\text{th},e} = \sqrt{2 k_B T_e / m_e})</td>
<td>1.7</td>
<td>2.0</td>
<td>([10^6] \text{m/s})</td>
</tr>
<tr>
<td>thermische Geschwindigkeit (i)</td>
<td>(v_{\text{th},i} = \sqrt{2 k_B T_i / m_i})</td>
<td>2.0-14.0</td>
<td>2.0-14.0</td>
<td>([10^3] \text{m/s})</td>
</tr>
</tbody>
</table>

Tabelle 3.1: Charakteristische Größen in TJ-K bei \(T_e = 8 \text{eV} \) (2.45 GHz) bzw. \(T_e = 10 \text{eV} \) (8.25 GHz), \(T_i = 1 \text{eV} \), \(n = 2 \cdot 10^{17} \text{m}^{-3} \) (2.45 GHz), \(B = 72 \text{mT} \) (2.45 GHz) bzw. \(n = 2 \cdot 10^{17} \text{m}^{-3} \) (8.25 GHz), \(B = 276 \text{mT} \) (8.25 GHz)

In Tab. 3.1 sind die für TJ-K typischen Plasmaparameter aufgelistet. Dabei werden Elektronentemperaturen von \(8 \text{eV} \) (2.45 GHz-Entladung) bzw. \(10 \text{eV} \) (8.25 GHz-Entladung), eine Ionentemperatur von \(1 \text{eV} \) [57] und Dichten von \(2.5 \cdot 10^{17} \text{m}^{-3} \) (2.45 GHz-Entladung) bzw. \(2 \cdot 10^{17} \text{m}^{-3} \) (8.25 GHz-Entladung) angenommen. Es sei angemerkt, dass Spektroskopiemessungen in Argon ergeben haben, dass die Ionen einfach ionisiert sind [57].
Kapitel 4

Diagnostik zur Messung von Magnetfeldfluktuationen

Im Folgenden wird die verwendete Diagnostik vorgestellt, dessen Aufgabe die Vermessung der Magnetfeldfluktuationen ist.

4.1 Funktionsweise einer Magnetfeldsonde

In der vorliegenden Arbeit wurde ein System aus Magnetfeldsonden konstruiert, das sowohl die räumliche Verteilung, sowie die zeitliche Veränderung auftretender Magnetfeldstörungen misst. Bei den einzelnen Sonden handelt es sich um zylindrische Spulen, in denen durch das fluktuiierende Magnetfeld eine Spannung induziert wird. Das grundlegende Prinzip der Messung kann in [58, 59, 60] nachgelesen werden. Die induzierte Spannung gibt Aufschluss über die Stärke der Fluktuationen im Magnetfeld gemäß

\[U_{\text{ind}} = \int_{C} E \cdot dr = - \frac{d}{dt} \int_{A} B \cdot dA, \]

wobei \(A \) die von \(C \) berandete und vom Magnetfeld durchsetzte Fläche ist. Das Induktionsgesetz vereinfacht sich für eine Spule, deren Achse parallel zum homogenen Magnetfeld \(B(t) \) ausgerichtet ist und über deren Spulenquerschnitt ein konstantes Magnetfeld vorherrscht, zu:

\[U_{\text{ind}} = -\frac{d\Phi}{dt} = -A_{e_{\text{ff}}} \frac{d}{dt} B(t) = -A_{e_{\text{ff}}} \dot{B}(t) \]

mit dem magnetischen Fluss \(\Phi \) und der effektiven Sondenfläche \(A_{e_{\text{ff}}} = N \pi r^2 \). Hierbei ist \(N \) die Anzahl der Windungen und \(r \) der Spulenradius. Um die Frequenzabhängigkeit der induzierten Spannung insbesondere für schnell fluktuiierende Felder zu erhalten,
wurde die Sonde in einem bekannten Magnetfeld kalibriert. In dieser Arbeit wird dazu ein definiertes Helmholtz-Spulenfeld verwendet, auf das an späterer Stelle noch eingegangen wird.

Aus (4.2) ist direkt ersichtlich, dass die induzierte Spannung der Spule und damit ihre Empfindlichkeit verstärkt werden kann durch die Erhöhung der effektiven Sondenfläche, d.h. sowohl durch die Erhöhung der Spulenwindungen N oder deren Radius r. Eine möglichst hohe räumliche Auflösung bei Messungen mit der Magnetfeldsonde erfordert eine Beschränkung von r. Für die Erhöhung der Windungszahl N ist zu beachten, dass die Induktivität L_S der Spule proportional zu N^2 steigt. Für eine einlagige, eng gewickelte Zylinderspule der Länge l erhält man
\[L_S = 1.59 \cdot 10^{-5} \mu_0 N^2 rl, \] (4.3)
mit dem Proportionalitätsfaktor k, der eine Funktion der Spulenlänge l und des Spulenradius r ist ($k = k(r/l)$) [61].

\[U_a \quad U_e \]
\[R_T \quad U_a \]

Abbildung 4.1: Ersatzschaltbild für Spule (L_S) und Abschlusswiderstand (R_T)

Folgende kurze Überlegung zeigt, dass eine beliebige Erhöhung der Windungszahl N und damit der Induktivität L_S nicht sinnvoll ist. Abb. 4.1 zeigt das Ersatzschaltbild für Spule (L_S) und Abschlusswiderstand (R_T). Die Übertragungsfunktion und deren Betrag sind gegeben durch
\[\frac{U_a}{U_e} = \frac{1}{1 + i\omega L_S R_T}, \quad \frac{|U_a|}{U_e} = \frac{1}{\sqrt{1 + (\omega L_S / R_T)^2}}, \] (4.4)
mit der Eingangsspannung U_e und der Ausgangsspannung U_a. Die Grenzfrequenz ω_0 für $|U_a/U_e| = 1/\sqrt{2}$ folgt zu
\[\omega_0 = R_T / L_S. \] (4.5)

Eine genaue Abstimmung zwischen Empfindlichkeit (Nr^2 möglichst groß), räumlichem Auflösungsvermögen (r möglichst klein) und hoher Zeitauflosung ($N^2 r$ möglichst klein) in Abhängigkeit der zu messenden Frequenzen ist somit erforderlich.
4.2 Konstruktion einer linear verfahrbaren Magnetfeldsonde

4.2.1 Die θ-Sonde

Die im Experiment hauptsächlich verwendete θ-Sonde (Abb. 4.2) besteht aus einem 0.15 mm dicken Kupferlackdraht, der in 20 Windungen um eine Keramikstützhülse ($\varnothing = 7$ mm) gewickelt wird. Die Länge der Spule beträgt 6 mm. Sie besitzt eine Induktivität von $4 \mu\text{H}$ und einen Widerstand von 2Ω. Nimmt man als Abschlusswiderstand 50Ω, folgt nach (4.5) eine Grenzfrequenz von 2 MHz. Die Drahtenden werden verdrillt und durch ein Metallröhrenchen der Länge 580 mm geführt. Dieses Metallröhrenchen, sowie eine an einer Seite geschlitzte Aluminiumfolie um den Sondenkopf dienen zur elektrostatischen Abschirmung (s. Abschnitt 4.4). Der Sondenkopf und der Sondenschaft sind komplett umgeben von einem Keramikrohr, das am Kopfende geschlossen ist, um direkten Kontakt der Kupferlackdrähte mit dem Plasma zu vermeiden. Die gesamte Konstruktion ist an einem Flanschdeckel befestigt. Die beiden aus dem Metallröhrenchen hervortretenden Drahtenden werden über einen Lemostecker und zwei Koaxialkabel auf zwei SMB-Vakuumdurchführungen gesteckt. Auf diese Weise kann das Sondensignal symmetrisch zur Weiterverarbeitung aus dem Plasmagefäß geführt werden. Die θ-Sonde wird zur Messung der poloidalen Komponente der Magnetfeldfluktuationen verwendet.

Abbildung 4.2: Aufbau der θ-Sonde. Sie wird zur Messung der poloidalen Komponente der Magnetfeldfluktuationen eingesetzt.
4.2.2 Die $r\theta$-Sonde

Abb. 4.3 zeigt schematisch den Aufbau einer ebenfalls im Experiment verwendeten $r\theta$-Sonde. Mit Hilfe dieser Sondenkonstruktion ist es möglich sowohl die poloidale als auch die radiale Komponente der Magnetfeldfluktuationen gleichzeitig zu messen. Auf einen Keramikkörper sind zwei Spulen unterschiedlicher Orientierung gewickelt. Die Ausrichtung der jeweiligen Spule ist ebenfalls in Abb. 4.3 angezeigt. Die elektrostatische Abschirmung (nicht dargestellt), die Weiterführung der verdrillten Kupferlackdrähte, die Ausmaße und übrigen Spezifikationen sowie die komplette Beschaltung der beiden einzelnen Sonden ist identisch zur θ-Sonde vorgenommen worden. Aus diesem Grund werden die weiteren Schritte zur Fertigstellung der im Experiment eingesetzten Magnetfeldsondendiagnostik exemplarisch für die θ-Sonde vorgestellt.

Abbildung 4.3: Schematische Darstellung des Sondenkopfes der $r\theta$-Sonde. Sie misst gleichzeitig die poloidale und radiale Komponente der Magnetfeldfluktuationen.

4.3 Kalibrierung der Magnetfeldsonde in einer Helmholtz-Spule

Um die Frequenzabhängigkeit der Magnetfeldsonde inklusive komplettem Messaufbau zu erhalten, wurde die Sonde in dem bekannten Magnetfeld einer Helmholtz-Spule
kalibriert. Abb. 4.4 zeigt vereinfacht den Messaufbau zur Kalibrierung der Sonde. Die vollständige Schaltung, wie sie auch für reale Plasmamessungen verwendet wird, ist in Abb. 4.8 dargestellt.

Die Helmholtz-Spule selbst besteht aus einem Spulenpaar mit jeweils 5 Windungen aus Kupferlackdraht (Ø = 1 mm). Die Windungen wurden auf ein PVC-Rohr (Ø = 40 mm) gewickelt. Zwischen den beiden Spulen wurde ein Loch ausgestanzt, sodass die Magnetfeldsonde im Inneren der Helmholtz-Spule exakt mittig platziert werden kann. Das Magnetfeld B_{HH} der Helmholtz-Spule ergibt sich in Abhängigkeit vom Radius r, der Anzahl der Windungen pro Einzelspule N und dem durch die Helmholtz-Spule fließenden Strom I zu

$$B_{HH} = \mu_0 \left(\frac{4}{5} \right)^{\frac{3}{2}} \frac{N}{r} \cdot I. \quad (4.6)$$

Mit Hilfe eines Funktionsgenerators (Agilent 33120A) wird ein Signal (1.5 V_{pp}) durchgestimmt von 1 Hz – 250 kHz und auf das Spulenpaar gegeben. Eine Stromzange (SMS 100-910) mit einem Übersetzungs faktor von 1:1 (Volt:Ampere) für einen Messbereich von 9 kHz – 30 MHz misst den Strom I in einer der Zuleitungen zur Helmholtz-Spule. Mit (4.6) ergibt sich das Magnetfeld in der Helmholtz-Spule. Wie in Abb. 4.5 links zu sehen, ist das Feld für Frequenzen ab 10 kHz annähernd konstant.

Gleichzeitig wird die induzierte Spannung U_{ind} in der Magnetfeldsonde, die sich im Inneren der Helmholtz-Spule befindet, gemessen. Die so entstandene Kalibrierkurve der Magnetfeldsonde von 10 – 250 kHz ist in Abb. 4.5 rechts dargestellt. Bei den folgenden Messungen im Plasma wird die aufgenommene induzierte Spannung der Magnetfeldsonde direkt in die Amplituden der Fluktuationen der entsprechenden Magnetfeldkomponente umgerechnet.
4.4 Kompensation von elektrostatischen Einstreuungen

\[\omega Z C_{(P-S)} \ll 1 \] \hspace{1cm} (4.7)

erfüllt (\(C_{(P-S)}\) ist die effektive Kapazität zwischen Plasma und Spule, \(Z\) ist die Impedanz des Koaxialkabels), so ist die Störspannung \(U_{CP}\) durch kapazitiven Pickup gegeben durch

\[U_{CP} = \omega Z C_{(P-S)} U_{PD}. \] \hspace{1cm} (4.8)

Da das Plasma aufgrund der Fluktuationen nicht homogen ist, ist der Einfluss der Potentialschwankungen des Plasmas ebenfalls nicht exakt gleichmäßig. Der kapazitive Pickup wird durch die Symmetrierung folglich nicht vollständig kompensiert. Eine Abschirmung der Magnetfeldsonde in Form einer geschlitzten Aluminiumfolie verbunden mit einem Metallröhrchen (s. Abb. 4.2) kann elektrostatische Einstreuungen zusätzlich unterdrücken. Der Schlitz in der Sondenkopfschirmung verhindert das Entstehen von Wirbelströmen in der Aluminiumfolie, die das eigentliche Messsignal beeinflussen würden. Die folgende Untersuchung zeigt die Effizienz einer solchen Ab-
4.4 Kompensation von elektrostatischen Einstreuungen

aufgenommen (Abb. 4.9). Der magnetische Anteil (100kHz) ist für beide Varianten unverändert. Die Abschirmung der Sonde verringert den restlichen elektrostatischen Anteil bei 150kHz und 220kHz um ca. das Dreifache. Trotz der im Vergleich zu den magnetischen Fluktuationen hohen elektrostatischen Schwankungen werden sie auf einen vernachlässigbaren Anteil unterdrückt. Aus diesem Grund wird eine symmetrierte und geschirmte Sonde bei Messungen im Plasma eingesetzt.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{image.png}
\caption{Induzierte Spannung der Magnetfeldsonde innerhalb der Helmholtz-Spule. Die geschirmte Variante der Sonde verringert den schon geringen restlichen kapazitiven Pickup um das Dreifache.}
\end{figure}

4.5 Die Magnetfeldsonde im Plasma

Abschließend werden noch zwei wesentliche Punkte besprochen, die die korrekte Funktion der Magnetfeldsonde bei den Messungen im Plasma sicherstellen sollen. Eine detaillierte Analyse der dargestellten Messergebnisse erfolgt in Kapitel 6.

4.5.1 Einfluss der Magnetfeldsonde auf das Plasma

Eine wichtige Fragestellung ist, ob durch die Anwesenheit der im Vergleich zu einer üblicherweise verwendeten Langmuir-Sonde relativ großen Magnetfeldsonde im Plasma, dieses derart gestört wird, dass nicht mehr von klar definierten Plasmabedingungen ausgegangen werden kann. Gegenstand dieser Untersuchung sind Gleichgewichtsprofile der Dichte n und des Floatingpotentials ϕ_{fl}, sowie die Fluktuationen der beiden Parameter. Um den Einfluss der Magnetfeldsonde auf das Plasma zu beobachten, wird
4.5 Die Magnetfeldsonde im Plasma

Abbildung 4.10: Gleichgewichtsprofile und normierte Fluktuationen für drei Plasmadioden bei 72 mT: (Die unterschiedlichen Linien zeigen die verschiedenen Positionen der Magnetfeldsonde im Plasma an)
4.5.2 Orientierung der Sonde im Plasma

zunächst eine Messung der oben genannten Größen durchgeführt, ohne dass sich die Magnetfeldsonde im Plasma befindet. Die Messungen werden an der um 60° zur Magnetfeldsonde toroidal versetzten 2D-Verfahrenseinheit vorgenommen, wobei die Fluktuationssdaten an einer festen Stelle \((R - R_0 = 0.12\) m) im Plasma gemessen werden. Anschliessend führt die Magnetfeldsonde an vier verschiedene Positionen im Plasma und es werden jeweils Gleichgewichtsprofile und Fluktuationen von Dichte und Potential aufgenommen. Unterschiede der Messungen mit und ohne Magnetfeldsonde im Plasma würden auf einen störenden Einfluss der Sonde schließen lassen. Abb. 4.10 zeigt für drei verschiedene Entladungen das Resultat der Untersuchung.

Zusammenfassend lässt sich feststellen, dass das gewählte Sondendesign einen vernachlässigbaren Einfluss auf die Plasmaentladung hat. Der Einsatz der Sonde zur Messung der Magnetfeldfluktuationen im Plasma ist diesbezüglich gerechtfertigt.

4.5.2 Orientierung der Sonde im Plasma

Da turbulente magnetische Fluktuationen von Strömen parallel zu \(B_0\) erzeugt werden, ist die Bestimmung der Fluktuationen \(\vec{B}\) senkrecht zum Hauptmagnetfeld \(B_0\) Ziel der Messungen. Die Achse (Flächennormale) der Magnetfeldsonde muss also ebenfalls senkrecht zu \(B_0\) orientiert sein. Die Erwartung, dass der Strom parallel zu \(B_0\) fließt, wurde experimentell verifiziert. Abb. 4.11 zeigt das Hauptmagnetfeld \(B_0\), den
parallelen Strom \(\vec{J}_\parallel \) sowie die erzeugten Fluktuationen \(\vec{B} \). Die Grafik verdeutlicht die Sondenstellungen, mit denen vergleichende Messungen durchgeführt wurden.

Abbildung 4.11: (a) Parallele Ströme verursachen \(\vec{B} \), (b) Sondenstellung 1: Achse der Sonde 90° zu \(\vec{B}_0 \), d.h. die gemessenen Magnetfeldfluktuationen werden maximal; Sondenstellung 2: Achse der Sonde 0° zu \(\vec{B}_0 \), d.h. die gemessenen Magnetfeldfluktuationen werden minimal.

Abbildung 4.12: Mit einer Spule an Port B6 erzeugtes Testsignal mit gleicher Orientierung, wie die zu messenden Magnetfeldfluktuationen \(\vec{B} \) im Plasma senkrecht zu \(\vec{B}_0 \). Sondenstellung 1 zeigt ein ausgeprägtes Maximum im Antwortsignal.

Zunächst wurde die Antwort der Sonde in den zwei unterschiedlichen Stellungen im Vakuum und ohne Plasma getestet. Im Torus wurde ein Testsignal mit einer Spule (Spulendurchmesser: 3.5 cm, 3 Windungen, Drahtdurchmesser: 0.9 mm), die sich an Port B6 befindet, erzeugt. Es weist in die poloidale Richtung senkrecht zu \(\vec{B}_0 \). In Abb. 4.12 ist die Antwort der Magnetfeldsonde dargestellt. Sondenstellung 1 zeigt wie erwartet ein ausgeprägtes Maximum im Antwortsignal.

Es wurde nun untersucht, welches Verhalten im Plasma gefunden wird. In drei verschiedenen Entladungen wurde der Winkel zwischen der Achse der Sonde und \(\vec{B}_0 \)
ABBILDUNG 4.13: Induzierte Spannung in der Magnetfeldsonde an einer Position im Plasma für drei verschiedene Entladungen (s. Abb. 4.10). Die unterschiedlichen Farben kennzeichnen die Winkelstellung der Achse der Magnetfeldsonde zum Hauptmagnetfeld B_0.
variieren. Abb. 4.13 zeigt die resultierenden Spektren der Sondenantwort für ihre jeweilige Orientierung. Deutlich ist zu erkennen, dass bei allen Entladungen für einen Winkel von 90° (Abb. 4.11b, Sondenstellung 1) die Spannung maximal wird und dann kontinuierlich mit kleiner werdendem Winkel abnimmt. Bei der Argonentladung steigt die mittlere induzierte Spannung zwischen den zwei extremen Sondenstellungen um einen Faktor von ca. 9. Für das Helium- und Wasserstoffplasma beträgt der Faktor ca. 3.

Zusammenfassend ergibt sich, dass Sondenstellung 1 als optimale Stellung der Magnetfeldsonde für Messungen zur magnetischen Turbulenz anzusehen ist. Der deutliche Signalunterschied zwischen den beiden extremen Sondenstellungen 1 und 2 zeigt, dass die magnetischen Fluktuationen tatsächlich ein Maximum senkrecht zu B_0 aufweisen.

4.6 Der Mirnov-Sondenkranz

Abb. 4.14 unten zeigt, dass die Stützkonstruktion des Mirnov-Sondenkranzes genau dem Innendurchmesser des Vakuumgefässes angepasst ist, so dass sich der gesamte Kranz außerhalb der letzten geschlossenen Flussfläche befindet. Er ist direkt vor dem inneren Port I6 eingebaut. Die Position und Nummerierung der einzelnen Mirnov-Sonden ist ebenfalls angegeben. Jede Sonde besteht aus einem Keramikstützkörper (Ausmaße: 1.1 cm Höhe, 3.5 cm Länge, 4 cm Breite) umgeben von 60 Windungen eines 0.3 mm dicken Kupferlackdrahtes. Die Spulen besitzen eine Induktivität von 50 μH und einen Widerstand von 2.5 Ω. Für einen Abschlusswiderstand von 50 Ω, folgt nach (4.5) eine Grenzfrequenz von 160 kHz. Die Drahtenden werden direkt an dem Spulenkörper mit jeweils einem Koaxkabel verbunden und verdrillt zu den SMB-Vakuumdurchführungen geleitet. Durch diese Verdrillung, die symmetrische Ausführung der Signale und die oben erwähnte geschlitzte Abschirmung werden vergleichbar zu den verfahrbaren Magnetfeldsonden elektrostatische Einstreuungen bis auf einen vernachlässigbaren Anteil unterdrückt.

Die Kalibrierung der einzelnen Mirnov-Sonden wurde vergleichbar zu Abschnitt 4.3 durchgeführt. Abb. 4.15 zeigt die Kalibrierkurven aller 8 Mirnov-Sonden. Sie stimmen
4.6 Der Mirnov-Sondenkranz

Mirnov-Sondenkranz:
geschlossen offen

Positionierung des Mirnov-Sondenkranzes in TJ-K:

Abbildung 4.14: Oben: Mirnov-Sondenkranz mit geschlitzter elektrostatischer Abschirmung. Unten: Poloidaler Schnitt durch TJ-K mit Flussflächen (rot) an einem inneren Port ($\varphi = 0^\circ$) für ein typisches Stromverhältnis von 0.57. Der Mirnov-Sondenkranz befindet sich außerhalb der letzten geschlossenen Flussfläche (Separatrix). Die Position und Nummerierung der einzelnen Mirnov-Sonden ist ebenfalls angegeben.
4.6 Der Mirnov-Sondenkranz

ABBILDUNG 4.15: Bis auf eine vernachlässigbare Abweichung für Frequenzen oberhalb von 100 kHz zeigen die Kalibrierkurven aller 8 Mirnov-Sonden einen identischen Verlauf.

ABBILDUNG 4.16: Mit dem Transientenrekorder simultan aufgenommene Zeitreihen der 8 Mirnov-Sonden. Rechts (Heliumplasma, 2.45 GHz, s. Abb. 3.6) zeigen die Signale einen unregelmäßigen (turbulenten) Verlauf und einen deutlichen Anstieg in der Amplitude im Vergleich zu den Signalen links (ohne Plasma und ohne Magnetfeld).
bis auf eine vernachlässigbare Abweichung (< 5%) für Frequenzen oberhalb von 100 kHz miteinander überein. Die Beschaltung der Mirnov-Sonden erfolgt auf die gleiche Weise wie die der verfahrbar Magnetfeldsonden (s. Abschnitt 4.4). Das symmetrische Sondensignal wird über einen Differenziellerstärker (Verwendetes Bauteil: Typ opa27, Texas Instruments) und einen kommerziellen Verstärker Typ AM502 (Tektronix) auf einen Transientenrekorder geführt. Die Signale aller 8 Mirnov-Sonden werden simultan aufgenommen. Mit diesem Messaufbau ist es prinzipiell möglich, poloidale Modenstrukturen bis zu einer Modenzahl von maximal $m = 4$ aufzulösen. In Abb. 4.16 sind die Zeitreihen der Sonden dargestellt (links ohne Plasma und ohne externes Magnetfeld, rechts mit Plasma). Im Plasma (He, 2.45 GHz, s. Abb. 3.6) zeigen die Signale einen unregelmäßigen (turbulenten) Verlauf und einen deutlichen Anstieg in der Amplitude im Vergleich zu denen ohne Plasma. Äußere Einstreuungen, wie z.B. regelmäßige Fluktuationen bestimmter Frequenz und großer Amplitude, sind nicht zu erkennen.

4.7 Verfahren zur Datenanalyse

Der folgende Abschnitt enthält die Beschreibung der Datenanalyseverfahren, die im Rahmen dieser Arbeit zum Einsatz gekommen sind. Dabei handelt es sich um Standardverfahren, die bei der Auswertung von stochastischen Phänomenen, wie in diesem Fall von turbulenten Fluktuationen im Plasma, angewendet werden [65]. Im speziellen werden Fouriertransformationen, die Erstellung von Leistungsspektren und Kreuzleistungsspektren, sowie die Berechnung von Kreuzkorrelationen besprochen.

Die diskrete Hin- und Rück-Fouriertransformation für eine diskrete Zeitreihe $x(t)$ ist gegeben durch

$$
\hat{x}(\omega_j) = \frac{1}{N} \sum_k x(t_k) \exp(-i\omega_j t_k) \quad \text{und} \quad x(t_k) = \sum_j \hat{x}(\omega_j) \exp(i\omega_j t_k). \quad (4.9)
$$

Dabei ist $\omega_j = j\delta\omega$, $j = -N/2, \ldots, N/2$, $\delta\omega = 2\pi/N\delta t$ und N die gerade Anzahl der verwendeten Zeitpunkte in der jeweiligen Zeitreihe. Gemäß des sogenannten Sampling-Theorems ist es möglich $x_k = x(t_k)$ aus $\hat{x}_j = \hat{x}(\omega_j)$ zu reproduzieren, wenn die Samplefrequenz $\omega = 2\pi/\delta t$ mindestens doppelt so groß, wie die maximale Frequenz im Ausgangssignal ist. Daraus folgt, dass die größte mögliche aufzulösende Frequenz im diskreten Fourierspektrum die Nyquist-Frequenz $\omega_N = \pi/\delta t$ ist.

Das Leistungsspektrum ist definiert über

$$
S(\omega_j) = \langle |\hat{x}(\omega_j)|^2 \rangle \quad (4.10)
$$
und liefert eine Verteilung der mittleren Leistung der harmonischen Komponenten von x an den Frequenzen $[\omega_j, \omega_j + \Delta \omega]$ im Vergleich zur Gesamtleistung innerhalb des Signals. Im Rahmen dieser Arbeit werden die Leistungsspektren der fluktuiierenden Plasma-Mengen, wie Dichte \tilde{n}, Potential $\tilde{\phi}$ und Magnetfeld \tilde{B} normiert auf die Plasmadichte n, die Elektronentemperatur T_e bzw. dem Hauptmagnetfeld B_0 angegeben.

Die Korrelation oder Kreuzkorrelation zwischen zwei mittelwertfreien Zeitreihen $x(t)$ und $y(t)$ berechnet sich in Abhängigkeit einer Zeitdifferenz τ nach

$$C_{x,y}(\tau) = \frac{\langle x(t) y(t+\tau) \rangle}{\sigma_x \sigma_y} = \int_{-\infty}^{\infty} dt \frac{x(t)y(t+\tau)}{\sigma_x \sigma_y},$$

wobei die Ensemble-Mittelung $\langle \cdot \rangle$ ersetzt wurde durch eine Zeitmittelung unter der Annahme von Ergodizität. Die Kreuzkorrelation $C_{x,y}$ ist normiert auf die Standardabweichungen σ_x und σ_y der jeweiligen Zeitreihe und bewegt sich damit im Bereich von [-1,1]. Eine vollständige Übereinstimmung von $x(t)$ und $y(t)$ ist für einen Wert von 1 gegeben. Die Zeitreihen sind vollständig miteinander korreliert. Ein Wert von -1 bedeutet, dass sie umgekehrt zueinander korreliert sind, d.h. mit entgegengesetztem Vorzeichen $x(t) \sim -y(t+\tau)$. Ist die Korrelation 0, zeigen $x(t)$ und $y(t)$ keinerlei Übereinstimmung. Für zwei identische Zeitreihen folgt $C_{x,x}(0) = 1$. $C_{x,x}(\tau)$ wird als Autokorrelation bezeichnet.

Für zwei Zeitreihen $x(t)$ und $y(t)$ lässt sich das Kreuzleistungsspektrum $H_{x,y}(\omega_j)$ aufstellen. Es setzt sich aus zwei Teilen zusammen, dem Kreuzamplitudenspektrum $h_{x,y}(\omega_j)$ und der Kreuzphase $\varphi(\omega_j)$ in Abhängigkeit der Frequenz:

$$H_{x,y}(\omega_j) = \langle \hat{x}^*(\omega_j) \hat{y}(\omega_j) \rangle = h_{x,y}(\omega_j) \exp(i \varphi(\omega_j)),$$

wobei $\langle \cdot \rangle$ eine Ensemble-Mittelung und $*$ das komplex konjugierte von $\hat{x}(\omega_j)$ bedeuten. Einen Beitrag für die Kreuzphase erhält man lediglich, falls die Zeitreihen eine kohärente Phasenrelation bei einer bestimmten Frequenz zueinander aufweisen. Das Kohärenz- oder Kreuzkohärenzspektrum $\gamma(\omega_j)$ gibt darüber Aufschluss

$$\gamma(\omega_j) = \frac{h_{x,y}(\omega_j)}{\sqrt{h_{x,x}(\omega_j) h_{y,y}(\omega_j)}},$$

$\gamma(\omega_j)$ bewegt sich im Bereich von [0,1], wobei die Werte 0 bzw. 1 vollständige Inkohärenz bzw. Kohärenz angeben.
Kapitel 5

Simulation von Plasmaturbulenz

5.1 Der Simulationscode DALF3

DALF3 (Drift-ALFvén-Code) [14, 15] ist ein Simulationscode zur Beschreibung von turbulenten Prozessen in einer dreidimensionalen Flussschlauchgeometrie. DALF3 ist ein Zweiflüssigkeitscode, der Drift- und Alfvén-Wellendynamik miteinander kombiniert. Die implementierte Dynamik im Code teilt sich auf in Teile parallel und senkrecht zum Hauptmagnetfeld \(B_0 \). Weiterhin werden die Ionen als kalt (\(T_i \ll T_e \)) angesehen. Simuliert wird eine Flusssröhre, die eine ausgewählte Magnetfeldlinie umgibt. Abb. 5.1 beschreibt die Koordinaten des Torus und die Geometrie dieser Flusssröhre.

Die relevanten Gleichungen sind im folgenden dargestellt. Die betrachteten fluktui-
renden Größen sind \(\tilde{\phi} \) (elektrostatisches Potential), \(\tilde{J}_\parallel \) (paralleler Strom), \(\tilde{u}_\parallel \) (paralleler

ABBILDUNG 5.1: Dargestellt sind Toruskoordinaten und Flussröhrengometrie. \(r, \theta \) und \(\varphi \) entsprechen dem Radius, sowie dem poloidalen und toroidalen Winkel. Die Flussröhrkoordinaten \(x \) und \(y \) sind parallel bzw. senkrecht bzgl. des Dichtegradienten und senkrecht zu \(B_0 \). Die \(z \)-Koordinate weist in Richtung der Magnetfeldlinie. Die Flussröhr macht drei toroidale Umläufe bevor sie sich schließt und durchläuft dabei sowohl Hochfeld- als auch Niederfeldseite.

Ionenfluss) und \(\tilde{p}_e \) (Elektronendruck) mit \(p_e = n_e T_e \).

\[
\begin{align*}
\left(\frac{\partial}{\partial t} + \mathbf{v}_{E \times B} \cdot \nabla \right) \nabla^2 \tilde{\phi} &= \nabla || \tilde{J} - \mathcal{K}(\tilde{p}_e), \\
\hat{\beta} \frac{\partial}{\partial t} \tilde{A}_|| + \hat{\mu} \left(\frac{\partial}{\partial t} + \mathbf{v}_{E \times B} \cdot \nabla \right) \tilde{J}_|| &= \nabla || (\tilde{p}_e - \tilde{\phi}) - C \tilde{J}_||, \\
\left(\frac{\partial}{\partial t} + \mathbf{v}_{E \times B} \cdot \nabla \right) \tilde{p}_e &= \nabla || (\tilde{J}_|| - \tilde{u}_||) + \mathcal{K}(\tilde{\phi} - \tilde{p}_e), \\
\epsilon_s \left(\frac{\partial}{\partial t} + \mathbf{v}_{E \times B} \cdot \nabla \right) \tilde{u}_|| &= - \nabla || \tilde{p}_e.
\end{align*}
\]

Die Gleichungen stellen Ladungserhaltung (5.1) (Vortizität-Gleichung), sowie Erhal-
tung der Energie (5.3) und des Elektronen- (5.2) und Ionenimpulses (5.4) dar. Weiter-

hin gilt das Ampèresche Gesetz in der Form

\[-\nabla_\perp^2 \vec{A}_\parallel = \vec{j}_\parallel.\] (5.5)

Der Skalenparameter \(\epsilon_s = (q_s R_0 / L_\perp)^2\) normiert auf die vorliegende Geometrie. Dabei sind \(L_\perp = |\nabla \log n_e|^{-1}\) die Gradientenabfalllänge, \(R_0\) der große Plasmaradius und \(q_s = 1/\iota\) der Sicherheitsfaktor. Weiterhin steckt die Reibung zwischen Elektronen und Ionen in \(C = 0.51 (\nu_e m_e L_\perp / c_s M_i) \epsilon_s\) mit \(m_e, M_i\) als Elektronen- bzw. Ionenmasse und der Schallgeschwindigkeit \(\epsilon_s = \sqrt{T_e / M_i}\). \(\nu_e\) stellt die Elektronenstoßfrequenz dar und ist gegeben durch Gleichung (2.14). Der senkrechte Laplace-Operator \(\nabla^2_\perp\), der parallele Gradient \(\nabla_\parallel\) und der Krümmungsdriftoperator \(\mathcal{K}\) sind gegeben durch:

\[\nabla^2_\perp = -\nabla \cdot \frac{\vec{B}_0 \times \vec{B}_0 \times \nabla}{B_0^2},\] (5.6)

\[\nabla_\parallel = \left(\frac{\vec{B}_0}{B_0} + \vec{\tilde{B}}_\perp \right) \cdot \nabla,\] (5.7)

und

\[\mathcal{K} = -\nabla \cdot \frac{\vec{B}_0 \times \nabla}{B_0^2} .\] (5.8)

Die Koordinaten sind dem Hauptfeld \(\vec{B}_0\) angepasst, so dass \(\vec{B}_0 \cdot \nabla\) die z-Koordinate und \(\vec{B}_0 \times \nabla\) die \((x, y)\)-Ebene aufspannen (s. Abb. 5.1). Damit folgen die \(E \times B\)-Geschwindigkeit \(\vec{v}_{E \times B}\) und die Magnetfeldstörung \(\vec{B}_\perp\) zu

\[\vec{v}_{E \times B} = -\vec{\Phi} \cdot \nabla \vec{\phi},\] (5.9)

\[\vec{B}_\perp = \vec{\Phi} \cdot \nabla \beta \vec{A}_\parallel,\] (5.10)

wobei \(\vec{\Phi}\) der antisymmetrische Drifttensor mit \(\hat{F}^{xy} = 1\) ist [15]. Alle geometrischen Informationen eingeschlossen der Magnetfeldstärke \(B_0\) hängen lediglich von \(z\) ab und die \(E \times B\)-Geschwindigkeit ist in \(\mathcal{K}(\vec{\phi})\) enthalten. Diese Schreibweise wird im Allgemeinen als Flusschlauch-Darstellung bezeichnet [66]. Die Hintergrundelektronentemperatur \(T_e\) und -dichte \(n_e\) sowie deren Gradienten werden als konstant angesehen. Gleichung (5.1) verdeutlicht die Kopplung von paralleler und senkrechter Dynamik durch parallele Ströme, die ihrerseits die auch für TJ-K typische Driftwellendynamik antreiben. Im ersten Term von (5.2) wird die magnetische Induktion beschrieben. Der letzte Term dieser Gleichung stellt die elektrische Resistivität aufgrund von Teilchenstößen dar. Diese Resistivität und die magnetische Induktion sind verantwortlich für die nicht adiabatische Antwort der Elektronen. Ein Phasenunterschied zwischen Dichte- und Potentialstörung hat eine Driftwellen-Instabilität zur Folge und verursacht damit Transport.
Die resultierende Turbulenz wird durch folgende dimensionslose Eingabeparameter gesteuert:

\[
\hat{\beta} = \frac{4\pi n_e T_e}{B_0^2} \epsilon_s , \quad \hat{\nu} = 0.51 \nu_e \frac{L_\perp}{c_s}, \quad \hat{\mu} = \epsilon_s \frac{m_e}{M_i} \tag{5.11}
\]

\(\hat{\beta}\) ist das Plasma-\(\beta\) \(\beta_e = 4\pi p_e/B_0^2\) normiert mit \(\epsilon_s\); \(\hat{\nu}\) die Stoßfrequenz \(\nu_e\) normiert auf die Schallgeschwindigkeit \(c_s\) und die senkrechte Gradientenabfalllänge \(L_\perp\). \(\hat{\mu}\) stellt das normierte Massenverhältnis zwischen Elektronen und Ionen dar. Weiterhin ist die Skalierungsgröße \(\rho_s\) folgendermaßen definiert:

\[
\rho_s = \frac{c_s}{\omega_{cs}} = \sqrt{M_i T_e/(eB_0)},
\]

wobei \(\omega_{cs} = eB_0/M_i\) die Ionencyklotronfrequenz ist. Vergleiche von Simulationsdaten mit experimentellen Untersuchungen sind nur für \(\rho_s \ll L_\perp\) sinnvoll.

Die oben genannten normierten Parameter lassen sich eindeutig in experimentell relevante Größen, wie Dichte \(n\), Elektronentemperatur \(T_e\) und Magnetfeld \(B_0\) umrechnen, dabei ist aufgrund der Quasineutralität der Plasmen \(n_e = n_i = n\). Die Denormierung der aus dem Code erhaltenen Dichte- und Potentialfluktuationen, sowie der Zeitbasis ergeben sich zu

\[
\frac{\tilde{n}}{n} = n_{\text{code}} \frac{\rho_s}{L_\perp}, \tag{5.13}
\]

\[
\frac{\tilde{\phi}}{T_e} = \frac{\phi_{\text{code}}}{L_\perp}, \tag{5.14}
\]

\[
\tilde{t} = t_{\text{code}} \frac{L_\perp}{c_s} \quad [s]. \tag{5.15}
\]

Der Abstand zwischen 2 Gitterpunkten ist gegeben durch \(\Delta x = \Delta y = (2\pi \rho_s)/(Kn_y)\), wobei \(n_y\) die Anzahl der Gitterpunkte in \(y\)-Richtung ist. \(K = (k_\perp \rho_s)_{\text{min}}\) mit der senkrechten Wellenzahl \(k_\perp\) definiert die maximale Wellenlänge auf dem Gitter. Auf magnetische Fluktuationen wird in Abschnitt 5.4 genau eingegangen. Detaillierte Untersuchungen [7, 8] im Vorfeld haben ergeben, dass für TJ-K relevante dimensionslose Parameter vergleichbar sind mit denen der Randschichten von Fusionsplasmen.

5.2 Der Simulationscode GEM3

Beim der Beschreibung eines Plasmas mittels der Zweiflüssigkeitstheorie rechnet man mit makroskopischen Größen wie Dichte, Strömungsgeschwindigkeit und Temperatur. Ein umfassenderer Ansatz ist die kinetische Behandlung eines Plasmas. Man betrachtet eine

\[
\left(\frac{\partial}{\partial t} + \mathbf{u}_{\mathbf{E} \times \mathbf{B}} \cdot \nabla \right) \tilde{n}_i = -\nabla_{||} \tilde{u}_i - \mathcal{K}(\tilde{\phi}_G + \tau_i \tilde{n}_i), \tag{5.16}
\]

\[
\hat{\beta} \frac{\partial}{\partial t} \tilde{A}_i + \epsilon_s \left(\frac{\partial}{\partial t} + \mathbf{u}_{\mathbf{E} \times \mathbf{B}} \cdot \nabla \right) \tilde{u}_i = -\nabla_{||}(\tilde{\phi}_G + \tau_i \tilde{n}_i) - C \tilde{J}_i \tag{5.17}
\]

für die Ionen und

\[
\left(\frac{\partial}{\partial t} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}} \cdot \nabla \right) \tilde{n}_e = -\nabla_{||} \tilde{v}_e - \mathcal{K}(\tilde{\phi} - \tilde{n}_e), \tag{5.18}
\]

\[
\hat{\beta} \frac{\partial}{\partial t} \tilde{A}_e + \hat{\mu} \left(\frac{\partial}{\partial t} + \mathbf{v}_{\mathbf{E} \times \mathbf{B}} \cdot \nabla \right) \tilde{v}_e = -\nabla_{||}(\tilde{\phi} - \tilde{n}_e) - C \tilde{J}_e \tag{5.19}
\]

für die Elektronen. Die zwei Teilchenspezies sind durch die Polarisationsgleichung

\[
\Gamma_1 \tilde{n}_i + \frac{\Gamma_0 - 1}{\tau_i} \tilde{\phi} = \tilde{n}_e \tag{5.20}
\]

und Induktion

\[-\nabla_{||}^2 \tilde{A}_i = \tilde{J}_i = \tilde{u}_i - \tilde{v}_i \tag{5.21}\]

miteinander verbunden, wobei \(\Gamma_0 \approx 1/(1 - \rho_i^2 \nabla_i^2) \) ist. Dabei sind Effekte durch endliche Gyrationsträger der Elektronen vernachlässigt, so dass sie direkt das Potential \(\tilde{\phi} \) spüren. Auf die Ionen dagegen wirkt ein reduziertes Potential, das durch gewichtete Gyrationsmittelung gegeben ist

\[
\tilde{\phi}_G = \Gamma_1(\tilde{\phi}), \tag{5.22}
\]

mit \(\Gamma_1 \approx 1/(1 - \frac{1}{2} \rho_i^2 \nabla_i^2) \). Die \(\mathbf{E} \times \mathbf{B} \)-Drift unterscheidet sich für beide Teilchenspezies. Während sich die Elektronen mit \(\mathbf{v}_{\mathbf{E} \times \mathbf{B}} \) bewegen, gilt für die \(\mathbf{E} \times \mathbf{B} \)-Drift der Ionen

\[
\mathbf{u}_{\mathbf{E} \times \mathbf{B}} = -\hat{\mathbf{F}} \cdot \nabla \tilde{\phi}_G. \tag{5.23}
\]

Es wird angenommen, dass \(\tilde{A}_i \) vollständig durch die parallele Dynamik der Elektronen beschrieben ist. Für den Gyrationsträger in \(\Gamma_0 \) und \(\Gamma_1 \) gilt

\[
\rho_i^2 \sim \frac{\tau_i}{\mathcal{B}_0^2}, \tag{5.24}
\]

mit \(\tau_i = T_i/T_e \) [15].
5.3 Das Simulationsgitter

Beide Codes, DALF3 und GEM3, simulieren die zeitliche Entwicklung der fluktuierenden Größen auf einem dreidimensionalen Gitter \((x, y, z)\). Dabei entspricht die \((x, y)\)-Ebene der poloidalaren Ebene \((r, \theta)\) und die \(z\)-Richtung beschreibt den Verlauf entlang einer geschlossenen Feldlinie, die auf der Hochfeldseite startet (Abb. 5.1). Der Co-

\[
\begin{align*}
\text{Wasserstoff} \\
\text{(Dichtefluktuationen für ein festes } z) \\
\end{align*}
\]

Abbildung 5.2: Darstellung der 2D-Simulationsebene und eines zeitlich gemittelten und normierten Spektrums der Dichtefluktuationen einer Wasserstoffsimulation mit DALF3.

de erstellt einen Datensatz für ein fest vorgegebenes \(z\) und eine vorgegebene Anzahl von Zeitschritten auf einer \((x, y)\)-Ebene bestehend aus \(64 \times 256\) Gitterpunkten mit 4 Gitterpunkten pro \(\rho_s\). In typischen TJ-K-Entladungen ergeben sich Strukturskalierungsgrößen von \(\rho_s = 0.4\) cm für Wasserstoff und \(\rho_s = 0.6\) cm für Helium [11]. Bei der für TJ-K üblichen Gradientenabfalllänge von \(L_\perp = 9.6\) cm ist \(\rho_s \ll L_\perp\) gewährleistet. Auf diese Weise können turbulente Prozesse mit ausreichender Auflösung beschrieben werden. Abb. 5.2 zeigt anschaulich die Simulationsebene für ein festes \(z\) (hier eine Position auf der Niederfeldseite) bestehend aus \(64 \times 256\) Gitterpunkten und ein zeitlich
gemitteltes, normiertes Spektrum der Dichtefluktuationen einer Wasserstoffplasmasimulation. Die für diese Wasserstoffsimulation resultierende Größe der \((x,y)\)-Ebene ist \(6.25 \times 25 \text{ cm}^2\). Das Dichtefluktuationsspektrum wird für einen bestimmten Gitterpunkt \(x, y\) aus 7000 Zeitpunkten \(t\) berechnet, wohingegen die Simulationsebene für alle Punkte \(x, y\) an einem festen Zeitpunkt \(t\) dargestellt ist. An dieser Stelle sei angemerkt, dass für Argonplasmen \(\rho_s \ll L_\perp\) nicht erfüllt ist, da die Strukturgrößen von 6 cm im Bereich der Plasmaschicht liegen [11]. Aus diesem Grund wird von der Simulation eines Argonplasmas abgesehen.

5.4 Numerische Implementierung einer Magnetfeldsonde

Eine wichtige Eigenschaft der Gleichungssysteme ist die Kopplung zwischen Driftwellendynamik und Fluktuation des magnetischen Feldes über die parallelen Ströme \(\vec{J}_\parallel\). Der Code berechnet die Fluktuationen im Vektorpotential \(\vec{A}_\parallel\), aus denen über

\[
\vec{B} = \nabla \times \vec{A}_\parallel
\]

(5.25)

auf die Magnetfeldfluktuationen zurückgeschlossen werden kann. Das parallele Vektorfeld wird zuvor aus den normierten Einheiten des DALF3 in SI-Einheiten umgerechnet:

\[
A^{SI}_\parallel = B_0 \rho_s^2 A^{Dalf}_\parallel \frac{1}{qR_0}.
\]

(5.26)

Im Folgenden ist mit \(A_\parallel\) immer \(A^{SI}_\parallel\) gemeint. Die Fluktuationsdaten werden pro Gitterpunkt ausgegeben. Um diese Resultate des Codes mit experimentell erhaltenen Daten vergleichen zu können, ist es daher notwendig, bei der Auswertung der Simulationsergebnisse eine Integration über eine Fläche durchzuführen, die den Ausmaßen der im Experiment eingesetzten Magnetfeldsonde entspricht. Die experimentell bestimmte induzierte Spannung \(U\) wird mit der integrierten Fläche und der Windungszahl auf das fluktuierende Magnetfeld zurückgerechnet.

Nach Anwenden des Satzes von Stokes folgt für die Sondenfläche \(F = \delta y \delta z\) eine induzierte Spannung \(U\) von

\[
- \int_F \vec{B} \cdot d\vec{F} = - \int_F (\nabla \times \vec{A}_\parallel) \cdot d\vec{F} = \int_C \dot{\vec{A}}_\parallel \cdot ds = \dot{A}_\parallel(y_1) - \dot{A}_\parallel(y_2)) \delta z,
\]

(5.27)

wobei \(\delta z\) die Integrationslänge in z-Richtung ist. Variationen von \(\dot{A}_\parallel\) in z-Richtung treten innerhalb \(\delta z\) nicht auf, da die parallele Wellenlänge der Turbulenz groß ist [9].
Unter der Annahme einer quadratischen Sondenfläche mit \(F = \delta y^2 \), also \(\delta y = \delta z \), ergibt sich in Abhängigkeit von der Zeit \(t \):

\[
U(t) = (\dot{A}_\parallel(t, y_1) - \dot{A}_\parallel(t, y_2))\delta y.
\] (5.28)

Nach Transformation in den Frequenzraum und Ableiten erhält man

\[
U(\omega) = i\omega (A_\parallel(\omega, y_2) - A_\parallel(\omega, y_1))\delta y = i\omega \delta A_\parallel \delta y,
\] (5.29)

wobei \(\delta A_\parallel = A_\parallel(\omega, y_2) - A_\parallel(\omega, y_1) \) ist. Die Rückrechnung ergibt zu:

\[
U(\omega) = -NF\dot{B}(\omega) = NF i\omega B(\omega)
\] (5.30)

wobei \(N \) die Anzahl der Windungen und \(F = \delta y^2 \) die Fläche der Sonde ist. Also folgt für die magnetischen Fluktuationen in \(x \)-Richtung \(\tilde{B}_x \):

\[
\tilde{B}_x(\omega) = \frac{U(\omega)}{NF i\omega} = \frac{i\omega \delta A_\parallel \delta y}{i\omega N \delta y^2} = \frac{\delta A_\parallel}{N \delta y},
\] (5.31)

und es gilt:

\[
\tilde{B}_x^2 = \frac{\delta A_\parallel^2}{(N \delta y)^2}.
\] (5.32)

Mit \(N \) und \(\delta y \) lassen sich nun Windungszahl und Größe einer im Experiment verwendeten Magnetfeldsonde bei der Auswertung der Simulationsdaten berücksichtigen. Für \(\tilde{B}_y \) gilt die entsprechende Herleitung.
Abb. 5.3 zeigt anschaulich die Berücksichtigung einer realen Magnetfeldsonde bei der Auswertung der DALF3-Daten. Dargestellt ist die zeitliche Ableitung des Vektorpotentials A_k (Abb. 5.3a) einer Heliumplasmasimulation in zwei Dimensionen (x-radial, y-poloidal) zu einem festen Zeitpunkt t. Die zu integrierende Fläche der Magnetfeldsonde (quadratisch angenähert) vereinfacht sich bei der Projektion auf die Simulationsebene zu einer Linienintegration. Abb. 5.3b verdeutlicht die toroidale Geometrie und die Magnetfeldkomponenten des Experiments. Die zu untersuchenden Magnetfeldfluktuationen stehen senkrecht zu B_0, das in z-Richtung zeigt. Für die Bestimmung von \vec{B}_x bzw. \vec{B}_y aus den Simulationsdaten oder realen Plasmamessungen muss gewährleistet sein, dass die Sonden die entsprechende Orientierung aufweisen.
5.4 Numerische Implementierung einer Magnetfeldsonde
Kapitel 6

Magnetfeldfluktuationen in TJ-K

In diesem Kapitel werden die Messergebnisse für magnetische und elektrostatische Fluktuationen vorgestellt. Die Form der Spektren in den verschiedenen Entladungen, die radiale Abhängigkeit sowie der Einfluss der Fluktuationen auf den turbulenten Transport werden analysiert. Das Kapitel schließt mit einer Untersuchung der Skalierung der Fluktuationen mit dem Hauptfeld B_0, also der Abhängigkeit vom Plasma-β.

6.1 Fluktuationsspektren

Seit Beginn dieser Arbeit werden an TJ-K Magnetfeldfluktuationen systematisch gemessen und analysiert. Abb. 6.1 zeigt ein aufgenommenes normiertes Leistungsspektrum der Magnetfeldfluktuationen einer in Abb. 3.6 links vorgestellten Heliumentladung (ECRH 2.45 GHz, $B_0 = 72$ mT). Es ist zu beachten, dass aufgrund der Frequenzspezifikation des Spektrumanalysers (Typ Agilent E4402B) Messdaten unterhalb von 5 kHz nicht mehr korrekt dargestellt werden können und deshalb in den weiteren Untersuchungen nicht berücksichtigt sind. Das Spektrum ist, wie auch alle übrigen Spektren in dieser Arbeit, mit einer Bandbreite von 1 kHz und einer Bandbreite des Verstärkers (Typ AM502) von 1 kHz–1 MHz aufgenommen worden. Es zeigt ein Maximum bei 6 kHz und weist einen kontinuierlichen Abfall über 6 Größenordnungen auf. Zur besseren Orientierung in dem normierten Leistungsspektrum sind in Abb. 6.1 zwei Werte gekennzeichnet (i): $\tilde{B} = 100$ nT und (ii): $\tilde{B} = 1$ nT, die der Absoluthöhe der Magnetfeldfluktuationen entsprechen. Die kleinsten gemessenen Fluktuationsspektren befinden sich im Bereich von einigen Nano-Tesla und sind damit um 5 – 7 Größenordnungen kleiner als das Hauptfeld B_0.

65
6.1 Fluktuationsspektren

Abbildung 6.1: Normiertes Leistungsspektrum der Magnetfeldfluktuationen einer Heliumentladung aufgenommen an einem oberen Port von TJ-K (Position $z = 10$ cm, Sondenstellung 90°). Linie (i) entspricht $\tilde{B} = 100$ nT, Linie (ii) entspricht $\tilde{B} = 1$ nT.

6.1 Fluktuationsspektren

Abbildung 6.3: Magnetfeldfluktuationen im Vergleich zu elektrostatischen Fluktuationen in drei verschiedenen Entladungen. Es zeigt sich deutlich, dass Magnetfeldfluktuationen um 4 – 5 Größenordnungen kleiner sind als die Fluktuationen in Dichte und Potential.
6.1 Fluktuationsspektren

Abbildung 6.4: Die Form der Spektren von magnetischer und elektrostatischer Turbulenz ist vergleichbar. Sie resultieren aus der in Abschnitt 2.2.3 vorgestellten Driftwellendynamik.

Misst man die Magnetfeldfluktuationen in verschiedenen Entladungen (Ar, He, H, s. Abb. 3.6, links) ergibt sich der Vergleich in Abb. 6.2. Dargestellt sind wiederum die normierten Leistungsspektren. Es ist ersichtlich, dass die Fluktuationen von Argon zu Wasserstoff um 3 Größenordnungen zunehmen und steiler abfallen. Wie bereits bei der Diskussion in Abschnitt 4.5.2 in Abb. 4.13 zu erkennen war, zeigen die Argonspektren quasikohärente Moden bei ca. 6 kHz bzw. 90 kHz, die in den Fluktuationsspektren der Helium- und Wasserstoffentladungen nicht auftauchen. Eine mögliche Erklärung für Auftreten von quasikohärenten Moden in den elektrostatischen Fluktuationsspektren von Argon wurde in Abschnitt 4.5.1 gegeben. Derselbe Mechanismus ist möglicherweise auch für die Moden in den magnetischen Spektren verantwortlich.

Um das Verhältnis zwischen Magnetfeldfluktuationen und elektrostatischen Fluktuationen abschätzen zu können, sind in Abb. 6.3 die Leistungsspektren der Fluktuationen von Dichte und Potential im Vergleich zu den Fluktuationen des Magnetfeldes aufgetragen. Die elektrostatischen Fluktuationen sind auf gleicher Flussfläche im Plasma mit Langmuir-Sonden aufgenommen worden. Während die Dichte- und Potential-
6.2 Radiale Abhängigkeit der Fluktuationen

6.2 Radiale Abhängigkeit der Fluktuationen

Um die radiale Abhängigkeit der magnetischen Fluktuationen zu untersuchen, wurde die Magnetfeldsonde an verschiedene Positionen im Plasma gefahren. In Abb. 6.5 werden für zwei Beispielentladungen in Helium und Wasserstoff (Mikrowellenleistung: 2.45 GHz) die Ergebnisse der Radialsans gezeigt. Die elektrostatischen Fluktuationen in Abhängigkeit vom Radius sind ebenfalls dargestellt. Sie wurden mit einer Langmuir-Sonde auf gleicher Flussfläche im Plasma aufgenommen. Zusätzlich sind Separatrix und Plasmazentrum für das eingestellte Stromverhältnis $R_{e,h} = 0.57$ markiert.

6.3 Magnetischer Anteil am turbulenten Transport

Der starke Größenordnungsunterschied zwischen magnetischen und elektrostatischen Fluktuationen hat Auswirkungen auf den magnetischen Anteil des turbulenten Transports Γ_{turb}, den man ausgehend vom Fick'schen Gesetz (2.13) schreiben kann als

$$\Gamma_{\text{turb}} = - (D_{\text{es}} + D_{\text{mag}}) \nabla n ,$$

wobei D_{es} und D_{mag} die Diffusionskoeffizienten des elektrostatischen bzw. des magnetischen Anteils darstellen. Legt man den Random-Walk-Ansatz zugrunde (s. Abschnitt

Abbildung 6.5: Radialsans in einer Helium- und einer Wasserstoffentladung. Die elektrostatischen sowie die magnetischen Fluktuationen steigen im Gradientenbereich des Plasmas an und fallen zum Rand hin wieder leicht ab.
2.2.1) folgt für D_{es} [68]

$$D_{es} = \left(\frac{k_0}{B_0} \right)^2 |\tilde{\phi}|^2 \tau_{corr} \cdot$$ (6.2)

Dabei ist $k_\theta = 2\pi/L_{corr}$ eine charakteristische Wellenzahl mit der Korrelationslänge L_{corr} und $\tau_{corr} = 2\pi/\omega$ stellt die Korrelationszeit dar, die mit einer charakteristischen Frequenz ω verknüpft ist.

Wie in Abb. 2.2 bereits dargestellt wird ein Teilchen durch die Ausbildung von magnetischen Inseln in Anwesenheit von Magnetfeldfluktuationen \tilde{B}_r vom Hauptfeld B_0 um δl über die Strecke L abgelenkt [69]. Mit $\delta l \approx L\tilde{B}_r/B_0$ folgt dann ($L \approx R_0 q_s$):

$$D_{mag} = \frac{(q_s R_0)^2}{\tau} \left(\frac{\tilde{B}_r}{B_0} \right)^2$$ (6.3)

wobei τ die Stoßzeit der Elektronen und $q_s = 1/\ell$ der Sicherheitsfaktor sind. Aus früheren Untersuchungen an TJ-K hat sich für den elektrostatischen Diffusionskoeffizienten ein Wert von $D_{es} = 2 - 20 \text{m}^2/\text{s}$ ergeben [11]. Der magnetische Diffusionskoeffizient und somit auch der magnetische Anteil am turbulenten Transport ist mit $D_{mag} = 10^{-6} - 10^{-5} \text{m}^2/\text{s}$ deutlich geringer. D.h. der turbulente Transport in TJ-K wird, wie erwartet, im wesentlichen von elektrostatischen Fluktuationen dominiert.

Um diesen Punkt zu verdeutlichen betrachte man ein Teilchen, das sich entlang des ungestörten Magnetfeldes bewegt. Mit $\tilde{B}_r/B_0 \approx 1 \cdot 10^{-6}$ ergibt sich ein Versatz von $\delta l \approx 2 \mu\text{m}$, wenn der parallele Weg beispielsweise ein halber toroidaler Umfang ist ($L = \pi R_0$). Andererseits führen Fluktuationen im elektrischen Feld zu einer radialen Geschwindigkeitskomponente. Deren Standardabweichung von ca. 2 km/s verursacht nach Multiplikation mit einer typischen Frequenz einen Versatz um ca. 4 mm zur ungestörten Bahn eines Teilchens entlang der Magnetfeldlinie [63]. Diese Abschätzung zeigt deutlich, dass der Einfluss der Magnetfeldfluktuationen im Vergleich zu dem der elektrostatischen Fluktuationen auf die Teilchenbahnen im Plasma geringfügig ist.

6.4 Abhängigkeit vom Plasma-β

Eine Schlüsselgröße bei Fusionsexperimenten ist das Plasma-β. Es bezeichnet das Verhältnis von Plasmadruck zu Magnetfelddruck

$$\beta = \frac{4\pi p_e}{B_0^2}.$$(6.4)
wobei B_0 der Betrag des Hauptfeldes ist. $p_e = nT_e$ stellt den Elektronendruck im Plasma mit der Elektronentemperatur T_e und der Dichte n dar. Es gilt weiterhin $T_i \ll T_e$. Das Plasma-β gibt die Höhe des Plasmadrucks an, der bei vorgegebenem Magnetfeld aufgebaut wurde. In Bezug auf die Kosten zur Erzeugung des Magnetfeldes B_0, die ungefähr quadratisch mit der Feldstärke ansteigen, würde ein hohes β einen ökonomischen Plasmaeinschluss bedeuten.

6.4.1 Skalierung der Fluktuationen mit B_0

Im Folgenden wird eine Abschätzung für die Abhängigkeit der Fluktuationen in Dichte, Potential und Magnetfeld von B_0 hergeleitet. Ausgangspunkt bilden die Vortizitätsgleichung (5.1) und das Ampéresche Gesetzes (5.5). Dabei werden Krümmungsterme vernachlässigt und die Gleichungen linearisiert. Für kleinskalige Fluktuationen in Potential, parallelem Strom und Vektorpotential und mit Vernachlässigung der Fluktuationen in Temperatur und Warmeuss sowie Hintergrundgradienten erhält man:

\[
\frac{\partial}{\partial t} \tilde{\nabla}_\perp^2 \tilde{\phi} = \tilde{\nabla}_\parallel \tilde{J}_\parallel, \tag{6.5}
\]

\[
\tilde{J}_\parallel = -\tilde{\nabla}_\perp \tilde{A}_\parallel. \tag{6.6}
\]

Hier kennzeichnet $\tilde{\cdot}$, dass es sich um normierte Größen handelt. Mit den geltenden Normierungen lassen sich dann folgende Gleichungen aufstellen $\tilde{\nabla}_\perp \rightarrow \rho_s \nabla_\perp, \tilde{\nabla}_\parallel \rightarrow qR_0 \nabla_\parallel, (\partial/\partial t) \rightarrow (L_\perp/c_s)(\partial/\partial t), \tilde{\phi} \rightarrow e\tilde{\phi}/T_e, \tilde{J}_\parallel \rightarrow (\tilde{J}_\parallel L_\perp)/(nec_s qR_0)$ und $\tilde{A}_\parallel \rightarrow (\tilde{A}_\parallel L_\perp)/(B_0 \rho_s qR_0)$ [14]:

\[
\frac{\partial}{\partial t} \rho_s^2 \nabla_\perp^2 \frac{e\tilde{\phi}}{T_e} = c_s \nabla_\parallel \frac{\tilde{J}_\parallel}{nec_s}, \tag{6.7}
\]

\[
\frac{\tilde{J}_\parallel}{nec_s} = -\rho_s^2 \nabla_\perp^2 \frac{\tilde{A}_\parallel}{B_0 \rho_s \beta}. \tag{6.8}
\]

Nach einer Fouriertransformation $(\partial/\partial t) \rightarrow -i\omega, \nabla_\perp \rightarrow ik_\perp, \nabla_\parallel \rightarrow ik_\parallel$ und Gleichsetzen von (6.7) und (6.8) ergibt sich

\[
\frac{e\tilde{\phi}}{T_e} = \frac{c_s k_\parallel}{\omega} \frac{\tilde{A}_\parallel}{B_0 \rho_s \beta}. \tag{6.9}
\]

Für eine bekannte Frequenz ω und bei festem c_s, n, M_i folgt dann die Abschätzung

\[
\frac{e\tilde{\phi}}{T_e} \sim k_\parallel \frac{\tilde{A}_\parallel}{B_0 \rho_s \beta}. \tag{6.10}
\]
6.4.2 B_0-Skalierung im Experiment

Um daraus eine Aussage über die senkrechten Magnetfeldfluktuationen \tilde{B} zu gewinnen, betrachtet man folgende Beziehung

$$\tilde{B}_\perp = \nabla \times \tilde{A}_\parallel = \left(\frac{\partial}{\partial y} \tilde{A}_\parallel, -\frac{\partial}{\partial x} \tilde{A}_\parallel, 0 \right), \quad (6.11)$$

wobei $\tilde{A}_\parallel = (0, 0, \tilde{A}_\parallel)$ ist. Der parallele Strom \tilde{J}_\parallel, der über das Ampèresche Gesetz mit \tilde{A}_\parallel verknüpft ist, verläuft parallel zu B_0, also in z-Richtung. Der Übergang in den Fourier-Raum zu Wellenzahlen k_x, k_y liefert:

$$\tilde{B}_\perp = \left(ik_y \tilde{A}_\parallel, -ik_x \tilde{A}_\parallel, 0 \right). \quad (6.12)$$

Für den Betrag der senkrechten Magnetfeldfluktuationen \tilde{B} folgt

$$\tilde{B} = \sqrt{k_x^2 + k_y^2} \cdot \tilde{A}_\parallel = k_\perp \tilde{A}_\parallel, \quad (6.13)$$

wobei $k_\perp = \sqrt{k_x^2 + k_y^2}$ den Betrag des senkrechten Wellenvektors darstellt. Es sei betont, dass Magnetfeldfluktuationen parallel zum Hauptfeld vernachlässigt werden können ($k_\parallel / k_\perp \ll 1$). Da alle räumlichen Skalen mit ρ_s skalieren, müssen die Spektren als Funktion von $k_\perp \rho_s$ invariant sein (maximale Leistung in den fluktuiierenden Größen für $k_\perp \rho_s \approx 0.3 \ [9]$). Die vorherrschende Geometrie legt k_\parallel fest. Schließlich ergibt sich mit (6.10) und (6.13)

$$\frac{e\tilde{\phi}}{T_e} \approx \frac{k_\parallel}{k_\perp B_0 \rho_s \beta} \sim \frac{1}{\beta B_0}. \quad (6.14)$$

Dies führt mit der Boltzmann-Beziehung $(e\tilde{\phi}/T_e) \approx (\tilde{n}/n)$ zu folgender B_0-Skalierung der fluktuiierenden Größen

$$\frac{\tilde{B}}{B_0} B_0^2 \approx \frac{e\tilde{\phi}}{T_e} \sim \frac{\tilde{n}}{n}. \quad (6.15)$$

Im Experiment ist aufgrund der Abhängigkeit von B_0^2 ein gut messbarer Effekt bei Erhöhung des Hauptmagnetfeldes zu erwarten. Dieser wird im folgenden Abschnitt untersucht.

6.4.2 B_0-Skalierung im Experiment

Es wurden Messungen in zwei verschiedenen Entladungstypen durchgeführt. In einem Fall betrug das Hauptfeld $B_0^I = 72 \text{ mT}$ mit einer Mikrowellenleistung von 1.8 kW bei 2.45 GHz und im anderen Fall $B_0^{II} = 276 \text{ mT}$ mit einer Mikrowellenleistung von 0.6 kW bei 8.25 GHz. Die Plasmaparameter sind in Abb. 3.6 dargestellt. Abb. 6.6 zeigt normierte Fluktuationsspektren dieser Entladungstypen für zwei verschiedene Gase (Helium,
6.4 Abhängigkeit vom Plasma-β

Abbildung 6.6: Flukationsspektren in zwei verschiedenen Entladungstypen ($B_0^I = 72$ mT bei 2.45 GHz (durchgezogene Linie) und $B_0^{II} = 276$ mT bei 8.25 GHz (gestrichelte Linie)) in den Gasen Helium und Wasserstoff. Die Erhöhung des Hauptfeldes bewirkt eine Abnahme der Fluktationsniveaus. Die Magnetfeldfluktuationen zeigen diesen Effekt wesentlich deutlicher.

Man erkennt, dass die Erhöhung des Hauptfeldes eine Abnahme in den Fluktuationsspektren zur Folge hat. Besonders deutlich zeigen dies die Magnetfeldfluktuationen. Von der Skalierung (s. Gl. (6.15)) wäre ein Leistungsabfall mit dem Faktor $(B_0^{II}/B_0^I)^4 \approx 200$ zu erwarten gewesen. Die Leistungsspektren fallen jedoch um einen Faktor 10^4 (Helium) bis 10^6 (Wasserstoff) ab. Da mit Erhöhung von B_0 nicht nur die magnetische, sondern auch die elektrostatische Turbulenz sinkt (Abb. 6.6), ist die Reduktion beider Anteile ins Verhältnis zu setzen. Bei einem Abfall der elektrostatisch-
tischen Fluktuationen um ca. einen Faktor 10, ergibt sich beispielsweise für Helium insgesamt eine Skalierung mit dem Faktor 10^3. Dies ist 5 mal so stark wie der theoretisch vorhergesagte Abfall. Eine ausführliche quantitative Analyse folgt in diesem Abschnitt weiter unten. In den Spektren ist ebenfalls ersichtlich, dass das Verhältnis zwischen den gemessenen Fluktuationen bei verschiedenen Hauptfeldern in Abhängigkeit der Frequenz nicht konstant ist. Der Hauptanteil der Leistung im Vergleich zur gesamten Frequenzbandbreite von $5 - 250\, \text{kHz}$ befindet sich innerhalb eines schmalen Frequenzbandes ($7 - 11\, \text{kHz}$) (Beispiel in Abb. 6.7). Für eine quantitative Auswertung der Leistungsspektren wird über alle Frequenzen zu integriert.

Abbildung 6.7: Beispiel für ein Leistungsspektrum der Magnetfeldfluktuationen einer Wasserstoffentladung bei $B_0 = 72\, \text{mT}$ in einer linearen Darstellung. Der Hauptanteil der Leistung liegt im Vergleich zur gesamten Frequenzbandbreite von $5 - 250\, \text{kHz}$ innerhalb eines schmalen Frequenzbandes ($7 - 11\, \text{kHz}$).

In Bezug auf Gleichung (6.15) lässt sich folgende quantitative Untersuchung anstellen. Da sowohl die Amplitude der Dichte- und Potentialfluktuationen, als auch die Amplitude der Magnetfeldfluktuationen mit Erhöhung von B_0 sinkt, gilt es zu überprüfen, wie sich die normierten Fluktuationssysteme von $\tilde{\vec{B}} = \tilde{\vec{B}}/B_0$ relativ zu $\tilde{n} = \tilde{n}/n$ und $\tilde{\phi} = e\tilde{\phi}/T_e$ ändern (Index I für $B_0 = 72\, \text{mT}$ und Index II für $B_0 = 276\, \text{mT}$):

\[
R_{n, B} = \left(\frac{\tilde{n}}{\tilde{\vec{B}}} \right)_I / \left(\frac{\tilde{n}}{\tilde{\vec{B}}} \right)_I
\]
\[
R_{\phi, B} = \left(\frac{\tilde{\phi}}{\tilde{\vec{B}}} \right)_I / \left(\frac{\tilde{\phi}}{\tilde{\vec{B}}} \right)_I
\]

(6.16)

(6.17)

Bei konstanten Amplituden \tilde{n} und $\tilde{\phi}$ ist $R_{n, B} \approx R_{\phi, B} \approx (B_{0 I}^{I}/B_{0 I}^{I})^2 \approx 14.7$ zu erwarten. Tab. 6.1 zeigt eine quantitative Auswertung der aufgenommenen Spektren unter dem
Gesichtspunkt von (6.16) und (6.17). Vergleicht man das experimentelle Ergebnis mit dem theoretisch vorhergesagten Wert, ergibt sich bei der Heliumentladung eine Abweichung vom erwarteten Wert um einen Faktor $R_{He,n,B} = 77.6/14.7 \approx 5.3$ in Bezug auf die normierten Dichtefluktuationen und einen Faktor $R_{He,V,B} = 42.9/14.7 \approx 2.9$ in Bezug auf die normierten Potentialfluktuationen. Bei der Wasserstoffentladung erhält man einen Faktor $R_{H,n,B} = 321.1/14.7 \approx 21.8$ in Bezug auf die Fluktuationen in der Dichte und einen Faktor $R_{H,V,B} = 100/14.7 \approx 6.8$ in Bezug auf die Fluktuationen im Potential. Insgesamt ergibt sich, dass die experimentellen Daten den vorhergesagten Trend aus der theoretischen Abschätzung (6.15) gut wiedergeben. Quantitativ ergeben sich Abweichungen um einen Faktor von $3 - 7$ in Bezug auf die Potentialfluktuationen (6.17). Die Abweichung von der erwarteten B_0^2-Skalierung wird etwas größer in Bezug auf die Dichtefluktuationen (6.16) vor allem im Wasserstoffplasma (Faktor 21.8). Allerdings zeigt sich in der Heliumentladung ein etwas niedrigerer Faktor von 5.3.

Zusammenfassend lässt sich feststellen, dass die Amplitude der Magnetfeldfluktuationen bei Erhöhung des Hauptmagnetfeldes, wie erwartet, einen deutlichen Abfall zeigt. Allerdings ist der Abfall stärker ausgeprägt als die Abschätzung (6.15) vorhergesagt. Eine mögliche Erklärung für diese Abweichung sind die am Anfang des Abschnitts 6.4.1 genannten Vereinfachungen bezüglich der Ausgangsgleichungen zur Herleitung der Abschätzung (6.15). Kapitel 7 beinhaltet detaillierte Vergleiche der gemessenen Fluktuationen mit Simulationsdaten der numerischen Codes DALF3 bzw. GEM3.

<table>
<thead>
<tr>
<th></th>
<th>$\langle \frac{\delta n}{n} \rangle_I$</th>
<th>$\langle \frac{\delta n}{n} \rangle_{II}$</th>
<th>$R_{n,B}$</th>
<th>$\langle \frac{\delta V}{V} \rangle_I$</th>
<th>$\langle \frac{\delta V}{V} \rangle_{II}$</th>
<th>$R_{\phi,B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>1.9 \times 10^3</td>
<td>6.1 \times 10^5</td>
<td>321.1</td>
<td>3.1 \times 10^3</td>
<td>3.1 \times 10^5</td>
<td>100</td>
</tr>
<tr>
<td>He</td>
<td>4.9 \times 10^3</td>
<td>3.8 \times 10^5</td>
<td>77.6</td>
<td>5.6 \times 10^3</td>
<td>2.4 \times 10^5</td>
<td>42.9</td>
</tr>
</tbody>
</table>

Kapitel 7

Vergleich von numerischen und experimentellen Daten

7.1 Numerische Simulation eines TJ-K-Plasmas

In Tab. 7.1 sind die dimensionslosen Parameter in Experiment und DALF3 sowie der Skalierungsfaktor \(\rho_s \) angegeben. Die geometrischen Größen wie kleiner \(a = 0.1 \) m und großer Plasmaradius \(R_0 = 0.6 \) m, sowie die Gradientenabfallänge \(L_\perp = 0.096 \) m sind in Experiment und Code gleich angenommen. Die Werte in Klammern stehen für zusätzliche Simulationen mit dem Ziel lediglich das Magnetfeld und damit \(\beta \) zu variieren. Wie bereits erwähnt, ist Ziel dieser Variationen die Abhängigkeit der Fluktuationssamplituden von \(\beta \) zu untersuchen. Mit der in Tab. 7.1 dargestellten Wahl der dimensionslosen Eingabeparameter wird die Simulation eines realen TJ-K-Plasmas durchgeführt. Für das Heliumplasma hat der simulierte Ausschnitt die Größe \(0.096 \times 0.384 \) m\(^2\) und für Wasserstoff \(0.0625 \times 0.25 \) m\(^2\).
7.2 Fluktuationsspektren aus DALF3, GEM3 und TJ-K

In Abb. 7.1 sind experimentell erhaltene Magnetfeldfluktuationsspektren sowie numerische Simulationsergebnisse dargestellt. Um eine gute Vergleichbarkeit zwischen berechneten und gemessenen Daten zu erhalten, liegt den Spektren in beiden Fällen eine Bandbreite von 1 kHz zu Grunde. Im Allgemeinen zeigen die numerisch simulierten Leistungsspektren des DALF3 im Vergleich zu den gemessenen einen steileren Verlauf. In der Heliumsimulation für $\beta = 0.05$ sind zwischen 10 – 50 kHz zudem modenartige Strukturen zu erkennen, die etwas stärker ausgeprägt sind als in den Messungen. Bei kleinen Magnetfeldern bzw. hohen β stimmen Theorie und Experiment über einen weiten Bereich der Spektren gut überein. Für die Wasserstoffentladung liegen zusätzlich Ergebnisse des seit kurzem zur Verfügung stehenden GEM3-Codes vor. Die numerisch simulierten Magnetfeldfluktuationen dieses Codes weisen über den gesamten Frequenzbereich eine sehr gute Übereinstimmung mit den Messdaten auf. Es ist zu beachten, dass sich für niedrige Frequenzen (5 – 10 kHz) die Fluktuationsamplituden der simulierten und gemessenen Daten um einen Faktor 3 in Bezug auf GEM3 bzw. einen Faktor 10 in Bezug auf DALF3 unterscheiden. Bei hohen Magnetfeldern bzw. niedrigem β sind die oben erwähnten Unterschiede in Steilheit und normierter Leistung zwischen Theorie und Experiment deutlicher ausgeprägt.

Abb. 6.3 hat bereits für die Messdaten gezeigt, dass der Unterschied zwischen den elektrostatischen und den magnetischen Fluktuationen 4 – 5 Größenordnungen beträgt. Abb. 7.2 bestätigt dieses Verhältnis ebenfalls für die Simulationsergebnisse des DALF3 ($\beta = 0.05$). Zur besseren Vergleichbarkeit sind die gemessenen Leistungsspektren von Helium und Wasserstoff zusätzlich dargestellt ($B_0 = 72$ mT). Es sei angemerkt, dass
7.2 Fluktuationsspektren aus DALF3, GEM3 und TJ-K

Abbildung 7.1: Gemessene Leistungsspektren der Magnetfeldfluktuationen (durchgezogen) im Vergleich mit Simulationsergebnissen aus DALF3 (lang gestrichelt) und GEM3 (kurz gestrichelt). Sowohl gemessenem wie auch berechneten Spektren liegt eine Bandbreite von 1 kHz zu Grunde. Es zeigt sich bei kleinen Magnetfeldern bzw. hohem β über einen weiten Bereich der Spektren eine gute Übereinstimmung zwischen Theorie und Experiment, ausgenommen der untere Frequenzbereich ($5 - 10$ kHz). Bei hohen Magnetfeldern bzw. niedrigem β sind in den Spektren deutliche Unterschiede in Steilheit und normierter Leistung zu erkennen.

die scharfe Überhöhung im Potentialfluktuationsspektrum der Wasserstoffsimulation bei 11 kHz (siehe auch Abb. 7.3) auf eine numerische Instabilität zurückzuführen ist, die bei den verwendeten β-Werten auftreten kann \[71\]. Die auftretenden Unterschiede in Steilheit und Höhe der simulierten Fluktutionsdaten im Vergleich zu den Messdaten sind zum größten Teil auf die DALF3 bzw. GEM3 verwendete Flussschlauchgeometrie (s. Abb. 5.1) zurückzuführen \[12\]. Zusammenfassend lässt sich feststellen, dass experimentelle und theoretische Resultate im Rahmen der erwähnten Abweichungen bei kleinen Magnetfeldern bzw. hohen β eine gute Übereinstimmung aufweisen. Im Gegensatz dazu sind bei hohen Magnetfeldern bzw. niedrigem β die Unterschiede deutlicher ausgeprägt. Bei der quantitativen Analyse der β-Abhängigkeit zwischen Experiment und Theorie (Abschnitt 7.3) ist dies zu berücksichtigen.
7.3 Die β-Abhängigkeit in DALF3

Abb. 7.3 zeigt Fluktuationsspektren von zwei verschiedenen DALF3-Simulationen. Variiert wurde β. Dabei wurde B_0 um einen Faktor 4 erhöht, sodass $(B_0^I/B_0^F)^2 \approx 16$ ist. Die Erhöhung des Magnetfeldes hat eine Abnahme der Fluktationsniveaus zur Folge, die besonders deutlich die Leistungsspektren der Magnetfeldfluktuationen zeigen. In Tab. 7.2 ist eine Analyse der Simulationsergebnisse aus Abb. 7.3 in Anlehnung an Gleichung (6.15) dargestellt. Dabei wurden äquivalent zu Abschnitt 6.4.2 die Abschätzungen (6.16) und (6.17) geprüft, wiederum indem über alle Frequenzen in den jeweiligen Leistungsspektren integriert wurde. Der Vergleich der Resultate aus den Simulationsdaten mit dem im Code theoretisch erwarteten Skalierungsfaktor von 16 liefert bei Helium eine Übereinstimmung bis auf einen Faktor $R_{\phi,B}^{\text{He}}/16 = 18.6/16 \approx 1.2$ in Bezug auf die Dichtefluktuationen (6.16) und einen Faktor $R_{\phi,B}^{\text{He}}/16 = 10.3/16 \approx 0.6$ in Bezug auf die...
7.3 Die β-Abhängigkeit in DALF3

Abbildung 7.3: Fluktuationsspektren von zwei DALF3-Simulationen mit $\beta = 0.05$ (He: $B'_0 = 130\, \text{mT}$; H: $B'_0 = 70\, \text{mT}$; durchgezogen) und $\beta = 0.003$ (He: $B''_0 = 520\, \text{mT}$; H: $B''_0 = 277\, \text{mT}$; gestrichelt). Die Magnetfeldfluktuationen zeigen deutlich, dass eine Erhöhung von B_0 eine Abnahme der Fluktuationsniveaus zur Folge hat.

Potentialfluktuationen (6.17). Bei Wasserstoff ergeben sich die Faktoren $R_{cB}^H/16 = 23.2/16 \approx 1.5$ in Bezug auf die Dichtefluktuationen und $R_{cB}^H/16 = 12.1/16 \approx 0.8$ in Bezug auf die Potentialfluktuationen. Folglich geben die Simulationsergebnisse die theoretische abgeschätzte B_0^2-Skalierung (6.15) sehr gut wieder.

Abschließend folgt ein quantitativer Vergleich der experimentellen β-Abhängigkeit mit der β-Abhängigkeit der Simulationsdaten. Dazu werden die Quotienten aus (6.16) und (6.17) von Experiment und DALF3 ins Verhältnis zueinander gesetzt. Die Abweichung für Helium beläuft sich auf einen Faktor $R_{cB}^\text{He}/R_{cB}^\text{He} = 77.6/18.6 \approx 4.2$ in Bezug auf die Dichtefluktuationen und $R_{cB}^\text{He}/R_{cB}^\text{He} = 42.9/10.3 \approx 4.2$ in Bezug auf die Potentialfluktuationen. Für Wasserstoff ergibt sich $R_{cB}^\text{He}/R_{cB}^\text{He} = 321.1/23.2 \approx 13.8$ und $R_{cB}^\text{He}/R_{cB}^\text{He} = 100/12.1 \approx 8.3$
Tabelle 7.2: Analyse der aus DALF3 erhaltenen Fluktuationsspektren unter Berücksichtigung von (6.16) und (6.17), wobei \(c \) kennzeichnet, dass es sich um die Simulationsdaten handelt.

<table>
<thead>
<tr>
<th></th>
<th>(\left(\frac{\hat{n}}{B} \right)_I)</th>
<th>(\left(\frac{\hat{n}}{B} \right)_II)</th>
<th>(R_{c_n,B})</th>
<th>(\left(\frac{\hat{\phi}}{B} \right)_I)</th>
<th>(\left(\frac{\hat{\phi}}{B} \right)_II)</th>
<th>(R_{c_{\phi,B}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>(9.5 \times 10^5)</td>
<td>(2.2 \times 10^5)</td>
<td>23.2</td>
<td>(1.9 \times 10^4)</td>
<td>(2.3 \times 10^5)</td>
<td>12.1</td>
</tr>
<tr>
<td>He</td>
<td>(3.7 \times 10^3)</td>
<td>(6.9 \times 10^4)</td>
<td>18.6</td>
<td>(6.5 \times 10^3)</td>
<td>(6.7 \times 10^4)</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Insgesamt lässt sich feststellen, dass der Vergleich von Simulationsdaten und experimentellen Befunden den theoretisch erwarteten Trend der \(B_0^2 \)-Skalierung der Fluktuationsebenen wiedergibt. Die quantitativen Abweichungen zum abgeschätzten Skalierungsverhalten in der Wasserstoffentladung ergeben sich zu einem Faktor um 10, während sich für die Heliumentladung ein abweichender Faktor von ca. 4 herausstellt. Eine mögliche Ursache für diese Abweichungen ist die bereits festgestellte Tatsache, dass sich die Amplituden in den simulierten und gemessenen Spektren bei niedrigen Magnetfeldern bzw. höherem \(\hat{\beta} \) aufgrund der unterschiedlichen Geometrien in DALF3 und TJ-K im Bereich niedriger Frequenzen (5 – 10 kHz) bis zu einem Faktor 10 unterscheiden können (s. Abb 7.1). Bezüglich der Resultate bei hohen Magnetfeldern bzw. niedrigem \(\hat{\beta} \) ist die Abweichung zwischen Theorie und Experiment zudem deutlicher ausgeprägt, sodass ein quantitativer Vergleich stark beeinflusst wird.
Kapitel 8

Anregung von Alfvén-Moden

8.1 Die Anregerantenne

Um im Plasma Wellen anzuregen, wird eine Anregerantenne (Abb. 8.1) während der Entladung im Plasma positioniert [42]. Sie besteht aus einem 0.3 cm dicken Draht, der zu einem Rechteck (Länge 23 cm, Breite 12 cm) gebogen wurde. Ein Frequenzgenerator liefert ein rechteckförmiges Signal mit bestimmter Frequenz. Das Signal wird mit Hilfe eines Anpassnetzwerks aus Spule und Kondensatoren so optimiert, dass lediglich der sinusförmige Anteil bei einem maximalen Strom von $I_{\text{max}} = 20 A_{\text{pp}}$ (Spitze Spitze) durch die Antenne übrig bleibt. Nach

$$B^* = 2 \cdot \frac{\mu_0 I_{\text{max}}}{2\pi r}$$

(8.1)
8.1 Die Anregerantenne

Abbildung 8.1: Keramikperlen umgeben einen 0.3 cm dicken Draht, der zu einem Rechteck gebogen ist. Mit Hilfe eines Frequenzgenerators und eines Netzwerks aus Spule und Kondensatoren zur Anpassung der Impedanz der Antenne wird eine Magnetfeldstörung in poloidaler Richtung erzeugt (\(\varphi\) toroidal, \(\theta\) poloidal).

erzeugt dieser Strom auf der Mittelachse des Leiterrechtecks (\(r = 0.06\) m, s. Abb. 8.1) eine Magnetfeldstörung von \(B^\varphi = 0.13\) mT. Die Anregerantenne wird derart im Plasma orientiert, dass die Magnetfeldstörung auf der Achse der Spule in poloidaler Richtung ausgerichtet ist. Ein Mirnov-Sondenkranz sowie eine radial verfahrbare Magnetfeldsonde nehmen gleichzeitig toroidal versetzt die poloidale Komponente der Magnetfeldfluktuationen auf. Das Ausbreitungsverhalten der aktiv eingebrachten Störung kann so untersucht werden.

Abschließend sei bemerkt, dass eine Anregung direkt auf der magnetischen Achse durch Vergrößerung der Anregerantenne nicht möglich ist. Das Einbringen einer größeren Antenne ins Plasma und damit auch das Anpassen der Antennenform auf die erwartete Modenstruktur in poloidaler und toroidaler Richtung, führt zu einem Stabilitätsverlust der Entladung, so dass sie erlischt bzw. gar nicht erst zündet. Durch die gewählte Antennenform ist ein minimaler Einfluss auf das Plasma selbst garantiert.
8.2 Mirnov-Sondenkranz-Messungen

Abb. 8.2: Ein Testsignal auf Sonde 3 (300 mV, 70 kHz) zeigt ein vernachlässigbares Übersprechen auf benachbarte Sonden.

Eine weitere Testmessung ohne Plasma hat gezeigt, dass bei aktiver Anregerantenne (70 kHz, 20 A_{pp}) die Antwort auf den Mirnov-Sonden sowie auf den radial verfahrbaren Magnetfeldsonden unterhalb von 1 µV liegt und damit weniger als 5% der Signale ausmacht, die die Sonden bei Anregung innerhalb eines Plasmas detektieren. Äußere Einstreuungen sind demnach ebenfalls zu vernachlässigigen und die beobachteten Effekte bei aktiver Anregung sind auf Wechselwirkungen mit dem Plasma zurückzuführen.

8.2.1 Fluktuationsspektren bei aktiver Anregung

Bereits in Abb. 4.16 rechts wurden die mit einem Transientenrekorder simultan aufgenommenen 8 Zeitspuren des Mirnov-Sondenkranzes einer Heliumentladung dargestellt. Man erkennt deutlich ein turbulentes Verhalten in den Fluktuationen. Ein anderes Bild

Die aus den Zeitspuren resultierenden Leistungsspektren bestätigen die vorangegangenen Feststellungen. Abb. 8.4 zeigt beispielhaft die Fluktuationsspektren von zwei Mirnov-Sonden in gestörter und ungestörter Entladung. Links sind die Spektren eines Heliumplasmas und rechts die eines Wasserstoffplasmas dargestellt. Die beiden
8.2.1 Fluktuationsspektren bei aktiver Anregung

Abbildung 8.4: Beispielhafte Fluktuationsspektren von zwei Mirnov-Sonden in gestörtem und ungestörtem Helium- bzw. Wasserstoffplasma. Bei einer durch die Anregerantenne eingebrachten Störung von 70 kHz bleibt die breitbandige Turbu-
lenz unverändert, während die Anregerfrequenz sowie 2 Harmonische (140 kHz und
210 kHz) im gestörten Plasma deutlich hervortreten.

oberen Spektren, aufgenommen in der ungestörten Entladung, weisen eine breitbandi-
ge turbulente Struktur über mehrere Größenordnungen auf. Dieser Sachverhalt wurde
bereits ausführlich in den Kapiteln 6 und 7 beschrieben und diskutiert. Die Fluktuati-
onsspektren, die mit den Mirnov-Sonden aufgenommen wurden, stimmen wie erwartet
mit denen in den genannten Kapiteln gezeigten Spektren überein. Die beiden unte-
ren Spektren in Abb. 8.4 zeigen bei einer mit Hilfe der Anregerantenne eingebrachten
poloidalen Störung von 70 kHz deutlich diese Anregerfrequenz, sowie die zweite und
dritte Harmonische bei 140 kHz und 210 kHz. Das Auftreten von Harmonischen ist auf
Nichtlinearitäten im Rechtecksignal des Frequenzgenerators und Restunsicherheiten
im Anpassnetzwerk der Antenne zurückzuführen. Die zugrunde liegende breitbandige
Turbulenz bleibt unverändert im Vergleich zum ungestörten Plasma.
8.2.2 Poloidales Ausbreitungsverhalten der gestörten Komponente

Informationen über das poloidale Ausbreitungsverhalten der eingebrachten Störung erhält man durch die Betrachtung der normierten Amplitude, der Kreuzphase und der Kohärenz. In Abb. 8.5 sind diese Größen für jeweils zwei unterschiedliche Entladungen in Helium (Kreuze) und Wasserstoff (Kästchen) dargestellt. Das obere Bild, die auf \(B_0 \) normierte Fluktuationssamplitude bei der Anregefrequenz von 70 kHz, zeigt über die poloidal angeordneten 8 Mirnov-Sonden einen annähernd konstanten Verlauf um \(B/B_0 = 4 \cdot 10^{-6} \). Die Amplituden der Sonden, die dem Plasma näher sind (Sonde 3-6, s. Abb. 4.14), weisen leicht erhöhte Werte im Gegensatz zu den übrigen Sonden auf. Die auf \(\pi \) normierte Kreuzphase, jeweils bezogen auf Mirnov-Sonde 4, ist für die gewählte Anregefrequenz über den gesamten Kranz \(\varphi = 0 \) (mittleres Bild). Im unteren Bild ist die dazugehörige Kohärenz dargestellt. Die Darstellung erstreckt sich von 0.9 bis 1.1. Dies dient der besseren Verdeutlichung des Ergebnisses, das sich bis auf vernachlässigbare Schwankungen genau bei \(\gamma = 1 \) befindet. Die nahezu gleichbleibende Fluktuationssamplitude sowie die unveränderte Phasenbeziehung lässt auf eine \(m = 0 \)-Mode in poloidaler Ausbreitungsrichtung schließen.

Diese Schlussfolgerung wird unterstützt durch die Betrachtung von Abb. 8.6. Hier ist die Korrelation der einzelnen Mirnov-Sonden zueinander in einem Helium- bzw. Wasserstoffplasma dargestellt. Es ist ersichtlich, dass sich weder im gestörten noch ungestörten Fall poloidal umlaufende Strukturen finden lassen. Diese wären durch eine endliche Steigung der dargestellten Korrelationsfunktion \(C(\tau) \) über der Korrelationszeit \(\tau \) gekennzeichnet. Im Fall der aktiven Anregung (Abb. 8.6 rechts) ist deutlich die Anregefrequenz von 70 kHz zu erkennen. Als Bezugssonde der Korrelationsberechnung wurde beispielhaft Mirnov-Sonde 4 gewählt. Aus diesem Grund zeigt sich dort jeweils eine maximale Korrelation von 1 (s. Abschnitt 4.7, Autokorrelation). Wie bereits die Untersuchung der Fluktuationssamplitudes und Kreuzphasen liefert die Korrelationsanalyse im Fall der aktiv eingebrachten Störung in das Plasma Hinweise auf eine \(m = 0 \)-Modenstruktur in poloidaler Ausbreitungsrichtung.

Eine Modenanalyse der Mirnov-Kranzdaten hat ebenfalls ergeben, dass die vorherrschende Modenstruktur bei aktiver Anregung \(m = 0 \) ist. Abb. 8.7 zeigt \(k \)-Spektren für eine Helium- und eine Wasserstoffentladung mit und ohne Anregung. Den unterschiedlichen \(k \) sind die entsprechenden Modenzahlen \(m \) zugeordnet. Die Modengewichtung in den Entladungen ist, bis auf geringe Schwankungen, unabhängig von der gewählten Gassorte. Die \(m = 0 \)-Struktur tritt deutlich in den aktiv gestörten Plasmen hervor. Sie zeigt sich auch in ungestörten Entladungen als dominant gegenüber den übrigen nur
8.2.2 Poloidales Ausbreitungsverhalten der gestörten Komponente

Abbildung 8.5: Eine gleichbleibende Fluktuationsamplitude (oben) und eine unveränderte Kreuzphase von $\varphi = 0$ jeweils bezogen auf Mirnov-Sonde 4 (mitte) bei konstant hoher Kohärenz von $\gamma = 1$ (unten) an der Anregefrequenz 70 kHz lässt auf eine $m = 0$-Mode in poloidaler Ausbreitungsrichtung schließen.
8.2 Mirnov-Sondenkranz-Messungen

Abbildung 8.6: Die Korrelationsanalyse der Mirnov-Sonden zueinander im gestörten sowie ungestörten Helium- bzw. Wasserstoffplasma lässt ebenfalls auf eine $m = 0$-Modenstruktur in poloidaler Richtung schließen. Die Anregerschwingung von 70 kHz ist im gestörten Fall (rechts) deutlich zuerkennen. (Bezugssonde der Korrelationsberechnung: Mirnov-Sonde 4)
8.3 Radiales und toroidales Verhalten der gestörten Komponente

In Abb. 8.8 ist die radiale Abhängigkeit der gestörten poloidalen Komponente der Magnetfeldfluktuationen in einem Helium- (oben) bzw. Wasserstoffplasma (unten) an
8.3 Radiales und toroidales Verhalten der gestörten Komponente

Abbildung 8.8: Radiale Abhängigkeit der gestörten poloidalen Komponente der Magnetfeldfluktuationen in einem Helium- (oben) bzw. Wasserstoffplasma (unten) an zwei verschiedenen Ports (T5 oberer Port (links), O5 äußerer Port (rechts)). Die Anregerfrequenz betrug 70 bzw. 100 kHz. Plasmazentrum und Separatrix sind zusätzlich gekennzeichnet. Die Fluktuationsamplitude ist minimal im Plasmazentrum und außerhalb der Separatrix. Im Randbereich wird sie maximal. Dieses Verhalten ist unabhängig von Gasart, Anregerfrequenz und Port.

Zwei verschiedenen Ports (T5 oberer Port (links), O5 äußerer Port (rechts)) dargestellt. Die Anregerfrequenz betrug bei der Heliumentladung 70 kHz und bei der Wasserstoffentladung 100 kHz. Die gewählten Frequenzen liegen innerhalb der erwarteten TAE-gaps (s. Abschnitt 2.3.2). Die Daten wurden mit einem Lockin-Verstärker der Firma *Ithaco Dynatrac* vom Typ 399 aufgenommen. Die Lockin-Technik ermöglicht das Herausfiltern der eben genannten Anregerfrequenzen aus dem breitbandigen Untergrund der natürlichen Turbulenz und gibt direkt den Betrag deren Amplitude an [72]. Die Amplitude wurde in Abhängigkeit der radialen Position der Sonde im Plasma aufgetragen. Plasmazentrum und Separatrix sind zusätzlich gekennzeichnet. Die Abbildung zeigt deutlich, dass die Fluktuationsamplitude im Plasmazentrum ein Minimum aufweist. Im Randbereich der Entladungen steigt sie auf ein Maximum an und fällt schließlich nach der Separatrix zum Gefäßrand bei $R - R_0 = 0.175\,\text{m}$ ab, um
8.3 Radiales und toroidales Verhalten der gestörten Komponente

dann nach einem kurzen Stück im Flansch ganz auf 0 abzusinken. Dieses Verhalten
findet sich in der Helium- sowie der Wasserstoffentladung und ist damit unabhängig
von Ionenmasse und Frequenz der Anregerantenne. Ferner ist zwischen dem oberen und
äußeren Port kein Unterschied der radialen Abhängigkeit der gestörten Komponente
der Fluktuationen zu erkennen.

Abbildung 8.9: Links: Radiales Profil der gestörten poloidal en und radialen Kom-
ponente der Magnetfeldfluktuationen in einer Heliumentladung 180° von der An-
regerantenne entfernt. Amplitude und Form der poloidal en Komponente stimmen
mit den Profilen in Abb. 8.8 überein. Die radiale Komponente ist klein gegenüber
der poloidal en Komponente. Rechts: Die Amplitude der eingebrachten poloidal en
Störung bei Drehung der Magnetfeldsonde um 90°, d.h. bei einer Orientierung der
Achse der Sonde parallel zu \(B_0 \) (s. Abb. 4.11), nimmt mit der radialen Komponente
erwartungswerte kleine Werte an.

Um Aufschluss über die toroidale Ausbreitung der eingebrachten Störung im Plas-
ma zu erhalten, wurde die Anregerantenne um zwei Ports versetzt auf Port T2. Sie
hat nun den größtmöglichen Abstand (180°) zur Magnetfeldsonde an T5. Die radiale
Verteilung der gestörten poloidal en Komponente im Plasma (Abb. 8.9, links) stimmt
in Amplitude und Form mit den Verteilungen in Abb. 8.8 überein. Im Rahmen die-
ser Studie wurde zusätzlich zur poloidal en Komponente mit Hilfe der 2-Komponenten
Magnetfeldsonde (Abschnitt 4.2.2) die radiale Komponente der Magnetfeldfluktuatio-
nen aufgenommen. Sie ist exemplarisch in Abb. 8.9 links dargestellt. Im Vergleich zur
poloidal en Komponente ist die radiale Komponente klein und zeigt keine signifikante
Abhängigkeit von der Position der Sonde im Plasma. Dies gilt ebenfalls für sämtli-
che vorgestellten Messungen in Abb. 8.8. Schließlich sei bemerkt, dass die Amplitude
der aktiv eingebrachten poloidal en Störung bei Drehung der Magnetfeldsonde um 90°,
d.h. bei einer Orientierung der Achse der Sonde parallel zu \(B_0 \) (s. Abb. 4.11), mit der
radialen Komponente vergleichbare kleine Werte annimmt (Abb. 8.9, rechts).
8.4 Diskussion der Messungen mit Anregerantenne

Die Resultate der Abb. 8.8 und Abb. 8.9 unterstützen die Annahme, dass es sich bei der aktiv eingebrachten Störung um eine poloidale \(m = 0 \)-Mode handelt, die sich über den gesamten toroidalen Umfang ausbreitet.

8.4.1 Anregung oberhalb der Ionencyklotronfrequenz

Bei den Messungen in den Abschnitten 8.2 und 8.3 wurde die Anregerfrequenz konstant gehalten. Abb. 8.10 zeigt die gestörte poloidale Magnetfeldkomponente aufgetragen über der Anregerfrequenz, die in diesem Fall von 20 – 110 kHz variiert wurde. Die Magnetfeldsonde befand sich an Port T5 (\(z = 15 \text{ cm} \)) und die Anregerantenne an Port T2. In dem Beispiel der hier dargestellten Argonentladung mit einer Ionencyklotronfrequenz von \(f_{ci} = 27.2 \text{ kHz} \) (\(B_0 = 72 \text{ mT auf der Achse} \)) ist ein kontinuierlicher Verlauf unterhalb und oberhalb \(f_{ci} \) zu erkennen. Untersuchungen in den Gasen Helium und Wasserstoff sind zwar qualitativ nicht so gut, wie die Ergebnisse der Argonmessungen, zeigen jedoch das gleiche Verhalten des gemessenen Anregersignals unterhalb und oberhalb der Ionencyklotronfrequenz. In Abschnitt 2.3.1 wurde gezeigt, dass eine transversale Alfven-Welle lediglich unterhalb von \(f_{ci} \) ausbreiten kann. Die Beobachtung einer kontinuierlichen Ausbreitung auch oberhalb von \(f_{ci} \) weist, wie bereits angedeutet, darauf hin, dass es sich bei der dominanten, aktiv eingebrachten Störung nicht um eine TAE handeln kann.

8.4.2 Ausbreitungsverhalten einer angeregten Alfven-Welle

Anhand einer einfachen geometrischen Betrachtung in einer linearen Anordnung soll hier diskutiert werden, warum sich die Alfven-Welle im Plasma von TJ-K nicht ausbreiten kann. Es zeigt sich, dass durch ein Auseinanderlaufen der Welle die Modenstruktur
verloren geht und die Amplitude, der entlang eines Flussschlauchs angeregten Alfvén-Welle stark geschwächt wird.

Eine Alfvén-Welle, die durch eine ins Plasma eingebrachte Antenne angeregt wird, breitet sich innerhalb eines Kegels im Plasma aus. Der Kegelwinkel \(\theta \) ist gegeben durch [73]

\[
\tan \theta = k_A \delta,
\]

wobei \(\delta = c/\omega_p \) die stoßfreie Skintiefe [74] ist, mit der Lichtgeschwindigkeit \(c \) und der Plasmafrequenz \(\omega_p \). Unter der stoßfreien Skintiefe versteht man die Abfalllänge in einem Plasma, nach der die Amplitude der Welle auf \(1/e \) abgefallen ist. Die Alfvén-Wellenzahl \(k_A \) ist gegeben durch \(k_A^2 = \omega^2/(v_A^2 \sqrt{1 - \omega^2/\omega_{ci}^2}) \). Hier sind \(\omega \) die Frequenz der Welle, \(v_A \) die Alfvén-Gewindigkeit und \(\omega_{ci} \) die Ionenzyklotronfrequenz. Für ein typisches Heliumplasma in TJ-K und der Frequenz \(\omega = 2\pi \cdot 70 \text{ kHz} \) ergibt sich \(\tan \theta \approx 0.003 \). Um ein Maß dafür zu erhalten, wie stark der Kegel über eine bestimmte Distanz \(d \) auseinanderläuft, gilt es \(r' \) (Abb. 8.11) abzuschätzen. Eine einfache geometrische Betrachtung liefert:

\[
r' = (r + d) \cdot \tan \theta = \left(\frac{r}{\tan \theta} + d \right) \cdot \tan \theta = r + d \cdot \tan \theta,
\]

wobei \(r = 0.065 \text{ m} \) der Radius der verwendeten Anregerantenne (s. Abb. 8.1) ist, abgeschätzt für eine äquivalente Kreisfläche.

Abbildung 8.10: Poloidale Komponente der Magnetfeldfluktuationen aufgenommen mit der Magnetfeldsonde an Port T5 \((z = 15 \text{ cm}) \). Die Frequenz der Anregearantenne (Port T2) wurde variiert von 20 – 110 kHz. Die gestörte Magnetfeldkomponente zeigt einen kontinuierlichen Verlauf unterhalb und oberhalb der Ionenzyklotronfrequenz (Beispiel: Entladung in Argon, \(f_{ci} = 27.2 \text{ kHz} \)).
8.4 Diskussion der Messungen mit Anregerantenne

Angeregte TAE können über die Analyse der räumlichen Modenstruktur oder eine Resonanzüberhöhung im Frequenzspektrum identifiziert werden. Es soll für TJ-K gezeigt werden, dass mit dem Auseinanderlaufen der Welle durch die Aufweitung des Ausbreitungskegels (8.3) ihre Modenstruktur verloren geht und die Amplitude der Welle auf dem dazugehörigen Flussschlauch stark geschwächt wird.

TJ-K hat eine Rotationstransformierte von \(\iota \approx 1/3 \), d.h. eine Magnetfeldlinie muss mindestens 3 mal den Torus umlaufen, um sich wieder schließen zu können (s. Abschnitt 3.1). Für eine Alfven-Welle mit bestimmter Frequenz und Modenstruktur bedeutet das, dass sie mindestens eine Wellenlänge von \(\lambda_{A,\text{min}} = 3 \cdot 2\pi R_0 \approx 11 \text{ m} \) besitzt. Die Abschätzung von \(r' \) nach einer Distanz \(d \approx 11 \text{ m} \) zeigt, dass sich die angeregte Struktur schon nach 3 Umläufen mit \(r' \approx 0.1 \text{ m} \) in der Größenordnung der Plasmaabmessungen befindet. Die, durch die Modenanalyse der Alfven-Kontinua vorhergesagte, poloidale Modenstruktur von \(m = 3 \) oder \(m = 4 \) wird über den gesamten poloidalen Umfang verschmiert und kann nicht mehr aufgelöst werden.

Der ursprüngliche Radius des Anregerkegels von \(r = 0.065 \text{ m} \) hat sich nach \(d \approx 11 \text{ m} \) um das 1.5-fache erhöht. Anfangs hat sich die Gesamtleistung der Welle auf eine Fläche von \(A = \pi r^2 \approx 0.013 \text{ m}^2 \) verteilt. Nach 11 m beträgt die Fläche dann \(A' = \pi r'^2 \approx 0.03 \text{ m}^2 \). Es bleiben noch ca. 40% der ursprünglichen Leistung pro Fläche, d.h. auch die Amplitude der Welle auf ihrem Flussschlauch wird bereits nach einem Wellenzug um mehr als die Hälfte geschwächt. Eine mögliche resonante Überhöhung im Frequenzspektrum ist nicht mehr messbar. Für TJ-K ist damit die Gütezahl bezüglich
angeregter TAE $Q < 2$. Unter der Gütezahl $Q = \omega_0/\Delta\omega$ versteht man das Verhältnis der Resonanzfrequenz ω_0 zu ihrer Breite $\Delta\omega$ in Frequenzspektrum [75]. An dieser Stelle sei bemerkt, dass in Fusionsexperimenten wie z.B. JET (Joint European Torus) [1] höhere Dichten zu niedrigeren Skintiefen führen und damit der Leistungsverlust der Welle durch Auseinanderlaufen sehr gering ist. Gütezahlen von $Q \approx 125$ in JET [76] erzeugen eine signifikante Resonanzüberhöhung im Frequenzspektrum. Der Kehrwert von Q gibt die Resonanzschärfe an, d.h. in JET zeigen sehr schmale Frequenzspitzen die Lage von TAE an.

Neben dem nicht dissipativen Beitrag der stoßfreien Skintiefe liefert die Diffusion aufgrund der endlichen Leitfähigkeit des Plasmas einen weiteren Beitrag zum Auseinanderlaufen der Alfvén-Welle [77]. Dieser dissipative Prozess wird bestimmt durch die klassische Skintiefe $\delta = \sqrt{2\eta/\mu_0\omega}$ [78], wobei $\eta = 1/\sigma$ die Resistivität des Plasmas [79] mit der Leitfähigkeit σ ist. Da jedoch der dominierende Effekt durch die stoßfreie Skintiefe bereits die Ausbildung einer TAE in TJ-K verhindert, wird auf die resistive Dämpfung an dieser Stelle nicht weiter eingegangen. Ebenso spielt der Energieverlust des Wellenfeldes durch Ion-Neutralgas-Stöße [80] mit Stoßfrequenzen im Bereich von 5 kHz eine untergeordnete Rolle.

8.4.3 Transversale elektromagnetische Mode TEM$_{00}$

Fasst man die Resultate der Messungen und Diskussion zusammen, stellt sich heraus, dass die Ausbildung einer dominierenden transversalen Alfvén-Eigenmode (TAE) in TJ-K nicht möglich ist. Wie bereits in Abschnitt 8.1 erwähnt, ist die optimale Anregung einer TAE auf der magnetischen Achse sowie die Anpassung der Antennenform an die erwarteten Modenzahlen m und n, aufgrund der mangelnden PlasmaStabilität nicht möglich. Die verwendete Anregerantenne befindet sich deshalb im Randbereich des Plasmas und verursacht dort eine poloidale Störung. Durch die verhältnismäßig geringe Dichte in TJ-K folgt eine hohe stoßfreie Skintiefe. Nach (8.2) läuft der Ausbreitungskegel einer angeregten Alfvén-Welle über die, durch die Rotaionstransformierte von $t \approx 1/3$ vorgegebene minimale Ausbreitungsstrecke, bereits in die Größenordnung des gesamten Plasmas auseinander. Das Auflösen einer poloidal Modenstruktur ist nicht mehr möglich. Desweiteren verliert die angeregte Störung schon nach einem Wellenzug mehr als die Hälfte der Leistung pro Fläche und die Amplitude der Welle auf dem dazugehörigen Flussschlauch wird stark geschwächt. Weitere Dämpfungsmechanismen liefern einen vernachlässigbaren Beitrag zum Auseinanderlaufen der Welle, so dass sie an dieser Stelle nicht explizit besprochen werden.

Bei der dominanten beobachteten Mode handelt es sich demnach um die Grundmo-
8.4 Diskussion der Messungen mit Anregerantenne

Abbildung 8.12: Querschnitt durch einen koaxialen Leiter. Die eingezeichneten Verläufe des elektrischen Feldes E, sowie des Magnetfeldes B entsprechen der transversalen elektromagnetischen Mode TEM_{00}. Bei den vorliegenden Untersuchungen übernimmt das Plasma die Rolle des Innenleiters.

de in einem koaxialen Leiter, der transversalen elektromagnetischen Mode TEM_{00} mit der poloidal Modenzahl $m = 0$ (Abb. 8.12) [46]. In diesem Fall übernimmt das Plasma die Rolle des in der Regel aus Kupfer bestehenden Innenleiters. Durch die endliche Skintiefe des Plasmas dringt die Mode in das Plasma ein, fällt dann aber zum Plasmazentrum hin auf einen vernachlässigbaren Anteil ab (s. Abb. 8.8 und Abb. 8.9). Außerdem vom Bereich geschlossener Flussflächen fällt die Amplitude der Mode ebenfalls wie erwartet zum Gefäßrand hin ab. Die Mode existiert auch oberhalb der Ionenzyklotronfrequenz (s. Abb. 8.10) im gesamten Vakuumgefäß außerhalb des eingeschlossenen Plasmagebietes.
Kapitel 9

Zusammenfassung

Es folgt eine Auflistung der Anforderungen und Resultate zur Charakterisierung der elektromagnetischen Turbulenz in TJ-K, die anschließend kommentiert wird:

8.4 Diskussion der Messungen mit Anregerantenne

- Umfangreiche Vergleiche der gemessenen Spektren mit numerisch generierten Daten der Simulationscodes DALF3 und GEM3 zeigen über weite Bereiche der magnetischen Turbulenz eine gute Übereinstimmung.

Zum ersten Mal wurden Magnetfeldfluktuationen im gesamten Plasmavolumen mit hoher räumlicher und zeitlicher Auflösung aufgenommen. Sie zeigen vollständig entwickelte Turbulenz mit einer über 6 Dekaden reichende Kaskade, während sich die Leistung bis in den Nano-Tesla Bereich erstreckt. Die Fluktuationen nimmt mit steigender Massenzahl der Gastart von Wasserstoff über Helium zu Argon jeweils um einen Faktor von ca. 10 ab. Außer in den nicht vollständig magnetisierten Argonentladungen weisen die Spektren keine quasikohärenten Moden auf. Eine Untersuchung der radialen Abhängigkeit der magnetischen Fluktuationen in Helium- und in Wasserstoffentladungen zeigt einen Anstieg im Dichtegradientenbereich, der ebenfalls in den elektrostatischen Fluktuationen zu sehen ist. Vorangegangene Studien an TJ-K legen dar, dass die Turbulenz von einer Driftwellendynamik getrieben wird, die aufgrund der Erzeugung paralleler fluktuiierender Ströme im Gradientenbereich Magnetfeldfluktuationen erzeugt. Die Messungen bestätigen das erwartete Verhalten der magnetischen Fluktuationen und sind somit ein unabhängiger Nachweis der Anwesenheit von Driftwellen in TJ-K. Bei einer Höhe der normierten Fluktuationen von $\tilde{B}_r/B_0 \approx 1 \cdot 10^{-6}$ ergibt sich der magnetische Diffusionskoeffizient zu $D_{mag} = 10^{-6} - 10^{-5} m^2/s$. Im Gegensatz zu dem in vorangegangen Studien bestimmten elektrostatischen Diffusionkoeffizienten von $D_{es} = 2 - 20 m^2/s$ ist demnach die magnetische Anteil am turbulenten Transport wesentlich geringer. Dies war für das Niedrig-β-Plasma auch zu erwarten. Eine theoretische Abschätzung hat ergeben, dass sich die normierten fluktuiierenden Größen im Plasma verhalten wie $(\tilde{B}/B_0)/\beta \sim \tilde{e}\tilde{\phi}/T_e \sim \tilde{n}/n$, d.h. wegen $\beta \sim B_0^{-2}$ hat eine Erhöhung des Magnetfeldes B_0 eine Abnahme der Magnetfeldfluktuationen zur Folge. Die Ergebnisse aus Messungen bei hohem bzw. niedrigem Magnetfeld bestätigen diese Vorhersage. Die Abnahme der Fluktuationen ist etwas stärker ausgeprägt, als die Abschätzung vorhersagt.

den Wasserstoffentladungen im Experiment ca. um einen Faktor 4–10 stärker ausfällt, als die numerischen Ergebnisse vorhersagen. Der direkte Vergleich der Fluktuationsspektren von Experiment und Simulation ist bisher einmalig und zeigt trotz der erwähnten Abweichungen ein zufriedenstellendes Ergebnis.

Mit Hilfe einer in den Dichtegradienten eingebrachten stromdurchflossenen Anregerantenne wurden im Plasma poloidal gerichtete Magnetfeldfluktuationen erzeugt. Die Anregerfrequenz (70 – 100 kHz) wurde den entsprechenden Gapfrequenzen angepasst, die zuvor aus speziell für TJ-K berechneten Alfvén-Kontinua bestimmt worden sind. Die Analyse der Messungen des Mirnov-Sondenkranzes in Kombination mit den radial verfahrbaren und toroidal versetzten Magnetfeldsonden hat ergeben, dass sich die vorhergesagte Alfvén-Modenstruktur mit \(m = 3 \) oder \(m = 4 \) nicht deutlich ausbildet. In TJ-K führt eine stoßfreie Skintiefe von \(\delta \approx 1 \) cm dazu, dass der Ausbreitungskegel einer angeregten TAE bereits nach einem toroidalen Umlauf auf die Gefäßmaße auseinandergeraten ist. Die Leistungsabnahme in den Fluktuationen ist so hoch, dass eine signifikante Überhöhung in den \(k \)-Spektren bei den erwarteten Modenzahlen nicht erkennbar ist. Die Fluktuationsspektren werden dominiert von einer scharfen Überhöhung bei der jeweiligen Anregerfrequenz, die nach der Modenanalyse einer Struktur mit \(m = 0 \) zuzuordnen ist. Es handelt sich um die Grundmode in einem koaxialen Leiter, der TEM\(_{00} \), wobei das Plasma den elektrischen Innenleiter darstellt.

Ein interessanter Ansatz für eine Weiterführung dieser Arbeit ist, eine auf die erwartete Modenstruktur einer TAE angepasste Anregerantenne zu verwenden, die mit höheren Strömen betrieben wird. Dies könnte zur deutlichen Ausbildung der \(m = 3 \) oder \(m = 4 \) Moden führen. Allerdings ist zu beachten, dass eine größere Antenne oder ein höherer Strom die Stabilität der Plasmaentladung stark beeinflusst. Zum Abschluss sei bemerkt, dass der Vergleich der experimentellen und numerischen \(\beta \)-Skalierung eine Abhängigkeit vom gewählten Frequenzbereich aufweist. Beispielsweise zeigt sich für Frequenzen von ausschließlich 20–100 kHz, dass in den Heliumentladungen die Magnetfeldfluktuationen lediglich 1.4 mal stärker abfallen als numerisch vorhergesagt. Genauerere Untersuchungen diesbezüglich würden die Studien dieser Arbeit sinnvoll ergänzen.
Literaturverzeichnis

107

[56] Laqua, H. P. et al.: Resonant and Nonresonant Electron Cyclotron Heating at Densities above the Plasma Cutoff by O-X-B Mode Conversion at the W7-As Stellarator.

Danksagung

Volker Rohwer, Michael Poser, Bernhard Roth und Roland Munk sowie dem Team aus mechanischer und elektrischer Werkstatt gilt mein besonderer Dank für ihre technische Unterstützung.

Curriculum Vitae

Persönliche Daten
Name: Kian Rahbarnia
Geburtsstag/Geburtsort: 28.02.1978, Eutin, Deutschland
Familienstatus: verheiratet
Nationalität: Deutsch

Schulische Ausbildung
1984–1988 Grundschule in Sieversdorf, Deutschland
1988–1997 Johann-Heinrich-Voß-Gymnasium in Eutin, Deutschland
Jul 1997 Abitur (Leistungsfächer: Mathematik und Physik)

Wissenschaftliche Ausbildung
Okt 1998–Nov 2003 Physikstudium an der Christian-Albrechts-Universität, Kiel, Deutschland
Dez 2003 Diplom in Physik (sehr gut)
seit Dez 2003 Verfassen einer Doktorarbeit mit dem Titel: Charakterisierung der elektromagnetischen Turbulenz im Torsatron TJ-K in der Gruppe von Prof. Dr. U. Stroth an der Universität Stuttgart, Deutschland
Eidesstattliche Erklärung

Stuttgart, im März 2007

Kian Rahbarnia