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Abstract 

There are several alternatives under consideration for energy production aiming at reducing 
the dependence upon oil, coal, and natural gas.  The underlying goal of course is a future in 
which oil, coal, and natural gas will play a far less important role in energy supply. One such 
alternative is nuclear energy derived from nuclear fission. This power source, similar to oil, 
coal, and natural gas is backed up by years of engineering experience. Increasing its role 
should increase its public acceptance, especially in Europe, where its use is strongly under 
discussion. The key factor that will decide the role of nuclear power in the future lies in the 
proof of a safe way to handle nuclear waste. For this reason, several alternative approaches 
for treating nuclear waste have been proposed and are investigated. Every idea proposed is, of 
course, a trade off between the public acceptance, costs, and technological capabilities. One of 
the most challenging approaches, from the technological point of view, is the strategy based on 
burning the most dangerous part of nuclear waste in dedicated reactors such as the one studied 
in this work. This alternative introduces a new class of reactor behavior which needs to be 
carefully studied. The analysis work inevitably relies upon high precision simulation using 
numerical codes. This thesis is primarily focused upon the simulation of transients in the 
neutron density of the reactor resulting from transients of the amplitude of an external neutron 
source. The VARIANT-KIN3D was used as the starting point of this thesis work. VARIANT is a 
code that solves the steady state neutron transport equation using a hybrid finite element 
method coupled with an even-parity spherical harmonics approximation. KIN3D simulates the 
time-dependence of the reactor system by transforming the time dependent problem into a set 
of pseudo steady state ones. The KIN3D code can therefore make use of the steady state 
VARIANT solutions to model the reactor behavior in time. In order to transform the time 
dependent problem into a set of steady state ones, a time discretization scheme is needed. It is 
in this thesis, that the time discretization scheme has been strongly improved, thereby 
overcoming many of the preceding difficulties encountered when coupling the KIN3D and 
VARIANT codes. The first newly introduced time integration scheme is a first order backward 
Euler method combined with a reduction scheme. This first new discretization scheme has been 
validated against an analytic benchmark showing its accuracy and robustness. Several others 
tests have shown that its feasibility in application to realistic problems appears unlikely due to 
its high computational cost. This difficulty has been successfully overcome by introducing an 
adaptive time step control scheme. This variable time step approach was implemented only 
after considerable analytic analysis of the influence of such a feature on the order of precision 
achieved by the time integration scheme. In this work it is proven that the adoption of variable 
time step requires an increase in the order of the Euler scheme to avoid a loss of the structure 
of the equations in their time discrete form. The final scheme implemented in this thesis is a 
non linear second order mixed backward-centered Euler combined with a reduction scheme. 
Several benchmark problems have been solved using both of the two new schemes in order to 
compare the differences with the previous approach and to investigate the influence of the 
discretization of the angular variable on the time spatial behavior of the neutron density. The 
coupling between VARIANT and KIN3D based upon these new time discretization schemes has 
been implemented for all the spatial (XYZ, HEX-Z) and angular discretizations available inside 
the VARIANT code. The final version of the VARIANT-KIN3D code is a very powerful tool 
which can be used for the analysis of all types of transients that occur in a nuclear reactor. The 
specific achievement is the capability to deal with very difficult ones such as the short time 
scale transients induced by an external source and with others transients that occur on much 
longer time scales. This great flexibility was achieved without requiring a substantial increase 
in the computation time. 
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Kurzfassung 

Zur Verminderung der Abhängigkeit von fossilen Brennstoffen wie Öl, Kohle und Erdgas 
werden verschiedene Alternativen zur Energieerzeugung betrachtet. Das Hauptziel ist 
natürlich eine Zukunft, in der die fossilen Brennstoffe eine wesentlich geringere Rolle bei der 
Energiebereitstellung spielen werden. Eine der Alternativen ist die Kernenergie aus der 
Kernspaltung. Ähnlich wie bei den fossilen Brennstoffen kann diese Energiequelle auf 
langjährige Betriebserfahrungen zurückgreifen. Ein Anwachsen Ihrer Rolle sollte auch zu 
einer erhöhten Akzeptanz in der Öffentlichkeit führen, speziell in Europa, wo ihr Einsatz unter 
erheblichen Vorbehalten steht. Ein entscheidender Faktor für die zukünftige Rolle der 
Kernenergie liegt im Nachweis der sicheren Handhabung des nuklearen Abfalls. Aus diesem 
Grund wurden mehrere verschiedenartige Vorgehensweisen vorgeschlagen, die auch weiterhin 
untersucht werden. Jedes vorgeschlagene Konzept ist ein Kompromiss zwischen öffentlicher 
Akzeptanz, den Kosten und den technologischen Gegebenheiten. Einer der herausforderndsten 
Vorschläge, unter technologischen Gesichtspunkten, besteht in der Strategie, den 
gefährlichsten Teil des nuklearen Abfalls in gezielt dafür ausgelegten Reaktoren zu 
verbrennen, wie sie in dieser Arbeit behandelt werden. Dieser besondere Reaktortyp, ein 
Beschleuniger getriebenes System mit externer Neutronenquelle (ADS = Accelerator Driven 
System), hat spezielle dynamische Eigenschaften, die näher untersucht werden müssen. Die 
Dissertation beschäftigt sich hauptsächlich mit der Simulation von Transienten, insbesondere 
mit der Veränderung der Neutronendichteverteilung des Reaktors, die durch eine zeitliche 
Änderung der Amplitude einer externen Neutronenquelle verursacht wird. Das 
Rechenprogrammpaket VARIANT-KIN3D bildet den Ausgangspunkt für die hier beschriebenen 
Untersuchungen. VARIANT löst die stationäre dreidimensionale Neutronentransportgleichung 
unter Benutzung einer hybriden Finite-Elementmethode, gekoppelt mit einer 
Kugelflächenfunktionen- Näherung gerade Ordnung. KIN3D simuliert die Zeitabhängigkeit 
der gesuchten Lösung für das Reaktorverhalten indem es das zeitabhängige Problem in einen 
Satz von pseudo-stationären Gleichungen transformiert. KIN3D kann daher die stationären 
Lösungen von VARIANT direkt benutzen, um das zeitabhängige Problem zu beschreiben. Für 
die Transformation des zeitabhängigen Problems in einen Satz von stationären Problemen 
wird eine Zeitdiskretisierung benötigt. In dieser Arbeit wurde das Zeitdiskretisierungs-Schema 
wesentlich verbessert und damit zahlreiche vorher festgestellte Schwierigkeiten in der 
Kopplung zwischen KIN3D und VARIANT beseitigt. Das erste neu implementierte 
Zeitintegrationsschema ist ein Rückwärts-Euler-Verfahren erster Ordnung kombiniert mit 
einem Reduktionsverfahren. Dieses neue Schema wurde an einem analytischen Benchmark 
überprüft und seine Genauigkeit und Robustheit nachgewiesen. Das Verfahren ist allerdings 
mit hohen Rechenzeiten verbunden, was seine Anwendung bei praktischen Problemen 
einschränkt. Diese Schwierigkeit konnte mit einem neuen adaptiven Verfahren für die 
Zeitschrittkontrolle überwunden werden. Dieses Vorgehen mit variablen Zeitschritten wurde 
erst nach umfangreichen analytischen Untersuchungen zu seinem Einfluss auf die 
Genauigkeits-Ordnung des Codes implementiert. In der Arbeit wird der Nachweis geführt, dass 
die Verwendung variabler Zeitschritte eine Erhöhung der Ordnung des Euler-Schemas 
erfordert, um einen Verlust der Struktur der Gleichungen in ihrer zeit-diskretisierten Form zu 
vermeiden. Das letztendlich in der Arbeit angewandte Verfahren besteht aus einem 
nichtlinearen gemischten rückwärts-zentrierten Euler-Schema zweiter Ordnung kombiniert mit 
einem Reduktionsverfahren. Mehrere Benchmark-Probleme wurden mit den beiden neuen 
Verfahren gelöst. Dabei wurden die Unterschiede gegenüber dem früher verwendeten 
Verfahren verglichen und der Einfluss der Diskretisierung der Winkelvariablen auf das 
räumlich-zeitliche Verhalten der Neutronendichte untersucht. Die Kopplung zwischen 
VARIANT und KIN3D wurde für diese neuen Zeit-Diskretisierungs-Methoden vollständig 
implementiert, also für alle räumlichen (XYZ, HEX-Z) und Winkel-Diskretisierungen, die in 
VARIANT verfügbar sind. Die endgültige Fassung des Programmpaketes VARIANT- KIN3D 
stellt ein sehr leistungsfähiges Werkzeug dar, das für die Analyse aller Arten von Transienten, 
die in einem Kernreaktor auftreten könnten, eingesetzt werden kann. Das herausragende 
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Merkmal ist die Fähigkeit des Codes, auch sehr schwierige Fälle zu behandeln, wie ultra-kurze 
Transienten, hervorgerufen durch schnelle Änderungen der externen Quelle (in einem ADS) 
sowie andere Transienten, deren Verlauf sich über längere Zeitskalen erstreckt. Diese große 
Flexibilität konnte ohne wesentliche Erhöhung der Rechenzeiten erzielt werden. 
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Chapter I. INTRODUCTION 

I.1. Background 

Public acceptance of a peaceful use of nuclear technologies is strictly connected to the 

problems associated with nuclear waste management. By now, two main strategies have been 

proposed: 1) direct permanent storage of spent fuel and 2) partition and transmutation. The 

second approach has the advantage of destroying most of the nuclear waste but at the same 

time it is a more difficult technological challenge. 

The partition and transmutation of nuclear waste is difficult because it implicitly requires 

reactions induced by neutrons. The most suitable place for performing this process is within a 

nuclear reactor. Unfortunately the introduction of this waste into traditional reactors, leads to 

significant safety problems and a general deterioration in the neutronic safety parameters is 

observed. These include: a decreasing Doppler feedback coefficient, a positive and large 

magnitude coolant void reactivity worth and a strong reduction in the fraction of delayed 

neutrons all of which complicate the dynamic control of reactors in case of incident and for 

hypothetical accident scenarios, and thus decrease the safety margins. 

For these reasons, a new reactor concept called Accelerator Driven System (ADS) has been 

proposed [7 to 11]. The distinguishing characteristic of an ADS is that the nuclear reactor is 

configured such that it is never critical (does not possess the ability to have a self-sustained 

fission reaction) and therefore an external neutron source is needed to maintain a steady state 

neutronic population and correlated power generation. 

Figure 1 shows an example ADS proposed by the JAERI Company [12] within the 5th 

European Framework Project. The external source of neutrons is derived from a proton 

spallation reaction at the center of the core. Protons, accelerated by a LINAC (Linear 
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Accelerator), are directed to the center of the core via a beam tube. The external neutrons are 

produced within a fairly small target region close to the center of the core (in this project the 

target is a melted lead bismuth eutectic mixture). The spallation process occurs due to the high 

energy protons impacting upon the target thereby causing a cascade of reactions which provide 

the neutrons needed to maintain the fission reaction. 

 

Figure 1: JAERI’s design of a lead-bismuth cooled ADS. 

The fundamental parameter used to describe the steady state condition of a reactor is keff, which 

is sometimes referred to as the fundamental eigenvalue. Keff is the main parameter describing in 

time [1-4] (on a time scale over which fuel depletion is considered to be negligible) the 

evolution of the neutron density. There are two approaches to define keff for a reactor. The first, 

termed k’eff, is derived from a physical point of view while the second one, termed keff, is 
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derived from a purely mathematics one. Consider the neutron density present in a reactor at 

time zero, which is referred to as the zeroth generation. Let us assume that there are no unstable 

nuclides and thus no spontaneous neutron emissions. When all the neutrons belonging to the 

zeroth generation have disappeared from the system (by absorption or leakage) the total 

number of neutrons created directly by the zeroth generation represent the first generation. 

Even if there is not an exact correspondence between time and generations, by means of the 

definition of the mean generation time it is possible to cast the generation process into a time 

frame. Thus, it is natural to describe the evolution in time of the average number of neutrons in 

the system as a function of the ratio between the number of neutrons in  two subsequent 

generations that is exactly the physical (first) definition of the k’eff: 

 ' neutron population at generation n+1
.

neutron population at generation neffk =  (1.1) 

Of course the ratio between neutrons at two sequential generations can be expressed as the ratio 

between the reactions that add and subtract neutrons from the reactor: 

 ' neutrons produced by fission + neutrons produced by external source
.

neutrons lost by leakage + neutrons absorbed in mediumeffk =  (1.2) 

Mathematically, keff is defined as the fundamental eigenvalue (the highest in mode) of the 

mathematical operator describing the steady state neutron transport phenomena inside the 

reactor core. From this definition, one integrates the steady state transport equation over its 

phase space (position, energy, and angle) yielding an eigenvalue problem with an expression 

for keff of 

 
fission production (in the fundamental mode)

,
(leakage + absorbtion in medium)(in the fundamental mode)effk =  (1.3) 

where the fundamental mode is the eigenfunction corresponding to the fundamental 

eigenvalue. 
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The numerical interpretation of these numbers is clear which can be described succinctly using  

• Sub-critical reactor       : keff< 1 

• Critical reactor              : keff= 1 

• Super-critical reactor    : keff> 1 

If k’eff is equal to 1, the reactor is in a steady state mode and if keff is equal to 1 the reactor is 

able to sustain the nuclear fission chain. For an ADS, the external source of neutrons provides 

the neutrons needed to maintain a stable neutron fission chain (i.e.  k’eff = 1) even if the reactor 

is sub-critical (i.e.  keff < 1). Without this external neutron source the neutron density will tend 

to zero with time. In this work only the mathematical definition of the keff is considered 

because it is not dependent upon the time behavior of the external source thus it is bounded 

only by the material composition and geometry of the reactor.  

I.2. Motivations 

Several numerical analyses [8-10] have indicated that a high concentration of fuel derived from 

nuclear waste loaded inside of a present-day nuclear reactor could lead to fuel failure during 

standard accident scenarios. In some cases an unacceptable super-critical state of the reactor 

system was predicted. Under these circumstances, the power can increase exponentially [4] on 

a time scale of less than 10-6s [5, 6]. The main idea behind the ADS is the ability to operate in a 

regime where keff is never greater than 1. Of course this could not be possible without the 

presence of the external source. The design value of keff in an ADS becomes a balance of 

economics and safety.  

The upper limit is determined by the fact that no accident scenarios should result in a 

supercritical reactor configuration. As the eigenvalue is decreased from this upper limit, the 

number of external neutrons required to maintain a certain power level increases. 

Consequently, the efficiency of the plant that is coupled to the power dedicated to produce the 

external neutrons decreases. A secondary problem associated with a decreasing eigenvalue is 

an increasing concentration of the neutron density near the beam target. This peaks the 
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temperature distribution at the center of the reactor and thus the reactor must operate at a lower 

power level. As one would expect, the margin of sub-criticality (i.e. how much the eigenvalue 

is below unity) is a key issue to the feasibility of an ADS. This margin must be measured 

during operation and several methods have been proposed to do it, such as the PND (Prompt 

Neutron Decay) [13] and the SPJ (Source Prompt Jump) [14] methods. Both are based upon 

reconstructing the eigenvalue by measuring the response of neutron detectors to a fast 

amplitude change of the external source during reactor operation. These procedures should of 

course be validated in a wide range of potential ADS operations (keff between 0.9 and 1). 

Currently, experiments in zero power reactors have been performed and more are planned in 

the future.  

These experiments are monetarily expensive and can require a substantial amount of time and 

analysis. It is also unrealistic to assume that these experiments can exactly simulate those 

situations expected to be present in an ADS, e.g. those related to temperature feedback effects 

and thus the full range of operating conditions of an ADS may not be tested completely. Given 

this last problem, it is imperative to confirm validation with numerical codes. These codes must 

be capable of modeling and reproducing the available experimental results from standard 

reactor systems along with simulating the unique operational characteristics of an ADS.  

One of the most widely used neutronics codes applied for the analysis of fast reactors is the 

ERANOS platform [15, 16]. Given the properties of the ADS (i.e. neutronic spectrum) the 

ERANOS code is well suited as a starting point for developing an analysis tool appropriate for 

an ADS. The ability of the ERANOS code to simulate the transient neutron flux in a sub-

critical system has been tested in the framework of the MUSE (Multiplication d’Une Source 

Externe) experiment [17, 18]. Figure 2 shows a layout of the experimental device. 
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Figure 2: MUSE experiment. 

In the MUSE experiments, a proton accelerator (GENEPI) produced a beam of deuterons 

directed towards a tritium target. The deuterium-tritium reaction yields 14 MeV neutrons which 

are scattered and moderated by a lead blanket surrounding the target. The blanket is situated in 

the center of the MASURCA core as is the target. The reactor fuel is composed of Pu-U (metal, 

oxide) fuel with a 24% plutonium enriched fuel. The plutonium is essentially composed of 

76% Pu-239 and 18% Pu-240. The reflector surrounding the core is composed of 75% steel and 

25% Sodium (volume fractions).  

In the MASURCA core several U-235 based neutron detectors are inserted at various locations 

to measure the time behavior of the neutron density during (deuteron) source pulses. 

The simulation results achieved by ERANOS for one experiment are shown in Figure 3 where 

it is noted that KIN3D is the component of ERANOS that performed the time dependent 

analysis. The four different ERANOS results were obtained using different cross section data 

evaluations (material property describing neutron interaction with core materials) [19]. As can 

be seen, the agreement between experiment and simulation is quite good, but clearly not exact. 

As it turns out, these simulations cannot be used to validate methodologies for the online 
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monitoring of the eigenvalue since the uncertainty in the result amounts to several percent 

which are not acceptable given the narrow range of acceptable eigenvalue for the ADS. 

Errors in simulating these transients arise from several factors which can be separated into two 

components: errors in evaluation of the cross sections, and numerical error connected to the 

discretization of the mathematical model. 

Unfortunately it is not simple to separate the errors arising from the two different sources. 

Nevertheless, Figure 3 shows that even with different cross section libraries there are notable 

similarities such as the underestimation of the flux before 20 µs. Such a behavior suggests that 

numerical modeling of the problem is in part causing the discrepancies in the experimental and 

numerical results. 

 

One of the goals of this thesis was the improvement of the numerical modeling of the 

governing equations and the evaluation of the impact of such improvements upon the 

simulation. These improvements are focused on fast transient code development for the 

VARIANT/KIN3D code. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Response after 1µµµµs source pulse: experimental data and code result with different cross section 
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I.3. The Neutron Transport Equation 

The transport equation is a statistical description of the neutral particle-matter interaction [1-4 

]. The particle density is fully described by this distribution function in phase space (position r
�

 

[cm], velocity 
�
u  [cm s-1]) and time t [s]): ( , , )

� �
n r u t . 

Being a statistical description two hypothesis should be satisfied: 

� The differential volume in the phase space 
� �

drdu  should be small enough to consider 

the distribution function constant. 

� The differential volume in the phase space 
� �

drdu  should contain enough particles to 

allow a statistical description. 

• ( , , )
� � � �

n r u t drdu : = probability for a particle to be within the element 
� �

drdu  surrounding 

,
� �
r u  at time t.  

If 0N  is the total number of neutrons in the systems it is possible to define the density function 

associated to the distribution n: 0( , , ) ( , , )=� � � �
N r u t N n r u t . 

• ( , , )
� � � �

N r u t drdu : = expected number of neutrons within the element 
� �

drdu  surrounding 

,
� �
r u  at time t.  

In the Boltzmann equation the following hypothesis are also assumed to be valid: 

� The distribution function at the time and spatial scale at which collisions happen can be 

considered constant. 

� Collisions are only binaries. 

� Before collisions, particles are not correlated. 

Focusing on the neutrons population inside a nuclear reactor, some additional simplifying 

hypotheses are possible: 

� The fraction of neutrons that undergo spontaneous decay is negligible in the time scale 

of interest for the evolution of the distribution function. 

� Neutron-neutron collisions are negligible with respect to neutron-matter collisions. 



 9 

� No other forces, except the one arising from collisions, affect neutrons (for example the 

effect of gravity is negligible). 

� The matter could be considered at rest. 

For practical reasons, the neutron angular flux defined as follows: ( ), , ( , , )ϕ =� � � � �
r u t u N r u t , is 

preferred over the neutron density. 

It is also common practice to make a change of variables and define the angular flux with 

respect to the space ( , , )r EΩ
��

 rather than ( , )
� �
r u . The new coordinate system is defined by: 

 
2

/            Direction,

1/ 2     Neutron Energy.

�Ω =�
�

=��

� � �

�

u u

E m u
 (1.4) 

Note that this coordinate system change is done taken in account the fact that ϕ  is not a point 

function but a distribution over ( , )
� �
r u  and, accordingly, over ( , , )r EΩ

��
. 

After the variable change ( ), , ,r E tϕ Ω
��

 is measured in [eV-1cm-2s-1] with the following physical 

interpretation: 

• ( ), , ,r E t dEdϕ Ω Ω
� ��

: = the expected number of neutrons per unit area and time crossing 

the surface centered at r
�

with energy E in dE and direction Ω
�

 in dΩ
�

. 

Next a mathematical model of the physical interaction between neutrons and matter is 

introduced. The main processes important for neutrons in a nuclear reactor are: capture, 

inelastic and elastic scattering, and fission (n-2n reactions are considered to be negligible in 

this analysis for simplicity). The total cross section encompasses all of the interactions that 

move or remove a neutron from its position in the phase space which is represented as: 

• ( ), , ,T r E tΣ Ω
��

: = total effective cross section [cm-1]: probability of interaction per unit 

distance of neutron travel. 

The different kinds of interactions can be divided into processes that remove neutrons from the 

systems and those that simply move and eventually multiply neutrons. 

• ( ), ', ',TRANS r E E t dEdΣ Ω ← Ω ← Ω
� � ��

: = total effective transfer cross section [eV-1cm-1]: 

probability, per unit distance of neutron travel, of having an interaction that will move 
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(or multiply), in the phase space, the neutron from ( ), ', 'r EΩ
��

 to dEdΩ
�

 centered 

in ( ), ,r EΩ
��

. 

• ( ), , ,Σ Ω
��

A r E t : = effective absorption cross section [cm-1]: probability of neutron loss 

by absorption per unit distance of neutron travel. 

The relation between the above defined cross sections is: 

 ( ) ( ) ( )
4 0

, , , ' ' , ' , ' , , , , .
π

+∞

Σ Ω = Ω Σ Ω ← Ω ← + Σ Ω� �
� � � � �� � �

T TRANS Ar E t d dE r E E t r E t  (1.5) 

The total transfer cross section is usually split in two pieces: the scattering transfer cross-

section and the fission transfer cross-section. This is primarily done based upon the different 

properties exhibited by these two components: 

• ( ), ', ',s r E E t dEdΣ Ω ← Ω ← Ω
� � ��

:= effective scattering transfer cross section   [eV-1  

cm-1]: probability of interaction of scattering type per unit distance of neutron travel 

that will move, in the phase space, the neutron from ( ), ', 'r EΩ
��

 to dEdΩ
�

 centered in 

( ), ,r EΩ
��

. 

• ( ), ', ',f r E E t dEdΣ Ω ← Ω ← Ω
� � ��

: = effective fission transfer cross section [eV-1cm-1]: 

probability of interaction of fission type per unit distance of neutron travel that will 

move (multiplication is also possible), in the phase space, the neutron from ( ), ', 'r EΩ
��

 

to dEdΩ
�

 centered in ( ), ,r EΩ
��

. 

In general the composition of a nuclear reactor is such that the matter can always be considered 

isotropic in the space scale of interest for ϕ  variations. Consequently,  the effective total and 

absorption cross-sections become angularly independent.  

 

( ) ( ) ( )
( )

( ) ( ) ( )

4 4 0

4

1
, , , , , ' ' , ' , ' ,

4

                                              , , ,

1
, , , , , , , , .

4

π π

π

π

π

+∞

Σ Ω ≅ Σ = Ω Ω Σ Ω ← Ω ←

+ Σ

Σ Ω ≅ Σ = ΩΣ Ω

� � �

�

� � � � �� � �

�

� � �� � �

T T TRANS

A

A A A

r E t r E t d d dE r E E t

r E t

r E t r E t d r E t

 (1.6) 
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Under this hypothesis the scattering transfer cross-section becomes invariant under rotation. 

This means that the deflection angle, after a scattering, is independent of the incoming 

direction. In this case the dependence from 'Ω ← Ω
� �

 could be reduced to the dependence from 

the cosine between the in-coming and out-going direction. Taking into account the fact that Ω
�

 

is a unit vector, the cosine can be expressed with the scalar product 'Ω ⋅Ω
� �

, this last expression 

is the standard approach used to describe the angular dependence of the scattering transfer 

cross section: 

 ( ) ( ), ', ', , ', ', .s sr E E t r E E tΣ Ω ← Ω ← ≅ Σ Ω ⋅Ω ←
� � � �� �

 (1.7) 

Also, in the case of the fission cross-section several approximations in the treatment of nuclear 

reactors are considered to be acceptable. First, given the small contribution from fission 

induced by very high energy neutrons, it is possible to assume that the direction of neutrons 

emitted by fission process has no correlation with the incident neutron direction and thus the 

emission is isotropic with respect to angle. Under this assumption and the hypothesis of  an 

isotropic medium, the angular dependence of the effective fission cross-section is eliminated. 

We can also assume that the energy of the neutrons produced in a fission reaction is 

independent to the energy of the neutron initiating the fission reaction thus the cross section 

can be factorized in energy: 

 ( ) ( ) ( ) ( ), ', ', , , , , , ', / 4 .f fr E E t r E t r E t r E tχ ν πΣ Ω ← Ω ← ≅ Σ
� �� � � �

 (1.8) 

Where ( ), ,r E tχ �  [eV-1] is known as the effective fission spectrum and ( ), ,r E t dEχ �  expresses 

the probability for a neutron created by fission to be emitted with energy E in dE. 

To account for the fact that more than one neutron is produced per fission reaction, an 

additional parameter is introduced which gives the average number of neutrons produced by 

the fission reaction: ( ), ,r E tν � . 

The steady state neutron transport equation is a balance equation in the phase space ( ), ,r EΩ
��

. 

Taking into account all of the physical processes described above and including an external 
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source ( ), ,extS r EΩ
��

, it is possible to achieve the following form of the steady state Boltzmann 

transport equation for neutrons. 

 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

[ ] [ ]

( ) ( )

0 4

0 4

3

0

, , , ' ' , ', ' , ', '

, ' , ' , ' ' , ', ' , , ,

,  , 0, 2 ,   0, ;
2 2

, , , , ' ' ' , ' , '

π

π

ϕ ϕ

χ ν ϕ

π π π

ϕ ϕ

∞

∞

Ω⋅∇ + Σ Ω = Ω Σ Ω⋅Ω ← Ω +

Σ Ω Ω + Ω

� �∈ ⊆ Ω∈ − × ∈ +∞� 	
 �

Ω = Ω + Ω Α → Ω → Ω

� �

� �

� � � � � � �� � � �

� � �� � � � �

��

� � � � �� � � �

T s

f ext

r E r E dE d r E E r E

r E dE r E r E d r E S r E

r V R E

r E r E dS d dE r r E( ) ( )

[ ]

02
ˆ 0

2

', ', ',

ˆ,  0,   0, ;

π

ϕ
+

+

+∞

∂
Ω⋅ >

+

�
�
�
�
�
�
�
�
�
�
�
� → Ω
�
�
� ∈∂ ⊆ Ω ⋅ < ∈ +∞��

� � �
�

��

��

V
n

E r E

r V R n E

 

 (1.9) 

n̂+  represents the outward normal to the surface V∂  and thus the condition ˆ 0n+Ω ⋅ <
�

 or 

ˆ 0n+Ω ⋅ >
�

 indicates all the directions in-coming and out-going in the spatial domain. The 

albedo operator kernel A describes the probability of a neutron with energy E’, direction 'Ω
�

 

that is escaping from the systems at position 'r V∈∂�
 to return to the system with energy E, 

direction Ω
�

 and at position r V∈∂�
. 

In order to shorten the notation the following operator definitions are used:  

 

( ) [ ]( )

( ) ( ) ( ) [ ]( )

( )

0 4

0 4

02

' ' , ', ' , , :=                          Scattering operator,

, ' , ' , ' ' , , :=                    Fission operator,

' ' ' , ' , '

π

π

π

χ ν

+

∞

∞

+∞

Ω Σ Ω⋅Ω ← = Ω

Σ Ω = Ω

Ω Α → Ω → Ω →

� �

� �

�

� � � �� �

� �� � � �

� � �� �

s

f

dE d r E E H r E

r E dE r E r E d F r E

dS d dE r r E E [ ]( )
ˆ 0

, , :=   Albedo operator.

+

∂
Ω⋅ >

= Ω� �
�

��

V
n

A r E

  

(1.10) 
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Introducing these expressions reduces the transport equation to: 

 

( )( ) ( ) [ ]( )
[ ]( ) ( )

[ ] [ ] [ ]
( ) ( ) [ ]( )

[ ]

3

0

2

, , , , ,

, , , , ,

,  / 2, / 2 0,2 ,   0, ;

, , , , , , ,

ˆ,  0,   0, .

ϕ ϕ

ϕ

π π π

ϕ ϕ ϕ

+

� Ω⋅∇ + Σ Ω = Ω +
�
� Ω + Ω
�
� ∈ ⊆ Ω ∈ − × ∈ +∞�
�

Ω = Ω + Ω�
�

∈∂ ⊆ Ω ⋅ < ∈ +∞��

� � � �� � �

� �� �

��

� � �� � �

��

T

ext

r E r E H r E

F r E S r E

r V R E

r E r E A r E

r V R n E

 (1.11) 

To describe the time evolution of the angular neutron flux, the fission operator should be split 

in two components, a prompt one and a delayed one. In fact, part of it acts like a transfer 

operator in time. To explain the reason of this behavior it may be adequate to recall briefly the 

fission process dynamics. After a neutron hits a fissionable target, if a fission takes place (it is 

the most probable event), in a very short time scale (compared with the time scale of the 

angular flux variations) the original target nuclide splits in two lighter fractions (fission 

products) releasing practically at the same time neutrons that are usually named prompt 

neutrons. The number of these prompt fission neutrons and kind of individual fission product 

isotopes are a statistical functions of the target type and of neutron energy. Sometimes, some of 

the fission products are in a very excited state and go through a decay process that leads to the 

release of one additional neutron usually named delayed neutron. The release of the delayed 

neutron happens during a time interval that is comparable with the one of the angular flux 

variation. For this last reason, the fission process that involves the emission of a delayed 

neutron should be treated as a time transfer operator.  The delayed neutrons are not only 

transferred in time but, in addition, they show a different energy emission spectrum compared 

to that of the prompt neutrons. Several fission products, so-called precursors, could lead to the 

emission of delayed neutrons. Each different one is characterized by a particular elapsing time 

(decay time) between the neutron absorption, by the target nuclide, and the release in the 

system of the delayed neutrons. Usually, instead of introducing a time transfer operator it is 

common practice in reactor physics, first, to introduce the spatial density of each different 
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nuclide that will release a delayed neutron (precursor concentration), and then, second, to 

couple the transport equation with equations describing the time evolution of the precursor 

concentrations. The number of nuclides releasing delayed fission neutrons is quite high; 

therefore we have several characteristic precursor decay times. Generally, different precursor 

concentrations are grouped in ‘families’ showing a similar decay period. In nuclear reactor 

theory, classically, only six families of delayed neutrons are used. Now it is possible to 

introduce the following quantities: 

• := effective prompt fission emission spectrum [eV-1]; 

• ( ), ,r E tβ � := effective delayed neutron fraction: fraction of delayed neutrons generated in 

a fission reaction by a neutron of energy E; 

    
( ) ( ) ( )( ) ( ) [ ]( )

0 4

  , , ' , ', 1 , ', , ' ' , , , := 

    := Prompt fission operator.
π

χ ν β
∞

• − Σ Ω = Ω� �
� �� � � � �

p f pr E t dE r E t r E t r E d F r E t
 

For each family, i, the following quantities can be defined 

• ( ),iC r t
�

:= effective precursor concentration [cm-3]: expected density of neutron 

emission with a decay time of iλ ; 

• iλ := effective precursor decay constant[s-1]; 

• ( ),i E tχ :=effective emission spectrum [eV-1]: probability of neutron emission at 

energy E; 

• ( ), ,i r E tβ �
:= effective delayed neutron fraction for family i: fraction of delayed 

neutrons of family i generated in a fission reaction by a neutron of energy E. 

With the above definitions, and the introduction of the initial conditions for the flux and the 

precursor concentrations, respectively:  ( )0 , , , 0ϕ Ω
��

T r E  and 
0iC , the time behavior of the 

angular flux can be described via the following equations. Note that the notation for in-coming 

and out-going angular flux on the boundary is kept from equation (1.9): 
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( ) ( )( ) ( ) [ ]( )
[ ]( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

1

1

0

0 4

, , , , , , , ,

, , , , , , , , , ,

, , , 0 , , ,0 ,

, ,

, , ' , ', , ', ' , ', ', ,           
π

ϕ ϕ

ϕ χ λ

ϕ ϕ

λ

β ν ϕ

−

=

∞

∂ + Ω⋅∇ + Σ Ω = Ω +

Ω + Ω +

Ω = Ω

∂ = − +

+ Σ Ω Ω

�

� �

� � � �� � �

� �� � � �

� �� �

� �

� �� � � �

t T

NF

p ext i i i
i

T

t i i i

i f

u E r E t r E t H r E t

F r E t S r E t r E t C r t

r E r E

C r t C r t

r E t dE r E t r E t d r E t

( )

[ ] [ ] [ ]

( ) ( ) [ ]( )
[ ] [ ]

0

3

0

2

1.... ,

,0 ,           1.... ,

,  , 0, 2 ,   0, ,   0, ;
2 2

, , , , , , , , , ,

ˆ,  0,   0,   0, .

π π π

ϕ ϕ ϕ

+

�
�
�
�
�
�
�
�
�
�� =�
�
� = =
�
� � �∈ ⊆ Ω ∈ − × ∈ +∞ ∈ +∞� � 	
 ��
� Ω = Ω + Ω
�
� ∈∂ ⊆ Ω ⋅ < ∈ +∞ ∈ +∞
��

�

��

� � �� � �

��

i i

i NF

C r C i NF

r V R E t

r E t r E t A r E t

r V R n E t

 (1.12) 

In this time dependent equation all of the operators reflecting physical interactions between 

neutrons and matter are time dependent due to the fact that the composition of the medium 

could be changing with time. 

For the needs of this work the above given forms of the neutron transport equations can be 

considered as to be sufficiently accurate. It would, nevertheless, be inappropriate not to 

consider the ad hoc nature of the mathematical entities: Fp, F, β , iβ , iχ , pχ  and χ . These 

quantities are averaged and summed over different probabilistic processes thus different 

isotopes constitute the matter that itself is a statistical medium. It was for this reason that the 

cross sections in the preceding sections were termed “effective”, which, for brevity, will be 

assumed from this point on. 

I.4. The Steady State Second Order Transport 

Equation 

In most reactors, only two boundary conditions are needed for reactor analysis: vacuum and 

reflected. The vacuum, or void, boundary condition assumes that the incoming flux is zero 

while the reflected boundary condition assumes the incoming flux is a reflection of the 
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outgoing flux. With these boundary conditions the steady state transport equation can be 

written as 

 

( )( ) ( ) [ ]( )
[ ]( ) ( )

[ ] [ ]

( ) ( )
( )

3

2
0 R ef.

2
Vac.

, , , , , ,

, , , , ,

,  , 0, 2 ,   0, ;
2 2

ˆ, , , *, ,      ,  0;

ˆ, , 0,                       ,  

T

ext

r E r E H r E

F r E S r E

r V R E

r E r E r V R n

r E r V R n

ϕ ϕ

ϕ

π π π

ϕ ϕ

ϕ

+

+

Ω ⋅∇ + Σ Ω Ω = Ω +

Ω + Ω

� �∈ ⊆ Ω∈ − × ∈ +∞� 	
 �

Ω = Ω ∈∂ ⊆ Ω⋅ <

Ω = ∈∂ ⊆ Ω ⋅ <

� � � � �� � �

� �� �

��

� � �� � �

� �� �

2
R ef. Vac.

0;

;V V V R

�
�
�
�
�
��
�
�
�
�
�
�

∂ ∪ ∂ ≡ ∂ ⊆��

 (1.13) 

where *Ω
�

 is the conjugate direction of Ω
�

. 

To obtain the second order form of the transport equation, the angular flux and source is 

written as a sum of two parts, one symmetric (even) and the other anti-symmetric (odd) with 

respect to Ω
�

 

 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1
, , , , , , :                              even neutron angular flux,

2
1

, , , , , , :                             odd neutron angular flux,
2
1

, , , , , ,
2

φ ϕ ϕ

ψ ϕ ϕ

±

Ω = Ω + −Ω

Ω = Ω − −Ω

Ω = Ω ± −Ω

� � �� � �

� � �� � �

� � �� � �

r E r E r E

r E r E r E

S r E S r E S r E :                            even/odd external group source,

 

 [ ]( ) ( )
0 4

, , = ' ' , ', ':            even/odd scattering operator,sH r E dE d r E E
π

+∞
± ±Ω Ω Σ Ω ⋅Ω ←� �

� � � �� �
 

 
( )

( ) ( )( )
', '=

1
= , ', ' , ', ' :              even/odd scattering kernel.

2

s

s s

E E

r E E r E E

±Σ Ω ⋅Ω ←

Σ Ω ⋅Ω ← ± Σ −Ω ⋅Ω ←

� �

� � � �� �   

(1.14) 

It is a trivial algebraic task to show that this form of the angular flux has the following 

properties 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )

, , , , ,

, , , , ,

, , , , ,

', ' ', '.

φ φ

ψ ψ
± ±

± ±

� Ω = −Ω
�
� Ω = − −Ω�
�

Ω = ± −Ω�
�

Σ Ω ⋅Ω ← = ±Σ −Ω ⋅Ω ←��

� �� �

� �� �

� �� �

� � � �
s s

r E r E

r E r E

S r E S r E

E E E E

 (1.15) 

Equation (1.13) can be written in terms of Ω
�

 and −Ω
�

 (inside the scattering kernel, 'Ω
�

 and 

'−Ω
�

 are used). The resulting two equations can be added and subtracted from each other 

leading to the following system where the even and odd parity expressions have been 

substituted and the spatial, energy and angular dependences are omitted for brevity 

 
[ ] [ ]
[ ]

,

.

ψ φ φ φ

φ ψ ψ

+ +

− −

�Ω⋅∇ + Σ = + +�
�

Ω⋅∇ + Σ = +��

� �

� �
T

T

H S F

H S
 (1.16) 

Note that the fission operator has also been assumed to be isotropic and thus only contains an 

even component. The scattering operator can be split since the spaces of even and odd 

functions are orthogonal with respect to the standard scalar product over 

[ ] [ ]2 / 2, / 2 0,2L π π π− ×  (Lebesgue space). Only symmetric terms characterize the first 

equation of system (1.16) and only anti-symmetric ones the second one. For this reason they 

are known as the even and the odd parity equations. The aim of this approach is to reduce the 

solution space from 

 [ ] [ ] ( )2 1 3, 0, 2 0,
2 2

L H V R
π πϕ π� �� �∈ − × × +∞ × ⊆� 	� 	
 �
 �

 (1.17) 

to 

 [ ] [ ] ( ) ( ) ( )2 1 3, 0, 2 0, , = ,
2 2

f L H V R f r f r
π πφ π

� � �� �∈ ∈ − × × +∞ × ⊆ Ω −Ω� �� 	� 	
 �
 �� �

� �� ��
 (1.18) 

where 2L  and 1H  are the usual Lebesgue and Sobolev spaces. 

The main advantage is a strong reduction of the number of degrees of freedom of the solution 

preserving the most important information for the reactor physics that is the scalar flux (the 

angular constant part of the neutron flux) In order to reduce the solution space the second 
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equation of (1.16) must be inverted with respect to ψ . The introduction of the L±  

operators ( )[ ]TL H± ±= Σ −  formally reduces the inversion problem to the inversion of the L−  

which only acts in angle. In non-vacuum regions this operator is not singular and thus the 

inversion is possible [20, 21]. For our interest it will be sufficient to find an expression of its 

inverse as a Fourier series over 2L [-1, 1]. In fact the angular part of the scattering kernel could 

be expressed as a function of the cosine between the incoming and out-going directions 

( ' µΩ ⋅Ω =
� �

, see page 11), thus the angular dependence is mono-dimensional. It is now helpful 

to introduce the orthogonal Legendre polynomials with respect to the angular dependence 

 ( ) ( ) [ ]21
1       -1,1     0,1,2,.....

2 !
µ µ µ

µ
� �= − ∈ =� 	
 �

p
p

p n p

d
L p

p d
,. (1.19) 

These polynomials obey the following orthogonal relationship 

 ( ) ( )
1

,
1

2
2 1p q p qd L L

p
µ µ µ δ

−

=
+� , (1.20) 

where ,p qδ  is the Kronecker delta. The Legendre polynomials form a complete basis set on the 

interval [-1, 1], and the Fourier coefficients of the scattering kernel are thus defined by the 

following projection: 

 ( ) ( )
1

,
1

1
2s p s pd Lµ µ µ

−

Σ = Σ� . (1.21) 

This gives the following Fourier series 

 ( ) ( ) ( ),
0

2 1s s p p
p

p Lµ µ
∞

=

Σ = + Σ� . (1.22) 

 

 

The inverse operator is given as [21] 

 ( ) ( ) ( )
( )

1 ,

04 ,
:

'1
[ ] ' 2 1

ps p

pT T T s p
p odd

P
L d p

π

∞−−

=

Ω ⋅ΩΣ
= − Ω +

Σ Σ Σ − Σ��

� �
�

. (1.23) 
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Now it is possible to invert the odd equation of (1.16) to obtain the strong form of the second 

order even transport equation 

 
( ) ( )( ) [ ] [ ]

[ ]

1

3

,

,  , 0, 2 ;
2 2

TL S H S F

r V R

φ φ φ φ

π π π

−− − + +�Ω⋅∇ −Ω⋅∇ + + Σ = + +
��
� � �� ∈ ⊆ Ω ∈ − ×� 	� 
 ��

� � � �

��
 (1.24) 

The boundary conditions for the even flux are provided in [20], which are written as 

( ) ( )
( ) ( )

[ ]

( ) ( ) ( ) ( ) ( )( ) [ ]

1

2
Ref.1

1 2
Vac.

ˆ           0,
                 ,  , 0, 2 ,

2 2ˆ         0

* * , ,  , 0, 2 .
2 2

φ φ π π π
φ φ

π πφ φ π

−− −
+

−− −
+

−− − −

� = −Ω ⋅∇ + Ω ⋅ < � � �� ∈∂ ⊆ Ω∈ − ×� � 	
 ��− = −Ω ⋅∇ + Ω ⋅ <� �

� �Ω − Ω − Ω ⋅∇ Ω + Ω⋅∇ Ω ∈∂ ⊆ Ω ∈ − ×� 	
 �

� � �
��

� � �

� � � � � � � � ��

L S n
r V R

L S n

L S S r V R

��

�
�
��

 (1.25) 

The description of the time dependent second order form of the transport equation will be 

described in chapter 3 since it is the main subject of this work and needs a more detailed 

treatment. A final remark about the inversion of the L−  operator could be interesting, in fact 

equation (1.23) shows that not only the inversion of this operator could not be performed in a 

void region ( 0Σ =T ) but also it requires that ( ), 0Σ − Σ ≠T s p  0,.....,∀ = ∞p , p odd. The 

inversion of the L−  operator strongly limits the application field of second order type methods. 
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Chapter II. DISCRETIZATION OF THE 
NEUTRON TRANSPORT 
EQUATION 

In this chapter the discretization scheme for energy, space, and angle will be discussed along 

with the numerical treatment of the time variable. For the angular dependence two schemes are 

considered: the spherical harmonics (PN) and simplified spherical harmonics (SPN) methods. 

The discretization in space and angle is displayed for the steady state second order form of the 

even transport equation since, later in this chapter, it will be shown that the discretization of the 

time dependent equation with respect to time leads to a set of equations each of which is 

formally equivalent to the steady state one. 

II.1. The Multi-Group Approximation and 

Spatial Homogenization 

The explicit details of the multi-group approximation and spatial homogenization are beyond 

the scope of this thesis, thus only the reasons for these approximations and the impact upon the 

governing equations are discussed. One benefit derived from these approximations is the 

derivation of average operators which are valid on a coarse space and energy grid. The detailed 

structure of a nuclear reactor core is generally very complex and contains many different 

materials. As a consequence, numerous discontinuities exist in the spatial cross sections 

distribution on a spatial scale of less than 1 mm (e.g. clad of the fuel pin structure). The energy 

dependence of the cross sections introduces more complexity due to the large number of 

resonances with narrow energy widths and high peaks. Combined, these characteristics require 

an extremely complex numerical treatment, which for reactor analysis, results in a numerical 

description of the spatial and energy dependence well beyond the capabilities of modern 
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computing technology. It is for this reason that spatial homogenization and energy collapsing 

are introduced. These approximations lead to average operators that are valid over a coarse 

space and energy grid, but which maintain approximately the reaction rates of the refined space 

and energy grid. The typical region over which spatial homogenization is performed is a single 

reactor fuel assembly split into several axial pieces (each having a length on the order of 

decimeters). The number of intervals into which the energy domain is split varies. The energy 

domain itself ranges from 0 eV to the upper energy cutoff of 14 MeV. In thermal reactors 

where the majority of neutrons in the reactor have energy less than 0.1 eV, 2 to 4 groups are 

enough to obtain sufficiently accurate results. For fast reactor calculations where a majority of 

the neutrons have energy >> 100 eV, from 4 to 30 (most time between 10 and 30) groups are 

generally used.   

Several methods have been proposed and used to achieve the coarse group cross sections 

needed to describe these reactor systems. The main idea behind all of these methods is to split 

the flux into two components: the macroscopic flux and the microscopic one. The microscopic 

flux has two main properties: first it is weakly affected by the boundary condition and second 

the variation in the spatial and energy domain is on a much smaller grid when compared with 

the macroscopic one [22, 23]. The microscopic flux is typically computed by solving the 

transport equation only for some regions of interest where reflected boundary conditions are 

used to simulate the spectrum representative for the reactor. Because of its weak dependence 

upon the boundary conditions the microscopic flux between two assemblies, having the same 

spatial composition but different position in the core, can be very similar. Consequently, in 

modern nuclear reactor analysis, the microscopic flux is only obtained for those fuel assemblies 

which have significantly different spatial geometry or compositions. In this manner the 

governing transport equation in the reactor core, for the microscopic flux, can be written in 

terms of the collection of unique fuel assembly problems that make up the reactor system. The 

averaged quantities, defining the homogenized operators, resulting from the microscopic flux 
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calculations are usually termed homogenized parameters. The homogenization process also 

affects the properties of operators, an example for which is the homogenized velocities which 

are a function of time, space and direction. Usually this change in the operators structure is 

neglected due to its low effect in the general solution. Following this tendency in this work 

operator structure is unchanged from equations(1.11) and (1.12). 

From this point forward, we will only consider the system of equations valid for the 

macroscopic flux and thus the homogenized set of parameters. As a result of this, the remainder 

of this thesis, unless explicitly stated, implicitly assumes the cross sections refer to a set of 

homogenized parameters.  
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Definitions of the homogenized operators: ( ), ',r E tβ � , [ ]( ), , ,pF r E tΩ
��

, [ ]( ), , ,A r E tΩ
��

, 

( ),i E tχ  and ( ), ,i r E tβ �
, are almost similar to ones just provided and therefore not reported 

here. Starting from these definitions, the transport equation in the homogenized multi-group 

formalism is equivalent to the previous form in (1.11) and (1.12), but now the unknowns are 

the macroscopic flux and precursor concentrations. The multi-group equation can be split into a 

system of equations each of which corresponds to a single energy group by a projection over 

the characteristic function in energy. The result is (for g=1,…., NG): 
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 (2.1) 

Where the multi-group external source has been defined as follow: 

 ( ) ( )
1

, , , , , ,
−

Ω = Ω�
� �� �

g

g

E

ext g ext
E

S r t dES r E t . (2.2) 

The influence of the delayed neutrons is taken in account by the equations describing the 

precursor concentrations for (i=1,…, NF): 
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As before, for steady state problems, the normal fission operator (the operator [ ], '→p g gF  is 

replaced by the [ ]'→g gF  operator) takes into account the fraction of delayed neutrons, with its 

spectrum, and the equation describing the precursor concentrations is no longer needed: 
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The reason for splitting the scattering operator in the self-scattering operator g gH →  and group 

transfer scattering operator '
'1
'

NG

g g
g
g g

H →
=
≠

�  is to obtain the within group transport equation: 
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Where ( ),gS r Ω
��

 represent the source term for the g-th group which includes neutrons 

contributed to this group by scattering and fission from all other groups: 
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 This formalism is widely used because it reflects the most common strategy for solving the 

group to group coupling as it is explained in the last paragraph of this chapter. By writing the 

system (2.5) for ±Ω
�

 with the same procedure illustrated for the transport equation, it is again 

possible to obtain the second order even parity form of the transport equation. The vacuum and 

reflected boundary conditions, group by group, are the same as those given in (1.25): 
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The second equation can be solved for the odd parity flux and substituted into the first yielding 

one equation for the even parity component of the flux: 
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The within-group g gL±
→  operator defined by [ ],g g T g g gL H± ±

→ →= Σ −  was introduced to compact 

the notation. The inversion of the g gL−
→  operator can be performed exactly as done in 1.4 (the 

homogenization process has no effect in angle under the factorization hypothesis). In the next 

paragraphs the process of discretizing equation (2.8) with respect to the space and angle 

variables will be shown. Unless explicitly stated, the derivation continues from here with the 

within group equation and the group index is dropped for simplicity. 

II.2. The Spatial Discretization 

The VARIANT code uses a hybrid primal finite element method to discretize the spatial 

dependence [24-26]. As is typical of the finite element method, the spatial domain 

(homogenized) is split into non-overlapping regions with constant material proprieties. 
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The hybrid terminology is derived from the means by which the finite elements are coupled 

together. First, a functional is derived which defines the Euler-Lagrange equation as the second 

order within group even parity transport equation. Within each finite element a standard 

Rayleigh-Ritz procedure is applied. In this type of formulation the natural boundary conditions 

become a relation between two different unknown functions [ ]L Sφ χ− −Ω⋅∇ = − +
� �

 that is 

applied on the surface of each element. This type intra-nodal coupling enforces the continuity 

of the directional derivative ( Ω ⋅∇
� �

) on the surface. The strong form is maintained along the 

interface for the odd parity flux (two adjacent elements share the same interface odd parity 

flux). An additional set of constraints is added to enforce continuity of the even parity flux 

between adjacent elements in a weak form using a Petrov-Galerkin method. The appropriate 

test function for this additional set of constraints is the odd parity interface flux (it is the only 

one having strong continuity at the interface). This result could be obtained by using the 

Lagrange multipliers method which is why the odd parity flux is often viewed as the Lagrange 

multiplier of the even parity flux weak continuity constraint. This kind of intra-nodal boundary 

conditions on the odd parity flux has the characteristic of enforcing the balance in a strong form 

but with the drawback of inserting a surface unknown that is the odd parity flux over iV∂ . 

Starting from this hybrid weak formulation of the problem, it is possible to construct a 

functional having a unique saddle-point [27] which corresponds to the solution of the Euler-

Lagrange equation for equation (2.8) .  
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The result is the following functional: 
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 (2.9) 

Since the functional is imposed separately upon each finite element, detailed inspection of the 

method only needs to be carried out for the application to a single finite element vF  where the 

region index is omitted: 
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(2.10) 

The unknown quantities of the functional, the even parity flux over the volume and the odd 

parity flux along the surface, are approximated using an orthonormal set of polynomials.. 

These orthornormal polynomial trial functions are constructed along the boundary of and 

within the hybrid finite element using the Gram-Schmidt procedure [28]. From the literature, 

this hybrid finite element is typically referred to as a node and consequently, the quantities are 

defined as intra-nodal.   

For the quantities inside of the volume, φ , S + and S − , we obtain the following general intra-

nodal expansion for each generic unknown ( ),z r Ω
��

, where z is interchangeable with φ , 

S + and S −  : 

 ( ) ( ) ( )
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,
α

α α
α =

Ω = Ω�
� �� �N

z r f r z , (2.11) 

( )f rα
�

 is the set of orthonormal polynomials of order α  within the volume and ( )zα Ω
�

 are the 

associated moments of the ( ),z r Ω
��

 function for ( )f rα
�

.  Nα  is the total number of 
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polynomials defined in the volumetric set. The odd parity flux for each surface of the node is 

defined as: 

 ( ) ( ) ( )
0

,
β

β β
β

ψ ψ
=

Ω = Ω�
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N

r h r . (2.12) 

( )h rβ
�

 is the orthonormal set of polynomials of order β  along the surface while ( )βχ Ω
�

 are 

the associated moments of the odd parity flux for ( )h rα
�

. Nβ  is the total number of 

polynomials defined along each surface of the node. 

As can be inferred, these expansions are used for describing the spatial dependence of the even 

and odd parity fluxes within each node and along the surfaces of the node. Constraints exist on 

the intra-nodal expansion order and the surface expansion order due to the LBB 

(Ladyzhenskaya, Babuska, Brezzi) condition of the discrete form of the problem [32, 33]. This 

constraint primarily does not allow the intra-nodal expansion order to be less than that of the 

surface order. The expansion order used to define the intra-nodal unknown quantities leads to 

the following number of moments where gr is the expansion: 

intra-nodal expansion 3D: ( )1 3
2

2 3
gr gr

N grα
+ += + , 

intra-nodal expansion 2D: ( )1
2

2
gr

N grα
+= + , 

surface expansion 3D: ( )1
2

2
gr

N grβ
+= + , 

surface expansion 2D: 1N grβ = + . 

A general inspection of the spatial dependence of the operators L±  shows that they are constant 

in space and thus constant in the functional (2.10). 
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II.3. The Angular Discretization by the Method 

of Spherical Harmonics 

One method used to approximate the angular dependence of the unknown quantities is the 

Spherical Harmonics method (PN)  [36 to 40]. This approximation uses the set of spherical 

harmonics which form a complete basis on the surface of a unit sphere. The spherical 

harmonics used in VARIANT are a modified version of the classic cosine and sine series 

definition given as: 
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( ), µp qP  are the associate Legendre polynomials defined by: 
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( )���µ φ=  where φ  is the polar angle and ω  is the azimuth angle. The normalization 

coefficients α q
p  are defined as: 
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while the coefficients ,p qC  are selected such that: 

 ( ) ( )', ' , ', ',
4

,
π

δ δΩ Ω Ω =�
� � �

p q p q p p q qd Y Y  (2.16) 

producing 

 ,

2 1
4π

+=p q

p
C . (2.17) 

 

 

 



 31 

For practical purposes, the functions are put into standard vector form where the spherical 

harmonic functions are ordered as follows: 

 
{ }
{ }

m+
0,0 2, 2 2, 1 2,0 2,1 2,2 4,4

m-
1, 1 1,0 1,1 3, 3 3, 2 3, 1 3,0 3,1 3,2 3,3 5, 5

g , , , , , , ,....                             even harmonics,

g , , , , , , , , , , ,....  odd harmonics.

− −

− − − − −

� �= 
 �

� �= 
 �

Y Y Y Y Y Y Y

Y Y Y Y Y Y Y Y Y Y Y

 (2.18) 

For the odd parity flux on the finite element surface, the reduced odd parity set of spherical 

harmonics are used: 

 { } 1,0 3, 2 3,0 3,1 3,2 5, 4, , , , , ,....− −� �= 
 �
�K Y Y Y Y Y Y . (2.19) 

For general interface conditions, it has been shown that this odd parity set of functions (without 

taking in account eventually surface sources) must obey the Rumyantsev [33, 35, 38] interface 

conditions. These conditions are generally simple when applied for a plane perpendicular to the 

polar direction, but for the azimuthal and general rotated systems, the solution is very complex. 

Given that all of the nodes used to define the problem domain have the same surface 

orientation, the odd parity functions are rotated such that the polar angle is always aligned with 

the outward normal from each surface. This allows the Rumyantsev conditions to be directly 

applied to the generic set of odd parity functions of a given order. The selected odd parity 

spherical harmonics shown in (2.18) have been found to be compliant with the Rumyantsev 

interface conditions for the second order even-parity transport equation, although they are not 

strictly those imposed by the Rumyantsev interface condition [38]. 

The order of the PN approximation is given by the value of p at which the expansion set is cut.  

For q, it is always complete within the volume such that –p <=q<= +p while along the surface, 

-p+1<=q<=q +p-1. It has been shown [36, 38] that the set of functions shown requires an odd 

order value of p leading to a full even parity set of spherical harmonics used internally to the 

node of order p-1 and a truncated set (Rumyantsev) of odd parity functions of order p used 

along the surfaces of the node.  
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Combining the spatial and angular expansions yields the following expansions for the nodal 

unknowns: 
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 (2.20) 

For a Nth order expansion, the total number of unknowns derived from the angular 

approximation are given as: 

even parity functions intra-nodal 3D: ( )1 / 2N N + , 

odd parity functions intra-nodal 3D: ( )( )/ 2 1 1N N+ + , 

even parity functions intra-nodal 2D: 
2

1
2

N +� �
� �
� �

, 

odd parity functions intra-nodal 2D: 
1 3

2 2
N N+ +� �� �

� �� �
� �� �

, 

odd parity functions interface 3D: ( )1 / 2N N + , 

odd parity functions interface 2D: 
2

1
2

N +� �
� �
� �

, 

Not only do the unknowns need to be expanded using the preceding trial functions but the L±  

operators [26] must also be expanded with respect to angle. By means of the addition theorem 

for Legendre polynomials: 

 ( ) ( ) ( ), ,
0

' '
p

p p q p q
q

P Y Y
=

Ω ⋅Ω = Ω Ω�
� � � �

. (2.21) 
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Inserting this expansion into (1.22) and (1.23) produces: 
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 (2.22) 

and for the L+ : 

 ( ) ( ) ( ) ( ), , ,
0 0 4

:

[ ] 2 1 ' '[ ]
p

T s p p q p q
p q
p even

L p Y d Y
π

∞
+

= =

= Σ − + Σ Ω Ω Ω� � �
� � �

. (2.23) 

After the expansions (2.8) defined by (2.20), (2.22) and (2.23) are inserted into the functional 

(2.9) it is possible to investigate variations of the unknowns which will force the functional to 

be stationary. This process provides the algebraic system needed for the solution of the 

unknown moments. The solution algorithm of the algebraic system is beyond the scope of this 

thesis, but it is easy to imagine that a direct method for such a large system of equation is 

impractical [40 to 43]. For 3D reactor analysis, a typical rectangular mesh implementing a 4th 

order intra-nodal spatial expansion, a 2nd order spatial surface expansion and P3 angular 

approximation leads to 99 moments per node. When combined with the number of nodes 

needed to model a typical reactor (hundreds) and the number of energy groups (tens), this 

yields a system of equations with almost 100000 unknowns. 

II.4. The Angular Discretization by the Method 

of Simplified Spherical Harmonics 

The simplified spherical harmonics method (SPN) was developed in the early 1960s [44, 45]. It 

has been widely used in reactor calculations [46, 47] and radiation transport problems [48 to 

50]. The mathematical derivation of this method is not rigorous, although it has been proven 

that the SPN methodology is able to produce an asymptotic solution of the rigorous solution of 

the neutron transport equation [51]. An alternative approach to deriving the simplified spherical 
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harmonics equations [52] has been achieved by using a truncated Neumann series of a rescaled 

Ω ⋅∇
� �

 operator. Although this last approach does seem to be the best one for providing a solid 

mathematical basis of the SPN method, as pointed out in [53], the convergence of the Neumann 

series is not assured since the operator is unbounded. Even if the SPN method is somewhat 

based upon the PN method (the original derivation starts from the one-dimensional PN 

equations) there is a substantial difference in the mathematical approach. In fact the PN method 

is based upon an approximation of the neutron angular flux while the SPN is based on an 

approximation of the operator acting upon the neutron angular flux. This methodology has 

shown, nevertheless, a great capability to reduce the computational time without resulting in a 

significant loss of accuracy for the problems dealing with homogenized material distribution 

which are typical of reactor analysis.  

The derivation shown here, is an extension of the original one which can be found in [44] and 

extended to higher SPN order for the VARIANT code [54]. 

To begin, the one-dimensional transport equation is considered in one dimension r x=� . The 

angular dependence ( ,  ω θ ) is reduced to a one-dimensional space since the solution contains 

symmetry with respect to the azimuth angle ω . Note that in this case polar axis is assumed to 

be aligned with the primary spatial axis. These considerations reduce the dependences as 

follows: ( ) ( ), ,θΩ →
��

r x . The corresponding within group equation for (1.16) in the one-

dimensional system is given by: 

 
( ) ( ) [ ]( ) ( )
( ) ( ) [ ]( ) ( )

cos , , , ,

cos , , , .

θ ψ θ φ θ θ

θ φ θ ψ θ θ

+ +

− −

� ⋅ ∂ + =�
�

⋅ ∂ + =��

x

x

x L x S x

x L x S x
 (2.24) 

For practical purpose a change of variable is made where ( )cosθ µ θ→ = : 

 
( ) [ ]( ) ( )
( ) [ ]( ) ( )

, , , ,

, , , .

µ ψ µ φ µ µ

µ φ µ ψ µ µ

+ +

− −

� ∂ + =�
�

∂ + =��

x

x

x L x S x

x L x S x
 (2.25) 

For the SPN method, it is at this point that a formal transformation is applied to construct a 

three-dimensional structure.  
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This transformation makes the following assumptions: 
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 (2.26) 

The odd parity quantities become three-dimensional vectors, except for the [ ]−L  operator 

which is physically invariant under rotation: 

 
( ) ( )
( ) ( )

, , ,

, , .

ψ µ ψ µ

µ µ− −
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�� �

�� �
r r

S r S r
 (2.27) 

The derivative with respect to x is replaced by ∇
�

, the gradient operator, when acting upon even 

parity quantities and by ∇ ⋅
�

, the divergence operator, when acting upon odd parity quantities. 

This produces the final system of equations: 

 
( ) [ ]( ) ( )

( ) [ ]( ) ( )
, , , ,

, , , .
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+ +

− −
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r L r S r

r L r S r
 (2.28) 

This equation combined with the two equations of (2.24) yields the second order even parity 

SPN transport equation: 

 
( ) ( )( ) ( ) ( )

[ ]( ) ( )

1
, , ,
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µ µ φ µ µ φ µ

φ µ µ
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+ +

� �∇ − ∇ ⋅ + + Σ =
 �

+

�� � � � �

� �

TL S r r r

H r S r
 (2.29) 

It is important to note that the inversion of the −L  operator which makes use of the addition 

theorem for the Legendre polynomial must be reformulated to account for the reduced angular 

dependence. 

 ( ) ( ) ( ),0 ,0' 'µ µ µ µ⋅ =p p pP Y Y . (2.30) 
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The Legendre polynomials and the spherical harmonics of order p,0 are the same functions 

used previously, except the normalization coefficients are changed to 
� �

�

�

π
+

 (refer to 

equation (2.13)): 

 ( ) ( ) ( )2 1
' '

4
µ µ µ µ

π
+⋅ =p p p

p
P P P . (2.31) 

This simplifies the expression of  ±L : 
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 (2.32) 

and the inverted −L : 
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given in (2.21). The even parity quantities (neutron flux and source) can be expanded as 

follows: 
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The odd parity quantities, now being vector quantities, are expanded as follows: 
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 (2.35) 
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The equation (2.29) is formally equivalent to equation (2.8) thereby leading to the same 

functional as (2.10) where the angular projection over Ω
�

 is replaced by 
1

1

1
2

µ
−

−
� d  with the 

following changes to the boundary integral: 

 
( ) ( )

�

� � 	� �

µ

ψ ψ µ

Ω →

Ω →

�

� �� �  (2.36) 

As in the PN method the expansion provided by (2.35), (2.34) in conjunction with the spatial 

expansion are inserted into the SPN functional. Forcing variations in the even and odd parity 

fluxes to be stationary yields a well posed algebraic system of equations for the moments of the 

approximating functions. Compared with the PN method, the number of angular unknowns in 

the SPN method is substantially reduced. For an expansion of order N, where N is again odd, 

the angular approximations yield: 

even functions intra-nodal 3D: ( )1 / 2+N , 

odd functions intra-nodal 3D: ( )3 1 / 2+N , 

even functions intra-nodal 2D: ( )1 / 2+N , 

odd functions intra-nodal 2D: ( )1+N , 

odd functions interface 3D: ( )1 / 2+N , 

odd functions interface 2D: ( )1 / 2+N , 

 

II.5. The Multi-Group Strategy 

As already mentioned the coupling between the within-group equations is done by the source 

terms that contain contribution from down- and up-scattering and fission happening in other 

energy groups plus of course a possibly present external source.  
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Therefore it possible to write the following expression for the within odd and even group 

sources (for group g): 

 

( ) ( ) ( ) ( )
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 (2.37) 

As can be noticed, there is no odd external source in (2.37) because up to now such an option 

has not been available among the VARIANT capabilities. It turns out that this kind of coupling 

in conjunction with the solution scheme based on the second order even equation shows a clear 

problem: the intra-nodal odd source is related to the intra-nodal odd flux which is a quantity not 

taken in account by the within-group second order form of transport equation. To overcome 

this difficulty, the intra-nodal odd flux is expressed by means of the inversion of the second 

equation of the system (2.7) leading to a new expression for the within-group source: 
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 (2.38) 

Both these source components represent an energy coupling between groups. In fact in order to 

compute the source for the g-th group it is necessary to know the even flux moments and odd 

source (both up to the scattering order) for all the groups for which, respectively, the '
+

→g gH and 

'
−

→g gH are not zero. In order to better understand the type of coupling arising from the 

scattering source is generally preferable to refer to the matrix representation of the scattering 

operator (discretized in energy): { }' ',
± ±

→ =g g g gH H (double underlining stands for a matrix entity). 

In a fast reactor usually this matrix is of lower triangular type (with a very low bandwidth if no 

light elements are present). In reactor types with essentially thermal neutron spectrum it is 

possible to have a non-zero area also in the lower right side of the matrix. The reason for such 
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structure is that as long as the neutron kinetic energy is higher than the average thermodynamic 

energy of the surrounding media, neutron moderation will happen, i.e. in a collision the neutron 

will either remain in the same energy group or will be scattered down to a lower energy group. 

On the other hand, when the neutron kinetic energy is almost the same as the average 

thermodynamic energy of the collision target, the neutron could gain energy during a scattering 

process. The physical interpretation of the scattering matrix suggests that the lower triangular 

component will be, in any case of interest for the physics of reactors, dominant. This last 

consideration suggests that an optimal numerical inversion of this matrix could be achieved by 

a Gauss-Seidel algorithm that in case of a pure lower triangular matrix is reduced to a direct 

inversion. Another group coupling arises from the presence of the fission operator. The neutron 

production operator, F, i.e. the fission spectrum and the fission cross section are such that they 

tend to strongly couple the last energy groups with the uppermost ones. This fact unfortunately 

tends to decrease slightly the efficiency of the Gauss-Seidel scheme. The general scheme could 

be summarized as follows: the within-group equation for the highest energy group is solved 

first using a guess for the source (usually it is coupled with the other groups just by the fission 

source), then the process goes down in energy using the flux in the already solved energy group 

to update the down scattering source. Once the last group is reached a new fission source is 

available and the process is repeated until convergence. 

II.6. Time Discretization by the Direct Method 

In this section the time dependent scheme used by KIN3D [55] before this thesis is displayed 

with some minor modification. The first step is to create a time dependent system formally 

equivalent to the steady state one (1.16) that can be solved by means of the VARIANT code. 

To achieve this, it is necessary to start from the first equation of the system (1.12). As done 

before, in the steady state case, the equations of system (1.12) are written for plus and minus 

Ω
�

. The two resulting equations are once subtracted and once added to each other and even and 

odd parity quantities are introduced.  
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Observing that the delayed neutron source is isotropic, after these manipulations the final 

equations could be written as the following system: 
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 (2.39) 

where the boundary conditions and domain definitions are omitted and the dependences and the 

quantities are the same as those of (1.12). 

In the system (2.39) the odd component of the external source has been neglected in the 

original version of KIN3D since it could not be treated by the VARIANT flux solver existing 

at that time. To compact the notation, a production operator is introduced, defined by: 

 [ ]( ) ( ) ( ) [ ]
0 4

, , , ' , ', , ', '
π

ν
∞

Ω = Σ Ω� �
� �� � �

fP r E t dE r E t r E t d . (2.40) 

Inserting this inside the prompt fission operator we obtain the following relation: 
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(2.41) 

under the assumption that ( ) ( ), ', ,r E t r tβ β≈� �
 (this simplifying assumption is sometimes 

disregarded in a more general treatment): 

 [ ]( ) ( ) ( )( ) [ ]( ), , , , , 1 , , , ,p pF r E t r E t r t P r E tχ βΩ = − Ω
� �� � � �

. (2.42) 

 

 

 

 



 41 

Using these new operators, the system (2.39) becomes: 
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The original direct time discretization scheme was based on the assumption that the time 

derivative of the odd component of the flux is negligible. The physical interpretation of this 

approximation will be clarified later, by comparison with the new time discretization scheme 

which is introduced in this thesis work. The time integration scheme is based on a first order 

backward Euler scheme of the first equation of system (2.39), a mixed Crank-Nicholson (with 

respect to the fission source) and exact (with respect to the precursor concentration) integration 

scheme in the 3rd equation. The scheme could be described with the following approximations 

(right superscript indicates the time interval): 
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This scheme leads to: 
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where 1 1i i it t t+ +∆ = − . Now the exact integration of the equation for precursor concentration 

[55] leads to an expression for 1i
iC+  as a linear functional of 1i φ+  of the form: 

1 1 1 1i i i i
i i iC a c φ+ + + +� �= + 
 �. By insertion of this expression in the first equation of the system one 

obtains: 
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At this point it is usual to define modified operators to recast equation (2.46) in a form formally 

equivalent to the first equation of the system (1.13). 

 ( )
[ ] ( )

[ ] [ ]( )

1 1

1

1 1 1 1

11

1 1 1

1
1

1 1 1 1 1 1

1

1
,

1
,

1 ,

,

, , .

φ χ λ

χ χ β

χ χ λ

+ +

+

+ + + + + +

=+

+ + +

+
+

+ + + + + +

=

Σ = Σ +
∆

= + +
∆

= −

=

� �= + Ω� �
� �

�

�

�

�

�

��� �

i i
T T

i

i NF
i i i i

i i i
ii

i i i
p p

i
i

NF
i i i i i i

p i i i
i

u t

S S a
u t

P P t

F P c r E

 (2.47) 

In the remainder of this section, 
1

1

+∆ iu t
 will be referred as the time absorption term and 

1

1 φ
+∆

i

iu t
 

as the time source term. 

Using these definitions, the system (2.45) can be reformulated in the following way: 
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This is formally equivalent to (1.13). By means of the new definitions:  

 
[ ] ( )
[ ] ( )

1 1 1

1 1 1

[ ],

[ ],

+ ± + + ±

+ + + + +

= Σ +

= Σ +� �

i i i
T

i i i
T

L H

L H
 (2.49) 

 

 



 43 

it is possible to obtain a system in the same form of (1.24): 
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where the boundary conditions are the same as those in (1.25) (it is assumed that the boundary 

conditions are constant in time). Another fundamental hypothesis is that the reactor being 

studied by the transient analysis is initially in a steady state mode (including its energy 

production and heat removal) where the initial conditions are provided by the solution of the 

system: 
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 (2.51) 

The first problem that should be solved when trying to apply a time discretization, is how to 

modify L+  without any modification of L− . From the first equation of (2.48) a modified total 

cross section is present which is absent in the second one. If one wants to use VARIANT as a 

black box for the solution of a pseudo steady state problem (given by (2.50)), it is not 

reasonable to introduce a modification in the format of the cross section file (distinguishing 

between the total cross section present in the ±L  operators). As a consequence, the 1i H+ +  

operator is modified in the following manner:  
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This leads to the new definition of 1i L+ +� : 
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 ( )[ ] ( )1 1 1 [ ]i i i
TL H+ + + + += Σ +�� � . (2.53) 

In this way it was possible to modify only the zeroth order moments of the scattering kernel, 

when using VARIANT as a black box steady state flux solver. This approach has the advantage 

of acting on a component of the scattering that exists in every physical model of interest (no 

change between cross section file structure of the steady state analysis) and it only affects the 

even-parity part of the scattering kernel. Unfortunately, as was discovered in the first part of 

this thesis, this scheme is unbalanced with respect to the time source and time absorption. In 

fact making a comparison between 1i L+ +�  and 1+ +��i L , defined, respectively, by (2.49) and (2.53), 

one can find:  

 ( )[ ] ( )[ ] [ ]1 1

1 1 4

1 1
'[ ]

π
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+ +

− = − Ω
∆ ∆ �

��� �i i

i i

L L d
u t u t

. (2.54) 

This difference arises from the fact that the time absorption defined by (2.52) acts only on the 

zeroth moment of the flux while the one defined by (2.47) acts on all the angular components 

of the even-parity flux. In order to obviate this difficulty, two approaches are feasible. The first 

one is based on correcting the moments of the scattering kernel up to the order (of the main 

index p) used in the angular flux expansion: 

 1 1
, ,

1

1
        .+ +

+

Σ = Σ + ∀ ≤
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�i i
s l s l

i

l p
u t

 (2.55) 

This approach is undesirable since it artificially increases the size of the scattering kernel. Such 

an introduction of additional components in the scattering kernel first requires a modification 

of the cross section file and secondly requires an increase of the computational time due to 

enlargement of the scattering matrix size. Nonetheless, this approach could be wiser to use in 

the future because the second approach involves additional approximations. Moreover, the 

exact approach shown in the next chapter can became too expensive to use, especially in 

situations when the computational cost of the spatial and energy solution becomes comparable 
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to the time interpolation process. The second option, which is used for the new implementation 

in the code, is based on the assumption that the time inertia in the higher angular flux moments 

(i.e. p>0) is negligible. To explain this concept, it would be better to refer to the system of 

equations arising by projection over the spherical harmonics basis of the transport equation. 

This system has one equation for each angular moment which is coupled by the Ω ⋅∇
� �

 operator. 

When the time derivative inside one of these equations is neglected, the corresponding moment 

is not assumed to be constant in time, but instead, the moment is assumed to respond so fast to 

the excitation arising from the external source and coupling terms that it has no memory of the 

past. In other words, it immediately reaches the asymptotic solution without memory of the 

past (i.e. no inertia). Using this scheme we have to change the first approximation described in 

(2.44) as follows: 
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Of course the time source associated to this scheme must be redefined: 
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This new definition of the time source is now in balance with the definition of the modified 

even-parity scattering kernel defined by (2.52). The time discretization process up to this point 

can be easily repeated starting from the multi-group equation (2.1) and (2.3) leading to an 

equation formally equivalent to that shown in paragraphs II.2 II.3 and II.4. In this case the 

within group time source will be: 
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, (2.58) 

and the time absorption: 

 
1

1

+∆ iu t
. (2.59) 
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One final comment about this scheme is that even if the coupling terms between the precursor 

concentration and flux equations are treated by a partially explicitly time integration scheme, 

due to the low value of the norms of the coupling operators, instability can only arise for values 

of the time step for which the error in the flux evaluation is already intolerable. 

The method described by equations. (2.56), (2.57), (2.52) and the second and third of (2.44), in 

the following chapters, will be referred as the old (time direct) scheme. 
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Chapter III. EXTENSIONS OF THE 
DIRECT METHOD FOR THE 
TIME DISCRETIZATION 

The aim of this chapter is to describe a new direct discretization scheme for the time 

dependence which accounts for the time derivatives of the angular moments of the flux (both 

the even and odd components). The purpose of introducing this additional feature was to 

accommodate the scheme to very short time scale phenomena where the time inertia of higher 

angular moments may not be negligible. In this chapter, the differences in the mathematical 

structure of the problem that arise from the two different schemes are displayed. This work, 

from a practical perspective, has also extended the capability of this new scheme by a higher 

order time discretization approximation in conjunction with an automatic time step control. 

This allows the simulation of a realistic transient with a reasonable computational cost. The 

introduction of the adaptive time control has been carried out by an analysis of the overall order 

of precision of the time integration scheme such that with reasonable assumptions, the stability 

and precision of the algorithm is maintained. 

 

III.1. The New Direct Scheme Equations (PN 

Case) 

The starting point is a first order backward Euler scheme in time for all the even and odd parity 

flux moments. The same discretization scheme used in the previous scheme for the precursor 

concentration equation is also used.  
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This scheme can be described by the following set of approximations: 
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 (3.1) 

Since the treatment for delayed neutrons is the same as that used in the old scheme, its 

description will be omitted here. Later, it will be revisited during the analysis of the order of 

precision of the general scheme. Using the approximations given by (3.1) in the first two 

equations of system (2.43) (without delayed neutrons contribution) the following is obtained: 
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 (3.2) 

In accordance with the limited capability of VARIANT the odd parity source term, � − , has 

been omitted in the last equation of (3.2). With the introduction of the time absorption 

1
1( )−

+∆ iu t , the equation is balanced by the presence of the even and odd parity time-dependent 

sources ( )1/φ +∆i
iu t  and ( )1/ψ +∆i

iu t . With this, it is possible to define the following modified 

quantities: 
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 (3.3) 

Inserting (3.3) in (3.2): 
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 (3.4) 

Since the angular structure of the L−�  operator is identical to the L−  operator, the inversion can 

be done in the same way as that done in 1.4. Consequently, the second equation of the system 

can be eliminated: 

 ( ) ( )( )11 1 1 1 1 1 1 1i i i i i i i i
pL S L S Fφ φ φ

−+ − + + − + + + + + + +� � � �Ω⋅∇ −Ω ⋅∇ + + = +
 � 
 �
� � � �

� �� � . (3.5) 

The resulting time integration scheme is a backward Euler form for all of the angular 

components of the flux (not taking in account delayed neutrons contribution) and it requires 

only the change of the total cross section since one has a coherent time source for all of the flux 

components. The main drawback of this scheme is the introduction of an odd parity component 

of the time source that is difficult to create and implement. VARIANT, as it turns out, does not 

provide any information about the odd parity spatial and angular moments of the flux and is not 

able to treat external odd parity sources. Unfortunately, due the group coupling that arises 

during the treatment of the odd parity source, it is not possible to transfer directly the time 

discretization from the continuous energy treatment to the multi-group formalism as done in 

the previous scheme. It is therefore better to put system (3.4) and equation (3.5) directly in the 

multi-group form: 
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The multi-group quantities corresponding to the ones defined in (3.3) are defined as: 
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The first problem that has to be solved is how to reconstruct the odd parity flux at the previous 

time step (i) such that the odd parity component of the time source (
1

1 ψ

+∆

i
g

g iu t
) is obtained. The 

starting point is the second equation of system (3.6) evaluated at time step i. Writing equations 

(3.6) and (3.7) for each volume of the spatial discretization and using the expansion for the 

intra-nodal spatial dependence as done in Section I.2: 
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Recalling the fact that inside of each volume the homogenized operators −
→
�i

g gL , and '
−

→
i

g gH  are 

constant and that the spatial trial functions are orthogonal, a projection over ( )'f rα
�

 leads to: 
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In order to facilitate the algebraic manipulation, it is better to introduce the single indexing in 

the angular expansion of the odd parity scattering operator with the following convention: 
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This scheme accounts for the fact that a change in the secondary index q has no effect on the 

scattering kernel and thus it should be modified for the 2D or 1D case in which the number of 
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expansions on the secondary index is reduced for the symmetry conditions. Now the expression 

in (3.8) for [ ]1+ −�i
gL  can be reformulated as follows: 
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The same formalism for the down/up scattering operator 'g gH −
→  gives: 
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Equation (3.10) can be reformulated as follows by using the intra-nodal angular expansions for 

even and odd parity functions: 
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Using the orthogonal relation of the spherical harmonics the last equation is reduced to: 
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Projecting the last equation over mg −  one obtains: 
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The values of the integrals in (3.16) are currently pre-computed for all the possible 

combinations of the basis functions (α, m+, m-) for a standard element, and thus, by means of 

the Jacobian, can be adapted to the volume element under consideration. 

 
( ) ( ) ( ) ( )

( )

, ,
', '

0 4

,

g g ,

2 1 .

α
α α

α α α
α π

φ φ+ + − +
−

= +

− − −
→ →

� �= Ω Ω Ω Ω ⋅∇
 �

� �= Σ − + Σ� �
� �

�� � �
� � � � �� �

� �

N
i m i m m m

m g g
m Vol

i i i
m T m s m
g g g g g

M d dVf r f r

L p

 (3.17) 

After the substitutions: 
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Unfortunately the system is not yet in an explicit form since the terms 
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+ Σ�  induce a coupling between the odd flux moments in different 

energy groups. The direct inversion of this part of the operator is almost prohibitive, but on the 

other hand, the discrete form of the operator is generally lower triangular. This is due primarily 

to the fact that in fast reactors, the up scattering is almost negligible. In this case, the use of an 

iterative Gauss-Seidel scheme is very fast.  
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With this, the following iteration scheme is proposed (upper right r and r+1 are the iteration 

indices for the Gauss-Seidel algorithm): 
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Once that the odd parity moments of the flux at the previous time (i) step are known, the odd 

parity time source for the next time step (i+1) can be constructed: 
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Unfortunately, as already mentioned, the VARIANT code is not able to treat external odd 

parity sources. To overcome this problem, its contribution to the functional for the second 

order even form is computed externally. The procedure for this starts with the functional for 

each node in the multi-group formalism which can be obtained by the modified problem of 

equation (3.7): 

 
( ) ( ) ( )( )21 11 1 1 1 1 2 1 1 1 1 1

4

1 1

4

2 2

2 .

i i i i i i i i i i
v g g g g g g g g g
g V

i i
g g

V

F dV d L L S L S

dl d n

π

π

φ φ φ φ

φ ψ

− −+ + − + + − + + + + + + − + −

+ +

∂

� �= Ω Ω∇ + − − Ω∇
� 	
 �

� �+ Ω ⋅Ω
 �

� �

� �

� � � � �
� �� � �

� ��
  

(3.21) 

Focusing on the term: 
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It is helpful to recall the expression of the two sources (even and odd): 
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,

≠

�
NG

g g

  

(3.23) 

The treatment of the even parity source is straightforward since the time source can be included 

in the external even parity source. For the odd parity source treatment, the odd parity 

component of flux is decomposed in two parts: 

 1 1 1
' ' '

i i i
g g gψ ξ ζ+ + += + , (3.24) 

which are solutions of the two equations: 

 

( )

( )

11 1 1 1 1
' ' ' ' '' ' ''

''1
'' '

1 '1 1 1 1
' ' ' '' ' ''

''1' 1
'' '

,

1
.

ξ φ ξ

ψ
ζ ζ

−+ + − + + − +
→ →

=
≠

−+ + − + − +
→ →

=+
≠

� �
� �� �= −Ω ⋅∇ + 
 �� �� �
� �

� �
� �� �= + 
 �� �∆� �
� �

�

�

� � NG
i i i i i

g g g g g g g
g
g g

i NG
gi i i i

g g g g g g
gg i
g g

L H

L H
u t

 (3.25) 

The sum of these equations yields the exact equation for the odd parity flux component: 

 ( ) ( ) 1 '1 1 1 1 1 1 1
' ' ' ' ' '' ' '' ''

''1' 1
'' '

1 ψ
ξ ζ φ ξ ζ

−+ + + − + + − + +
→ →

=+
≠

� �
� �� �+ = − Ω ⋅∇ + +
 �� �∆� �
� �

�
� �i NG

gi i i i i i i
g g g g g g g g g

gg i
g g

L H
u t

. (3.26) 

Removing the external odd parity source 
1

1 ψ

+∆

i
g

g iu t
 in VARIANT results in the computation of 

the within-group odd parity source based only upon the first of the two equations (3.25).  
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Inserting (3.25) into the second equation of (3.23): 

 ( )

1 1 1 1
' ' '

'11
'

1 '1 1 1 1
' ' '' ' ''

'1 ''11 ' 1
' ''

Arising from the odd time source

1

1 1

ψ
ξ ζ

ψ ψ
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+ − + − + +
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=+
≠

−+ − + − + − +
→ →
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≠ ≠

� �= + + =
 �∆

� �� �
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� �
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gi i i i
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g gg i g i
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( ) 11 1 1 1 1
'' ' '' '' '' ' ''

''1 ''1
'' ' '' '

Computed correctly by VARIANT

.φ ξ
−+ − + − + + − +
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= =
≠ ≠

+

� �� �
� 	� �� �+ −Ω ⋅∇ + 
 �� 	� �� �� 	� �
 �

� �

�����������������������������

� �

�������������������������
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i i i i i

g g g g g g g
g g
g g g g
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 (3.27) 

Splitting the odd parity source into two parts: 

 ( )

( )

1 1 1

1 '1 1 1 1 1
' ' '' ' ''

'1 ''11 ' 1
' '' '
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' ' ' '' ' '

1 1ψ ψ
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� �� �
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 �

� �
NG NG

g g
g g g g

 (3.28) 

The equation for 1i T
gS+ −�  can be reformulated as follows: 

 ( ) 11 1 1 1
' ' '

'11
'

1 ψ −+ − + − + − + −
→

=+
≠

� �= + � 	
 �∆ �� �
i NG

gi T i i i T
g g g g g

gg i
g g

S H L S
u t

. (3.29) 

This source can be expanded over the Legendre polynomial basis in space, and spherical 

harmonics in angle: 

 ( ) ( )1 1 ,
TN

i T m i m
g g

m

S g f r S
α

α
α

α

−
+ − − + −

−
= Ω� �

� �� � . (3.30) 

Since the operator ( ) ( )( )[ ]11 1
1 ' '1/

−+ − + −
+ →∆ + ⋅i i

g i g g gu t H L  is diagonal in space and angle over the 

basis, the Fourier coefficients of the last series are: 
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 ( )
',

11 1 1 1, ,
, , ' '
''11

'

1 α
α αψ −− −−+ + + +− −

− −
→=+

≠

� �= + Σ � 	∆ 
 �
�� ��

i mT TNG
gi i i im m

g s m m g g
g ggg i

g g

S L S
u t

. (3.31) 

This is not yet an explicit formulation of 1 ,α
−

+ −�
T

i m
gS  due the group coupling, but nevertheless, it 

suggests an iterative strategy for solving it as done for (3.19). This yields the following 

scheme: 

 ( )
1 ',

11 1 1 1, ,
, , ' '
''11

'

1 α
α αψ+ −− −−+ + + +− −

− −
→=+

≠

� �� � � �= + Σ � 	� � � �∆� � � �� 	
 �
�� ��

r ri mT TNG
gi i i im m

g s m m g g
g ggg i

g g

S L S
u t

. (3.32) 

Recasting the functional term (3.22) in the following way: 

 ( )( )( ) ( ) ( )( )1 11 1 1 1 1 1 1 1

4 1
2 3

i i i i i T i i i V
g g g g g g g g

V

dV d S L S L S
π

φ φ φ
− −+ + + + + − + − + + − + −

� �
� 	Ω + Ω∇ + Ω∇� 	
� 	
 �

� �
� � � � �

� �� �
����� ������������� �������������

. (3.33) 

Once the 1i L+ −�  is correctly changed, by adding the time absorption to the total cross section, the 

third term is correctly treated by VARIANT. The next step is the evaluation of the first two 

terms by finding a discrete operator O that will satisfy: 

 ( ) ( )( )11 1 1 1 1 1

4 4

i i i T i i i T
g g g g g g

V V

dV d L S dV d O S
π π

φ φ
−+ + − + − + + + −� �ΩΩ∇ = Ω 
 �� � � �

� � � �
� �� . (3.34) 

First the expansions of 1i
gφ+  and 1i T

gS+ −�  are introduced (the last is given by (3.30)) and then the 

( ) 11i
gL

−+ −�  operator is applied: 
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(3.35) 
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From the last expression, it is possible to define the form of the discrete O operator: 

 

( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( )

, , , '1 1

1
, , , '1 1

'
4

,

.

m mi i
g g

m mi m m i
g m

g gV

O O

O dVf r f r d g g L

α α

α α
α α

π

+ −+ +

−
+ −+ + − +

−
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 (3.36) 

This gives a form of the contribution arising from the odd parity time source that can be added 

to the external even parity source. Defining: 

 1 1 1 1 1 1 1

1
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.
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 (3.37) 

leads to the following form of the intra-nodal functional: 

( ) ( ) ( )( )21 11 1 1 1 1 2 1 1 1 1 1
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i i i i i i i Tot i i i V
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�� � �

� ��

 (3.38) 

Now it is possible to describe the implementation of the algorithm: 

� At the end of time step i, the following information is available iφ  (computed by 

VARIANT), the cross section at time step i ( iL± ), and 1i ψ−  (stored from previous 

calculation). 

� Using the loop described by equation (3.19) ',i m
g
αψ −  is computed and stored. 

� Now it is possible to perform the transition between time steps ( 1+∆ → ∆i it t , 

1± + ±→i iL L ). By (3.20), (3.32), and (3.37) it is possible to compute subsequently 1i S+ −�  

(only discretization of time derivative), 1i
gS+ −�  (taking in account down scattering), and 

1i Tot
gS+ +�  (transformation from odd to even by means of O operator). 

� The new cross sections and 1i Tot
gS+ +�  are provided to VARIANT and it solves the pseudo 

steady state problem for time step i+1 providing 1i φ+  for the next time step (restart from 

point 1). 
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The last point of the derivation is the definition of the initial condition. As in (2.51) the basic 

hypothesis is that the reactor is in a steady state before the beginning of the transient analysis 

therefore the initial condition for the even and odd parity fluxes are given by: 

 

( ) ( )( )
( ) ( )

10 0 0 0 0 0 0

10 0 0

0 0 0 0

,      by VARIANT,

,                                                 by KIN3D,
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 (3.39) 

 The solution of the second equation is performed by means of : 
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 (3.40) 

 that is the limit by 
1

1
0

+

→
∆g iu t

of equation (3.18). 

III.2. The New Direct Scheme Equations (SPN 

Case) 

The time discretization scheme in the framework of the SPN angular approximation is, of 

course, similar to the one just illustrated for the PN method. The starting point is a time 

dependent form of equation (2.28) given by (within group equation, no delayed neutrons): 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , ,

, , , , .

φ µ µ ψ µ φ µ µ φ µ

ψ µ µ φ µ ψ µ µ

+ +
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 �
�

� �∂ + ∇ + =� 
 ��

� �� � � � �
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t g g g g g p g

t g g g g g

r r L r S r F r

r r L r S r
 (3.41) 

The treatment of the delayed neutron contribution can be dropped here since it only affects the 

zero order moment of the even parity flux and no changes to the treatment carried out in the old 

scheme with the PN angular discretization are needed.  The time discretization employed in this 

scheme, is defined as: 

 
1

1
1

1
,

φ φ
φ

+

+
+

−
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t g i
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.

ψ ψ
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+
+

−
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i i
g g

t g i
g g iu u t

 (3.42) 

Starting from the last approximation it is possible to introduce the modified operator and 

quantities: 
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 (3.44) 

Where, of course the [ ]1+ ±�i
gL  and 1

'
+ +

→
i

g gH  are in agreement with the SPN representation given 

in (2.32). The resulting discretized system is: 
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1 1 1 1

,

.

ψ φ φ

φ ψ

+ + + + + + + +
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L S F
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 (3.45) 

The determination of the angular and spatial moments of  ψ�i
g needed for 1+ −

�
�i

gS  is done 

similarly to that in the PN method via a projection of each vector component of the second 

equation of system (3.45) over the set of angular (in this case the Legendre Polynomials), and 

spatial functions: 
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Where: 
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: 

2 1

1
2 1 .
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α
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α α α
α
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+
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� �� �

i i i
p T g s p
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i p i p

p g g p p
p Vol
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L p

M d dV p P P f r f r
(3.47) 

The solution of the multi-group coupling, arising between components of the odd parity flux, is 

done in the SPN scheme the as that in the PN scheme (equation (3.19)). The next step is the 

definition of the equivalent of 1+ −�i T
gS  for the SPN case: 

 ( ) 11 1 1 1
' '

'11
'

1 ψ −+ − + − + − + −
→

=+
≠

� �= + � 	
 �∆ �
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S H L S
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. (3.48) 

The moments are: 

 ( ) ( )
',

11 1 1 1, ,
, , ' '
''11

'

1
2 1

α
α αψ −− −−+ + + − +− −

− − −
→=+

≠
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i pT TNG
gi i i ip p
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. (3.49) 

The multi-group coupling should be solved in the usual way. 

The [ ]O  operator in this case becomes a matrix of vectors the components of which are: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
1

1, , , '1 1
' ,

1

1
2 1

2
α α

α α µµ µ µ
−+ −+ + −

− + − −
−

= ∇ +� �
� �� � �p pi i

g p p p g
V

O dVf r f r d p P P L . (3.50) 

Once defined the [ ]O  operator, the time procedure can be performed as done in the PN case. 

III.3. Comparison of the Two Schemes 

In this section, an analytic comparison between the old scheme and the new one is shown under 

some simplifying hypothesis. This analytic comparison between models focuses on the time 

derivative of the odd parity component of the flux under the following assumptions: 

� Operators are constant in time and space. 

� One energy group. 

� The flux has a linear behavior in angle:                  

( ) ( ) ( )
1

,
0 0

, , , , ,ϕ ϕ
= =

Ω = Ω��
� �� �p

p
p q q

p q

r E t Y r E t  (P1 approximation). 



 61 

� No fission source; i.e. only external isotropic source, 0S . 

� No delayed neutrons. 

The following definitions are also introduced (the definitions that follow are classical in reactor 

theory, here only their mono-group expressions are provided, the multi-group expression are 

more complex and the explanation of their evaluation, although basically equivalent, is outside 

of the scope of this dissertation): 

� ( )
4

Scalar flux:  = d , ,
π

ϕΦ Ω Ω�
� ��

r E . 

� ( )
4

Neutron current:  = d , ,
π

ϕΩΩ Ω�
� � � ��
J r E . 

� Removal cross section: ,0R T sΣ = Σ − Σ . 

� Transport cross section: ,1Σ = Σ − ΣTr T s . 

� Scalar source: ( )0
4

d , , ,
π

= Ω Ω�
� ��

S S r E t . 

Under the above hypotheses, the system (2.39) is equivalent to: 

 
0

1
,

1 1
0,

3

t R

t Tr

J S
v

J J
v

� ∂ Φ + ∇ + Σ Φ =��
�
� ∂ + ∇Φ + Σ =
��

� �

� � �
 (3.51) 

and the second equation of the system can be eliminated to obtain: 

 2 2 0
02

1 1 1 1
3

� � ∂Σ∂ Φ + + ∂ Φ + Σ Φ − ∇ Φ = +� �Σ Σ Σ Σ ∂� �

R
t t R

tr Tr Tr tr

S
S

v v v v t
. (3.52) 

This last equation is formally equivalent to the well known telegrapher’s equation. This 

equation has been well studied in the electromagnetic field which is a characteristic of a 

perturbation propagating at finite velocity equal to / 3v . In case the time derivative of the 

current is neglected, it ends with the more simple equation: 
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 2
0

1 1
.

3t R
Tr

S
v

∂ Φ − ∇ Φ + Σ Φ =
Σ

 (3.53) 

This is clearly the time dependent neutron diffusion equation. The hypothesis, under which the 

diffusion approximation of the telegraph’s equation is good, are also well known from a 

physical point of view. In the time dependent diffusion equation, the basic assumption is that 

the regime is collision dominated and therefore /t TrJ J v∂ Σ
� �

	  (the relative time variation of 

the current is much less than the collision frequency). Statistically, it means that the particles 

should never remain un-collided for a reasonably long time interval (changes in the source 

should not be appreciable during this time interval). A consequence of this assumption is that 

the neutrons theoretically move at infinity velocity, but the high number of collisions determine 

the characteristic diffusion time. Nevertheless, even if a characteristic diffusion velocity and 

time could be defined from a statistical point of view, at an infinite distance from an initial 

perturbation it is possible to notice some effect starting at the same time when the perturbations 

take place. As a conclusion the two different solutions for the telegrapher’s (3.52) equation and 

the diffusion equations (3.53) are reported for a 1d (infinite media), 1 energy group model [56, 

57] with a source of type ( ) ( )0S Q t xδ δ= . 

• Telegrapher’s equation: 

 ( ) ( ) ( )
( )

( ) ( )1 02 2
, ;

2

ate ct
x t Q ct x h ct x I I

ct x
φ δ β θ θ

− � � �
� �� 	= − + − +� �� 	� �−
 �� �

 (3.54) 

1
2

� �= Σ − Σ� �
� �

tot sa u ,        
2

= Σs

u
b ,        

3
= u

c ,        b
c

β = ,        ( )2 2ct xθ β= − , 

( )zδ : Dirac’s delta-function,             

( )h z : Heaviside’s step-function,  

( )0I θ : 1st kind modified Bessel function of order 0, 

( ) ( )0
1

dI
I

d

θ
θ

θ
= :  modified Bessel function of the 1st order. 
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• Diffusion equation: 

 ( ) 2

1/ 2

3 / 4 4
, / ;

3
πφ −Σ − Σ � �

= � �Σ� �

a trut x ut

tr

ut
x t Qve e  (3.55) 

Of course, in the limit of the validity of the diffusion approximation, it can be shown that (3.54) 

is equivalent to (3.55). These observations are confirmed later in the numerical tests comparing 

the two different models. In general the diffusion model can be rather accurate for describing 

the behavior of nuclear reactors and thus the differences between the two approximations 

should be limited and vanish over large time scales. The stronger differences should be limited 

to the transient part for which the hypothesis on the source (negligible source changes in 

collision time scale) fails. At the end of this section, a last remark should call attention to the 

fact that the “numerical diffusion” of the time discretization schemes has a tendency to 

decrease the difference in the results between the two models. 

III.4. Estimations of the Error 

This section is dedicated to the analysis of the truncation error in the new time discretization 

scheme. This analysis has been provided to better understand the behavior of the scheme and 

sets the basis for the adaptive time step control strategy shown in the next section. Up to this 

point, the scheme proposed is based on a first order discretization in time. The fact that, both 

the even and odd parity fluxes, computed at the previous time step, are used to provide the time 

source, leads to the hope that the global error could be higher than of first order. In fact the odd 

parity flux is connected to the time derivative of the even parity flux via the second equation of 

the system (2.39), suggesting a reduction scheme has been used. Beginning with the systems 

(2.39) (without delayed neutrons and using the definitions of the L±  operators): 
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where the absence of an external odd parity source is in agreement with the capability of the 

VARIANT code, although its presence would not affect the results given in the following. 

Next,  the second equation of the system is eliminated by means of the following manipulation:  
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The final result is: 
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Now the idea is to compare a well known time discretization scheme applied to this equation to 

the result of the scheme developed in the previous chapter. Since the scheme is expected to be 

(without taking in account the delayed neutrons) a fully implicit one, and it is at maximum of 

second order in precision, the more reasonable scheme for the comparison seems to be a 

backward Euler scheme of second order. The approximations for the comparison scheme to be 

used in the approximating equation (3.58) are: 
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where 1/i ir t t += ∆ ∆ . With the preceding and the introduction of ( )1 / 2i it t t+∆ = ∆ + ∆ , equation 

(3.58) is reduced to: 
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The solution for 1φ +i of this equation ( ( )1 0it +Ο ∆ ≈ ) gives the second order backward reference 

estimation. Next, the first order approximation given by (3.1) is used to write the following 

system: 
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 (3.61) 

where the upper symbol �  is used for the approximate solution given by the implemented 

scheme that is to be compared with the even parity flux estimation of (3.60). The application of 

the ( )[ ]1nL−
+

� �Ω⋅∇
 �

� �
 operator allows the elimination of 
 1ψ +n  and ψ n , and results in the 

equation: 

 

� [ ] � [ ]
�

�
� [ ]

� [ ]

1 111
12

1 11 1 1 1

11 11
11 1 1 1

1 1

1 1 1

1 1

φ φ φ φφ φ
φ

φ φφ φ φ φ

+ +
+ ++−

+− − −
+ ++ + + +

+ +
++ ++ ++

++ + + +− −
+ + +

� �� � � �− −−
 � 
 �� � � �− + − Ω ⋅∇ Ω ⋅∇ +
 �� �∆ ∆ ∆∆
� �

� �− � �−− 
 � 
 �� �+ + = + + +
 �∆ ∆ ∆

� � � �n nn n n nn n
n

n n nn n n n

nn n n n nn n
nn n n n

n nn n n

L L

t t tu L t uL L

F F S S
L F S

u t tL u uL t 1

.
� �
� �
� �
� �

 (3.62) 

 

Introducing the difference between the two solutions �
11 nne φ φ ++= −  and subtracting equation 

(3.62) from equation (3.60) it is possible to obtain: 
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This final result shows that the discretization scheme proposed in III.1 is equivalent to the 

second order backward Euler scheme directly applied to the equation (3.58) only when the time 

step is constant ( 11 i ir t t += → ∆ = ∆ ) or, of course, when the second order time derivative is 

zero. It is therefore clear that an adoption of a variable time step will decrease the order of 

precision below the one required to fully maintain the mathematical structure of the equation 

(3.58) that is second order with respect to time. The mathematical analysis carried on is of 

course formally correct on the asymptotic limit 0t∆ → , but in practical applications, the very 

low value of the coefficient of the second order time derivative in (3.58) ( ( ) 1 2/ 1
−− 	L u ) 

makes the first order approximation on the first order derivative (3.59) in many cases dominant 

with respect to the mathematical second order precision. This behavior has also been detected 

in numerical tests which have shown a full second order decreasing of the error only in 

conjunction with very small time steps ( 1∆ 	u t )). 

The treatment of the delayed neutrons, as already mentioned, is not done in a fully implicit 

manner but, on the other hand, it is a phenomenon characterized by very large time scales. 

Therefore an accurate time step on the solution of the other part of the time structure of the 

equations will be a conservative criterion for the stability of this contribution. In fact, numerical 

instability due to the presence of delayed neutrons will arise only in cases of perturbations to 

the system (external source and composition changes) and a time step size on the time scales of 

delayed neutrons. These conditions are unrealistic given the transients under consideration.  

For this work (to prove that the scheme can be of second order), it is sufficient to show that the 

precision in the delayed neutron terms ( ,
1

NF

i g i i
i

Cχ λ
=
� ) treatment in equation (2.43) is at least of 

first order as was the case for the first order time derivative (
1 φ∂ tu

).  
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It is sufficient to prove it for the family I, thus the start is taken to be:  
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Introducing the integrating factor teλ  in the first equation yields: 
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The solution of this equation is: 
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(3.66) 

It is now clear (using for example the Taylor expansion of the exponential in the last integral) 

that the evaluation of 1i C+  is done with second order precision and thus the above condition is 

satisfied. The final conclusion is that the scheme proposed is at least of second order (for 

constant time step) and in the application field of interest, it is unconditionally stable since it is 

based upon a fully implicit scheme (delayed neutron instability is out of the application range) 

III.5. Higher Time Discretization Scheme 

The natural consequence derived from III.4 is that the introduction of a variable time step size 

requires a higher order time discretization scheme that will guarantee at least second order 

precision and stability regardless of the changes in the time step size. The option which is able 

to satisfy this requirement is a second order backward evaluation of the time derivative inside 

the first two equations of system (2.43).  
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Consequently, the following set of approximations is applied for the system (2.43): 
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Since the treatment of delayed neutrons is unchanged and it is already done with second order 

precision, its contribution is neglected in the following discussion. The insertion of the above 

approximations into system (2.43) (without delayed neutrons contribution) leads to: 
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The system could be reformulated as done in (3.4) where the only differences are associated 

with the definition of the time sources reported in (3.3). Applying this produces: 
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Starting from this new definition of the time source, the procedure shown in III.1 could be 

repeated without changes in the formalism. Thus, it is not displayed again. The initial 

conditions are also nearly the same since, under the hypothesis that the reactor is in a steady 

state mode before the transient analysis, 0 0 0,  ,  andφ ψ iC  can be computed via (3.39) with 

1 0 1 0 1 0,  ,  and φ φ ψ ψ− − −= = =i iC C . The only difference is that it is necessary to define 0∆t  for 

the computation of r at the first time step. This value affects the numerical stiffness of the 
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system (the larger 0∆t  is, the stiffer the system). The usual choice is 0 1∆ = ∆t t . This scheme is 

based on the second order backward scheme applied to the system of odd and even parity 

equations and will ensure at least the second order precision regardless of the changes in the 

time step size (the treatment of delayed neutrons is second order precision). The stability 

characteristics of the general scheme are also maintained. 

III.6.  Time Step Control Options 

The next step is to take advantage of the possibility of having a variable time step size. The key 

issue is how to determine an appropriate time step size for the next time iteration. Under a 

conservative hypothesis the error at the next time step (i+2) can be estimated as: 
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This hypothesis is conservative since it is based on the truncation error in the first order time 

derivative evaluation inside the even-odd system. However, as shown in III.4, the global error 

in solving the system could decrease depending on the ratio (r) between the time step sizes for 

succesive time iterations. Writing the above expression using a forward zero order Taylor 

expansion: 
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In this way, the error at the next time step is a function of 2it +∆ , a cubic time derivative, and 

the even-parity flux at the current time step (i+1). Restriction of the error below a fixed value 

(tol) leads to the following inequality: 
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. (3.72) 

Therefore the problem is now reduced to the estimation of the cubic derivative. It should be 

pointed out that, for the moment,  is the standard norm over R, thus 2it +∆  actually depends 
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upon all the variables ( ), ,r EΩ
��

 (the domain of Ω
�

 could be reduced by half if only the even-

parity flux is considered). Writing the expression for the first order derivative using the third 

order backward Euler scheme with only two points and leaving the third order derivative 

unresolved leads to: 
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Implementing the second order backward scheme approximation produces: 
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The indices (ex) and (2b) stand, respectively, for exact and second order approximate 

(backward Euler) solutions at time step i+1. Now the first equation of (3.56) is compared  with 

the expression of the first derivative given by equation (3.73) and its approximation using the 

expression of the first derivative given by equation (3.74): 
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It is helpful to mention that the first equation of the above system represents the property of the 

exact solution and the second one is the definition of the function ( )2
1
b

iφ + . It is also helpful to note 

that: 
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After substituting the last relations in equation (3.75) the following results: 
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The centered Euler scheme (2c) is used to obtain (equations (3.73) to (3.76) are implicitly 

repeated): 
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from which it is possible to get another expression for the third order time derivative as a 

function of the exact solution and the second order centered scheme solution: 

 ( ) ( ) ( ) ( ) ( )
3

4213
1 1 1

1
6

ex ex ci
i t i i i

t r
tφ φ φ+

+ + +

∆ +
− ∂ = + Ο ∆ . (3.79) 

By observing that: 
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the following system of equations can be obtained: 
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It is now easy to see that: 
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The last task is to define the error in an appropriate norm since the actual intention is to use a 

common time step for all energy groups, regions, and angular moments. First of all, the average 
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scalar flux is used within each region (upper left index n) and energy group (lower left index j) 

defined by: 
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Now a maximum norm can be introduced over all energy groups and regions: 
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In this norm the relative error over the average scalar flux within each region and energy group 

becomes: 
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By introducing equation (3.82) for the third order derivative in equation (3.84) and adhering to 

the inequality 2
rel

nerr tol+ ≤ , the following expression is obtained for 2nt +∆ :  
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The use of the semi-norm (the evaluation is done in a sub-space of the spawn of the basis 

function used by the VARIANT code in space and angle) instead of the full norm means 

ignoring some of the information about the error behavior. However, this choice is nevertheless 

physically reasonable since the spatial average value of the scalar flux within each region and 

energy group is ‘monitored’. This is of course the primary quantity of interest in reaction rate 

calculations. There can be, of course, some limiting cases in which this error definition can be 

weak. However, by decreasing the tolerance, it should be possible to treat every realistic case 

successfully. It should also be pointed out that such a choice for the error definition greatly 

simplifies the effort required for the solution of the centered second order scheme, since only 

the average scalar fluxes are needed. 
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They can be calculated from the following balance equation: 

 ( )
( ) ( )

( )

2
12

1
1 1

1 1
1 1

αα

φ φ
φ φ− +

+
+ +

� �− −� �
� �= − Σ + − ⋅� �� � � �+ ∆ + ∆� � � �

� �
� �n

n n Nsurf
j i j icn n n n n

j i j R j i j i j i
i i n S

rr
S ds J n

v r t v r t V
. (3.87) 

Here, 
��n

j J  is the net current on the surface α ⊂ ∂ nS V  and RΣn
j  is the removal cross section for 

region n and group j. Before the analysis of the results for the time step control scheme, some 

preliminary considerations are instructive. First of all, although the estimation of the third order 

derivative is not used to improve the flux approximation, the scheme cannot be considered to 

be a linear partial implicit one, since the estimation of 2it +∆  is done using centered and forward 

schemes. For this reason, the estimation of this quantity could be affected by instability and, 

therefore, by inaccuracy. Especially in cases where very fast changes of the time scale (i.e. an 

order of magnitude) can lead to oscillations or fluctuations in the estimated time step. The 

influence of this phenomenon can usually be damped by using some average or limits for the 

range of time step variations, like an arithmetic or geometrical averaging between the next 

estimated time step and the actual one. This kind of instability is also enhanced by a low 

convergence criterion while computing the pseudo static flux. Of course this kind of error 

prediction based upon the forward scheme can lead to some inaccuracy, thus only an imperfect 

matching should be expected between the imposed tolerance and the relative error with respect 

to any reference solution. 
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Chapter IV. NUMERICAL SIMULATION 
RESULTS AND 
CONCLUSIONS 

The order in which results will be presented reflects the development path of the code and thus 

they will be presented starting from a 1D test for the new first order scheme with a constant 

time step to a full 3D simulation of a source transient in an ADS using the adaptive high order 

scheme. Some very simple tests are also presented which are not representative of any real 

physical situation for two reasons. First, in such tests, the behavior of the differences between 

the old and new scheme are qualitatively foreseeable by means of the physical interpretation of  

the different mathematical approximations. This feature allows one to check the correctness of 

the method and get a feeling of the differences that can arise in a realistic case. Second, such 

simple tests are needed in order to understand the optimal value of parameters like the time 

step, convergence criteria, order of the spatial approximation, spatial mesh size, etc…  

IV.1. One-Dimensional Analytic Benchmark 

This test is the simplest one performed, but it plays a key role in this work. The problem 

considered is a 1-dimensional slab without fissile material. As will be explained later on, the 

boundary condition in the time interval considered plays no role for the new time integration 

scheme while are chosen of vacuum type for the old one. A one energy group approximation is 

used combined with an isotropic scattering cross section and source. The cross section data are 

given as follows: 

8

1

10 / ,

0.8 ,−

=
Σ =tot

u cm s

cm
 

10.4 .−Σ =s cm  
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The half length of the slab is 0.9 cm and the spatial mesh size is 0.001 cm. Two different 

spatial distributions of the source: ( ) ( )
� �
��
� � � �  have been considered in conjunction 

with the same triangular variation in time: 

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )
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( )h x  is the Heaviside’s step-function. It is clear that the time dependent part of the source is 

close to being a Dirac delta-function like the spatial part of �� . Such a choice for the source 

transients explains the very fine spatial discretization step ( �	���
� 	
∆ = ). In fact, even if 

the scheme is always stable, it is necessary to control the numerical diffusion that can arise 

from a coarse choice of time and spatial step size. This transient has been analyzed with the 

new time dependent P1 model and with the old diffusion model. Before analyzing the 

numerical results some preliminary considerations are possible. First, the last term of equation 

(3.52), which is absent in the diffusion model (3.53), reaches very high values during the 

source variation: 
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Moreover the time derivative of the source is also discontinuous in fact: 
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Consequently, strong differences are expected in the results provided by means of the two 

models. In the 1D P1 model the perturbation moves at a fixed velocity that is � ��  thus if the 

analysis is limited to a t that satisfies: 

 ( ) − −< − ≅ ⋅� �
��� ���
�	� ���� ����������	�� � �, (4.3) 

it is possible to neglect the boundary condition effect (the argument of the Heaviside’s step-

function in (3.54) will be less than zero). In the diffusion approximation, boundary conditions 

affect the solution starting from �� = , and vacuum boundary conditions were used.  

Of course the direct comparison between the analytic solution to the P1 equations provided  by 

(3.54) for a Dirac delta-function in time and space source and the numerical evaluation 

provided by the code could not be more than qualitative since the sources 1  2orS  are not 

analytic delta-functions. In order to overcome this situation, a small code has been written to 

numerically evaluate the convolution of the solution ( ) ( )0
0

,
δ

φ =
=

x
t

x t  provided by (3.54). Therefore 

for this simple test it is possible to have a reference solution provided by the numerical 

evaluation of: 

 ( ) ( ) ( ) ( )1 0
00

, ' ' ', ' ', '
δ

φ φ =
=−

= − −� �
x t

x
tx

x t dx dt S x t x x t t . (4.4) 

Figure 4 and 5 show, for the ( )� �� ��  source, the comparison between the pseudo analytical 

solution (numerical evaluation of (4.4)), the solution obtained with the new version of the code 

using different time steps (i.e. 10-12, 10-11, 10-10 s), and the solution by the diffusion model 

(multiplied by a factor of 10) obtained using the old version of the code with a time step of    

10-11 s. It is clear how this severe test causes the diffusion approximation to be far from the P1. 

This fact was somehow expected since the vacuum boundary condition in the diffusion model 

immediately starts to absorb neutrons from the system. The results provided by the new version 

of the code are observed to converge to the pseudo analytic solution with respect to a 

decreasing time step. This demonstrates very good performance by the method. Similar types 

of tests have been performed with other numerical methods [58] achieving performance similar 



 77 

to the ones shown here. A good indication of the robustness and stability of the scheme comes 

from the evaluation of the position of the flux peak that, despite the numerical diffusion 

phenomenon, is in the correct position predicted by 0− =ct x . This fact shows that the 

mathematical structure of the equations is maintained. The test performed with the source 

( )� �� ��  is more easily handled by the numerical scheme. In fact, Figures 6 and 7 show 

acceptable results even with a time step of 10-10s. The explanation of this phenomenon is 

related to the behavior of the numerical diffusion. Without going into details, numerical 

diffusion analysis relates the smaller spatial resolution of the solution to the time step size. In 

the ( )� �� ��  test with a time step of 10-10s the front and backward side of the wave are smeared 

by the numerical diffusion in overlapping areas, leading to a mutual influence of approximation 

errors. This phenomena is absent when considering the ( )� �� ��  source due to the larger 

distance between the front and backward side of the wave. 
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Figure 4: Scalar flux comparison, numerical P1, analytical and diffusion, t= 0.5 10-8 s, S= S1. 
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Scalar flux t=1E-8
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Figure 5: Scalar flux comparison, numerical P1, analytical and diffusion, t=10-8 s, S= S1 . 
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Figure 6: Scalar flux comparison, numerical P1, analytical and diffusion, t= 0.5 10-8 s, S= S2. 
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Scalar flux t=1E-8
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Figure 7: Scalar flux comparison, numerical P1, analytical and diffusion, t=10-8 s, S= S2. 

IV.2. Two Dimensional Muse Transient Analysis 

The main aim of this test is to compare how the non-adaptive second order scheme described in 

III.1 and III.2 and the old one differ in simulating the flux variations in a realistic case using P1, 

SP3 and P3 angular approximations. The test has been performed on a simplified 2D 

representation of the MUSE experiment (described briefly in I.2) by means of a 33 energy 

group structure (typical for fast reactor analysis), and a simplified source present only in the 

first energy group. As already mentioned, in sub-critical experiments, the objective is to 

compute the flux inside of the reactor during the transient. Of course the flux is not directly 

measurable, thus, some correlated quantities are used such as reaction rates measured by fission 

chambers. One of the commonly used reaction rates is derived from 235U which has a very well 

known fission cross section. For these reasons, comparison of the predicted detector response is 

used instead of the numerical values of the flux.  
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The response of a detector placed in spatial region i, can be computed using: 

 ( ) ( ) ( )
���

���

��� ��� �
� ���

��

� � � �
�

� ��
� �

� � � �

�� �

� � �� � �� � � � �
π

ϕ π φ
=

= Ω Ω Σ = Σ�� � �
� �� � , (4.5) 

 

where �
���
� �φ  is the zero order spatial and angular moment of the even parity flux for the region i 

and group g. Figure 8 shows the position of 3 detectors (235U fission chambers) the source 

region and the computational spatial mesh (i.e. each rectangle is a mesh used by the VARIANT 

code in order to describe the spatial geometry) considered in this test.  
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Figure 8: 2D MUSE geometry. 

In the past, when high order angular approximations were not available or too expensive to be 

used in transient simulations, simple procedures have been developed to approximately account 

for the angular effect. One of these procedures involves the comparison of keff with a high 

angular approximation with the one used for the transient simulation. This procedure 
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renormalizes or adjust the average number of neutrons released by each fissions, ν , in order to 

achieve the same keff with a lower angular discretization in the transient analysis. The general 

idea is that the neutron balance for the fundamental mode is forced to be the same for all of the 

angular discretizations during the transient. If the neutron flux during the transient can be fully 

described by the fundamental mode, this process allows one to obtain the same ratio between 

the steady state and the time dependent flux regardless of the angular discretization that is used 

during the transient simulation. Unfortunately, although the fundamental mode is important for 

the neutron flux distribution, it is not necessarily the only mode important for transients in sub-

critical systems. In order to show the improvements achievable with this new time dependent 

scheme with respect to the available methodologies, the P1 and SP3 angular schemes are 

modified, by the renormalization procedure just described, such that they have the same keff 

given by the P3 scheme (taken to be the reference). Table 1 shows the keff of the lower angular 

approximations and the reference value. Moreover, instead of directly comparing the detector 

rate multiplication factors, ( ) ( ) ( )� �� � �� � � � � �= =  are compared. The steady state detector 

errors are also reported in Table 1. Figure 9 shows the time behavior of the source 

multiplication factor ( ( ) ( ) ( )� � � � � � � ��� � � � � � � � � �= Ω Ω =
� �� �

) and the detector rate 

multiplication factors (det. stands for detector) obtained by the reference scheme (P3). As seen 

in Figure 9 the peaks in the detector response are delayed and smoothed in time according to 

their respective distance from the source region. This is in agreement with an increasing 

dominance of the diffusion model with time and spatial distance from the source transient. 

Figures 10 to 14 show the relative error of the multiplicative detector rate factors with respect 

to the P3 angular model used with the new time discretization model. Generally speaking, the 

error decreases as the distance between the source area and the detector increases but the shape 

is similar. Another effect is the presence of material discontinuities that need a higher Pn order. 

These interface effects may probably explain the greater error in the second detector with 

respect to the first one in the P1 analysis (see Figure 10 and 11). Unfortunately the 
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improvement achieved by the new time scheme, in the P1 framework, is not apparent (compare 

Figures 10 and 11), displaying errors of the order of several percents. Such a result is quite 

undesirable. The old time discretization with P3 and SP3 schemes (Figures 12 and 13) shows a 

good improvement with respect to the P1 model but still not completely satisfactory. The 

introduction of the new time scheme for the SP3 approximation displays results very similar to 

those of the reference (Figure 14). The computational cost comparison suggests that the 

introduction of the new time discretization scheme is inexpensive at all or better still it seem to 

decrease slightly the total computational cost (see Table 1). This effect could be imputed to an 

improvement of the speed of convergence of the inner iteration of VARIANT due to the 

different set of time modified cross section (i.e. the different use of the time absorption) 

between the two (old and new) time scheme. This positive effect result to be dominant with 

respect the additional computational cost due to the introduction of the odd angular source in 

the new scheme, the behavior has been detected in all the tests performed comparing the old 

and new time integration scheme. A last remark about the computation cost is that the 

introduction of the SPN method, at least for the P3/SP3 set, allows a reduction of a factor two 

without a strong loss of precision.   The conclusions of this test are: higher angular 

approximations are needed on short time scales such that the behavior of the neutron flux is 

appropriate. Based upon the current result, the use of the SPN methodology offers a good 

compromise between computational costs and precision especially for forecasting future 3D 

applications. 
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Figure 9: Source and detectors rate multiplication factors. 
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Figure 10: Old time scheme, P1 angular discretization. 
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Figure 11: New time scheme, P1 angular discretization. 
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Figure 12: Old time scheme, SP3 angular discretization. 
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Figure 13: Old time scheme, P3 angular discretization. 
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Figure 14: New time scheme, SP3 angular discretization. 
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Table 1: Time ratios, keff values, and relative detector rate errors at t=0. 

Detector rate error at t=0 (%) Angular/time 
discretization 

Computer time 
ratio  

with respect to 
P3new 

keff Detector 
1 

Detector 
2 

Detector 
3 

P1  0.42 
P1new 0.40 

0.953451 -1.8 -2.5 13.0 

SP3 0.47 
SP3new 0.46 

0.960459 -0.20 0.06 -0.22 

P3 1.07 0.960116 0 0 0 

 

 

IV.3. Adaptive Time Step Control Two 

Dimensional Test 

In order to test the time step control scheme, time-dependent analysis of a transient caused by 

the variation of an external neutron source in a sub-critical core was performed using four 

energy groups (source spectrum is non-zero in the first energy group only) and a P1 angular 

approximation. Figure 15 shows the geometry of this benchmark where the composition of the 

source and shield region is the same. The spatial grid used by VARIANT is also displayed 

along with the three regions monitored for the error evaluation (arrows) with respect to a 

reference result. The fuel and the shield compositions are derived from a fast reactor problem 

and keff is equal to 0.97724. The variation of the source is described in Figure 16 (scale 

indicated on the right axis) and the total transient time analyzed is 100s. This test can also be 

used to evaluate the influence of the delayed neutron fraction on the transient by performing 

two different simulations. The first one, referred to as 1 in the following graphs, assumes a 

negligible delayed neutron fraction, i.e. prompt neutrons only. The second one, referred to as 2 

in the following graphs, assumes two families of delayed neutrons each with a fraction (ßi) of 

0.5% and with decay constants of 0.1s-1 and 10s-1, respectively. 
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Figure 15: Geometry. 
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Figure 16:  Source amplitude and time steps. 
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Figure 16 (scale indicated on the left axis) shows the time step (�t) chosen by the adaptive 

scheme for the transient simulations. The time step is kept at a very low level until the end of 

the first part of the source transient (t=10-9s), after which it starts to increase rapidly. Already 

before 0.1s, in the two simulations, �t(1) and �t(2) start to separate from each other. In the 

reactor with more delayed neutrons, at about t= 5·10-2s, the increase of the time step shows a 

strong degradation. At t= 1s the time step is one order of magnitude smaller compared to the 

case with almost no delayed neutrons; similar differences are observable in the second part of 

the transient. The final result is that 431 pseudo-steady-state calculations are needed to reach 

the end of the transient analysis with delayed neutrons, which is in contrast to the 368 needed 

for the other case. The physical explanation is that the presence of delayed neutrons slows the 

reactor in reaching a stable state and thus the time step needs to remain small for a longer 

period. This difference in the time step choice is even more evident by comparing Figures 17 

and 18 where the time step size is plotted (right axis) vs. the time step number.  
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Figure 17: Position in space and energy of the maximum of the ratio flux third order time derivative over 

flux (left axis), time step (right axis). Case without delayed neutrons. 
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Figure 18: Position in space and energy of the maximum of the ratio flux third order time derivative over 

flux (left axis), time step (right axis). Case with delayed neutrons. 

In Figures 17 and 18, the position in energy (group) and in space (distance in the number of 

meshes from the center of the core, i.e. from the left upper corner, see Figure 15) is plotted. 

This characterizes the position where the largest error is observed (see (3.70)) and, thus, the 

spatial and energy position is used for the time step evaluation. These graphs show that this 

maximum, at the beginning of the source pulse, is close to the source region and in the first 

group. After moving through the entire core and reaching the shield, the maximum error 

returns to the center, but it occurs at a lower energy. It is also interesting to observe that the 

maximum of the estimated relative error for the second case (the one with delayed neutrons) is 

situated in the fuel region in the first energy group. This feature is in agreement with the 

expectation that the delayed neutrons drive the flux during this phase of the transient. As a 

result, the maximum flux variations are located (in space and energy) where the largest delayed 

neutron source is present. Figure 17 compared with Figure 18 shows the existence of two 

additional time scales during the last phase of the transient in the case with delayed neutrons. 
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This phenomenon, physically, is connected with the presence of the two delayed neutrons 

families each characterized by a different time scale (decay constants). Figure 19 shows the 

absolute value of the relative flux error (maximum over energy groups) for the simulation with 

virtually no delayed neutrons. This error is given with respect to a reference solution obtained 

with the second order scheme with a constant time step of 2·10-11s. The reference solution is 

computed until 4·10-7s. Even if this is the steepest part of the transient, for all the three regions, 

the error is below or hardly exceeds the imposed tolerance that it is of 0.1%. It is also 

interesting to note how the maximum relative error shows a transition in space and time in 

accordance with the propagation of the pulse through the core. This simple test shows the 

potential of the adaptive scheme to use the correct time step in order to achieve a selected 

precision without any assistance by the user. 
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Figure 19: Maximum module of the relative absolute error (over energy) with respect to the reference 

analysis for meshes 15, 71 end 155. 

Note that a small time step must be imposed by the user at the beginning of the transient and in 

correspondence with the sharp changing of the source. During preliminary tests, the results 
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have indicated that for small initial time steps, the method adapts such that an increase in the 

time step by an order of magnitude is possible thereby making the initial time step a relatively 

inexpensive guess. This geometry and composition were also used for checking less restrictive 

norms (see(3.85)) for the definition of the error. The tested norms are the following ones:  
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The first one is the weakest while the other two are intermediary with respect to the one 

originally defined. Figure 20 shows the time step behavior given by the four different error 

definitions (0 means the original one) for the analysis of the case without delayed neutrons. The 

use of error definitions 1, 2 and 3 results in almost the same number of time steps to complete 

the transient (269, 287 and 293), while the original one requires far more with 368 time steps. 

Even if with different number of time steps, all of the options show the same general behavior. 

The choice of the error definition is left up to the user who should consider: the type of 

transient, its computation cost, and the precision required by the calculation. 

The same composition, geometry, and transient (without delayed neutrons) was considered for 

evaluating the need for a damping scheme in the time step control. This possibility should 

occur such that the oscillations and instabilities of the scheme are avoided. Such phenomena 

are attributable to the explicit component in the extrapolation of the error at the next time step. 

Figure 21 shows the time step ( )�� �
� +∆ behavior obtained by the following damping scheme: 
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where ��� +∆  is the time step computed directly by  (3.86). Figure 21 shows that the different 

damping schemes do not dramatically affect the total number of time steps needed for the 

transient analysis (348 for the 1st, 368 for the 2nd and 374 for the 3rd). Moreover no instability 

has been detected in this severe test of a transient analysis. 
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Figure 20: Time step for different error definitions. 
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Figure 21: Time step for different damping scheme. 

 

IV.4. PDS-XADS Transient Analysis 

The last test performed is based upon a 3D model of an ADS project proposed by ANSALDO 

[60]. The simulation focuses on three different aspects. First, the old and the new adaptive 

schemes are compared in the P1 angular approximation using similar time step structures. 

Second, the influence on the detector rates and time step size of different angular 

approximations is examined. Third, the influence of the scattering kernel is examined. In the 

following, every test performed is identified by, first the angular approximation for the flux and 

then in brackets, the angular approximation of the scattering kernel. As an example, P3(P2) 

stands for a P3 spherical harmonics flux approximation and a P2 scattering kernel. 
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Model Description: 

Figure 22 shows a slice of the reactor core. The fuel assemblies are hexagonal which is 

characteristic of fast reactor designs. In this problem they are of the same type as those used in 

the PHENIX reactor [61] and 1/6 radial symmetry is assumed (it is realized by periodic 

boundary condition between the hexagons on the lower and the upper left side of the geometry 

shown in Figure 22) in conjunction with vacuum boundary condition on the periphery of the 

core (upper right side in Figure 22). 

(1) beam line (2) buffer area

(3) core (4) reflector (5) lead

(I)

(II)

(IV)

(III)

Asseblies with
detectors

 
Figure 22: 1/6 slice of core  

The number assigned to each assembly type in Figure 22 (1, 2, 3, 4, 5) is used to describe the 

axial composition given in Figure 23. In the following, roman numbers for the assembly will be 

used in combination with the indices a/b/c for each plane to denote the detector positions (i. e. 

the detector II-b is placed in the hexagon marked II in Figure 22 and in section b in Figure 23). 

The detectors are again U-235 fission chambers. The axial direction is discretized by 16 

regions giving a total number of 121x16= 1936 computational regions.  
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(1) (2) (3) (4) (5)

Section a 

Section b 

Section c 

Buffer Lead and structure 
Lead Core  

Figure 23: Axial composition. 

Neutronic model: 

The analysis has been performed using 8 energy groups with 6 families of delayed neutrons. 

The energy structure is appropriate for a fast spectrum reactor and is described in Table 2. 

 

Table 2: Energy intervals and velocities. 

Energy 
boundary 

E (eV) Energy group Average velocity (cm/s) 

E0 19640300.0000000 1 2232378368.00000 
E1 1652990.00000000 2 1479871232.00000 
E2 820850.000000000 3 1062186624.00000 
E3 407622.000000000 4 622019968.000000 
E4 111090.000000000 5 228701056.000000 
E5 5004.50976562500 6 70054912.0000000 
E6 1010.39001464844 7 33301714.0000000 
E7 203.994995117188 8 15590252.0000000 
E8 0.00011000000085   
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Figure 23 shows the radial flux shape for the b section detectors obtained using a P3 angular 

discretization both for the flux and the scattering kernel. 
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Figure 24: Radial flux shape. 

The steady state keff calculations obviously show differences between the different angular 

models. Table 3 reports the different values for the sets tested. The average number of neutrons 

released by each fission, ν , as in the MUSE analysis, has been changed in order to have the 

same keff for all the angular sets. 

Table 3: Keff values before number of secondary renormalization. 

Angular model Keff Angular model Keff 
P1(P0) 0.946188 SP5(P0) 0.950446 

SP3(P0) 0.950341 P5 (P0) 0.960502 
P3 (P0) 0.956482 P3 (P3) 0.961202 

 

For the analysis of the results, the response of 5 detectors has been considered: I-c, II-b, II-a, 

III-b and IV-b. These were chosen for the following reasons: 

• I-c is very close to the source and placed in proximity of a composition discontinuity. 

Moreover, in correspondence with the third ring, Figure 24 shows strong spatial 
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gradients, thus large differences between the different time angular models are more 

plausible. 

• II-b is placed almost in the middle of the core. Consequently, it will provide a 

meaningful characterization of the transient inside the active part of the reactor. 

• II-a is inside of the active part of the core and should be affected by the material 

discontinuity. This should show an increasing angular dependence with respect to 

detector II-b. 

• III-b the response of this detector will be driven by the streaming (high angular 

dependence) into the reflector area coming from the active core (fundamental mode 

response). At the same time, the high scattering density compared to the absorption 

leads to a diffusion like behavior of the flux. The response of the detector will tell 

which one of these phenomena is dominant. 

• IV-b this detector is placed almost outside of the core in an area technically easy to 

access in practice and thus it will be interesting to see its response. 

 

Source and transient description: 

The source is spatially located in correspondence with the intersection between section c and 

the first ring (see Figures 22 and 23). In energy, 55% of the total source spectrum is in the first 

group, 25% in the second, and 20% in the third. Figure 25 shows the time behavior of the 

source transient and the multiplication factor for the five detectors obtained by the P3(P3) 

angular model. 
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Figure 25: Source and detector responses. 

 

Old scheme comparison: 

The comparison with the old scheme is carried out only for the P1(P0) angular approximation 

since the time derivative of the first order angular flux moments (Y1
0, Y1

1,Y1
-1) are responsible 

for the majority of the differences between the old and new scheme. The first considered is the 

transient analysis using the adaptive time step scheme. The time step behavior created by the 

adaptive scheme is used to construct a similar sequence of time steps for the old scheme (see 

Figure 26). Figure 27 shows the detector responses (detector multiplication factor on the left 

side) obtained by the new P1(P0) scheme and the relative differences with respect to the old 

P1(P0) scheme.  As expected, the greater difference is shown in the I-c detector which is closer 

to the source area. In this case, the differences show sharp peaks in correspondence with the 

discontinuity of the time source derivative. The detector II-b shows almost the same 

characteristics but with a reduced amplitude. All the other detectors show a very smooth 

behavior in the response and the relative differences between the models are thus reduced.  
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Figure 26: Time step for old and new P0(P0) schemes. 
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Figure 27: Detector response by new adaptive P1(P0) scheme and relative difference with respect to the old 

P1(P0) scheme. 
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Influence of the flux angular discretization: 

In order to evaluate the influence of the angular flux approximation over the transient 

simulation, five different tests (P1(P0), SP3 (P0), P3(P0), SP5 (P0), P5(P0)) were performed where 

the adaptive time step control was employed. In this case the reference solution is the P5(P0) 

scheme. Table 4 shows the relative difference with respect to the P5(P0) steady state calculation 

in the detector reaction rates. These values have been subtracted from the relative differences 

plotted in Figures 28 to 32 in order to have a zero error at the steady state. This choice allows 

focus to be placed only on the different time behaviors of the models. 

 

Table 4: Relative difference in detector reaction rates with respect P5(P0) (%). 

Detector  Angular 
approximation I-c II-b II-a III-b IV-b 

SP5(P0) -2.68 -0.450 -2.08 -2.28 -2.91 
P3(P0) -1.23 -0.891 -1.62 -1.64 -1.86 

SP3(P0) -2.35 -0.051 -1.65 -1.86 -2.49 
P1(P0) -1.18 -0.457 -2.32 -2.22 3.88 

 

Starting with the results shown in Table 4, some conclusions are already possible. First, the 

differences should not be considered negligible (more than 1 percent is meaningful for this 

problem) indicating that the transport effect is important in this core, even after the 

renormalization of the ν . Second, the differences are lower for detector II-b which is placed in 

the middle of the active part of the core where the large isotropic fission source decreases the 

angular dependence of the flux. Table 4 also shows very good performance with the lower 

angular approximations (P1(P0)), which is probably due to the adjustment of ν (without this 

process this model is the worst compared to the reference). Figures 28 to 32 show the detector 

multiplication factors obtained from the reference solution (right axis) and the relative 

difference with respect to the other schemes (left axis). As expected, the differences reduce 

from approximately -4% for detector I-c to 0.2% for detector IV-b in the shield zone which is 



 101 

correlated with an increasing distance from the source area (with regard to the maximum 

during the transient for the P1(P0)). The relative differences for detectors I-c, II-b, III-b show a 

very similar shape that can be qualitatively explained by the physical interpretation of the 

mathematical models arising by different angular approximations. As described in [58, 59], the 

time dependent mono-energetic flux, that corresponds to a Dirac delta-function in both time 

and space for the source ( )� �� ��δ , is a function that shows a wave front traveling at velocity 

/ 3v  and a discontinuity in P1. This front has the following property: 
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The introduction of additional harmonics in the flux expansion has two main effects. First, 

additional waves are added to the solution that travel at different velocities with respect to 

/ 3v . This enhances the global propagation velocity (for an infinite number of harmonics the 

solution should travel at a velocity exactly equal to v). Second, the discontinuity is smoothed 

(physically negative values of the flux are not possible). The relative differences are defined 

such that positive values mean higher values of the reference with respect to the angular model. 

After these preliminary considerations, the common behavior of detectors I-c, II-b, III-b may 

be explained as follows: the low fluctuations in the relative differences at the beginning and 

end of the transient are connected with small amplitude waves traveling at velocities higher and 

lower than / 3v . The centered negative and positive peaks are due to a smoothing of the 

Dirac delta-function in the front of the wave and of the −∞  discontinuity in the back of the 

wave (see (4.8)). The peculiarity shown by detector II-a is likely a result of the vicinity of the 

reflector which has introduced reflected waves. Differences for the detector IV-b do not show a 

clear pattern, but they are very low and thus difficult to interpret. An indication that the 

increase in angular approximation decreases the steepness of the transient flux can also be 

derived from the fact that the P5(P0) option, during the simulation, uses a larger time step with 
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respect to the other options exactly in correspondence with this part of the transient. When 

compared with the SPN method, clearly the same order PN scheme performs better. 
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Figure 28: Detector I-c. 

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

time (s)

re
la

tiv
e 

er
r (

%
)  

   
   

 s

1.0

1.2

1.4

1.6

de
t. 

m
ul

t. 
fa

ct
or

   
   

  s

SP5(P0)
P3(P0)
SP3(P0)
P1(P0)
reference

 

Figure 29: Detector II-b. 
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Figure 30: Detector II-a. 
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Figure 31: Detector III-b. 
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Figure 32: Detector IV-b. 

 

Influence of the scattering kernel angular discretization: 

The presence of higher angular terms in the scattering kernel approximation has the effect of 

decreasing the removal cross section seen by a specific angular flux moment. Consequently, 

the higher the anisotropic scattering component, the greater the distance in space and time at 

which the anisotropic flux, created by the localized source, exhibits a diffusion like behavior. 

Usually the higher angular moments of the scattering kernel are negligible unless low atom 

mass materials such as hydrogen are present. However, their importance is not only 

proportional to their absolute value but also to the magnitude of the corresponding angular flux 

moment. In the reactor considered, although there are no low atom mass materials, the small 

size of the core and the presence of the source suggests, as confirmed by Figure 24, a strong 

spatial gradient of the flux and, thus, high amplitude of the higher angular moments of the flux. 

In such a situation it is not clear what will be the differences due to different approximations of 
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the scattering kernel. In order to investigate this effect, the results from three different 

simulations are compared P3(P3) (reference), P3 (P0), P1(P1) and P1(P0). Table 5 shows the 

steady state relative difference with respect to the P1(P3) approximation at steady state. It is 

again surprising how the renormalization process has yielded a result for the P1(P1) 

approximation that is better than the P3(P0). The analysis of the time dependent results shows a 

clear interpretation under the considerations made at the beginning of this section. Close to the 

source region the difference between the simulations is dominated by the un-collided neutrons 

thus the P3(P0) model is very close to the reference one with respect to the P1(P0) or P1(P1) 

models (Figures 33 and 34). Thus, the influence of the higher moments of the scattering kernel 

remains small close to the source region. As the distance between detectors and the source 

increases, the perturbation is almost caused by collided neutrons. The ability to preserve the 

higher angular moments after the scattering process is crucial to preserving the differences 

between models. As shown in Figures 36 and 37, the P1(P1) model improves with respect to the 

reference as the distance from the source increases.  
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Figure 33: Detector I-c. 

 



 106 

 

 

-2.0

-1.5

-1.0

-0.5

0.0

1.E-10 1.E-08 1.E-06 1.E-04 1.E-02 1.E+00 1.E+02

time (s)

re
la

tiv
e 

er
r. 

(%
)  

   
 s

1.0

1.3

1.6

1.9

2.2

2.5

de
t. 

m
ul

t. 
fa

ct
or

   
 s

P3(P0)
P1(P1)
P1(P0)
P3(P3) ref.

 

Figure 34: Detector II-b. 
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Figure 35: Detector II-a. 
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Figure 36: Detector III-b. 
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Figure 37: Detector IV-b. 
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Table 5: Steady state relative difference with respect P3(P3) 

Detector 
Angular scheme 

I-c II-b II-a III-b IV-b 

P3(P0) 2.09 1.07 1.11 1.55 1.02 
P1(P1) -0.50 0.18 -0.87 -0.79 1.86 
P1(P0) 2.14 1.50 0.42 0.99 3.21 

 

IV.5. Conclusions 

The main objective of this work was to provide a new powerful tool for the analysis of 

neutronic transients in nuclear reactors with special emphasis on application to ADS. In the 

framework of the even parity second order form of the transport equation solved by 

VARIANT, a time dependent discretization scheme has been embedded thus making a 

coherent time discretization of the PN and SPN equations available for rectangular and 

hexagonal meshes in 2D and 3D geometries. The choice of an implicit scheme, for the time 

discretization, has been carried out in order to eliminate the need for the user to decide the time 

scale of interest without introducing concerns about the stability of the solution. In order to 

decrease the computational load typical for an implicit scheme, a time step control has been 

provided that is able to use larger time steps by maintaining the iteration error (different error 

norms are available) below a user set maximum value. The scheme has been shown to be 

accurate by matching analytic results for a simple geometrical configuration along with more 

realistic cases. The results obtained in this work are all evaluated and discussed to exhibit and 

explain the relative differences between the different spatial, angular and temporal 

discretizations available rather than having in mind the goal of a direct comparison with 

experimental results. The results also focus on physical aspects of the simulation of fast 

transients in ADS. As already mentioned, several processes affect the final comparison 

between experiments and code simulations, like multi-group cross-sections preparation, 

uncertainties in experimental data and nuclear data (microscopic cross-sections). In such a 



 109 

complex framework, cancellation of errors can easily become the dominant effect with respect 

to the accuracy of the overall results thereby hiding the accuracy of the method. Comparisons 

with experiments in such situations can thus be misleading and it is necessary, if possible, to be 

aware of the error magnitude introduced by the approximations in the numerical treatment. 

This last point is the main objective of the benchmark problems investigated in the present 

work. From all the analyses it has been evident that the importance of a higher angular 

expansion of the flux is fundamental in the short time scale for regions close to the source area 

(different angular models show differences in the order of several percents). On the other hand 

on these conditions the importance of the scattering kernel expansion order seems to be 

negligible. For very small size reactors, the importance of the flux expansion order is relevant 

(see chapter IV.2) for all of the locations and persists longer after the sharp peak of the detector 

responses. Physically this is due to a direct coupling between the source region and the external 

boundary of the reactor, thus the expansion order of the flux affects the number of source 

neutrons present in the fissionable part of the core. When the reactor size is large enough to 

ensure a spatial decoupling, a larger angular representation of the perturbation is not needed 

since the size of the reactor allows the perturbation to exhibit diffusion like behavior before 

reaching the detector locations. In these cases it is anyway necessary to carefully evaluate the 

influence of the introduction of higher order expansions of the scattering kernel which increase 

the spatial coupling (see chapter IV.4). During the simulation performed in chapter IV.4, the 

relative difference between two consecutive angular approximations decreases with respect to 

an increase of the order (i.e. P1 vs. P3, P3 vs. P5) as expected. A general overview of all of the 

results suggests that for very small experimental reactors, a P5 flux expansion order will be 

necessary. For medium-sized reactors a P3 expansion should be satisfactory. The time step 

control has shown its ability to deal with different types of transients and thus its use is always 

suggested to the user in order to optimize the computational cost. Hopefully this methodology 

will offer researchers an additional tool in order to clarify discrepancies between experimental 
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and simulation results with the final goal of decreasing the need for expensive experimental 

tests. Such ability will also allow researchers to better predict the behavior of new reactor 

concepts such as an ADS. The variations of the external source considered in this study are 

typical examples for an initiating transient in such a type of reactor. The presented results and 

their discussions illustrate the importance of various phenomena and approximations and their 

relevance e.g. with respect to reactor size or detector position. The detailed understanding of 

the implemented new time step control feature will help in applying this concept and the 

associated option in the used tool, the VARIANT and KIN3D codes, also for different types of 

transients, e.g. those induced by relocation of material. Unfortunately it was not possible for all 

the tests performed to provide a comparison of the computation cost between the old and the 

new direct scheme because different computers were used for the simulations. Nevertheless, 

generally, the impression about the slight reduction of the time consumption described in 

Section IV.2, due to a change in the convergence speed of the iterative solution of the pseudo 

steady state transport  problem performed by the VARIANT code, were generally confirmed.                 
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