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Zusammenfassung 
 
 
Luftreinhaltung ist einerseits erforderlich, um die Situation weiterer Verschlechterung auf 
lange Sicht hin zu verhindern, andererseits sind auch Vorhersagen notwendig, um während 
Feinstaub-Episoden präventive Maßnahmen zur Verbesserung der Luftqualität ergreifen zu 
können. 
 
In den letzten zehn Jahren sind neuronale Netzmodelle in der Luftreinhaltung ein effizientes 
Instrument zur Feststellung der räumlichen und zeitlichen Variabilität der Luftverunreinigung 
geworden. Eine der wichtigsten Eigenschaften von neuronalen Netzmodellen ist ihre 
Fähigkeit gelernte Sachverhalte zu verallgemeinern und darauf basierend, neue Situationen zu 
simulieren oder zu prognostizieren. Ein Anwendungsfall des neuronalen Netzwerks in der 
Luftreinhaltung kann darin bestehen, dass Messdaten als Eingangsparameter verwendet 
werden und sich Schadstoffkonzentrationen als Ausgangsparameter ergeben. 
 
Ziel dieser Arbeit ist die simulative Bestimmung der PM10-Konzentrationen in Stuttgart auf 
Basis von Tageswerten, mit Hilfe von zwei unterschiedlichen Modellen, die für diesen Zweck 
entwickelt wurden. Die beiden entwickelten Modelle sind ein PM10-Nowcasting-Modell und 
ein PM10-Forecasting-Modell. 
 
Um eine gründliche und aufschlussreiche Bewertung der modellierten PM10-Konzentrationen 
durchführen zu können, mussten mehrere Leistungsindikatoren für das PM10-Nowcasting-
Modell und das PM10-Forecasting-Modell festgelegt und ausgewertet werden. Die 
Leistungsindikatoren sind der Fractional-Bias, der Grad der Übereinstimmung, das Quadrat 
des Korrelationskoeffizienten, der mittlere absolute Fehler, der mittlere quadratische Fehler  
und die mittlere quadratische Abweichung. Um die Anzahl der täglichen PM10-
Überschreitungen bestimmen zu können, mussten zusätzliche Leistungsgrade berücksichtigt 
werden. Für die beiden Modelle wurden auch eingehende Analysen der Restfehler und 
Quantil-Quantil-Plots zur Identifizierung von möglichen Ausreißern durchgeführt, um eine 
Verbesserung der modellierten Ergebnisse zu erlangen.  
 
Als Anwendungsfall für das PM10-Nowcasting-Modell wurden Untersuchungen 
herangezogen, die am Stuttgarter Neckartor durchgeführt wurden. Von November 2006 bis 
März 2007 wurden in der Umgebung der Luftmessstation am Neckartor die Straßen gereinigt. 
Dies galt als mögliche Maßnahme gegen hohe Feinstaubkonzentrationen im Bereich dieser 
Messstation. Basierend auf den Ergebnissen von Einzelpartikelanalysen, der Messungen von 
PM- und NOX-Konzentrationen sollte eine Reduktion der PM10-Konzentrationen in der 
Außenluft nachweisen werden. Allerdings war eine quantitative Auswertung über die 
Wirkung der Straßenreinigung anhand der Messergebnisse nicht möglich, da durch die 
meteorologischen Einflüsse und u.U. durch weitere Parameter überlagert wurden. Das 
neuronale Netzwerk bietet jedoch den Vorteil, dass die PM10-Konzentrationen als Funktion 
der meteorologischen Einflüsse simuliert werden können. Das PM10-Nowcasting-Modell 
wurde somit als ein Instrument zur Ergänzung von Immissionsmessungen entwickelt. Das 
Ziel des entwickelten Modells ist, die PM10-Konzentrationen am Stuttgarter Neckartor zu 
simulieren, für den Fall dass keine Straßenreinigungsaktivitäten stattgefunden haben. Der 
Nachweis der Wirkung der Straßenreinigung wird dadurch geführt, dass die Differenzen 
zwischen den modellierten PM10-Konzentrationen (ohne Straßenreinigung) und den 
entsprechenden gemessenen PM10-Konzentrationen (mit Straßenreinigung) bestimmt werden. 
Basierend auf den ausführlichen statistischen Analysen konnte die Leistungsfähigkeit des 
entwickelten PM10-Nowcasting-Modells festgestellt werden. Somit konnten mit dem Modell 
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die PM10-Konzentrationen auf Basis von Tageswerten für den Zeitraum von mehreren Jahren 
(Januar 2004 bis Oktober 2006) am Stuttgarter Neckartor simulativ bestimmt werden. 
Anschließend wurde das PM10-Forecasting-Modell eingesetzt, um die PM10-Konzentrationen 
während der Straßenreinigung zu simulieren. Die Ergebnisse aus der linearen 
Regressionsanalyse, die einen Vergleich zwischen den modellierten PM10-Konzentrationen 
und den gemessenen Werten erlauben, zeigen, dass die gemessenen PM10-Werte im 
Allgemeinen etwa 4 % niedriger als die modellierten Werte waren, was auf einen Effekt der 
Straßenreinigung hindeutet. Dieser Trend war allerdings nicht an allen 
Straßenreinigungstagen zu beobachten. 
  
Im Gegensatz dazu wurde das PM10-Forecasting-Modell entwickelt, um die täglichen PM10-
Konzentrationen für die folgenden drei Tage in zwei städtischen Gebieten in Stuttgart mit 
unterschiedlichen Eigenschaften vorherzusagen. Der erste Messort repräsentierte ein 
verkehrsreiches Gebiet, wohingegen der zweite Messort städtischen 
Hintergrundkonzentrationen widerspiegelt. Die Eingangsparameter für die Simulation 
bestanden zum einen aus Messdaten von zwei Luftmessstationen, die Messstation am 
Neckartor (verkehrsreich) und die Messstation Bad Cannstatt (städtischer Hintergrund). Zum 
anderen wurden meteorologische Daten aus Wettervorhersagen für die folgenden drei Tage 
verwendet. Diese stammen aus einem Numerischen Mesoskaligen Modell. Das PM10-
Forecasting-Modell liefert statistisch gesicherte Ergebnisse für Vorhersagen von PM10-
Konzentrationen für die folgenden drei Tage, sowohl für das verkehrsreiche Gebiet als auch 
für das städtische Gebiet mit Hintergrundkonzentration. Allerdings sind Abstriche bei der 
Genauigkeit der simulierten Werte im Echtzeitbetrieb hinzunehmen, da die 
Wettervorhersagen nicht immer den auftretenden Wetterbedingungen entsprechen. Daher ist 
eine wichtige Voraussetzung für die erfolgreiche Vorhersage von PM10-Konzentrationen die 
Verfügbarkeit von präzisen Wettervorhersagedaten, da die Qualität der PM10-Vorhersagen 
stark von diesen Parametern abhängt. 
 
Bei der Simulation von PM10-Episoden mit hohen PM10-Konzentrationen traten sowohl mit 
dem Modell zum PM10-Nowcasting als auch mit dem PM10-Forecasting-Modell Probleme auf. 
Vom mathematischen Aspekt her könnte die Tatsache eine Rolle spielen, dass die neuronalen 
Netzmodelle nur auf Konzentrationsbereiche angewendet werden dürfen, die während des 
Trainierens der Modelle vorlagen, aber nicht auf Konzentrationsbereiche extrapoliert werden 
dürfen, die nicht trainiert werden. Vom wissenschaftlichen Aspekt her könnte eine 
Unterschätzung der PM10-Konzentrationen da durch erklärt werden, dass durch die 
Zusatzbelastung bei PM10-Episoden deren Quellen nicht genau von den Eingangsparametern 
beschrieben werden können und daher nicht ausreichend genau simuliert werden können. Die 
drei Arten von PM10-Episoden sind: Inversionswetterlagen während der kalten Jahreszeit, 
Feuerwerke und Feinstaub aus Ferntransport. 
 
Eine allgemeine Schlussfolgerung ist, dass neuronale Netzmodelle für Anwendungen im 
Rahmen der Modellierung von PM10-Konzentrationen in städtischen Gebieten eingesetzt 
werden können. Allerdings haben diese Modelle auch Einschränkungen, z.B. sind die 
entwickelten Modelle gebietspezifisch. Trotzdem kann festgehalten werden, dass bestimmte 
Sachverhalte und Zusammenhänge vom Modell korrekt abgebildet werden, wenn diese in 
einem vorher erzeugten und statistisch geprüfen Datensatz, mit dem das neuronale 
Netzmodell traniert wird, enthalten waren. 
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Executive summary 
 
 
The problem of air pollution is a frequently recurring situation and its management has 
considerable social and economic effects. On one hand, air pollution control is necessary to 
prevent the situation from worsening in the long run. On the other hand, forecasting of air 
quality in days in advance is also necessary in order to adopt preventive actions during 
episodes of airborne pollutions.  
 
In the past decade, neural network models have become an efficient tool for establishing both 
temporal and spatial characteristics of ambient air quality in the field of air pollution. Neural 
network models are capable of learning to model a relationship during a supervised training 
procedure, when they are repeatedly presented with series of input and associated output data. 
In the case of modelling ambient air pollutant concentrations, the input data could consist of 
meteorological or air quality data from measurements, and the outputs would be the air 
pollutant concentrations. 
 
In this dissertation, the objectives are to realise and to evaluate two air quality neural network 
models that, correlating the air quality data with the meteorological information, are able to 
simulate daily urban PM10 concentrations in Stuttgart. For that, two models are developed for 
PM10 Nowcasting and PM10 Forecasting. 
 
To conduct a thorough and insightful evaluation on the modelled PM10 concentrations, several 
performance indices which were used for both the PM10 Nowcasting and PM10 Forecasting 
models included the fractional bias, the index of agreement, the squared correlation 
coefficient, the mean absolute error, the mean bias error and the root mean square error. For 
the PM10 Forecasting model, additional performance indices to evaluate the correct number of 
PM10 exceedances were considered. For both models, thorough analyses of the error residuals 
and quantile-quantile plots were performed for the identification of possible outliers and for 
the better understanding in the patterns across the two sets of univariate modelled and 
measured data. 
 
From 15.11.2006 to 18.03.2007, intensive street sweeping was conducted along the paved 
roadway of Stuttgart Neckartor as an urban PM abatement strategy. Based on results from 
single particle analyses and measurements of PM and NOX concentrations, reductions in 
ambient PM10 concentrations could be suggested. However, an exact quantitative evaluation 
on the effectiveness of street sweeping on ambient PM10 was complicated by the possible 
influence of different meteorological conditions and other unknown factors during sweeping 
and non-sweeping days. With the neural network approach, these influencing meteorological 
conditions could be parameterised as functions to PM10 concentrations. The PM10 Nowcasting 
model was thus developed as a tool to complement the results of the past measurements. The 
aim of the developed model is to Nowcast the original state of PM10 concentrations at 
Neckartor, assuming that no street sweeping activities took place during the sweeping periods. 
Any effect of street sweeping could then be suggested by any differences between the 
modelled PM10 concentrations and the corresponding measured PM10 values. Through 
extensive statistical evaluation on the performance of the developed model, it was capable of 
accurately simulating past PM10 concentrations from January 2004 to October 2006. For the 
next step, the suitability of the developed model for operational use was then evaluated for the 
modelling of PM10 concentrations at the Neckartor site on the 41 days with street sweeping. 
Although results from linear regression analysis between the modelled PM10 concentrations 
against the measured values showed that the measured PM10 values were approximately 4 % 
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lower than the modelled values, trends of lower PM10 concentrations were not observable 
during all sweeping periods. Interesting, this reduction trend from the modelling results was in 
accordance to the measurement results. 
 
The PM10 Forecasting model was developed to forecast the daily PM10 concentrations in one, 
two and three days in advance for two urban sites of different characteristics in Stuttgart. The 
first site represented the heavily trafficked site Neckartor, and the second site represented the 
urban background site Bad Cannstatt. The input parameters were on the one hand 
measurement data from the two ambient air monitoring stations at Neckartor and Bad 
Cannstatt. On the other hand common forecasted weather parameters up to three days in 
advance, which were obtained from a Numerical Mesoscale Model, were included. The 
overall model’s results illustrate a possibility of effective use on the operational level for 
performing future PM10 forecasts up to three days at both the traffic and urban background 
sites. However, in real-time forecasting conditions, a compromise in performance should be 
expected, due to the possibility of less accurate meteorological forecasts. Therefore, a 
prerequisite for the successful implementation for PM10 forecasting is the availability of high 
quality meteorological forecasts, as the model performs according to the accuracy of these 
parameters. 
 
Both the PM10 Nowcasting and PM10 Forecasting models encountered difficulties in 
accurately simulating PM10 concentrations during several distinct PM10 episodes. From the 
mathematical aspect, the underpredicting behaviours of both models during episodic events 
verifies the general assumption that neural network models will fail to extrapolate on data 
which have not been presented during the training procedure. From the scientific aspect, the 
underpredicting behaviours of the models could be attributed to the additional loads of PM 
from episodic events, whose presence could not be accurately modelled by the input 
parameters. The three most probable types of PM10 episodes are the extreme wintertime 
inversion-induced PM10 episodes, recreational PM10 episodes and regional and long-range 
PM10 transport.  
 
A general conclusion is that neural network models can be useful and fairly accurate tools of 
assessment in PM10 concentrations in urban areas. However neural network models have 
inherent limitations. In this dissertation, the main limitation is that both PM10 Nowcasting and 
PM10 Forecasting models are strictly site-specific. Nevertheless, the general approach can be 
followed, especially in the case of neural networks, where a number of key decisions on their 
formulation, topology and operating parameters are necessary for the accurate simulation of 
PM10 concentrations. 
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1 Introduction 
 
 
In urban environments where population and traffic density are relatively high, human 
exposure to hazardous substances is expected to be significantly increased. This is often the 
case near trafficked sites in city centres, where urban topography and microclimate may 
contribute to the creation of poor air dispersion conditions, thus giving rise to pollution 
hotspots. Under such conditions, pedestrians, cyclists, drivers and residents are likely to be 
exposed to pollutant concentrations exceeding the regulated air quality standards. The impact 
of air pollutants on human exposures depends on the location of pollution: large stationary 
sources, often located at a distance from densely populated city centres, emit air pollutants 
into the higher layers of the atmosphere, while the emissions from households and traffic are 
usually near ground levels in highly populated areas. As a result, mobile and small stationary 
sources may contribute more to ambient pollution concentrations and the resulting health 
effects, than their share in total emissions loads indicate. 
 
 
1.1 Particulate matter  
 
Among the various air pollutants, particulate matter (PM) pollution in particular is an issue of 
increasing public concern due to its recognised adverse effects on human health. The issue of 
PM or fine dust has been heavily discussed, and is still a very present and explosive topic in 
science and politics [1-4]. Although there is evidence that certain particle properties, such as 
the chemical composition and aerodynamic size, have different effects on human health [5], 
current EU legislation only regulates the mass concentration of particles with aerodynamic 
diameters below 10 µm and 2.5 µm in ambient air [6]. According to the EU framework 
Directive 1999/30/EC [7], the limit value for the daily PM10 average is 50 µg/m³ and must not 
be exceeded on more than 35 days of the calendar year (valid for the years 2005 to 2009). In 
addition, the annual PM10 average must not exceed the limit value of 40 µg/m³. In June 2008, 
a new edition of the Air Quality Directive [6] came in force which merges the former 
framework Directive and the Daughter Directives into a single Directive, with no change to 
existing air quality objectives. This new Directive includes the possibility to discount natural 
sources of pollution when assessing compliance against limit values, and the possibility of 
time extension of three years for PM10 concentrations with EU approval.  However, the 
recommendations from the 1999 Daughter Directive, which foresaw that the annual limit 
value would be reduced to 20 µg/m³, and that the number of allowed exceedances of the daily 
PM10 average limit value would be reduced to seven per year by 2010, are no longer valid. In 
addition to the changes in the PM10 guidelines, new PM2.5 regulations which introduce a 
concentration cap of 25 µg/m³ and an exposure reduction target are also now in force. 
 
In Germany, the 2005 EU PM10 limit values were transposed by the 7th amendment of the 
Federal Immission Control Act (BImSchG) and by the 22nd Ordinance for the 
Implementation of the Federal Immission Control Act (22. BImSchV) [8]. With regard to 
PM10 concentration, it is important that the threshold concentration is not exceeded, below 
which the association of PM10 concentrations and human health can no longer be detected [9, 
10]. For this reason, particularly strict criteria must be applied for the compliance with PM10 
standards for the protection of human health. 
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1.2 PM situation in Europe 
 
The main causes of PM pollution episodes in European cities can be summarised as follows:  

 strong traffic-related emission sources and poor local atmospheric dispersion 
conditions (e.g. calm winds, temperature inversions, etc.) [11] 

 synoptic weather conditions that favour long-range transport of particles [12, 13] 
 natural sources of coarse particles that are not easily controllable (e.g. windblown 

dust, sea salt, etc.) [14] 
 
The increased number of diesel-powered vehicles in the European vehicle fleets may have 
offset some of the gains in primary emission reductions due to the tightening of PM emission 
limits (e.g. EU-5 Regulation of the European Parliament) for such vehicles through 
technological improvements. Although the highest PM10 concentrations are generally 
expected to occur at roadsides, urban background monitoring stations can also record high 
PM10 values [11]. That raises concern about the exposure of a large proportion of the 
European urban population to PM pollution. 
 
 
1.3 Ambient PM abatement strategy 
 
The adoption of an effective air pollution abatement strategy has the ultimate aim to improve 
the ambient air quality in the areas of implementation. Forming long-term and successful air 
pollution control strategies require, however, the knowledge of the implementation costs, the 
economic benefits that might result from the reduction of emitted pollutants into the 
atmosphere, as all as other possible benefits (or damages) arising from the adoption of the 
proposed strategies. Some measures to mitigate the negative effects of ambient PM10 may 
focus on separating pollution sources and receptors, reducing the polluting activity, reducing 
its pollution characteristics, and controlling emissions with filtering devices [15]. Two 
examples of such measures are the designation of Low Emission Zones (LEZ) and the 
implementation of street sweeping activities. 
 
 
1.3.1 Low emissions zones 
 
17 air schemes/action plans have been worked out to date for the particularly polluted regions 
of the state of Baden-Württemberg in Germany [16]. Low Emission Zones are a central 
feature of these plans which involve a ban on vehicles with high emission levels. The Low 
Emission Zones are clearly delimited, generally urban areas where a ban on vehicles with 
high emission levels applies. Concentrations of PM and NO2 in excess of the critical values 
occur in Baden-Württemberg only in areas with adjoining roads [17]. Consequently, road 
traffic is a factor of significant importance in the endeavour in improving ambient air quality. 
The quality of air can hence be improved by restricting traffic in Low Emission Zones as 
these regulations are designed to lower the high level of PM emission and NO2 pollution in 
the ambient air. The traffic restrictions in these zones apply all the time; i.e. irrespective of 
whether the levels of air pollution are higher or lower at any one time. 
 
Since 01.03.2008, the Low Emission Zones have been established in the following cities of 
Baden-Württemberg: Stuttgart, Mannheim, Reutlingen, Ludwigsburg, Tübingen, Schwäbisch 
Gmünd, Leonberg, Ilsfeld and Pleidelsheim (since 01.07.2008). This means that only vehicles 
in certain emission categories may drive in the urban area of these cities. From 01.01.2009, 
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more Low Emission Zones came into force in Karlsruhe, Heilbronne, Ulm, Pforzheim, 
Herrenberg and Mühlacker. 
 
 
1.3.2 Street sweeping  
 
Reduction in traffic-induced PM will not be optimal by focusing exclusively on vehicle 
emissions control technology. Düring et al. [18] reported that a portion of the traffic-related 
PM10 can be attributed to non-exhaust emissions such as the resuspension of road dust, which 
comprises of PM from abrasion of the street surface, abrasion of clutch, brakes or tyres, and 
the emission of the road dust deposited on the road, which originated from outside the street 
and which may be crushed by the tyres. 
 
To date, several studies have been conducted on the different reduction measures of PM 
emission from streets. These measures ranged from the application of road dust binding 
chemicals to the operation of street sweepers [19-24]. The reason behind the use of these 
measures to control PM is not unfounded. Assuming that street sweeping can remove particles 
which may eventually evolve into resuspended PM, then it is possible that the removal of 
large grains of geological particles could reduce the PM loads, which would otherwise be 
available for emission. A modified mechanical broom and water wash street sweeper was 
operated along the paved roadway at Stuttgart Neckartor, Germany, from 15.11.2006 to 
18.03.2007. Based on results from single particle analyses and measurements of PM and NOX 
concentrations, reductions in ambient PM10 concentrations could be suggested. However, an 
exact quantitative evaluation on the effectiveness of street sweeping was complicated by the 
possible influence of local meteorological conditions and other unknown effects [25]. 
Although conclusions cannot be drawn at this point, that street sweeping is entirely effective 
as an emission reduction strategy for ambient PM10 even for such modified street sweepers, it 
should be emphasised that the reduction of dust loads on street surfaces was clearly 
demonstrated. 
 
 
1.4 The need of air quality modelling 
 
Ambient air quality assessment and management are becoming increasingly dependent on air 
quality modelling [26]. In terms of assessment, air quality modelling can support optimisation 
of measurement networks, provides more comprehensive temporal and spatial information of 
air pollutants, and also delivers additional information in understanding of the contributing 
sources of pollution [27]. In terms of management, prediction of the next day’s air pollution 
levels can call for proper actions and better controlling strategies from the concerned 
authorities [28].  
 
Considering highly urbanised areas where the population spends most of their time at home, 
workplaces, schools and recreational areas, warnings can be helpful to alert health care as 
well as traffic and environmental management in scenarios whereby air quality limit values 
are exceeded. Such warning systems must be sufficiently reliable and understandable by the 
majority of the people. These warnings are aimed at specific population groups that are 
particularly sensitive to air pollution (e.g. asthmatics). Interests in finding ways to protect 
these individuals are also vital in recognising the lack of a discernable health threshold for 
exposure to ambient air pollutants, which implies that no level of emission reduction will 
protect all individuals [29]. Air quality forecasting system should therefore provide accurate 
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advance notice that the ambient air concentration levels might exceed the air quality 
guidelines or the limit values.  
 
However, a system for modelling urban air quality cannot by itself, solve ambient air 
pollution problems. The modelled results, if they are reliable and sufficiently accurate, can 
play an important role in complimenting actual measurement results. An example is the 
implementation of the air pollutant dispersion models, which have been widely used for 
assessing roadside air quality by providing predictions of present and future air pollutant 
levels, as well as the temporal and spatial variations [30]. When applied in a knowledgeable 
way, they can be useful in providing insights into the physical and chemical processes that 
govern the transport and transformation of atmospheric pollutants [31]. 
 
 
1.5 Objective 
 
The objective of this dissertation is to develop a core model of neural network, which on one 
hand, is able to compute the Nowcast of PM10 concentrations when provided with certain sets 
of measured parameters. On the other hand the model is able to perform the forecast of 
probable concentrations of urban PM10. 
 
For the first task, a PM10 Nowcasting model shall be developed to complement the 
measurement results at Neckartor in winter 2006/2007, during which street sweeping was 
conducted as an urban PM abatement strategy [25]. The evaluation on the effect of street 
sweeping at Neckartor during the investigation period was, however, complicated by 
influence from varying weather conditions. Using the neural network approach, the varying 
weather conditions shall be parameterised as model inputs. The aim of the model is to 
Nowcast the original state of daily PM10 concentrations at Neckartor, assuming that no street 
sweeping activities took place during the sweeping periods. Any effect of street sweeping 
could then be suggested by any differences between the modelled PM10 concentrations and 
the corresponding measured PM10 values on street sweeping days. 
 
For the second task, a PM10 Forecasting model shall be developed to forecast 24 h average 
PM10 concentrations three days in advance for two urban sites of different characteristics in 
Stuttgart. The first site represents a heavily trafficked site, and the second site represents an 
urban background site. The model shall rely on forecasted weather parameters from a 
Numerical Mesoscale Model (NMM) and measured PM10 concentrations from two existing 
ambient air monitoring stations at Neckartor and Bad Cannstatt. The benefits of developing 
such a model are two-folds. Firstly, the modelled results could act as both an alarm for bad 
weather (from the weather forecaster) and the quality of ambient air (from the PM10 
Forecasting). Secondly, the information derived from the model could also aid in public 
education. 
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2 State-of-the-art of air quality models 
 
 
Air quality models use mathematical and numerical techniques to simulate the physical and 
chemical processes that affect air pollutants as they disperse and react in the atmosphere. 
Based on inputs of meteorological data and source information, the developed models can be 
designed to characterise primary pollutants that are emitted directly into the atmosphere [32, 
33]. These models are important to air quality management system as they can be used by 
agencies or parties tasked with controlling air pollution to identify source contributions to air 
quality problems, or to assist in the design of effective strategies to reduce harmful air 
pollutants via appropriate abatement strategies. In addition, air quality models can also be 
used to predict future pollutant concentrations after the implementation of a new regulatory 
program, in order to estimate the effectiveness of the program in reducing harmful exposures 
to humans and the environment. 
 
The development of air quality models progressed in two main phases. In a first phase from 
about 1950 to 1970, empirical and theoretical investigations suggested that the concentration 
of atmospheric pollutants in a smoke trail could be approximated by a Gaussian distribution. 
Local scale transport models based on this assumption came to be known as “Gaussian 
models” or “Diffusion models” [34]. For the permission on the constructions of huge 
emission sources, such models were used to simulate pollutant transport and diffusion from 
single stacks, and to predict the concentration of pollutants at the receptors. The second phase 
began in the late 1970s; the Urban Airshed Model (UAM) [35], followed by the Regional 
Oxidant Model (ROM) [36, 37] which provided Eulerian-based models for O3, the former for 
urban and the latter for regional scale modelling. The Sulphur Transport and Emission Model 
(STEM) focused on regional and continental acid deposition modelling [38-40]. The 
Community Multiscale Air Quality (CMAQ) modelling system is capable of processing large 
and diverse information from complicated emission mixtures and distribution of sources, to 
modelling the complexities of atmospheric process that transport and transform these mixtures 
to a dynamic environment [41]. This system operates in large time scales covering minutes to 
days and weeks. 
 
An air quality modelling system typically consists of a meteorological model, an emissions 
model and an air quality model [42]. The meteorological model calculates as a function of 
time, the three-dimensional fields of wind, temperature, relative humidity, pressure and in 
some cases, turbulent eddy diffusivity, clouds and precipitation. The emissions model 
estimates the amount and chemical speciation of primary pollutants deriving from point to 
area sources based on process information (e.g., traffic loads, land use etc) and day-specific 
meteorological parameters. The outputs of the meteorological and emissions models are then 
introduced into the air quality model, which calculates the concentrations and deposition rates 
of gases and aerosols as a function of space and time.  
 
For modelling purpose, two main classifications to the models can be made: Nowcasting and 
Forecasting models. As the names suggest, a Nowcasting model allows air quality for any 
given model domain to be shown in an up-to-date fashion. A Forecasting model, on the other 
hand, predicts the probable air quality in time-steps in advance, for instance a day to a week. 
Depending on the requirements, the respective models may require information on emissions, 
either archive or real time, as well as real time meteorological information. 
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2.1 Nowcasting models 
 
In recent years, Nowcasting models for predicting air pollutant concentrations have been 
frequently used in the “what-if” scenarios. These types of hypothetical scenarios can be 
essential for policy makers to determine whether the costs of implementing measures justify 
the benefits brought about by reducing the concentrations of the targeted ambient air 
pollutants. For instance, the effect of Low Emission Zones in central London as a means of 
reducing ambient NO2 concentrations was investigated with a stochastic model [43, 44]. In 
the work, two principal types of Low Emission Zones were considered; the reduction of 
vehicle flows and the restriction of certain higher emitting vehicle types. Although the results 
showed that significant reductions in traffic emissions did not appreciably affect the NO2 
concentrations, the importance of considering other options to reduce emissions from non-
road traffic sources was raised. In another study, a quantitative evaluation of PM10 mitigation 
measure via the construction of a bypass road in Berlin was performed with a combination of 
numerical dispersion models [45]. Using this “what-if” approach, significant reductions in 
PM10 and NO2 loads in the study area were reported.  
 
The next common application of Nowcasting models in the field of air quality control is the 
modelling of air pollution concentrations for areas, on which no measurement results are 
available. With a stochastic model, the spatial distributions of O3, NOX and PM in Sydney 
were successfully mapped [46]. In another study, a multivariate neural network method which 
incorporated results from a Gaussian model and regression approach to calculate the average 
spatial distribution of NO2 concentrations covering Cyprus was developed [27]. From the 
results, it was possible to account for the actual air quality situations at many sites for the 
research area. 
 
Nowcasting systems are also used in the understanding and predicting of air pollutant 
concentrations and pathways within build up areas [47, 48]. With advances in computing 
power, computational fluid dynamics (CFD) models can now resolve individual buildings and 
predict wind pathways through different terrain types. Such models are increasingly being 
used to simulate the transport and diffusion, and subsequently concentrations of air pollutants 
within urban areas, where the population is at risk [49, 50]. 
 
 
2.2 Forecasting models 
 
During the last decades several Forecasting models have been designed on the basis of 
different computational methods to provide air quality forecasts. The first systems generally 
implemented statistical approaches based on empirical observations, such as neural network 
models taking advantage of their limited computational resources demand. For instance, 
evaluations and intercomparisons of these forecasting models for NO2, PM10 and O3 
concentrations were previously performed [51, 52]. A variety of approaches based on 
empirical methods were applied to forecast air pollutant concentrations for different urban 
locations: multilayer perceptron based neural network models were used to forecast O3 peaks 
in the Orleans region [53], NO2 and O3 hourly average concentrations in Bilbao [54], and 
PM10 concentrations in Thessaloniki [55] and in Bordeaux [56]. Later the increase in 
computer processing speed and memory capacity of new generation computers allowed the 
development and implementation of forecasting systems based on deterministic or semi-
deterministic models [57, 58]. Presently, some examples of national and regional scale 
forecasts can be obtained from the USEPA, NOAA [59] and different European institutions 
such as the University of Cologne [60] and the French Institute National de l’Environnement 
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Industriel et des Risques. Urban scale forecasting systems have also been successfully 
developed and are now in use in some European cities for both urban air quality forecast and 
also for emergency preparedness [61-63]. 
 
 
2.3 Classification of Nowcasting and Forecasting models 
 
As a general classification, both Nowcasting and Forecasting models can be categorised as 
follows: 

 Deterministic model 
 Numerical model 
 Stochastic model 
 Hybrid model 
 Neural network model 

 
In Table 2.1 a summary of some available PM models which have been widely used is given. 
The classification here follows the type of the model and the mathematical principle of the 
method respectively. 
 
 
Table 2.1: Classification of air quality models 
 
Type Theoretical background Models 
Deterministic Gaussian principle DET [51] 

AIRPOL [64] 
ISC3 [65] 
HIWAY [66, 67] 
CALINE [68-70] 

Numerical K-models AUSTAL2000 [71] 
CALPUFF [72, 73] 
DRAIS [74, 75] 
Micro-CALGRID [76] 
MISKAM [49, 77, 78] 

Stochastic Regression, 
time series technique 

ARIMA [79, 80] 
Linear model [51, 81-84] 
Multiple linear regression model [85, 86] 
TVAREX [87] 

Hybrid Combination of 
deterministic, stochastic and 
neural network 

Hybrid ARIMA-ANN model [79, 88] 
OSPM [88] 

Neural 
network 

Multilayer perceptron Neural network model [51, 81-84, 85, 89-93] 

 
 
2.3.1 Deterministic model 
 
The deterministic models estimate air pollutant concentrations from emission inventories and 
meteorological variables, according to solution of various equations that represent the relevant 
physical processes. In other words, differential equation is developed by relating the rate of 
change of air pollutant concentrations in terms of average wind characteristics and turbulent 
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diffusion, which in turn, is derived from the mass conservation principle. The common 
Gaussian line source model is based on the superposition principle, namely pollutant 
concentration at a receptor, which is the sum of concentrations from all the point sources 
making up a line source. 
 
Although the deterministic modelling approach may be a logical way to predict air pollutant 
concentrations, it is, however, not free from limitations. These models are developed by 
deducing the transportation of air pollutants with mathematical formulae, which may reflect 
more or less accurately the physics of the process. To be useful, these formulae require first 
an adequate amount of meteorological input about the state of the atmosphere (wind 
characteristics, stability, turbulence, etc.) and then the detailed information on relevant 
emissions. 
 
 
2.3.2 Numerical model 
 
Numerical air quality models are based on numerical solution of partial differential equations 
representing the atmospheric dispersion phenomena. Example of such numerical models is the 
K-models, which are derived by using the K-theory approximation for the closure of the 
turbulent diffusion equation. These models are time dependent and applied through computer 
codes: Eulerian models and Lagrangian models. 
 
For the Eulerian models, the transport of inert air pollutants may be simulated by means of 
models which numerically solve the equation for conservation of mass of the pollutants. Such 
models are usually embedded in prognostic meteorological models. Advanced Eulerian 
models include refined sub-models for the description of turbulence (e.g. second-order closure 
models and large-eddy simulation models). 
 
As an alternative to the Eulerian models, the Lagrangian approach consists in describing fluid 
elements that follow the instantaneous flow. They include all models in which plumes are 
broken up into elements such as segments, puffs or particles. Lagrangian models use a certain 
number of fictitious particles to simulate the dynamics of a selected physical parameter. 
Particle motion can be produced by both deterministic velocities and semi-random pseudo-
velocities generated using the Monte Carlo techniques. Hence, transport caused by both the 
wind and turbulent terms due to wind fluctuations is taken into account. 
 
All numerical models have common limitations arising from employing the K-theory for the 
closure of diffusion equation [94]. For instance, the K-theory diffusion equation is valid only 
when considering neural and stable atmospheric conditions, and when the size of the plume of 
pollutants is greater than the size of the dominant turbulent eddies. 
 
 
2.3.3 Stochastic model 
 
In contrast to deterministic modelling, the stochastic models calculate air pollutant 
concentrations from meteorological and traffic parameters after an appropriate statistical 
relationship has been empirically computed from the measured concentrations. In short, these 
models are summarisation of the data already on record completed by the assumption that the 
record is either stable or contain trends or cycles, which may somehow be extrapolated. 
Regression, multiple regression and time series technique are some of the used methods [86]. 
Example of the time series techniques are the Box-Jenkins models, which are widely used to 
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describe the dispersion of exhaust emissions at trafficked intersection and at busy arterial 
roads. 
 
Stochastic models can be very useful in situations such as real-time short-term forecasting, 
where the information available from measured trends in concentration is generally more 
relevant than that obtained from the deterministic models [94]. 
 
Limitations of stochastic models include the requirements of long historical data sets and the 
lack of physical interpretation. For instance, regression modelling often underperforms when 
applied to describe non-linear systems [95]. The quality of the Box-Jenkins models relies 
frequently on individual user’s experiences and knowledge of pollutant time series statistics. 
Thus, different analyst may render contradictory interpretations when given the same data 
[96]. 
 
 
2.3.4 Hybrid model 
 
The hybrid models may combine the useful components of both deterministic and stochastic 
models [97]. Other variations of hybrid models may also combine components from both 
stochastic and neural network models [79, 98]. 
 
For hybrid models, the deterministic component can facilitate the strengthening of the 
models’ accuracies, i.e., to use it for predicting air pollutant concentrations that occur 
frequently. The stochastic component can be used to analyse the parametric distributional 
form of air pollutant data in order to estimate percentiles including the extreme values. This 
approach is largely based on the ability of deterministic models to establish links between 
emissions, meteorological and pollutant concentrations, and the ability of stochastic models to 
predict the distribution of all events, once the appropriate distributional form is identified for 
the historical air pollutant data [97]. 
 
The combination with the neural network component allows the hybrid models to 
approximate complex functions between the training variables and the target [79]. 
 
 
2.3.5 Neural network model 
 
Due to difficulties in understanding the physical parameters in neural network models, they 
are often referred as “black box models”. Nevertheless, researches have been conducted to 
implement possible nonlinear differential equations inside the network in order to use the 
available knowledge [99]. An example of such application is the development of neural 
network model as a non-linear tool for air quality modelling, principally using the multilayer 
perceptron architecture [100]. To date, numerous papers have shown that a feed-forward 
network is potentially capable of approximating any non-linear function. Gardner and Dorling 
[95, 100] concluded that neural network models generally provide better results compared to 
statistical linear methods, especially where the problem being analysed includes nonlinear 
behaviour. 
 
As neural networks are not based on any physical theory and may contain nonlinearities, the 
predictions may be ambiguous when extrapolating predictions beyond the range of the 
original training data. In another words, the drawback of the neural approach is that no 
information on the physical phenomena can be gained, since the network resembles the 
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behaviour of a black-box method [101]. Even when not extrapolating, the predictions may 
already possess inherent errors which are caused by the network’s local minima resulting 
from the non-uniform distribution of training parameters and noise over the domain [102].  
 
 
2.4  Evaluation on air quality models 
 
The potential scenarios to be considered by the air quality models in this dissertation cover 
two main areas: 

 Nowcasting of daily PM10 concentrations at Neckartor during street sweeping periods 
 Forecasting of daily PM10 concentrations three days in advance for two sites of 

different characteristics in Stuttgart 
 
Judging from the scenarios and the background information of the air quality models which 
have been reviewed, the following criteria and methodology have been used in order to 
conduct a credible and objective review of all models. Four model evaluation categories have 
been suggested as follows: 
 
Science and credibility: Describes how well the model simulates processes in air pollution 
meteorology (dispersion, chemistry, transport, numerical methods, etc.) 
 
Ease of use (from user’s perspective): Describes how easily the user can manage and use 
the model with or without prior knowledge, and configuration of input data files 
 
Computational requirements: Describes whether the model and any supporting programs 
have system requirements that are difficult to meet 
 
Availability, restrictions and terms: Describes the legal restrictions on procuring the model, 
permission for code changes by end-user, and acquisition methods (from the vendor or 
download from the internet) 
 
The evaluation of the respective models are summarised in Table 2.2. 
 
 
Table 2.2: Evaluation of air quality models 
 

Ratings Evaluation 
categories Deterministic 

model 
Numerical 
model 

Stochastic 
model 

Hybrid  
model 

Neural 
network model 

Science and 
credibility 

fairly good average average fairly good average 

Ease of use 
 

poor poor average poor poor 

Computational 
requirements 

poor poor average poor average 

Availability, 
restrictions, terms 

fairly good fairly good average average good 

 
 
Based on results from Table 2.2, both the stochastic and neural network air quality models 
seem to be the better choices among the five evaluated models in terms of overall ratings. It 
should be emphasised that stochastic model is a general classification of the simple regression 
model to the complicated Box-Jenkins model. Thus, although the model scores average 
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ratings for all four evaluation categories, the actual ratings depend largely on the specific type 
of model considered. 
 
In general, the neural network model outperforms the other four models in terms of 
availability, restrictions and terms. Some better-known commercially available neural 
network programmes include the Wolfram Research Neural Network package [103], the 
AMORE [104], MathWorks Neural Network Toolbox [105] and the GBLearn2 library [106], 
which are based on programming codes and can be modified or improved without restrictions 
based on the end-user’s requirements. However, the requirement of use in terms of 
programming can greatly hinder the ease of use when considering users who have no prior 
knowledge to computer programming. 
 
To summarise, the use of neural network model can be flexible, which enables one to solve 
highly complex non-linear problems. When properly trained, the model is able to self-extract 
functional relationships between the model inputs and outputs from the data set without 
requiring explicit consideration on the actual data generation process, which makes the model 
easy to handle in principle. Neural network model can be trained with real measurement and 
forecasted data, and subsequently updated with new data, enhancing its quality and making it 
an ideal method for the purpose of this dissertation. 
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3 Air pollution situation at Stuttgart Neckartor and Bad 
Cannstatt 

 
 
3.1 Description of study areas 
 
Stuttgart is the capital of the state of Baden-Württemberg in southern Germany. Being the 
sixth largest city in Germany, Stuttgart has a population of over 590 thousand while the 
metropolitan area has a population of over 5 million inhabitants. The centre of Stuttgart city is 
located off the Neckar valley, which inherits a basin topography. A 2 km long narrow valley 
runs from Kaltental through Nesenbach and ends in Heslach, which is in the basin structure. 
From northeast to southwest in the direction along the Neckar valley, the slopes incline from 
5 to 10° and heights from 100 to 240 m over 6 km in distance. To the northeast of Karlshöhe 
lies the 2.5 km wide Stuttgart city centre. Between Kreigsberg and Uhlandshöhe, a 
constriction of approximately 1 km wide is located at Bad Cannstatt in the Neckartal.  
 
The locations of the traffic and urban background sites in Stuttgart are depicted in Fig. 3.1. 
The traffic site (latitude 48°47’16’’N and longitude 9°11’25’’E) is located approximately 30 
m before a traffic junction of the Neckartor roadway. The roadway belongs to the federal 
highway B14 and is oriented from southwest to northeast. It is surrounded by a non-
permeable barrier of buildings on one side, where air pollution build-up is favoured. The 
urban background site (latitude 48°48’31’’N and longitude 9°13’47’’E) is distanced from the 
 
 

 
 
Fig. 3.1: Locations of Neckartor (traffic) and Bad Cannstatt (urban background) in 

Stuttgart, Germany                                                           data source: Google Maps 

250 m

Urban background site

Traffic site 
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main artery roadways to the city centre and is, in general, a good representation of city-wide 
background PM10 concentrations. 
 
 
3.2 PM situation at Stuttgart 
 
Transport can be considered as one of the most important sources of PM, and is largely 
involved in major urban air pollution issue [107, 108]. At the heavily trafficked site of 
Stuttgart Neckartor the 24 h average limit value of 50 µg/m³ for PM10 prescribed by the 
European legislation was exceeded 110 and 89 times in 2007 and 2008 respectively. The 
PM10 annual average values for 2007 and 2008 were 44 µg/m³ and 41 µg/m³ respectively, 
which exceeded the limit value of 40 µg/m³.  
 
During the winter season, the basin area of Stuttgart is exposed to weather conditions such as 
high atmospheric pressure and little wind which often result in the formation of temperature 
inversion. In the past, these special weather conditions resulted in extensive PM episodes in 
the ambient air [109, 110]. During the particular PM10 pollution episode in January to 
February 2006, approximately 54 % of the PM10 in Neckartor originated from traffic [110], as 
illustrated in Fig. 3.2. The portion was calculated by the Landesanstalt für Umwelt, 
Messungen und Naturschutz Baden-Württemberg (LUBW) from the sum of PM10 from the 
traffic and exhaust from traffic sectors. The next largest portion originated from the urban 
background, which constituted approximately 33 % of the total PM10. 
 
This traffic-related PM10 proportion was among the highest compared to other ambient air 
monitoring stations in the state of Baden-Württemberg. One reason for the exceeding PM10 
limit values at the traffic site of Neckartor is the local road dust generation. Three main 
groups of potential PM sources were previously identified at this site with a method of size-
fractionated PM samplings coupled with Scanning Electron Microscopy (SEM) and Energy 
Dispersive X-Ray (EDX) analyses [111]. The PM coarse fractions of 2.1 to 10.0 µm, which 
accounted for 44 % of the PM10, were identified as resuspended road dust. The PM fractions 
of 0.7 to 2.1 µm, which accounted for 38 % of the PM10, were identified as background and 
agglomerated particles with N and S containing crystals. The finer PM fractions smaller than 
0.7 µm, which accounted for 18 % of the PM10, were identified as agglomerated diesel soot 
particles with traces of S. The results from cascade impactor samplings and single particle 
analyses with SEM/EDX at Neckartor during high PM concentrations (PM10, 24h > 80 µg/m3) 
were averaged and depicted in one summarising diagram in Fig. 3.3. 
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Fig. 3.2: Sources of PM10 at Stuttgart Neckartor [110] 
 
 

 
 
Fig. 3.3: Single particle analyses of size fractionated PM at Stuttgart Neckartor during high 

PM concentrations (PM10, 24h > 80 µg/m3) [111] 
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3.3     Air quality measurements from 2004 to 2007 
 
 
3.3.1. 24 h average and annual mean PM10 concentrations 
 
The 24 h average PM10 concentrations are exemplarily shown for the traffic site of Neckartor 
and urban background site of Bad Cannstatt in Fig. 3.4a to 3.4d, and 3.5a to 3.5d respectively. 
Despite differences in local emissions and dispersion conditions between the two studied 
areas, the profile of 24 h average PM10 concentrations over the course of the four years are 
similar, being determined by PM episodes.  
 
For comparison purposes, the annual mean PM10 concentrations and number of days 
exceeding the EU PM10 24 h average limit values at Neckartor and Bad Cannstatt from 2004 
to 2007 are summarised in Table 3.1 and 3.2. 
 
From 2004 to 2007, the lowest annual mean PM10 concentration at Neckartor was 44.3 µg/m³ 
in 2007, which exceeded 40 µg/m³. This is the same as the annual limit established by the 
2008/50/EC Directive for PM10 concentrations. At Bad Cannstatt, the lowest annual mean 
PM10 concentration was recorded in 2007, which was 22.5 µg/m³. On the account of EU-wide 
legislation (e.g. emission standards for vehicles, Large Combustion Plant Directive), national 
legislation and the implementation of both in Member States, Görgen and Lambrecht [112] 
estimated that the urban background concentrations for PM10 in Germany will decline 
between 2005 and 2015 by an annual average of about 5 µg/m³. Should this reduction be 
realised, Bad Cannstatt could then comply with the binding annual limit. Adopting the PM10 
model as proposed by Lenschow et al. [113], a 5.0 µg/m³ reduction in PM10 concentration 
from the urban origin would also suggest similar reduction in PM10 concentration at the traffic 
site. However, this hypothetical reduction is somewhat insufficient when considering 
Neckartor from 2004 to 2006, as the annual mean PM10 concentrations for the three years 
before reduction has already exceeded 51.1 µg/m³. 
 
As depicted in Fig. 3.4c, the Neckartor site recorded the highest 24 h average PM10 
concentration of 191.0 µg/m³ on 01.02.2006. In general, higher PM10 concentrations are 
recorded from December to early March in the following year. During the colder months, 
high PM10 concentrations were resulted due to the formation of winter time surface inversions 
and low wind speed [114]. Inversions occur during night-times in winter, under clear weather 
conditions, with slow wind speed and high atmospheric pressure. Surface inversions are 
usually dissolved after sunrise when the ground is heated by radiation and temperature of the 
lower boundary level increases. Occasionally in winter the inversions can also be found 
evaluated during the daytimes. At the urban background site of Bad Cannstatt, significantly 
lower PM10 concentrations were recorded in comparison to Neckartor. Nevertheless, the 
maximum PM10 concentration of 117.0 µg/m³ on 01.02.2006 was also measured, coinciding 
with the behaviour of the Neckartor site under temperature inversions. 
 
In regard to the number of 24 h average PM10 exceedances in a calendar year, the Neckartor 
site is unable to comply with the regulated 35 exceedance days. Bad Cannstatt, on the other 
hand, has no difficulties in fulfilling the criteria. 
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Fig. 3.4a-d: 24 h average PM10 concentrations at Stuttgart Neckartor for the period 2004 to 

2007                                                                                  data source: LUBW 
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Fig. 3.5a-d: 24 h average PM10 concentrations at Stuttgart Bad Cannstatt for the period 

2004 to 2007                                                                         data source: LUBW
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Table 3.1: Annual mean PM10 concentrations and number of days exceeding the EU PM10 

24 h limit values at Stuttgart Neckartor for the period 2004 to 2007 [6, 8] 
 

Year Mean 
in µg/m³ 

98th percentile 
in µg/m³ 

Minimum in 
µg/m³ 

Maximum in 
µg/m³ 

Number of 24 h 
exceedances 

2004 51.1 109.9 9.0 156.0 160 
2005 54.5 126.8 12.0 171.0 187 
2006 55.3 132.7 13.0 191.0 175 
2007 44.3 103.0 10.0 127.0 110 
2008      

 
 
Table 3.2: Annual mean PM10 concentrations and number of days exceeding the EU PM10 

24 h limit values at Stuttgart Bad Cannstatt for the period 2004 to 2007 [6, 8] 
 

Year Mean 
in µg/m³ 

98th percentile 
in µg/m³ 

Minimum in 
µg/m³ 

Maximum in 
µg/m³ 

Number of 24 h 
exceedances 

2004 23.2 59.7 3.0 95.0 14 
2005 23.5 65.0 4.0 92.0 12 
2006 25.9 79.2 6.0 117.0 31 
2007 22.5 67.4 4.0 91.0 16 

 
 
3.3.2 Regularities in PM10, NO and NO2 concentrations depicted by average 
diurnal courses 
 
The significance of the principal cyclic influences on the variability of pollution concentration 
at a receptor is the average diurnal cycle. First, the diurnal pattern to pollutants’ source 
strength can be depicted. Second, the diurnal pattern of meteorological conditions on the 
influence on pollutants’ dispersion can also be illustrated.  
 
For the analyses of diurnal courses of PM10, NO and NO2 concentrations, the weekday-
weekend cycle at Neckartor and Bad Cannstatt were investigated. The diurnal courses were 
prepared for days with PM10 exceedances, i.e., PM10, 24h > 50 µg/m³. 
 
3.3.2.1 Average diurnal courses of PM10, NO and NO2 concentrations for 

weekdays 
The average diurnal courses of PM10, NO and NO2 concentrations with their respective 
standard deviations at Neckartor and Bad Cannstatt from August 2005 to November 2006 for 
weekdays are depicted in Fig. 3.6 and 3.7. 
 
For the diurnal courses during weekdays at Neckartor, assuming a constant emission cycle 
with two peaks in the morning and evening rush hours, the time evolution of the air pollutant 
concentrations can be conceptualised in the following ways: 
 

1. The morning peaks occur in the morning hours at around 08:00 in stable conditions, 
during which the PM10, NO and NO2 concentrations increase, but are counteracted by 
the destabilisation of the boundary layer due to ground heating via sun radiation [115, 
116]. 
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2. The minimum PM10, NO and NO2 concentrations are reached mid afternoon at around 
12:00 to 15:00 when the traffic emissions are lower and atmospheric stability is at its 
minimum. 

 
3. The build-ups of  PM10, NO and NO2 concentrations become significant about when 

the evening peak emissions due to traffic and other sources are coincident with the 
stabilisation of the boundary layer. Compared to mid-afternoon, the vertical mixing is 
significantly reduced. Especially during low temperatures in winter, the formation of 
secondary aerosols under these conditions can be favoured [111, 117, 118]. 
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Fig. 3.6: Average diurnal courses of PM10, NO and NO2 concentrations with standard 

deviations at Stuttgart Neckartor from August 2005 to November 2006 for 
weekdays with PM10, 24h exceedances of 50 µg/m³ only            data source: LUBW 
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Fig. 3.7: Average diurnal courses of PM10, NO and NO2 concentrations with standard 

deviations at Stuttgart Bad Cannstatt from August 2005 to November 2006 for 
weekdays with PM10, 24h exceedances of 50 µg/m³ only            data source: LUBW 
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In Fig. 3.6, the build-ups of air pollutant concentrations at Neckartor are much more 
significant in the morning hours than in the evening hours. For instance, PM10 concentrations 
increase from 47.2 µg/m³ to 112.2 µg/m³ from 03:00 to 09:00, and from 82.5 µg/m³ to 102.9 
µg/m³ from 15:00 to 18:00. NO concentrations increase from 97.9 µg/m³ to 510.3 µg/m³ from 
02:30 to 07:30, and from 289.5 µg/m³ to 314.9 µg/m³ from 14:00 to 18:30. NO2 
concentrations increase from 69.7 µg/m³ to 206.4 µg/m³ from 03:00 to 08:00, and from 170.5  
µg/m³ to 206.1 µg/m³ from 12:30 to 18:00. Considering Bad Cannstatt, the two traffic-
induced emission peaks which are observable at the Neckartor site are absent in the urban 
background site, as depicted in Fig. 3.7. This observation can be explained by the location of 
Bad Cannstatt, which is sited away from the artery roadways.  
 
3.3.2.2 Average diurnal courses of PM10, NO and NO2 concentrations for weekends 
The average diurnal courses of PM10, NO and NO2 concentrations with their respective 
standard deviations at Neckartor and Bad Cannstatt from August 2005 to November 2006 for 
weekends are depicted in Fig. 3.8 and 3.9 respectively. Given the paucity of day of the week-
specific activity data for sources other than road traffic at Neckartor and Bad Cannstatt, it has 
been assumed that non-traffic sources of PM10, NO and NO2 are uniform throughout the 
week, thus allowing the analyses of the diurnal courses for weekends. While this approach 
may neglect a weekday-weekend difference in emission sources from factories, households, 
etc., the effects from these sources are assumed to be negligible. 
 
Variations in the air pollutant concentrations at Neckartor are higher at weekdays than on 
weekends. This can be explained by the traffic flow originating from the B14 federal 
highway, from which traffic-induced PM10 are produced. At Bad Cannstatt, no significant 
changes in the pollutants’ concentrations profiles can be observed when comparing Fig. 3.7 
and 3.9. 
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Fig. 3.8: Average diurnal courses of PM10, NO, and NO2 concentrations with standard 

deviations at Stuttgart Neckartor from August 2005 to November 2006 for 
weekends with PM10, 24h exceedances of 50 µg/m³ only            data source: LUBW 
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Fig. 3.9: Average diurnal courses of PM10, NO, and NO2 concentrations with standard 

deviations at Stuttgart Bad Cannstatt from August 2005 to November 2006 for 
weekends with PM10, 24h exceedances of 50 µg/m³ only            data source: LUBW 

 
 
During weekends at Neckartor, three concentration peaks of PM10, NO and NO2 are observed, 
which can be summarised in the following ways: 
 

1. The first concentration peaks occur at around midnight and subsequently decrease 
when emissions are reduced gradually. The nocturnal air pollutant concentrations 
may appear surprising high in relation to the night-time typical reduction of major 
emissions, like those to traffic from the B14 federal highway, to domestic heating 
originating from the residential areas in the urban background, to industries, and to 
other human activities. Considering the night-time activities in the Stuttgart city 
centre, the cause of the concentration peaks points at the emission contribution 
from vehicles as the main source of these pollutants.  

 
2. The second and third concentration peaks which occur around 10:00 to 12:00 and 

17:00 suggest the weekend activities of the general population. The minimum 
PM10, NO and NO2 concentrations are reached mid afternoon at around 15:00 
when the atmospheric stability is at its minimum. Such similar diurnal behavioural 
observations have also been reported in previous studies [119, 120]. 

 
To summarise, three important points can be highlighted through the analyses of the average 
diurnal courses of PM10, NO and NO2 concentrations from Fig. 3.6 to 3.9. 
 

1. The influence of traffic on the average diurnal courses of the pollutants can be 
clearly illustrated by the differences in pollutant concentrations between the traffic 
site Neckartor and the urban background site Bad Cannstatt. The build-ups of air 
pollutant concentrations in the morning and evening rush hours at Neckartor can 
be solely attributed to traffic. As expected, these observations are not seen at Bad 
Cannstatt due to the apparent absence of traffic influence. 

 
2. The peak concentrations depend on the stability of the boundary layer at the time 

of the morning and evening emission peaks. The more stable the conditions near 
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ground, the higher the air pollutant concentrations, which can be sustained by the 
roadside emissions considering Neckartor [121]. The night-time reduction in air 
pollutant concentrations testifies to the fact that such high levels of concentrations 
cannot be sustained in the absence of sources. Conversely, a destabilisation of the 
boundary layer from the solar heating of the land leads to faster dispersion of air 
pollutants and subsequent reduction in air pollutant concentrations.  

 
3. The variations between the average diurnal profiles of the pollutants during 

weekdays and weekends at Neckartor suggest that the overall decrease in 
concentrations have been attributed to the decrease in traffic density and change in 
human activities in the city centre. The variations are not as significant at Bad 
Cannstatt. 

 
 
3.4 Determination of street sweeping efficiency – results of experiments 
 
 
3.4.1 Measurement approach 
 
3.4.1.1 Site description 
The traffic site selected for this research was the existing LUBW ambient air quality 
monitoring station of Neckartor as depicted in Fig. 3.1. 
 
Parallel measurements were performed at a second measurement site in Schlosspark (latitude 
48°47’14’’N and longitude 9°11’17’’E). This monitoring station was jointly operated by the 
LUBW and the Institut für Feuerungs- und Kraftwerkstechnik, Abteilung Reinhaltung der 
Luft (IFK-RdL). The measuring equipments were deployed in the middle of the park, 180 m 
to the traffic monitoring station at Neckartor, and 90 m away from the federal highway B14. 
Being located in the urban green belt, the measurement data from this measurement station 
was ideal for the evaluation for the urban background concentrations of PM without the direct 
local influence of traffic activities from B14. 
 
A third monitoring station (latitude 48°47’38’’N and longitude 9°12’00’’E) was installed at 
approximately 900 m in the downstream traffic along the federal highway B14 from the 
Neckartor monitoring station in November 2006. This monitoring station, which was jointly 
operated by IFK-RdL and the Amt für Umweltschutz, Abteilung Stadtklimatologie (AfU), 
was sited about 160 m before a traffic junction of the Cannstatter Strasse.  Oriented from 
southwest to northeast, Cannstatter Strasse is surrounded by a wall of tall vegetations on one 
side of the roadway and Schlosspark on the other side of the road.  This monitoring site 
functioned as a reference station. In a situation whereby unusual PM episodes occurred at the 
Neckartor site, the measurement data from this reference station could be important in the 
validation of such events. 

     
3.4.1.2 Street sweeping 
The approach was based on operating a modified mechanical broom and water wash street 
sweeper equipped with fine dust filter in its hopper along the six lanes roadway at the 
Neckartor traffic site. 
 
The specifications and operation conditions for the street sweeper used in this research are 
listed in Table 3.3. In Fig. 3.10 shows the street sweeper in operation. 
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Table 3.3: Specifications and operation conditions for the street sweeper 
 
 Street sweeper   
 Item Specification  
 Length in mm 6,200  
 Width in mm 2,500  
 Height in mm 3,300  
 Empty weight in kg 9,000  
 Turning circle in mm 10,000  
 Capacity in c.c. 6,000  
 Maximum power in hp 240  
 Capacity of water tank in l 1,900  
  Operation conditions  
 Water spray in l/h 50  
 Sweeping speed in km/h 3 – 8  
 Spray pressure in bar 120  
 Brush speed in rpm 110  
 Maximum cleaning capacity in m²/h 15,000  
 
 

 
 

Fig. 3.10: Street sweeper in operation during street cleaning periods from 15 November 
2006 to 18 March 2007 

 
 

The street sweeper is operated at 3 km/h to 8 km/h for its sweeping velocity. During its 
operation, a mechanical broom sweeps the street dust towards the centre of the sweeper with a 
brush speed of 110 rpm. The side brush is installed on a central column together with the 
return and suction air duct. The recirculating air system continuously conveys air from the 
hopper to the blowing nozzle, thus resulting in a small proportion of the air reaching the 
atmosphere in the process. The blower nozzle forces the recirculated air against the street 
surface and any road dust is then vacuumed up through the suction air duct. In its hopper, 
debris such as leaves is removed from the air stream by a screen. The larger particles are 
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removed by a centrifugal separator. The vented air then goes through a fine dust filter. To 
suppress any resuspension of road dust, water is sprayed at 50 l/h with a pressure of 120 bar. 
 
The street sweeping activities were conducted by the Abfallwirtschaft Stuttgart (AWS) and all 
sweeping events with corresponding meteorological conditions were protocolled accordingly. 
In total, there were 52 days with street sweeping during the investigation period. 
 
3.4.1.3 Measurements 
To monitor the temporal variability of ambient air pollutants during sweeping and non-
sweeping periods, the measurements from ß-attenuation PM monitors and chemiluminescence 
analysers were evaluated. To monitor the 24 h average PM10 concentrations, the 
measurements from PM10 samplers were evaluated. To have a better comparison between the 
morphological and elemental compositions of the ambient PM from the three monitoring 
sites, single particle analyses were performed on the samples collected by cascade impactors. 
The procedure of investigation on the morphology, elemental characterisation, and 
mineralogy of ambient PM was documented in Baumbach et al. [25]. To summarise, the 
effect of street sweeping on ambient PM concentrations were evaluated based on results from 
both continuous and non-continuous (PM samplings with samplers and cascade impactors) 
measurements of ambient air pollutants. 
 
In parallel to the continuous measurements during the investigation period, a series of direct 
road dust samplings from the street surfaces at Neckartor were performed. The areas, from 
which road dust samplings were conducted, were individually measured and marked. Silt 
loadings on the street surfaces were determined by vacuuming the active traffic lanes and then 
separating the material according to their sizes. The collection procedure was performed using 
a handheld vacuum cleaner equipped with dust-restrainting features [122, 123]. Paper dust 
bags were installed in the vacuum cleaner. In Fig. 3.11 shows the procedure of road dust 
sampling at Neckartor. 
 
 

 
 

Fig. 3.11: Direct road dust sampling at Neckartor 
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A total of ten road dust samples were collected from 17.01.2007 to 15.03.2007, only on days 
when the road was visibly dry. Five samples were collected when no street sweeping took 
place prior to the sampling. The other five were collected immediately after street sweeping. 
To ensure comparability of the data sets, the respective samplings were performed at the same 
time of the working day. Weather characteristics, road conditions, time, and the studied 
surface areas were documented. The weight of the dust bag before and after vacuuming was 
determined on site. With reference to the method of dry sieve analysis as prescribed by DIN 
18123 [124], two fractions PM (> 75µm) and PM (< 75 µm) were classified. However, the 
process of the classical dry sieving method is unable to further separate PM into fractions 
smaller than 30 µm. Thus, a BACHO separator was brought into operation in order to obtain 
the finer PM10 fractions. The separation of PM is realised by rotating the drum of the BACHO 
separator in high velocity. Through centrifugal separation, the PM10 and 10<PM<75 fractions 
could be obtained. To summarise, the effects of street sweeping on dust loads on street 
surfaces were evaluated based on results from direct street dust samplings followed by PM 
size distributions.  
 
 
3.4.2 Results 
 
In this chapter, only measurement results pertaining to PM10 concentrations at Neckartor from 
15.11.2006 to 18.03.2007 are included. The measurement results from the other two 
comparison stations, and the results from the morphological, elemental and chemical analyses 
of the size-fractionated ambient PM and road dust are detailed in Baumbach et al. [25]. 
 
 
3.4.2.1 Average diurnal courses of PM10 and NOX concentrations 
The entire measured data from Neckartor was separated into two subsets: 31 working days 
with street sweeping and 26 working days without street sweeping. Average diurnal courses 
of PM10 and NOX concentrations were evaluated to determine if there were any regular effects 
of street sweeping. The diurnal courses of PM10 and NOX concentrations are depicted in Fig. 
3.12 and 3.13. The three street sweeping periods from 00:00 h to 01:30 h, 10:30 h to 12:00 h, 
and 15:00 h to 16:30 h are depicted as the vertical grey bars in the figures. 
 
In Fig. 3.12, the diurnal PM10 concentrations decreased temporally right after the street 
sweeping from 02:00 to 06:00 h, and similar observations were made after the second street 
sweeping from 12:00 to 14:00 h. However, the trend was not observed after the third 
sweeping period. Any positive effects of street sweeping could not be concluded at this 
juncture as the diurnal courses of NOX concentrations showed a similar reduction behaviour, 
see Fig. 3.13. One possible explanation for the discrepancies between the NOX concentrations 
from 06:00 to 16:00 h could be the frequent natural cleaning processes from precipitation and 
winds during the investigation period. If this argument was valid, then the reductions in PM10 
concentrations could not be induced by the street sweeping after all. 
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Fig. 3.12: Average diurnal courses of PM10 at Stuttgart Neckartor from 15 November 2006 

to 18 March 2007                                                                     data source: LUBW 
 
 

 
Fig. 3.13: Average diurnal courses of NOX at Stuttgart Neckartor from 15 November 2006 

to 18 March 2007                                                                     data source: LUBW 
 
 

3.4.2.2 PM10/NOX ratio for compensation of meteorological influences 
In a hypothetical situation whereby the traffic-induced NOX emissions at Neckartor remain 
always the same during all working days, any variations in the average diurnal course of NOX 
concentrations would then be primarily influenced by the different meteorological conditions. 
In this case, the changes in NOX concentrations could actually be used as a meteorological 
indicator. According to Ketzel et al. [125], this method of analysis has the advantage that the 
influence of dispersion conditions of the air pollutants is neutralised. 
 
A comparative analysis of the diurnal PM10 measurements was therefore proposed by plotting 
the PM10 concentrations normalised by NOX concentrations, as shown in Fig. 3.14 and Fig. 
3.15. If any effect of street sweeping on ambient PM10 concentrations were expected to take 
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place, the following interpretation could then be made: in the absence of precipitation, strong 
wind, or unusual local events, a positive street sweeping effect could be indicated by a 
decrease in the PM10/NOX ratio following street sweeping activities, compared to the average 
diurnal course of PM10/NOX ratio without street cleaning. 
 
In Fig. 3.14, the average diurnal normalised PM10/NOX ratio decreased noticeably after the 
first sweeping period from 02:00 to 05:00 h. However, the decrease from 05:00 to 09:00 h 
could not be explained here. During the daytime after 09:00 h, differences between the two 
diurnal courses were not noticeable before and after the second and third street sweeping 
periods. By computing these average values of the normalised PM10/NOX ratio for days 
without street sweeping and days with street sweeping, the values of 0.165 and 0.155 were 
obtained respectively, which could also infer a reduction potential of approximately 6 % in 
ambient PM10 concentrations after street sweeping. 
 
In Fig. 3.15, the 24 h average normalised PM10/NOX ratio is depicted over the entire 
investigation period. The average values of the normalised ratio for days without street  
 
 

 
Fig. 3.14: Average diurnal courses of normalised PM10/NOX at Stuttgart Neckartor from 15 

November 2006 to 18 March 2007                                          data source: LUBW 
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Fig. 3.15: 24 h average normalised PM10/NOX ratio at Stuttgart Neckartor from 15 

November 2006 to 18 March 2007                                          data source: LUBW 
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sweeping and days with street sweeping were found to be 0.162 and 0.151 respectively, which 
worked out to be approximately 7 % reduction. Although both the analyses in Fig. 3.12 and 
3.13 could suggest a reduction effect, it was difficult to conclude if this small reduction trend 
could be attributed to street sweeping or to other unknown factors.  
 
In Table 3.4, all averages of the normalised PM10/NOX ratio are summarised according to the 
evaluated days. Based on the results, a reduction potential of approximately 13 % in ambient 
PM10 concentrations was computed on days with street sweeping. In comparison to other 
related studies, Chang et al. [19] reported a reduction efficiency of ambient TSP of up to 30 % 
when using a regenerative-air vacuum sweeper and a washer. However, the effect was short-
lived lasting no more than 3 h to 4 h. With intense washing of street surfaces with high-
pressure water systems, a 6 % reduction in ambient PM10 could be observed [23]. Considering 
other PM control measure, Norman and Johansson [23] estimated an average reduction of 
around 35 % in the 24 h average PM10 concentrations with the application of calcium 
magnesium acetate (CMA) on street surfaces. 
 
 
Table 3.4: Averages of normalised PM10/NOX ratio at Stuttgart Neckartor from 15 

November 2006 to 18 March 2007 
 
 Evaluated days  
 

Description 
All days Working days only  

 Without street sweeping 
(based on average diurnal courses) 

0.179 0.165  

 With street sweeping 
(based on average diurnal courses) 

0.155 0.155  

     
 Without street sweeping 

(based on 24 h average values) 
0.163 0.162  

 With street sweeping 
(based on 24 h average values) 

0.151 0.151  

 
 
3.4.2.3 Gravimetric analyses of road dust 
Besides the evaluation of ambient PM10 behaviour, the direct effect of road dust on street 
surfaces before and after street sweeping was also evaluated based on results from gravimetric 
analyses of the collected road dust. For this purpose, a definition of street sweeping efficiency 
was defined and used here. Respectively, ηTotal represents the reduction efficiency of total 
road dust, η75 represents the reduction efficiency of silt (PM75), and η10 represents the 
reduction efficiency of PM10 on the street surfaces. The dust load removal efficiencies of 
PMTotal, PM75 and PM10, from street surfaces before and after street sweeping are presented in 
Table 3.5. 
 
 
Table 3.5: Dust load removal efficiency of PMTotal, PM75, and PM10 on street surfaces 

before and after street sweeping 
 
  Dust load before street 

sweeping in mg/m² 
Dust load after street 

sweeping in mg/m² 
Removal efficiency 

in % 
 

 PMTotal 1358 ± 459.7 538 ± 235.1 60.4  
 PM75 94 ± 5.6 40 ± 21.8 57.4  
 PM10 1.3 ± 0.3 0.6 ± 0.1 54.8  
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The results indicated that following the street sweeping at Neckartor, ηTotal was approximately 
60 %, η75 was approximately 57 %, and η10 was approximately 55 %. While these results were 
specific to the Neckartor site, similar quantitative findings would be anticipated in other 
trafficked areas, where the roadways are of similar conditions to those at Neckartor. 
 
The duration of effects from street sweeping on dust loads on street surfaces which were 
conducted at Neckartor from 17.09.2007 to 28.09.2007 are shown in Fig. 3.16. The effect 
lasted over one rush hour (approximately 6 h to 8.5 h) and the dust load was generated again 
within the next rush hour.  
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Fig. 3.16: Duration of effects from street sweeping on dust loads on street surfaces at 

Neckartor from 17 to 28 September 2007 
 
 
3.4.3 Conclusions 
 
Street sweeping is often proposed as a PM abatement strategy in cities to reduce resuspended 
road dust contributions to ambient PM concentrations. For this investigation, the effectiveness 
of street sweeping on the reduction of ambient PM10 concentrations and dust loads on street 
surfaces at Neckartor was investigated. 
 
The effects of street sweeping on the ambient PM10 concentrations were evaluated based on 
results from continuous beta-attenuation PM10 measurements, gravimetric PM10 samplings 
and NOX measurements. While reductions in ambient PM10 concentrations could be suggested 
during street sweeping periods, an exact quantitative evaluation on the effectiveness was 
overlaid by possible meteorological influences and other unknown effects. It is unclear which 
of these factors most influenced the reduction of ambient PM10 concentrations. Coupled with 
certain degree of uncertainty, it could still be a subject of controversy for the validity of these 
results. Although the method of normalised PM10/NOX ratio was used to compensate for the 
varying meteorological influences, it was still unclear if the reduction of ambient PM10 
concentrations was directly caused by street sweepings or by the frequent natural cleaning 
processes from precipitation and wind during the investigation period in winter 2006/2007. 
By using an appropriate air quality model, a “what-if” scenario could in fact be simulated to 
Nowcast the original state of 24 h average PM10 concentrations at Neckartor, assuming that no 
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street sweeping activities took place during the sweeping periods. This approach would be 
possible considering the use of neural network modelling in parameterising all the varying 
weather conditions as model inputs. Any effect of street sweeping could then be suggested by 
any differences between the modelled PM10 concentrations and the corresponding measured 
PM10 values on street sweeping days. 
 
A series of direct dust samplings from street surfaces in Neckartor were performed from mid 
January 2007 to mid March 2007 in parallel to ambient PM measurements. The results 
demonstrated favourable sweeping efficiency from 60 to 80 % for reducing the dust loads on 
street surfaces depending on the particle size group. The direct impact of street sweeping on 
the dust loads of street surfaces lasted over one rush hour (approximately 6 h to 8.5 h), and the 
dust load was generated again within the next rush hour. 
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4 Methodology 
 
 
4.1 Artificial neural network 
 
An artificial neural network (ANN) is an information processing paradigm that is inspired by 
the way biological nervous systems, such as the brain, processes information. The key 
element of this paradigm is the structure of the information processing system. It is composed 
of a large number of highly interconnected processing elements (neurons) working in unison 
to solve specific problems. Artificial neural networks, like human, learn by example. A 
network is configured for a specific application, such as pattern recognition or data 
classification, through a learning process. Learning in biological systems involves 
adjustments to the synaptic connections that exist between the neurons. This is true of 
artificial networks as well [126, 127].  
 
 
4.2 Biological neuron model 
 
Neurons (also called nodes) can be referred to the building bricks of a neural network. To 
understand the physics behind the operation of the network, it is important to know the 
function of the neurons. In Fig. 4.1, the schematic drawing of the major components of a 
typical neuron, including the cell body with nucleus, the dendrites that receive signals from 
the other neurons, and the axon, which relays nerve signals to other neurons at a specialised 
structure called a synapse, is depicted.  

 
 

Fig. 4.1: Structural features of a typical nerve cell (neuron) and synapse [127] 
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The neuron sends out spikes of electrical activity through a stand known as an axon, which 
splits into numerous branches. At the end of each branch, the synapse converts the activity 
from the axon into electrical charges that may inhibit or excite activity in the connected 
neuron(s). When a neuron receives an excitatory input that is sufficiently large compared with 
its inhibitory input, it sends a spike of electrical activity down its axon. This type of synapse 
which encourages depolarisation activity in the membrane of the post-synaptic cell is called 
excitatory, and the other which discourages it is called inhibitory synapse. Learning occurs by 
changing the effectiveness of the synapses so that the influence of one neuron on another 
changes. As a result, if the decrease in the polarisation is sufficient to exceed a threshold, then 
the post synaptic neuron “fires” to produce an output signal. 
 
 
4.3 Artificial neuron model 
 
The transmission of a signal from one neuron to another through synapses is a complex 
process, in which specific transmitter substances are released from the sending side of the 
junction. The effect is to increase or lower the electrical potential inside the body of the 
receiving cell. As mentioned earlier, if this potential reaches a threshold, the neuron fires. It is 
this characteristic that the artificial neuron model attempts to reproduce [126]. The artificial 
neuron model depicted in Fig. 4.2 is one that is widely used in artificial neural networks with 
modifications on it. 
 
 

 
 
Fig. 4.2: Structural features of an artificial neuron model without feedback, modified from 

[126] 
 
 
The artificial neuron as depicted in Fig. 4.2 has R number of inputs. Each line connecting to 
these inputs to the neuron is assigned a weight, which corresponds to the synaptic connections 
in biological neurons. The threshold in an artificial neuron is represented by the biases. 
Networks with biases can represent relationships between inputs and output(s) easier than 
networks without biases. For example, a neuron without a bias will always have a net input to 
the transfer function of zero when all of its inputs are zero. However, a neuron with a bias can 
learn to have any net transfer input function under the same conditions by learning an 
appropriate value for the bias. The activation corresponding to the “electrical potential” to fire 
the neuron can be described by Eq. (4.1) 
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where n is the activation, R is the number of inputs, w is the weight, p is the input, and b is the 
bias. The summation of the biases is also denoted by Eq. (4.2) in some literatures, 
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where N represents the size of the data set. 
 
The inputs, weights, biases and output are real values. A negative value for the weight 
indicates an inhibitory connection while a positive value indicated an excitatory one. The 
output value of the neuron is defined as a function of its activation in an analogy to the firing 
frequency of the biological neuron, which can be described by Eq. (4.3)    
  
 

f(n),a             (4.3) 
 
where f(n) represents a transfer function. The most commonly used functions are depicted in 
Fig. 4.3a to 4.3d respectively. Originally, the neuron output function f(n) in the McCulloch 
and Pits’ model [126] was proposed as a hard-limit function as shown in Fig. 4.3a, with which 
the output of the neuron is either zero, when the net input argument n value is less than zero, 
or one, when the n value is greater than or equal to zero. This type of function is usually used 
for making classification decisions. An example for such implementation is the description of 
basic Boolean functions such as the AND, OR and NOT logic gates. In Fig. 4.3b the linear 
transfer function is depicted. Transfer function of this type is used for linear approximation, 
which can take on any output value. However, non-linear relationships between the input and 
output values cannot be accurately represented by a linear function. Thus, if the relationship 
between the input and output values is linear or a linear approximation is desired, then linear 
function is made for the job. Otherwise, the use of sigmoid transfer functions may be the 
solution. The sigmoid transfer functions in Fig. 4.3c and 4.3d takes the input value, which 
may have any value between plus and minus infinity, and limit the output into the range of 
minus and positive one, or zero to one. 
 

 
 
Fig. 4.3a-d: Various transfer functions for neural network model 
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4.4 PM10 Nowcasting and PM10 Forecasting with neural network 
 
Based on the knowledge of the various components which constitute an artificial neuron 
model, the process with which data are being assimilated and processed, to being modelled 
and checked for accuracies by a neural network model is summarised and depicted in Fig. 4.4. 
The respective components that constitute the model are as follows: 
 

1. Data set preparation 
2. Input layer 
3. Hidden layer 
4. Output layer 
5. Training algorithm 
6. Validation 
7. Quality assurance 
8. Data set post processing  

 
These individual components detailed in the following chapters. 
 
Developing a neural network model is an iterative process which requires a systematic 
approach. It is, however, not possible to document all results and development steps. Thus, 
only the most important findings and results are documented here. It should be emphasised 
that there is no difference in the flowchart of data assimilation to modelling when comparing 
PM10 Nowcasting to PM10 Forecasting; the only difference lies on the way the modelled 
values are being handled. 
 
 
4.4.1 Data set preparation 
 
Neural network training can be made more efficient if pre-processing steps are performed on 
the network inputs and targets. The two techniques which are commonly used are the 
principal component analysis (PCA) and data normalisation. 
  
4.4.1.1 Principal component analysis 
The principal component analysis is a pre-processing technique which can significantly 
reduce the complexity of the neural networks employed. Since many of the meteorological 
parameters are somewhat related to the same synoptic process, they can be strongly 
interrelated [93]. In addition, the complexities of urban areas may also result in high cross-
correlations among the topographical, traffic and air quality variables [55]. By applying 
principal component analysis to the entire data set, an independent linear combination of all 
the variables can be provided, and therefore effectively anticipate substantial autocorrelations 
between the data set. As a result, the dimensionality of the input space of the data can be 
greatly reduced while the relevant information can be preserved as much as possible. 
 
4.4.1.2 Data normalisation 
The second pre-processing stage is the data normalisation which follows the principal 
component analysis for the purpose of enhancing the features in a data set. Data normalisation 
is an independent linear scaling of the respective input features to avoid large dynamic ranges 
in one or more dimensions. There are many applications in which two or more input features 
may differ by several orders of magnitude. The large variations in feature sizes can dominate 
the more important but smaller trends in the data. Therefore, the harmful effects can be 
removed through normalisation. 
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PCA: Principal component analysis, Iw: input weight, Ib: input bias, Lw: layer weight, Lb: layer bias 
 
 
Fig. 4.4: Flowchart of data assimilation to modelling for PM10 Nowcasting and PM10 
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4.4.2 Neural network model’s structure 
 
As the term neuron can also be interpreted as a biological nerve cell, the more general term, 
node, shall be used instead to describe its functions in the artificial neural network models in 
the subsequent chapters. 
 
4.4.2.1 Input layer 
In the input layer, the post-processed data set are divided into three subsets: training, 
validation and test sets respectively. 
 
The training set is a set of data used to adjust the initial weights of the neural network to 
produce the desired outcome. The validation set is a set of data used to find the best network 
configuration and training parameters. For example, it can be employed to monitor the 
network error during training to determine the optimal number of training iterations or 
epochs. It can also be used to determine the optimal number of hidden nodes. When the 
validation set is used to stop training, the neural network is optimistically biased, having 
exposed to the data. 
 
The test set is a set of data used only to evaluate the fully trained neural network, without 
changing the configuration of the network. Often, it is collected separately from the training 
and validation sets to help ensure independence. The neural network is biased towards both 
the training and validation sets, so the independent test must be used to determine the 
generalisation error. The test set should never be used to choose between neural networks, so 
that it remains an unbiased estimate of the network’s performance. This practice for 
generalisation error estimation is characterised as split-sample or hold-out validation. 
 
4.4.2.2 Hidden and output layers 
While a single node is able to perform single function such as classification, linear and non-
linear approximations, it may not be sufficient to approximate more complex functions with a 
finite number of discontinuities. A solution to this limitation is by connecting the outputs of 
node(s) as input to the others, so constituting an output layer and thus completing the structure 
of a neural network.  
 
The determination of the optimal number of nodes in the hidden layer is an important issue; a 
network with a small number of hidden nodes will probably fail to learn the data, whilst a 
network with too many nodes will fatefully overfit the training patterns and results in a poor 
generalisation performance, an observation which is usual in common prediction tasks [95]. 
 
Considering a large network, increasing the number of hidden nodes in a network does not 
guarantee better results than those obtained with a smaller number of hidden nodes [128]. If 
the function being learnt happens to be a Tan-sigmoid function as presented in Fig. 4.3d, a 
network with one Tan-sigmoid hidden node will perform substantially better than any more 
complex networks. Even if the true function can only be exactly represented by an infinite 
network, it is possible that it is very close to a function that can be represented by a smaller 
network. 
 
According to the structure of the connections between nodes in a network, two main classes 
of network architectures can be identified as the feedforward network and the recurrent 
network. To simplify the notations, equations will be restricted to consider a two-layered 
network, i.e. network with two layers of nodes excluding the input layer (leaving with one 
hidden and one output layer). Each layer will have its own index variable: i for input nodes j 
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for hidden, and k for output nodes. In a feedforward network, the input vector, p, is 
propagated through a weight layer as described by Eq. (4.4) and (4.5), 
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where a(t) represents the time series of output, n(t) denotes the activation, w is the weight,  
p(t) is the time series of input, and θj is the bias of unit j. 
 
Recurrent networks are fundamentally different from the feedforward architectures in the 
sense that they do not operate on an input space, but also on an internal state space, in which a 
trace of what already has been processed by the network [129]. In a simple recurrent network, 
the input values are similarly propagated through a weight layer, and also combined with the 
previous state activation through an additional recurrent weight layer 
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where S denotes the number of hidden nodes. The output of the network is, in both cases, 
determined by Eq. (4.7) and (4.8) 
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where g is the transfer function for the output layer, T represents the number of output units, 
and θk is the bias of unit k. 
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4.4.3 Validation 
 
For validation, the deviations of the modelled values from the measured values are evaluated 
as an error function. This error function is defined as the mean square sum of differences 
between the values of the output values and the desired target values. This function is 
calculated for the whole input data set as described by Eq. (4.9) 
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where Eik is the difference between the input nodes i and output nodes k, and dik and aik are the 
measured and the modelled value of output neuron k corresponding to the input i. The total 
error E can be computed by Eq. (4.10) 
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Should the total error exceed the acceptable tolerance, the neural network model will be 
reinitialised by adjusting the initial weight and bias values. The method of adjustment is 
dependant on the training algorithm of the model.  
 
In this dissertation, one-third of the entire data set was used for training, one-third for 
validation, and one-third as an independent test data set. There is no “rule of thumb” on the 
correct division of the entire data sets into their subsets. For instance, Hooybergs et al. [90] 
and McKendry [81] used four-fifth of their entire data set as training and validation sets, and 
one-fifth as test set. Grivas and Chaloulakou [89] used three-fourth as training set, one-eighth 
as validation set, and one-eighth as test set. Gardner and Dorling [130] used one-half as 
training set, one-fourth as validation set, and one-fourth as test set. Lu et al. [131] used seven-
eighth as training set, one-eighth as validation set, and no data as test set. In a more recent 
study, Diaz-Robles et al. [79] portioned the data set into two: 92 % as training set and only 8 
% as validation set. The reason behind the use of larger training set is not unfounded. When 
training neural network model, it is important for the model to extract all underlying patterns 
in the entire data set. This means that the training data set should be both adequately extensive 
and fully representative of all cases that the model is required to generalise. However the 
developed model performance statistics will be artificially biased if no truly independent test 
data set existed [100]. Thus, it is desirable that any data set should be divided into the three 
independent training, validation and test sets.  
 
 
4.4.4 Training algorithm 
 
An important aspect of a neural network is the learning step, based on a set of measured 
numerical values. Representative examples are presented to the network so that this 
knowledge can be integrated within its structure. The accuracy of network representation 
depends directly on the interconnections between the neurons.  
 
The leaning process consists of identifying the weights and biases that produce the best fit of 
the output data over the entire training data set. At the beginning of the learning step, random 
values are chosen to initialise weight data. During the learning step, the weights of the 
network are continuously adjusted, based on the error signal generated by the deviation 
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between the output data computed through the network and the data from the target values 
used in the training set.  
 
This can be accomplished by the backpropagation training algorithm which involves 
performing computations backwards through the network. Should the training algorithm 
become trapped in local minima, the final model may be sub optimal. Generally when the 
global minimum is not reached, a good local minimum can also be treated as an acceptable 
solution [95]. 
 
4.4.4.1 Backpropagation 
Backpropagation algorithms for feedforward networks use the gradient of the performance 
function to determine how to adjust the weights and biases in order to minimise errors of the 
modelled values. The total error function E as described by Eq. (4.10) is minimised using a 
gradient-descent technique. The necessary adjustments to the weights of the network are 
obtained by calculating the partial derivative of the error function in relation to each weight 
wij. A gradient vector representing the steepest increasing direction in the weight space is thus 
obtained. The following step is to compute the resulting weight update. In its simplified form, 
the weight update is a scaled step in the opposite direction of the gradient. Hence, the weight 
update Δw can be defined by Eq. (4.11)  
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where ε represents the learning rate. In some cases, a momentum may be used with the idea of 
incorporating in the present weight update some influence of the past iteration. Thus, the 
weight update becomes 
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where α is the momentum term and determines the amount of influence from the previous 
iteration to the current one. 
 
In this dissertation, the resilient backpropagation training algorithm was used for the 
development of the neural network models due to its simplicity. This algorithm is developed 
based on the backpropagation method and the procedures, with which the weights are 
adjusted, are presented in detail in Annex A1. Some other more sophisticated techniques 
which are also frequently used include the conjugate gradient decent method [100, 131], 
quasi-Newton method [52] and Levenberg-Marquardt method [91], which are sometimes 
referred as second order training algorithms in some literatures [132]. Unfortunately, the error 
surface is often complex and may contain several local minima. An inter-comparison between 
the different training algorithms was, however, not performed in the scope of this work. 
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4.4.5 Quality assurance 
 
4.4.5.1 Definition of performance indices 
Several performance indices were computed in this dissertation in order to compare and 
evaluate the modelling performance of the developed neural network models: the Fractional 
bias (FB), the index of agreement (IA), the squared correlation coefficient (R²), the mean 
absolute error (MAE), the mean bias error (MBE) and the root mean square error 
(RMSE). For the PM10 Forecasting model, additional performance indices to evaluate the 
correct number of PM10 exceedances, false alarms and PM10 missed exceedances were also 
considered: the index of success (IS), the false alarm value (FAR) and the overall accuracy 
(A). These performance indices have been discussed extensively in several literatures [51, 93, 
130, 131, 133, 134].  
 
The Fractional bias (FB) value is defined as the difference between the means of two series 
divided by the average of the means of the two series, i.e., 
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where Pi and Oi are the modelled and measured PM10 concentrations respectively. N is the 
data size. 
 
The index of agreement (IA) value can be defined as the measure of agreement between the 
mean values of the modelled and measured PM10 concentrations.  It is calculated as 
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where OPP ii
'  , OOO ii

'  . The overbar refers to the average over the series. 

 
Indifferent to the deviation between the modelled and measured PM10 concentrations, the 
squared correlation coefficient (R²) value shows the ability of the developed neural network 
model to capture the variability in the PM10 concentrations. It is defined as 
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The mean absolute error (MAE) value is the measure of residual error between the modelled 
and measured PM10 concentrations, which is computed as 
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The mean bias error (MBE) value indicates, on average, if the modelled PM10 
concentrations are underpredicted or overpredicted. It is defined as 
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Similar to the mean absolute error (MAE) value, the root mean square error (RMSE) value 
is a measure of residual error. In addition, the power term makes it more sensitive to extreme 
values compared to mean absolute error (MAE) value. It is defined as 
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The index of success (IS) value indicates how well the PM10 exceedances are predicted. It is 
defined as 
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where TP is the number of correct predictions on PM10 exceedances, FP is the number of 
false alarms, and FN is the number of missed predictions on PM10 exceedances. IS is not 
affected by a large number of correctly predicted non-exceedances and therefore it can be 
useful for evaluating rare events. 
 
The false alarm value (FAR) value indicates the fraction of predictions of PM10 exceedances 
which did not occur in the study period. It is defined as 
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In reality, false alarms are highly undesirable for practical reasons since the prediction of 
PM10 exceedances could result in expensive emission management strategy [135]. 
 
The overall accuracy (A) value indicates the fraction of PM10 predictions that correctly 
predicts an event (exceedance) or a non-event (non-exceedance). It is defined as  
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4.4.6 PM10 Nowcasting 
 
Street sweeping was conducted from 15.11.2006 to 18.03.2007 at Neckartor as an urban PM 
abatement strategy [25]. Based on measurement results, the evaluation on the effect of street 
sweeping during the investigation period was complicated by influence from varying weather 
conditions. Using the neural network approach, the varying weather conditions could be 
parameterised as model inputs. The aim of the Nowcasting model was to simulate a “what-if” 
scenario which could describe the original state of 24 h average PM10 concentrations at 
Neckartor, assuming that no street sweeping activities took place during the sweeping periods. 
Any effect of street sweeping could then be suggested by any differences between the 
modelled PM10 concentrations and the corresponding measured PM10 values. 
 
The development of this type of model was an iterative process as depicted in Fig. 4.5. The 
model was initially trained with 24 h average measured parameters from the Schnarrenberg 
meteorological station, Neckartor traffic site, Bad Cannstatt urban background site and 
Erpfingen rural background site on days without street sweeping for the period from 
03.01.2004 to 14.11.2006. The training parameters are described in Table 4.1 accordingly. 
The architecture of this model can also be termed as a Multiple-Input Single-Output (MISO) 
structure. It should be noted here that the wind direction data were dichotomised using sine 
and cosine functions, enabling the neural network algorithm to take into account of the 
discontinuities in the original cyclic signals [51, 100]. The corresponding output from the 
PM10 Nowcasting was the 24 h average PM10 concentrations on days when the training 
parameters were measured. 
 
For the next step, the suitability of the developed model for operational use was then 
evaluated for the modelling of PM10 concentrations at the Neckartor site on the 52 days with 
street sweeping. The model input parameters, which functioned as a second test data set, were 
similar to the previously described training parameters except for the PM10 concentrations 
measured at Neckartor. 
 
By definition, comparison between the modelled and measured values from a test set provides 
information on the generalisation behaviour of the model; the closer the modelled and 
measured values, the better the generalisation. Due to this application, the test set can also be 
termed as the generalisation set. The second test set for the PM10 Nowcasting did not, 
however, function as a generalisation set; the difference between the modelled and measured 
values as described by Eq. (4.22) would provide insights on the effect of street sweeping at 
Neckartor on ambient PM10 concentrations. 
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where η1 is the effect due to street sweeping. A positive value would indicate a positive effect, 
while a negative value would indicate a counteractive effect. 
 
As street sweeping is a mechanical process which removes road dust from street surfaces, it 
can be expected that the sweeping activities at Neckartor will not affect the measured NO and 
NO2 concentrations, meteorological conditions and air pollutant mixing heights on site. In 
another words, any effect of street sweeping can only be monitored by a change in PM10 
concentrations. Although the model input parameters were based on days with street 
sweeping, the modelled PM10 concentrations would represent the original state of PM10 
concentrations without sweeping hypothetically. 
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Fig. 4.5: PM10 Nowcasting for investigation on effect of street sweeping on ambient PM10 

concentrations at Stuttgart Neckartor 
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Table 4.1: Training and input parameters for PM10 Nowcasting 
  
Site Parameters Units Mean 
   without street 

sweeping 
with street 
sweeping 

Neckartor PM10 
1 µg/m³ 52.9 - 

(traffic) NO µg/m³ 176.6 258.0 
 NO2 µg/m³ 113.9 127.0 
 Wind speed m/s 0.5 0.7 
 Cosine wind direction ° -0.4 -0.4 
 Sine wind direction ° -0.8 -0.8 
 Temperature °C 14.2 8.2 
 Rainfall mm 0.0 0.0 
Bad Cannstatt PM10 µg/m³ 24.1 25.1 
(urban background) NO µg/m³ 16.8 34.3 
 NO2 µg/m³ 33.3 46.6 
 Wind speed m/s 1.2 1.5 
 Cosine wind direction ° -0.6 -0.8 
 Sine wind direction ° 0.0 0.1 
 Temperature °C 10.5 7.4 
 Rainfall mm 0.0 0.0 
 Global radiation W/m² 93.1 46.9 
Erpfingen PM10 µg/m³ 15.8 12.6 
(rural background) NO µg/m³ 0.8 0.5 
 NO2 µg/m³ 6.8 8.3 
Schnarrenberg Mixing height 2 m 1523.6 1310.7 
(meteorological station)     
1: only as training parameter; 2: measured at 12:00 UTC daily 
 
 
4.4.7 PM10 Forecasting 
 
A model for PM10 Forecasting was developed to forecast 24 h average PM10 concentrations 
three days in advance for two urban sites of different characteristics in Stuttgart. The first site 
represented a heavily trafficked site, and the second site represented an urban background site. 
The developed model was looked upon as a system that under varying sets of forecasted 
meteorological inputs (weather conditions) and expected traffic flow, would respond by 
predicting the PM10 concentrations up to three days in advance for the two sites of different 
characteristics in Stuttgart. The development of this type of model for the traffic and urban 
background sites is depicted in Fig. 4.6. The training and input parameters to the model are 
described in Table 4.2. 
 
In the model development phase, the model was trained using measured 24 h average PM10 
concentrations from two ambient air monitoring stations at Neckartor and Bad Cannstatt, 
traffic counts at the Neckartor site, mixing height data from the Schnarrenberg meteorological 
station and four forecasted meteorological parameters (wind speed, temperature, rainfall and 
radiation) for dayd+1, dayd+2 and dayd+3 from a Numerical Mesoscale Model (NMM) [136]. 
Unlike the model which was developed for PM10 Nowcasting, wind direction was not 
considered as a training parameter due to the site characteristics of Neckartor. At Neckartor, 
the ambient air monitoring station is surrounded by a non permeable barrier of buildings on 
one side, where the build-up of air pollution is favoured. Hence, the forecasted wind direction 
may not be fully representative of the on-site wind characteristics. Comparisons between the  
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Fig. 4.6: PM10 Forecasting for the traffic and urban background sites 
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forecasted and measured meteorological parameters at the traffic and urban background sites on 
dayd+1, dayd+2 and dayd+3 are detailed in Annex B1. The model input parameters included past 
PM10 measurements, traffic counts and weather forecast from 01.05.2007 to 30.04.2008. The 
corresponding six outputs were the PM10 concentrations for dayd+1, dayd+2 and dayd+3 at the traffic 
and urban background sites. For the next step, the suitability of the developed model for 
operational use is envisioned for the modelling of future PM10 concentrations for the two sites 
using future weather forecasts and expected traffic counts. 
 
By definition, the architecture of this type of model can also be termed as a Multiple-Input 
Multiple-Output (MIMO) structure. As the model’s objective function is defined as a weighted 
sum squared error of multiple outputs, this type of model is expected to produce only a 
compromising optimisation of all outputs and cannot guarantee to have minimum error for each 
individual forecasted output [137]. As stated by Huang and Lian [138], the difficulty of MIMO 
systems is to overcome the coupling effects between the degrees of freedom of the nodes. Thus, 
the accuracy of the PM10 Forecasting can be expected to be lower than the PM10 Nowcasting 
because of the greater and more complex interactions of the weights and biases for different 
outputs. Owing to the Multiple-Output solutions, the searching process in the error domain is 
more complicated than that for a single target. 
 
 
Table 4.2: Training and input parameters for PM10 Forecasting 
 
Site/Source Parameters Unit Input time Mean 
Neckartor PM10  µg/m³ dayd 43.3 

    (traffic) 
PM10 

1
  µg/m³ dayd+1 42.3 

 Traffic flow number dayd+1 73316 
     

 PM10 
1
  µg/m³ dayd+2 41.8 

 Traffic flow number dayd+2 73316 
     

 PM10 
1
  µg/m³ dayd+3 42.5 

 Traffic flow number dayd+3 73316 
Bad Cannstatt PM10 µg/m³ dayd 21.4 

    (urban background) 
PM10 

1 µg/m³ dayd+1 20.7 
     

 PM10 
1
  µg/m³ dayd+2 20.5 

     

 PM10 
1
  µg/m³ dayd+3 21.0 

Schnarrenberg Mixing height 2 m dayd 1529.2 
(meteorological station)     

Numerical  Temperature °C dayd+1 10.0 
Mesoscale Model Rainfall mm dayd+1 0.1 
(weather forecaster) Global radiation W/m² dayd+1 163.5 
 Wind speed m/s dayd+1 0.9 
     

 Temperature °C dayd+2 10.0 
 Rainfall mm dayd+2 0.1 
 Global radiation W/m² dayd+2 159.0 
 Wind speed m/s dayd+2 0.9 
     

 Temperature °C dayd+3 10.3 
 Rainfall mm dayd+3 0.1 
 Global radiation W/m² dayd+3 160.0 
 Wind speed m/s dayd+3 1.0 
1: only as training parameters; 2: measured at 12:00 UTC daily 
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4.5 Sensitivity analyses between PM10 concentrations and influencing 
parameters 

 
The analyses of the parametric correlation coefficients between PM10 concentrations and their 
influencing parameters were conducted here, aiming to evaluate the influence of each variable 
on the PM10 concentrations. These correlation coefficients provide a measure of the 
association between the two considered variables. The comparisons were performed using 24 
h average data. Whenever correlations were performed and a data point was not available for 
a parameter, the correspondent data point of the other was withdrawn from the analyses. 
 
In regard to the developed PM10 Nowcasting and PM10 Forecasting models, the influencing 
parameters represented the input parameters, whilst the PM10 concentrations represented the 
output. By performing the sensitivity analyses between these parameters, the calculated 
correlation coefficient could hint on the relative importance of each respective input 
parameter to the network response. 
 
 
4.5.1 PM10 vs. PM10 at different sites 
 
Based on the 24 h average PM10 measurements at Neckartor, Bad Cannstatt and Erpfingen, 
the field structure of PM10 concentrations for the Stuttgart region from 03.01.2004 to 
14.11.2006, based on the Lenschow’s model [113], is depicted schematically in Fig. 4.7. 
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Fig. 4.7: Schematic horizontal profile of the 24 h average PM10 concentrations at Stuttgart 

for the period 03.01.2004 to 14.11.2006                            data souce: AfU, LUBW 
 
 
The field structure of PM10 concentrations at Stuttgart can provide an overview on the 
proportion of background PM10 on traffic PM10 loads. Based on the results, approximately 30 
% of the PM loads at Neckartor could be attributed to the rural background, 15 % to the urban 
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Fig. 4.8: 24 h average PM10, Neckartor vs. PM10, Bad Cannstatt, Erpfingen for the period 03.01.2004 to 

14.11.2006                                                                              data source: LUBW 
 
 
background, and the remaining 55 % to PM sources of local origin. In line with the results 
from Baumbach et al. [25], traffic-induced PM was found to account for approximately 62 % 
of the PM10 at Stuttgart Neckartor. In order to investigate on the dependence of varying 
background PM10 loads on the traffic PM10 loads, a statistical approach was adopted, whereby 
linear regression analyses on the correlations between 24 h average traffic PM10 
concentrations and background PM10 concentrations were performed and the results are 
depicted in Fig. 4.8 accordingly. For these analyses, a high correlation coefficient R² value 
would imply that any increase in background PM10 concentrations would consequently lead to 
an increase in PM10 concentrations at the traffic site. The PM10 increment may be associated 
with one of the following: 
 
1. Continuous periods of temperature inversion which may result in PM10 pollution 

episodes [11, 109, 111, 114, 115, 139] 
2. PM10 pollution due to festive events [142] 
3. PM10 pollution due to long-range or medium-range PM10 transport from background 

sites to traffic sites [140, 141] 
 
Good correlation between the 24 h average PM10 concentrations at Neckartor and Bad 
Cannstatt was computed with a R² value of 0.82. Taking into account of the basin topological 
characteristics of the Neckar valley and the proximity between Neckartor and Bad Cannstatt, 
the influence on PM10 at these two sites under local meteorological conditions such as 
ground-level inversions can be expected to be similar [109, 110, 114, 117], and therefore 
explaining the high R² value. In another words, the PM10 trends at Neckartor and Bad 
Cannstatt are similar due to the comparable meteorological dispersion conditions. The 
absolute PM10 concentrations are different due to the difference in local emissions.  
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The traffic PM10 concentrations increased proportionally with a factor of 1.60 to the urban 
background PM10 concentrations, and with a positive offset of 14.44. From the mathematical 
aspect, this offset implies that whenever no background PM10 loads were expected, a 
minimum PM10 concentration of 14.44 µg/m³ at Neckartor would be observed. 
 
The correlation between the 24 h average PM10 concentrations at Neckartor and Erpfingen 
was, however, not as strong, with a lower R² value of 0.46. This can be explained by the 
location of Erpfingen, which is sited in an entirely different environment, and is also probably 
above any ground-level inversions. Overall, an increasing trend in the PM10 concentrations at 
Neckartor could still be observed with increasing rural background PM10 concentrations at 
Erpfingen. 
 
4.5.1.1 PM10 persistence models 
A persistence model simulates the complete persistence of the initial state. In this work, the 
method of persistence modelling assigned the 24 h average PM10 concentrations on dayd equal 
to the values on the present day. The measured PM10 concentrations on dayd+1, dayd+2 and 
dayd+3 were subsequently plotted against the measured PM10 concentrations on dayd. Based on 
this method, the PM10 persistence models for up to three days in advance at Neckartor and 
Bad Cannstatt are depicted in Fig. 4.9a to 4.9c respectively. 
 
In Fig. 4.9a, it is interesting to note that fairly good R² values exceeding 0.52 were computed 
for both Neckartor and Bad Cannstatt, inferring that the prevailing lag effects of PM10 
concentrations from the previous day had rather strong influences on PM10 concentrations on 
the following dayd+1. Considering the three modes of particles, the smallest nucleation mode 
particles with diameter between 10 nm to 0.1 µm are known to be capable of residing in the 
atmosphere for a few hours [143-145]. Even though such particles may be present in large 
numbers, they usually form a small proportion of the total PM mass. The accumulation mode 
particles with diameter between 0.1 to 2.5 µm can have atmospheric residence time up to ten 
days, and usually have a more significant fraction of the total PM mass. The coarse mode 
particles with diameter between 2.5 to 10.0 µm have shorter residence time than the former 
modes, and can contribute substantially to the total PM mass. Using this knowledge, the 
persistent behaviours of PM10 on dayd+2 and dayd+3 are most likely caused by the 
accumulation mode particles.  Although temperature inversions at Stuttgart have been shown 
to be a major cause for exceeding air-quality legislation thresholds for the allowable PM10 
concentrations [109], the phenomenon, during which the lag effects of PM10 concentrations 
become prominent, can be expected to occur during the colder months of the year. Thus, 
considerations have to be made to the fact that the PM10 Forecasting should be capable of 
taking into account the possible prevailing lag effects of PM10 concentrations that could 
continue to persist for long periods of time when inversion conditions prevail. 
 
The inherent problems on the accuracy of long-term persistence models can be observed by 
comparing the R² values in Fig. 4.9a and 4.9b. At Neckartor, the R² value weakened 
significantly from 0.52 to 0.21, and similar trend could be observed at Bad Cannstatt, where 
the value reduced from 0.56 to 0.27. By extending the persistence model to one day more as 
presented in Fig. 4.9c, the R² values were further halved from 0.21 to 0.10, and 0.27 to 0.14 at 
Neckartor and Bad Cannstatt respectively. When considering the diurnal evolution of the 
heights of mixing layer [146, 147], the decrease in R² values with days is a logical conclusion.  
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Fig. 4.9a-c: 24 h average PM10, dayd+n vs. PM10, dayd for the period 03.01.2004 to 

14.11.2006                                                                            data source: LUBW
 
 
4.5.2 PM10 vs. NOX 
 
The high NO concentrations which are measured at both the Neckartor and Bad Cannstatt 
sites can be associated as primary NO emissions from local sources [148]. After NO is 
emitted to the atmosphere, NO can be oxidised by O3 and peroxy radicals (HO2, RO2) to form 
NO2. Compared to Bad Cannstatt, the higher NO2 load at Neckartor originates from the direct 
exhaust emissions of vehicles from the B14 federal highway. As a result of modern exhaust 
after-treatment technologies mainly used in diesel vehicles, directly emitted NO2 can be 
expected to be higher at the traffic sites. The share of the different NO2 sources on the total 
NO2 concentration may vary, depending on the traffic situation (e.g. traffic volume, share of 
diesel vehicles), local ventilation as well as meteorological parameters [149]. NO2 
concentration may also vary according to the time of day, season and meteorological 
parameters such as temperature, inversion, wind speed, O3 availability etc [150]. During 
colder seasons, higher NO2 concentration can also be expected due to frequent temperature 

a b

c
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inversions. Since the NO2/NO ratio is not constant and depends on the various NO2 formation 
conditions, the sum of NO + NO2 is used to consider the NOX emissions from traffic. It 
should be noted that not all NOX originate from the traffic; an urban background portion of 
NOX exists as well. 
  
To investigate on the probable relationships between PM10 and NOX concentrations, linear 
regression analyses were performed between PM10 and NOX concentrations at Neckartor and 
Bad Cannstatt, as depicted in Fig. 4.10 accordingly. For this type of analyses, a high 
correlation coefficient R² value would indicate that high PM10 occur with high NOX 
concentrations. In Fig. 4.10, a linear correlation between the two parameters could be 
established. The fairly good correlation coefficient R² value of 0.64 at Neckartor could infer 
that both the PM10 and NOX were associated to a common origin; the higher the traffic-
induced NOX concentrations, the higher the PM10 concentrations. 
 
At Bad Cannstatt, the background PM10 concentrations had weaker correlation to NOX. This 
could imply that there were different sources of PM10 and NOX over the urban background 
site. If both PM10 and NOX originated from vehicle exhaust, one would expect less scatter in 
the data. 
 
In regard to the two regression lines in Fig. 4.10, it is interesting to note that whenever no 
traffic-induced NOX loads were expected at Neckartor, an urban background PM10 
concentration of 12.38 µg/m³ would be expected. In the case for Bad Cannstatt, the expected 
PM10 concentration in the absence of NOX would be 10.17 µg/m³. 
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Fig. 4.10: 24 h average PM10 vs. NOX concentrations at Stuttgart Neckartor and Bad 

Cannstatt for the period 03.01.2004 to 14.11.2006                  data source: LUBW
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4.5.3 PM10 vs. traffic 
 
PM emissions from traffic may include contributions from exhaust emissions (fuel and 
lubricating oil combustion) to non-exhaust emissions from abrasion processes (tire-wear 
emissions, brake linings, catalyst deterioration, etc.) and resuspension of road dust induced by 
the vehicle-generated turbulence and most importantly road material abrasion. It is commonly 
assumed that most primary fine particles (PM2.5) are emitted from the exhaust, whereas many 
of the coarse particles (PM2.5-10.0) are considered to originate from non-exhaust sources. The 
traffic sector may also be responsible for a large part of the secondary PM formed via gas-to-
particle conversion and the agglomeration mode (PM1.0-2.5) [151]. At Stuttgart Neckartor, 
traffic-induced PM, which were previously identified as resuspended road dust in the size 
fraction of 2.1 to 10.0 µm and agglomerated diesel soot particles in the size fraction smaller 
than 0.7 µm, accounted for approximately 62 % of the PM10 [25]. Thus, it can be expected 
that good correlation may be computed between the measured PM10 concentrations and traffic 
count at Neckartor. 
 
The relationship between the traffic PM10 concentrations and the traffic densities at Neckartor 
was investigated, as depicted in Fig. 4.11. The number of cars, lorries, buses and motorcycles 
passing through the Neckartor site was recorded and analysed for the period from 01.07.2007 
to 29.02.2008 by LUBW. Data prior to July 2007 were not available. As expected, the PM10 
concentrations agreed strongly to the traffic density, with a high R² value of 0.74. The PM10 
concentrations increased with traffic density with a polynomial function. The lowest PM10 
concentration was 21.3 µg/m³ when the traffic count was between 0 to 30,000; and the highest 
value was 88.0 µg/m³ when the traffic count was between 90,000 to 100,000. In an event 
when there was no traffic at Neckartor, an urban background PM10 concentration of 14.75 
µg/m³ would be expected. This result is somewhat in consistent with the other hypothesis tests 
conducted in the earlier chapters. 
 
In Fig. 4.12 the variation in PM10 concentrations with respect to the day of week is illustrated. 
It can be observed here that the PM10 levels tracked the traffic counts, with high levels 
occurring during weekdays when there was more traffic. With the exception on Friday when 
there was a slight reduction of PM10 concentrations from 48.5 µg/m³ to 47.1 µg/m³ and an 
increase in traffic count from 78786 to 80929, there was no evidence of a positive correlation 
between PM10 and traffic count on this day. 
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Fig. 4.11: 24 h average PM10 concentrations vs. traffic count at Stuttgart Neckartor for the 

period 01.07.2007 to 29.02.2008                                             data source: LUBW 
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Fig. 4.12: 24 h average PM10 concentrations vs. traffic count on different days of week at 

Stuttgart Neckartor for the period 01.07.2007 to 29.02.2008  data source: LUBW 
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4.5.4 PM10 vs. rain duration 
 
The influences of rain duration on the 24 h average PM10 concentrations at Neckartor and Bad 
Cannstatt were computed as logarithmic functions in Fig. 4.13 accordingly. These functions 
were only influenced by the length of the period of rain and other precipitation, ranging from 
lowering the average PM10 concentrations at Neckartor from 47.6 µg/m³ (1 rainy day) to 38.7 
µg/m³ (> 3 rainy days), and at Bad Cannstatt from 21.0 µg/m³ (1 rainy day) to 16.0 µg/m³ (> 3 
rainy days). The PM10 concentrations on dry days were higher compared with average, up to 
66.9 µg/m³ at Neckartor, and 31.5 µg/m³ at Bad Cannstatt. 
 
At both sites, the wet deposition of ambient PM10 with rain was demonstrated in Fig. 4.13. It 
means that due to scavenging of small particles by rain, the atmospheric PM10 loads decrease 
during rainy periods. However the impact of rain should not be solely regarded as the main 
cause of the washout effect, as rain influences the state of the roadways and its silt loading, 
while long drought periods may correspond to strong anticyclonic conditions, which also have 
a removal effect on ambient PM10 [152]. 
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Fig. 4.13: 24 h average PM10 concentrations vs. rain duration at Stuttgart Neckartor and 

Bad Cannstatt for the period 03.01.2004 to 14.11.2006          data source: LUBW 
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4.5.5 PM10 vs. wind 
 
Wind speed has long been recognised as an important control on ambient PM10 concentrations 
dependent on dry or wet conditions [153]. In the scope of this dissertation, no differentiation 
was made between the dry and wet months. 
 
In Fig. 4.14, the logarithmic regressions of PM10 concentrations at Neckartor and Bad 
Cannstatt against wind speed were calculated to investigate the effect of wind speed on 
ambient PM10 concentrations. At Neckartor, a high 24 h average PM10 concentration of 61.8 
µg/m³ was determined when the wind speed was less that 0.4 m/s. At Bad Cannstatt, similar 
finding was noticeable, with a high 24 h average PM10 concentrations of 33.3 µg/m³ when the 
wind speed was less than 0.4 m/s. 
 
The difference in the R² values between Neckartor and Bad Cannstatt was significant. At 
Neckartor, the weaker R² value of 0.33 could be attributed to the limited wind data, as these 
wind data were only available starting from 10 March 2006. At Bad Cannstatt, wind speed 
was found to have a strong influence on PM10 concentrations, as indicated by the high R² 
value of 0.80. A general trend could be observed here: the stronger the wind, the lower the 
ambient PM10 concentrations. 
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Fig. 4.14: 24 h average PM10 concentrations vs. wind speed at Stuttgart Neckartor and Bad 

Cannstatt for the period 03.01.2004 to 14.11.2006          data source: LUBW 
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4.5.6 PM10 vs. global radiation 
 
Atmospheric aerosols may interact in different ways with the climatic system as follows 
[154]: 

1. Scattering of solar radiation leads to a reduction of net solar radiation and therefore 
to a cooling of climate 

2. Absorbing of solar and terrestrial radiation leads to the heating of the atmosphere 
 
In Fig. 4.15, the influence of global radiation on ambient PM10 concentrations is depicted. At 
Neckartor, the maximum 24 h average PM10 concentration was 50.8 µg/m³ when the global 
radiation was between 0 to 25 W/m². At Bad Cannstatt, the corresponding maximum PM10 
concentration was 23.6 µg/m³. On days when the global radiation was at its highest between 
225 and 250 W/m², minimum 24 h average PM10 concentrations of 46.9 µg/m³ and 18.7 
µg/m³ at Neckartor and Bad Cannstatt were observed respectively. 
 
It is worth noting that the PM10 concentrations at both Neckartor and Bad Cannstatt were 
linearly proportional to the amount of global radiation with the same factor of -0.42 and a 
different offset. This could indicate that global radiation affects both traffic-induced and 
background PM10 with a similar magnitude. This observation is in agreement with many 
previous studies, which have shown that aerosols and global radiation are indeed closely 
correlated, especially those of anthropogenic origins [155-158]. The global radiation can also 
represents the different seasons. In winter with lower radiation, higher PM10 concentrations 
can be expected than in summer with high radiation. 
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Fig. 4.15: 24 h average PM10 concentrations vs. global radiation at Stuttgart Neckartor and 

Bad Cannstatt for the period 03.01.2004 to 14.11.2006   data source: LUBW 
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4.5.7 PM10 vs. mixing height 
 
Calculations of the daily average mixing height layers were based on the radio-soundings data 
from the Deutscher Wetterdienst (DWD) meteorological station at Stuttgart Schnarrenberg. 
The mixing heights can provide information on the air volume available for vertical 
dispersion of PM10 via convection or mechanical turbulence, and understanding it is of 
importance for various applications such as environmental monitoring. Thus, an accurate 
representation of the mixing height depth may play an essential role in the ability of air 
quality models to calculate the pollutant concentrations [90, 159]. Since mixing height is not 
measured by standard meteorological practices, much effort is often invested in improving its 
estimation. Although there are several definitions and methods for determining the mixing 
heights [147, 160-162], the process can somewhat be unspecific, whose definition and 
estimate are not precise. In this work, the method in determining the daily mixing heights was 
described in Zeng [114].   
 
The 24 h average PM10 concentrations for different classes of mixing heights up to 1700 m at 
Neckartor and Bad Cannstatt for the period 03.01.2004 to 14.11.2006 are depicted in Fig. 4.16 
accordingly. Particularly, lower mixing heights occurred in the colder months, during which 
higher PM10 concentrations were measured. This observation was evident for both the 
Neckartor and Bad Cannstatt sites. In extreme situations with low mixing heights of 0 to 400 
m, the traffic PM10 concentrations increased significantly up to 120.0 µg/m³, compared to at 
Bad Cannstatt with 52.2 µg/m³. In situations with higher mixing heights, the PM10 
concentrations decreased logarithmically. High R² values of 0.61 for Neckartor and 0.75 for 
Bad Cannstatt were calculated, underlining the overwhelming influence of the mixing heights 
on ambient PM10 concentrations. 
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Fig. 4.16: 24 h average of PM10 concentrations for classes of mixing heights at Stuttgart 

Neckartor and Bad Cannstatt for the period 03.01.2004 to 14.11.2006 
                                                                                      data source: DWD, LUBW 
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4.5.8 Conclusions 
 
A major task of Chap. 4.5 was to find out the probable relative importance of each respective 
input parameter to the neural network response. In Table 4.3, the correlation coefficients of all 
investigated input parameters (PM10 at different sites, PM10 persistence behaviours, NOX, 
traffic, rain duration, wind speed, global radiation, mixing height) to the reference parameter 
(PM10, Neckartor, Bad Cannstatt) is summarised. The R² value infers the degree of variability between 
the parameters. 
 
From Table 4.3, the urban background PM10 is closely correlated to the traffic PM10 at 
Neckartor. At Bad Cannstatt, wind speed has the highest influence on the urban PM10. In 
regard to neural network modelling, these respective R² values could already provide some 
hints on the respective weight distributions (wij) of nodes in the hidden layer based on Eq. 
(4.1) to (4.3); the higher the R² value, the greater the weight distribution, and vice versa.  It 
should be emphasised that high R² values do not necessarily indicate the overall accuracy in 
neural network modelling. The quality of the model should be assessed considering the 
various performance indices as described in Chap. 4.4.5. 
 
 
Table 4.3: Relative importance and association of all input to output parameters 
  
Output parameter Input parameter R² Association 
PM10, Neckartor PM10, Bad Cannstatt 0.82 Linear 
 PM10, Erpfingen 0.46 Linear 
 NOX, Neckartor 0.64 Linear 
 Traffic count, Neckartor 0.74 Polynomial 
 Rain duration 0.63 Logarithmic 
 Wind speed 0.33 Logarithmic 
 Global radiation 0.81 Linear 
 Mixing height 0.61 Logarithmic 
    

PM10, Neckartor, dayd+1 PM10, Neckartor, dayd 0.52 Linear 
    

PM10, Neckartor, dayd+2 PM10, Neckartor, dayd 0.21 Linear 
    

PM10, Neckartor, dayd+3 PM10, Neckartor, dayd 0.10 Linear 
PM10, Bad Cannstatt NOX, Bad Cannstatt 0.51 Linear 
 Rain duration 0.57 Logarithmic 
 Wind speed 0.80 Logarithmic 
 Global radiation 0.72 Linear 
 Mixing height 0.75 Logarithmic 
    

PM10, Bad Cannstatt, dayd+1 PM10, Bad Cannstatt, dayd 0.56 Linear 
    

PM10, Bad Cannstatt, dayd+2 PM10, Bad Cannstatt, dayd 0.27 Linear 
    

PM10, Bad Cannstatt, dayd+3 PM10, Bad Cannstatt, dayd 0.14 Linear 
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5 Results and discussion 
 
 
5.1 Determination of the optimal number of hidden nodes for PM10 

Nowcasting and PM10 Forecasting 
 
Various rules of thumb have been proposed for the determination of the optimal number of 
hidden nodes, based on numerical relations between the number of training patterns and the 
number of weights, or the number of input variables [163]. As the number of hidden nodes is 
considered to be a matter of great significance, the use of empirical rules as suggested by 
Swingler [164] and Berry and Linoff [165] were avoided, and a trial-and-error procedure was 
adopted. The number of hidden nodes was varied from one to fifteen, and the corresponding 
performance indices, as described in Chap. 4.4.5, were computed and presented in Annex C1 
for the PM10 Nowcasting, and in Annex C2 for the PM10 Forecasting. The number of hidden 
nodes for the network with the highest Index of Agreement (IA) and correlation coefficient 
(R²) values was selected. Based on the selection criteria, the selected number of hidden nodes 
was three for the PM10 Nowcasting, and eight for the PM10 Forecasting. 
 
 
5.2 PM10 Nowcasting 
 
The performance of the PM10 Nowcasting model with a network topology of twenty input 
parameters, three hidden nodes and one output parameter was evaluated. This configuration 
can also be denoted by 20 - 3 - 1. Upon decreasing the number of hidden nodes, better overall 
performance and less error were derived. The results presented here were obtained with a 
hidden layer with three nodes, which was sufficient to perform the Nowcast function on the 
PM10 concentrations with all the considered input parameters. In order to study the regular 
pattern of convergence for the neural network model, the mean square error curves for the 
training, validation and test sets are depicted in Fig. 5.1. 
 
At the first epoch, all mean square errors of the three data sets reduced significantly from over 
811.0 µg2/m6 to 250.0 µg2/m6. These high error values were attributed by the initial 
assignment of randomise weights and biases to the network. Beyond the first epoch, moderate 
rates of decrease in the mean square errors were observed. Training was terminated at the 
seventeenth epoch, which resulted in minimum mean square error values of 22.3 µg2/m6 for  
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the training set, 54.8 µg2/m6 for the validation set, and 58.0 µg2/m6 for the test set. Comparing 
the error curves from the three data sets, it can be seen that the evolution of errors over epochs 
are similar to one another, indicating comparable distributions of data for the training, 
validation and test sets. 
 
 
5.2.1 Statistical evaluation 
 
The overall statistical model evaluation on the modelled 24 h average PM10 concentrations at 
Neckartor are summarised in Table 5.1. The fractional bias (FB), index of agreement (IA), 
correlation coefficient (R²), mean absolute error (MAE), mean bias error (MBE) and root mean 
square error (RMSE) values are presented as average values and their respective standard 
deviations in brackets for the period from 03.01.2004 to 14.11.2006. 
 
The FB and MBE values were computed as -3.35 ± 2.93 % and -1.89 ± 1.73 µg/m³ 
respectively, which indicated a tendency of the model to underpredict. When the IA value 
approaches 1, then the model is more appropriate to simulate the measured PM10 
concentrations. A high IA value of 0.97 ± 0.03 was computed, which implied that 97 % of the 
modelled values were error free. Based on the R² value, the PM10 Nowcasting model was able 
to capture 89 ± 8 % in the variability in the PM10 measured concentrations. The calculated 
values for MAE and RMSE were found to be 5.86 ± 3.41 µg/m³ and 7.44 ± 4.11 µg/m³ 
respectively.  
 
Considering the high IA value which exceeded 0.9, and the R² value which exceeded 0.8, 
these results were comparable with those obtained in other studies for the modelling of 24 h 
average PM10 concentrations [81, 85, 97]. However, the differences should be mainly 
attributed to the different climatic characteristics of the different study sites and to the 
different approach for the estimation of generalisation error used. 
 
 
Table 5.1: Overall statistical model evaluation parameters of modelled 24 h average PM10 

concentrations at Stuttgart Neckartor, presented as average values and their 
standard deviations for the period 03.01.2004 to 14.11.2006 

 
Site  Overall results from training, validation and test sets 
  FB 

in % 
IA R² MAE 

in µg/m³ 
MBE 

in µg/m³ 
RMSE 

in µg/m³ 
Neckartor  

sD 
-3.35 
(2.93) 

0.97 
(0.03) 

0.89 
(0.08) 

5.86 
(3.41) 

-1.89 
(1.73) 

7.44 
(4.11) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
 
 
5.2.2 Scatter plot of modelled and measured PM10 concentrations 
 
The scatter plot of the modelled and measured 24 h average PM10 concentrations at the site of 
Neckartor for the period from 03.01.2004 to 14.11.2006 is depicted in Fig. 5.2. The 95 % 
confidence intervals of the linear regression between the modelled and measured PM10 
concentrations are also included. In total 1029 pairs of data were available. Based on the 
profile of the scatter plot, the modelled PM10 concentrations agreed relatively well to the 
measured values, with the exception of ten outliers which were notably underpredicted from 
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the PM10 Nowcasting. Interestingly, all the ten outliers were modelled on days with PM10 
episodes. The respective PM10 episodes are further described in the following chapters. 
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Fig. 5.2: Scatter plot of modelled and measured PM10 concentrations at Stuttgart Neckartor 

with 95 % confidence intervals for the period 03.01.2004 to 14.11.2006 
 
 
5.2.3. Time series of modelled and measured PM10 concentrations 
 
In order to visualise the performance of the PM10 Nowcasting model for the period from 
03.01.2004 to 14.11.2006, the time series of the modelled and measured 24 h average PM10 
concentrations at Neckartor are presented in Fig. 5.3a to 5.3c respectively. 
 
Although the modelled PM10 concentrations followed the general trend of the measured PM10 
concentrations reasonably well, the PM10 Nowcasting seemed to encounter difficulties in 
modelling the particularly high PM10 concentration peaks.  For instance, the measured PM10 
concentration on 16.12.2004 was 156 µg/m³ whilst the corresponding modelled value was 127 
µg/m³. In 2005 and 2006, the quality of the predictions regarding episodic concentration 
levels was again undermined by the model’s inability to correctly spot some distinct high-
concentration events from mid January 2005 till late April 2005, and mid January 2006 till 
late April 2006. On 04.03.2005 the highest measured PM10 concentration was 171 µg/m³, 
whilst the corresponding modelled value was 123 µg/m³. During another inversion episode in 
early 2006, the highest PM10 concentration of 191 µg/m³ was measured on 02.02.2006, whilst 
the corresponding modelled value was 127 µg/m³.  
 
From the mathematical aspect, the underpredicting behaviour of the PM10 Nowcasting model 
during episodic events verifies the general assumption that neural network models will fail to 
extrapolate on data which have not been presented during the training procedure [95]. There 
are two approaches to address this issue, aiming to increase the frequency of extreme values 
in the training process either by reserving most of the available episodes for the training set, 
or by including each episode case more times [51, 85].  
 
From the scientific aspect, the underpredicting behaviour of the PM10 Nowcasting model 
could be attributed to the additional loads of PM from episodic events, whose presence could 
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not be accurately modelled by the model input parameters. The three most probable types of 
PM10 episodes are listed in Table 5.2. 
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Fig. 5.3a-c: Modelled and measured 24 h average PM10 concentrations at Stuttgart 

Neckartor for the period 03.01.2004 to 14.11.2006 
  
 
Table 5.2: General classification of PM10 episodes at Stuttgart Neckartor 
 
Description Characteristic 

season of the year 
Characteristic 
meteorological factors 

Main emission 
source category 

References 

Local-scale episodes 
Wintertime 
inversion-induced 
episodes 

Winter Inversion, stable 
stratification, low wind 
velocity 

Local [11, 111, 115, 
166, 167] 

Recreational 
pollution 
episodes 

Whole season (but 
more critical during 
winter and spring) 

Inversion, stable 
stratification, low wind 
velocity 

Local [139, 168, 
169] 

Regional and long-range transport episodes 
Long-range and 
regional transport 
episodes 

Winter Stable stratification, low 
wind velocity 

Regional and long-
term transport 
scales 

[12, 13, 170, 
171] 

a 

b 

c 
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5.2.3.1 Wintertime inversion-induced PM10 episodes 
During wintertime inversion-induced episodes, atmospheric inversions result in the 
accumulation of PM10 components emitted close to ground-level. In addition, the atmospheric 
stability enhances the formation of secondary PM components [109, 172]. An association 
between the increases in concentrations of ammonium salts during temperature inversion 
episodes could, in fact, be established in Stuttgart [117, 121]. In particular to ammonium 
nitrate, the concentrations are clearly dependent on the local production on nitric acid, which 
eventually reacts with ammonia to form ammonium nitrate. 
 
For the production of ammonium chloride to take place, there must be a source of 
hydrochloric acid or precursor gas such as a chlorinated hydrocarbon to react with ammonia. 
However, no major sources of these species are known to Neckartor. Nevertheless, 
hydrochloric acid can also be produced as a product of the nitric acid reaction with salts, as 
described in Eq. (5.1) 
 

HCl(g)(s)NaNO(g)HNONaCl(s)  33 .       (5.1) 

 
Considering that the underprediction of PM10 concentrations at Neckartor occurred mainly 
during the winter months, the most probable source of sodium chloride could be from the 
application of road salts on street surfaces. Thus, the road salts could serve as a source of 
hydrochloric acid in the atmosphere and subsequently form ammonium chloride via reaction 
with ammonia [173]. 
 
To have better comparisons between the modelled and measured PM10 concentrations during 
wintertime inversion episodes at Neckartor, the corresponding values during several selected 
inversion periods, during which PM10 underpredictions were observed, are listed in Table 5.3. 
The PM10 underprediction ratio, which provides an estimation on the extent of modelling 
error, is defined as Eq. (5.2) 
 

, Measured

, Modelled

PM

PM
Ratio

10

10 .         (5.2)  

 
From Table 5.3, the PM10 Nowcasting model underpredicted up to 30 % of the measured 
PM10 concentrations during the selected inversion episodes. A closer look at the model input 
parameters showed a comparatively uniform pattern, which seemed to be mainly formed by 
the prevailing meteorological conditions during these periods. Considering the two successive 
PM10 episodes at the beginning of 2006, both episodes were characterised by very weak 
exchange conditions (extreme inversion conditions) during an extensive high pressure system. 
The mixing height level was below 500 m in the first PM10 episode, and was reported to be 
even below 300 m in the second episode [139]. Therefore, it was clear that the maximum 
measured PM10 concentration in the second episode was higher than the first due to the 
smaller air volume available for vertical dispersion of PM10. This observation is in accordance 
to the results from the sensitivity analysis test for PM10 vs. mixing height in Chap. 4.5.7; the 
lower the mixing height, the higher the PM10 concentration. 
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Table 5.3: Modelled and measured PM10 concentrations during several selected inversion 

periods at Stuttgart Neckartor from 2004 to 2006 
 
Date Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
PM10 

underprediction ratio 
22.01.2004 – 29.01.2004   63.8   71.3 0.9 
30.01.2004 – 02.02.2004   30.5   44.0 0.7 
02.02.2004 – 07.02.2004   47.8   56.3 0.8 
10.02.2004 – 20.02.2004   74.0   74.1 0.9 
24.02.2004 – 08.03.2004   74.3   80.6 0.9 
08.03.2004 – 14.03.2004   85.9   92.0 0.9 
16.01.2005 – 24.01.2005   42.9   48.1 0.9 
28.01.2005 – 03.02.2005   49.6   57.9 0.9 
05.02.2005 – 14.02.2005   61.9   68.4 0.9 
22.02.2005 – 02.03.2005   83.4 104.6 0.8 
02.03.2005 – 12.03.2005   67.2   90.5 0.7 
12.03.2005 – 16.03.2005   50.0   67.6 0.7 
16.03.2005 – 20.03.2005   43.6   62.8 0.7 
20.03.2005 – 23.03.2005   51.3   76.0 0.7 
23.03.2005 – 31.03.2005   49.3   64.2 0.8 
10.01.2006 – 18.01.2006   98.0 115.7 0.8 
24.01.2006 – 06.02.2006 108.9 130.9 0.8 
11.02.2006 – 18.02.2006   60.8   58.5 1.0 
19.02.2006 – 26.02.2006   62.3   63.4 1.0 
14.03.2006 – 25.03.2006   73.7   91.3 0.8 
 
 
5.2.3.2 Festive PM10 pollution episodes 
One of the more unusual anthropogenic activities that can result in notable PM10 episodes at 
Stuttgart is the festive usage of fireworks to celebrate popular fiestas, a practice that, while 
common worldwide (e.g. New year), is more prevalent in some places than others. In 
Stuttgart, fireworks displays commonly accompany fiestas, the popular events being the 
spring festival (Frühlingsfest) event, Stuttgart beer festival (Cannstatter Volksfest) event, and 
New Year celebrations. The modelled and measured PM10 concentrations during several 
exemplary days with fireworks from 2004 to 2006 at Neckartor are listed in Table 5.4. 
 
The effect of fireworks on the ambient PM10 concentrations at Neckartor is defined with Eq. 
(5.3) 
 

%
PM

PMPM
η

, Modelled

, Modelled, Measured 100
10

1010
2 


 ,       (5.3) 

 
where η2 is the effect due to fireworks, and PM10, Modelled represents the original state of PM10 
concentrations without any influence from fireworks. A positive value would suggest an 
additional load to ambient PM10 concentrations, while a negative value would suggest a 
reduction in ambient PM10 concentrations. 
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Table 5.4: Modelled and measured 24 h average PM10 concentrations during selected 

fiestas at Stuttgart Neckartor from 2004 to 2006 
 
Event Date Modelled 

PM10 in µg/m³ 
Measured 

PM10 in µg/m³ 
η2 

in % 
53. Stuttgarter Lichterfest in Höhenpark, 
Killesberg 

10.07.2004 26   29  -10.3 

159. Cannstatter Volksfest in Bad 
Cannstatt 

30.09.2004 55   66 20.0 

New year 
 

01.01.2005 30   37 23.3 

67. Stuttgarter Frühlingsfest in Bad 
Cannstatt 

26.04.2005 35   46 31.4 
 

54. Stuttgarter Lichterfest in Höhenpark, 
Killesberg 

16.07.2005 43   41    4.9 

160. Cannstatter Volksfest in Bad 
Cannstatt 

30.09.2005 54   56   3.7 

New year 
 

01.01.2006 54 104 92.6 

68. Stuttgarter Frühlingsfest in Bad 
Cannstatt 

25.04.2006 70   71   1.4 

55. Stuttgarter Lichterfest in Höhenpark, 
Killesberg 

15.07.2006 39   41   5.1 

161. Cannstatter Volksfest in Bad 
Cannstatt 

08.10.2006 38   40   5.3 

η2: effect due to fireworks     
 
 
On both days of New Year in 2005 and 2006, the additional loads on the ambient PM10 
concentrations due to fireworks events in Germany were 20 % more than the modelled values. 
On 01.01.2006 the maximum measured concentration was 104 µg/m³, which was almost 
double of the modelled value. It should be emphasised that these values should not be 
evaluated quantitatively as the PM10 Nowcasting model was not trained for days with 
fireworks. During other events such as the Volksfest and Frühlingsfest, the increase in 
measured PM10 concentrations is partly attributed to the increase in traffic as well. 
 
The negative value in Table 5.4 which indicated that fireworks reduce the PM10 concentration 
on 10.07.2004 should be considered as modelling errors. Nevertheless, in line with the results 
presented here, Vecchi et al. [142] reported that the PM10 concentrations attributed to 
fireworks can be as much as 53 % of the mass.  
 
Ravindra et al. [169] observed an increase in NO2 concentrations during pyrotechnic display. 
Vecchi et al. [142] reported, however, that no significant NO2 emissions could be ascribed to 
fireworks. To investigate this discrepancy in observations, the diurnal courses of PM10 and 
NO2 concentrations on 01.01.2004 and 01.01.2005 (New Year) at the ambient air monitoring 
station of Bad Cannstatt, where the station is located near the major pyrotechnic displays, are 
depicted in Fig. 5.4. Interestingly, the PM10 concentrations reached the maximum of 145 
µg/m³ on 01.01.2004 at 00:30, and 329 µg/m³ on 01.01.2005 at 01:00, whilst the NO2 
concentration profiles on both days indicated no significant changes. The NO2 diurnal patterns 
in the early hours could be explained by the traffic flows, likely due to people returning home. 
Hence, it can be expected that the PM10 Nowcasting will fail to simulate PM10 concentrations 
on days with fireworks, during which associations between the modelled PM10 concentrations 
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and the corresponding model input parameters such as NO2 concentrations and weather 
conditions cannot be established on such days. 
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Fig. 5.4: Diurnal course of PM10 and NO2 concentrations at Stuttgart Bad Cannstatt on 
01.01.2004 and 01.01.2005                                                        data source: LUBW 

 
 
5.2.3.3 Regional and long-range PM10 transport 
Besides winter-time inversion induced episodes and fireworks, ambient PM10 concentrations 
can also be substantially affected by long-range transport in areas characterised by low local 
emissions [142, 170, 174]. Long-range PM10 transport can result in episodic events when air 
masses arrive during suitable meteorological conditions (no precipitations and/or weak 
mixing of air masses) from regions with higher emissions of particles or from Sahara dust 
plumes [142]. In fact, dust transport can usually be observed over Central Europe several 
times a year via lofted aerosol layers [175]. While such detached layers may remain relatively 
stable, they need to mix with boundary layer air for the dust particles to reach the ground. 
Consequently, the dust plumes spread and dilute over larger areas and appear at the ground 
only at moderate concentrations. 
 
A recent PM10 episode which affected Germany was reported by Bruckmann et al. [12], 
during which a belt of high PM10 concentrations extended from Ukraine to a large part of 
Europe was observed on 24.05.2007. On this particular day, extremely high half-hourly PM10 
concentrations up to 360 µg/m³ were measured at many background ambient air monitoring 
stations in Germany, sparing only southern Bavaria, Baden-Württemberg and the Saar 
regions. 
 
The hypothesis of long-range transport for air masses towards Stuttgart can be suggested by 
performing back trajectory analysis, a method which has often been used to identify sources 
and sinks areas of ambient PM10 or to construct their average spatial distribution [176]. 
However, PM10 back trajectories analysis was not performed in the scope of this dissertation, 
and information on PM10 episodes caused by long-range transport from 2004 to 2006 for the 
region of Baden-Württemberg was not documented in recent literatures. Although there was 
insufficient information to suggest that the underprediction of PM10 concentrations on certain 
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days was due to long-range transport of PM10, the possibility of such occurrence should not be 
ruled out entirely.   
 
 
5.2.4 Error residuals 
 
Comparison between the modelled and measured PM10 concentrations from the PM10 
Nowcasting can provide information on the accuracy of the model; the closer the modelled 
and measured values, the higher the accuracy. Based on a method proposed by Kolehmainen 
et al. [134] and Ordieres et al. [177], the comparison between the modelled and measured 
PM10 concentrations can be described by Eq. (5.4) 
 

, Measured, Modelled PMPMdualError resi 1010  ,      (5.4) 

 
where PM10, Modelled and PM10, Measured are corresponding data sets. 
 
With this definition, the error residuals of the PM10 Nowcasting for the period from 
03.01.2004 to 14.11.2006 at Neckartor are presented in Fig. 5.5a to 5.5c respectively. Based 
on the results, the occurrences of PM10 underprediction were easily distinguishable during 
continuous temperature inversion periods in the early months of 2005 and 2006, and also on 
New Year’s eves to the following day when pyrotechnic displays took place. 
 
In Fig. 5.6, an error residual plot is depicted in order to compare the modelled and measured 
PM10 concentrations. The lower and upper ends of the vertical bars represent the 2nd and 98th 
percentile of the ratio of modelled PM10 to measured PM10 concentrations. The lower and 
upper limits of the boxes indicate the 16th and 84th percentiles of the ratio, and the horizontal 
line in between represents the median. As least 50 % of the modelled PM10 concentrations 
should be within a factor of 2 to the corresponding measured values (within the dotted lines) 
[178-180]. 
 
The PM10 Nowcasting model achieved a close agreement between the modelled PM10 
concentrations to the measured PM10 concentrations, with a median of 0.96. More than 50 % 
of the data were found within the limits [180]. In addition, the small 2nd and 98th percentiles 
values illustrated that the main bulk of the modelled PM10 concentrations agreed relatively 
well to the measured values, thus indicating the high accuracy of the developed model. 
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Fig. 5.5a-c: Error residuals of modelled 24 h average PM10 concentrations at Stuttgart 

Neckartor for the period 03.01.2004 to 14.11.2006 
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Fig. 5.6: 2nd, 16th, 50th, 84th and 98th percentiles of ratio between modelled PM10 and 
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5.2.4.1 Frequency distributions of error residuals 
A more precise understanding in the goodness of fit between the modelled PM10 and 
measured PM10 concentrations can be demonstrated by plotting the histogram of error 
residuals. Based on Eq. (5.4), a good model shall consist of a shape where the frequency 
distributions of the PM10 error residuals near 0 µg/m³ is maximised and where the total range 
is as narrow as possible. 
 
Fourteen class intervals of 10 µg/m³, from -60 µg/m³ to 70 µg/m³, were identified, which 
represented the respective range of data. The histogram of PM10 error residuals for the PM10 
Nowcasting model is depicted in Fig. 5.7. The residuals were more or less normally 
distributed, which can be seen by the bell-shaped curve with an almost equal number of 
values to the left and right of centre of the data distribution. Symmetry of the distribution can 
be described by its skewness. In Fig. 5.7, the residuals appeared slightly skewed to the left. 
 
Satisfactory results from the distribution frequency of PM10 error residuals were observed; 
approximately 77 % of the residuals fell between ± 10 µg/m³ with respect to 0 µg/m³. This 
information is important since the work was intended to simulate 24 h average PM10 
concentrations of high accuracy. Thus, the frequency distribution of the residuals should 
suffice to establish the good agreement between the modelled and measured PM10 
concentrations at the Neckartor site during the investigation period. 
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Fig. 5.7: Histogram of error residuals for the period 03.01.2004 to 14.11.2006 
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5.2.5 Quantile-quantile plot 
 
A quantile-quantile plot (Q-Q plot) provides the graphical representation of the magnitude of 
one set of quantiles plotted against that of another. Thus, it can be a good visual means for 
understanding the underlying patterns across two sets of univariate numerical data. When 
comparing sets of data, it is common to consider measures of central tendency such as the 
median. If greater distributional detail is required, then finer graduations like quantiles may be 
examined. In Fig. 5.8, the quantile-quantile plot of the modelled PM10 concentrations against 
the measured values is depicted. The quantile-quantile plot, which was evaluated here, was 
created by plotting all 100 percentiles of both the modelled and measured PM10 
concentrations. Working with the quantiles is, in effect, the same as working with the two sets 
of data that have been ordered from the smallest value to the largest value.  
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Fig. 5.8: Quantile-quantile plot of modelled 24 h average PM10 concentrations against 

measured PM10 concentrations at Stuttgart Neckartor for the period 03.01.2004 to 
14.11.2006 

  
 
55 out of 1029 data points in the top right indicated that the underprediction behaviour of the 
PM10 Nowcasting model began to show higher than 99 µg/m³. A closer look at the data points 
beyond 99 µg/m³ revealed that the most extreme underprediction case was caused by 
fireworks (or increase in traffic flow) on 01.01.2006, whilst the remaining 54 data sets were 
found in the colder months from January to March, during which temperature inversions were 
expected to form.  
 
Six quantiles from Fig. 5.8 were identified and further analysed in Table 5.5. The various 
point estimates for the quantiles of the modelled PM10 concentrations agreed well to the 
measured PM10 concentrations up to q90; underpredictions of PM10 concentrations were 
observed after the 92.5th quantile. In another words, the two sets of modelled and measured 
PM10 concentrations possessed similar distribution of data up to 99 µg/m³. 
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Table 5.5: Quantiles of modelled and measured PM10 concentrations 
 
 Quantiles Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
 

 q10 26 25  
 q25 34 35  
 q50 48 49  
 q75 66 67  
 q90 86 84  
 q92.5 91 91  
 
 
5.2.6 Cross-correlation coefficients of model input parameters to modelled PM10 
concentrations 
 
To investigate the influence of each model input parameter on the simulation of PM10 
concentration at Neckartor during days without street sweepings, the cross-correlation 
coefficients between all parameters were computed. It is defined as Eq. (5.5) 
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where yj represents the model input parameters to the PM10 Nowcasting. CPj varies between 1 
(total linear correlation) and -1 (total anti-linear correlation). A value zero implies no 
correlation at all. The cross-correlation coefficients of all model input parameters with respect 
to modelled PM10 concentrations at Neckartor are summarised in Table 5.6. 
 
For NO and NO2 concentrations at Neckartor, the positive cross-correlation coefficients 
exceeding 0.74 could indicate that both PM10 and NOX concentrations mostly originated from 
the same source. The cross-correlation coefficient between the PM10 concentrations measured 
at Neckartor and Bad Cannstatt was clearly the highest, and approximately a third lower at 
Erpfingen. At Bad Cannstatt, the PM10 concentrations represented the urban background 
which included PM originating from other sources and mechanisms, except for those from the 
local vehicular traffic from the federal highway of B14. The good correlation was probably 
related to the pronounced influence of local PM sources, since the two sites of Neckartor and 
Bad Cannstatt are only approximately 3.8 km apart from each other. Considering the 
schematic horizontal profile of the 24 h average PM10 concentrations at Stuttgart in Fig. 4.7, 
the fact that an increase in background concentrations of PM10 would consequently result in 
an increase in PM10 concentrations at Neckartor could be established. Thus, the results from 
Table 5.6 revealed that the modelled PM10 concentrations possessed the same characteristics 
as the measured values. 
 
Among the model input parameters, wind speed, temperature and rainfall parameters at 
Neckartor and Bad Cannstatt showed the strongest anticorrelation behaviours to the modelled 
PM10 concentrations. These findings were no surprise as typical temperature inversion can 
usually be described by low wind speed and temperature. Coupled with low mixing height, an 
accumulation of air pollutants above the ground surface can be expected to take place. 
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Table 5.6: Cross-correlation coefficients of model input parameters (measured values) to 

modelled PM10 concentrations for the period 03.01.2004 to 14.11.2006 
  
 Site Input parameters 

from measurements 
Cross-correlation 

coefficient 
 

 Neckartor NO  0.77  
 (traffic) NO2  0.74  
  Wind speed -0.23  
  Cosine wind direction -0.05  
  Sine wind direction  0.26  
  Temperature -0.27  
  Rainfall -0.20  
 Bad Cannstatt PM10  0.91  
 (urban background) NO  0.66  
  NO2  0.77  
  Wind speed -0.39  
  Cosine wind direction -0.05  
  Sine wind direction  0.51  
  Temperature -0.32  
  Rainfall -0.23  
  Global radiation -0.03  
 Erpfingen PM10  0.67  
 (rural background) NO  0.22  
  NO2  0.40  
 Schnarrenberg Mixing height -0.10  
 (weather station)    
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5.2.7 Application of PM10 Nowcasting for investigation on effect of street 
sweeping on ambient PM10 concentrations 

 
The model input parameters for PM10 Nowcasting comprised of only information other than 
PM10 concentrations measured at Neckartor during the street sweeping periods. These 
parameters were necessary to simulate the original state of ambient PM10 concentrations at 
Neckartor during these periods, but assuming that no sweeping activities took place. Based on 
the modelling results, any positive effect of street sweeping as a PM10 abatement strategy at 
Neckartor would be suggested by higher modelled PM10 concentrations in comparison to the 
corresponding measured PM10 values. Conversely, no influence on the ambient PM10 
concentrations after street sweeping would be implied by similar or lower modelled PM10 
concentrations than the measured values. 
 
To establish any relationship between the modelled PM10 concentrations (no street sweeping 
assumed) and the corresponding measured PM10 values (with street sweeping), the two sets of 
data are plotted against each other in Fig. 5.9. In addition, the temporal courses of the 
modelled and measured 24 h average PM10 concentrations are depicted in Fig. 5.10. 
 
Using the neural network approach, the developed PM10 Nowcasting model was able to 
accurately perform the Nowcast of PM10 concentrations at Neckartor during street sweeping 
periods. Based on the results in Fig. 5.9, the gradient of 0.96 implied that the measured PM10 
values were approximately 4 % lower than the modelled values, suggesting slight influence of 
street sweeping activities on ambient PM10 concentrations at Neckartor. However, the results 
based on Fig. 5.9 should not be conclusive as the trends of lower PM10 concentrations were 
not obvious during all sweeping periods, as depicted in Fig. 5.10. For instance, based on Eq. 
(4.22), more than 23 % reductions in the ambient PM10 concentrations were computed for 
three street sweeping days on 19.01.2007, 27.02.2007 and 03.03.2007. However, more than 
10 % increments in the ambient PM10 values were also computed for street sweeping days on 
17.02.2007, 23.02.2007 and 24.02.2007. The complete modelling results of PM10 
concentrations during all street sweeping periods are included in Annex D1.  
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Fig. 5.9: Measured PM10 concentrations (with street sweeping) against modelled PM10 

concentrations (no street sweeping assumed) at Stuttgart Neckartor for the period 
15.11.2006 to 18.03.2007 
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Fig. 5.10: Modelled and measured 24 h average PM10 concentrations at Stuttgart Neckartor 

for the period 15.11.2006 to 18.03.2007 
 
 
5.2.8 Comparisons between modelling and measurement results from street 

sweeping 
 
Based on the actual measurement results performed from 15.11.2007 to 18.03.2007, a small 
reduction potential of 6 % from street sweeping during working days at Neckartor was 
computed from the analyses of normalised PM10/NOX ratio. Although this method of analysis 
has the advantage of compensating the varying meteorological influences on ambient PM10, it 
was difficult to conclude if the small reduction trend could be attributed to street sweeping or 
to other unknown factors. 
 
To take into account of these uncertainties, such influences of meteorological conditions were 
parameterised as input parameters for the PM10 Nowcasting. Through extensive statistical 
evaluation on the performance of the developed neural network model, it was shown that the 
PM10 Nowcasting was capable of accurately simulating the PM10 concentrations from 
03.01.2004 to 14.11.2006. On days with street sweeping, the measured PM10 concentrations 
were approximately 4 % lower than the corresponding modelled values, which could infer a 
slight reduction potential of ambient PM10 concentrations from the street sweeping activities. 
Interesting, this reduction trend was somewhat similar to the measurement results. However, 
it should be emphasised that the trends of lower PM10 concentrations were not obvious from 
the modelling results during all sweeping periods. 
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5.3 PM10 Forecasting 
 
The performance of the PM10 Forecasting model with a network topology of eighteen input 
parameters, eight hidden nodes and six output parameters was evaluated. As described earlier 
for the PM10 Nowcasting model, the network configuration for the PM10 Forecasting model 
can also be denoted by 18 - 8 - 6. The mean square errors for the training, validation and test 
sets are depicted in Fig. 5.11. 
 
After the first epoch, the mean square errors of the three data sets decreased notably, an 
observation which was also seen during the training of the PM10 Nowcasting model. For the 
training set, the mean square error decreased from 2100.0 µg2/m6 to 1075.0 µg2/m6 during the 
first epoch, then gradually to 536.5 µg2/m6 at the fourth epoch, and finally to 365.1 µg2/m6 at 
the tenth epoch. For both the validation and test sets, the mean square error decreased sharply 
from over 1349.4 µg2/m6 to 343.3 µg2/m6 during the first epoch, and gradually to 282.5 
µg2/m6 for the validation set, and 289.3 µg2/m6 for the test set. Nevertheless, the errors of all 
three data sets converged to their minimum at the tenth epoch. 
 
In comparison to the PM10 Nowcasting model (see Fig. 5.1), the magnitudes of the 
corresponding mean square errors for the training, validation and test sets in Fig. 5.11 were 
more than five folds. These results were anticipated due to the way the errors were calculated 
for the PM10 Forecasting, with which the total errors of the six outputs were summed after 
each epoch (see Eq. (4.09) and (4.10)). 
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Fig. 5.11: Mean square error curves for training, validation, and test sets vs. epochs for 

PM10 Forecasting 
 
 
5.3.1 Statistical evaluation 
 
The overall statistical model evaluation on the modelled 24 h average PM10 concentrations at 
both traffic and urban background sites on dayd+1, dayd+2 and dayd+3 are summarised in Table 
5.7 and Table 5.8. In Table 5.7 the fractional bias (FB), index of agreement (IA), correlation 
coefficient (R²), mean absolute error (MAE), mean bias error (MBE) and root mean square 
error (RMSE) values are presented as average values and their respective standard deviations. 
In Table 5.8 the number of correct predictions on exceedances (TP), number of false alarms 
(FP), number of missed exceedances (FN), index of success (IS), false alarms values (FAR) 
and overall accuracy (A) values are presented. 
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Table 5.7: Overall statistical model evaluation parameters of modelled 24 h average PM10 

concentrations at the traffic and urban background sites, presented as average 
values and their standard deviations for the period 01.05.2007 to 30.04.2008 on 
dayd+1, dayd+2 and dayd+3 

  
Site  Overall results from training, validation and test sets 
  FB 

in % 
IA R² MAE 

in µg/m³ 
MBE 

in µg/m³ 
RMSE 

in µg/m³ 
dayd+1        
Traffic  

sD 
-5.84 
(2.89) 

0.86 
(0.04) 

0.63 
(0.08) 

9.10 
(2.79) 

-2.40 
(1.48) 

13.01 
(4.93) 

Urban background  
sD 

-4.58 
(5.90) 

0.79 
(0.07) 

0.50 
(0.07) 

5.68 
(1.89) 

-0.93 
(1.35) 

9.24 
(4.15) 

dayd+2        
Traffic  

sD 
-3.28 
(4.31) 

0.86 
(0.05) 

0.61 
(0.16) 

9.73 
(2.28) 

-1.35 
(2.07) 

13.01 
(3.55) 

Urban background  
sD 

-3.59 
(5.08) 

0.82 
(0.04) 

0.51 
(0.13) 

6.18 
(1.08) 

-0.72 
(1.20) 

8.96 
(2.73) 

dayd+3        
Traffic  

sD 
1.20 

(7.52) 
0.84 

(0.03) 
0.54 

(0.15) 
10.96 
(2.26) 

0.51 
(3.38) 

14.78 
(3.82) 

Urban background  
sD 

-5.07 
(4.67) 

0.80 
(0.03) 

0.48 
(0.13) 

6.87 
(1.40) 

-1.04 
(1.17) 

10.12 
(3.65) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
 
 
Table 5.8: Performance indices on the overall successful predictions of exceedances of 24 

h average PM10 concentrations at the traffic and urban background sites for the 
period 01.05.2007 to 30.04.2008 on dayd+1, dayd+2 and dayd+3 

 
Site  Overall results from training, validation and test sets 
  TP FP FN IS FAR A 
dayd+1        
Traffic  

sD 
66 

(18) 
16 
(3) 

13 
(3) 

0.69 
(0.22) 

0.20 
(0.12) 

0.91 
(0.01) 

Urban background  
sD 

0 
(0) 

0 
(0) 

10 
(4) 

0 
(0) 

N.A. 0.97 
(0.04) 

dayd+2        
Traffic  

sD 
62 

(18) 
22 
(2) 

15 
(4) 

0.63 
(0.28) 

0.26 
(0.23) 

0.89 
(0.02) 

Urban background  
sD 

0 
(0) 

0 
(0) 

10 
(4) 

0 
(0) 

N.A. 0.97 
(0.04) 

dayd+3        
Traffic  

sD 
64 

(19) 
33 
(3) 

14 
(2) 

0.58 
(0.26) 

0.34 
(0.26) 

0.86 
(0.01) 

Urban background  
sD 

0 
(0) 

0 
(0) 

12 
(6) 

0 
(0) 

N.A. 0.96 
(0.06) 

TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy, sD: standard 
deviation 
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On dayd+1 and dayd+2, both FB and MBE values for the traffic site were negative-indicating a 
tendency of the model to underpredict; while these two performance indices were slightly 
positive on dayd+3 and hence indicating a tendency of the model to overpredict. At the urban 
background site, the behaviour of underprediction was observed for all three days.  
 
At the traffic site, the modelled PM10 concentrations showed good agreement with the 
measured PM10 concentrations. The IA values were 0.86 ± 0.04 on dayd+1, 0.86 ± 0.05 on 
dayd+2, and 0.84 ± 0.03 on dayd+3. It implied that 86 % of the predictions were error free on 
dayd+1 and dayd+2, while 84 % of the predictions were error free on dayd+3. Through assessing 
the R² values, the PM10 Forecasting model captured 63 ± 8 % variability in the PM10 
concentrations on dayd+1, 61 ± 16 % on dayd+2, and 54 ± 15 % on dayd+3. At the urban 
background site, the modelled PM10 concentrations showed also good agreement with the 
measured PM10 concentrations. The IA values were 0.79 ± 0.07 on dayd+1, 0.82 ± 0.04 on 
dayd+2, and 0.80 ± 0.03 on dayd+3. It implied that 79 % of the predictions on dayd+1, 82 % on 
dayd+2, and 80 % on dayd+3, were error free. In terms of R² values, the model captured 50 ± 7 
% variability in the PM10 concentrations on dayd+1, 51 ± 13 % on dayd+2, and 48 ± 13 % on 
dayd+3. 
 
In terms of MAE and RMSE values, the large errors could be caused by some unexpected 
events, which were not anticipated and therefore considered during the development of the 
PM10 Forecasting model. In fact, urban prediction of PM10 concentrations can be difficult due 
to several highly variable sources, which can be of either local or non-local origins [50]. In 
this case, the most probable explanation to the errors could be due to the local, regional and 
long-range transported contributions of additional PM10 loads, whose origins could not be 
fully described by the model input parameters. Fireworks events took place on several 
occasions in the study period from 01.05.2007 to 30.04.2008. For instance, the Frühlingsfest 
event in Bad Cannstatt on 13.05.2007, the 56th Lichterfest event in Höhenpark Killesberg on 
07.07.2007, 162th Cannstatter Volksfest event in Bad Cannstatt on 14.10.2007, Christmas 
celebration in the last week of December 2007, and New Year celebration in the first week of 
January 2008. Thus, it can be expected that the model will fail to accurately simulate the PM10 
concentrations including the additional anthropogenic loads on all these occasions. The 
possibility of occurrence of traffic congestions along the Neckartor federal highway B14 was 
also not taken into account. Consequently, all these uncertainties challenged the robustness of 
the model, which could be seen by the large MAE values of 9.10 ± 2.79 µg/m³ on dayd+1, 9.73 
± 2.28 µg/m³ on dayd+2, and 10.96 ± 2.26 µg/m³ on dayd+3 for the traffic site. The 
corresponding RMSE values were 13.01 ± 4.93 µg/m³, 13.01 ± 3.55 µg/m³, and 14.78 ± 3.22 
µg/m³ respectively. For the urban background site, smaller MAE values of 5.68 ± 1.89 µg/m³, 
6.18 ± 1.08 µg/m³, and 6.87 ± 1.40 µg/m³, and RMSE values of 9.24 ± 4.15 µg/m³, 8.96 ± 
2.73 µg/m³, and 10.12 ± 3.65 µg/m³ were computed respectively. In line with the observations 
made by Kousa et al. [181], the modelling of air quality at urban traffic site was indeed more 
demanding compared to that for an urban background site. 
 
For the period from 01.05.2007 to 30.04.2008, the model showed acceptable performance on 
the basis of 66 out of 79 correct predictions of PM10 daily exceedances on dayd+1, 62 out of 77 
on dayd+2, and 64 out of 78 on dayd+3 at the traffic site. The number of false alarms increased 
with the forecasted days; there were only 16 false alarms on dayd+1 compared to 33 on dayd+3. 
The decrease in prediction accuracy with forecasted days could also be observed by the 
weaker IS value on dayd+3, with a lower score of 0.58 ± 0.26 compared to 0.69 ± 0.22 on 
dayd+1. Nevertheless, the PM10 Forecasting model scored high A values exceeding 0.85 on all 
three days. At the urban background site, although high A values exceeding 0.95 were 
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computed, the model failed to spot any PM10 exceedance. As a result, all IS values were 
computed as zero.  
 
The evaluation of all these performance indices demonstrated the importance of considering 
more than one performance index when assessing the model’s performance. For instance, a 
high IA value does not necessary infer high accuracy of the model in predicting PM10 
exceedances (high A value). Conversely, having the highest accuracy in predicting PM10 
exceedances does not imply a high R² value. Thus, the statistical evaluation of the PM10 
Forecasting model could only be complete by thoroughly examining all concerned 
performance indices.  
 
To summarise, in regard to the statistical assessment of PM10 Forecasting models, it is highly 
recommended to select a model with the highest IA value, followed by the R² and 
subsequently the A values. With a high IA value, a good degree of agreement between the 
mean values of the modelled and measured PM10 concentrations can be assured. Although the 
R² value is widely used in statistical analyses to describe the variability between two sets of 
values, this performance index has its inherent flaw. As an example, a neural network model 
which only simulates a constant output value regardless of its input parameters and values 
will always score a perfect R² value of one. This happens when correlations between all input 
and output parameters of the neural network model cannot be established, a phenomenon 
which was previously documented by Khare and Nagendra [163]. While a high A value infers 
high accuracy in predicting PM10 exceedances, the trend of the modelled PM10 concentrations 
may not necessary be similar to the comparison measured PM10 values, since this 
performance index does not calculate the deviations (errors) between the modelled and 
measured values. 
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5.3.2 Scatter plots of modelled and measured PM10 concentrations 
 
Modelled 24 h average PM10 concentrations at both traffic and urban background sites on 
dayd+1, dayd+2 and dayd+3 were regressed over measured data. The results of the analyses with 
95 % confidence intervals are depicted in Fig. 5.12a to 5.12f respectively. 
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Fig. 5.12a-f: Scatter plots of modelled and measured 24 h average PM10 concentrations at the 
traffic and urban background sites with 95 % confidence intervals for the period 
01.05.2005 to 30.04.2008 (from training, validation and test sets with deviations) 
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5.3.3 Time series of modelled and measured PM10 concentrations 
 
The modelled and measured 24 h average PM10 concentrations at the traffic and urban 
background sites for the investigated period from 01.05.2007 to 30.04.2008 are presented in 
Fig. 5.13a to 5.13c and Fig. 5.14a to 5.14c respectively.  
 
In general, the modelled PM10 concentrations were found to agree relatively well to the 
measured values. However, the underpredicting behaviour of the PM10 Forecasting model was 
revealed during periods with high PM10 concentrations originating from episodic events. The 
different types of episodic events which have been identified from 01.05.2007 to 30.04.2008 
are described in the following chapters. 
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*: Meteorological forecasts were not available from 11.02.2008 to 31.02.2008; modelling of PM10 

concentrations was not performed for these days 
 
Fig. 5.13a-c: Modelled and measured 24 h average PM10 concentrations at the traffic site 

for dayd+1, dayd+2 and dayd+3, 01.05.2007 to 30.04.2008 
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Fig. 5.14a-c: Modelled and measured 24 h average PM10 concentrations at the urban 

background site for dayd+1, dayd+2 and dayd+3, 01.05.2007 to 30.04.2008 
 
 
5.3.3.1 Wintertime inversion-induced PM10 episodes  
In Fig. 5.13a to 5.13c and Fig. 5.14a to 5.14c, two distinct inversion periods were identified in 
late December 2007 and late February 2008. The corresponding modelled and measured PM10 
concentrations for both inversion periods at the traffic and urban background sites are listed in 
Table 5.9 and Table 5.10. 
 
During the first inversion period from 16.12.2007 to 30.12.2007, 24 h average PM10 
concentrations exceeding 100 µg/m³ were recorded in many parts of southern Germany [182]. 
Even in the Rheinland-Pfalz, such high PM10 concentrations were very seldom encountered. 
From 23.12.2007 to 26.12.2007, the lowest mixing height level recorded at the Schnarrenberg 
weather station was below 400 m, with daily wind speed lower than 0.6 m/s at both traffic and 
urban background sites. During this period with relatively stable atmospheric conditions, the 
PM10 Forecasting model underpredicted up to 50 % of the measured PM10 concentrations at 
the traffic site, and up to 60 % of the measured PM10 concentrations at the urban background 
site. In comparison to the PM10 Nowcasting, the latter underpredicted only up to 30 % of the 
measured PM10 concentrations during the selected inversion episodes (see Table 5.3). 
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b 
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Table 5.9: Modelled and measured 24 h average PM10 concentrations during an inversion 

period from 16.12.2007 to 30.12.2007 at the traffic and urban background sites  
  
Site Modelled PM10 in µg/m³ PM10 underprediction ratio 
 dayd+1 dayd+2 dayd+3 

Measured 
PM10 in µg/m³ dayd+1 dayd+2 dayd+3 

16.12.2007        
Traffic 41 42 39 38 1.1 1.1 1.0 
Urban background 15 15 20 20 0.8 0.8 1.0 
17.12.2007        
Traffic 58 57 58 58 1.0 1.0 1.0 
Urban background 18 19 19 25 0.7 0.8 0.8 
18.12.2007        
Traffic 63 61 64 75 0.8 0.8 0.7 
Urban background 32 30 32 40 0.8 0.8 0.8 
19.12.2007        
Traffic 69 68 61 117 0.6 0.6 0.5 
Urban background 35 35 31 71 0.5 0.5 0.4 
20.12.2007        
Traffic 71 74 73 127 0.6 0.6 0.6 
Urban background 37 39 38 75 0.5 0.5 0.5 
21.12.2007        
Traffic 71 76 77 120 0.6 0.6 0.6 
Urban background 37 41 41 73 0.5 0.6 0.6 
22.12.2007        
Traffic 69 74 81 109 0.6 0.7 0.7 
Urban background 35 40 43 73 0.5 0.5 0.6 
23.12.2007        
Traffic 69 72 79 115 0.6 0.6 0.7 
Urban background 36 38 42 90 0.4 0.4 0.5 
24.12.2007        
Traffic - 73 78 123 - 0.6 0.6 
Urban background - 39 41 91 - 0.4 0.5 
25.12.2007        
Traffic 70 - 79 88 0.8 - 0.9 
Urban background 36 - 42 51 0.7 - 0.8 
26.12.2007        
Traffic - 75 - 71 - 1.1 - 
Urban background - 41 - 48 - 0.9 - 
27.12.2007        
Traffic 69 - 82 73 0.9 - 1.1 
Urban background 34 - 34 35 1.0 - 1.0 
28.12.2007        
Traffic 68 68 - 72 0.9 0.9 - 
Urban background 33 35 - 38 0.9 0.9 - 
29.12.2007        
Traffic 51 57 63 65 0.8 0.9 1.0 
Urban background 25 28 32 33 0.8 0.8 1.0 
30.12.2007        
Traffic 18 16 16 18 1.0 0.9 0.9 
Urban background 9 8 9 10 0.9 0.8 0.9 
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Table 5.10: Modelled and measured 24 h average PM10 concentrations during an inversion 

period from 26.01.2008 to 31.01.2008 at the traffic and urban background 
sites  

  
Site Modelled PM10 in µg/m³ PM10 underprediction ratio 
 dayd+1 dayd+2 dayd+3 

Measured 
PM10 in µg/m³ dayd+1 dayd+2 dayd+3 

26.01.2008        
Traffic 41 - - 51 0.8 - - 
Urban background 20 - - 31 0.6 - - 
27.01.2008        
Traffic 22 20 - 28 0.8 0.7 - 
Urban background 12 10 - 14 0.9 0.7 - 
28.01.2008        
Traffic 61 53 52 77 0.8 0.7 0.7 
Urban background 31 27 26 37 0.8 0.7 0.7 
29.01.2008        
Traffic 68 71 68 91 0.7 0.8 0.7 
Urban background 33 38 34 59 0.6 0.6 0.6 
30.01.2008        
Traffic 62 64 76 76 0.8 0.8 1.0 
Urban background 30 33 41 47 0.6 0.7 0.9 
31.01.2008        
Traffic 41 35 37 38 1.1 0.9 1.0 
Urban background 14 12 15 15 0.9 0.8 1.0 
 
 
During the second inversion period from 26.01.2008 to 31.01.2008, the PM10 underprediction 
ratios were, on average, slightly higher compared to the first inversion period; indicating that 
the magnitude of prediction errors was related to the strength of the inversion; the stronger the 
inversion, the larger the errors. The lowest mixing height recorded was below 700 m, and the 
highest PM10 concentrations were 91.0 µg/m³ and 59.0 µg/m³ at the traffic and background 
sites respectively. Low wind speeds of 0.4 m/s at the traffic site, and 0.6 m/s at the urban 
background site were measured on 29.01.2008, which coincided on the day with the 
maximum PM10 concentrations. From these results, the high PM10 concentrations could be 
associated with typical inversion weather conditions: low mixing heights with cold 
temperature on the ground and warmer air mass above, combined with very low wind speeds 
over a period of several days. With these weather conditions, the air mass above ground 
remains stagnant and the measured PM10 concentrations subsequently increase through the 
accumulation of air pollutants. For the PM10 Nowcasting model, the influence of temperature 
inversions on the modelled PM10 concentrations was better taken into account in comparison 
to the PM10 Forecasting model. During an inversion, it can be expected that the concentrations 
of other air pollutants increase with PM10. In the case of the former model, such air pollutants 
included NO and NO2 from Neckartor, and PM10, NO and NO2 from Bad Cannstatt. 
Therefore, the inclusion of these model input parameters can clearly improve the overall 
prediction accuracy for the PM10 Nowcasting. In the case of the PM10 Forecasting, the model 
emulated an improved PM10 persistence model (see Fig. 4.9a to 4.9c), with which only the 
persistence behaviour of PM10 concentrations on dayd and the accuracies of the forecasted 
meteorological parameters on dayd+1, dayd+2 and dayd+3 were used in simulating PM10 
concentrations during inversion periods. As a result, the extend of underprediction with the 
PM10 Forecasting was greater than the PM10 Nowcasting. 
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5.3.3.2 Festive PM10 pollution episodes 
One distinct PM10 pollution episode which was caused by the usage of fireworks was dated on 
01.01.2008, on which the measured 24 h average PM10 concentrations were 144 µg/m³ at the 
traffic site, and 105 µg/m³ at the urban background site. The modelled and measured PM10 
concentration on 01.01.2008 for dayd+1, dayd+2 and dayd+3 at the traffic and urban background 
sites are listed in Table 5.11 accordingly. The effect of fireworks on the ambient PM10 
concentrations can be denoted by the η2 value, which was described earlier by Eq. (5.3). 
Based on results in Table 5.11, fireworks has a greater influence on the measured PM10 
concentrations at the urban background site compared to the values at the traffic site. This 
could be attributed to the closer proximity of the location of pyrotechnic displays to where the 
PM10 concentrations were measured at the urban background site. At the urban background 
site, η2 values for dayd+1 and dayd+3 were 228.1 % and 169.2 %, whilst the corresponding 
values at the traffic site were 128.9 % and 95.0 % accordingly. 
 
 
Table 5.11: Modelled and measured PM10 concentrations on 01.01.2008 for dayd+1, dayd+2 

and dayd+3 at the traffic and urban background sites; η2 effect due to fireworks 
  
Site Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
η2 in % 

dayd+1    
Traffic 63 144 128.9 
Urban background 32 105 228.1 
dayd+2 *    
Traffic - 144 - 
Urban background - 105 - 
dayd+3    
Traffic 75 144 95.0 
Urban background 39 105 169.2 
η2: effect due to fireworks 
*: Measured PM10 concentrations at the traffic and urban background sites were not available on 

30.12.008 (dayd) for batch modelling; modelling of PM10 concentrations on 31.12.2007 (dayd+1), 
01.01.2008 (dayd+2), and 02.01.2008 (dayd+3) with reference to 30.12.2008 (dayd) was not 
performed 

 
 
5.3.3.3 Regional and long-range PM10 transport 
As back trajectory analysis of PM10 was not performed for the period from 01.05.2007 to 
30.04.2008 in this dissertation, it was not possible to discern from the results if the regional 
and long-range PM10 transport was responsible for any of the PM10 episodes during the 
investigation period. Nevertheless, the possibility of such occurrence should not be omitted. 
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5.3.4 Error residuals 
 
The error residuals of the PM10 Forecasting model for the investigated period from 
01.05.2007 to 30.04.2008 at the traffic and urban background sites for dayd+1, dayd+2 and 
dayd+3, are presented in Fig. 5.15a to 5.15c, and Fig. 5.16a to 5.16c respectively. By 
comparing the error residuals between the two sites, the magnitude of errors at the traffic site 
was significantly greater than at the urban background site. A possible explanation to this 
discrepancy could be the exposure of the traffic site to varying traffic loads, which was clearly 
absent at the urban background site. Even though the expected traffic loads for dayd+1, dayd+2 
and dayd+3 were considered as model input parameters, the deviations between the actual and 
expected values could still be substantial. In general, the prediction error of PM10 
concentrations for a site with a higher variability of PM10 loads (e.g. traffic) can be expected 
to be higher compared to sites with less varying PM10 concentration courses (background). 
 
At both sites, the underprediction behaviour of the PM10 Forecasting was clearly 
demonstrated from 16.12.2007 to 30.12.2007, and on 01.01.2008, as the model was unable to 
accurately simulate the additional PM loads from episodic events with the considered input 
parameters. 
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Fig. 5.15a-c: Error residuals of modelled 24 h average PM10 concentrations at the traffic 

site for dayd+1, dayd+2 and dayd+3 from 01.05.2007 to 30.04.2008 
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Fig. 5.16a-c: Error residuals of modelled 24 h average PM10 concentrations at the urban 

background site for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 
30.04.2008 

 
 
The ratio of the modelled PM10 to the measured PM10 concentrations for dayd+1, dayd+2 and 
dayd+3 at the traffic and urban background sites from 01.05.2007 to 30.04.2008 are depicted in 
Fig. 5.17. For a good model, the median should be close to 1 and 50 % of the ratio should be 
within a factor of 2 [180]. 
 
The smaller gaps between the 16th and 84th percentiles for the traffic site on dayd+1, dayd+2 and 
dayd+3 indicated that the PM10 Forecasting model achieved on average a closer agreement 
between the modelled PM10 concentrations and the measured values at the traffic site than at 
the urban background site. In general, the ratio of the modelled PM10 to the measured PM10 
concentrations increased with the forecasted days at both sites. These observations were 
anticipated due to the inherent characteristics of forecasted meteorological parameters with 
days; the longer the forecast periods, the larger the error. Nevertheless, a comparable range of 
ratios of modelled PM10 to measured PM10 concentrations was computed for both sites, with 
medians ranging from 0.97 to 1.00. 
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Fig. 5.17: 2nd, 16th, 50th, 84th and 98th percentiles of ratio between modelled PM10 and 

measured PM10 concentrations 
 
 
5.3.4.1 Frequency distributions of error residuals 
Histograms of the PM10 error residuals for the traffic and urban background sites for dayd+1, 
dayd+2 and dayd+3 are depicted in Fig. 5.18a to 5.18f respectively. 
 
The similar fourteen class intervals, which were described earlier for the PM10 Nowcasting 
model, were also identified here. In an ideal situation, the difference between the modelled 
and measured PM10 concentrations would be close to zero. At the traffic site, the histograms 
showed that the PM10 forecasts on dayd+1, dayd+2 and dayd+3 exhibited single modal 
distributions of PM10 error residuals. Compared to dayd+1 and dayd+2, the data for dayd+3 
exhibited considerable left-skewness with a higher frequency of PM10 residuals in the interval 
class of -30 µg/m³, indicating lower modelled PM10 concentrations on dayd+3. 
 
At the urban background site on dayd+1, dayd+2 and dayd+3, the PM10 forecasts were more or 
less normally distributed, which can be seen by the almost-symmetrical bell-shaped curve 
along the centre of the data distribution at 0 µg/m³. On dayd+1, more than 86 % of the PM10 
error residuals fell between ± 10 µg/m³ with respect to 0 µg/m³. On dayd+2 and dayd+3, the 
percentages were calculated as 83 % and 82 % respectively. The corresponding values 
calculated at the traffic site were significantly lower, with 67 % on dayd+1, 64 % on dayd+2, 
and 57 % on dayd+3. 
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Fig. 5.18a-f: Histograms of error residuals for the traffic and urban background sites for 

dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 30.04.2008 
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5.3.5 Quantile-quantile plots 
 
The quantile-quantile plots of the modelled 24 h average PM10 concentrations against the 
measured PM10 concentrations for dayd+1, dayd+2 and dayd+3 at the traffic and urban 
background sites from 01.05.2007 to 30.04.2008 are depicted in Fig. 5.19a to 5.19f. 
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Fig. 5.19a-f: Quantile-quantile plots of modelled 24 h average PM10 concentrations 

against measured PM10 concentrations at the traffic and urban background 
sites for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 30.04.2008 

 
 
The quantile-quantile plots indicated that the PM10 Forecasting model did a reasonable good 
job in simulating PM10 concentrations with rather similar frequency distributions to the 
measured PM10 concentrations, except for the higher values. Scattering of the data points 

a b 

c d 

e f 



5 Results and discussion
 

 90

around the ideal line 1:1 increased at the right ends of the plots. The effect of PM10 episodes 
on the underestimating behaviour of the model could be observed for both the traffic and 
urban background sites. The reasons were described earlier for the single events. At the traffic 
site, the underprediction behaviour of the PM10 Forecasting model began to show at 
concentrations higher than 61 µg/m³ for all three days of forecast. At the urban background 
site, this phenomenon became obvious for concentrations higher than 33 µg/m³. In 
comparison to the PM10 Nowcasting model, agreement between the modelled and measured 
values from the quantile-quantile plot was observed up to 100 µg/m³ (see Fig. 5.8). The better 
agreement in values for the PM10 Nowcasting model could probably be explained by the fact 
that the Nowcasting model input parameters were more effective in simulating the PM10 
concentrations in comparison to the Forecasting model. 
 
To have a better understanding on the distributions of data set, the six quantiles, namely q10, 
q25, q50, q75, q85 and q90, were identified and evaluated. The results are listed in Table 5.12 
accordingly. Based on Table 5.12, the best modelling results for the traffic and urban 
background sites were obtained before the 85th quantile; beyond that underpredictions of PM10 
were observable at both sites. 
 
 
Table 5.12: Quantiles of modelled and measured PM10 concentrations 
 

Traffic site Urban background site Quantiles 
Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
dayd+1     
q10 20 21   9   9 
q25 27 28 13 13 
q50 39 38 19 17 
q75 52 49 26 25 
q85 60 61 29 31 
q90 63 71 31 35 
dayd+2     
q10 19 20   7   9 
q25 27 28 12 12 
q50 40 37 20 17 
q75 52 49 27 25 
q85 61 60 30 30 
q90 62 69 32 35 
dayd+3     
q10 22 20   7   9 
q25 29 28 12 12 
q50 43 38 20 18 
q75 55 49 27 25 
q85 61 62 31 31 
q90 63 72 33 37 
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5.3.6 Cross-correlation coefficients of model input parameters to modelled PM10 
concentrations 

 
As explained earlier, the cross-correlation coefficient was computed to investigate the linear 
relationship between the respective model input parameters to the corresponding modelled 
PM10 concentrations (see Eq. (5.5)). The cross-correlation coefficient is 1 in the case of an 
increasing perfect linear relationship, −1 in the case of a decreasing perfect linear relationship. 
The closer the coefficient is to either −1 or 1, the stronger the correlation between the 
variables. If the variables are independent, the cross-correlation coefficient is 0, but the 
converse is not true because the correlation coefficient detects only linear dependencies 
between two variables.  
 
The cross correlation coefficients of all model input parameters with respect to the modelled 
PM10 concentrations at the traffic and urban background sites on dayd+1, dayd+2 and dayd+3 are 
summarised in Table 5.13 to 5.15 respectively. 
 
At both sites, the model input parameter PM10 (measured value) on dayd showed high cross-
correlation coefficients to the modelled PM10 concentrations for all three forecasted days. On 
dayd+1, the highest correlation could be explained by the persistent behaviour of ambient PM10 
concentrations on the previous day (dayd). In the presence of continuous surface inversions, 
the accumulation of ambient PM10 loads from the previous day may be resulted [146, 147]. As 
a consequence, the modelled PM10 concentrations, especially on dayd+1, could be very much 
influenced by the input parameter PM10 concentrations on dayd. This phenomenon is expected 
to be more prominent during the colder months of the year, during which the persistent 
behaviour of PM10 concentrations may even last for several days. In line with the results from 
the PM10 persistence models described earlier (see Fig. Fig. 4.9a to 4.9c), slight positive 
correlations between the measured PM10 (dayd) and PM10 (dayd+2 and dayd+3) were also 
observed. 
 
Under stable atmospheric conditions, there is minimal vertical dispersion of traffic-induced 
PM10 loads above the ground surface. Thus, the traffic flows on dayd+1, dayd+2 and dayd+3 can 
be expected to be directly proportional to the modelled PM10 concentrations respectively. 
However, low cross-correlation coefficients between the traffic flows and modelled PM10 
concentrations were computed for all three days of forecasts; suggesting that the influence of 
expected traffic flows as the model’s input parameters were not as significant as originally 
anticipated. This is not surprising since the traffic flow is more or less constant at the traffic 
site, apart from weekend (see Fig. 4.12). 
 
The negative cross-correlation coefficients between the forecasted rainfall and the modelled 
PM10 concentrations at both sites highlighted the “cleaning” effect of rainfall on ambient 
PM10. In general, the more amount of rainfall, the lower the concentrations of PM10.  
 
The results from evaluating the cross-correlation coefficients between the forecasted 
temperature, global radiation and wind speed to the modelled PM10 concentrations were 
consistent with the observations that elevations of ambient PM10 concentrations occur 
predominantly in the colder months, during which periods of low ambient temperature, high 
atmospheric pressure and little wind support the formation of temperature inversions.  
 
Contrary to expectation, the model input parameter mixing height (dayd) had little to no 
influence on the predicted PM10 (dayd+1). The mixing height data were established using the 
radio sounding data from the Schnarrenberg monitoring station, which is located 79 m higher  



5 Results and discussion
 

 92

 
Table 5.13: Cross-correlation coefficients of all model input parameters to modelled PM10 

concentrations on dayd+1 for the period 01.05.2007 to 30.04.2008 
 
 Site Input parameters from 

measurements and forecasts 
Cross-correlation 

coefficient 
 

 Traffic site PM10, dayd+1   
 Neckartor PM10, dayd 0.68  
 (traffic) Traffic flow, dayd+1 0.16  
 Bad Cannstatt PM10, dayd 0.65  
 (urban background)    
 Schnarrenberg* Mixing height, dayd -0.07  
 (weather station)    
 Numerical  Temperature, dayd+1 -0.26  
 Mesoscale Model Rainfall, dayd+1 -0.28  
 (weather forecaster) Global radiation, dayd+1 -0.15  
  Wind speed, dayd+1 -0.60  
 Urban background site PM10, dayd+1   
 Bad Cannstatt PM10, dayd 0.69  
 (urban background)    
 Schnarrenberg Mixing height, dayd -0.06  
 (weather station)    
 Numerical  Temperature, dayd+1 -0.21  
 Mesoscale Model Rainfall, dayd+1 -0.23  
 (weather forecaster) Global radiation, dayd+1 -0.13  
  Wind speed, dayd+1 -0.53  
 
Table 5.14: Cross-correlation coefficients of all model input parameters to modelled PM10 

concentrations on dayd+2 for the period 02.05.2007 to 30.04.2008 
  
 Site Input parameters from 

measurements and forecasts 
Cross-correlation 

coefficient 
 

 Traffic site PM10, dayd+2   
 Neckartor PM10, dayd 0.52  
 (traffic) Traffic flow, dayd+2 0.20  
 Bad Cannstatt PM10, dayd 0.50  
 (urban background)    
 Schnarrenberg* Mixing height, dayd -0.05  
 (weather station)    
 Numerical  Temperature, dayd+2 -0.23  
 Mesoscale Model Rainfall, dayd+2 -0.31  
 (weather forecaster) Global radiation, dayd+2 -0.13  
  Wind speed, dayd+2 -0.60  
 Urban background site PM10, dayd+2   
 Bad Cannstatt PM10, dayd 0.56  
 (urban background)    
 Schnarrenberg Mixing height, dayd 0.01  
 (weather station)    
 Numerical  Temperature, dayd+2 -0.20  
 Mesoscale Model Rainfall, dayd+2 -0.28  
 (weather forecaster) Global radiation, dayd+2 -0.11  
  Wind speed, dayd+2 -0.53  
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Table 5.15: Cross-correlation coefficients of all model input parameters to modelled PM10 

concentrations on dayd+3 for the period 03.05.2007 to 30.04.2008 
 
 Site Input parameters from 

measurements and forecasts 
Cross-correlation 

coefficient 
 

 Traffic site PM10, dayd+3   
 Neckartor PM10, dayd 0.42  
 (traffic) Traffic flow, dayd+3 0.15  
 Bad Cannstatt PM10, dayd 0.41  
 (urban background)    
 Schnarrenberg* Mixing height, dayd -0.03  
 (weather station)    
 Numerical  Temperature, dayd+3 -0.21  
 Mesoscale Model Rainfall, dayd+3 -0.28  
 (weather forecaster) Global radiation, dayd+3 -0.15  
  Wind speed, dayd+3 -0.51  
 Urban background site PM10, dayd+3   
 Bad Cannstatt PM10, dayd 0.46  
 (urban background)    
 Schnarrenberg Mixing height, dayd 0.02  
 (weather station)    
 Numerical  Temperature, dayd+3 -0.21  
 Mesoscale Model Rainfall, dayd+3 -0.25  
 (weather forecaster) Global radiation, dayd+3 -0.13  
  Wind speed, dayd+3 -0.46  
 
 
in elevation than the Neckartor monitoring station. Thus, accurate representation of the 
mixing heights (if any) of air pollutants lower than the Schnarrenberg station could be 
questionable and likely lead to the weak cross-correlation coefficients. In general, it is 
expected that lower mixing height will result in higher pollutant loads in the ambient air. 
 
To summarise, the results in Table 5.13 to 5.15 show that the persistent behaviour of ambient 
PM10 concentrations on dayd had the highest linear correlation to the modelled PM10 
concentrations for all three forecasted days at both the traffic and urban background site. 
Among the considered forecasted meteorological parameters, wind speed exhibited the 
highest anti-linear correlation behaviour to the modelled PM10 concentrations. 
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5.3.7 Test and improvement of PM10 Forecasting model 
 
The main drawback of the developed PM10 Forecasting model is its inability to accurately 
simulate PM10 concentrations during episodic events during the investigated period from 
02.05.2007 to 30.04.2008. At the traffic site, the maximum measured PM10 concentration was 
144 µg/m³ on 14.08.2007, while the corresponding modelled value was 82 µg/m³. At the 
urban background site, the maximum measured and modelled values were 105 µg/m³ and 44 
µg/m³ respectively (see Fig. 5.12a to 5.12f and Fig. 5.19a to 5.19f).  
 
To address the underprediction problem of the PM10 Forecasting, two different approaches in 
improving the PM10 Forecasting accuracy during episodic events could be adopted. The first 
method is the so-called boosting, which refers to increasing the frequency of extreme values 
in the training process by reserving most or all of the available episodes for the training set in 
order to improve the ability of the neural network model to identify their characteristics [183, 
184]. The second method is the so-called bagging, which refers to including each episode case 
more times in the training data set [184, 185].  
 
 
5.3.7.1 Results from boosting method 
In this dissertation, a simplified boosting method was in fact used in the development of the 
PM10 Forecasting model (see Annex C2 for data distributions in the training, validation and 
test sets). In regard to neural network modelling, it is important to assess the quality of the 
independent test data set, as this data set can be used to determine the generalisation error of 
the model. In the case of the developed PM10 Forecasting model, the shortcoming of the 
boosting training method was that high PM10 concentrations were not reflected in the test set 
as these values were all reserved for the training data set. Nevertheless, the highest PM10 
concentrations were still intentionally reserved for the training data set for two reasons. As 
neural network models will fail to extrapolate on data which have not been presented during 
the training procedure, it is recommended that the training data set should consist of extreme 
training values [95]. As for the second reason, a diversity of training data set will ensure that 
the model is adequately trained to respond to a larger number of input data variations, in the 
expectation that the PM10 Forecasting can cover all the possible behaviours of the model input 
parameters under study. 
 
As a comparison model, a test PM10 Forecasting model which was not trained with the 
boosting method was developed. The data for the training, validation and test sets were 
distributed in a way that all three data sets possessed similar data distributions, i.e. data 
containing low and high PM10 concentrations was equally divided among the three sets. The 
number of hidden nodes for this test model was varied from one to fifteen, and selected 
performance indices, such as the FB (fractional boas), IA (index of agreement), R² (correlation 
coefficient) and A (overall accuracy) values, were computed. A network topology of fourteen 
hidden nodes was eventually derived, based on the highest IA value, followed by the R² and 
subsequently the A values.  
 
In Fig. 5.20a to 5.20f, the modelled PM10 concentrations from the test set for dayd+1, dayd+2 
and dayd+3 at the traffic and urban background sites were regressed over the corresponding 
measured data. The results of the analyses with the combined training and validation sets are 
included in Annex C3. Based on results from the test sets, it can be deduced that the boosting 
method did little to improve the prediction accuracy of the PM10 Forecasting model, as the 
overall IA, R² and A values were comparable to the corresponding values which were 
computed for the original model trained with the boosting method (see Fig. 5.12a to 5.12f). 
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Fig. 5.20a-f: Boosting method: 

Scatter plots of modelled and measured 24 h average PM10 concentrations at 
the traffic and urban background sites with 95 % confidence intervals for the 
period 01.05.2005 to 30.04.2008 (from test set only) 

 
  
 

a b 

e f 

c d 



5 Results and discussion
 

 96

In Fig. 5.21a to 5.21c, and Fig. 5.22a to 5.22c, the error residuals of the test model for the 
investigated period from 01.05.2007 to 30.04.2008 at the traffic and urban background sites 
for dayd+1, dayd+2 and dayd+3, are presented respectively. Although the trends of the temporal 
courses for the error residuals were somewhat similar to those depicted in Fig. 5.15a to 5.15c, 
and Fig. 5.16a to 5.16c, the computation of the average PM10 values revealed the differences. 
 
In Table 5.16, the average PM10 overprediction and underprediction values over the entire 
investigation period are listed. These averages were calculated based on results from the 
Forecasting model trained with the boosting method, and as well as from the test model. The 
overprediction of average PM10 concentrations with both models were of the same magnitude 
for all three days of forecasts; the differences ranged from 0.19 µg/m³ to 0.52 µg/m³ at the 
traffic site, and 0.07 µg/m³ to 0.18 µg/m³ at the urban background site. The effect of the 
boosting training method became evident when comparing the average underprediction 
values; the magnitudes of underprediction with the test model were clearly greater compared 
to the model trained with the boosting method. This discrepancy can be explained by the 
training process of the former model, during which more weights are assigned to the rare 
observations containing high PM10 concentrations that are more difficult to simulate. In the  
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Fig. 5.21a-c: Error residuals of modelled 24 h average PM10 concentrations at the traffic 

site for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 30.04.2008 
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Fig. 5.22a-c: Error residuals of modelled 24 h average PM10 concentrations at the urban 
background site for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 
30.04.2008 

 
 
Table 5.16: Average PM10 overprediction and underprediction values for the period 

01.05.2007 to 30.04.2008 
 

Average PM10 concentrations in µg/m³ Site 
PM10 Forecasting model 
trained with boosting method 

PM10 Forecasting model 
with similar data distribution in training, 

validation and test sets 
 Overprediction Underprediction Overprediction Underprediction 
dayd+1     
Traffic 7.85   -9.35 7.61 -11.26 
Urban background 5.29   -5.63 5.22   -7.26 
dayd+2     
Traffic 8.43   -9.83 8.62 -11.47 
Urban background 5.10   -6.48 5.28   -7.05 
dayd+3     
Traffic 9.06 -10.38 9.58 -11.55 
Urban background 5.42   -6.87 6.54   -7.79 

a 

b 

c 
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case of the test model, the model was unable to respond to these observations as effectively as 
the former as only a third of the highest PM10 values were allocated to the training data set. As 
a result, although both models were unable to simulate high PM10 concentrations accurately 
during inversion periods, the boosting method improved the overall predictions slightly, as 
shown by lower average PM10 underprediction values. Nevertheless, good agreements 
between the lower modelled and measured PM10 concentrations were observed with both 
models. 
 
 
5.3.7.2 Results from bagging method 
To investigate on the effect of bagging on the quality of PM10 predictions, a second test PM10 
Forecasting model was developed, and double inclusion of nine exemplary episodic cases 
(without influence from fireworks) on 10.10.2007, 18.11.2007, 21.11.2007, 22.11.2007, 
27.11.2007, 18.12.2007, 27.01.2008, 13.01.2008 and 10.02.2008 in the training data set was 
performed. On these nine days, the 24 h average PM10 concentrations on dayd+1 exceeded 73 
µg/m³ at the traffic site, and 30 µg/m³ at the urban background site. For the validation and test 
sets, the data distributions were rearranged; each consisting of six data sets with 24 h average 
PM10 concentrations on dayd+1 exceeding 83 µg/m³ at the traffic site, and 37 µg/m³ at the 
urban background site. The number of hidden nodes for this test model was varied from one 
to fifteen, and the best performing test model was eventually derived with a network topology 
of thirteen hidden nodes. 
 
In Fig. 5.23a to 5.23f, the modelled PM10 concentrations from the test set for dayd+1, dayd+2 
and dayd+3 at the traffic and urban background sites were regressed over the corresponding 
measured data. The results of the analyses with the combined training and validation sets are 
included in Annex C4. With the bagging method, the test model exhibited a similar tendency 
to underpredict, as indicated by the negative FB values. The overall IA values improved 
slightly, and the model was also able to capture a little more variability in the PM10 measured 
concentrations based on the improved R² value. For the test model, it is also worth mentioning 
that the number of correct predictions of 24 h average PM10 exceedances improved at the 
urban background site. 
 
In Fig. 5.24a to 5.24c, and Fig. 5.25a to 5.25c, the error residuals of the test model for the 
investigated period from 01.05.2007 to 30.04.2008 at the traffic and urban background sites 
for dayd+1, dayd+2 and dayd+3, are presented respectively. Based on the results, the occurrences 
of PM10 underprediction were still distinguishable during continuous temperature inversion 
periods at both studied sites, even when using the bagging training method. 
 
In Table 5.17, the average PM10 overprediction and underprediction values over the entire 
investigation period are listed. Results from the first test model (with similar data distribution 
for the training, validation and test sets) were used as reference. The evaluations showed that 
the model which was trained with the bagging method overpredicted the PM10 concentrations 
by 8.04 µg/m³ to 9.79 µg/m³ at the traffic site, and 5.23 µg/m to 6.85 µg/m³ at the urban 
background site. In comparison to the reference model, the difference in overprediction for all 
three days of forecast ranged from 0.21 µg/m³ to 0.43 µg/m³ at the traffic site, and 0.01 µg/m³ 
to 0.39 µg/m³ at the urban background site. When considering the underprediction values, the 
average concentrations ranged from -8.94 µg/m³ to -10.13 µg/m³ at the traffic site, and -5.44 
µg/m³ to -7.29 µg/m³ at the urban background site. This implied that the double inclusion of 
data with high PM10 concentrations in the training set did improve the overall prediction 
accuracy of PM10 concentrations during episodic events to a small extent. However, it should 
be emphasised that the data which were doubled for the model training set were only limited  
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Fig. 5.23a-f: Bagging method: 
Scatter plots of modelled and measured 24 h average PM10 concentrations at 
the traffic and urban background sites with 95 % confidence intervals for the 
period 01.05.2005 to 30.04.2008 (from test set only) 
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to nine. Although more data could be included, caution has to be made for the application of 
the bagging method. The biggest influence on the model’s prediction accuracy strongly 
depends on the quality of the limited but yet important data with high PM10 concentrations 
during inversions. In a situation whereby the build-up of high PM10 concentrations (due to 
additional local loads or single events) cannot be adequately described by the model input 
parameters, the weight assigned during the training process with this type of occasions can be 
expected to low. However, doubling or tripling of such events in the training set implies that 
larger erroneous weight will now be assigned with the increase in frequency of days with high 
PM10 concentrations. As a result, overprediction of the lower PM10 concentrations could 
eventually be resulted. 
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Fig. 5.24a-c: Error residuals of modelled 24 h average PM10 concentrations at the traffic 

site for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 30.04.2008 
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Fig. 5.25a-c: Error residuals of modelled 24 h average PM10 concentrations at the urban 

background site for dayd+1, dayd+2 and dayd+3 for the period 01.05.2007 to 
30.04.2008 

 
 
Table 5.17: Average PM10 overprediction and underprediction values for the period 

01.05.2007 to 30.04.2008 
 

Average PM10 concentrations in µg/m³ Site 
PM10 Forecasting model 
trained with bagging method 

PM10 Forecasting model 
with similar data distribution in training, 

validation and test sets 
 Overprediction Underprediction Overprediction Underprediction 
dayd+1     
Traffic 8.04   -8.94 7.61 -11.26 
Urban background 5.23   -5.44 5.22   -7.26 
dayd+2     
Traffic 8.89   -9.65 8.62 -11.47 
Urban background 5.67   -6.27 5.28   -7.05 
dayd+3     
Traffic 9.79 -10.13 9.58 -11.55 
Urban background 6.86   -7.29 6.54   -7.79 
 

a 

b 

c 
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5.3.8 Conclusions 
 
An objective of this dissertation was to utilise readily available meteorological forecasts such 
as wind characteristics, amount of precipitation and radiation as input parameters for a PM10 
neural network Forecasting model. The benefits of developing such a model are two-folds. 
Firstly, the modelled results could act as both an alarm for bad weather (from the weather 
forecaster) and the quality of ambient air (from the PM10 Forecasting model). Secondly, the 
information derived from the model could also aid in public education. The overall PM10 
Forecasting’s results illustrated a possibility of effective use on the operational level for 
performing future PM10 forecasts up to three days at both the traffic and urban background 
sites. However, the accuracy in simulating high PM10 concentrations during continuous 
temperature inversions was not as satisfactory. 
 
Two neural network training methods could be adopted to improve the overall accuracy in 
PM10 predictions. The first method is a simplified boosting method, which involves the 
reservation of data containing days with the highest PM10 concentrations as the training set for 
the model. This method has its drawback, as days with high PM10 concentrations during 
inversions will not be reflected at all in the test set. Nevertheless, the reason for the 
application of the boosting training method is not unfounded. By reserving data with high 
PM10 concentrations in the training set, the developed model will be adequately trained to 
respond to a larger number of input data variations, in the expectation that the model can 
cover all the possible behaviours of the input parameters under study. Based on this type of 
model training method, the overall prediction accuracy of PM10 concentrations was found to 
be slightly better compared to a reference model, which was not trained with the boosting 
method. 
 
The second method is a simplified bagging method, which involves the doubling of limited 
events with high PM10 concentrations in the training set. It was found that the double 
inclusion of these data in the training set did improve the overall prediction accuracy of PM10 
concentrations during inversions to a small extent. However, the accuracy in PM10 predictions 
depends largely on the quality of the few but yet important data which are multiplied in the 
training set. On one hand, it is necessary that the PM10 Forecasting model is able to predict 
high PM10 concentrations accurately during inversions. On the other hand, it is also important 
that the low PM10 concentrations are correctly simulated. Therefore, caution has to be made 
when selecting the data to be multiplied in the training set, as the accuracy in predicting lower 
PM10 concentrations could be compromised when the data quality in describing high PM10 
concentrations during temperature inversions is dubious. A possible outcome is the 
overprediction of lower PM10 concentrations due to the erroneous assignment of weights to 
the higher values. 
 
To conclude, although both training methods could be used in improving the overall 
prediction accuracy of high PM10 concentrations during inversions, the bagging training 
method was, to some extent, superior to the boosting training method. For the first training 
method (boosting), the main limitation lies with the few data with high PM10 concentrations 
measured during temperature inversions. Although all these data were reserved for the 
training set, it was still not possible to accurately simulate the high values for all three days of 
forecast on both study sites. For the second training method (bagging), the constraint with the 
limited sets can be easily overcome by multiplying the inclusion of such data. Therefore, there 
is a possibility that the prediction accuracy could be further improved by repeating more data 
of high PM10 concentrations in the training set. In another words the training data set of the 
model could be modified to achieve different results.  
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6 Summary and conclusions 
 
 
The problem of air pollution is a frequently recurring situation and its management has 
considerable social and economic effects. On one hand, air pollution control is necessary to 
prevent the situation from worsening in the long run. On the other hand, forecasting of air 
quality in days in advance is also necessary in order to adopt preventive and evasive actions 
during episodes of airborne pollutions. 
 
Dedicated research, technological developments and concerted action have brought air quality 
modelling in the mainstream of air quality assessment and management. For instance, neural 
network models can be used as a useful and effective tool for the modelling of complex and 
poorly understood processes that occur in nature, as they are able to self-extract functional 
relationships between model inputs and outputs from the data set, without requiring explicit 
consideration on the actual data generation process. Neural network models are capable of 
learning to model a relationship during a supervised training procedure, when they are 
repeatedly presented with series of input and associated output data. In the case of modelling 
ambient air pollutant concentrations, the input data could consist of measurements of 
meteorological or air quality data from measurements, and the outputs would be the air 
pollutant concentration. 
 
In this dissertation, the objectives were to simulate present and future PM10 concentrations at 
urban sites by means of using neural network modelling. For that, two models were developed 
for PM10 Nowcasting and PM10 Forecasting. 
 
The two neural network models developed in this dissertation were trained using the 
backpropagation algorithm. Training involves finding the set of network weights which 
enable the models to best represent the underlying patterns in the training data set. This is 
achieved by minimising the overall networks’ errors, for all input patterns, with respect to the 
associated networks’ output patterns. In the scope of this dissertation, the resilient 
backpropagation method was used for the development of the neural networks. 
 
To conduct a thorough and insightful evaluation on the modelled PM10 concentrations, a 
range of performance indices is necessary. The common indices which were used for both the 
PM10 Nowcasting and PM10 Forecasting models included the fractional bias (FB), the index of 
agreement (IA), the squared correlation coefficient (R²), the mean absolute error (MAE), the 
mean bias error (MBE) and the root mean square error (RMSE). For the PM10 Forecaster 
model, additional performance indices to evaluate the correct number of PM10 exceedances, 
false alarms and PM10 missed exceedances were considered: the index of success (IS), the 
false alarm value (FAR) and the overall accuracy (A). 
 
For both models, thorough analyses of the error residuals and quantile-quantile plots were 
performed for the identification of possible outliers, and for the better understanding in the 
patterns across the two sets of univariate modelled and measured data. 
 
PM10 Nowcasting: From 15.11.2006 to 18.03.2007, a modified mechanical broom and water 
wash street sweeper was operated along the paved roadway at the Stuttgart Neckartor site. 
Based on results from single particle analyses and measurements of PM and NOX 
concentrations, reductions in ambient PM10 concentrations could be suggested. However, an 
exact quantitative evaluation on the effectiveness of street sweeping was complicated by the 
possible influence of different meteorological conditions and other unknown effects during 
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sweeping and non-sweeping days. With the neural network approach, these influencing 
meteorological conditions can be parameterised as functions to PM10 concentrations. The 
PM10 Nowcasting model (Multiple-Input Single-Output model) was therefore developed as a 
tool to simulate the past measurements of PM10 concentrations during the street sweeping 
periods, assuming that no street sweeping would take place. 
 
The parameterised input variables included daily measurement data of air pollutants 
(excluding PM10) and meteorological parameters from three LUBW ambient air monitoring 
stations and one meteorological station in Stuttgart. The aim of the developed model is to 
Nowcast the corresponding 24 h average PM10 concentrations at Neckartor during street 
sweeping days. Based on the modelling results, any positive effects of street sweeping as an 
ambient PM10 abatement strategy at Neckartor would be suggested by higher modelled PM10 
concentrations in comparison to the corresponding measured PM10 values during street 
sweeping days. Conversely, no influence on the ambient PM10 concentrations after street 
sweeping would be implied by similar or lower modelled PM10 concentrations than the 
measured values. 
 
Through extensive statistical evaluation on the performance of the developed PM10 
Nowcasting model, it was shown that the model was capable of accurately simulating the 
daily PM10 concentrations from 03.01.2004 to 14.11.2006 at Neckartor. The PM10 
Nowcasting was subsequently applied for the modelling of PM10 concentrations on all the 52 
street sweeping days. Although results from linear regression analysis between the modelled 
PM10 concentrations against the measured values showed that the measured PM10 values were 
approximately 4 % lower than the modelled values, trends of lower PM10 concentrations were 
not observable during all sweeping periods. Interesting, this reduction trend from the 
modelling results was in accordance to the measurement results. 
 
PM10 Forecasting: The PM10 Forecasting model (Multiple-Input Multiple-Output model) was 
developed to forecast the 24 h average PM10 concentrations in one, two and three days in 
advance for two urban sites of different characteristics in Stuttgart. The first site represented a 
heavily trafficked site (Stuttgart Neckartor), and the second site represented an urban 
background site (Stuttgart Bad Cannstatt). Measured PM10 concentrations from two LUBW 
ambient air monitoring stations and past meteorological forecasts from a Numerical 
Mesoscale Model (NMM) were considered as the model input parameters. The modelled 
PM10 concentrations obtained from the PM10 Forecasting were then compared with the actual 
measured PM10 values. 
 
Relatively good results were obtained for the forecasts of traffic and urban background PM10 
concentrations. Similar to the PM10 Nowcasting, difficulties were encountered in the 
simulation of very high PM10 concentrations. In general, the day-to-day variations in daily 
PM10 concentrations were correctly reproduced, while some underpredictions were detected 
during colder months. By comparing the error residuals between results for the two sites, the 
magnitude of errors at the traffic site was significantly larger than at the urban background 
site. A possible explanation to this discrepancy could be the exposure of the traffic site to 
varying daily traffic loads, which was clearly absent at the urban background site. 
 
For both sites, the errors for PM10 forecasts were observed to increase with the forecasted 
days. These observations were anticipated due to the inherent characteristics of forecasted 
meteorological parameters with days; the longer the forecast periods, the larger the errors. 
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The overall PM10 Forecasting’s results illustrate a possibility of effective use on the 
operational level for performing future PM10 forecasts up to three days at both the traffic and 
urban background sites. However, in real-time forecasting conditions, some compromise in 
performance should be expected, due to the possibility of less accurate meteorological 
forecasts. Therefore, a prerequisite for the successful implementation for real-time PM10 
forecasting is the availability of quality meteorological forecasts, as the developed model 
performs according to the accuracy of these parameters. 
 
Both the PM10 Nowcasting and PM10 Forecasting models failed to accurately simulate PM10 
concentrations during several distinct PM10 episodes. There are two aspects in explaining the 
common underpredicting behaviours of both models: 
 
From the mathematical aspect, the underpredicting behaviours of both models during episodic 
events verifies the general assumption that neural network models will fail to extrapolate on 
data which have not been presented during the training procedure. There are two approaches 
to address this issue, aiming to increase the frequency of extreme values in the training 
process either by reserving most of the available episodes for the training set, or by including 
each episode case more times. 
 
From the scientific aspect, the underpredicting behaviours of the models could be attributed to 
the additional loads of PM from episodic events, whose presence could not be accurately 
modelled by the input parameters. The three most probable types of PM10 episodes are the 
wintertime inversion-induced PM10 episodes, recreational PM10 episodes and regional and 
long-range PM10 transport.  
 

1. During wintertime inversion-induced PM10 episodes, atmospheric inversions can result 
in the accumulation of PM10 components emitted at ground-level, not only the traffic-
related species. In addition, the atmospheric stability may also enhance the formation 
of secondary PM components. As a result, both models encountered the possible 
difficulties in simulating the PM10 formation or the PM accumulation phenomena 
during such stagnation conditions. As wintertime inversion-induced PM10 episodes 
can last for several days especially during the colder months in winter, it can be 
expected that this type of PM10 episodes will have the greatest influence on the 
prediction quality of ambient PM10 concentrations. Therefore, a typical characteristic 
of these episodes is the continuous underpredictions of PM10 concentrations over 
several days.  

 
2. Although fireworks events have relatively short duration, the additional anthropogenic 

loads on the ambient PM10 concentrations, which cannot be well accounted for with 
the meteorological parameters and NO2 measurement, can be substantial. Hence, it is 
clear that both models will fail to simulate PM10 concentrations on days with 
fireworks, during which associations between the modelled PM10 concentrations and 
the corresponding input parameters cannot be established. In comparison to the 
wintertime inversion-induced PM10 episodes, underprediction of PM10 concentrations 
on days with fireworks will only be observed on discrete single days. 

 
3. The hypothesis of long-range transport for air masses towards Stuttgart could be 

suggested by performing back trajectory analysis. However, PM10 back trajectories 
analysis was not performed in the scope of this dissertation, and information on PM10 
episodes caused by long-range transport for the region of Baden-Württemberg was not 
documented in literatures during the investigation periods. Although there was 
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insufficient information to suggest that the underprediction behaviour of PM10 
concentrations on certain days was due to long-range transport of PM10, the possibility 
of such occurrence should not be ruled out entirely.   

 
A general conclusion is that neural network models can be useful and fairly accurate tools of 
assessment in PM10 concentrations in urban areas. After such models have been trained using 
appropriate site- and time-specific data, its utilisation does not require extensive effort. 
However neural network models have inherent limitations. In this dissertation, the main 
limitation is that both the PM10 Nowcasting and PM10 Forecasting models are strictly site-
specific. Nevertheless, the general approach can be followed, especially in the case of neural 
networks, where a number of key decisions on their formulation, topology and operating 
parameters are necessary for the accurate simulation of PM10 concentrations. 
 
For the PM10 Forecasting, future model refinements should be compatible with the needs of 
model users. Correspondingly, a continuous contact and exchange of information between the 
model implementers and model end-users should be established and maintained. Among the 
major objectives of such a contact is to identify the needs for specific activities aiming at a 
further improvement of model documentation and a better assessment of model accuracy. 
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Annex A Resilient backpropagation training algorithm 
 
 
Multilayer networks typically use sigmoid transfer functions in the hidden layers in order to 
compress an infinite input range into a finite output range. Sigmoid functions are 
characterised by the fact that their slope must approach zero as the input gets large. This 
causes a problem when using the steepest descent method to train a multiplayer network with 
sigmoid transfer functions. Even though the weights and biases are far from their optimal 
values, the gradient can have a very small magnitude and therefore result in the small changes 
in their weights and biases. As a result, the developed network may be too slow for practical 
problems. In order to shorten the training time via increasing the training rate, the heuristic 
technique is adopted, whereby the performance of the standard steepest descent algorithm is 
analysed. One such technique is the resilient backpropagation method [186, 187]. 
 
The purpose of the resilient backpropagation training algorithm is to eliminate these 
“harmful” effects of the magnitudes of the partial derivatives. Only the sign of the derivative 
is used to determine the direction of the weight update; the magnitude of the derivative has no 
effect on the update. To achieve this, the individual update value Δij(t) for each respective 
weight wij shall be introduced. The estimation on the update value is based on the observed 
behaviour of the partial derivative during two successive weight-steps from Eq. (A.1) to 
(A.3): 
 

)(tΔη(t)Δ ijij 1  , if 01 







)(t
w

E
(t)

w

E

ijij

,      (A.1) 

 

)(tΔη(t)Δ ijij 1  , if 01 







)(t
w

E
(t)

w

E

ijij

,      (A.2) 

 
)(tΔ(t)Δ ijij 1 ,  else,                   (A.3) 

 
where η- represents a negative multiplication factor, η+ represents a positive multiplication 
factor, and 0 < η- < 1 < η+. 
 
In another words, every time the partial derivative of the corresponding weight wij changes its 
sign, which indicates that the last update was too big and the algorithm has jumped over a 
local minimum, the update-value Δij(t) is decreased by the factor η-. If the derivative retains its 
sign, the update-value is slightly increased in order to accelerate convergence in the shallow 
regions. Once the update-value for each weight is adapted, the weight-update itself follows a 
very simple rule: if the derivative is positive (increasing error), the weight is decreased by its 
update-value, if the derivative is negative, the update-value is added as shown by Eq. (A.4) to 
(A.7): 
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0(t)Δwij ,   else,        (A.6)

  
(t)Δw(t)w)(tw ijijij 1 .         (A.7) 

 
However, there is one exception. If the partial derivative changes sign, that is the previous 
step was too large and the minimum was missed, the previous weight-update is reverted as 
shown by Eq. (A.8) 
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Due to that ‘backtracking’ weight-step, the derivative is supposed to change its sign once 
again in the following step. In order to avoid a double computation of the update-value, there 
should be no adaptation of the update-value in the succeeding step. In practice this can be 
done by setting Eq. (A.9) in the Δij(t) update-rule as described above. 
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The partial derivative of the total error is given by Eq. (A.10)  
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Hence, the partial derivatives of the errors must be accumulated for all the input training 
patterns. This means that the weights are updated only after the presentation of all training 
patterns. This iteration continues until the connecting weight values allow the network to 
perform the required mapping of the target values. 
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Annex B Numerical Mesoscale Models 
 
 
B1 Forecasted meteorological parameters for dayd+1 from NMM3 model 
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Fig. B.1a-d: Forecasted and measured meteorological parameters at Stuttgart Neckartor 

and Bad Cannstatt for dayd+1 for the period 01.05.2007 to 30.04.2008 
                                                              data source: LUBW and meteoblue AG 
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B2 Forecasted meteorological parameters for dayd+2 from NMM3 model 
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Fig. B.2a-d: Forecasted and measured meteorological parameters at Stuttgart Neckartor 

and Bad Cannstatt for dayd+2 for the period 02.05.2007 to 30.04.2008 
                                                              data source: LUBW and meteoblue AG 
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B3 Forecasted meteorological parameters for dayd+3 from NMM12 model 
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Fig. B.3a-d: Forecasted and measured meteorological parameters at Stuttgart Neckartor 

and Bad Cannstatt for dayd+3 for the period 03.05.2007 to 30.04.2008 
                                                              data source: LUBW and meteoblue AG 
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Annex C Statistical evaluation of PM10 Nowcasting and PM10 
Forecasting models 

 
 
C1 PM10 Nowcasting models with different network topology 
 
 
Table C.1: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at Stuttgart Neckartor, presented as average 
values and their standard deviations for the period 03.01.2004 to 14.11.2006 

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

20 -  1 - 1  
sD 

-8.68 
(2.79) 

0.93 
(0.02) 

0.81 
(0.04) 

8.09 
(2.30) 

-4.40 
(1.76) 

12.46 
(3.21) 

20 -  2 - 1  
sD 

-6.55 
(4.39) 

0.94 
(0.02) 

0.82 
(0.04) 

7.70 
(2.40) 

-3.36 
(2.40) 

11.90 
(3.37) 

20 -  3 - 1  
sD 

-3.35 
(2.93) 

0.97 
(0.03) 

0.89 
(0.08) 

5.86 
(3.41) 

-1.89 
(1.73) 

7.44 
(4.11) 

20 -  4 - 1  
sD 

-2.72 
(1.85) 

0.94 
(0.02) 

0.83 
(0.05) 

7.24 
(2.45) 

-1.42 
(1.13) 

11.21 
(3.37) 

20 -  5 - 1  
sD 

-2.57 
(1.41) 

0.95 
(0.02) 

0.82 
(0.07) 

8.14 
(3.19) 

-1.34 
(0.79) 

11.80 
(3.82) 

20 -  6 - 1  
sD 

-5.03 
(3.45) 

0.95 
(0.02) 

0.83 
(0.06) 

7.53 
(2.71) 

-2.59 
(1.89) 

11.33 
(3.53) 

20 -  7 - 1  
sD 

-6.13 
(4.39) 

0.95 
(0.02) 

0.82 
(0.05) 

7.68 
(2.67) 

-3.15 
(2.33) 

11.60 
(3.37) 

20 -  8 - 1  
sD 

-5.07 
(3.33) 

0.95 
(0.02) 

0.82 
(0.07) 

7.85 
(2.74) 

-2.61 
(1.79) 

11.61 
(3.39) 

20 -  9 - 1  
sD 

-7.07 
(5.04) 

0.94 
(0.02) 

0.81 
(0.05) 

8.15 
(2.95) 

-3.61 
(2.62) 

11.98 
(3.58) 

20 -10 - 1  
sD 

-6.67 
(4.85) 

0.94 
(0.02) 

0.81 
(0.06) 

8.07 
(3.07) 

-3.41 
(2.49) 

11.96 
(3.86) 

20 -11 - 1  
sD 

-5.06 
(3.52) 

0.94 
(0.02) 

0.81 
(0.06) 

7.78 
(2.50) 

-2.61 
(1.89) 

11.68 
(3.23) 

20 -12 - 1  
sD 

-3.12 
(2.07) 

0.94 
(0.02) 

0.82 
(0.05) 

7.48 
(2.35) 

-1.62 
(1.19) 

11.55 
(3.28) 

20 -13 - 1  
sD 

-0.55 
(1.38) 

0.94 
(0.02) 

0.81 
(0.05) 

7.75 
(2.33) 

-0.29 
(0.75) 

11.48 
(3.09) 

20 -14 - 1  
sD 

-3.35 
(2.08) 

0.94 
(0.02) 

0.81 
(0.05) 

7.61 
(2.32) 

-1.75 
(1.21) 

11.63 
(3.13) 

20 -15 - 1  
sD 

-4.26 
(2.72) 

0.94 
(0.02) 

0.81 
(0.04) 

7.61 
(2.36) 

-2.21 
(1.54) 

11.64 
(3.24) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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C1.1 PM10 Nowcasting with three hidden nodes 
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Fig. C.1a-c: Scatter plots of modelled and measured PM10 concentrations at Stuttgart 

Neckartor with 95 % confidence intervals for the period 03.01.2004 to 
14.11.2006  (from training, validation and test sets) 
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C2 PM10 Forecasting models with different network topology 
 
 
Table C.2: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the traffic site on dayd+1, presented as average 
values and their standard deviations for the period 01.05.2007 to 30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Traffic site, dayd+1 
18 – 1 – 6 

 
 
sD 

-0.78 
(5.75) 

0.84 
(0.09) 

0.58 
(0.19) 

10.18 
(2.72) 

-0.33 
(2.25) 

13.68 
(4.01) 

18 – 2 – 6 
 

 
sD 

0.16 
(10.13) 

0.79 
(0.06) 

0.64 
(0.11) 

10.06 
(3.73) 

0.07 
(4.49) 

14.19 
(6.20) 

18 – 3 – 6 
 

 
sD 

-0.04 
(6.68) 

0.80 
(0.05) 

0.61 
(0.10) 

9.80 
(3.62) 

-0.02 
(2.99) 

14.03 
(6.03) 

18 – 4 – 6 
 

 
sD 

1.36 
(4.56) 

0.86 
(0.04) 

0.64 
(0.16) 

9.38 
(3.13) 

0.58 
(1.97) 

12.87 
(5.11) 

18 – 5 – 6 
 

 
sD 

-3.44 
(4.94) 

0.82 
(0.06) 

0.63 
(0.09) 

9.39 
(3.71) 

-1.43 
(2.32) 

13.67 
(6.22) 

18 – 6 – 6 
 

 
sD 

-2.02 
(4.55) 

0.84 
(0.04) 

0.61 
(0.08) 

9.35 
(3.21) 

-0.85 
(2.13) 

13.32 
(5.52) 

18 – 7 – 6 
 

 
sD 

-2.83 
(12.81) 

0.80 
(0.06) 

0.60 
(0.10) 

9.80 
(3.93) 

-1.18 
(5.67) 

14.10 
(6.42) 

18 – 8 – 6 
 

 
sD 

-5.84 
(2.89) 

0.86 
(0.04) 

0.63 
(0.08) 

9.10 
(2.79) 

-2.40 
(1.48) 

13.01 
(4.93) 

18 – 9 – 6 
 

 
sD 

1.08 
(7.94) 

0.83 
(0.04) 

0.61 
(0.09) 

9.63 
(3.09) 

0.46 
(3.51) 

13.44 
(5.36) 

18 – 10 – 6 
 

 
sD 

-3.18 
(2.83) 

0.87 
(0.04) 

0.64 
(0.10) 

9.20 
(2.60) 

-1.33 
(1.24) 

12.69 
(4.55) 

18 – 11 – 6 
 

 
sD 

-4.91 
(3.73) 

0.86 
(0.05) 

0.63 
(0.10) 

9.31 
(2.91) 

-2.03 
(1.42) 

13.08 
(4.99) 

18 – 12 – 6 
 

 
sD 

-3.97 
(3.19) 

0.87 
(0.04) 

0.65 
(0.10) 

9.03 
(2.52) 

-1.65 
(1.51) 

12.67 
(4.62) 

18 – 13 – 6 
 

 
sD 

-10.28 
(2.85) 

0.87 
(0.04) 

0.63 
(0.09) 

9.82 
(2.66) 

-4.14 
(1.78) 

13.49 
(4.62) 

18 – 14 – 6 
 

 
sD 

-4.00 
(8.32) 

0.83 
(0.05) 

0.62 
(0.09) 

9.44 
(3.55) 

-1.66 
(3.81) 

13.50 
(5.92) 

18 – 15 – 6 
 

 
sD 

-8.37 
(2.27) 

0.88 
(0.05) 

0.66 
(0.11) 

9.31 
(2.26) 

-3.40 
(0.94) 

12.75 
(4.05) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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Table C.3: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the urban background site on dayd+1, presented 
as average values and their standard deviations for the period 01.05.2007 to 
30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Urban background site, dayd+1 
18 – 1 – 6 

 
 
sD 

-4.16 
(9.71) 

0.81 
(0.09) 

0.53 
(0.17) 

5.79 
(1.31) 

-0.84 
(1.75) 

9.00 
(3.21) 

18 – 2 – 6 
 

 
sD 

0.62 
(10.53) 

0.72 
(0.08) 

0.52 
(0.06) 

5.98 
(1.87) 

0.13 
(2.28) 

9.56 
(4.51) 

18 – 3 – 6 
 

 
sD 

-7.88 
(7.20) 

0.67 
(0.10) 

0.46 
(0.09) 

5.98 
(2.19) 

-1.57 
(1.65) 

10.14 
(4.78) 

18 – 4 – 6 
 

 
sD 

-0.49 
(6.59) 

0.75 
(0.09) 

0.51 
(0.08) 

5.79 
(2.13) 

-0.10 
(1.36) 

9.36 
(4.51) 

18 – 5 – 6 
 

 
sD 

-6.95 
(6.86) 

0.72 
(0.09) 

0.49 
(0.07) 

5.82 
(2.05) 

-1.39 
(1.37) 

9.73 
(4.53) 

18 – 6 – 6 
 

 
sD 

0.93 
(7.37) 

0.77 
(0.07) 

0.50 
(0.07) 

5.83 
(1.78) 

0.19 
(1.58) 

9.28 
(4.14) 

18 – 7 – 6 
 

 
sD 

-6.31 
(11.68) 

0.76 
(0.08) 

0.55 
(0.05) 

5.52 
(2.06) 

-1.26 
(2.58) 

9.28 
(4.64) 

18 – 8 – 6 
 

 
sD 

-4.58 
(5.90) 

0.79 
(0.07) 

0.50 
(0.07) 

5.68 
(1.89) 

-0.93 
(1.35) 

9.24 
(4.15) 

18 – 9 – 6 
 

 
sD 

-1.09 
(8.91) 

0.76 
(0.08) 

0.50 
(0.06) 

5.73 
(1.91) 

-0.22 
(1.95) 

9.36 
(4.41) 

18 – 10 – 6 
 

 
sD 

-4.90 
(5.72) 

0.80 
(0.07) 

0.52 
(0.07) 

5.60 
(1.80) 

-0.99 
(1.09) 

9.08 
(4.04) 

18 – 11 – 6 
 

 
sD 

-7.67 
(7.98) 

0.78 
(0.08) 

0.50 
(0.08) 

5.86 
(1.74) 

-1.53 
(1.40) 

9.40 
(4.06) 

18 – 12 – 6 
 

 
sD 

-3.95 
(7.35) 

0.78 
(0.08) 

0.52 
(0.06) 

5.53 
(1.81) 

-0.80 
(1.64) 

9.22 
(4.33) 

18 – 13 – 6 
 

 
sD 

-13.17 
(4.47) 

0.79 
(0.07) 

0.52 
(0.10) 

5.89 
(1.80) 

-2.55 
(1.05) 

9.36 
(4.09) 

18 – 14 – 6 
 

 
sD 

-9.43 
(5.41) 

0.79 
(0.06) 

0.53 
(0.06) 

5.70 
(1.81) 

-1.86 
(1.31) 

9.22 
(4.06) 

18 – 15 – 6 
 

 
sD 

-11.78 
(5.69) 

0.81 
(0.06) 

0.55 
(0.07) 

5.68 
(1.48) 

-2.30 
(1.00) 

9.05 
(3.70) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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Table C.4: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the traffic site on dayd+2, presented as average 
values and their standard deviations for the period 02.05.2007 to 30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Traffic site, dayd+2 
18 – 1 – 6 

 
 
sD 

-2.21 
(5.45) 

0.85 
(0.12) 

0.56 
(0.23) 

10.25 
(2.50) 

-0.91 
(2.13) 

13.74 
(3.21) 

18 – 2 – 6 
 

 
sD 

-3.50 
(11.83) 

0.75 
(0.07) 

0.54 
(0.13) 

10.36 
(3.88) 

-1.44 
(5.28) 

14.90 
(6.28) 

18 – 3 – 6 
 

 
sD 

-8.90 
(8.12) 

0.78 
(0.06) 

0.56 
(0.14) 

10.12 
(3.91) 

-3.56 
(3.92) 

14.61 
(6.09) 

18 – 4 – 6 
 

 
sD 

4.34 
(8.35) 

0.81 
(0.05) 

0.53 
(0.13) 

10.69 
(2.87) 

1.86 
(3.56) 

14.31 
(4.44) 

18 – 5 – 6 
 

 
sD 

3.52 
(9.75) 

0.80 
(0.06) 

0.58 
(0.16) 

10.31 
(2.91) 

1.50 
(4.21) 

13.96 
(4.66) 

18 – 6 – 6 
 

 
sD 

2.77 
(7.71) 

0.80 
(0.05) 

0.58 
(0.12) 

10.21 
(3.41) 

1.18 
(3.32) 

13.99 
(5.24) 

18 – 7 – 6 
 

 
sD 

-10.01 
(16.69) 

0.74 
(0.07) 

0.43 
(0.12) 

11.38 
(5.27) 

-3.99 
(7.26) 

16.08 
(7.18) 

18 – 8 – 6 
 

 
sD 

-3.28 
(4.31) 

0.86 
(0.05) 

0.61 
(0.16) 

9.73 
(2.28) 

-1.35 
(2.07) 

13.01 
(3.55) 

18 – 9 – 6 
 

 
sD 

-0.66 
(5.26) 

0.82 
(0.05) 

0.58 
(0.14) 

9.94 
(3.38) 

-0.28 
(2.34) 

13.64 
(4.98) 

18 – 10 – 6 
 

 
sD 

-0.30 
(5.35) 

0.86 
(0.05) 

0.61 
(0.15) 

9.69 
(2.35) 

-0.13 
(2.40) 

12.96 
(3.67) 

18 – 11 – 6 
 

 
sD 

-1.88 
(4.17) 

0.85 
(0.06) 

0.59 
(0.15) 

9.97 
(2.61) 

-0.78 
(1.63) 

13.31 
(3.88) 

18 – 12 – 6 
 

 
sD 

-1.36 
(7.13) 

0.84 
(0.05) 

0.58 
(0.15) 

9.81 
(2.65) 

-0.56 
(3.23) 

13.41 
(4.32) 

18 – 13 – 6 
 

 
sD 

-5.09 
(8.48) 

0.83 
(0.05) 

0.56 
(0.14) 

10.08 
(3.06) 

-2.08 
(3.92) 

13.84 
(4.83) 

18 – 14 – 6 
 

 
sD 

-2.17 
(11.58) 

0.79 
(0.05) 

0.55 
(0.15) 

10.15 
(3.55) 

-0.90 
(5.14) 

14.28 
(5.42) 

18 – 15 – 6 
 

 
sD 

-5.89 
(7.31) 

0.80 
(0.06) 

0.58 
(0.15) 

9.86 
(3.44) 

-2.39 
(3.48) 

14.07 
(5.68) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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Table C.5: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the urban background site on dayd+2, presented 
as average values and their standard deviations for the period 02.05.2007 to 
30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Urban background site, dayd+2 
18 – 1 – 6 

 
 
sD 

-7.54 
(8.13) 

0.83 
(0.12) 

0.52 
(0.24) 

6.20 
(1.16) 

-1.49 
(1.31) 

8.95 
(2.03) 

18 – 2 – 6 
 

 
sD 

-7.97 
(11.44) 

0.69 
(0.08) 

0.46 
(0.10) 

6.13 
(2.18) 

-1.57 
(2.57) 

9.93 
(4.50) 

18 – 3 – 6 
 

 
sD 

-15.05 
(7.32) 

0.69 
(0.07) 

0.48 
(0.10) 

6.22 
(2.26) 

-2.87 
(1.89) 

10.05 
(4.40) 

18 – 4 – 6 
 

 
sD 

6.92 
(8.14) 

0.75 
(0.05) 

0.45 
(0.08) 

6.57 
(1.88) 

1.47 
(1.65) 

9.64 
(3.64) 

18 – 5 – 6 
 

 
sD 

-3.64 
(5.23) 

0.77 
(0.05) 

0.47 
(0.12) 

6.14 
(1.71) 

-0.73 
(1.17) 

9.33 
(3.41) 

18 – 6 – 6 
 

 
sD 

-4.89 
(4.36) 

0.77 
(0.05) 

0.48 
(0.10) 

6.24 
(1.81) 

-0.98 
(1.04) 

9.35 
(3.63) 

18 – 7 – 6 
 

 
sD 

-9.77 
(16.42) 

0.74 
(0.05) 

0.47 
(0.13) 

6.36 
(2.34) 

-1.91 
(3.52) 

9.67 
(4.08) 

18 – 8 – 6 
 

 
sD 

-3.59 
(5.08) 

0.82 
(0.04) 

0.51 
(0.13) 

6.18 
(1.08) 

-0.72 
(1.20) 

8.96 
(2.73) 

18 – 9 – 6 
 

 
sD 

-1.51 
(7.21) 

0.77 
(0.05) 

0.48 
(0.09) 

6.17 
(2.00) 

-0.31 
(1.61) 

9.26 
(3.63) 

18 – 10 – 6 
 

 
sD 

-3.73 
(5.04) 

0.78 
(0.05) 

0.48 
(0.09) 

6.14 
(1.64) 

-0.75 
(1.16) 

9.26 
(3.49) 

18 – 11 – 6 
 

 
sD 

-4.20 
(6.34) 

0.80 
(0.04) 

0.48 
(0.10) 

6.47 
(1.58) 

-0.84 
(1.08) 

9.30 
(3.07) 

18 – 12 – 6 
 

 
sD 

-1.24 
(10.03) 

0.78 
(0.04) 

0.47 
(0.12) 

6.31 
(1.47) 

-0.25 
(2.20) 

9.35 
(3.21) 

18 – 13 – 6 
 

 
sD 

-6.70 
(7.18) 

0.75 
(0.06) 

0.49 
(0.10) 

6.17 
(2.09) 

-1.33 
(1.70) 

9.47 
(3.97) 

18 – 14 – 6 
 

 
sD 

-2.72 
(9.76) 

0.78 
(0.03) 

0.48 
(0.12) 

6.29 
(1.68) 

-0.55 
(2.16) 

9.24 
(3.17) 

18 – 15 – 6 
 

 
sD 

-8.18 
(8.33) 

0.71 
(0.07) 

0.49 
(0.12) 

6.22 
(2.25) 

-1.61 
(1.96) 

9.73 
(4.32) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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Table C.6: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the traffic site on dayd+3, presented as average 
values and their standard deviations for the period 03.05.2007 to 30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Traffic site, dayd+3 
18 – 1 – 6 

 
 
sD 

1.05 
(6.69) 

0.76 
(0.12) 

0.38 
(0.17) 

12.88 
(3.83) 

0.45 
(2.98) 

17.34 
(5.42) 

18 – 2 – 6 
 

 
sD 

0.88 
(15.43) 

0.66 
(0.05) 

0.37 
(0.12) 

12.89 
(4.31) 

0.38 
(6.89) 

17.60 
(6.75) 

18 – 3 – 6 
 

 
sD 

-8.89 
(13.40) 

0.73 
(0.06) 

0.47 
(0.09) 

11.57 
(4.97) 

-3.62 
(6.27) 

16.64 
(7.84) 

18 – 4 – 6 
 

 
sD 

7.90 
(13.75) 

0.76 
(0.03) 

0.44 
(0.10) 

13.63 
(2.87) 

3.49 
(5.98) 

16.73 
(4.34) 

18 – 5 – 6 
 

 
sD 

-5.59 
(6.97) 

0.81 
(0.02) 

0.50 
(0.16) 

11.70 
(2.56) 

-2.31 
(2.75) 

15.58 
(4.46) 

18 – 6 – 6 
 

 
sD 

1.41 
(8.45) 

0.77 
(0.02) 

0.48 
(0.11) 

11.63 
(3.99) 

0.60 
(3.79) 

15.90 
(6.04) 

18 – 7 – 6 
 

 
sD 

-10.08 
(13.23) 

0.75 
(0.02) 

0.42 
(0.12) 

12.46 
(4.28) 

-4.08 
(6.22) 

17.03 
(6.46) 

18 – 8 – 6 
 

 
sD 

1.20 
(7.52) 

0.84 
(0.03) 

0.54 
(0.15) 

10.96 
(2.26) 

0.51 
(3.38) 

14.78 
(3.82) 

18 – 9 – 6 
 

 
sD 

0.58 
(7.07) 

0.81 
(0.01) 

0.51 
(0.12) 

11.34 
(3.24) 

0.25 
(3.14) 

15.29 
(5.11) 

18 – 10 – 6 
 

 
sD 

0.79 
(10.48) 

0.74 
(0.03) 

0.47 
(0.12) 

11.86 
(3.89) 

0.34 
(4.74) 

16.18 
(6.25) 

18 – 11 – 6 
 

 
sD 

-0.78 
(6.26) 

0.83 
(0.03) 

0.52 
(0.14) 

11.73 
(2.18) 

-0.33 
(2.43) 

15.33 
(3.74) 

18 – 12 – 6 
 

 
sD 

3.73 
(13.50) 

0.77 
(0.01) 

0.49 
(0.12) 

11.67 
(3.28) 

1.61 
(5.99) 

15.86 
(5.03) 

18 – 13 – 6 
 

 
sD 

-4.35 
(11.51) 

0.73 
(0.04) 

0.48 
(0.17) 

11.66 
(4.51) 

-1.81 
(5.37) 

16.35 
(6.89) 

18 – 14 – 6 
 

 
sD 

-5.29 
(11.24) 

0.79 
(0.01) 

0.51 
(0.14) 

11.23 
(3.46) 

-2.19 
(5.29) 

15.54 
(5.65) 

18 – 15 – 6 
 

 
sD 

-7.31 
(12.47) 

0.66 
(0.07) 

0.48 
(0.13) 

11.83 
(5.32) 

-3.00 
(5.87) 

17.11 
(8.20) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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Table C.7: Overall statistical model evaluation parameters of modelled and measured 24 h 

average PM10 concentrations at the urban background site on dayd+3, presented 
as average values and their standard deviations for the period 03.05.2007 to 
30.04.2008  

 
 Overall results from training, validation and test sets Network 

topology  FB 
in % 

IA R² MAE 
in µg/m³ 

MBE 
in µg/m³ 

RMSE 
in µg/m³ 

Urban background site, dayd+3 
18 – 1 – 6 

 
 
sD 

-4.76 
(4.77) 

0.76 
(0.13) 

0.39 
(0.19) 

7.46 
(2.35) 

-0.98 
(0.98) 

10.98 
(4.09) 

18 – 2 – 6 
 

 
sD 

-3.97 
(15.61) 

0.64 
(0.10) 

0.36 
(0.08) 

7.16 
(2.64) 

-0.82 
(3.50) 

11.36 
(5.64) 

18 – 3 – 6 
 

 
sD 

-7.94 
(14.65) 

0.68 
(0.09) 

0.42 
(0.06) 

6.62 
(2.62) 

-1.61 
(3.36) 

10.96 
(5.65) 

18 – 4 – 6 
 

 
sD 

7.45 
(13.38) 

0.73 
(0.05) 

0.40 
(0.06) 

7.36 
(1.99) 

1.63 
(2.85) 

10.93 
(4.26) 

18 – 5 – 6 
 

 
sD 

-6.32 
(5.97) 

0.78 
(0.03) 

0.45 
(0.13) 

7.06 
(1.38) 

-1.29 
(1.14) 

10.41 
(3.67) 

18 – 6 – 6 
 

 
sD 

-4.46 
(6.25) 

0.73 
(0.06) 

0.41 
(0.07) 

6.68 
(2.30) 

-0.92 
(1.51) 

10.73 
(4.84) 

18 – 7 – 6 
 

 
sD 

-5.16 
(13.03) 

0.75 
(0.03) 

0.41 
(0.11) 

7.10 
(1.66) 

-1.06 
(2.98) 

10.70 
(4.23) 

18 – 8 – 6 
 

 
sD 

-5.07 
(4.67) 

0.80 
(0.03) 

0.48 
(0.13) 

6.87 
(1.40) 

-1.04 
(1.17) 

10.12 
(3.65) 

18 – 9 – 6 
 

 
sD 

-0.85 
(7.42) 

0.77 
(0.03) 

0.44 
(0.10) 

6.93 
(1.80) 

-0.18 
(1.71) 

10.43 
(4.14) 

18 – 10 – 6 
 

 
sD 

-1.65 
(10.10) 

0.69 
(0.08) 

0.41 
(0.09) 

6.85 
(2.49) 

-0.34 
(2.32) 

10.86 
(5.27) 

18 – 11 – 6 
 

 
sD 

-4.29 
(6.15) 

0.80 
(0.03) 

0.46 
(0.10) 

7.36 
(1.37) 

-0.88 
(1.05) 

10.39 
(3.41) 

18 – 12 – 6 
 

 
sD 

2.71 
(16.45) 

0.73 
(0.04) 

0.41 
(0.11) 

6.84 
(1.57) 

0.58 
(3.61) 

10.76 
(4.12) 

18 – 13 – 6 
 

 
sD 

-7.40 
(10.08) 

0.69 
(0.07) 

0.43 
(0.11) 

6.59 
(2.42) 

-1.50 
(2.65) 

10.89 
(5.35) 

18 – 14 – 6 
 

 
sD 

-7.20 
(10.71) 

0.78 
(0.02) 

0.46 
(0.12) 

6.91 
(1.34) 

-1.46 
(2.55) 

10.37 
(3.89) 

18 – 15 – 6 
 

 
sD 

-11.36 
(12.90) 

0.62 
(0.08) 

0.43 
(0.13) 

6.78 
(2.89) 

-2.26 
(3.08) 

11.37 
(5.89) 

FB: fractional bias, IA: index of agreement, R²: correlation coefficient, MAE: mean absolute error, 
MBE: mean bias error, RMSE: root mean square error, sD: standard deviation 
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C2.1 PM10 Forecasting with eight hidden nodes 
 
 
Table C.8: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
training set 

 
Training set Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 42 5 5 0.81 0.11 0.91 
Urban background 0 0 8 0.00 N.A. 0.93 
dayd+2       
Traffic 40 7 6 0.75 0.15 0.88 
Urban background 0 0 8 0.00 N.A. 0.93 
dayd+3       
Traffic 42 8 6 0.75 0.16 0.87 
Urban background 0 0 11 0.00 N.A. 0.90 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
 
 
Table C.9: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
validation set 

 
Validation set Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 18 8 1 0.67 0.31 0.92 
Urban background 0 0 2 0.00 N.A. 0.98 
dayd+2       
Traffic 18 9 1 0.64 0.33 0.91 
Urban background 0 0 2 0.00 N.A. 0.98 
dayd+3       
Traffic 17 14 3 0.50 0.45 0.84 
Urban background 0 0 1 0.00 N.A. 0.99 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
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Table C.10: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
test set 

 
Test set Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 6 3 7 0.38 0.33 0.91 
Urban background 0 0 0 0.00 N.A. 1.00 
dayd+2       
Traffic 4 6 8 0.22 0.60 0.87 
Urban background 0 0 0 0.00 N.A. 1.00 
dayd+3       
Traffic 5 11 5 0.24 0.69 0.85 
Urban background 0 0 0 0.00 N.A. 1.00 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
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Fig. C.2a-f: Scatter plots of modelled and measured PM10 concentrations at the traffic and 

urban background sites with 95 % confidence intervals for dayd+1 (from 
training, validation and test sets) 
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Fig. C.3a-f: Scatter plots of modelled and measured PM10 concentrations at the traffic and 
urban background sites with 95 % confidence intervals for dayd+2 (from 
training, validation and test sets) 
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Fig. C.4a-f: Scatter plots of modelled and measured PM10 concentrations at the traffic and 
urban background sites with 95 % confidence intervals for dayd+3 (from 
training, validation and test sets) 
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C3 Test PM10 Forecasting model with fourteen hidden nodes 
 
 

0

25

50

75

100

125

150

M
o

d
e

lle
d

 P
M

10
 in

 µ
g

/m
³

Traffic site
dayd+1

Training and 
validation sets
FB: - 0.34
IA:    0.91
R²:    0.72
A :    0.91
n : 217

Urban 
background site

dayd+1

Training and 
validation sets
FB:  - 0.87
IA:     0.87
R²:     0.62
A :     1.00
n :  217

 

0

25

50

75

100

125

150

M
o

d
el

le
d

 P
M

10
 in

 µ
g

/m
³

Traffic site
dayd+2

Training and 
validation sets
FB: - 0.77
IA:    0.90
R²:    0.69
A :    0.94
n : 217

Urban 
background site

dayd+2

Training and 
validation sets
FB: - 2.02
IA:    0.85
R²:    0.59
A :    0.97
n : 217

 

0

25

50

75

100

125

150

0 25 50 75 100 125 150
Measured PM10 in µg/m³

M
o

d
el

le
d

 P
M

10
 in

 µ
g

/m
³

Traffic site
dayd+3

Training and 
validation sets
FB: - 1.97
IA:    0.86
R²:    0.61
A :    0.89
n : 217

0 25 50 75 100 125 150
Measured PM10 in µg/m³

Urban 
background site

dayd+3

Training and 
validation sets
FB: - 5.76
IA:    0.81
R²:    0.52
A :    0.96
n : 217

 
 
Fig. C.5a-f: Scatter plots of modelled and measured PM10 concentrations at the traffic and 

urban background sites with 95 % confidence intervals for dayd+1, dayd+2 and 
dayd+3 (from training and validation sets) 
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Table C.11: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
training set 

 
Training and validation sets Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 39 10 10 0.67 0.21 0.91 
Urban background 4 0 1 0.75 0.00 1.00 
dayd+2       
Traffic 41 6 7 0.76 0.13 0.94 
Urban background 0 0 6 0.00 N.A. 0.97 
dayd+3       
Traffic 41 12 13 0.63 0.23 0.89 
Urban background 0 0 8 0.00 N.A. 0.96 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
 
 
Table C.12: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
validation set 

 
Test set Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 24 7 6 0.65 0.23 0.88 
Urban background 1 0 4 0.20 0.00 0.96 
dayd+2       
Traffic 21 9 8 0.55 0.30 0.84 
Urban background 0 0 4 0.00 N.A. 0.96 
dayd+3       
Traffic 19 8 5 0.59 0.30 0.88 
Urban background 0 0 4 0.00 N.A. 0.96 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
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C4 Test PM10 Forecasting model with thirteen hidden nodes 
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Fig. C.6a-f: Scatter plots of modelled and measured PM10 concentrations at the traffic and 
urban background sites with 95 % confidence intervals for dayd+1, dayd+2 and 
dayd+3 (from training and validation sets) 
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Table C.13: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
training set 

 
Training and validation sets Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 40 10 9 0.68 0.21 0.91 
Urban background 4 0 1 0.75 0.00 1.00 
dayd+2       
Traffic 40 8 8 0.71 0.17 0.93 
Urban background 3 1 3 0.42 0.17 0.98 
dayd+3       
Traffic 44 13 10 0.66 0.23 0.90 
Urban background 3 1 5 0.33 0.17 0.97 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
 
 
Table C.14: Performance indices on the successful predictions of exceedances of 24 h 

average PM10 concentrations at the traffic and urban background sites with the 
validation set 

 
Test set Site 

TP FP FN IS FAR A 
dayd+1       
Traffic 24 7 6 0.65 0.23 0.88 
Urban background 1 0 4 0.20 0.00 0.96 
dayd+2       
Traffic 20 8 9 0.54 0.29 0.84 
Urban background 1 0 3 0.25 0.00 0.97 
dayd+3       
Traffic 19 7 5 0.61 0.27 0.89 
Urban background 1 0 3 0.25 0.00 0.97 
TP: number of correct predictions of exceedances, FP: number of false alarms, FN: number of missed 
exceedances, IS: index of success, FAR: false alarms value, A: overall accuracy 
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Annex D Nowcast of PM10 concentrations at Neckartor on street 
sweeping days 

 
 
Table D.1: Modelled and measured PM10 concentrations at Stuttgart Neckartor from 

15.11.2006 to 18.03.2007 
 
 Date Modelled PM10 

in µg/m³ 
Measured PM10 

in µg/m³ 
η1 

in % 
 

 17.11.2006 87 86   -1.2  
 18.11.2006 71 68   -4.2  
 20.11.2006 43 41   -4.7  
 21.11.2006 35 31 -11.4  
 24.11.2006 77 69 -10.4  
 25.11.2006 72 70   -2.8  
 05.01.2007 26 20 -23.1  
 06.01.2007 13 12   -7.7  
 12.01.2007 31 32    3.2  
 13.01.2007 30 32    6.7  
 14.01.2007 27 29    7.4  
 15.01.2007 77 69 -10.4  
 16.01.2007 88 81   -8.0  
 18.01.2007 22 16 -27.3  
 19.01.2007 24 13 -45.8  
 20.01.2007 19 19    0.0  
 21.01.2007 14 16  14.3  
 22.01.2007 61 51 -16.4  
 23.01.2007 38 36   -5.3  
 26.01.2007 52 46 -11.5  
 27.01.2007 29 28   -3.4  
 28.01.2007 14 21   50.0  
 29.01.2007 28 25 -10.7  
 30.01.2007 80 86    7.5  
 10.02.2007 38 41    7.9  
 11.02.2007 21 18 -14.3  
 12.02.2007 40 38   -5.0  
 13.02.2007 20 18 -10.0  
 16.02.2007 77 71   -7.8  
 17.02.2007 55 62 12.7  
 18.02.2007 67 69    3.0  
 19.02.2007 90 91    1.1  
 20.02.2007 113 98 -13.3  
 23.02.2007 84 93  10.7  
 24.02.2007 47 53  12.8  
 25.02.2007 21 19   -9.5  
 26.02.2007 25 19 -24.0  
 27.02.2007 30 23 -23.3  
 02.02.2007 25 27    8.0  
 03.02.2007 20 15 -25.0  
 η1: effect of street sweeping on ambient PM10 concentrations  
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