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Nomenclature 
Symbols 

Intracellular Compounds 

jc   intracellular concentration of the compound j  [mol·(lcytosol)-1] 

,j tc   total intracellular concentration of the compound j  [mol·(lcytosol)-1] 

jN   number of molecules of compound j  [-] 

jw   mass fraction of the compound j  [g  g dry weight)-1] 

jX   specific intracellular concentration of the compound j  [mol· g dry weight)-1] 

jρ   intracellular mass concentration of the compound j  [g·(lcytosol)-1] 

 

Extracellular Compounds 

glcc   glucose concentration [g (lreactor)-1] 

acc   glucose concentration [g (lreactor)-1] 

cAMP,extraX  specific extracellular cAMP concentration [mol (g dry weight)-1] 

 

Further Symbols 

ja , jb   parameters for linear approximation functions 

i
jC   control coefficient for species i  in response to changes in j  [-] 

F   feed rate [l h-1] 

jk   individual rate constant concerning the compound j  [s-1] 



 

XIV 

kK   equilibrium constant of reaction k , [M-1] or [M-4] 

Sm   maintenance energy coefficient [h-1] 

jMW   molar weight of compound j  [g mol-1] 

AN   Avogadro constant 

2Oq   specific O2 uptake rate [mmol g-1 h-1] 

2COq   specific CO2 production rate [mmol g-1 h-1] 

Sq   specific glucose uptake rate [g g-1 h-1] 

ir   rate of the intracellular reaction i  [mol·(lcytosol·s)-1] 

mr   specific measured uptake or export rates [mmol g-1 h-1] 

cAMP,exportr  specific cAMP export rate [µmol g-1 h-1] 

kscore   specificity score for the nucleotide sequence k  [-] 

SpM   specificity matrix with the entries ,m na  [-] 

cellV   cell volume [lcytosol  

RV   bioreactor volume [l] 

,0RV   batch volume [l] 

Xν   specific cell volume [lcytosol· g dry weight)-1] 

2CO XY   rate of CO2 production relative to biomass production [mol C (mol C)-1] 

X SY   biomass yield [g biomass (g glucose)-1] = [g g-1] 

 

 



 

XV 

Greek Symbols 

kα   spacer penalty k  [-] 

kδ   enhancement factor k  [-] 

jη   efficiency of transcription from promoter j  [-] 

μ   specific growth rate [h-1] 

jρ   (see “Intracellular Compounds”) 

kΦ   probability of transcription with respect to binding of a protein to the DNA-

binding site k  [-] 

kϕ   probability of binding to the DNA-binding site k  [-] 

σS  (see “Abbreviations”) 

ω   fractional change of the specific cell volume [h-1] 

 

Subscripts 

glc  glucose 

NH4  ammonia 

ac  acetate 

X  biomass 

O2  oxygen 

CO2  carbon dioxide 

DNAbs  DNA-binding site 

 

Superscripts 

+  reactor feed 
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Abbreviations 

AEC  adenylate energy charge, ( ) ( )0.5ATP ADP ATP ADP AMPAEC c c c c c= + ⋅ + +  

AXP pool ( )AXP ATP ADP AMPc c c c= + +  

cAMP  cyclic 3',5'-AMP 

Cra  Catabolite repression/activation protein (transcriptional dual regulator) 

Crp  Catabolite repression protein (transcriptional dual regulator) 

EMP  glycolysis 

fbp  fructose 1,6-bis(phosphate) 

GS  glyoxylate shunt 

mRNA  messenger RNA 

nt  Nucleotide 

pep  phosphoenolpyruvate 

pep-GS phosphoenolpyruvate-glyoxylate cycle 

PTS  phosphoenolpyruvate:carbohydrate phosphotransferase system 

ppGpp  guanosine 3',5'-bis(diphosphate) 

PPP  pentose phosphate pathway 

RNAP  RNA polymerase 

rRNA  ribosomal RNA 

σS  sigma S factor (subunit of the RNA polymerase encoded by the rpoS gene) 

TCA  tricarboxylic acid cycle 
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Zusammenfassung 
In der vorliegenden Arbeit wurde ein systembiologischer Ansatz verfolgt, um die Dynamik 

des zentralen Kohlenstoffmetabolismus und dessen Regulation in Escherichia coli in 

industrielle wichtigen Fed-Batch Prozessen zu analysieren. Die zwei zentralen Ziele waren (i) 

die Netzwerkstruktur der globalen Regulation des Zentralstoffwechsels basierend auf 

experimentellen und mathematischen Methoden zu rekonstruieren und (ii) eine Methode zur 

dynamischen Modellierung der Transkription der Zentralstoffwechsel-Gene zu entwickeln. 

Eine Reihe von Glukose-limitierten Fed-Batch Prozessen mit konstanter Zulaufrate wurde 

durchgeführt, womit gleiche Bedingungen für alle Experimente geschaffen wurden. Diese 

Prozessstrategie führt zu einer kontinuierlichen Abnahme der Verfügbarkeit der Glucose. 

Komplementäre metabolische Fluss- und globale Transkriptionsanalysen zeigten, dass die 

Stoffflüsse und die meisten Transkript-Level der Glykolyse, des Pentosephosphat-Weges 

und der Biosynthesen stark abfallen. Die Flüsse im Citrat-Zyklus bleiben konstant und die 

mRNA Level der Citrat- und Glyoxylat-Zyklus Gene sind erhöht. Weiterhin wurde die 

Signalbildungsdynamik durch Quantifizierung der intrazellulären Konzentrationen der 

Alarmone ppGpp und cAMP untersucht. Beim Einsetzen der Kohlenstofflimitation 

akkumulierten beide Alarmone stark. Ein neuer Befund war die anschließende Rückstellung 

beider Signale. 

Eine Netzwerkstruktur der Regulation des zentralen Kohlenstoffmetabolismus wurde 

rekonstruiert, um damit die beobachtete Dynamik umfassend beschreiben zu können. 

Demgemäß bestimmen vorwiegend die cra und crp Modulons die Transkription der 

Glykolyse, Citrat- und Glyoxylat-Zyklus Gene. Das relA/spoT Modulon reguliert hauptsächlich 

die Proteinbiosynthese und die spezifische Wachstumsrate. Die zentralen, an der 

Signalbildung und –Rückstellung beteiligten, Komponenten wurden in diese Modellstruktur 

integriert. Weitere, gut untersuchte regulatorische Phänomene bezüglich der Kohlenhydrat-

Transportsysteme und der Chemotaxis wurden beobachtet, während die Stress- und 

Stationärphasen-Regulation von untergeordneter Rolle waren. Die möglichen Interaktionen 

dieser Zellfunktionen mit der Versorgung mit Biosynthese-Vorstufen (precursor) und Energie 

werden diskutiert. 

Die rRNA- und die Gesamt-RNA-Gehalte wurden durch eine neu entwickelte Methode 

quantifiziert. Eine starke Wachstumsraten-abhängige Regulation der rRNA und mRNA 

Transkription wurde aus diesen Daten abgeleitet. Daher wurde die Netzwerkstruktur um die 
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Wachstumsraten-abhängige Regulation, über die Verfügbarkeit der RNA Polymerase, 

erweitert. 

Der zweite Schritt hin zur dynamischen Modellierung der Regulation der Zentralstoffwechsel-

Gene war die Entwicklung eines neuen Modellierungskonzepts, welches die 

Berücksichtigung der multiplen Regulation der Transkription (durch Regulatorproteine, die 

RNA Polymerase Verfügbarkeit und multiple Promotoren) erlaubt. Der Neuigkeitswert liegt 

insbesondere in der Prädiktion kinetischer Parameter aus der Nukleotid-Sequenz der 

spezifischen DNA-Bindestellen der Regulatorproteine. Die Vorhersagekraft der Methode wird 

durch übereinstimmende simulierte und experimentell bestimmte RNA Konzentrationen des 

cra Modulons demonstriert. Darüberhinaus werden die Modellvorhersagen betreffend der 

Wachstumsraten-abhängigen Regulation durch die experimentellen Daten der Gesamt-RNA 

gestützt. Das Model sagt eine starke Cra-Regulatorprotein-abhängige Regulation der 

Zentralstoffwechsel-Gene voraus, welche der Wachstumsraten-abhängigen Regulation 

überlagert ist. Die Konzentration des Cra-Protein-Inhibitors Fructose 1,6-bis(phosphat) wurde 

zum ersten Mal im Fed-Batch Prozess quantifiziert. Die Konzentration fiel signifikant ab, was 

die Hypothese über dessen Schlüsselrolle für die Signalbildung bei Glukose-Limitation 

bestätigt. 

Mit der vorliegenden Arbeit wurde ein verbessertes, quantitatives Verständnis der Dynamik 

und Regulation des zentralen Kohlenstoffmetabolismus in E. coli in Fed-Batch Prozessen 

entwickelt. Die vorgeschlagene Netzwerkstruktur stellt eine Grundlage für die weitere 

dynamische Modellierung zellulärer Funktionen, die mit der Versorgung von Biosynthese-

Vorstufen und Energie zusammen hängen, zur Verfügung. Das eingeführte 

Modellierungskonzept eignet sich speziell zur Modellierung großer zellulärer Netzwerke und 

könnte dazu beitragen, das „Metabolic Engineering“ der Genregulation in 

Produzentenstämmen weiter voranzutreiben. 
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Summary 
In the current thesis a systems biology approach was chosen for the analysis of the 

dynamics of the central carbon metabolism and its regulation in Escherichia coli during 

industrially relevant fed-batch processes. The two main goals were (i) to reconstruct the 

network structure of global regulation of the central carbon metabolism based on 

experimental and mathematical methods, and, (ii) to develop an approach for dynamic 

modeling the transcription of the central carbon metabolism genes. 

A set of glucose-limited fed-batch processes was performed applying a constant feed rate to 

provide the same conditions for all examinations. This process strategy leads to a continuous 

reduction in the glucose availability. Complementary metabolic flux and global transcription 

analyses revealed that the fluxes and most transcript levels in glycolysis, the pentose 

phosphate pathway and the biosynthesis strongly decrease. Fluxes in the TCA cycle 

remained constant and mRNA levels of TCA cycle and glyoxylate shunt genes increased. 

Moreover, the signaling dynamics were examined by quantification of the intracellular 

concentrations of the alarmones ppGpp and cAMP. Strong accumulation of both alarmones 

was observed at the onset of carbon limitation. A new finding was the subsequent resetting 

of the signals. 

A network structure of regulation of the central carbon metabolism was reconstructed to 

enable a comprehensive explanation of the observed dynamics. Accordingly, the cra and crp 

modulons majorly determine the transcription of glycolysis, TCA cycle and glyoxylate shunt 

genes. The relA/spoT modulon mainly regulates protein biosynthesis and the specific growth 

rate. The key cellular components, involved in the signaling and resetting of the alarmone 

concentrations, were integrated into this model structure. Further, well-known regulatory 

phenomena concerning the carbohydrate transport systems and chemotaxis were observed, 

whereas the stress and starvation response were of only minor relevance. These cellular 

functions are discussed to be interconnected with the precursor and energy supply. 

The rRNA and total RNA contents were quantified using a newly developed method. A strong 

growth rate-dependent regulation of both rRNA and mRNA was concluded from these data. 

Therefore, the network structure was extended by the growth rate-dependent regulation via 

RNA polymerase availability. 

The second step towards dynamic modeling the regulation of central carbon metabolism 

genes was the development of a novel modeling framework that enables to consider multiple 

regulation of transcription (by regulator proteins, RNA polymerase availability and multiple 



 

XX 

promoters). The novelty lies particularly in the prediction of kinetic parameters from the 

nucleotide sequences of the specific DNA-binding sites of the regulator proteins. The 

predictive power of this approach is demonstrated by the agreement of simulated and 

experimentally determined mRNA concentrations of the cra modulon. Moreover, the 

experimental data of the total RNA content support the model predictions concerning the 

growth rate-dependent regulation. The model predicts a strong Cra regulator protein-

dependent regulation of the central carbon metabolism genes, which is superimposed by the 

growth rate-dependent regulation. The concentration of the Cra protein inhibitor fructose 1,6-

bis(phosphate) was quantified for the first time in fed-batch cultivations. Its concentration fell 

significantly, which supports the hypothesis of its key role in signaling glucose availability. 

The thesis provides an improved, quantitative understanding of the dynamics and regulation 

of the central carbon metabolism of E. coli in fed-batch processes. The proposed network 

structure may support further dynamic modeling of cellular functions interrelated with the 

supply of precursors and energy. The presented modeling framework is especially suitable 

for modeling large cellular networks and could make an impact on metabolic engineering of 

gene regulation in producer strains. 
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1 Introduction 
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1.1 Introduction 

Recognizing that research in industrial biotechnology is the key to cope with many future 

global challenges the Organization of Economic Co-operation and Development has outlined 

policies to maximize potential economic and environmental benefits over the next two 

decades (OECD, 2009). Yet sustainable industrial production based on bio-processes will 

not be achieved without making headway in the still young field of systems biology and in its 

application through metabolic engineering. Our understanding of microbial metabolism and 

regulation will open up new possibilities to modify microorganisms to utilize new substrates, 

produce new products and – most demanding – increase yields. 

Systems biology and metabolic engineering have evolved from natural and engineering 

sciences into a rich collection of tools for analyzing the behavior and rational optimization of 

biotechnological producer strains. The majority of the very advanced experimental and 

mathematical methodologies focus on the relevant metabolic networks, deciphering flux 

limitations and discovering potentially new metabolic routes. Regulation phenomena are 

equally complex and a dedicated research community has developed, accelerating progress 

towards the quantitative analysis of the corresponding cellular subnetworks. As knowledge 

about the regulation of cellular processes increases, it becomes evident that the microbial 

environment in the bioreactor and the process design can perturb intracellular processes 

(through changes in the levels of metabolic enzymes, transport proteins, transcription and 

protein biosynthesis apparatus, toxins and stress response) and make an impact on process 

performance. 

On the other hand, a number of studies illustrate that altering regulation can improve 

production rates or yields, using intuitive approaches or rational, modular analyses of the 

cellular subnetworks. A vital example is the engineering of the phosphoenol-

pyruvate:carbohydrate phosphotransferase system (PTS) of Escherichia coli, which 

transports the carbon and energy source (sugars) via the cell membrane and is involved in 

the global regulatory system catabolite repression (reviewed by Gosset, 2005). A series of 

further successful strategies for strain development considering the metabolic, regulatory and 

other cellular subnetworks was portrayed by Lee et al. (2005). 

New developments of computational algorithms enable to simulate the microbial metabolism, 

integrating regulation of gene expression under various stationary conditions, and 

demonstrate that implementation of regulatory aspects make mathematical models more 

predictive (Kauffman et al., 2003). In this case, the interactions between metabolic and 

regulatory networks are assumed to be one-way. However, to comprehend the dynamic 
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interplay of the cellular subnetworks, and to reinforce the predictive power of mathematical 

models, the mutual interactions must be incorporated into dynamic, mechanistic 

representations. In the first instance, existing knowledge must be used, and extended by 

complementary experiments, to reconstruct and combine the biochemical subnetworks 

generally relevant for biotechnological processes. Moreover, approaches for dynamic 

modeling of large networks of gene expression are needed that can be coupled to existing 

metabolic models. 

1.2 Thesis Outline 

The present thesis majorly aims at the comprehensive understanding of the metabolic and 

regulatory behavior of the microorganism Escherichia coli during the transition from 

exponential to carbon-limited growth in industrially important fed-batch cultivations. The 

applied systems biology approach involved the quantitative experimental observation of the 

dynamics in signaling, transcription, metabolic fluxes and metabolite concentrations, and was 

accompanied by stationary and dynamic mathematical modeling. The thesis covers two main 

steps. First, the network structure of global regulation of the central carbon metabolism is 

reconstructed. In a second step, an approach for dynamic modeling of multiple regulation of 

transcription is introduced. The broad nature and the given detail of the current study were 

taken into account by self-contained chapters that portray the development and application of 

the experimental and mathematical methods. 

In the second chapter, the signaling (alarmones cAMP, ppGpp) and metabolic flux dynamics 

during fed-batch cultivation applying a constant feed rate are depicted. The reorganization of 

the central carbon metabolism and the concomitant decrease of the biomass yield are 

discussed and the network architecture of the global regulation of metabolism, protein 

biosynthesis and the specific growth rate is proposed. Focus is put on the signaling and 

negative feedback mechanisms that lead to signal resetting. Thus, the chapter provides a 

network structure that comprehensively explains the considerable number of regulatory 

processes that adjust the demand of precursors and energy to the limited nutrient-supply. 

Chapter 3 details the in vitro synthesis, isolation and characterization of the alarmone ppGpp, 

which was needed as an external standard for the analytical procedure applied in Chapter 2. 

The proposed network structure is verified by comparison of the relative changes of the 

metabolic fluxes with complementary time series data of the global mRNA levels in Chapter 

4. Detailed analysis of the changes in the transcript levels led to the integration of further 

cellular processes into this structure. These are interconnected with the global regulation of 

precursor and energy consumption and are discussed to be relevant for specific 
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biotechnological processes. The fifth chapter deals with a new method for quantification of 

rRNA using internal standard RNA and for the quantitative extraction of total RNA from E. 

coli suspensions. The dynamics of the total RNA, 16S and 23S rRNA contents observed 

during the fed-batch cultivation are depicted in Chapter 6 and indicate a strong growth rate-

dependent regulation of transcription, which is superimposed on the regulation via the 

network of global regulatory systems depicted in Chapter 2. 

One of the major components of the proposed regulatory network is the Cra regulator protein 

that regulates transcription of numerous operons of the central carbon metabolism (the cra 

modulon). The concentration of the metabolite, and, Cra protein inhibitor, fructose 1,6-

bis(phosphate) was experimentally determined (Chapter 7). The observed dynamics suggest 

that the metabolite plays a major role in signaling glucose limitation. In Chapter 7 the multiple 

regulation of the central carbon metabolism is quantitatively analyzed using a dynamic model 

of cra modulon transcription. The contributions of growth rate- and regulator protein-

dependent regulations are dissected. Chapter 7 provides a new approach for dynamic 

modeling the multiple regulation of transcription, using nucleotide sequences of the regulator 

DNA-binding sites for the prediction of kinetic parameters. The predictive power of the 

proposed method is critically evaluated by means of experimental data of the intracellular 

mRNA concentrations, which were determined by quantitative RT-PCR in a separate work by 

Schuhmacher et al. (2009), and, the total RNA concentrations described in Chapter 6. The 

thesis concludes with a summary and an outlook on possible future applications of the 

presented results.  
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2 Topology of the Global Regulatory 
Network of Carbon Limitation in 
Escherichia coli 
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Abstract 

One fundamental shortcoming of biotechnological processes operating under carbon-limiting 

conditions is the high energy demand (maintenance) of the cells. Although the function of the 

central carbon metabolism in supplying precursors and energy for biosynthesis has been 

thoroughly characterized, its regulation and dynamic behavior during carbon-limited growth 

has not yet been revealed. The current work demonstrates a time series of metabolic flux 

distributions during fed-batch cultivation of Escherichia coli K-12 W3110 applying a constant 

feed rate. The fluxes in glycolysis, pentose phosphate pathway and biosynthesis fell 

significantly, whereas TCA cycle fluxes remained constant. The flux redistribution resulted in 

an enhanced energy generation in the TCA cycle and consequently, in a 20 % lower biomass 

yield. Both intracellular alarmones ppGpp and cAMP accumulated in large quantities after the 

onset of nutrient limitation, subsequently declining to basal levels. The network topology of 

the regulation of the central metabolic pathways was identified so that the observed 

metabolic and regulatory behavior can be described. This provides novel aspects of global 

regulation of the metabolism by the cra, crp and relA/spoT modulons. The work constitutes 

an important step towards dynamic mathematical modeling of regulation and metabolism, 

which is needed for the rational optimization of biotechnological processes. 
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2.1 Introduction 

In biotechnological processes, the cell growth often is controlled via substrate limitation. This 

strategy is particularly applied in fed-batch cultivations employing exponential and constant 

feeding profiles, which not least guarantees respectable high cell densities. Substrate-limited 

growth, however, results in an excessive energy consumption for the maintenance of cellular 

functions (Lengeler et al., 1999; Pirt, 1982) as well as in other disadvantageous stress-

related effects. Enfors’ research group (Bylund et al., 1998; Larsson et al., 1996; Schweder 

et al., 1999; Teich et al., 1999; Xu et al., 1999a), as well as Hewitt et al. (2001; 2000; 1999) 

and Lapin et al. (2006) found that in large-scale fed-batch processes the extracellular 

gradients of substrate concentrations have profound effects on the growth yield, product 

formation and viability of the cell population. Evidently, such findings are the result of the 

interaction of the individual cell with its abiotic environment, which determines the cell’s 

regulatory response – and thus, its metabolic state. Consequently, the rational optimization 

of biotechnological processes (metabolic engineering) requires dynamic mathematical 

models comprising both regulation and metabolism. Ongoing research in several academic 

groups and industry is focused on modeling the central carbon metabolism (glycolysis, 

pentose phosphate pathway and TCA cycle) of E. coli and its regulation during glucose-

limited growth (Ellison et al., 2006; Heijnen et al., 2006). The first step in modeling is the 

identification of the model structure (topology), which relies on the knowledge from previous 

publications (bottom-up approach). Detailed information about the transcriptional regulation 

of the genes encoding metabolic enzymes in E. coli is available from databases (Keseler et 

al., 2009; Salgado et al., 2006). However, the regulators significantly affecting the central 

carbon metabolism during carbon limitation and consequently, the model topology of the 

global genetic regulatory network1 have not yet been identified. In the complementary top-

down approach the model structure is deduced from the system’s response to an external 

stimulus, applying proper systems-level experimental tools like proteomics, transcriptomics, 

metabolomics and metabolic flux analysis (MFA). However, the dynamic metabolic response 

of the relevant pathways to carbon limitation still remains to be clarified in E. coli, which can 

be studied in fed-batch cultivations. When applying a constant feed rate, the substrate 

limitation continually increases and a succession of (physiological) quasi-steady states can 

be achieved (Dunn and Mor, 1975). This allows investigating the metabolic and regulatory 

response during the transition from exponential to carbon-limited growth. 

                                                            

1 The term global genetic regulatory network is used since it implies that the mathematical model can comprise 

several subsystems, which are termed global genetic regulatory systems. 
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Bacteria control metabolism and growth rate through global genetic regulatory systems1, i. e. 

regulons and modulons (Lengeler et al., 1999; Neidhardt and Savageau, 1996). Prominent 

examples in E. coli are the catabolite repression (crp modulon) and the stringent response 

(relA/spoT modulon), two processes that are active under carbon-limiting conditions. During 

stringent response (reviewed in Braeken et al. (2006), Cashel et al. (1996) and Lengeler et 

al. (1999)), the limitation of nutrients leads to the intracellular accumulation of ppGpp 

(guanosine 3',5'-bis(diphosphate)), which is supposed to bind to the RNA polymerase 

(Artsimovitch et al., 2004). The transcription of genes involved in the translation process – in 

particular of ribosomal RNA and ribosomal proteins – is negatively regulated by ppGpp. As a 

result, the protein biosynthesis rate declines, which in turn also leads to a reduction in growth 

rate (Cashel et al., 1996; Lengeler et al., 1999). During amino acid limitation, the synthesis of 

ppGpp or guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp, is 

mediated by RelA (GDP pyrophosphokinase/GTP pyrophosphokinase). Under amino acid-

limiting conditions, the ribosome-bound RelA protein is stimulated by uncharged tRNAs at 

the A site of ribosomes (Wendrich et al., 2002). However, the accumulation of (p)ppGpp 

depends also on the dual activity of the SpoT protein as (p)ppGpp-hydrolase or (p)ppGpp-

synthetase. Although it is known from a homologous protein of Streptococcus dysgalactiae 

subsp. equisimilis that the opposing activities of SpoT are reciprocally regulated (Hogg et al., 

2004; Mechold et al., 2002), the regulation of the SpoT protein in E. coli is still hypothetical. 

The most important issue for understanding growth control is the signaling mechanism, 

which leads to accumulation of ppGpp under carbon-limiting conditions, an aspect that is still 

not entirely clarified. 

Besides various effects on growth-related functions (Cashel et al., 1996), the alarmone 

ppGpp is known to be involved in the regulation of the sigma S factor concentration (σS; rpoS 

gene) on the transcriptional and posttranscriptional level (Hengge-Aronis, 2002). As an 

alternative subunit of RNA polymerase, σS is involved in the regulation of transcription in the 

general stress response in E. coli (also designated as “stationary phase response”). It is 

assumed that elevated levels of σS negatively regulate σD-dependent housekeeping genes, 

such as the TCA cycle genes (Patten et al., 2004). Moreover, ppGpp influences the 

competition between different stress-related sigma factors in the binding of the RNA 

polymerase core enzyme at the expense of the sigma factor σD (Jishage et al., 2002) and the 

RNA polymerase availability (Barker et al., 2001a; Barker et al., 2001b; Cashel et al., 1996; 

Jensen and Pedersen, 1990; Traxler et al., 2006). The crp modulon belongs to a group of 

global genetic regulatory systems, which can be subsumed under the term catabolite control. 

One basic feature of these systems is that the presence or absence of an extracellular 

carbon source is indicated by an intracellular metabolite (catabolite) that serves as a signal 
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for derepression (catabolite activation) or deactivation (catabolite repression) of catabolic 

genes (Saier et al., 1996). The crp modulon includes catabolic operons for the utilization of 

various carbon sources and is regulated by the Crp-cAMP complex. The synthesis of the 

alarmone cAMP (cyclic 3',5'-AMP) by the enzyme adenylate cyclase (CyaA) is stimulated by 

the phophorylated EIIAGlc protein, a component of the E. coli 

phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) (reviewed in Lengeler 

et al. (1999) and Postma et al. (1993)). It is assumed that a low glucose uptake rate by the 

PTS and a high ratio of phosphoenolpyruvate and pyruvate concentrations (cPEP / cPyr) lead to 

the phosphorylation of the EIIAGlc protein (Hogema et al., 1998). Consequently, limited 

glucose availability leads to the synthesis of cAMP and the transcriptional regulator complex 

Crp-cAMP is formed. Catabolite control is also exerted by the catabolite repressor/activator 

protein Cra (formerly designated FruR), which regulates numerous genes involved in the 

carbon and energy metabolism (the cra modulon) (reviewed in Ramseier, 1996; Saier and 

Ramseier, 1996; Saier et al., 1996). The regulator protein Cra is inactivated by the 

catabolites fructose 1-phosphate and fructose 1,6-bis(phosphate) (Saier and Ramseier, 

1996). 

The present study demonstrates the signal formation and dynamic metabolic responses of 

Escherichia coli K-12 W3110 exposed to an increasing carbon limitation during fed-batch 

cultivation applying a constant feed rate. The observed decrease in the biomass yield is 

shown to result from a substantial carbon flow into the TCA cycle and from the subsequent 

oxidation of the carbon source. Simultaneously, most of the fluxes in the central carbon 

metabolism and in the biosynthesis pathways decreased significantly. This rearrangement is 

supposed to re-establish a balance between anabolism and catabolism after nutrient 

limitation. The genetic regulatory systems responsible for the illustrated metabolic responses 

are proposed and assembled to a global regulatory network. A new method for determining 

the qualitative time course of the intracellular cAMP concentration is presented. For the first 

time the profile of the intracellular cAMP level is shown in fed-batch cultivations of E. coli 

wild-type cells. Most importantly, the resetting of the cAMP signal could be demonstrated. 

The suggested network takes account of the observed signal resetting (cAMP and ppGpp) 

and of a probable stringent response signaling pathway during carbon limitation. The 

provided network topology is novel inasmuch as it comprehensively explains the obtained 

systems-level data of the metabolic transition from exponential to carbon-limited growth 

typical of fed-batch processes. 
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2.2 Materials and Methods 

2.2.1 Bacterial Strain and Fed‐Batch Cultivation 

The fed-batch cultivations were carried out with the bacterial strain Escherichia coli K-12 

W3110 (DSM 5911, German Collection of Microorganisms and Cell Cultures) in a 30-l 

bioreactor (Bioengineering AG, Wald, Switzerland). Minimal medium supplemented with 

glucose as the carbon source was used. The batch medium (batch volume ,0RV  = 17 l) 

consisted of 8.8 g l-1 glucose·H2O, 2.0 g l-1 Na2SO4·10H2O, 2.68 g l-1 (NH4)2SO4, 1.0 g l-1 

NH4Cl, 14.6 g l-1 K2HPO4, 4.02 g l-1 NaH2PO4·2H2O, 0.01 g l-1 thiamine·HCl; 0.3 mM 

CaCl2·2H20, 2 mM MgSO4·7H2O; and 3 ml l-1 of trace element solution (TES: 16.7 g l-1 

FeCl3·6H2O, 20.1 g l-1 Na2EDTA, 0.18 g l-1 ZnSO4·7H2O, 0.1 g l-1 MnSO4·H2O, 0.16 g l-1 

CuSO4·5H2O, 0.18 g l-1 CoCl2·6H2O). Fed-batch medium contained 220 g l-1 glucose·H2O, 

63.36 g l-1 (NH4)2HPO4, 0.2 g l-1 thiamine·HCl, 10 mM CaCl2·2H20, 32 mM MgSO4·7H2O and 

40 ml l-1 TES; 85 % H3PO4 was added to resolve any precipitate. The fed-batch process 

(constant feed rate, F  = 0.294 l h-1) was started after batch cultivation at a glucose 

concentration below 0.15 g l-1. The process parameters that were controlled by a process 

control system (software developed by the Institute of Biochemical Engineering, Stuttgart, 

based on Visual Designer 4.0, Intelligent Instrumentation, Stuttgart, Germany) were: 

dissolved oxygen concentration > 50 % saturation, pH 7, pressure p  = 1.5 bar, temperature 

T  = 37 °C. 2 M H3PO4 or 4 M NaOH was used to adjust the pH values. The gas inflow ( GV  = 

10 l min-1) was monitored by a mass flow meter (Bioengineering AG, Wald, Switzerland). 

Foam formation was suppressed by the addition of polypropylene glycol P 2000 (Sigma-

Aldrich, Steinheim, Germany) when necessary. 

2.2.2 Sampling and Analytical Methods 

The sampling of extracellular substrates and products was carried out by filtration with a 

0.2 µm-pore-size ceramic membrane (FIPS sampling probe, Flownamics, Madison, WI, 

USA). The culture medium samples were withdrawn with a capillary sampling probe as 

developed by Theobald et al. (1997), however, without using membrane-covered glass 

tubes. The biomass was measured in triplicate by determining the dry weight of the samples. 

The glucose and acetate concentrations were measured using enzymatic assays (R-

Biopharm AG, Darmstadt, Germany). The ammonia concentration was determined using a 

photometric cuvette test (LCK303, Hach Lange, Düsseldorf, Germany) (all measurements 

were performed in duplicate). The glucose concentration (between 0.1 and 1.0 g l-1) was also 
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measured online using a ProcessTrace 1.2MT probe (Trace Analytics GmbH, Braunschweig, 

Germany). The CO2 and O2 mole fractions in the gas outflow were monitored using an S710 

gas analyzer, (infrared carbon dioxide analyzer FINOR, paramagnetic oxygen analyzer 

OXOR-P; Maihak AG, Hamburg, Germany). 

2.2.3 Determination of Nucleotide Concentrations 

The nucleotides were extracted from 4 ml of culture medium by sampling into 1 ml of 

perchloric acid (- 20 °C) (Theobald et al., 1997) and mixing for 15 min by end-over-end 

rotation (4 °C). The pH was neutralized by adding 845 µl 5 M K2CO3 (0 °C) (Buchholz et al., 

2001). After centrifugation (4000 rpm, 4 °C) the supernatant was collected and stored at – 

20 °C until further use. The samples were chilled in an ice bath during all transfer steps. The 

samples were filtered (0.2 µm) prior to HPLC analysis. A Spectra Physics HPLC system 

(Farmont, USA) was used to separate and quantify the nucleotides by ion-pair reversed-

phase HPLC (Theobald et al., 1997), which comprised a low pressure gradient system 

(double pump P2000), an auto sampler (AS3000) and an UV detector (UV 1000, λ = 

254 nm). A Supelcosil LC-18T column (150 mm x 4.6 mm; particle size 3 µm) and a 

Supelguard LC18T guard column (20 mm x 4.6 mm; particle size 5 µm) were employed 

(Supelco, Bellefonte, USA). The analysis was carried out with a flow rate of 1.2 ml min-1. A 

gradient elution modified from Cserjan-Puschmann et al. (1999) was performed with buffer A 

(0.1 M KH2PO4/K2HPO4, pH 6.0; 5 mM tetrabutyl ammonium dihydrogen phosphate; 5 µM 

EDTA; adjusted to a final pH of 5.3 and purged with helium for 15 min) and buffer B (80 % of 

buffer A; 20 % acetonitrile, adjusted to a final pH of 5.9 and purged with He for 15 min). 

Gradient program: 5 % buffer B for 3 min, 5 - 40 % buffer B for 36 min, 40 - 100 % buffer B 

for 15 min, 100 % buffer B for 5 min, 100 - 5 % buffer B for 5 min and 5 % buffer B for 3 min. 

Each sample was also run spiked with a nucleotide standard solution in order to identify the 

respective nucleotide peaks in the chromatograms. For the nucleotide standard solution, 

ppGpp was synthesized according to a modified protocol from Krohn and Wagner (1995). 

Ribosome preparations were obtained by ultracentrifugation with a two-step sucrose gradient 

from extracts of E. coli K-12 W3110 cells harvested from 20-l batch cultivations. ppGpp was 

synthesized in vitro using the ribosome preparations and GDP and ATP as substrates. 

Isolation of ppGpp involved two consecutive column chromatographic steps (ion-exchange 

and size-exclusion chromatography). The synthesis product was structurally analyzed with 
13C-NMR (Que et al., 1973); the molecular weight was confirmed by mass spectrometry. 
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2.2.4 Metabolite Balances and Concentration Time Courses 

The time profiles of substrate and product concentrations, ( )ˆ jc t , from five independent fed-

batch experiments were obtained from approximations of measured data (glucose, ammonia, 

acetate, biomass) by analytical functions. Time variant functions for the specific substrate 

uptake and product excretion rates (measured rates, ( )mr t ; Figure in Appendix A) were 

determined from the time derivatives, ( )ˆ jdc t dt , and the fed-batch balance Equations. 

Since all fed-batch balances contain the reaction volume, it was considered as an important 

variable. Thus, its time profile, ( )R̂V t , was also approximated taking into account the 

constant feed rate, pH adjustment, volume loss when withdrawing the samples and upon the 

evaporation of water during cultivation (> 12 hours). The specific O2 uptake rate (
2Oq ) and 

CO2 production rate (
2COq ) were determined from gas analysis and mass balancing of the 

two components in the gas phase. The specific growth rate ( μ ) was obtained using the 

biomass balance [Equation (2-1) in Table 2-1] and the approximation of experimental data (

( )ˆXc t , Equation in Appendix B). Below 0.1 g l-1, which is below the calibration range of the 

online glucose measurement, the glucose concentration was calculated according to simple 

Monod-type kinetics according to Equation (2-2) (Table 2-1). The biomass yield ( ( )X̂ SY t ) 

was calculated according to Equation (2-3). For this, the specific substrate uptake rate [

( )ˆSq t , Equation (2-4) in Table 2-1] was calculated from the approximation of experimental 

data ( ( )ˆglcc t , Appendix B). Pirt suggested the use of Equation (2-5) (Table 2-1) defining a 

growth rate-dependent maintenance energy coefficient ( Sm ) when calculating the specific 

substrate uptake rate ( ˆSq ) (Pirt, 1982). The parameters 1m  and m′  were estimated by 

plotting the specific glucose uptake rate as a function of the specific growth rate according to 

Pirt (1982). 
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Table 2-1 Equations for the estimation of time courses 

(2-1) ( ) ( )
( )

( )
ˆ1ˆ ˆˆ

X

X R

dc t Ft
c t dt V t

μ = +
 

[h-1] 

(2-2) ( ) ( )
( )

ˆ
ˆ 0

ˆ
S

glc
max

K t
c t

t
μ

μ μ
> =

−
 

[g l-1] 

(2-3) ( ) ( )
( )

ˆˆ
ˆX S

S

t
Y t

q t
μ

=
 

[-] 

(2-4) ( ) ( )( ) ˆ
ˆ ˆˆ

glc
S glc glc

R

dcFq t c c t
dtV

+= − −
 

[g g-1 h-1] 

(2-5) ( ) ( ) ( )
ˆ

ˆS S
X S,max

t
q t m t

Y
μ

= +
       with 

( ) ( )
1

ˆ
(1 )S

max

t
m t m m

μ
μ

′= + −
 

[g g-1 h-1] 

(2-6) 
( )

( )

ˆ1.144

ˆ0.718

0.4860 2ˆ
0.636 0.635 2Xv

μ

μ

⋅
=

− + ⋅  

[ml cytosol 

(g dry weight)-1] 

(2-7) 

( ) ( ) ( )
( )

( )
( )

( )ˆ ˆ ˆˆˆ ˆ ˆ
cAMP,extra cAMP,extra X

cAMP,export cAMP,extra
XR

dX t X t dc tFr t X t
dt c t dtV t

= + +
 

( ) ( ) ( ) ( )
ˆ

ˆˆ ˆcAMP,extra
cAMP,export cAMP,extra

dX t
r t X t t

dt
μ= +

 

[µmol g-1 h-1] 

(2-8) ( ) ( )ˆˆ cAMP,export
cAMP,intra

cAMP,export

r t
X t

k
=

 

[µmol g-1] 

2.2.5 Metabolic Flux Analysis 

The model used for metabolic flux analysis by stoichiometric metabolite balancing was 

previously published by Chassagnole et al. (2002), but slightly adapted to the present study’s 

requirements (Appendix C). The stoichiometric E. coli model (129 reactions and 133 
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metabolites) represents the central carbon metabolism (glycolysis, pentose phosphate 

pathway, TCA cycle) and the biosynthesis of monomers and polymers. The model assumes 

that the macromolecular composition remains constant at different growth rates (cell 

composition according to (Ingraham et al., 1983; Neidhardt and Umbarger, 1996; Pramanik 

and Keasling, 1998)), the presence of an NADPH-dependent isocitrate dehydrogenase 

(according to EcoCyc database (Keseler et al., 2009)), a constant P O  ratio of 2.0 (Calhoun 

et al., 1993; Gennis and Stewart, 1996) and an ATP demand of 31.5 mmol ATP per g protein 

for the biosynthesis of proteins from amino acids. The stoichiometric model used for the 

analysis of the metabolic fluxes is represented as a system of balance equations ( d dt =c Nr

), where d dtc  is the time derivative of the vector of intracellular metabolite concentrations 

[mmol g-1 h-1]. N  is the stoichiometric matrix, containing stoichiometric coefficients of all 

reactions in the network and r  is the vector of the specific reaction rates [mmol g-1 h-1]. The 

time derivatives are then equated with zero, assuming metabolic (quasi-)steady states (

=0 Nr ). After the separation of the measured rates (index m) and the rates to be calculated 

(index c) ( m m c c= +0 N r N r ), the intracellular fluxes can be determined using equation 

1
c c m m

−= −r N N r  (Nielsen and Villadsen, 1994; Stephanopoulos et al., 1998). A time series of 

metabolic flux distributions was determined using the time courses of the specific substrate 

uptake and product excretion rates (measured rates). With six measured rates ( ( )glcr t , 

( )acr t , ( )Xr t , ( )
4NHr t , ( )

2Oq t  and ( )
2COq t ; Appendix A) a three-fold overdetermined system 

was obtained. This allowed the reconciliation of data and the identification of gross 

measurement errors according to (Nielsen and Villadsen, 1994; Stephanopoulos et al., 

1998). All analyses were performed using the Insilico Discovery 1.2 software (Insilico 

Biotechnology AG, Stuttgart, Germany). 

2.3 Results 

2.3.1 Fed‐Batch Cultivation 

Five independent fed-batch cultivation experiments applying a constant feed rate were 

carried out to study the response of the central carbon metabolism of E. coli concerning 

glucose limitation. The time profiles of the extracellular concentrations of glucose, acetate 

and biomass are presented in Figure 2-1a. Acetate was produced during the consumption of 

glucose in the batch phase and was used up after 1 h of glucose-limited growth (Fig. 2-1a). 

In response to the limited availability of the carbon source, the specific growth rate, μ , 
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gradually decreased from 0.7 h-1 at t = - 2 h to 0.08 h-1 after 8 h of glucose-limited growth 

(Fig. 2-1b). During the fed-batch phase the glucose concentration decreased from 

approximately 60 mg l-1 to 6 mg l-1 (Fig. 2-1b). This time profile was obtained from Equation 

(2-2) (Table 2-1) assuming a substrate saturation constant of SK  = 0.05 g l-1 according to Xu 

et al. (1999b), which can be expected for non-adapted cells during the batch and in the 

beginning of the fed-batch phase. After adaptation of the glucose transport systems during 

fed-batch cultivation, however, the saturation constant should be significantly lower (Senn et 

al., 1994). Consequently, the glucose concentration given in Figure 2-1b might be lower [see 

Equation (2-2), Table 2-1] and must be regarded as the qualitative time course for the 

applied feed rate. 

 

Fig. 2-1 Glucose limited fed-batch cultivation of E. coli K-12 W3110 with constant feed rate. Vertical solid 

lines at t = 0 indicate glucose limitation (as judged from the O2 consumption rate (qO2) (Appendix A) and 

dissolved oxygen concentration (data not shown)). (a) measured biomass concentrations ( ), glucose (▼) and 

acetate (□), time profiles (solid lines); (b) approximated time course of specific growth rate ( ) (broken line) and 

glucose concentration (solid line). (c) biomass yield ( ) (symbols and error bars: mean values of five 

cultivations and standard deviation) and maintenance energy coefficient ( ) (broken solid line). 

μ

X SY

Sm
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Table 2-2 Parameters 

Parameter Value Source 

SK  0.05 g l-1 Xu et al. (1999b) 

m axμ  0.7 h-1 This work 

X S,maxY
 

0.6 This work 

1m  0.07 h-1 This work 

m′  0.05 h-1 This work 

cAMP,exportk
 

509 h-1 This work 

2.3.2 Biomass Yield and Maintenance 

The biomass yield ( X SY ) decreased steadily from 0.5 g g-1 in the batch phase to 0.4 g g-1 at 

μ  = 0.08 h-1 during glucose-limited growth (Fig. 2-1c). This represents a significant loss of 

20 % in biomass yield. Moreover, the time variant maintenance energy coefficient ( ( )Sm t ) 

was determined according to Pirt (1982) [Equation (2-5), Tables 2-1 and 2-2]. A steep 

increase was found during periods of glucose limitation (Fig. 2-1c). Consequently, the 

stronger the limitation, the less substrate was used for biomass production and more energy 

is generated. 

Although this work focuses on the dynamic changes during glucose limitation, two batch 

phase-related findings are also worth mentioning ( t ≤ 0, Fig. 2-1). First, the growth rate 

decreased more rapidly than can be explained simply by Monod-type kinetics. The overflow 

metabolite acetate accumulated in the batch phase, which is known to have many inhibitory 

effects on growth (summarized in Xu et al., 1999b). A dynamic mathematical model 

published by Xu et al. (1999b) describes the inhibition of glucose uptake by acetate and 

proposes a similar reduction of growth rate as found in the current work. Therefore, it must 

be attributed to the accumulation of acetate in the growth medium. Secondly, the growth  
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Fig. 2-2 Time courses of metabolic fluxes in intermediary metabolism during the transition to carbon 
limitation. Fluxes were determined from stoichiometric metabolite balancing. Symbols with standard deviation 

correspond to mean values from five independent glucose limited fed-batch cultivations of E. coli K-12 W3110 

with constant feed rate. (a) glucose uptake (PTS) flux. (b) acetate excretion (T.acetate) flux. (c) average flux in 

amino acid biosynthesis pathways (aaBioSyn). (d) ratio of average glycolysis (EMP) and PTS fluxes. (e) ratio of 

average PPP and PTS fluxes. (f) ratio of average TCA and PTS fluxes. (g) GltA (citrate synthase) flux. (h) ratio of 

GltA and Mdh (malate dehydrogenase) fluxes. i, ratio of C-fluxes by CO2 excretion and biomass production. 

 

yield decreased and the maintenance energy coefficient increased in the batch phase (Fig. 

2-1c). This is also attributed to the effect of the metabolic overflow (carbon loss). 

2.3.3 Central Carbon Metabolism and Biosynthetic Pathways 

The dynamic changes in the intermediary metabolism in response to carbon limitation were 

determined using metabolic flux analysis. The glucose uptake rate during unlimited growth 

(batch phase) was roughly 6 mmol g-1 h-1 (PTS, Fig. 2-2a). As a consequence of the constant 

feed rate, the glucose uptake rate (PTS) was subjected to a gradual decrease and was less 

than 1 mmol g-1 h-1 after 8 h of fed-batch cultivation (Fig. 2-2a). Acetate was excreted in the 

batch phase and used as an additional carbon source during the first hour of the fed-batch 

cultivation (Fig. 2-2b and Fig. 2-1a). Almost all fluxes were strongly reduced (Fig. 2-3) in 
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response to the decline in the carbon supply, although some fluxes transiently increased 

during acetate consumption. The reaction rates of the biosynthesis pathways (monomers 

and polymers) were reduced uniformly (Fig. 2-3), which is due to the fact that the growth rate 

declined. The time profile of the average flux in the amino acid biosynthesis pathways is 

shown in Figure 2-2c. The rates in amino acid biosynthesis were greatly reduced during the 

initial phase after the onset of glucose limitation (Fig. 2-2c) and continued to decrease slowly 

along with μ  (Fig. 2-1b). 

 

Table 2-3 Reduction of fluxes during glucose limitation 

Pathway k a 

,0k kr r a
 

[%] 

NADPH-dep. IcdAb NADH-dep. IcdAb 

μ  = 0.13 h-1 μ  = 0.08 h-1 μ  = 0.13 h-1 μ  = 0.08 h-1 

PTS 25 15 25 19 

EMP 27 17 24 19 

PPP 20 10 27 19 

TCA 90 75 126 145 

bio 24 14 27 19 

aTo obtain the relative average fluxes ( ,0k kr r ) for each pathway ( k ) (EMP, glycolysis; PPP, pentose phosphate 

pathway; TCA cycle; PTS, glucose uptake; bio, growth-related reactions), average fluxes ( kr ) of the pathways ( k

) were determined at the given growth rates in fed-batch cultivation and divided by the corresponding average 

fluxes during unlimited growth (in batch phase), ,0kr . 

bRelative average fluxes are given for the assumption that isocitrate dehydrogenase (IcdA) is NADPH-dependent 

(average of five cultivations), and additionally, for the opposing assumption of a NADH-dependent IcdA (one 

cultivation). 
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Fig. 2-3 Changes in metabolic flux distributions in central carbon metabolism during fed-batch 
cultivation. Fluxes are mean values of five independent fed-batch cultivations with constant feed rate of E. coli 

K-12 W3110 determined from stoichiometric metabolite balancing and given as molar percentages of the 

corresponding fluxes in the reference state during unlimited growth in the batch phase (0.3 h before start of the 

feed;  = 0.4 h-1). (a) and (b) glucose limited fed-batch cultivation (  = 0.13 h-1 and  = 0.08 h-1, 

respectively). The model used includes also the respiration, biosynthetic pathways and polymerization reactions. 

Only those reactions involving metabolites from central carbon metabolism (as substrates or products) are shown. 

μ μ μ
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The changes in the central carbon metabolism in response to limited carbon supply are 

depicted in Figure 2-3. The fluxes in glycolysis (EMP) were reduced to a similar extent as the 

glucose uptake rate (PTS) during fed-batch cultivation (Fig. 2-2d and Table 2-3). The 

reaction rates in the pentose phosphate pathway (PPP) were reduced much further than 

glucose influx (Fig. 2-2e and Table 2-3). It can obviously be assumed that the flux into PPP is 

reduced because the demand for precursors is lower during slower growth. The TCA cycle 

flux increased relative to the glucose influx (Fig. 2-2f) and was still 90 % at μ  = 0.13 h-1 

compared to batch growth (Table 2-3). This can be explained as a result of two findings: 

First, the influx into the TCA cycle via the first reaction, GltA (enzyme: citrate synthase), was 

maintained at a high level (Fig. 2-2g). Secondly, the precursor efflux from the TCA cycle to 

biosynthesis decreased substantially (Fig. 2-3). The enhancement of TCA cycle fluxes is also 

reflected in the flux ratio of the reactions Mdh (malate dehydrogenase) and GltA, which was 

approximately 0.9 immediately after the onset of limitation compared to roughly 0.3 in the 

preceding batch phase (Fig. 2-2h). Thus, the available carbon source is primarily oxidized in 

the TCA cycle to produce energy, and less carbon is available for biosynthesis. This is 

supported also by the fact that CO2 production increased relative to biomass production, 

2CO XY  (Fig. 2-2i). 

2.3.4 Adenosine Nucleotide and Alarmone Concentrations 

The adenylate energy charge ( AEC ) was 0.8 in the batch phase and decreased slowly to 

0.7 during the fed-batch phase (see linear regression in Fig. 2-4c), reflecting a decline in the 

availability of energy. Surprisingly, an increase in the ATP, ADP and AMP concentrations 

given in [µmol g-1] was recorded during fed-batch cultivation (data for ATP and the AXP pool 

are shown in the upper graphs of Fig. 2-4d and 2-4e, respectively). However, it is known that 

cells become smaller and lighter during the stringent response (Lengeler et al., 1999; 

Pramanik and Keasling, 1997). Pramanik and Keasling (1997) published equations for the 

E. coli median cell volume and the dry weight per cell as a function of the specific growth rate

μ  based on experimental results. These equations clearly show that the dry weight 

decreases more than the cell volume does, when the growth rate declines. Both equations 

from Pramanik and Keasling (1997) are used for estimation of the specific cell volume Xv  

(reciprocal density Xρ ), i. e. the cell volume per g dry weight, as a function of the specific 

growth rate μ  [Equation (2-6), Table 2-1]. The time course ( ( )ˆXv t ) during fed-batch 

cultivation demonstrates that the specific cell volume increases significantly when the growth 

rate decreases (Fig. 2-4f). Equation (2-6) (Table 2-1) was now used to calculate the molar 
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concentrations of the nucleotides. Figures 2-4d and 2-4e (lower graphs) show the results for 

ATP and AXP, respectively. Based on these approximations, it is assumed that the molar 

concentrations of AXPs remain constant during fed-batch cultivation (see Fig. 2-4e), which is 

in accordance with the general assumption of AXP as a conserved moiety. The concentration 

of the intracellular metabolites generally is related to the biomass concentration and then 

given in [µmol (g dry weight)-1]. This is straightforward and the results can easily be 

compared with data gained by other laboratories. Nevertheless, the variable specific cell 

volume (Fig. 2-4f) suggests that it is best to consider molar concentrations (in [mmol 

(l cytosol)-1]), when interpreting experimental results from different growth rates, as these are 

relevant for the in vivo reaction rates. 

 

Fig. 2-4 Nucleotide concentrations during glucose limited fed-batch cultivation of E. coli K-12 W3110 with 

constant feed rate. Symbols represent mean values with bars for the standard deviation of measured 

concentrations from five independent cultivations. ( , upper graphs), concentration in [µmol g-1] = [µmol 

(g dry weight)-1]; (□, lower graphs), concentration in [mM] = [mmol (l cytosol)-1]; (solid lines) approximated time 

courses. (a) ppGpp. (b) total cAMP concentration (intra- plus extracellular) [µmol g-1] (symbols), and estimated 

intracellular concentration [µM] (solid broken line). (c) adenylate energy charge ( AEC ).(d) ATP, (e) adenosine 

nucleotide pool (AXP), and (f), approximated time profile of the specific cell volume. 
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The dynamics of the intracellular ppGpp and cAMP concentrations were recorded due to the 

aforementioned effects on regulation of intermediary metabolism. The time profile of the 

ppGpp concentration is depicted in Figure 2-4a in [µmol g-1] (upper graph) and [mM] (lower 

graph). With respect to the molar concentration, the alarmone accumulated strongly after the 

onset of carbon limitation and decreased to a low basal level after approximately 4 h of fed-

batch cultivation. The maximum ppGpp level obtained in the five experiments amounted to 

0.9 µmol g-1 or 0.2 mM (peak values in solid lines in Fig. 2-4a). Although the sampling 

frequency was high, the peak value could not be resolved in each of the five independent 

cultivations due to a very fast response in ppGpp accumulation (elevated levels already after 

12 s, peak values between 4 min and 20 min). This results in the apparently lower average 

value after the onset of limitation in Figure 2-4a. It is difficult, however, to determine 

intracellular cAMP concentrations because it is assumed that 99.9 % of the total cAMP is 

found in the culture medium (Matin and Matin, 1982). A method to separate E. coli cells from 

the medium and at the same time preserve the metabolic state (quenching) is required. An 

adequate method has not yet been demonstrated and the results of previous methods differ 

by three orders of magnitude (from µM to mM), e. g. in (Death and Ferenci, 1994; Epstein et 

al., 1975; Lin et al., 2004; Matin and Matin, 1982). Therefore, a new method was developed 

for the estimation of the intracellular concentration of cAMP in E. coli. First, the total cAMP 

concentration (including extracellular and intracellular cAMP) was measured after quenching 

the metabolism and the extraction of cAMP. A strong increase was observed at the onset of 

limitation (Fig. 2-4b, upper graph). However, after 4 h the concentration (given in [µmol 

(g dry weight)-1]) remained constant demonstrating that cAMP is continuously synthesized as 

the cell mass increases (Fig. 2-1a). Additionally, the extracellular concentration was 

quantified. Essentially the same concentrations were obtained for total and extracellular 

cAMP (data not shown) in the range of the precision of the analytical procedure. This 

demonstrates that almost all cAMP is found extracellularly during the fed-batch conditions 

applied and consequently that newly synthesized cAMP is exported immediately. The time 

profile of the extracellular cAMP concentration ( ( )ˆ
cAMP,extraX t ) was approximated (see 

Appendix B) and plotted as solid line in the upper graph of Figure 2-4b. Using the balance 

Equation (2-7) (Table 2-1) for extracellular cAMP, the cAMP export rate ( ( )ĉAMP,exportr t ) was 

calculated. Assuming that the export rate is proportional to the intracellular cAMP 

concentration as suggested from Epstein et al. (1975), Equation (2-8) (Table 2-1) was used 

to approximate the intracellular cAMP level, ( )ˆ
cAMP,intraX t  in [µmol g-1]. The result was 

converted to [µM] by application of Equation (2-6) (Table 2-1). However, using the rate 

constant given by Epstein et al. (1975), cAMP,exportk , an unusually high intracellular cAMP 
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concentration was obtained (> 1 mM). Therefore, cAMP,exportk  = 509 h-1 was estimated from the 

conditions at the onset of glucose limitation, namely the cAMP export rate [ ( )0ˆ 0cAMP,exportr t =

 = 4.1 µmol g-1 h-1, from Equation (2-7) in Table 2-1], using Equation (2-8) (Table 2-1). 

Additionally, the concentration of intracellular cAMP was assumed as the highest 

concentration found by Matin and Matin (1982) ( ( )0
ˆ

cAMP,intraX t  = 8.1 nmol g-1) since the 

maximum is expected at the beginning of glucose limitation. The qualitative time course of 

the intracellular cAMP concentration can now be obtained from the Equations (2-8) and (2-6) 

(Table 2-1) and is depicted in Figure 2-4b in [µM] (lower graph). The alarmone accumulated 

strongly in the initial phase and decreased to a low basal level after 4 h. It is worth 

mentioning that the qualitative time profile is congruent with the one determined for ppGpp 

(Fig. 2-4a, lower graph). 

2.4 Discussion 

2.4.1 Topology of the Network Regulating the Central Carbon Metabolism 

The work presented here demonstrates the formation and resetting of the intracellular signals 

of carbon limitation, cAMP and ppGpp, and the redistribution of metabolic fluxes during 

glucose-limited fed-batch growth. In order to explain the observed dynamic behavior the 

topology of the global genetic regulatory network of regulation of the central carbon 

metabolism is identified. This involves the examination of global genetic regulatory systems 

(regulons and modulons) that are known to be active during carbon limitation and are likely to 

lead to the observed metabolic responses. The focus will also be put on the structure of the 

signaling network and the negative feedback regulation mechanisms. These are part of the 

regulatory response and lend adaptive behavior to the cells as demonstrated in this study 

(signal reset). Besides the systems-level description of the observed behavior, the proposed 

network topology shall provide a basis for mathematical modeling. 

2.4.2 Indications for Regulation by Global Genetic Regulatory Systems 

During fed-batch growth the biomass yield dropped 20 % while the substrate was 

preferentially used for energy generation (Fig. 2-1c). The energy is used for the maintenance 

of cellular functions and might also be attributed to the general carbon limitation response, 

e. g. for making new proteins for sugar transport systems. The substantial energy demand 

requires the presence of relatively strong fluxes through the (energy-producing) pathways, 

namely the glycolysis and the TCA cycle. In fact, the observed changes in the glycolysis, 
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PPP, TCA cycle and biosynthesis (Fig. 2-3) demonstrate that the energy generation is 

enhanced by high reaction rates in the TCA cycle and that the substrate is less used for 

biomass synthesis. This comprehensive redistribution of metabolic fluxes indicates that there 

must be a global response, i. e. a coordinate regulation of the central metabolic pathways 

and biosynthesis by global genetic regulatory systems such as regulons or modulons 

(Lengeler et al., 1999; Neidhardt and Savageau, 1996). Of course, besides regulation of 

enzyme synthesis the enzyme activities additionally might be regulated by protein 

phosphorylation or metabolic regulation (effectors). However, global genetic regulation is 

more economic in terms of saving precursors and energy. 

2.4.3 Regulation of Precursor and Energy Supply 

The fluxes in the TCA cycle were shown to be high during fed-batch growth, which differed 

notably from the general flux reduction (Fig. 2-3). Provided that this response is 

accomplished by a coordinative regulation of enzyme levels the Crp-cAMP complex (crp 

modulon) plays possibly a major role. This hypothesis is supported by the fact that cAMP 

accumulated in large quantities (Fig. 2-4b) and that almost all genes for TCA enzymes are 

regulated by the Crp-cAMP complex: gltA, acnB, acnB, acnA, sucABCD, lpdA, sdhCDAB, 

fumB and mdh (several references are given in the EcoCyc database, (Keseler et al., 2009). 

Furthermore it is the only known coordinative positive regulator of these genes. Finally, an 

increase of the protein levels of GltA (citrate synthase), SdhA (succinate dehydrogenase 

subunit) and FumA (fumarase A) was observed by Raman et al. (2005) in a glucose-limited 

fed-batch cultivation. The proposed regulation of the TCA cycle by the crp modulon is 

illustrated in Figure 2-5. A positive regulation of TCA in response to carbon limitation might 

counteract the aforementioned high energy consumption and is probably the main reason for 

the low biomass yield (Fig. 2-1c). 

The fluxes in glycolysis decreased strongly in response to carbon limitation (Fig. 2-3). A 

candidate of choice for a coordinative negative regulation of the glycolytic genes might be the 

cra modulon. Several genes of glycolysis are repressed by the Cra protein: pfkA, fbaA, pgk, 

pykF (references in EcoCyc database (Keseler et al., 2009); gapA and eno (Shimada et al., 

2005). Moreover, the Cra protein is known to repress transcription of the crr gene (EIIAGlc, a  

component of the glucose specific PTS) and the glk gene (glucokinase). Finally, Siddiquee et 

al. (2004) determined lower activities of the enzymes PfkA, PykF and the PTS after glucose 

exhaustion in batch cultivations. Thus, the coordinative repression of glycolysis most 

probably is accomplished by the cra modulon as illustrated in Figure 2-5. This might prevent 
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Fig. 2-5 Signaling and global genetic regulation of the central carbon metabolism in Escherichia coli. Filled 

green and blue ellipses represent transcriptional regulators assigned to catabolite control or stringent response, 

respectively. Non-filled ellipses correspond to proteins (and ribosome) involved in signal transduction. Red 

colored ellipses represent intracellular signaling molecules, which are metabolites of the anabolic and catabolic 

network (catabolites and anabolites). Short dashed lines, transcriptional regulation; long dashed lines, regulation 

of enzyme activity. , positive regulation, , negative regulation, , positive and negative regulation. 

Catabolite Control. Glucose limitation results in regulation of precursor and energy supply in the central 

metabolic pathways (EMP, PPP, TCA, GS) by the cra and crp modulons (offensive strategy): (i) The alarmone 

cAMP is synthesized by the adenylate cyclase (CyaA) in response to glucose limitation and the probable 

decrease of the metabolite pool of fructose 1,6-bis(phosphate) (fbp) renders the Cra regulator protein to be active. 

(ii) The Cra protein mainly represses the transcription of glycolysis (EMP) genes. This is proposed to ensure a 

sufficient carbon flow into the pentose phosphate pathway (PPP). (iii) The Crp-cAMP regulator complex mainly 

induces the transcription of the TCA cycle genes. Additionally the glyoxylate shunt (GS) genes are regulated by 

the modulons cra (positive) and crp (negative). This regulation results in an economic balance in the supply with 

precursors and energy. Moreover, catabolic operons and chemotaxis are activated in order to exploit potential 

new carbon sources. (iv) Several negative feedback regulation mechanisms (for details see text) lower the cAMP 

level after the initial accumulation, while cAMP export is the major one. Stringent Response. Carbon limitation 

also leads to the accumulation of ppGpp, which regulates precursor and energy demand in biosynthesis 

(defensive strategy): (v) It is suggested that carbon limitation results in amino acid limitation and that uncharged 

tRNAs activate ppGpp synthesis by the RelA protein and inhibit ppGpp hydrolysis by the SpoT protein. (vi) The 

precursor (particularly for amino acids) and energy demand are reduced following the lowering of protein 

biosynthesis (repression of ribosome synthesis) and growth-related functions. (vii) The refill of the amino acid 

pools (for details see text) exerts negative feedback to the central metabolic pathways since equilibrium between 

anabolism and catabolism is established. Consequently, the ppGpp level decreases. (viii) Further regulators might 

be affecting gene expression like competition of the sigma factor σS (stress-related genes) with σD (housekeeping 

genes). 

+ − + −
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 that the carbon flow into the TCA cycle is too high and therefore, maintain a necessary 

minimal flux into the pentose phosphate pathway (see Fig. 2-3) providing still sufficient 

precursors for biomass synthesis. The effectors fructose 1-phosphate and fructose 1,6-

bis(phosphate) (fbp) are known to inactivate the Cra protein (Ramseier et al., 1995; 

Ramseier et al., 1993). A decrease of the fbp level at lower growth rates was found by 

Jochen Schaub (personal communication) in a series of experiments with different dilution 

rates in continuous culture of E. coli K-12 W3110. Furthermore, an increase in the fbp level 

was shown during upshift from lower to higher growth rates in continuous culture (Weber et 

al., 2005b). Thus, the fbp concentration appears to reflect the availability of glucose and to 

mediate signal transduction to the Cra regulator (Fig. 2-5). 

The branch point of the TCA cycle and the glyoxylate shunt (GS) is important for the control 

of the carbon flux and is both regulated by the Cra protein and the Crp-cAMP complex. The 

expression of aceBAK operon coding for the GS enzymes is activated by the Cra protein and 

repressed by the Crp-cAMP complex, whereas the icdA gene coding for the first TCA 

enzyme after the branch point is activated by the Cra protein (references in EcoCyc 

database (Keseler et al., 2009)). Additionally, the enzyme IcdA is regulated by 

phosphorylation/dephosphorylation (Cozzone and El-Mansi, 2005) and its expression is 

negatively affected by the sigma factor σS (Jung et al., 2006). While the TCA/GS split ratio is 

not available through stoichiometric metabolite balancing, a whole-cell microarray analysis, 

which will be extensively treated in a separate publication, showed that mRNA levels for GS 

enzymes increased. Activation of the GS provides sufficient precursors for biosynthesis and 

leads to a favorable carbon balance at the expense of the energy balance. Although the 

energy demand increases ( , Fig. 2-1c), this might be advantageous since altogether less 

energy is required during the slow fed-batch growth. In conclusion, the global regulator 

protein Cra possibly plays an important role both in regulation of glycolysis and the TCA/GS 

split ratio (see Fig. 2-5). Ramseier et al. (1996; 1995) suggested that the regulation by the 

Cra protein depends growth conditions and either affects the glycolysis or parts of the TCA 

cycle and the GS. However, it is more likely that both the Cra and Crp proteins coordinately 

regulate large parts of glycolysis, TCA and GS (see Fig. 2-5). This might ensure a good 

economic balance between precursor and energy supply during carbon-limited growth. As 

illustrated in Figure 2-5, catabolite control involves also the activation of various catabolic 

operons (crp modulon) and the regulation of chemotaxis. Obviously, the cells pursue an 

offensive strategy using these regulatory mechanisms in order to exploit the low amounts of 

available glucose and other potentially available carbon sources. There are also other global 

genetic regulatory systems that additionally influence the gene expression of the mentioned 

pathways, e. g. the negative regulation of TCA genes by sigma factor competition (Patten et 

Sm
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al., 2004) (Fig. 2-5) or regulation of the RNA polymerase availability by the stringent 

response (Barker et al., 2001a; Barker et al., 2001b; Cashel et al., 1996; Jensen and 

Pedersen, 1990; Traxler et al., 2006). However, the ones discussed here obviously affect 

metabolic flux distribution most significantly. 

2.4.4 Regulation of Precursor Demand 

A substantial decrease of fluxes in the biosynthesis pathways (Fig. 2-2c) was demonstrated 

during carbon-limited fed-batch growth concomitantly with the reduction of growth rate (Fig. 

2-1b). Particularly, the efflux of precursors from the central metabolic pathways declined (Fig. 

2-3). This wide-ranging dynamic metabolic response must be achieved mainly by regulation 

of gene expression since metabolic resources (precursors and energy) have to be saved 

during carbon limitation. It is obvious that the stringent response (relA/spoT modulon) must 

play the major role. The alarmone ppGpp was shown to accumulate strongly immediately 

after the onset of limitation and decreased to a low basal level thereafter (Fig. 2-4a). It is well 

known that the nucleotide ppGpp regulates the ribosome concentration (Cashel et al., 1996) 

and therefore also the biosynthesis rate of proteins. The reduction of the ribosome 

concentration might be regarded as a defensive strategy, because ppGpp thereby regulates 

the withdrawal of precursors (and energy) from the central carbon metabolism (see Fig. 2-5). 

However, although the signaling pathway of the stringent response is well known for amino 

acid limitation (Cashel et al., 1996), a respective pathway it is not yet clear during carbon 

limitation. Moreover, the time profile of the ppGpp concentration at low growth rates is not 

entirely clarified. 

2.4.5 Signaling and Negative Feedback Regulation during Stringent 
Response 

An initial drop of the fluxes in all amino acid biosynthesis pathways was determined after 

glucose limitation (Fig. 2-2c). Thus, for the particular point in time when the carbon source 

becomes limiting for growth (t = 0, Fig. 2-1a) it can be supposed that the amino acid supply 

does not meet the demand and consequently that the amino acid pools limit protein 

biosynthesis. Therefore, it might be concluded that the carbon limitation finally leads to an 

amino acid limitation. This requires that the signaling pathways (via the RelA and SpoT 

proteins) during carbon and amino acid limitation are similar. Several previous findings 

support this hypothesis: First, Murray and Bremer (1996) found that inhibition of the SpoT 

hydrolase activity is primarily responsible for the accumulation of ppGpp as long as growth 

was limited by glucose. Second, the SpoT hydrolase activity was found to be inhibited by 
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uncharged tRNA (An et al., 1979; Richter, 1980). It has also been shown in relA- strains that 

carbon limitation leads to the accumulation of ppGpp in minimal media only when not 

supplemented with amino acids (Gentry and Cashel, 1996). From these findings it can be 

concluded that the SpoT protein is mainly responsible for ppGpp accumulation during carbon 

limitation and that the signal transduction might occur via amino acid limitation. Finally, 

although ppGpp accumulated in response to limited amounts of carbon in mutant strains 

lacking either the RelA, SpoT hydrolase or SpoT synthetase activity (Gentry and Cashel, 

1996; Hansen et al., 1975), the respective ppGpp levels were never as high as in wild-type 

strains. These findings offer the simple model structure given in Figure 2-5. It is suggested 

that both the functional RelA and SpoT proteins are essential for normal ppGpp 

accumulation, and that uncharged tRNAs are the main effectors for the regulation of their 

activities. In this way, carbon limitation could be indicated by low pools of amino acids as the 

metabolic signals and would finally lead to the stringent response. Following the 

nomenclature of catabolites (catabolite control), the amino acids could be termed anabolites 

since they are metabolites from the anabolism (see Fig. 2-5), which serve as the internal 

signal of an imbalance between catabolism and anabolism. 

Following the initial accumulation of the alarmone ppGpp, its level decreased during fed-

batch growth (Fig. 2-4a). Similar time profiles of the ppGpp concentration during the 

transition from exponential to slow growth were shown in batch (Cashel et al., 1996) and in 

fed-batch experiments (Teich et al., 1999). However, Teich et al. (1999) also concluded from 

a series of dilution rate shift experiments in continuous culture – shifting from high to low 

growth rates – that the ppGpp concentration increases with lower growth rates. Basal 

concentrations (below 0.2 µmol g-1) in the steady state after the shifts were quoted for this 

conclusion and the authors mentioned that initial accumulation of ppGpp could not be 

observed during the shift experiments at low growth rates. Therefore, it is obvious that in the 

aforementioned shift experiments a very fast response in ppGpp accumulation occurred (as 

described in the present work) and that the levels found in the steady state are basal levels 

after the initial accumulation. It can be concluded that after reaching the peak value the 

resetting of the signal to low basal levels occurs independent of the mentioned experimental 

designs (batch, fed-batch, continuous). This adaptive behavior might prepare the cells for the 

response to possible further limitation or stress conditions. However, it requires negative 

feedback mechanisms. A large network of possible reactions leading to the reset of the 

signal can be inferred from previous findings (see also Fig. 2-5): It is well known that the 

ribosome concentration is regulated by ppGpp. The protein biosynthesis rate and the 

demand for amino acids are thereby reduced (Fig. 2-3 and 2-2c). Additionally, amino acids 

are supplied through an enhanced protein degradation (St John and Goldberg, 1980). 
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Particularly the degradation of ribosomal proteins by the Lon protease was suggested to be 

enhanced via a ppGpp-dependent PolyP (polyphosphate) accumulation (Kuroda, 2006). The 

resulting higher levels of amino acids and thus of charged tRNAs diminish ppGpp synthesis 

by the RelA protein (Wendrich et al., 2002) and enhance the SpoT hydrolase activity (An et 

al., 1979; Richter, 1980). Consequently, the ppGpp level declines as observed during fed-

batch cultivation (Fig. 2-4a). Finally, the reduction of the ribosome concentration serves as a 

negative feedback regulation since the number of the RelA binding sites on the ribosomes 

(Wendrich et al., 2002) also decreases. The described model structure (Fig. 2-5) allows 

explaining the resetting the intracellular ppGpp level and the restoration of equilibrium 

between precursor supply in central carbon metabolism and precursor demand in the protein 

biosynthesis (see Fig. 2-2c). This is an important (secondary) regulatory effect of the 

stringent response as it applies feedback to the central metabolic pathways during growth-

limiting conditions. 

2.4.6 Signaling and Negative Feedback Regulation in Catabolite Repression 

The demonstrated accumulation of the intracellular cAMP concentration at the beginning of 

glucose limitation (Fig. 2-4b, lower graph) obviously results from the well known activation of 

the adenylate cyclase (CyaA) (Lengeler et al., 1999; Postma et al., 1993). Subsequently, the 

resetting of the signal to a low basal level was observed within 4 h of fed-batch growth. The 

importance of the cAMP signal for the regulation of the central carbon metabolism was 

already pointed out (crp modulon). In the following, the main components of the regulatory 

network contributing to the observed signal reset are discussed. There are at least five 

negative feedback regulation mechanisms, most of which involve gene products of the crp 

modulon (see also in Fig. 2-5): 

(i) cAMP synthesis is negatively regulated by Crp-cAMP-dependent repression of 

transcription of the cyaA gene (adenylate cyclase). 

(ii) cAMP degradation is positively regulated through activation of the transcription of the 

cpdA gene (cyclic 3',5'-AMP phosphodiesterase) by the Crp-cAMP complex, even 

though this is not a strong regulation (Zheng et al., 2004). 

(iii) The repressor protein Mlc is bound to the EIIBCGlc protein of the PTS. The 

phosphorylated EIIBCGlc protein releases the Mlc protein, which represses the 

transcription of the genes for the PTS (ptsHI-crr and ptsG) (reviewed in Plumbridge, 

2002). This results in a lower concentration of the EIIAGlc protein and therefore in 

minor activation of the cAMP-synthesizing enzyme CyaA. However, the PTS genes 
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are regulated by the Cra protein and the Crp-cAMP complex either positively or 

negatively (Keseler et al., 2009; Ramseier et al., 1993), depending on the conditions. 

(iv) Analogously, the transcription of the crp gene is regulated either positively or 

negatively by the Crp-cAMP regulator complex (EcoCyc database) depending on the 

intracellular cAMP concentration (Kremling and Gilles, 2001). 

(v) Most importantly, cAMP is exported in large quantities from the cells (Matin and 

Matin, 1982). Interestingly, Bhatnagar and Bhattacharya (1984) proposed that the 

number of cAMP carrier molecules for both uptake and export is regulated by the Crp-

cAMP complex. 

It has been mentioned, the alarmone cAMP is continuously synthesized and immediately 

exported. A strong export was observed particularly at the onset of limitation (Fig. 2-4b). It 

can be concluded that cAMP export is the major negative feedback regulation mechanism 

since this is a very fast-acting opportunity for resetting the intracellular signal compared to 

the aforementioned mechanisms that require transcriptional regulation. It might also be 

conceivable, that the uptake of extracellular cAMP attenuates the feedback regulation. 

However, the import is negligible in the experiments reported here. This could be ascertained 

by the dynamic simulation of the intra- and extracellular cAMP concentrations (data not 

shown). Furthermore, the question arises whether the low intracellular cAMP level (Fig. 2-4b, 

lower graph) can still be sufficient to activate the transcription of the crp modulon. Various 

additional mechanisms may be involved supporting the expression of the crp modulon, e. g. 

lower chromosome number at lower growth rates (Murray and Bremer, 1996) and an altered 

availability of RNA polymerase (Barker et al., 2001a; Barker et al., 2001b; Cashel et al., 

1996; Jensen and Pedersen, 1990; Traxler et al., 2006). 

2.4.7 Stoichiometric Metabolite Balancing 

The method of stoichiometric metabolite balancing applied in this work requires assumptions 

regarding stoichiometry and cofactor usage. It is known that, for instance, the use of NADPH 

as cofactor in the reaction of the enzyme isocitrate dehydrogenase (IcdA) affects the 

outcome of the flux split ratio between EMP and PPP (Schmid et al., 2004; Schmidt et al., 

1998), which was found to be 42 : 56 at a growth rate of μ  = 0.08 h-1
. A split ratio of 55 : 44 

was determined by Schaub et al. (J. Schaub, personal communication) in continuous culture 

of E. coli K-12 W3110 ( μ  = 0.1 h-1) and a split ratio of 54 : 44 was found at μ  = 0.09 h-1 in 

E. coli JM101 by Emmerling et al. (2002). The latter metabolic flux analyses were based on 
13C-labelling experiments, which do not rely on the mentioned assumptions. However, the 
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conclusions drawn in the present study concern the dynamic changes in metabolism. Trends 

in flux distributions were found to be similar or even more pronounced when using a different 

cofactor in the IcdA reaction (Table 2-3). Remarkably, the fluxes in the TCA cycle were even 

higher at low growth rates when using an NADH-dependent IcdA enzyme. This can be 

attributed to the decoupling of the TCA cycle from the NADPH consuming biosynthesis 

reactions, which have low rates (Fig. 2-3). Thus, the TCA fluxes should stay constant, or 

even increase in vivo, when the growth rate decreases. Ongoing work is directed at the 

confirmation of the results by isotopic instationary 13C metabolic flux analysis. This has not 

yet been applied in fed-batch experiments due to the given metabolic instationarity. 

2.5 Conclusions 

This work presents a systems-level analysis of the dynamic cellular response to carbon 

limitation. In accordance with the large experimental data set obtained from metabolic flux 

analysis the novelty of the work lies not in the discussion of the molecular details of 

regulatory mechanisms, but in the derivation of a comprehensive model structure comprising 

the most relevant components – the cra, crp and relA/spoT modulons – that can explain the 

observed dynamic metabolic and regulatory response including the resetting of the signals. 

According to the model the regulation of glycolysis, the TCA cycle and the glyoxylate shunt 

by the cra and crp modulons results in the balancing of the supply with precursors and 

energy. The relA/spoT modulon re-establishes equilibrium between the supply and demand 

of precursors and energy. Moreover, a new method for the qualitative estimation of the 

intracellular cAMP level was applied and the time course could be determined for the first 

time in E. coli K-12 fed-batch cultivations. A further novel result is the observed resetting of 

the alarmone levels after adaptation to carbon limitation. It could be clarified that the ppGpp 

concentration does not increase generally at lower growth rates as concluded by previous 

authors, but decreases fast to a basal level after the initial accumulation. The resetting of the 

signals after adaptation can be explained with the model, which reveals the key cell 

components assembling negative feedback loops. Finally, the signaling pathway of the 

stringent response was suggested to occur via amino acid limitation and therefore via both 

the RelA and SpoT protein. The proposed model structure represents the first step towards 

dynamic mathematical modeling of the central carbon metabolism and its regulation during 

fed-batch cultivation, which is in the focus of ongoing, challenging systems biology research.
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3 In vitro Synthesis and 
Characterization of Guanosine 3',5'‐
bis(diphosphate) (ppGpp) 
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Abstract 

The intracellular alarmone ppGpp has been thoroughly investigated over the last 40 years 

and has become one of the best-known effectors in bacterial physiology. ppGpp is also of 

great importance for biotechnological applications. Systems biology research, involving 

experimental and mathematical approaches, has contributed a great deal to uncovering the 

alarmone’s complex regulatory effects. HPLC analysis and UV detection are used to quantify 

intracellular ppGpp. The samples analyzed also contain other phosphorylated guanine 

nucleotides and are therefore spiked with a standard ppGpp solution. A rapidly growing 

number of laboratories are turning to synthesizing the nucleotide in vitro involving time-

consuming protocols and yielding only low amounts of ppGpp. The present work provides a 

protocol for the preparation of large quantities of a ribosome extract which contains high 

ppGpp synthesis activity. The demonstrated upscaling from shaking flask to bioreactor 

cultivation involves the continuous and refrigerated harvest of the biomass. 13C NMR analysis 

enabled the structural characterization of the synthesis product and was complemented by 

mass spectrometry and methods that are commonly used to identify ppGpp. 
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3.1 Introduction 

The tetraphosphorylated guanosine ppGpp was initially discovered in Escherichia coli where 

it acts as the intracellular mediator of the global regulatory system “stringent response”. It is 

also important for the physiological adaptation of numerous bacteria and even plants to 

environmental stress (Braeken et al., 2006; Cashel et al., 1996). Recent research has 

focused on the dynamics of intracellular ppGpp concentration and the mathematical 

modeling of the global regulatory effects, which makes important contributions to the 

understanding of technical production processes, survival under environmental stress as well 

as pathogenetic and symbiotic aspects (Braeken et al., 2006; Cserjan-Puschmann et al., 

1999; Hardiman et al., 2007; Lapin et al., 2006; Neubauer et al., 1995). ppGpp is usually 

quantified using HPLC analysis coupled with UV detection (Cserjan-Puschmann et al., 1999; 

Hardiman et al., 2007; Lin et al., 2004; Little and Bremer, 1982; Neubauer et al., 1995). 

Earlier publications applied 2D-TLC after radioactive labeling (Bochner and Ames, 1982; 

Cashel et al., 1969) and only one publication reports the structural identification using 13C 

NMR (Que et al., 1973). Biological samples often contain many other compounds that are as 

equally well retained by HPLC columns as ppGpp and that also have similar absorption 

spectra; for example the pentaphosphorylated nucleotide pppGpp. To enable the reliable 

identification of ppGpp, the samples are usually spiked with a standard ppGpp solution. 

There is, however, only one commercial source of ppGpp and even low amounts would be 

very expensive. The nucleotide is therefore synthesized in vitro by numerous laboratories 

(Artsimovitch et al., 2004; Barker et al., 2001b; Cashel, 1974; Cserjan-Puschmann et al., 

1999; Hardiman et al., 2007; Haseltine et al., 1972; Krohn and Wagner, 1995; Milon et al., 

2006; Oki et al., 1975; Wendrich et al., 2002) involving time-consuming protocols and 

yielding only low amounts of ppGpp. After that, the ppGpp preparation is often shared with 

other laboratories (see e. g. in Lin et al., 2004; Neubauer et al., 1995). The synthesized 

product is subsequently isolated and then characterized with HPLC coupled with UV 

detection or using 2D-TLC. 

The present study describes a protocol that enables the preparation of a large amount of a 

highly active ribosome extract, which can be used for the in vitro synthesis of ppGpp. The 

ribosome-containing biomass was produced in a 30 liter bioreactor. The upscaling of the 

preparation step of biomass production – from shaking flask to bioreactor cultivation – must 

ensure that during the biomass harvest process the ribosomal activity of the biomass is 

maintained. The work demonstrates that this can be achieved through the continuous and 

refrigerated harvest. The synthesis product was characterized by 13C NMR analysis and 

mass spectrometry as well as commonly used methods. 
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3.2 Results and Discussion 

The synthesis of ppGpp is catalyzed by the ribosome-associated RelA protein. High RelA-

dependent ppGpp synthesis activity is found in ribosomal extracts isolated from E. coli cells 

(Cashel, 1974; Haseltine et al., 1972; Krohn and Wagner, 1995). The cells are harvested 

from shaking flask cultures during exponential growth (Cashel, 1974; Haseltine et al., 1972). 

Due to very low cell densities and small reaction volume available in a shaking flask, only a 

very small amount of ribosomal extracts can be produced. Therefore, a batch cultivation of 

the wild-type bacterial strain Escherichia coli K-12 W3110 (DSM 5911, German Collection of 

Microorganisms and Cell Cultures, Braunschweig, Germany) was performed in a 30 liter 

bioreactor (Bioengineering AG, Wald, Switzerland) in 20 l of Luria-Bertani medium and 

10 g l-1 glucose to produce higher quantities of biomass. The process parameters were 

adjusted to the following values: dissolved oxygen concentration > 50 % saturation, pressure 

p  = 1.5 bar, temperature T  = 37 °C, pH 7, with 2 M H3PO4 or 2 M NaOH being used to 

adjust the pH value. The bioreactor was inoculated with a biomass concentration of Xc  = 

0.1 g l-1. The cell harvest was started at Xc  = 0.8 g l-1 and was completed before the end of 

the exponential growth phase ( Xc  < 5 g l-1). It should be possible to achieve higher cell 

densities with higher glucose concentrations. However, it is recommended harvesting the 

cells during the unlimited growth phase to produce biomass containing a high ppGpp 

synthesis activity. Otherwise, only low ppGpp synthesis activity will be found in the final 

ribosomal extract (data not shown). The reason for the higher activity found in the ribosomal 

extract of rapidly growing cells might be that a large fraction of 70S ribosomes dimerize to 

100S ribosomes, when cell growth is limited by the carbon source (Wada et al., 1990). 100S 

ribosomes show no translational activity (Wada et al., 1995). However, the translational 

activity of 70S ribosomes appears to be a prerequisite for the complex mechanism that leads 

to the RelA-mediated ppGpp synthesis (Wendrich et al., 2002) – a process that is not entirely 

clarified (Potrykus and Cashel, 2008; Srivatsan and Wang, 2008). The final ribosome extract 

of E. coli cells, harvested in the stationary phase, might therefore contain less catalytic 

activity, whereas information on how a high activity can be achieved is scarce. 

Continuous harvesting (flow rate F  = 0.22 ml min-1) involved the immediate cooling to 4 °C 

using a plate heat exchanger (6X-7PI*5, Tranter AG, Hildesheim, Germany), centrifugation 

(20,000 rpm; CEPA High-Speed centrifuge Z 41/G, Padberg, Lahr, Germany), freezing of 

aliquots in liquid nitrogen and storage at -70 °C. 
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Table 3-1 Identification of ppGpp and previously published analytical parameters 

Method Parameter Value Reference 

HPLC r a 1.19 This work 

HPLC , ,/R ppGpp R ATPt t
 

1.19 
(Cserjan-Puschmann et 

al., 1999) 

MS b /m z  602 This work 

Molecular weight rM
 

603 calculated 

UV 
maxλ

 
253 This work 

UV 253 nmλε =
 

12,700 l cm-1 mol-1 
(Cashel and Kalbacher, 

1970) 

a Relative retention, ' '
, , , ,/  /R ppGpp R ATP R ppGpp R ATPr t t k k= = , determined from the ratio of the adjusted 

retention time of ppGpp relative to that of ATP 

b Fragmentation of the molecule ion ( /m z  = 602) predominantly resulted in a fragment ion ( /m z  = 504). 

/m zΔ  = 98 was found to be specific also for the nucleotides ATP, ADP, GTP and GDP. 

 

 

Fig. 3-1 UV spectrum of in vitro synthesized ppGpp, recorded during HPLC analysis. Composition of the 

solvent during analysis: 39.8 % buffer A (0.1 M KH2PO4/K2HPO4, pH 6.0; 5 mM tetrabutyl ammonium dihydrogen 

phosphate; 5 M EDTA; pH 5.3) and 60.2 % buffer B (80 % of buffer A; 20 % acetonitrile, pH 5.9). 
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Table 3-2 13 C chemical shifts of the ribose carbons of guanosine and guanine nucleotides 

Compound 

δ (ppm) 

Reference 

C-1’ C-2’ C-3’ C-4’ C-5’ 

ppGpp 89.4 77.4 75.7 86.6 67.8 This work 

GDP 89.7 76.5 73.2 86.8 67.8 This work 

Guanosine 87.5 74.8 71.4 86.3 62.5 SDBS/RIO-DB (2008) 

ppGpp 106.1 119.2 117.9 109.2 127.7 Que et al. (1973) 

ppGpp a 89.8 76.7 78.0 86.7 68.2 Que et al. (1973) 

a chemical shifts of Que et al. (1973) were transformed using the equation 
2CS analyte mediumδ δ δ δ= − + , where 

the chemical shift given in the table, δ , is calculated from the chemical shift given by Que et al. (1973) ( analyteδ , 

in ppm upfield from CS2) and the chemical shift of carbon disulfide (
2CSδ  = 192.58 ppm, SDBS/RIO-DB, (2008)). 

mediumδ  = 3.3 ppm was introduced to account for the possible dependence of the chemical shifts on 

intermolecular interactions in the sample of Que et al. (1973) or in the sample of the current work, respectively. 

 

 

The cell pellets obtained were extracted according to the protocol of Haseltine et al. (1972). 

This involves the lysis of cells in a French press, removing the cell debris and 

ultracentrifugation with a two-step sucrose gradient. The resulting ribosomal extract was 

used for the in vitro synthesis of ppGpp from GDP and ATP as previously described by 

Krohn and Wagner (1995). 90 units of ribosomes/ml (A260) were the optimum amount for 

achieving a high yield of ppGpp per GDP employed (reaction conditions: 2 mM GDP, 4 mM 

ATP, 3 h, 27 °C on a shaker). A molar yield of 88 % was obtained, which is about 10 % 

higher than previously reported by Krohn and Wagner (1995). The new protocol therefore not 

only leads to high quantities of ribosomal extract, but also to a ppGpp synthesis activity that 

is at least as high as in the previously published protocols. 
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Table 3-3 13 C chemical shifts of the guanine carbons of guanosine and guanine nucleotides 

Compound 

δ (ppm) 

Reference 

C-2 C-4 C-5 C-6 C-8 

ppGpp 157.0 154.9 119.2 162.0 140.7 This work 

GDP 156.9 154.7 119.2 161.9 140.6 This work 

Guanosine 154.7 152.3 117.7 157.8 136.7 SDBS/RIO-DB (2008) 

ppGpp 38.9 41.5 76.8 34.2 55.2 Que et al. (1973) 

ppGpp a 157.0 154.4 119.1 161.7 140.7 Que et al. (1973) 

a see footnote of Table 3-2. 

The guanine nucleotide was purified according to the method of Krohn and Wagner (1995) 

using ion-exchange chromatography and subsequent gel filtration. The sample was 

subsequently analyzed using ion-pair reversed-phase HPLC with UV detection as described 

in Section 2.2.3 and published by Hardiman et al. (2007), 2D-TLC according to Bochner and 

Ames (data not shown) (1982), LC/MSn (Finnigan LCQDeca, Thermo Electron Corporation, 

San Jose, CA) and 13C NMR (ARX 500 spectrometer, Bruker, Rheinstetten, Germany). The 

results obtained and references are summarized in Table 3-1. The UV spectrum, recorded 

during HPLC/DAD analysis, shows the typical absorption maximum of guanosine nucleotides 

at a wave length of 253 nm (Figure 3-1 and Table 3-1). The recorded natural abundance 13C 

NMR data (250 MHz, D2O) are listed in Tables 3-2 and 3-3. To enable the comparison of the 

current analysis with the 13C NMR chemical shifts obtained for a ppGpp preparation by Que 

et al. (1973), the data of Que et al. (1973) were transformed (see Tables 3-2, 3-3). The 

transformed chemical shifts agree with the shifts obtained with the ppGpp preparation of the 

present work – with the exception of C-2’ and C-3’ of the ribose carbons. The guanosine 5’-

diphosphate (GDP; Fluka, Sigma-Aldrich Chemie GmbH, Buchs, Schweiz) employed as a 

reactant for in vitro synthesis was also analyzed (Tables 3-2, 3-3). The chemical shifts for 

guanosine are given as additional references (Tables 3-2, 3-3). The 13C chemical shifts of the 

ppGpp preparation of the current study correspond to the spectra of GDP and guanosine 

(Tables 3-2, 3-3). In contrast to C-3’ of GDP, the diphosphate group attached to carbon 3’ of 

ppGpp leads to a downfield shift of 2.6 ppm (Table 3-2). Similar downfield shifts of 2.5 to 3 
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ppm were previously reported by Uesugi et al. (1978) and Hesbain-Frisque et al. (1981) for 

the phosphorylation of C 3’ and 2’ of adenine nucleotides and fructose. Mantsch and Smith 

(1972) observed that the chemical shift of the C-3’ of uridine increases by 2.6 ppm after 

phoshporylation. This suggests that the 13C chemical shifts of δ = 77.4 ppm and 75.7 ppm 

may be assigned to the carbons C-2’ and C-3’, respectively, of the chemical structure of 

guanosine 3’,5’-bis(diphosphate) (Tables 3-2, 3-3). It should be mentioned, however, that 

additional proton resonance spectra recorded for GDP and ppGpp indicated that there were 

different proportions of the anomers in the reactant and the synthesis product. 

3.3 Conclusions 

Numerous laboratories studying the regulatory effects of the intracellular alarmone ppGpp in 

bacteria and plants spend a lot of time and material on the in vitro synthesis of the 

nucleotide. To increase the amount of ppGpp per preparation period, the upscaling from 

shaking flask to bioreactor cultivation, and consequently, the set-up of a biomass harvesting 

technique that preserves a high ppGpp synthetic activity in the final ribosomal extract, are 

needed. The protocol proposed in this work involves the cultivation of cells in a 30 liter 

bioreactor and the continuous and refrigerated harvest of the biomass, providing a large 

amount of ribosomal extract with high ppGpp synthesis activity. This increases the 

productivity of the preparation process, i. e. the amount of ribosomal extract obtained per 

preparation period. This is an important improvement since the ribosomal extract can be 

used for only one in vitro synthesis reaction (one batch) and cannot be recycled. The 

structures of the synthesized products are not usually analyzed. However, due to the 

presence of intracellular compounds with similar physical and chemical properties, it is 

strongly recommended using NMR spectroscopy or equivalent structural analyses such as 

LC-MS/MS for the unequivocal identification of ppGpp. LC-MS/MS analysis of other 

nucleotides has already been shown (e. g. in Luo et al., 2007) and could possibly be used to 

resolve the signals of the tetra- and pentaphosphorylated nucleotide. Reference data 

required for the identification of the alarmone are provided in this study, including the 

assigned 13C chemical shifts and the characteristic fragment ions for the possible LC-MS/MS 

analysis. 
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4 Global Transcription and Metabolic 
Flux Analysis in Glucose‐Limited Fed‐
Batch Cultivations 
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Abstract 

A time series of whole-genome transcription profiling of E. coli K-12 W3110 was performed 

during a carbon-limited fed-batch process. The transcription data described in this Chapter 

are results of a collaboration with the Institute of Technical Biochemistry (University of 

Stuttgart) and were published by Lemuth et al. (2008). The microarray analysis was 

performed by Karin Lemuth as part of her PhD thesis (Lemuth, 2006). 

The application of a constant feed rate led to the identification of a dynamic sequence of 

diverse carbon limitation responses (e.g. the hunger response) at the same time as providing 

a global view of how cellular and extracellular resources are used: the synthesis of high-

affinity transporters guarantees maximal glucose influx, thereby preserving the 

phosphoenolpyruvate pool. Energy-dependent chemotaxis is reduced in order to provide a 

more economic “work mode”. σS-mediated stress and starvation responses were both found 

to be of only minor relevance. Thus, the experimental setup provided access to the hunger 

response and enabled the differentiation of the hunger from the general starvation response. 

The topological model of the global regulation of the E. coli central carbon metabolism 

through the crp, cra and relA/spoT modulons (proposed in Chapter 2) is supported by 

correlating transcript levels and metabolic fluxes, and can now be extended. The substrate is 

extensively oxidized in the TCA cycle to enhance energy generation. However, the general 

rate of oxidative decarboxylation within the pentose phosphate pathway and the TCA cycle is 

restricted to a minimum. Fine regulation of the carbon flux through these pathways supplies 

sufficient precursors for biosyntheses. The pools of at least three precursors are probably 

regulated through activation of the (phosphoenolpyruvate-)/glyoxylate shunt. The present 

work shows that the detailed understanding of the genetic regulation of the bacterial 

metabolism provides useful insights for manipulating the carbon flux in technical production 

processes. 
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4.1 Introduction 

A wealth of information is available on transcriptome responses in Escherichia coli, which are 

triggered through various stress conditions, including the limitation of energy and carbon 

sources. However, surprisingly little is known about the dynamic variation of gene expression 

under the physiological conditions that are required for technical production processes. 

Knowledge of this, however, is of great importance because E. coli has become the most 

widely used prokaryotic system for the production of heterologous proteins as well as for the 

industrial production of bacterial metabolites. Batch and fed-batch operations are the major 

cultivation strategies used for this purpose. For large-scale applications, fed-batch, high cell 

density E. coli K-12 derivative cultivation strategies have proven suitable for considerably 

increasing the volumetric productivity of these processes (Lee, 1996; Yee and Blanch, 1992). 

Irrespective of more sophisticated closed-loop strategies, fed-batch cultivations are usually 

carried out with open-loop control via exponential or constant feeding. Exponential feeding 

maintains the specific growth rate at a constant level. The maximal biomass concentration 

that can be achieved with this strategy depends on sufficient oxygen supply and heat transfer 

capacities. At a constant feed rate, the specific growth rate gradually decreases due to 

declining carbon and energy source levels. The proceeding carbon limitation also leads to a 

range of serious starvation phenomena with manifold regulatory responses of the cells. 

These responses macroscopically manifest themselves in a loss of viability, such as was 

previously illustrated by Hewitt et al. (2000). 

Numerous experimental studies on transcription profiling have been carried out to 

characterize E. coli physiologically, in which a major focus has been put on the high cell 

density cultivation with an exponential feed rate, growth on different substrates and influence 

of regulatory proteins, diauxie or starvation [an overview was given by Lemuth et al. (2008)]. 

In spite of many physiological effects entailed by limited carbon concentrations, little is known 

about the thorough dynamics of regulatory events occurring in response to the proceeding 

carbon limitation during constant feeding conditions. Such knowledge, however, is essential 

for gaining a better understanding of the dynamic adaptation phenomena of E. coli during 

production processes. In the majority of investigations dealing with heterologous protein 

production, transcriptome data reflect a superposition of the effects of carbon limitation and 

foreign protein production. Therefore, valuable information on carbon limitation may be 

masked by other stress responses. A deeper insight into important regulation phenomena 

and the changes in metabolism in response to carbon limitation can therefore only be gained 

with investigations involving wild-type strains. Microarray data obtained from such 
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cultivations should also be directly compared with transient variations of the metabolic fluxes 

to support hypotheses concerning the regulation of metabolic reactions. 

One of the key regulation phenomena related to the onset of carbon limitation is what is 

known as stringent response, which is mediated by guanosine 3’,5’-bis(diphosphate) 

(ppGpp) (Cashel et al., 1996), a nucleotide derivative that affects the affinity of RNA 

polymerase to different promoters and hence transcription (Magnusson et al., 2005). 

Elevated ppGpp concentrations lead to the reduced synthesis of ribosomal proteins, stable 

RNAs (tRNA and rRNA) and biosynthesis enzymes for fatty acids and lipids, as well as 

proteins involved in DNA replication. On the other hand, ppGpp is a positive regulator of the 

alternative sigma factor synthesis (σS, encoded by the rpoS gene) and – presumably as a 

secondary effect – of amino acid biosynthesis (Barker et al., 2001a; Barker et al., 2001b; 

Cashel et al., 1996; Gentry et al., 1993; Loewen and Hengge-Aronis, 1994). 

At low glucose concentrations, the limited amount of energy will be exploited as efficiently as 

possible by activating high-affinity glucose transport systems and by tapping alternative 

carbon sources (Ferenci, 2001; Ihssen and Egli, 2005). This response is, among others, 

mediated by the crp modulon and occurs at the transition from the exponential growth to the 

stationary phase (Ferenci, 1996). The E. coli fructose repressor, FruR (Cra), modulates the 

direction of the carbon flow by repressing the genes involved in fermentative carbon flow and 

by activating the enzymes involved in oxidative and gluconeogenic carbon flow (Ramseier et 

al., 1995). Submicromolar glucose concentrations (below 0.1 µM (0.02 mg l-1)) induce 

starvation responses that are primarily mediated by σS, which binds to RNA polymerase and 

leads to higher stress tolerance levels (Ferenci, 2001; Hengge-Aronis, 2002), including the 

resistance to stress factors such as H2O2, oxygen radicals, drought, acidic/basic pH, osmotic 

stress and ethanol as well as heat and cold (Wick and Egli, 2004). 

However, little is known about the changes of the central carbon metabolism of E. coli K-12 

wild-type cells grown under glucose-limiting conditions, nor is the chronological sequence of 

the aforementioned regulatory responses known in detail. One reason for this is the quick 

succession of the different glucose limitation stages in batch cultivations. Rapidly declining 

glucose concentrations lead to temporary alterations in the transport activities which are 

difficult to investigate under these experimental conditions (Ferenci, 1999b). Continuous 

cultivations involving wild-type and mutant E. coli strains, however, allowed the adjustment of 

micromolar glucose concentrations and dilution rates and were therefore assumed to 

generate an exactly defined physiological steady-state that was stable over a long period of 

time. Nevertheless, subsequent experiments revealed that continuous cultivation conditions 

led to changes on the transcriptome and proteome level (Kovarova-Kovar and Egli, 1998; 
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Wick et al., 2001). In addition, the long-term carbon limitation during continuous culture 

conditions led to genomic mutations (Notley-McRobb and Ferenci, 1999). 

To shed further light on the sequence of bacterial responses induced at the transition from 

millimolar to submillimolar glucose concentrations, fed-batch cultivations of E. coli K-12 

W3110 were performed at a constant feed rate. As shown in Section 2.3.2, flux redistribution 

in the central carbon metabolism during carbon-limited growth results in a significantly lower 

biomass yield (Hardiman et al., 2007). The coordinate regulation of the expression of many 

genes encoding enzymes of the central carbon metabolism was proposed as the most 

relevant process governing the observed behavior. In the current work, DNA microarrays 

were used to gain a holistic view of the dynamic changes occurring on the transcriptome 

level. A major focus was not only put on the time sequence of rearrangements of various 

cellular functions (transport, central carbon metabolism, growth, chemotaxis, stress and 

starvation response) but also on discussing the effects of these changes on the availability of 

resources for growth and maintenance. Thus, the work provides a comprehensive overview 

of the potentially critical responses that can be expected during carbon-limited 

biotechnological processes, and which may have to be taken into account when rationally 

(i. e. through dynamic mathematical modeling) improving bacterial producer strains. 

 

 

Fig. 4-1 Glucose limited fed-batch cultivation of E. coli K-12 W3110 with constant feed rate and sampling for 

transcriptome analysis. The vertical solid line at t  = 0 indicates glucose limitation (as judged from the dissolved 

oxygen concentration time course (data not shown)). The concentrations of biomass ( ), glucose (▼) and acetate 

(□) are given as well as the time course of the specific growth rate ( ) (broken line). Arrows above the graph indicate 

the time when the samples were removed for microarray analysis (R, reference; T1 to T8, time series samples). 

μ



 

46 

4.2 Material and Methods 

Three independent fed-batch cultivations of E. coli K-12 W3110 (DSM 5911) were carried out 

in a 30-l bioreactor as described in Section 2.2.1 (Hardiman et al., 2007). The transcriptome 

analysis using DNA microarrays comprising 50mer oligonucleotides of all E. coli K-12 ORFs 

was performed by Lemuth et al. (2008). A sample of the unlimited growth phase from the 

batch phase of the cultivation process was chosen (see Figure 4-1 for details) as reference 

(R). This was hybridized on an array together with the sample of interest (T1 – T8) while 

different labeling agents were used (Cy3 and Cy5). This allowed the direct comparison of the 

transcripts of a time point of the series taken during fed-batch cultivation with the unlimited 

reference sample. Further experimental details were published by Lemuth et al. (2008). The 

data discussed in the present thesis have been deposited in NCBI’s Gene Expression 

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and are accessible through the GEO 

Series accession number GSE10307 (Barrett et al., 2007; Edgar et al., 2002). Additionally, 

Quantitative PCR was performed for selected genes (GEO, GSE10307) (Lemuth et al., 

2008). Results were in good agreement with the microarray data. The metabolic flux 

analyses were performed by stoichiometric metabolite balancing of five independent fed-

batch cultivations as described in Section 2.2.5 (Hardiman et al., 2007). 

4.3 Results and Discussion 

4.3.1 Fed‐Batch Cultivations 

Three independent fed-batch cultivation experiments applying a constant feed rate were 

performed to study the global physiological response of E. coli on gradually decreasing 

glucose concentrations. Technical details of these cultivations were described in Section 

2.2.1 (Hardiman et al., 2007). The extracellular glucose, acetate and biomass concentrations 

are depicted in Figure 4-1. In the batch phase (t < 0, Figure 4-1), acetate accumulated during 

the consumption of glucose (metabolic overflow). The fed-batch phase was started upon 

glucose limitation at the end of the batch phase (t = 0, Figure 4-1). The accumulated 

extracellular acetate was consumed at the beginning of the subsequent glucose-limited fed-

batch phase (t > 0, Figure 4-1). The constant feeding strategy applied led to a gradual 

decrease in the specific growth rate, μ  (Figure 4-1). The qualitative time course of the 

extracellular glucose concentration, obtained using a Monod-type kinetic, and the 

experimentally determined growth rate under the assumption of constant substrate affinity 

(Monod constant, SK  = 0.05 g l-1 (Xu et al., 1999b)) throughout the cultivation process, is 
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also given in Hardiman et al. (2007). The concentration was below 120 mg l-1 when the feed 

was started and decreased to at least 6 mg l-1 (Hardiman et al., 2007). However, particular 

rearrangements in the transport systems, which will be illustrated later [Section 4.3.3, 

“Transport Systems (I)”], led to changes in substrate affinity. The extracellular glucose 

concentration was therefore expected to be considerably lower during fed-batch cultivation. 

The biomass yield, /X SY , decreased by 20 % during fed-batch growth, while the 

maintenance energy coefficient, Sm , showed a steep increase (Hardiman et al., 2007). 

4.3.2 Experimental Design 

A time series of a global transcription analysis was carried out for three independent glucose 

limited fed-batch cultivations. cDNA samples were generated from the phase of unrestricted 

growth (reference sample R, Figure 4-1; batch) as well as from the carbon-limited growth 

phase (samples T1 to T8, Figure 4-1; fed-batch). These were hybridized to whole-genome 

microarrays of E. coli K-12, in which each sample was co-hybridized with a reference state 

sample (R, Figure 4-1). The individual samples corresponded to the following 

process/physiological conditions: T1, glucose limitation (cglc < 0.05 g l-1); T2, glucose 

limitation, acetate concentration ≤ 0.35 g l-1; T3, glucose limitation, 30 min after depletion of 

extracellular acetate; T4, glucose limitation, 50 min after depletion of extracellular acetate; T5 

to T7, glucose limitation, one hour intervals corresponding to the specific growth rates of 

0.16 h-1, 0.13 h-1 and 0.11 h-1; T8, glucose limitation, after seven hours of fed-batch growth (

μ  = 0.08 h-1). 

The transcription profile of 960 genes changed significantly in at least one point in time 

compared to the reference (GEO, GSE10307). 595 of these transcripts could be assigned to 

the physiological functions of the central carbon metabolism (glycolysis, Entner-Doudoroff 

pathway, pentose phosphate pathway, tricarboxylic acid cycle, glyoxylate shunt and 

respiration (58 transcripts)), transport (121 transcripts), anabolism (128 transcripts), 

catabolism and macromolecular degradation (51 transcripts), protein biosynthesis (81 

transcripts), cell division (16 transcripts), stress response (33 transcripts), flagellar and 

chemotaxis system (17 transcripts), regulation (48 transcripts), as well as to other proteins 

(44 transcripts). The remaining 365 transcripts coded for hypothetical proteins or for proteins 

of unknown function. A general overview of the observed behavior is given in Figure 4-2, 

which also summarizes the information discussed in the following sections. 
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Fig. 4-2 Global regulation of the E. coli K-12 W3110 metabolism during carbon-limited growth, derived from 

a genome-wide transcriptome and metabolic flux analysis. The regulatory processes that are most relevant for 

utilization of available intra- and extracellular resources are proposed. mRNA/flux levels: + , increase; − , 

decrease; = , invariable. Short dashed lines, transcriptional regulation; long dashed lines, signaling processes 

(regulation of protein activities: arrowhead, positive; blunt end, negative). (I) A cluster of high-affinity transporters 

is synthesized (mglBA, galP, lamB), while the activity of medium-affinity transporters is maintained. This is mainly 

due to their regulation by the Crp-cAMP complex, but also due to the effect of the transcriptional regulatory 

proteins, MalT, YeeI and Mlc (Figure 4-3b, c). The glucose flux entering the cell is directed via transporters that do 

not use pep for phosphorylation. This preserves the pool of this metabolite (homeostasis) and affects the 

EIIAGlc~P-dependent activation of cAMP synthesis through the enzyme adenylate cyclase (CyaA). (II) These 

transport systems in particular depend on a membrane proton gradient for proper function. The expression of the 

proton gradient-dependent chemotaxis system is reduced, thereby enabling the transport system effectively utilize 

the energy available. (III) The flux through the upper part of glycolysis is favored whereas the flux through the 

pentose phosphate pathway is minimized, which is most likely due to the reduced synthesis of gnd mRNA. The 

flux entering the pentose phosphate pathway is used for biosynthesis at the expense of the reflux into the 

glycolysis pathway, which might be regulated by the RpiA/Rpe split ratio. The reaction rates in the lower glycolysis 

decrease due to decreasing mRNA levels (cra modulon; signaling through fbp), thereby providing a sufficient, 

though minimal, efflux into the pentose phosphate pathway. The carbon flux entering the TCA cycle (influx is 

enhanced via gltA expression) is split into the glyoxylate shunt (GS), the pep-GS and the full TCA cycle. GS and 

pep-GS provide a better pep, pyr and oac precursor supply. It is assumed that the global regulation via the crp 

and cra modulons is the most relevant in this respect. (IV) Cellular growth is regulated predominantly by the 

stringent response (alarmone ppGpp, relA/spoT modulon). (V) No extensive induction of the general rpoS-

dependent response could be observed (opposing regulation via the crp and relA/spoT modulons). It is expected 

that slow substrate concentration changes do not trigger a strong starvation response. However, other stress 

responses were detected. Details are presented in the text. 
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4.3.3 Transport Systems (I) 

Existing transport systems involved in glucose uptake in E. coli have been reviewed by 

several teams of scientists (Ferenci, 1999a; Gosset, 2005; Postma et al., 1993). With respect 

to their affinity to glucose, these transporters are generally classified as high, medium and 

low. Moreover, the transporters are sometimes also classified according to their specific 

location (inner and/or outer membrane) or according to their specific mechanism (PTS-, 

ABC-, uni-, sym- or antiporter systems). Transport systems of high affinity (ABC-transport 

systems with low MK  values of < 10 µM), moderate affinity (pep [phophoenolpyruvate]-

dependent PTS transport systems, MK  values of 10 – 1000 µM) and of lower affinity (e. g. 

symporters with low MK  values ranging between 0.1 – 10 mM) are found in the inner 

bacterial membrane (Ferenci, 1996; Postma et al., 1993). Several porins, with either high or 

low affinities, are located in the outer cell membrane (Ferenci, 1996). 

Under glucose limited steady-state conditions, Ferenci (1996) found that E. coli 

predominantly expresses the high affinity transporters of the outer (e. g. porin LamB) and 

inner membranes (e. g. galactose ABC-transporter encoded by mglBAC). Such chemostat 

cultivations are of limited use for production purposes. Fed-batch strategies (either 

performed at constant or exponential feed rates) are often the method of choice. Since both 

strategies are based on limiting bacterial growth by varying the concentration of the 

substrate, it was important to further investigate whether a constant feed rate, which 

consequently results in decreasing glucose concentrations, would lead to a transportation 

behavior that was similar to that of chemostat cultures. 

The observed dynamic response caused by this feeding strategy is summarized in Figure 

4-3. The majority of transport systems involved in glucose uptake were differentially 

expressed during the fed-batch cultivation process. This was particularly so for the porin 

LamB (encoded by lamB; Figure 4-3a, b) which is a high–affinity glucose transporter located 

in the outer membrane. This particular porin was predominantly expressed during the first 

two hours of glucose limitation whereas the two other outer membrane porins encoded by 

the ompF and ompC genes were not affected (Figure 4-3b). 

The antiport system, GalP (galP), and two genes of the galactose ABC transporter (mglA and 

mglB), which transport glucose with high affinity (Ferenci, 2001), were also predominantly 

expressed during the first two hours of glucose limitation (Figure 4-3a, b). The differential 

expression of mglB was confirmed by real-time PCR (GEO, GSE10307). The mannose PTS 

system (encoded by manXYZ), which transports glucose with moderate affinity (Plumbridge, 
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1998), was preferentially expressed between the time points T1 and T6. It can be further 

assumed that the glucose PTS system was active during the entire glucose limitation period, 

since none of the respective mRNA levels (crr, encoding EIIAGlc, ptsG, encoding EIIBCGlc) 

decreased at all. It is interesting to note that the aforementioned differentially expressed 

ABC-transport systems and the GalP antiport system are unable to directly phosphorylate 

glucose during transport (Figure 4-3b). In accordance, the glucokinase-encoding gene 

(glucokinase is a protein that converts glucose to glucose-6-phosphate (Meyer et al., 1997)) 

was differentially expressed between T2 and T4. 

 

Fig. 4-3 Dynamic changes in transport RNA levels and their regulation in E. coli K-12 W3110 during 
glucose-limited fed-batch growth applying a constant feed rate. A: Sugar transport systems. B: Regulation of 

transporter gene expression. C: Expression of proteins relevant for the regulation of transporters. The time 

courses of the transcript levels are given for the samples T1 to T8 relative to the reference sample in the batch 

phase (R, see Figure 4-1). Green: mRNA level lower compared to the reference state. Red: higher mRNA level. 

Statistical significance (p ≤ 0.05) is indicated by asterisks. Glc: glucose; P: phosphoryl group. Node symbols 

(states): rectangle, gene; parallelogram, RNA; rounded rectangle, protein; filled rounded rectangle (black), 

regulator protein; filled rounded rectangle (grey), protein with differentially expressed mRNA. Arrow symbols: solid 

line, regulatory interaction; dash-dot-dot-dash line, transcription; dash-dot-dash-dot line, translation. Arrowhead 

symbols: filled arrow, transformation; blunt end, inhibition or repression; open arrow, activation; filled arrow with 

crossbar: transport. [The transcription data of this Figure are results of a collaboration with the Institute of 

Technical Biochemistry (University of Stuttgart) and were published by Lemuth et al. (2008). The microarray 

analysis was performed by Karin Lemuth as part of her PhD thesis (Lemuth, 2006).] 
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The topology of the stimulus-response cascade of the glucose transport system, exhibiting 

various feed-forward loops and involving the alarmone cAMP as a major internal signal, can 

be deduced from the observed time course of transcript levels (Figure 4-3b, c). In Section 

2.3.4 cAMP was demonstrated to be produced continuously when the external glucose 

concentration declined from 0.7 mM to at least µM concentrations at time point T8 (Figure 2-

4) (Hardiman et al., 2007). All glucose transport systems identified are positively regulated by 

the Crp-cAMP complex (Figure 4-3b, c) (Boos and Shuman, 1998; Weickert and Adhya, 

1993). Although the crp gene was not differentially expressed, the genes encoding the 

regulatory proteins MalT and YeeI (Figure 4-3c) were. MalT generally regulates the 

expression of transport systems (Cole and Raibaud, 1986) and underwent active 

transcription (Figure 4-3b, c). The Crp-cAMP complex enhances the expression of this gene 

(Figure 4-3c). Finally, MalT positively regulates the expression of transport proteins such as 

MalK, LamB and MalM (Boos and Shuman, 1998). LamB transcripts were differentially 

expressed (see Figure 4-3b). Mlc regulates several genes that are involved in glycolysis and 

glucose uptake. In particular, it represses genes of the glucose-specific PTS system (ptsG, 

ptsHI-crr), the regulatory protein MalT and the manXYZ operon (Bohm and Boos, 2004; 

Gerber et al., 2005; Plumbridge, 1998) (Figure 4-3b, c). The repressor protein Mlc interacts 

with the dephosphorylated PtsG protein (which is the EIIBGlc subunit of the glucose-specific 

PTS-transport system) at non-limited growth conditions and can repress MalT. In the present 

investigation, the glucose concentration seemed not to be low enough to lead to the 

inactivation of MalT (Figure 4-3b, c). Thus, the repressor remained inactive, which might 

explain the absence of further changes in the glucose-specific PTS-transcript levels during 

carbon-limited conditions at fed-batch cultivation. Recently, Jahreis and colleagues (Becker 

et al., 2006) identified the YeeI protein (now designated MtfL, Mlc titration factor) which, if 

present, interacts with Mlc, thereby leading to its inactivation. Elevated levels of YeeI-RNA 

transcripts were observed over the whole period (Figure 4-3c) analyzed. Therefore, Mlc 

seems to be under the dual control of YeeI and phosphorylated PtsG, two proteins that make 

sure that Mlc is inactivated under the examined growth conditions. 

It seems that the inferred genetic regulatory network (Figure 4-3b, c) provokes the 

preferential expression of the high-affinity transporters GalP and Mgl, while, at the same 

time, medium-affinity transporters such as the glucose-dependent PTS system remain active 

(Figure 4-2). These physiological refinements are important for sustaining the maximal influx 

of glucose. In the present investigations, a gradually decreasing glucose flux was observed 

during the ongoing fed-batch process [see Section 4.3.4, “Central Carbon Metabolism (II)”]. 

This phenomenon is due to the constant feed rate chosen to technically control the glucose 

uptake rate. 
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The specific refinement of the transport system to rather high-affinity systems might also be 

of relevance in terms of homeostasis: The limited availability of glucose also reduces the 

metabolic flux through glycolysis (see below). Consequently, the pools of crucial metabolites 

such as pep, which plays an intermediate role between energy supply and anabolism, might 

drop to critically low concentrations. The refined (high-affinity) system predominantly consists 

of ABC-, sym- or antiporter proteins, which are altogether ATP-dependent, rather than of 

pep-dependent PTS systems of medium affinity (Figure 4-3a). It can therefore be assumed 

that the glucose flux is directed via ATP-dependent transporter systems and that pep mainly 

serves as precursor for anabolic purposes (Figure 4-2). Moreover, the pep pool is important 

for the Crp-cAMP complex-mediated regulation as it determines the phosphorylation state of 

the PTS system (Figure 4-3a). At high pep levels, cAMP synthesis, which is catalyzed by 

adenylate cyclase (CyaA), is activated via the phosphorylated protein EIIAGlc~P (Figure 4-

3a). As described in Chapter 2 and by Hardiman et al. (2007), a maintained pep pool, 

accompanied by the low flux via pep-dependent transporters, might thus lead to continuous 

cAMP synthesis (and export) during fed-batch growth (Figure 4-2). 

In addition to the refined glucose uptake system, the expression of proteins that transport 

other substances indicates the bacteria’s reorganization abilities, which adapt the E. coli 

metabolism to altered environmental conditions: in total, at least 121 transcripts of proteins 

involved in transport processes of sugars, amino acids, fatty acids and ions were 

differentially expressed in response to declining glucose concentrations (see supplemental 

material in Lemuth et al., 2008). 

4.3.4 Central Carbon Metabolism (II) 

As mentioned above, the dynamic behavior of the central carbon metabolism of E. coli K-12 

and its regulation at glucose-limiting conditions are not yet understood in detail. Metabolic 

flux analyses of Escherichia coli K-12 W3110 showed that glycolysis and pentose phosphate 

pathway fluxes decreased strongly while the fluxes in the TCA cycle remained constant 

(Chapter 2) (Hardiman et al., 2007). This behavior was attributed to the regulation of the 

expression of many genes of the central carbon metabolism by the crp, cra and relA/spoT 

modulons. In the present investigation, the time courses of the transcript levels could be 

determined for the genes of the central carbon metabolism (Figure 4-2 and 4-4). These were 

compared with the metabolic fluxes and provided substantial evidence for the regulatory 

model structure suggested in Chapter 2 (Hardiman et al., 2007). 
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Fig. 4-4 Time series of DNA microarray and metabolic flux analyses of the central carbon metabolism in 
E. coli K-12 W3110 during glucose-limited fed-batch growth applying a constant feed rate. The time courses of 

the transcript levels are given for the samples T1 to T8 relative to the reference sample in the batch phase (R, see 

Figure 4-1). Green: mRNA level is lower than that at the reference state. Red: higher mRNA level. Statistical 

significance (p ≤ 0.05) is indicated by asterisks. The metabolic fluxes are given for the following times: t = - 0.3 h 

(batch), t = 3.9 h and t = 7.7 h (fed-batch; see Figure 4-1). Fluxes are mean values from the stoichiometric 

metabolite balancing of five independent cultivations and are given as molar percentages of the glucose influx. 

Notation according to Appendix C (Hardiman et al., 2007). [The transcription data of this Figure are results of a 

collaboration with the Institute of Technical Biochemistry (University of Stuttgart) and were published by Lemuth et 

al. (2008). The microarray analysis was performed by Karin Lemuth as part of her PhD thesis (Lemuth, 2006).] 
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Glycolysis (EMP) and pentose phosphate pathway (PPP). Glucose influx decreased 

dramatically during fed-batch growth as a result of constant glucose feeding (Hardiman et al., 

2007). In order to determine the changes in metabolic fluxes that could not be attributed to 

the general flux decrease in the network, the glucose influx was taken as reference value 

and set to 100 % at each point in time (Figure 4-4). In response to the limited carbon supply, 

the expression of the majority of the glycolysis transcripts decreased considerably, whereas 

the number of isoenzyme transcripts increased (pfkA, fbaB and gpmB, Figure 4-4). 

Apparently, enzyme levels are downregulated according to the decreased flux caused by 

constant feeding. Considering the reduction of the reaction rates, ( )max,i i jr r f c= ⋅ , it can be 

assumed that the downregulation of the enzyme levels (i. e. maximal reaction rates, maxr ) 

leads to constant metabolite concentrations, jc  (homeostasis). The reactions catalyzed by 

the PTS system, 6-phosphofructokinase (PfkA), pyruvate kinase (PykF) and pyruvate 

dehydrogenase (PDH) have high flux control coefficients (Chassagnole et al., 2002). 

Therefore it can be expected that the respective enzyme levels are regulated. It is known that 

most of the glycolysis genes that are less transcribed (Figure 4) are repressed by the global 

regulator protein Cra: pfkA, fbaA, pgk, pykF, gapA and eno (cf. EcoCyc database, Keseler et 

al., 2009; Shimada et al., 2005). Moreover, the enzymes PfkA and PykF were less active 

during glucose limitation (Siddiquee et al., 2004). The Cra protein is inactivated by the 

metabolite fructose 1,6-bis(phosphate) (fbp) (Ramseier, 1996), whose level decreases during 

carbon-limited growth and signals the absence of glucose (Chapters 2 and 7) (Hardiman et 

al., 2007). This leads to the Cra-dependent repression of glycolysis genes and also to the 

flux decrease observed (Figure 4-4). It is therefore proposed that the observed behavior is 

regulated by the cra modulon (Figure 4-2). This results in sufficient, though minimal, efflux 

into the pentose phosphate pathway, thereby maintaining the cell’s supply with biosynthesis 

precursors. 

However, the flux into the pentose phosphate pathway decreased more than the fluxes into 

the glycolysis pathway (EMP/PPP split ratio, Figure 4-4). In accordance, the flux fraction via 

the upper part of glycolysis (from g6p [glucose 6-phosphate] to gap [glyceraldehdye 3-

phosphate]) increased during carbon limited growth at the expense of the flux via the 

pentose phosphate pathway (g6p to f6p and gap; Figure 4-4). It is expected that the PPP flux 

is controlled via regulation of a reaction catalyzed by 6-phosphogluconate dehydrogenase 

(Gnd), i. e. one of the two irreversible reaction in the PPP, which can operate as control point 

between the oxidative and the non-oxidative branch of the PPP (Sprenger, 1995). It is 

already known that the amount of Gnd protein is determined primarily by the rate of 

transcription initiation (Pease and Wolf, 1994; Wolf et al., 1979). It is assumed that the 
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amount of Gnd correlates with the growth rate (Pease and Wolf, 1994; Wolf et al., 1979). 

However, this has so far only been shown for balanced growth experiments with e. g. acetate 

or glucose as carbon and energy source (Pease and Wolf, 1994; Wolf et al., 1979). During 

fed-batch cultivation, the transcript level of gnd decreased considerably (Figure 4-4), which 

substantiates the assumption of its correlation with the specific growth rate. The underlying 

regulatory mechanism has, however, not yet been clarified. Even more difficult is the 

situation with the second irreversible reaction catalyzed by the glucose 6-phosphate-1-

dehydrogenase (Zwf). Rowley and colleagues found that the zwf transcription rate also 

varied with the type of substrate used (Rowley et al., 1991). In contrast, the gene was not 

differentially expressed during fed-batch growth. The lower gnd mRNA levels are in 

accordance with an increase in the flux fraction via the upper glycolysis part (Figure 4-4). It is 

therefore assumed that the negative regulation of gnd transcription is a key parameter for 

understanding the observed differences in the EMP/PPP split ratio (node g6p, Figure 4-4; 

Figure 4-2). In addition to this, there are also several factors that fine tune the activities of the 

PPP enzymes, e. g. the NADP+/NADPH ratio and the fbp, g6p and ribu5p concentrations 

(Keseler et al., 2009; Sahm et al., 2000). The regulation of PPP enzymes is expected to 

minimize the oxidation rate of the substrate and reduce the efflux into biosyntheses to a 

minimum. 

Moreover, higher rpiA and lower rpe mRNA levels could be detected during fed-batch growth 

(Figure 4-2 and 4-5). The corresponding fluxes were in accordance with the gene expression 

levels (Figure 4-4): the RpiA flux (from ribu5p [ribulose 5-phosphate] to x5p [xylulose 5-

phosphate]; enzyme: ribose 5-phosphate isomerase A) decreased less than the Rpe flux 

(ribu5p to r5p [ribose 5-phosphate]; enzyme: ribulose phosphate 3-epimerase). The splitting 

of the flux at the node ribu5p (RpiA/Rpe) is also reflected in the ratio of the efflux into 

biosyntheses (r5p to prpp [5-phosphoribosyl 1-pyrophosphate]) and the flux re-entering EMP 

(x5p to f6p and gap), which increases during carbon-limited growth (0.67, 0.70 and 0.73; 

Figure 4-4). In other words, the flux that enters the pentose phosphate pathway is 

preferentially directed towards biosynthesis. Although it is assumed that RpiA and Rpe 

protein level regulation is unimportant for the control of the overall flux through the central 

carbon metabolism (Chassagnole et al., 2002; Kummel et al., 2006), the regulation of the 

RpiA/Rpe split ratio might fine tune the efflux into the nucleotide, histidine and tryptophan 

biosynthesis pathways (Figure 4-2). Simulation of the glycolysis and PPP using the model of 

Chassagnole et al. (Chassagnole et al., 2002) and varying the rmax-values of the two 

reactions confirmed this assumption and suggested that the high rpiA mRNA level (Figure 4-

4) could play a major role (data not shown). However, little is known about the regulation of 

the respective genes (Fraenkel, 1996; Keseler et al., 2009; Sprenger, 1995). 
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TCA cycle and glyoxylate shunt (GS). In Section 2.3.2 it was detailed that the reaction rates 

in the TCA cycle remained constant during glucose-limited fed-batch growth, and were 

regarded as a major reason for the substantial decrease in the biomass yield (Hardiman et 

al., 2007). The existing knowledge about the modular regulation of the enzymes of the 

central carbon metabolism was integrated into a comprehensive and global structure 

(Section 2.3.2) (Hardiman et al., 2007). Within this systems oriented picture it is assumed 

that the Crp-cAMP complex (strong increase in cAMP) activates the expression of TCA cycle 

genes in a coordinated manner (Chapter 2) (Hardiman et al., 2007). It is supposed further 

that the Cra regulator protein activates the transcription of GS genes. These hypotheses are 

supported through findings obtained with microarray analyses (Figure 4-2 and 4-5). The 

relatively high influx into the TCA cycle is most likely due to a higher GltA enzyme level since 

the GltA mRNA level is much higher (Figure 4-4). The regulation of the GltA protein level for 

the major control of the flux into the TCA cycle has also been predicted from thermodynamic 

analyses (Kummel et al., 2006). In general, the expression of TCA cycle genes was 

considerably higher during fed-batch conditions, in particular of those genes whose 

expression is positively regulated by the Crp-cAMP complex (gltA, acnB, sucABCD, 

sdhCDAB, Figure 4-4). A considerable increase in the expression of GS genes was also 

found (aceB and aceA, Figure 4-4), suggesting that the products of the gltA, acnB and 

sdhCDAB (Figure 4-4) genes are also involved in GS. It must therefore be assumed that a 

large fraction of the flux entering the TCA cycle must be directed into the glyoxylate shunt. 

The phosphoenolpyruvate(pep)-glyoxylate cycle (pep-GS) is another alternative cycle for 

substrate oxidation (Fischer and Sauer, 2003). This cycle involves the flux through the GS 

and the cycling of oxaloacetate (oac) to pep, catalyzed by pep carboxykinase (PckA). 

Although the pckA gene was not differentially expressed in microarray experiments, 

quantitative PCR analysis nevertheless showed that the gene transcript was more abundant 

during fed-batch growth (GEO, GSE10307). In E. coli MG1655, the flux ratio of TCA : GS : 

pep-GS was determined as 1.1 : 1.5 : 1.0 at μ  = 0.12 h-1 (Fischer and Sauer, 2003) or 0.9 : 

1.1 : 0.2 in a derivative of MG1655 (Nanchen et al., 2008). These data suggest that the close 

relative E. coli K-12 W3110 also uses these cycles. Considering the cycles’ functions, it 

seems likely that the maintenance of the oac, pep and pyruvate precursor pools are a major 

goal of the behavior observed, besides supplying the cells with sufficient metabolic energy. 

The importance of the pep pool for the import of glucose and the synthesis of the signaling 

molecule cAMP was already highlighted in Section 4.3.3 [“Transport Systems (I)”]. Another 

benefit for the cells could be seen in the reduced oxidation of the substrate and the reduced 

production of NADPH (via isocitrate dehydrogenase, IcdA), which is not needed in high 

amounts due to the slower growth of the cells. 
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4.3.5 Chemotaxis and Flagellar System (III) 

Chemotaxis is a phenomenon describing bacterial movement along the concentration 

gradient of certain chemicals (see Eisenbach, 2007 for further details). Chemotaxis helps the 

bacteria to detect food sources by swimming towards the highest concentration of food 

molecules (for example, glucose). E. coli has flagella that principally rotate in two opposing 

ways, enabling the bacteria to change directions. More than 50 genes are required for the 

synthesis and function of the E. coli flagellar and chemotaxis system (Chilcott and Hughes, 

2000). These genes, which belong to 17 operons, constitute a regulon within which the 

operons are grouped into three temporally regulated, hierarchically organized transcriptional 

classes: early, middle and late. 

The use of laboratory-scale bioreactors guarantees homogeneously mixed cultivation media 

at any time. Therefore, different regulatory responses, which are due to local substrate 

gradients, seem to be irrelevant for these bioprocesses. On the other hand, the chosen 

feeding strategy leads inevitably to the above mentioned time profile of limiting glucose 

concentration. Therefore, it was investigated whether this feeding strategy might lead to a 

global stimulus of the chemotaxis response. 

As shown in Table A4-1 (Appendix D), nearly 50% of all genes known to be involved in the 

chemotaxis and flagellar system were affected during the entire cultivation process. The 

chemotaxis system seemed to be active during the non-limiting exponential growth phase. 

Over time, the majority of chemotaxis genes were transcribed to a lesser degree (Table 

A4-1, Appendix D). The number of transcripts of one of these genes, the dual regulator flhD, 

which is responsible for initiating the chemotaxis system, was reduced as early as T2, and 

subsequently followed by middle and late class genes (Table A4-1, Appendix D). It can 

therefore be assumed that the entire functional flagellar system is displaced from the cell 

under enhanced carbon limitation (e. g. at T3, when external acetate has been consumed). 

As demonstrated in Figure 2-4 (Section 2.3.4), the intracellular cAMP levels rose 

considerably at the beginning of glucose limitation (Hardiman et al., 2007). This coincided 

with the time when the transcript levels of the chemotaxis genes were reduced (Table A4-1, 

Appendix D). The specific role of the alarmone cAMP in bacterial chemotaxis has been under 

debate for many years. Initially believed to be directly involved in chemotaxis (Black et al., 

1983), the role of cAMP in chemotaxis was later refuted or attested barely an “indirect” role 

(Tribhuwan et al., 1986). Chemotaxis and the glucose-specific PTS system, however, share 

some common structural elements such as the proteins EI, EII and HPr. Since these proteins 

are part of the cAMP synthesis pathway, it might be speculated that these elements are 
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crosslinked through the alarmone cAMP. The presented transcriptome data support previous 

findings published by Soutourina (1999) who put forward the idea about the multiple control 

of flagellar biosynthesis. In this context, the transcription control of the early class master 

operon, flhDC, through the global regulator protein H-NS and the Crp-cAMP complex are of 

particular importance. At T2, H-NS expression was increased while fewer flhD transcripts 

were found (Table A4-1, Appendix D). 

A further issue to be addressed in the discussion about downregulation of the chemotaxis 

refers to the proton gradient. Chemotaxis depends on a steep proton gradient between the 

periplasmatic space and the cytoplasm [reviewed by Berg (2003)]. Transport phenomena, 

however, also depend on proton gradients amongst others. The experimental observation of 

the opposite direction in the gene regulation of chemotaxis and transport systems could be 

interpreted as the result of a competition, in which the more effective transport of extant 

sugar or further energy supplying compounds seems to be more important than the 

chemotaxis. 

4.3.6 Cell Growth (IV) 

The specific growth rate decreased strongly during fed-batch cultivation (Figure 4-1). 128 

genes coding for anabolic enzymes and the salvage pathway were differentially expressed at 

at least one point in time [see “Supplemental Material” in (Lemuth et al., 2008) for details]. 

The investigation suggests that the cells carefully utilized the available external and internal 

resources for their growth. It can therefore be assumed that the capacity of synthesizing 

recombinant proteins and metabolites decreases under constant feeding conditions. 

Exponential feeding might have a positive effect although this strategy is also based on the 

limitation of the carbon source. 

Monomer synthesis. Glucose limitation led to the reduced synthesis of mRNAs of genes 

required for the biosynthesis enzymes of various monomers (amino acids, fatty acids, 

carbohydrates, nucleotides) as well as of coenzymes and prosthetic groups (Figure 4-2) 

[“Supplemental Material”, (Lemuth et al., 2008)]. Although much is known about the 

regulation of the respective genes through the stringent response, further clarification of the 

mechanisms and their directionality (i. e. positive or negative) is still necessary (Cashel et al., 

1996). 

Polymer synthesis (cell composition, cell mass). Most of the genes involved in protein 

biosynthesis (ribosomal proteins, RNA polymerase subunits, ribosomal assembly, protein 

maturation, RNA modification and aminoacyl-tRNA synthetases) were transcribed to a lesser 
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extent (Figure 4-2) [“Supplemental Material”, (Lemuth et al., 2008)]. 78% of the genes 

encoding ribosomal proteins were transcribed to a lesser extent. The gene for the 30S 

ribosomal subunit protein S22 (encoded by rpsV) is expressed at higher levels during the 

stationary phase (Izutsu et al., 2001) and was transcribed more actively during the fed-batch 

period. Most of the underlying regulatory mechanisms are well known and can be assigned 

to the stringent response (Cashel et al., 1996). It can be safely assumed that these 

mechanisms lead to a change in the macromolecular composition of the cell. 

Cell division. 16 genes coding for cell division enzymes (Figure 4-2) [“Supplemental 

Material”, (Lemuth et al., 2008)], whose transcript levels decreased (e. g. ftsAZ, tig, seqA) 

were identified; the number of transcripts of cell division inhibition enzymes increased 

(minCD and cspD). 

Macromolecular degradation. 51 genes coding for enzymes that degrade carbohydrates, 

amino acids, fatty acids, nucleic acids and nucleotides were differentially expressed at at 

least one point in time under glucose limiting conditions (Figure 4-2) [“Supplemental 

Material”, (Lemuth et al., 2008)]. 

4.3.7 Stress and Starvation Response (V) 

According to Ferenci (1996), the nutritional state of bacteria can be separated into “feast” 

(glucose-rich) and “famine” (glucose-starved). The physiological response of E. coli to 

glucose limitation provides evidence for the further separation between “hunger” and 

“starvation” responses (Ferenci, 2001). Ferenci assumed that the rapid sequence of hunger 

and starvation responses occurred when the batch cultures were grown until depletion of a 

nutrient during conventional “starvation” experiments. The fed-batch procedure chosen in the 

present study enabled the investigation of the dynamic decline of the growth rate due to the 

decreasing glucose levels. This might provide further insights in support of Ferenci’s 

hypothesis. This is not only of pure academic interest because the majority of production 

processes (e. g. high cell density cultivations for recombinant protein, amino acid or 

antibiotics production) are performed under these stress conditions and may hence suffer 

from stress-related protein turnover. 

It is generally assumed that the starvation response occurs during the stationary phase, 

which is characterized by a complete exhaustion of nutrients (C, N, P, or S) and which is 

mediated by the stationary phase sigma factor (σS, encoded by rpoS) (Hengge-Aronis, 1993). 

Weber et al. (2005a) carried out global transcription analyses and identified 140 genes as a 

core set of σS-regulated genes. In the present fed-batch experiment, only 18 of these genes 
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showed elevated transcript levels, at least at one point in time (Table A4-2, Appendix D). 

This number corresponds to 2 % of all genes identified in the present study. This implies that 

carbon limitation and the concomitant stringent response do not necessarily lead to the σS-

mediated stress response during glucose-limited growth (Figure 4-2). However, 33 genes 

associated with stress conditions (heat and cold shock or oxidative stresses) were 

differentially expressed (Figure 4-2; Table A4-3, Appendix D). Only three of these genes 

(hdeA, recF and yhiO) are regulated by the sigma S factor (Table A4-4, Appendix D). 

The alarmone ppGpp has a positive effect on rpoS-transcript levels (Gentry et al., 1993) 

while the Crp-cAMP complex inhibits rpoS transcription. The concentration of these two 

alarmones is elevated during glucose limitation (Figure 2-4, Section 2.3.4) (Hardiman et al., 

2007). It has already been suggested that these opposing regulations could result in the 

reduction of rpoS transcription during glucose-limited growth in bioreactors (Lapin et al., 

2006). However, other known regulatory mechanisms may also be worth considering 

(Hengge-Aronis, 1993). 

The global regulator LrhA seems to diminish the σS level (Peterson et al., 2006). In the 

present study, an increase of the lrhA mRNA level was observed at T3 until the end of the 

cultivation (Table A4-1, Appendix D). The effect of LrhA on the σS level might be a reason for 

the lack of a σS response. The increased transcription of the gobal regulator protein H-NS 

from T3 to T6, might be an explanation for the lack of a σS-mediated response. H-NS binds to 

rpoS mRNA and enhances its cleavage (Brescia et al., 2004). However, one needs to keep 

in mind that all of these effects are balanced and lead to constant rpoS transcript levels. 

The global transcription analysis presented in this study confirms the findings of Teich et al. 

(Teich et al., 1999) who suggested that slow glucose concentration changes significantly 

increase the cell’s ability to adapt to new physiological states without using the 

rearrangements mediated by the σS-stress response. Therefore, it may be concluded that the 

strategy of constant nutrient feeding contributes mainly to the hunger state but is less 

important in terms of the cells’ stress-induced starvation. 

4.4 Conclusions 

The current contribution globally analyses time-dependent transcript and metabolic flux 

levels in E. coli K-12 W3110 fed-batch cultures. It was possible to simultaneously track the 

carbon limitation responses (in the transport systems, intermediary metabolism, growth-

related functions, chemotaxis and stress), which illustrates the power of the applied 

experimental setup. The constant feeding strategy also provided an appropriate approach for 
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separating the time-dependent events during the transition from exponential growth to strong 

carbon limitation. The novelty of this work arises from the integration of the dynamic 

transcriptional, metabolic and regulatory responses into a comprehensive hypothetical model 

(Figures 4-2 and 4-3b, c), pinpointing the impact of these variations on the general 

employment of the available cellular resources. 

In Chapter 2 the flux redistribution during carbon-limited growth was shown to result in a 

significantly lower biomass yield, which is mainly due to the oxidation of the substrate in the 

TCA cycle for the generation of energy (Hardiman et al., 2007). The current findings led to 

the hypothesis that the general rate of oxidative decarboxylation can be limited by regulating 

the EMP/PPP, RpiA/Rpe and TCA/GS/pep-GS split ratios. Accordingly, an optimal carbon 

and energy balance of the central carbon metabolism (homeostasis) will be achieved. 

Nevertheless, the split ratios need to be investigated in more detail in order to validate the 

results from the above-mentioned stoichiometric metabolite balancing method. Flux analyses 

using isotopic transient 13C-labelling data may be the method of choice as they have become 

technically possible for fed-batch processes (Maier et al., 2008; Noh et al., 2007; Schaub et 

al., 2008). 

The results obtained in this investigation strongly support the hypothetical regulatory model 

structure put forward by Hardiman et al. (2007) (Chapter 2). Many other regulatory 

mechanisms might have minor effects on the E. coli metabolism (Chapter 2) (Hardiman et 

al., 2007), particularly in case of fed-batch processes of recombinant E. coli strains; however, 

the global genetic regulatory systems discussed are considered as most relevant for the 

control of the behavior during carbon-limited growth. This model, which is an extension of the 

previous dynamic metabolic model of Chassagnole et al. (2002), is the basis for the ongoing 

research relating to the mathematical modeling of the dynamics occurring in the central 

carbon metabolism of Escherichia coli K-12 W3110. The work provides a step forward 

towards the more detailed understanding of the impacts of carbon limitation on metabolic 

activities that must be taken into account when optimizing biotechnological processes. For 

example, the regulation of flux splitting might be an appropriate target for counteracting the 

excessive loss of carbon and energy in carbon-limited processes via oxidative 

decarboxylation, and thus for the optimization of the yield of biomass, recombinant proteins 

and other products. 
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5 Quantification of rRNA using 
Capillary Gel Electrophoresis with 
Laser‐Induced Fluorescence 
Detection 
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Abstract 

Over the last ten years, sophisticated, powerful techniques have been developed for the 

quantification of mRNA and rRNA, thus enabling researchers in science, industry and 

molecular medicine to explore gene expression. These techniques require the (reverse) 

transcription of analyte RNA, hybridization with synthetic oligonucleotides and other 

additional steps, which makes them costly, time-consuming and quantitatively difficult to 

perform. The current work demonstrates how 16S and 23S rRNA can be precisely quantified 

using capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) 

directly after the extraction of total RNA, without requiring further reactions or calibration. 

CGE-LIF is normally used for the qualitative examination of RNA preparations. Its 

quantitative performance could be significantly improved using MS2 bacteriophage RNA as 

an internal standard. The entire analytical procedure was validated for linearity, repeatability, 

reproducibility and recovery. This validation also included total RNA extraction from bacterial 

cells – an aspect examined for the first time in absolute RNA quantification. Recovery is 

close to one hundred percent and the analytical precision was 10-fold increased (CV < 3 %) 

as compared with similar approaches. The demonstrated method is simple and opens up 

new possibilities for the absolute quantification of not only rRNA, but also individual mRNAs. 
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5.1 Introduction 

Scientific and industrial research as well as molecular medicine has always heavily relied on 

tools for gene expression profiling and transcriptome analysis. Most approaches provide 

semi-quantitative data (relative expression levels), which is usually sufficient for a wide range 

of applications. However, the latest challenge to RNA analysis concerns the requirement for 

absolute, high-precision quantification. Extremely reliable estimates of the concentrations of 

RNA species such as mRNA, rRNA, or tRNA are a prerequisite for clinical diagnostics or 

systems biology when quantitatively studying gene expression kinetics based on 

mathematical modeling (Arnold et al., 2005; Ideker et al., 2001). The concentration of mRNA 

is an important variable for modeling of a wide range of dynamic processes, e. g. the 

behavior of producer strain metabolisms during biotechnological processes (Hardiman et al., 

2007). Recent results indicate that the dynamic modeling of the central carbon metabolism 

and its regulation by gene expression also needs to take growth rate control, which is 

exerted by the regulation of rRNA expression, into account (Chapter 2) (Hardiman et al., 

2007). For this purpose, ribosome (or rRNA) concentration is another very important variable. 

High-throughput technologies and automation become necessary when dealing with large 

sample quantities so that hands-on time can be reduced to a minimum. However, achieving 

minimal hands-on time for experimental expression profiling is a challenge in itself, 

particularly because, up until now, only highly sophisticated methods are available, which 

produce only reasonably satisfactory results. 

For the quantification of ribosomal RNA (rRNA) radioactive labeling of stable RNA (rRNA and 

tRNA) and uracil starvation (Forchhammer and Kjeldgaard, 1968), or direct quantification of 

the ribosome concentration using several extremely time consuming ultracentrifugation steps 

with or without density gradients (Davis et al., 1986; Dong et al., 1995) were previously used, 

but have proven inappropriate for precise and reasonable high-throughput quantification. The 

latest developments for this purpose are in the field of diagnostic studies and ecological 

research, in which either quantitative real-time polymerase chain reaction assays (qPCR) or 

DNA microarray technology are employed (Collantes-Fernandez et al., 2002; Kuboniwa et 

al., 2004; Small et al., 2001). The latter are also the most frequently used commercially 

available automated methods for quantifying mRNA expression. Microarray technology 

(Butte, 2002; Lemieux et al., 1998) is unbeatable in the parallel determination of thousands 

of different mRNA molecules on the genome-level in a single run (Epstein and Butow, 2000; 

Rhodius and LaRossa, 2003; Young, 2000). Although precise semi-quantitative 

determination is possible, the generation of precise quantitative data (absolute transcript 

copy numbers per cell) is quite difficult. Even when internal standards are used, it is still only 
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possible to provide estimations of mRNA concentrations (Carter et al., 2005; Dudley et al., 

2002; Frigessi et al., 2005; Kakuhata et al., 2007; Taniguchi et al., 2001; van Bakel and 

Holstege, 2004). Quantitative real-time PCR is the state-of-the-art method for the quantitative 

determination of specific mRNA molecules (Bustin, 2000; Kubista et al., 2006; Nolan et al., 

2006). However, reproducible quantification depends on careful experimental design, 

application and validation (Bustin, 2000; Bustin and Nolan, 2004; Smith et al., 2006). 

Furthermore, due to technical limitations, only a restricted number of mRNA molecules can 

be detected in parallel (Bustin, 2000). Numerous other biochemical approaches such as 

Northern blot analysis, ribonuclease protection assay (RPA) and serial analysis of gene 

expression (SAGE) can also be used for quantification (Reue, 1998; Stanton, 2001). All of 

the commonly used biochemical approaches deal with samples that contain thousands of 

individual RNA molecules. The analyses are done in parallel and need to be selective for all 

individual transcripts, which makes the investigation procedure labor- and cost-intensive 

(oligonucleotide synthesis, hybridization reactions, cloning and in vitro transcription steps are 

required). Second, the quantification of RNA usually relies both on a non-linear signal-to-

response which necessitates complicated calibration procedures, and also on statistical data 

analysis. Thus, a high level of experimental expertise is mandatory and the downstream data 

analysis is also very technical and involves a great deal of work (Bustin, 2000; Butte, 2002; 

Leung and Cavalieri, 2003). 

In more recent, fundamentally different approaches, the analyte RNA molecules are first 

separated by capillary (gel) electrophoresis (CE or CGE) (Babu et al., 2006) and 

subsequently detected using spectrometry. Spectrometric detection, e. g. using laser-

induced fluorescence (LIF), exhibits a linear signal-to-response behavior and a large 

dynamic range. Costs and time requirement are exceedingly low and automated microfluidic 

high-throughput CE-LIF technology is already available (Babu et al., 2006; Krishnan et al., 

2001). CGE-LIF is routinely applied for qualitative controlling of RNA integrity prior to 

microarray or qPCR analyses (Bustin and Nolan, 2004; Nolan et al., 2006). Quantitative CE-

based approaches employ either unspecific intercalating dyes or specific spectrometric 

detection after hybridization with fluorescence-labeled synthetic oligonucleotides (Al-

Mahrouki and Krylov, 2005; Goldsmith et al., 2007). Since current CE methods are not yet 

able to resolve all mRNA molecules, hybridization becomes necessary in order to identify 

specific RNA molecules in total RNA samples. Unspecific dyes greatly simplify the 

procedure, but have only been applied for the estimation of relative total RNA and rRNA 

concentrations (Babu et al., 2006; Ogura et al., 1998). Although present CE systems enable 

the convenient estimation of RNA concentrations, detailed validation of the degree of 

precision has so far not been published. This may be attributed to technical limitations in CE 
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analysis which reduce the analytical precision such as the generally observed injection bias 

(Gong et al., 2007), changing physico-chemical constitution of samples or the polymer matrix 

(Mueller et al., 2000), even though the technique is constantly improving (Babu et al., 2006; 

Krishnan et al., 2001). 

A generally disregarded issue – but very important for the absolute quantification of RNA – is 

the sampling and RNA extraction procedure (Bustin and Nolan, 2004; Smith et al., 2006; van 

Bakel and Holstege, 2004). In general, equal samples of total RNA amounts are used 

although many techniques have been developed for quantitative RNA analysis (Nolan et al., 

2006). Therefore, the routinely used extraction procedures do not need to be quantitative. 

Although recommended by the MIAME standard, in many cases modifications of standard 

protocols are not adequately described (Brazma et al., 2001). Nevertheless, relating 

transcript numbers to the total RNA content can be critical as total RNA content can vary 

considerably when cells with different physiological states are being examined (Nolan et al., 

2006). For instance, in microorganisms such as Escherichia coli, the total RNA content as 

well as the proportions of mRNA and rRNA depend on the growth rate (Murray and Bremer, 

1996; Pramanik and Keasling, 1997). Consequently, a procedure that guarantees the 

quantitative extraction of total RNA and the normalization of expression data to biomass (or 

best possible, to the cell volume (Chapters 2 and 7) (Hardiman et al., 2007) is mandatory. 

The current work uses 16S and 23S ribosomal RNA from bacterial cell extracts to show that 

specific RNA molecules can be precisely quantified using CGE-LIF. Technical limitations 

inherent to CE can be circumvented by adding an internal standard (IS) to all the samples. 

The method reported in this work allows the high-precision quantification of rRNA molecules 

and does not need oligonucleotide synthesis, hybridization reactions and calibration 

procedures, thereby considerably reducing material costs and working time. This work also 

presents a procedure that guarantees the quantitative extraction of total RNA from E. coli. 

5.2 Material and Methods 

5.2.1 Capillary Gel Electrophoresis and LIF Detection 

All microchip-based capillary gel electrophoresis separations were performed with an Agilent 

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). The microfluidic glass chips 

(RNA 6000 Nano LabChip Kit, Agilent) were prepared according to the manufacturer's 

instructions using the materials supplied in the kit (sieving polymer, intercalating fluorescent 

dye concentrate, RNA marker (50 b), spin filters) and also included an RNA 6000 ladder 
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(Ambion, Austin, TX, USA). Injection of the samples into the capillaries, subsequent 

electrophoretic separation and detection by laser-induced fluorescence (635/685 nm) was 

fully automated. RNA extracts were diluted in RNase-free water and thoroughly mixed with 

the internal standard (MS2 bacteriophage RNA). All the samples and the RNA size ladder 

were incubated at 65 °C for 5 min, centrifuged at maximum speed for 20 s and chilled on ice 

before application (1 µl) to the microchips. The Bio Sizing software (version A.02.11 SI280, 

Agilent) was used for data analysis. The rRNA concentrations, rRNAc , were calculated using 

Equation (5-1) in which rRNAA  denotes the peak area of sample rRNA, ISA  the peak area of 

the internal standard and ISc  the concentration of the internal standard. 

 rRNA
rRNA IS

IS

A
c c

A
= ⋅  (5-1) 

In order to demonstrate the improvement in precision (employing the IS), the RNA size 

ladder solution (Ambion, Austin, TX, USA, 150 mg l-1) was used as an additional external 

standard for quantification. 

5.2.2 Formaldehyde Agarose (FA) Gel Electrophoresis 

For FA gel electrophoresis the gel contained 1.2 % (w/v) agarose, 2 mM MOPS, 0.5 mM 

sodium acetate and 0.1 mM EDTA. 40 ml of gel was mixed with 2.5 µl ethidium bromide and 

720 µl formaldehyde (37 % w/v) and equilibrated in running buffer (20 mM MOPS, 5 mM 

sodium acetate, 1 mM EDTA, 20 ml l-1 formaldehyde (37 % w/v)). FA gel electrophoresis was 

performed in 400 ml running buffer at 110 V for 50 min. Samples were prepared as follows: 

RNA samples were mixed 1 : 1 with sample buffer (2x Loading Dye Solution, Fermentas, St. 

Leon-Rot, Germany), incubated at 65 °C for 5 min and chilled on ice. 3 µl of the preparation 

was applied to the gel. All solutions were prepared using RNase-free water. 

5.2.3 Internal Standard 

Each RNA sample was supplemented with RNA from bacteriophage MS2 (3569 nucleotides, 

Roche Diagnostics, Mannheim, Germany) as an internal standard. The concentration of the 

MS2 phage RNA was determined using an UV absorption ND-1000 spectrophotometer 

(ND-1000 nucleic acid software; NanoDrop Technologies, Wilmington, DE, USA). Its final 

concentration in the RNA samples used for CGE-LIF analysis was 175 mg l-1. 
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5.2.4 Bacterial Strain, Sampling and Total RNA Extraction 

Samples for total RNA extraction were withdrawn from a fed-batch cultivation (30-l 

bioreactor) of the wild-type bacterial strain Escherichia coli K-12 W3110 (DSM 5911, German 

Collection of Microorganisms and Cell Cultures, Braunschweig, Germany) as described in 

(Section 2.2.1) (Hardiman et al., 2007). Sampling into glass test tubes containing 2 volumes 

RNAprotect bacteria reagent solution (Qiagen, Hilden, Germany) was performed using a 

capillary sampling probe (Section 2.2.2) (Hardiman et al., 2007). After mixing thoroughly and 

incubating for 5 min, aliquots equivalent to 0.1 to 0.5 mg dry weight of cells were transferred 

to new 2 ml test tubes and centrifuged (10000 g, 10 min, 4 °C). The supernatants were 

removed and the cell pellets frozen at - 20 °C. The cell pellets were resuspended in 1 ml 

protoplasting buffer (15 mM Tris/HCl, pH 8.0, 0.45 M sucrose, 8 mM EDTA, stored at 4 °C) 

and 10 µl lysozyme solution (50 g l-1 hen egg white lysozyme; Fluka, Seelze, Germany) was 

added. After gently mixing and incubating on ice for 15 min, the protoplasts were collected by 

centrifugation (6000 g, 5 min, 4 °C). After carefully discarding the supernatant, the 

protoplasts were resuspended in 0.5 ml lyzing buffer (10 mM Tris/HCl pH 8.0, 10 mM NaCl, 

1 mM sodium citrate, 1.5 % (w/v) SDS, stored at 37 °C). 15 µl DEPC was added and the 

resulting preparation was incubated for 5 min at 37 °C, and subsequently chilled on ice. After 

mixing with 250 µl NaCl (saturated solution) and incubating 10 min on ice, the protein-SDS-

DNA precipitate was collected by centrifugation (20000 g, 15 min, 4° C). 500 µl of the 

supernatant was transferred to a fresh test tube and mixed with 1 ml ice-cold ethanol 

(100 %). The precipitates thus obtained were incubated at - 80 °C for 30 min prior to 

centrifugation at 20000 g (20 min, 4 °C). The nucleotide-containing pellet was washed with 

1 ml ice-cold ethanol (70 %) and dried (15 min). The remaining liquid was removed in a 

vacuum centrifuge. The resulting RNA extract was resuspended in 10 µl RNase-free water, 

heated to 65 °C for 5 min to ensure complete dissolution of the nucleotides and either 

analyzed immediately with CGE-LIF or frozen at - 80 °C until further required. All solutions 

were prepared with RNase-free water (0.1 % DEPC in bidest. H2O, incubated over night at 

37 °C, then autoclaved). The RNA extraction procedure applied was modified from Reddy 

and Gilman (1987) (Reddy and Gilman, 1987). 

5.3 Results and Discussion 

5.3.1 Quantification Using MS2 Phage RNA as Internal Standard 

It is recognized that it is difficult to perform CGE in a highly reproducible manner. It is only 

recently that the major problems associated with this procedure have been investigated and 
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summarized (Babu et al., 2006; Gong et al., 2007; Krishnan et al., 2001; Mueller et al., 

2000). Internal standard substances are often used in cases where the conditions of an 

analytical process cannot be guaranteed to be fully reproducible. Therefore, this work 

examined the suitability of MS2 phage RNA as internal standard (IS) for the quantification of 

specific RNA molecules by CGE-LIF. An IS of known concentration was added to the RNA 

samples before analysis and the relative signal area (ratio analyte/IS) was used for 

quantification [Fig. 5-1 and Equation (5-1)]. A linear signal-to-response behavior of the 

analytical method was observed (Fig. 5-1). A CGE-LIF electropherogram of a total RNA 

sample plus IS is depicted in Figure 5-2a. Additionally, the integrity and purity of the MS2 

phage RNA was inspected using formaldehyde agarose gel electrophoresis (Fig. 5-2b). It 

was possible to confirm the size of the IS RNA at 3.6 kb (Fig. 5-2). In accordance with the 

manufacturer’s specifications, the MS2 phage RNA contained 10 % degradation products 

(Fig. 5-2b). Figure 5-2b also illustrates the separation of the total RNA preparation with and 

without IS on FA gel electrophoresis. 

 

 

 

 

Fig. 5-1 CGE-LIF quantification of specific RNA molecules using an internal standard and linearity plot. 

Samples of total RNA, isolated from E. coli cultures, were mixed in various ratios with MS2 bacteriophage RNA 

solution as the internal standard (IS) and subjected to CGE-LIF. The signal areas of the analytes ( , 16S and □, 
23S ribosomal RNA) were related to the IS area. For a known IS concentration the analyte/IS area ratio can be 

used for quantification of analyte RNA [see also Equation (5-1)]. Linear regressions were performed (solid lines; 

R2 = 0.9971 for 16S rRNA and R2 = 0.9953 for 23S rRNA), dotted and dashed lines indicate the 95 % confidence 

intervals. 
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Fig. 5-2 (a) CGE-LIF electropherogram of a total RNA extract from E. coli supplemented with MS2 phage RNA 

internal standard solution and RNA marker. (b) Formaldehyde agarose gel electrophoresis of 3 µl of the total 

RNA extract (S), of MS2 phage RNA solution (IS) and of a mixture of both (S+IS). 

5.3.2 Improvement of the Analytical Precision 

A major aim of the present work was to improve the analytical precision of quantification of 

RNA molecules using automated CGE-LIF analysis. Three important aspects of the 

analytical procedure affecting the precision of the microchip-based method used were 

investigated, including the coefficient of variation using an internal standard (IS, MS2 phage 

RNA) for quantification. For comparison, an external standard (RNA size ladder) was used 

(see Fig. 5-3). The intra- and inter-batch precision of the automated microchip-based 

approach was also determined. This involved the multiple analysis (Fig. 5-3) of sample 

aliquots using a single microchip (intra-batch precision or repeatability) and several 

microchips (inter-batch precision or reproducibility). A further important issue is the impact of 

possible variations caused by manually pipetting small volumes (µl) of required solutions into 

the wells of the microchips. This was examined by successively applying the sample and 

analysis solutions and by applying aliquots of a pre-mixed solution for comparison (Fig. 5-3). 

Best results were obtained by pre-mixing the analysis solutions and by quantification via the 

IS (CV < 3 % for both 16S and 23S rRNA; Table 5-1). It was possible to achieve a very high 

level of precision when only a few samples were measured at the same time as using a 

single microchip (intra-batch precision). Moreover, it was possible to improve the level of 

precision two-fold in comparison to the quantification using an external standard (Table 5-1). 

The improvement was even more pronounced when large sets of samples were measured 

with several chips (inter-batch precision). The inter-batch CVs amounted to 5 to 9 % when 

the analysis solutions were pre-mixed, and 9 to 13 % when mixed individually (Table 5-1). 

Again, the use of an external standard only led to an increase of the coefficients of variation 

by a factor of 2 to 3 (data not shown). CE methods that have been published on the 
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quantification of specific RNA molecules do not give any detailed information about the 

precision of the methods (Al-Mahrouki and Krylov, 2005; Goldsmith et al., 2007), which might 

be due to the aforementioned well-known problems occurring in the quantitative reproduction 

of CE analyses. The work of Goldsmith et al. (2007), who have recently developed a 

quantitative CE-LIF method for the determination of 28 S rRNA in cardiac tissue, is an 

exception (2007). Despite using a state-of-the-art method, the latter authors achieved only an 

unsatisfactory CV exceeding 35 %. A technical note published by Agilent specifies an 

accuracy of ±  50 % (Agilent, 2003) for estimations of the total RNA content using the CGE-

LIF method applied in this work. Accordingly, the proposed introduction of an IS substantially 

improves the analytical precision by more than 10-fold compared to similar approaches. 

 

 

 

 

 

 

 

 

Fig. 5-3 Determination of the precision of quantification via internal standard in microfluidic CGE-LIF 
analysis. (a) A sample of total RNA extracted from E. coli was pre-mixed with IS (MS2 phage RNA) and RNA 

marker solution and then applied 5 fold to the microchips. (b) 6 total RNA samples were individually 

supplemented with IS, transferred to the microchips and the RNA marker was added. Additionally, the RNA ladder 

(L) was loaded into one microchip well, for use both as a size marker and as an external standard for all analyses. 

In total 4 microchips were prepared in the same manner and analyzed by CGE-LIF. 
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Table 5-1 Precision of specific RNA quantification using an internal standard in CGE-LIF analysis. 

Analyte Quantification Handlingc Analysis a 

Sample 

size  

(n) b 

Number of 

repetitions (m) b 

CV 

[%] 

16S rRNA 

external standard pre-mixed 

intra-batch 4 5 5.0 

inter-batch 5 4 22.1 

internal standard 

pre-mixed 

intra-batch 4 5 2.6 

inter-batch 5 4 5.0 

individual 

intra-batch 4 6 8.7 

inter-batch 6 4 9.0 

23S rRNA 

external standard pre-mixed 

intra-batch 4 5 7.1 

inter-batch 5 4 20.2 

internal standard 

pre-mixed 

intra-batch 4 5 2.8 

inter-batch 5 4 9.3 

Individual 

intra-batch 4 6 9.5 

inter-batch 6 4 13.3 

a Intra-batch precision corresponds to repeatability, inter-batch precision to reproducibility. 

b n refers to the number of repeated measurements used to calculate the CV. m represents the number of 

repeated experiments for averaging the obtained CVs. 

c “premixed” indicates that all solutions were mixed prior to analysis. “Individual” means that the solutions were 

applied one after the other (see also Fig. 5-3). 
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Fig. 5-4 Linearity range of the analytical procedure for specific RNA quantification including RNA extraction 

from Gram-negative bacterial cell cultures. The total RNA of samples of various dry cell weights of E. coli was 

extracted and the 16S and 23S ribosomal RNA quantified by CGE-LIF after adding an IS (MS2 phage RNA). 

Symbols with error bars (n = 2) indicate the peak area ratios of the analyte ( , 16S and □, 23S ribosomal RNA) 

and the IS. Solid line, linear regression (R² = 0.9831 for 16S rRNA and R² = 0.9845 for 23S rRNA). Dotted and 

dashed lines denote 95 % confidence intervals. 

5.3.3 Linear Range and Recovery of the Total Analytical Procedure 

Sample preparation and RNA extraction are often disregarded in the quantification of RNA 

species (Brazma et al., 2001; Bustin and Nolan, 2004; van Bakel and Holstege, 2004). 

However, RNA quantification in cell culture samples requires all steps to be quantitative and 

the intensity of the RNA signal obtained to be directly proportional to the concentration of the 

RNA species that causes the signal (linear response). First, the linear range of the total 

analytical procedure was investigated. In order to do this, samples were taken from an E. coli 

fed-batch cultivation, total RNA was extracted and 16S and 23S ribosomal RNA quantified 

using CGE-LIF. Ten samples of different volumes (equivalent to dry cell weight contents of 

0.085 - 0.85 mg) were taken, processed and analyzed in duplicate. A linear response of the 

total analytical procedure was found for a dry cell mass of 0.08 – 0.70 mg (Fig. 5-4). The 

analyte/IS ratios were less reproducible when more cell material was used (30 %, n = 2, data 

not shown). The electropherograms suggest that this can most likely be attributed to the total 

RNA extract being contaminated with DNA (data not shown). Although bacterial DNA is 

removed during the extraction procedure, slight contamination cannot be prevented in cases 

when too much cell material is processed. Cell samples outside of the given linear range 

lead to insufficient electrophoretic separation, and therefore, to an increased CV. Smaller 

amounts of cell material often lead to the loss of cell and RNA pellets during sample 

preparation. It can therefore be concluded that the observed linear range depends primarily 
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on the amount of cell material used for RNA extraction, and only secondarily on the amount 

of RNA itself (linear range: 25 – 500 mg l-1 (Agilent, 2003)). It is worth noting that further 

extraction procedures were examined, e. g. commercially available kits for RNA extraction, 

which are generally recommended by current protocol (Brazma et al., 2001; Nolan et al., 

2006). However, these usually use ion-exchange columns that have a limited RNA retention 

capacity, which makes them unsuitable for quantitative RNA extraction. Secondly, the 

recovery of the RNA in the extraction procedure was investigated: Protoplasts were isolated 

from cell culture samples and lyzed, then protein, DNA and cell debris, and finally, RNA was 

precipitated. Total RNA was extracted from an E. coli cultivation sample and the rRNA 

content was quantified in triplicate (denoted sample 1 to 3 in Table 5-2). Three aliquots 

(20 µl) of the obtained extract were mixed with 500 µl lyzing buffer and then subjected to a 

second extraction cycle. The new measurement of the rRNA content (denoted sample 1’ to 3’ 

in Table 5-2) enabled rRNA recovery to be determined – 105 % for 16S rRNA and 103 % for 

23S rRNA (Table 5-2). Consequently, the extraction procedure is valid for the quantitative 

determination of concentrations of specific RNA molecules. This concerns all steps after 

protoplast lysis. In order to estimate the potential losses of whole cells or protoplasts during 

earlier steps, cell culture samples were withdrawn from an E. coli fed-batch cultivation and 

protoplasts isolated. After separation of cell pellets from the cultivation broth and freezing, 

thawing and resuspending the cell pellets in protoplasting buffer without, however, adding the 

lysozyme solution, the obtained cell suspension was examined using light microscopy. 

Almost 100 % of the cells were found to be physically intact. An insignificant amount of cell 

debris could be attributed to the cultivation broth. After collecting the protoplasts by 

centrifugation, the supernatant was also inspected. Only a few, isolated cells could be found 

and thus, the loss of protoplasts could be estimated to be 1 ppb (1 : 109). The protoplasts are 

very fragile and cannot therefore be microscopically analyzed. 

However, if the protoplasts broke during the gentle centrifugation step, the debris would most 

probably be pelleted along with the protoplasts since the supernatants would be free of 

debris. This means that the early steps in the procedure prior to protoplast lysis cause only 

negligible losses. Conclusively, the linear response (Fig. 5-4) and the recovery (Table 5-2) 

prove that the extraction procedure presented in this work is valid, a conclusion that is 

equally valid for other methods such as microarray analysis and qPCR in cases where the 

quantity of RNA species has to be determined. 
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Table 5-2 Recovery of ribosomal RNA after total RNA extraction 

Sample a 

Ratio analyte/IS 

[ – ] 

Recovery 

[%] 

16S rRNA 23S rRNA 

16S rRNA 23S rRNA 

observation mean observation mean 

1 2.95 

2.97  

± 0.02 

3.56 

3.49  

± 0.13 

105 103 

2 2.98 3.57 

3 2.97 3.35 

1' 3.14 

3.12  

± 0.03 

3.50 

3.6  

± 0.3 
2' 3.08 3.37 

3' 3.14 3.92 

a Three samples were analyzed after total RNA extraction. The sample numbers with a prime correspond to the 

samples repeatedly subjected to total RNA extraction. 

5.4 Conclusions 

The proposed method introduces the use of an internal standard in CGE-LIF precluding 

variations due to irreproducible conditions such as the microfluidic injection bias or ionic 

strength of the applied solutions. Thus, a highly precise rRNA quantification procedure is 

provided that can be applied for convenient high-throughput analysis, which is particularly 

important for systems biology modeling. It can also be employed when further experimental 

data (transcript, protein, metabolite or parasite concentrations) are supposed to be related to 

the rRNA content of a (host) cell population (Collantes-Fernandez et al., 2002; Nolan et al., 

2006). The results strongly suggest that internal standards should be employed for CE-based 

analysis of rRNA and mRNA. This will considerably improve the analytical precision, 

independent of the procedure used. Moreover, the use of unspecific dyes might exceedingly 

simplify the quantification of RNA. They can be used for the quantification of PCR or in vitro 

transcription products, where only a few mRNA transcripts are present, which can be easily 
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resolved by 1D-CE. However, 2D-CE has already proven successful for the separation of 

proteins or peptides (Babu et al., 2006; Chen et al., 2002) and is also conceivable for RNA 

separation. Careful examination of CGE-LIF analysis demonstrated that extra pipetting steps 

(small volumes) substantially affect analytical precision. Manual steps should consequently 

be reduced. Moreover, a detailed experimental validation of total RNA extraction from 

bacterial cell samples was performed for the first time. The protocol can be used for absolute 

quantification of individual RNA molecules. Therefore, the work also gives conclusive 

information for future developments of on-chip sample preparation and RNA extraction, 

which represents the latest trend in CE and microfluidic technology (Babu et al., 2006; 

Krishnan et al., 2001; Mueller et al., 2000). 
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6 Dynamics of the RNA Fractions 
During Glucose‐Limited Fed‐Batch 
Growth 
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Abstract 

The total RNA content of Escherichia coli cells is well-known to vary with the specific growth 

rate. This correlation is majorly attributed to the variations in the rRNA fraction of total RNA, 

which implies that the total mRNA pool would not change significantly. In the present thesis, 

the dynamics of the 16S and 23S rRNA fractions were quantified in E. coli K-12 W3110 

during glucose-limited fed-batch cultivation with constant feeding rate. Additional 

quantification of the total RNA content enabled the estimation of the dynamics of the total 

mRNA fraction. Based on the observed dynamics, a strong growth-rate dependent regulation 

of the global transcription of both rRNA and mRNA is proposed. The RNA polymerase 

availability is assumed to be the most important factor in growth rate-dependent regulation. 

Important conclusions for quantifying and modeling the transcription of individual genes are 

drawn. 
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6.1 Introduction 

The cellular fractions [g  g dry weight)-1] of the macromolecules RNA, DNA and protein are 

well-known to be growth rate-dependent (Bremer and Dennis, 1996; Pramanik and Keasling, 

1997) and it is generally assumed that the variations in the total RNA content are due to the 

strong dynamics in the rRNA fraction (Lengeler et al., 1999). In the present study, the global 

transcription dynamics of the total RNA and rRNA contents were examined to provide 

information about the dynamics of the total mRNA fraction. The main goal was to clarify the 

potential growth rate-dependence of the mRNA content, which is important for dynamic 

modeling the transcription of mRNA during transient growth conditions. 

6.2 Results and Discussion 

The 16S and 23S rRNA fractions were quantified during glucose-limited fed-batch cultivation. 

The applied constant feed rate led to a strong decrease in the specific growth rate as 

described in Section 2.2.1 (Hardiman et al., 2007). The total RNA was quantitatively 

extracted from the cell suspensions and the rRNA fractions were determined using capillary 

gel electrophoresis with laser-induced fluorescence detection (CGE-LIF), applying the 

protocol described in Sections 5.2.3 and 5.2.4 (Hardiman et al., 2008a). Figure 6-1a and b 

depict the quantified 16S and 23S rRNA fractions ( 16S rRNAw , 23S rRNAw ), respectively. The sum 

of the two fractions, the total rRNA fraction ( rRNAw ), is illustrated in Figure 6-1c. The dynamics 

of the total RNA content, totalRNAw , were determined using a ND-1000 spectrophotometer 

(260 nm; ND-1000 nucleic acid software; NanoDrop Technologies) and are given in Figure 6-

1c. For the estimation of the mRNA content, analytical functions were fitted to the data of the 

total RNA and rRNA fractions (Table 6-1). The dynamics of the mRNA content were then 

approximated by  

 ( ) ( ) ( )ˆ ˆ ˆmRNA totalRNA rRNAw t w t w t= − , (6-1) 

assuming that the cellular (total) RNA majorly consists of the rRNA and mRNA (the minor 

portions of tRNA and 5S rRNA were neglected). 

A strong growth rate-dependent variation of the rRNA and mRNA fractions was observed 

(Figure 6-1), which suggests a significant growth rate-dependent regulation of both rRNA and 

mRNA transcription. Growth rate-dependent regulation is assumed to be majorly determined 

by the concentration of free, cytosolic RNA polymerase (RNAP). Jensen and Pedersen 

(1990) proposed that promoters are generally subsaturated with RNA polymerase. 
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Accordingly, the in vivo rate of transcription is first-order with respect to the RNAP 

concentration (Jensen and Pedersen, 1990; McClure, 1985). Jensen and Pedersen (1990) 

suggested that the reduction of the RNAP concentration leads to a significant decrease of 

the transcription rate at lower growth rates. This hypothesis was confirmed using 

mathematical models of the partitioning of the RNAP into free, bound and immature fractions 

by Bremer et al. (2003) and Klumpp and Hwa (2008). The dynamics of the mRNA content 

observed in the present study suggest that mRNA transcription is globally affected by this 

growth rate-dependent regulation (Figure 6-1c). However, the strong decrease of the mRNA 

content in the beginning of the fed-batch process (Figure 6-1c) indicates that adaptation via 

global regulatory systems, such as the cra and crp modulons (Chapter 2) (Hardiman et al., 

2007), is superimposed on the growth rate-dependent regulation. 

 

Fig. 6-1 RNA fractions during glucose-limited fed-batch cultivation of E. coli K-12 W3110 applying a 
constant feed rate. (a) experimentally determined 16S rRNA and (b) 23S rRNA fractions. (c) experimentally 

quantified total RNA content ( ) and rRNA content (□) (sum of 16S and 23S rRNA). SDs are indicated by error 

bars (n = 3). Broken lines depict approximated time courses (see text and Table 1). The estimated total mRNA 

fraction [Equation (6-1)] is plotted as solid line (c). Vertical solid lines at t = 0 indicate the begin of glucose-limited 

fed-batch growth. 



 

83 

Table 6-1 Approximation functions of mass fractions [g  g dry weight)-1] 

( )
3 2 3 3 4 4

3 2 3 4 5 5

(0.08497 0.02238 5.930 10 1.089 10 8.987 10 )ˆ
(1 7.870 10 0.01584 0.02197 0.02129 1.758 10 )totalRNA

t t t tw t
t t t t t

− − −

− −

− ⋅ + ⋅ + ⋅ + ⋅
=

+ ⋅ − + + − ⋅
 (6-2) 

( )
( ){ }1 0.2857

0.2857
0.8710 ln 2 1 0.3809 0.8710

66.06 1ˆ 84.52
1000

1
rRNA

t
w t

e
⎡ ⎤− − ⋅ − −⎣ ⎦

⎛ ⎞
⎜ ⎟
⎜ ⎟= − ⋅⎜ ⎟⎧ ⎫⎜ ⎟+⎨ ⎬⎜ ⎟⎩ ⎭⎝ ⎠

                               (6-3) 

Data of Figure 6-1 were fitted using Table Curve (Version 3). 

In particular, the transcription of rRNA is known to strongly depend on the availability of the 

RNAP (Barker et al., 2001a; Barker et al., 2001b). This sensitivity is enhanced, when high 

concentrations of the alarmone ppGpp are present in the cells (Barker et al., 2001a; Barker 

et al., 2001b). The alarmone accumulates in large quantities in the applied fed-batch 

cultivation (Figure 2-4, Section 2.3.4) (Hardiman et al., 2007), which presumably contributes 

to the observed reduction of the rRNA fraction (Figure 6-1). However, it is known that 100S 

ribosomes are formed by dimerization of 70S ribosomes during carbon limitation and that 

ribosomal RNA is stored via this mechanism (Wada et al., 1990). It may be assumed that this 

mechanism reduces the rate of rRNA degradation, which would additionally affect the rRNA 

pool. This might explain the moderate slope at the onset of the fed-batch cultivation (Figure 

6-1). 

For the quantitative analysis of global transcription of rRNA and mRNA, such as through 

dynamic mathematical modeling, it can be concluded that the effect of the RNA polymerase 

availability on the transcription rate must be taken into consideration. This enables to 

describe the superimposition of regulation via global regulatory systems and the growth rate-

dependent regulation. 

Furthermore, the present data support previous studies that are concerned with the 

normalization of transcript levels quantified by experimental approaches such as DNA 

microarrays (van de Peppel et al., 2003). The determination of transcript levels relative to 

total mRNA may lead to artifacts, when the experimental conditions do not assure a constant 

total mRNA content of the cells. Possible consequences for the quantitative interpretation of 

such data are detailed in a separate work by Schuhmacher et al. (2009), where absolute 

concentrations of individual mRNAs were quantified. 
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6.3 Conclusions 

The current work demonstrates significant dynamics of the rRNA and mRNA fractions in 

E. coli K-12 W3110 during fed-batch cultivation. The data supports the hypothesis that RNA 

availability may play a major role in the global regulation of transcription. It is recommended 

(i) considering the variable RNA polymerase concentration in dynamic models of gene 

expression, and, (ii) determining absolute mRNA concentrations for quantitative gene 

expression studies, when transient growth conditions are investigated. 
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7 Prediction of Kinetic Parameters 
from DNA‐Binding Site Sequences for 
Modeling Global Transcription 
Dynamics 
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Abstract 

The majority of the current dynamic models of gene regulatory networks (GRNs) comprise 

few genes and disregard multiple transcription regulation, to minimize the number of kinetic 

parameters. In the present work a new approach for predicting kinetic parameters from DNA-

binding site sequences, by correlating the protein-DNA binding affinities with nucleotide 

sequence conservation, is proposed. The approach is illustrated by dynamic modeling global 

regulation of the cra modulon in E. coli during glucose-limited fed-batch cultivation. The 

experimentally quantified concentration of the Cra regulator protein inhibitor, fructose 1,6-

bis(phosphate), falls strongly and leads to the repression of transcription. Strong regulation 

via RNA polymerase availability is superimposed. The evidence of this second effect is 

supported by the experimentally observed total RNA concentration and the critical 

assessment of the model simulations. Altogether, the work contributes a new method for 

predicting transcription dynamics, which may make an impact on metabolic engineering of 

gene regulation in biotechnological processes. 
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7.1 Introduction 

The workflow of dynamic modeling of genetic regulatory networks (GRNs) – structured by 

network interactions between DNA, RNA, proteins and small molecules – exhibits interesting 

similarities with corresponding problems in dynamic modeling of metabolic networks. In both 

cases the initial step comprises the reconstruction of the network model architecture, thereby 

addressing qualitative aspects of the network performance encoded in the network topology. 

Hecker et al. (2009) have reviewed the most important models for inferring the network 

architecture, such as information theory models, Boolean and Bayesian networks, differential 

and difference equations, to name a few. As far as Escherichia coli is concerned, the 

topology of many of these regulatory networks have been elucidated by fundamental 

molecular biology studies and structured into hierarchical concepts (Lengeler et al., 1999). 

The significance of these modular ideas for the qualitative understanding of the key 

regulation of the central carbon metabolism enzymes, stimulated by limitation of the carbon 

and energy source glucose, has been verified by complementary microarray and metabolic 

flux analyses during fed-batch cultivations with constant feeding rates (Chapters 2 and 3) 

(Hardiman et al., 2007; Lemuth et al., 2008). 

After reconstructing the architecture of the network, the next goal in the understanding of the 

network performance is the dynamic modeling through quantitative details of the molecular 

interactions, such as those of kinetics. Similar to the corresponding problem in dynamic 

modeling of metabolic networks, one may distinguish between top-down computational 

models based on canonical representations of kinetic properties, and, bottom-up 

approaches, which integrate mechanistic biological knowledge about the individual molecular 

interactions for modeling the systems behavior through aggregation of the individual 

reactions. For applications in the field of reconstruction of metabolic networks the two 

complementary approaches have been juxtaposed by Reuss et al. (2007). 

Because of the extensive use of differential and difference equation systems for inferring the 

network architecture, the two approaches are more difficult to separate in case of GRNs. The 

models used in these dynamic representation are either linear (Chen et al., 1999) or consider 

non-linearity through polynomial functions (Sakamoto and Iba, 2001), the S-systems models 

(Vilela et al., 2008; Voit, 2008), generic sigmoidal functions (Haixin et al., 2007; Weaver et 

al., 1999) and neural network frameworks (Vohradsky, 2001a, b). Because of the inherent 

conflict between model quality and complexity, which manifests in the reliability of parameter 

estimation in higher-connected networks, the puzzle of robust identification of model 

structure and parameters frequently leads to discrimination problems between different 
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models. Another drawback of these approaches is the impossibility to interpret the estimated 

parameters in a physically and biologically meaningful way. 

Unlike these constraints for a deterministic interpretation of parameters within the data-driven 

computational models, bottom-up models initiated from well-known molecular interactions 

enable the integration of mechanistically meaningful parameters. The use of these 

deterministic models describing the regulation of gene expression has a long tradition. The 

majority of these models are centered on the lac operon and the phenomena of diauxic 

growth of E. coli (Harder and Roels, 1982; Kremling et al., 2001; Kremling and Gilles, 2001; 

Lee and Bailey, 1984a, b; Roels, 1978; Schmid et al., 2004; Sevilla et al., 2007; Wong et al., 

1997) (Table A7-1, Appendix G). The models are similar in mathematical nature and more or 

less rest upon the concept suggested by Yagil and Yagil (1971). Based on the operon model 

of Jacob and Monod (1961) these authors illustrated how to derive the probability of 

transcription initiation of a gene that is regulated by a repressor or activator protein, 

assuming equilibrium reactions of the regulator protein, R , and the effector molecule, E , or, 

the DNA binding site, DNAbs : 

 1 .
K

R E R E+  (7-1) 

 2 .
K

R DNAbs DNAbsR+  (7-2) 

 
( )

( )
2 1 ,.

, 2 1 ,

, ,
1 , ,

R E R tR DNAbs

DNAbs t R E R t

K c K c cc
c K c K c c

ϕ
⋅

= =
+ ⋅

 (7-3) 

ϕ  is the fraction of DNA-binding sites that are bound by the regulator protein and is used for 

calculating the probability of transcription (Yagil, 1975; Yagil and Yagil, 1971). c  denotes the 

concentration of the respective model component that is indicated by the subscript, where Rc  

concerns the free regulator protein, and ,R tc , the total regulator protein. The major 

contribution of Yagil and Yagil’s approach (1971) to the field is that no more than the two 

equilibrium constants ( 1K , 2K ) are needed for mechanistic modeling of gene regulation, 

where 2K  is the binding constant of the protein-DNA reaction. However, microbial 

transcription units exhibit many DNA-binding sites and multiple promoters, such as in the 

case of the lac operon (11 DNA-binding sites, 5 of which are bound by the Crp activator 

protein or the LacI repressor protein; and 5 promoters). Therefore, when applying this 

concept to large GRNs, the number of parameters (individual DNA-binding constants 2K ) 
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again limits detailed mechanistic modeling. Thus, in previous studies many of the known 

regulatory interactions were disregarded (Table A7-1, Appendix G). For modeling the 

expression dynamics under defined environmental conditions, lumping of multiple promoters 

and regulatory sites may be reasonable to reduce the number of parameters (Table A7-1, 

Appendix G). For the reconstruction of dynamic GRNs, where researchers desire to dissect 

the superposition of all potential regulatory interactions and for their quantitative 

understanding, this might be critical. Therefore, an approach to reduce the number of 

parameters using a priori information is needed (Hecker et al., 2009). The relevant DNA-

binding constants may be determined directly by estimation of the model parameters from 

experimental observations such as from surface plasmon resonance experiments (Majka and 

Speck, 2007). 

An entirely different and straightforward approach rests upon the prediction of parameters 

from DNA-binding site sequences. The idea of using the information on the frequency of 

each nucleotide at each position of the DNA-binding sites, embedded in the position weight 

matrix, PWM (also known as position specific scoring matrix, PSSM) (Wasserman and 

Sandelin, 2004), for calculation of binding constants, traces back to the works of Mulligan et 

al. (1984), Schneider et al. (1986), Berg and von Hippel (1987) (reviewed by Stormo, 1990). 

This approach, however, has never been applied for the purpose of dynamic modeling of 

GRNs. 

In the particular circumstances of a fed-batch operation at constant feeding rate, which is in 

the focus of the present paper, attention needs to be directed towards an additional factor – 

growth rate-dependent regulation. In previous models, growth rate-dependent regulation was 

formulated by simple linear approximation functions assuming that (i) the transcription rate is 

directly proportional to the specific growth rate, μ , and (ii) that this regulation is kinetically 

equal for all genes (Gondo et al., 1978; Harder and Roels, 1982; Table A7-1, Appendix G). 

However, the coupling of transcription initiation to the specific growth rate, μ , is assumed to 

be majorly determined through the availability of the free, cytosolic RNA polymerase (RNAP) 

(Barker et al., 2001a; Barker et al., 2001b; Cashel et al., 1996; 2007; Jensen and Pedersen, 

1990; McClure, 1985). Bremer et al. (2003) and Klumpp and Hwa (2008) modeled the global 

partitioning of cellular RNAP into the DNA-bound, free and immature pools – depending on 

the specific growth rate, μ . These detailed mechanistic models demonstrate the strong non-

linear correlation of the number of free RNAPs, and therefore of the transcription rate, and 

the specific growth rate. Second, dynamics of the growth rate-dependent regulation via 

RNAP availability are expected to be different for the individual promoter structures known in 

E. coli. Therefore, mechanistic modeling must consider both growth rate- and the 
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aforementioned regulator protein-dependent regulation. To bring the two ideas together, the 

RNAP-promoter interaction must be integrated into the transcription rate equation using the 

binding probability corresponding to Equation (7-3). However, when modeling regulation of 

the central carbon metabolism by the relevant global regulator proteins (Chapters 2 and 3) 

(Hardiman et al., 2007; Lemuth et al., 2008) and implementing the individual RNAP-promoter 

interactions, a large number of additional binding constants [corresponding to 2K  (7-3)] are 

needed. 

In this work kinetic parameters are predicted for the first time from the nucleotide sequences 

of the DNA-binding sites of regulator proteins and from the promoter sequences that are 

important for RNA polymerase binding. Moreover, a concept is introduced for modeling the 

multiple regulation of transcription initiation by regulator proteins and via the RNAP 

availability. The approach is demonstrated using the predicted parameters for modeling of 

transcription dynamics of individual genes of the cra modulon, encoding central carbon 

metabolism enzymes, during fed-batch cultivation of E. coli K-12 W3110. The contributions of 

growth rate- and Cra regulator protein-dependent regulation of these genes is discussed. 

 

 

Fig. 7-1 Glucose-limited fed-batch cultivation of E. coli K-12 W3110 applying a constant feed rate. (a) 

measured concentrations of biomass ( ), glucose (▼) and acetate (□), (b) Approximated time courses of the 

specific growth rate ( μ , broken line) and the fractional change of the specific cell volume (ω , solid line; see 

Table 7-4). Vertical solid lines at t = 0 indicate the begin of glucose-limited fed-batch growth. As already detailed 

in Section 2.3.2, the observed inhibition of the growth of the cells during the batch phase is attributed to the 

accumulation of acetate (Hardiman et al., 2007). 
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7.2 Methods 

7.2.1 Fed‐Batch Cultivation and Analytical Procedures 

Two independent fed-batch cultivations of E. coli K-12 W3110 were carried out in a 30-l 

bioreactor as described in Section 2.2.1 and by Hardiman et al. (2007). The application of a 

constant feed rate led to a continuously decreasing glucose concentration, and therefore, to 

a strong decrease of the specific growth rate. The concentrations of glucose, acetate and 

biomass as well as the specific growth rate, μ , are depicted in Figure 7-1. The quantification 

of fbp was performed using the enzymatic assay of Michal (1984). The experimental and 

sampling procedures are detailed in the Appendix H. The intracellular mRNA concentrations 

of the cra modulon genes were quantified using quantitative real-time PCR (qPCR) by 

Schuhmacher et al. (2009). Quantification of the total RNA content at 260 nm was carried out 

using a ND-1000 spectrophotometer using a quantitative method as detailed in Section 6.2 

(Hardiman et al., 2008a). The RNA content in the samples was related to the biomass 

concentration, which led to the mass fraction, totalRNAw  [g RNA (g dry weight)-1], and this was 

used to calculate the total RNA mass concentration by totalRNA totalRNA xwρ ν=  [g RNA (l 

cytosol)-1] using the growth rate-dependent specific cell volume, ( )ˆxν μ  (which is detailed 

below). 

7.2.2 Model Structure and Balance Equations 

In the Chapters 2 and 3 the structure of the global regulatory network regulating the central 

carbon metabolism in Escherichia coli during carbon-limited growth was reconstructed 

(Hardiman et al., 2007; Lemuth et al., 2008). The cra modulon was proposed to be one of the 

most relevant global regulatory systems, and, is chosen as an example in the present work 

to demonstrate the new approach for dynamic modeling of gene expression. Figure 7-2 

depicts the genes that were included in the model, which are known to be regulated by the 

Cra regulator protein (negative regulation: pfkA, pykF, eno; positive regulation: pckA) 

(EcoCyc; Keseler et al., 2009). Genes that are known to be regulated by other regulators, 

besides the Cra-dependent regulation, were not considered in the model (Figure 7-2). 

Further potential DNA-binding sites of the Cra regulator protein were predicted by pattern 

matching in the E. coli K-12 W3110 genome (see Appendix I). The computational analysis 

predicted four genes that are not yet known to be regulated by the Cra or other regulator 

proteins (EcoCyc; Keseler et al., 2009). These genes were implemented in the model (pgi, 

tpiA, gpmM, rpiA; Figure 7-2) to test the hypothesis that they were regulated by the Cra 
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protein during the fed-batch process. One additional gene, encoding geranyl diphosphate 

synthase (ispA), was chosen to study the transcriptional behavior of a gene that is assumed 

to be not regulated by any regulator protein (EcoCyc, Keseler et al., 2009) and to examine 

the sole growth rate-dependent regulation (see below). 

The general balance equation (7-4), applied for the individual mRNAs i , is derived in 

Appendix E and comprises the transcription rate, , ,tc mRNA ir , the degradation rate, , ,dg mRNA ir , and 

a novel expression representing the dilution rate of an intracellular compound, 

[ ], , ,dl mRNA i mRNA ir cμ ω= + . This expression arises from the dynamics of the specific cell volume 

during the applied fed-batch process, which were illustrated in Section 2.3.4 (Hardiman et al., 

2007). The fractional change of the specific cell volume with the specific growth rate, ( )ω μ , 

must be considered in the mass balances of the intracellular mRNAs (7-4) (Appendix E). The 

dilution rate of Equation (7-4) denotes the sum of the dilution due to the biomass production (

,mRNA icμ ) and the variation of the specific cell volume ( ,mRNA icω ). 

 

Fig. 7-2 Regulation of the central carbon metabolism by the cra modulon. (red) positive regulation and 

(green) negative regulation by the Cra protein is indicated by arrows. The protein and gene names (e. g. the PfkA 

protein is encoded by the pfkA gene) are indicated next to the corresponding reactions (squares). (red) positive 

regulation, (green) negative regulation by the Cra protein. Hypothetic negative regulation of a gene (predicted 

from pattern matching) is illustrated by black squares with white filling for the corresponding metabolic reaction. 

Genes of the cra modulon that are not included in the model (since further regulators are known) are given in 

brackets. The Cra regulator protein is inhibited by fructose 1,6-bis(phosphate) (fbp) and binds as a tetramer (Cra4) 

to its DNA-binding sites. EMP, glycolysis; PPP, pentosephosphate pathway; TCA, tricarboxylic acid cycle; GS, 

glyoxylate shunt. 
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Table 7-1 Model parameters and literature data 

Symbol 
Parameter 

range 
Source Determination 

Optimized 

parameter value 

, ,dg mRNA ik a - 

Bernstein et al. 

(2002); Selinger 

et al., 2003 

(2003) 

, ,
1 2, ,

1 ln 2
s 60 [min]dg mRNA i

mRNA i

k
t

⎡ ⎤ =⎢ ⎥ ⋅⎣ ⎦
 

- 

pckApCraδ  b 2 to 7.6 
Chin et al. 

(1989) 
CMAES (7-44) 2.2 

1K
 

5.0·102 to 

1.0·108 M-1 
- CMAES (7-44) 7.6·106 M-1 

, 17RNAP tacK
 

1.7·108 to  

23.2·108 M-1 

Mulligan et al. 

(1985) 
CMAES (7-44) 1.7·108 

,Cra ta
 

15 to 1500 - CMAES (7-44) 1300 

,Cra tb
 

1.0·106 to 

1.0·108 
- CMAES (7-44) 7.638·107 

,RNAP ta
 

0.1 to 0.5356 - CMAES (7-44) 0.1004 

,RNAP tb
 

0.5 to 1.64 - CMAES (7-44) 1.619 

a The individual degradation rate constants, , ,dg mRNA ik , were calculated from published mRNA half-lifes 

1 2, ,mRNA it . 

b Chin et al. (1989) demonstrated that pckA expression is enhanced by a factor of 4.3 ± 1.3 or 6.7 ± 0.9, 

respectively, by measuring the enzyme activity of the PckA protein (phosphoenolpyruvate carboxykinase). These 

numbers include transcription and translation of the pckA gene. pckApCraδ  was estimated within the given 

parameter range, assuming an at least two-fold activation, or, that the maximum enhancement of enzyme activity 

(6.7 + 0.9 = 7.6) would only dependent on transcription activation, respectively. 
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 ( ),
, , , , ,

mRNA i
tc mRNA i dg mRNA i mRNA i

dc
r r c

dt
μ ω μ= − − +⎡ ⎤⎣ ⎦  (7-4) 

The degradation rate is given by 

 , , , , ,dg mRNA i dg mRNA i mRNA ir k c= ⋅ . (7-5) 

The individual degradation rate constants, , ,dg mRNA ik , were calculated from data of Selinger et 

al. (2003) and Bernstein et al. (2002) (Table 7-1), who used DNA microarrays to determine 

individual mRNA half-lives in E. coli. Individual mRNA degradation constants were not 

considered in several previous works (Table A7-1, Appendix G). 

7.2.3 mRNA Transcription Rate 

The in vivo rate-limiting step of mRNA synthesis is assumed to be the isomerization step 

from the closed to the open RNAP-promoter complex (McClure, 1980; Walter et al., 1967). 

The rate of transcription of the individual gene i  from the promoter j , , ,tc mRNA ijr  (7-6), is 

therefore formulated as the product of the transcription initiation rate constant, , ,tc init jk  

(isomerization step), the growth rate-dependent promoter concentration, ( ),promoter jc μ  [

( )geneN f μ=  according to Bremer and Dennis (1996)], and the efficiency of transcription 

initiation from this promoter, jη , provided that each initiation is productive, i. e. leads to a 

complete mRNA transcript. 

 ( ), , , , , ,tc mRNA i j tc init j promoter j jr k c μ η= ⋅  (7-6) 

The overall efficiency of transcription, considering binding of the RNA polymerase, a 

repressor and an activator protein, was introduced by Lee and Bailey (1984b) based on Yagil 

and Yagil’s approach (1971) and methods of statistical mechanics: 

 ( ) ( )( )1 2 31 1 1η ϕ δ ϕ ϕ= − + − , (7-7) 

or, 

 1 2 3η = Φ Φ Φ . (7-8) 

where ϕ  denotes the fractions of DNA-binding sites (indices 1 and 2) or promoters (index 3) 

that are bound by regulator proteins or RNA polymerases, respectively [cf. Equations (7-1) to 
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(7-3)]. Moreover, they proposed to include a factor, δ , to characterize the enhancement of 

promoter activity through the binding of the activator. The multiplicative form of Equation 

(7-8) is equivalent to logical “AND” operations and reflects the coupling of regulatory 

interactions. However, the activator-DNA-binding site interaction contributes additively 

(logical “OR”) to the transcription initiation rate, ( )( )2 21 1δ ϕΦ = + −  (7-7). These logical 

operations where applied in the present work to derive a new, extended formulation 

(Appendix F), considering the binding of the RNA polymerase to multiple promoters j , and 

multiple repressor and activator proteins, binding to their respective DNA-binding sites ( k  or 

l , respectively): 

 , 1neg pos
j RNAP j k l

lk

η ⎛ ⎞
= Φ Φ ⋅ + Φ⎜ ⎟

⎝ ⎠
∑∏ , (7-9) 

or, ( ) ( ), 1 1 1j RNAP j k l l
lk

η ϕ δ ϕ⎛ ⎞
= Φ − ⋅ + −⎜ ⎟

⎝ ⎠
∑∏ . (7-10) 

The fractions of the respectively bound DNA sequences are denoted by a lower case phi [cf. 

Equations (7-1) to (7-3)], whereas a capital phi is used for the contributions to the efficiency 

of transcription. When a transcription unit displays multiple promoters, the total transcription 

rate is obtained by adding up the rates of transcription initiated from the j  promoters, 

 , , , , ,tc mRNA i tc mRNA i j
j

r r= ∑ , (7-11) 

and, the total transcription rate of gene i  reads: 

 ( ), , , , ,tc mRNA i tc init i gene i j
j

r k c μ η= ⋅ ⋅∑ , (7-12) 

where the concentrations of the promoter j  and the gene i  are equal ( , ,promoter j gene ic c= ). 

Individual transcription rate constants were used for each transcription unit, however, for 

multiple promoters only one rate constant was used ( , , , ,tc init j tc init ik k= ). This assumption 

enables the calculation of , ,tc init ik  from the quasi-steady state constraints [see below, (7-43)]. 

Equations (7-10) and (7-12) enable modeling the multiple promoters and DNA-binding sites 

that are found in the regulatory region of many transcription units (Figure 7-3). As detailed 

above, multiple regulation was not considered in previous studies to reduce the number of 

parameters (Table A7-1, Appendix G). 
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Fig. 7-3 Modeling multiple regulation of transcription initiation. (a) Kinetic rate equation for transcription of 

gene i  from the multiple promoters j  with (b) the transcription efficiency from the promoter j , jη , the product 

of the probabilities that the RNA polymerase (RNAP) binds to the promoter j , ,RNAP jΦ , and, that the repressor 

DNA-binding sites k  are not bound by a repressor protein, 1neg
k kϕΦ = − . The probability, that an activator 

protein is bound to its DNA-binding sites l  is multiplied with an enhancement term ( 1lδ − ) and with the former 

product. The enhancement of transcription contributes additively to the transcription efficiency. (c) Schematic 

illustration of the regulatory region of gene i  with the promoter j , negative (repressor DNA-binding site k ; 

example Cra regulator protein) and positive (activator DNA-binding site l ; example Crp regulator protein) 

regulation. Note, that multiple promoters j  and sites k  or l  may be found in the regulatory region, which is 

indicated by multiple schematic boxes and transcription start points ( jtsp ). Each promoter comprises an 

individual structure of -10 and -35 hexamer sequences, spacer length (distance between the two hexamers) and 

the gap (distance of the -10 hexamer from tsp). This substructure mainly determines the promoter strength. 

7.2.4 Probability of Transcription Initiation and Growth Rate‐Dependent 
Regulation 

The fraction of promoters that are bound by the RNA polymerase are calculated from: 

 ( )

( )( )
,

, ,

1
11

RNAP j

RNAP j RNAP fK c

μ

μ

Φ =
+

⋅

, (7-13) 

which is equivalent to (7-3). ,RNAP jK  is the RNAP-promoter equilibrium constant and 

,RNAP fc  is the concentration of free, cytosolic RNAP. By Equation (7-13) two novel 
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approaches for dynamic modeling global regulation of expression of individual genes are 

introduced. First, the aforementioned non-linear growth rate-dependent regulation can be 

implemented via the availability of RNAP. Second, multiple promoters are considered, using 

individual RNAP-promoter binding constants ( ,RNAP jK ) (Figure 7-3). 

7.2.5 Modulation of the Transcription Initiation Rate by Cra‐Dependent 
Regulation 

The contribution of transcription regulation to the transcription efficiency is calculated using 

the binding probabilities, kϕ  or lϕ , of the repressor or activator proteins, respectively (7-10) 

according to Yagil and Yagil (1971). Two equilibria are assumed for the binding reactions of 

the regulator protein Cra to its DNA-binding sites, kDNAbs , and to the effector molecule 

fructose 1,6-bis(phosphate), fbp : 

 1 .
K

Cra fbp Cra fbp+  (7-14) 

and 2,
44 .

K k
k kCra DNAbs Cra DNAbs+ , (7-15) 

with the equilibrium constants  

 .
1

Cra fbp

Cra fbp

c
K

c c
=

⋅
 and  (7-16) 

 4 .
2, 4

k

k

Cra DNAbs
k

Cra DNAbs

c
K

c c
=

⋅
. (7-17) 

According to Yagil and Yagil (1971) the probability that the regulator binds to the DNA-

binding site reads: 

 

4

,
2,

1.
4

, ,
2,

1

1

1
1

k

k

Cra t
k

fbpCra DNAbs
k

DNAbs t Cra t
k

fbp

c
K

K cc
c c

K
K c

ϕ

⎛ ⎞
⎜ ⎟⎜ ⎟+⎝ ⎠= =

⎛ ⎞
+ ⎜ ⎟⎜ ⎟+⎝ ⎠

. (7-18) 

For repression of transcription initiation, neg
kΦ  (7-9) is formulated as the fraction of DNA-

binding sites that are not bound by the repressor protein Cra: 
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 4
, ,

2,
1

11

1
1

k

k

DNAbsneg
k k

DNAbs t Cra t
k

fbp

c
c c

K
K c

ϕΦ = = − =
⎛ ⎞

+ ⎜ ⎟⎜ ⎟+⎝ ⎠

. (7-19) 

Equations (7-14) to (7-18) are given for the DNA-binding sites k  of the Cra protein, 

repressing transcription initiation. To be consistent with (7-9) and (7-10), the subscript k  

must be replaced by l , when applying Equations (7-14) to (7-18) to activation of transcription 

initiation by the Cra protein. Thus, the contribution to the transcription efficiency (7-9) is 

defined by 

 ( )1pos
l l lδ ϕΦ = − , (7-20) 

where lδ  is the enhancement factor (derivation in Appendix F). It should be noted here that 

this approach (7-20) separates the enhancement of transcription initiation ( lδ ) from the 

binding probability lϕ  – an aspect already considered by Lee and Bailey (1984b) and not 

included in several later studies (Table A7-1, Appendix G). 

7.2.6 Derivation of DNA‐Binding Constants 

The individual DNA-binding constants of the RNAP-promoter ( ,RNAP jK ) and regulator protein-

interactions ( 2,kK , 2,lK ) are needed for modeling the mRNA transcription of the cra modulon 

DNA [Equations (7-13), (7-19) and (7-20)]. A novel approach is introduced, to derive the 

unknown kinetic parameters from the DNA-binding site sequences. First, a set of highly 

conserved DNA-binding site sequences is chosen, i. e. of binding sites that are known to be 

bound by the Cra protein. The frequencies, ,m nf , of the nucleotides m  (A, C, G or T) at the 

positions n  of the DNA-binding site sequences are related to the genomic frequency of the 

nucleotides, mp , and arranged in a specificity matrix, SpM , with the matrix entries 

, ,m n m n ma f p= : 

 
11 1

1

n

m mn

a a

a a

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

SpM
…

.

 (7-21) 

In a second step, the protein-DNA binding reaction is represented by individual reactions of 

the regulator protein, R , to the isolated nucleotides of the given DNA-binding site sequence: 
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 2,
, ,.

K n
m n m nR nucleotide nucleotideR+  (7-22) 

where ,m nnucleotide  is the nucleotide m  (A, C, G or T) at the position n  of the given 

sequence. The equilibrium constant, 2,nK , is proportional to the ratio of the concentrations of 

the bound and free nucleotides, and this is equal to the ratio , ,m n m nf p  (Stormo, 1990)2: 

 
. ., , ,

2,
, ,

R nucleotide R nucleotidem n m n m n
n

R nucleotide nucleotide mm n m n

c c f
K

c c c p
= =

⋅
∼  (7-23) 

The (total) equilibrium binding constant for reaction (7-15) is assumed to be the product of 

the corresponding binding constants 2,nK  for the nucleotides of the bound DNA-sequence. 

According to Equation (7-23) this product is proportional to the product of the corresponding 

matrix entries, ,
k
m na , of the nucleotides m  at positions n  of the sequence k : 

 2, 2, ,
k

k n m n
n n

K K a= ∏ ∏∼ . (7-24) 

In the current work, the latter product is denoted specificity score, ,
k

k m n
n

score a= ∏ . The 

unknown binding constant 2,kK  is then calculated by: 

 2, 2,
k

k ref
ref

scoreK K
score

= , (7-25) 

where 2,refK  is the binding constant of the protein-DNA reaction of a given reference 

sequence and refscore  is the corresponding specificity score. Equations (7-21) to (7-25) 

provide a new approach to predict the unknown binding constants for all DNA-binding sites of 

interest, provided that the value of one (reference) binding constant is known. The illustrated 

procedure is applied equally to positive or negative regulation and the binding of the RNA 

polymerase to the promoter ( 2,kK , 2,lK , ,RNAP jK ), and is summarized in Table A7-2 

(Appendix J). 

                                                            
2 The two main assumptions are: (i) the binding reaction can be represented by independent binding reactions of 

the regulator protein to the nucleotides. This assumption is also termed “additivity” rule (McClure, 1985) since the 

logarithmized equilibrium constants may be added to obtain the Gibbs energy of protein-DNA binding. (ii) the 

binding constants are proportional to the nucleotide frequencies in the set of DNA-binding sites. (Stormo, 1990) 
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Table 7-2 Cra DNA-binding site sequences considered in the model and predicted binding constants 

Site a TU b DNA-sequence c 
Genomic 

position c 

Genomic 

orientation c 

Distance 

from first 

ORF c 

Relative 

score 
2K

  
[M-4] 

Regulation 

known b 
Source c 

aceBpcra d aceBAK GCTGAATCGCTTAACG 4,212,807 - -242.5 1 1.2E+34 d EcoCyc 
Ramseier et 

al. (1993) 

pgipcra pgi ACTGAAGCGATTCTGC 4,238,341 + 1000.5 2.19E-01 2.63E+33 This work This work 

pfkAp2cra pfkA CCTGAATCAATTCAGC 3,529,235 - -113.5 4.77E-01 5.73E+33 EcoCyc This work 

pykFp2cra pykF CTTGAATGGTTTCAGC 1,757,191 + -213.5 2.33E-01 2.80E+33 EcoCyc This work 

tpiApcra1 tpiA TCTGAATCGCTTGAAG 3,525,037 + -129.5 7.50E-02 9.00E+32 This work This work 

tpiApcra2 tpiA GTTGAACCGATTAAGC 3,525,013 + -153.5 7.78E-01 9.33E+33 This work This work 

gpmMpcra 
gpmM-envC-

yibQ 
GCTGAATCGATAAAAT 3,855,219 + -56.5 5.56E-01 6.67E+33 This work This work 

enop1cra pyrG-eno TGTGAATCGATCAGTT 2,907,331 + -741.5 2.90E-03 3.47E+31 EcoCyc This work 

enop2cra pyrG-eno GCTGAATCGTTTACAA 2,907,528 + -938.5 1.13 1.35E+34 EcoCyc This work 

enop3cra pyrG-eno AATGAAACGCTCGTAG 2,908,083 + -1493.5 1.54E-04 1.85E+30 EcoCyc This work 

rpiApcra rpiA TCTGAATCGCTTTTTT 3,058,026 - -52.5 9.37E-02 1.13E+33 This work This work 

pckApcra pckA GGTGAATCGATACTTT 4,107,869 - -278.5 4.63E-02 5.56E+32 EcoCyc This work 
a Identifier of the sequence in the model according to the notation given in Tables A7-5 to A7-7, Appendix O. 
b TU = Transcription unit that is regulated by the Cra protein. It is indicated whether this regulation is known [EcoCyc, (Keseler et al., 2009)] or is proposed in the present work (see 
text). 
c Genomic information retrieved from the E. coli K-12 W3110 genome (see text). For aceBpcra the data refers to the E. coli K-12 MG1655 genome. The genomic position of the first 
nucleotide on the + strand is given. 
d Reference binding site. The apparent dissociation constant, ( ), 3 nMd app aceBpK = , was estimated from in vitro experiments earlier by Ramseier et al. (1993), assuming that the 

Cra protein binds as a monomer to the aceBpcra DNA-binding site (Ramseier et al., 1993). The desired 2,refK -value is therefore obtained from 

( )4 34 4
2, ( )1 1.2 10 Mref aceBpcra d appK K K −= = = ⋅ . 
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Table 7-3 Structure of promoters considered in the model and predicted binding constants 

Site a TU b 
DNA-sequence c Genomic position c Orien-

tationc 

Spa-

cer c 
Gap c 

Relative score 
RNAPK

  
[M-1] 

Curation b Source 
-10 -35 -10 -35 -10 -35 

tac17 d - TATAAT TTGACA - - - 17 6 1 1 1.70E+08 - 

Parameter 

estimation 

[Table 

7-3; 

Mulligan 

et 

al.(1985)] 

enop 
pyrG-

eno 
TAAAAA GTTCCA 2,906,683 2,906,709 - 20 4 1.59E-01 1.19E-01 2.56E+05 Hypothetical This work 

enop1 
pyrG-

eno 
TCGATT GTGTCA 2,907,340 2,907,364 - 18 4 2.08E-02 1.50E-01 9.79E+04 Curated This work 

enop2 
pyrG-

eno 
AAGAAT TCGAAG 2,907,371 2,907,397 - 20 7 2.07E-02 1.76E-01 4.95E+04 Curated This work 

enop3 
pyrG-

eno 
GCGAAT ATTCAG 2,907,512 2,907,534 - 16 4 4.60E-03 2.71E-02 5.34E+03 Curated This work 

pyrGp 
pyrG-

eno 
TATACT TTGTGG 2,908,383 2,908,406 - 17 8 4.62E-01 8.25E-02 6.48E+06 Hypothetical This work 

pyrGp1 
pyrG-

eno 
GCTATT TCAAAA 2,908,465 2,908,488 - 17 6 4.39E-03 2.41E-02 1.80E+04 Hypothetical This work 

pyrGp2 
pyrG-

eno 
TATACT TTGTGG 2,908,383 2,908,406 - 17 4 4.62E-01 8.25E-02 6.48E+06 Hypothetical This work 

pfkAp2 pfkA TATACT TCAATT 3,529,221 3,529,244 - 17 8 4.62E-01 1.45E-02 1.14E+06 Hypothetical This work 

pykFp pykF TATAAT TTTCCT 1,757,170 1,757,146 + 18 5 1 4.60E-01 1.44E+07 Hypothetical This work 

(Table continued on next page.) 
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(Table continued from previous page.) 

Site a TU b DNA-sequence c Genomic position c 
Orien-

tationc 

Spa-

cer c 
Gap c Relative score RNAPK

  
[M-1] 

Curation b Source 

pykFp1 pykF AAAGCA TCGCTT 1,757,366 1,757,343 + 17 5 1.40E-03 1.54E-01 3.64E+04 Hypothetical This work 

pykFp2 pykF TATCCT CTGCAC 1,757,302 1,757,279 + 17 6 1.12E-01 8.25E-02 1.57E+06 Hypothetical This work 

pckAp pckA GATAAT ACACCT 4,107,749 4,107,771 - 16 6 6.01E-02 2.35E-03 6.04E+03 Hypothetical This work 

tpiAp1 tpiA TCCTTT CTGCCC 3,525,141 3,525,119 + 16 10 1.09E-02 8.13E-02 3.78E+04 Hypothetical This work 

tpiAp2 tpiA TATACT AAGCCT 3,525,099 3,525,076 + 17 7 4.62E-01 5.72E-03 4.49E+05 Hypothetical This work 

pgip pgi TACAAT TCACAT 4,237,301 4,237,278 + 17 5 3.69E-01 2.04E-02 1.28E+06 Curated This work 

xseBp 

xseB-

ispA-

dxs-

yajO 

TACCAT TTTGCT 440,609 440,632 - 17 6 8.95E-02 3.42E-01 5.20E+06 Hypothetical This work 

gpmMp 

gpmM-

envC-

yibQ 

AATTAC TTTTAT 3,855,195 3,855,218 - 17 9 1.51E-03 3.22E-01 8.25E+04 Hypothetical This work 

rpiAp rpiA TATAAT GGGTCT 3,058,021 3,058,044 - 17 6 1 3.76E-02 6.39E+06 Curated This work 
a Identifier of the sequence in the model according to the notation given in Tables A7-5 to A7-7, Appendix O. 
b TU = Transcription unit that is regulated by the given promoter. It is indicated whether the corresponding promoters in E. coli K-12 MG1655 are classified as known or 

hypothetical according to the RegulonDB (Gama-Castro et al., 2008) 
c Genomic information for E. coli K-12 W3110. The genomic position of the first nucleotide on the + strand is given. The corresponding MG1655 sequences are equal (see text), 

however, not their genomic positions. The gap and spacer lengths are according to Hawley and McClure’s notation (1983). 
d Reference promoter sequence. The binding constant was determined in vitro by Mulligan et al.(1985). The tac17 promoter was studied in a supercoiled form, to simulate in vivo 

conditions. 
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A set of twelve highly conserved DNA-binding site sequences (retrieved from the Prodoric 

Database, see Table A7-3, Appendix K for details), with a length of 16 nts of each binding 

site, was used for calculating the specificity matrix for the cra modulon (7-26). 

0.67 0 0 0 4 4 0.67 0 0.33 1 0 0.67 1.67 2.67 0.33 0
0.67 3 0 0 0 0 0 3.33 0 0.67 0 0.33 1.67 0 1 2
2.67 0.67 0 4 0 0 0.33 0.67 3.67 0.33 0.33 0 0 0.33 2.33 0.33

0 0.33 4 0 0 0 3 0 0 2 3.67 3 0.67 1 0.33 1.67

Cra =

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

SpM

 (7-26) 

The Cra-binding site of the aceBAK operon, aceBpcra, was chosen as the reference binding 

constant, 2,refK  (Table 7-2). Relation (7-25) was then used for prediction of the DNA-binding 

constants of all Cra-binding sites of the model. Table 7-2 lists the calculated individual 

relative scores and the predicted DNA-binding constants. 

The specificity matrix for the RNAP-promoter binding was derived from a list of 401 E. coli 

K-12 MG1655 σ70 promoter sequences, published by Shultzaberger et al. (2007). 

Shultzaberger et al. (2007) examined 684 promoters using information theory, considering 

the detailed promoter substructure comprising the -10 and -35 hexamers and spacer length. 

In the present work, specificity matrices were derived for the 401 known sequences of the -

10 and -35 hexamers (7-27) (see Appendix L for sequence logos). 

 

10

35

0.23 3.72 1.05 2.09 2.09 0
0.43 0 0.66 0.51 0.97 0.19
0.19 0.03 0.51 0.55 0.37 0.11
3.15 0.25 1.79 0.85 0.57 3.70

0.42 0.18 0.18 1.73 1.42 1.34
0 0 0.06 1.35 1.40 0.50
0 0.72 2.43 0 0.40 0.72

3.58 3.10 1.33 0.93 0.79 1.45

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

SpM

SpM

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (7-27) 

However, the substructures of the model-relevant promoters are not known (neither for the 

MG1655 nor for W3110 strain) and must be reconstructed from the E. coli K-12 W3110 

genome data. To reconstruct the desired promoter substructures, first, the sequences of the 

respective promoter regions (comprising 60 nt before and 20 nt after the tsp [cf. Figure 7-3c]; 

i. e. length = 81-nt) of the MG1655 strain were retrieved from the RegulonDB (Gama-Castro 
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et al., 2008). Next, the corresponding promoter sequences were located in the genome 

sequence of the W3110 strain, taken from the Prodoric database (Munch et al., 2003). All 

examined 81-nt promoter sequences were found to be equal in the W3110 and MG1655 

strains. Third, the hexamer location was shuffled within these sequences and the respective 

specificity scores were calculated. It might be assumed, that the two hexamers leading to the 

highest score would be the most likely in vivo RNAP-binding sites. However, additional 

information about spacer length and the gap (Figure 7-3c) must be considered to reconstruct 

the (hypothetically optimal) promoter structure, using 

 10, 35,
, , , ,

10, 35,

j j
RNAP j RNAP ref spacer j gap j

ref ref

score score
K K

score score
α α− −

− −

= , (7-28) 

which is analogous to Equation (7-25). A reference equilibrium constant, ,RNAP jK , is 

multiplied by the relative hexamer score ratio of the promoter j  and the reference promoter. 

Note, that a product of the two hexamer scores (-10 and -35) is applied, which is based on 

the same assumption as in Equation (7-24). Promoter activity changes drastically, when the 

spacer or gap lengths (Figure 7-3c) are altered – a well-known fact, which was considered by 

the spacer and gap penalties [ ,spacer jα , ,gap jα ; see Appendix M for details]. Finally, the 

genomic positions of the wanted hexamer sequences were obtained for the maximal value of 

Equation (7-28) during the mentioned hexamer shuffling. Table 7-3 depicts the desired 

(hypothetically optimal) promoter structures for E. coli K-12 W3110. The model-relevant 

RNAP-promoter binding constants were predicted for the E. coli K-12 W3110 promoter 

structures that are given in Table 7-3, using (7-28) and the synthetic tac17 promoter as the 

reference binding site. It is worth noting that this promoter structures are also valid for E. coli 

K-12 MG1655 since the nucleotide sequences of these promoters were equal. 

7.2.7 Growth Rate‐Dependent Model Variables and Model Input Functions 

The present work focuses on the transcription during the transient conditions of a fed-batch 

process with a strong decrease in the specific growth rate (Figure 7-1). As already mentioned 

the fractional change of the specific cell volume (ω ) and the concentrations of the genes (

,gene ic ) and of free, cytosolic RNA polymerase ( ,RNAP fc ) are growth rate-dependent variables 

that have an effect on the transcription rate. Their functional dependence on the specific 

growth rate is well-known (Section 2.3.4) (Bremer et al., 2003; Bremer and Dennis, 1996; 

Hardiman et al., 2007; Pramanik and Keasling, 1997), whereas the underlying regulatory 

mechanisms are not yet understood in detail. Therefore, approximation functions of these 
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growth rate-dependent model variables, y , were generated in the form ( )ˆ ˆy f μ=  using the 

available data (see Table 7-4). The time courses of the specific growth rate and the fractional 

change of the specific cell volume during fed-batch cultivation are depicted in Figure 7-1b. 

The number of an individual gene per cell, ,gene iN , depends on the specific growth rate and 

can be calculated by the empirical equation formulated by Bremer and Dennis (1996): 

 ( ) ( ) [ ] ( ) [ ]1 60 ln 2
, 2 iC m D

gene iN μ μ μμ ′⎡ ⎤⋅ − + ⋅ ⋅⎣ ⎦= , (7-29) 

where ( )C μ  (Equation (7-34), Table 7-4) is the time needed for chromosome replication (C 

period), ( )D μ  (Equation (7-35), Table 7-4) is the time period between termination of 

replication and cell division (D period) and im′  is the map location of gene i  relative to the 

replication origin. ( )16 50i im m′ = +  for map locations ( im ) between 0 and 36 min; 

( )84 50i im m′ = − for map locations between 36 and 84 min; ( )84 50i im m′ = −  for map 

locations between 84 and 100 min (Bremer and Dennis, 1996). The gene concentration is 

calculated from: 

 ( ) ( ) ( )( ), ,gene i gene i cell Ac N V Nμ μ μ= , (7-30) 

where AN  is the Avogadro constant and cellV  the cell volume. The cell volume varies with 

growth rate and is given in Equation (7-36) (Table 7-4). The concentration of free, cytosolic 

RNA polymerase is difficult to quantify directly (Bremer et al., 2003; Klumpp and Hwa, 2008; 

McClure, 1985). Therefore, it is calculated using the fraction of RNAP that is cytosolic, fα  

[Equation (7-37), Table 7-4]: 

 ( ) ( )
( ) ( ) ( )

( )
, ,

,
RNAP f RNAP t

RNAP f f
Cell A Cell A

N N
c

V N V N
μ μ

μ α μ
μ μ

= = ⋅ , (7-31) 

where ,RNAP fN  is the number of free RNAP and ,RNAP tN  [Equation (7-38), Table 7-4] is the 

number of total RNAP per cell. 
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Table 7-4 Model variables 

Variable Approximation a Equation 

Specific growth rate b 

 

( ) ( )
( )

2 3 5 4

2 3 4

0.3656 0.1204 0.02778 0.002675 3.280 10
ˆ

1 0.7071 0.2350 0.03808 0.004413

t t t t
t

t t t t
μ

−+ ⋅ + ⋅ + ⋅ − ⋅ ⋅
=

+ ⋅ + ⋅ + ⋅ + ⋅
  

(7-32) 

Fractional change of the 

specific cell volume c  
( )

2 3 4 4 5

2 3 4 4 5 5 5

1.583 0.3312 0.1163 0.03041 0.003743 1.749 10ˆ
5.165 1.583 0.1656 0.03877 0.007601 7.486 10 2.916 10

t t t t tt
t t t t t t

ω
−

− −

+ ⋅ − ⋅ + ⋅ − ⋅ + ⋅ ⋅
=

+ ⋅ + ⋅ − ⋅ + ⋅ − ⋅ ⋅ + ⋅ ⋅   
(7-33) 

Chromosome replication time 

(C period) d  
( ) ˆ2ˆ ˆ ˆ ˆ ˆ136.7 87.14 ln 66.93 102 lnC eμμ μ μ μ= − − ⋅ + ⋅ − ⋅

  
(7-34) 

Time period between 

termination of replication and 

cell division (D period) d 
 

( ) 2 2.5ˆ ˆ ˆ ˆ ˆ39.1 30.86 31.06 14.14  D μ μ μ μ= − + −
  

(7-35) 

Cell volume e 
 

( ) ˆ15 1.144ˆ ˆ 10 0.486 2cellV μμ −= ⋅ ⋅
  

(7-36) 

Fraction of RNAP that is free 

(unbound) f  
( ) ( )ˆ0.408ˆ ˆ 0.038f e μα μ = ⋅

  
(7-37) 

Total number of RNAP per cell 

g  
( ) ( )2

,
ˆ ˆ ˆ1000 1004 1.610. 9RNAP tN μ μ= ⋅ +

  
(7-38) 

Concentration of fructose 1,6-

bis(phosphate) h 
d

( )
( )1.532 6.043

3.124 0.2128

1 11ˆ 3.575 2.152
ˆ ˆ1000 1

t

fbp t
X

e
c

eν μ

− +

− −

⎡ ⎤−
⎢ ⎥= ⋅ −

⋅ +⎢ ⎥⎣ ⎦   

(7-39) 

Mass concentration of total 

RNA h 
 

( ) ( )
2 2.5 30.04338 0.7448 0.8896 1ˆ ˆ ˆ ˆ

ˆ
84

ˆ
0.2 6totalRNA

X

ρ μ μ μ
ν μ

= − ++
  

(7-40) 

(See Footnotes on next page.) 
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Table 7-4 Footnotes 

a Approximations were performed using the Software TableCurve 2D (Systat Software Inc.). Time derivates were 

calculated using Maple (Maplesoft). Dimensions: t  [h], μ  [h-1], cellV  [lcytosol], C  and D  [min], ,RNAP tN  

[molecule RNAP], fbpc  [mol (lcytosol)-1], totalRNAρ  [g RNA (l cytosol)-1]. 

b Derived from the approximations ( ) ( )
( )

( )
ˆ1ˆ ˆˆ

X

X R

dc t Ft
c t dt V t

μ = + , ( )ˆXc f t=  and ( )R̂V t  that were 

obtained from experimental data and were described in Section 2.2.4 (Table 2-1) (Hardiman et al., 2007). 

c Derived from the growth rate-dependent equations ( ) ( )
( )
ˆ ˆ

ˆ ˆ
ˆ ˆ

X

X

d
dt

ν μ
ω μ

ν μ
=

⋅
 (7-56) and ( )ˆ ˆX fν μ=  (7-49), 

defined in Appendix E. 
d Approximated using experimental data reviewed by Bremer and Dennis (1996) (Figure A7-2, Appendix N). 
e Taken from (Pramanik and Keasling, 1997). 
f Approximated using experimental data published by Bremer et al. (2003) (Figure A7-2, Appendix N) 

g The number of total RNAP molecules per cell, ,RNAP tN , was approximated by a polynomial function of the 

form ( )2

, ,RNAP t RNAP ta b μ+  using simulated data of (Bremer and Dennis, 1996) (Figure A7-2, Appendix N). The 

parameters obtained from this regression analysis were optimized during the model parameter fitting as described 

below ( ,RNAP ta  = 0.1004 , ,RNAP tb  = 1.619; Table 7-1). 

h Approximation of data from this work. ˆXν , see Equation (7-49) in the Appendix E. 

Traxler et al. (2006) demonstrated that the mRNA level of the cra gene drops, when the 

growth rate decreases during the diauxic lag and stationary phase in glucose-lactose diauxie 

experiments. The regulation of the Cra protein concentration is not yet clarified. However, the 

transcription of the cra gene is likely to be attenuated: Merino and Yanofsky (2005) predicted 

various attenuator RNA hairpin structures and the “phantom” gene fruL could function as 

leader peptide. The cra mRNA level could thus be coupled to the growth rate via the limited 

amino acid availability during glucose-limited growth as detailed in Section 2.4.5 (Hardiman 

et al., 2007). Since the mechanism of this regulation by attenuation is unknown, it is 

assumed that the number of Cra proteins per cell, ,Cra tN , is proportional to the specific growth 

rate: 

 ( ), , ,Cra t Cra t Cra tN a bμ μ= + . (7-41) 

The unknown parameters ,Cra ta  and ,Cra tb  were estimated using the optimization algorithm 

described below (Table 7-1). The total Cra protein concentration, ,Cra tc , is calculated by 



 

108 

 ( ) ( )
( )

,
,

Cra t
Cra t

Cell A

N
c

V N
μ

μ
μ

= . (7-42) 

7.2.8 Quasi‐Steady State Conditions 

The transcription initiation rate constants were calculated from the initial conditions at an 

arbitrarily chosen quasi-steady state ( 0t  = - 1.5 h): 

 
0

, 0mRNA i

t t

dc
dt =

= ,      or,        
( ) ( )
( ) ( )

, , 0 , , 0
, ,

, 0 0

dg mRNA i dl mRNA i
tc init i

gene i j
j

r t t r t t
k

c t t t tη
= + =

=
= =∑

. (7-43) 

The time point 0t  = - 1.5 h was roughly estimated from the time course of fructose 1,6-

bis(phosphate) (fbp) during the batch phase (see below in Figure 7-4). The dynamics of the 

fbp concentration is probably interconnected with the acetate accumulation during the batch 

process (see Figure 7-1). Acetate is well-known to inhibit the growth of the cells (summarized 

by Xu et al., 1999b). The growth-inhibiting effect of acetate, which was already detailed in 

Section 2.3.2 (Hardiman et al., 2007), is attributed to the inhibition of the glucose uptake of 

the cells (summarized by Xu et al., 1999b). A retarded glucose uptake might lead to the 

observed decrease of the fbp concentration in the batch phase (see below in Figure 7-4). 

However, a quasi-steady state at time point 0t  is assumed, as judged from the quantified fbp 

time profile (see below in Figure 7-4). 

7.2.9 SBML Model and Computational Methods 

The model is provided in the SBML format (Level 2 Version 1; supplementary material), 

generated using the Systems Biology Toolbox 2 [SBT2 Version 1.0; (Schmidt and Jirstrand, 

2006)] for MATLAB. The model identifiers are given in the Appendix O (Tables A7-5 to A7-7). 

The SBPD extension package for SBT2 was used for the parameter estimation, with the 

following modifications: For integration of the ODE system the MATLAB ode15s algorithm 

was used (MATLAB Version 7.7). For model parameter fitting the CMAES evolution strategy 

with covariance matrix adaptation by Hansen and Ostermeier (2001) was implemented 

(cmaes.m, Version 2.55). The objective function 

 
( )

2

, ,

1 1 ,

min ( )
2

meas simH I
h i h i

time h state i h i

c c
F

SD= =

⎛ ⎞−
= ⎜ ⎟⎜ ⎟⋅⎝ ⎠

∑ ∑p

p
p  (7-44) 
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with   ( )T
1 , 17 , , , ,RNAP tac Cra t Cra t RNAP t RNAP t pckApCraK K a b a b δ=p , 

subject to  
0

, 0mRNA i

t t

dc
dt =

= , 

was used, where ,
meas
h ic  is the mRNA concentration of the gene i  that was experimentally 

determined at the time h , ( ),
sim
h ic p  is the corresponding simulated value for the parameter 

vector p , and ,h iSD the standard deviation of the experimental data. The parameters search 

intervals used for parameter estimation were deduced from literature data and are given in 

Table 7-1. 

7.2.10 Control Coefficients 

The effects of concentration changes of the components of the regulatory mechanisms (fbp, 

Cra and RNAP) on the transcription rate were determined using control coefficients. Note, 

that in the widely applied metabolic control analysis (Nielsen and Villadsen, 1994; 

Stephanopoulos et al., 1998) the observed system is linearized, the control coefficients are 

independent of the size of the perturbation and are thus valid only for small extrapolations. In 

the current work, however, control coefficients are calculated by Equation (7-45) according to 

Goldbeter and Koshland (1982). The coefficients, j

icC Φ , depend on the size of finite 

perturbations ( icΔ ) and exhibit non-linear dependence of jΦ  on changes in the 

concentration of a given compound ( ( )j if cΦ = ). The changes were normalized either to 

the initial conditions (e. g. ( )0
0i ic c t t= = , with i  = fbp, Cra or RNAP) or to conditions at the 

end of the fed-batch process ( endt t= ). 

 
0

0/
j

i

j j
c

i i

C
c c

Φ ΔΦ Φ
=

Δ
 (7-45) 
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7.3 Results and Discussion 

7.3.1 Intracellular Concentration of Fructose 1,6‐bis(phosphate) (Model 
Input Signal) 

It is the first time that the dynamics of the intracellular concentration of the effector molecule, 

fructose 1,6-bis(phosphate) (fbp), were quantified during a shift from exponential to glucose-

limited growth conditions (Figure 7-4a). A strong initial drop of its cytosolic concentration is 

seen from a level of 1.10 ± 0.17 during exponential growth to 0.15 ± 0.07 mM at fed-batch 

growth. This supports the hypothesis that fbp signals the availability of glucose in Escherichia 

coli (Chapters 2 and 3) (Hardiman et al., 2007; Lemuth et al., 2008), and presumably also of 

other carbon sources. The correlation of the intracellular fbp concentration with growth rate 

was already demonstrated by Schaub and Reuss (2008). The time series data were 

approximated in the form ( )ˆ fbpc f t=  (Equation (7-39), Table 7-4; Figure 7-4a), to provide a 

time-dependent function as a model input. Metabolite concentrations are generally related to 

biomass concentration, to enable direct comparison between experiments with different 

biomass concentrations. This would lead to masking of the low level of the cytosolic fbp 

concentration during fed-batch growth (Figure 7-4b). However, Hardiman et al. (2007) 

already demonstrated that the change of the specific cell volume [Equation (7-49), Appendix 

E] must be considered, when looking at intracellular concentrations of metabolites 

determined at different growth rates. 

7.3.2 Identification and Prediction of Kinetic Parameters 

The present model describes transcription dynamics of nine genes (Figure 7-2) using the 

balance equation (7-4), the predicted DNA-binding constants (Tables 7-2, 7-3), the growth 

rate-dependent model variables [Table 7-4; Equations (7-31), (7-42)], and, model parameters 

derived from literature data (Table 7-1), calculated from the quasi-steady state constraints 

(7-43) or identified using the optimization algorithm [Table 7-1; Equation (7-44)]. The 

individual mRNA concentrations quantified by Schuhmacher et al. (2009) were used to 

estimate seven parameters using the objective function (7-44). Four of these are parameters 

of the growth rate-dependent functions of the RNAP and Cra protein concentrations ( ,Cra ta , 

,Cra tb , ,RNAP ta , ,RNAP tb ). These and the two binding constants 1K  and , 17RNAP tacK  concern the 

global response of cra modulon transcription (Table 7-1). It is important to note that if these 

parameters are known, the presented approach (Table 7-4) can be used to predict all other 

kinetic parameters that concern the local features of transcription kinetics of the individual 
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transcription units. However, when using Equation (7-10), for positive regulation additional 

(local) kinetic parameters are needed. The enhancement factor for pckA transcription (

pckApCraδ ) is not predicted from the DNA-binding site sequence in this work and only the 

parameter range could be derived from experimental data (Table 7-1). Nevertheless, in a 

separate publication a more elaborate approach for prediction of the enhancement factor ( lδ

) will be demonstrated for the crp modulon, where details about the regulatory mechanism 

are available. 

 

 

Fig 7-4 Components of the global regulation of the cra modulon during fed-batch cultivation of E. coli 

K-12 W3110. The fructose 1, 6-bis(phosphate) (fbp) concentration was quantified using an enzymatic assay ( , 

error bars indicate SD). (a) cytosolic fbp concentration, fbpc  [mM] = [mmol (l cytosol)-1]. (b) specific fbp 

concentration, fbpX  [µmol (g dry weight)-1]. Approximations of the (a) fbp, (c) total RNA polymerase, and (d) total 

Cra protein concentrations are given as solid lines; the free RNAP concentration in (c) as broken line. 
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The predicted parameters ,RNAP jK  are in the range of 103 to 107 M-1 (Table 7-3), which 

agrees with previous lists of other kinetically studied promoters (Mulligan et al., 1984; 

Wagner, 2000). The predicted 2,kK -values are in the range of 1030 to 1034 M-4 (Table 7-2), 

which is consistent with the aforementioned reference value for the aceBpcra DNA-binding 

site published by Ramseier et al. (1993). More Cra protein DNA-binding sites were studied 

using DNA band shift assays by Shimada et al. (2005). These authors estimated an apparent 

dissociation constant of 5
( ) 1.91 10 Md appK −= ⋅  for the aceBpcra DNA-binding site. 

Considering that the Cra protein binds as a tetramer to the DNA, the DNA-binding constant 

would be ( )4 18 4
2 ( )1 7.5 10 Md appK K −= = ⋅ . However, the magnitudes of assay data and the 

estimated parameters are inconsistent [Figure 7-2 in (Shimada et al., 2005)]. Ramseier et al. 

(1993) titrated an aceB DNA fragment with purified Cra protein. They generated a high data 

density and the estimated binding constant is reasonable since it is consistent with values3 of 

other DNA-binding constants of regulator proteins. 

For the eno transcription unit only the promoters enop1, enop2 and enop3 were considered 

in the model. The hypothetical enop, pyrGp, pyrGp1 und pyrGp2 promoters of the pyrG-eno 

transcription unit are not experimentally verified (Gama-Castro et al., 2008) and were not 

considered. Furthermore, one of the two Cra protein DNA-binding sites predicted by pattern 

matching for the tpiA transcription unit, tpiAcrp2, was not considered in the model. Leaving 

out these hypothetical promoters and DNA-binding site significantly improved the objective 

function value (7-44), i. e. led to agreement of the simulated and experimental data. 

7.3.3 Simulation of mRNA Concentrations during Fed‐Batch Growth 

Schuhmacher et al. (2009) revealed that, in the fed-batch process, the in vivo concentrations 

of central carbon metabolism mRNAs fall by one to three orders of magnitude (Figure 7-5) – 

even for genes that are assumed to be constitutively expressed (ispA, Figure 7-5i). The 

model describes this behavior for the cra modulon, which is determined by the dynamics of 

the model input signal, ( )ˆ fbpc t  [Equation (7-39), Table 7-4; Figure 7-4a], and the growth-rate 

dependent variables, ( ),ˆ ˆCra tc μ  (7-42) and ( ),ˆ ˆRNAP fc μ  (7-31) (Figures 7-4c, d). Few 

                                                            
3 For example, Crp binds as a dimer to a lacZ DNA fragment with a binding constant of 7 14.8 10 M−⋅  [calculated 

from the monomer concentration; (Pyles and Lee, 1996)]. This corresponds to a value of 30 45.3 10 M−⋅  for 

tetrameric DNA-binding. 
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parameters concerning the global transcription dynamics were identified using the 

optimization routine (7-44). These globally affect the behavior of all simulated mRNA 

concentrations. However, each gene is subjected to the individual regulation by the Cra 

protein and the RNAP. The kinetic parameters determining the binding probability of those 

proteins to the respective regulatory regions – and thus the individual behavior of the mRNAs 

– were predicted from the DNA-sequences. Therefore, the agreement of the simulated and 

measured individual mRNA concentrations (Figure 7-5) over a dynamic concentration range 

of three orders of magnitude demonstrates the predictive power of the presented approach. 

 

 

 

 

Fig 7-5 Dynamics of the intracellular concentrations of individual mRNAs of cra modulon genes during fed-batch 

cultivation of E. coli K-12 W3110. mRNA concentrations were experimentally determined using qPCR ( , error 

bars indicate SD) by Schuhmacher et al. (2009) and simulated using the presented, optimized model, with the 

kinetic parameters that were predicted from DNA-binding site sequences (black solid line). (broken line), data-

based estimation, and, (red solid line), model-based prediction of the growth rate-dependent regulation (

1neg
kΦ = , 0pos

kΦ = ; i. e. without Cra-dependent regulation, see text). 
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7.3.4 Cra‐ and Growth‐Dependent Regulation of Central Carbon 
Metabolism Genes 

The mRNA concentrations quantified by Schuhmacher et al. (2009) reveal a strong decrease 

even for constitutively expressed and positively regulated genes (Figures 7-5h, i). It is not 

possible, however, to quantitatively separate the contributions of Cra- and growth rate-

dependent regulation to the changes in the transcription rate from expression data alone. 

The model presented in the current work was used to dissect this contributions of growth 

rate-dependent regulation [ ,RNAP jΦ , Equation (7-9)] and global regulation by the Cra protein [

neg
kΦ  and pos

lΦ , Equation (7-9)] (Figure 7-5). To simulate the effect of the growth rate-

dependent regulation on the transcription dynamics, a new dynamic model – without Cra-

dependent regulation [ 1neg
kΦ =  and 0pos

kΦ =  in Equation (7-9)] – was implemented. This 

model-based, predicted dynamic behavior of the individual mRNA concentrations is depicted 

in Figure 7-5. To support this prediction by experimental data, the total RNA concentration 

was quantified during fed-batch cultivation (Figure 7-6). As a first approximation, the dynamic 

behavior of the individual mRNA concentrations ( ,mRNA ic ) should correlate with that of the total 

RNA mass concentration ( totalRNAρ ), if no regulator proteins, but only growth rate-dependent 

regulation, were involved in their transcription. If so, one can assume 

 

 

 

 

Fig. 7-6 Dynamics of the intracellular total RNA mass concentration, totalRNAρ , during fed-batch growth of 

E. coli K-12 W3110, determined using UV spectroscopy (■, error bars indicate SD) and approximated (solid line) 

by Equation (7-40), see Table 7-4. 
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( )

( )
( )

( )
,

, 0 0

mRNA i totalRNA

mRNA i totalRNA

c t t
c t t t t

ρ
ρ

=
= =

, (7-46) 

and thus, this growth rate-dependent dynamic behavior of an individual mRNA concentration 

can be calculated by 

 ( ) ( )
( ) ( ), , 0

0

totalRNA
mRNA i mRNA i

totalRNA

t
c t c t t

t t
ρ

ρ
= ⋅ =

=
. (7-47) 

The experimentally determined total RNA concentration was approximated using an 

analytical function [ ( )ˆtotalRNA tρ ; Equation (7-40), Table 7-4; and Figure 7-6] and the growth 

rate-dependent behavior of the individual mRNAs i  was then estimated using Equation 

(7-47), which is depicted for each gene in Figure 7-5. The model-based prediction of growth 

rate-dependent regulation through the RNAP availability leads to a behavior equal to that 

estimated using the experimental data (Figure 7-5, red and dashed lines, respectively; eno, 

pfkA, pckA, tpiA, pgi, gpmM). Individual deviations of the predicted behavior from the (data-

based) estimated behavior are due to the individual binding constants ,RNAP jK  (Table 7-3), 

degradation constants , ,dg mRNA ik  (Table 7-1) and transcription rate constants , ,tc init ik  (7-43). 

Nevertheless, the general agreement demonstrates that the presented approach is suitable 

for predicting the growth rate-dependent regulation and dissecting the regulation by 

superimposed global regulatory mechanisms (Figure 7-5). 

 

Fig. 7-7 Cra protein- and growth rate-dependent regulation of cra modulon transcription. The contributions 

of repression ( neg
k

k

Φ∏ ) or activation by the Cra regulator protein (1 pos
l

l
+ Φ∑ ) (solid lines) and growth rate-

dependent regulation ( ,RNAP j
j

Φ∑ ) (broken lines) to the transcription efficiency ( jη ) were simulated for the 

genes (a) eno (3 repressor sites k ; 3 promoters j ), (b) pckA (1 activation site l ; 1 promoter j ) and (c) ispA (1 

promoter j ) using the presented, optimized model with the kinetic parameters that were predicted from DNA-

binding site sequences. 
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The contributions of growth rate- and Cra-dependent regulation are depicted in Figure 7-7 for 

the genes eno, pckA and ispA – exemplary for negative, positive and no regulation by the 

Cra regulator protein, respectively. The growth rate-dependent regulation [ ,RNAP jΦ , Equation 

(7-9)] plays an important role for the transcription dynamics of the three genes (10-fold 

change in the transcription rate, Figure 7-7). These dynamics apply also for the other genes 

of the cra modulon (data not shown), and probably for most genes in E. coli, which are 

subject to regulation via RNA availability (Bremer et al., 2003; Klumpp and Hwa, 2008). The 

Cra-dependent regulation contributes a 100-fold change in the transcription rate by 

repression (e. g. the gene eno, Figure 7-7a) and a 4-fold change by positive regulation 

(pckA, Figure 7-7b). Moreover, Figure 7-7a demonstrates that during the first four hours of 

glucose-limited growth the Cra-dependent repression is stronger than the growth rate-

dependent regulation (100- versus 10-fold change, Figure 7-7a). Thereafter, the two 

regulatory mechanisms contribute equally to the rate of transcription (both 10-fold change). 

This indicates that global regulatory systems such as the cra, crp and relA/spoT modulons 

majorly control the adaptive behavior during the first four hours, which is supported by the 

fact that the alarmone concentrations of cAMP and ppGpp increase fast in response to 

limitation and decrease to low levels only after four hours (Figure 2-4, Section 2.3.4) 

(Hardiman et al., 2007). RNAP availability is proposed to be one of the most important 

additional factors determining the mRNA expression level. 

Two engaging questions are, which of the components of the regulatory mechanism (fbp, 

Cra, RNAP) would lead to the largest changes in Φ  and therefore in the transcription rate, 

and, does this situation change after the aforementioned adaptation phase (t > 4 h)? This 

can be clarified by identification of the component with the largest control coefficient, 

normalized to the initial conditions ( 0t ) and to the conditions at the end of the cultivation ( endt

), respectively. Strong effects of the DNA-binding constants 2,kK  and of the quasi-steady 

state chosen are observed (Figure 7-8). Small perturbations in the Cra protein or fbp 

concentrations generally lead to up to 4-fold amplification, independent of the quasi-steady 

state that is used for normalization (Figure 7-8). Large perturbations from the initial 

concentration of the Cra protein set off severe changes in the transcription rate (up to > 20-

fold amplification; Figure 7-8), whereas for the fbp concentration the control coefficients 

decrease to lower than 1.5 (Figure 7-8). When choosing endt  for normalization, this 

relationship is reversed: transitions in the fbp concentration are amplified by a factor of up to 

> 50 and the control coefficients for the Cra protein decrease to lower than one (Figure 7-8). 

The reversed behavior at endt  supports the above hypothesis of different phases of the 
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adaptive behavior during the sequence of quasi-steady states in the fed-batch process. The 

fbp dynamics and the negative feedback regulation through the decreasing Cra protein 

concentration majorly determined the cra modulon transcription during the first four hours. 

This regulation persists also after 4 hours of cultivation due to the low fbp concentration 

(Figure 7-4). The low concentration of the Cra protein, which acts as a sensor with respect to 

glucose availability, leads to a higher sensitivity for changes in the fbp level. This suggests 

that the cells are poised for a potential new adaptation to a possible up-shift in the glucose 

concentration. 

The value of the control coefficient with respect to changes in the RNAP concentration is 

approximately one (constant). This can be derived by simply comparing the values of the 

different terms in (7-13), which leads to , , ,RNAP j RNAP j RNAP fK cΦ ≈ ⋅ , and thus, , 1.0RNAP j

RNAPcCΦ ≈ . 

The transcription rate is also proportional to the gene concentration (7-12). Consequently, 

the respective control coefficient is , ,

,
1.0tc mRNA i

gene i

r
cC const= = . However, up to twofold changes of 

the gene concentration (7-30) must be considered during the applied fed-batch conditions 

(data not shown), which modulates the transcriptions rate by the same factor. 

 

 

Fig. 7-8 Control coefficients. (a, b) 
,

neg
k

Cra tcCΦ  and (c, d) 
neg
k

fbpcCΦ  are given as parameter plots of the DNA-binding 

constants 2,kK . (a, c) normalization to the initial conditions ( 0t t= ). (b, d) normalization to the conditions at the 

end of the fed-batch cultivation ( endt t= ). 
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7.3.5 Assignment of New Genes to the cra Modulon 

The genes tpiA, pgi, gpmM, and rpiA are not yet known to be regulated by regulator proteins 

(Figure 7-2). However, the experimental data and the predicted expression dynamics 

suggest that they should be assigned to the cra modulon (Figure 7-5). The new, potential Cra 

DNA-binding sites have high predicted binding constants (Table 7-2), which however must 

be verified by dedicated molecular biological experiments. 

7.3.6 Fractional Change of Specific Cell Volume 

A novel expression for formulating the dilution of intracellular compounds during cellular 

growth was introduced (7-4). The dilution rate, [ ], , ,dl mRNA i mRNA ir cμ ω= + , is important when 

modeling gene expression since its value may have the same magnitude as the transcription 

rate (e. g. for tpiA, rpiA and pckA; data not shown). Figure 7-1b demonstrates that at low 

growth rates μ ω≈ . Therefore, the fractional change of the specific cell volume, ω , 

becomes equally important for the dilution rate as the specific growth rate, μ . However, the 

variable ω  must be considered, only when transient conditions are applied, i. e. only when 

the specific cell volume varies (for 0d
dt
ν

≠ ; see Appendix E). 

7.4 Conclusions 

The present work contributes a novel framework for mechanistic dynamic modeling microbial 

transcription considering the kinetics of multiple transcriptional regulation based on 

regulatory DNA-sequences. It is the first study to deal with modeling the regulation of central 

carbon metabolism genes by global regulatory systems in Escherichia coli involving the 

growth rate-dependent regulation via RNAP availability and other variables (cell volume, 

gene concentration) that are most important for simulation of the transcription rate during 

transient growth conditions. The kinetic parameters concerning the individual behavior of the 

mRNAs were predicted from the DNA-sequences (Tables 7-2 and 7-3). Simulation results 

were critically assessed using experimental data to test the hypotheses that (i) global 

regulation via the availability of the RNA polymerase can be predicted by evaluating the 

promoter DNA-sequences, and, (ii) global regulation through regulator proteins can be 

predicted by evaluating the DNA-binding sites of these regulators. The predictive power of 

the proposed approach is supported by the evidence of the simulated gene expression that 

describes the dynamics of the experimentally quantified mRNA concentrations during fed-

batch cultivation of E. coli K-12 W3110 (Figure 7-5). The agreement of model predictions and 
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the further experimental data of the total RNA concentration demonstrate that the kinetic 

parameters derived from DNA-sequences are suitable for dissecting the superimposed 

regulation by global regulator proteins and the growth rate-dependent regulation via RNA 

polymerase availability (Figures 7-5). 

Dynamic modeling the transcription of the cra modulon using the proposed method illustrates 

the physiological relevance of the central carbon metabolism regulation through the network 

topology proposed in the Chapters 2 and 3 (Hardiman et al., 2007; Lemuth et al., 2008), and 

reveals new insights into the dynamics of the underlying regulatory cascade. The model 

demonstrates the tight regulation of gene expression of the cra modulon during the applied 

E. coli fed-batch cultivation by either repression or activation of transcription through the Cra 

global regulator protein, and its inhibitor fructose 1,6-bis(phosphate) (fbp). The strong 

dynamics of the fbp concentration, which were quantified for the first time during transition 

from exponential to glucose-limited growth (Figure 7-4a), are proposed to be a key factor in 

signaling glucose limitation, and may equally signal potential limitations of other carbon 

sources under other environmental conditions. Moreover, the global regulation through the 

RNA polymerase availability was discussed as one of the most important regulatory 

mechanism that must be considered when modeling transcription dynamics. Analyses of the 

control strengths of the components involved in the two superimposed regulatory 

mechanisms indicate that the proposed decrease in the Cra protein concentration might 

poise the cells for the potential need of a new adaptation to further environmental changes. 

The current work provides a predictive tool for reconstructing dynamic GRNs based on 

mechanistic rate equations, which may be particularly useful for dynamic modeling the 

interactions of regulatory and metabolic microbial networks such as the demonstrated impact 

of the dynamics of the metabolite fructose 1,6-bis(phosphate) on the transcription of the 

central carbon metabolism genes, and, in a second step, the effect of these changes on the 

metabolic reactions and fluxes. Thus, the approach might be valuable and constructive for 

metabolic engineering the contributions of regulator proteins to the global regulation of 

individual enzyme levels during biotechnical processes. The transcription dynamics could be 

predicted for in silico changes in the nucleotide sequence of a DNA-binding site of interest, 

prior to genetic engineering a producer strain and testing the new behavior under process 

conditions. 
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8 Conclusions and Outlook 
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The main objective of the present thesis was to comprehensively and quantitatively 

investigate the dynamics in the central carbon metabolism and its regulation in the bacterium 

Escherichia coli in the industrially widely applied fed-batch process using a systems biology 

approach. The study centers on experimental observations of the dynamics in signaling, 

transcription, metabolic fluxes and metabolite concentrations and involves stationary and 

dynamic mathematical modeling approaches. 

One major goal of the thesis was the reconstruction of the network structure of the global 

regulation of the central carbon metabolism. A set of fed-batch processes with constant 

feeding rate were performed to provide the same conditions for all experimental 

examinations. The applied metabolic flux analyses and the comparison with complementary 

global transcription data demonstrated that this process strategy leads to a fundamental 

reorganization of the central carbon metabolism. In response to the continuous decrease in 

the supply of the carbon and energy source glucose, the fluxes in glycolysis, pentose 

phosphate pathway and biosynthesis dropped, whereas TCA cycle fluxes remained constant. 

Importantly, these changes result in a considerable reduction of biomass yield due to higher 

oxidation rates of the substrate. It is evident that the high fluxes in the TCA cycle lead to 

enhanced energy generation at the cost of the biomass yield. However, the complementary 

analysis of relative changes in transcript levels and fluxes suggests that fine tuning of the 

carbon flux through the pentose phosphate pathway and also the split of fluxes between the 

TCA cycle, the glyoxylate shunt and the (only recently discovered cyclic pathway) 

phosphoenolpyruvate-glyoxylate shunt (Fischer and Sauer, 2003) limits the rate of oxidative 

decarboxylation, and this supplies sufficient precursors for biosyntheses. Consequently, the 

carbon and energy balance of the central carbon metabolism will be optimized under the 

applied conditions. 

The reconstruction of the regulatory network structure was supported by the agreement of 

the observed mRNA dynamics and the changes in the metabolic fluxes. Glycolysis, the TCA 

cycle and the glyoxylate shunt are proposed to be majorly regulated by the cra and crp 

modulons. Protein biosynthesis and the specific growth rate are regulated via the relA/spoT 

modulon. Further findings concern the synthesis of high-affinity transporters that guarantees 

maximal glucose influx and reduction of the energy-dependent chemotaxis, which are 

probably both driven by regulation through the crp modulon. The σS-mediated stress and 

starvation responses were found to be of only minor relevance. The intracellular 

concentrations of the two alarmones ppGpp and cAMP were demonstrated to accumulate in 

large quantities. A novel finding is the observed resetting of both alarmone levels. This 

adaptation was traced back, by means of a short literature review, to the key cell 
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components assembling several negative feedback loops. The model structure proposed is 

the first step towards dynamic modeling the regulation of the central carbon metabolism and 

enables to comprehensively explain the observed dynamic metabolic and regulatory 

responses. 

The further analysis of the global transcription dynamics by quantification of the total RNA 

and rRNA contents, using a new method based on capillary gel electrophoresis and the 

quantitative detection using lacer-induced fluorescence, revealed a strong growth rate-

dependent regulation of both rRNA and mRNA. This led to the conclusion that the regulatory 

network structure had to be extended by the growth rate-dependent regulation via the RNA 

polymerase availability. 

The second goal of the current thesis was to provide an approach for dynamic modeling of 

transcriptional regulation. The cra modulon was selected as an example for introducing the 

method and quantitatively analyzing the transcription dynamics of the central carbon 

metabolism genes. A novel framework was developed that enables considering growth rate-

dependent regulation, multiple regulation by different regulator proteins, multiple promoters 

and relevant growth rate-dependent variables, such as the cell volume and gene 

concentration. Most importantly, a new method was proposed, in which the required kinetic 

parameters are predicted from the DNA-sequences of the binding sites of regulator proteins, 

and of the RNA polymerase. The agreement of simulated and measured mRNA 

concentrations, determined by quantitative RT-PCR by Schuhmacher et al. (2009), 

demonstrates the predictive power of the presented approach. Furthermore, the prediction of 

the growth rate-dependent regulation was supported by the experimental data of the total 

RNA content. 

The dynamics of cra modulon transcription were analyzed using the developed approach. 

The Cra regulator protein-dependent regulation majorly determines the behavior of the 

mRNA concentrations. Yet, a strong growth rate-dependent regulation via the RNA 

polymerase concentration is superimposed. The metabolite fructose 1,6-bis(phosphate) is an 

inhibitor of the Cra regulator protein. The concentration of fructose 1,6-bis(phosphate) was 

quantified and its strong decrease during the transition to glucose-limited growth could be 

demonstrated for the first time. The model predictions and experimental findings support the 

hypothesis that fructose 1,6-bis(phosphate) plays a major role in the signaling of glucose 

availability and that glycolysis is repressed via the cra modulon during glucose-limited 

growth. 
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The model structure reconstructed in the current thesis may open up new possibilities for 

strain development concerning the supply and demand of precursors and energy. The 

relevance of the proposed network topology for biotechnological processes is supported by 

recent studies of engineered E. coli strains. Ow et al. (2007) examined the behavior of a cra 

deletion mutant strain bearing multicopy plasmids. The maintenance of multicopy plasmid 

DNA has been widely reported to retard cell growth due to the high precursor and energy 

demand (metabolic burden; Glick, 1995). Ow et al. (2007) demonstrated that in plasmid-

bearing cra deletion mutants the expression of glycolysis enzymes is upregulated and the 

specific growth rate is enhanced by 20 %. It can be hypothesized from these observations 

that the high demand of precursors and energy for plasmid DNA replication leads to a 

decrease in the level of fructose 1,6-bis(phosphate), and, that the subsequent repression of 

transcription of glycolysis genes leads to a reduction in growth rate. In the cra deletion 

mutant strain, this regulation is disrupted. The higher enzyme levels may lead to an improved 

glycolytic flux, and thus, to an enhanced growth rate. In the present work it is proposed that 

the TCA cycle fluxes are high due to the Crp-dependent regulation during fed-batch growth, 

and, that this leads to a decrease of the biomass yield. One might hypothesize that altering 

the Crp-dependent regulation could enhance the biomass yield. Nanchen et al. (2008) 

recently demonstrated that deletion of the crp gene leads to an improvement of the biomass 

yield by more than 10 %. 

However, disruption of a global regulatory system for the purpose of strain development will 

lead to numerous side effects that could be disadvantageous. Engineering transcription of 

only selected genes by changing the nucleotide sequences of the respective DNA-binding 

sites appears to be more purposeful. This approach could be guided by the presented 

dynamic modeling approach. The desired effects of genetic engineering the nucleotide 

sequences can be predicted in silico, before testing the new behavior under process 

conditions, which might speed up the development cycles of metabolic engineering. 
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Appendix 

Appendix A – Time Courses of Experimentally Determined Rates 

 

Time courses of experimentally determined rates, . Example from one individual fed-batch cultivation 

experiment. a, specific rates of glucose uptake  (broken line), acetate excretion  (solid line) and 

ammonia uptake  (dotted line). b, specific growth rate  (broken line), oxygen consumption rate 

 (solid line) and carbon dioxide production rate  (dotted line). 
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Appendix B – Approximations of Metabolite Concentration Time 
Courses 

 

Biomass concentration [g l-1] 

( )
( )( ) ( )22 0.03027 0.52

1ˆ 0 0.001816 5.017
1 0.2913 0.52

X t
c t

t e ⋅ −
< = + ⋅

+ ⋅ −
 

( )
( ) ( )( )( )0.10211.322 10 0.9999 ln 884.1 17.28

1ˆ 0 18.45 18.34
1

X
t

c t
e ⋅ + + ⋅ −

> = − ⋅
+

 

Glucose concentration [g l-1] 

( )
( ) ( )( )( )0.03253

6

8.251ˆ 0 8.307
1 exp 18.72 10.07 ln 1794 10 165.5

glcc t
t

< = −
+ − ⋅ + + ⋅ +

 

Extracellular cAMP concentration [µmol g-1] 

( )ˆ 0 0.9cAMP,extraX t < =
 

( ) 6.175ˆ 0 5.841 (1.294 0.1624 )cAMP,extraX t t> = − −
 

(examples from individual fed-batch cultivations) 
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Appendix C – Stoichiometric Model 

The stoichiometric model used in this work is based on the one of Chassagnole et al. (2002). 

Modifications of the reaction stoichiometry and the notation are given below. Reactions 

(transformers) of the model were named after the respective enzymes (according to genetic 

nomenclature; e. g. GapA (gene name gapA, enzyme glyceraldehyde 3-phosphate 

dehydrogenase-A). Deviating from this rule, enzyme complexes or polymerizations were 

named as follows: 

 PTS (phosphoenolpyruvate (PEP)-dependent, sugar transporting phosphotransferase 

system): glc_F + pep → g6p + pyr. 

 PDH (pyruvate dehydrogenase complex): pyr + coa + nad → accoa + co2 + nadh 

 KGDH (2-oxoglutarate dehydrogenase complex): akg + coa + nad → succoa + nadh 

+ co2 

 SDH (succinate dehydrogenase): suc + fad → fum + fadh2 

 bio (biomass synthesis according to Chassagnole et al. (2002)) 

Reactions in addition to the model by Chassagnole et al. (2002): 

 Ahyd (ATP hydrolysis): h2o + atp → adp + p + h 

 Pta (phosphate acetyltransferase): p + accoa → acep + coa 

 AckAB (acetate kinase A): acep + adp → ace + atp 

 T.acetate (transport of acetate): ace → ace_F 

Modified reactions: 

 IcdA (isocitrate dehydrogenase): isocit + nadp → akg + nadph + co2  

Modified/additional metabolites: 

 acep: acetylphosphate 

 ace: acetate 

 ace_F: extracellular acetate  

 glc_F: extracellular glucose 

 fbp: fructose 1,6-bis(phosphate)  
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Appendix D – Differentially Expressed Genes 

Table A4-1 Flagellar / chemotaxis system 

Gene Gene product T1 T2 T3 T4 T5 T6 T7 T8 

Early class genes         
flhD Transcriptional dual regulator SU 0.18 -0.20 -0.39 -0.05 -0.12 -0.33 -0.37 -0.50 
Middle class genes         
fliA Sigma 28 0.10 -0.26 -0.29 -0.64 -0.55 -0.68 -1.00 -2.42 
ycgR Involved in flagellar motility 0.08 0.02 -0.74 0.15 0.06 0.06 0.22 0.05 
flgB Basal body rod protein 0.07 -0.10 -0.40 -0.29 0.07 -0.20 -0.45 -1.32 
flgD Initiation of hook assembly -0.22 -0.25 -0.35 -0.59 -0.41 -0.54 -0.98 -1.44 
flgE Flagellar hook protein 0.20 -0.56 -0.68 -0.52 -0.27 -0.58 -0.87 -1.96 
flgC Basal body rod protein -0.09 -0.47 -0.40 -0.35 -0.50 -0.63 -0.99 -2.04 
flgA Flagellar biosynthesis -0.08 -0.12 0.03 -0.31 0.09 0.36 -0.05 -0.71 
flgJ Flagellum-specific muramidase -0.03 -0.45 -0.63 -0.52 -0.08 -0.08 -0.30 -0.61 
flgG Basal body rod protein -0.09 -0.43 -0.95 -0.36 -0.02 -0.41 -0.41 -0.98 
flgH Flagellar L-ring protein -0.09 -0.40 -0.48 -0.03 0.33 -0.03 -0.17 -0.59 
flgK Hook filament junction protein 1 -0.08 -0.44 -0.64 0.06 -0.04 -0.31 -0.39 -0.77 
fliD Flagellar cap protein 0.09 -0.08 -0.39 -0.25 -0.14 -0.15 -0.24 -0.25 
fliS Flagellum-biosynthesis protein  -0.04 -0.24 -0.59 -0.63 -0.34 -0.30 -0.63 -0.90 
fliM Motor switch protein -0.01 -0.32 -0.54 -0.49 -0.33 0.18 -0.29 -1.04 
fliE Basal body protein -0.36 -0.81 -0.51 -0.84 -0.47 -0.24 -0.39 -1.20 
Late class genes         

motA Flagellar motor complex 
component -0.20 -0.19 -0.62 -0.22 -0.21 -0.83 -0.23 -0.27 

cheR Chemotaxis protein 
methyltransferase 0.09 -0.05 0.42 -0.40 -0.20 0.12 -0.02 0.11 

Others          
fhiA Flagellar system protein 0.03 0.06 0.07 0.47 0.08 0.31 0.21 0.12 
Associated regulatory proteins         
csrA Carbon storage regulator 0.02 -0.48 -0.29 -0.31 -0.50 -0.49 -0.07 -0.15 
hns Transcriptional dual regulator 0.13 0.32 0.42 0.63 0.09 1.21 0.28 0.06 
lrhA Transcriptional repressor -0.07 0.09 0.36 0.31 0.16 0.32 0.42 �.33 
ygiX Transcriptional activator QseB -0.20 -0.17 0.08 -0.41 -0.15 -0.26 -0.09 -0.03 

Underlining indicates significantly differential expression. 

The data of this table are results of a collaboration with the Institute of Technical Biochemistry (University of 

Stuttgart) and were published by Lemuth et al. (2008). The microarray analysis was performed by Karin Lemuth 

as part of her PhD thesis (Lemuth, 2006). 
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Table A4-2 Differentially expressed Sigma S core set genes 

Gene Gene product a T1 T2 T3 T4 T5 T6 T7 T8 

bolA BolA transcriptional regulator, 
stress regulation 0,21 0,02 -0,65 -0,01 -0,03 -0,08 -0,05 -0,61 

ygaM Predicted protein -0,10 0,08 -0,55 0,30 0,29 -0,31 0,16 0,12 
yhiW GadW transcriptional repressor -0,09 -0,03 -0,51 -0,04 0,07 -0,24 -0,05 -0,34 
yhiX GadX transcriptional activator 0,08 -0,15 -0,33 -0,08 -0,12 -0,25 -0,18 -0,09 
ychK Hypothetical protein 0,21 -0,02 -1,47 0,15 0,06 -0,01 0,18 -0,36 
ugpC Glycerol-3-P ABC transporter, SU -0,28 0,00 -0,56 0,10 -0,14 0,09 -0,05 -0,24 
yhhA Conserved protein -0,01 -0,26 -0,16 -0,45 -0,36 -0,08 -0,28 -0,15 
treA Trehalase, periplasmic -0,12 -0,02 -0,36 -0,01 0,02 0,03 0,07 -0,01 
yhiO Ethanol tolerance protein 0,05 0,15 0,62 -0,13 0,01 0,34 0,08 0,35 
yedU Hsp31 molecular chaperone, SU 0,10 0,49 0,27 0,51 0,06 -0,17 0,27 0,16 
yceK Predicted lipoprotein 0,20 0,14 0,42 0,02 0,18 -0,01 0,13 0,12 
b1758 Predicted phosphatidyl transferase -0,13 0,07 0,30 -0,14 -0,20 0,22 0,03 0,31 
b2086 Conserved protein -0,29 0,02 0,51 0,01 0,25 0,40 0,28 0,31 

hdhA 7-alpha-hydroxysteroid 
dehydrogenase, SU 0,11 0,36 0,49 0,11 0,01 -0,10 0,05 0,41 

yjeB NsrR transcriptional repressor 0,10 0,34 0,06 0,11 -0,04 -0,19 0,03 0,11 

otsB Trehalose-6-phosphate 
phosphatase 0,00 0,30 0,06 -0,04 0,23 0,15 0,32 0,22 

rpsV 30S ribosomal subunit protein S22 0,28 0,59 0,51 0,66 1,15 1,13 1,38 1,59 
b0753 Putative homeobox protein 0,14 0,57 0,37 0,59 0,34 0,47 0,71 0,61 
ygaF Predicted enzyme 0,24 0,39 0,42 0,44 0,36 0,11 0,27 0,25 
yeaG Conserved protein 0,20 0,08 -0,03 0,47 0,24 0,02 0,04 0,04 
ygaE CsiR transcriptional repressor 0,13 0,27 0,10 0,07 0,11 0,47 0,02 0,14 

yjgR 
Putative enzyme with P-loop 
containing nucleotide triphosphate 
hydrolase domain 

0,04 0,03 -0,24 0,27 0,26 0,67 -0,11 -0,04 

ygaU Predicted protein 0,07 0,08 0,26 0,12 0,14 0,30 0,24 0,37 
ymgA Hypothetical protein -0,19 0,18 0,37 0,12 0,30 0,17 0,29 0,64 

b2097 Fructose bisphosphate aldolase 
class I, SU -0,03 0,13 0,39 0,39 0,44 -0,05 -0,06 0,36 

yjgB Predicted alcohol dehydrogenase 0,01 0,08 0,64 0,27 0,16 0,14 -0,23 0,14 

a Weber et al. (2005a) 

Underlining indicates significantly differential expression. 

The data of this table are results of a collaboration with the Institute of Technical Biochemistry (University of 

Stuttgart) and were published by Lemuth et al. (2008). The microarray analysis was performed by Karin Lemuth 

as part of her PhD thesis (Lemuth, 2006). 
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Table A4-3 Differentially expressed stress-related genes 

Gene Gene product T1 T2 T3 T4 T5 T6 T7 T8 

ppiA Peptidyl-prolyl cis-trans isomerase 
A, chaperoning, repair -0,25 0,01 0,07 0,11 -0,28 -0,56 0,15 -0,04 

degS Inner membrane serine protease 
(sigmaE response) -0,73 -0,07 -0,12 0,06 -0,07 -0,3 -0,17 -0,09 

narJ Chaperone subunit (δ subunit) of 
nitrate reductase 1 0,03 -0,02 -0,77 -0,04 -0,17 0,21 0,13 0,03 

hslJ Heat shock protein 0,07 -0,15 -0,58 -0,09 0,15 -0,27 0,01 -0,22 

hdeA Acid-resistance protein, possible 
chaperone 0,55 0,11 -0,38 -0,25 -0,34 -0,3 -0,35 -0,37 

yabH Chaperone with DnaK 0,07 -0,2 -0,07 -0,21 -0,57 -0,04 0,13 -0,53 

stpA H-NS-like DNA-binding protein with 
RNA chaperone activity -0,04 -0,58 -0,4 -0,31 -0,29 -0,31 0,01 -0,72 

bcp Thiol peroxidase (detoxification) 0,19 -0,17 -0,53 -0,23 -0,42 -0,32 -0,04 -0,55 

ydaA Universal stress protein (resistance 
to UV irradiation) 0 -0,16 -0,39 -0,37 -0,22 -0,33 -0,14 -0,14 

recF Subunit of RecFOR complex, DNA 
recombination, rplication, repair 0,09 -0,27 -0,17 -0,45 -0,14 -0,31 -0,27 -0,17 

hslV Peptidase component of the HslVU 
protease, chaperoning, repair 0,08 -0,13 -0,19 -0,4 -0,2 -0,28 -0,33 -0,29 

dnaJ Chaperone, heat shock protein 0,05 -0,39 -0,31 -0,05 -0,11 -0,12 -0,63 0,1 

ymdD 
Protein required for succinyl 
modification of osmoregulated 
periplasmic glucans 

0,03 0,27 0,11 0,04 -0,16 0,14 -0,13 0,55 

mutL Methyl-directed mismatch repair, 
SU 0,02 -0,02 0,18 0,22 0,03 -0,41 0,43 1,04 

yhiO Ethanol tolerance protein 0,05 0,15 0,62 -0,13 0,01 0,34 0,08 0,35 

msrA Protein-methionine-S-oxide 
reductase, chaperoning, repair 0,13 0,23 0,41 0,09 0 0,11 0,05 0,13 

sodA Superoxide dismutase, SU -0,05 -0,07 0,24 0 0,04 0,17 0,01 0,07 

ydeB Inner membrane protein involved in 
multiple antibiotic resistance 0 -0,03 0,49 -0,1 -0,04 -0,04 0,02 0,13 

uvrB UvrABC Nucleotide Excision 
Repair Complex, SU 0,19 -0,07 0,94 0,07 -0,11 -0,06 -0,01 -0,24 

yedU Hsp31 molecular chaperone, SU 0,1 0,49 0,27 0,51 0,06 -0,17 0,27 0,16 

ydgO Integral membrane protein of 
SoxR-reducing complex 0,03 0,28 0,25 0,03 0,04 -0,04 0,02 0,01 

cutC Copper homeostasis protein, 
detoxification 0,18 0,08 0,33 0,44 0,5 0,25 0,55 0,74 

ybeV Hsc56, co-chaperone of Hsc62 0 0,43 0,55 0,17 0,26 0,43 0,16 0,28 
cspI Qin prophage; cold shock protein -0,06 0,47 0,36 0,36 0,15 0,47 0,33 0,33 

yeaA Protein-methionine-S-oxide 
reductase, chaperoning, repair 0,29 0,45 0,69 0,64 0,47 0,44 0,66 0,93 

ahpC Alkylhydroperoxide reductase, SU, 
detoxification 0,17 0,44 0,6 0,61 0,33 0,27 0,32 0,49 

phoH ATP-binding protein, induced by P 
starvation 0,09 -0,02 0,06 -0,07 -0,2 0,53 -0,01 0,16 

cspF Qin prophage; cold shock protein -0,01 -0,02 0,12 0,04 -0,07 0,69 -0,04 0,06 
b1631 Member of SoxR-reducing complex 0,04 0,06 0,04 -0,07 0,05 0,36 0,04 -0,03 

b0245 Toxin of the YkfI-YafW toxin-
antitoxin pair -0,08 0,16 0,22 -0,21 -0,08 0,51 0,07 0,04 

sbmC DNA gyrase inhibitor 0,02 -0,01 0,09 0,22 0,43 0,16 0,03 -0,15 

mutH MutHLS complex, SU, methyl-
directed mismatch repair -0,01 0,06 0,03 0,48 0,11 -0,28 0,13 -0,23 

rpoE Sigma E factor 0.22 0.09 0.23 0.65 0.79 0.52 0.95 0.83 

Underlining indicates significantly differential expression. 

The data of this table are results of a collaboration with the Institute of Technical Biochemistry (University of 

Stuttgart) and were published by Lemuth et al. (2008). The microarray analysis was performed by Karin Lemuth 

as part of her PhD thesis (Lemuth, 2006). 
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Table A4-4 Differentially expressed Sigma S-regulated genes 

Gene Gene product a T1 T2 T3 T4 T5 T6 T7 T8 

himD IHF transcriptional dual regulator, 
SU 0,02 0,20 0,07 0,50 0,22 0,10 -0,01 -0,21 

htrE 
Putative outer membrane porin 
protein involved in fimbrial 
assembly 

-0,21 -0,10 0,49 0,09 0,35 0,49 0,14 0,42 

proW Proline ABC transporter UE -0,07 -0,05 -0,12 0,01 -0,09 -0,11 0,18 0,48 
csiE Stationary phase inducible protein 0,07 0,09 0,01 0,36 0,31 0,15 0,15 0,36 
rpsV 30S ribosomal subunit protein S22 0,28 0,59 0,51 0,66 1,15 1,13 1,38 1,59 

yehX YehW/YehX/YehY/YehZ ABC 
transporter subunit -0,16 0,00 0,25 0,03 -0,01 0,08 -0,05 0,42 

yehY YehW/YehX/YehY/YehZ ABC 
transporter subunit 0,10 -0,21 0,10 0,20 0,43 0,73 -0,05 0,01 

yeiL Transcriptional activator 0,00 0,18 0,42 0,15 0,14 0,23 -0,02 0,27 
ygaF Predicted enzyme 0,24 0,39 0,42 0,44 0,36 0,11 0,27 0,25 
yhiO Ethanol tolerance protein 0,05 0,15 0,62 -0,13 0,01 0,34 0,08 0,35 
proV Proline ABC transporter UE -0,32 -0,40 -0,08 -0,12 -0,11 -0,11 0,36 1,14 

hdeA Acid-resistance protein, possible 
chaperone 0,55 0,11 -0,38 -0,25 -0,34 -0,30 -0,35 -0,37 

treA Trehalase, periplasmic -0,12 -0,02 -0,36 -0,01 0,02 0,03 0,07 -0,01 
recF RecFOR complex, SU 0,09 -0,27 -0,17 �0,4 -0,14 -0,31 -0,27 -0,17 

bolA BolA transcriptional regulator, 
stress regulation 0,21 0,02 -0,65 -0,01 -0,03 -0,08 -0,05 -0,61 

yhiX GadX transcriptional activator 0,08 -0,15 -0,33 -0,08 -0,12 -0,25 -0,18 -0,09 
pqiB Paraquat-inducible protein B -0,11 -0,36 -0,40 -0,22 -0,27 -0,57 -0,38 -0,42 

caiC Carnitine-CoA ligase / 
crotonobetaine-CoA ligase 0,07 -0,32 0,04 0,06 -0,33 -0,83 -0,14 0,02 

ftsA Essential cell division protein 0,07 -0,05 -0,09 0,01 -0,45 -0,32 -0,18 0,03 

galT Uridylyltransferase, galactose 
metabolism 0,01 0,13 -0,56 -0,04 0,13 -0,21 0,06 -0,14 

a Source: Ecocyc.org database. 

Underlining indicates significantly differential expression. 

The data of this table are results of a collaboration with the Institute of Technical Biochemistry (University of 

Stuttgart) and were published by Lemuth et al. (2008). The microarray analysis was performed by Karin Lemuth 

as part of her PhD thesis (Lemuth, 2006). 
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Appendix E – General Material Balance Equation for Intracellular 
Compounds 

The balance equation for an intracellular compound j  (dimension [mol (lcytosol)-1]) is derived 

from the general material balance of the fed-batch process (Equation (7-48); dimension 

[mol]). 

 ( ) ( )j X X R ij i X X R
i

d c c V r c V
dt

ν ν ν= ⋅∑  (7-48) 

jc  [mol·(lcytosol)-1]   intracellular concentration of the compound j  

Xc  [(g dry weight)·(lreactor)-1] biomass concentration 

Xν  [lcytosol· g dry weight)-1] specific cell volume 

RV  [lreactor     bioreactor volume 

ij i
i

rν∑ [mol·(lcytosol·s)-1] sum of the reactions rates i , where the compounds j  are 

reactants or products; ijν , stoichiometric coefficient. 

The specific cell volume, Xν , varies with the growth rate (Section 2.3.4) (Hardiman et al., 

2007): 

 ( )
(1.144 )

(0.718 )

0.4860 2ˆ
0.636 0.635 2 1000X

μ

μ
ν μ

⋅

⋅

⋅
=

⎡ ⎤− + ⋅ ⋅⎣ ⎦
 (7-49) 

The application of the product rule of differentiation leads to 

 ( )j X X R
X X R j X R j X R j X X ij i X X R

i

dc dc d dVc V c V c c V c c r c V
dt dt dt dt

νν ν ν ν ν+ + + = ⋅∑ . (7-50) 

 ( )j X X R
j j j ij i

iX X R

dc dc d dVc c c r
dt c dt dt V dt

ν ν
ν

+ + + = ∑  (7-51) 

 ( )j X R X
ij i j

i X R X

dc dc dV dr c
dt c dt V dt dt

νν
ν

⎛ ⎞
= − + + ⋅⎜ ⎟

⎝ ⎠
∑  (7-52) 
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The latter expression of Equation (7-52) is the dilution rate of the intracellular compound j . 

After deriving the specific growth rate, μ , from the biomass balance for the fed-batch 

process, 

 ( )X R X R
d c V c V
dt

μ=  (7-53) 

 X R
R X X R

dc dVV c c V
dt dt

μ+ =   (7-54) 

 X

X R

dc F
c dt V

μ = +  [h-1] with the feed rate RdVF
dt

= , (7-55) 

and, defining the fractional change of the specific cell volume, 

 ( ) ( )
( )
X

X

d
dt

ν μ
ω μ

ν μ
=

⋅
 [h-1], (7-56) 

the material balance for the fed-batch cultivation reads: 

 ( ) ( )( )j
ij i j

i

dc
r c

dt
ν μ ω μ= − + ⋅∑ . (7-57) 

Note that 0ω =  for any steady-state conditions, such as for exponential feeding. The 

application of a constant feed rate, however, leads to a fractional change of the cell volume. 
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Appendix F – Enhancement of Transcription Initiation 

The enhancement of the transcription rate (7-6) by an activator protein is formulated as the 

raise of the transcription initiation rate constant (7-58), (7-59). When there are multiple DNA-

binding sites ( l ) of activator proteins, the enhancement is assumed to be additive (7-59). 

 , , , , , ,
app l
tc init j tc init j tc init j l

l
k k k ϕ= + Δ∑  (7-58) 

with ,
, , , , , ,

l enh l
tc init j tc init j tc init jk k kΔ = −  (7-59) 

,
, ,

enh l
tc init jk  is the rate constant, when the activator protein is bound only to the DNA-binding site l

, and , ,tc init jk , when no regulator protein is bound. The difference is multiplied by the 

probability that the regulator is bound, lϕ , and added up to obtain the apparent rate constant 

, ,
app
tc init jk . Thus, the resulting rate constant is variable and depends on the present 

concentration of regulators (and effectors). 

Equation (7-58) can be converted to  

 ( ), , , , 1 1app
tc init j tc init j l l

l
k k δ ϕ⎡ ⎤

= + −⎢ ⎥⎣ ⎦
∑ , (7-60) 

using 

 
,

, ,

, ,

enh l
tc init j

l
tc init j

k
k

δ = , (7-61) 

which is the enhancement factor of binding of the regulator protein to the DNA-binding site l . 
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Appendix G – Dynamic Models of Transcription (Literature Review) 

Table A7-1 Formulation of the transcription rate in mechanistic dynamic models (deterministic, non-linear, continuum) 

Authors 
System studied 
a 

Rate constant 

(number) genec
 

Implementation of regulation (number of sites) 
Overlap 

of sites 

Growth rate-

dependence 

Dimension for 

mRNA 
RNAP/ 

promoter 

Multiple 

promoters 

Repres-

sion 
Activation 

Yagil and Yagil 

(1971) 
lacZYA;  LacI b - - No -  ϕ  (1) b No No - - 

Gondo et al. 

(1978) 

Generally 

applicable 

(diauxie) 
tck  (1) No F c, d No ϕ  (1) c F c, d No ( )tcr bμ +∼

 
Mass fraction [g 

(g dry weight)-1] 

Roels (1978) 
lacZYA; LacI, 

Crp (diauxie) 
max

tcr  (1) No No No ϕ  (1) c ϕ  (1) c No No 
Mass fraction [g 

(g dry weight)-1] 

Harder and 

Roels (1982) 

lacZYA; LacI, 

Crp (diauxie) 
max

tcr  (1) No No  ϕ  (1) c ϕ  (1) c No 
max

tc
a br

a b
μ

μ
+

+
∼

 

Mass fraction [g 

(g dry weight)-1] 

Lee and Bailey 

(1984b) 

lacZYA; LacI, 

Crp (variable 

copy numbers) 
tck  (1) Yes ϕ  (1) c No ϕ  (1) c ( )1 1δ ϕ+ −⎡ ⎤⎣ ⎦  

(1) e 
No ( )genec f μ=

 

Intracellular 

conc. [mol (l 

cytosol)-1] 

Wong et al. 

(1997) 

lacZYA; lacI, 

LacI, Crp 

(diauxie) 

,tc ik  (two 

individual 

constants) 

Yes ϕ  (2) c No 

ϕ  (3) c, 

DNA 

looping 

included 

ϕ  (1) c No No 
[mol (g dry 

weight)-1] 

(Table continued on next page.) 
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(Table continued from previous page.) 

Authors 
System studied 
a 

Rate constant 

(number) genec
 

Implementation of regulation (number of sites) 
Overlap 

of sites 

Growth rate-

dependence 

Dimension for 

mRNA 
RNAP/ 

promoter 

Multiple 

promoters 

Repres-

sion 
Activation 

Kremling and 

Gilles (2001), 

Kremling et al. 

(2001) 

lacZYA, crp, 

cyaA, ptsG, “AT” 

gene; LacI, Crp 

(diauxie) 

k  (one for 

lumped 

transcrip-tions 

and 

translations) 

Yes ϕ  (3) c, f No 表 EMBED 

Equation.D

SMT4 ϕ̂  

ϕ  (4) c, f No No 
[mol (g dry 

weight)-1] 

This work 

cra modulon; 

Cra  

(glc-limited fed-

batch) 

,tc ik  g (nine 

individual 

constants)  

Yes jϕ   

(14) c, g 
Yes c, g jϕ   

(10) c, g 

( )1 1δ ϕ+ −⎡ ⎤⎣ ⎦  
(1) c, e 

No 
( )genec f μ=

, 

( )RNAPc f μ=
 

Intracellular 

conc. [mol (l 

cytosol)-1] 

a Transcription units studied; regulator proteins considered (perturbation used) 
b The equilibrium of the repressor-operator binding reaction was studied (not transcription dynamics) and the binding probability, ϕ , was formulated. The other authors listed in the 
table, used this approach and applied it to other regulatory systems. 
c Formulation according to Yagil and Yagil (1971). 
d F (“catabolite repression index”) relates the number of quarternary complexes of Crp-cAMP and RNAP bound at the promoter to the total number of promoter DNA. 
e Enhancement of transcription through binding of an activator protein was formulated using an enhancement factor, δ , and the binding probability. 
f To implement hierarchical regulation, the probabilities were nested by assuming that the sequence of binding reactions of the involved proteins is ordered (probability of the one 
reaction is used as ”input” for the next reaction: ( )ˆ fϕ ϕ=  and ( )gϕ ϕ= ). 
g The model comprises nine genes ( i ), three of which are transcribed from multiple promoters. In total, 14 promoters ( j ) are implemented, considering the interactions of the 

RNAP with the individual promoters ( jϕ ). For multiple promoters regulating transcription of the same gene, a mean initiation rate constant, ,tc ik , is used. 
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Appendix H  Determination of Fructose 1,6bis(phosphate) 

Enzymatic determination of fbp was performed using the enzymes triosephosphate 

isomerase (Roche Diagnostics), glycerol-3-phosphate dehydrogenase and aldolase (Sigma-

Aldrich) according to Michal (1984). A slow, fructose 1,6-bis(phosphate)-independent zero-

order side reaction was observed during the analyses, which was eliminated by recording the 

absorption time profile at 340 nm and extrapolation according to Henniger (1998). Spiking of 

the samples with a fructose 1,6-bis(phosphate) standard solution resulted in a decrease of 

analysis time: The elevated substrate concentration enhanced the rate of the enzymatic 

conversion, but did not change the side reaction rate. A further modification of the protocol of 

Michal (1984) concerns the concentration of the NADH solution (30 mM), to obtain a larger 

measurement range. To quantify the intracellular concentration of fructose 1,6-

bis(phosphate) (fbp), samples from the bioreactor were quenched and extracted using 

perchloric acid according to Section 2.2.3 (Hardiman et al., 2007). Potential metabolite loss 

due to leakage (Bayer, 1967; Britten and Mc, 1962; Leder, 1972; Wittmann et al., 2004) prior 

to analysis is avoided using this approach since the intracellular and extracellular compounds 

are not separated. The procedure may be applied for determination of the intracellular 

concentration, when the metabolite is not present in the extracellular space. Bolten et al. 

(2007) and Taymaz-Nikerel et al. (2009) demonstrated that sugar phosphates may be found 

in the supernatant of E. coli suspensions after filtration applying pressure. However, Moses 

and Sharp (1972) demonstrated that the ratio of the intra- and extracellular fbp is 20,000 : 1 

through radiochemical labeling of the sugar phosphates and gently filtering (avoiding 

clogging of the filters). In the fed-batch cultivation applied in the current work the minimal 

ratio of the intra- and extracellular volume is roughly 1 : 150 ( :x xcρ ). Therefore, the 

intracellular amount is expected to be at least 100-fold higher than that of extracellular fbp in 

the samples analyzed in the current work. To confirm that the extracellular amount of fbp is 

negligible an in-line filtration probe with a 0.2 µm-pore-size ceramic membrane (FIPS 

sampling probe, Flownamics, Madison, WI, USA) was used. This ensured cell-free sampling, 

avoiding metabolite leakage that might occur during manual filtration and the concomitant 

application of pressure. The concentration of extracellular fbp, if any, was below the 

detection limit, which agrees with previous works using LC-MS analysis (Schaub and Reuss, 

2008; Schaub et al., 2006). 
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Appendix I  Pattern Matching 

The computational tool Virtual Footprint and the PRODORIC database 

(http://www.prodoric.de/vfp; Munch et al., 2005) were used for predicting potential DNA-

binding sites of the Cra regulator protein. The pattern matching using default settings 

(changes of default settings for the pyrG-eno operon: sensitivity/threshold, 0.9) and the 

position weight matrix MX000125 (FruR, synonymous with Cra) resulted in 278 matches of 

DNA-sequences within the Escherichia coli K-12 W3110 genome, 29 of which could be 

potential Cra-dependent regulatory sites for genes of the central carbon metabolism. Eight 

genes are not known to be regulated by other regulator proteins (EcoCyc; Keseler et al., 

2009). To avoid regulatory interactions, only these genes were implemented in the model 

(Figure 7-2 of the main text). 11 DNA-binding sites were found in upstream regions and one 

in the coding region (Table 7-2, main text). The potential binding sites were re-examined by 

calculating the scores (according to Table A7-2, number 5) of the possible orientations (+/- 

strand, forward/reverse) and shuffling the sequences. The sequences yielding the maximum 

score were chosen (Table 7-2, main text). 
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Appendix J – Workflow Prediction of DNAbinding Constants 

Table A7-2 Workflow for prediction of DNA-binding constants and calculation of binding probabilities 

1 Choose a reference DNA-binding site sequence, refDNAbs . 

2 Determine (experimentally) the binding constant for this reference sequence, 2,refK . 

3 Choose a set of highly conserved DNA-binding site sequences of a regulon/modulon. 

4 

Calculate the specificity matrix for the set of DNA-binding sites, ( )m n×SpM ; matrix entries: ,
,

m n
m n

m

f
a

p
= , 

with ,m nf , frequency of nucleotide m  (A, C, G or T) at position n  of the sequence and mp , genomic 

frequency of each nucleotide. 

5 
Calculate the specificity score, ,

k
k m n

n

score a= ∏ , of the binding site of interest, kDNAbs , with ,
k
m na , 

product of the matrix entries that correspond to the nucleotides m  at positions n  of the sequence k . 

6 Calculate the specificity score of the reference site, ,
ref

ref m n
n

score a= ∏ . 

7 

For the given binding constant of a reference sequence, 2,refK , the unknown individual binding constant, 

2,kK  a, can now be predicted: 2, 2,
k

k ref
ref

scoreK K
score

= . 

8 The predicted binding constant can be used for calculating the binding probability kϕ  a. 

a The approach can equally applied to calculate DNA-binding constants of repressor and activator proteins ( 2,kK  

or 2,lK , respectively) as well as RNA polymerase-promoter binding constants ( ,RNAP jK ). The respective 

binding probabilities are represented by kϕ , lϕ  or ,RNAP jΦ . 

   



 

140 

Appendix K – Cra DNABinding Sites for SpM Calculation 

Table A7-3 DNA-binding site sequences for calculating the specificity matrix of the cra modulon 

TU a DNA-sequence b Genomic position b Genomic 

orientation b 

edd-eda ACTGAAACGTTTTTGC 1932726 - 

mtlADR ACTGAATCGGTTAACT 3769785 + 

epd-pgk-fbaA GCTGAAGCGTTTCAGT 3071833 - 

pckA GGTGAATCGATACTTT 3530170 + 

ppsA GGTGAATCGTTCAAGC 1785223 + 

aceBAK GCTGAATCGCTTAACG 4212807 - 

ptsHI-crr GCTGAATCGATTTTAT 2531565 + 

icdA GCTGAATCGCTTAACC 1194100 + 

pykF CTTGAATGGTTTCAGC 1753501 + 

adhE GCTGAAAGGTGTCAGC 1297593 - 

pfkA CCTGAATCAATTCAGC 4105011 + 

nirBDC-cysG GCTGAATCGTTAAGGT 3491601 + 

a TU = Transcription unit that is regulated by the Cra protein. 

b Genomic information for E. coli K-12 MG1655. The genomic position of the first nucleotide on the + strand is 

given. 12-nt sequences of the E. coli K-12 MG1655 position weight matrix MX000125 for the Cra regulator protein 

were retrieved from the Prodoric Database (Munch et al., 2003). The sequences were extended by 4 nts to 

generate 16-nt sequences as proposed by Ramseier et al. (1995), reversed to examine the four possible 

orientations (+/- strand, forward/reverse), and, shuffled, to obtain optimal matches to the consensus sequence of 

Ramseier et al. (1995). 
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Appendix L – Sequence Logos 

 

 

Fig. A7-1 Sequence logos for (a) the Cra DNA-binding site sequence (from 12 highly conserved 

sequences; see Table A7-3), (b) for the promoter -35 and (c) -10 hexamers [each from 401 hexamers derived by 

Shultzaberger et al. (2007)]. Logos were generated using WebLogo (Crooks et al., 2004). 
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Appendix M  Spacer and Gap Penalties 

The effect of spacer length on tac promoter activity was quantified in vivo by Typas and 

Hengge (2006). Therefore, spacer penalties, ,spacer jα  (between 0 and 1), were used for the 

different spacer lengths (Table A7-4). Hawley and McClure (1983) and Shultzaberger et al. 

(2007) demonstrated in their statistical studies that the length of the gap (see Figure 7-3c of 

the main text) is between 3 and 10 nts (6 nt is optimal). Therefore, a gap penalty was 

introduced: , 1gap jα = , for gaps between 3 and 10 nts; otherwise , 0gap jα = . 

Table A7-4 Spacer penalties 

Spacer length a Spacer penalty ( spacerα ) b 

15 0.09 

16 0.25 

17 1 

18 0.18 

19 0.04 

20 0.08 

a The spacer lengths are given according to Hawley and McClure’s notation (1983). 

b Spacer penalties = promoter activities of tac-promoter derivates relative to the 17-bp spacing promoter tac17: 

tac15 (0.062/0.688 = 0.09), tac16 (0.173/0.688 = 0.25), tac17 (0.688/0.688 = 1), tac18 (0.127/0.688 = 0.18) and 

tac19 (0.027/0.688 = 0.04); data were taken from Typas and Hengge (2006), who determined the in vivo activities 

of chromosomal copies of the synthetic tac promoters (Figure 2, therein). The activity for the tac20 promoter was 

determined by Aoyama and Takanami (1988) relative to the tac17 promoter at the natural superhelical density σ = 

- 0.05. 
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Appendix N  Growth RateDependent Variables 

 

 

Fig. A7-2 Growth rate-dependent variables. ( ), C period or chromosome replication time and total 

number of RNAP molecules, ,RNAP tN . (□), D period or time period between termination of replication and cell 

division and fraction of free, cytosolic RNAP. The approximations are depicted as line plots (cf. Table 7-4 of the 

main text). 
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Appendix O  Model Indentifiers 

The model identifiers follow the microbial notation, such as lacZp, lacZo, lacZa for the 

promoter, operator DNA-sequences and the activator DNA-binding site of the lac operon). 

However, these cannot be used for modeling multiple regulator proteins regulating the same 

operon. 

Table A7-5 Identifiers for concentrations of model components 

Identifier Example (description) Denotation 

xyzAd lacZd (lacZ gene) Gene 

xyzAp 
lacZp1, lacZp2, ... (multiple promoters of the lac 

operon; numbers are left out for single promoters) 
Promoter a 

xyzApabcD 

lacZp1crp1, lacZp1crp2, ... (multiple DNA-binding 

sites of the Crp regulator protein at the lacZp1 

promoter) 

Activator or repressor DNA-binding 

sites b 

xyzAr lacZr (lacZ mRNA) mRNA 

a Nomenclature according to the EcoCyc database (Keseler et al., 2009). Multiple promoters are numbered in the 

opposite direction of genomic orientation of the operon starting with “1” for the proximal promoter. 

b In the EcoCyc database (Keseler et al., 2009) each DNA-binding site is assigned to one promoter. This 

nomenclature is taken on. Note, that the regulator protein name is lower case in the identifier since it specifies a 

DNA-sequence. 
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Table A7-6 Identifiers for model reactions 

Identifier Example (description) Denotation 

rtcxyzA rtclacZ (total lacZ transcription rate) Total transcription rate a 

rtcxyzBxyzAp 
rtclacYlacZp1, rtclacYlacZp2, ... (transcription rates of 

the lacY gene from the lacZp promoters) 

Individual transcription rate (from 

multiple promoters) a 

rdgxyzAr rdglacZr (degradation rate of lacZ mRNA) Degradation rate 

rdlxyzAr rdllacZr (dilution rate of lacZ mRNA) Dilution rate 

a The total transcription rate is the sum of the individual transcription rates from multiple promoters. 

Table A7-7 Identifiers for model parameters 

Identifier Example (description) Denotation 

KxyzApAbcD 

KlacZp1Crp (DNA-binding constant of the reaction of 

the Crp protein and its binding site at the lacZp1 

promoter) 

DNA-binding constant a 

PhixyzApAbcD 
PhilacZp1Crp (probability of finding the lacZp1 

promoter bound by the Crp protein) 
Probability of binding (ϕ ) a 

PhiappxyzApAbcD 
PhiapplacZp1Crp (contribution of the Crp-dependent 

regulation to transcription from the lacZp1 promoter) 

Contribution to the transcription 

efficiency ( Φ ) a (apparent 

probability of transcription initiation) 

kdgxyzAr kdglacZr (degradation constant of lacZ mRNA) mRNA degradation constant 

deltaxyzApAbcD 

deltapckApCra (enhancement factor of Cra-

dependent activation of transcription from the pckAp 

promoter) 

Enhancenment factor a 

a In the EcoCyc database (Keseler et al., 2009) each DNA-binding site is assigned to one promoter. The 

identifiers of the parameters are named according to this promoter, even when the same binding site is used to 

regulate further promoters. 

   



 

146 

   



 

147 

References 
Agilent (2003). RNA LabChip kits - Fast quality control of RNA with mnimal sample 

consumption. In Agilent Technologies, Publication Number: 5989-0229EN (Palo Alto, CA, 

USA), pp. 2. 

Al-Mahrouki, A.A., and Krylov, S.N. (2005). Calibration-free quantitative analysis of mRNA. 

Anal Chem 77, 8027-8030. 

An, G., Justesen, J., Watson, R.J., and Friesen, J.D. (1979). Cloning the spoT gene of 

Escherichia coli: identification of the spoT gene product. J Bacteriol 137, 1100-1110. 

Aoyama, T., and Takanami, M. (1988). Supercoiling response of E. coli promoters with 

different spacer lengths. Biochim Biophys Acta 949, 311-317. 

Arnold, S., Siemann-Herzberg, M., Schmid, J., and Reuss, M. (2005). Model-based inference 

of gene expression dynamics from sequence information. Adv Biochem Eng Biotechnol 100, 

89-179. 

Artsimovitch, I., Patlan, V., Sekine, S., Vassylyeva, M.N., Hosaka, T., Ochi, K., Yokoyama, 

S., and Vassylyev, D.G. (2004). Structural basis for transcription regulation by alarmone 

ppGpp. Cell 117, 299-310. 

Babu, C.V.S., Song, E.J., Babar, S.M., Wi, M.H., and Yoo, Y.S. (2006). Capillary 

electrophoresis at the omics level: towards systems biology. Electrophoresis 27, 97-110. 

Barker, M.M., Gaal, T., and Gourse, R.L. (2001a). Mechanism of regulation of transcription 

initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and 

competition for RNAP. J Mol Biol 305, 689-702. 

Barker, M.M., Gaal, T., Josaitis, C.A., and Gourse, R.L. (2001b). Mechanism of regulation of 

transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in 

vitro. J Mol Biol 305, 673-688. 

Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., 

Soboleva, A., Tomashevsky, M., and Edgar, R. (2007). NCBI GEO: mining tens of millions of 

expression profiles - database and tools update. Nucleic Acids Res 35, D760-765. 

Bayer, M.E. (1967). Response of cell walls of Escherichia coli to a sudden reduction of the 

environmental osmotic pressure. J Bacteriol 93, 1104-1112. 



 

148 

Becker, A.K., Zeppenfeld, T., Staab, A., Seitz, S., Boos, W., Morita, T., Aiba, H., Mahr, K., 

Titgemeyer, F., and Jahreis, K. (2006). YeeI, a novel protein involved in modulation of the 

activity of the glucose-phosphotransferase system in Escherichia coli K-12. J Bacteriol 188, 

5439-5449. 

Berg, H.C. (2003). The rotary motor of bacterial flagella. Annu Rev Biochem 72, 19-54. 

Berg, O.G., and von Hippel, P.H. (1987). Selection of DNA binding sites by regulatory 

proteins. Statistical-mechanical theory and application to operators and promoters. J Mol Biol 

193, 723-750. 

Bernstein, J.A., Khodursky, A.B., Lin, P.H., Lin-Chao, S., and Cohen, S.N. (2002). Global 

analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using 

two-color fluorescent DNA microarrays. Proc Natl Acad Sci U S A 99, 9697-9702. 

Bhatnagar, D., and Bhattacharya, A.K. (1984). Cyclic AMP transport across membrane 

vesicles of ultra-violet light irradiated Escherichia coli. J Biosci 6, 173-179. 

Black, R.A., Hobson, A.C., and Adler, J. (1983). Adenylate cyclase is required for chemotaxis 

to phosphotransferase system sugars by Escherichia coli. J Bacteriol 153, 1187-1195. 

Bochner, B.R., and Ames, B.N. (1982). Complete analysis of cellular nucleotides by two-

dimensional thin layer chromatography. J Biol Chem 257, 9759-9769. 

Bohm, A., and Boos, W. (2004). Gene regulation in prokaryotes by subcellular relocalization 

of transcription factors. Curr Opin Microbiol 7, 151-156. 

Bolten, C.J., Kiefer, P., Letisse, F., Portais, J.C., and Wittmann, C. (2007). Sampling for 

metabolome analysis of microorganisms. Anal Chem 79, 3843-3849. 

Boos, W., and Shuman, H. (1998). Maltose/maltodextrin system of Escherichia coli: 

transport, metabolism, and regulation. Microbiol Mol Biol Rev 62, 204-229. 

Braeken, K., Moris, M., Daniels, R., Vanderleyden, J., and Michiels, J. (2006). New horizons 

for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14, 45-54. 

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, 

J., Ansorge, W., Ball, C.A., Causton, H.C., et al. (2001). Minimum information about a 

microarray experiment (MIAME) - toward standards for microarray data. Nat Genet 29, 365-

371. 



 

149 

Bremer, H., Dennis, P., and Ehrenberg, M. (2003). Free RNA polymerase and modeling 

global transcription in Escherichia coli. Biochimie 85, 597-609. 

Bremer, H., and Dennis, P.P. (1996). Modulation of chemical composition and other 

parameters of the cell by growth rate. In Escherichia coli and Salmonella: cellular and 

molecular biology, F.C. Neidhardt, R. Curtiss, III,, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. 

Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. (Washington 

DC, American Society for Microbiology Press), pp. 1553-1569. 

Brescia, C.C., Kaw, M.K., and Sledjeski, D.D. (2004). The DNA binding protein H-NS binds 

to and alters the stability of RNA in vitro and in vivo. J Mol Biol 339, 505-514. 

Britten, R.J., and Mc, C.F. (1962). The amino acid pool in Escherichia coli. Bacteriol Rev 26, 

292-335. 

Buchholz, A., Takors, R., and Wandrey, C. (2001). Quantification of intracellular metabolites 

in Escherichia coli K12 using liquid chromatographic-electrospray ionization tandem mass 

spectrometric techniques. Anal Biochem 295, 129-137. 

Bustin, S.A. (2000). Absolute quantification of mRNA using real-time reverse transcription 

polymerase chain reaction assays. Journal of molecular endocrinology 25, 169-193. 

Bustin, S.A., and Nolan, T. (2004). Pitfalls of quantitative real-time reverse-transcription 

polymerase chain reaction. J Biomol Tech 15, 155-166. 

Butte, A. (2002). The use and analysis of microarray data. Nat Rev Drug Discov 1, 951-960. 

Bylund, F., Collet, E., Enfors, S.O., and Larsson, G. (1998). Substrate gradient formation in 

the large-scale bioreactor lowers cell yield and increases by-product formation. Bioprocess 

Eng 18, 171-180. 

Calhoun, M.W., Oden, K.L., Gennis, R.B., de Mattos, M.J., and Neijssel, O.M. (1993). 

Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic 

respiratory chain. J Bacteriol 175, 3020-3025. 

Carter, M.G., Sharov, A.A., VanBuren, V., Dudekula, D.B., Carmack, C.E., Nelson, C., and 

Ko, M.S. (2005). Transcript copy number estimation using a mouse whole-genome 

oligonucleotide microarray. Genome biology 6, R61. 

Cashel, M. (1974). Preparation of guanosine tetraphosphate (ppGpp) and guanosine 

pentaphosphate (pppGpp) from Escherichia coli ribosomes. Anal Biochem 57, 100-107. 



 

150 

Cashel, M., Gentry, D.R., Hernandez, V.J., and Vinella, D. (1996). The stringent response. In 

Escherichia coli and Salmonella: cellular and molecular biology, F.C. Neidhardt, R. Curtiss, 

III,, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. 

Schaechter, and H.E. Umbarger, eds. (Washington DC, American Society for Microbiology 

Press), pp. 1458-1496. 

Cashel, M., and Kalbacher, B. (1970). The control of ribonucleic acid synthesis in 

Escherichia coli. V. Characterization of a nucleotide associated with the stringent response. J 

Biol Chem 245, 2309-2318. 

Cashel, M., Lazzarini, R.A., and Kalbacher, B. (1969). An improved method for thin-layer 

chromatography of nucleotide mixtures containing 32P-labelled orthophosphate. J 

Chromatogr 40, 103-109. 

Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., and Reuss, M. (2002). 

Dynamic modeling of the central carbon metabolism of Escherichia coli. Biotechnol Bioeng 

79, 53-73. 

Chen, T., He, H., and Church, G.M. (1999). Modeling gene expression with differential 

equations. Paper presented at: Pacific Symposium on Biocomputing. 

Chen, X., Wu, H., Mao, C., and Whitesides, G.M. (2002). A prototype two-dimensional 

capillary electrophoresis system fabricated in poly(dimethylsiloxane). Anal Chem 74, 1772-

1778. 

Chilcott, G.S., and Hughes, K.T. (2000). Coupling of flagellar gene expression to flagellar 

assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol 

Biol Rev 64, 694-708. 

Chin, A.M., Feldheim, D.A., and Saier, M.H., Jr. (1989). Altered transcriptional patterns 

affecting several metabolic pathways in strains of Salmonella typhimurium which 

overexpress the fructose regulon. J Bacteriol 171, 2424-2434. 

Cole, S.T., and Raibaud, O. (1986). The nucleotide sequence of the malT gene encoding the 

positive regulator of the Escherichia coli maltose regulon. Gene 42, 201-208. 

Collantes-Fernandez, E., Zaballos, A., Alvarez-Garcia, G., and Ortega-Mora, L.M. (2002). 

Quantitative detection of Neospora caninum in bovine aborted fetuses and experimentally 

infected mice by real-time PCR. Journal of clinical microbiology 40, 1194-1198. 



 

151 

Cozzone, A.J., and El-Mansi, M. (2005). Control of isocitrate dehydrogenase catalytic activity 

by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 9, 132-146. 

Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence 

logo generator. Genome Res 14, 1188-1190. 

Cserjan-Puschmann, M., Kramer, W., Duerrschmid, E., Striedner, G., and Bayer, K. (1999). 

Metabolic approaches for the optimisation of recombinant fermentation processes. Appl 

Microbiol Biotechnol 53, 43-50. 

Davis, B.D., Luger, S.M., and Tai, P.C. (1986). Role of ribosome degradation in the death of 

starved Escherichia coli cells. J Bacteriol 166, 439-445. 

Death, A., and Ferenci, T. (1994). Between feast and famine: endogenous inducer synthesis 

in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176, 

5101-5107. 

Dong, H., Nilsson, L., and Kurland, C.G. (1995). Gratuitous overexpression of genes in 

Escherichia coli leads to growth inhibition and ribosome destruction. J Bacteriol 177, 1497-

1504. 

Dudley, A.M., Aach, J., Steffen, M.A., and Church, G.M. (2002). Measuring absolute 

expression with microarrays with a calibrated reference sample and an extended signal 

intensity range. Proc Natl Acad Sci U S A 99, 7554-7559. 

Dunn, I.J., and Mor, J.R. (1975). Variable-volume continuous cultivation. Biotechnol Bioeng 

17, 1805-1822. 

Edgar, R., Domrachev, M., and Lash, A.E. (2002). Gene Expression Omnibus: NCBI gene 

expression and hybridization array data repository. Nucleic Acids Res 30, 207-210. 

Eisenbach, M. (2007). A hitchhiker's guide through advances and conceptual changes in 

chemotaxis. J Cell Physiol 213, 574-580. 

Ellison, M., Goryanin, I., Lee, S.Y., Penn, C., Reuss, M., Tomita, M., Wanner, B.L., and 

Westerhoff, H.V., eds (2006). The 3rd International E. coli Alliance Conference on Systems 

Biology. Conference Proceedings (October 31 - November 3, 2006. Jeju Island, Republic of 

Korea). 

Epstein, C.B., and Butow, R.A. (2000). Microarray technology - enhanced versatility, 

persistent challenge. Current opinion in biotechnology 11, 36-41. 



 

152 

Epstein, W., Rothman-Denes, L.B., and Hesse, J. (1975). Adenosine 3':5'-cyclic 

monophosphate as mediator of catabolite repression in Escherichia coli. Proc Natl Acad Sci 

U S A 72, 2300-2304. 

Ferenci, T. (1996). Adaptation to life at micromolar nutrient levels: the regulation of 

Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev 18, 

301-317. 

Ferenci, T. (1999a). 'Growth of bacterial cultures' 50 years on: towards an uncertainty 

principle instead of constants in bacterial growth kinetics. Res Microbiol 150, 431-438. 

Ferenci, T. (1999b). Regulation by nutrient limitation. Curr Opin Microbiol 2, 208-213. 

Ferenci, T. (2001). Hungry bacteria - definition and properties of a nutritional state. Environ 

Microbiol 3, 605-611. 

Fischer, E., and Sauer, U. (2003). A novel metabolic cycle catalyzes glucose oxidation and 

anaplerosis in hungry Escherichia coli. J Biol Chem 278, 46446-46451. 

Forchhammer, J., and Kjeldgaard, N.O. (1968). Regulation of messenger RNA synthesis in 

Escherichia coli. J Mol Biol 37, 245-255. 

Fraenkel, D.G. (1996). Glycolysis. In Escherichia coli and Salmonella: cellular and molecular 

biology, F.C. Neidhardt, I. R. Curtiss, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, 

W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. (Washington DC, 

American Society for Microbiology Press), pp. 189-198. 

Frigessi, A., van de Wiel, M.A., Holden, M., Svendsrud, D.H., Glad, I.K., and Lyng, H. (2005). 

Genome-wide estimation of transcript concentrations from spotted cDNA microarray data. 

Nucleic Acids Res 33, e143. 

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-

Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-

Flores, I., Salgado, H., et al. (2008). RegulonDB (version 6.0): gene regulation model of 

Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and 

Textpresso navigation. Nucleic Acids Res 36, D120-124. 

Gennis, R.B., and Stewart, V. (1996). Respiration. In Escherichia coli and Salmonella: 

cellular and molecular biology, F.C. Neidhardt, R. Curtiss, III,, J.L. Ingraham, E.C.C. Lin, K.B. 

Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and H.E. Umbarger, eds. 

(Washington DC, American Society for Microbiology Press), pp. 217-261. 



 

153 

Gentry, D.R., and Cashel, M. (1996). Mutational analysis of the Escherichia coli spoT gene 

identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Mol 

Microbiol 19, 1373-1384. 

Gentry, D.R., Hernandez, V.J., Nguyen, L.H., Jensen, D.B., and Cashel, M. (1993). 

Synthesis of the stationary-phase sigma factor sigma S is positively regulated by ppGpp. J 

Bacteriol 175, 7982-7989. 

Gerber, K., Boos, W., Welte, W., and Schiefner, A. (2005). Crystallization and preliminary X-

ray analysis of Mlc from Escherichia coli. Acta Crystallograph Sect F Struct Biol Cryst 

Commun 61, 183-185. 

Glick, B.R. (1995). Metabolic Load and Heterologous Gene-Expression.  13, 247-261. 

Goldbeter, A., and Koshland, D.E., Jr. (1982). Sensitivity amplification in biochemical 

systems. Q Rev Biophys 15, 555-591. 

Goldsmith, J.G., Ntuen, E.C., and Goldsmith, E.C. (2007). Direct quantification of gene 

expression using capillary electrophoresis with laser-induced fluorescence. Anal Biochem 

360, 23-29. 

Gondo, S., Venkatasubramanian, K., Vieth, W.R., and Constantinides, A. (1978). Modeling 

the role of cyclic AMP in catabolite repression of inducible enzyme biosynthesis in microbial 

cells. Biotechnol Bioeng 20, 1797-1815. 

Gong, M., Wehmeyer, K.R., Stalcup, A.M., Limbach, P.A., and Heineman, W.R. (2007). 

Study of injection bias in a simple hydrodynamic injection in microchip CE. Electrophoresis 

28, 1564-1571. 

Gosset, G. (2005). Improvement of Escherichia coli production strains by modification of the 

phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact 4, 14. 

Haixin, W., Lijun, Q., and Dougherty, E. (2007). Modeling genetic regulatory networks by 

sigmoidal functions: A joint genetic algorithm and Kalman filtering approach. Paper 

presented at: Third International Conference on Natural Computation (ICNC). 

Hansen, M.T., Pato, M.L., Molin, S., Fill, N.P., and von Meyenburg, K. (1975). Simple 

downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid 

accumulation. J Bacteriol 122, 585-591. 

Hansen, N., and Ostermeier, A. (2001). Completely derandomized self-adaptation in 

evolution strategies. Evol Comput 9, 159-195. 



 

154 

Harder, A., and Roels, J.A. (1982). Application of Simple Models in Bioengineering. In 

Advances in biochemical engineering: Microbes and engineering aspects, A. Fiechter, ed. 

(Berlin Heidelberg New York, Springer-Verlag), pp. 55-107. 

Hardiman, T., Ewald, J.C., Lemuth, K., Reuss, M., and Siemann-Herzberg, M. (2008a). 

Quantification of rRNA in Escherichia coli using capillary gel electrophoresis with laser-

induced fluorescence detection. Anal Biochem 374, 79-86. 

Hardiman, T., Lemuth, K., Keller, M.A., Reuss, M., and Siemann-Herzberg, M. (2007). 

Topology of the global regulatory network of carbon limitation in Escherichia coli. J 

Biotechnol 132, 359-374. 

Hardiman, T., Meinhold, H., Hofmann, J., Ewald, J.C., Siemann-Herzberg, M., and Reuss, M. 

(2009). Prediction of kinetic parameters from DNA-binding site sequences for modeling 

global transcription dynamics in Escherichia coli. Metab Eng 

doi:10.1016/j.ymben.2009.10.006. 

Hardiman, T., Windeisen, V., Ewald, J.C., Zibek, S., Schlack, P., Rebell, J., Reuss, M., and 

Siemann-Herzberg, M. (2008b). In vitro synthesis and characterization of guanosine 3',5'-

bis(diphosphate) (ppGpp). Anal Biochem 383, 337-339. 

Haseltine, W.A., Block, R., Gilbert, W., and Weber, K. (1972). MSI and MSII made on 

ribosome in idling step of protein synthesis. Nature 238, 381-384. 

Hawley, D.K., and McClure, W.R. (1983). Compilation and analysis of Escherichia coli 

promoter DNA sequences. Nucleic Acids Res 11, 2237-2255. 

Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., and Guthke, R. (2009). Gene 

regulatory network inference: Data integration in dynamic models - a review. Biosystems 96, 

86-103. 

Heijnen, J.J., Bovenberg, R., Hatzimanikatis, V., and Laffend, L., eds (2006). Metabolic 

Engineering VI: From recDNA towards Engineering Biological Systems. Conference 

Proceedings. In  (October 1 - 5, 2006. Noordwijkerhout, The Netherlands), p. 244. 

Hengge-Aronis, R. (1993). Survival of hunger and stress: the role of rpoS in early stationary 

phase gene regulation in E. coli. Cell 72, 165-168. 

Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in 

control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66, 373-395. 



 

155 

Henniger, G. (1998). Enzymatic methods of food analysis. In Analytical methods of food 

authentication, P.R. Ashurst, and M.J. Dennis, eds. (London, Weinheim Blackie Academic & 

Professional), pp. 137-181. 

Hesbain-Frisque, A.M., van Schaftingen, E., and Hers, H.G. (1981). Structure and 

configuration of fructose 2,6-bisphosphate by 31P and 13C nuclear magnetic resonance. Eur J 

Biochem 117, 325-327. 

Hewitt, C.J., and Nebe-Von-Caron, G. (2001). An industrial application of multiparameter flow 

cytometry: assessment of cell physiological state and its application to the study of microbial 

fermentations. Cytometry 44, 179-187. 

Hewitt, C.J., Nebe-Von Caron, G., Axelsson, B., McFarlane, C.M., and Nienow, A.W. (2000). 

Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using 

multiparameter flow cytometry: effect of a changing microenvironment with respect to 

glucose and dissolved oxygen concentration. Biotechnol Bioeng 70, 381-390. 

Hewitt, C.J., Nebe-Von Caron, G., Nienow, A.W., and McFarlane, C.M. (1999). Use of multi-

staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in 

high cell density fed-batch cultures. Biotechnol Bioeng 63, 705-711. 

Hogg, T., Mechold, U., Malke, H., Cashel, M., and Hilgenfeld, R. (2004). Conformational 

Antagonism between Opposing Active Sites in a Bifunctional RelA/SpoT Homolog Modulates 

(p)ppGpp Metabolism during the Stringent Response. Cell 117, 57-68. 

Ideker, T., Galitski, T., and Hood, L. (2001). A new approach to decoding life: systems 

biology. Annual review of genomics and human genetics 2, 343-372. 

Ihssen, J., and Egli, T. (2005). Global physiological analysis of carbon- and energy-limited 

growing Escherichia coli confirms a high degree of catabolic flexibility and preparedness for 

mixed substrate utilization. Environ Microbiol 7, 1568-1581. 

Ingraham, J.L., Maaloe, O., and Neidhardt, F.C. (1983). Growth of the bacterial cell. In  

(Sunderland, MA, Sinauer Associates Inc), p. 435. 

Izutsu, K., Wada, C., Komine, Y., Sako, T., Ueguchi, C., Nakura, S., and Wada, A. (2001). 

Escherichia coli ribosome-associated protein SRA, whose copy number increases during 

stationary phase. J Bacteriol 183, 2765-2773. 

Jacob, F., and Monod, J. (1961). Genetic regulatory mechanisms in the synthesis of proteins. 

J Mol Biol 3, 318-356. 



 

156 

Jensen, K.F., and Pedersen, S. (1990). Metabolic growth rate control in Escherichia coli may 

be a consequence of subsaturation of the macromolecular biosynthetic apparatus with 

substrates and catalytic components. Microbiol Rev 54, 89-100. 

Jishage, M., Kvint, K., Shingler, V., and Nystrom, T. (2002). Regulation of σ factor 

competition by the alarmone ppGpp. Genes Dev 16, 1260-1270. 

Jung, I.L., Kim, S.K., and Kim, I.G. (2006). The RpoS-mediated regulation of isocitrate 

dehydrogenase gene expression in Escherichia coli. Curr Microbiol 52, 21-26. 

Kakuhata, R., Watanabe, M., Yamamoto, T., Akamine, R., Yamazaki, N., Kataoka, M., 

Fukuoka, S., Ishikawa, M., Ooie, T., Baba, Y., et al. (2007). Possible utilization of in vitro 

synthesized mRNAs specifically expressed in certain tissues as standards for quantitative 

evaluation of the results of microarray analysis. J Biochem Biophys Methods 70, 755-760. 

Kauffman, K.J., Prakash, P., and Edwards, J.S. (2003). Advances in flux balance analysis. 

Curr Opin Biotechnol 14, 491-496. 

Keseler, I.M., Bonavides-Martinez, C., Collado-Vides, J., Gama-Castro, S., Gunsalus, R.P., 

Johnson, D.A., Krummenacker, M., Nolan, L.M., Paley, S., Paulsen, I.T., et al. (2009). 

EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37, D464-470. 

Klumpp, S., and Hwa, T. (2008). Growth-rate-dependent partitioning of RNA polymerases in 

bacteria. Proc Natl Acad Sci U S A 105, 20245-20250. 

Kovarova-Kovar, K., and Egli, T. (1998). Growth kinetics of suspended microbial cells: from 

single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62, 

646-666. 

Kremling, A., Bettenbrock, K., Laube, B., Jahreis, K., Lengeler, J.W., and Gilles, E.D. (2001). 

The organization of metabolic reaction networks. III. Application for diauxic growth on 

glucose and lactose. Metab Eng 3, 362-379. 

Kremling, A., and Gilles, E.D. (2001). The organization of metabolic reaction networks. II. 

Signal processing in hierarchical structured functional units. Metab Eng 3, 138-150. 

Krishnan, M., Namasivayam, V., Lin, R., Pal, R., and Burns, M.A. (2001). Microfabricated 

reaction and separation systems. Current opinion in biotechnology 12, 92-98. 

Krohn, M., and Wagner, R. (1995). A procedure for the rapid preparation of guanosine 

tetraphosphate (ppGpp) from Escherichia coli ribosomes. Anal Biochem 225, 188-190. 



 

157 

Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonak, J., Lind, K., Sindelka, R., 

Sjoback, R., Sjogreen, B., Strombom, L., et al. (2006). The real-time polymerase chain 

reaction. Molecular aspects of medicine 27, 95-125. 

Kuboniwa, M., Amano, A., Kimura, K.R., Sekine, S., Kato, S., Yamamoto, Y., Okahashi, N., 

Iida, T., and Shizukuishi, S. (2004). Quantitative detection of periodontal pathogens using 

real-time polymerase chain reaction with TaqMan probes. Oral microbiology and immunology 

19, 168-176. 

Kummel, A., Panke, S., and Heinemann, M. (2006). Putative regulatory sites unraveled by 

network-embedded thermodynamic analysis of metabolome data. Mol Syst Biol 2. 

Kuroda, A. (2006). A polyphosphate-Lon protease complex in the adaptation of Escherichia 

coli to amino acid starvation. Biosci Biotechnol Biochem 70, 325-331. 

Lapin, A., Schmid, J., and Reuss, M. (2006). Modeling the dynamics of E. coli populations in 

the three-dimensional turbulent field of a stirred-tank bioreactor - A structured-segregated 

approach. Chem Eng Sci 61, 4783-4797. 

Larsson, G., Tornkvist, M., Wernersson, E.S., Tragardh, C., Noorman, H., and Enfors, S.O. 

(1996). Substrate gradients in bioreactors: Origin and consequences. Bioprocess Eng 14, 

281-289. 

Leder, I.G. (1972). Interrelated effects of cold shock and osmotic pressure on the 

permeability of the Escherichia coli membrane to permease accumulated substrates. J 

Bacteriol 111, 211-219. 

Lee, S.B., and Bailey, J.E. (1984a). Genetically structured models for lac promoter-operator 

function in the chromosome and in multicopy plasmids: lac promoter function. Biotechnol 

Bioeng 26, 1383-1389. 

Lee, S.B., and Bailey, J.E. (1984b). Genetically structured models for lac promoter-operator 

function in the Escherichia coli chromosome and in multicopy plasmids: lac operator function. 

Biotechnol Bioeng 26, 1372-1382. 

Lee, S.Y. (1996). High cell-density culture of Escherichia coli. Trends Biotechnol 14, 98-105. 

Lee, S.Y., Lee, D.Y., and Kim, T.Y. (2005). Systems biotechnology for strain improvement. 

Trends Biotechnol 23, 349-358. 

Lemieux, B., Aharoni, A., and Schena, M. (1998). Overview of DNA chip technology. Mol 

Breed 4, 277-289. 



 

158 

Lemuth, K. (2006). Transkriptomanalyse von Escherichia coli unter Kohlenhydrat-Limitierung 

mittels DNA-Microarrays. In Institute of Technical Biochemistry (Stuttgart, University of 

Stuttgart), pp. 270. 

Lemuth, K., Hardiman, T., Winter, S., Pfeiffer, D., Keller, M.A., Lange, S., Reuss, M., Schmid, 

R.D., and Siemann-Herzberg, M. (2008). Global transcription and metabolic flux analysis of 

Escherichia coli in glucose-limited fed-batch cultivations. Appl Environ Microbiol 74, 7002-

7015. 

Lengeler, J.W., Drews, G., and Schlegel, H.G. (1999). Biology of the prokaryotes, 1 edn 

(Stuttgart, Georg Thieme Verlag). 

Leung, Y.F., and Cavalieri, D. (2003). Fundamentals of cDNA microarray data analysis. 

Trends Genet 19, 649-659. 

Lin, H., Hoffmann, F., Rozkov, A., Enfors, S.O., Rinas, U., and Neubauer, P. (2004). Change 

of extracellular cAMP concentration is a sensitive reporter for bacterial fitness in high-cell-

density cultures of Escherichia coli. Biotechnol Bioeng 87, 602-613. 

Little, R., and Bremer, H. (1982). Quantitation of guanosine 5',3'-bisdiphosphate in extracts 

from bacterial cells by ion-pair reverse-phase high-performance liquid chromatography. Anal 

Biochem 126, 381-388. 

Loewen, P.C., and Hengge-Aronis, R. (1994). The role of the sigma factor sigma S (KatF) in 

bacterial global regulation. Annu Rev Microbiol 48, 53-80. 

Luo, B., Groenke, K., Takors, R., Wandrey, C., and Oldiges, M. (2007). Simultaneous 

determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway 

and tricarboxylic acid cycle by liquid chromatography-mass spectrometry. J Chromatogr A 

1147, 153-164. 

Magnusson, L.U., Farewell, A., and Nystrom, T. (2005). ppGpp: a global regulator in 

Escherichia coli. Trends Microbiol 13, 236-242. 

Maier, K., Hofmann, U., Reuss, M., and Mauch, K. (2008). Identification of metabolic fluxes in 

hepatic cells from transient 13C-labeling experiments: Part II. Flux estimation. Biotechnol 

Bioeng 100, 355-370. 

Majka, J., and Speck, C. (2007). Analysis of protein-DNA interactions using surface plasmon 

resonance.  104, 13-36. 



 

159 

Mantsch, H.H., and Smith, I.C. (1972). Fourier-transformed 13C NMR spectra of polyuridylic 

acid, uridine, and related nucleotides - the use of 31POC 13C couplings for conformational 

analysis. Biochem Biophys Res Commun 46, 808-815. 

Matin, A., and Matin, M.K. (1982). Cellular levels, excretion, and synthesis rates of cyclic 

AMP in Escherichia coli grown in continuous culture. J Bacteriol 149, 801-807. 

McClure, W.R. (1980). Rate-limiting steps in RNA chain initiation. Proc Natl Acad Sci U S A 

77, 5634-5638. 

McClure, W.R. (1985). Mechanism and control of transcription initiation in prokaryotes. Annu 

Rev Biochem 54, 171-204. 

Mechold, U., Murphy, H., Brown, L., and Cashel, M. (2002). Intramolecular regulation of the 

opposing (p)ppGpp catalytic activities of RelSeq, the Rel/Spo enzyme from Streptococcus 

equisimilis. J Bacteriol 184, 2878-2888. 

Merino, E., and Yanofsky, C. (2005). Transcription attenuation: a highly conserved regulatory 

strategy used by bacteria. Trends Genet 21, 260-264. 

Meyer, D., Schneider-Fresenius, C., Horlacher, R., Peist, R., and Boos, W. (1997). Molecular 

characterization of glucokinase from Escherichia coli K-12. J Bacteriol 179, 1298-1306. 

Michal, G. (1984). Fructose 1,6-bisphosphate, dihydroxyacetone phosphate and 

glyceraldehyde 3-phosphate. In Methods of enzymatic analysis, H.U. Bergmeyer, J. 

Bergmeyer, and M. Graßl, eds. (Weinheim, Verlag Chemie), pp. 342–350. 

Milon, P., Tischenko, E., Tomsic, J., Caserta, E., Folkers, G., La Teana, A., Rodnina, M.V., 

Pon, C.L., Boelens, R., and Gualerzi, C.O. (2006). The nucleotide-binding site of bacterial 

translation initiation factor 2 (IF2) as a metabolic sensor. Proc Natl Acad Sci U S A 103, 

13962-13967. 

Moses, V., and Sharp, P.B. (1972). Intermediary metabolite levels in Escherichia coli. J Gen 

Microbiol 71, 181-190. 

Mueller, O., Hahnenberger, K., Dittmann, M., Yee, H., Dubrow, R., Nagle, R., and Ilsley, D. 

(2000). A microfluidic system for high-speed reproducible DNA sizing and quantitation. 

Electrophoresis 21, 128-134. 

Mulligan, M.E., Brosius, J., and McClure, W.R. (1985). Characterization in vitro of the effect 

of spacer length on the activity of Escherichia coli RNA polymerase at the TAC promoter. J 

Biol Chem 260, 3529-3538. 



 

160 

Mulligan, M.E., Hawley, D.K., Entriken, R., and McClure, W.R. (1984). Escherichia coli 

promoter sequences predict in vitro RNA polymerase selectivity. Nucleic Acids Res 12, 789-

800. 

Munch, R., Hiller, K., Barg, H., Heldt, D., Linz, S., Wingender, E., and Jahn, D. (2003). 

PRODORIC: prokaryotic database of gene regulation. Nucleic Acids Res 31, 266-269. 

Munch, R., Hiller, K., Grote, A., Scheer, M., Klein, J., Schobert, M., and Jahn, D. (2005). 

Virtual Footprint and PRODORIC: an integrative framework for regulon prediction in 

prokaryotes. Bioinformatics 21, 4187-4189. 

Murray, K.D., and Bremer, H. (1996). Control of spoT-dependent ppGpp synthesis and 

degradation in Escherichia coli. J Mol Biol 259, 41-57. 

Nanchen, A., Schicker, A., Revelles, O., and Sauer, U. (2008). Cyclic AMP-dependent 

catabolite repression is the dominant control mechanism of metabolic fluxes under glucose 

limitation in Escherichia coli. J Bacteriol 190, 2323-2330. 

Neidhardt, F.C., and Savageau, M.A. (1996). Regulation Beyond the Operon. In Escherichia 

coli and Salmonella: cellular and molecular biology, F.C. Neidhardt, R. Curtiss, III,, J.L. 

Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. Schaechter, and 

H.E. Umbarger, eds. (Washington DC, American Society for Microbiology Press), pp. 1310-

1324. 

Neidhardt, F.C., and Umbarger, H.E. (1996). Chemical composition of Escherichia coli. In 

Escherichia coli and Salmonella: cellular and molecular biology, F.C. Neidhardt, R. Curtiss, 

III,, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. 

Schaechter, and H.E. Umbarger, eds. (Washington DC, American Society for Microbiology 

Press), pp. 13-16. 

Neubauer, P., Ahman, M., Tornkvist, M., Larsson, G., and Enfors, S.O. (1995). Response of 

guanosine tetraphosphate to glucose fluctuations in fed-batch cultivations of Escherichia coli. 

J Biotechnol 43, 195-204. 

Nielsen, J.H., and Villadsen, J. (1994). Bioreaction engineering principles, 1 edn (New York, 

NY, Plenum Press). 

Noh, K., Gronke, K., Luo, B., Takors, R., Oldiges, M., and Wiechert, W. (2007). Metabolic 

flux analysis at ultra short time scale: isotopically non-stationary 13C labeling experiments. J 

Biotechnol 129, 249-267. 



 

161 

Nolan, T., Hands, R.E., and Bustin, S.A. (2006). Quantification of mRNA using real-time RT-

PCR. Nature protocols 1, 1559-1582. 

Notley-McRobb, L., and Ferenci, T. (1999). The generation of multiple co-existing mal-

regulatory mutations through polygenic evolution in glucose-limited populations of 

Escherichia coli. Environ Microbiol 1, 45-52. 

OECD (2009). The bioeconomy to 2030: Designing a policy agenda. Main findings and policy 

conclusions (Paris, Organization of Economic Co-operation and Development, International 

Futures Programme), pp. 18. 

Ogura, M., Agata, Y., Watanabe, K., McCormick, R.M., Hamaguchi, Y., Aso, Y., and 

Mitsuhashi, M. (1998). RNA chip: quality assessment of RNA by microchannel linear gel 

electrophoresis in injection-molded plastic chips. Clinical chemistry 44, 2249-2255. 

Oki, T., Yoshimoto, A., Sato, S., and Takamatsu, A. (1975). Purine nucleotide 

pyrophosphotransferase from Streptomyces morookaensis, capable of synthesizing pppApp 

and pppGpp. Biochim Biophys Acta 410, 262-272. 

Ow, D.S., Lee, R.M., Nissom, P.M., Philp, R., Oh, S.K., and Yap, M.G. (2007). Inactivating 

FruR global regulator in plasmid-bearing Escherichia coli alters metabolic gene expression 

and improves growth rate. J Biotechnol 131, 261-269. 

Patten, C.L., Kirchhof, M.G., Schertzberg, M.R., Morton, R.A., and Schellhorn, H.E. (2004). 

Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol Genet 

Genomics 272, 580-591. 

Pease, A.J., and Wolf, R.E., Jr. (1994). Determination of the growth rate-regulated steps in 

expression of the Escherichia coli K-12 gnd gene. J Bacteriol 176, 115-122. 

Peterson, C.N., Carabetta, V.J., Chowdhury, T., and Silhavy, T.J. (2006). LrhA regulates 

rpoS translation in response to the Rcs phosphorelay system in Escherichia coli. J Bacteriol 

188, 3175-3181. 

Pirt, S.J. (1982). Maintenance energy: a general model for energy-limited and energy-

sufficient growth. Arch Microbiol 133, 300-302. 

Plumbridge, J. (1998). Control of the expression of the manXYZ operon in Escherichia coli: 

Mlc is a negative regulator of the mannose PTS. Mol Microbiol 27, 369-380. 

Plumbridge, J. (2002). Regulation of gene expression in the PTS in Escherichia coli: the role 

and interactions of Mlc. Curr Opin Microbiol 5, 187-193. 



 

162 

Postma, P.W., Lengeler, J.W., and Jacobson, G.R. (1993). 

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 

57, 543-594. 

Potrykus, K., and Cashel, M. (2008). (p)ppGpp: Still Magical? Annu Rev Microbiol 62, 35–51. 

Pramanik, J., and Keasling, J.D. (1997). Stoichiometric model of Escherichia coli 

metabolism: incorporation of growth-rate dependent biomass composition and mechanistic 

energy requirements. Biotechnol Bioeng 56, 398-421. 

Pramanik, J., and Keasling, J.D. (1998). Effect of Escherichia coli biomass composition on 

central metabolic fluxes predicted by a stoichiometric model. Biotechnol Bioeng 60, 230-238. 

Pyles, E.A., and Lee, J.C. (1996). Mode of selectivity in cyclic AMP receptor protein-

dependent promoters in Escherichia coli. Biochemistry 35, 1162-1172. 

Que, L., Jr., Willie, G.R., Cashel, M., Bodley, J.W., and Gray, G.R. (1973). Guanosine 5'-

diphosphate, 3'-diphosphate: assignment of structure by 13C nuclear magnetic resonance 

spectroscopy. Proc Natl Acad Sci U S A 70, 2563-2566. 

Raman, B., Nandakumar, M.P., Muthuvijayan, V., and Marten, M.R. (2005). Proteome 

analysis to assess physiological changes in Escherichia coli grown under glucose-limited 

fed-batch conditions. Biotechnol Bioeng 92, 384-392. 

Ramseier, T.M. (1996). Cra and the control of carbon flux via metabolic pathways. Res 

Microbiol 147, 489-493. 

Ramseier, T.M., Bledig, S., Michotey, V., Feghali, R., and Saier, M.H., Jr. (1995). The global 

regulatory protein FruR modulates the direction of carbon flow in Escherichia coli. Mol 

Microbiol 16, 1157-1169. 

Ramseier, T.M., Negre, D., Cortay, J.C., Scarabel, M., Cozzone, A.J., and Saier, M.H., Jr. 

(1993). In vitro binding of the pleiotropic transcriptional regulatory protein, FruR, to the fru, 

pps, ace, pts and icd operons of Escherichia coli and Salmonella typhimurium. J Mol Biol 

234, 28-44. 

Reddy, K.J., and Gilman, M. (1987). Unit 4.4 Preparation of Bacterial RNA. In Current 

protocols in molecular biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.A. 

Smith, J.G. Seidman, and K. und Struhl, eds. (New York, Wiley Interscience), pp. 4.4.4-4.4.7. 

Reue, K. (1998). mRNA quantitation techniques: considerations for experimental design and 

application. The Journal of nutrition 128, 2038-2044. 



 

163 

Reuss, M., Luciano, A.-V., and Mauch, K. (2007). Reconstruction of dynamic network models 

from metabolite measurements. In Metabolomics, J. Nielsen, and M.C. Jewett, eds. (Berlin, 

Heidelberg, Springer), pp. 97-127. 

Rhodius, V.A., and LaRossa, R.A. (2003). Uses and pitfalls of microarrays for studying 

transcriptional regulation. Curr Opin Microbiol 6, 114-119. 

Richter, D. (1980). Uncharged tRNA inhibits guanosine 3',5'-bis(diphosphate) 3'-

pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli. Mol Gen 

Genet 178, 325-327. 

RIO-DB (2008). Spectral Database for Organic Compounds SDBS (Research Information 

Database, RIO-DB). In http://riodb01ibaseaistgojp/sdbs/cgi-bin/cre_indexcgi?lang=eng 

(National Institute of Advanced Industrial Science and Technology (AIST)). 

Roels, J.A. (1978). Regulatory mechanisms and the modelling of fermentation processes. 

Paper presented at: First European Congress on Biotechnology (Verlag Chemie, Weinheim). 

Rowley, D.L., Pease, A.J., and Wolf, R.E., Jr. (1991). Genetic and physical analyses of the 

growth rate-dependent regulation of Escherichia coli zwf expression. J Bacteriol 173, 4660-

4667. 

Sahm, H., Eggeling, L., and de Graaf, A.A. (2000). Pathway analysis and metabolic 

engineering in Corynebacterium glutamicum. Biol Chem 381, 899-910. 

Saier, M.H., Jr., and Ramseier, T.M. (1996). The catabolite repressor/activator (Cra) protein 

of enteric bacteria. J Bacteriol 178, 3411-3417. 

Saier, M.H., Jr., Ramseier, T.M., and Reizer, J. (1996). Regulation of carbon utilization. In 

Escherichia coli and Salmonella: cellular and molecular biology, F.C. Neidhardt, R. Curtiss, 

III,, J.L. Ingraham, E.C.C. Lin, K.B. Low, B. Magasanik, W.S. Reznikoff, M. Riley, M. 

Schaechter, and H.E. Umbarger, eds. (Washington DC, American Society for Microbiology 

Press), pp. 1325-1343. 

Sakamoto, E., and Iba, H. (2001). Inferring a system of differential equations for a gene 

regulatory network by using genetic programming. Paper presented at: IEEE Congress on 

Evolutionary Computation (IEEE Press). 

Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-Peredo, E., Sanchez-Solano, F., Santos-

Zavaleta, A., Martinez-Flores, I., Jimenez-Jacinto, V., Bonavides-Martinez, C., Segura-

Salazar, J., et al. (2006). RegulonDB (version 5.0): Escherichia coli K-12 transcriptional 



 

164 

regulatory network, operon organization, and growth conditions. Nucleic Acids Res 34, D394-

397. 

Schaub, J., Mauch, K., and Reuss, M. (2008). Metabolic flux analysis in Escherichia coli by 

integrating isotopic dynamic and isotopic stationary 13C labeling data. Biotechnol Bioeng 99, 

1170-1185. 

Schaub, J., and Reuss, M. (2008). In vivo dynamics of glycolysis in Escherichia coli shows 

need for growth-rate dependent metabolome analysis. Biotechnol Prog 24, 1402-1407. 

Schaub, J., Schiesling, C., Reuss, M., and Dauner, M. (2006). Integrated sampling procedure 

for metabolome analysis. Biotechnol Prog 22, 1434-1442. 

Schmid, J.W., Mauch, K., Reuss, M., Gilles, E.D., and Kremling, A. (2004). Metabolic design 

based on a coupled gene expression-metabolic network model of tryptophan production in 

Escherichia coli. Metab Eng 6, 364-377. 

Schmidt, H., and Jirstrand, M. (2006). Systems Biology Toolbox for MATLAB: a 

computational platform for research in systems biology. Bioinformatics 22, 514-515. 

Schmidt, K., Marx, A., de Graaf, A.A., Wiechert, W., Sahm, H., Nielsen, J., and Villadsen, J. 

(1998). 13C tracer experiments and metabolite balancing for metabolic flux analysis: 

comparing two approaches. Biotechnol Bioeng 58, 254-257. 

Schneider, T.D., Stormo, G.D., Gold, L., and Ehrenfeucht, A. (1986). Information content of 

binding sites on nucleotide sequences. J Mol Biol 188, 415-431. 

Schuhmacher, T., Lemuth, K., Hardiman, T., Vacun, G., Reuss, M., and Siemann-Herzberg, 

M. (2009). Quantifying cytosolic messenger RNA concentrations in Escherichia coli using 

real-time polymerase chain reaction for a systems biology approach. Anal Biochem 

doi:10.1016/j.ab.2009.11.025. 

Schweder, T., Kruger, E., Xu, B., Jurgen, B., Blomsten, G., Enfors, S.O., and Hecker, M. 

(1999). Monitoring of genes that respond to process-related stress in large-scale 

bioprocesses. Biotechnol Bioeng 65, 151-159. 

Selinger, D.W., Saxena, R.M., Cheung, K.J., Church, G.M., and Rosenow, C. (2003). Global 

RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. 

Genome Res 13, 216-223. 



 

165 

Senn, H., Lendenmann, U., Snozzi, M., Hamer, G., and Egli, T. (1994). The growth of 

Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. 

Biochim Biophys Acta 1201, 424-436. 

Sevilla, A., Canovas, M., Keller, D., Reimers, S., and Iborra, J.L. (2007). Impairing and 

monitoring glucose catabolite repression in L-carnitine biosynthesis. Biotechnol Prog 23, 

1286-1296. 

Shimada, T., Fujita, N., Maeda, M., and Ishihama, A. (2005). Systematic search for the Cra-

binding promoters using genomic SELEX system. Genes Cells 10, 907-918. 

Shultzaberger, R.K., Chen, Z., Lewis, K.A., and Schneider, T.D. (2007). Anatomy of 

Escherichia coli sigma70 promoters. Nucleic Acids Res 35, 771-788. 

Siddiquee, K.A., Arauzo-Bravo, M.J., and Shimizu, K. (2004). Metabolic flux analysis of pykF 

gene knockout Escherichia coli based on 13C-labeling experiments together with 

measurements of enzyme activities and intracellular metabolite concentrations. Appl 

Microbiol Biotechnol 63, 407-417. 

Small, J., Call, D.R., Brockman, F.J., Straub, T.M., and Chandler, D.P. (2001). Direct 

detection of 16S rRNA in soil extracts by using oligonucleotide microarrays. Appl Environ 

Microbiol 67, 4708-4716. 

Smith, C.J., Nedwell, D.B., Dong, L.F., and Osborn, A.M. (2006). Evaluation of quantitative 

polymerase chain reaction-based approaches for determining gene copy and gene transcript 

numbers in environmental samples. Environmental microbiology 8, 804-815. 

Soutourina, O., Kolb, A., Krin, E., Laurent-Winter, C., Rimsky, S., Danchin, A., and Bertin, P. 

(1999). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and 

the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master 

operon. J Bacteriol 181, 7500-7508. 

Sprenger, G.A. (1995). Genetics of pentose-phosphate pathway enzymes of Escherichia coli 

K-12. Arch Microbiol 164, 324-330. 

Srivatsan, A., and Wang, J.D. (2008). Control of bacterial transcription, translation and 

replication by (p)ppGpp. Curr Opin Microbiol 11, 100-105. 

St John, A.C., and Goldberg, A.L. (1980). Effects of starvation for potassium and other 

inorganic ions on protein degradation and ribonucleic acid synthesis in Escherichia coli. J 

Bacteriol 143, 1223-1233. 



 

166 

Stanton, L.W. (2001). Methods to profile gene expression. Trends in cardiovascular medicine 

11, 49-54. 

Stephanopoulos, G.N., Aristidou, A.A., and Nielsen, J. (1998). Metabolic engineering: 

principles and methodologies, 1 edn (London, Academic Press). 

Stormo, G.D. (1990). Consensus patterns in DNA. Methods Enzymol 183, 211-221. 

Taniguchi, M., Miura, K., Iwao, H., and Yamanaka, S. (2001). Quantitative assessment of 

DNA microarrays - comparison with Northern blot analyses. Genomics 71, 34-39. 

Taymaz-Nikerel, H., de Mey, M., Ras, C., ten Pierick, A., Seifar, R.M., van Dam, J.C., 

Heijnen, J.J., and van Gulik, W.M. (2009). Development and application of a differential 

method for reliable metabolome analysis in Escherichia coli. Analytical Biochemistry 386, 9-

19. 

Teich, A., Meyer, S., Lin, H.Y., Andersson, L., Enfors, S., and Neubauer, P. (1999). Growth 

rate related concentration changes of the starvation response regulators σS and ppGpp in 

glucose-limited fed-batch and continuous cultures of Escherichia coli. Biotechnol Prog 15, 

123-129. 

Theobald, U., Mailinger, W., Baltes, M., Rizzi, M., and Reuss, M. (1997). In vivo analysis of 

metabolic dynamics in Saccharomyces cerevisiae. 1. Experimental observations. Biotechnol 

Bioeng 55, 305-316. 

Traxler, M.F., Chang, D.E., and Conway, T. (2006). Guanosine 3',5'-bispyrophosphate 

coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc 

Natl Acad Sci U S A 103, 2374-2379. 

Tribhuwan, R.C., Johnson, M.S., and Taylor, B.L. (1986). Evidence against direct 

involvement of cyclic GMP or cyclic AMP in bacterial chemotactic signaling. J Bacteriol 168, 

624-630. 

Typas, A., and Hengge, R. (2006). Role of the spacer between the -35 and -10 regions in 

sigma(s) promoter selectivity in Escherichia coli. Mol Microbiol 59, 1037-1051. 

Uesugi, S., Tanaka, S., and Ikehara, M. (1978). Carbon-13 nuclear-magnetic-resonance 

spectra of adenine cyclonucleosides and their phosphates. Effects of neighboring groups for 

elucidation of fine structure of nucleosides and nucleotides. Eur J Biochem 90, 205-212. 

van Bakel, H., and Holstege, F.C. (2004). In control: systematic assessment of microarray 

performance. EMBO reports 5, 964-969. 



 

167 

van de Peppel, J., Kemmeren, P., van Bakel, H., Radonjic, M., van Leenen, D., and 

Holstege, F.C. (2003). Monitoring global messenger RNA changes in externally controlled 

microarray experiments. EMBO reports 4, 387-393. 

Vilela, M., Chou, I.C., Vinga, S., Vasconcelos, A.T., Voit, E.O., and Almeida, J.S. (2008). 

Parameter optimization in S-system models. BMC Syst Biol 2, 35. 

Vohradsky, J. (2001a). Neural model of the genetic network. J Biol Chem 276, 36168-36173. 

Vohradsky, J. (2001b). Neural network model of gene expression. FASEB J 15, 846-854. 

Voit, E.O. (2008). Modelling metabolic networks using power-laws and S-systems. Essays 

Biochem 45, 29-40. 

Wada, A., Igarashi, K., Yoshimura, S., Aimoto, S., and Ishihama, A. (1995). Ribosome 

modulation factor: stationary growth phase-specific inhibitor of ribosome functions from 

Escherichia coli. Biochem Biophys Res Commun 214, 410-417. 

Wada, A., Yamazaki, Y., Fujita, N., and Ishihama, A. (1990). Structure and probable genetic 

location of a "ribosome modulation factor" associated with 100S ribosomes in stationary-

phase Escherichia coli cells. Proc Natl Acad Sci U S A 87, 2657-2661. 

Wagner, R. (2000). Transcription regulation in prokaryotes (Oxford, Oxford University Press). 

Walter, G., Zillig, W., Palm, P., and Fuchs, E. (1967). Initiation of DNA-dependent RNA 

synthesis and the effect of heparin on RNA polymerase. Eur J Biochem 3, 194-201. 

Wasserman, W.W., and Sandelin, A. (2004). Applied bioinformatics for the identification of 

regulatory elements. Nat Rev Genet 5, 276-287. 

Weaver, D.C., Workman, C.T., and Stormo, G.D. (1999). Modeling regulatory networks with 

weight matrices. Pacific Symposium on Biocomputing 4, 112-123. 

Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. (2005a). Genome-wide 

analysis of the general stress response network in Escherichia coli: sigmaS-dependent 

genes, promoters, and sigma factor selectivity. J Bacteriol 187, 1591-1603. 

Weber, J., Kayser, A., and Rinas, U. (2005b). Metabolic flux analysis of Escherichia coli in 

glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of 

the methylglyoxal pathway and oscillatory behaviour. Microbiology 151, 707-716. 

Weickert, M.J., and Adhya, S. (1993). The galactose regulon of Escherichia coli. Mol 

Microbiol 10, 245-251. 



 

168 

Wendrich, T.M., Blaha, G., Wilson, D.N., Marahiel, M.A., and Nierhaus, K.H. (2002). 

Dissection of the mechanism for the stringent factor RelA. Molecular cell 10, 779-788. 

Wick, L.M., and Egli, T. (2004). Molecular components of physiological stress responses in 

Escherichia coli. Adv Biochem Eng Biotechnol 89, 1-45. 

Wick, L.M., Quadroni, M., and Egli, T. (2001). Short- and long-term changes in proteome 

composition and kinetic properties in a culture of Escherichia coli during transition from 

glucose-excess to glucose-limited growth conditions in continuous culture and vice versa. 

Environ Microbiol 3, 588-599. 

Wittmann, C., Kromer, J.O., Kiefer, P., Binz, T., and Heinzle, E. (2004). Impact of the cold 

shock phenomenon on quantification of intracellular metabolites in bacteria. Anal Biochem 

327, 135-139. 

Wolf, R.E., Jr., Prather, D.M., and Shea, F.M. (1979). Growth-rate-dependent alteration of 6-

phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase levels in 

Escherichia coli K-12. J Bacteriol 139, 1093-1096. 

Wong, P., Gladney, S., and Keasling, J.D. (1997). Mathematical model of the lac operon: 

inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose. 

Biotechnol Prog 13, 132-143. 

Xu, B., Jahic, M., Blomsten, G., and Enfors, S.O. (1999a). Glucose overflow metabolism and 

mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli. 

Appl Microbiol Biotechnol 51, 564-571. 

Xu, B., Jahic, M., and Enfors, S.O. (1999b). Modeling of overflow metabolism in batch and 

fed-batch cultures of Escherichia coli. Biotechnol Prog 15, 81-90. 

Yagil, G. (1975). Quantitative aspects of protein induction. Curr Top Cell Regul 9, 183-236. 

Yagil, G., and Yagil, E. (1971). On the relation between effector concentration and the rate of 

induced enzyme synthesis. Biophys J 11, 11-27. 

Yee, L., and Blanch, H.W. (1992). Recombinant protein expression in high cell density fed-

batch cultures of Escherichia coli. Biotechnology (N Y) 10, 1550-1556. 

Young, R.A. (2000). Biomedical discovery with DNA arrays. Cell 102, 9-15. 



 

169 

Zheng, D., Constantinidou, C., Hobman, J.L., and Minchin, S.D. (2004). Identification of the 

crp regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32, 5874-

5893. 

 

 

 


