Versagensverhalten rissbehafteter
Mischschweißnähte – theoretische und
experimentelle Untersuchungen

Von der Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Abhandlung

Vorgelegt von
Dipl.-Ing. Mathias Büttner
geboren in Heilbronn-Neckargartach

Hauptberichter: Prof. Dr.-Ing habil. E. Roos
Mitberichter: Prof. Dr.-Ing. J. Starflinger
Tag der mündlichen Prüfung: 18. Oktober 2011

2011
Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
(IMWF) Universität Stuttgart und der
Materialprüfungsanstalt (MPA) Universität Stuttgart
Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre Universität Stuttgart (IMWF). Ein wesentlicher Teil der Untersuchungen wurde mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BmWi) im Rahmen des Forschungsvorhabens BmWi 1501322 gefördert.

Sehr herzlich möchte ich mich bei meiner Partnerin Sabrina Guhr und meinen Eltern für ihr Verständnis und ihre Unterstützung während des Entstehens dieser Arbeit bedanken.
6 Experimentelle Bestimmung der Eigenspannungen ... 74
 6.1 Bohrlochmethode ... 74
 6.2 Neutronenbeugung ... 75

7 Ergebnisse der bruchmechanischen Bewertungsverfahren 79

8 Numerische Simulationen .. 81
 8.1 Numerische Bestimmung des Eigenspannungszustandes.. 81
 8.1.1 Thermisches Berechnungsmodell .. 82
 8.1.2 Mechanisches Berechnungsmodell .. 83
 8.2 Numerische Analyse der Versagensvorgänge ... 88
 8.2.1 Numerische Bestimmung der Fließkurven .. 89
 8.2.2 Numerische Bestimmung der schädigungsmechanischen Parameter 93
 8.2.3 Validierung der angepassten Parameter und Fließkurven 95
 8.2.4 Einfluss der Anfangsrissposition und -rissfront auf die Rissinitierung 97
 8.2.5 Einfluss der Eigenspannungen auf die duktile Rissausbreitung 98
 8.2.6 Analyse des Spannungszustandes in der Rissspitzenumgebung 100
 8.2.7 Vergleich der numerischen und experimentellen J-Integral Bestimmung ... 107
 8.2.8 Schädigungsmechanische Simulation der Versagensvorgänge 109
 8.2.9 Vergleich der schädigungsmechanischen Berechnungen und der bruchmechanischen Näherungsverfahren .. 125

9 Zusammenfassung und Fazit ... 127

10 Literaturverzeichnis .. 130

11 Anhang ... 140
Abkürzungen und Formelzeichen

Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American Society for Testing of Material</td>
</tr>
<tr>
<td>EBSD</td>
<td>Electron Backscatter Diffraction</td>
</tr>
<tr>
<td>EDX</td>
<td>Energiedispersive Röntgenspektroskopie</td>
</tr>
<tr>
<td>EDZ</td>
<td>Ebener Dehnungszustand</td>
</tr>
<tr>
<td>FAC</td>
<td>Failure Assessment Curve</td>
</tr>
<tr>
<td>FAD</td>
<td>Failure Assessment Diagram</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Elemente</td>
</tr>
<tr>
<td>G</td>
<td>Korngröße</td>
</tr>
<tr>
<td>GW</td>
<td>Grundwerkstoff</td>
</tr>
<tr>
<td>kfz</td>
<td>kubisch flächenzentriert</td>
</tr>
<tr>
<td>krz</td>
<td>kubisch raumzentriert</td>
</tr>
<tr>
<td>KTA</td>
<td>Kerntechnischer Ausschuss</td>
</tr>
<tr>
<td>MK</td>
<td>Mischkristall</td>
</tr>
<tr>
<td>P</td>
<td>aktuelle Last</td>
</tr>
<tr>
<td>PA</td>
<td>Schweißposition in Wannenlage</td>
</tr>
<tr>
<td>PC</td>
<td>Schweißposition in Querrichtung</td>
</tr>
<tr>
<td>PGL</td>
<td>plastische Grenzlast</td>
</tr>
<tr>
<td>REM</td>
<td>Rasterelektronen Mikroskop</td>
</tr>
<tr>
<td>SEB</td>
<td>Single Edge Bend, Dreipunktbiegeprobe</td>
</tr>
<tr>
<td>SG</td>
<td>Schweißzusatzwerkstoff</td>
</tr>
<tr>
<td>SZW</td>
<td>Stretched-Zone-Width</td>
</tr>
<tr>
<td>WEZ</td>
<td>Wärmeeinflusszone</td>
</tr>
<tr>
<td>WIG</td>
<td>Wolfram Intertgas Schweißen</td>
</tr>
</tbody>
</table>

Weitere Abkürzungen werden im Text erläutert
Formelzeichen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Einheit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>mm</td>
<td>Risslänge</td>
</tr>
<tr>
<td>α</td>
<td>1/K</td>
<td>Wärmeausdehnungskoeffizient</td>
</tr>
<tr>
<td>γ</td>
<td>°</td>
<td>Auslenkung des Ausgangsrisses</td>
</tr>
<tr>
<td>a₀</td>
<td>mm</td>
<td>Ausgangsrißlänge</td>
</tr>
<tr>
<td>aₚₗ</td>
<td>mm</td>
<td>Betrag des stabilen Risswachsrums</td>
</tr>
<tr>
<td>aₛₗₐₜₜ</td>
<td>µm</td>
<td>Größe der Stretched-Zone</td>
</tr>
<tr>
<td>Aᵥ</td>
<td>J</td>
<td>Kerbschlagarbeit</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>Probenbreite</td>
</tr>
<tr>
<td>COD</td>
<td>mm</td>
<td>Rissöffnung</td>
</tr>
<tr>
<td>cₚ</td>
<td>W/mK</td>
<td>Spezifische Wärmekapazität</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>Integrationskonstante des Rousselier-Modells</td>
</tr>
<tr>
<td>Δd</td>
<td>mm</td>
<td>Einschnürung</td>
</tr>
<tr>
<td>D</td>
<td>nm</td>
<td>Gitterebenenabstand</td>
</tr>
<tr>
<td>Δlₑₓₜ</td>
<td>mm</td>
<td>Extensometerverlängerung</td>
</tr>
<tr>
<td>Δlₖₑᵣₜ</td>
<td>mm</td>
<td>Kerbaufweitung</td>
</tr>
<tr>
<td>Dₙₑₙₙ</td>
<td>mm</td>
<td>Nenndurchmesser</td>
</tr>
<tr>
<td>e</td>
<td>mm</td>
<td>Abstand des Anfangsschwingrißes zum Werkstoffübergang</td>
</tr>
<tr>
<td>E</td>
<td>MPa</td>
<td>Elastizitätsmodul</td>
</tr>
<tr>
<td>εₚₗₐṣₜ</td>
<td>-</td>
<td>Plastische Dehnung</td>
</tr>
<tr>
<td>f</td>
<td>-</td>
<td>aktuelles Hohlraumvolumen</td>
</tr>
<tr>
<td>Φ</td>
<td>-</td>
<td>Fließfunktion</td>
</tr>
<tr>
<td>f₀</td>
<td>-</td>
<td>Anfangshohlraumvolumen</td>
</tr>
<tr>
<td>fₙ</td>
<td>-</td>
<td>kritisches Hohlraumvolumen</td>
</tr>
<tr>
<td>Fᵢₙᵢₜ</td>
<td>N</td>
<td>Kraft bei Rissinitiierung</td>
</tr>
<tr>
<td>Fᵧ</td>
<td>N</td>
<td>Plastische Grenzlast</td>
</tr>
<tr>
<td>Jᵢ</td>
<td>N/mm</td>
<td>physikalischer Rissinitiierungskennwert</td>
</tr>
<tr>
<td>Jₑᵣᵣₑᵣ₀</td>
<td>N/mm</td>
<td>zähbruchmechanischer Kennwert nach ASTM 1820</td>
</tr>
<tr>
<td>Kᵢ</td>
<td>MPam¹/²</td>
<td>Spannungsintensitätsfaktor</td>
</tr>
<tr>
<td>Kᵣ</td>
<td>-</td>
<td>Auf Kᵢₙₑₙₙ normierte Rissspitzenbelastung</td>
</tr>
<tr>
<td>Kᵣₙₑₙₙ</td>
<td>MPam¹/²</td>
<td>Risswiderstand des Werkstoffs</td>
</tr>
<tr>
<td>λ</td>
<td>J/kgK</td>
<td>Wärmeleitfähigkeit</td>
</tr>
<tr>
<td>lₒ</td>
<td>mm</td>
<td>Ausgangsmesslänge</td>
</tr>
<tr>
<td>Symbol</td>
<td>Einheit</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>I_c</td>
<td>mm</td>
<td>charakteristische Länge des Rousselier-Modells</td>
</tr>
<tr>
<td>L_r</td>
<td>-</td>
<td>Plastifizierungsgrad</td>
</tr>
<tr>
<td>$L_{r_{\text{max}}}$</td>
<td>-</td>
<td>Plastifizierungsgrad bei plastischem Kollaps</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>Mismatchverhältnis</td>
</tr>
<tr>
<td>μ</td>
<td>-</td>
<td>Querkontraktionszahl</td>
</tr>
<tr>
<td>q</td>
<td>-</td>
<td>Mehrachsigkeitsquotient</td>
</tr>
<tr>
<td>q_{int}</td>
<td></td>
<td>Mehrachsigkeitsquotient, integriert über 30% des Ligaments</td>
</tr>
<tr>
<td>q_{min}</td>
<td></td>
<td>Minimaler Mehrachsigkeitsquotient</td>
</tr>
<tr>
<td>ρ</td>
<td>g/cm³</td>
<td>Dichte</td>
</tr>
<tr>
<td>R_e</td>
<td>MPa</td>
<td>Streckgrenze</td>
</tr>
<tr>
<td>R_m</td>
<td>MPa</td>
<td>Zugfestigkeit</td>
</tr>
<tr>
<td>R_{p02}</td>
<td>MPa</td>
<td>Ersatzstreckgrenze</td>
</tr>
<tr>
<td>s</td>
<td>mm</td>
<td>Wanddicke</td>
</tr>
<tr>
<td>S</td>
<td>mm</td>
<td>Abstand der Widerlager</td>
</tr>
<tr>
<td>σ</td>
<td>MPa</td>
<td>Spannung</td>
</tr>
<tr>
<td>t</td>
<td>s</td>
<td>Zeit</td>
</tr>
<tr>
<td>θ</td>
<td>°</td>
<td>Beugungswinkel</td>
</tr>
<tr>
<td>T</td>
<td>°C</td>
<td>Temperatur</td>
</tr>
<tr>
<td>T_{Schm}</td>
<td>°C</td>
<td>Schmelzbadtemperatur</td>
</tr>
<tr>
<td>T_{Liq}</td>
<td>°C</td>
<td>Liquidustemperatur</td>
</tr>
<tr>
<td>T_{Sol}</td>
<td>°C</td>
<td>Solidustemperatur</td>
</tr>
<tr>
<td>σ_{hyd}</td>
<td>MPa</td>
<td>hydrostatische Spannung</td>
</tr>
<tr>
<td>σ_f</td>
<td>MPa</td>
<td>Fließspannung</td>
</tr>
<tr>
<td>σ_k</td>
<td>MPa</td>
<td>Werkstoffkonstante des Rousselier-Modells</td>
</tr>
<tr>
<td>σ_{vm}</td>
<td>MPa</td>
<td>Vergleichsspannung nach von Mises</td>
</tr>
<tr>
<td>σ_y</td>
<td>MPa</td>
<td>aktuelle Fließgrenze</td>
</tr>
<tr>
<td>W</td>
<td>mm</td>
<td>Probenweite</td>
</tr>
<tr>
<td>Z</td>
<td>%</td>
<td>Brucheinschnürung</td>
</tr>
</tbody>
</table>

Weitere Formelzeichen werden im Text erläutert
Kurzfassung

Mit den in dieser Arbeit durchgeführten schädigungsmechanischen Berechnungen ist eine realistische Vorhersage der real ablaufenden Versagensmechanismen während der Rissinitiierung und -ausbreitung möglich. Es wurden damit die Grundlagen geschaffen, um die Tragfähigkeit sowie den genauen Versagensablauf von integren und rissbehafteten Mischschweißnähten unter komplexen Belastungen zu berechnen.
Abstract

To increase the efficiency and profitability of chemical facilities and power plants, an appropriate material selection with respect to the dominant service conditions is indispensible. For instance, in plant construction the investigated dissimilar weld between ferritic and austenitic steel is a widely used combination to meet the required strength and corrosion resistance. As a result of the diverging mechanical, thermal and chemical properties a similar combination of the ferritic and austenitic steel is not possible. Therefore, Nickel based alloys are commonly used as weld material. This leads to a series of material sections with highly different mechanical and thermal properties which results in an inhomogeneous material and loading condition. In particular for cracks, this may lead to damage processes that are notably different from what is observed in homogenous materials or similar welds.

Due to the lack of detailed knowledge about the real damage processes in pre-cracked dissimilar welds, state-of-the-art fracture mechanic procedures are applied for their safety assessment. These procedures are based on methods which were developed for homogenous materials or similar welds and thus lead to very conservative results for dissimilar welds. Therefore, the focus of this research is on the numerical description of the real damage processes using Rousselier’s damage model.

For this purpose, comprehensive experimental investigations were performed to obtain a detailed characterization of the dissimilar weld. The experimental focus was on the clarification of the micromechanical processes during crack initiation and propagation with fracture mechanic and fractographic methods. With these investigations a dominant impact of the dendritic solidification on the failure behavior could be demonstrated. Particularly the fracture mechanical examinations show the least resistance against crack initiation and growth in the domain of the assembly weld. Based on the conducted experimental and fractographical examinations it can be demonstrated that, at any time, sections can be considered to be critical when the direction of crack growth and solidification coincide. Considering other dissimilar welds, the critical section can be located in other micro-structural areas depending on the manufacturing.

The damage mechanical parameters for the simulations based on Rousselier’s model were numerically determined by using the empirical results from notched and unnotched tensile tests. Using these parameters, the numerical model was demonstrated to show the load-deformation behavior, the initiation point as well as bigger amounts of stable crack growth – which were observed in fracture mechanical tests for the different regions of the dissimilar weld.

With the performed damage mechanical simulations, a realistic assessment of the real damage processes during crack initiation and propagation is possible. Therefore, a reliable basis to evaluate the bearing capacity as well as the real damage evolution of pre-cracked dissimilar welds under complex loading conditions and various crack configurations was established.
1 Einleitung und Zielsetzung

1.1 Ausgangssituation

Durch die Kombination der unterschiedlichen Materialen ergibt sich bei Mischnähten eine Abfolge von Bereichen mit teilweise deutlich variierenden mechanischen und thermischen Eigenschaften, woraus ein sehr inhomogener Werkstoff- und Beanspruchungszustand resultiert. Dadurch besteht die Gefahr, dass Risse früher, also bei niedrigeren Lasten, eingeleitet werden, als dies von gleichartigen Schweißverbindungen oder homogenen Werkstoffen bekannt ist. Zudem ändern sich durch den Schweißprozess insbesondere in der Wärmeinflusszone des ferritischen Grundwerkstoffs die Mikrostruktur und die mechanischen Eigenschaften, was die Rissausbreitung maßgeblich beeinflusst. Darüber hinaus besteht infolge der spezifischen Werkstoffstruktur und -abfolge der Mischnähte die Möglichkeit, dass Risse in Bereiche mit einer anderen Mikrostruktur oder chemischen Zusammensetzung wachsen.

Aufgrund der fehlenden Detailkenntnis zum realen Versagensverhalten angerissener Mischnähte werden nach dem aktuellen Stand der Technik analytische Bewertungskonzepte zur sicherheitstechnischen Bewertung verwendet [3], [4], [5], [6], [7], [8]. Diese Verfahren basieren auf Methoden welche für homogene Werkstoffe oder gleichartige Schweißverbindungen entwickelt wurden. Durch den komplexen Spannungs- und Werkstoffzustand bei Mischnähten ist deren Anwendung allerdings nur in Spezialfällen oder unter starken Vereinfachungen, mit in der Regel sehr konservativen Lösungen, möglich. Für eine Adaption bzw. Optimierung dieser Verfahren wurden in der jüngeren Vergangenheit vereinzelt Forschungsarbeiten zur Integritätsbewertung mischnahstgeschweißer Bauteile durchgeführt. Dies sind die an der MPA Universität Stuttgart durchgeführten Forschungsvorhaben [9], [10] sowie die in der Literatur vielfach genannten EU-Vorhaben BIMET und ADIMEW [11], [12], [13], [14], [15].

1.2 Aufgabenstellung

Diese Hauptaufgabe untergliedert sich in folgende Arbeitspunkte:

Schaffung einer experimentellen Datenbasis

Die experimentellen Untersuchungen werden benötigt, um die Versagensvorgänge in der Mischnaht zu untersuchen und quantitativ zu charakterisieren. Weiterhin dienen sie zur Verifizierung der schädigungsmechanischen Berechnungen. Die Untersuchungen konzentrieren sich auf eine für deutsche Druckwasserreaktoren typische Umfangsnaht aus einem Nickelbasis-Schweißzusatzwerkstoff zwischen einem ferritischen und austenitischen Rohrsegment. Die Werkstoffe und Fertigungsverfahren wurden dabei identisch zu vorangegangenen Untersuchungen der MPA Universität Stuttgart [9], [27] gewählt, um zusätzlich auf diese experimentelle Datenbasis zurückgreifen zu können.

Untersuchung der gefügespezifischen, mikromechanischen Vorgänge während der Rissinitiierung und -ausbreitung

Ein wichtiger Punkt für die Anwendung von mikromechanisch basierten Schadigungsmodellen ist die Kenntnis der auf mikroskopischer Ebene ablaufenden Versagensprozesse. Zur Klärung der lokalen Versagensursachen und des daraus resultierenden Rissverlaufs werden metallographische Schliffe und Bruchflächen im Rasterelektronenmikroskop (REM) untersucht. Zur Bestimmung der lokalen Werkstoffzusammensetzung und der hohlraum-
bildenden Phasen in den unterschiedlichen Werkstoffbereichen werden energiedispersive Röntgenanalysen (EDX-Analysen) durchgeführt.

Analyse des Eigenspannungszustandes

Um die Einflüsse des aus der Fertigung der Mischnaht resultierenden Eigenspannungszustandes auf die Rissentwicklung abzuschätzen, wird dieser numerisch berechnet sowie mit Hilfe der Bohrlochmethode und der Neutronenbeugung experimentell bestimmt. Die Analysen erfolgen zum einen an einem entnommenen Probenrohring, um den Einfluss der Eigenspannungen in den bruchmechanischen Untersuchungen zu quantifizieren. Zum anderen werden Untersuchungen am kompletten Rohr durchgeführt, um den Eigenspannungszustand in einer späteren Übertragung der Ergebnisse auf reale Komponenten berücksichtigen zu können.

Schädigungsmechanische Berechnungen

Validierung des schädigungsmechanischen Berechnungsverfahrens

2 Werkstoffmechanische Grundlagen

Für eine optimale und wirtschaftliche Ausnutzung von Konstruktionen ist es unabdingbar, die ertragbare Beanspruchbarkeit des Werkstoffs möglichst vollständig auszunutzen. Dies beinhaltet neben der Wahl geeigneter Berechnungsmethoden auch die Wahl entsprechender Sicherheitsfaktoren. Für eine optimale Werkstoffausnutzung muss der Sicherheitsfaktor nicht nur an die wirkende Belastung und den Werkstoff, sondern auch an das Versagensverhalten und die Versagensmechanismen angepasst werden [29], [30], [31]. Vor diesem Hintergrund wird im Folgenden auf die beim duktilen Bruch ablaufenden Versagensmechanismen eingegangen. Da diese Vorgänge maßgeblich vom Werkstoffzustand abhängen, werden auch die unterschiedlichen Gefügeentstehungen in der Mischnaht erläutert. Darüber hinaus werden in diesem Rahmen die kritischen Bereiche hinsichtlich der Rissentstehung beschrieben.

2.1 Dendritische Erstarrung

Da die dendritische Erstarrung des Schweißgutes entscheidenden Einfluss auf die in der Mischnaht ablaufenden Versagensvorgänge hat, soll im Folgenden kurz auf die Mechanismen während der Erstarrung des Schweißgutes eingegangen werden. Die dabei ablaufenden Vorgänge werden von einer Vielzahl physikalischer Größen beeinflusst. Maßgeblichen Einfluss haben unter anderem die Enthalpiedifferenzen (zwischen festem und flüssigem Schweißgut), Entmischungsreaktionen (aufgrund unterschiedlicher Löslichkeit der Legierungselemente im festen und flüssigen Zustand) sowie ablaufende Diffusions- und Konvektionsvorgänge [32]. Im Folgenden wird eine phänomenologische Beschreibung der ablaufenden Erstarrungsvorgänge durchgeführt.

Die Vorgänge während der Schweißguterstarrung können am ehesten mit den Vorgängen während der Ausbildung eines Gussgefüges verglichen werden. Im Vergleich mit diesen Erstarrungsvorgängen gelten beim Schweißen die folgenden geänderten Randbedingungen [2], [33]:

- Wesentliche Überhitzung des Schmelzbades infolge des Schweißprozesses
- Hoher Temperaturgradient zwischen den erstarrten und schmelzflüssigen Bereichen
- Kleines Schmelzbadvolumen
- Hohe Erstarrungsgeschwindigkeit
- Verhältnismäßig große Anzahl von Kristallisationskeimen (Verunreinigungen etc.) in der Schmelze infolge des Schweißprozesses

Wie bei jeder Erstarrung können die ablaufenden Vorgänge in die beiden Phasen Keimbildung und -wachstum unterteilt werden. Bei der Keimbildung wird zwischen der homogenen Keimbildung (wenn ausschließlich arteigene Keime beispielsweise in Form ausgeschmolzener Körner vorliegen) und der heterogenen Keimbildung (wenn artfremde Keime beispielsweise in Form von Verunreinigungen vorliegen) unterschieden [34]. Da bei Schweißprozessen im Allgemeinen eine große Anzahl artfremder Keime vorliegt, wird der Prozess durch die heterogene Keimbildung dominiert [2]. Eine notwendige Voraussetzung für das Wachstum der Keime ist ein Temperaturgradient, um die bei der Erstarrung entstehende Kristallisationswärme abzuführen [35]. Dieser, auch als Unterkühlung bezeichnete Effekt, setzt sich aus mehreren Teilbeträgen zusammen [32], wobei im Folgenden nur auf die beiden wesentlichen Teilbeträge – die thermische und die...
konstitutionelle Unterkühlung – eingegangen, wird. Die sogenannte thermische Unterkühlung entspricht der Wärmeableitung in die bereits erstarrten festen Bereiche [36], wohingegen die konstitutionelle Unterkühlung auf einer lokalen Verschiebung der Legierungszusammensetzung in der Schmelze beruht, siehe Abb. 1 [37].

Abb. 1: Schematische Darstellung der Vorgänge bei der konstitutionellen Unterkühlung metallischer Schmelzen [32]

Vereinfachend sollen die Zusammenhänge bei der konstitutionellen Unterkühlung an einem binären Zweistoffsystem mit vollkommener Löslichkeit im flüssigen und festen Zustand beschrieben werden (Abb. 1-①). Erstarrt eine Schmelze der Zusammensetzung \(c_0 \), erstarren zu Beginn A-reiche Mischkristalle (MK\(_{AB}\)), wodurch die ursprüngliche Schmelze (S\(_{AB}\)) B-reicher wird. Dadurch kommt es lokal vor der Erstarrungsfront zu einer Anreicherung der Schmelze mit Element B (Abb. 1-②), was zu einer lokalen Abnahme der Liquidustemperatur \(\Delta T \) führt. Der reale Temperaturverlauf \(T_{\text{real}} \), welcher sich aus der Wärmeableitung in die bereits erstarrten Bereiche ergibt, ist in Abb. 1-③ dargestellt. Der Bereich, in welchem die reale Temperatur \(T_{\text{real}} \) unterhalb der Liquidustemperatur \(T_{\text{Liq}} \) liegt, wird als unterkühlter Bereich bezeichnet. Da nur in diesem Bereich \(\Delta x \) die Kristallisationswärme abgeführt werden kann, ist nur dort ein Keimwachstum möglich. Wenn der Temperaturgradient der realen Temperatur \(\partial T_{\text{real}} / \partial x \) flacher verläuft als der durch die Liquidustemperatur bestimmte Gradient \(\partial T_{\text{Liq}} / \partial x \), kommt es zu einer nicht ebenen Erstarrungsfront und einem dendritischen Kristallwachstum, siehe Abb. 2.

Da der Temperaturgradient \(\partial T_{\text{real}} / \partial x \) zu Beginn der Erstarrung zwischen dem kalten Grundwerkstoff und dem aufgebrachten Schweißgut maximal ist, beginnt die erste Erstarrungsfront, ausgehend vom angrenzenden Grundwerkstoff [2]. Dieses erste Kristallwachstum (auch als epitaxiales Wachstum bezeichnet) erfolgt mit einer Kristallorientierung nach den Körnern des Grundwerkstoffs [38]. Während der Erstarrung kühlst das Schmelzbad ab und der Temperaturgradient der realen Temperatur \(\partial T_{\text{real}} / \partial x \) wird flacher. Durch die daraus resultierende konstitutionelle Unterkühlung kommt es zu einem dendritischen Kornwachstum. In Abb. 2 sind die abhängig vom Temperaturgradienten entstehenden Gefüge dargestellt. Beim für die vorliegende Schweißung verwendeten
Lichtbogenhandschweißen ergibt sich ein aus der Schmelze säulenförmig erstarrendes dendritisches Gefüge.

Die Hauptwachstumsrichtung des entstehenden dendritischen Gefüges erfolgt immer entgegengesetzt der Richtung der maximalen Wärmeleitung, das bedeutet senkrecht zu den Isothermen [41]. Bei einer niedrigen Schweißgeschwindigkeit ergibt sich ein annähernd ovales Schmelzbad, siehe Abb. 3. Die daraus resultierenden stumpf auslaufenden Isothermen bewirken ein zur Mitte des Schmelzbades hin gekrümmtes Dendritenwachstum. Bei höheren Schweißgeschwindigkeiten ergibt sich ein zunehmend längliches Schmelzbad mit spitz auslaufenden Isothermen und folglich eine geradliniger verlaufende Erstarrungsstruktur [33].

Abb. 2: Ausbildung der Erstarrungsfront in Abhängigkeit der konstitutionellen Unterkühlung [37]

Abb. 3: Einfluss der Schweißgeschwindigkeit auf die Erstarrungsrichtung [33]
2.2 Mögliche Rissbildungsmechanismen in Mischnähten

2.2.1 Mögliche Schadensmechanismen bei der Herstellung

- Bindefehler und unverschweißte Stellen
- Schlacke und andere Feststoffeinschlüsse
- Quetschfalten
- Einbrand- und Randkerben

Neben den Fehlern infolge einer unsachgemäßen Fertigung beeinflussen die Eigenschaften der Grundwerkstoffe, des Schweißzusatzmaterials sowie die Einwirkung von Schweißwärme und -spannung maßgeblich das Verhalten der Schweißnaht. Zu diesen werkstoffverursachten Fehlern zählen:

- Erstarrungsrisse
 Erstarrungsrisse gehören zur Kategorie der Heißrisse. Sie entstehen durch niedrig schmelzende Phasen auf den Korngrenzen, welche die Schrumpfungen während der Erstarrung nicht aufnehmen können und dadurch zu interkristallinen bzw. interdendritischen Werkstofftrennungen führen. Da δ-Ferrit gegenüber Austenit eine höhere Löslichkeit von Schwefel bei einem gleichzeitig deutlich niedrigeren Ausdehnungskoeffizienten besitzt, nimmt die Empfindlichkeit eines Werkstoffs bei primärer austenitischer Erstarrung zu. Folglich steigern höhere Kohlenstoff- und Nickelanteile die Gefahr zur Erstarrungsrisbildung. [2], [43], [44]

- Aufschmelzungsrisse
 Aufschmelzungsrisse gehören wie die Erstarrungsrisse zur Kategorie der Heißrisse. Sie entstehen durch das Aufschmelzen niedrig schmelzender Phasen auf den Korngrenzen erstarrter Gefügebereiche während des Schweißprozesses. Gefährdete Bereiche sind dabei insbesondere die unteren Lagen einer Mehrlagenschweißnaht sowie die Wärmeinflusszone (WEZ) der angrenzenden Grundwerkstoffe. [2]

- Wasserstoffinduzierte Rissbildung
entweichen und führt nach dem Abkühlen des Werkstücks zur Rissbildung. Da kubisch flächenzentrierte (kfz) Gitterstrukturen eine höhere Löslichkeit für Wasserstoff aufweisen als kubisch raumzentrierte (krz) Gitter, sind ferritische Werkstoffe im Allgemeinen kritischer anzusehen als austenitische Werkstoffe. Des Weiteren gelten spröde Werkstoffe als anfälliger für Kaltrissbildung. Entsprechend sind die hochfesten martensitischen Bereiche von ferritischen Werkstoffen als kritisch zu betrachten. [2], [43], [45]

- Aufhärungsrisse

- Ausscheidungsrisse

- Sprödrisse
 Sie treten beim Durchlaufen von temperaturabhängigen Zähigkeitsminima auf, wodurch die Volumenschrumpfungen beim Abkühlen nicht ausgeglichen werden können. Insbesondere niobstabilisierte Austenite mit relativ hohem Niob- und Kohlenstoffgehalt neigen zu interkristallinen Sprödrissen. [44]

- Dilationsrisse
 Als Dilationsrisse werden Korngrenzentrannungen infolge unterschiedlicher Wärmeausdehnungskoeffizienten der Körner bezeichnet. Entsprechend sind besonders die Übergänge zwischen den verschiedenen Werkstoffen der Mischnaht gefährdet [43].

- Hohlräume im Schweißgut
 Durch gelöste Gase können sich im erstarrenden Schweißgut Hohlräume bilden, insbesondere Wasserstoff und Stickstoff können dafür als kritisch angesehen werden. Des Weiteren können sich während der Erstarrung aufgrund der Volumenschrumpfung Hohlräume in Form von Lunkern bilden. [2]
In Anlehnung an [38] und [47] sind in Abb. 4 die aufgeführten Fehlerarten und -positionen graphisch veranschaulicht.

2.2.2 Mögliche Schädigungsmechanismen während des Betriebs

Aus Erfahrungen mit ausländischen Anlagen [49], [50], [51] zeigen sich bei Verwendung von Nickelbasis-Schweißzusatzwerkstoffen korrosive Beanspruchungen als besonders kritisch. Zu den möglichen korrosiven Beanspruchungen, die in Mischnähten auftreten können, zählen:
• Kontaktkorrosion
Durch die Kombination von Werkstoffen mit stark unterschiedlichem Normalpotential kann es in den Grenzbereichen zur Ausbildungen von Lokalelementen und damit Korrosionsschädigungen kommen. [43], [44]

• Interkristalline Korrosion
Bei austenitischen Stählen besteht infolge der Schweißwärme die Gefahr von Chromkarbidausscheidungen auf den Korngrenzen. Infolge dessen verarmen die Bereiche unmittelbar neben der Korngrenze und lösen sich bei einem entsprechenden korrosiven Angriff auf. Durch die Beimischung von Niob bzw. Titan kann die Anfälligkeit gegenüber interkristalliner Korrosion maßgeblich verringert werden. [52]

• Spaltkorrosion

• Spannungsrißkorrosion
Insbesondere Nickelbasis-Werkstoffe sind anfällig für eine interkristalline Spannungsrißkorrosion in Reinstwasser. Der Schädigungsmechanismus beruht auf dem Modell der „inneren Oxidation“, wonach der Werkstoff durch Sauerstoff, der entlang der Korngrenzen eindiffundiert, versprödet [53], [54]. Durch Bildung von Chromkarbiden auf den Korngrenzen wird die Diffusion des Sauerstoffs behindert [55], wodurch die Korrosionsbeständigkeit steigt. Folglich zeigen lösungsgeglühte Werkstoffzustände eine erhöhte Anfälligkeit, da dabei die Karbide fein verteilt über dem Korn vorliegen [55].

• Borsäure Korrosion
In deutschen Druckwasserreaktoren wird Borsäure zur Langzeitregelung eingesetzt. Im Falle einer Leckage kann jedoch das austretende Wasser verdampfen, wodurch eine Aufkonzentration der Borsäure stattfindet. Infolge der geringen korrosiven Beständigkeit sind dann insbesondere die Bereiche des ferritischen Grundwerkstoffs einem starken korrosiven Angriff ausgesetzt. [56]

Aus der durchgeführten Betrachtung stellen sich die geschweißten Bereiche der Pufferung und Verbindungsnaht sowie die Werkstoffübergänge als kritisch heraus. In den geschweißten Bereichen besteht dabei neben einer erhöhten Empfindlichkeit gegenüber Spannungsrißkorrosion die größte Wahrscheinlichkeit für das Auftreten fertigungsbedingter Risse. Die Werkstoffübergänge weisen neben einer Spannungserhöhung durch die verschiedenen Steifigkeiten und Festigkeiten der kombinierten Materialien ebenfalls eine erhöhte Wahrscheinlichkeit fertigungsbedingter Imperfektionen auf. Die Grundwerkstoffbereiche sowie die WEZ zählen dagegen zu den weniger gefährdeten Bereichen. Die folgenden Untersuchungen konzentrieren sich dementsprechend auf die geschweißten Bereiche der Pufferung und der Verbindungsnaht sowie die Werkstoffübergänge.
2.3 Schädigungsmechanismen bei duktilem Wabenbruch

2.4 Ausbildung von Eigenspannungen

Die in Kap. 2.2 beschriebenen Rissbildungsmechanismen können bei der vorliegenden Mischnaht zusätzlich durch die aus der Herstellung resultierenden Eigenspannungen negativ beeinflusst werden. Da die Entstehung von Eigenspannungen vielfältige Ursachen hat, werden die unterschiedlichen Einflussgrößen im Folgenden getrennt voneinander dargestellt. Für eine möglichst klare und eindeutige Beschreibung beziehen sich die nachfolgenden Betrachtungen in Anlehnung an [61], [62], [63], [64] auf Einlagenschweißungen an ebenen Platten bei hohen Schweißgeschwindigkeiten. Um Rückschlüsse auf die vorliegende Naht zu ermöglichen, wird abschließend auf die errechneten und gemessenen Eigenspannungsverteilungen vergleichbarer Schweißnähte eingegangen.

Eigenspannungen sind Spannungen die in einem abgeschlossenen System ohne die Einwirkung äußerer Kräfte und Momente wirksam sind [65]. Folglich müssen sie sich gegenseitig das Gleichgewicht halten und integral über den Querschnitt Null ergeben. Sie können als Folge von thermischen oder mechanischen Werkstoffbeanspruchungen während des Betriebs oder der Herstellung (Schweißen, Wärmebehandlung, Zerspanen etc.) entstehen [66]. Für den vorliegenden Fall der Mischnaht wird die Ausbildung von Schweißeigenspannungen während der Fertigung näher betrachtet.

Abb. 6: Schematische Unterteilung der Eigenspannungen nach ihrer Entstehung [64]

Schrumpfeigenspannungen

Durch die Schrumpfung der geschweißten Bereiche in Längsrichtung (y-Richtung) und die Dehnungsbehinderung der kalten nahtfernen Bereiche ergeben sich in der Naht Zugeigenspannungen in Längsrichtung, welche an den beiden Nahtenden (y = -1, y = 1) auf Null abfallen, siehe Abb. 7. Für die Einhaltung des Kräftegleichgewichts ergibt sich quer zur Naht eine Spannungsverteilung mit Druckspannungen in den nahtfernen Bereichen [64].
Die Längsschrumpfung (y-Richtung) der hoch erhitzen Bereiche bedingt eine Verwölbung der Platte, was aufgrund der Verformungsbehinderung zwangsläufig Eigenspannungs- komponenten quer zur Naht (x-Richtung) hervorruft. Bei einer stumpfnah, auf die nur die Schrumpfungsbehinderung als Eigenspannungsursache wirkt, treten Quereigenspannungen mit Maximalbeträgen von etwa einem Drittel der Längsspannungen auf [68]. In der Mitte des Nahtverlaufs bilden sich in Querrichtung ebenfalls Zugeigenspannungen aus, während es an den Nahtenden (y = -1, y = 1) zur Einhaltung des Kräftegleichgewichts zur Ausbildung von Druckeigenspannungen kommt, siehe Abb. 7. Die maximalen Zugquereigenspannungen treten in der Nahtmitte auf und sinken in Richtung der Plattenränder (x = -1, x = 1) bis auf Null ab.

Ein wesentlicher Einfluss auf die Maximaleigenspannungen quer zur Naht sind die Einspannverhältnisse. Bei fest eingespannten Plattenrändern nimmt die dominierende Wirkung der Längseigenspannungen ab und es bilden sich verstärkt Quereigenspannungen [69].

Abb. 7: Schrumpfeigenspannungen in Quer- und Längsrichtung [61]

Umwandlungseigenspannungen

Werden polymorphe Werkstoffe verbunden, kommt es aufgrund der hohen Temperaturen beim Schweßen unweigerlich zu Phasenumwandlungen. Diese sind aufgrund der geänderten Gitterstruktur zwangsläufig mit Volumenänderungen verbunden, welche zu Umwandlungseigenspannungen führen. Bei ferritischen Werkstoffen ist die Gitterumwandlung während der Abkühlung immer mit einer Volumenzunahme verbunden, unabhängig, welches Gefüge (Ferrit, Bainit oder Martensit) sich nach der Austenit- umwandlung einstellt. Das sich ausbildende Vorzeichen der Eigenspannungen ist dabei stark von der Homogenität der Umwandlung abhängig. Würde die Phasenumwandlung in der gesamten Naht und der Wärmeeinflusszone gleichzeitig ablaufen und als einziger

Abschreckeigenspannungen

Abb. 8: Rechnerische und experimentell bestimmte Eigenspannungsverläufe an vergleichbaren Mischnähten in Rohrleitungen [70], [71]

3 Konzepte zur Versagensbewertung von Mischnähten

3.1 Bruchmechanische Konzepte

Bei der sicherheitstechnischen Bewertung angerissener Bauteile kommen, aufgrund ihres im Vergleich zu numerischen Berechnungen geringen Aufwands, vielfach analytische Bewertungskonzepte zum Einsatz. Zu diesen Konzepten zählen die Verfahren zur Abschätzung der Traglast sowie bruchmechanische Näherungslösungen zur Beurteilung der Rissinitiierung. Die verfügbaren bruchmechanischen Verfahren wurden in der Regel zunächst für homogene Werkstoffe entwickelt und im Weiteren auf die speziellen Anforderungen von artgleichen Schweißverbindungen angepasst. Artgleiche Schweißverbindungen bezeichnen in diesem Fall die Verbindung von zwei identischen oder zumindest ähnlichen Grundwerkstoffen durch eine Schweißnaht mit unterschiedlichen Eigenschaften. Bei der Bewertung angerissener Schweißnähte kann, durch die teilweise deutlich unterschiedlichen Festigkeitseigenschaften von Schweißgut und Grundwerkstoff, die symmetrische Ausbildung der plastischen Zone nicht mehr a priori angenommen werden. Dieses unterschiedliche Festigkeitsverhalten der Werkstoffe wird im Allgemeinen durch das Streckgrenzverhältnis (Mismatchverhältnis M) von Schweißgut σ_{ySG} zu Grundwerkstoff σ_{yGW} definiert:

$$M = \frac{\sigma_{ySG}}{\sigma_{yGW}} \quad \text{Gl. 3.1}$$

Ein Verhältnis von $M > 1$ wird als overmatch bezeichnet und ein Verhältnis von $M < 1$ entsprechend als undermatch [73]. Der mechanische Effekt des Festigkeitsmismatch besteht darin, dass sich im niederfesten Werkstoff eine lokale Dehnungskonzentration ausbildet, wie sie in homogenen Bauteilen nicht auftreten würde. Dies wird bei konventionellen Schweißnähten ausgenutzt, um durch die Verwendung von höherfesten Schweißzusatzwerkstoffen (overmatch) das potentiell fehleranfällige Schweißgut abzuschirmen [13], [74]. Durch die beim betrachteten elastisch-plastischen Werkstoffverhalten auftretenden großen Verformungen in der Riss spitzenumgebung ist bei bruchmechanischen Bewertungen...
allerdings nicht nur der Bereich der Fließgrenze, sondern vielmehr das gesamte Verfestigungsverhalten der beteiligten Werkstoffe von Bedeutung. Bei entsprechenden Werkstoffkombinationen kann ein anfängliches overmatch bei größeren Dehnungen in ein undermatch umschlagen [75]. Bedingt durch die Breite der Naht ergibt sich dadurch je nach Mismatchverhältnis eine unterschiedliche Entwicklung der plastischen Zone. Bei einer breiten Naht verbleibt die plastische Zone weitestgehend in der Naht und das Verhalten ist ähnlich einer Struktur aus reinem Schweißgut. Mit abnehmender Nahtbreite bzw. zunehmendem overmatch können sich, zusätzlich zur plastischen Zone an der Riss spitze, auch weitere plastifizierte Bereiche in den angrenzenden Grundwerkstoffbereichen bilden. Somit ist das Verhalten der Struktur von beiden Werkstoffen geprägt. [76]

Neben dem unterschiedlichen Plastifizierungsverhalten müssen allerdings noch weitere Faktoren, wie beispielsweise die Rissposition und Nahtgeometrie [77], [78], [79] in den Analysen berücksichtigt werden. Vor diesem Hintergrund wurde die Einsetzbarkeit der bruchmechanischen Näherungsverfahren in mehreren Forschungsvorhaben an der MPA Universität Stuttgart überprüft [9], [10], [27]. Zu den dort betrachteten analytischen Bewertungskonzepten zählen [79]:

- Plastisches Grenzlastkonzept (PGL)
- Fließspannungskonzept (FSK)
- R6-Verfahren
- Aide à la Réalisation d’Analyse Mécanique de l’Intégrité des Sourdès (ARAMIS Verfahren)
- Equivalent Material Method (EMM)
- Modifizierter GE/ EPRI-Verfahren
- Modifikation der SC.ENG
- Engineering Treatment Model for Mismatch (ETM-MM)

Allerdings berücksichtigen die derzeit verfügbaren Verfahren nur artgleiche Schweißverbindungen, d. h. die Verhältnisse in einer Mischnaht mit bis zu vier unterschiedlichen Werkstoffbereichen können nicht vollständig erfasst werden. In vielen Fällen wird deshalb die Zahl der Werkstoffe näherungsweise reduziert, indem in den Analysen nur die Werkstoffkennwerte des weniger festen Werkstoffs berücksichtigt werden. Dadurch ist eine generelle Anwendbarkeit zur Bewertung von Mischnähten ohne eine experimentelle Verifikation allerdings kaum möglich [8].

Im Folgenden wird das zur Bewertung der SEB-Proben eingesetzte R6-Verfahren näher erläutert. Für eine ausführliche Zusammenstellung der oben aufgezählten Verfahren sei auf [79] und [80] verwiesen.

Das R6-Verfahren ist das derzeit wohl am häufigsten eingesetzte Verfahren zur analytischen Fehlerbewertung [79] und hat unter anderem Eingang in die europäischen Fehlerbewertungsprozeduren SINTAP [81] und FITNET [82] gefunden. Es wird auch als „2-Kriterien-Verfahren“ bezeichnet und beruht auf der Modellvorstellung, dass die Versagensmöglichkeiten einer Struktur vom verformungsarmen Bruch (Sprödbruch) bis zum vollplastischen Kollaps reichen können. Diese beiden Extremfälle werden charakterisiert, indem die wirkende Riss spitzenbelastung K_I auf den Werkstoffkennwert K_{mat} (vgl. Gl. 3.2) und die wirkende Last F auf die Last bei Erreichen des plastischen Kollapses F_y (vgl. Gl. 3.3) bezogen werden.
Rissinitiierung: \[K_r = \frac{K_{ri}}{K_{mat}} \leq 1 \quad \text{Gl. 3.2} \]
Plastischer Kollaps: \[L_r = \frac{F}{F_y} \leq L_r^{max} \quad \text{Gl. 3.3} \]

Die Obergrenze \(L_r^{max} \) berücksichtigt dabei über die Fließspannung \(\sigma_f \) das Verfestigungsvermögen der untersuchten Werkstoffe und definiert sich für den vorliegenden Fall zu:

\[L_r^{max} = \frac{\sigma_f}{\sigma_y} \text{ mit } \sigma_r = \frac{\sigma_y + R_m}{2} \quad \text{Gl. 3.4} \]

Das Zusammenwirken der beiden Kriterien beschreibt, mittels der Grenzkurve (engl. Failure Assessment Curve FAC), die Versagensmöglichkeiten vom verformungsarmen Bruch bis zum vollplastischen Kollaps. Beim R6-Verfahren werden drei verschiedene Optionen zur Konstruktion der Fehlerabschätzungsdiagramme (engl. Failure Assessment Diagram FAD) beschrieben, die sich nach dem Detaillierungsgrad bzw. der Genauigkeit der Analyse unterscheiden. Für die im vorliegenden Fall verwendete Option 1 ist die Grenzkurve wie folgt definiert:

\[K_r = f(L_r) = \begin{cases} \left(1 + 0,5 L_r^2\right)^{-0.5} \cdot \left(0,3 + 0,7 e^{-0.7 L_r^2}\right) & \text{für } L_r < L_r^{max} \\ 0 & \text{für } L_r \geq L_r^{max} \end{cases} \quad \text{Gl. 3.5} \]

Mit dem sich daraus ergebenden FAD kann die Integrität der Struktur in Bezug auf die ertragbaren Belastungszustände bzw. Fehlergrößen ermittelt werden, siehe Abb. 9. Dafür werden aus dem vorherrschenden Belastungszustand die Vergleichsgrößen \(K_r \) und \(L_r \) bestimmt und in das FAD eingetragen. Eine konservative Auslegung liegt vor, wenn der auf diese Weise ermittelte Lastpunkt P innerhalb der Grenzfläche liegt. Entsprechend tritt Versagen durch plastischen Kollaps bzw. Rissinitiierung ein, wenn der Lastpunkt die Grenzkurve erreicht. [5], [8]

Abb. 9: R6 Fehlerabschätzungsdiagramm Option 1
3.2 Numerische Versagensmodelle

- Initiation bei einsetzender Plastifizierung
- Hohlraumwachstum auf Basis des Rousselier-Modells
- Hohlraumkoaleszenz bei Erreichen eines kritischen Hohlraumvolumens

Grundgedanke des verwendeten Rousselier-Modells [90] ist eine möglichst einfache Formulierung zur Beschreibung des Hohlraumwachstums. Rousselier ging bei der Herleitung seines Modells von einem einfachen thermodynamischen Ansatz aus und entwickelte auf dieser Basis folgende Fließfunktion für Werkstoffe mit Hohlräumen:

\[
\phi = \frac{\sigma_{vM}}{1 - f} + \sigma_k \cdot f \cdot D \cdot e^{(1-f) \cdot \sigma_k} - \sigma_y
\]

Gl. 3.6

Mit Gl. 3.6 werden in Form eines kontinuumsmechanischen Ansatzes nicht einzelne Hohlräume, sondern das Gesamtverhalten eines porösen Werkstoffs beschrieben. Es wird dabei in der Fließfunktion \(\phi \), neben der von Mises Vergleichsspannung \(\sigma_{vM} \), auch der hydrostatische Anteil der Spannung \(\sigma_{hyd} \) berücksichtigt. Dies hat zur Folge, dass der offene unendliche Zylinder, den die von Mises Fließbedingung beschreibt, nach oben hin begrenzt wird, siehe Abb. 10.
Das Rousselier-Modell ermöglicht die Beschreibung des Hohlraumwachstums f, ausgehend von einem vorgegebenen Anfangshohlraumvolumen f_0. Umfangreiche vorangegangene Untersuchungen [19] haben gezeigt, dass beispielsweise bei ferritischen Stählen das Anfangshohlraumvolumen f_0 in sehr guter Näherung mit dem Anteil der hohlraumbildenden Phase korreliert. Entsprechend kann hier das Anfangshohlraumvolumen entweder direkt aus der Mikrostruktur des Werkstoffs oder durch eine numerische Kalibrierung bestimmt werden [89], [93].

Auch die weiteren Parameter σ_k, D und f_c des Modells sind werkstoffabhängig und müssen auf Basis numerischer oder metallographischer Untersuchungen für jeden Werkstoff bzw. Bereich mit einer geänderten Mikrostruktur bestimmt werden. Der Parameter σ_k stellt anschaulich den Widerstand des Werkstoffs gegen Hohlraumwachstum dar. Die Größenordnung von σ_k liegt laut Rousselier bei etwa zwei Drittel der Streckgrenze [90], muss aber dennoch für alle Werkstoffe numerisch kalibriert werden. Der Parameter D entspricht einer Integrationskonstanten und kann für kleine Anfangshohlraumvolumina f_0 materialunabhängig zu $D = 2$ gesetzt werden [90].

Ein weiterer Parameter, der in Gl. 3.6 nicht erfasst wird, ist die Elementkantenlänge l_e des FE-Modells. Infolge der Diskretisierung bei der Methode der Finiten Elemente werden die mikromechanischen Prozesse nur an den Integrationspunkten beschrieben. Dadurch springt der Riss von Integrationspunkt zu Integrationspunkt. Für eine realistische Abbildung des stabilen Rissfortschritts muss somit die Elementgröße an die Mikrostruktur des Werkstoffs anpassen.
gekoppelt werden. Da das Hohlraumwachstum in metallischen Werkstoffen an nichtmetallischen Einschlüssen abläuft, kann der Abstand der Integrationspunkte l_c als mittlere Entfernung der Einschlüsse gedeutet werden. Dadurch kann die Ermittlung der Elementgröße zum einen auf Basis metallographischer Schliffe und fraktographischer Untersuchungen erfolgen. Zum andern kann die Elementlänge im relevanten Bereich durch eine numerische Anpassung an den Abfall der experimentell bestimmten Last-Verformungskurve angepasst werden [94].
4 Experimentelle Untersuchungen

Die vorliegende Arbeit entstand maßgeblich im Rahmen des BMWi Forschungsvorhabens "Darstellung und Quantifizierung des Versagensablaufs rissbehafteter Mischnaht-Schweißverbindungen" an der MPA Universität Stuttgart [95]. In diesem Vorhaben wurden mehrere Mischschweißnähte gefertigt und umfangreiche experimentelle Untersuchungen durchgeführt. Diese umfassen neben detaillierten metallographischen und experimentellen Untersuchungen zur Grundcharakterisierung aller relevanten Werkstoffbereiche, zahlreiche bruchmechanische und fraktographische Untersuchungen zur Klärung der mikro-mechanischen Vorgänge in den einzelnen Gefügebereichen der Mischnaht.

4.1 Herstellung der Mischnähte

Die durchgeführten Fertigungsschritte bei der Herstellung der einzelnen Nähte gliederten sich wie folgt:

- Aufbringen der stirnseitigen Pufferung auf den ferritischen Grundwerkstoff mittels Lichtbogenhandschweißen und Nickelbasis-Elektroden
- Spannungsarmglühung des gepufferten ferritischen Rohres bei 520 °C für 2 Stunden
- Fertigen der Schweißnahtflanken an dem gepufferten ferritischen Rohr und dem austenitischen Rohr

RohrleitungsKomponenten sowie einer Mischnaht durchgeführt. Um die vorliegenden experimentellen Daten verwenden zu können, wurden sowohl der austenitische als auch der ferritische Grundwerkstoff aus derselben Charge entnommen. Des Weiteren wurden die gleiche Schweißposition bzw. ein identischer Lagenaufbau während der Herstellung der Pufferung sowie der Verbindungsnahht festgelegt, um eine identische Mikrostruktur der Nahtbereiche zu erzeugen. Die entsprechenden Positionen waren wie folgt:

Pufferung: Ferritischer Rohrabschnitt stehend; Schweißposition in Wannenlage PA [100], Schweißrichtung von innen nach außen

Verbindungsschweißung: Rohr stehend, ferritischer Grundwerkstoff unten, Schweißrichtung in Querposition PC [100], Schweißrichtung vom ferritischen zum austenitischen Rohrabschnitt

In Abb. 11 sind der Nahtaufbau sowie die daraus resultierende Erstarrungsstruktur dargestellt. Entsprechend der gewählten Schweißpositionen ergeben sich in der Pufferung eine in Rohrlängsrichtung gerichtete Erstarrungsstruktur und eine radial nach außen verlaufende Erstarrungsstruktur in der Verbindungsnahht.

Abb. 11: Lagenaufbau (links) und Erstarrungsstruktur (rechts) der untersuchten Mischnaht

4.2 Werkstoffcharakterisierung

4.2.1 Chemische Analyse

Die chemische Grundcharakterisierung der beiden Grundwerkstoffe X6CrNiNb18-10 und 20MnMoNi5-5 erfolgte funkenerosiv mittels einer Spektralanalyse. Die Ergebnisse sind in Tab. 1 und Tab. 2 aufgeführt. Die Zusammensetzung entspricht den Vorgaben der KTA 3201.1 [99] für Bauteile mit Betriebstemperaturen unter $T = 200^\circ\text{C}$.

Tab. 1: Chemische Analyse des austenitischen Grundwerkstoffs X6CrNiNb18-10 (1.4550)

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Ni</th>
<th>Co</th>
<th>Nb</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTA 3201.1</td>
<td>min.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>17,0</td>
<td>9,0</td>
<td>---</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>max.</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>19,0</td>
<td>12,0</td>
<td>0,2</td>
<td>0,65</td>
</tr>
<tr>
<td>Stückanalyse</td>
<td>0,044</td>
<td>0,41</td>
<td>1,83</td>
<td>0,02</td>
<td>0,004</td>
<td>17,35</td>
<td>10,41</td>
<td>0,06</td>
<td>0,61</td>
</tr>
</tbody>
</table>

1) Nach Stückanalyse C $< 0,05$

Tab. 2: Chemische Analyse des ferritischen Grundwerkstoffs 20MnMoNi5-5 (1.6310)

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Cr</th>
<th>Mo</th>
<th>Ni</th>
<th>Al</th>
<th>Cu</th>
<th>V</th>
<th>Sn</th>
<th>As</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>KTA 3201.1</td>
<td>0.15</td>
<td>0.10</td>
<td>1.15</td>
<td>---</td>
<td>---</td>
<td>0.40</td>
<td>0.45</td>
<td>0.010</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>max.</td>
<td>0.25</td>
<td>0.35</td>
<td>1.55</td>
<td>0.012</td>
<td>0.012</td>
<td>0.20</td>
<td>0.55</td>
<td>0.85</td>
<td>0.040</td>
<td>0.12</td>
<td>0.020</td>
<td>0.011</td>
<td>0.013</td>
<td>0.025</td>
</tr>
<tr>
<td>Stückanalyse</td>
<td>0.20</td>
<td>0.23</td>
<td>1.31</td>
<td>0.009</td>
<td><0.001</td>
<td>0.05</td>
<td>0.475</td>
<td>0.65</td>
<td>0.025</td>
<td>0.011</td>
<td>0.004</td>
<td>0.001</td>
<td>0.001</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Abb. 12: Konzentrationsprofil 3 über der gesamten Nahtbreite (Position siehe Abb. 14)

Abb. 14: Positionen der Konzentrationsprofile (Rohr Nr. 8)

Zur detaillierten Untersuchung der Aufmischung der Grundwerkstoffe wurden die Bereiche um die Werkstoffübergänge mit zwei separaten Konzentrationsprofilen mit größerer Auflösung genauer untersucht. Im ferritischen Grundwerkstoff sind nur sehr geringe Aufmischungen mit dem Nickel des verwendeten Schweißzusatzwerkstoffs zu erkennen, die nach 5 µm die Zusammensetzung des Grundwerkstoffs erreichen, siehe Abb. 15. Im austenitischen Grundwerkstoff sind die Aufmischungen unmerklich höher und erstrecken sich über größere Abstände.

Abb. 15: Konzentrationsprofil 1 – Werkstoffübergang Ferrit/ Pufferung (Interface 1)
Abb. 16: Konzentrationsprofil 2 – Werkstoffübergang Verbindungsnaht/ Austenit (Interface 3)

4.2.2 Gefüge- und Härtecharakterisierung

Die metallographischen Untersuchungen an Querschliffen aus den für die Experimente verwendeten Rohren weisen einen spezifikationsgerechten Nahtaufbau und eine identische Mikrostruktur auf, siehe Abb. 17. Zur ausführlichen Dokumentation wurde daher exemplarisch auf einen Schliff aus Rohr Nr. 8 zurückgegriffen.

Abb. 17: Abmaße der Schweißnähten aus den drei betrachteten Rohren

In Abb. 17 sind zusätzlich die Maße der geschweißten Bereiche eingetragen. Die Dimensionen der Pufferung und Verbindungsschweißung schwanken um bis zu 3 mm. Dies ist, bedingt durch die manuelle Fertigung der Nähte, allerdings nicht ungewöhnlich. Je nach Schweißer werden in den zulässigen Grenzen der Spezifikation unterschiedlich große Schweißraupen aufgebracht, was insbesondere bei der überlappenden obersten Raupe Einfluss auf die im Querschliff bestimmte Länge der Pufferung bzw. Verbindungsnaht hat. Dadurch bedingt sind auch die Form der Schweißnähten und die Bereiche um die Wurzellanlagen leicht unterschiedlich ausgebildet.

Abb. 18: Mikrostruktur des ferritischen Grundwerkstoffs 20MnMoNi5-5

Die ferritische WEZ hat einschließlich aller Zonen (Großkornzone, Feinkornzone etc.) eine Breite von ca. 2 mm, siehe Abb. 19. Zur Pufferung hin sind martensitische Bereiche dokumentierbar, die sich auch in einem Anstieg der Härte widerspiegeln. Infolge der wiederkehrenden Anlassbehandlung durch die Mehrlagenschweißung weist die WEZ in zyklischen Abständen Bereiche mit martensitischen Inseln und perlitischen Säumen auf. In Richtung des ferritischen Grundwerkstoffs sind aufeinanderfolgend sowohl die Grob- als auch die Feinkornzone ausgebildet.

Abb. 19: Mikrostruktur der ferritischen WEZ sowie im Übergang zur Pufferung

Abb. 20: Mikrostruktur der Pufferung NiCr70Nb

Abb. 21: Mikrostruktur der Verbindungsnaht NiCr70Nb

Im Werkstoffübergang zwischen austenitischem Grundwerkstoff und Verbindungsnaht (Interface 3) kann in den lichtoptischen Untersuchungen keine ausgeprägte WEZ

Abb. 22: Mikrostruktur im Werkstoffübergang zwischen Verbindungsnah und Austenit (Interface 3)

Abb. 23: Mikrostruktur des austenitischen Grundwerkstoffs X6CrNiNb18-10

Abb. 24: TEM-Untersuchung der Substrukturen im austenitischen Grundwerkstoff

Abb. 25: Wärmebehandlungsversuche des austenitischen Grundwerkstoffs bei 1050°C [105]

4.2.3 Zugversuche

Aus dem Bereich der Verbindungsnahz bzw. Pufferung wurden Rundzugproben B8 x 40 in Rohrlängsrichtung entnommen und im Bereich der Schweißnaht auf einen Durchmesser von \(d_{\text{prüf}} = 4 \) mm eingeholt, siehe Abb. 29. Durch Anätzen der Proben wurde sichergestellt, dass sich der Prüfquerschnitt ausschließlich in der Verbindungsschweißung bzw. in der Pufferung befand. Aus Rohrumfangsrichtung wurden B6 x 30 Proben entnommen. Insgesamt wurden

Abb. 29: Entnahme der Zugproben aus der Verbindungsnaht und der Pufferung in Rohrlängsrichtung (schematische Darstellung)

Experimentelle Untersuchungen
der Pufferung deutliche Unterschiede. Die Brucheinschnürung ist in Umfangsrichtung im Vergleich zur Längsrichtung teilweise um die Hälfte reduziert. Bei den Proben aus der Verbindungsschweißung ist dieser Effekt nicht so stark ausgeprägt, die ermittelten Werte unterliegen allerdings in beiden Entnahmerichtungen einer wesentlich größeren Streuung als die Kennwerte der Pufferung.

Abb. 32: Vergleich der Streckgrenze (links) und der Brucheinschnürung (rechts) der Schweißgutbereiche zwischen Rohrumfangs- und Rohrlängsrichtung einschließlich der Ergebnissen aus [9]

Bei einem Vergleich der ermittelten Kennwerte in Rohrlängsrichtung untereinander werden ähnliche Effekte deutlich, siehe Abb. 33. Die Festigkeitskennwerte der Verbindungsschweißung liegen leicht über denen der Pufferung. Die Verformungskennwerte sind allerdings im Bereich der Verbindungsnahrt gegenüber der Pufferung teilweise um bis zu 2/3 reduziert, obwohl ein identischer Schweißzusatzwerkstoff verwendet wurde.

Abb. 33: Vergleich der Streckgrenze (links) und der Brucheinschnürung (rechts) in Rohrlängsrichtung einschließlich der Ergebnissen aus [9]

Entnahmerichtung der Zugproben

<table>
<thead>
<tr>
<th>Entnahmerichtung der Zugproben</th>
<th>Rohrlängsrichtung</th>
<th>Rohrumfangsrichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pufferung</td>
<td>Erstarrungsrichtung parallel zur Hauptbelastungsrichtung</td>
<td>Erstarrungsrichtung senkrecht zur Hauptbelastungsrichtung</td>
</tr>
<tr>
<td>Verbindungsnahrt</td>
<td>Erstarrungsrichtung schräg zur Hauptbelastungsrichtung</td>
<td>Erstarrungsrichtung schräg zur Hauptbelastungsrichtung</td>
</tr>
</tbody>
</table>

Abb. 34: Schematische Darstellung der unterschiedlich zueinander orientierten Belastungs- und Erstarrungsrichtung je nach Entnahmerichtung und Entnahmeposition im zylindrischen Prüfquerschnitt der Zugproben

In Tab. A1 bis Tab. A4 sind die ermittelten Kennwerte gemeinsam mit den Anforderungskennwerten der KTA 3201.1 [99] aufgeführt. Bis auf Probe 8RT02 (Pufferung, Rohrumfangsrichtung) erfüllen alle Kennwerte die Mindestanforderungen des Regelwerkes.

Abbildung 35: Übersicht der mit den Flachproben ermittelten Festigkeits- und Verformungskennwerte in den unterschiedlichen Bereichen der Mischnaht

Zur Charakterisierung aller Schweißnahtbereiche wurde darüber hinaus eine Integralzugprobe über der gesamten Schweißnahtlänge (Verbindungsnahnt und Pufferung) entnommen, siehe Abb. 36. Die Probe wurde über eine metallographische Ätzung positioniert und in den geschweißten Bereichen auf einen Durchmesser von $d_{\text{Prüf}} = 6$ mm eingeholt, siehe Abb. 36. Als charakteristische Größe wurde das Last-Verformungsverhalten mit einem Extensometer der Messlänge $l_0 = 25$ mm aufgenommen.

Aus der dargestellten Dehnungsverteilung in Probenlängsrichtung \(\varepsilon_{\text{längs}} \) wird klar ersichtlich, dass die Probe, nach einer anfänglichen Einschnürung im Bereich der Pufferung, im Übergang zum austenitischen Grundwerkstoff versagt. Für die anschließenden geplanten Verifikationsschritte stellt dies allerdings keine Einschränkung dar.

Abb. 36: Kraft-Verformungskurve der Integralzugprobe 8IT01 (links) sowie die mit ARAMIS bestimmte Dehnungsverteilung in Längsrichtung auf der Probenoberfläche (rechts)

4.2.4 Dynamische E-Modul Bestimmung

Abb. 37: Statistische Verteilung E-Moduln des austenitischen Grundwerkstoffs

4.2.5 Kerbschlagbiegeversuche

Um die Proben für die nachfolgenden bruchmechanischen Untersuchungen in den möglichen Schwachstellen der Schweißnaht zu positionieren, wurde eine Chapelka-Kette [119], bestehend aus 16 ISO-V-Proben nach DIN EN 10045-1 [120], geprüft. Für eine genaue Charakterisierung wurden die 16 Proben gleichmäßig aus allen Bereichen der untersuchten Mischnaht entnommen, wobei die Abstände in den Werkstoffübergängen enger gefasst wurden. Die Proben wurden vorzugsweise in Rohrlängsrichtung (L-T-Richtung) entnommen. Zur eindeutigen Charakterisierung der Werkstoffübergänge wurden die entsprechenden Proben um den Flankenwinkel der Naht gedreht, siehe Abb. 38.

Abb. 38: Probenentnahme der ISO-V-Proben an den unterschiedlichen Positionen der Mischnaht

Für eine erste Abschätzung der Rissinitiationskennwerte wurde auf eine an der MPA Universität Stuttgart entwickelte empirisch e Korrelation zurückgegriffen [121]. Diese Korrelation ermöglicht es, für duktile Werkstoffe in der Hochlage aus den Kerbschlagarbeiten auf die Initierungswerte J_i zu schließen. Die so ermittelten Initiierungswerte zeigen erwartungsgemäß ebenfalls reduzierte Werte in den Werkstoffübergängen sowie im Bereich der Verbindungsschweißung und der Pufferung, siehe Abb. 39.

4.2.6 Kerbzugversuche

Um in den Untersuchungen nur das Last-Verformungsverhalten der Bereiche mit geänderter Mikrostruktur, wie beispielsweise der ferritischen WEZ, bestimmen zu können, wurden speziell für diese Untersuchungen Kleinst-Kerbzugproben dimensioniert, siehe Abb. 40. Die Kerbgeometrie wurde dabei so gestaltet, dass mit einem minimalen Kerbradius \(r \) bzw. Kerblänge \(l_{\text{Kerb}} \) duktiles Versagen mit Rissausgang im Zentrum der Probe erzielt wurde. Insgesamt wurden 41 Proben in Rohrlängsrichtung und 8 Proben in Rohrumfangsrichtung bei Raumtemperatur geprüft.

Abb. 42: Übersicht Bruchbeitwürungen (links) und Kerbugfestigkeiten (rechts) der Kerbzugversuche in Rohrlängsrichtung
naht, stark reduziert. Diese Unterschiede sind analog zu den einachsigen Zugversuchen auf
den starken Einfluss der dendritischen Erstarrung zurückzuführen. Eine ausführliche
Diskussion der mikrostrukturellen Einflüsse erfolgt im Rahmen der fraktographischen
Untersuchungen, vgl. Kap. 5.1.

4.2.7 Bruchmechanische Untersuchungen

Die bruchmechanischen Untersuchungen wurden mit Drei-Punkt-Biegeproben (SEB15-
Proben) entsprechend ASTM E 1820-08 [122] mit einem a/W-Verhältnis von ungefähr 0,5
durchgeführt. Die Proben mit den Abmessungen L = 135 mm, B = 15 mm und W = 30 mm
wurden in L-S Richtung der Rohre entnommen (Risswachstumsrichtung radial von innen
nach außen) und enthielten entsprechend dem Nahtaufbau alle Material- und
Gefügebereiche der Mischnaht, siehe Abb. 43.

Abb. 43: Entnahmeposition und Risswachstumsrichtung der SEB15-Proben

Da die Einflüsse auf das Risswachstum und insbesondere auf die Risswachstumsrichtung
ermittelt werden sollten, wurde auf eine Seitenkerbung der Proben verzichtet, um die
Risswachstumsrichtung nicht zu beeinflussen. Entsprechend der vorangegangenen
Versuche wurden folgende Positionen der Schweißnaht untersucht:

- Ferritischer Grundwerkstoff
- Werkstoffübergang ferritischer Grundwerkstoff/ Pufferung (Interface 1)
- Pufferung
- Werkstoffübergang Pufferung/ Verbindungsnaht (Interface 2)
- Verbindungsnaht
- Werkstoffübergang Verbindungsnaht/ austenitischer Grundwerkstoff (Interface 3)
- austenitischer Grundwerkstoff

Die schematischen Positionen der in den SEB-Proben eingebrachten Anfangsschwingrisse
sind in Abb. 44 dargestellt.

Abb. 44: Entnahmeposition der Bruchmechanikproben (schematische Darstellung)

Für eine eindeutige Positionierung wurde die Lage des Anfangsrisses mit metallo-
graphischen Ätzungen festgelegt. Nach Versuchsdurchführung wurde die exakte Position
nochmals anhand fraktographischer Untersuchungen überprüft. Der Anfangsriss selbst
wurde mit Hilfe eines Erodierschnittes eingebracht und anschließend gemäß ASTM E 1820-08 [122] auf eine Anfangsrisslänge von ungefähr $a_0 \approx 15$ mm ($a/W = 0,5$) angeschwungen.

Grundwerkstoffe

In Abb. A16 bis Abb. A24 im Anhang sind die während der Versuche aufgezeichneten Kraft-Verformungskurven (F-COD) und in Abb. 45 bis Abb. 52 die zugehörigen J_e-Kurven dargestellt. Die Proben aus den beiden Grundwerkstoffen, mit einem a/W-Verhältnis ca. 0,5 (vollständige Abmessungen Tab. A6), zeigen von allen Gefügebereichen der Mischnaht den mit Abstand größten Widerstand gegen Rissinitierung und -wachstum, siehe Abb. 45.

![Abb. 45: Risswiderstandskurve der aus dem ferritischen (links) und austenitischen (rechts) Grundwerkstoff entnommenen SEB15-Proben](image-url)
Pufferung

Die drei aus der Pufferung entnommen Proben weisen ein a/W-Verhältnis von 0,51 bis 0,53 auf, wobei die Probenweite W durch die geringe Wanddicke in den geschweißten Bereichen teilweise kleiner als $W = 30$ mm ist. Entsprechend der Prüfnorm ASTM 1820-08 [122] wurde der Lagerabstand an die unterschiedlichen Probenweiten angepasst (vollständige Abmessungen siehe Tab. A6). Die ermittelten J_R-Kurven weisen bedingt durch die dendritische Erstarrungsstruktur eine wesentlich größere Streuung auf als die Proben aus den beiden Grundwerkstoffen, vgl. Abb. 45 und Abb. 46. Ihre Steigung und folglich auch der Risswiderstand sind, insbesondere im vorderen Bereich um die Rissinitiierung, deutlich geringer.

![Abb. 46: Risswiderstandskurve der aus der Pufferung entnommenen SEB15-Proben](image)

Verbindungsnaht

Die Verbindungsnaht stellt in Bezug auf die Rissinitiierung und -ausbreitung den schwächsten Gefügebereich der untersuchten Mischnaht dar, weshalb aus diesem Bereich mehrere Proben sowohl mittig (Position II) als auch in Richtung der Pufferung (Position I) bzw. des austenitischen Grundwerkstoffs (Position III) versetzt entnommen wurden, siehe Abb. 44. Die entnommenen Proben weisen alle ein a/W-Verhältnis von ca. 0,5 auf, wobei die Probenweite W wie bei den Proben aus der Pufferung durch die geringe Wanddicke teilweise kleiner als $W = 30$ mm ist. Entsprechend der Prüfnorm ASTM 1820-08 [122] wurde der Lagerabstand an die unterschiedlichen Probenweiten angepasst (vollständige Abmessungen siehe Tab. A6).

Obwohl die Verbindungsnaht und die Pufferung aus einem identischen Schweißgut hergestellt sind, zeigen die Proben aus der Verbindungsnaht einen geringeren Risswiderstand und eine nochmals größere Streuung der J_R-Kurven, siehe Abb. 47 bis Abb. 49. Durch die radial nach außen abbiegende Erstarrungsstruktur in der Verbindungsnaht ist je nach Entnahmeposition auch die Orientierung des Risses zur dendritischen Erstarrungsrichtung verschieden. Je gleichartiger die Orientierung der Erstarrungsstruktur und des Risswachstums ist, desto geringer ist der experimentell ermittelte Risswiderstand. Den geringsten Risswiderstand weisen die in Richtung Pufferung entnommenen Proben auf.
Abb. 47: Risswiderstandskurve der links versetzt (Position I) entnommenen SEB15-Proben aus der Verbindungsnaht

Abb. 48: Risswiderstandskurve der mittig aus der Verbindungsnaht (Position II) entnommenen SEB15-Proben

Abb. 49: Risswiderstandskurve der rechts versetzt (Position III) entnommenen SEB15-Proben aus der Verbindungsnaht

Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1)

Die drei Proben aus dem Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1) weisen alle ein \(a/W\)-Verhältnis von ca. 0,5 auf, wobei die Probenweite \(W\) durch die geringe Wanddicke in den geschweißten Bereichen teilweise kleiner als \(W = 30\) mm ist. Entsprechend der Prüfnorm ASTM E 1820-08 [122] wurde der Lagerabstand an die unterschiedlichen Probenweiten angepasst (vollständige Abmessungen siehe Tab. A6). Die ermittelten \(J_R\)-Kurven (siehe Abb. 50) zeigen im Vergleich zur Pufferung (siehe Abb. 46) einen deutlich höheren Risswiderstand. Durch die wellige Grenzfläche zwischen Ferrit und Pufferung verlaufen Teile der Rissfront durch die ferritische WEZ. Durch den dort herrschenden höheren Risswiderstand wird auch der Verlauf der \(J_R\)-Kurven an Interface 1 steiler als in der Pufferung.

![Abb. 50: Risswiderstandskurve der aus dem Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1) entnommenen SEB15-Proben](image-url)
Werkstoffübergang zwischen Pufferung und Verbindungsnaht (Interface 2)

Im Werkstoffübergang zwischen der Pufferung und der Verbindungsnaht (Interface 2) konnte lediglich eine Probe mit einem a/W-Verhältnis von 0,51 (vollständige Abmessungen siehe Tab. A6) exakt positioniert werden. Bei den anderen Proben zeigten die nachfolgenden fraktographischen Untersuchungen, dass die Spitze des Schwingrisses im Bereich der Verbindungsnaht liegt. Ähnlich zu den Proben aus der Verbindungsnaht (Position I) zeigt die Probe aus diesem Bereich einen geringen Risswiderstand, vgl. Abb. 51 und Abb. 47.

Werkstoffübergang zwischen Verbindungsnaht und Austenit (Interface 3)

Die drei aus dem Werkstoffübergang zwischen austenitischem Grundwerkstoff und der Verbindungsnaht (Interface 3) entnommenen Proben weisen ungefähr ein a/W-Verhältnis von 0,5 auf. Wie schon bei den zuvor betrachteten Positionen unterscheiden sich auch bei diesen Proben die Probenweite und der Lagerabstand. Im Vergleich zu den direkt aus der Verbindungsnaht entnommenen Proben weisen die J-R-Kurven aus dem austenitischen Werkstoffübergang (Interface 3) entnommenen Proben einen wesentlich steileren Verlauf auf (vgl. Abb. 49 und Abb. 52).
Wie schon die aus der Verbindungsnaht in Richtung Austenit versetzt entnommenen Proben (Position III) profitieren die Proben aus dem direkten Werkstoffübergang von einer plastischen Verformung des direkt angrenzenden austenitischen Grundwerkstoffs. Die größeren Dehnungen im angrenzenden Grundwerkstoff lassen sich mit ARAMIS-Aufnahmen anschaulich darstellen, siehe Abb. 53.

Abb. 53: Dehnungsverteilung in der Rissspitzenumgebung einer mittig aus der Pufferung (links) entnommenen Probe und einer Probe aus Interface 3 (rechts) zum jeweiligen experimentellen Höchstlastpunkt

verlaufen Teile der Rissfront durch die angrenzenden Grundwerkstoffe. Da die Stretched-Zone als Mittelwert über der gesamten Probenbreite ermittelt wird, gehen bei der Kennwertermittlung auch die wesentlich duktileren Anteile des Austenits in die Stretched-Zone-Width und somit in die Bestimmung der Rissinitierung mit ein. Insbesondere die in den austenitischen Werkstoffbereichen auftretenden großen plastischen Verformungen bedingen maßgeblich die deutliche Erhöhung der Initiierungskennwerte im Werkstoffübergang zur Verbindungsnaht (Interface 3).

Die im Vergleich zur Verbindungsschweißung deutlich höheren Initiierungswerte der Werkstoffübergänge stehen in einem scheinbaren Widerspruch zu den mit der empirischen Korrelation aus den Kerbschlagarbeiten errechneten Initiierungswerten, vgl. Abb. 39 und Abb. 54. Im Gegensatz zu den Kerbschlagbiegeproben, welche in den Werkstoffübergängen um den Flankenwinkel gedreht sind, sind die untersuchten SEB-Proben ausnahmslos in L-S Richtung positioniert. Demzufolge sind die Kerbschlagbiegeproben annähernd in Richtung der dendritischen Erstarrung orientiert, die Bruchmechanikproben jedoch nicht. Durch den aufgezeigten Einfluss der dendritischen Erstarrungsstruktur auf die Rissinitierung sind die Abweichung beider Versuchsreihen somit nicht dem empirischen Charakter der Korrelation zuzuschreiben.
5 Bestimmung der mikromechanischen Versagensvorgänge

5.1 Untersuchungen der Zugproben

Für eine Absicherung der schädigungsmechanischen Berechnungsmethode wurden sowohl die gekerbten als auch die ungekerbten Zugproben fraktographisch untersucht. Diese Untersuchungen beinhalten neben den reinen fraktographischen Analysen der Bruchflächen die genaue Bestimmung der Art der hohlraumbildenden Phasen mit EDX-Analysen. Für die folgenden Untersuchungen wurde aus jedem Bereich eine charakteristische Probe exemplarisch ausgewählt.

5.1.1 Fraktographische Untersuchung der Bruchflächen

Ferritischer Grundwerkstoff

Die Rundzugprobe aus dem ferritischen Grundwerkstoff (1FRT01) zeigt die typischen Merkmale eines „Fräserbruchs“ [125], siehe Ausschnitt 1 und 2 in Abb. 55.

Abb. 55: Bruchfläche einer Rundzugprobe aus dem ferritischen Grundwerkstoff (REM-Aufnahme)

Bei der vorliegenden Bruchfläche des ferritischen Grundwerkstoffs sind die von der Mitte radial nach außen verlaufenden Scherlippen (A in Abb. 55) deutlich zu erkennen. Die sich in der Mitte der Bruchfläche (Ausschnitt 3 in Abb. 55) befindenden Waben, sowie die Scherwaben (Ausschnitt 4 in Abb. 55) belegen das duktile Versagen des Werkstoffs auf mikroskopischer Ebene.

Ferritische WEZ

Abb. 56: Bruchfläche einer Kerbzugprobe aus der ferritischen WEZ (REM-Aufnahme)
Pufferung

In den Zugversuchen zeigte sich bei den Proben aus der Pufferung und der Verbindungsnahrt in den ermittelten Kennwerten ein deutlicher Einfluss der dendritischen Erstarrung (vgl. Kap. 4.2.6). Die Ergebnisse belegen, dass insbesondere die Verformungskennwerte bei senkrecht zur Belastungsrichtung verlaufenden Dendriten reduziert sind. Eine detaillierte Darstellung des Einflusses der unterschiedlichen Rissausbreitungsrichtungen entlang der dendritischen Erstarrung (interdendritisch) bzw. quer zur dendritischen Erstarrung (transdendritisch), erfolgt in den folgenden fraktographischen Untersuchungen.

Abb. 57: Bruchfläche einer Kerbzugprobe aus der Pufferung (REM-Aufnahme)

Die Bruchfläche der untersuchten Kerbzugprobe (8NT12) aus der Pufferung zeigt bei makroskopischer Betrachtung ebenfalls ein Versagen in Form eines „Trichter- und Kegelbruchs“ (Ausschnitt 1 und 2 in Abb. 57) mit klar ausgebildeten Scherlippen (A in Abb. 57). Auf der gesamten Bruchfläche sind duktile Waben (Ausschnitt 3 in Abb. 57) zu erkennen. Aufgrund der in Belastungsrichtung orientierten Dendriten verläuft der Bruch weitestgehend transdendritisch durch die einzelnen Dendriten hindurch. Auffällig sind zudem die interdendritischen Werkstofftrennungen senkrecht zur Bruchfläche, siehe B in Abb. 57. Bei schräger Betrachtung sind in diesen senkrechten interdendritischen Werkstofftrennungen ebenfalls duktile Wabenstrukturen zu erkennen (Ausschnitt 4 in Abb. 57). Diese flach ausgebildeten Waben resultieren aus der erhöhten Ausscheidungsichte in den interdendritischen Bereichen (vgl. Kap. 2.1). Da die duktile Rissinitierung an nicht-
Bestimmung der mikromechanischen Versagensvorgänge Seite 57

metallischen Einschlüssen stattfindet, können die interdendritischen Bereiche als geschwächt angesehen werden [33], [40]. Somit sind auch die interdendritischen Werkstofftrennungen in der wesentlich geringer belasteten Richtung senkrecht zur Bruchfläche zu erklären. Die Bestimmung der chemischen Zusammensetzung der Einschlüsse erfolgt mit Hilfe von EDX-Analysen, siehe Kap. 5.1.2.

Verbindungsnahnt

Abb. 58: Last-Verlängerung der Kerbzugversuche sowie schematische Darstellung der Bruchverläufe; Verbindungsnahnt (NiCr70Nb)

Die Probe 8NT07, welche von den drei betrachteten Proben aus der Verbindungsnahnt die größte Bruchverlängerung aufwies, zeigt im Vergleich zu der vorher betrachteten Probe aus der Pufferung (8NT12) ebenfalls einen „Trichter- und Kegelbruch“ (Ausschnitt 1 in Abb. 59), allerdings mit schwächer ausgebildeten Scherlippen (A in Abb. 59). Auf der betrachteten Bruchfläche sind gleichmäßig verteilte duktile Waben zu finden, welche teilweise eine Ausrichtung erkennen lassen (Ausschnitt 2 in Abb. 59). Im Vergleich mit Abb. 11 entspricht diese annähernd der Richtung der dendritischen Erstarrung. Wie schon bei den
vorangegangenen Untersuchungen beschrieben, haben die interdendritischen Bereiche eine erhöhte Ausscheidungsdichte und sind folglich geschwächt. Durch diese Schwächung läuft der Bruch bevorzugt entlang der einzelnen Dendritenarme.

Der Bruch der Probe 1NT06 (die Probe mit der mittleren Bruchverlängerung der drei betrachteten Proben) erfolgte ebenfalls als „Trichter- und Kegelbruch“ mit schwach ausgebildeten Scherlippen (A in Abb. 60). In der Probenmitte ist deutlich das senkrecht zur Belastungsrichtung verlaufende dendritische Gefüge mit einer im Vergleich zu den Grundwerkstoffen schwach ausgebildeten Wabenstruktur zu erkennen (Ausschnitt 2 in Abb. 60). Die zwischen den einzelnen Dendritenarmen erkennbaren Werkstofftrennungen (B in Abb. 60) sind ebenfalls ein Resultat der erhöhten Ausscheidungsdichte auf den Dendriten. Im vorliegenden Fall ist deutlich zu erkennen, dass der Hauptriss (senkrecht zur Belastungsrichtung) teilweise um die einzelnen Dendritenarme herum gewachsen ist, wodurch der Anschein entsteht, dass die einzelnen Dendriten herausgelöst wurden. In der Mitte der Bruchfläche klaffen diese Risse mehr auf als in den Randbereichen, was den Rückschluss zulässt, dass die mittigen Risse durch den mehrachsigeren Spannungszustand aufgezogen wurden.
Die Probe 8NT02 weist die geringste Bruchverlängerung auf, was auch mit der Bruchflächenanalyse korreliert. Im Gegensatz zu den beiden vorangegangenen Proben ähnelt die Bruchmorphologie einem Normalspannungsbruch ohne klar ausgebildete Scherlippen (Ausschnitt 1 in Abb. 61). Auf der Bruchfläche lassen sich im Vergleich zu den beiden anderen Proben 1NT06 und 8NT07 die meisten interdendritischen Bruchflächenanteile dokumentieren, siehe Abb. 58. Insbesondere in der Mitte der Bruchfläche finden sich größere Anteile mit nur sehr schwach ausgebildeten duktilen Waben (Ausschnitte 2 und 3 in Abb. 61). Bei einem Vergleich der schräg betrachteten Bruchfläche der Verbindungsnaht (Ausschnitt 4 in Abb. 61) und den senkrechten Werkstofftrennungen im Bereich der Pufferung (Ausschnitt 4 in Abb. 57) lassen sich nochmals die identischen Versagensmechanismen in beiden Bereichen verdeutlichen. Beide Flächen weisen bedingt durch die erhöhte Ausscheidungsdichte eine schwach ausgebildete duktile Wabenstruktur auf. Jedoch unterscheiden sich, durch die unterschiedliche Richtung des dendritischen Gefüges, auch die Rissausbreitungsrichtungen beider Proben. Die orthogonale Ausrichtung der Dendriten zur Belastungsrichtung in der Pufferung führt zu den senkrechten Rissen, während die parallele Ausrichtung in der Verbindungsnaht zu einer verminderten Duktilität führt.

Abb. 61: Bruchfläche einer Kerbzugprobe aus der Verbindungsnaht (8NT02) (REM-Aufnahme)
Grundwerkstoff Austenit

![Abb. 62: Bruchfläche einer Rundzugprobe aus dem austenitischen Grundwerkstoff (REM-Aufnahme)](image)

Austenitische WEZ

![Abb. 63: Bruchfläche einer Kerbzugprobe aus der austenitischen WEZ (REM-Aufnahme)](image)
5.1.2 Bestimmung der hohlraumbildenden Phasen

Im Bereich des ferritischen Grundwerkstoffs handelt es sich bei den für die Hohlrauminitialisierung maßgeblichen Partikeln fast ausschließlich um Aluminiumoxide, siehe Abb. 64. In Forschungsvorhaben mit Werkstoffen vergleichbarer chemischer Zusammensetzung [19], [89], [129], [130] wurden im Gegensatz dazu vor allem Mangansulfide für die Bruchentstehung verantwortlich gemacht. Der aktuell vorliegende Werkstoff weist im Gegensatz zu den früheren untersuchten Werkstoffchargen einen wesentlich geringeren Schwefelgehalt auf. Infolge dieses stark abgesenkten Schwefelgehaltes wird der Versagensmechanismus nicht durch Mangansulfide, sondern durch das zur Desoxidation des Werkstoffs eingebrachte Aluminium dominiert. Bei den Analysen konnten nur sehr vereinzelt kleinere Mangansulfide detektiert werden, weshalb diese für den Versagensmechanismus eine untergeordnete Rolle spielen.

Abb. 64: Bruchfläche einer Rundzugprobe aus dem ferritischen GW (EDX-Analyse)

5.1.3 Schliffe senkrecht zur Bruchoberfläche

5.2 Untersuchung der bruchmechanischen Proben

Um die Einflüsse der dendritischen Erstarrung auf die Rissinitiierung und das sich anschließende stabile Risswachstum genau zu quantifizieren, wurden die geprüften bruchmechanischen SEB-Proben fraktographisch untersucht. Diese Untersuchungen umfassen die Analyse der Bruchflächen sowie die Dokumentation des Rissfortschritts an Längsschliffen der mittig getrennten Proben. In den Analysen wird im Folgenden auf alle Bereiche der Mischnaht eingegangen, wobei der Schwerpunkt auf der Verbindungsnaht liegt. Für eine abschließende Klärung der Versagensvorgänge wird die Ausbildung des Risspfades zusätzlich mit Electron-Backscatter-Diffraction (EBSD)-Analysen veranschaulicht.

5.2.1 Fraktographische Untersuchung der Bruchflächen

Grundwerkstoffe

Abb. 70: Bruchfläche sowie Längsschliff in Probenmitte einer SEB-Probe aus dem ferritischen Grundwerkstoff (REM-Aufnahme)

Die Stretched-Zone ist in den seitlich betrachteten Längsschliffen aus der Probenmitte als ausgeprägtes Riss spitzenblunting zu erkennen (A in Abb. 70 bzw. Abb. 71). Wie für homogene Werkstoffe zu erwarten, ist die Ausbildung des Bluntings auf beiden Seiten der Riss spitze symmetrisch. Im austenitischen Grundwerkstoff sind darüber hinaus die sich knapp vor der Riss spitze bildenden Hohlräume zu erkennen (Ausschnitt 4 in Abb. 71). Der sich daran anschließende Pfad des stabilen Riss wachstums verläuft bei beiden Grundwerkstoffen erwartungsgemäß ohne Auslenkungen in der Ligamentebene der Probe. Auf der Bruchfläche sind analog zu den Bruchflächenanalysen der Zugproben deutlich ausgebildete duktile Wabenstrukturen zu erkennen (Ausschnitt 2 in Abb. 70).

Abb. 71: Bruchfläche sowie Längsschliff in Probenmitte einer SEB-Probe aus dem austenitischen Grundwerkstoff (REM-Aufnahme)
Pufferung

Die Ausbildung des Risspfades in der Pufferung wird wesentlich durch die dendritische Erstarrungsstruktur beeinflusst. Der in Abb. 72 dargestellte gezackte Rissverlauf ist charakteristisch für die Proben aus der Pufferung. Bei diesen Proben bilden sich kleine Risse deutlich vor der Rissspitze (Ausschnitt 2 und 4 in Abb. 72). Neben dem großen Abstand (teilweise bis zu 2,5 mm) ist die orthogonal zur eigentlichen Rissausbreitungsrichtung verlaufende Ausrichtung der Risse bemerkenswert (Ausschnitt 5 in Abb. 72). Bei einer näheren Analyse dieser Risse zeigen sich auf den Bruchflächen schwach ausgebildete Wabenstrukturen (Ausschnitt 3 in Abb. 72).

![Abb. 72: Längsschliff in Probenmitte einer SEB-Probe aus der Pufferung (REM-Aufnahme)](image)

Die lichtoptische Analyse (Abb. 73) der gleichen Probe zeigt, dass sich diese Risse entlang den Dendritenarmen ausbreiten (Ausschnitt 5 in Abb. 72 und Ausschnitt 3 in Abb. 73). Die lichtoptischen Aufnahmen belegen zudem, dass nicht der Lagenaufbau direkt (Ausschnitt 2 in Abb. 73), sondern die daraus resultierende Ausrichtung der Dendriten den maßgeblichen Einfluss auf die Rissausbreitung hat. Der makroskopisch erkennbare gezackte Rissverlauf resultiert aus der Vereinigung dieser, in Richtung der dendritischen Erstarrung (Rohrlängsrichtung) verlaufenden, Risse.

![Abb. 73: Längsschliff in Probenmitte einer SEB-Probe aus der Pufferung (lichtoptisch)](image)
Neben der Analyse des Rissverlaufs in der Probenmitte wurden auch die Bruchflächen fraktographisch untersucht, siehe Abb. 74. Bei allen aus der Pufferung entnommenen Proben war weder die Rissfront des Ausgangsschwingrisses noch die des stabilen Risswachstums nach der zugrunde gelegten Norm [122] hinreichend gerade ausgebildet (Ausschnitt 1 in Abb. 74). Zur Betrachtung der gesamten asymmetrischen Rissfront wurden die folgenden Untersuchungen deshalb an einer nicht mittig getrennten SEB-Probe durchgeführt. Auf der Bruchfläche sind die Bereiche des Anfangsschwingrisses, des stabilen Rissfortschritts sowie der Bereich, in welchem die Probe aufgeschwungen wurde, klar zu erkennen (Ausschnitt 1 in Abb. 74). Die Stretched-Zone, welche sich zwischen dem Anschwingriss und dem Bereich des stabilen Risswachstums ausbildet, ist in der Pufferung allerdings wesentlich kleiner als bei den beiden Grundwerkstoffen (Ausschnitt 5 in Abb. 74).

Aufgrund des ausreichend großen Abstands zu den beiden angrenzenden Werkstoffbereichen bildet sich die Stretched-Zone auf beiden Rissufern symmetrisch aus (A und B in Abb. 74).

Eine weitere Besonderheit sind die teilweise großen Höhenunterschiede auf der Bruchfläche. Bei schrager Betrachtung dieser Bereiche kann nochmals deutlich das interdendritische Versagen in den geschweißten Bereichen veranschaulicht werden. In Ausschnitt 2 bis 4 von Abb. 74 ist ein Dendrit zu sehen, um welchen der Riss herum gewachsen ist (A in Abb. 74), bevor ein transdendritisches Risswachstum durch den Dendriten hindurch (B in Abb. 74) erfolgte. Dadurch erscheint der Dendrit in den elektronenmikroskopischen Aufnahmen aus dem umgebenden Werkstoff herausgelöst. Es wird an diesem Beispiel nochmals deutlich, dass sich auf den transdendritischen Flächen (B in Abb. 74) wesentlich kleinere Waben ausbilden als in den Bereichen mit interdendritischem Risswachstum (A in Abb. 74).

Abb. 74: Bruchfläche einer SEB-Probe aus der Pufferung (REM-Aufnahme)
Verbindungsnaht

Im Bereich der Verbindungsnaht sind die Richtung der dendritischen Erstarrung und die Rissausbreitungsrichtung annähernd identisch, vgl. Kap. 4.1. In der Verbindungsnaht finden sich deshalb keine weit von der Rissspitze entfernten Rissbildungen wie sie in der Pufferung gezeigt wurden (vgl. Ausschnitt 1 in Abb. 72 mit Ausschnitt 1 in Abb. 75).

Abb. 75: Längsschliff in Probenmitte einer SEB-Probe aus der Verbindungsnaht (links REM-Aufnahme; rechts lichtoptische Aufnahme)

Aufgrund der annähernd identischen Ausrichtung von Risspfad und Dendriten kann sich der Riss entlang der geschwächten Dendriten ausbreiten. Daraus ergeben sich auch die experimentell bestimmten, extrem niedrigen Rissinitierungskennwerte J_i in der Verbindungsnaht. Auffällig bei dem dargestellten Rissverlauf in der Probenmitte ist, dass bereits der eingebrachte Schwingriss der dendritischen Erstarrung unter einem Winkel von ca. \(\gamma = 20^\circ \) folgt und aus der Ligamentebene ausgelenkt wird (Ausschnitt 4 in Abb. 75). Mit Hilfe der lichtoptischen Aufnahmen lässt sich bei dieser Probe die direkte Kopplung von Erstarrungs- und Risswachstumsrichtung zeigen, siehe Ausschnitt 4 und 5 in Abb. 75. Dabei werden auch Risse neben dem eigentlichen Haupriss sichtbar, welche sich ebenfalls interdendritisch bilden (\(\Box \) in Abb. 75).

Neben der Analyse des Risspfads in den Längsschliffen wurden fraktographische Untersuchungen der Bruchflächen durchgeführt, siehe Abb. 76. Wie in den vorangegangenen Betrachtungen kann bei der Probe aus der Verbindungsnaht klar zwischen den Bereichen des Anfangsschwingrisses, des stabilen Rissfortschritts sowie dem Bereich, in welchem die Probe aufgeschwungen wurde, unterschieden werden. Bedingt durch die dendritische Erstarrung ist, wie in der Pufferung, die Rissfront des Ausgangsrisses und die des stabilen Risswachstums gezackt. Das Blunting (\(\Box \) in Abb. 75) bzw. die Stretched-Zone (Ausschnitt 5 in Abb. 76) ist in diesem Bereich nur sehr klein ausgebildet. Die schwach ausgebildete Stretched-Zone steht auch in sehr guter Übereinstimmung mit der experimentell bestimmten, verminderten Verformungsfähigkeit im Bereich der Verbindungsnaht (vgl. Kap. 4.2.3).
Bestimmung der mikromechanischen Versagensvorgänge Seite 69

Abb. 76: Bruchfläche einer SEB-Probe aus der Verbindungsnaht (REM-Aufnahme)

Im Bereich des stabilen Risswachstums fallen zudem vereinzelte Löcher auf (A und B in Abb. 76), die sich auch in der seitlich betrachteten Bruchfläche zeigen (Ausschnitt 2 und 6 in Abb. 76). Auf der Gegenbruchfläche finden sich an denselben Positionen Erhebungen, (A und B in Abb. 77).

Im Querschliff (Abb. 78) ist zu erkennen, dass die Form und Gestalt dieses Lochs (A in Abb. 76) der Erhebung auf der Gegenbruchfläche entsprechen. In Anbetracht dessen, dass sich der Riss bevorzugt interdendritisch ausbildet, kann darauf geschlossen werden, dass der Dendrit durch den interdendritischen Rissverlauf herausgelöst wurde.

Abb. 77: Gegenbruchfläche der SEB-Probe aus Abb. 77 (REM-Aufnahme)

Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1)

Im Werkstoffübergang zwischen der Nickelbasis-Pufferung und dem ferritischen Grundwerkstoff (Interface 1) können die beiden angrenzenden Werkstoffe eindeutig unterschieden werden (Ausschnitt 1 in Abb. 79). Der anfänglich eingebrachte Ausgangsschwingriss befindet sich exakt auf dem Übergang zwischen den beiden Werkstoffen (Ausschnitt 3 in Abb. 79). Infolge der Kombination der beiden Werkstoffe mit stark unterschiedlichen Festigkeiten ist auch die Ausbildung des Riss spitzenbluntings unsymmetrisch und beschränkt sich weitestgehend auf die ferritischen Bereiche (Ausschnitt 3 in Abb. 79). Durch die Verwendung des physikalischen Rissinitialisierungskennwertes J_i ergibt sich die Möglichkeit, dieses unterschiedliche Werkstoffverhalten bei der Kennwertermittlung zu berücksichtigen. Dabei wird die Stretched-Zone-Width der Seite verwendet, auf welcher sich der Riss ausgebreitet hat – im vorliegenden Fall die Seite der Pufferung. Dies stimmt in allen Fällen mit der Seite der kleineren Stretched-Zone-Width überein.
Das weitere stabile Risswachstum verläuft in der Pufferung, wobei der Risspfad keinen solch ausgeprägt zackigen Verlauf aufweist wie bei den Proben aus der Pufferung (vgl. Ausschnitt 1 in Abb. 72). Erst am Ende des stabilen Risswachstums folgt der Riss der dendritischen Erstarrungsstruktur und wächst wie in der Pufferung orthogonal zur eigentlichen Risswachstumsrichtung (Ausschnitt 2 und 5 in Abb. 79).

Abb. 79: Längsschliff in Probenmitte einer SEB-Probe aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) (links REM-Aufnahme; rechts lichtoptische Aufnahme)

Werkstoffübergang zwischen Pufferung und Verbindungsnaht (Interface 2)

Im Werkstoffübergang zwischen Verbindungsnaht und Pufferung (Interface 2) ist die eindeutige Unterscheidung zwischen den beiden angrenzenden Werkstoffbereichen nur durch die Kenntnis und Analyse der dendritischen Erstarrung möglich. Aufgrund der chemischen Ähnlichkeit ist in den REM-Aufnahmen keine Unterscheidung möglich (Ausschnitt 1 in Abb. 80). Da auch die Beständigkeit gegenüber den verwendeten Ätzverfahren identisch ist, kann nur anhand des Lagenaufbaus bzw. der Kenntnis der dendritischen Erstarrung auf eine gute Positionierung geschlossen werden. Analog zur Pufferung und zur Verbindungsnaht folgt der Riss auch in diesem Bereich der dendritischen Erstarrungsstruktur und wird in Richtung der Verbindungsnaht ausgelenkt (Ausschnitt 4 in Abb. 80). Da in den Randbereichen der Verbindungsnaht die Risswachstums- und Erstarrungsrichtung nicht exakt übereinstimmen, findet eine Kombination der Rissausbreitung von Pufferung und Verbindungsnaht statt. Zum einen folgt der Risspfad ähnlich der Verbindungsnaht weitestgehend der dendritischen Erstarrungsstruktur (A in Abb. 80). Zum anderen sind, wie in der Pufferung, interdendritische Trennungen vor der Riss spitze zu erkennen (Ausschnitt 2 und 3 in Abb. 80), die sich allerdings nicht so weit vor der eigentlichen Riss spitze bilden wie im Bereich der reinen Pufferung. Aus dieser Kombination ergibt sich ein gezackter Risspfad, der allerdings weitestgehend der dendritischen Erstarrungsstruktur folgt.
Bestimmung der mikromechanischen Versagensvorgänge Seite 72

Abb. 80: Längsschliff in Probenmitte einer SEB-Probe aus dem Werkstoffübergang Pufferung/ Verbindungsnaht (Interface 2) (links REM-Aufnahme; rechts lichtoptische Aufnahme)

Werkstoffübergang zwischen Verbindungsnaht und Austenit (Interface 3)

Im Werkstoffübergang zwischen dem austenitischem Grundwerkstoff und der Verbindungsnaht (Interface 3) kann anhand der Grautöne in den REM-Aufnahmen eindeutig zwischen den beiden Werkstoffbereichen unterschieden werden, siehe Ausschnitt 1 in Abb. 81.

Abb. 81: Längsschliff in Probenmitte einer SEB-Probe aus dem Werkstoffübergang Verbindungsnaht/ Austenit (Interface 3) (links REM-Aufnahme; rechts lichtoptische Aufnahme)
Der Anriss befand sich auf dem Werkstoffübergang, in Probenmitte war er lediglich um ca. 10 µm in Richtung der Verbindungsnahnt verschoben. Nach Initiierung (\(A\) in Abb. 81) folgt der Riss den Erstarrungsstrukturen und läuft in die Verbindungsnahnt (Ausschnitt 3 und 4 in Abb. 81). Analog zu den vorangegangenen Untersuchungen wurde zur Ermittlung der physikalischen Rissinitierungs kennwerte wieder die Stretched-Zone-Width der Seite der Verbindungsnahnt ausgewertet.

5.2.2 Electron-Backscatter-Diffraction Analysen

![Abb. 82: EBSD-Untersuchung der Rissverläufe in der Pufferung (links) und der Verbindungsnahnt (rechts)](image)

6 Experimentelle Bestimmung der Eigenspannungen

Die Ermittlung der Eigenspannungen wurde an den fertig geschweißten Rohren sowie an einer entnommenen SEB-Probe vorgenommen und dient im Weiteren zur Verifikation der numerisch errechneten Verläufe. In einem ersten Schritt wurden die Eigenspannungen mit Hilfe der Bohrlochmethode bestimmt. Da mit diesem Verfahren die Eigenspannungen allerdings nur in den oberflächennahen Schichten bestimmt werden können, wurden in einem zweiten Schritt Messungen mit Hilfe der Neutronenbeugung durchgeführt.

6.1 Bohrlochmethode

Die Ergebnisse der durchgeführten Messungen sind in Abb. 83 dargestellt. Die ermittelten Spannungen sind in den geschweißten Bereichen der Pufferung und Verbindungsnahht maximal und nehmen an den Werkstoffübergängen ab. Aufgrund der verschiedenartigen Werkstoffe sowie durch die Spannungsarmglühung nach dem Aufbringen der Pufferung ergibt sich im vorliegenden Fall keine klassische Eigenspannungsverteilung (M- oder W-Profil), wie sie beispielsweise von gleichartigen Schweißverbindungen bekannt ist [63], [68].

![Eigenspannungsverlauf mit Bohrlochmethode](image_url)

Abb. 83: Experimentell ermittelte Eigenspannungsverlauf mit der Bohrlochmethode in 1 mm Tiefe am fertig geschweißten Rohr

Eigenspannungen überschätzt. Zudem entstehen durch die Kerbwirkung des eingebrachten Bohrohrs Spannungserhöhungen, weshalb im Allgemeinen mit einer Unsicherheitsgrenze von 70 % der Streckgrenze [135] (bzw. 60 % der Streckgrenze nach ASTM E 837-08 [137]) gerechnet wird. Eine weitere Unsicherheit ergibt sich in den direkten Werkstoffübergängen. In diesen Bereichen kann sich das Bohrloch ungleichmäßig verformen was die grundlegende Annahme eines homogenen Werkstoffs verletzt.

Für eine Übertragbarkeit auf die experimentellen Befunde an den bruchmechanischen Proben, wurden an einem entnommenen Probenrohling ebenfalls Messungen durchgeführt. Durch das Auslösen der Eigenspannungen bei der Probenentnahme zeigt sich im Vergleich zu den Ergebnissen des fertig geschweißten Rohres ein deutlicher Abbau der Eigenspannungen, siehe Abb. 84. Allerdings muss bei den Ergebnissen angemerkt werden, dass sich in den unmittelbar oberflächennahen Bereichen Druckspannungen ergeben, siehe Abb. A29. Durch die Verfestigung der Oberfläche während der spanenden Bearbeitungsschritte (Sägen, Hobeln und Schleifen) bei der Probenfertigung werden in den oberflächennahen Schichten bis in eine Tiefe von ca. 0,4 bis 0,6 mm Druckeigenspannungen eingebracht [65]. Die Spannungen klingen aber mit zunehmender Tiefe ab.

Abb. 84: Experimentell ermittelter Eigenspannungsverlauf mit der Bohrlochmethode in 1 mm Tiefe an einem entnommenen Probenrohling

6.2 Neutronenbeugung

Experimentelle Bestimmung der Eigenspannungen

Abb. 85: Prinzip der Beugungsmethode zur Eigenspannungsmessung [141]

Die Messungen an der vorliegenden Mischnaht wurden an der Forschungsneutronenquelle Heinz-Meier-Leibnitz (FRMII) in Garching [142] durchgeführt. Bedingt durch die große Wanddicke von $s = 32,8$ mm und der hohen Absorption des Nickelbasis-Schweißgutes wurde ein Messvolumen von $5 \times 5 \times 5$ mm3 gewählt. Damit war es möglich, den kompletten Eigenspannungszustand über der gesamten Wanddicke der Schweißnaht zu ermitteln, siehe Abb. 86.

Abb. 86: Messpositionen für die Neutronenbeugung

Die Auswertung verläuft über die Bestimmung der Beugungswinkel und der zugehörigen Gitterebenenabstände. Für den vorliegenden Fall wurde der Reflex der $\{311\}$-Ebene für den Nickelbasis-Werkstoff und den austenitischen Grundwerkstoff verwendet. Beim ferritischen Grundwerkstoff wurde der Peak der $\{211\}$-Ebene für die Auswertungen herangezogen. Für jeden gemessenen Gefügebereich wurde an einem entnommenen $5 \times 5 \times 5$ mm3 großen Würfel der Referenzabstand d_0 der Gitterebenen bestimmt.

In Abb. 88 bis Abb. 90 sind die Ergebnisse aller drei Messreihen längs der Naht dargestellt. Zusätzlich sind in den Graphen die Fehlerbalken der statistischen Fehler aus der Messkette abgebildet. Die Verläufe an der Rohraußenseite ($t = 4$ mm) zeigen prinzipiell denselben Verlauf und die gleichen Tendenzen wie die Bohrlochmethode, vgl. auch Abb. A30. Die Unterschiede zwischen beiden Methoden ergeben sich einerseits aus der unterschiedlichen
Messtiefe bei beiden Methoden. Während die dargestellten Ergebnisse in der Bohrlochmethode in 1 mm Tiefe aufgenommen wurden, repräsentieren die Ergebnisse der Neutronenbeugung die Verhältnisse in ca. 4 mm Tiefe. Andererseits stellen die Ergebnisse der Neutronenbeugung eine Mittelung über das Messvolumen von 5 × 5 × 5 mm³ dar.

Abb. 87: Schwächung von Neutronenstrahlen in verschiedenen Materialien [141]

Abb. 88: Experimentell ermittelter Eigenspannungsverlauf mit der Neutronenbeugung in 4 mm Tiefe

Abb. 89: Experimentell ermittelter Eigenspannungsverlauf mit der Neutronenbeugung in 16,4 mm Tiefe

Abb. 90: Experimentell ermittelter Eigenspannungsverlauf mit der Neutronenbeugung in 28,4 mm Tiefe
7 Ergebnisse der bruchmechanischen Bewertungsverfahren

Tab. 4: Mit dem R6-Verfahren überprüfte Risspositionen der Mischnaht-Schweißverbindung [95]

<table>
<thead>
<tr>
<th>Rissposition</th>
<th>Im R6-Verfahren eingesetzte Werkstoffkennwerte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Festigkeitskennwert (R_e, R_m)</td>
</tr>
<tr>
<td>GW Ferrit</td>
<td>GW Ferrit</td>
</tr>
<tr>
<td>Interface 1</td>
<td>GW Ferrit</td>
</tr>
<tr>
<td>Pufferung</td>
<td>Pufferung</td>
</tr>
<tr>
<td>Interface 2</td>
<td>Pufferung</td>
</tr>
<tr>
<td>Verbindungsnaht</td>
<td>Verbindungsnaht</td>
</tr>
<tr>
<td>Interface 3</td>
<td>Verbindungsnaht</td>
</tr>
<tr>
<td>GW Austenit</td>
<td>GW Austenit</td>
</tr>
</tbody>
</table>

Die Ergebnisse des R6-Verfahrens sind in Abb. 91 in Bezug zu den experimentell ermittelten Ergebnissen wiedergegeben. In den homogenen Bereichen der Grundwerkstoffe sowie für die Pufferung und Verbindungsnaht ergeben sich mit ca. 1,2 die niedrigsten Sicherheiten. Da in den direkten Werkstoffübergängen keine Festigkeitskennwerte vorhanden sind, wurden für alle drei Bereiche jeweils zwei Analysen mit den Festigkeitskennwerten der angrenzenden Werkstoffbereiche durchgeführt. Als bruchmechanischer Kennwert wurde immer der experimentell bestimmte Initiierungswert aus dem jeweils bewerteten Versuch verwendet. Eine realistische Vorhersage lässt sich allerdings nur bei Verwendung des höherfesten Werkstoffs erzielen. Insbesondere am Werkstoffübergang zwischen Austenit und
Verbindungsnaht (Interface 3) ergibt sich bei Verwendung der Festigkeitskennwerte des niederfesten Werkstoffs eine sehr hohe Konservativität.

Abb. 91: Verhältnis der experimentellen und mit dem R6-Verfahren berechneten Rissinitierungslasten

8 Numerische Simulationen

8.1 Numerische Bestimmung des Eigenspannungszustandes

Die experimentelle Bestimmung der Eigenspannungen hat gezeigt hat, dass nach der Entnahme der Probenrolle für die bruchmechanischen Analysen ein im Vergleich zum kompletten Rohr reduzierter Eigenspannungszustand verbleibt, siehe Abb. 84. Um sicherzustellen, dass der Eigenspannungszustand in den entnommenen Probenrohlingen keine Auswirkung auf das Risswachstum hat, wurden FE-Simulationen durchgeführt. Eine weitere Motivation für die numerische Analyse des Eigenspannungszustandes ist, dass dieser dadurch bei späteren Bewertungen von Komponenten berücksichtigt werden kann.

FE-Simulationen zur Bestimmung des Eigenspannungszustandes werden im Allgemeinen unter Vernachlässigung komplexer physikalischer Vorgänge, wie beispielsweise elektromagnetischer Effekte in Folge des Lichtbogens oder der Schmelzbadströmung, als thermomechanisches Problem formuliert [71], [143], [144], [145], [146]. Bei der Fertigung der Verbindungsnaht wird der austenitische Grundwerkstoff mit einer Nickelbasis-Elektrode gegen die Nickelbasis-Pufferung geschweißt. Beide Werkstoffe weisen keine Phasenumwandlungen auf und Messungen zeigen, dass die Temperaturen im ferritischen Grundwerkstoff in diesem Fertigungsschritt unterhalb der A_{C1}-Temperatur bleiben. Deshalb kann das vorliegende Problem als sequentielles thermomechanisches Problem definiert werden, bei dem zunächst die zeitabhängige Temperaturverteilung beim Fortschreiten der Schweißquelle berechnet wird. Die durch die thermische Volumendehnung eingebauten Spannungen und Dehnungen werden in einer darauf folgenden mechanischen Analyse ermittelt. Hierbei dient die zuvor bestimmte zeitabhängige Temperaturverteilung als Randbedingung.
8.1.1 Thermisches Berechnungsmodell

Die Simulation des zeit- und ortsabhängigen Temperaturfeldes basiert auf der Lösung der klassischen dreidimensionalen Differentialgleichung für die Wärmeleitung:

\[
c_p(T) \cdot \rho(T) \frac{\partial T}{\partial t} = \nabla \cdot \left(\lambda \frac{\partial T}{\partial x} \right) + \nabla \cdot \left(\lambda \frac{\partial T}{\partial y} \right) + \nabla \cdot \left(\lambda \frac{\partial T}{\partial z} \right) + \Phi_q \quad \text{Gl. 8.1}
\]

In Gl. 8.1 ist \(c_p \) die spezifische Wärmekapazität, \(\rho \) die Dichte und \(\Phi_q \) die Wärmestromdichte der Wärmequelle. Bei einem isotropen Material ist die Wärmeleitung \(\lambda \) richtungsunabhängig und entsprechend sind \(\lambda_x \), \(\lambda_y \) und \(\lambda_z \) identisch. Jedoch sind die Materialparameter \(c_p \), \(\lambda \) und \(\rho \) im Allgemeinen temperaturabhängig und müssen entsprechend bestimmt werden. Des Weiteren muss zur Simulation der transienten Temperaturverteilung eine angepasste Wärmequelle definiert werden. Die ersten theoretischen Formulierungen bewegter Wärmequellen wurden bereits in den 30er Jahren von Rosenthal [147] formuliert. In neuerer Zeit wurden die Modelle auf dreidimensionale Fragestellungen erweitert. Die bekanntesten momentan verfügbaren Formulierungen sind äquivalente Wärmequellen nach Goldak [148]. Diese beschreiben den Energieeintrag während des Schweißprozesses mit Hilfe von Exponentialfunktionen, wobei die dafür notwendigen Parameter an reale Temperaturverläufe und Schweißbadgeometrien angepasst werden müssen. Neben einer aufwändigen Anpassung der Parameter ist für diese Modelle eine extrem feine Vernetzung notwendig um die Verteilungsfunktion hinreichend genau auflösen zu können. Ein alternativer Ansatz stellt die so genannte „Prescribed-Nodal Temperature Method“ [149] dar. Dabei wird ein Kontrollvolumen definiert, welches der Geometrie des aktuellen Schmelzbades angepasst ist. Allen Knoten innerhalb dieses Kontrollvolumens wird eine mittlere, an den jeweiligen Schweißprozess angepasste Schmelzbadtemperatur zugewiesen.

Lichtbogenhandschweißens erfolgte, muss in der Simulation ebenfalls das Einbringen der einzelnen Schweißraupen berücksichtigt werden. Dies wurde in den Simulationen durch die Steuerung der Elementeigenschaften über eine Fortran-Benutzerschnittstelle des FE-Programms realisiert. Damit ist es möglich den Elementen innerhalb eines definierten Kontrollvolumens die temperaturabhängigen Werkstoffeigenschaften zuzuweisen und die davorliegenden Elemente über eine entsprechende Wahl der Materialeigenschaften als inaktiv bzw. nicht vorhanden zu definieren, siehe Abb. 92.

Abb. 92: Kontrollvolumen und Temperaturverteilung während des Schweißprozesses

8.1.2 Mechanisches Berechnungsmodell

Abb. 94: Vergleich der berechneten und der gemessenen Eigenspannungen (links – Umfangseigenspannungen; rechts – Längseigenspannungen)

Für eine Beurteilung der Einflüsse des Eigenspannungszustandes auf die Rissentwicklung wurde aus dem berechneten Modell der gesamten Schweißnaht ein Probenrohling „entnommen“. Durch das Freischneiden des Probenrohlings aus dem Gesamtmodell der Schweißsimulation wird eine realistische Spannungsumlagerung bzw. ein Eigenspannungsabbau bei der Probenentnahme umgesetzt, siehe Abb. 95.
Die im Probenrohling verbleibenden Eigenspannungen zeigen einen ähnlichen Verlauf wie die experimentell mit der Bohrlochmethode gemessenen Spannungen, siehe Abb. 96. Durch die im Vergleich zur Probenlänge geringe Breite sinken die Spannungen in Umfangsrichtung bei der „Entnahme“ deutlich ab. Im Vergleich dazu zeigt sich bei den Spannungen in Probenlängsrichtung ein geringerer Abbau. Insbesondere im Bereich der Verbindungsnaht werden die experimentellen Messwerte überschätzt. Dies stellt aber für die nachfolgenden Untersuchungen des Eigenspannungseinflusses auf die Rissinitiierung eine konservative Abschätzung dar, da die Probenlängsrichtung auch die Richtung der maximalen rissöffnenden Hauptspannung ist.

Abb. 95: Simulative Entnahme des Probenrohlings nach erfolgter Schweißsimulation

Abb. 96: Vergleich der berechneten und mit der Bohrlochmethode gemessenen Eigenspannungen an einem entnommenen Probenrohling
8.2 Numerische Analyse der Versagensvorgänge

Um das experimentell bestimmte Verhalten möglichst exakt nachzubilden, wurden zwei- und dreidimensionale FE-Modelle aller geprüften Proben mit den unterschiedlichen Anfangsrisspositionen bzw. Prüfquerschnitten erstellt. Infolge des Schweißnahtaufbaus der Mischnaht kann bei den FE-Modellen die Symmetrie in Probenlängsrichtung nicht ausgenutzt werden. Unter Ausnutzung der Symmetrie in Dickenrichtung wurden deshalb Halbmodelle einschließlich folgender Gefügebereiche erstellt:

- Ferritischer Grundwerkstoff 20MnMoNi5-5
- Ferritische WEZ
- Pufferung NiCr70Nb
- Verbindungsnaht NiCr70Nb
- WEZ Austenit (bestehend aus 2 Zonen)
- Austenitischer Grundwerkstoff X6CrNiNb18-10

Abb. 97: Für die Simulation verwendeter schematischer Aufbau der Mischnaht

unter Annahme eines Ebenen-Dehnungszustandes (EDZ) durchgeführt wurden. Alle Simulationen erfolgten unter Berücksichtigung großer Verformungen und Verschiebungen.

8.2.1 Numerische Bestimmung der Fließkurven

Die Anpassung der Fließkurven erfolgte für alle untersuchten Bereiche aus den Ergebnissen der durchgeführten Kleinst-Kerbzugversuche, siehe Kap. 4.2.6. Als charakteristische Größe für das Last-Verformungsverhalten wurde die mit dem optischen Messsystem ARAMIS [109] bestimmte Kerbaufweitung Δl_{Kerb} verwendet, siehe Abb. 41. Die Einschnürung Δ sowie die mit Hilfe eines Extensometers bestimmte integrale Verlängerung Δl_{Ext} der Probe wurden bei allen Versuchen zur Verifikation der Anpassung herangezogen.

Abb. 98: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus dem ferritischen Grundwerkstoff

Abb. 99: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus der ferritischen WEZ

Abb. 100: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus der Pufferung
Abb. 101: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus der Verbindungsnaht

Abb. 102: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus der austenitischen WEZ

Abb. 103: Verifikation der angepassten Fließkurve und der schädigungsmechanischen Parameter für das Rousselier-Modell mit dem Last-Verformungsverhalten der Kerbzugprobe aus dem austenitischen Grundwerkstoff
Die verschiedenen Bereiche (Feinkornzone, Grobkornzone etc.) der ferritischen WEZ wurden für die vorliegenden Untersuchungen zu einer Zone zusammengefasst. Infolge der eingebrachten Wärme während der Herstellung und der daraus resultierenden Phasenumwandlung sowie Kornvergröberung weist die integral für die WEZ angepasste Fließkurve eine höhere Festigkeit als der unbeeinflusste Grundwerkstoff auf, siehe Abb. 104. Da aufgrund der kleinen Abmessungen eine experimentelle Bestimmung des E-Moduls für die ferritische WEZ nicht möglich ist, wurde der E-Modul des unbeeinflussten Grundwerkstoffs verwendet.

Für die Pufferung und die Verbindungsnahrt, die aus dem identischen Schweißzusatzwerkstoff NiCr70Nb gefertigt sind, wurden aufgrund der Unterschiede in der Herstellung (Schweißposition, Pufferung spannungsarmgeglüht etc.) separate Fließkurven bestimmt. Die angepassten Fließkurven sind ebenfalls in Abb. 104 dargestellt. Die leicht über der Pufferung liegende Fließkurve der Verbindungsnahrt wird durch die höheren Festigkeitskennwerte aus den einachsigen Normzugversuchen bestätigt, vgl. Kap 4.2.3.

Abb. 104: Numerisch angepasste Fließkurven für alle Bereiche der Mischnaht

eine dritte Möglichkeit zur Anpassung verwendet. Durch die aus der Schweißsimulation bekannte Vorverformung (siehe Abb. 105), ergibt sich die Möglichkeit, die Fließkurve der austenitischen WEZ aus der unbeeinflussten Fließkurve des austenitischen Grundwerkstoffs entsprechend der realen Verfestigungsmechanismen metallischer Werkstoffe zu berechnen. Dafür wurde die austenitische WEZ in zwei Zonen unterteilt, siehe Abb. 97. Für diese beiden unterschiedlich stark verfestigten Zonen wurde mit der aus der Schweißsimulation bekannten plastischen Vergleichsdehnung $\varepsilon_{\text{plast}}$ eine entsprechende Fließkurve bestimmt, siehe Abb. 105.

Abb. 105: Anpassung der Fließkurve für die austenitische WEZ (links – plastische Vergleichsdehnung $\varepsilon_{\text{plast}}$ infolge der Herstellung aus der Schweißsimulation; rechts – angepasste Fließkurven für die austenitische WEZ)

Da der E-Modul durch eine Verfestigung des Werkstoffs im Allgemeinen unbeeinflusst bleibt [160], wurde für die beiden unterschiedlich stark verfestigten Zonen der austenitischen WEZ der E-Modul des austenitischen Grundwerkstoffs verwendet. Für eine Validierung der so bestimmten Fließkurven wurden die Kerbzugversuche aus der austenitischen WEZ nachgerechnet. Es zeigt sich eine gute Übereinstimmung mit den Versuchen, siehe Abb. 102.

8.2.2 Numerische Bestimmung der schädigungsmechanischen Parameter

Zur Beschreibung der duktilen Rissentstehung und Ausbreitung mit Hilfe des Rousselier-Modells sind mehrere werkstoffabhängige Parameter notwendig, die sowohl numerisch als auch metallographisch bestimmt werden können, vgl. Kap 3.2. Da die vorliegende Mikrostruktur in den Bereichen der Pufferung und Verbindungsnah zu inhomogen ist, können die Parameter für diese Bereiche nicht metallographisch bestimmt werden. Für eine einheitliche Vorgehensweise werden die Parameter deshalb für alle Bereiche, einschließlich
der beiden Grundwerkstoffe, numerisch an die experimentellen Ergebnisse der Kleinst-Kerbzugproben angepasst. Durch die miniaturisierte Probengeometrie musste bei den FE-Modellen der Kerbzugproben ein feineres Netz als bei der Modellierung der bruchmechanischen Proben, gewählt werden. Bei einer einheitlichen Vernetzung wären unter Ausnutzung der Rotationssymmetrie im Kerbquerschnitt \((d_0 = 4 \text{ mm})\) lediglich 5 Elemente verblieben, was für eine realistische Berechnung zu grub ist. Da die gewählte Netzfeinheit maßgeblich die Steigung nach dem Abknicken beeinflusst, nicht jedoch den Versagenszeitpunkt an sich, wurde an die experimentellen Ergebnisse der Kerbzugversuche lediglich der Zeitpunkt des Abknickens (Punkt \(\Delta\) in Abb. 98 bis Abb. 103) angepasst. Für eine möglichst exakte Erfassung des stabilen Rissfortschritts wurden die Parameter anschließend mit Hilfe der bruchmechanischen Versuche optimiert.

Der Einfluss der verwendeten Parameter auf das berechnete Last-Verformungsverhalten einer gekerbten Rundzugprobe ist schematisch in Abb. 106 dargestellt. Mit zunehmender Werkstoffreinheit, d. h. kleinerem Anfangshohlraumvolumen \(f_0\) und größerem Abstand der Einschlüsse \(l_c\) steigt der Widerstand gegen duktile Rissentstehung. Der Parameter \(\sigma_k\) entspricht anschaulich dem Widerstand des Werkstoffs gegen Hohlraumwachstum, wodurch sich mit steigendem \(\sigma_k\) der Versagenszeitpunkt zu größeren Werten verschiebt.

![Diagramm](image_url)

Abb. 106: Prinzipieller Einfluss der schädigungsmechanischen Parameter auf das Last-Verformungsverhalten der Kerbzugproben [18]

Bei Verwendung des lokalen Schädigungsmodells ist die Elementgröße direkt an die Mikrostruktur des Werkstoffs gekoppelt, vgl. Kap. 3.2. Daraus ergibt sich in den Werkstoffübergängen die Schwierigkeit, unterschiedliche Netzfeinheiten miteinander verbinden zu müssen. Um numerische Ungenauigkeiten durch Nebenbedingungen (Kontaktformulierungen) aneinander gehefteter Bauteile in der direkten Riss spitzenumgebung zu vermeiden, wurde für alle Bereiche der Mischnaht eine einheitliche Netzfeinheit \(l_c\) gewählt. Da die Verbindungsnaht bezüglich Rissinitiierung und -wachstum den kritischsten Bereich der Schweißnaht darstellt, wurde die für diesen Bereich angepasste Netzfeinheit von \(l_c = 0,4 \text{ mm}\) für alle anderen Bereiche übernommen. Bedingt durch diese Einschränkung ergibt sich, insbesondere bei den Grundwerkstoffen, die Notwendigkeit, die abweichende Elementgröße über die anderen Parameter zu kompensieren. Die numerisch angepassten Parameter sind in Tab. 5 zusammengefasst. Die mit Hilfe dieser angepassten Parameter für die unterschiedlichen Bereiche bestimmten Last-Verlängerungskurven sind in Abb. 98 bis Abb. 103 dargestellt. Es ergibt sich in allen Bereichen der Mischnaht eine sehr gute Übereinstimmung mit dem experimentell bestimmten Abknickpunkt \(\Delta\).
8.2.3 Validierung der angepassten Parameter und Fließkurven

Um die Übertragbarkeit der numerisch angepassten schädigungsmechanischen Parameter sowie Fließkurven sicherzustellen, wurden diese mittels FE-Simulationen weiterer Experimente validiert. Dafür wurden die einachsigen Zugversuche und die Integralzugprobe verwendet.

<table>
<thead>
<tr>
<th>Werkstoffbereich</th>
<th>l_c</th>
<th>D</th>
<th>(\sigma_k)</th>
<th>(f_0)</th>
<th>(f_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW Ferrit</td>
<td>0,4</td>
<td>2</td>
<td>490</td>
<td>1,5 x 10^{-6}</td>
<td>0,16</td>
</tr>
<tr>
<td>WEZ Ferrit</td>
<td>0,4</td>
<td>2</td>
<td>580</td>
<td>9,0 x 10^{-7}</td>
<td>0,16</td>
</tr>
<tr>
<td>Pufferung</td>
<td>0,4</td>
<td>2</td>
<td>445</td>
<td>5,5 x 10^{-5}</td>
<td>0,11</td>
</tr>
<tr>
<td>Verbindungsnah</td>
<td>0,4</td>
<td>2</td>
<td>445</td>
<td>1,3 x 10^{-3}</td>
<td>0,05</td>
</tr>
<tr>
<td>WEZ Austenit</td>
<td>0,4</td>
<td>2</td>
<td>480</td>
<td>1,4 x 10^{-6}</td>
<td>0,15</td>
</tr>
<tr>
<td>Austenit</td>
<td>0,4</td>
<td>2</td>
<td>480</td>
<td>1,0 x 10^{-6}</td>
<td>0,15</td>
</tr>
</tbody>
</table>

Abb. 107: Last-Verformungsverhalten der Rundzugproben aus den beiden Grundwerkstoffen (Ferrit links; Austenit rechts)

Es muss angemerkt werden, dass bei den aus der Pufferung und der Verbindungsnahnt entnommenen Proben lediglich der Anfangsbereich überprüft werden kann. Aufgrund der beim verwendeten Extensometer beschränkten Messlänge fehlen die Messdaten ab einer Verlängerung von ca. \(\Delta l_{Ext} = 0,5 \) mm. Bis zu diesem Punkt zeigt sich aber eine gute Übereinstimmung zwischen Versuch und Simulation, siehe Abb. 108.
Die Integralzugprobe bietet die Möglichkeit, die Interaktion aller Werkstoffbereiche bzw. das Zusammenwirken aller bestimmten Parameter zu überprüfen. Mit Hilfe der numerisch angepassten Parameter lassen sich in der Simulation sowohl das makroskopische Last-Verformungsverhalten der Probe als auch das spezifische Versagensverhalten mit einer anfänglichen Einschnürung im Bereich der Pufferung und Bruch in Reststücken der austenitischen WEZ nachbilden (vgl. Kap. 4.2.3). Wie in Abb. 109 dargestellt, verschoben sich in der Simulation analog zu den experimentellen Ergebnissen die maximale plastische Vergleichsdehnung $\varepsilon_{\text{plast}}$ nach anfänglicher Einschnürung in der Pufferung in die Bereiche der austenitischen WEZ. Infolge der finalen Einschnürung in der austenitischen WEZ erfolgt wie im Experiment der mit den schädigungsmechanischen Simulationen bestimmte Bruch in diesem Bereich.

Abb. 108: Last-Verformungsverhalten der Rundzugproben aus der Pufferung (links) und der Verbindungsnaht (rechts)

Abb. 109: Last-Verformungsverhalten der Integralzugprobe (8IT01) und die numerisch bestimmte plastische Vergleichsdehnung $\varepsilon_{\text{plast}}$
8.2.4 Einfluss der Anfangsrissposition und -rissfront auf die Rissinitiierung

Bei einer Vielzahl der geprüften SEB-Proben verläuft die Ausgangsrissfront über der Probenbreite nicht gleichmäßig gerade (vgl. Kap. 5.2.1). Zudem ist bei den mittig aus der Verbindungsnaht entnommenen Proben der eingebrachte Schwingriss durch die dendritische Erstarrungsstruktur aus der Ligamentebene ausgelenkt. Um die daraus resultierenden Auswirkungen auf die erzielten Ergebnisse bzw. die Notwendigkeit ihrer numerischen Umsetzung abzuschätzen, wurden die Einflüsse auf die Rissinitiierung und das Risswachstum untersucht.

Zur Abschätzung des Einflusses einer ungleichmäßigen Rissfront auf die Rissinitiierung und -ausbreitung wurden drei unterschiedliche Ausgangsrisskonfigurationen numerisch analysiert. Neben einer Idealisierung der Rissfront als ideal gerade wurde untersucht, wie sich ein auf einer Probenseite bzw. in Probenmitte stark vorlaufender Riss auswirkt, siehe Abb. 110. Um eine Vergleichbarkeit der Simulationen zu gewährleisten, wurden alle Modelle mit einer identischen, über der Probenbreite gemittelten Anfangsrisslänge a_0 erstellt. Der Einfluss des Rissfrontverlaufs auf die Kraft bei Rissinitiierung F_{init} (numerische Initiierung, wenn der erste Integrationspunkt das kritische Hohlraumvolumen f_c erreicht) sowie auf den Betrag des maximalen Risswachstums Δa_{max} bei einem COD von 2,5 mm ist vernachlässigbar, siehe Abb. 110. Somit kann davon ausgegangen werden, dass die teilweise ungleichmäßig ausgebildeten Rissfronten keinen signifikanten Einfluss auf die Ergebnisse der schädigungsmechanischen Simulationen haben und somit nicht in den nachfolgenden FE-Modellen berücksichtigt werden müssen.

![Diagramm](image)

Abb. 110: Einfluss der Ausgangsrissfront auf das Last-Verformungsverhalten sowie auf die Rissinitiierung und -wachstum

Insbesondere im Bereich der Verbindungsnaht folgt der eingebrachte Schwingriss der dendritischen Erstarrungsstruktur (vgl. Kap. 5.2.1). Bei der vorliegenden Drei-Punkt-Biegebelastung hat dies zur Folge, dass die Rissspitze des Schwingrisses in Bereiche mit einem niedrigeren Biegemoment verlagert wird. Um den Effekt der dadurch reduzierten Belastung zu quantifizieren, wurde der Einfluss des Auslenkungswinkels γ aus der Ligamentebene auf die Kraft bei Rissinitiierung F_{init} untersucht, siehe Abb. 111. Mit größerer Auslenkung γ steigt auch die aufgebrachte Kraft bei Rissinitiierung F_{init} deutlich an. Aufgrund der fraktographisch bestimmten Auslenkung γ von bis zu 20° ist es für eine exakte Abbildung des Versagensablaufs zwingend notwendig, die Auslenkung des Anfangsrisses in den folgenden FE-Modellen umzusetzen.
8.2.5 Einfluss der Eigenspannungen auf die duktile Rissausbreitung

Mit Hilfe der durchgeführten Eigenspannungssimulationen kann die Auswirkung des vorliegenden Eigenspannungszustands auf die Rissinitierung numerisch abgeschätzt werden. Da die verwendete lokale Formulierung des Rousselier-Models direkt an die Elementgröße gekoppelt ist, wurde der am entnommenen Probenrohling berechnete Eigenspannungszustand auf das FE-Modell einer SEB-Probe mit angepasster Elementkantenlänge von $l_c = 0,4$ mm übertragen. Um eine korrekte Übertragung des Spannungszustandes zu gewährleisten, wurden bei der Modellierung der SEB-Probe die Abmessungen des entnommenen Probenrohlings übernommen. Dies bedeutet, dass in diesem Modell sowohl die ferritische als auch die austenitische WEZ nicht modelliert wurden und sich die Abmessungen der Gefügebereiche (Pufferung und Verbindungsnaht) zu den anderen in dieser Arbeit berechneten Proben leicht unterscheiden. Um den maximalen Einfluss des Eigenspannungszustandes zu erfassen, wurde exemplarisch ein Anriss in der Mitte der Verbindungsnaht untersucht, da in diesem Bereich die maximalen Längseigenspannungen nach der Probenentnahme berechnet wurden, siehe Abb. 96. Nach der Übertragung des berechneten Eigenspannungszustandes wurde ein Anfangsriss mit einem a/W-Verhältnis von 0,5 eingebracht. Dies erfolgte analog zur Entnahme des Rohlings durch „Deaktivierung“ der entsprechenden Elemente, vgl. Kap. 3.2.

Bei der Übertragung der Belastungsgeschichte bzw. der Eigenspannungen aus dem Herstellungsprozess wurden zwei Varianten untersucht:

Variante 1 – Elastisch-plastische und schädigungsmechanische Simulation mit Berücksichtigung der plastischen Vorverformung aus dem Herstellungsprozess

Variante 2 – Elastisch-plastische und schädigungsmechanische Simulation ohne Berücksichtigung der plastischen Vorverformung aus dem Herstellungsprozess

Die Unterscheidung in die beiden Varianten wurde durchgeführt, da bei der Übertragung der plastischen Dehnungen die Verfestigung aus dem Herstellungsprozess „doppelt berücksichtigt“ wird. Die Bestimmung der Fließkurven und der Rousselier-Parameter für die schädigungsmechanischen Simulationen erfolgte mit Proben welche aus der fertigen Naht...

Abb. 112: Einfluss der Eigenspannungen auf die numerische Rissinitiierung in einer entnommenen SEB-Probe

Bei beiden Varianten zeigt sich nur ein geringer Einfluss der berechneten Eigenspannungen auf die Rissinitiierung. Im Vergleich zu den eigenspannungsfreien Simulationen erfolgt eine leicht frühere Rissinitiierung. Dies ist auf die an der Riss spitze vorliegenden Zugeigenspannungen zurückzuführen, vgl. Abb. 113. Diese betragen im unbelasteten Zustand bis zu 230 MPa, werden jedoch durch die Plastifizierungen an der Riss spitze bis zur Riss initiierung teilweise abgebaut. Aufgrund des nachgewiesenen geringen Einflusses auf die Rissentstehung folgt, dass die Eigenspannungen für die nachfolgenden schädigungsmechanischen Berechnungen vernachlässigt werden können.

Abb. 113: Eigenspannungsverteilung im Ligament der entnommenen SEB-Probe
8.2.6 Analyse des Spannungszustandes in der Rissspitzenumgebung

Um den Spannungszustand in der Rissspitzenumgebung möglichst genau zu erfassen, wurden FE-Modelle mit Elementgrößen im μm-Bereich erstellt. In Anlehnung an vorangegangene Untersuchungen der MPA Universität Stuttgart [161] wurden zweidimensionale elastisch-plastische Simulationen unter Annahme des EDZ durchgeführt. Die Rissspitze wurde ebenfalls in Anlehnung an diese Untersuchungen mit einem Radius von \(r = 0.01 \) mm idealisiert. Die in Abb. 114 dargestellten Modelle enthalten entsprechend dem Nahtaufbau alle relevanten Gefügebereiche der Mischnaht.

Für die Quantifizierung der Rissspitzenbelastung wird im Folgenden neben den wirkenden Spannungen auch der Mehrachsigkeitsquotient \(q \) nach Clausmeyer [162] verwendet, siehe Gl. 8.2.

\[
q = \frac{1}{\sqrt[3]{3}} \frac{\sigma_{VM}}{\sigma_{hyd}} \quad \text{mit} \quad \sigma_{hyd} = \frac{1}{3} \left(\sigma_1 + \sigma_2 + \sigma_3 \right).
\]

Gl. 8.2

Nach dieser Definition ergibt sich eine hohe Mehrachsigkeit für kleine Werte von \(q \). Durch diese inverse Berechnung von \(q \) lässt sich die Spannungsmehraachsigkeit in der Rissspitzenumgebung sehr gut beschreiben. Neben dem Vergleich der untersuchten Proben anhand des auftretenden minimalen \(q \)-Wertes \(q_{\min} \) und dem Verlauf über dem Ligament wird ein integraler Wert \(q_{\text{int}} \) verwendet. Zur Berechnung von \(q_{\text{int}} \) wird durch Integration über 30 % des Ligaments die Fläche unter dem \(q \)-Verlauf bestimmt und anschließend auf die Integrationslänge bezogen [163], [164]. Da die Proben keine Symmetrie in der Ligament-
ebene aufweisen, müssen die Spannungen auf beiden Seiten des Ligaments ausgewertet werden, siehe Abb. 115.

Für eine klare Nomenklatur und eindeutige Unterscheidung der beiden Seiten wird im Folgenden A für die dem austenitischen Grundwerkstoff zugewandte Seite und F für die ferritische Seite verwendet. Neben den Spannungen wird auch die Ausbildung der plastischen Zone zur Charakterisierung der Belastung verwendet.

Abb. 115: Auswertungspfade im Ligament der SEB15-Probe

Pufferung

Zur Auswertungen wird im Folgenden jeweils ein Punkt im linearen Anstieg der Anfangsbelastung ($F_{\text{lin}} \approx 7,5 \, \text{kN}$) sowie der Zeitpunkt der experimentell bestimmten Initiierung gewählt, siehe Abb. A40. Aus der zeitlichen Entwicklung (linearer Anstieg *Abb. 116* \rightarrow Initiierung *Abb. 116*) der Spannungskomponenten in den drei Raumrichtungen σ_x, σ_y und σ_z wird klar, dass die Maximalspannungen zunehmen und durch die zunehmende Plastifizierung in einem größeren Bereich des Ligaments hoch sind.

Abb. 116: Spannungszustand im Ligament der SEB15-Probe aus der Pufferung (A – linearer Anstieg; B – Initiierung)

Infolge der Mode-I-Belastung stellt die Spannung σ_z die größte Hauptspannung σ_i dar. Wie in den fraktographischen Untersuchungen gezeigt werden konnte, bilden sich bei den geprüften bruchmechanischen Proben interdendritische Risse entlang der in Probenlängsrichtung verlaufenden Dendritenarme (vgl. Kap. 5.2). Die rissöffnende Spannung für diese orthogonal zum eigentlichen Risspfad verlaufenden Risse ist die Spannung σ_y, siehe Abb. 117.
Ausgehend von der Rissspitze nimmt die Spannung σ_Y in Ligamentrichtung zu. Im Vergleich zu den Spannungen in den anderen Raumrichtungen σ_X und σ_Z hat sie das geringste Maximum, welches sich allerdings am weitesten vor der eigentlichen Rissspitze befindet (siehe Abb. 116 A). In Kombination mit den senkrecht zur Spannung σ_Y (Probenlängsrichtung) verlaufenden geschwächten Dendriten sind die orthogonalen Rissbildungen zu erklären. Ab einer Entfernung von ca. 0,5 mm von der Rissspitze übersteigt die Spannung σ_Y die Spannung in x-Richtung. Dieser Spannungsumschlag von σ_X und σ_Y erklärt, warum trotz der annähernd zylindrisch ausgebildeten Dendriten keine Risse in Probenquerrichtung dokumentiert werden können.

zunehmender Belastung entfernt sich q_{min} von der Riss spitze (siehe Abb. 116). Zur Initiierung ist der Verlauf von q nach dem Durchlaufen des Minimums wieder monoton steigend, woraus auf stabiles Risswachstum geschlossen werden kann [165]. Sowohl der minimale Wert $q_{\text{min}} = 0,23$ als auch der Integrale Wert $q_{\text{Int}} = 0,31$ zum Zeitpunkt der Rissinitiierung sind typisch für SEB-Proben [161].

Abb. 119: Spannung in Probenlängsrichtung σ_z der SEB15-Probe aus der Pufferung (A – linearer Anstieg; B – Initiierung)

Verbindungsnaht

Infolge der durch die Herstellung geänderten dendritischen Erstarrung im Bereich der Verbindungsnaht wurden gegenüber der Pufferung stark unterschiedliche Rissverläufe und Initiierungslasten beobachtet. Um neben den bekannten Einflüssen der dendritischen Erstarrung auch den Einfluss des sich ausbildenden Spannungszustandes zu erfassen, wurde dieser ebenfalls analysiert. Zur Auswertung wird im Folgenden jeweils ein Punkt im linearen Anstieg der Anfangsbelastung ($F_{\text{lin}} \approx 7,5 \text{ kN}$) sowie der Zeitpunkt der experimentell bestimmten Initiierung gewählt, siehe Abb. A41.

Abb. 120: Spannungszustand im Ligament der SEB15-Probe aus der Verbindungsnaht (A – linearer Anstieg; B – Initiierung)
Analog zu den Proben aus der Pufferung stellen die Spannungen σ_X, σ_Y und σ_Z auch hier die Hauptspannungen dar. Mit zunehmender Belastung und Plastifizierung (linearer Anstieg Abb. 120 \rightarrow Initiierung Abb. 120 \rightarrow) entfernen sich die Spannungssmaxima von der eigentlichen Riss spitze in Richtung des Ligaments und sind über einem größeren Bereich hoch. Durch die höhere Festigkeit der Verbindungsnaht im Vergleich zur Pufferung ist auch das Niveau der wirkenden Maximalspannungen höher (vgl. Abb. 120 mit Abb. 116).

Abb. 121: Plastische Vergleichsdehnung $\varepsilon_{\text{plast}}$ in der SEB15-Probe aus der Verbindungsnaht (A – linearer Anstieg; B – Initiierung)

Da sich die angrenzenden Bereiche der Pufferung und des austenitischen Grundwerkstoffs nur elastisch verformen bilden sich sowohl die plastische Zone als auch die Spannungen annähernd symmetrisch zur Ligamentebene aus, siehe Abb. 121 und Abb. 122. Dieser annähernd symmetrische Spannungs- und Dehnungszustand auf beiden Seiten des Ligaments entspricht einer reinen Mode-I-Belastung, bei welcher eine Rissausbreitung im Allgemeinen in der Ligamentebene stattfindet. Die fraktographisch dokumentierten Rissauslenkungen γ von bis zu 20° (siehe Abb. 75) resultieren somit nicht aus dem vorherrschenden Spannungs- und Dehnungszustand, sondern vermutlich aus der dendritischen Erstarrungsstruktur.

Abb. 122: Spannung in Probenlängsrichtung σ_z der SEB15-Probe aus der Verbindungsnaht (A – linearer Anstieg; B – Initiierung)
Entsprechend der Spannungsverläufe ergibt sich für den Mehrachsenquotienten im linearen Anstieg ein annähernd symmetrischer Verlauf mit einem Minimum von \(q_{\text{min}} = 0,25 \) knapp hinter der Rissspitze (siehe Abb. 120 (A)). Während der Belastung entfernt sich das Minimum von der Rissspitze. Zum Zeitpunkt der Initiierung (siehe Abb. 120 (B)) ist der Verlauf von \(q \) nach dem Minimum wieder monoton ansteigend, woraus auf stabiles Risswachstum geschlossen werden kann [165]. Sowohl der minimale Wert \(q_{\text{min}} = 0,21 \) als auch der integrale Wert \(q_{\text{int}} = 0,30 \) zum Zeitpunkt der Rissinitierung liegen knapp unterhalb der für die Pufferung ermittelten Werten und sind ebenfalls nicht untypisch für SEB-Proben [161].

Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1)

Zur Untersuchung der Spannungszustände in den Werkstoffübergängen wurde exemplarisch der Werkstoffübergang zwischen Pufferung und ferritischer WEZ ausgewählt. Zur Auswertung wird im Folgenden jeweils ein Punkt im linearen Anstieg der Anfangsbelastung \(F_{\text{lin}} \approx 7,5 \text{kN} \) sowie der Zeitpunkt der experimentell bestimmten Initiierung gewählt, siehe Abb. A42.

Im Vergleich zur Verbindungsnaht und Pufferung entwickeln sich die Spannungen auf beiden Seiten des Ligaments durch die stark unterschiedlichen Festigkeiten unsymmetrisch (siehe Abb. 123).

![Abb. 123: Spannung in Probenlängsrichtung \(\sigma_z \) der SEB15-Probe aus dem Werkstoffübergang zwischen Ferrit und Pufferung (A – linearer Anstieg; B – Initiierung)](image)

Im Ligament der SEB-Probe muss bei der aufgebrachten Dreipunkt-Biegebelastung, in Probenlängsrichtung (z-Richtung) das Kräftegleichgewicht erfüllt sein, während in Dicken- und Ligamentrichtung der Probe (x- bzw. y-Richtung) ein Dehnungsgleichgewicht vorliegt. Durch die im direkten Werkstoffübergang (Interface 1) gewählte Anfangsrissposition und den deutlich unterschiedlichen Verformungs- und Festigkeitseigenschaften von ferritischer WEZ und Pufferung bilden sich in Ligament- und Dickenrichtung (x- und y-Richtung) unterschiedliche Spannungen aus, während die Spannung \(\sigma_z \) auf beiden Seiten symmetrisch verläuft (siehe Abb. 124). Bei einer Betrachtung der Spannungen wird deutlich, dass die Spannungskomponenten auf der Seite der Pufferung im Vergleich zur mittig aus der Pufferung entnommenen Probe erhöht sind (vgl. Abb. 124 und Abb. 116).
Die stark unterschiedlichen Festigkeits- und Verformungseigenschaften der beiden Werkstoffe spiegeln sich auch in der Ausbildung der plastischen Zone wieder. Im vorliegenden Fall konzentrieren sich die plastischen Verformungen hauptsächlich auf die Pufferung, siehe Abb. 125.

Analog zu den unsymmetrischen Spannungsverläufen bildet sich die Mehrachsigkeit auf beiden Seiten des Ligaments unterschiedlich aus. Im linearen Anstieg resultieren die erhöhten Spannungen in x- und y-Richtung in einem deutlich reduzierten $q_{\text{min}} = 0,23$ auf Seite der Pufferung (siehe Abb. 124 A). Die ferritische WEZ zeigt dagegen mit $q_{\text{min}} = 0,30$ eine geringere Mehrachsigkeit. Bei der Belastung auf Höhe des Initiierungsniveaus (siehe Abb. 124 B) befindet sich das Minimum zwar immer noch auf Seiten der Pufferung ($q_{\text{min}} = 0,22$). Der Unterschied zur ferritischen WEZ ($q_{\text{min}} = 0,26$) ist allerdings nicht mehr so ausgeprägt wie während der linearen Anfangsbelastung. Zudem ist der Anstieg des q-Verlaufs auf Seiten der Pufferung flacher, woraus auf einen reduzierten Widerstand gegen eine stabile Rissausbreitung in der Pufferung geschlossen werden kann [165]. Dies steht in sehr guter Übereinstimmung mit den experimentellen und fraktographischen Befunden, in welchen Risswachstum ausschließlich in Richtung der Pufferung dokumentiert werden konnte, vgl. Kap 5.2.
8.2.7 Vergleich der numerischen und experimentellen J-Integral Bestimmung

Das J-Integral als charakteristische Größe für die zur Rissausbreitung zur Verfügung stehende Energie kann sowohl numerisch über die Formulierung als Linien-Integral nach Rice [166] als auch experimentell über die Energiefreisetzungsrate nach Bengley und Landes [167] berechnet werden. Während das in der numerischen Auswertung verwendete Linienintegral bei bekannten Spanungs- bzw. Verschiebungsfeldern die Beanspruchung der Riss spitze wiedergibt, geht in die experimentelle Bestimmung die gesamte Formänderungsarbeit der Probe ein. Infolge dessen können sich bei Mischnähten durch die Kombination von Werkstoffen mit deutlich unterschiedlichen Festigkeiten Einschränkungen ergeben, wenn es außerhalb der direkten Riss spitzenumgebung zu plastischen Verformungen kommt. Im vorliegenden Fall betrifft dies insbesondere den Übergang zum austenitischen Grundwerkstoff (Mismatchverhältnis: \(M \approx 2,1 \)). Durch die niedrige Festigkeit kann es bei Rissen, welche sich nicht direkt im Werkstoffübergang befinden \((e > 0)\) zu plastischen Verformungen des austenitischen Grundwerkstoffes kommen, wodurch sich die dissipierte Verformungsenergie und somit die daraus berechneten J-Integralwerte erhöhen. Um den Einfluss dieser plastischen Verformungen auf die ermittelten bruchmechanischen Initiierungskennwerte abzuschätzen, wurde der Einfluss mittels elastisch-plastischer FE-Simulationen überprüft.

\[\text{Abb. 126: Schematischer Aufbau des vereinfachten FE-Modells zur Abschätzung der} \]
\[\text{Einflüsse unterschiedlicher J-Integral Berechnungsmethoden} \]

Abb. 127: Relative Abweichungen zwischen der J-Integralermittlung nach ASTM und Rice bei unterschiedlichem Risslagenabstand e zum austenitischen Grundwerkstoff (Interface 3) zum Zeitpunkt der Initiierung

Die sich daraus ergebende Frage inwieweit Standardverfahren für die Ermittlung bruchmechanischer Kennwerte in Schweißnähten angewendet werden können, ohne zu große Fehlinterpretationen zu riskieren, ist Gegenstand einer Vielzahl von Untersuchungen [12], [172], [173], [174], [175]. Nach den beiden Regelwerken ISO CD 15653 [176] und BS 7448-2 [177] liegen die Anwendungsgrenzen zwischen 0,5 < M < 1,25. Werden diese Anwendungsgrenzen verletzt, existieren zahlreiche Mismatch-Modifikationen für die Kennwertermittlung auf Basis modifizierter η_{pl}-Faktoren [178], [179], [180], [181], [182], [183]. Der Grundgedanke dieser Mismatch-Modifikationen ist die Ermittlung von Werkstoffkennwerten der Schweißnaht an sich. Deshalb behandelt die Mehrzahl der Ansätze schweißnahtmittige Anrisse unter Nichtberücksichtigung unterschiedlicher Abstände e zwischen Anriss und Werkstoffübergang. Ebenso ist es mit diesen Verfahren nicht möglich, eine Mischnaht mit vier unterschiedlichen Werkstoffbereichen zu beschreiben.

ermittelt. Durch die schädigungsmechanischen Simulationen ist eine anschließende Bewertung ohne Einschränkungen auf Grund des Festigkeitsmismatch möglich.

8.2.8 Schädigungsmechanische Simulation der Versagensvorgänge

Für eine Quantifizierung des Versagensablaufs wurden alle bruchmechanischen Experimente unter Verwendung des schädigungsmechanischen Modells berechnet. Auf Basis der vorangehenden Einflussanalysen wurden unter Ausnutzung der Symmetrie in Dickenrichtung dreidimensionale Halbmodelle der geprüften SEB-Proben erstellt. Der Bereich mit erwartetem Risswachstum vor der Rissspitze wurde mit der angepassten Elementlänge von $l_c = 0,4 \text{ mm}$ elementiert und in den angrenzenden Bereichen vergrößert. Neben der aktuellen Anfangsrisslänge a_0 wurde in den FE-Modellen auch der fraktographisch bestimmte Risslagenabstand e zu den benachbarten Materialbereichen umgesetzt. Des Weiteren wurde in den FE-Modellen, wenn vorhanden, die Auslenkung γ des Schwingrisses aus der Ligamentebene berücksichtigt, siehe Abb. 128.

Abb. 128: Risslagenabstand e zu von den Werkstoffübergängen und Position der untersuchten SEB-Proben (schematische Darstellung)

Abb. 129: FE-Modelle der untersuchten Anrisspositionen in der Mischnaht
Tab. 6: Zusammenfassung der numerisch und experimentell ermittelten Rissinitierungskennwerte J_i und -lasten F_{init} sowie der zugehörigen Rissaufweitungen COD_{init}

<table>
<thead>
<tr>
<th>Position</th>
<th>Probe</th>
<th>J_i / N/mm</th>
<th>COD$_{\text{init}}$ / mm</th>
<th>F_{init} / kN</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW Ferrit</td>
<td>8FB01</td>
<td>190</td>
<td>157</td>
<td>1,21</td>
</tr>
<tr>
<td></td>
<td>PK2A1</td>
<td>227</td>
<td>164</td>
<td>1,38</td>
</tr>
<tr>
<td>Interface 1</td>
<td>1B03</td>
<td>169</td>
<td>99</td>
<td>1,71</td>
</tr>
<tr>
<td></td>
<td>8B03</td>
<td>176</td>
<td>100</td>
<td>1,76</td>
</tr>
<tr>
<td></td>
<td>3B03</td>
<td>207</td>
<td>96</td>
<td>2,16</td>
</tr>
<tr>
<td>Pufferung</td>
<td>8B02</td>
<td>131</td>
<td>106</td>
<td>1,24</td>
</tr>
<tr>
<td></td>
<td>1B02</td>
<td>90</td>
<td>107</td>
<td>0,84</td>
</tr>
<tr>
<td></td>
<td>3B02</td>
<td>113</td>
<td>107</td>
<td>1,06</td>
</tr>
<tr>
<td>Interface 2</td>
<td>8B05</td>
<td>76</td>
<td>46</td>
<td>1,65</td>
</tr>
<tr>
<td>GW Austenit</td>
<td>8AB02</td>
<td>303</td>
<td>263</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td>8AB03</td>
<td>444</td>
<td>263</td>
<td>1,69</td>
</tr>
</tbody>
</table>
Ferrit

Die Ergebnisse von elastisch-plastischen FE-Simulationen zeigen bis zur Rissinitiierung eine sehr gute Übereinstimmung mit dem experimentell bestimmten Last-Verformungsverhalten, siehe Abb. 130. Da die Fließfunktion nach von Mises allerdings nicht in der Lage ist, die Entfestigung durch die duktile Schädigung bzw. das einsetzende duktile Risswachstum wiedzugeben, wird das experimentell bestimmte Last-Verformungsverhalten nach Rissinitiierung zunehmend überschätzt. Mit den elastisch-plastischen Simulationen kann somit kein Höchstlastpunkt ermittelt werden. Im Gegensatz dazu sind die schädigungsmechanischen Simulationen auf Basis des Rousselier-Modells in der Lage, die duktile Rissverweiterung numerisch zu erfassen, weshalb das experimentell bestimmte Last-Verformungsverhalten bis Versuchsende besser wiedergegeben werden kann.

Abb. 130: Last-Aufweitungsverhalten der aus dem ferritischen Grundwerkstoff entnommenen SEB-Proben; Simulation und Versuche

Ein direkter Vergleich der experimentell und der numerisch bestimmten Initiierungswerte ist nicht möglich. Der experimentelle Initiierungswert J_{i} wird entsprechend [123] aus dem Schnittpunkt der J_{II}-Kurve mit der Stretched-Zone-Width bestimmt. Dafür wird die Stretched-Zone über der gesamten Probenbreite vermessen und anschließend gemittelt. Dadurch wird in den experimentellen Ergebnissen der Anteil des Rissspitzenbluttings aus der J_{II}-Kurve herausgerechnet. In den Simulationen kann die Stretched-Zone nicht berechnet werden und es bieten sich anstelle dessen folgende Definitionen an:
• Initiierung, wenn der erste Punkt auf der Rissfront das kritische Hohlraumvolumen f_c erreicht und versagt – untere Grenze des numerischen Rissinitiierungskriteriums
• Initiierung, wenn über der gesamten Rissfront duktile Rissinitiierung vorhergesagt wird – obere Grenze des numerischen Rissinitiierungskriteriums

Um eine nichtkonservative Bewertung auszuschließen, wird im Folgenden das erste Kriterium verwendet. Diese Definition stellt eine untere Schranke für die Bewertung dar, weshalb insbesondere in den sehr zähen Grundwerkstoffen mit einer großen Stretched-Zone zu geringe Rissinitiierungskennwerte vorhergesagt werden, siehe Abb. 133. Für einen abschließenden Vergleich mit den bruchmechanischen Näherungsverfahren wird des Weiteren die Kraft zum numerisch bestimmten Initiierungszeitpunkt F_{init} als Kriterium herangezogen, siehe Tab. 6.

Austenit

Bedingt durch die Zähigkeit des Austenits ist das experimentell ermittelte maximale stabile Risswachstum von ca. \(\Delta a_{\text{max}} = 1,3 \text{ mm} \) gemessen an den großen plastischen Verformungen der Probe gering. Infolge dessen stimmen auch die mit Hilfe des elastisch-plastischen Materialmodells bestimmten Last-Verformungskurven bis zu größeren Verformungen mit dem experimentellen Verhalten überein, siehe Abb. 132. Erst ab dem Punkt der Rissinitiierung bei ca. \(\text{COD}_{\text{Init}} = 2,2 \text{ mm} \) überschätzt die elastisch-plastische Simulation den experimentellen Verlauf zunehmend. Mit den angepassten schädigungsmechanischen Parametern ist es im Gegensatz dazu bei beiden Proben möglich, den gesamten experimentell bestimmten F-COD Verlauf sowie das einsetzende Risswachstum zu beschreiben.

\[J_{\text{R}} \text{-Kurve der aus dem austenitischen Grundwerkstoff entnommenen SEB-Proben; schädigungsmechanische Simulation und Versuche} \]

In den schädigungsmechanischen Simulationen wird der Risswiderstand ab einem Risswachstum von ca. \(\Delta a = 0,4 \text{ mm} \) überschätzt, siehe Abb. 133. Trotz der relativ guten Übereinstimmung im anfänglichen Bereich um die Rissinitiierung wird der Rissinitierungs-Kennwert \(J_i \) numerisch durch die Kombination der gewählten unteren Grenze für die numerische Rissinitiierung und der relativ großen experimentellen Stretched-Zone-Width von \(a_{\text{SZW}} = 205 \mu \text{m} \) deutlich unterschätzt, vgl. Abb. 133.

Pufferung

Neben den homogenen Grundwerkstoffen wurden auch die geschweißten Bereiche der Mischnaht untersucht. Für eine möglichst realistische Abbildung der Versuche mit den erstellten FE-Modellen wurden entsprechend der experimentellen Untersuchungen nicht nur die Anfangsrisslänge \(a_0 \), sondern auch der Abstand des Anfangsrisses \(e \) zum nächstliegenden Werkstoffübergang berücksichtigt, siehe Abb. 128. Die aus der Pufferung entnommenen Proben weisen \(a/W \)-Verhältnisse von 0,51 bis 0,53 auf. Des Weiteren ergaben sich durch die unterschiedlichen Wanddicken in den geschweißten Bereichen unterschiedliche Probenweiten \(W \) und entsprechend der Prüfnorm ASTM E 1820-08 [122] unterschiedlich angepasste Lagerabstände (Abmessungen siehe Tab. A6).

Die mit den schädigungsmechanischen Simulationen numerisch ermittelten J_R-Kurven beschreiben die stark streuenden experimentellen J_R-Kurven im anfängliche Bereich bis zu einem Risswachstum von \(\Delta a = 0.3 \) mm hinreichend genau, siehe Abb. 136. Da die, der eigentlichen Rissspitze voreilende, orthogonale Rissbildung (siehe Abb. 135) numerisch nicht abgebildet werden kann, wird der Risswiderstand mit zunehmendem Risswachstum überschätzt. Da die Stretched-Zone bei den experimentell geprüften SEB-Proben wesentlich kleiner ausgebildet ist als in den Proben aus den Grundwerkstoffen ergibt sich aus dem gleichen Kurvenverlauf im anfänglichen Bereich eine bessere Übereinstimmung zwischen den experimentell und numerisch bestimmten Initiierungskennwerten, siehe Tab. 6.

Bei den mittig aus der Verbindungsnaht entnommenen Proben (Position II) wurde bereits der Schwingriss durch die dendritische Erstarrungsstruktur um ca. $\gamma = 20^\circ$ aus der Ligamentebene ausgelenkt. Da dies für eine möglichst realistische Bewertung der Ergebnisse auch in den FE-Modellen umgesetzt wurde, ergibt sich ein entsprechend der Erstarrung
Abb. 137: Last-Aufweitungsverhalten der in Richtung Pufferung versetzt (Position I) entnommenen SEB-Proben aus der Verbindungsnaht; Simulation und Versuche

Abb. 138: Last-Aufweitungsverhalten der mittig aus der Verbindungsnaht entnommenen SEB-Proben (Position II); Simulation und Versuche

Abb. 139: Last-Aufweitungsverhalten der in Richtung Austenit versetzt (Position III) entnommenen SEB-Proben aus der Verbindungsnaht; Simulation und Versuche

Abb. 140: Numerisch und fraktographisch bestimmte Rissentwicklung in Probenmitte einer mittig aus der Verbindungsnaht (Position II) entnommenen SEB-Probe (Auswertungspunkt A der FE Rechnung, siehe Abb. 138)

Bedingt durch den inhomogenen Werkstoff weisen die experimentellen Ergebnisse aus den geschweißten Bereichen eine wesentlich größere Streuung auf als beispielsweise die Ergebnisse aus den Grundwerkstoffen. Da es für die schädigungsmechanischen Simulationen nicht zielführend ist, für jede Position einen modifizierten Parametersatz zu verwenden, kann diese Streuung numerisch nicht beschrieben werden. Wie Abb. 141 bis Abb. 143 zeigen, können mit den verwendeten schädigungsmechanischen Parametern die Mehrzahl der untersuchten SEB-Proben aus der Verbindungsnaht abgebildet werden. Insbesondere der anfängliche Bereich um die Rissinitiierung wird bei annähernd allen Proben gut wiedergegeben.

Abb. 141: J_R-Kurven der mittig aus der Verbindungsnaht (Position II) entnommenen SEB-Proben; schädigungsmechanische Simulation und Versuche
Allerdings ergeben sich trotz dieser relativ guten Übereinstimmung im anfänglichen Bereich abweichende numerische und experimentelle Initierungskennwerte. Mit der verwendeten lokalen Formulierung des Rousselier-Modells erfolgt ein an die Elementgröße gekoppeltes sukzessives Risswachstum. Durch die angepasste Elementkantenlänge von $l_c = 0,4 \text{ mm}$ kann deshalb die teilweise sehr klein ausgebildete Stretched-Zone-Width ($b_{SZW} = 21 \mu\text{m}$) nicht aufgelöst werden und die experimentellen Initierungskennwerte werden numerisch überschätzt, siehe Abb. 141.

Bei den in Richtung Pufferung versetzten Proben (Position I) wurde bedingt durch die annähernd parallele Orientierung zur dendritischen Erstarrungsrichtung, ein gerader Anfangsriss eingebracht, vgl. Kap. 5.2.1. Infolge der vorliegenden Drei-Punkt-Biegung ergibt sich daraus eine, im Vergleich zu Position II (mit schräg verlaufendem Anriss), höhere Rissspitzenbelastung, was letztendlich in reduzierten Initiierungswerten an Position I resultiert, siehe Tab. 6. Durch die annähernd parallele Orientierung von Erstarrungs- und Belastungsrichtung bilden sich bei diesen Proben keine orthogonalen Risse wie in der benachbarten Pufferung. Da der daraus resultierende gleichmäßiger gerade Rissverlauf mit den schädigungsmechanischen Simulationen besser erfasst werden kann (siehe Abb. A51), stimmen die numerisch und experimentell bestimmten J_R-Kurven im Rahmen der experimentellen Streuung relativ gut überein, vgl. Abb. 142.

![Abb. 142: J_R-Kurven der in Richtung Pufferung versetzten (Position I) SEB-Proben aus der Verbindungsnaht; schädigungsmechanische Simulation und Versuche](image)

Bei den in Richtung des austenitischen Grundwerkstoffs versetzten Proben (Position III) wurde der Riss nur bei der näher am austenitischen Werkstoffübergang (Interface 3) entnommenen Probe 1B08 um $\gamma = 10^\circ$ aus der Ligamentebene ausgelenkt. Die weiter in Richtung der Mitte der Verbindungsnaht entnommene Probe 1B07 wies einen geraden Anriss auf, siehe Abb. 143.

Trotz der Modellierung aller Probenabmessungen einschließlich des Risslagenabstands e und der Rissauslenkung γ wird der experimentell bestimmte Risswiderstand bei der Probe 1B08 deutlich unterschätzt, siehe Abb. 143. In den randnahen Bereichen, aus welchen diese Probe entnommen wurde, ist die dendritische Erstarrungsstruktur nicht so ausgeprägt wie in den mittigen Bereichen der Verbindungsnaht, vgl. Kap. 2.1. Die dendritische Erstarrungsstruktur beeinflusst das Risswachstum in den geschweißten Bereichen allerdings
deutlich, was sich in den niedrigen experimentellen Initiierungskennwerten in der Mitte der Verbindungsnaht widerspiegelt. Für eine konservative Bewertung wurden die schädigungsmechanischen Parameter für die mittigen Bereiche der Verbindungsnaht bestimmt. Entsprechend ergibt sich unter Verwendung dieser Parameter in den randnahen Bereichen mit einer geänderten Erstarrung eine Unterschätzung des Risswiderstandes.

Abb. 143: J\textsubscript{R}-Kurven der in Richtung Austenit versetzten (Position III) SEB-Proben aus der Verbindungsnaht; schädigungsmechanische Simulation und Versuche

Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1)

Abb. 144: Last-Aufweitungsverhalten der aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) entnommenen SEB-Proben; Simulation und Versuche

Abb. 145: Verlauf der Ausgangsrissfront in den Werkstoffübergängen (schematische Darstellung)

Die daraus resultierende Erhöhung des Risswiderstandes wird infolge der ebenen Idealisierung in den Simulationen nicht erfasst, siehe Abb. 146. Folglich ergeben sich für die aus dem Werkstoffübergang entnommenen SEB-Proben deutlich konservative numerische Initiierungswerte Jᵢ, vgl. Tab. 6.

Abb. 146: Jᵢ-Kurven der aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) entnommenen SEB-Proben; schädigungsmechanische Simulation und Versuche

Trotz des konservativ bewerteten Werkstoffwiderstandes bietet die schädigungsmechanische Simulation gegenüber den konventionellen bruchmechanischen Bewertungsverfahren den Vorteil, den schwächeren Materialbereich identifizieren zu können. Wie in Abb. 147 dargestellt, initiiert der Riss auf der Seite der Pufferung und folgt in der Simulation analog den experimentellen Befunden der Grenzfläche auf der Seite der Pufferung.
Werkstoffübergang zwischen Pufferung und Verbindungsnaht (Interface 2)

Abb. 147: Numerisch und fraktographisch bestimmte Rissentwicklung in Probenmitte einer aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) entnommenen SEB-Probe (Auswertungspunkt A der FE Rechnung, siehe Abb. 144)

Abb. 148: Last-Aufweitungsverhalten der aus dem Werkstoffübergang Pufferung/ Verbindungsnaht (Interface 2) entnommenen SEB-Probe; Simulation und Versuch

Im Vergleich zu den beiden anderen Werkstoffübergängen (Interface 1 und 3) ergibt sich durch das ähnliche Werkstoffverhalten von Verbindungsnaht und Pufferung eine bessere Übereinstimmung der experimentellen und numerisch ermittelte JR-Kurve. Lediglich ab einem Risswachstum von ca. $\Delta a = 1 \text{ mm}$ wird das reale Werkstoffverhalten überschätzt, siehe Abb. 149. Entsprechend der besseren Übereinstimmung, insbesondere im vorderen Bereich, liegt die experimentell und numerisch ermittelte Rissinitierung J_i näher beieinander, siehe Tab. 6.
Zur Veranschaulichung der Schädigungsprozesse ist in Abb. 150 die numerisch berechnete Rissentwicklung dargestellt. Der numerisch bestimmte Riss initiiert in der Verbindungsnaht und breitet sich analog zu den fraktographischen Untersuchungen in diesem Bereich aus.

Werkstoffübergang zwischen Verbindungsnaht und Austenit (Interface 3)

Die aus dem Werkstoffübergang zwischen austenitischem Grundwerkstoff und der Verbindungsnaht (Interface 3) entnommenen SEB-Proben weisen ein a/W-Verhältnis zwischen 0,50 und 0,54 auf. Wie auch bei den zuvor betrachteten Positionen unterscheiden sie sich zudem durch eine unterschiedliche Probenweite und Lagerabstand (vollständige Abmessungen siehe Tab. A6).
In den durchgeführten Simulationen ergibt sich eine konservative Bewertung des Werkstoffverhaltens, siehe Abb. 151 und Abb. A50. Die Abweichung des Initiierungszeitpunktes liegt wie bei den Proben aus dem Werkstoffübergang zwischen Ferrit und Pufferung (Interface 1) am Einfluss aus der geänderten dendritischen Erstarrung sowie an der ebenen Modellierung des eigentlichen Werkstoffübergangs. Durch den hohen Risswiderstand und die Ausbildung einer großen Stretched-Zone im austenitischen Grundwerkstoff ist der Einfluss aus der ebenen Grenzflächenmodellierung im vorliegenden Fall sogar noch stärker ausgeprägt als am ferritischen Werkstoffübergang (Interface 1).

![Diagramm J-R-Kurven](image)

Abb. 152: J_R-Kurven der aus dem Werkstoffübergang Verbindungsnaht/ Austenit (Interface 3) entnommenen SEB-Proben; schädigungsmechanische Simulation und Versuche

Abb. 153: Ausbildung der plastischen Zone in Probenmitte einer aus dem Werkstoffübergang Verbindungsnaht/Austenit (Interface 3) entnommenen SEB-Probe (Auswertungszeitpunkte \(\Delta \) und \(\beta \), siehe Abb. 151)

Abb. 154: Numerisch und fraktographisch bestimmte Rissentwicklung in Probenmitte einer SEB-Probe aus dem Werkstoffübergang Verbindungsnaht/Austenit (Interface 3) (Auswertungspunkt \(\circ \) der FE Rechnung, siehe Abb. 151)

8.2.9 Vergleich der schädigungsmechanischen Berechnungen und der bruchmechanischen Näherungsverfahren

Zur Beurteilung der durchgeführten schädigungsmechanischen Berechnungen wurden die Ergebnisse mit denen der bruchmechanischen Näherungsverfahren sowie den experimentellen Ergebnissen verglichen. Dafür werden die jeweils berechneten Kräfte bei Rissinitierung als Kriterium verwendet, siehe Tab. 7.

In den homogenen Grundwerkstoffen sowie in den geschweißten Bereichen der Pufferung und der Verbindungsnaht liefern die bruchmechanischen Näherungsverfahren, im Vergleich zu den Experimenten, leicht konservative Lösungen. Mit den schädigungsmechanischen Berechnungen ist es dagegen trotz der Verwendung einer unteren Schranke als Initiierungs- kriterium möglich, die Initiierungs- last F_{init} wesentlich besser vorherzusagen.

Tab. 7: Bewertung der numerisch und mit dem R6-Verfahren ermittelten Initiierungs- lasten

<table>
<thead>
<tr>
<th>Position</th>
<th>Probe</th>
<th>Kraft bei Rissinitierung F_{init} / kN</th>
<th>auf Exp. bezogene Initiierungs- last</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Exp.</td>
<td>Num.</td>
</tr>
<tr>
<td>GW Ferrit</td>
<td>8FB01</td>
<td>20,3</td>
<td>18,9</td>
</tr>
<tr>
<td>Interface 1</td>
<td>1B03</td>
<td>19,7</td>
<td>17,7</td>
</tr>
<tr>
<td>Pufferung</td>
<td>1B02</td>
<td>15,5</td>
<td>15,9</td>
</tr>
<tr>
<td>Interface 2</td>
<td>8B05</td>
<td>19,2</td>
<td>17,1</td>
</tr>
<tr>
<td>Verbindungsnaht</td>
<td>1B05</td>
<td>16,8</td>
<td>16,0</td>
</tr>
<tr>
<td>Interface 3</td>
<td>1B04</td>
<td>16,3</td>
<td>14,7</td>
</tr>
<tr>
<td>GW Austenit</td>
<td>8AB02</td>
<td>11,1</td>
<td>10,8</td>
</tr>
</tbody>
</table>
Die im Vergleich zu den Rissinitierungskennwerten J_i wesentlich bessere Übereinstimmung der Initiierungslast F_{init} ist eine Folge des elastisch-plastischen Werkstoffverhaltens. Dabei ergibt sich im Bereich um die Rissinitierung ein flacher Anstieg der Last-Aufweitungs-Kurve (F-COD-Kurve). Da in die Berechnung des J-Integrals neben der Last F auch die Rissaufweitung COD eingeht, können trotz Unterschieden in den berechneten Rissinitierungskennwerten J_i gute Vorhersagen der Initiierungslast F_{init} getroffen werden.

9 Zusammenfassung und Fazit

Zur Identifikation der bezüglich Rissinitiierung und Risswachstum kritischen Zone wurden mehrere SEB-Proben geprüft und fraktographisch untersucht. Der niedrigste Widerstand gegen Rissinitiierung sowie -ausbreitung ergab sich bei der vorliegenden Schweizung im Bereich der Verbindungsoberflächen. Mit Hilfe der experimentellen Untersuchungen konnte der maßgebliche Einfluss der dendritischen Erstarrung auf das Versagensverhalten aufgezeigt werden. Infolge der dendritischen Erstarrung des Schweißgutes reichern sich die interendendritischen Bereiche mit nichtmetallischen Einschlüssen sowie weiteren Verun-

Für einen Vergleich mit den herkömmlichen bruchmechanischen Näherungsverfahren, wie beispielsweise dem R6-Verfahren, wurden die berechneten Initiierungslasten \(F_{\text{init}} \) als Vergleichskriterium herangezogen. In den homogenen Grundwerkstoffen sowie in den geschweißten Bereichen der Pufferung und Verbindungsnaht liefern die bruchmechanischen Näherungsverfahren leicht konservative Lösungen im Vergleich zu den Experimenten, wobei angemerkt werden muss, dass in den Näherungsverfahren die in den bewerteten Experimenten ermittelten Kennwerte verwendet wurden. Mit den schädigungsmechanischen Berechnungen ist es dagegen möglich, die Initiierungslast \(F_{\text{init}} \) für alle untersuchten Werkstoffbereiche mit einer wesentlich besseren Übereinstimmung mit den experimentell ermittelten Werten vorherzusagen.
10 Literaturverzeichnis

64. Wohlfahrt, H., Macherauch, E.: Die Ursache des Schweisseigenspannungszustandes. Materialprüfung 19(8), 272-280 (1977)
74. Denys, R. M.: Learn from the past to build safe welded constructions. Safety and Reliability of Welded Components in Processing Industry, 43-50
76. Hornet, P.: Fracture of weld including mismatch effect. SMiRT 16 (2001)

84. Seidenfuss, M., Roos, E.: LISSAC - Size and geometry effects on failure behaviour of notched specimen. MPA Seminar 30 (2009)

103. BMBF Forschungsvorhaben 1501296: Nachweis der Ermüdungsfestigkeit bei kerntechnischen Komponenten aus ferritischen und austenitischen Werkstoffen. MPA Stuttgart (2009)
104. BMBF Forschungsvorhaben 1500955: Die numerische Simulation inelastischen Werkstoffverhaltens und deren Bewertung anhand von Bauteilversuchen im Temperaturbereich unter 400°C. Abschlussbericht. MPA Stuttgart (1997)
133. TExSEM Laboratories: Specimen preparation for electron backscatter diffraction (EBSD) analysis.

166. Rice, J. R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. Division of Engineering, Brown University, Providence, Rhode Island, USA (1968)

11 Anhang

A1 Herstellung der Schweißnähte

Abb. A1: Schweißplan der Pufferung

Abb. A2: Wärmebehandlungsplan der Pufferung
Abb. A3: Schweißplan der Verbindungsnaht

A2 Metallographische Grundcharakterisierung

Abb. A4: Korngröße der austenitischen WEZ an der Rohraußenseite, -mitte bzw. -innenseite (Vergrößerung: 50 x; Ätzverfahren: V2A Beize)

Abb. A5: Gefüge des austenitischen Grundwerkstoffes in unterschiedlichen Abständen zur Verbindungsnaht (schematische Darstellung)
Abb. A6: Härteabfall im austenitischen Grundwerkstoff in Wandmitte

A3 Zugversuche

Tab. A1: Einzelergebnisse der Zugversuche – GW Ferrit 20MnMoNi5-5

<table>
<thead>
<tr>
<th>Probenrichtung</th>
<th>E-Modul MPa</th>
<th>R_{eH} MPa</th>
<th>$R_{p1,0}$ MPa</th>
<th>R_m MPa</th>
<th>A_{gt} %</th>
<th>A %</th>
<th>Z %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFRT01 L</td>
<td>199000</td>
<td>538</td>
<td>529</td>
<td>654</td>
<td>10,6</td>
<td>25,0</td>
<td>75,0</td>
</tr>
<tr>
<td>8FRT01 L</td>
<td>216000</td>
<td>553</td>
<td>537</td>
<td>658</td>
<td>10,8</td>
<td>25,5</td>
<td>75,0</td>
</tr>
<tr>
<td>8FRT02 L</td>
<td>214000</td>
<td>550</td>
<td>536</td>
<td>658</td>
<td>10,8</td>
<td>25,0</td>
<td>75,0</td>
</tr>
<tr>
<td>1FRT01 L</td>
<td>208000</td>
<td>572</td>
<td>517</td>
<td>641</td>
<td>10,6</td>
<td>24,0</td>
<td>75,0</td>
</tr>
<tr>
<td>1FRT02 L</td>
<td>203000</td>
<td>572</td>
<td>517</td>
<td>641</td>
<td>10,7</td>
<td>24,0</td>
<td>75,0</td>
</tr>
<tr>
<td>KTA 3201.1 L/T</td>
<td>-</td>
<td>min. 430</td>
<td>-</td>
<td>570-710</td>
<td>-</td>
<td>min. 19</td>
<td>min. 45</td>
</tr>
</tbody>
</table>

Tab. A2: Einzelergebnisse der Zugversuche – GW Austenit X6CrNiNb18-10

<table>
<thead>
<tr>
<th>Probenrichtung</th>
<th>E-Modul MPa</th>
<th>$R_{p0,2}$ MPa</th>
<th>$R_{p1,0}$ MPa</th>
<th>R_m MPa</th>
<th>A_{gt} %</th>
<th>A %</th>
<th>Z %</th>
</tr>
</thead>
<tbody>
<tr>
<td>EART01 L</td>
<td>170000</td>
<td>240</td>
<td>269</td>
<td>538</td>
<td>46,7</td>
<td>58,0</td>
<td>74,0</td>
</tr>
<tr>
<td>8ART01 L</td>
<td>184000</td>
<td>232</td>
<td>264</td>
<td>546</td>
<td>46,3</td>
<td>59,0</td>
<td>74,0</td>
</tr>
<tr>
<td>8ART02 L</td>
<td>187000</td>
<td>233</td>
<td>266</td>
<td>549</td>
<td>46,8</td>
<td>59,5</td>
<td>75,0</td>
</tr>
<tr>
<td>1ART01 L</td>
<td>188000</td>
<td>241</td>
<td>275</td>
<td>558</td>
<td>46,1</td>
<td>56,0</td>
<td>73,0</td>
</tr>
<tr>
<td>1ART02 L</td>
<td>202000</td>
<td>237</td>
<td>271</td>
<td>551</td>
<td>45,7</td>
<td>55,5</td>
<td>72,0</td>
</tr>
<tr>
<td>KTA 3201.1 L/T</td>
<td>-</td>
<td>min. 205</td>
<td>-</td>
<td>510-740</td>
<td>-</td>
<td>min. 30</td>
<td>-</td>
</tr>
</tbody>
</table>
Tab. A3: Einzelergebnisse der Zugversuche – Pufferung NiCr70Nb

<table>
<thead>
<tr>
<th>Probenrichtung</th>
<th>E-Modul MPa</th>
<th>(R_{p0,2}) MPa</th>
<th>(R_{p1,0}) MPa</th>
<th>(R_m) MPa</th>
<th>(A_{gt}) %</th>
<th>A %</th>
<th>Z %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8RT03 L</td>
<td>151000</td>
<td>395</td>
<td>428</td>
<td>651</td>
<td>44,1</td>
<td>66,0</td>
<td>58,0</td>
</tr>
<tr>
<td>1RT01 L</td>
<td>180000</td>
<td>435</td>
<td>448</td>
<td>647</td>
<td>44,0</td>
<td>61,0</td>
<td>56,0</td>
</tr>
<tr>
<td>3RT01 L</td>
<td>185000</td>
<td>403</td>
<td>440</td>
<td>655</td>
<td>44,1</td>
<td>57,0</td>
<td>51,0</td>
</tr>
<tr>
<td>8RT02 T</td>
<td>163000</td>
<td>447</td>
<td>477</td>
<td>671</td>
<td>26,4</td>
<td>26,5</td>
<td>27,0</td>
</tr>
<tr>
<td>KTA 3201.1 L/T</td>
<td>-</td>
<td>275-430</td>
<td>-</td>
<td>540-780</td>
<td>-</td>
<td>min. 30</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. A4: Einzelergebnisse der Zugversuche – Verbindungsnaht NiCr70Nb

<table>
<thead>
<tr>
<th>Probenrichtung</th>
<th>E-Modul MPa</th>
<th>(R_{p0,2}) MPa</th>
<th>(R_{p1,0}) MPa</th>
<th>(R_m) MPa</th>
<th>(A_{gt}) %</th>
<th>A %</th>
<th>Z %</th>
</tr>
</thead>
<tbody>
<tr>
<td>8RT04 L</td>
<td>198000</td>
<td>478</td>
<td>523</td>
<td>751</td>
<td>36,6</td>
<td>46,5</td>
<td>40,0</td>
</tr>
<tr>
<td>1RT02 L</td>
<td>210000</td>
<td>527</td>
<td>565</td>
<td>770</td>
<td>37,8</td>
<td>44,0</td>
<td>25,0</td>
</tr>
<tr>
<td>3RT02 L</td>
<td>200000</td>
<td>511</td>
<td>544</td>
<td>752</td>
<td>37,8</td>
<td>41,0</td>
<td>37,0</td>
</tr>
<tr>
<td>1RT04 L</td>
<td>199000</td>
<td>490</td>
<td>531</td>
<td>717</td>
<td>27,6</td>
<td>30,0</td>
<td>36,0</td>
</tr>
<tr>
<td>8RT01 T</td>
<td>167000</td>
<td>427</td>
<td>454</td>
<td>664</td>
<td>26,3</td>
<td>38,0</td>
<td>27,0</td>
</tr>
<tr>
<td>KTA 3201.1 L/T</td>
<td>-</td>
<td>275-430</td>
<td>-</td>
<td>540-780</td>
<td>-</td>
<td>min. 30</td>
<td>-</td>
</tr>
</tbody>
</table>

Abb. A7: Abmessungen der Flachzugprobe in Anlehnung an DIN 50125 [108]; Ausgangsmesslänge \(l_0 = 20\text{mm} \)
Abb. A8: Überprüfung der Position der Flachzugproben in den unterschiedlichen Bereichen der Mischnaht mittels Härteeindrücken in den Kopfenden der Proben

A4 Dynamische E-Modul Bestimmung

Tab. A5: E-Moduln bestimmt mit dem Impuls-Anregungsverfahren

<table>
<thead>
<tr>
<th>Werkstoff</th>
<th>Länge mm</th>
<th>Dicke mm</th>
<th>Breite mm</th>
<th>Gewicht g</th>
<th>out of plane Frequ. /Hz</th>
<th>E /GPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW Austenit</td>
<td>70,5</td>
<td>10,1</td>
<td>5,1</td>
<td>28,27</td>
<td>9737</td>
<td>193,9</td>
</tr>
<tr>
<td>GW Ferrit</td>
<td>70,1</td>
<td>10,0</td>
<td>5,0</td>
<td>26,91</td>
<td>10160</td>
<td>205,4</td>
</tr>
<tr>
<td>Verbindungsnaht</td>
<td>70,0</td>
<td>10,0</td>
<td>5,0</td>
<td>28,98</td>
<td>8700</td>
<td>161,6</td>
</tr>
<tr>
<td>Pufferung</td>
<td>70,1</td>
<td>10,0</td>
<td>5,0</td>
<td>29,00</td>
<td>8800</td>
<td>166,1</td>
</tr>
</tbody>
</table>
A5 Kerbschlagbiegeversuche

![Graph showing Kerbschlagarbeit A_v at different positions on the tube circumference](image)

Abb. A9: Kerbschlagarbeit A_v an verschiedenen Stellen des Rohrumfangs

A6 Kerbzugversuche

![Graphs showing Kerbschlagarbeit A_v](image)

Abb. A10: Ergebnisse der aus dem ferritischen Grundwerkstoff entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)

![Graphs showing Kerbschlagarbeit A_v](image)

Abb. A11: Ergebnisse der aus der ferritischen WEZ entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)
Abb. A12: Ergebnisse der aus der Pufferung entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)

Abb. A13: Ergebnisse der aus der Verbindungsnaht entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)

Abb. A14: Ergebnisse der aus der austenitischen WEZ entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)

Abb. A15: Ergebnisse der aus dem austenitischen Grundwerkstoff entnommenen Kerbzugproben (links – Kerbaufweitung; rechts – Extensometerverlängerung)
A7 Bruchmechanik Versuche

Abb. A16: Kraft-Verformungskurven der aus dem ferritischen Grundwerkstoff entnommenen SEB15-Probe

Abb. A17: Kraft-Verformungskurven der aus dem austenitischen Grundwerkstoff entnommenen SEB15-Proben

Abb. A18: Kraft-Verformungskurven der aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) entnommenen SEB15-Proben
Abb. A19: Kraft-Verformungskurven der aus der Pufferung entnommenen SEB15-Proben

Abb. A20: Kraft-Verformungskurven der aus dem Werkstoffübergang Verbindungsnaht/Pufferung (Interface 2) entnommenen SEB15-Probe

Abb. A21: Kraft-Verformungskurven der mittig aus der Verbindungsnaht (Position II) entnommenen SEB15-Proben
Abb. A22: Kraft-Verformungskurven der in Richtung Pufferung versetzt (Position I) entnommenen SEB15-Proben aus der Verbindungsnaht

Abb. A23: Kraft-Verformungskurven der in Richtung Austenit versetzt (Position III) entnommenen SEB15-Proben aus der Verbindungsnaht

Abb. A24: Kraft-Verformungskurven der aus Werkstoffübergang Verbindungsnaht/ Austenit (Interface 3) entnommenen SEB15-Proben
Abb. A25: Übersicht der ermittelten Stretched-Zone-Width auf beiden Probenhälften der geprüften SEB15-Proben

Tab. A6: Einzelergebnisse der Bruchmechanik Versuche und Abmessungen der geprüften SEB15-Proben

<table>
<thead>
<tr>
<th>Position</th>
<th>-</th>
<th>W /mm</th>
<th>S /mm</th>
<th>B /mm</th>
<th>a₀ /mm</th>
<th>aₚ /mm</th>
<th>aₚₛₜ /µm</th>
<th>Jₘ /N.mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW Ferrit</td>
<td>8FB01</td>
<td>30,02</td>
<td>120</td>
<td>15,04</td>
<td>15,87</td>
<td>19,07</td>
<td>97</td>
<td>190</td>
</tr>
<tr>
<td>Interface 1</td>
<td>1B03</td>
<td>30,04</td>
<td>120</td>
<td>15,07</td>
<td>15,63</td>
<td>17,51</td>
<td>55</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>3B03</td>
<td>30,03</td>
<td>120</td>
<td>15,07</td>
<td>15,16</td>
<td>16,61</td>
<td>41</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>8B03</td>
<td>29,00</td>
<td>116</td>
<td>15,00</td>
<td>13,83</td>
<td>15,93</td>
<td>43</td>
<td>176</td>
</tr>
<tr>
<td>Pufferung</td>
<td>1B02</td>
<td>30,04</td>
<td>120</td>
<td>15,05</td>
<td>16,02</td>
<td>20,53</td>
<td>46</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>3B02</td>
<td>30,04</td>
<td>120</td>
<td>15,06</td>
<td>16,00</td>
<td>19,62</td>
<td>49</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>8B02</td>
<td>29,09</td>
<td>116</td>
<td>14,99</td>
<td>14,92</td>
<td>18,58</td>
<td>51</td>
<td>131</td>
</tr>
<tr>
<td>Interface 2</td>
<td>8B05</td>
<td>29,10</td>
<td>116</td>
<td>15,00</td>
<td>13,66</td>
<td>18,35</td>
<td>35</td>
<td>76</td>
</tr>
<tr>
<td>Verbindungsnaht</td>
<td>1B05</td>
<td>30,03</td>
<td>120</td>
<td>15,06</td>
<td>15,59</td>
<td>20,53</td>
<td>47</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>3B05</td>
<td>30,05</td>
<td>120</td>
<td>15,06</td>
<td>16,23</td>
<td>21,23</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1B06</td>
<td>30,03</td>
<td>120</td>
<td>15,00</td>
<td>15,64</td>
<td>20,37</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>Pos I</td>
<td>1B01</td>
<td>30,02</td>
<td>120</td>
<td>15,07</td>
<td>15,71</td>
<td>22,49</td>
<td>41</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>3B01</td>
<td>30,00</td>
<td>120</td>
<td>15,07</td>
<td>15,74</td>
<td>21,07</td>
<td>36</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>8B01</td>
<td>29,10</td>
<td>116</td>
<td>14,60</td>
<td>14,05</td>
<td>17,00</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>Pos II</td>
<td>1B07</td>
<td>30,01</td>
<td>120</td>
<td>15,01</td>
<td>16,11</td>
<td>21,43</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>1B08</td>
<td>30,01</td>
<td>120</td>
<td>15,01</td>
<td>16,23</td>
<td>18,72</td>
<td>65</td>
<td>92</td>
</tr>
<tr>
<td>Pos III</td>
<td>1B04</td>
<td>30,04</td>
<td>120</td>
<td>15,05</td>
<td>15,76</td>
<td>19,86</td>
<td>123</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>3B04</td>
<td>30,02</td>
<td>120</td>
<td>15,07</td>
<td>16,10</td>
<td>19,39</td>
<td>120</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>8B04</td>
<td>29,10</td>
<td>116</td>
<td>15,00</td>
<td>14,60</td>
<td>18,15</td>
<td>62</td>
<td>117</td>
</tr>
<tr>
<td>Interface 3</td>
<td>8AB02</td>
<td>30,09</td>
<td>120</td>
<td>15,03</td>
<td>16,61</td>
<td>17,68</td>
<td>149</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>8AB03</td>
<td>29,98</td>
<td>120</td>
<td>15,00</td>
<td>16,73</td>
<td>17,92</td>
<td>205</td>
<td>444</td>
</tr>
</tbody>
</table>
A8 Fraktographische Untersuchung der Kerbzugproben

Abb. A26: Längsschliff einer Kerbzugprobe aus der ferritischen WEZ (REM-Aufnahme)

Abb. A27: Längsschliff einer Rundzugprobe aus der Pufferung (links REM-Aufnahme; rechts lichtoptische Aufnahme)
A9 Experimentelle Bestimmung der Eigenspannungen

A10 Numerische Bestimmung der Eigenspannungen

Abb. A31: Wärmeleitfähigkeit aller verwendeten Werkstoffe

Abb. A32: Spezifische Wärmekapazität aller verwendeten Werkstoffe

Abb. A33: Temperaturabhängige Dichte aller verwendeten Werkstoffe
Abb. A34: Wärmeausdehnungskoeffizient aller verwendeten Werkstoffe

Abb. A35: Temperaturabhängiger E-Modul aller verwendeten Werkstoffe

Abb. A36: Temperaturabhängiger Querkontraktion aller verwendeten Werkstoffe
Abb. A37: Temperaturabhängige Fließkurven des ferritischen Grundwerkstoffs 20MnMoNi5-5

Abb. A38: Temperaturabhängige Fließkurven des verwendeten Schweißzusatzwerkstoffs NiCr70Nb

Abb. A39: Temperaturabhängige Fließkurven des austenitischen Grundwerkstoffs X6CrNiNb18-10 [143]
A11 Analyse des Spannungszustandes

Abb. A40: Last-Verformungsverhalten einer aus der Pufferung entnommenen SEB-Probe (elastisch-plastische Simulation und Versuch)

Abb. A41: Last-Verformungsverhalten einer aus der Verbindungsnaht entnommenen SEB-Probe (elastisch-plastische Simulation und Versuch)

Abb. A42: Last-Verformungsverhalten einer aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) SEB-Probe (elastisch-plastische Simulation und Versuch)
Abb. A43: Last-Verformungsverhalten einer SEB-Probe aus reiner Pufferung (elastisch-plastische Simulation)

Abb. A44: Spannungszustand in einer SEB-Probe aus „reiner“ Pufferung (A – linearer Anstieg; B – Initiierung)
A12 Einflüsse auf die J-Integral Ermittlung

Abb. A45: Entwicklung des J-Integrals über der Rissspitzenöffnung COD; Bestimmung des J-Integrals gemäß ASTM E 1820-08 bzw. als numerisches Linienintegral
A13 Schädigungsmechanische Simulation

Abb. A46: Last-Aufweitungsverhalten einer aus der Pufferung entnommenen SEB-Probe; Simulation und Versuch

Abb. A47: Last-Aufweitungsverhalten einer mittig aus der Verbindungsnaht (Position I) entnommenen SEB-Probe; Simulation und Versuch

Abb. A48: Last-Aufweitungsverhalten einer in Richtung Austenit versetzt (Position III) entnommenen SEB-Probe aus der Verbindungsnaht; Simulation und Versuch
Abb. A49: Last-Aufweitungsverhalten einer aus dem Werkstoffübergang Ferrit/ Pufferung (Interface 1) entnommenen SEB-Probe; Simulation und Versuch

Abb. A50: Last-Aufweitungsverhalten einer aus dem Werkstoffübergang Verbindungsnaht /Austenit (Interface 3) entnommenen SEB-Probe; Simulation und Versuch

Abb. A51: Numerisch und fraktographisch bestimmte Rissentwicklung in Probenmitte einer in Richtung Pufferung versetzt (Position I) entnommenen SEB-Probe aus der Verbindungs naht (Auswertungspunkt A der FE Rechnung, siehe Abb. 137)