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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die Analyse turbulenter, nicht-vorgemischter Flammen

mittels einer kombinierten Large Eddy Simulation - Conditional Moment Closure (LES-

CMC) Methode. LES beruht auf räumlicher Filterung und löst die großen turbulenten

Skalen auf, wohingegen die kleinen turbulenten Strukturen durch ein Feinstrukturmodell

beschrieben werden, in diesem Fall durch das Smagorinsky-Modell. CMC basiert auf einer

skalaren Erhaltungsgröße, dem Mischungsbruch, und es wird angenommen, dass die Fluk-

tuationen der reaktiven Skalare mit den Fluktuationen des Mischungsbruchs korrelieren.

Deshalb wird CMC mit Konditionierung auf den Mischungsbruch in dieser Arbeit ein-

gesetzt, um turbulente Flammen vorherzusagen. Im letzten Jahrzehnt hat eine Reihe

an Simulationen basierend auf der nicht-konservativen LES-CMC Formulierung zu guten

Vorhersagen der chemischen Spezies in unterschiedlichen Flammen geführt. Ungenaue

Vorhersagen ergeben sich allerdings in CMC-Zellen, die starke zeitliche Schwankungen des

Mischungsbruchsfelds aufweisen. Ein wichtiger Grund für diese schwachen Vorhersagen

liegt im Fehlen einer Gewichtung des konvektiven Terms mit dem Verhältnis der filtered

density functions (FDFs) in den nicht-konservativen CMC-Gleichungen. Im Gegensatz

zur nicht-konservativen LES-CMC erhält die hier vorgestellte konservative Formulierung

streng die Masse. Die Gewichtung des konvektiven Terms mit dem FDF-Verhältnis wird

berücksichtigt, so dass verbesserte Vorhersagen der lokalen, konditionierten Skalare erzielt

werden können.

Simulationen turbulenter Strahlflammen (Sandia Flammen D, E und F) mittels der

konservativen LES-CMC Methode werden durchgeführt. Flamme D wird als ein erster

Testfall zur Validierung der numerischen Ergebnisse anhand etablierter experimenteller

Daten verwendet. Eine Studie des Strömungs- und Mischungsfeldes der Flamme D dient

zur Festlegung der relevanten Parameter für die Flammen E und F. Die Studie ergibt

XVII



XVIII Kurzfassung

optimale Werte für die laminare und turbulente Schmidt-Zahl von 0,7 und 0,4. Ein

geeigneter Wert für die Konstante im Modell für die Feinstruktur-Varianz ergibt sich zu 0,2.

Eine Sensitivitätsstudie des Varianzlevels am Einstromrand zeigt, dass Varianzwerte von
2
3 , 1

3 und 2
9 der gemessenen Geschwindigkeitsvarianz bei z/D = 0, 14 geeignete Einstrom-

Randbedingungen für die Flammen D, E und F darstellen.

Nachfolgend wird eine Studie der Parameter des Verbrennungsmodells für alle

Testfälle durchgeführt. Der Vergleich der Skalarvorhersagen mit Messungen zeigt, dass

LES kombiniert mit der konservativen CMC-Formulierung bessere Ergebnisse erzielt,

als auf Basis der nicht-konservativen Gleichungen. Allerdings ergeben sich ähnliche

Vorhersagen beim Vergleich zweier Approximationsmodelle für den konvektiven Fluss in

CMC (Berechnung der konvektiven CMC-Flüsse basierend auf den LES-Zellen am CMC-

Zellrand oder basierend auf dem Wert am CMC-Zellmittelpunkt). Eine Parameterstudie

der CMC-Gitterauflösung zeigt, dass 8×8×80 Zellen in x-, y- und z-Richtung akzeptable

Vorhersagen innerhalb einer vertretbaren Rechenzeit ergeben. Die Simulationsergebnisse

der Flammen E und F zeigen, dass die vorliegenden CMC-Simulationen lokales Verlöschen

und Wiederentzünden nicht ausreichend abbilden. Dies liegt zum Teil am Mittelungseffekt

der großen CMC-Zellen auf die konditionierte Dissipation. Wesentlich kleinere CMC-

Zellen in der Größenordnung der LES-Filterweite könnten Extremwerte hoher Dissipation

deutlich besser abbilden und somit zu genaueren Vorhersagen des lokalen Verlöschens

führen. Eine Parameterstudie der CMC-Gitterauflösung für die Flammen E und F ergibt

etwas bessere Ergebnisse auf einem feineren CMC-Gitter (16× 16× 80) im Vergleich zum

Referenzgitter (8 × 8 × 80), wobei diese Vorhersagen immer noch verbesserungswürdig

sind. Das Problem liegt möglicherweise in der Genauigkeit der Beschreibung des chemis-

chen Quellterms. Aus diesem Grund werden mögliche Vorschläge für zukünftige Arbeiten

gemacht, wie eine Schließung zweiter Ordnung und zweifach-konditionierte chemische

Quellterme.



Abstract

The objective of the present study is to analyze turbulent non-premixed flames by utiliz-

ing a combined large eddy simulation - conditional moment closure (LES-CMC) method.

LES is based on spatial filtering, and it resolves large scales of turbulent motion while

modelling the small turbulent structures using a subgrid model, here the Smagorinsky

model. CMC is a conserved scalar method where fluctuations of the reactive scalar

variables can be associated with fluctuations of the mixture fraction. Therefore, CMC

is applied to turbulent combustion modelling in this work using mixture fraction as the

conditioning variable. In the last decade, computations using a non-conservative LES-

CMC formulation have provided good predictions of major and minor species for different

flames. However, inaccurate predictions occur in CMC cells which have large temporal

variations of the mixture fraction field. A lack of weighting the convective term by a

filtered density function (FDF) ratio in non-conservative CMC is believed to be a major

reason for these inaccurate predictions. In contrast to non-conservative LES-CMC, the

present conservative formulation is inherently mass conserving. It considers weighting the

convective term by an FDF ratio so that improved predictions of local conditional scalars

can be obtained.

Investigations of turbulent jet flames (Sandia Flames D, E and F) are performed using

the conservative LES-CMC approach. Flame D is used as the first test case to validate

the numerical results in comparison with well-established experimental data. A study of

the flow and mixing parameters is carried out first to establish the parameters for Flames

E and F. Results from these studies show that the optimal values of Schmidt number,

Sc, and turbulent Schmidt number, Sct are 0.7 and 0.4, respectively. The appropriate

value of the subgrid-scale variance modelling constant is 0.2. A sensitivity analysis of the

results demonstrates that inflow velocity variance levels corresponding to 2
3 , 1

3 and 2
9 of
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XX abstract

the measured variances at z/D = 0.14 are suitable inflow conditions for Flames D, E and

F, respectively.

Subsequently, parametric studies of the combustion model are performed for all test

cases. The statistical predictions of scalars compared with measurements show that

the LES with the conservative CMC formulation is better than the one based on non-

conservative equations. However, similar predictions are obtained from two different flux

approximation methods (computing the CMC convective fluxes based on the LES cells

located at the CMC faces or based on the CMC cell centres). A parametric study of the

CMC grid resolution shows that a resolution of 8× 8× 80 cells in x-, y- and z-directions

yields appropriate predictions within a reasonable computational time. Simulation results

of Flames E and F show that the CMC simulations presented here cannot capture local

extinction and re-ignition accurately. This is partially due to the averaging effect of the

large CMC cells on the modelled conditional dissipation. Much finer CMC cells of the

order of the LES cell size will capture more of the fluctuation of scalar dissipation rates

and may lead to a more accurate prediction of the local extinction events. The parametric

study of CMC grid resolution for Flames E and F shows that a finer CMC grid (16×16×80)

predicts slightly better results than the reference grid (8× 8× 80), but predictions could

still be improved. It is possible that the problem is associated with the accuracy of the

chemical source term. Hence, some possible solutions, such as second-order closure and

doubly conditional reaction source terms, are suggested for future works.



Chapter 1

Introduction

Combustion, known as the important technology of mankind, is used for energy

production. It provides more than 90% of energy consumption (e.g. in heating, traf-

fic, electrical power generation) in the world [108]. As stated in the International Energy

Outlook (IEO2010) by the International Energy Agency (IEA) [24], the total world con-

sumption of marketed energy has increased during the past ten years and will increase

steeply in the projection. More than 80% of the world marketed energy originated from

fossil fuels, composed of petroleum, natural gas and coal. Even if the prospects of re-

newable energy resources improve due to the increase of oil price and the awareness of

environmental impacts of fossil fuels, fossil fuels will remain the major energy source for

at least the next twenty years.

The benefits of combustion can be realized as living comfort and world economy

development. However, the drawbacks of combustion are not only its production of carbon

dioxide (CO2), one of the greenhouse gases, but also pollutants as by-products. The major

pollutants from combustion are unburned hydrocarbons, nitrogen oxides (NO and NO2),

carbon monoxide, sulphur oxides (SO2 and SO3), volatile organic compounds and particu-

late matter. These affect the environment in both the long and short terms. ”Air pollution

is a significant reason for not only acid rain, global warming, smog and the depletion of

the ozone layer, but it is so vital for human health risk (i.e. serious respiratory and other

illnesses)” [1]. Therefore, there are many programs for reducing, limiting and monitoring

CO2 emission and pollutant formation. The European emission standard is one of the

examples of a regulation to limit pollutant emissions for the registration and sale of new

1
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types of vehicles for European countries. These strict regulations force manufacturers to

carry out further research for technologies in order to reduce CO2 emission and pollutant

formation from their products. However, investment costs have increased by carrying out

the regulatory experiment.

Computational fluid dynamics (CFD) is an alternative approach for R&D. In general,

this approach uses numerical techniques to achieve discrete solutions to the governing

equations of combustion processes.

1.1 Motivation

Recently, CFD simulations coupled with detailed modelling of chemical reactions are

becoming increasingly important for the design of industrial combustors. They can be used

to predict combustor performance and pollutant emissions, such as particulate matter,

unburned hydrocarbons, sulphur oxides (SO2 and SO3) and oxides of nitrogen (NOx).

This accurate prediction of pollutants has played an important role for environmentally

friendly machine design in recent years. CFD approaches based on Reynolds averag-

ing of the Navier-Stokes equations (RANS) have been partially successful in predicting

reacting turbulent flows but often struggled in cases where strong streamline curvature,

intermittency and non-gradient transport were present [12]. Large eddy simulation (LES)

can overcome these RANS deficiencies. However, a high computational cost is required

for LES.

Since Deardoff [21] applied LES to a turbulent channel flow in 1970, LES has been

applied to many non-reacting flow configurations and also recently to turbulent reacting

flows. In the LES methodology, the mean (known as large scale) flow and mixing fields are

solved directly while the small scales are modelled. However, neither LES nor RANS can

describe species transport without further modelling assumptions. The reaction length

and time scales are much smaller than the smallest scale of turbulence, the Kolmogorov

scale. Therefore, a combustion model is needed to deal with this task.

In recent years, many different combustion models have been applied to turbulent

reacting flows. They give different results which vary in the capability of minor and

major species predictions as well as in terms of accuracy. The most studied models,

suitable for non-premixed combustion, are the steady laminar flamelet model (SLFM)
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[39, 72], the transport of the joint probability density function (PDF) [81, 87, 60] and

conditional moment closure (CMC) [47, 43, 49]. While SLFM is the least demanding of

these approaches, it is based on the assumption of high chemical reaction rates compared

with the flow time scales (high Damköhler assumption) and not suitable for the prediction

of important combustion phenomena like extinction, re-ignition and pollutant formation.

In contrast, in transported PDF methods the chemical source term appears in closed form,

allowing for an accurate prediction of such phenomena. However, the PDF transport

equation requires non-trivial closure of the mixing term and the typically used Monte-

Carlo based solution methods are expensive due to their requirement of large numbers

of stochastic particles. The CMC method offers an accurate prediction of all relevant

combustion phenomena, while being computationally less expensive than transported PDF

methods. In theory, CMC states the fundamental hypothesis that the mean reaction rates

in a turbulent flow can be more accurately modelled by conditioning on a conserved scalar,

such as mixture fraction (ξ). This reaction model has been proved to successfully predict

major and minor species in jet flames and also in elliptic flows such as bluff-body flames

[16].

The possibility of coupling LES and CMC was first mentioned by Klimenko and Bilger

[47]. The typical CMC is introduced as a non-conservative formulation which means there

is no PDF-weighted flux across the cell faces in the convective term. This leads to an

equal importance of convective fluxes in all three directions (x-, y- and z-directions).

The non-conservative LES-CMC was initially implemented by Navarro et al. [68, 65, 66],

who applied it to simulate Sandia Flame D, bluff-body and lifted methane flames. Their

simulation results show a very good accordance with the experimental data only for the

simple flames, such as Sandia Flame D. However, for more complicated flames, for example

the bluff-body flames, there are overpredictions of temperature and product species in

the location closest to the nozzle, even though the simulation accurately captures the

mixing field in the entire domain [65]. These overpredictions are likely attributed to the

combustion sub-model. The traditional CMC cannot deal with that position, where there

are two distinct temperature branches in the experiment, which can be seen more clearly

on the right of Fig. 1.1. The mixing branch corresponds to a recirculation flow of hot

products plus cold oxidizer having a lower temperature. The burning branch corresponds

to a fully burning mixture. The lack of PDF-weighted fluxes in CMC non-conservative
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form is believed to be one reason for this result. Therefore, a new conservative CMC

formulation is implemented in this study.

Figure 1.1: The average over the cross-section of the conditional temperature, T,
vs. mixture fraction, η, at downstream location z/D = 0.26 of the bluff-body flame
[65]. The left figure shows the comparison between results of non-conservative LES-
CMC (red line) and the conditionally averaged experimental data (symbols) from
[20]. The right figure shows the results of non-conservative LES-CMC (red line) and
instantaneous values (dots) indicating a large scatter about the conditional average
and the existence of two main branches.

1.2 Thesis Outline

The main focus of this research is the investigation of the performance of conservative

LES-CMC compared with the non-conservative approach. Therefore, LES coupling with

CMC in conservative form is used here instead of the traditional one. The conservative

CMC form was derived by Cleary [16] having conditional moments dependent on the

three spatial dimensions and time. In this study, Cleary’s formulation is applied to Sandia

Flames in order to validate the conservative LES-CMC approach. Due to their simple

geometry and wealth of experimental validation data, Flames D, E and F are ideally

suited as a validation target group in this work. Note that the bluff-body flames are not

the ideal test cases for development since they require a large domain for simulation and

thus they are computationally expensive. The results of parameter analyses from Sandia

Flame D with the new code are used for further research, i.e. Flames E and F. Moreover,

the ability of first-order CMC in conservative form to predict extinction and re-ignition of

flames (Flames E and F) is investigated. The structure of the document is as follows:
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In Chapter 2, the principal theories for non-premixed flames are introduced.

The fundamentals and governing equations of turbulent reacting flow are also given.

Computational methods for turbulent reacting flow will be briefly discussed. Subsequently,

the fundamental theories of non-premixed combustion and different combustion models

based on different assumptions on the chemical and mixing states are explained.

Chapter 3 provides the basis of LES methodology. Spatial filtering is applied to the

governing equations, and the models required for unclosed terms are addressed.

In Chapter 4, the CMC methodology is introduced, in particular its conservative form.

The treatment of unclosed terms is discussed. This chapter closes with the implementation

details of the CMC model.

In Chapter 5, the numerical treatments are provided. Spatial and time discretisation

schemes of the employed simulation program are described. Subsequently, pressure cor-

rection and different numerical methods for each parametric study within the combustion

model are discussed. Finally, initial and boundary conditions which are used in this re-

search are outlined.

In Chapter 6, the experimental data is provided. The computational set-up will be

addressed and all parametric studies are described. Subsequently, the simulation results

of the Sandia flames are presented under various conditions. The performances of all cases

in each parametric study are discussed and compared with the relevant experiments. This

chapter closes with a summary of all investigations.

In Chapter 7, the conclusions of the research are detailed and recommendations for

future work are made.
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Chapter 2

Background

In this chapter, basic theories of fluid mechanics, turbulence and non-premixed combustion

will be presented. Firstly, the governing equations, Navier-Stokes and conservation of

scalar quantity equations, are given in their instantaneous form. Secondly, the principles

of turbulence will be addressed, followed by the discussion of flow and mixing models.

Then, theories related to non-premixed combustion, which are used in this approach, are

discussed. Finally, the chapter closes with an overview of some commonly used combustion

models in turbulent reacting flames.

2.1 Fluid Mechanics

In continuum mechanics, a fluid is regarded as a continuous substance which can be

transferred by the action of externally applied forces known as driving forces. These

forces can be classified as surface forces (e.g. shear forces, surface tension and pressure

differences) and body forces (e.g. gravity and forces induced by rotation). The spatio-

temporal evolution of a given flow field, which is represented by the governing equations

of fluid motion will be presented in the next section.

2.1.1 Governing Equations

The flow of an isothermal compressible fluid is accurately described by the conservation

equations of mass and momentum (Navier-Stokes equations). Additionally for premixed

laminar and nonpremixed turbulent reacting flows, the conservation of scalar quantities,

7
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composed of enthalpy, species mass fraction and mixture fraction, are necessary. In the

following subsections, the governing equations are given in Cartesian tensor notation for

simplicity.

2.1.1.1 Conservation of Mass

In the differential form, the mass conservation or continuity equation is written as

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0. (2.1)

In Eq. (2.1) ρ denotes density and uj is the velocity component in xj direction.

2.1.1.2 Conservation of Momentum

Based on Newton’s second law (i.e. the acceleration of an object results from the net force

acting on it), the momentum equation is given in differential form by

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂τij
∂xj
− ∂p

∂xi
+ ρgi, (2.2)

where on the LHS, the first term represents the temporal change and the second term

represents convection. All terms on the RHS are the forces which may act on the fluid,

such as surface forces and body forces. If the body force concerns only gravity, g, the

surface forces will be expressed by pressure, p, and the viscous stress, τij . With the

assumption of a Newtonian fluid, a fluid whose stress versus strain rate curve is linear and

passes through the origin [6], τij can be expressed as a function of the strain rate tensor,

Sij ,

τij = µ

[
2Sij −

2
3
δij
∂uk
∂xk

]
, (2.3)

where µ is the dynamic viscosity, a function of the composition and temperature of the

fluid. The δij denotes the Kronecker symbol (δij = 1 if i = j and δij = 0 otherwise). The

strain rate tensor is calculated as
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Sij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.4)

Substituting Eqs. (2.3) and (2.4) into Eq. (2.2), the final equation of momentum

conservation reads

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µδij

∂uk
∂xk

]
− ∂p

∂xi
+ ρgi. (2.5)

2.1.1.3 Conservation of Scalar Quantities

In the differential form, the generic conservation of a scalar quantity, φ, is

∂

∂t
(ρφ) +

∂

∂xj
(ρujφ) = −

∂Jφ,j
∂xj

+ qφ, (2.6)

with the terms from left to right representing temporal change, convection, diffusive trans-

port and the production/destruction of scalar, qφ. In turbulent reacting flow, scalars of

interest comprise reactive species and enthalpy.

Conservation of Species

In the species transport equation, the term Jφ,j may include diffusion due to

concentration (Fickian), pressure and temperature gradients. However, most of these

effects are assumed to be negligible at high Reynolds number Re (Eq. (2.14)), since

turbulent diffusion (mixing) is dominant and only Fickian diffusion is retained. For the

species α the diffusion, Jα,j , can be described by Fick’s law as

Jα,j = −ρDα
∂Yα
∂xj

, (2.7)

where Dα is the molecular diffusivity of species α which is related to viscosity through the

Schmidt number Scα = µ/ρDα. From the definition, the Schmidt number can be seen as

a non-dimensional quantity, representing the ratio of the rate of momentum transfer to

the rate of mass transfer. Here, Dα is assumed to be equal for all species, Dα = D. As a
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result, the conservation of mass fraction for species α can be written as

∂

∂t
(ρYα) +

∂

∂xj
(ρujYα) =

∂

∂xj

(
ρD

∂Yα
∂xj

)
+ wα, (2.8)

where Yα is the mass fraction of species α and wα presents the reaction source term of

species α.

Conservation of Energy

An energy transport equation can be expressed in terms of enthalpy h (i.e. h ≡ u +
p
ρ , where u is the internal energy) as

∂

∂t
(ρh) +

∂

∂xj
(ρujh) =

Dp

Dt
− ∂qj
∂xj

+ τij
∂ui
∂xj

+ qR. (2.9)

For incompressible flows, low-speed flows are assumed so that acoustic interactions

are negligible. The first term on the RHS denotes the convective derivative of pressure,
Dp
Dt = ∂p

∂t + uj
∂p
∂xj

. The second term on the RHS is the gradient of heat flux vector. The

third term on the RHS is the viscous heating which is generally smaller than other terms

and has thus been neglected. The last term on the RHS, qR, denotes the radiative thermal

flux. Subsequently, the conservation equation for the enthalpy becomes

∂

∂t
(ρh) +

∂

∂xj
(ρujh) =

Dp

Dt
− ∂qj
∂xj

+ qR, (2.10)

In a multi-component system, the heat flux vector, qj , is expressed in terms of heat

conduction, qcj and inter-diffusion of heat between species, qdj .

qj = qcj + qdj = −κ ∂T
∂xj
− µ

Sc

∑
α

hα
Yα
xj
, (2.11)

where κ is the thermal conductivity of the mixture, Sc is the Schmidt number (Sc = µ/ρD)

and hα is the absolute enthalpy of species α (i.e. the sensible enthalpy plus standard

enthalpy of formation [14]). When the temperature gradient is converted to an enthalpy

gradient ( ∂h∂xj = Cp
∂T
∂xj

+
∑

α hα
Yα
xj

, where Cp is the mixture specific heat capacity), the

heat flux vector is
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qj = − µ

Pr

∂h

∂xj
− µ

(
1
Sc
− 1
Pr

)∑
α

hα
Yα
xj
, (2.12)

where Pr is the Prandtl number, representing the ratio of the rate of momentum transfer

to the rate of thermal energy transfer Pr = Cpµ/κ. Substituting Eq. (2.12) into Eq. (2.10),

the energy transport equation can be expressed as

∂

∂t
(ρh)+

∂

∂xj
(ρujh) =

Dp

Dt
+

∂

∂xj

(
µ

Pr

∂h

∂xj

)
− ∂

∂xj

(
µ

(
1
Pr
− 1
Sc

)∑
α

hα
Yα
xj

)
+qR. (2.13)

Within this study, the domain is open to the atmosphere and thus, pressure can be

considered as constant. Consequently, the term Dp
Dt is neglected. If the Lewis number,

Le = Sc/Pr, is assumed to be unity (κ/Cp = ρD), all species and energy are assumed to

diffuse at the same rate. Therefore, the third term on the right-hand side of Eq. (2.13)

can be omitted.

2.1.2 Fundamentals of Turbulence

The governing equations introduced in section 2.1.1 are known to be valid for both laminar

and turbulent fluid flows. In reality, the flow in most practical combustion devices is

turbulent [103]. This section introduces some basic concepts of turbulent flows.

2.1.2.1 Definition of Turbulence

The nature of turbulence is characterised by irregularity, diffusivity, vorticity fluctuations,

dissipation and large Reynolds numbers [97]. Turbulence has an important influence on

the transport and fluid mixing which are much more effective than in a laminar flow [82].

In his pipe-flow experiments (dye is steadily injected on the centerline of a long pipe in

which water is flowing), Osborne Reynolds (1883) characterized the flow by a dimensionless

parameter, known as Reynolds number Re. The number is defined as

Re =
UL

ν
, (2.14)
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where U and L are the characteristic velocity and length scales of the flow and ν is the

kinematic viscosity, ν = µ/ρ. At large Re, turbulence is generated from the instabilities

of laminar flows. During experiments, a pipe flow is turbulent if its Re is more than 2300

(for a pipe flow, U is an average velocity over the pipe cross section and L is the diameter

of the pipe).

According to its random unsteadiness associated with the flow properties, a turbulent

flowfield can be characterized in terms of mean and fluctuating quantities [103]

φ(t) = φ+ φ′(t), (2.15)

where φ is any flow property, such as velocity or pressure in Eq. (2.15). φ is a mean

property defined by taking a time-average of the flow properties over a sufficiently large

time interval. The fluctuation φ′(t) is the difference between instantaneous and mean

value of that property. This method is known as the Reynolds decomposition and forms

the basis of the Reynolds averaged Navier Stokes (RANS) approaches described in section

2.1.3.3. Moreover, in large eddy simulation (LES), this mean value can be defined as a

spatial average, outlined in Chapter 3. To understand the structure of turbulent flows,

some important length scales are introduced in the following sub-section.

2.1.2.2 Length Scales in Turbulent Flows

Four principal length scales characterising turbulent flows can be defined. In decreasing

order of magnitude, these are the characteristic width of the flow or macroscale L, integral

scale or turbulence macroscale `0, Taylor microscale `λ and Kolmogorov (micro)scale `K .

Since L is used to define Re based on mean flow velocity as Eq. (2.14), it rather represents

the geometry of the actual device than the turbulent structures. The Taylor microscale

may be used to characterise homogeneous isotropic turbulence, but is less relevant for

the focus of this thesis. The integral and Kolmogorov scales, `0 and `K , are however

fundamental to LES modelling which will be described in the following paragraphs.

Integral scale, `0: The physical definition of the integral scale is the mean size of the

large eddies in turbulent flows. Even though they are the same order of size, `0 is always

smaller than L. `0 can be defined as the spacing between narrow vortex tubes [96]. For
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isotropic turbulence, the integral scale is given by

`0 =

∞∫
0

Rx(r)dr, (2.16)

where Rx(r) is the correlation coefficient which is a normalized value of velocity fluctuation

between two points having coherent structures (vortices). Rx(r) takes values between -1

and 1 and describes the average relation of the velocity between two positions, having

distance r [14]. Rx(r) is given by

Rx(r) ≡ u′x(0)u′x(r)

u′2
, (2.17)

where u′ is the velocity fluctuation and u′2 does not change with time for stationary

turbulence. If u0 is the integral velocity scale, u0 can be defined in terms of the value of

the velocity fluctuation around the mean for a three-dimensional velocity field as

3
2
u2

0 =
1
2

(u′21 + u′22 + u′23 )

u0 =

√
2k
3
, (2.18)

where k is the turbulent kinetic energy.

Energy cascade: The concept of the energy cascade is attributed to Richardson [85].

His notion is that the large scales of turbulent motion are unstable and subsequently break

up to form ever smaller vortices. Therefore, energy of the large scales is transferred to

smaller scales, until the energy is dissipated into heat at the smallest scales as schematically

seen in Fig. 2.1. The energy transfer (or dissipation) rate is independent of viscosity and

can be defined as:

ε ≡ u3
0

`0
. (2.19)
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The energy cascade is best illustrated by a plot of turbulence energy as a function of

wave number (an inverse measure of length scale) as in Fig. 2.2.

l0
 lk

 

Energy-containing 

range 

Inertial subrange Dissipation range 

L LDI LEI 

Dissipation  Production 

Transfer of energy to 

successively smaller 

scales 

 

Figure 2.1: A schematic diagram [82] of energy cascade with eddy sizes ` (on a
logarithmic scale) at very high Reynolds number, illustrating various length scales
and ranges. `DI ≈ 60`K and `EI = 1

6
`0.

Kolmogorov Scale, `K: The Kolmogorov scale is the smallest length scale of

turbulent flow. It represents the dimension at which the kinetic energy dissipates into

internal energy (heat) by viscosity. The Kolmogorov scale, `K can be presented by the

rate of dissipation of kinetic energy per unit mass, ε as

`K ≡
(
ν3

ε

) 1
4

, (2.20)

where ν is the molecular kinematic viscosity.

The Kolmogorov velocity and time scales, for the smallest velocity and time, can be

defined as

uK ≡ (νε)
1
4 . (2.21)
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tK =
`K
uK
≡
(
ν

ε

) 1
2

. (2.22)

2.1.3 Numerical Modelling of Turbulent Flows

According to Bardina et al. (1980), the dominant approaches for the modelling of turbulent

flows can be classified into six categories [26]. However, three major simulation approaches

are DNS, LES and RANS. Fundamentals of these methods are introduced briefly in this

section. A more detailed description of LES, used in this research, will be presented in

Chapter 3.

log E(k) 
Modelled in RANS 

Computed in DNS 

Computed in LES Modelled in LES 

log k kc 

 

Figure 2.2: A turbulence energy spectrum plotted as a function of wave number [80].
The ranges of wave numbers (inversely proportional to the length scales) relevant
for RANS, LES and DNS are indicated. kc is the cut-off wave number used in LES.

2.1.3.1 Direct Numerical Simulation, DNS

DNS is the most accurate approach for turbulence simulation. The Navier-Stokes

equations are discretized and solved directly without involving any modelling (as indicated

in Fig. 2.2). However, since DNS requires the resolution of all relevant flow scales down

to the Kolmogorov scale, very fine grids and time steps are necessary. According to

Eqs. (2.19) and (2.20), the number of grid points for DNS, NDNS , can be estimated as
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NDNS ∼
(
`0
`K

)3

≈
(
`30ε

3
4

ν
9
4

)
≈
(
`

9
4
0 u

9
4
0

ν
9
4

)
= Re

9
4
0 , (2.23)

where Re0 is the integral scale Reynolds number. As NDNS scales with Re
9
4
0 , the high

processing speed machines which have enough storage are required for DNS. Therefore,

DNS is currently limited to moderate Reynolds number flows. Even though the results

of a DNS provide more detailed information than other methods, it is too expensive to

use as a design methodology. For this reason, DNS is currently restricted to research

environments.

2.1.3.2 Large Eddy Simulation, LES

In section 2.1.2.2, the concept of turbulent flows, comprising a range of different length

and time scales, was introduced. In turbulent flows, the large scale (integral) turbulent

motions, which depend on the nature of the flow and its boundaries, contain the

major contribution to the statistics of mass, momentum, mixture fraction and species

concentration. Based on this concept, the large scales are treated explicitly by applying a

low-pass filter to the Navier-Stokes equation, while the effect of small scales are modelled

in the LES approach as shown in Fig. 2.2. Therefore, computational costs are reduced

using LES instead of DNS methods. Compared with other simulation methods, LES is an

appropriate intermediate approach between DNS and RANS in terms of computational

costs and the accuracy of simulation results. Since the LES method resolves large

scales of turbulent motion, it provides more accurate results than RANS. Moreover, the

computational power at the present time makes LES more attractive than DNS metho-

dologies. Because of these reasons, LES is hoped to be applicable as a standard industry

tool in the near future.

2.1.3.3 Reynolds Averaged Navier Stokes Equations, RANS

The oldest computational approach, which is still widely used today, is named in honor

of Osborne Reynolds who first derived the decomposition method as shown in Eq. (2.15).

In the RANS methodology, turbulent flows are defined in terms of temporal mean and

statistical fluctuation using a decomposition method, as already discussed in the pre-
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vious section. Consequently, the averaged conservation equations represent the mean

properties and contain an unclosed term, the so-called Reynolds stress tensor which re-

quires turbulence modelling for closure. One of the most common closure models is the

k− ε model, developed by Jones and Launder, 1972 [35]. This means the whole turbulent

spectrum in RANS needs to be modelled. Therefore, the simulation results from RANS

contain much less detail than DNS. However, this method is suitable for a simulation

approach in industry, since results are produced with the lowest computational demand

compared with other comparative techniques.

2.2 Non-Premixed Combustion

In non-premixed combustion, fuel and oxidizer are injected separately. Turbulent mixing

(turbulent diffusion) and molecular diffusion transport reacting species into the flame

front where they can react. Therefore, this type of flame is also known as diffusion flame.

The flame front of non-premixed flames is located where fuel and oxidizer form a near-

stoichiometric mixture. In order to understand this flame, a fundamental concept of

chemical reaction kinetics will be explained first in this section. Subsequently, the concept

of a conserved scalar (mixture fraction) will be introduced to solve the problem of mixing

and turbulence chemistry interaction. Finally, an overview of turbulent combustion models

will be discussed.

2.2.1 Chemical Reaction Kinetics

Consider a global reaction mechanism where the reaction of υF moles of fuel (F ) and υO

moles of oxidizer (O) produces υP moles of products (P ):

υFF + υOO → υPP. (2.24)

In reality, the global reaction (Eq. (2.24)) does not occur but rather a sequence of

elementary reactions, which can be classified into four types of radical chain reactions.

According to [108], these four types are:
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1. chain initiation reaction (reactive species, radicals, are produced by stable species)

2. chain propagation (radicals react with stable species to form other radicals)

3. chain branching (radicals react with stable species to form more radicals)

4. chain termination (radicals react to stable species).

The collection of elementary reactions, so called detailed reaction mechanism, is necessary

to accurately describe the combustion process. The elementary reactions can be written

in their general form as

N∑
α=1

υ′αiXα ↔
N∑
α=1

υ′′αiXα for i = 1, 2, ..., L , (2.25)

where υ′αi and υ′′αi are stoichiometric coefficients of reactant and products, respectively. i

denotes the number of chemical reactions for species α. The reaction rate, <i, for the ith

elementary reaction is

<i = kfi

N∏
α

[cα]υ
′
αi − kri

N∏
α

[cα]υ
′′
αi , (2.26)

where kfi and kri represent the rate coefficients of forward and reverse reactions. The

species concentration, cα, can be calculated from cα = ρYα
Wα

, where Wα is the molecular

weight. If the temperature range of interest is not too wide, the rate coefficient is expressed

by the Arrhenius law as

kfi = AfiT
βexp

(
−Ea,i
RuT

)
. (2.27)

A denotes the pre-exponential factor, β is the empirical parameter, Ea,i is the

activation energy and Ru is the universal gas constant (8.314 J
Kmol ). Using previous

equations, the reaction source term, wα, from Eq. (2.8) can be written as

wα = Wα

L∑
i=1

(υ′′αi − υ′αi)<i. (2.28)

However, even RANS or LES cannot solve for the mean or filtered species transport
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equation since the average reaction source term is non-linear. This can be seen by consider-

ing the Zel′dovich NO (N2 + O = NO + N) reaction. The reaction source term can be

written as

w ∝ AT βexp
(
−Ea
RuT

)
YN2YO. (2.29)

Applying the decomposition method, Eq. (2.15), to temperature and species in

Eq. (2.29), and using a Taylor expansion, the average source term in second-order terms

is given by

w ∝ AT βexp
(
−Ta
T

)
Y N2Y O

{
1 +

Y ′N2
Y ′O

Y N2Y O

+
(
β +

Ta

T

)(
Y ′N2

T ′

Y N2T
+
Y ′OT

′

Y OT

)
+

1
2

[
β(β − 1) +

2(β − 1)Ta
T

+
T 2
a

T 2

]
T ′2

T
2 + ...

}
,(2.30)

where Ta = Ea/Ru. Equation (2.30) shows that the turbulent correlation terms are

unclosed. Moreover, the fluctuating quantities can become as large as a term including

only the average quantities [47]. These errors cannot be ignored. Hence, a combustion

model is required for turbulent reacting flows.

2.2.2 Mixture Fraction

Mixture fraction is an important quantity in turbulent non-premixed combustion

modelling. If equal diffusivity is assumed for all species, the non-premixed combustion

problem can be reduced to a pure mixing problem. Mixing of fuel and oxidizer can be

described by a conserved scalar called mixture fraction which is defined as

ξ =
mass of material having origin in the fuel stream

mass of mixture
(2.31)

For two stream mixing, ξ is unity in the fuel stream and zero in the oxidizer stream.

Within the flow field, the mixture fraction of element i (i = H, C or O) is given as the

normalized mass fraction of this element,



20 2. Background

ξi =
Zi − Zi,2
Zi,1 − Zi,2

, (2.32)

where Zi is an element mass fraction of an element i, which denotes the ratio of the

mass of an element i to the total mass. Subscripts 1 and 2 are applied for the species

concentrations in the fuel and oxidizer respectively. For a general case of hydrocarbon

fuel CmHn with air (where nitrogen is assumed as an inert gas), the global reaction can

be written as

v′FCmHn + v′O2
O2 → v′′CO2

CO2 + v′′H2OH2O. (2.33)

Mixture fraction of Eq. (2.33) is defined according to Bilger [7] as

ξ =

ZC
mWC

+ ZH
nWH

+ 2YO2,2
−ZO

v′O2
WO2

ZC,1
mWC

+ ZH,1
nWH

+ 2 YO2,2

v′O2
WO2

, (2.34)

where Wi is the molecular weight of an element i.

Since it is assumed that diffusivities are equal, the mixture fraction is independent on

the choice of species i. The conservation equation of mixture fraction does not contain a

reaction source term and is written as

∂

∂t
(ρξ) +

∂

∂xj
(ρUjξ) =

∂

∂xj

(
ρD

∂ξ

∂xj

)
, (2.35)

where D is the molecular diffusivity, which is assumed equal for all species.

2.2.3 Model Overview

For non-premixed flames, combustion normally occurs at length and time scales smaller

than the Kolmogorov scales in which, given the computational capabilities of modern

computers, cannot be resolved for high Re and practical devices. Thus, an averaging

process is commonly applied to the governing equations in order to generate an equivalent

set of equations that is governed by fewer scales. Then combustion modelling is required
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for the closure of the averaged reaction rate that appears as an unclosed term in the

averaged equations. Combustion models can be grouped into two main categories, fast

chemistry and finite rate chemistry, depending on the assumptions of the relation between

chemical and turbulent time scales. For the fast chemistry model, the chemical time scales

are assumed to be shorter than all other flow characteristic times. Therefore, the reaction

rate is associated directly to the turbulent mixing rate. Since fast chemistry is simple

and convenient for numerical calculations, many combustion models are based on it, for

instance, the equilibrium model and the eddy dissipation model (EDM) [58]. However, in

many combustion phenomena, turbulent time scales vary considerably and can be shorter

than the chemical time scales. Thus, the former assumption has become invalid. The finite

rate chemistry models are introduced to overcome this deficiency. In the next section, some

key features of both groups of chemistry models will be addressed (more details can be

found in Peters [73] and Warnatz [108]).

2.2.3.1 Fast Chemistry Combustion Models

Burke-Schumann Analysis

One of the first modelling approaches for non-premixed combustion is the Burke-Schumann

flame-sheet approach [13]. This is based on an irreversible one step global reaction (i.e.

intermediates are not considered). Since this model is based on infinitely fast chemistry,

fuel and oxidizer cannot be found together. An infinitely-thin flame sheet can be found at

the stoichiometric mixture fraction, ξst, where reaction takes place (products reach their

maximum value and there is no fuel or oxidizer). Outside of this thin sheet, the species

mass fractions, temperature and fluid properties are piecewise linear functions of mixture

fraction.

Equilibrium Chemistry Approach

The equilibrium model is an extension of the Burke-Schumann approach which allows

reversible reactions to occur. Therefore, fuel, oxidizer and products can be co-existing.

Species concentrations and temperature at equilibrium are calculated a priori and stored

as a function of mixture fraction which is calculated by a moment solver. More details of

this approach can be found in Warnatz et al. [108] (theory) and Forkel [27, 38] presents

some successful applications of LES with this model.
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The equilibrium solution is a suitable approach if predictions are required with

minimum computational time. However, with real flames, the influence of fluid mechanics,

such as fluid strain, needs to be considered because the fluid strain may cause flame

extinction, which cannot be predicted by the equilibrium model. Furthermore, soot

(existing in non-equilibrium state) cannot be predicted and other pollutants may be

predicted incorrectly. Therefore, even under conditions where the temperature is close

to the equilibrium, finite rate chemistry may govern pollutant concentration and has to

be considered in the modelling process.

2.2.3.2 Finite Rate Chemistry Combustion Models

In reality, non-premixed flames can be predicted by the equilibrium model but some species

are not in the equilibrium state. Some chemical reactions might occur in non-equilibrium

state, e.g. close to the burner nozzle. Moreover, flame stretch, resulting from fluid strain,

needs to be considered especially for non-premixed combustion where the mixing time scale

can be shorter than the chemical reaction time scale. Three main combustion models based

on finite rate chemistry are the laminar flamelet model (LFM), the conditional moment

closure (CMC) model and the transported probability density function (PDF) method.

The first two models are based on the additional assumption that fluctuations of the

species can be associated with the fluctuations of mixture fraction (see section 2.2.2). For

this reason, LFM and CMC models are also known as conserved scalar approaches. Brief

descriptions of the LFM model and the PDF method are given in the following paragraphs,

while the CMC model will be separately explained in Chapter 4.

Laminar Flamelet Model

The laminar flamelet model is based on the assumption that a turbulent flame can be

described as an ensemble of stretched laminar flames, which are called flamelets. If the

chemical time scales are assumed to be short enough (Da >> 1, where Damköhler number,

Da, is the ratio of flow times to chemical times), reactions occur in a thin surface near

the stoichiometric mixture fraction, ξ = ξst, at a scale smaller than the smallest scales of

turbulence (Kolmogorov scales). Turbulent eddies do not enter into this thin area (only

controlling the flame at a large scale) and then the instantaneous structure of the reacting

zone can be considered as laminar.
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Proposed by Peters [72], the laminar flamelet equation is given for unity Lewis number

as

ρ
∂Yα
∂t

= ρN
∂2Yα
∂ξ2

+ wα. (2.36)

The fluid strain is included in the model through the term known as the scalar

dissipation rate, N . This scalar dissipation rate is equal to D|5ξ|2, where D is the

molecular diffusivity (D = µ/ρSc). It can be seen from the form of the above equation

that the scalar dissipation rate represent the effects of diffusivity and fluid strain on the

mixture fraction field [73]. If the scalar dissipation rate is high, a thin flame will be found

due to stretching by turbulent strain. On the other hand, the thicker flame can be found

for lower scalar dissipation rates. Therefore, the effect of finite rate chemistry is consi-

dered via this parameter. For steady flames, the transient term can be omitted and the

stationary laminar flamelet model (SLFM) equation is expressed as

ρN
∂2Yα
∂ξ2

+ wα = 0. (2.37)

Normally, a library of species mass fractions Yα can be pre-calculated and stored as a

function of ξ and N so that Yα = Yα(ξ,N). The average mass fraction in physical space

of each species can be obtained by convolution of Yα(ξ,N) with the joint PDF of ξ and

N (the joint PDF and its shape will be outlined in section 4.4.1) as

Ỹα =
∫ 1

0

∫ ∞
0

Yα(ξ,N)P̃ (ξ,N)dNdξ, (2.38)

where P̃ (ξ,N) is the joint PDF of ξ and N . Using a precomputed library makes the

laminar flamelet model (LFM) a computationally efficient and attractive model that has

been widely implemented for the computation of different turbulent diffusion flames [14].

In spite of the relative success of this methodology, issues arise in cases where the

reaction zones are not thin [8]. For the prediction of pollutants formation, where the

scalar dissipation is low, transient flamelet modelling is required.
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Transported PDF Method

In the transported PDF approach, the turbulence-chemistry interaction is modelled

by a transport equation for the joint PDF of the velocity and the reactive scalars. The

chemical source term is closed but since the PDF represents only one-point statistics,

models for the dissipation rate of scalars, the conditional velocity and the molecular mixing

term are required [14].

A transport equation of the joint PDF can be derived from the instantaneous

conservation equations of mass, momentum and scalars presented by Pope [82, 81]. The

major attraction of the transported PDF method is that chemistry (reaction source term)

can be treated exactly. Furthermore, the PDF transport equation is universally valid

for all types of turbulent combustion (premixed, non-premixed and partially premixed

combustion).

Due to its high dimensionality, the PDF transport equation is not solved directly,

but via a Monte-Carlo particle method (i.e. PDF is represented by a large number of

stochastic particles [108]). However, the numerical solution is computationally expensive

since large numbers of particles are necessary in order to reduce statistical errors [14].

Recently, a stochastic field method which approximates the PDF by solving an Eulerian

transport equations for stochastic entities (fields) becomes more popular (Valino [104],

Soularda [91], Garmory [30] and Mustata [64]).



Chapter 3

The LES Method

Pioneering simulations on LES were introduced by Smagorinsky [90] and Lilly [55]) with

motivation of meteorological applications. Later on LES was applied to turbulent channel

flow by Deardorff [21], Schumann [89], Moin and Kim [63] and Piomelli [75] over the last

two decades [82]. Nowadays, LES approaches have been extended to a wide variety of flow

types. As explained in the previous chapter, the turbulent flow fields are separated into

large scales, containing most of the energy and controlling the dynamics of the turbulence,

and small scales. The large scales, which are larger than the computational mesh size,

are solved directly by applying spatial filters to the Navier-Stokes equations, whereas the

effects of small scales are modelled. In this chapter, spatial filtering and the governing

equations of large scales using Favre averaging will be addressed. Then the modelling of

the effects of the small scales will be discussed.

3.1 Spatial Filtering

Attributed to Leonard [53], the filtered value of any scalar f(x, t) is defined explicitly as

its convolution with a filter kernel G, according to

f(x, t) =
∫

Ω
G(x− x′; ∆)f(x′, t)dx′, (3.1)

where x−x′ is the distance between two points and ∆ is the filter width, which may vary

with the position. The integration is carried out over the entire flow domain Ω. The filter

25
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kernel G is a localized function which satisfies the normalization condition

∫
Ω
G(x− x′; ∆)dx′ = 1. (3.2)

Here, a box (or top-hat) filter has been employed which is defined in physical space as

G(x) = G(x1, x2, x3) =
{ 1/∆3 ; |xi| ≤ ∆/2, i = 1, 2, 3

0 ; otherwise.
(3.3)

In practical applications, filtering occurs implicitly by using the finite volume method

(FVM) as a discretisation technique for governing equations. The concept of FVM, di-

viding the domain into a number of cells, where the variables are located at the center

point of each cell, also completes the task of low-pass filtering. Therefore, the discretised

governing equations correspond to spatial filtering using an average grid size as a filter

width, ∆ = (∆X∆Y ∆Z)1/3. Based on the application of a spatial filter, the instantaneous

variable f(x, t) can be decomposed into its resolved f(x, t) and subgrid (unresolved) com-

ponent f ′(x, t) as:

f(x, t) = f(x, t) + f ′(x, t). (3.4)

The convolution of the instantaneous variable f(x, t) with a filter conforms to the

following rules:

af = af, (3.5)

f1 + f2 = f1 + f2, (3.6)

where a is a constant. Contrary to RANS simulation methods, the LES perturbation leads

to
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f ′ 6= 0, (3.7)

f 6= f, (3.8)

f1 · f2 6= f1 · f2, (3.9)

where Eq. (3.8) is valid in general cases. However, filtered and doubly filtered are equal

when a cut-off filter in the spectral space is used.

In turbulent flow, large density fluctuations may occur which cannot be neglected.

Using density-weighted or ”Favre” averages is a method to overcome this problem. The

Favre filtering is defined as

f̃(x, t) =
ρ(x, t)f(x, t)

ρ(x, t)
. (3.10)

Using Favre averages in the filtering equation (Eq. (3.1)), a mass-weighted Favre fil-

tering is

ρf̃(x, t) =
∫

Ω
G(x− x′; ∆)ρf(x′, t)dx′. (3.11)

Using Favre filtering, a flow variable f can be decomposed into

f(x, t) = f̃(x, t) + f ′(x, t), (3.12)

where f̃(x, t) represents the resolved filtered mean and f ′(x, t) also denotes the unresolved

component for a density-weighted filter.
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3.2 Filtered Governing Equations

3.2.1 Filtered Continuity Equation

Application of the Favre filtering operation to the mass conservation equation (Eq. (2.1))

leads to

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0, (3.13)

where ũj is the resolved velocity in the j direction.

3.2.2 Filtered Momentum Equation

The result of filtering of the conservation of momentum (Eq. (2.5)) yields

∂

∂t
(ρũi) +

∂

∂xj
(ρũiuj) =

∂

∂xj

[
µ

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− 2

3
µδij

∂ũk
∂xk

]
− ∂p

∂xi
+ ρgi, (3.14)

where p is the filtered pressure. Since the convective term is non-linear (ũiuj 6= ũiũj), the

filtering result of this term is closed by the addition of an unknown term called subgrid-

scale Reynolds stress, τ sgsij

ρũiuj = ρũiũj + τ sgsij . (3.15)

With the resolved rate of strain 1
2

(
∂ eui
∂xj

+ ∂fuj
∂xi

)
= S̃ij , the filtered momentum equation

can be rewritten as

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) =

∂

∂xj

[ fτij︷ ︸︸ ︷
2µS̃ij −

2
3
µδijS̃kk

]
−
∂τ sgsij

∂xj
− ∂p

∂xi
+ ρgi, (3.16)

where the first term on the RHS denotes the resolved stress tensor, τ̃ij . In this equation, the

subgrid-scale Reynolds stress (also known as unresolved Reynolds stress), τ sgsij is unclosed
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and therefore, needs to be modelled, which will be discussed in section 3.3.

3.2.3 Filtered Species Transport Equation

For the LES of non-premixed combustion using the conserved scalar approach, an addi-

tional transport equation for mixture fraction (as discussed in section 2.2.2) needs to be

solved. The filtered transport equation for mixture fraction reads

∂

∂t
(ρξ̃) +

∂

∂xj
(ρũjξ) =

∂

∂xj

(
ρD

∂ξ̃

∂xj

)
. (3.17)

Applying the same method as for the filtered momentum equation, here the unknown

mixture fraction-velocity correlation, so called subgrid-scale scalar flux, Jsgsj , is given by

ρũjξ = ρũj ξ̃ + Jsgsj . (3.18)

Consequently Eq. (3.17) can be rewritten as

∂

∂t
(ρξ̃) +

∂

∂xj
(ρũj ξ̃) =

∂

∂xj

(
ρD

∂ξ̃

∂xj

)
−
∂Jsgsj

∂xj
, (3.19)

where the subgrid-scale scalar flux appears in unclosed form and requires modelling.

3.3 Subgrid-scale Modelling

According to Fig. 2.2, the main part of the turbulent energy spectrum is resolved in LES

approach. However, the remaining subgrid-scale contribution needs to be modelled. There

are two models being addressed in this section to apply for subgrid-scale Reynolds stress

and subgrid-scale scalar flux.

3.3.1 Subgrid-scale Reynolds Stress Models

3.3.1.1 Smagorinsky Model

The most commonly used LES subgrid model was proposed by Smagorinsky [90]. This

is widely applied by researchers due to its simple formulation. This model uses the
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Boussinesq assumption (viscous, or Reynolds, stress is proportional to the strain rate

tensor as in Eq. (2.3)) which is classified into eddy viscosity models. The Smagorinsky

model is based on the idea that transport and dissipation are increased by the effects of

the subgrid-scale Reynolds stress. Since these phenomena are analogous to the effect of

viscosity in laminar flow [26], the Smagorinsky model represents the subgrid-scale stress

through the eddy viscosity, µt.

τ sgsij −
1
3
δijτ

sgs
kk = −2µt(S̃ij −

1
3
δijS̃kk), (3.20)

µt = ρ(Cs∆)2 ‖ S̃ ‖, (3.21)

where Cs denotes the Smagorinsky constant. ‖ S̃ ‖ is the Frobenius norm of the resolved

strain rate tensor
√

2S̃ijS̃ij . Using the Smagorinsky model (Eq. (3.20)), the closed form

of the filtered momentum equation is

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = 2

∂

∂xj

[
(µ+ µt)

(
S̃ij −

1
3
δijS̃kk

)]
− ∂p

∂xi
+ ρgi, (3.22)

The range of possible values for the Smagorinsky constant Cs is between 0.0065 and 0.2

[26] depending on the flow configuration. However, ”the Smagorinsky model has obviously

dissipative nature and it cannot account for the reverse energy transfer from the small

scales to the large scales” [22], so called backscatter at near-wall locations. Moreover,

the Smagorinsky model can produce a non-zero eddy viscosity, regardless of the flow type

(laminar or turbulent flow). To overcome these difficulties in the Smagorinsky model, a

dynamic model has been proposed in order to determine an appropriate local value of

the Smagorinsky coefficient. Following [82] and [80], the dynamic model will be explained

briefly in the next section.
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3.3.1.2 Dynamic Model

First proposed by Germano et al. [31], the dynamic model was further modified by Lilly

[56] and Piomelli and Liu [76] to estimate appropriate values for this constant, which is

applied in this work. The concept of the dynamic model is based on the scale similarity

assumption (i.e. the information contained in the smallest resolved scale motions may be

used for the largest subgrid-scale modelling). In the dynamic model, a test filter (denoted

by an over-hat) having a size ∆̂ larger than the LES filter width ∆ is introduced. It was

found that ∆̂ = 2∆ is an optimum value [31]. The subgrid-scale Reynolds stress, τ sgsij ,

based on an LES filtering operation is written as

τ sgsij = ρ(ũiuj − ũiũj). (3.23)

The subtest-scale stress, T sgsij , based on a test filtering operation for conservation of

momentum is

T sgsij = ρ̂(̂̃uiuj − ̂̃ui ̂̃uj). (3.24)

From the Smagorinsky model, both stress tensors, τ sgsij and T sgsij can be estimated as

τ sgsij −
1
3
δijτ

sgs
kk = −2ρ(Cs∆)2 ‖ S̃ ‖ (S̃ij −

1
3
δijS̃kk) = −2C2

sβij , (3.25)

T sgsij −
1
3
δijT

sgs
kk = −2ρ̂(Cs∆̂)2 ‖ ̂̃S ‖ (̂̃Sij − 1

3
δij
̂̃Skk) = −2C2

sαij , (3.26)

where β and α are introduced to simplify the notation. Applying a test filter to Eq. (3.23)

and subtracting the result from Eq. (3.24), the Germano identity, Lij , is

Lij = ρ̂(̂̃uiũj − ̂̃ui ̂̃uj) = T sgsij − τ̂
sgs
ij . (3.27)

Inserting Eqs. (3.25) and (3.26) into Eq. (3.27), the Germano identity can be rewritten

as
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Lij −
1
3
δijL

sgs
kk = 2(Ĉ2

sβij − C2
sαij), (3.28)

where the deviatoric part of Lij is Ldij ≡ Lij − 1
3δijL

sgs
kk and therefore the following expres-

sion leads to

Ldij = 2(Ĉ∗2s βij − C2
sαij), (3.29)

where the coefficient C∗2s is assumed to be known (this value can be estimated from various

methods, such as an extrapolated constant, C2
s , coming from a previous time step). In

the localized dynamic approach of Piomelli and Liu [76], the parameter C2
s is a function

of space and time. Applying the least square sense for Eq. (3.29) to minimize the residual

as suggested by Piomelli and Liu [76], the parameter C2
s determined by

C2
s (x, t) = −1

2
(Ldij − 2Ĉ∗2s βij)αij

α2
mn

, (3.30)

where αmnαmn is in wall-bounded flows which becomes small only where the numer-

ator vanishes. In order to avoid negative and very large Cs values (which may lead

to instability), clipping of the model parameter is applied in this work as C2
s =

max(min(C2
s , 1.5), 0.0).

3.3.2 Subgrid-scale Scalar Flux Model

The subgrid-scale scalar flux in Eq. (3.18) can be modelled by a gradient diffusion

assumption and written as

Jsgsj = −ρDt
∂ξ̃

∂xj
, (3.31)

where Dt is a turbulent diffusivity which can be expressed in a similar way as the molecular

diffusivity by using the turbulent viscosity, νt, and a turbulent Schmidt number, Sct,

Dt =
νt
Sct

, (3.32)
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where the modelling of νt = µt/ρ can come from the Smagorinsky or dynamic model. For

gases, the Schmidt number is commonly assumed to be 0.7 and the turbulent Schmidt

number is recommended as 0.4 for LES [79]. However, the justification of both values is

included in parametric studies of this work and these results can be found in Chapter 6.

Inserting Eq. (3.31) into Eq. (3.19), the closed form of filtered transport equation for

mixture fraction can be obtained

∂

∂t
(ρξ̃) +

∂

∂xj
(ρŨj ξ̃) =

∂

∂xj

(
ρ(D +Dt)

∂ξ̃

∂xj

)
. (3.33)

3.4 Other Models

In order to perform CMC computations for combustion, some variables have to be esti-

mated or modelled from the LES variables. These variables are the subgrid-scale variance,

ξ̃′′2sgs (used to presume the filtered probability density function (FDF)) and the filtered

scalar dissipation (Ñ).

3.4.1 Variance of Mixture Fraction Model

To determine the presumed FDF for CMC (detailed in section 4.4.1), the filtered mixture

fraction and the subgrid-scale variance, ξ̃′′2sgs, are required. The subgrid variance can be

expressed by a gradient-type model as proposed by Pierce and Moin [74], based on the

assumption that the subgrid scale is in equilibrium and thus the production rate of ξ̃′′2sgs

should be equal to the subgrid-scale scalar dissipation rate, Ñsgs, as Ñsgs ∼ ξ̃′′2sgs ‖ S̃ ‖.

ξ̃′′2sgs = Cξ∆2

(
∂ξ̃

∂xj

∂ξ̃

∂xj

)
, (3.34)

where Cξ is a constant. Even though there is a calculation and calibration method

[11], a constant value of 0.2 (contributed to the procedure suggested by Branley [11]), is

adopted to be used in a parametric study of this work.
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3.4.2 Scalar Dissipation Model

Another variable required for CMC is the filtered scalar dissipation, Ñ , which is composed

of two terms and modelled, as proposed by Pierce and Moin [74]

Ñ = Ñresolved + Ñsgs

=
(
ν

Sc
+

νt
Sct

)
∂ξ̃

∂xj

∂ξ̃

∂xj

=
(
ν

Sc

)
∂ξ̃

∂xj

∂ξ̃

∂xj
+
(
νt
Sct

cd
∆2

)
ξ̃′′2sgs, (3.35)

where cd is a constant number for the subgrid-scale scalar dissipation modelling and a

value of 11 is applied in this work. The turbulent viscosity, νt, can be obtained from the

Smagorinsky or the dynamic model as explained in the previous section.



Chapter 4

The CMC Model

The conditional moment closure (CMC) model will be described in more detail since it is

the combustion model of choice in this study. The CMC method was initially developed

independently by Klimenko [45] and Bilger [10] and later reviewed by them in a joint paper

[47]. Extensive studies have shown encouraging results when the method is coupled with

a RANS approach [16, 25, 86]. More recently, the CMC approach has been presented in

the LES framework as well. To the present day, the LES-CMC approach has been applied

to study Sandia Flame D [68], Sandia Flame F [29], bluff-body flames [65, 101, 102], lifted

flames [66, 67, 92, 93] and forced (or spark-) ignition [100]. Moreover, it has been validated

by DNS results for turbulent non-premixed combustion [41] and premixed compressible

flames [99].

The basic idea of the CMC model for non-premixed flames is the strong relation

between reactive species and the mixture fraction and thus fluctuations of the reactive

species in physical space can be connected to fluctuations of the same species in the

mixture fraction space [23]. Based on this approach, Qα denotes the conditionally filtered

species mass fraction, Ỹα, conditioned on mixture fraction ξ within sample space η defined

as

Qα = ˜(Yα|ξ = η) ≡ Ỹα | η. (4.1)

In this chapter, the conditional filtering is introduced first, followed by conditionally

filtered species transport equations (in both conservative and non-conservative formula-

35
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tions). The comparisons between both formulations and how the unclosed terms of the

equations are treated in the formulations will be discussed. Afterwards, the coupling of

the CMC model with the LES solver will be explained.

4.1 Conditional Filtering

Unlike RANS-CMC, which was derived by Bilger [47] using the decomposition method,

the LES-CMC derivation is based on the idea of a suitably-defined conditional filter in

order to ensure the consistency between the CMC equations and the filtered Navier-Stokes

equations solved in LES. Based on fine-grained PDF, ψη, which is a generalized function

[54], the conditional filtering procedure can be defined. The fine-grained PDF [28] is

ψη = δ[η − ξ(x, t)], (4.2)

where δ denotes a Dirac delta function and η is the sample space of mixture fraction ξ.

The properties of ψη can be defined by the convolution with a continuous function F (η)

which has to be smooth and decay to zero when η → ±∞ [68].

Using this ψη, the conditional filtering procedure for a scalar Φ was introduced by

Steiner and Bushe [94] as

Φ | η ≡
∫
V ΦψηG(x− x′; ∆)dV′

P (η)
, (4.3)

where the filtered probability density function (FDF) P (η) is given by [68]

P (η) ≡
∫
V
ψηG(x− x′; ∆)dV′. (4.4)

In the above equations the filtering process is performed through the G function,

Eq. (3.1), over a filter width ∆. V is the volume of the whole computational domain.

The relation between the unconditionally filtered and conditionally filtered scalar can

be defined by using P (η) as
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Φ =
∫ 1

0
Φ | η P (η)dη. (4.5)

For variable density flows, the Favre filtered probability density function is defined by

P̃ (η) ≡ 1
ρ

∫
V
ρψηG(x− x′; ∆)dV′. (4.6)

Furthermore, the application of Favre filtering for the scalar (i.e. ρηΦ̃η = ρΦ|η, where

tilde presents Favre filtering) is required so that the Favre conditional filtering procedure

for the scalar Φ (in any LES grid) can be rewritten as [18]

Φ̃ | η ≡
∫
V ρΦψηG(x− x′; ∆)dV′∫
V ρψηG(x− x′; ∆)dV′

. (4.7)

The unconditional Favre filtered value of the scalar Φ can be calculated as

Φ̃ =
∫ 1

0
Φ̃ηP̃ (η)dη, (4.8)

where Φ̃η ≡ Φ̃ | η.

4.2 Non-Conservative CMC Formulation

According to Navarro et al. [68], three assumptions for deriving the LES-CMC equations

are required which are:

1. High Reynolds number assumptions that are consistent with the primary closure

assumption in the LES context (details in [68, 47])

2. Unity Lewis numbers (that guarantee equal diffusivities)

3. Brownian motion of diffusion in scalar space.

The traditional equations of CMC appear in non-conservative form then the non-

conservative CMC species transport equation originated from the transport equation for

fine-grained PDF and for ψYi [68] can be written as
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γ
∂Qα
∂t

+ γũj,η
∂Qα
∂xj

= γw̃α,η + γÑη
∂2Qα
∂η2

+ γey, (4.9)

or as

∂Qα
∂t

+ ũj,η
∂Qα
∂xj

= w̃α,η + Ñη
∂2Qα
∂η2

+ ey, (4.10)

where γ denotes ρηP̃ (η) and P̃ (η) is detailed in section 4.4.1. Qα = Ỹα | η is the

conditionally filtered species mass fraction. ũη is the conditionally filtered velocity, w̃α,η is

the conditionally filtered reaction source term and Ñη is the conditionally filtered scalar

dissipation rate. The term ey accounts for the fluctuations around the conditional mean

of the convective part and thus it is given as

ey = −1
γ

∂

∂xj

[
γ( ˜(ujYα)|η − ũj,ηQα)

]
, (4.11)

where ey is the sub-grid scale conditional flux. The non-conservative conditional enthalpy

equation is

∂Qh
∂t

+ ũj,η
∂Qh
∂xj

= w̃R,η + Ñη
∂2Qh
∂η2

+ eh, (4.12)

where Qh = h̃ | η is the conditional enthalpy and w̃R,η is the conditionally filtered radiation

term (heat loss due to radiation). The sub-grid scale conditional flux of enthalpy eh is

eh = −1
γ

∂

∂xj

[
γ( ˜(ujh)|η − ũj,ηQh)

]
. (4.13)

The sub-grid scale conditional fluxes of both CMC formulations (ey and eh from

Eqs. (4.10) and (4.12)) are modelled by a gradient type approach which gives

ey =
1
γ

∂

∂xj

(
γDη

∂Qα
∂xj

)
, (4.14)
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and

eh =
1
γ

∂

∂xj

(
γDη

∂Qh
∂xj

)
, (4.15)

where Dη is a conditional turbulent diffusivity (details in section 4.4.5) which is assumed

to be equal for all species.

4.3 Conservative CMC Formulation

The idea of the conservative conditional species transport equations was suggested by

Cleary [16], and details regarding the derivation of the conservative CMC equation can

be found in appendix A. This originated by combining the FDF transport equation and

the conditional species transport equation. The conditionally filtered species transport

equation reads:

γ
∂Qα
∂t

+
∂

∂xj
(γũj,ηQα) = γw̃α,η + γÑη

∂2Qα
∂η2

+Qα
∂

∂xj
(γũj,η) + γey. (4.16)

The first term on the LHS describes temporal changes of the conditionally filtered

species mass fraction Qα. The second term on the LHS and the third term on the RHS

represent convection of Qα. The other terms on the RHS account for the chemical reaction

and diffusion in mixture fraction space.

Using the same procedure, Klimenko and Bilger [47] suggested that the conditional

enthalpy equation can be expressed as

γ
∂Qh
∂t

+
∂

∂xj
(γũj,ηQh) = γw̃R,η + γÑη

∂2Qh
∂η2

+Qh
∂

∂xj
(γũj,η) + γeh, (4.17)

The difference of this form over a non-conservative example is the convective terms

(second term on the LHS and the third term on the RHS) in Eqs. (4.16) and (4.17) which

appear inside the divergence (i.e. convective terms are conserved). This leads to the usage

of FDF information, Eq. (4.18), to calculate the convective flux in each direction when
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the finite volume method (FVM) is applied for the spatial discretisation (section 5.1).

For example, if the fluid flow from a cell having high FDF to the adjacent cell having

low FDF, a high value of convective flux in the flow direction is calculated in the cell

having a low FDF value for the CMC conservative form. Consequently, the conservative

formulation requires a shorter time period to convect conditionally filtered mass fraction

of scalar quantities in that direction compared with the non-conservative formulation. The

opposite results will happen if the FDF ratio is smaller than one.

4.4 Closure

In the CMC context of the Filtered Density Function (FDF), the conditional reaction

source term (w̃η), the conditionally filtered scalar dissipation (Ñη), the conditionally

filtered velocity (ũj,η), and the conditional turbulent diffusivity (Dη) requires further

modelling, which will be described within this section.

4.4.1 Filtered Density Function

The unconditionally filtered values of the reactive scalars can be calculated by convolution

of the conditional averages with the FDF (see Eq. (4.8)) of mixture fraction. The FDF

can be either calculated from the solution of an extra transport equation for the FDF

or, as it is common practice in the CMC methodology, to presume its shape using two

parameters: the filtered mixture fraction, ξ̃, and modelling the subgrid-scale variance of

mixture fraction, ξ̃′′2sgs. According to Cook and Peters [19, 73], the shape of the subgrid-

scale PDF is close to a beta function. Thus, for the presumed FDF, the beta function

(β-function) is often applied and defined as

P̃ (η) =
ηα−1(1− η)β−1

B(α, β)
, (4.18)

where B is beta-function which can be defined in terms of Gamma function, Γ, [48] as

B(α, β) =
Γ(α)Γ(β)
Γ(α+ β)

, (4.19)
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and Γ is

Γ(x) =
∫ +∞

0
e−ηηx−1dη = (x− 1)!. (4.20)

The FDF parameters α and β are

α = ξ̃

(
ξ̃(1− ξ̃)
ξ̃′′2sgs

− 1
)

β =
α

ξ̃
− α. (4.21)

The shapes of the β-PDF which depend on two parameters α and β are illustrated in

Fig. 4.1, where x denotes the sample space of mixture fraction. The β-function is defined

only for 0 < η < 1 which is appropriate for the CMC methodology since it represents the

FDF of mixture fraction. Both boundaries are either zero or asymptotic to infinity.

Figure 4.1: Behaviour of the β-function for different sets of parameter α and β [109].
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4.4.2 First Order Closure of the Reaction Source Term

In general, the reaction source term is a function of the species mass fractions, Y1, Y2, ...Yn

and enthalpy, h, which can be written as wα = wα(Y, h), where Y ≡ (Y1, Y2, ..., Yn).

However, the relationship is non-linear and thus the filtered values of wα are not functions

of the filtered mass fractions and filtered enthalpy, i.e. w̃α(Y, h) 6= wα(Ỹ, h̃).

Nevertheless in the CMC model, the conditionally filtered mass fraction, Qα ≡ Ỹα|η,

provides more detailed characteristics of the reactive species than the unconditional filtered

value, Ỹα. The conditional fluctuations (i.e. Y ′′α = Yα − Qα) in the conditional reaction

source term may be neglected because these values are small (smaller than the uncondi-

tional fluctuations, i.e. Y ′α = Yα − Ỹα). From Eq. (2.29), the second-order accuracy of the

conditionally filtered reaction source term can be written as

w̃|η ∝ AQβT exp

(
−Ta
T

)
QN2QO

{
1 +

˜(Y ′′N2
Y ′′O |η)

QN2QO
+
(
β +

Ta
QT

)

∗
( ˜(Y ′′N2

T ′′|η)
QN2QT

+
˜(Y ′′OT ′′|η)
QOQT

)
+

1
2

[
β(β − 1) +

2(β − 1)Ta
QT

+
T 2
a

Q2
T

] ˜(T ′′2|η)
Q2
T

}
,

(4.22)

where QT ≡ T̃ |η. It can be seen from Eq. (4.22) that a first-order closure can be applied

if the conditional fluctuations of species mass fractions and temperature are small relative

to the square of their conditional means [47]. Thus, the first-order conditional chemical

source term can be calculated from the conditional averages of the scalars

w̃α,η = w̃α|η = wα(Q1, Q2, ...Qn, Qh), (4.23)

and the terms involving the conditional fluctuations are neglected.

4.4.3 Conditionally Filtered Scalar Dissipation

According to Navarro et al. [68], conditional scalar dissipation can be obtained by condi-

tioning the filtered scalar dissipation on the mixture fraction such as,
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Ñη = Ñ | η ≈ Ñ , (4.24)

where the term Ñ is modelled by using Eq. (3.35) and the conditionally filtered scalar

dissipation of a LES cell Ñη is considered to be equal to the unconditional value for the

whole mixture fraction space.

4.4.4 Conditionally Filtered Velocity

For RANS, Klimenko and Bilger [47] introduced a linear approximation for the conditional

expectation of velocity, which is given by

〈uj | η〉 = uj +
〈u′jξ′〉
〈ξ′′2〉

(η − 〈ξ〉), (4.25)

where the brackets 〈 〉 denote ensemble averaging. 〈u′jξ′〉 denotes the unconditional covari-

ance of turbulent flux in the j direction. However, this model has not been validated for

LES [100]. Following the ideas of section 4.4.3, a direct model for the conditional velocity

is not applied. Alternatively, the filtered values of the velocity from the LES grid are used

by conditioning the corresponding filtered value on the mixture fraction. This method

proposed by Navarro et al. [68] has been applied in this study as

ũj,η = ũj | η ≈ ũj . (4.26)

4.4.5 Conditional Turbulent Diffusivity

The conditional turbulent diffusivity, Dη, can be modelled using the turbulent diffusivity

value from LES. Cleary [17] has proposed the modelling of this term which considers

turbulent diffusivity to be the same value for the whole mixture fraction space as

Dη = Dt | η = Dt, (4.27)

where Dt is the turbulent diffusivity (as explained in section 3.3.2) and Eq. (4.27) is used

throughout this work.
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4.5 Implementation of the CMC Model

As discussed in Chapter 3, the in-house code LES-BOFFIN is used as the flow solver (solv-

ing for mass, momentum and mixture fraction equations), whereas the CMC code solves

for the reacting species and enthalpy. Based on Klimenko’s research [46], the gradients of

conditional scalars vary weakly in turbulent shear flows. The conditional scalars have a

weaker dependence on a coordinate in physical space (especially on the coordinate perpen-

dicular to the flow direction) than the unconditional scalars since the turbulence-chemistry

interactions are resolved in mixture fraction space [100]. Therefore, CMC grids can be

coarser than LES grids, ∆3
CMC >> ∆3

LES , and homogeneity (i.e. uniform quantities) of

conditional moments in a CMC cell is assumed. Since the CMC equations in sections 4.2

and 4.3 are defined for the LES resolution, the CMC equations and conditional values

based on the CMC resolution are required.

4.5.1 Conditionally Filtered Equations on the CMC

Resolution

A value of any fluid property (e.g. in sections 4.4.3, 4.4.4 and 4.4.5) in a CMC cell, Φ̃|η
∗
,

can be calculated from the integration of conditionally filtered average of the random

property Φ̃|η over the volume VCMC of a CMC cell as

Φ̃|η
∗

=

∫
VCMC

Φ̃|ηP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
, (4.28)

where (̃·)∗ indicates a Favre filtered property evaluated on a CMC cell and the volume

integrals are integrals over a CMC cell. P̃ (η) is the FDF of any η bin. Note that Φ̃|η
∗

is

calculated by the CMC code at the CMC resolution, while Φ̃|η and P̃ (η) are available at

the LES resolution. The FDF for the CMC resolution is computed as a volume average

of the FDF from LES cells within a CMC cell,

P̃ ∗(η) =

∫
VCMC

P̃ (η)dV ′∫
VCMC

dV ′
. (4.29)
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Non−Conservative CMC Formulation

The non-conservative CMC equation for the conditionally filtered species mass fraction

on the CMC resolution is

∂Q∗α
∂t

+ ũ∗j,η
∂Q∗α
∂xj

= w̃∗α,η + Ñ∗η
∂2Q∗α
∂η2

+ e∗y, (4.30)

where reaction rates w̃∗α,η are closed due to the first order CMC assumption (section 4.4.2).

The modelling of e∗y is given as

e∗y =
1
γ∗

∂

∂xj

(
γ∗D∗η

∂Q∗α
∂xj

)
. (4.31)

The term γ∗ in Eq. (4.31) denotes ρ∗ηP̃
∗(η) which is calculated as follows:

ρ∗ηP̃
∗(η) =

∫
VCMC

ρηP̃ (η)dV ′∫
VCMC

dV ′
, (4.32)

where ρη = ρ|η. The non-conservative CMC equation for the conditional enthalpy on the

CMC resolution is given in the same manner as

∂Q∗h
∂t

+ ũ∗j,η
∂Q∗h
∂xj

= w̃∗R,η + Ñ∗η
∂2Q∗h
∂η2

+ e∗h, (4.33)

where e∗h can be modelled as

e∗h =
1
γ∗

∂

∂xj

(
γ∗D∗η

∂Q∗h
∂xj

)
. (4.34)

Conservative CMC Formulation

The same concept of volume integration over the CMC cell, Eq. (4.28), is applied to

the conservative CMC formulation. Therefore, the conditionally filtered species transport

equation in conservative formulation solved on the CMC resolution reads:
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γ∗
∂Q∗α
∂t

+
∂

∂xj
(γ∗ũ∗j,ηQ

∗
α) = γ∗w̃∗α,η + γ∗Ñ∗η

∂2Q∗α
∂η2

+Q∗α
∂

∂xj
(γ∗ũ∗j,η) + γ∗e∗y. (4.35)

Subsequently, the conservative CMC formulation for conditionally filtered enthalpy

solved on the CMC resolution is

γ∗
∂Q∗h
∂t

+
∂

∂xj
(γ∗ũ∗j,ηQ

∗
h) = γ∗w̃∗R,η + γ∗Ñ∗η

∂2Q∗h
∂η2

+Q∗h
∂

∂xj
(γũ∗j,η) + γ∗e∗h. (4.36)

The comparisons of both CMC formulations (conservative and non-conservative for-

mulations, Eqs. (4.35) and (4.30)) are illustrated by OH concentrations in Fig. 4.2.
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Figure 4.2: Comparison of two different CMC implementations. LHS and RHS
pictures denote conservative and non-conservative CMC formulations, respectively.
Lower and upper pictures denote lower and upper cells nearby each other and the
fluid flows from lower to upper cells.
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In this figure, only one direction of the convection is considered, since fluid flows from

lower to upper CMC cells. Other physical aspects (diffusion and reaction) are neglected.

The lower CMC cell contains non-zero OH concentrations, while the upper CMC cell is

initialized with a zero OH distribution at the first time step. It should be noted that the

FDF of both cells are constructed to provide an example for possible differences between

the two implementations. Due to the large differences of the FDF between the lower and

upper cells, the high values of convective fluxes in the upper cell of CMC conservative form

are computed (Eqs. (5.19) and (5.28)) in every time step. Therefore, the conservative term

takes only 11 µs to convect the conditional scalar from the lower to the upper cells. On

the other hand, the non-conservative formulation (which does not use FDF information

to calculate convective flux) takes 84 µs for the convection of the conditional scalar from

the lower to the upper cells. Thus, the conservative formulation is considered to have a

dynamic response of the conditionally filtered reactive scalars to turbulent fluctuations.

Conditionally Filtered Scalar Dissipation on the CMC Resolution

To obtain the conditionally filtered scalar dissipation for a CMC cell Ñ∗η , the integra-

tion process in Eq. (4.28) of Ñη from each LES cell (Eq. (4.24)) located in a CMC cell is

given as

Ñ∗η =

∫
VCMC

Ñ |ηP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
,

=

∫
VCMC

Ñ P̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
. (4.37)

Conditionally Filtered Velocity on the CMC Resolution

As prescribed in section 4.4.4, the conditionally filtered velocity of each LES cell is con-

sidered to be constant in the mixture fraction space. Inserting Eq. (4.26) into Eq. (4.28),

the integration of the velocity for a single CMC cell is written as
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ũ∗j,η =

∫
VCMC

ũj |ηP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
,

=

∫
VCMC

ũjP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
. (4.38)

Conditionally Filtered Turbulent Diffusivity on the CMC Resolution

In this work, there are three methods used to model the conditionally filtered turbulent

diffusivity on the CMC resolution, D∗η. However, all of them are based on the Smagorinsky

model.

In the first method, D∗η is calculated based entirely on quantities from CMC cell (named

D∗η,1). D∗η,1 is given by

D∗η,1 = ν∗t /Sct, (4.39)

where ν∗t is the ‘CMC level’ viscosity [100]. This value is calculated using the Smagorinsky

model in the CMC resolution. The equation of ν∗t is

ν∗t = (Cs∆∗)2 ‖ S̃∗ ‖, (4.40)

where Cs is the Smagorinsky constant (Cs =0.1) and ∆∗ is a filter width of the CMC

grid which is equal to an average CMC grid size. The Frobenius norm of the integrated

characteristic strain rate for any CMC cell is written as

‖ S̃∗ ‖=
(

2S̃∗ijS̃
∗
ij

)1/2

. (4.41)

From the previous equation, the filtered rate-of-strain tensor of CMC resolution S̃∗ij is
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defined as

S̃∗ij =
1
2

(
∂ũ∗i,η

∂xj,CMC
+

∂ũ∗j,η
∂xi,CMC

)
, (4.42)

where, the integrated velocity fields for the CMC resolution, ũ∗i,η and ũ∗j,η are given by

Eq. (4.38).

In the second method, D∗η,2 is calculated based on Dt from every LES cell (Eq. (4.27))

which is located inside a CMC cell. The ensemble averaging over a CMC cell can be

computed by weighting with the FDF from Eq. (4.28). Thus, the numerical modelling of

this method is written as

D∗η,2 =

∫
VCMC

Dt|ηP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
,

=

∫
VCMC

DtP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
. (4.43)

In the third method D∗η,3, the ratio of the size of a CMC cell to any LES cell is included

into the second method in order to adjust the length scale during modelling the D∗η value.

This additional value is expected to provide higher accuracy for D∗η since the D∗η model

should be based on the filter width of the CMC cell rather than on the filter width of the

LES cell. The modelling of this method is

D∗η,3 =

∫
VCMC

∆ratioDtP̃ (η)dV ′∫
VCMC

P̃ (η)dV ′
, (4.44)

where ∆ratio is the ratio of filter widths between a CMC cell to each LES cell located

inside.
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Reaction models

In this study, the chemical kinetics library, CHEMKIN-II, mechanism interpreter (ver-

sion 3.1) and library (version 4.9) has been utilized as a software package for solving

complex chemical kinetics problems. The mechanism employed in this study is composed

of 4 elements, 29 species and 141 reactions [62]. Therefore, 35 equations need to be solved.

This is composed of 3 momentum equations, 1 pressure equation and 1 mixture fraction

equation on the LES grid and 29 species, as well as an enthalpy equation on the coarse

CMC grid (compared with LES grid size). The radiation model for conditionally filtered

enthalpy equations follows the thin flames radiation model from the TNF workshop [2].

Transfer of scalars to the LES Resolution

The unconditionally filtered property on the fine LES grid can be computed from the

interpolation of conditionally filtered property on the CMC grid and then integreated

following the process

Φ̃ =
∫ 1

0
Φ̃|ηP̃ (η)dη. (4.45)

4.5.2 Relations between LES and CMC Codes

In order to couple both solvers, some variables are needed to be exchanged between them.

The communication procedure of the two codes is schematically presented in Fig. 4.3 in

which a loop over a time step can be separated into four parts.

The first part is an LES solver. The information of the flow and mixing field such as

velocity, scalar dissipation rate, turbulent diffusivity, mixture fraction and subgrid-scale

variance of mixture fraction are calculated in this part. The subgrid-scale variance, ξ̃′′2sgs,

is modelled based on the assumption that the subgrid scale is in ’equilibrium’ and thus

the production rate of ξ̃′′2sgs should be equal to the subgrid-scale scalar dissipation rate,

Ñsgs, Eq. (3.35). These quantities are solved (or modelled as in the case of subgrid-scale

variance, Eq. (3.34)) on the fine spatial LES grid (four dimensions in total accounting for

the three spatial coordinates and time), and then passed onto the second part which is

the intermediate part between the LES and the CMC solvers.

In the second part, the conditionally filtered values of scalar dissipation, velocity
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Figure 4.3: Schematic of the coupling of the LES and CMC codes.

and turbulent diffusivity are modelled as described in Eqs. (4.24), (4.26) and (4.27),

respectively.

The third part denotes a CMC solver. In this part, the assumption of homogeneity of

the conditional moments in a CMC cell allows any conditional property of each CMC cell

to be calculated from the averaging of that conditionally filtered property from LES cells

inside a CMC cell, Eq. (4.28). The presumed filtered density function (FDF) of any LES

cell, P̃ (η), is calculated with the assumption of a β-function for the shape of the FDF and

calculation of α and β parameters based on the resolved mixture fraction and subgrid-

scale variance, Eq. (4.21). The value of the FDF on the CMC resolution is calculated

as a volume average of P̃ (η) from the LES cells inside a CMC cell, Eq. (4.29). The

conditionally filtered properties on the CMC resolution are modelled using Eqs. (4.37),

(4.38) and (4.39) - (4.44) for the conditionally filtered scalar dissipation, velocity and

turbulent diffusivity, respectively. Moreover, an FDF table which contains the relations of

FDF values, mixture fractions and subgrid-scale variances using Eq. (4.18) is created and

stored at the first CMC iteration to reduce the computation time for the fourth part. In

the CMC procedure, five dimensions (three spatial coordinates, time and mixture fraction)
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are considered. As a result, the conditionally filtered species mass fractions and enthalpy

are computed. The conditionally filtered temperature is computed from the conditionally

filtered enthalpy, i.e. Q∗h =
∫ eT ∗η
T0

Cp,mixdTη +
∑

α ∆h◦f,αQ
∗
α, where ∆h◦f,α is the standard

enthalpy of formation of species α. Consequently, conditional temperature, viscosity and

density are updated. Note that the conditional density is computed from the conditional

temperature through the ideal gas equation of the state, i.e. ρ∗η = PM̃∗|η/RuT̃ ∗η ), where

M is the mixture molecular weight and Ru is the universal gas constant.

Finally for the fourth part, the CMC results (Q∗α, T̃ ∗η and ρ∗η) are interpolated to

each LES cell and this conditional results (Qα, T̃η and ρη) need to be integrated with the

presumed FDF (from the FDF table) over η-space in order to calculate the unconditionally

filtered values (Eq. (4.45)), which are fed back to the LES solver. Furthermore, the

updated quantities of unconditionally filtered viscosity and density from the CMC solver,

using Eq. (4.45), are used in the LES solver in the next time step.



Chapter 5

Numerical Methods

The LES program, BOundary Fitted Flow INtegrator (BOFFIN), is used throughout to

solve the filtered Navier-Stokes equations. BOFFIN was originally created as a RANS

solver by Jones [33] and further developed for the LES methodology by Jones et al. [34]

in FORTRAN77 at Imperial College, London. The LES-BOFFIN code implements a

parallelization procedure which was implemented by Marquis and Wille in 2008 [59]. In

this research, BOFFIN is coupled with CMC in which the species and enthalpy transport

equations are solved explicitly. The CMC part was developed by A. Kronenburg at the

University of Stuttgart in FORTRAN90.

The purpose of this chapter is to report the numerical treatment exercised in this study.

Firstly a spatial discretisation using the finite volume method (FVM) for the governing

equations will be given in section 5.1. This section also includes the approximation of

diffusive and convective fluxes. Subsequently, the temporal discretisation schemes, which

are used in both LES and CMC, are provided in section 5.2. In section 5.3, the solu-

tion procedure of the pressure and the velocity field is outlined. The different numerical

methods which are used in parametric studies of the combustion model are explained in

the later section. At the end, this chapter is completed with the discussion of initial and

boundary conditions in section 5.5.

53
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5.1 Spatial Discretisation

In this section, a brief introduction of a coordinate transformation approach is provided

first as one of the numerical methods applied in the LES-CMC code. Further, the discreti-

sation of the computational domain for the finite volume method is discussed. For those

who are interested in this topic, they are referred to [26] and [106] for further reading.

According to Thompson [98], the coordinate transformation was introduced. In this

approach, the finite difference equations are formulated in a transformed curvilinear coor-

dinate system that coincides with the boundaries of the flow domain [34]. This approach

is implemented in this study in order to map the physical flow domain, which might have a

complex shape, onto a simple rectangular computational domain. The explanations of co-

ordinate transformation can be found in Tannehill et al. [95]. The alternative description

can also be found in [11] and LES-BOFFIN user’s guide [34].

In Chapters 3 and 4, the governing equations of LES and CMC are expressed in

differential forms. These partial differential equations (PDEs) are discretised to yield

algebraic equations which can be solved numerically. The finite volume method (FVM)

is exercised in this study, as the solution domain is subdivided into a number of control

volumes (CVs) and the governing equations are applied to each CV [26].

In the finite volume method, the equations are integrated over the computational cell

and the volume integrals over the convection and diffusion terms are rewritten as fluxes

over the cell boundaries using Gauss’ divergence theorem as depicted in Fig. 5.1 for a 2-D

computational domain.

A 2-D collocated computational grid arrangement is illustrated in Figure 5.1, where

all variables are stored at the centre of each cell. The normal vector of the west and east

sides are aligned with the x1 direction, while north and south sides correspond to the x2

direction. Variables having a subscript P are stored at the centre of the computational

cell. The other variables having subscripts n, s, e and w denote the locations at the cell

surfaces at north, south, east and west sides respectively, while the subscripts N , S, E

and W refer to values at the neighbouring centres of north, south, east and west cells,

respectively.
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Figure 5.1: A control volume in two-dimensional computational space having the
notation of grid points and surfaces.

To illustrate the FVM concept, the transport equation for an arbitrary scalar property

φ is introduced as

∂(ρφ)
∂t

+
∂

∂xj
(ρφuj) =

∂

∂xj
(Γ

∂φ

∂xj
) + Sφ, (5.1)

where on the LHS, the first term denotes the temporal change term and the second term

presents the convective term, while on the RHS, the diffusive term with Γ as a diffusion

coefficient is placed first, followed by the source term. Applying the finite volume method

to Eq. (5.1) yields

∫
∆V

∂(ρφ)
∂t

dV +
∫

∆V

∂

∂xj
(ρφuj)dV =

∫
∆V

∂

∂xj
(Γ

∂φ

∂xj
)dV +

∫
∆V

SφdV, (5.2)
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where
∫

∆V means integration over a finite volume. The Gauss’ divergence theorem equates

the volume integral of the divergence to the surface integral across the volume boundary.

For a vector a, this theorem reads

∫
∆V

∂a
∂xj

dV =
∫

∆A
a.n dA, (5.3)

where a.n is the component of the vector a in the outward direction of the unit vector n

normal to the surface element dA. Applying the Gauss’ divergence theorem, Eq. (5.2) can

be written as

∂

∂t

∫
∆V

(ρφ)dV +
∫

∆A
(ρφuj).ndA =

∫
∆A

(Γ
∂φ

∂xj
).ndA+

∫
∆V

SφdV, (5.4)

where the time derivative of the first term on the LHS can be taken outside of the volume

integral. A common approximation for the volume integral (e.g. the second term on the

RHS) is the product of the cell volume, ∆V , and the value of the variable at the centre of

the cell, P . Therefore, the source term of Eq. (5.4) becomes

∫
∆V

SφdV ≈ Sφ,PV. (5.5)

Similarly, the surface integral is approximated by the sum of values of the variable at

the cell surface multiplied by the area of that cell surface, A, and the face normal unit

vector, n. Therefore, the convective term on the RHS of Eq. (5.4) is rewritten as

∫
∆A

(ρφuj).ndA ≈
∑
f

(ρφu)f .nfAf , (5.6)

where nf is the normal unit vector pointing outward of any surface Af and uf represents

the velocity pointing outward of a cell face. Applying the approximation of volume integral

and surface integral to Eq. (5.4), the finite volume approximation of the generic transport

equation reads
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∂

∂t

(
(ρφ)PV

)
+
∑
f

(ρφu)f .nfAf =
∑
f

Ff .nfAf + Sφ,PV. (5.7)

where Ff is (Γ ∂φ
∂xj

)f evaluated at the cell face centre in each direction.

In this section, only the principle of the finite volume method for the conservative CMC

species transport equation is discussed while the finite volume method of the LES-BOFFIN

code can be found in [11] and the LES-BOFFIN user’s guide [34]. The application of FVM

to the conservative CMC species transport equation was firstly introduced by Cleary [16].

Following Fig 5.1, two dimensions are considered in this discussion for clarity.

Applying the FVM, the conditionally filtered species transport equation for the CMC

resolution (Eqs. (4.35) and (4.31)) yields

∂

∂t

(
(γ∗Q∗α)PV

)
+
∑
f

(γ∗ũ∗ηQ
∗
α)f .nfAf = γ∗V (w̃∗α,η + Ñ∗η

∂2Q∗α
∂η2

)P

+Q∗α,P
∑
f

(γ∗ũ∗η)f .nfAf +
∑
f

(γ∗D∗η
∂Q∗α
∂xj

)f .nfAf ,

∂

∂t

(
(γ∗Q∗α)PV

)
+
∑
f

(γ∗ũ∗ηQ
∗
α − γ∗D∗η

∂Q∗α
∂xj

)f .nfAf = γ∗V (w̃∗α,η + Ñ∗η
∂2Q∗α
∂η2

)P

+ Q∗α,P
∑
f

(γ∗ũ∗η)f .nfAf , (5.8)

which can be rearranged (written in 2-D for clarity) relating to Fig 5.1 as

∂

∂t

(
(γ∗Q∗α)PV

)
+ γ∗eAe

(
ũ∗ηQ

∗
α −D∗η

∂Q∗α
∂x1

)
e

− γ∗wAw
(
ũ∗ηQ

∗
α −D∗η

∂Q∗α
∂x1

)
w

+γ∗nAn

(
ṽ∗ηQ

∗
α −D∗η

∂Q∗α
∂x2

)
n

− γ∗sAs

(
ṽ∗ηQα

∗ −D∗η
∂Q∗α
∂x2

)
s

= γ∗V

(
w̃∗α,η + Ñ∗η

∂2Q∗α
∂η2

)
P

+ Q∗α,P ((γ∗ũ∗ηA)e − (γ∗ũ∗ηA)w + (γ∗ṽ∗ηA)n − (γ∗ṽ∗ηA)s).

(5.9)



58 5. Numerical Methods

5.1.1 Approximation of Diffusive Fluxes

According to Eq. (5.7), approximations are required for the property φ at the centre point

of each cell face which is denoted by subscript f . Fluid properties such as density and

viscosity are determined by linear interpolation. Using the central differencing scheme

(CDS), the assumption of a linear profile between centres P and E approximates the

gradient as

(
∂φ

∂x1

)
e

≈ φE − φP
x1,E − x1,P

. (5.10)

Employing Eq. (5.10) with the assumption of an orthogonal grid, the diffusive flux of

Eq. (5.7) over the east face is given as

(Γ
∂φ

∂x1
)e.neAe ≈ Γe

φE − φP
x1,E − x1,P

Ae. (5.11)

Adopting the central differencing scheme, the sub-grid scale conditional flux at the

east face of Eq. (5.9) can be written as

−γ∗eAe
(
D∗η

∂Q∗α
∂x1

)
e

≈ −γ∗eAeD∗η,e
(
Q∗α,E −Q∗α,P
x1,E − x1,P

)
,

≈ −γ∗eAe
(
D∗η
∆x

)
e

(Q∗α,E −Q∗α,P ). (5.12)

The mixture fraction space is divided into a CMC grid with boundaries at η = 0 and

1. A derivative of the diffusive flux in mixture fraction space (from Eq. (5.9)) is expressed

using a CDS as

(
Ñ∗η

∂2Q∗α
∂η2

)
P

≈
Ñ∗η,P

∆η∆η+
(Q∗α,++ −Q∗α)−

Ñ∗η,P
∆η∆η−

(Q∗α −Q∗α,−−), (5.13)
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where

∆η =
1
2

(η++ − η−−), ∆η+ = η++ − η and ∆η− = η − η−−. (5.14)

Subscripts (+) and (−) are used to denote the positive and negative directions in

mixture fraction space. The single subscript shows values at the boundary between

adjacent η bins (discrete points in the mixture fraction space), while double subscripts

are used for the values at the bin centres.

5.1.2 Approximation of Convective Terms

In principle, the approximation of convective flux over the cell surface is similar as in

section 5.1.1. The approximation of the convective flux for an orthogonal grid arrangement

in Fig 5.1 is illustrated by the east cell face (−e) as

(ρφu)eAe ≈ ρe(λeφE + (1− λe)φP )(uA)e. (5.15)

One of the convective terms in the east face (second term on the LHS) of Eq. (5.9)

can be written as,

γ∗eAe(ũ
∗
ηQ
∗
α)e ≈ γ∗eAeũ∗η,e(λeQ∗α,E + (1− λe)Q∗α,P ), (5.16)

where λe is a linear interpolation factor (weighting factor) which is normally defined as

λe =
x1,e − x1,P

x1,E − x1,P
, (5.17)

where λe is 0.5 corresponding to the central differencing scheme (CDS). Therefore, the

property at the cell face φe is written as
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φe =
φP + φE

2
(5.18)

Using Taylor series expansion of φe regarding the point P , CDS can be shown to be

of second-order accuracy [26]. Within the scope of this study, CDS is adopted for the

convective term in the momentum equation in LES-BOFFIN.

Applying the approximation of diffusive and convective fluxes (Eqs. (5.12) to (5.14) and

(5.16)) to the conditionally filtered species transport equation (Eq. (5.9)), this equation

can be rewritten as

∂

∂t

(
(γ∗Q∗α)PV

)
+ (ae(Q∗α,P −Q∗α,E) + FeQ

∗
α,P ) − (aw(Q∗α,W −Q∗α,P ) + FwQ

∗
α,P )

+(an(Q∗α,P −Q∗α,N ) + FnQ
∗
α,P ) − (as(Q∗α,S −Q∗α,P ) + FsQ

∗
α,P ) = (w̃∗α,η)P

+(a+(Q∗α,++ −Q∗α)− a−(Q∗α −Q∗α,−−)) + Q∗α,P (Fe − Fw + Fn − Fs), (5.19)

where F denotes the specific mass flows (s−1) across the four cell surfaces as

Fe =
(γ∗Aũ∗η)e
γ∗V

, Fw =
(γ∗Aũ∗η)w
γ∗V

Fn =
(γ∗Aṽ∗η)n
γ∗V

, Fs =
(γ∗Aṽ∗η)s
γ∗V

, (5.20)

and the coefficients, a, are defined by

ae =
γ∗e
γ∗
Ae
V

(
− λũ∗η +

D∗η
∆x

)
e

, aw =
γ∗w
γ∗
Aw
V

(
λũ∗η +

D∗η
∆x

)
w

an =
γ∗n
γ∗
An
V

(
− λṽ∗η +

D∗η
∆x

)
n

, as =
γ∗s
γ∗
As
V

(
λṽ∗η +

D∗η
∆x

)
s

a+ =
Ñ∗η,P

∆η∆η+
, a− =

Ñ∗η,P
∆η∆η−

. (5.21)

However, the nature of CDS can create spatial oscillations which may result in negative
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values for positively defined or physically bounded quantities such as mixture fraction

(required to be bounded between 0 and 1) [34]. Furthermore, these oscillating solutions

may lead to numerical instability. It was shown by Patankar [69] that the oscillations and

instability of this approximation do not occur if the cell Peclet number, a measure of the

relative strengths of convection and diffusion (Pe = u∆x
Γ ), is less than or equal to two.

Therefore, two other types of approximation schemes which preserve monotonicity (i.e.

a stable, non-oscillatory and higher-order scheme) are adopted for the filtered transport

equation for mixture fraction in LES and conditional species transport equation in CMC.

For the LES part, a sophisticated scheme is preferred for the scalar equation based

on the idea that the total variation of the property at any surface of a cell is reduced.

This is known as the total variation diminishing (TVD) scheme in which the undesirable

oscillation is counteracted by adding a weighting towards the upstream contribution [106].

Considering the discrete data set in Fig 5.2, the total variation (TV) in i-direction for the

set of data is defined as

                    Φ3

                 Φ2

Φ4

                  Φ1 Φ5

Figure 5.2: An example of a discrete data set for the total variance scheme [106].

TV (φ) =
∑
i

| φi+1 − φi |, (5.22)

which is equal to



62 5. Numerical Methods

TV (φ) = | φ2 − φ1 | + | φ3 − φ2 | + | φ4 − φ3 | + | φ5 − φ4 |

= | φ3 − φ1 | + | φ5 − φ3 | . (5.23)

For a monotonicity-preserving scheme, the discrete solution of a property that is ap-

proximated by the TV scheme should diminish in the further time steps. A numerical

scheme is called total variation diminishing, if

TV (φn+1) ≤ TV (φn), (5.24)

where n and n+ 1 refer to consecutive time steps. If the fluid flows directly through the

positive xi direction and φW , φP and φE refer to the values of a property at west cell,

central cell and east cell centres, respectively (Fig. 5.1), the value of φe using the TVD

scheme is written as

φe = φP +
1
2

B(r)(φE − φP ), (5.25)

where r is the local ratio of the upstream gradient to the downstream gradient and thus

r =
(
φP−φW
φE−φP

)
. In LES-BOFFIN, the method proposed by Van Leer [52] is adopted for

the limiter function B(r) which can be defined as

B(r) =
r+ | r |
1 + r

=

(
φP−φW
φE−φP

)
+ | φP−φWφE−φP |

1 +
(
φP−φW
φE−φP

) . (5.26)

For the CMC part, the power-law interpolation scheme [69] is adopted. In principle,

this hybrid scheme switches from CDS to upwind differencing scheme (UDS) at high Pe

numbers (Pe > 2). Using UDS, the numerical scheme is stable and without undesir-

able oscillation, albeit of lower accuracy. Considering the east cell face, the power-law

interpolation factor λe (in Eq. (5.21)) can be expressed as
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λe =
1
Pee
− (1− 0.1 | Pee |)5

Pee
, (5.27)

where Pe = eu∗η∆x

D∗η
(in the CMC section).

Using the power-law scheme (Eq. (5.27)), the coefficients at cell faces from Eq. (5.21)

are rewritten as

ae =
γ∗e
γ∗
Ae
V

(
‖ −ũ∗η, 0 ‖ +A(Pe)

D∗η
∆x

)
e

, aw =
γ∗w
γ∗
Aw
V

(
‖ ũ∗η, 0 ‖ +A(Pe)

D∗η
∆x

)
w

an =
γ∗n
γ∗
An
V

(
‖ −ṽ∗η, 0 ‖ +A(Pe)

D∗η
∆x

)
n

, as =
γ∗s
γ∗
As
V

(
‖ ṽ∗η, 0 ‖ +A(Pe)

D∗η
∆x

)
s

,

(5.28)

where ‖ a, b ‖ is equal to the maximum value between a and b and A(Pe) = (1−0.1 | Pe |)5.

5.2 Temporal Discretisation

In unsteady flow computations, time is considered to be a coordinate direction as the space

coordinates. Therefore, the time derivative of the governing equations (e.g. term ∂φ
∂t in

Eq. (5.7)) has to be approximated. In the LES-CMC code, a two-level method is adopted

as time discretisation. Three principal procedures of the discretisation methods related

to this study are explicit method, implicit method and the Crank-Nicolson method. The

time derivative term in Eq. (5.7) can be simply expressed first as

∂φP
∂t

=
1

(ρV )P

(∑
f

(Ff − (ρφu)f ).nfAf

)
+
Sφ,P
ρ

= Θ(φ), (5.29)

where Θ(φ) represents the joint effects of diffusion, convection and source/sink terms.

Subsequently, the concepts of three different methods are given in the next section.
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Explicit Method

This method evaluates all fluxes and sources at the new time level φn+1 using the

known values φn at time step n only. The simplest form of this method is the explicit

Euler method which is written as

φn+1 ≈ φn + Θ(φn)∆t. (5.30)

The advantage of this method is its simplicity since the known values at the time

step n are available and no iterative solver is required. However, this method is known

as first order accurate which requires small step sizes in time to ensure its accuracy and

stability [26]. For flows which are dominated by convection, a restriction on the information

propagation rate is required by limiting the convective time step by the Courant number,

c, or CFL number which is defined as

c =
u∆t
∆x

, (5.31)

where the dimensionless c should be less than unity which means the fluid element cannot

move further than one grid cell length in a time step [26]. For flows which are dominated

by diffusion, the equivalent criterion reads

d =
Γ∆t

ρ(∆x)2
, (5.32)

where the parameter d is the ratio of time step to the characteristic diffusion time.

However, when both convection and diffusion are present, the stability criterion becomes

more complicated and most people prefer their individual criterion [26].

Implicit Method

An alternative time discretisation method evaluates all fluxes and sources of the new

time level φn+1 using the unknown value φn+1. The basic form of the implicit method is

known as the implicit Euler method which is expressed as
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φn+1 ≈ φn + Θ(φn+1)∆t. (5.33)

Even though this method offers the advantage of stability, the complexity of the im-

plicit method would increase the computational cost. This is because the equations of the

unknown values at the next time step need to be solved leading to the calculation of a

large coupled set of equations at each time step.

Crank−Nicolson Method

A second order accuracy based on the trapezoid rule method (one of the approximation

methods using straight line interpolation between initial and final points [26]) is known as

the Crank-Nicolson method. This semi-implicit method is a weighted combination of first

order explicit and implicit Euler methods (fluxes and sources of the new time level are a

function of the values at time step n and n+ 1). The Crank-Nicolson method is simply

written as

φn+1 ≈ φn +
1
2

[Θ(φn) + Θ(φn+1)]∆t. (5.34)

As a result of this equation, using this method would require less computational effort

per step than the first order implicit Euler method [26]. Furthermore, Gustafsson et al.

[32] proved the advantage of this method in which the Crank-Nicolson scheme is stable

when the Dirichlet and Neumann boundary conditions are used (both conditions are also

applied into this work, as detailed in section 5.5).

In the BOFFIN code, two different time discretisation methods are employed. The

Crank-Nicolson method is adopted in LES time integration whereas the explicit Euler

scheme is applied for time integration in CMC for moderate computational costs. A time

step width which is controlled by the finer LES grid, during the simulation is proved and

adjusted to be small to obtain the CFL numbers in a range between 0.15 and 0.25.
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5.3 Pressure Correction

When the momentum equations are discretised, the velocity field will not satisfy the

continuity equations. Therefore, the pressure correction (e.g. the SIMPLE algorithm

[70] as applied in this code) is required to ensure mass conservation at each time step.

Consequently, a second order accuracy for time discretisation is maintained by using a

predictor-corrector projection scheme (as detailed in appendix B). The mathematic solu-

tion algorithm for the pressure increment is managed by using the conjugate gradient

method with incomplete Cholesky preconditioning (ICCG) [40], [61] and [105]).

Since a collocated grid arrangement is employed in LES-BOFFIN, a pressure smoothing

method, which was created by Rhie and Chow [84] is applied to prevent an oscillatory

pressure field which is decoupled from the velocity at grid nodes [71]. The details of the

implementation of this method in LES-BOFFIN can be found in LES-BOFFIN user’s

guide [34] or in the Ph.D. thesis of [11] and [110] and will not be repeated here.

5.4 Numerical Aspects

One of the key concerns in a parametric study within the combustion model is that different

numerical methods can be used for any numerical aspects. Three numerical aspects that

will be considered within this thesis are:

• the CMC formulation

• the approximation of the CMC convective fluxes

• the model for the conditionally filtered turbulent diffusivity.

5.4.1 CMC Formulations

The difference between the two CMC forms (the non-conservative form in Eq. (4.30)

and the conservative form in Eq. (4.35)) is the inclusion of the FDF information into

the transport equation, in particular into the convective term of the conservative CMC

formulation as previously discussed in section 4.5.1. Based on the finite volume method

(section 5.1), both conditional species transport equations can be applied to each CV

of the computational domain. It is believed that including the FDF information in the
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convective flux will make the CMC conservative form more precise than the traditional

(non-conservative) formulation [65]. Therefore, the study of two different formulations of

the combustion model is performed to verify the assumption.

5.4.2 Flux Approximations

Since each CMC cell comprises of a number of LES cells (e.g. 784 LES cells for a reference

case of Table 6.5), two methods can be applied to approximate the convective flux between

CMC cells.

 CMC cell

 LES cell

Figure 5.3: A schematic of the two approximations of the CMC convective flux.

In the first method (later called flux-1), a small convective flux between two LES cells

which is located on the CMC cell face is calculated from the average values of densities,

velocities and turbulent diffusivities from both LES cells. These properties in each LES

cell are modelled to be conditional values on the mixture fraction by using ρη from the

conditional moments, Eqs. (4.26) and (4.27) for a conditional density, a conditional velocity

and a conditional turbulent diffusivity, respectively. The set of FDF values is calculated

from averages of mixture fraction and of subgrid-scale variance from both LES cells. The

convective flux over the CMC cell face is a sum of every small convective flux of LES cells

adjacent to the CMC cell face. The convective flux from this method is shown as the sum

of the small arrows in Fig. 5.3.
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In the second method (later called flux-2), fluid properties in a CMC cell are considered

to be equal throughout the CMC cell. Firstly, all properties are calculated from LES cells

located in a CMC cell. Density, velocity and turbulent diffusivity of each LES cell inside

a CMC cell are integrated to values of a CMC cell using Eq. (4.28). Subsequently, a

convective flux between two CMC cells can be calculated from the average values of both

adjacent CMC cells. The convective flux from this method is illustrated by the big arrow

in Fig. 5.3.

5.4.3 Conditionally Filtered Turbulent Diffusivity Models

Based on the Smagorinsky model, three different models of conditionally filtered turbulent

diffusivity, D∗η, are defined in section 4.5.1. In the first model, the turbulent diffusivity

(named D∗η,1) is computed based entirely on the CMC cell using Eq. (4.39), while the

calculation of the same value in the second method is based on the LES cells within a

CMC cell (named D∗η,2) using Eq. (4.43). The modelling of D∗η in the third method is

based on the second method which includes the ratio of the size of CMC cell to the size

of the LES cell following Eq. (4.44). As one of the parametric studies, the effects of each

model will be discussed for more details in the next chapter.

5.5 Boundary Conditions

Up to now, the governing equations have been discretised to obtain a numeric system of

equations for every CV. However, fluxes through CV faces occurring at domain boundaries

still require special treatment [26]. The appropriate boundary conditions must be provided

for the momentum and scalar transport equations. In the pressure correction, the momen-

tum equations supply the natural Neumann conditions on the boundaries [110]. Therefore,

this section will describe the boundary conditions applied in this study.

For the CMC equations, the boundary conditions are also required, albeit they remain

constant in time. Considering mixture fraction space (η), η = 0 states pure air, while

η = 1 states pure fuel.
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5.5.1 Inflow Boundary Condition

In LES-BOFFIN, the Dirichlet condition is implemented as an inflow boundary condition.

In this method, the mean inflow velocity at the inlet boundary, ũi(x, t), is given as the

known value of data (e.g. experimental data, ũi(x, t)
∣∣∣∣
experiment

), so that

ũi(x, t)
∣∣∣∣
Γ

= ũi(x, t)
∣∣∣∣
experiment

. (5.35)

In order to generate inflow conditions, a two-feed mixing profile is defined at the inlet

using the measured value of co-flow (air), pilot and main jet (fuel) for the mixture fraction

field, while the experimental mean and fluctuation of the velocity profile [3] are used for

the velocity field. To prescribe the oscillation of the velocity field, an artificial turbulent

inflow generator has been implemented in LES-BOFFIN.

The artificial turbulent inflow generator is based on digital filtering and was proposed

by Klein et al. [44], where pseudo-turbulent velocity data are generated with a prescribed

length scale and Reynolds stress tensor. Firstly, a series of random signals (rm) is generated

for a digital filter with rm = 0 and rmrm = 1 based on the observation that filtering

increases the spatial correlation of a random field. The digital filter using a random signal

field for one dimension is given as

um =
N∑

n=−N
bnrm+n, (5.36)

where bn are the filter coefficients and 2N + 1 denotes the filter width. In order to extend

this procedure to three-dimensional filtering, the convolution with three one-dimensional

filters is calculated as

bijk = bi · bj · bk, (5.37)

where i, j and k is the direction of each dimension. Then the filtered fields are renormalized

to a mean value of zero and a variance of one in order to keep the effects of turbulence,

which are reduced by filtering. The filtering and renormalization procedures are repeated

until the prescribed length scale is reached. Finally, the cross-correlations are easily set to



70 5. Numerical Methods

the three-dimensional independent velocity fields by using a procedure suggested by Lund

et al. [57] to have a turbulent field for the prescribed Reynolds stress tensor which can be

used further as the initial conditions.

5.5.2 Outflow Boundary Condition

Since the disturbances of the flow originated at the outlet of the domain are expected to

be convected out of the domain without being propagated upstream [34], the Neumann

(zero gradient) condition is commonly applied on the outflow boundary, so that

∂ũi
∂n

∣∣∣∣
Γ

= 0, (5.38)

where ũi denotes the mean flow, n represents the outward normal to the boundary surface

and Γ refers to the position of the boundary.

For mixture fraction space, a zero gradient outflow boundary condition is applied for

conditional scalars.

5.5.3 Lateral Boundary Condition

To minimise the effects of the boundary on the predicted flow, free-slip (symmetry)

boundary condition allows the flow tangent to the boundary to slide along a friction-

less surface. The wall-normal velocity component, ũn, is assumed to vanish. This means

zero wall-normal velocity component and a Neumann (zero gradient) condition on the

velocity component parallel to any boundary are imposed at the surface so that

ũn|Γ = 0 and
∂ũi,t
∂n

∣∣∣∣
Γ

= 0, (5.39)

where ũi,t is a tangential velocity component. In this work, the free-slip boundary condition

is employed for all lateral boundaries.



Chapter 6

LES-CMC of the Sandia Flame

series

6.1 Introduction

In this chapter, the test cases of the Sandia Flame series are investigated by using the

LES-CMC approach. The Sandia Flame series is composed of flames D, E and F which

are piloted methane/air flames with the same geometric set-up. Due to a rich condition

in central jet beyond the flammability limit, these flames burn as diffusion flames with

a single reaction zone near the stoichiometric mixture fraction in the mixing zone (shear

layer) [4].

Since the velocities of the jet and the pilot are increased from Flames D to F, the

probability of localized extinction and re-ignition is small in Flame D and is increased

for Flames E and F, respectively. These phenomena can be explained by the comparison

between mixing and chemical time scales. For non-premixed turbulent flames where an

infinitely fast chemistry assumption is considered, the mixing time scales are larger than

the chemical time scales. Therefore, the flames exist for any condition and local extinction

cannot occur. On the other hand, if a finite rate chemistry assumption is considered, the

turbulent time scales can be smaller than the chemical time scales. The heat release from

chemical reaction may not balance the heat loss. Consequently, local extinction will occur

if the scalar dissipation rates are sufficiently high [78]. Therefore, in order to simulate these

phenomena, a combustion model based on the finite rate chemistry assumption should be

71
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considered. As one of a number of combustion models using this assumption, CMC is

believed to capture these occurrences.

The Sandia Flame series provides a large set of well-established experimental data and

has been used as a target for a large number of CFD modelling studies for turbulence-

chemistry interactions. Sandia Flame D has been used as a validation test case in a number

of LES studies combined with different combustion models (like flamelet model, CMC and

PDF) [37, 79, 77, 68, 107] because of its simplicity. Furthermore, Flames E and F have

been used to study the extinction and re-ignition phenomena in [50, 51, 29, 83].

In the next section, the experimental and the computational setups are described,

followed by the details of parametric CMC studies in section 6.4. Section 6.5 presents the

simulation results for Sandia Flame D, which is carried out as the first test case in order to

validate the LES-CMC simulation models as a reference. Subsequently, the examinations

of Flames E and F are presented in section 6.6 and section 6.7 to compare the sensitivity

of each CMC case to the extinction and re-ignition. The chapter closes with a discussion

and conclusions about the performance of various CMC model parameters in section 6.8.

6.2 Experimental Setup

The measurements of the Sandia Flame series were investigated by two major research

groups. The Rayleigh measurement is employed for the temperature, Raman scattering

and laser induced fluorescence (LIF) techniques are used to measure mixture fraction and

species concentrations by Barlow and Frank [4, 3], while the laser-Doppler velocimetry

(LDV) technique is applied to measure velocities by Schneider et al. [88]. Moreover,

the 3D estimation of scalar dissipation of Flames D and E are proposed by Karpetis and

Barlow [36] and used as a validation data set of the scalar dissipation modelling. A close-

up of Flame D stabilized on the Sandia burner and the details of the burner geometry are

presented in Fig. 6.1. The Sandia Flame series has a fuel composition of 25% methane

and 75% dry air by volume. The fuel is injected through the main jet which has 7.2 mm

as the inner diameter, D. The bulk velocities of the jet are set to 49.6, 74.4 and 99.2

m/s for Flames D, E and F. Surrounding the main jet, the annular pilot composed of an

unstrained premixed CH4/air flame (φ = 0.77) is set in order to stabilize the flames. With

an outer annulus diameter of 18.2 mm, this pilot velocity is set to 11.4, 17.1 and 22.8 m/s
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in Flames D, E and F respectively. The burner also has a co-flow velocity of 0.9 m/s for

all flames. The temperatures of main jet, pilot and co-flow are 294, 1880 and 291 K at

0.993 atm for Flames D, E and F respectively. The stoichiometric mixture fraction of the

given fuel is 0.351 and the pilot has a mixture fraction of 0.27. Note that the calculation

of all measured mixture fraction values in the experiments are defined following Bilger

(Eq. (2.34)) with the dropping of the oxygen terms in order to have less sensitivity to

experimental noise and interference from laser-excited fluorescence [4]. The equation can

be written as

ξ =
2(ZC−ZC,2)

WC
+ (ZH−ZH,2)

2WH

2(ZC,1−ZC,2)
WC

+ (ZH,1−ZH,2)
2WH

, (6.1)

where Z’s are elemental mass fractions of carbon and hydrogen; W’s are atomic weights;

and the subscripts 1 and 2 refer to the fuel and co-flowing air streams, respectively. The

summary of the governing parameters of test cases is shown in Table 6.1.

Table 6.1: Conditions of flow and scalars of the Sandia Flame Series.

Condition Flame D Flame E Flame F

Reynolds number 22400 33600 44800
Main jet (bulk) velocity [m/s] 49.6 74.4 99.2

Pilot velocity [m/s] 11.4 17.1 22.8
Co-flow velocity [m/s] 0.9 0.9 0.9

Stoichiometric mixture fraction 0.351 0.351 0.351
Mixture fraction of the pilot 0.27 0.27 0.27

Fuel equivalence ratio of the pilot (φ) 0.77 0.77 0.77

6.3 Computational Setup

The computational grid is generated with dimensions of 80D in axial direction and 8D

in x- and y-directions at the flame base increasing to 60D at the outlet of the domain.

This grid is generated to have the finest resolutions in the main jet and pilot area. By

applying smooth transition and refinement [95], cells are increasingly stretched outwards

in the radial and axial directions (as in Fig. 6.2) for the purpose of capturing high gradient
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      FUEL

        PILOT

CO-FLOW

      D = 7.2 mm

            0.25 mm

       0.35 mm

   Dp = 18.2 mm

Figure 6.1: Close-up of a piloted flame stabilized on the Sandia burner (top) and
details of the burner geometry (bottom).

regions with fine grids. The grid consists of 112 × 112 × 320 LES cells in x-, y- and z-

directions, respectively. The regions above the jet and pilot are captured by 784 and 3840

LES cells, respectively. Due to grid independence studies by Navarro et al. [68], the

number of computational cells achieves a condition that the largest fraction of the energy

spectrum is resolved after the initial break-up of the jet. A summary of the particular
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details of the computational grid is shown in Table 6.2. Initially, the statistical studies

of Flame D are performed by a narrow domain which has the dimension of 30D at the

outlet of the domain. The initial domain contains 96 × 96 × 320 LES cells in x-, y-

and z-directions, respectively. Since the initial domain has a problem of recirculation

(more details in section 6.5.2.1), most of the studies are performed by using the current

domain (Table 6.2). However, the recirculation effects do not contaminate the statistical

predictions of the interesting regions of Flame D. Therefore, rerunning simulations with

the wider domain is not necessary for the statistical predictions of parametric studies for

Sandia Flame D.

The CMC grid has 100 nodes in mixture fraction space which has refinements at η

equal to 0 and 1. In physical space, the reference CMC grid resolution is 8× 8× 80 cells,

and it is used as a reference case in this study.

Table 6.2: Details of computational grid.

Condition domain

Inlet dimension 8D × 8D
Outlet dimension 60D × 60D

Dimension in z-direction 80D
Computational cells (x-, y- and z-directions) 112× 112× 320

The free-slip boundary condition is applied to all side boundaries, while Dirichlet and

Neumann boundary conditions are used at the inlet and outlet, respectively. The inlet

velocity profiles are adopted from the experiment by Schneider et al. [88] at z/D ≈ 0.14

for the beginning position of the grid (z/D = 0). For mixture fraction space, co-flow,

which has pure air conditions, is defined as η = 0, while the pure fuel from jet is applied

at η = 1. A bi-linear profile in mixture fraction space is adopted at the inlet in physical

space.

The computational studies are performed on an IBM BladeCenter HS21XM (Dual

core Intel Xeon E5440 2.83 GHz) using 80 cores of the HLRS DGRID/BW-Grid Cluster

platform, and the statistics of flow, mixing field and species mass fractions have been

calculated over 10,000 samples for the initial domain and 30,000 samples for the wider

domain.
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Figure 6.2: Cross sections of computational mesh.

6.4 Parametric Studies

Parametric studies of the flow and mixing fields, combustion model and CMC grid

resolution are simulated using LES-CMC modelling to examine the effects of each pa-

rameter. Details of the simulation results can be found in the following sections.

6.4.1 Parametric Studies of Flow and mixing Field

The parametric studies of the flow and mixing fields refer to the inflow velocity variances in

the turbulent inflow generator, the Schmidt number (Sc), the turbulent Schmidt number

(Sct), and the variance of mixture fraction (ξ̃′′2sgs). The Schmidt number is a fluid property

which is actually not allowed to be changed. However, the Sc values are varied to test the

sensitivity of the flow and mixing fields. Sandia Flame D is used as a reference case and

thus the effects of these parameters on simulation results are detailed in section 6.5.

• Effects of Velocity Variance in Turbulent Inflow Generator

A turbulent inflow generator [44] is required to generate pseudo-turbulent structures

with a given length scale and Reynolds stress tensor. However, there is no exact
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measurement of the velocity profiles inside the jet and pilot pipes and the measure-

ments of velocity profiles at z/D = 0.14 are applied as the experimental inlet data

for the inflow generator. Therefore, some adjustments of the velocity variances of

the inlet data are allowed in order to match the results with the measurement data.

• Effects of Schmidt Number

As previously discussed in section 2.1.1.3, the Schmidt number, Sc denotes the ratio

of the rate of momentum transfer to the rate of mass transfer (D = ν
Sc). Therefore,

Sc determines the molecular diffusion rate in the filtered transport equation for the

mixture fraction, Eq. (3.19). Moreover, since Sc is used for modelling the filtered

scalar dissipation (as in Eq. (3.35)), a lower value of Sc leads to a higher value of total

scalar dissipation which directly affects the prediction of species in the combustion

model.

• Effects of Turbulent Schmidt Number

Similarly, the turbulent Schmidt number, Sct, affects both the turbulent diffusion

rate (section 5.4.3) and the scalar dissipation rate at subgrid scale, Eq. (3.35).

• Effects of Subgrid-scale Variance of Mixture Fraction, ξ̃′′2sgs

As previously explained in Chapter 3, Cξ is a constant used in the modelling of

the subgrid-scale variance, ξ̃′′2sgs (Eq. (3.34)). Normally, ξ̃′′2sgs is used to presume the

shape of the FDF (section 4.4.1) of ξ. Moreover, it is directly required for the

modelling of subgrid-scalar dissipation rate in this project. Hence, the number of

Cξ affects directly the subgrid-scalar dissipation rate (Ñsgs in Eq. (3.35)), which is

an important variable in the CMC methodology.

6.4.2 Parametric Studies of the Combustion Model

The evaluation of the LES-CMC combustion model is the focus of this research project.

The parametric studies concerning the combustion model carried out here comprise the

evaluation of the CMC formulation, the approximation of the CMC convective fluxes and

the model for the conditionally filtered turbulent diffusivity for the CMC resolution. The
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details of the numerical methods for each numerical aspect can be found in sections 4.5.1

and 5.4.

6.4.3 Parametric Study of CMC Grid Resolution

Another key parametric study for all Sandia Flame series is the CMC grid resolution.

For a simple and stable flame, this parameter might not reveal any effect. However, it

is believed that a high number of CMC cells may capture the extinction and re-ignition

phenomena in Flames E and F due to the better intermittency and less averaging out of

peaks of scalar dissipation. Thus, three CMC grid resolutions are performed in this study

topic. These are 4 × 4 × 80, 8 × 8 × 80 and 16 × 16 × 80 CMC cells for the same LES

resolution.

To summarize, all parametric studies are shown in Table 6.3. All parameters in

Table 6.3 were varied for Flame D and the values resulting in the best agreement between

simulation and experiments were chosen for further simulations of Flames E and F.
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Table 6.3: Summary of parametric studies.

Quantity Name values or methods

Variances of inflow generator variance-1 u′u′, v′v′ and w′w′ [88]

variance-2 2
3
u′u′, 2

3
v′v′ and 2

3
w′w′

Schmidt number,
Sc1 0.4
Sc2 0.7

Sc = µ/ρD Sc3 1.0
Turbulent Schmidt number, Sct,1 0.4

Eq. (3.32) Sct,2 0.7
Variance of mixture fraction, Cξ,1 0.2

Eq. (3.34) Cξ,2 0.3

CMC formulation
CMC-1 Conservative CMC, Eq. (4.35)

CMC-2 Non-conservative CMC, Eq. (4.30)

Convective flux

flux-1 Computing fluxes based
on LES cells at CMC faces

flux-2 Computing fluxes based
on CMC cell centres

Conditionally filtered
D∗η,1 Modelling D∗η based on CMC cells,

Eqs. (4.39) - (4.42)

turbulent diffusivity
D∗η,2 Modelling D∗η based on LES cells,

Eq. (4.43)
D∗η,3 Modelling D∗η with adjusting

the length scale, Eq. (4.44)

Number of CMC cells

4× 4× 80 4 CMC cells in x- and y-directions
with 80 CMC cells in z-direction

8× 8× 80 8 CMC cells in x- and y-directions
with 80 CMC cells in z-direction

16× 16× 80 16 CMC cells in x- and y-directions
with 80 CMC cells in z-direction
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6.5 Results of Sandia Flame D

The results from the parametric studies summarized in Table 6.3 are represented by Flame

D as a reference case. At first, the statistics of flow and mixing fields with varying pa-

rameters are discussed, followed by the effects of different combustion model parameters.

The influence of the CMC grid resolution is also discussed.

6.5.1 Parametric Studies of Flow and mixing Field

It should be noted that the Schmidt number is actually not allowed to change since it is a

fluid property. However, the parametric study of the Sc is investigated to test a sensitivity

of the flow and mixing fields.

• Effects of Velocity Variance in Turbulent Inflow Generator
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Figure 6.3: Radial profiles of mean axial velocity at four downstream locations.
Symbols denote experimental values [88]. Solid and dashed lines indicate LES-CMC
simulation with the different values of inflow variance.
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Figure 6.4: Radial profiles of RMS axial velocity at four downstream locations.
Symbols denote experimental values [88]. Solid and dashed lines indicate LES-CMC
simulation with the different values of velocity variance of inflow generator.

Figures 6.3 and 6.4 show the effects of the velocity variance levels (turbulence lev-

els) of the inflow generator on the statistical mean and RMS of the axial velocity

at four different downstream positions. The position x/D is labled as r/D as in

the experiment in order to avoid the confusion. Different results between both

velocity variance levels can come from another quantity which affects the velocity

profile at z/D = 15. The predictions of mean velocity of the higher inflow turbulent

level (variance-1) are greater than the experiment (as can be seen from Fig. 6.3

for r/D > 1 at z/D = 15) and lower mean velocity at the centerline (r/D = 0 at

z/D = 15) compared with the experiment. Moreover, the values of RMS velocity

downstream of the higher inflow turbulent level (z/D = 30 and 45) are lower than

the experiment. On the other hand, variance-2 having a lower inflow turbulence

level generates thinner shape of mean velocity upstream profiles which correspond

to the experiment, as can be seen from Fig. 6.3 at z/D = 15. Furthermore, this case

provides good agreement with the experiment for statistical RMS values (Fig. 6.4).
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Therefore, the values of the turbulence level from variance-2 (2/3 of measured vari-

ances at z/D = 0.14) are chosen as for the remainder of the simulations.

• Effects of Schmidt number
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Figure 6.5: Axial profiles of mean axial velocity and mixture fraction. Symbols
denote experimental values [4, 88]. Solid and dashed lines indicate LES-CMC
simulation with the different Schmidt numbers.
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Figure 6.6: Conditional averages of mean scalar dissipation in mixture fraction space
at two downstream locations. Symbols are experimental data [36], while the solid
and dashed lines are LES-CMC results for various Schmidt numbers.

The influences of different values of Schmidt number on the mean flow and mixing

field are shown in Fig. 6.5. In every simulation, the Sct is set to be 0.7 and only

Sc has been varied (as in Table 6.3). In principle, all values of the Schmidt number

provide similar results. However, the results from Sc2 and Sc3 seem to correspond

with the experiment better than Sc1, which results in an under-prediction of the

downstream mean axial velocity and mixture fraction. Moreover, the conditional
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scalar dissipation (resolved and sub-grid scale) at z/D = 7.5 and 15 over mixture

fraction space in Fig. 6.6 demonstrates that the low value of Schmidt number in Sc1

generates extreme over-prediction of conditional scalar dissipation rates compared

with the experiment. Since there is high dissipation at z/D = 7.5 and 15 with Sc1,

the updated density values in the rich zone are low. These updated values of density

affect the filtered momentum equation and the velocities directly in the next time

step. Therefore, the axial velocities which are calculated using updated densities

from Sc1 in the filtered momentum equation are changed to be small in the axial

profiles. These results can be seen in the mean axial velocity profile (Fig. 6.5) for

the range 20 < z/D < 50. Since the mixture fraction field is calculated from the

velocity field and diffusion model (D = ν/Sc), the same effect can be found on the

mean mixture fraction profile. On the other hand, the high value of Schmidt number

in Sc3 results in a relatively low conditional scalar dissipation rate, compared with

the experimental data at z/D = 15. Having the same value as fluid property, Sc2

(Sc = 0.7) shows good agreement with experiments for the mean axial velocity and

mixture fraction, whereas the results of conditional scalar dissipation prediction are

acceptable. Therefore, Sc2 is chosen for all further studies.

• Effects of Turbulent Schmidt number
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Figure 6.7: Axial profiles of mean axial velocity and mixture fraction. Symbols
denote experimental values [4, 88]. Solid and dashed lines indicate LES-CMC
simulation with the different turbulent Schmidt numbers.

Similar to Sc, the value of Sct also affects both velocity and mixture fraction fields.

However, Sct describes momentum and mass transfer at the subgrid scale which
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is related to the reaction field. The changing of Sct is performed to improve the

mixture fraction field with some effects on the flow field. Figure 6.7 shows the

influence of two different values of Sct (0.4 and 0.7). Here, Sct,1 = 0.4 increases the

mean mixture fraction (right) and yields the better agreement with the experiment,

while there are some effects on the mean axial velocity profile (left). Even though

some over-predictions can be observed from the velocity profile of Sct,1 from Fig 6.7,

the tendency of this velocity prediction seems to correspond with the experimental

data. Therefore, the value of the turbulent Schmidt number from Sct,1 is specified

for further studies.

• Effects of Variance of mixture fraction
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Figure 6.8: Conditional averages of mean scalar dissipation in mixture fraction space
at two downstream locations. Circles are 3-D experimental data [36], while the solid
lines, dashed lines, squares and triangles are LES-CMC model in various Cξ cases.

As described in the previous section, Cξ is known as an independent constant

in the subgrid-scale variance modelling which is further employed in the subgrid-

scalar dissipation, Nsgs, modelling. Thus, the larger Cξ is, the higher subgrid-scale

conditional scalar dissipation (squares and triangles in above figure) will be, in ac-

cordance with Eqs. (3.34) and (3.35). Figure 6.8 shows the effect of two different

values of Cξ on the conditional scalar dissipation and subgrid-scale conditional

scalar dissipation at two downstream locations. Cξ,1 (Cξ = 0.20) produces

more appropriate conditional scalar dissipations compared with the experiment.

Therefore, this value is selected to be applied for further studies.
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6.5.2 Parametric Studies of Combustion Model

As demonstrated in Table 6.4, five case studies are performed to show the effects of each

case in the CMC model. All cases are based on the optimal conditions from parametric

studies of flow and mixing field (variance-2, Sc2, Sct,1 and Cξ,1) and use 8× 8× 80 CMC

cells. A reference case (case-1) includes the models CMC-1, flux-1 and D∗η,2, while the

other cases have at least one varied parameter compared with the reference case.

Table 6.4: Summary of different parameters in combustion model study. The
meaning of each numerical method can be found in Table 6.3.

Name Combustion Model
Flow and CMC

Mixing Field Grid Resolution

case-1
CMC-1, flux-1, D∗η,2

8× 8× 80

(reference case)

case-2 CMC-2, flux-1, D∗η,2 variance-2

case-3 CMC-1, flux-2, D∗η,2 Sc2, Sct,1

case-4 CMC-1, flux-2, D∗η,1 Cξ,1

case-5 CMC-1, flux-1, D∗η,3

6.5.2.1 Flow and Mixing Field

In this section, all snapshots and simulation results stem from the reference case (case-1

from Table 6.4) to show an overview of the flow and mixing fields.

Figure 6.9 shows a snapshot of the instantaneous temperature field along a 2D plane

through the burner centerline for the entire computational domain (left) and an enlarged

area of the upstream region (right). The black lines identify the isoline of stoichiometric

mixture fraction. A high level of turbulence which comes from the turbulent inflow gener-

ator at the inlet can be observed from the temperature profile (Fig. 6.9 (right)). Moreover,

the local extinction, which would be characterized by the discontinuous red colour of the

temperature along the isoline of stoichiometric mixture fraction, hardly occurs in Flame

D, in accordance with the experimental findings.
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Figure 6.9: Snapshots of the temperature field in the total computational domain
(left) and in the upstream region (right) for Sandia Flame D which are rerun using
large domain (Table 6.2). The iso-contour of stoichiometric mixture fraction is
represented by the black lines.

At the start of the study, the simulations have been performed using another

computational domain which is narrower than the current domain. All statistics of Flame

D are collected for the parametric studies using this narrow domain. The details of this

initial computational domain are explained in section 6.3. However, there is unphysical

recirculation along the lateral boundaries which can be observed from the enlarged snap-

shots of the velocity vectors in Fig. 6.10. This recirculation is a result of the narrow

computational domain combined with the symmetry boundary condition at the lateral

boundaries. Although there is an evidence of the recirculation, these recirculation effects

are irrelevant for the analysis presented here and do not contaminate the simulation results

in the region of interest for Flame D. Therefore, the statistics are acceptable and the

parametric studies can be performed using data from the narrow domain.

The consideration of interesting positions of experimental data is determined by using

Flame E, since the extinction and re-ignition are obviously detected in that flame. As

a result of the discussion about this topic in section 6.6, the interesting positions are

z/D = 3, 7.5 and 15.
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Figure 6.10: Snapshot of the velocity vectors at the lateral bound of domain for
Sandia Flame D (right), evaluated in the box marked (left). A colour legend shows
the velocity magnitude.
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Figure 6.11: Axial profiles of mean axial velocity and mixture fraction along the
centerline for Flame D. Symbols denote experimental data [88, 4], while the solid
lines present the mean results of LES-CMC (reference case of Table 6.4).

Figure 6.11 shows a good agreement of the axial distributions of mean axial velocity and

mixture fraction for the reference case (case-1) of the combustion model with experiments

[4, 88]. Radial profiles of mean and RMS axial velocity and mixture fraction at three

downstream locations are shown in Fig. 6.12. Both mean and RMS of the axial velocity

and the mixture fraction correspond well with the experiments [88, 4], since the effects

of inflow are previously checked and adjusted in section 6.5.1. Moreover, it can be seen
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Figure 6.12: Radial profiles of mean and RMS axial velocity and mixture fraction
at three downstream locations for Flame D. Symbols denote experimental values
[88, 4], while the solid and dotted lines represent the mean and RMS results of
LES-CMC (reference case of Table 6.4).
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from Fig. 6.12 that the jet spreading is well captured. Small over-predictions of the mean

mixture fraction in the range of 1.2 < r/D < 2 at position z/D = 3 may come from some

effects of the pilot which remain in these positions due to less turbulence of Flame D.

Small over-predictions of the mean axial velocity and mixture fraction can be observed

around 1 < r/D < 2 at position z/D = 15. However, the current predictions provide a

good basis for the parametric studies of the combustion model.

6.5.2.2 Preliminary Studies

The computational time for parametric studies of a combustion model can be reduced

by preliminary studies. These investigations are performed to indicate the cases which

have different convective flux predictions compared with the reference case (case-1 from

table 6.4). Subsequently, all indicated and the reference cases will be further examined

for statistical predictions in the proceeding sections.

In order to understand the processes taking place in this section, the explanations of

the conservative CMC species transport equation (Eq. (5.9)) are necessary. Equation (5.9)

is rearranged in a 3-D finite volume formulation as

∂Q∗α,P
∂t

+

I︷ ︸︸ ︷
γ∗e
γ∗P

Ae
V

[
ũ∗η,e(Q

∗
α,e −Q∗α,P )−

(
D∗η

∂Q∗α
∂x1

)
e

]
−

II︷ ︸︸ ︷
γ∗w
γ∗P

Aw
V

[
ũ∗η,w(Q∗α,w −Q∗α,P )−

(
D∗η

∂Q∗α
∂x1

)
w

]

+

III︷ ︸︸ ︷
γ∗n
γ∗P

An
V

[
(ṽ∗η,n(Q∗α,n −Q∗α,P )−

(
D∗η

∂Q∗α
∂x2

)
n

]
−

IV︷ ︸︸ ︷
γ∗s
γ∗P

As
V

[
ṽ∗η,s(Q

∗
α,s −Q∗α,P )−

(
D∗η

∂Q∗α
∂x2

)
s

]

+

V︷ ︸︸ ︷
γ∗r
γ∗P

Ar
V

[
(ṽ∗η,r(Q

∗
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(
D∗η

∂Q∗α
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)
r

]
−
γ∗l
γ∗P

Al
V

[
ṽ∗η,l(Q

∗
α,l −Q∗α,P )−

(
D∗η

∂Q∗α
∂x3

)
l

]
︸ ︷︷ ︸

V I

= (wα,η)∗P︸ ︷︷ ︸
V II

+
(
Ñ∗η

∂2Qα
∂η2

)
P︸ ︷︷ ︸

V III

, (6.2)

where the coefficients, such as γe
γP

, denote the density-FDF ratios between the boundaries

and the centre of the cells (γ = ρP̃ (η)). Terms I to V I represent convection at the CMC
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cell face in east, west, north, south, right and left, respectively. Terms V II and V III

denote the chemical reaction and the diffusion terms, respectively.

Terms I to V III in Eq. (6.2) can be shown as conditionally averaged values, Fig. 6.13,

for any CMC cell. As an example, Fig. 6.13 shows the comparison of the instantaneous

magnitudes between a convective flux in each direction, diffusion and chemistry of CO2

in mixture fraction space. The simulation is performed using the reference case (case-1).

Comparing Eq. (6.2) and Fig. 6.13, the convective flux in x-direction (X-conv) is the term

I−II, the convective flux in y-direction (Y-conv) is the term III−IV , and the convective

flux in z-direction (Z-conv) is the term V − V I.
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Figure 6.13: Convective fluxes in three directions of CO2 for a time step at r/D = 1
and z/D = 7.5 compared with diffusion and chemistry terms of the reference case.

It can be observed from Fig. 6.13 that the diffusion (blue line) is the strongest term

balancing the chemical reaction (orange line) term. Small convection occurs only in the

z-direction. These similar predictions (as in Fig. 6.13) can be found for every species. A

consideration of the FDF profile is required, since it is applied to transfer the values from

a mixture fraction space to a physical space. A low value of FDF means only a small

influence of any property can appear in physical space. Consequently, the large values of

the convective flux in x-direction at η > 0.6 are not considered because there are low FDF

values in this range. On the other hand, a large value of FDF means a large influence of
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any property can appear in physical space. Therefore, all convective fluxes in the large

values of FDF at 0.2 < η < 0.6 are considered. The convective flux in z-direction, which

has the largest value compared with the other direction, indicates most of the effects of

convection on every scalar mass fraction. Thus, only the convective fluxes in z-direction

will be investigated for the analyses of convective fluxes in further studies.

In order to focus on the effects of each case study that is different from the reference

case, one possible method is the investigation of the convective fluxes in z-direction of all

cases. This is because all numerical methods for the implementation of the CMC equation

directly affect the spatial flux terms. To ensure that the solutions are correlated with

the same LES results, the procedures of investigation begin by letting all case studies

(Table 6.4) run only one time step from the same iteration. Since the fluxes and other

terms of Eq. (6.2) in each case can change immediately, the differences of fluxes between

each case can be detected. The examination of CH4 fluxes in z-direction for all cases

is performed at different CMC cells in axial and radial positions. The axial positions

(Fig. 6.14) are varied from upstream (z/D = 7.5) to downstream positions (z/D = 15

and 30) along the centerline while the radial positions (Fig. 6.15) are varied, especially

the positions comprising the shear layer (r/D = 0, 1 and 2) at the position z/D = 7.5.

Considering the results of the two directions from Figs. 6.14 and 6.15, it is found that

the comparisons of the convective fluxes between different cases can be investigated in

radial positions better than in axial positions. This consideration includes the effect of the

FDF profiles at each position in order to compare the results in the real physical space

as previously discussed in this section. Therefore, the comparison of fluxes in the radial

direction is chosen to discuss in the further studies.

The results from Fig. 6.15 show that the convective flux predictions of case-1 and case-

5 are similar, while the convective flux predictions of case-3 and case-4 are similar. The

reason of these similar fluxes predictions is due to the small effects of different Dη models

on the convective term (more details of D∗η,1, D∗η,2 and D∗η,3 can be found in section 5.4.3).

Since the similar flux predictions can be observed in case-3 and case-4, one of them is

selected for the further studies. In this study, case-3 is chosen because it has only the

method of flux approximation that is different from reference case. Therefore, case-1,

case-2 and case-3 will be discussed below.

The predictions of convective fluxes from case-1 and case-2 at radial positions
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Figure 6.14: Convective fluxes of CH4 in z-direction for a time step at three different
axial positions with the same radial position, r/D = 0, for Flame D.



6.5. RESULTS OF SANDIA FLAME D 93

-10

 0

 10

 20

 30

 40

 0  0.2  0.4  0.6  0.8  1
 0

 2

 4

 6

 8

 10

F
lu

x
 i

n
 Z

-d
ir

e
c
ti

o
n

 [
1

/s
]

F
D

F

Mixture Fraction

CH4 Flux at r/D = 0

case-1
case-2
case-3
case-4
case-5

FDF

-4

 0

 4

 8

 12

 16

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

F
lu

x
 i

n
 Z

-d
ir

e
c
ti

o
n

 [
1

/s
]

F
D

F

Mixture Fraction

CH4 Flux at r/D = 1

-0.4

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  0.2  0.4  0.6  0.8  1
 0

 10

 20

 30

 40

F
lu

x
 i

n
 Z

-d
ir

e
c
ti

o
n

 [
1

/s
]

F
D

F

Mixture Fraction

CH4 Flux at r/D = 2

Figure 6.15: Convective fluxes of CH4 in z-direction for a time step at three different
radial positions with the same axial position, z/D = 7.5, for Flame D.
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(Fig. 6.15) show that the convective flux predictions from the conservative form (case-1)

differ from the predictions from the non-conservative form (case-2). The reason of these

predictions is the difference between the convective flux calculations in the two different

CMC formulations. As discussed in section 4.3, the conservative form has a weighting by

the FDF ratio for the convective flux calculation. If the FDF values of two neighbouring

CMC cells in z−direction are completely different, a high weighting factor (
γ∗face
γ∗P

) is cal-

culated in z−direction, and it leads to a high convective flux for this direction. In general,

the weighting factor for the z-direction can be more, less or equal to the one of other

directions. These values depend on the ratio of the mixture fraction and the subgrid-scale

of mixture fraction of the cell faces to the cell centre. As another numerical method, the

non-conservative formulation has no weighting by FDF ratio in the convective flux cal-

culation. This means it weights a flux in each direction equally. Therefore, the different

predictions of case-1 and case-2 can be explained by the influences of weighting by FDF

ratio in conservative CMC formulation.

The predictions of the convective fluxes from case-1 and case-3 at different radial

positions (Fig. 6.15) show that fluxes from both cases are similar at position r/D = 0 and

have the same tendency at positions r/D = 1 and 2. The additional flux of case-3 for

0.4 < η < 0.6 at position r/D = 2 has almost no effect in physical space, since the FDF

value is very low. The reason of similar flux predictions from both cases can be explained

by the conservative CMC formulation used in case-1 and case-3. All convective fluxes

are calculated by weighting with the FDF ratios and thus, they are similar. However,

some different fluxes from both cases can be found at positions r/D = 1 and 2, since the

different flux approximation methods influence the flux calculation especially at locations

with high turbulence.

The investigations of different flux predictions are performed further for many species

(e.g. OH, CH2O, H2O, CO2 etc.) to ensure the decision of dominant cases which have

different simulation results to each other. Case-1, case-2 and case-3 are initially considered

as relevant cases, since they have different flux predictions at any position for all investi-

gated species. Subsequently, the flux investigation at another starting point is observed

by using the same procedures to have time-independent relations of flux predictions from

variant case studies. It can be determined from the results of two different starting points

that the different instantaneous flux predictions are also found in case-1, case-2 and case-
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Figure 6.16: Mean convective fluxes of CH4 in z-direction at three different radial
positions with the same axial position, z/D = 7.5 (Sandia Flame D). The solid,
dashed and square-dotted lines represent the results of LES-CMC in different cases
and FDF (reference case) in combustion model (Table 6.4).

3. When the instantaneous fluxes of any case study differ from the reference case, it can

imply that the statistical flux predictions will differ. These differences directly influence

the conditional and unconditional profiles of each species. The statistical flux predictions

which are sampled over 10,000 time steps from the three selected cases can be observed

in Fig. 6.16. At position r/D = 2, the mixture fraction is shown only in the range of

η ≤ 0.4. This is because there are very low FDF values where η > 0.4, and so that the

mean convection in physical space are very small in this range.

In the following sections, statistical temperature and species of these three cases are

sampled for 7.6 ms (physical time, i.e. over 10,000 time steps) to validate by comparison

with experimental data and to investigate the different effects of the statistical results

from three case studies in the combustion model. Note that the reference time which is

required for the fluid particle to travel from inlet to outlet of the computational domain

is defined as tref ≡ 80D/Uj , where Uj is the mean jet (bulk) velocity. Thus, the tref
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of Sandia Flame D is 11.61 ms. Although the physical time which is considered in this

project is less than tref of Sandia Flame D, it provides enough data for collecting statistics

at the interesting positions (z/D = 3, 7.5 and 15).

6.5.2.3 Conditionally Filtered Reactive Scalars

The performance of each case of the combustion model can be directly considered in

mixture fraction space. All statistics of measurement data in this section are avialable

only in cross-sectionally averaged values and thus all conditional simulation results in this

section are presented in the same type as the measurements.
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Figure 6.17: Conditional averages of mean scalar dissipation in mixture fraction
space at four downstream locations for Flame D. Circles are 3-D experimental data
[36], while the solid, dashed and square-dotted lines represent the results of LES-
CMC in different cases of combustion model (Table 6.4).

The comparison between experiments and simulation results (case-1, case-2 and case-3

from Table 6.4) of the conditional scalar dissipation, Eq. (4.37), at four different down-

stream locations is presented in Fig. 6.17. For a short explanation, case-1 is the con-

servative CMC with a flux approximation based on LES cells at CMC faces, case-2 is
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the non-conservative CMC with the same flux approximation as case-1 and case-3 is the

conservative CMC with a flux approximation based on CMC cell centres.

A local minimum of experiments at mixture fraction values around 0.4 may be

associated with differential molecular diffusion [36]. The differences of statistically

conditional scalar dissipation between each case study should come from the differences

of instantaneous convective fluxes (discussed in section 6.5.2.2). Species and densities,

which are outcomes of the combustion model, vary between each case. Consequently,

different mixture fraction in the same LES cell of each case is computed from these up-

dated densities in the next time step. The conditional scalar dissipation rates for all cases

are computed based on the gradient of mixture fraction, Eq. (3.35). Thus, different val-

ues of the instantaneous conditional scalar dissipation in each case are calculated. Since

statistical values are the averages of the instantaneous value, predictions of the statistically

conditional scalar dissipation in each case are different. These facts can be observed in

Fig. 6.17.

From this figure, some over-predictions of this value occur in upstream locations

(z/D = 7.5). However, the agreement of the predictions and experiments at z/D =

15 is very good, especially for case-1. The over-prediction of the upstream location comes

from the configured constant value of the filtered scalar dissipation model (Eq. (3.35)) so

that the predictions of the downstream location match with the relevant experiments. It

should be noted that uncertainty estimates are not provided for the measurement [68].

More details of an analysis of uncertainties from experimental noise and spatial averaging

can be found in [5].

A good agreement of case studies with experiments is shown in Figs. 6.18 and 6.19 for

the conditional mean temperature and the conditional mean mass fraction of CO, CH4

and H2. Note that the error bars indicate the conditional RMS and they are only plotted

to illustrate the conditional turbulent fluctuations of each scalar. Under-predictions of

conditional temperature distribution on the lean side (η < 0.35) at position z/D = 3

(Fig. 6.18) may belong to the effect of CMC initial conditions (from the SLFM solution).

Since there are gaps of experimental data on the rich side of mixture fraction space

(0.38 ≤ η ≤ 0.65) for Flame D at the position z/D = 3 (Figs. 6.18 and 6.19), it should be

better to investigate and validate the predictions at this position by using Flame E. The

reason of the gaps is quoted in [4] that CO-Raman measurement, are strongly affected
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by hydrocarbon fluorescence interferences. Consequently, imperfect corrections of these

interferences cause errors in the conditional means in the region of high interference on

the rich side (η > 0.35) of the reaction zone.

Figures 6.18 and 6.19 demonstrate that case-1 (conservative CMC) gives generally

more accurate results than the others at the positions z/D = 7.5 and 15. Moreover,

both sets of figures show that case-2 (non-conservative CMC) is usually over-predicted

on the rich side of mixture fraction in temperature and intermediate products, while the

under-predictions occur at the same positions in the fuel (CH4).

It can also be observed from the Figs. 6.18 and 6.19 that the cross-sectionally averaged

simulation results from case-1 and case-3 are close, even though the convective fluxes of

any cell of both cases (Fig. 6.16) are different from each other. This is caused by FDF value

of each CMC cell in the same cross section, whose value is employed to calculate the cross-

sectional averages. If the conditional predictions between two cases of any CMC cell have

a difference where the low FDF is calculated, the conditional predictions in cross-sectional

averages will be similar. This aspect of FDF values can be seen in Fig. 6.20.

Figure 6.20 shows the conditional temperature predictions at the radial positions

r/D = 0, 1 and 2 which are computed from the fifth, sixth and seventh CMC cells,

respectively. Note that at position r/D = 2, mixture fraction space is shown only in

the range of η ≤ 0.32, since the numerical problem in postprocessing (statistical calcula-

tion) makes statistical temperature do not exist outside this range. The numerical problem

originates from very small FDF values where η > 0.32. These small FDF values make the

statistics of the conditional temperature, whose values are calculated by weighting with

instantaneous FDF and a time step of every iteration, do not exist. Thus, the range of

η > 0.32 at r/D = 2 is not shown here. The different FDFs can be observed in Fig. 6.20.

The conditional mean temperatures of case-1 and case-2 differ from each other especially

at r/D = 0 and 1. The reason for different predictions between case-1 and case-2 on

the rich side (η > 0.35) is due to two different sets of convective fluxes which are calcu-

lated from the two CMC formulations. Because of the lack of FDF-weighting function in

convective term, the different convective fluxes on the rich side of case-2 (non-conservative

CMC) are generated in the upstream positions. The same tendency can be observed at

position z/D = 7.5 in Figs. 6.15 and 6.16.
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Figure 6.18: Conditional profiles of cross-sectionally averaged temperature and CO
at three different downstream positions in mixture fraction space for Flame D. Cir-
cles are experimental data [4], while the solid, dashed and square-dotted lines repre-
sent the results of LES-CMC in different cases in combustion model (Table 6.4).
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Figure 6.19: Conditional profiles of cross-sectionally averaged CH4 and H2 at three
different downstream positions in mixture fraction space for Flame D. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).
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Figure 6.20: Conditional profiles of averaged temperature at three different radial
positions of z/D = 3 in mixture fraction space for Flame D. The solid, dashed and
square-dotted lines represent the results of LES-CMC in different cases and FDF
(reference case) in combustion model (Table 6.4).

6.5.2.4 Unconditionally Filtered Reactive Scalars

Generally, an agreement is observed throughout the simulation results of radial distribu-

tions of unconditional temperature and reactive species from three implementations of the

combustion model in Figs. 6.21 and 6.22. From the predictions of CO and H2 at positions

z/D = 3 and 7.5 (Figs. 6.21 and 6.22 (right)), it can be seen that the simulation results of

case-2 agree well with the experimental data only around the centre (axial) regions. On

the other hand, over-predictions in radial profiles of these species around r/D = 0.4− 0.8

are observed, whereas the under-predictions in the same positions can be found in the

radial profiles of fuel (CH4 in Fig. 6.22 (left)). In general, these unconditional results

exactly follow the conditional results from section 6.5.2.3. However, over-predictions of

all cases for temperature at position z/D = 3 where r/D > 1.2 are caused by the over-

predictions from radial distributions of mixture fraction at the same position (Fig. 6.23).
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Additionally, over-predictions of the radial predictions of CO and H2 in case-1 and case-

3 around r/D = 1.0 − 1.4 at position z/D = 7.5 and for all range at position z/D =

15 can be attributed to the over-predictions of mixture fraction which can be seen from

Fig. 6.23. Note that mixture fraction is employed to transfer the conditional value to the

unconditional value via an FDF table (discussed in section 4.5).
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Figure 6.21: Radial profiles of mean temperature and CO for Flame D. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).
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Figure 6.22: Radial profiles of mean CH4 and H2 for Flame D. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).



104 6. LES-CMC of the Sandia Flame series

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
ea

n
 M

ix
tu

re
 F

ra
ct

io
n

r/D

z/D = 3

exp
case-1
case-2
case-3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
e
a
n

 M
ix

tu
re

 F
ra

c
ti

o
n

r/D

z/D = 7.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
e
a
n

 M
ix

tu
re

 F
ra

c
ti

o
n

r/D

z/D = 15

Figure 6.23: Radial profiles of mean mixture fraction for Flame D. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).
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6.5.3 Parametric Study of CMC Grid Resolution

As described in Table 6.3, three cases of the CMC grid resolution are varied, while the

same conditions of the flow and mixing fields (variance-2, Sc2, Sct,1 and Cξ,1) and CMC

combustion model (CMC-1, flux-1 and D∗η,2) are set up. The variations of the CMC cells

in each x- and y-direction are 4 cells for res-1, 8 cells for res-2 (reference case) and 16 cells

for res-3 with the same 80 CMC cells in z-direction, as summarized in Table 6.5. Note

that flow and mixing fields of the reference case will not be shown in this section since a

reference case has same conditions as the one in the parametric studies of the combustion

model (section 6.5.2.1).

Table 6.5: Summary of different cases in CMC grid resolution study.

Name
CMC Flow and

Combustion Model
Grid Resolution Mixing Fields

res-1 4× 4× 80 variance-2
CMC-1, flux-1

res-2
8× 8× 80 Sc2, Sct,1(reference case)

D∗η,2
res-3 16× 16× 80 Cξ,1

6.5.3.1 Conditionally Filtered Reactive Scalars

Since the CMC resolution varies in the radial direction for three case studies, the radial

positions of conditional value should show more prominent features. Therefore, the radial

positions of mean scalar are investigated at axial positions z/D = 7.5 and 15. A reason

behind the examination of both axial positions is caused by a high variation of turbulence,

and thus the small size of CMC cells (res-3) is believed to capture specific details of

combustion, especially in the regions above the jet and mixing zone. However, predictions

at position z/D = 15 are not provided here since they show the same trends as the

predictions at position z/D = 7.5.

Conditional mean predictions of temperature and CO at position z/D = 7.5 are shown

in Fig. 6.24. Colours of lines and symbols in Fig. 6.24 denote different radial positions,

where green, red and black lines are positions r/D = 0, 1 and 2, respectively.
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Figure 6.24: Conditional profiles of mean temperature and CO at z/D = 7.5 for
Flame D. The symbols are experimental data in scatter plots [4], while the lines in
the first, second and third rows represent the results of LES-CMC from the different
CMC grid resolutions of 4× 4× 80, 8× 8× 80 and 16× 16× 80, respectively (Table
6.5).

It can be observed from Fig. 6.24 that the predictions of res-1 (4× 4× 80 CMC cells)

at positions r/D = 0 and 1 are similar since the green lines are behind the red lines

and thus only the red and black lines can be detected. This occurrence can be clearly

seen in CO (top right of Fig. 6.24). The reason for these identical predictions is that the

simulation results come from the same CMC cell which captures both positions (r/D =
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0 and 1). Some differences of conditional predictions at each position can be observed

in res-2 (8 × 8 × 80 CMC cells), while the obvious differences of conditional predictions

at each position can be found in res-3 (16 × 16 × 80 CMC cells). It can be concluded

from Fig. 6.24 that the small size of CMC cells in res-3 provides better variation of the

conditional moment (compared with the experimental data, scatter plots) than the big size

of CMC cells, res-1 and res-2. These accurate results in mixture fraction space will lead to

accurate results in physical space. Inexistent values of conditionally mean temperature,

where T̃ ∗η < 291 K, of res-3 (the third row) at r/D = 2 in the range of η ≥ 0.40 are an effect

of a small CMC cell which comprises few LES cells. Inside these small CMC cells, the

values in some mixture fraction bins might be small and thus the FDF values whose shape

are presumed by ξ̃ and ξ̃′′2sgs can be small values in some regions of the mixture fraction

space. As a result, the statistical predictions which are computed by using these small

FDF values as a weighting factor will be inexistence at the same regions. The same reason

can be explained for the value of conditionally mean CO of res-3 at the same position.

Another possibility to observe the effects of different CMC grid resolutions is to con-

sider the predictions with the measurement in physical space; therefore, statistics of radial

distributions of unconditionally filtered reactive scalars are considered in the next section.

6.5.3.2 Unconditionally Filtered Reactive Scalars

The mean temperature and CO predictions in radial distributions are shown in Fig. 6.25

which display the same tendency as the conditional scalar predictions in Fig. 6.24. It

can be seen from position z/D = 3 that res-2 and res-3 perform better than res-1 since

there is an under-prediction of the temperature for res-1 around r/D = 0.7 − 0.9. A

possible reason may relate to the size of CMC cell which the big size of CMC cell may

predict inaccurately in which a high level of mixture fraction gradient occurs. Predictions

of res-3 can capture the highest value of CO where r/D is around 0.8 at position z/D

= 7.5. Moreover, predictions from res-3 (16 × 16 × 80 for CMC cells) are closer to the

experiments than the others at position z/D = 15 which show a better advantage of small

CMC cells in this resolution. However, res-3 requires 60% more computational time than

res-2. Based on the computational time and predictions from all CMC resolutions, the

appropriate resolution may be taken as res-2 (8× 8× 80 for CMC cells).
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Figure 6.25: Radial profiles of mean temperature and CO for Flame D. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC from the different CMC grid resolutions (Table 6.5).
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6.6 Results of Sandia Flame E

Following the previous study of Flame D, the appropriate parameters of the flow and

mixing fields (results from section 6.5.1) are applied to Flame E studies. These are the

Schmidt number, Sc = 0.7, the turbulent Schmidt number, Sct = 0.4 and the constant for

the sub-grid scale variance of mixture fraction, Cξ = 0.2. However, the variances in the

turbulent inflow generator for Flame E require a new adjustment, such that the mixture

fraction and the axial mean velocity of the simulations agree well with experiments in

the same manner as Flame D. As described in section 6.4.1, this adjustment is performed

to reduce the high level of turbulence which may come from using the measured velocity

profiles at z/D = 0.14 as experimental inlet data for the inflow generator. Consequently,

the inflow velocity variance levels are reduced to 1
3u
′u′, 1

3v
′v′ and 1

3w
′w′ of the measure-

ments.
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Figure 6.26: Conditional profiles of temperature (see section 4.5.2) for Flame E.
Symbols are experimental scatter plots [4], while the solid lines represent the
averaged mean temperature results of LES-CMC in reference case of combustion
model (Table 6.4).

The consideration of interesting positions of experimental data is determined by
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Fig. 6.26, which are simulation results of reference case (case-1: conservative form with

a flux approximation based on LES cells at CMC faces) compared with experimental

scatter plots. In this figure, the upstream region (z/D ≤ 15) is of great interest, since the

effects of turbulence-chemistry interactions are intensive in these locations. The scatter

plots of the experiment of Flame E show the relation of turbulence-chemistry interac-

tions. These can be observed by the fluctuation of temperature which is produced by the

turbulence. Therefore, in the upstream region z/D ≤ 15, there is strong turbulence (high

scalar dissipation rates) which leads to locally extinguished samples with a low temper-

ature (increased scatter). On the other hand, at downstream positions, z/D ≥ 30, less

turbulence-chemistry interaction can be observed, as indicated by a reduced scatter and

more samples near the conditionally averaged mean temperature. Therefore, the interest-

ing positions for comparison with the experiments in this work are z/D = 3, 7.5 and 15,

respectively.

The parametric studies for Flame E will be performed in the next section to investigate

the effects of different combustion model parameters and CMC grid resolutions.

6.6.1 Parametric Studies of Combustion Model

The parametric studies of a combustion model contain four main parts. The first part

is composed of flow and mixing field predictions which are performed by a reference case

(Table 6.4). Preliminary studies of the combustion model are carried out as a second

part. Subsequently, conditional predictions of different case studies are investigated and

validated with experiments. Finally, unconditional predictions in physical space are dis-

cussed.

6.6.1.1 Flow and Mixing Field

In this section, the overview of the flow and mixing field of Sandia Flame E is based

on the reference case (case-1 in Table 6.4: the conservative CMC combined with flux

approximation based on LES cells at CMC faces and 8 × 8 × 80 CMC grid resolution).

Following the recirculation problem in Flame D which occurs in the narrow domain (see

section 6.5.2.1), the solution using the wider domain (Table 6.2) is adopted and employed

for the calculations of Flame E.
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Figure 6.27: Snapshots of the temperature field in the total computational domain
(left) and in the upstream region (right) for Sandia Flame E. The iso-contour of
stoichiometric mixture fraction is represented by the black lines.
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Figure 6.28: Axial profiles of mean axial velocity and mixture fraction along the
centerline for Flame E. Symbols denote experimental data [88, 4], while the solid
lines represent the mean results of LES-CMC (reference case of Table 6.4).

The instantaneous temperature field along the entire computational domain (left) and

a zoom into the upstream region (right) at the centre plane of Sandia Flame E are shown

in Fig. 6.27. The black lines indicate the isoline of the stoichiometric mixture fraction.

The extinction pockets, which should occur along the isoline of stoichiometric mixture

fraction, cannot be detected in the above mentioned simulation. The temperature contour
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corresponds to the predictions of conditional scalar which will be discussed in detail within

subsection 6.6.1.3.
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Figure 6.29: Radial profiles of mean and RMS axial velocity and mixture fraction at
three downstream locations for Flame E. Symbols denote experimental values [88, 4],
while the solid and dotted lines represent the mean and RMS results of LES-CMC
(reference case of Table 6.4).

Axial distributions of mean axial velocity and mixture fraction are shown in Fig. 6.28

and agree well with experiments. Radial distributions of mean and RMS of axial velocity

and mixture fraction are shown in Fig. 6.29. The radial velocity profiles at z/D = 15 are

only compared with the experiment since there is no measurement available for the flow
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field at positions z/D = 3 and 7.5. Both mean and RMS of velocity in Fig. 6.29 show

that the jet spreading is generally captured well. Even though small over-predictions at

position z/D = 7.5, and under-predictions at position z/D = 15 of mixture fraction RMS

are observed in Fig. 6.29, the present predictions provide a good basis for the parametric

studies of the combustion model.

6.6.1.2 Preliminary Studies

In Flame E, five cases of parametric studies of the combustion model (as presented in

Table 6.4) are examined. These cases vary only in the numerical methods (or models) of

CMC model, while the fluid properties and the CMC grid resolution (8× 8× 80) remain

the same. Since the flux investigation procedures in this section are the same as in Flame

D (detailed in section 6.5.2.2), a brief explanation of these procedures is provided in this

section.

Due to the investigations of Flame D (section 6.5.2.2), a leading direction (z-direction)

which indicates most effects of convection on every scalar mass fraction is investigated in

preliminary studies for Flame E. In the first step, all case studies are allowed to run

only one time step from the same iteration to ensure that flow solutions are correlated.

The comparisons of instantaneous predictions of CH4 fluxes at different axial and radial

positions are shown in Figs. 6.30 and 6.31. Since the differences of the convective fluxes

between each case in Fig. 6.31 are more obvious than in Fig. 6.30, the radial positions are

used to investigate the effects of different implementations of the convective flux for the

other species. It should be noted that a consideration of the FDF is necessary since it is

applied to transfer the values from mixture fraction space to physical space, Eq. (4.45).

If there is a high convection for low FDF values in the mixture fraction space, only low

effects of convection will be observed in physical space. For instance, the appearances of

case-3 and case-4 (Fig. 6.31) around η < 0.2 at position r/D = 1 and z/D = 7.5 are

hardly detected in physical space because FDF values in these regions are close to zero.

Subsequently, the convective flux comparisons are investigated for other species (e.g. OH,

CH2O, CO, H2O, etc.) to decide the cases which have different convective flux predictions

to each other. Furthermore, the flux investigation at another starting point, initial time

step, is performed to have the time-independent simulation results.
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Figure 6.30: Convective fluxes of CH4 in z-direction for a time step at three different
axial positions with the same radial position, r/D = 0, for Flame E.
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Figure 6.31: Convective fluxes of CH4 in z-direction for a time step at three different
radial positions with the same axial position, z/D = 7.5, for Flame E.
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The results from the convective flux investigations of many species and of another

starting point show similar trends as in Fig. 6.31. It can be concluded from this figure

that the flux predictions of case-1, case-2 and case-3 are different and thus the conditional

temperature and species mass fraction predictions from these cases will differ from each

other. The reason of the similar flux predictions between case-1 vs. case-5 and case-3

vs. case-4 is explained by the low effects of different D∗η models, which are the modelling

for the sub-grid scale conditional flux of convection, on the whole convective term (see

Eq. (6.2)).

In the next section, the statistical results of three cases (case-1, case-2 and case-3)

are sampled for 14 ms (over 30,000 time steps) to investigate the different effects of the

combustion model parameters and to validate by comparison with the experiment. Note

that the reference time tref (already discussed in section 6.5.2.2) of Sandia Flame E is

7.74 ms. Compared with tref , the physical time for statistics is enough to collect the fluid

particle travelling from inlet to outlet of the whole domain.

6.6.1.3 Conditionally Filtered Reactive Scalars

The effects of any parameter in the combustion model with turbulence-chemistry inter-

action can be analyzed first by considering the conditionally averaged reactive scalars.

Regarding the convective flux analysis in the preliminary studies, case-1, case-2 and case-

3 are investigated in this section. Following the discussion in section 6.5.2.3, results of an

SLFM solution are used as initial values for the conditional species. Since all statistics of

conditional measurements are available only as cross-sectional averages, the conditional

simulation results are validated with this kind of measurements at three different positions.

It should be considered that case-1 is the conservative CMC implementation with a flux

approximation based on LES cells at the CMC faces, case-2 is the non-conservative CMC

implementation with the same flux approximation as case-1, and case-3 is the conservative

CMC with a flux approximation based on CMC cell centres.

Figure 6.32 presents a comparison of the conditionally averaged scalar dissipation with

experiments [36] for different combustion model parameters at four positions. As in Flame

D, over-predictions of scalar dissipation occur at z/D = 7.5. However, the simulation

values at position z/D = 15 correspond well with the measurements. Differences of

conditional averages of mean scalar dissipation between three cases originate from a vari-



6.6. RESULTS OF SANDIA FLAME E 117

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

C
o

n
d

. 
S

ca
la

r 
D

is
si

p
at

io
n

 [
1

/s
]

Mixture Fraction

z/D = 3

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

C
o

n
d

. 
S

ca
la

r 
D

is
si

p
at

io
n

 [
1

/s
]

Mixture Fraction

z/D = 7.5

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

C
o

n
d

. 
S

ca
la

r 
D

is
si

p
at

io
n

 [
1

/s
]

Mixture Fraction

z/D = 15

 0

 50

 100

 150

 200

 0  0.2  0.4  0.6  0.8  1

C
o

n
d

. 
S

ca
la

r 
D

is
si

p
at

io
n

 [
1

/s
]

Mixture Fraction

z/d = 30

exp
case-1
case-2
case-3

Figure 6.32: Conditional averages of mean scalar dissipation in mixture fraction
space at four downstream locations for Flame E. Circles are 3-D experimental data
[36], while the solid, dashed and square-dotted lines represent the results of LES-
CMC in different cases of combustion model (Table 6.4).

ation of instantaneous convective fluxes which results in different species mass fraction,

temperature and updated density profiles. Since the scalar dissipation rate is calculated

based on the mixture fraction gradient (Eq. (3.35)), the scalar dissipation rate of each case

for the same LES cell is different. As a result, differences of averaged conditional scalar

dissipations are observed and we may conclude that the calculations of the convective flux

have a large influence on the CMC solutions (at z/D = 3 and 7.5 in Fig. 6.32).

Predictions of conditional mean temperature and the conditional mean mass fraction

of reactive species (CO, CH4 and H2) are shown in Figures 6.33 and 6.34. These species are

chosen as a representative of intermediates, products and fuel. In these figures, error bars

indicate the conditional RMS and are only plotted to illustrate the conditional turbulent

fluctuations of each scalar.
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Figure 6.33: Conditional profiles of cross-sectionally averaged temperature and CO
at three different downstream positions in mixture fraction space for Flame E. Circles
are experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).

As already seen for Flame D, case-1 and case-3 are similar for all results (the reason

was already discussed in section 6.5.2.3). The differences between case-1 and case-2 can be

detected in a range of η > 0.4 at position z/D = 3 which indicate that case-1 is superior to

case-2. The reason of different predictions has been already discussed in the previous test

case (section 6.5.2.3) that the two CMC formulations have the most significant differences

in the convective fluxes on the rich side of mixture fraction space. This fact can be observed
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Figure 6.34: Conditional profiles of cross-sectionally averaged CH4 and H2 at three
different downstream positions in mixture fraction space for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).

in Fig. 6.35 which shows the conditional predictions and FDF of two different CMC cells

at z/D = 3.

Under-predictions of conditional temperature distribution for all cases on the lean side

(η < 0.35) at z/D = 3 (clearly seen in Fig. 6.33) may result from the initial conditions

of large CMC cell over jet and pilot regions. The initial conditions of the CMC part

are obtained from the SLFM solution (as previously discussed in section 6.5.2.3). If an
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Figure 6.35: Conditional profiles of mean temperature at two different radial
positions of z/D = 3 in mixture fraction space for Flame E. The solid, dashed
and square-dotted lines represent the results of LES-CMC in different cases and
FDF (reference case) in combustion model (Table 6.4).

improper initialization for CMC in the upstream region is defined, some effects are still

there because of the costly nature of LES, runtime will be only for decisecond for the

simulation. Additionally, a peak of the conditional temperature prediction which does

not correspond to the experiments at the same position (z/D = 3) shows that single

conditional reaction source terms might not be accurate since there is an evidence that

double conditional reaction source terms can predict the correct peak-position and reduce

over-predictions in conditional scalar distributions [50]. Note that the double conditioning

is a method which uses two conditioning variables, e.g. mixture fraction and sensible

enthalpy. This method is applied for flames where large fluctuations around a conditional

mean occur. The new conditioning should reduce the fluctuations if there is a strong

dependency of the reactive species on this second conditioning variable [23].

Over-predictions of conditional mean temperature and intermediate products in

Figs. 6.33 and 6.34 are observed in the extinction zone (e.g. 0.35 ≤ η ≤ 0.6 at z/D = 7.5

and η ≥ 0.30 at z/D = 15 for temperature). The extinction zone can be detected by

the lower values of any conditional scalar in the measurements for Flame E compared

with the same scalar for Flame D at the same position. Both Figs. 6.33 and 6.34 indicate

that all cases do not capture local extinction regions. These results might imply that

the first-order closure of CMC with a single conditioning variable has some difficulties to

simulate a flame which has extinction and re-ignition. Previous research [51] shows that

the reaction source terms should have a larger influence on these phenomena with respect
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to the turbulence-chemistry interaction; therefore, the conditional reaction source terms

may require further adjustment.

6.6.1.4 Unconditionally Filtered Reactive Scalars

The conditional scalars can be transferred to unconditional scalars by using an FDF table

(discussed in section 4.5) with the consideration of mixture fraction and subgrid-scale

variance of mixture fraction. This transformation procedure is performed to observe the

effects of each case in physical space.
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Figure 6.36: Radial profiles of mean temperature and CO for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).
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Figure 6.37: Radial profiles of mean CH4 and H2 for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).

Radial distributions of mean temperature, CO, CH4 and H2 are shown in Figs. 6.36

and 6.37. The lean and rich sides can be defined by using radial profiles of mean mixture

fraction (Fig. 6.38). The region where the mixture fraction value is higher than the

stoichiometric value (ηst = 0.35) is considered to be on the rich side, while the region

where the mixture fraction value is lower than stoichiometric is considered to be on the

lean side. An example of lean and rich sides can be seen by considering the position

z/D = 3. For r/D ≤ 0.8 the mixture is rich, while for r/D > 0.8 the mixture is lean.



6.6. RESULTS OF SANDIA FLAME E 123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
ea

n
 M

ix
tu

re
 F

ra
ct

io
n

r/D

z/D = 3

exp
case-1
case-2
case-3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
e
a
n

 M
ix

tu
re

 F
ra

c
ti

o
n

r/D

z/D = 7.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3

M
e
a
n

 M
ix

tu
re

 F
ra

c
ti

o
n

r/D

z/D = 15

Figure 6.38: Radial profiles of mean mixture fraction for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).

In general, the unconditional profiles have the same tendency as the conditional

profiles. Small under-predictions of the mean temperature at position z/D = 3 where

r/D > 0.8 of three cases from Fig. 6.36 correspond to the under-predictions on the lean

side (η < 0.35) as seen in the conditional profiles (Fig. 6.33), while the different predictions

between case-1 and case-2 or between case-1 and case-3 at this position should come from

slight variations of the mixture fraction profile (at z/D = 3 and r/D > 0.8) between both

cases.

Over-predictions of radial distributions of temperature, CO and H2 at position z/D =

7.5 relate to the over-predictions of the conditional scalar which cannot capture extinction

and re-ignition. However, only small over-predictions can be detected in the unconditional

results compared with the conditional results. This may be due to the low values of the

presumed FDF (see Fig. 6.39) where the differences between the conditional results and the

experiments occur. Consequently, the unconditional values have small variations compared

with experiments after performing a convolution with the FDF. The different predictions
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Figure 6.39: Conditional profiles of averaged CO at three different radial positions
of z/D = 7.5 in mixture fraction space for Flame E. The solid, dashed and square-
dotted lines represent the results of LES-CMC in different cases and FDF (reference
case) in combustion model (Table 6.4).

of CO and H2 between case-1 and case-3 at position z/D = 7.5 where 0.8 < r/D < 1.0

may be attributed to the slight discrepancies of both mixture fraction profiles.

Considering the conditional temperature profiles (Fig. 6.33) and the mixture fraction

profile (Fig. 6.38) at z/D = 15, over-predictions of unconditional temperature (Fig. 6.36)

around r/D < 1.5 at z/D = 15 of three scalars follow the same trend as conditional

predictions. However, over-predictions around r/D > 1.5 should relate to small over-

prediction of mixture profiles at the same position.
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6.6.2 Parametric Study of CMC Grid Resolution

Similarly as in Flame D, the study of the effect of CMC grid resolution is performed for

Flame E. The three different CMC grid resolutions are 4×4×80, 8×8×80 and 16×16×80

(res-1, res-2 and res-3 respectively, Table 6.5), while the same parameters for the flow and

mixing fields and the combustion model (variance-2, Sc2, Sct,1, Cξ,1, CMC-1, flux-1 and

D∗η,2) are used for all cases.

6.6.2.1 Conditionally Filtered Reactive Scalars

The conditional mean temperature and mass fraction of CO are shown at z/D = 7.5

in Fig. 6.40. The explanation for the interesting position (z/D = 7.5) can be found in

section 6.5.3.1. Colours of lines and symbols in Fig. 6.40 denote different radial positions,

where green, red and black lines are positions r/D = 0, 1 and 2, respectively.

The conditional predictions at position z/D = 7.5 (Fig. 6.40) indicate that the

predictions of res-1 (4 × 4 × 80) are identical at all radial positions since the predictions

of each radial position come from the same CMC cell. Some differences of the conditional

predictions of each radial position are observed in res-2 (8×8×80) and they are obvious in

res-3 (16× 16× 80) because these predictions come from different CMC cells. Because of

the small sizes of the CMC cells in res-3, each CMC cell can be located at a more precise

position needed for comparison with the experiment. Consequently, the predictions from

each CMC cell of res-3 should be closer to the mean values of the scatter plots at the

respective radial position. It should be noted that the nonexistent value which occurs in

res-2 and res-3 at r/D = 2 and η > 0.90 is an artefact of the averaging procedure for zero

probability which can be observed in a small CMC cell containing few LES cells. For small

CMC cells, the values in some mixture fraction bins might be small or zero. Consequently,

the FDF values, which are presumed by ξ̃ and ξ̃′′2sgs can be small or zero in some regions

of the mixture fraction space. To calculate the relevant statistics, FDF values are used as

a weighting factor. Therefore, if FDF values are small or zero, the statistics do not exist

in the same regions.
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Figure 6.40: Conditional profiles of mean temperature and CO at z/D = 7.5 for
Flame E. The symbols are experimental data in scatter plots [4], while the lines in
the first, second and third rows represent the results of LES-CMC from the different
CMC grid resolutions of 4× 4× 80, 8× 8× 80 and 16× 16× 80, respectively (Table
6.5).
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Figure 6.41: Conditional profiles of mean CO at r/D = 1 for Flame E. Symbols are
experimental data in scatter plots [4], while the green, red and black lines represent
the results of LES-CMC from the different CMC grid resolutions (Table 6.5).

In order to compare the accuracy, conditional profiles of mean CO for the three

resolutions at position r/D = 1 at z/D = 7.5 and 15 are shown in Fig. 6.41. It can

be observed that the predictions of res-3 are slightly closer to the mean values of scatter

plots than the predictions of the other resolutions. Due to more precise predictions of

res-3 in both Figs. 6.40 and 6.41, it may be implied that a small size of CMC cells (high

resolution) should have a possibility to create more accurate predictions for each radial

distribution.

6.6.2.2 Unconditionally Filtered Reactive Scalars

Radial profiles of the mean temperature and CO for different CMC grid resolutions are

shown in Fig. 6.42. Normally, the unconditional predictions are outcomes of conditional

predictions in physical space. Therefore, the unconditional values should follow the trend

of the conditional values as in Flame D (section 6.5.3.2) where it can be seen that res-3

is superior to res-2 and res-1. The reason that over-predictions of res-3 are higher than

of the other resolutions should relate to the small differences of mixture fraction profiles

among the three resolutions which can be observed in Fig. 6.43.

Regarding the issue of extinction and re-ignition, predictions of unconditional scalars

show that all resolutions have some difficulties to capture these phenomena. These effects

are observed as over-predictions of temperature around 0.5 < r/D < 2 at z/D = 7.5 and

r/D < 2 at z/D = 15. Due to the high gradient in radial positions of velocity in Flame



128 6. LES-CMC of the Sandia Flame series

E (1
2

(
∂ eui
∂xj
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∂xi

)
= S̃ij), fluctuations of mixture fraction in a CMC cell become large

and they do not correspond to the fluctuations of any species, even though a high CMC

resolution is used. Therefore, using only the first-order CMC with single conditioning

might not be enough to predict these phenomena.
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Figure 6.42: Radial profiles of mean temperature and CO for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC from the different CMC grid resolutions (Table 6.5).
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Figure 6.43: Radial profiles of mean mixture fraction for Flame E. Circles are
experimental data [4], while the solid, dashed and square-dotted lines illustrate the
results of LES-CMC in different cases in the different CMC grid resolutions (Table
6.5).

6.7 Results of Sandia Flame F

Having a higher level of extinction than Flames D and E, Flame F is notoriously difficult

to model [50]. As in Flame E, the same parameters of the flow and mixing fields from

section 6.5.1 (Sc = 0.7, Sct = 0.4 and Cξ = 0.2) are adopted from the studies of Flame D to

be applied to the computation of Flame F. However, the velocity variance in the turbulent

inflow generator is re-examined in order to obtain a better agreement with the experiment

for the flow and mixing fields. It should be noted that an adjustment is carried out to

reduce the high level of turbulence which may occur when using the measured velocities at

z/D = 0.14 as experimental inlet data for the inflow generator. An inflow variance level of

2/9 of the measured variances (at z/D = 0.14) was found to yield reasonable jet break-up

behaviour. Parametric studies of the CMC combustion model and CMC resolution are

discussed in the next section.
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6.7.1 Parametric Studies of Combustion Model

As shown in Table 6.4, five case studies with different numerical methods (or models)

are carried out to demonstrate the effects of each numerical aspect. The structure of the

parametric studies is composed of four primary parts. In the first part, an overview of

the flow and mixing fields is performed by a reference case (case-1). In the second part,

preliminary studies are investigated to define the relevant cases that have the possibility

to produce different results. Statistical predictions of the conditional scalars of these cases

are investigated and discussed in the third part. The final part presents the statistical

predictions in physical space which are shown and analyzed.

6.7.1.1 Flow and Mixing Field

The computational domain for Flame F is adjusted to be wider (details in Table 6.2) so that

the recirculation problem as described in Flame D can be avoided (section 6.5.2.1). Using

case-1 for predictions, the instantaneous temperature field along the entire computational

domain (left) and a zoom into the upstream region (right) at the centre plane of Sandia

Flame F are shown in Fig. 6.44. The black lines indicate the isoline of the stoichiometric

mixture fraction.

The figure of the upstream regions corroborates the fact that a high turbulence level

has developed early on, since an inflow generator has been implemented. However, the

high levels of extinction, which are supposed to be found along the isoline of stoichiometric

mixture fraction, cannot be seen in the simulation. Details of predictions of extinction

and re-ignition phenomena are directly related to predictions of conditional scalars which

will be discussed in subsection 6.7.1.3.

The axial variations of mixture fraction and of axial velocity are illustrated in Fig. 6.45

where an agreement with experiments can be observed. The inconsistance between velocity

and mixture fraction may come from the inconsistance of the experiments which are done

by two group (i.e. [4] for the species measurements and [88] for the velocity measurements.)

Predictions of radial distributions of mean and RMS of axial velocity are shown in

the left column of Fig. 6.46, while predictions of radial distributions of mean and RMS

of mixture fraction are illustrated in the right column of the same figure. Generally,

predictions agree well with the experiments and the jet spreading is captured well. Small

over-predictions of mean and RMS of both axial velocity and mixture fraction are observed
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Figure 6.44: Snapshots of the temperature field in the total computational domain
(left) and in the upstream region (right) for Sandia Flame F. The iso-contour of
stoichiometric mixture fraction is represented by the black lines.
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Figure 6.45: Axial profiles of mean axial velocity and mixture fraction along the
centerline for Flame F. Symbols denote experimental data, while the solid lines
represent the mean results of LES-CMC (reference case of Table 6.4).

at position z/D = 15. However, the present predictions can be a good basis for the

parametric studies of the combustion model.
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Figure 6.46: Radial profiles of mean and RMS axial velocity and mixture fraction at
three downstream locations for Flame F. Symbols denote experimental values [88, 4],
while the solid and dotted lines illustrate the mean and RMS results of LES-CMC
(reference case of Table 6.4).



6.7. RESULTS OF SANDIA FLAME F 133

6.7.1.2 Preliminary Studies

Based on the same procedures as for Flames D and E, five different cases for the

CMC model implementation (which are summarized in Table 6.4) are performed for the

convective flux investigations as preliminary studies. Since the details of the investigation

procedures are already discussed in section 6.5.2.2, these procedures will be only briefly

explained in this section.

Following the investigations of Sandia Flame D (section 6.5.2.2), the z-direction is

selected as the leading direction because it indicates most effects of convection on every

scalar mass fraction. Since similar results of the convective flux comparison between each

direction can be found in all flames of the Sandia Flame series, the z-direction is chosen for

consideration within the preliminary studies for Flame F. To ensure that flow solutions are

correlated with the same LES simulation results, all case studies are allowed to run only one

time step from the same iteration in the first procedure. A comparison of convective fluxes

in z-direction between different axial and radial positions (in all five cases) is required to

choose appropriate positions to analyze the fluxes. It is observed from the instantaneous

CH4 convective fluxes in Figs. 6.47 and 6.48 that the axial positions show larger differences

of fluxes than the radial positions. Therefore, the axial positions are chosen for further

investigations. Note that the FDF values are necessary for all considerations because they

are used to transfer the effects of the convective values from the mixture fraction space to

the physical space. If the FDF values are low, for example, as shown in Fig. 6.48 in the

range of η > 0.05 at r/D = 2, the effects of the convective flux in physical space become

small or can disappear if the FDF is zero. Subsequently, the convective fluxes at different

axial positions are investigated for other species. Furthermore, to have time-independent

relations of convective fluxes from each case study, an investigation of convective flux

predictions of various cases is required for another initial time step.

Following the same trend as seen in Fig. 6.47, all results of convective flux investigations

show that only the predictions of case-1, case-2 and case-3 are different and thus the

differences of conditional temperature and species predictions will be detected in these

cases. The predictions between case-1 vs. case-5 and case-3 vs. case-4 are identical. The

reason for the similar flux prediction is due to the low influences of different D∗η models

on the convective term.

In the next section, the simulation results of case-1, case-2 and case-3 will be collected
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Figure 6.47: Convective fluxes of CH4 in z-direction for a time step at three different
axial positions with the same radial position, r/D = 0, for Flame F.
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Figure 6.48: Convective fluxes of CH4 in z-direction for a time step at three different
radial positions with the same axial position, z/D = 7.5, for Flame F.
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for 10.3 ms (over 30,000 time steps) for statistical scalar predictions in order to analyze

the consequence of these cases in the combustion model. Note that the reference time tref

(as discussed in section 6.5.2.2) of Sandia Flame F is 5.81 ms. Compared with tref , the

physical time (10.3 ms) is enough to collect statistics of the fluid particle travelling from

inlet to outlet of the computational domain for the flame.

6.7.1.3 Conditionally Filtered Reactive Scalars

For the CMC model, the direct performance of any numerical method can be assessed in

mixture fraction space. It should be noted that all statistics of conditional measurements

are available only as cross-sectional averages, and thus, the conditional simulation results

are validated with this kind of measurements at interesting positions. As in Flame D

(section 6.5.2.3), results of an SLFM solution are used as initial values for the conditional

species. Owing to the preliminary studies of convective fluxes (section 6.7.1.2), investiga-

tions of three different cases (case-1, case-2 and case-3 from Table 6.4) are performed for

statistical predictions.

The comparisons of the conditional averaged scalar dissipation for three different im-

plementations of the combustion model are illustrated in Fig. 6.49. Note that there is no

3D measurement data for Flame F by Karpetis and Barlow [36]. However, being compared

with Flames D and E (Figs. 6.17 and 6.32, respectively) for the same cross section, Flame

F has higher conditional averages of mean scalar dissipation than both other flames due

to high turbulence from the high shear rates. This means the resolved strain rate, which

causes the gradient of velocities (1
2

(
∂ eui
∂xj

+ ∂fuj
∂xi

)
= S̃ij) is high and hence, an expected

increase in scalar dissipation [36]. A reason for different values of scalar dissipation in each

case is due to a variation of the instantaneous convective fluxes, which is already discussed

in detail for Flames D (section 6.5.2.3) and E (section 6.6.1.3).

Predictions of conditional mean temperature, mass fractions of CO, CH4 and H2 are

illustrated in Figs. 6.50 and 6.51. Conditional RMS values are indicated by error bars

which are only plotted to illustrate the conditional turbulent fluctuations of each scalar.

Three species are chosen as representatives of intermediates, products and fuel. The trend

of product predictions can be estimated from temperature predictions. Over-predictions

of conditional temperature at positions z/D = 7.5 and 15 (left column of Fig. 6.50) relate

to the under-predictions of CH4 (left column of Fig. 6.51), while CO and H2 (right column
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Figure 6.49: Conditional averages of mean scalar dissipation in mixture fraction
space at four downstream locations for Flame F. Solid, dashed and square-dotted
lines represent the results of LES-CMC in different cases of combustion model (Table
6.4).

of Figs. 6.50 and 6.51) are over-predicted.

Under-predictions of conditional mean temperature around η < 0.35 at position

z/D = 3 (Fig. 6.50) may relate to the influences of initialization of CMC on the upstream

locations. The determination of conditional temperature predictions on the rich side at

z/D = 3 seems unclear because there is no experimental data over the mixture fraction

field between 0.33 and 0.70. The reason for absent measurements at this position is due to

the influences of hydrocarbon fluorescence interferences on the CO-Raman measurement,

and thus it creates errors in the conditional means in the region of high interference on

the rich side (η > 0.35) [4]. Differences of predictions from each case on the rich side at

position z/D = 3 have already occurred in the previous test cases (details can be found

in section 6.5.2.3). The reason behind the differences of the predictions is a variation of

the convective fluxes on the rich side of each CMC cell which are created from different

case studies.
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Figure 6.50: Conditional profiles of cross-sectionally averaged temperature and CO
at three different downstream positions in mixture fraction space for Flame F. Circles
are experimental data [4], while the solid, dashed and square-dotted lines illustrate
the results of LES-CMC in different cases in combustion model (Table 6.4).

From Figs. 6.50 and 6.51, it can be observed that results from case-1 agree with the

relevant experiments slightly better than case-3. The reason for the similar predictions can

be attributed to low FDF values where the predictions are different in each CMC cell at the

same cross section. Consequently, the averaged predictions (by weighting with the FDF)

for a cross section are similar. More details can be found in section 6.5.2.3. Predictions

of CO and H2 at positions z/D = 7.5 and 15 show that case-1 is slightly closer to the
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Figure 6.51: Conditional profiles of cross-sectionally averaged CH4 and H2 at three
different downstream positions in mixture fraction space for Flame F. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).

measurements than case-2. However, none of the cases can predict the extinction and re-

ignition phenomena (where over-predictions can be observed for conditional temperature

between 0.2 < η < 0.7 at z/D = 7.5 and between η > 0.15 at z/D = 15) due to the same

reason as in Flame E (discussed in section 6.6.1.3).
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6.7.1.4 Unconditionally Filtered Reactive Scalars

Besides conditional scalars in mixture fraction space, predictions of three different imple-

mentations of the combustion model can be validated in physical space using unconditional

scalars. The transformation between conditional values and unconditional values is per-

formed by convolution with the FDF.
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Figure 6.52: Radial profiles of mean temperature and CO for Flame F. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC in different cases in combustion model (Table 6.4).

Figures 6.52 and 6.53 compare the predictions between three cases for radial distri-
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Figure 6.53: Radial profiles of mean CH4 and H2 for Flame F. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent
the results of LES-CMC in different cases in combustion model (Table 6.4).

butions of mean temperature and some reactive species (CH4, CO and H2). Generally,

the unconditionally filtered scalars follow the tendency of the conditionally filtered scalars

which demonstrate that case-1 comes closer to experimental results when compared with

case-2 and case-3. However, some disagreements between unconditional predictions and

conditional predictions can be attributed to the discrepancy of the mixture fraction

profiles. A discussion of using mixture fraction profiles for a consideration of rich and lean

regions can be found in section 6.6.1.4. Following the trend of conditional predictions,
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over-predictions of mean temperature at positions z/D = 7.5 and 15 are a consequence of

the present first-order CMC formulation not capturing local extinction in Flame F which

leads to the under-predictions of mean CH4 and the over-predictions of CO and H2.

6.7.2 Parametric Study of CMC Grid Resolution

Following the same procedure as for Flames D and E, three different CMC grid resolutions

are investigated for Flame F. Applying the same parameters for flow, mixing field and

combustion model (detailed in Table 6.5), the resolutions of 4 × 4 × 80, 8 × 8 × 80 and

16 × 16 × 80 CMC cells are defined as res-1, res-2 and res-3, respectively. The structure

of this section is composed of two main parts. Conditional predictions of filtered reactive

scalars are described in the first part since they show the direct effects of combustion

model. Unconditionally filtered reactive scalars are reported in the second part which

demonstrates the predictions in physical space.

6.7.2.1 Conditionally Filtered Reactive Scalars

Figure 6.54 shows predictions of the conditional mean temperature and CO at position

z/D = 7.5. Since predictions at position z/D = 15 follow the trend of predictions at

position z/D = 7.5, they will not be shown in this section. The different colours of lines

and symbols in Fig. 6.54 illustrate different radial positions, where green, red and black

lines are the positions r/D = 0, 1 and 2, respectively.

A variation of conditional predictions in different radial positions can be simply de-

tected in Fig. 6.54. As for Flame E (section 6.6.2.1), it can be observed that predictions

of res-1 at r/D = 0, 1 and 2 are the same because all positions are captured by the same

CMC cell (owing to the big size of CMC cells). On the other hand, different predictions

at any radial position are produced by res-2 and res-3 due to the small size of CMC

cells (high resolutions). These facts can be observed by considering colours of the lines

for all resolutions in Fig. 6.54. Moreover, res-2 and res-3 seem to capture the measured

conditional mean especially in the mixing zone (at position r/D = 1) slightly better than

res-1. Note that the inexistent values which occur in res-2 and res-3 at r/D = 2 and

η > 0.90 are an effect of a small CMC cell which comprises few LES cells (detailed in

sections 6.5.3.1 and 6.6.2.1).
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Figure 6.54: Conditional profiles of mean temperature and CO at z/D = 7.5 for
Flame F. The symbols are experimental data in scatter plots [4], while the lines in
the first, second and third rows represent the results of LES-CMC from the different
CMC grid resolutions of 4× 4× 80, 8× 8× 80 and 16× 16× 80, respectively (Table
6.5).

The comparisons of the performance between three resolutions are shown for the

conditional profiles of mean CO in Fig. 6.55 for r/D = 1 at z/D = 7.5 and 15. It

can be found that the predictions of res-3 (16×16×80) appear slightly closer to the mean

values of the scatter plots than res-2 and res-1. Another possibility to observe the effects

of different CMC grid resolutions is to validate the predictions by the measurements in
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Figure 6.55: Conditional profiles of mean CO at r/D = 1 for Flame F. Symbols are
experimental data in scatter plots [4], while the green, red and black lines represent
the results of LES-CMC from the different CMC grid resolutions (Table 6.5).

physical space. Therefore, unconditional predictions are required to be discussed in the

next section.

6.7.2.2 Unconditionally Filtered Reactive Scalars

Radial distributions of the mean temperature and CO for different positions are shown in

Fig. 6.56. Following the same tendency as the conditional prediction, the unconditional

mean temperature and CO show that res-3 predicts slightly better than res-2 and res-1

which can be easily detected at position z/D = 15. However, the predictions at positions

z/D = 7.5 and 15, where high levels of extinction and re-ignition occur, demonstrate that

increasing the number of the CMC cell resolution does not fulfill the performance in order

to simulate these phenomena as it was also found in Flame E.
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Figure 6.56: Radial profiles of mean temperature and CO for Flame F. Circles are
experimental data [4], while the solid, dashed and square-dotted lines represent the
results of LES-CMC from the different CMC grid resolutions (Table 6.5).



146 6. LES-CMC of the Sandia Flame series

6.8 Summary

Contained within this chapter, parametric studies of LES-CMC are carried out for the

Sandia Flame series. The parameter studies comprised investigations of flow and mixing

field, variants of the CMC combustion model parameters and CMC grid resolution.

Flame D is used to investigate the influence of various flow and mixing field parameters

on the simulation results. These parameters, which are Sc = 0.7, Sct = 0.4 and Cξ = 0.2,

are used for further studies of Flame D, as well as for Flames E and F. Values of velocity

variance for the inflow generator, however, depend on the physical inflow of each flame.

It should be noted that an adjustment of the velocity variances is carried out to reduce

the high level of turbulence which may come from using the measurements of velocities at

z/D = 0.14 as experimental inlet data for the inflow generator. Suitable inflow variances

for Flames D, E and F are found to be 2
3 , 1

3 and 2
9 of the measured variances at z/D = 0.14

of these flames, respectively.

Parameter studies of different variants of the CMC combustion model are carried out to

find the most suitable model as well as to examine the abilities of each case for predicting

extinction and re-ignition phenomena. Initial studies of the CMC fluxes have reported

that the effect of turbulent diffusivity modelling is negligible. However, a comparison

of CMC models, which vary the CMC formulation (conservative vs. non-conservative),

reveals considerable differences. Moreover, some slight differences between two methods

of the CMC convective flux approximation (cell face vs. cell centre based) are detected.

Therefore, three dominant cases which differ in both numerical aspects are investigated

for further studies. Conditional profiles of cross-sectionally averaged scalars compared

with the measurements show that the conservative CMC formulation with computing

convective fluxes based on LES cells located at the CMC cell faces (case-1) is similar to

the one with computing convective fluxes based on CMC cell centres (case-3). This can

be explained by the low FDF values where the differences of predictions occur in a CMC

cell. Consequently, the conditionally averaged predictions with FDF weighting create

the similar results over a cross section. Generally, both conditional and unconditional

predictions reveal that case-1 can capture better mean measurements than case-2 (the

non-conservative formulation using the same flux approximation). This is because the

variation of FDF weighting (
γ∗face
γ∗P

) in convective flux calculation for different directions of
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case-1 allows the predictions to be more accurate. However, an inaccuracy of unconditional

predictions can occur due to the inaccuracy of mixture fraction profiles. Regarding the

ability to predict extinction and re-ignition, Flames E and F are used as test cases since

Flame E exhibits strong local extinction which increases close to blow-off for Flame F. The

results from conditional scalar predictions for Flames E and F indicate that the current

first-order CMC formulation has some difficulties in predicting these phenomena.

Three different CMC grid resolutions (4 × 4 × 80, 8 × 8 × 80 and 16 × 16 × 80) are

examined in order to find the appropriate number of CMC cells for each Sandia Flame.

Due to the computational cost with efficient performance, the reasonable resolution for

Flame D is 8× 8× 80 CMC cell. A consideration of extinction and re-ignition in Flames

E and F indicates that the best predictions are found when the CMC grid resolution is

increased to 16 × 16 × 80. However, these predictions do still not capture the extinction

and re-ignition phenomena.
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Chapter 7

Conclusions and Future Work

7.1 Overview

This research concerns LES simulations of non-premixed turbulent flames. The simulations

have been carried out using a first-order conservative formulation of the conditional mo-

ment closure (CMC) model for combustion and large eddy simulation (LES) for turbulent

flow. The objective of this work is to investigate the sensitivity of the results to variants of

the CMC combustion model (especially for two CMC formulations, the conservative and

the non-conservative forms) as well as to the CMC grid resolution. Three test cases of

non-premixed jet flames (Sandia Flames D, E and F) were investigated. Due to increasing

Reynolds numbers in the Sandia flame series, the scalar dissipation rate increases from

Flame D to Flame F and thus a higher level of extinction and re-ignition is found in Flames

E and F, respectively.

7.2 Conclusions

The CMC model was first coupled with the LES methodology by Navarro et al. [68] and

there have been some studies using the LES-CMC method in recent years. However, only

a non-conservative CMC formulation has been applied so far and it may predict inaccurate

results in CMC cells which have large temporal variations of the mixture fraction field.

A lack of an FDF-weighting function in the convective term in non-conservative CMC is

believed to be the main reason for inaccurate predictions. Hence, LES combined with the

149
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conservative CMC formulation was validated and investigated in this research.

Based on the finite volume method, the CMC model was implemented in conservative

formulation which considers the ratios of the presumed FDFs of the boundaries and the

centre of the CMC cells. These ratios influence the convective fluxes in each direction.

Consequently, a quick response of the conditionally filtered reactive scalars to turbulent

fluctuations occurs by including these FDF ratios in the convective fluxes. Each CMC

cell contains many LES cells and thus the FDF-volume averaging is required to transfer

information between the two different grids (LES and CMC). The solution of the LES

flow field is passed to the CMC solver to allow the computation of the temperature and

reacting scalars, while information on density and viscosity is passed from the CMC solver

back to the flow field solver.

Parameter sensitivity studies of the flow and mixing field using Flame D as a reference

case were performed to establish a set of valid parameters for the simulation of the whole

flame series, Sandia Flame D, E and F. The studies found that Sc = 0.7, Sct = 0.4 and

setting the subgrid-scale variance modelling constant Cξ to 0.2 yields good agreement with

experiments. A sensitivity analysis of the results indicated that inflow velocity variance

levels corresponding to 2
3 , 1

3 and 2
9 of the measured variances at z/D = 0.14 were suitable

inflow conditions for Flames D, E and F, respectively.

Preliminary studies of variants of the CMC combustion model have been investigated

in order to define dominant numerical aspects (or models) which influence statistical

predictions for further studies. Instantaneous correlations between diffusion, reaction and

the convective fluxes of a reference case were presented. The convective flux in z-direction

was chosen as being representative for all next steps because of the highest value of the

convective flux in this direction among the three directions. Since all numerical aspects di-

rectly influence the convective term, the instantaneous convective flux performances from

five case studies were presented. Subsequently, the analyses of relations between numeri-

cal aspects and results were reported. The dominant aspects were the CMC formulations

and different flux approximation methods. Both aspects were implemented in three case

studies as the conservative CMC formulation with computing convective fluxes based on

LES cells located at the CMC cell faces, the non-conservative formulation with computing

convective fluxes based on LES cells located at the CMC cell faces and the conservative

CMC formulation with computing convective fluxes based on CMC cell centres. Since
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these three cases showed the different convective fluxes, they were investigated further for

statistical predictions.

The investigation of the sensitivity of the conditional mean predictions indicated

that the conservative CMC is superior to the non-conservative CMC because the FDF-

weighted convective fluxes made the predictions more accurate as proved by comparing

with conditional measurements. However, there were small differences in unconditional

mean predictions. This may be due to the low FDF values where the differences of

conditional results between both CMC formulations have been predicted. Consequently,

the slight differences in unconditionally filtered values were produced after performing a

convolution with the FDF. Details in the comparisons of the flux approximation methods

affirmed that computing the fluxes based on the LES cells located at the CMC faces could

predict similar conditional mean scalar predictions as an approximation based on the CMC

cell centres. This may be due to the low FDF values in the range of mixture fraction bins

where the predictions from both flux approximation methods were different in each CMC

cell. As a result, averages over a cross section using FDF weighting produced similar

predictions.

The parametric study of CMC grid resolution was investigated for three CMC

resolutions. Using the same LES resolution, the different CMC grid resolutions were

4× 4× 80, 8× 8× 80 and 16× 16× 80. The investigation of the sensitivity of the results

to different CMC grid resolutions showed that the resolution of 16× 16× 80 yields better

agreement with experiments than the others. However, the resolution of 8 × 8 × 80 was

reasonable considering both the accuracy and computational cost. Therefore, the CMC

resolution of 8 × 8 × 80 was recommended as an appropriate resolution for the Sandia

Flame series.

Regarding the issue of extinction and re-ignition, the results of Flames E and F showed

that the current CMC model has some difficulties in predicting these phenomena. Increas-

ing CMC grid resolution has improved predictions; however, this requires more accurate

and advanced modelling of the conditional reaction source terms in order to obtain better

results for these high Re flames.
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7.3 Suggestions for Future Work

Some inaccuracies and limitations of applying LES combined with a conservative CMC

formulation were discovered in this research. For example, the first-order CMC can predict

Sandia Flame D effectively, while it has some difficulties in predicting Flames E and F.

The first-order CMC exhibited known difficulties to predict the extinction and re-

ignition phenomena which result from fluctuations of scalar dissipation. For low Reynolds

number flames (as Flame D), the fluctuations of scalar dissipation in the CMC cells remain

small, and so the properties in mixture fraction space can be predicted effectively by only

considering the mean quantities. However, high Reynolds number flames (as Flames E and

F) generate high fluctuations of scalar dissipation. As a result, using only the conditional

mean scalar dissipation might not be enough to predict extinction and re-ignition. Second-

order closure which has already been used for predictions of the Sandia Flames [42] may

be a better solution. However, there are some difficulties to extend the second-order

closure from three-step to a multi-step chemistry which would be more realistic. Another

possibility is doubly conditioned CMC which was introduced by Cha et al. [15]. Here,

scalar dissipation was used as a second conditioning variable since large values of scalar

dissipation create extinction which further develops to flame quenching. However, using

doubly conditioned CMC based on mixture fraction and scalar dissipation in [15] has

shown high fluctuations around this doubly conditional mean, which required further

adjustments. Moreover, Cha et al.’s results show that only extinction can be predicted

well but the re-ignition was predicted too early. Reasons are not only a lack of correlation

between scalar dissipation and re-ignition conditions, but there is also no consideration of

chemical time scales of the flames [23]. Therefore, another suitable second conditioning

variable was required. Following Bilger [9], double conditioning on mixture fraction and

sensible enthalpy has been proved by Kronenburg and Kostka [50] that using sensible

enthalpy as a second conditioning variable only for the reaction source terms and solving

for the conditional variance (fluctuation of sensible enthalpy in mixture fraction space)

equation can predict local extinction and re-ignition. Therefore, double conditioning of

the reaction source terms and using the conditional variance equation seem to be a good

solution since they directly solve the problem of inaccuracy in the conditional reaction

source term and can be used with multi-step chemistry. However, such modelling so far
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has only been attempted for the non-conservative CMC formulation and future research

in this field should extend it to conservative CMC.

Furthermore, in order to show the improved performance of the conservative CMC

formulation, some more complex flames, such as bluff-body and lifted flames, are rec-

ommended as future study cases for LES-CMC modelling development and validation to

demonstrate the full predictive capability of the conservative CMC.
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Appendix A

Derivation of CMC Conservative

Form

Two equations are required to derive the CMC transport equation with the joint PDF

method by Klimenko and Bilger [47]. Both equations are applied for both conservative and

non-conservative filtered species transport equations. According to the complete derivation

of Navarro et al. [68], the first equation is the FDF transport equation, given as

∂(ρηP̃ (η))
∂t

+∇ · (ρηṽηP̃ (η)) = −
∂2ρηÑηP̃ (η)

∂η2
− ∂

∂η

(
∇ · ρη (̃D∇ξ)ηP̃ (η)

)
, (A.1)

where v denotes the velocity field (u, v, w). In reacting flows, since Lewis numbers of

all species are often assumed to be one, the conditional scalar transport equation can be

derived for LES which reads

∂(ρηΦ̃ηP̃ (η))
∂t

+∇ · (ρη (̃vΦ)ηP̃ (η)) = S̃ΦηP̃ (η) +∇ · fD +
∂J̃Φ

∂η
, (A.2)

where Φ is any scalar. The conditionally filtered flux in conserved scalar space, J̃Φ, is

expressed as

J̃Φ = 2ρη ˜(D∇ξ∇Φ)ηP̃ (η)− ∂

∂η
[ρη (̃NΦ)ηP̃ (η)], (A.3)
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and a molecular diffusion flux, fD, is

fD = ρηP̃ (η) ˜(D∇Φ)η −
∂

∂η
[ρηP̃ (η) ˜(D∇ξΦ)η]. (A.4)

The term J̃Φ is modelled from using primary closure hypothesis [47], which is jus-

tified in the LES context. The diffusion in conserved scalar space is assumed to be of

Brownian nature, which corresponds with conventional CMC (RANS-CMC) [47]. Follow-

ing Klimenko and Bilger [47], the term J̃Φ is expressed in the form of a linear diffusion

approximation as

J̃Φ = AΦ̃η +B
∂Φ̃η

∂η
, (A.5)

where the drift coefficient A and the diffusion coefficient B must preserve linear properties

of turbulent scalar transport and they are thus independent of Φ̃η. Assuming the linear

profile Φ = a + bξ, where a and b depend on the initial and boundary conditions, the

conditional filtering reads Φ̃η = a + bη. Replacing the value of this Φ̃η in Eqs. (A.3) and

(A.5) with the knowledge of the identities that ˜(D∇ξ∇[a+ bξ])η = bÑη and ˜(N [a+ bξ])η =

Ñη[a+ bη], the parameters A and B are

A = − ∂

∂η
(ρηÑηP̃ (η)), (A.6)

and

B = ρηÑηP̃ (η). (A.7)

As the coefficients A and B are independent of Φ in the primary closure hypothesis

and these value thus are valid for any field of Φ̃η. Finally the conditional scalar transport

equation can be derived which reads

∂(ρηΦ̃ηP̃ (η))
∂t

+∇ · (ρη (̃vΦ)ηP̃ (η)) = S̃ΦηP̃ (η) +∇ ·
(
ρηP̃ (η) ˜(D∇Φ)η

)
−∇ ·

[
∂

∂η

(
ρηP̃ (η) ˜(D∇ξΦ)η

)]
+ ρηÑηP̃ (η)

∂2Φ̃η

∂η2
−
∂2ρηÑηP̃ (η)

∂η2
Φ̃η. (A.8)

As suggested by Clearly [16], the conservative LES-CMC scalar transport equation is
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received by substituting the multiplication of Eq. (A.1) by Φ̃η into Eq. (A.8). Following

this procedure, the multiplication of Eq. (A.1) by Φ̃η becomes

Φ̃η

∂(ρηP̃ (η))
∂t

+Φ̃η∇·(ρηṽηP̃ (η)) = −Φ̃η

∂2ρηÑηP̃ (η)
∂η2

−Φ̃η
∂

∂η

(
∇·ρη (̃D∇ξ)ηP̃ (η)

)
. (A.9)

Using γ = ρηP̃ (η), Eq. (A.9) is rewritten as

Φ̃η
∂γ

∂t
+ Φ̃η∇ · (γṽη) = −Φ̃η

∂2γÑη

∂η2
− Φ̃η

∂

∂η

(
∇ · γ(̃D∇ξ)η

)
,

∂(γΦ̃η)
∂t

− γ ∂Φ̃η

∂t
+ Φ̃η∇ · (γṽη) = −Φ̃η

∂2γÑη

∂η2
− Φ̃η

∂

∂η

(
∇ · γ(̃D∇ξ)η

)
.

(A.10)

Eq. (A.8) can be reexpressed using γ = ρηP̃ (η) as

∂(γΦ̃η)
∂t

+∇ · (γ(̃vΦ)η) = S̃ΦηP̃ (η) +∇ ·
(
γ ˜(D∇Φ)η

)
−∇ ·

[
∂

∂η

(
γ ˜(D∇ξΦ)η

)]
+γÑη

∂2Φ̃η

∂η2
− Φ̃η

∂2(γÑη)
∂η2

. (A.11)

By replacing Eq. (A.10) into Eq. (A.11), the result reads

γ
∂Φ̃η

∂t
− Φ̃η∇ · (γṽη) − Φ̃η

∂

∂η

(
∇ · γ(̃D∇ξ)η

)
+∇ · (γ(̃vΦ)η)

= S̃ΦηP̃ (η) +∇ ·
(
γ ˜(D∇Φ)η

)
−∇ ·

[
∂

∂η

(
γ ˜(D∇ξΦ)η

)]
+ γÑη

∂2Φ̃η

∂η2
,

γ
∂Φ̃η

∂t
− Φ̃η∇ · (γṽη) + ∇ · (γ(̃vΦ)η)

= S̃ΦηP̃ (η) +∇ ·
(
γ ˜(D∇Φ)η

)
−∇ ·

[
∂

∂η

(
γ ˜(D∇ξΦ)η

)]
+ Φ̃η

∂

∂η

(
∇ · γ(̃D∇ξ)η

)
+ γÑη

∂2Φ̃η

∂η2
,

(A.12)
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where the second term on the RHS is the diffusion of the conditionally filtered scalar in

physical space. Since this term scales with Re−1, it is assumed to be small compared to

other terms at high Re. Without any direct physical interpretation, the third and fourth

contributions on the RHS show the interaction between physical and conditional scales.

Both contributions scale with Re1/2N1/2 and thus they will be zero at high Re. Moreover

they are smaller than the dissipation term in scalar space [68]. For high Reynolds number,

these three contributions are neglected. Eq. (A.12) can then be rewritten as

γ
∂Φ̃η

∂t
+∇ · (γ(̃vΦ)η) = S̃ΦηP̃ (η) + γÑη

∂2Φ̃η

∂η2
+ Φ̃η∇ · (γṽη). (A.13)

The second term on the LHS denotes the correlation of the conditional fluctuations of

the velocity field and scalar, which are non-linear. Therefore an unknown term called the

subgrid scale scalar flux, eΦ, is required for this unclosed quantity, which is given as

γeΦ = −∇ · [γ((̃vΦ)η − ṽηΦ̃η)]. (A.14)

Replacing Eq. (A.14) into Eq. (A.13), the conservative LES-CMC equation becomes

γ
∂Φ̃η

∂t
+∇ · γ(ṽηΦ̃η) = S̃ΦηP̃ (η) + γÑη

∂2Φ̃η

∂η2
+ Φ̃η∇ · (γṽη) + γeΦ. (A.15)

For the species transport equation, the scalar Φ is the mass fraction, the source term

SΦη is the conditional reaction source term of species α. SΦη = ρηwα,η, and Qα denotes the

conditionally filtered mass fraction where, Qα ≡ Φ̃η. The conditionally filtered reactive

species transport equations in conservative form is written as

γ
∂Qα
∂t

+
∂

∂xj
(γũj,ηQα) = γw̃α,η + γÑη

∂2Qα
∂η2

+Qα
∂

∂xj
(γũj,η) + γey. (A.16)



Appendix B

Details of Pressure Correction

The relation of pressure and velocity fields is described in this chapter. In this work,

a SIMPLE algorithm [70], which stands for Semi-Implicit Method for Pressure-Linked

Equations, is applied as a pressure correction method (to adapt momentum and velocities

such that continuity is ensured) in this work. The numerical integration of the semidiscrete

equation is governed by a predictor-corrector approach. Both predictor and corrector parts

rely on a second order Crank-Nicolson time integration method. The details can be shown

as follows.

The pressure-split momentum equation is required for this method first. This can be

performed by splitting the pressure field of the momentum equation into a thermodynamic

pressure field and the pressure perturbation (p = p0 + ∆p), which can be written as

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) =

∂τij
∂xj
− ∂p0

∂xi
− ∂∆p

∂xi
+ ρgi. (B.1)

Equation (B.1) can be rewritten in temporal discretization form as

(ρu)n+1 − (ρu)n

∆t
= R− ∂∆p

∂xi
, (B.2)

where u is the velocity field, ∆t denotes the time-step size, while n and n + 1 are the

time-level index. Since p0 is constant for incompressible fluid, the variance R is given as

R = − ∂

∂xj
(ρuiuj) +

∂τij
∂xj

+ ρgi. (B.3)
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Equation (B.2) can be separated into two equations, which are given as

(ρu)∗ − (ρu)n

∆t
= R, (B.4)

(ρu)n+1 − (ρu)∗

∆t
= −∂∆p

∂xi
. (B.5)

Here, ∗ denotes the intermediate time-level index. Since the Crank-Nicolson method

is used for time discretization, the pressure-split momentum equation (Eq. (B.4)) of the

predictor part reads

ρmû− ρnun

∆t
=

1
2

(Rm + Rn), (B.6)

ρmum − ρmû
∆t

= −∂(∆p)m

∂xi
. (B.7)

where û is an intermediate velocity field between time level index n and m.

The intermediate hydrodynamic pressure field, ∆pm, is calculated by inverting the

Poisson equation for pressure [95], which is obtained by enforcing continuity equation into

momentum equation (Eq. (B.7)). This can be written as

∇2(∆p)m =
1

∆t

[
∇ · (ρmû) +

∂ρ

∂t

∣∣∣∣m] . (B.8)

The second term on RHS in Eq. (B.8) can be approximated from the known values

ρn+1 and ρn

Therefore, the value of (∆p)m can be calculated from Eq. (B.8). Finally the predicted

velocity field um is obtained by using the projection step of Eq. (B.7). Then the corrector

step follows in the same manner as the pridictor step in order to calculate the velocity

field having the pressure correction at the next time step, n+ 1.
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