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Abstract 
Transverse mixing is identified to be a controlling factor in natural attenuation of ex-

tended biodegradable plumes originating from continuously emitting sources. While the het-

erogeneity of natural formations determines the spreading of solutes in groundwater, mixing 

between organic contaminants and oxidants of ambient groundwater flow controls the degra-

dation of large plumes.  

This thesis offers a promising approach to the characterization and quantification of 

transverse dispersion coefficient in heterogeneous porous media. The aim of the study is to 

deepen the understanding of transverse dispersion and mixing in natural heterogeneous porous 

media. Particularly, I develop an experimental method for the determination of transverse 

dispersion coefficients and apply it to verify whether there is any enhancement of transverse 

mixing in natural heterogeneous porous media. To this end, I conduct conservative and reac-

tive tracer tests in a one-dimensional as well as quasi two-dimensional laboratory and techni-

cal scale sandboxes. The heterogeneous filling mimics natural sediments including a distribu-

tion of different hydro-facies and micro-structures within the sand lenses.  

Heterogeneity causes plume meandering, leading to distorted concentration profiles. 

Without the knowledge about the velocity distribution, it is not possible to determine mean-

ingful vertical dispersion coefficients from the conservative concentration profiles. The esti-

mated vertical transverse dispersion coefficients are fairly small, as expected from the time-

dependent effective dispersion coefficient, which is relevant to describe mixing. The values 

are less than an order of magnitude larger than the effective molecular diffusion coefficient. 

For typical groundwater flow velocities, therefore, the velocity-independent contribution to 

transverse dispersion cannot be ignored. No significant increase in the transverse dispersion 

coefficient with increasing travel distance indicates that the heterogeneity has hardly any im-

pact on vertical transverse mixing. In general, linear stochastic theory, predicting only a small 

increase in transverse vertical macrodispersion coefficients in the large-time limits, are in very 

good agreement with the findings. 

 



 

 



 

Zusammenfassung  
In den letzten Jahren haben Untersuchungen ergeben, dass die Ausnutzung des natür-

lichen Rückhaltevermögens eine günstige Alternative gegenüber aktiven Sanierungsmaßnah-

men für Altlasten darstellt, vor allem auf Grund der hohen Kosten und technischer Schwierig-

keiten aktiver Maßnahmen. Der natürliche mikrobielle Abbau von Schadstoffen setzt die 

Durchmischung von Schadstoffen aus kontinuierlichen Quellen mit Reaktanten aus dem um-

gebenden Grundwasser voraus. Vor allem Oxidationsmittel wie Sauerstoff oder Nitrat werden 

im Bereich des Schadensherdes der Abstromfahne schnell aufgezehrt und müssen aus dem 

umgebenden Grundwasser durch transversalen Austausch nachgeliefert werden. Daher hän-

gen Abbauraten in Schadstofffahnen empfindlich von transversalen Durchmischungsvorgän-

gen am Rande der Abstromfahne ab. 

Diese Dissertation bietet einen vielversprechenden Ansatz zur Charakterisierung und 

Quantifizierung der transversalen Dispersion in heterogenen porösen Medien. Ziel dieser Stu-

die war es, das Verständnis der transversalen Dispersion und Durchmischung in natürlichen 

heterogenen porösen Medien zu vertiefen. Insbesondere verifiziere ich experimentell, ob die 

Heterogenität natürlicher poröser Medien transversale Durchmischungsvorgänge begünstigt. 

Hierzu führte ich Experimente in drei unterschiedlichen Größenmaßstäben durch. 

Zuerst führte ich Experimente in einer spiralförmigen Säule durch, um Methoden zur Be-

stimmung der transversalen Dispersivität auf der Porenskala zu entwickeln. Zweitens habe ich 

auf der für Laborversuche üblichen Skala einen quasi-zweidimensionalen künstlichen Grund-

wasserleiter entworfen. Dieser bestand aus unterschiedlichen Gemischen von Quarzsand ver-

schiedener Körnung, sodass einerseits homogene und andererseits kleinskalig heterogene po-

röse Medien vorlagen. In diesem Versuchsaufbau führte ich konservative und reaktive Tra-

cerversuche durch, um Methoden zur Bestimmung der transversalen Dispersion zu entwickeln 

und um darüber hinaus den Einfluss kleinräumiger Strukturen in porösen Medien zu bewer-

ten. Drittens entwarf ich in einer Rinne auf technischer Skala einen quasi-zweidimensionalen 

künstlichen Grundwasserleiter. Diese Rinne habe ich solchermaßen mit unterschiedlichen 

Typen von Quarzsand befüllt, dass sowohl großräumige als auch kleinräumige Sediment-

strukturen entstanden, welche natürlichen Sedimentstrukturen nachempfunden waren. In die-

ser Rinne habe ich sowohl konservative als auch reaktive Tracerversuche durchgeführt, um 

die vertikale transversale Durchmischung in heterogenen porösen Medien zu quantifizieren. 

Kapitel 4 beschreibt meine experimentelle Vergehensweise für die erste Reihe von 

Experimenten zur Bestimmung der transversalen Dispersivität auf der Porenskala. Ich wandte 
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den theoretischen und numerischen Ansatz beruhend auf die Taylor-Aris Dispersion von 

Cirpka und Kitanidis [2001] anhand einer speziell entwickelten spiralförmigen Bodensäule 

an. Eine spiralförmige Säule habe ich deshalb verwendet, weil sie eine gescherte Strömung, 

so wie sie für Taylor-Aris-Dispersion notwendig ist, in porösen Medien erzwingt. In dieser 

experimentellen Vorgehensweise messe ich die Spreitung der Durchbruchskurve, welche um-

gekehrt proportional zum lokalen transversalen Dispersionskoeffizienten ist. Der Vorteil hier-

bei ist, dass Parameter für die transversale Dispersion im allgemeinen sehr kleine Werte ha-

ben und daher experimentell auf andere Art und Weise kaum zu bestimmen sind. In dieser 

Apparatur führte ich fünf Tracerversuche bei unterschiedlichem Durchfluss zwischen 1.5×10
-

7
m³/s und 5.55×10

-9
m³/s durch. Der theoretische Ansatz, basierend auf einer analytischen Lö-

sung für Taylor-Aris-Dispersion zu späten Zeitpunkten, ergab für die lokale transversale 

Dispersivität einen Wert von 7.27×10
-4 m. Der numerische Ansatz, basierend auf der Model-

lierung zeitlicher Momente, ergab 6.57×10
-4 m. Beide Werte sind relativ hoch für transversale 

Dispersivitäten. 

Ein möglicher Grund für die hohen errechneten Werte liegt darin, dass der theoreti-

sche und der numerische Ansatz nach Cirpka und Kitanidis [2001] die Steigung der Spiral-

gänge und damit verbundene sekundäre Strömungsvorgänge vernachlässigt. Benekos [2004] 

entwickelte ein Programm zur numerischen Simulation der vollständigen Strömungsvorgänge 

und des Stofftransportes in spiralförmigen Säulen zur Bestimmung der transversalen Disper-

sivität. Er zeigte, dass eine Vernachlässigung der sekundären Strömungsvorgänge zu einer 

signifikanten Fehleinschätzung der transversalen Dispersivität führen kann. Ein direkter Ver-

gleich der Ergebnisse mit dem durch geführte Untersuchungen zeigte kleinere Werte für die 

transversale Dispersivität, wenn die sekundäre Strömung berücksichtigt wird. Die Unterschie-

de sind jedoch unter den hier vorliegenden Strömungsverhältnissen und der Geometrie der 

hier verwendeten Säule nicht überwältigend groß. 

In Kapitel 5 befasse ich mich mit den konservativen und reaktiven Tracerexperimen-

ten in homogenen porösen Medien auf der Laborskala. Zunächst entwickelte ich ein digitales 

bildgebendes Verfahren mit Farbtracern, um die transversale Durchmischung zu visualisieren 

und um den transversalen Dispersionskoeffizienten in porösen Medien zu bestimmen. Ich 

injizierte den Farbstoff in den Versuchsaufbau und hielt die sichtbare Verteilung des Farbstof-

fes fotographisch durch mehrere Glasfenster im Versuchsaufbau fest. Dazu verwendete ich 

eine Digitalkamera vom Typ Casio QV-5700. Diese war, um einheitliche und reproduzierbare 

Verhältnisse zu schaffen, auf stählernen, im Boden verankerten Ständern im Abstand von 
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jeweils 1.6m von den Fenstern befestigt. Für konstante Lichtverhältnisse habe ich eine künst-

liche Lichtquelle bei Nacht verwendet. Um aus den digitalen Bildern die Werte der Konzent-

ration des Farbstoffes abzuleiten, habe ich die Digitaldaten kalibriert. Die Kalibration beruht 

auf einer nicht linearen Interpolation zwischen zwei Referenzbildern bei völliger Abwesenheit 

des Farbstoffes und bei maximaler Konzentration. 

Ich führte ein Experiment mit konservativen Farbtracern durch, in dem ich den 

Farbtracer an der linken Seite auf halber Höhe über eine Breite von 7.5 cm in den Ver-

suchsaufbau injizierte. Die hydraulischen Randbedingungen erzwangen eine Strömung von 

links nach rechts. Mit Hilfe meines bildgebenden Verfahrens wertete ich die Konzentrations-

verteilung im stationären Zustand aus. Durch Anpassung analytischer Lösungen an 

transversale Querschnitte der Konzentrationsverteilung erhielt ich Werte für die transversale 

Dispersivität von circa 2.40×10
-4

 m. 

In reaktiven Tracerversuchen injizierte ich eine alkalische Lösung auf halber Höhe 

und verwendete eine saure Lösung als umgebendes Wasser. Die sich ergebende Säure-Base-

Reaktion hängt ausschließlich von der transversalen Durchmischung ab. Mit Hilfe von pH-

Indikatoren konnte ich den Rand der Abstromfahne alkalischen Wassers sichtbar machen. Zur 

Auswertung verwendete ich eine analytische Lösung für den Abstand bestimmter Verdün-

nungsstufen innerhalb der Abströmfahne von der Injektionsstelle. Die sich daraus ergebenden 

Werte für den transversalen Dispersionskoeffizienten schwankten zwischen 4.90×10
-9

m²/s 

und 5.90×10
-9

m²/s. Bei Vernachlässigung molekularer Diffusion entspricht dies unter den 

gegebenen hydraulischen Verhältnissen einer transversalen Dispersivität von circa 2.5×10
-4

m 

und steht in guter Übereinstimmung mit den Ergebnissen der konservativen Tracerversuche. 

Ich konnte zeigen, dass dies eine einfache und zuverlässige Methode zur Untersu-

chung dispersiver Durchmischung in porösen Medien ist. Die Ausrüstung ist beträchtlich 

günstiger als bei anderen nichtinvasiven bildgebenden Verfahren, wie zum Beispiel bei NMRI 

(Nuclear Magnetic Resonance Imaging ) oder PVI (Photoluminescent Volumetric Imaging). 

Um mit meiner Methode präzise Ergebnisse zu erzielen, sollte durch die Verwendung stabiler 

Stative möglichst pixelgenaue Übereinstimmung der Bildausschnitte zwischen den Bildern 

während des Experimentes und den Bildern zur Kalibrierung erreicht werden. 

Kapitel 6 befasst sich mit dem Einfluss von kleinräumigen Strukturen auf die trans-

versale Dispersion in natürlichen porösen Medien. Den in Kapitel 5 verwendete Versuchsauf-

bau habe ich insgesamt zweimal mit unterschiedlichen Sandgemischen solchermaßen befüllt, 

dass kleinräumige Heterogenitäten im Bereich von wenigen Zentimetern entstanden. Für je-
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den Sandtyp führte ich zwei Reihen von reaktiven Tracerexperimenten durch und schätzte die 

transversalen Dispersionskoeffizienten aus der Länge und Breite der Abstromfahnen ab. Ab-

bildungen 1 und 2 zeigen zwei fahnen alkalischen Wassers, die sich bei kleinräumig hetero-

genen Sandbefüllungen ergeben. Die hier ermittelten transversalen Dispersionskoeffizienten 

liegen im Bereich von 4.6x10
-9

 m²/s bis 8.9x10
-9

 m²/s. Dies ist in der Größenordnung des ef-

fektiven Diffusionskoeffizienten. Im Vergleich zu den Versuchen mit homogenen Sandfül-

lungen ist kein erheblicher Anstieg der Werte zu erkennen. Dies zeigt, dass kleinräumige He-

terogenität oberhalb der Porenskala kaum Einfluss auf die transversale Dispersion hat. 

Kapitel 7 beschreibt Versuche mit einem künstlichen Grundwasserleiter in einer he-

terogen befüllten Rinne auf technischer Skala. Insbesondere untersuche ich anhand dieser 

Versuche, ob die transversale Durchmischung durch die Heterogenität auf größeren Skalen 

verstärkt wird. Um heterogene Strukturen auf größerer Skala zu erzeugen, wurde die Rinne 

mit unterschiedlichen Sandgemischen in einem sedimentativen Verfahren befüllt. Dabei ent-

standen innerhalb größerer Linsen unterschiedlicher Sandgemische kleinräumige Sediment-

strukturen, die solchen in der Natur ähneln. 

In einem konservativen Experiment mit Farbtracern injizierte ich einen Farbstoff 

kontinuierlich in die untere Hälfte des Einlasses der Rinne. Durch hydraulische Randbedin-

gungen erzwang ich eine Grundwasserströmung die zur Ausprägung einer Abstromfahne 

führte. Im stationären Endzustand nahm ich Bilder entsprechend der in Kapitel 5 beschriebe-

nen Methode und untersuchte Querschnitte der Konzentrationsverteilung auf zwei Weisen. 

Zuerst interpretierte ich die Konzentrationsprofile so, als ob sie durch stationären advektiv-

dispersiven Transport mit konstanten Koeffizienten entstanden wären und bestimmte die Pa-

rameter durch Anpassen einer analytischen Lösung. Die so geschätzten Werte für die apparen-

te lokale transversale Dispersivität schwanken räumlich zwischen 3×10
-3

 m und 1×10
-4 m. 

Die so erhaltenen Parameterwerte sind jedoch durch das Mäandrieren der Abstrom-

fahne ziemlich verzerrt. Vor allem wird das gesamte Konzentrationsprofil beim Mäandrieren 

in Bereichen hoher lokaler Geschwindigkeit gestaucht und in Bereichen geringer lokaler Ge-

schwindigkeit gedehnt. Dadurch ergeben sich in Bereichen hoher Geschwindigkeit höhere 

Werte für die transversale Dispersivität als in Bereichen niedriger Geschwindigkeit. Aus die-

sem Grund habe ich in einer zweiten Auswertung den Verlauf von Stromlinien mitberücksich-

tigt. Unter Berücksichtigung des Strömungsfeldes liegen die geschätzten Werte der transver-

salen Dispersivität bei 6.9×10
-5

 m, mit einem Variationskoeffizienten von 75%. Das hierbei 

verwendete Stromlinienmuster stammt von Nowak [2004], der mit Hilfe von geostatistischer 
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inverser Modellierung ein Experiment von Jose [2004] in der selben Rinne auswertete. Dar-

aus erhielt er unter anderem eine Schätzung der räumlichen Verteilung der Durchlässigkeit. 

Abbildung 3 zeigt das geschätzte Durchlässigkeitsfeld, das damit modellierte Potentialnetz 

mit Strom- und Potentiallinien, und ein digitales Bild des konservativen Farbtracers in der 

Rinne. In diesem Bild ist das Mäandrieren der Fahne sehr deutlich zu sehen. 

Abbildungen 4 und 5 zeigen die sich ergebenden Werte der transversalen Dispersivi-

tät und die vertikale Position der Randlinie der Fahne, einmal unter Vernachlässigung und 

einmal unter Berücksichtigung des geschätzten Stromlinienmusters. Die Auswertung unter 

Berücksichtigung des Stromlinienmusters ergibt wesentlich konsistentere Ergebnisse, obwohl 

das geschätzte Stromlinienmuster das mäandrierende Verhalten der Fahne nicht vollständig 

beschreibt. Dies wird darin offensichtlich, dass unter Berücksichtigung des Stromlinienmus-

ters die Randlinie der Fahne nur teilweise gerader verläuft. 

Ich führte einen weiteren reaktiven Tracerversuch (Abbildung 6) durch, wiederum 

unter Verwendung der Methoden aus den Kapiteln 5. Aus der Breite und Länge der Abstrom-

fahne schätzte ich einen transversalen Dispersionskoeffizienten von   3.4×10
-9

 m²/s. 

Die in der großen Rinne angetroffenen transversalen Dispersionskoeffizienten sind 

nicht größer als diejenigen, die ich in den homogenen und in den kleinräumig heterogenen 

Systemen vorgefunden habe. Daraus schloss ich, dass die Heterogenität poröser Medien ledig-

lich einen kleinen Einfluss auf die vertikale Durchmischung hat. Dieses Ergebnis stimmt gut 

mit den Ergebnissen der stochastischen Theorie von Gelhar and Axness [1983] überein, die 

lediglich eine sehr geringe Skalenabhängigkeit transversaler vertikaler Dispersionskoeffizien-

ten vorhersagen.  

Allerdings verursacht Heterogenität erheblich mäandrierende Stofffahnen. Meine 

Experimente zeigen, dass Konzentrationsprofile für sich allein betrachtet nicht ausreichen, um 

transversale Durchmischung in heterogenen porösen Medien zu quantifizieren. Ohne das 

Strömungsfeld im fraglichen Gebiet zu kennen, kann man keine aussagekräftigen transversa-

len Dispersionskoeffizienten bestimmen. Unter Feldbedingungen ist die Unsicherheit des 

Strömungsfeldes viel höher als in wohlkontrollierten Laborexperimenten. Insgesamt ist es 

wesentlich zuverlässiger, Koeffizienten für die vertikale Durchmischung aus der Länge von 

Abstromfahnen aus reaktiven Versuchen abzuschätzen, als sie aus vertikalen Konzentrations-

profilen zu bestimmen. 
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Abbildung 1: Alkalische Stofffahne im künstlichen feinstrukturierten Grundwasserleiter aus 
Sand mit Korngröße 0-3mm. A: Fließgeschwindigkeit 2,76×10-5 m/s; B: Fließgeschwindigkeit 
of 1,65×10-5m/s. 

 
Abbildung 2: Alkalische Stofffahne im künstlichen feinstrukturierten Grundwasserleiter aus 
Sand mit Korngröße 0-3mm. A: Fließgeschwindigkeit 1,65×10-5 m/s; B: Fließgeschwindig-
keit of 1,1×10-5 m/s. 
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   A1: Verteilung  der Log - Durchlässigkeit und Potentialnetz  (0-7m ) 

   B1: Verteilung des Tracerstoffes (0-7m)

  A2: Verteilung der Log-Durchlässigkeit und Potentialnetz (7-14m) 

       B2: Verteilung des Tracerstoffes (7-14m)

Abbildung  3: Verteilung der Log-Durchlässigkeit, berechnetes Strömungsnetz und geme

künstlichen Grundwasserleiter.  Dicke Stromlinie: Mittellinie der transformierten Koordin
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aten. 



 

 
 

 

 

Abbildung  4: Apparente transversale Dispersivität  und vertikale Position za
tα b der begren-

zenden Stromlinie in den ursprünglichen Koordinaten. 
 

 

Abbildung 5: Apparente transversale Dispersivität  vertikale Position ηa
tα b der  begrenzen-

den Stromlinie in den transformierten Koordination. 
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 Umgekehrte Fließrichtung 

Abbildung 6: Fahne des reaktiven Tracerstoffes im künstlichen Grundwasserleiter, Quellbreite 0,05m, gemessene Länge der  Fahne 7,65m. 
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1. Introduction 

1.1. Rationale 
Ground water is the main source of drinking water for two third of the world’s population 

[Freeze and Cherry, 1979]. Various chemical compounds such as chlorinated and aromatic 

hydrocarbons, heavy metals etc. have been identified as contaminants in groundwater. Indus-

trial sites, former gas plants, landfills and tanks, among others, have been recognized as the 

potential pollutant sources for the contamination of soil and groundwater.  

Common active in-situ remediation strategies, like pump and treat, air sparging and 

soil vapor extraction, often reveal a high ineffectiveness (due to persistence contaminants and 

heterogeneity of the subsurface), as they cause very high costs due to long operation times 

while failing to achieve the remediation target. Over the last few years, the high costs of con-

ventional remediation have encouraged the development of more effective methods for 

groundwater management. In this climate, interest in natural attenuation is increasing. The 

United States Environmental Protection Agency (US EPA) defines natural attenuation as 

“biodegradation, dispersion, dilution, sorption, volatilization, and /or chemical or biochemical 

stabilization of contaminants to effectively reduce contaminants toxicity, mobility, or volume 

to levels that are protective of human health and the ecosystem” [US EPA, 1999]. Among 

these processes, biodegradation is the major process for reducing contaminant mass. 

A key process in bioremediation is the mixing between two substrates, namely the 

electron donor and acceptor. In many cases, the electron donor load of the plume is substan-

tial, while the availability of electron acceptors is limited. Electron acceptors are replenished 

by transverse mixing [Grathwohl et al., 2000; Cirpka et al., 1999], and contaminants are re-

duced by dilution processes arising from transverse dispersion. Therefore, the rate of biodeg-

radation in a steady-state plume depends significantly on the mixing processes at the fringe of 

the plume, that is, to a large extent on the transverse mixing of electron acceptors and organic 

compounds caused by transverse dispersion (Figure 1. 1).  
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Groundwater flow Direction

Saturated zone

Unsaturated zone

Steady state plume

Figure 1. 1 Rate of biodegradation in a steady-state plume depends significantly on the 
mixing processes at the fringe of the plume as the electron donor load of the plume is substan-
tial, while the availability of electron acceptors is limited and electron acceptors are replen-
ished by transverse mixing. 

Understanding the role of transverse dispersion in reactive mixing requires a detailed 

knowledge about the governing processes of flow and transport in the spatially variable natu-

ral porous medium. The fundamental and complex roles played by heterogeneity in transport 

of solutes in porous media have been studied in last two decades. Much of the research in 

recent years are directed towards the development of a more physically based mathematical 

description [e.g. Gelhar and Axness, 1983; Dagan, 1984, 1988; Dagan et al., 1992; Kitanidis, 

1994; Dagan and Fiori, 1997; Fiori and Dagan, 1999; Cirpka et al., 1999; Attinger et al., 

1999; Cirpka and Kitanidis, 2000a, 2000b; Dentz et al., 2000a, 2000b & 2002;] and targeted 

experimental studies [Grane and Gardner, 1961; Kobus and Spitz, 1985; Robbins, 1989; 

Grathwohl et al., 2000; Klenk and Grathwohl, 2002; Huang et al., 2002 & 2003] of the 

physical transport processes in heterogeneous aquifers.   

The heterogeneity of natural formations determines the spreading of solutes in 

groundwater. A plume injected into an aquifer undergoes enhanced spreading because of the 

variation in groundwater velocity caused by permeability changes. Particularly, the plume is 

sheared and distorted, with fast fingers moving through zones of high conductivity and slowly 

displaced ones in zones of low conductivity (Figure 1.2). These heterogeneities are present at 

scales ranging from microscopic scale (pore-scale) to macroscopic scale (field scale). Macro-

dispersion describes how fast the second central spatial moments of a very large plume in-

creases. This includes both mixing on the local scale and spreading on a larger scale. The ir-

regularity of the interface referred to as spreading, however, is not a measure of mixing [Cir-
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pka and Kitanidis, 2000a]. Therefore, applying Fickian macrodispersion concept to reactive 

transport leads to an overestimation of mixing rate [Ginn et al., 1995, Kapoor et al., 1997].  

Groundwater flow Direction

Saturated zone

Unsaturated zone

Groundwater flow Direction

Saturated zone

Unsaturated zone

Figure 1.2 Plume injected into an aquifer undergoes enhanced spreading because of the 
variation in groundwater velocity caused by permeability changes. Particularly, the plume is 
sheared and distorted, with fast fingers moving through zones of high conductivity and slowly 
displaced ones in zones of low conductivity 

In mixing, the important question is whether the reacting compounds occur at the 

same point at the same time so that they may react with each other. As biodegradation occurs 

due to mixing of substrates on the scale of reactions, local scale (pore-scale) dispersion may 

become the limiting factor for the biodegradation process [Cirpka et al., 1999].  

The value of pore scale transverse dispersivity is much smaller than that of the re-

lated longitudinal dispersivity [Bear, 1972]. However, the variability of the flow fields leads 

to an extensive stretching of the plume interfaces [Weeks and Sposito, 1998], therefore trans-

verse pore-scale dispersion acts over a much larger area than longitudinal dispersion [Cirpka, 

2002]. Hence, it is transverse dispersion that transfers longitudinal spreading into longitudinal 

mixing [Cirpka and Kitanidis, 2000a]. For plumes originating from continuous sources, 

transverse mixing is more important than longitudinal mixing. The effectiveness of transverse 

mixing determines the length of steady-state plumes reacting with surrounding water. 

Transverse dispersion is also an essential factor to predict the temporal behavior of 

the contaminant plume. The ratio of longitudinal to transverse dispersivity in an aquifer is an 

important factor to determine the shape of the contaminant plume. The lower the ratio is, the 
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broader the shape of the resulting plume will be. A well estimated transverse dispersion coef-

ficient helps to predict the plume development accurately. 

The work presented in this dissertation is a part of the joint research efforts in the 

project “Scaling Effects of in-situ Mixing in Heterogeneous Aquifers” (Skaleneffekte bei der 

in-situ Durchmischung gelöster Stoffe in heterogenen Grundwasserleitern) funded by the 

Deutsche Forschungsgemeinschaft within the Emmy-Noether-program. 

Therefore, the present dissertation is motivated by the requirement for an improved 

understanding of the role of transverse dispersion on reactive mixing in natural heterogeneous 

porous medium.   

1.2. Objectives 
The aim of the research was to improve the understanding of the transverse disper-

sion phenomena in the context of reactive mixing in natural heterogeneous porous medium. 

This was approached using laboratory scale and technical scale experiments in homogeneous 

and heterogeneous model aquifer systems. The main objectives were to:  

1. Develop a suitable conceptual model of dispersive transverse mixing between con-

taminant plumes and aqueous compounds in a groundwater system. 

2. Develop methods for the determination of pore-scale transverse dispersivity. 

3. Analyze the role of natural heterogeneity on transverse dispersive mixing. 

1.3. Existing Measurement Methods to Determine Transverse Dispersion 
Coefficients   
In most existing methods for the determination of transverse dispersion, the meas-

ured quantity is proportional to the dispersion coefficient; therefore, it induces significant er-

rors in its experimental determination. Kitagawa [1934] was perhaps the first to perform ex-

periments on dispersion phenomena. Transverse dispersion coefficients are typically evalu-

ated by the interpretation of steady-state transverse concentration profiles of conservative sol-

utes in parallel flow. Usually two miscible fluids are injected into a porous medium and the 

effluent concentration profiles are determined consequently. The most common system is 

brine and fresh water in which the concentration is determined by using conductivity resistiv-

ity meters [Blackwell, 1962; Bruch, 1970; Kobus and Spitz, 1985; Robbins, 1989; Sudicky et. 

al, 1985].  

  Typically two experimental methods are used to determine the transverse dispersion 

parameters. Two miscible fluids are simultaneously injected, side by side [Figure 1.3], [Grane 

and Gardner, 1961; Simpson, 1962; Perkins and Johnston, 1963; Harleman and Rumer, 
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1963; Lawson and Elrick, 1972] or into the core and annulus regions of a cylindrical porous 

medium [Figure 1.4] [Blackwell, 1962; Bruch, 1970; Hassinger and Rosenberg, 1968; Mo-

hanty and Salter, 1983]. Then, the concentration profile perpendicular to the direction of flow 

is measured further downstream. Robbins [1989] used point sources, and Nishigaki et al. 

[1996] used line sources of a tracer solution. Transverse dispersion coefficients have also 

been inferred from transient transport in columns [Robbins, 1989], in parallel flow [Zou and 

Parr, 1993, 1994; Pisani and Tosi, 1994] and in inter-well tracer tests [Chen et al., 1999]. 

Wang et al., [1987] proposed a linear graphical method for estimating the dispersivity 

parameters based on the use of an analytical expression and comparing it to the derivatives of 

the experimental breakthrough curves. This method was very sensitive to erratic and noisy 

data obtained in the experiments. Jiao [1993] improved the linear graphical method and pro-

posed the dispersive-plume-area method. 

Inflow

 

Figure 1.3 Injection of two miscible fluid simultaneously, side by side   

Fluid 2

Fluid 1

Fluid 2

Fluid 1

 

Figure 1.4 Injection of two miscible fluids into the core and the annulus region 

Grane and Gardner [1961] conducted dispersion experiments with three types of 

glass beads at groundwater velocities between 0.14m/day and 345.6m/day. They conducted 

experiments in a ¾ inch Lucite box (30"×1"×2"). The first third of the box was divided into 

two compartments and the box was packed with glass spheres. Two miscible fluids were 

passed through the box at a constant rate. The distribution of fluids in the media was meas-
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ured by means of a narrow x-ray beam. The transverse dispersion coefficient was calculated 

using the measured concentration gradient. They concluded that at sufficiently high flow rates 

the measured transverse dispersion coefficient was 1/50 of the longitudinal one.  

Blackwell [1962] performed experiments in an unconsolidated sand packed column 

to measure the longitudinal and transverse dispersion coefficient. He also used a Lucite col-

umn, but he injected one fluid into the core and the other into the annulus of equal cross-

sectional area. Frequent resistivity measurements of the effluent were conducted. The steady-

state values for resistivity were used to calculate the fractional concentration of the salt tracer 

in the two streams. His results indicated that the transverse dispersion coefficient was 1/25 of 

the longitudinal dispersion coefficient.  

Harleman and Rumer [1963] measured the dispersion of sodium chloride for laminar 

water flow in beds of plastic spheres with a mean diameter of 0.96mm at water velocities 

ranging from 10m/day to 245m/day. Two fluids, fresh water and water containing sodium 

chloride were co-injected into the box. They correlated the ratio of the longitudinal and trans-

verse dispersion coefficient with the Reynolds number; the ratio was found to be proportional 

to the square root of the Reynolds number. 

Bruch [1970] conducted two-dimensional dispersion experiments in unconsolidated 

porous media. A Plexiglas box was filled with sand and saturated by a source solution. A 

NaCl solution was used as the dispersing fluid. Conductivity probes were used to measure the 

tracer concentrations. Experiments were also conducted in a layered system where the Plexi-

glas box was filled with two sand layers of different diameters. It was concluded that one 

must consider the combined effect of longitudinal and lateral dispersion in the analysis of the 

propagation of a miscible fluid in groundwater.  

Kobus and Spitz [1985] conducted an experimental investigation of the transverse 

vertical mixing across an initially sharp density interface in an effort to further understand the 

impact of contaminants in the vicinity of sources of pollution. Two parallel streams of fresh 

and salt water were injected into a media filled with sand grains. Vertical concentration meas-

urements were taken downstream of the inlet by extracting probes of 1ml and measuring the 

probe conductivity. The transverse dispersion coefficient was then calculated from the meas-

ured concentration profiles. They concluded that density differences reduce the mixing zone 

length at the interface and that the contribution of density is more pronounced in the region of 

lower flow velocities. 

Robbins [1989] followed the methodology developed by Bruch [1970] and presented 

methods for determining dispersion coefficients from laboratory experiments involving col-
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umns packed with spherical glass beads. A continuous point source and an instantaneous fi-

nite source were used for tracer injection, concentrations were detected by a miniaturized 

electrical probe. The initial and steady state solute concentrations were used to calculate the 

transverse dispersion coefficient. He indicated that the continuous point source test appeared 

to be more reliable than the finite source method since it resulted in higher tracer concentra-

tions and was less affected by measurement errors. He also showed that transverse dispersion 

coefficients evaluated from transient data were less accurate than those determined under 

steady-state conditions. 

Field tracer tests were performed by Moltyaner and Killey [1988] with iodide in flu-

vial sands at groundwater velocity of 1.2m /day. Sudicky et al. [1983] performed tracer ex-

periments at the Borden site and concluded that the transverse vertical dispersivity value of 

the site was in the order of the aqueous diffusivity. Rajaram and Gelhar [1991] simulated 

transport at the Borden site and estimated a transverse macrodispersivity value of 2.2mm. 

Transport simulation accounting for the heterogeneity also indicate much lower values of 

0.5mm [Hantush and Marino,1998] and 0.44mm [Fiori and Dagan, 1999] for the pore scale 

dispersivity. 

Grathwohl et al. [2000] conducted experiments to quantify the effect of transverse 

mixing on NAPL pool dissolution and vapor phase transport across the capillary fringe. They 

observed a very small vertical dispersivity. It was concluded that the mass transfer rates 

across the capillary fringe and the dissolution of a pool strongly depend on dispersion.  

Eberhardt and Grathwohl [2000] performed large scale laboratory experiments on 

the long-term dissolution behavior of BTEX and PAHs from Creosote in residual phase. The 

experiments were carried out in an 8 m long flume filled with medium grained sand. Two 

different NAPL source zones (zone containing creosote at residual saturation of 5% and zone 

containing a 2.5 m long creosote pool at the base of the aquifer) were examined. They calcu-

lated vertical transverse dispersivity values of 0.2mm. Klenk and Grathwohl [2002] per-

formed a controlled tank experiment on the transport of TCE across the capillary fringe at 

velocities ranging from 1.53m/day to 11.33m/day and the resultant transverse vertical disper-

sivity value was 0.63mm.  

Huang et al. [2002] presented an imaging technique to calculate transverse disper-

sion coefficient. They performed laboratory experiments in a two dimensional physical model 

with nominal thickness. The model was packed with glass beads to form a transparent quasi 

two- dimensional porous matrix. Sodium Fluorescein tracer was injected through the saturated 
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medium with a velocity of 0.49 m/day and the images were recorded by the CCD camera. The 

transverse dispersivity value of 0.07mm was calculated from the observed image intensity. 

1.3.1. Tasks 

It has been widely accepted that pore-scale transverse dispersion plays a decisive role 

in the decay of concentration fluctuations, dilution of conservative solutes, and mixing of re-

acting compounds [Kitanidis, 1994; Cirpka and Kitanidis, 2000a; Attinger et al., 1999]. But 

there is little direct evidence to demonstrate this process.  

Many researchers have developed various physical methods to determine transverse 

dispersive mixing in the subsurface. In all these methods, the measured quantity is propor-

tional to the dispersion coefficient therefore inducing significant errors in its experimental 

determination. No simple, efficient and satisfactory method is available until now. Hence, 

new methods for the determination of pore-scale transverse dispersion coefficient are devel-

oped in the laboratory scale. A technical-scale heterogeneous model aquifer system was de-

signed to investigate transverse dispersive mixing. MATLAB written codes were used to 

simulate experimental results. 

The steps followed in this research are summarized as: 

1. Developing a novel method to determine pore-scale transverse dispersivity by Taylor-

Aris dispersion in a helical soil column, 

2. Designing quasi two dimensional laboratory-scale and technical scale heterogeneous 

model aquifer systems, 

3. Developing a non-invasive imaging technique to determine transverse dispersivity 

from tracer experiments, 

4. Conducting reactive experiments to quantify the effect of micro-heterogeneity on 

transverse reactive mixing. 

5. Conducting conservative and reactive experiments to quantify the impact of macro 

heterogeneity on transverse dispersive mixing. 

1.4. Scope and Structure of Dissertation 
This dissertation is divided into two main parts. The first part includes the theoretical 

background of transverse dispersive mixing, the materials and methods used in the study 

(chapter 2 and chapter 3), whereas the second part comprises the results of the different ex-

periments, modeling approaches and their discussions (chapter 4 to chapter 7). 
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Chapter 1 describes the rationale and objectives of the research and gives a brief re-

view of the existing measurement methods. 

Before addressing the details of the materials and measurement techniques used in 

the study, chapter 2 provides a brief description of the reactive dispersive mixing phenomena 

on the microscopic and macroscopic scale. Groundwater flow and solute transport equations 

are also presented. The chapter includes a brief review of stochastic theory in subsurface hy-

drology and of different existing approaches on dispersion phenomena.  

Chapter 3 describes in detail the filling materials, tracers, the design of the experi-

mental domain, and different measurement techniques used in the study. As a requirement to 

measure local concentration [Cirpka and Kitanidis, 2000a], point measurement techniques 

developed by Jose [2004] were used and a new non-invasive imaging technique was devel-

oped for determining transverse dispersive mixing in porous medium. The experimental setup 

for both one-dimensional column experiment and quasi two-dimensional laboratory scale and 

technical-scale experiments are presented here. 

Chapter 4 describes a novel method developed for the determination of pore scale 

dispersivity by Taylor-Aris dispersion in a specially designed helical soil column. It includes 

the flow and transport behavior and the assumptions applied to the helical soil column. Re-

sults of both experimental and numerical modeling are discussed.  

Chapter 5 presents a method to determine the transverse dispersion coefficient in a 

homogeneous porous medium by measuring the length of a reactive plume. Here, a non-

invasive imaging technique is developed.  

Chapter 6 describes the impact of microheterogeneity on transverse dispersive mix-

ing. Here, I discuses the experimental results of reactive tracer tests performed in the labora-

tory scale model aquifer filled by different sand mixtures that exhibits microscopic sedimen-

tary structures.   

Chapter 7 demonstrates the influence of macroscopic heterogeneity on transverse 

mixing. Here, I present the experimental results of both the conservative and reactive tracer 

tests performed in the technical-scale model aquifer which exhibits macroscopic heterogene-

ity. 

Summary and Conclusions of the dissertation are presented in Chapter 8. 
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2. Theoretical Background 

This chapter provides the theoretical description of reactive dispersive mixing phe-

nomena on both the local and macroscopic scale. The equations of groundwater flow and sol-

ute transport in the subsurface are given. Also, I briefly review stochastic theory in subsurface 

transport. The chapter also summarizes the different existing approaches on dispersion phe-

nomena.  

2.1. Reactive Mixing Process 
Two dissolved compounds, that initially occupy separate volumes in an aquifer, must 

mix in order to react with each other. Only when the reacting compounds are present at the 

same point at the same time, a reaction may occur. A lack of mixing limits therefore the trans-

formation of contaminants [Kitanidis, 1994; Miralles- Wilhelm et al., 1997; Kapoor et al., 

1997; Oya & Valocchi, 1998; McCarty et al., 1998; Dybas et al., 1998; Cirpka et al., 1999a; 

Miralles Wilhelm & Gelhar, 2000]. Three mixing processes on the scale of the smallest possi-

ble representative elementary volume [Bear, 1972] were identified by Cirpka et al. [1999] - 

chromatographic mixing, kinetic mass transfer and dispersion. In contrast to the other two 

mixing processes, dispersion is the active mixing process even if no mass transfer occurs, and 

it acts into the principal direction of flow as well as transverse to it. 

2.2. Dispersion 
Dispersion consists of molecular diffusion and pore-scale dispersion. The compli-

cated system of interconnected passages comprising the microstructure of the medium causes 

a continuous subdivision of the compound’s mass into finer offshoots. Variations in local ve-

locity, both in magnitude and direction, along the tortuous flow paths and between adjacent 

flow paths within each pore, cause any initial compound mass to spread and occupy an ever-

increasing volume of the porous medium.  

The mixing/spreading that occurs along the direction of the flow path is called longi-

tudinal dispersion (Figure 2.1) and the spreading in directions normal to the flow is called 

transverse dispersion (Figure 2.2). In both longitudinal and transverse direction, the disper-

sion results from an interplay between advection and diffusion.  
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Figure 2.1 Factors causing longitudinal dispersion at the scale of individual pores   (Fet-
ter, C. W. 1994) 

 

Figure 2.2 Flow path in porous media causes transverse dispersion 

Classically, transverse dispersion includes two components: transverse mechanical 

dispersion and diffusion. It is commonly parameterized by [Fetter, 1993]: 
∗+α= eDvD TT  (2. 1) 

where,  is the transverse dispersion coefficient, is the effective diffusion coefficient, 

 is the transverse dispersivity and  is the seepage velocity. In general, three factors (vari-

ous pore sizes, tortuosity and a velocity distribution in a single pore) are responsible for pore-

TD ∗
eD

Tα v
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scale mechanical dispersion [Bear, 1972; Weidemeier et al., 1999], and the dispersivity is a 

characteristic quantity of porous media. Molecular diffusion is driven by intrinsic molecular 

thermal movement and may be described by Fick’s law. Molecular diffusion in porous media 

depends on the temperature, solute properties and pore size. Grathwohl [1998] presented an 

empirical equation for the estimation of the diffusion coefficient: 
1

eaqDD e
−ω∗ θ=   (2. 2) 

where is the diffusion coefficient in the aqueous phase, aqD eθ  is the porosity and  is an 

empirical exponent ranging between 1.8 and 2.4. 

ω

Taylor [1953], in his analysis of longitudinal dispersion in capillary tubes, obtained 

D proportional to
2

v . Bear and Todd [1960], in their one-dimensional analysis of porous me-

dia, suggest vaD 1= , i.e., D is proportional to v , with being some characteristic medium 

length.  

1a

Scheidegger [1957] summarized his analysis on the two possible relationships be-

tween D and v according to the role played by molecular diffusion: (a) 
2

vaD ′≈ , where a′ is 

a constant of the porous medium alone (dynamic dispersivity), which is derived by a dynamic 

procedure applicable where there is enough time in each flow channel for appreciable mixing 

to take place by molecular transverse diffusion; (b) va ′′≈D , where a ′′ is another constant of 

the porous medium (geometric dispersivity), which is derived by a geometric procedure appli-

cable where there is no applicable molecular transverse diffusion from one streamline to an-

other.  

Thus in all models in which the combined effect of velocity distribution across a 

channel and transverse molecular diffusion is considered [e.g., Taylor 1953], the coefficient 

of dispersion is proportional to 2v . Where only the mean motion in a channel is considered, 

while mixing occurs at junctions connecting different channels, disregarding molecular diffu-

sion one obtains vD ≈

, nvn
Tα

. Of course, intermediate cases, where D is proportional to some 

power of the velocity between 1 and 2, lie between these two extremes. Klenk and Grathwohl 

[2002] suggest that vertical  apparently declines with increasing flow velocities. Accord-

ing to them, the incomplete diffusive mixing in the pore throats leads to an exponent smaller 

than one, i.e.,  

Tα

.1<≈D
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2.3. Mechanism of Pore-Scale Transverse Dispersion 
The individual streamlines follow a tortuous path through the porous medium al-

though the average direction of each streamline must be in the direction of mean flow. The 

paths followed by various streamlines vary widely in direction for distances in the order of the 

diameter of the sand grain. The lateral motion of a particle along these streamlines, combined 

with the diffusive exchange of particles between streamlines both within the individual flow 

channels and at junctures, give rise to transverse mixing. Two factors can cause a fluid parti-

cle to transfer from one streamline to another: (1) molecular diffusion or (2) turbulent eddies 

which disrupt the streamlines. For very low Reynolds numbers, however, mixing between 

streamlines is caused predominantly by molecular diffusion since the formation of turbulent 

eddies is negligible [Blackwell, 1962].  

C

2 13

A

B

Figure 2.3 Mechanism of Transverse Dispersion (after Blackwell, 1962) 

The microscopic mixing processes can be described conveniently by discussing the 

transport of tracer molecules through the porous medium. The mechanism of transverse dis-

persion is illustrated in (Figure 2.3) as illustrated by Blackwell [1962]. Tracer molecules are 

initially injected into streamline 1. As they flow along this streamline, molecular diffusion 

tends to distribute the particles uniformly across the flow channel analogous to that described 

by Taylor for a single capillary. Near region A some of the particles transfer from streamline 

1 to streamline 2. Subsequently, the particles are transported laterally along streamline 2 

through region B and approach streamline 3 near region C. At very low flow rates, transport 

of tracer particles through region B is predominantly carried out by molecular diffusion. As 

the mean flow rate increases, however, advective transport through region B becomes more 

important and eventually determines the minimum time required for the particles to reach 
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region C. In the vicinity of region C some of the particles transfer to streamline 3 to continue 

the transverse dispersion process.  

At very low rates, transverse mixing is dominated by molecular diffusion. Although 

the velocity variation perpendicular to the mean flow are smaller than those parallel to it, the 

transverse mixing area will tend to be much greater than the area of longitudinal mixing, at 

the large-time limit. Both transverse and longitudinal mixing are independent of the viscosity 

because effects of inertia or eddy mixing are negligible at low Reynolds numbers [Blackwell, 

1962]. 

2.4. Importance of Macroscopic and Pore-scale Transverse Dispersion 
Dispersivities are seen to increase with scale of observation [Gelhar et al., 1992]. 

Therefore, as a plume grows and develops, its rate of spreading both longitudinally and trans-

versely appears to increase. While pore-scale transverse dispersion is caused by variations of 

pore sizes, tortuosity, and variable friction within an individual pore [Bear 1972, Weidemeier 

et al., 1999], macrodispersion is attributed to by macroscopic heterogeneity (e.g. stratigraphy, 

grain size distribution and permeability variations) rather than pore-scale heterogeneity 

[Zheng  and Bennett, 1995]. 

On the field scale, macroscopic dispersion controls the spreading of the non-reactive 

plume components. Gelhar and Axness [1983] and Dagan [1988] showed that solute disper-

sion is a anisotropic process in natural heterogeneous media even under steady-state flow 

conditions. Therefore as a plume grows and develops, its rate of spreading both longitudinally 

and transversely (as an observational phenomenon) would appear to increase. When modeled 

as a continuum process, this requires that the dispersivity is not a constant but varies with dis-

tance traveled and implied that dispersion is a cumulatively increasing process.  

In contrast to longitudinal macrodispersivity, transverse macrodispersivity ap-

proaches an asymptotic value only slightly larger than the pore-scale coefficient. Authors like 

Attinger et al., [1999] and Dentz et al., [2000] claimed that effective transverse dispersion, the 

parameter of actual mixing also show the similar behavior. Therefore, slow transverse disper-

sive mixing will determine the large time quasi steady-state behavior of the plume. 

It is well accepted that natural heterogeneity governs the spreading of solutes in 

groundwater. The effect of natural heterogeneity in hydraulic conductivity on transport of 

conservative solutes has been studied intensively, namely by stochastic methods [Gelhar & 

Axness, 1983; Dagan, 1984; Neuman et al., 1987]. The previous studies were focused to un-

derstand the relationship between the geostatistical parameters describing the hydraulic-
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conductivity distribution, and macrodispersion. Technically, macrodispersion coefficients 

measure how the expected second central spatial moments of a conservative tracer increase at 

field scales. They quantify the combined effect of two inter-related processes: spreading and 

dilution. 

Spreading is associated with the increasing irregularity of the plume shape due to the 

spatially variable advection caused by variable hydraulic conductivity (Figure 2.4a). How-

ever, if advection was the only transport process, the volume of the plume would not change 

and local concentrations were binary, equaling the original plume concentration within the 

plume and zero outside of it. 

By contrast, dilution describes the decrease of the actual concentration peak of a con-

servative solute as the mass is distributed over a larger volume. Kitanidis [1994] defined 

measures of plume dilution and Kapoor & Kitanidis [1996; 1998] showed the relation be-

tween dilution and the decay of concentration fluctuations. The driving force of dilution is 

diffusion that smoothes concentration differences. Figure 2.4b illustrates the effect of diffu-

sion on a rectangular solute plume in a homogeneous flow field. The sharp concentration con-

trast disappears, the concentration in the original water body decreases, and the solutes oc-

cupy a large body.   

In case of groundwater flow, both varying advection and diffusive processes are pre-

sent which leads to extensive stretching of the plume interfaces. This leads to an extended 

surface area of the plume exhibiting high concentration gradients. As a consequence, diffu-

sion can be more effective, and dilution is stronger in a spatially varying velocity field than in 

a uniform one. As spreading creates more interfaces, dilution increases and eventually catches 

up with spreading. The speed at which dilution approaches equilibrium with spreading de-

pends on the heterogeneity of the flow field and on local dispersion whereas spreading alone 

is hardly influenced by the latter. Figure 2.4c illustrates the combined effects of spreading and 

diffusion. 

Many researchers showed that the spreading of the large solute plumes i.e. macrodispersion in 

conservative studies could accurately be predicted by linear stochastic theory [Gelhar and 

Axness, 1983; Neuman et al., 1987; Dagan, 1988]. Cirpka and Kitanidis, [2000a], however, 

demonstrated that macrodispersion includes both mixing on the local scale and spreading on a 

large scale. Hence, applying the Fickian macrodispersion concept to reactive transport means 

that we merge mixing and spreading, thus we arriving at too large effective reaction rates 

[Molz and Widdowson, 1988; Ginn et al., 1995; Kapoor et al., 1997]. 
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Figure 2.4 Effects of spreading and diffusion on the transport of a rectangular solute 
cloud. 

The stochastic-convective model [Simmons et al., 1995] was applied to bio-reactive 

model problems [Ginn et al., 1995; Xin and Zhang, 1998; Cirpka and Kitanidis, 2001a] where 

mixing was determined by differences in sorption behavior of the reacting compounds [Oya 

and Valocchi, 1998] and local scale dispersion was neglected. But local dispersion is the only 

mixing process between the compounds when they do not sorb or undergo any interphase 

mass transfer. Hence, in cases without sorption the stochastic-convective approach is no more 

applicable to reactive transport.   

The stochastic-convective approach was extended by Ginn [2001] to include longitu-

dinal pore-scale dispersion. However, Kitanidis [1994] showed that spatially variable flow 

fields lead to extended plume interfaces, so that transverse pore-scale dispersion acts over a 

much more area than longitudinal pore-scale dispersion. The effect of transverse pore-scale 

dispersion on longitudinal pore-scale dispersion was quantified by the second central moment 

of conservative breakthrough curves obtained from point measurement [Cirpka and Kitanidis, 

2000b].  

Cirpka [2002] claimed that the effective dispersion coefficient for a point-like injec-

tion is an adequate measure of actual dispersive mixing, even for wide plumes. As mixing 

occurs on the scale of single pores, it is irrelevant how the second central moments of a wide 
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plume increase, since these moments primarily describe the irregularity of the plume shape. 

By contrast, the point related effective dispersion coefficients describe the expected area in-

fluencing the concentration at a point. Hence, for mixing-controlled reactive transport, the 

effective dispersion coefficient for a point-like injection quantifies dispersive mixing, whereas 

additional spreading of a large plume is quantified by the corresponding covariance matrix of 

first moments [Cirpka and Kitanidis, 2000b; Cirpka, 2002]. 

Therefore, the accurate choice of dispersion coefficient is of greater practical signifi-

cance in predicting rates of natural attenuation or biodegradation. Further investigation into 

the observed magnitudes of macroscopic and pore-scale dispersion is therefore required as a 

precursor to evaluating the significance of the actual magnitude of dispersion relevant to reac-

tive fringe mixing in a heterogeneous porous media. 

2.5. Governing Equations of Flow and Transport in the Subsurface  

2.5.1. Darcy’s Law 
In 1856, Henry Darcy presented the basic law describing flow in a porous medium. 

The law states that the flow of water through a column filled with sand is proportional to the 

cross-sectional area and the head loss along the column and inversely proportional to the col-

umn length. In multi-dimensional systems, Darcy’s law can be expressed in vector form: 

h∇−= Kq   (2. 3) 

in which   is the specific discharge, q K is the hydraulic conductivity tensor, and h is the hy-

draulic head. 

The hydraulic conductivity, K , is defined as the measure of capacity of a porous 

media to transmit water [Fetter, 1993]. It can have different values depending upon the actual 

direction of water flow through the porous media. If the hydraulic conductivity is identical in 

all directions, i.e. KKKK zyx === , the medium is isotropic. Otherwise it is anisotropic, 

and K is a full tensor. 

Since the actual flow takes place only in the pores, the average flow velocity, or 

seepage velocity, , is greater than the specific discharge, . The two quantities are related to 

each other by  

v q

eθ
=

qv  (2. 4) 

where θ  is the effective porosity of the porous medium.  e
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Darcy’s law is valid only when the pore sizes are much smaller than the characteris-

tic dimensions governing the flow field and also the flow has to be laminar. 

2.5.2. Groundwater Flow Equation 
The law of mass conservation states that the rate of change of fluid mass is given by 

the divergence of mass fluxes and internal sources or sinks of fluid mass.  

outinw
ew qq

t
−=ρ⋅∇+

∂
θρ∂ )()( q  (2. 5) 

where ρw  = water mass density of water (M/L3) 

Since the spatial gradient of the fluid  density wρ is negligible, we can write, 

outin
ew

w

qq
t

)(1
−=⋅∇+

∂
θρ∂

ρ
q  (2. 6) 

We may substitute Darcy’s law, eqn (2.3) in the above equation, leading to  

outins qqh)(
t
hS −=∇⋅∇

∂
∂ K  (2. 7) 

with the specific storage coefficient, 
hh

ew

w

e
s ∂

S
θ∂

+
∂
ρ∂

ρ
θ

=  

For an incompressible fluid and a medium with constant porosity, the above equation reduces 

to  

( ) outin qqh −=∇⋅∇ K   (2. 8) 

 

2.5.3. Solute Transport Equation 
In solute transport, we consider the conservation of the solute mass within the pore 

space. Then, the corresponding density of the conserved extensive quantity is the mass of the 

solute per unit bulk volume: 

 ρ  (2. 9)  ecθ=*

in which c  is the concentration, i.e. the solute mass per unit volume of water. The flux density 

consists of two components, the advective contribution, which is caused by the movement of 

water carrying the dissolved compound with it, and the dispersive flux smoothing concentra-

tion differences: 

cDqf ∇θ−= e
* c    (2. 10)  
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in which D  is the dispersion tensor. In stagnant water, D  reduces to the effective diffusion 

coefficient , for which the mass-flux density is described by Fick’s first law. In porous 

media, the effective diffusion coefficient , is smaller than the molecular diffusion coeffi-

cient, because diffusing particles have to go around the grains (tortuosity) [Carman, 1937]. At 

a significant strength of flow, the molecular contribution to dispersion becomes negligible. 

Instead, velocity fluctuations at the pore scale, that have disappeared by assuming a specific 

discharge vector averaged over many pores, cause a mean flux that is formally equivalent to 

anisotropic diffusion.  

∗
eD

∗
e

D

Velocity fluctuations on much larger scales than the pore scale lead to similar effects 

in macroscopic transport. Here, we consider only the fluctuations on scales smaller than the 

Darcy scale. 

We define our source and sink terms: 

outinine cqqcrs −+θ=*   (2. 11) 

in which r is a reaction term,  describes the source of solute mass due to compounds dis-

solved in water entering the control volume as internal volumetric source, whereas the water 

flux q leaving the control volume carries the solute with concentration c with it. Substituting 

Eqs. (2.9 – 2.11) into the differential form of general conservation equation, yields the trans-

port equation: 

inq

out

( ) ( ) outininee
e cqqcrcc

t
c

−+θ=∇θ−⋅∇+
∂
θ∂

Dq   (2. 12) 

We may analyze Eq. (2.12) by applying the chain rule of differentiation to the diver-

gence of the advective flux: 

( ) outininee
e

e cqqcrccc
t

c
t
c

−+θ=∇θ⋅∇−⋅∇+∇⋅+
∂
θ∂

+
∂
∂

θ Dqq   (2. 13) 

c 

which is equivalent to: 
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e
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+
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∂
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In which we made use of the simplified continuity equation. Using the seepage velocity, eq. 

(2.3) becomes: 
 

( ) ( )
e

in
ine

e

qccrcc
t
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c

θ
θ

θ
ρ

ρ
ω

ω

−+=∇⋅∇−∇⋅+
∂

∂
+

∂
∂ Dv 11  (2. 15) 

Under steady-state flow conditions without internal volumetric sources or sinks, the 

specific discharge field is free of divergence. If we assume additionally that the volumetric 
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water content θ is uniform, the transport equation of conservative solutes simplifies further 

to: 

ω

( ) 0=∇⋅∇−∇⋅+
∂
∂ cc

t
c Dv   (2. 16) 

This version of the transport equation is valid for both porous media and other types 

of flow systems but it requires the following assumptions: 

• steady state flow, or at least a negligible compressibility of the fluid, 

• _a uniform volumetric water content, 

• _and the absence of internal volumetric sources.  

2.6. Subsurface Transport on the Macroscopic Scale 

2.6.1.  Stochastic Approach 
Natural processes are subject to a considerable variability, resulting in both spatial 

heterogeneity of naturally formed materials (e.g. sedimentary structures) and temporal  vari-

ability of ongoing processes. As a consequence, describing processes occurring in nature, like 

flow and transport in the subsurface, requires knowledge of the spatial and temporal distribu-

tion of the parameters involved. Classical engineering approaches describe only the largest 

and most distinct hydrogeological structures by the definition of zones and layers in (numeri-

cal) models [McDonald & Harbaugh, 1988]. Within a certain structure, the hydraulic parame-

ters are assumed uniform. One of the arguments supporting such models is the consideration 

that natural formations are generated by processes that create distributions of geological ho-

mogeneous units (facies), and heterogeneities result from the intertwined arrangement of fa-

cies that are characterized by a hierarchy of scales. While these models have been shown 

valuable in groundwater-flow studies, their predictive capabilities in solute transport are lim-

ited. Traditionally, the impact of heterogeneities that are smaller than the defined zones is 

accounted for by constant macrodispersion parameters [Freeze & Cherry, 1979]. 

Two major approaches have evolved in order to describe with the heterogeneity of 

subsurface parameters: genetic and strictly geostatistical models [Koltermann & Gorelick, 

1996]. Genetic models try to simulate the sedimentation or other geological processes creating 

the subsurface structures, whereas geostatistical models view the distribution of the quantities 

of interest as the results of a random spatial process, independent of sedimentological or other 

geological insights on the genesis of the formation. The simulated distribution of hydraulic 
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properties may be more realistic when using the genetic models, but the geostatistical meth-

ods have the following advantages: 

• Measured data can be included easily in the simulation of fields (conditioning), the 

uncertainty associated with each distribution of properties can be quantified, 

• geostatistical parameters of flow and transport can be inferred from those of the hy-

draulic conductivity by analytical methods, 

•  the distribution of hydraulic conductivity can be estimated from flow and transport 

data (inverse modeling), including measures on the estimation uncertainty. 

In all practical applications, we are not able to define the exact distribution of the hy-

draulic conductivity field. Therefore, it is impossible to predict flow and transport in all de-

tails. Even if we knew the exact conductivity distribution, the practical use of detailed flow 

and transport information would be doubtful. Therefore, the objective of stochastic hydrology 

is to describe the mean flow and transport behavior, whereas details such as the definite con-

centration at a single point and time are not considered and cannot be predicted.  

Intuitively, one would define the mean as a spatial average [Kitanidis, 1992; Wang & 

Kitanidis, 1999]. The more common approach in stochastic hydrology, however, is to apply 

ensemble-averaging based on the following principles: 

• The hydraulic log-conductivity field is a random spatial function. 

• An infinite number of fields, referred to as realizations, share the geostatistical pa-

rameters of the true distribution which remains unknown. 

• Flow and transport “calculations” are performed for each possible realization under 

identical boundary and initial conditions. 

• The mean hydraulic head and concentration is obtained by averaging at identical lo-

cation and time over all possible realizations. That is, the mean is the expected 

value. 

Spatially varying parameters of naturally occurring materials often exhibit two im-

portant characteristics [Journel and Huijbergts, 1978]: they show a high degree of variability 

but nevertheless reveal a certain spatial structure. Matheron [1971] termed them regionalized 

variables. They can be described by means of random variables that account for the spatial 

structure i.e. a regionalized variable is the realization of a random function. According to the 

stochastic notation [Journel and Huijbergts, 1978; de Marsily, 1986; Gelhar 1993; ; Dagan 

and Neuman 1997] the spatial distribution of a parameter observed in the domain  is the 

result of a random process, that can be described by a random function. The observed 

distribution represents therefore one possible realization of the random function. A random 

U
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bution represents therefore one possible realization of the random function. A random func-

tion is a set of random variables corresponding to the points of the domain U under study. 

A random variable is often characterized by its first two moments, the expected value 

) . (xziancetheandZE 2var)]x([ σ

( ) )](Z[Ez xx =µ   (2. 17) 

( ) ( ) ( )( )[ ]22 xx µσ −= zExz  (2. 18) 

The second important characteristic of a regionalized variable is its spatial structure 

[Journel and Huijbergts, 1978]. We may treat spatially distributed variables like sets of mul-

tiple variables with a single value for each location x. Then the autocovariance  is defined 

by: 

zzR

( ) ( )[ ]( ) ( )[ ]( )[ ]xxxxxx,R ′−′−=′ ZE)(ZZE)(ZEzz   (2. 19) 

Evaluation of the autocovariance function requires that the mean is known. An alter-

native measure is the (semi) variogram defined by: 

( ) ( )( )[ ]2ZZE
2
1 x)x(xx, ′−=′γ   (2. 20) 

Spatially varying parameters appearing in the flow and transport equations can be 

described with the concept of random functions, thus leading to a stochastic description of the 

dependent variables, e.g. head and concentration. However, two important assumptions on the 

used random functions are made. One is the stationarity of the random function which means 

that its statistical properties are independent of x. As a consequence, the statistical characteris-

tics like the first two moments of a random variable can be obtained from pooling together 

observations taken at different locations in space. The second important assumption is that of 

ergodicity defined as follows [Marsily, 1986]: 

“Ergodicity implies that the unique realization available behaves in space with the 

same probability density function (pdf) as the ensemble of possible realizations.  In other 

words, by observing the variation in space of the property, it is possible to determine the pdf 

of the random function for all realizations.” 

As ergodicity is a characteristic of the random function and not of a single realization 

observed in the field, it is difficult to prove ergodicity in a given domain. Nevertheless, for 

most applications both stationary and ergodicity are assumed. Different approaches exist to 

solve stochastic differential equations, which are described in detail e.g. by Marsily [1986] 

and Gelhar [1993].    
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In non-stationary media, Z  or ( )xx, ′R  vary in space. The use of a spatially variable 

mean can easily be incorporated into interpolation, conditional simulations and inverse mod-

eling [Kitanidis, 1995; McLaughlin & Townley, 1996; Kitanidis, 1997], whereas it compli-

cates the stochastic analysis of flow and solute transport [Li & McLaughlin, 1991; Neuman, 

1993; Rubin & Seong, 1994; Li & McLaughlin, 1995; Indelman & Rubin, 1995; Indelman & 

Rubin, 1996; Zhang et al., 2000]. 

By using the covariance or the variogram), we rely on two-point statistics that are 

limited in describing the typical shape of geological features. In petroleum engineering, e.g., 

multi-phase flow model results are extremely sensitive to connected high-permeability zones 

that might not be covered by two-point variograms. Extensions of the geostatistical analysis 

may therefore include connectivity measures or the joint correlation between multiple points 

[Isaaks & Srivastava, 1988; Deutsch & Journel, 1992;Wang, 1996]. The resulting permeabil-

ity fields created by conditional simulations are more realistic, however, the reliable determi-

nation of multiple-point statistical parameters require a large number of measurements that 

are not available in most groundwater applications. 

2.6.2. Statistical Moments 
Imagine for a moment we were able to measure the exact concentration distribution 

of a plume in a heterogeneous aquifer. Heterogeneities make the plume extremely irregular in 

shape. Rather than studying the exact distribution, we may analyze the plume by its spatial 

moments. The breakthrough curves obtained both at points within the domain and the average 

at the outflow boundary can also be characterized by temporal moments. The definitions of 

spatial and temporal moments are presented in Table 2. 1 
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Table 2. 1 Identities of Spatial and Temporal Moments 

Identities Moments 
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Stochastic theory aims to predict the spatial or temporal moments of a solute plume 

in a heterogeneous aquifer from the statistical moments of the underlying log-conductivity 

field. Since only statistical information on the conductivity field is used, obviously, we can 

derive only statistical information about the moments of the ensemble-averaged concentra-

tion, the ensemble average of the concentration moments in single realizations, and the related 

uncertainty.   

We can use the spatial and temporal moments derived by stochastic theory for solute 

transport in heterogeneous domains to define macroscopic, or upscaled parameters. The mac-

rodispersion tensor, e.g., is the dispersion tensor needed in calculations with uniform coeffi-

cients to meet the same second-central moments as the ensemble-averaged concentration in a 

heterogeneous domain.  
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2.7. Dispersion Theories 

2.7.1. Taylor-Aris Dispersion 
Taylor [1953,1954] was the first to analyze the relationship between the longitudinal 

dispersion coefficient for transport of a solute averaged over a cross section of a capillary tube 

and the molecular diffusion coefficient. In any type of shear flow, where the magnitude of the 

velocity varies normal to its orientation, the asymptotic longitudinal macrodispersion coeffi-

cient is proportional to the mean velocity squared and inversely proportional to the transverse 

diffusion coefficient [Taylor 1953, 1954]. Assume that at t =0, a tracer is introduced at x = 0 

by a pulse. The transport of the solute takes place by advection with the velocity and by 

molecular diffusion, such that C(x,y,z,t) satisfies the following equation: 

ν

( ) CD
r
Cr

t
C 2

m∇=
∂
∂

ν+
∂
∂   (2. 21) 

Taylor has shown that for a sufficiently long travel distance L or travel time t, the 

concentration C(x, t) averaged over the cross-section satisfies the advective-dispersion equa-

tion with uniform coefficients 
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where a is the radius of the tube, is the Taylor dispersion coefficient. Equation (2.22) is 

only valid if the travel time  is much larger than the transverse diffusion time scale, 

i.e. it satisfies the inequality tD . For large Peclet numbers, as encountered in most 

applications, it is seen that . 

TRD

ν/
2 >>a

mD

= Lt

/m

TR >>

1

D

The Taylor dispersion approach was rigorously extended by Aris [1956]. He ana-

lyzed the capillary dispersion problem by the evolution of axial moments of the concentration 

distribution, distinguishing between what Brenner [1980b] later called global and local mo-

ments. Global moments are obtained through integration of the concentration over the entire 

volume of the tube, whereas local moments are obtained through integration exclusively over 

the axial direction. It turns out that the temporal change of the k th global moment is the inte-

gral of an algebraic expression containing the (k -1)th local moment, which is governed by a 

partial differential equation (pde) depending on the  (k -1)th global moment. The macrotrans-

port parameters are then given by  
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in which and D  are the macroscopic velocity and dispersion coefficient,  is the second 

central moment. Equation (2.24) has been used to infer the molecular diffusion coefficient 

from the axial dispersion in a capillary [Bello et al., 1994, Belongia and Baygents, 1997].  

The theory has also been applied to the diffusion of particles in Couette flow [Nadim, 1988], 

and macrodispersion in stratified aquifers [Gelhar et al., 1979], among others. Cirpka and 

Kitanidis [2001b] analyzed the same type of macrodispersion for a helical device by the 

method of spatial moments. 

∗v ∗ cm2

2.7.2. Classical Macrodispersion 
The most common macroscopic transport equation is formally identical to the local-

scale advection-dispersion equation: 

( ) 0ccv
t
c * =∇⋅∇−∇⋅+

∂
∂ *D    (2. 25) 

in which c  is an averaged concentration,  is the macroscopic velocity vector and the 

macrodispersion tensor. Both macroscopic parameters may change in time. The typical crite-

ria to determine the macroscopic parameters are the spatial moments of the averaged concen-

tration, which has already been discussed in the previous section.   

*v *D

Kitanidis [1992] used volume averages based on a periodic representation of the ve-

locity field. The approach was generalized to stationary random media by Wang and Kitanidis 

[1999]. In the following, however, the most common methods of stochastic hydrology using 

ensemble-averages are briefly presented. 

2.7.2.1 Eulerian Analysis  

The stochastic theory developed by Gelhar and Axness [1983] provides a specific 

predictive model of large-scale dispersion indicating that a classical Fickian relationship is 

valid. In stationary log-conductivity fields, the longitudinal macrodispersivity is convectively 

controlled, but the transverse macrodispersivity is proportional to the local dispersivity and is 

several orders of magnitude smaller than the longitudinal term.  
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Gelhar & Axness [1983] analyzed macrodispersion in three-dimensional stationary 

velocity fields applying the same spectral methods as used for flow. Both the seepage velocity 

and the concentration are expressed by a deterministic trend and a random fluctuation: 

( )qqvvv ′+
θ

=′+=
e

1   (2. 26) 

ccc ′+=   (2. 27) 

Although in reality the local dispersion tensor D varies in space, it is assumed uni-

form in the following analysis. By introducing the perturbations into the transport equation, 

Eq. (2.16), and taking expected values we arrive at the transport equation of the mean concen-

tration c : 

( ) ( ) 0ccvcv
t
c

=′∇⋅∇−′′⋅∇+∇⋅+
∂
∂ D    (2. 28) 

The comparison with Eq. (2.26) shows that the macroscopic velocity vector is 

identical to the mean velocity 

*v

v , whereas the macrodispersive flux consists of the local-

dispersion contribution and the covariance of velocity and concentration fluctuations at zero 

separation: 

cvcc* ′′−∇=∇ DD   (2. 29) 

Obviously, the macrodispersive parameterization is valid only when cv ′′  is proportional to 

c∇− . 

Subtracting the mean transport equation, Eq. (2.28), from the exact equation, Eq. 

(2.16), and neglecting second-order terms, yields the transport equation of the concentration 

fluctuations: 

( ) 0ccvcv
t
c

=′∇⋅∇−′∇⋅+∇⋅′+
∂

′∂ D    (2. 30) 

Assuming a uniform mean concentration gradient c∇ and a stationary velocity field, 

the concentration fluctuations are also stationary, and we can transfer Eq. (2.30) into the spec-

tral domain [Gelhar & Axness, 1983]: 

  0c~ssc~vscv~
t
c~ T =+⋅+∇⋅+

∂
∂ D  (2. 31) 

which holds for each wave number s. Eq. (2.31) is an ordinary differential equation of the 

Fourier transform of the concentration fluctuations. Applying zero fluctuations as initial con-

dition, the solution of Eq. (2.31) is: 

27 



 

( ) ( )( ) ( ) ( )cs
ss

ssttsc ∇⋅
+⋅

+⋅−−
= -v

Dv
Dv

T

T

is
isexp1,~   (2. 32) 

The cross-spectrum S of concentration and velocity fluctuations is given by: )s,t(cv
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leading to the covariance of velocity and concentration fluctuations at zero separation c′′v : 
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That is, c′′v  is indeed proportional to )c(−∇  and the time-dependent macrodispersion tensor 
is: )t(*D
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Gelhar & Axness [1983] analyzed  at the large-time limit where  ap-

proaches an asymptotic value. Eq. (2.35) has been derived by Neuman et al. [1987] using an 

Eulerian-Lagrangian method and by Dagan [1988] using a Lagrangian method. Closed-form 

expressions of  as those derived by Gelhar & Axness [1983] and Dagan [1984; 1988] 

are obtained by choosing a covariance model of the log-conductivity, deriving the velocity 

spectrum and substituting it into Eq. (2.35). 

)t(*D ∞→t *D

)t(*D

2.7.2.2 Lagrangian Analysis 

The temporal behavior of transport coefficients in a medium with spatial fluctuations 

in the conductivities was investigated by Dagan [1984, 1988, 1991] using a Lagrangian ap-

proach. This analysis neglects the influence of pore-scale dispersion on the transport of the 

solute, that is, the dispersion occurring at scales smaller than those characterizing the spatial 

distribution of hydraulic conductivity is neglected. The inherent assumption is that dispersion 

caused by velocity differences between different flow paths is much more important for the 

total field-scale dispersion than small scale velocity variability and molecular diffusion within 

the fluid phase.   

Let   be the velocity the particle experiences at time t  along its trajectory (La-

grangian velocity). Then its displacement is: 

)(τu

∫ ττ=
t

)((t)
0

duX  (2. 36) 

In advective transport, the Lagrangian velocity  )(τu and the Eulerian   are related 

by 

v(x)
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Accounting for local dispersion, the Lagrangian velocity )(τu  differs from the Eule-

rian  by random fluctuations leading to local-dispersive contributions to the covari-

ance of particle displacements of: 
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d

d T
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The Lagrangian analysis of advective-dispersive transport is performed best in the 

spectral domain, leading to expressions that are identical to those of the Eulerian analysis 

[Dagan, 1988; Fiori, 1996; Dagan & Fiori, 1997; Fiori & Dagan, 2000].  

For the strictly advective case, the macrodispersion tensor  can now be evaluated 

as [Dagan, 1984]: 
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Eq. (2.39) shows that, in stationary velocity fields, approaches an asymptotic 

value at the large-time limit. For non-reactive transport, Fiori [1996] extended the framework 

of Dagan [1989] to include pore-scale dispersion. He concluded that pore-scale dispersion 

influences macrodispersion primarily through its transverse component. Hence, neglecting 

pore-scale dispersion effects on macrodispersion implies neglecting the transverse mixing 

between different paths. Dagan and Fiori [1997] showed the effect of transverse pore-scale 

dispersion in heterogeneous porous media. Transverse pore-scale dispersion retards the 

quickly advancing fingers of solute and accelerates the slow ones. Indeed, advancing pore-

scale dispersion transfers solute across the interface into zones of lower conductivity and vice 

versa. 

)(D* t

2.7.3. Effective Dispersion 
The behavior of the plume evolving from a point-like instantaneous injection is char-

acterized by the velocity of its center of mass and by its dispersion as a function of time. 

Dentz et al. [2000a, 2000b] derived moment equations for a conservative solute in a hetero-

geneous flow field. They also made a clear distinction between the ensemble and the effective 

dispersion tensors. In both cases, they consider an average of half the rate of change of the 

second central moments. In case of ensemble dispersion, the classical macrodispersion, the 
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ensemble-averaging of the concentration is performed prior to taking the spatial moments. In 

effective dispersion, by contrast, the spatial moments are taken prior to ensemble averaging.  

( )[ ]
t

cE
D ije

ij ∂
∂

=
µ

µ0

1
2
1  (2. 40) 

The effective dispersion tensor describes therefore more accurately how small 

plumes spread, whereas the ensemble dispersion tensor includes information about the uncer-

tainty. At the limit of a point-like injection, the dispersion theories based on strictly advective 

transport predict zero effective dispersion [Dagan, 1990]. Accounting for local dispersion, the 

effective dispersion tensor is initially identical to the local dispersion tensor, grows over time 

since local transverse dispersion makes the plume sampling increasingly more streamlines, 

and finally reaches the asymptotic macrodispersion tensor, although at very large times [At-

tinger et al., 1999; Dentz et al., 2000a]. 

In the Lagrangian framework, the effective dispersion coefficients are evaluated by 

the two particle moments of displacement: Conceptually, two particles are jointly introduced 

into each realization of the random field at locations ( btXandatX 00 == )()( ). For a point-

like introduction, the initial separation a - b is zero. The displacement of the first particle is 

denoted by , and that of the second by .  Then, the covariance matrix of two-

particle displacements 

)(X t )(Y t

(t)YX ′′ is: 

[ ]( ) [ ]( ) ](t)(t)(t)(t)(t) T(E(EaE[ YbYXXYX −+−+=′′   (2. 41) 

in which [ ] [ ](t)(E(t)(E YX =  is the expected one-particle displacement.  

At early times, the two-particle covariance of displacement with zero initial separa-

tion 0)(t;YX ′′
 is identical to the one-particle covariance of displacements (t)XX ′′ . At later 

times, however, YX ′′
 increases much slower than XX ′′ . Fiori & Dagan [2000] found, for 

three dimensional domains, that YX ′′ becomes proportional to ( )tln at large times, while 

X′′X increases linearly. For a point-like injection, the effective dispersion tensor  is re-

lated to 

( )teD

0)(t;YX ′′ by: 
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t
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∂
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2
1e

ij
YXDD    (2. 42) 

The effective dispersion coefficients of an extended plume contain information on 

both the spreading and dilution of the plume. By contrast, the effective dispersion coefficients 

of a point-like injection may be used to describe solute dilution and dispersive mixing alone, 
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although  is not a direct measure of dilution. Figure 2.5 shows a plot of dispersion coeffi-

cients for conservative solute transport in periodic porous media under steady-state flow con-

ditions. Time dependent longitudinal macrodispersion grows much faster and approaches the 

asymptotic value in the large-time limit whereas transverse macrodispersion increases, 

reaches its maximum value, decreases and reaches an asymptotic value that is slightly higher 

than the effective one in the large-time limit.  

eD

 

Figure 2.5 Longitudinal, transverse Macrodispersion and effective dispersion tensors for 
conservative solute transport in periodic porous media under steady-state flow conditions. 
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3. Materials and Methods  

3.1. Introduction 
I conduct experiments in three different dimensions (helical column, quasi two-

dimensional laboratory scale and technical-scale model aquifers) to achieve the goal of the 

study. Here, I provide a detailed description of the materials, the design of the model aquifers, 

the filling procedures as well as the measurement techniques used in the study. Also, I de-

scribe the sedimentary structures formed in the heterogeneous model aquifers.  

3.2. Materials 

3.2.1. Tracers 
The tracers used to conduct experiments can be classified as follows: 

Conservative Tracer: I use Fluorescein and Cochineal Red 80 E 124 as conserva-

tive tracers. Fluorescein is selected as it is reported as a good conservative fluorescent tracer 

in silica sand (Smart and Laidlaw, 1977; Kasnavia et al., 1999). The main advantage of fluo-

rescein is its low detection limit of about 40µg/l. Fluorescein is dissolved in degassed-

deionized water at a concentration of 500µg/l.  

Cochineal Red 80 E 124 is selected as it is a red color food dye and thus is harmless 

to humans and the environment. It is also conservative, that is, it does not undergo degrada-

tion or absorption to the sand surface. 0.3 g/l concentration of the tracer is used for the tracer 

test.  

Reactive Tracer: Some chemical compounds change color at different pH values, 

thus they can be used to indicate or approximately quantify pH values. The Table 3.1 lists 

common pH indicators. 
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Table 3.1 Common pH indicators 

pH indicator pH range Color change Concentration of solu-
tion 

Thymol blue 1.2–2.8 red – yellow 0.1% in 20% Alcohol 

Dimethyl yellow 2.9–4.0 red – yellow 0.1% in 90% Alcohol 

Bromophenol 
Blue 

3.0–4.6 yellow – blue 0.1% in 20% Alcohol 

Congo red 3.0–5.0 blue – red 1% in water 

Methyl orange 3.2–4.4 red –yellow 0.1% in water 

Bromocresol 
green 

3.8–5.4 yellow – blue 0.1% in 50% Alcohol 

Methyl red 4.8–6.0 red – yellow 0.2% in 90% Alcohol 

Litmus 5.0–8.0 red – blue 0.3% in 90% Alcohol 

Bromocresol pur-
ple 

5.2–6.8 yellow – purple red 0.04% in 90% Alcohol 

Bromothymol 
blue 

6.0–7.6 yellow – blue 0.1% in 20% Alcohol 

Neutral red l 6.8–8.0 red – yellowish or-
ange 

0.1% in 70% Alcohol 

Phenol red 6.6–8.0 yellow – red 0.02% in 90% Alcohol 

o-Cresol red 7.0–8.8 yellow – purple red 0.1% in 20% alcohol 

Tropaeoline 000 7.6–8.9 yellowish green – 
pink 

1% in water 

Phenolphthalein 8.2–10.0 colourless – pink 1.0% in 50% Alcohol 

Thymol blue 8.0–9.6 yellow – blue 0.1% in 20% Alcohol 

Thymolphthalein 9.4–10.6 colourless – blue 0.1% in 90% Alcohol 

Alizarin Yellow R 10.1–12.0 yellow – red 0.1% in 50% Alcohol 

Tropaeoline O 11.3–13.0 yellow – orange red 0.1% in water 

 
In the experiments, two kinds of indicators are chosen: a mixture of Methyl red and 

Thymol blue and only Thymolblue. The chemical structures of both pH indicators are given 

in Figure 3.1. They both show a change from red to yellow color when changing from acidic 

to alkaline conditions. Thymol blue changes further to blue at high pH values. The physical 

and chemical data are listed in Table 3. 2. 

33 



 

Table 3. 2  Physical and chemical data for Methyl red and Thymolblue 

 Methyl red Thymol blue 

Formula C15H15N3O2 C27H30O5S 

Molar mass 269.31 g/mol 466.60 g/mol 

Melting point 178°C-182°C  

Bulk density 300-500 kg/m3 350 kg/m3 

Solubility in water 
(20°C) 

Slightly soluble Almost insoluble 

Use as pH indica-
tor 

0.1 g in 100 ml 
ethanol (96%) 

0.04g in 100 ml 
ethanol (20%) 

pKa 4.5 8.8 

  

Figure 3.1 The structure formulas of Methyl red (left) and Thymol blue (right) 
 (Source: Merck chemical databases) 

3.2.2. Glass Beads and Sand Types  
To fill the helical column, I use spherical, non-transparent glass beads with a grain 

size of 0.75 mm to 1 mm as filling materials. The glass beads were supplied by SIGMUND 

LINDER, Germany. 

The two-dimensional model aquifers are filled homogeneously and heterogeneously 

with different silica sand mixtures. The basic criteria for the selection of sand types are- 

• to ensure macroscopic scale heterogeneity (significant difference between the sand types) 

and small scale heterogeneity (sufficient variability within each sand type), and  

• to prevent exhibiting a pH buffering capacity over the pH range applied in the experi-

ments as the reactive tracer test is based on pH changes. 

I use three sand types (grain size 1.0 - 2.5 mm, 0.0 – 3.0 mm, 0.1 – 0.8 mm) together 

with the mixture of two sand sizes (0.3 –0.6 mm and 0.6 – 1.2 mm). The grain size distribu-

tion graphs of each sand type are given in Figure 3. 2 to Figure 3.6. The mixture of two sands 
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is prepared by an electric mixer with a weight ratio of 1:1. Sands were provided by Dorfner 

GmbH (supplied by Paul Link GmbH, Korntal-Münchingen). Sand with grain size 1.0 mm to 

2.5 mm is referred to as coarse sand (1.67×10-2 m/s), the sand with grain size 0.3 mm to 1.2 

mm (mixture of two sand types) is referred to as mixed sand. The sand with a flat grain size 

distribution 0.0 mm to 3.0 mm is referred to as medium sand and the sand with grain size 0.1 

mm to 0.8 mm is referred to as fine sand. The grain sizes and the hydraulic conductivity val-

ues of the sand types are shown in Table 3. 3. 

Table 3. 3 Grain sizes and hydraulic conductivity of the chosen sand types 

Name Type Grain size (mm) Conductivity (m/s) 

Coarse sand Dorsilit Nr. 5 1.00-2.5 1.67×10-2 

Mixed sand Dorsilit Nr. 7 and 8 0.3-0.6 and 0.6- 1.2 4.32×10-3 

Medium sand Dorsilit Nr. 0-3 0.0 – 3.0 9.09×10-4 

Fine sand Dorsilit Nr. 8/9 0.1-0.8 5.61×10-4 

 

 

Figure 3. 2 Grain-size distribution of the quartz sand (Dorsilit Nr. 0-3) 
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Figure 3. 3 Grain-size distribution of the quartz sand (Dorsilit Nr. 5) 

 
Figure 3.4 Grain-size distribution of the quartz sand (Dorsilit Nr. 8/9) 

 
Figure 3.5 Grain-size distribution of the quartz sand (Dorsilit Nr. 7) 
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Figure 3.6 Grain-size distribution of the quartz sand (Dorsilit Nr. 8) 

3.2.3. Camera 
I use a digital camera Casio QV-5700 to take images during the course of the ex-

periment. It is positioned on fixed stands, made of steel, placed in a distance of 1.6m from the 

windows of the sandbox.  

3.2.4. Light Source:  
I use neon-light tubes (LUMILUX L58W/860 PLUS, 58W/6000K, 1.5 m long and 

Ø26 mm), which have a very high color temperature, 6000K, similar to daylight. The tubes 

are placed in two rows over a total length of the sandbox (14.5 meters), illuminating the sand-

box uniformly.  

3.3. Design of the Column and Model Aquifers 
I use one column and two sandboxes to perform experiments. Here, the one-

dimensional column is refer to helical column and the 3m model one is referred to as labora-

tory-scale model aquifer and the 14m one is referred to as technical scale model aquifer. In 

the following subsections, I describe the design of the helical column and the model aquifers. 

3.3.1. Helical Column 
The helix is a stainless steel, 1.7 m long column, which looks like a normal straight 

column from the exterior (Figure 3.7), but in the interior it is a helix (Figure 3. 8). It has 60 

rotations. The outer diameter of the helix is 10 cm with a core diameter of 3 cm, and a pitch of 

27 mm. The thickness of the flights is 2 mm, so that the effective thickness of the packing is 

25 mm.   
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Figure 3.7 Exterior view of the helical column 

The inlet of the helix has the dimension of 2cm x 2.5 cm x 3.5cm. Stainless-steel 

wire fabric (mesh size <0.7 mm) are placed to keep the porous material out of the inlet cham-

ber. The inlet has four connections: one to inject water, one for the tracer solution, one to 

drain the chamber and the fourth one for the piezometer. This allows me to flush the chamber 

with the tracer solution in order to achieve a uniform concentration in the inlet. A fiber optic 

probe is directly connected to the inlet chamber.  

Like the inlet, the outlet of the helix has the dimension of 2cm x 2.5 cm x 3.5cm. 

Wire fabrics are used in the same manner as in the inlet to keep the porous material out of the 

outlet. A fiber optic probe is connected to the outlet tube by a flow-through cell. Details draw-

ing of the inlet and outlet of the column are given in the appendix B. 

 

Figure 3. 8 Interior of the helical column 

3.3.2. Laboratory Scale Model Aquifer 
It is made of standard steel and has the dimension of 3.4m x 0.50m x .15m (Figure 

3.9). The front side has a 15mm thick glass pane facilitating visual observation of the tracer 

movement through the heterogeneous medium during the course of the experiments. The top 

of the box is covered by a steel frame.  
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Figure 3.9 A general view of the laboratory scale model aquifer 

The inlet of the small sandbox is provided with a 5 cm long inlet chamber. A 

stainless-steel wire fabric (mesh size < 0.1mm) is used at the side facing the packed sandbox 

to keep the sand out of the inlet chamber. The wire fabric is fixed to a perforated stainless-

steel plate. A horizontal injection well (a perforated pipe covered with fine mesh) with a di-

ameter of 2cm is inserted through the rear of the box penetrating through the full 0.15m thick-

ness of the box. Twenty-two piezometric tubes are connected to the box to obtain the pressure 

head. Four piezometers each are connected at every 75 cm length of the sandbox. The dis-

tance between the piezometers at each cross-section is 5 cm. Like the inlet, the outlet of the 

box is also provided with a 5 cm long outlet chamber. Perforated steel sheets and wire fabrics 

are used in the same fashion as in the inlet to keep the sand out of the outlet chambers. 

3.3.3. Technical Scale Model Aquifer 
It is made of standard steel and has dimensions of 14m x 0.5m x 0.13m  (Figure 3. 

10). At the front side, windows with 15mm thick glass panes provide the opportunity of visual 

observations. The top of the box is covered by a PVC sheet. Detailed drawings are given in 

the appendix A.  
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Figure 3. 10 A general view of the technical scale model aquifer 

5cm long chambers are added at both the inlet and the outlet. Vertically, the inlet is 

divided into two sub-chambers with an equal height of 25cm by a stainless steel plate reach-

ing into the sand filling as a flow separator. This provided the possibility to inject tracer solu-

tions separately into the upper or lower half of the domain.  

The domain is 14 m long, and 126 fiber optic probes together with 100 piezometric 

tubes are connected to it. The probes are connected in two sets alternatively at equal distance, 

one with ten probes and the other with nineteen probes. The series repeat themselves at a dis-

tance of 2.8 m. The connectors for the fiber optic probes are standard cable inlets with PG 

thread (inner diameter 9 mm). The measurement tip of the fiber optic probes is inserted 4 cm 

into the packed sandbox. This feature is for experiments on longitudinal dispersion that are 

not discussed here. Hundred piezometers are connected to the domain to measure the pressure 

head over the domain. Ten piezometers each are connected at every 140 cm length of the 

sandbox. The distance between the piezometers at each cross-section is 4.8 cm. The locations 

of probes and piezometers are shown in Figure 3. 11, as cross and circles, respectively. 
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Figure 3. 11 Position of the piezometers and the probes in the domain of the sandbox 

The outlet chamber is divided into nineteen sub-chambers of equal height. Perforated 

steel sheets and wire fabrics are placed in the same fashion as in the inlet to prevent sand fal-

ling into the chambers. Fiber optic probes are connected to the outlet tubes by flow through 

cells, whereas piezometers are directly connected to the outlet flow chambers.  

The outflow tubes are connected to a hydraulic switchboard. The purpose of the 

board is to measure the discharge of the nineteen flow chambers separately. The switchboard 

consists of two vertical flow chambers, each connected to a constant-head tank, and nineteen 

horizontal tubes. Each of the nineteen horizontal flow tubes is connected to the two vertical 

flow chambers and one outflow chamber of the sandbox via a three-way-valve. By connecting 

a single outflow chamber to one constant-head tank while connecting all other outflow cham-

bers to the other constant-head tank, the discharge of this single chamber can be measured. 

3.4. Filling Procedures  
I fill the small sandbox in two ways, first, with homogeneous silica sand and second 

with two distinct sand mixtures that create microscopic heterogeneity and the large sandbox 

with four sand mixtures to produce macroscopic heterogeneity.  

3.4.1. Homogeneous Filling of the Helical Column 
There are several methods for homogeneous filling and packing in standard sand-

boxes and columns [see, e.g., Ripple et al., 1973, 1974; and Oliviera et al., 1996]. Because of 

the helical geometry, only dry packing could be applied. In order to achieve uniform packing, 

the column is filled from top to bottom by a funnel with a tube. The column was attached ver-

tically (inlet at the topside) on the top of a rotating plate. Then it was inclined axially at 35° 

from the vertical plane. A funnel with a tube was added to the inlet of the column (Figure 

41 



 

3.12). The glass beads were poured into the column for a minute. A hydraulic vibrator was 

attached to the plate of the rotator to support homogeneous compaction of the filling. After 

each session of pouring glass beads, the column was rotated for 4 minutes. Finally, the col-

umn was laid down horizontally and the inlet chamber of the column was filled and closed. 

The resulting column porosity was 40%.  

Motor

V

Rotating

Figure 3.12 Filling setup of the helical column 

3.4.2. Homogeneous Filling of the Model Aquifer 
For the filling of the model aquifer, first the

container to make it slightly cohesive, preventing the f

during the filling procedure and form an undesired la

was transferred by buckets and homogeneously filled i

cm thickness, the sand layer was packed by a wood blo

dles was set up. Sand was carefully added until it subm

repeated for every layer of sampling needles. When th

placed on the top of the sandbox and fixed. In order to

decided to do the experiment in an unconfined aquife

about 2 cm lower than the top of the sandbox.  

3.4.3. Filling Exhibiting Micro-Scale Heterogeneit
I use two sand types - fine sand (0.1 mm to 

3.0 mm) for two different fillings with microscopic h

stagnant water body at relatively higher rates producin

tures. The turbulent flow conditions during the filling
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order to achieve the desired structure, canisters were filled with the desired sand type and 

hung from the crane (Figure 3. 13). After filling the box with sand, the water was drained. To 

prevent preferential flow at the top of the domain, which could occur due to compaction of the 

sand filling, I added a 5 cm thick layer of toptogel. Swelling of the toptogel ensured the com-

paction of the sand while sealing efficiently the top of the domain.  

 

Figure 3. 13 Filling procedure used in the sandbox 

3.4.4. Filling Exhibiting Macroscopic Heterogeneity 
Definite rectangular heterogeneities of uniform sand structures are advantageous for 

modeling purposes, but they do not reflect the type of heterogeneity observed in sedimentary 

deposits such as lamination, graded bedding (coarsening or fining upwards) or cross bedding. 

Thus, sacrificing the definiteness of the structure, I tried to mimic at least partially the sedi-

mentary process itself, creating more realistic structures. Additional constraints were:  

• to prevent a continuous layer of high permeability dominating the entire flow field,  

• to create structures that can be determined on the planned grid of measurement points, 

• to include a sufficiently high number of layers to guarantee representative flow behavior. 

The heterogeneous artificial aquifer is filled by using the similar filling procedure as 

in the laboratory scale model aquifer, i.e., by releasing different types of sand mixtures at rela-

tively high rates into a stagnant water body within the model domain. Prior to the filling, a 

qualitative sketch was drawn onto the glass wall of the domain, indicating the distribution of 
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sand types. The typical length of each lenses is 2m and its typical height is 0.10m. After fill-

ing the box with sand, the water was drained from it. 

Crushed, dried clay was distributed uniformly on the top of the sand layers to prevent 

preferential flow at the top of the domain that could occur due to compaction of the sand fill-

ing. After the completion of the filling procedures, the qualitative sketch was erased from the 

glass wall. 

Figure 3. 14 shows the distribution of the four sand types, mimicking a facies distri-

bution. 
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Figure 3. 14 Distribution of sand types in the sandbox. 
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3.5. Sedimentary Structures Observed in the Model Aquifers 
Sedimentary structures like different types of lamination and ripples were produced 

in the model aquifer. These are very typical sedimentary structures in nature.  

a. Parallel Lamination:  
Parallel lamination was formed in fine sand layers, mostly at the lower layers of the 

technical scale model aquifer and throughout the laboratory scale model aquifer (Figure 3. 15) 

and (Figure 3. 16). The lamina has a typical thickness of 2-3 mm.  

 

Figure 3. 15 Sedimentary structure (lamination) formed in the laboratory- scale model   
aquifer   

 
 

Figure 3. 16 Sedimentary structure  (lamination) formed in the laboratory-scale  model  
aquifer   
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Figure 3. 17 Sedimentary Structures observed in the technical-scale model aquifer 

b. Cross Lamination:  

Cross laminations was formed at the upper fine, mixed and medium sand lenses 

(Figure 3. 17). Here, the individual layers are inclined and have a thickness of less than 1 cm.  

c. Ripples:  
Ripple marks or structures of similar shape, were produced in the medium sand 

lenses (Figure 3. 17). 

3.6. Concentration Measurement 
I use a point measurement technique modified by Jose [2004] and I develop an inno-

vative noninvasive imaging technique for quantifying transverse dispersive mixing in porous 

media. 

3.6.1. Point Measurement Techniques 
I use fiber-optic fluorimetry for the in-situ measurements of fluorescent tracer con-

centration at the inlet and outlet of the helix. The major elements in fiber- optic fluorimetry 

are the fluorometers, optic fiber probes and the data acquisition system. The data is acquired 

and stored in a PC using a software provided by the manufacturer of the fluorometers. The 

final diameter of the modified measurement tip is 2.5 mm (Figure 3. 18). Details of the point 

measurement system used in the experiments are presented by Jose, [2004].  
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Optic fiber
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Figure 3. 18 Point Measurement Techniques by Fiber Optic Fluorometry 

3.6.2. Imaging Techniques 
An imaging technique is developed for the visualization of transverse mixing in a 

quasi two-dimensional domain and to quantify the effect of macroscopic and microscopic 

heterogeneity on transverse dispersive mixing. I use a tracer dye in the experiments. Thus I 

can determine the concentration distribution by taking and processing digital images of the 

glass front during the course of the experiment. In order to quantify the tracer concentration, I 

need two additional images of the sandbox, one for the case that the entire box is filled uni-

formly with the tracer solution, and another for uniform, tracer-free conditions. The images 

are recorded by a Casio digital camera, and stored on a computer. The images are analyzed by 

a script written in MATLAB. 
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Figure 3. 19 An Imaging Technique used in the experiments 

The digital camera is positioned in a distance of 1.6m from the sandbox windows. 

For all the windows, the camera was set up in exactly the same position and same height 

(Figure 3. 19). To ensure reproducibility, fixed stands made by steel on the ground (with a 

tolerance of less than 1 mm) were used, and photos were taken for all windows under identi-

cal conditions: (1) For each window, the distance and position of the camera were the same. 

(2) Only the neon light was used as an illumination source, which required that all the photos 

were taken at night. (3) The camera parameters (shutter speed 1/30 s, aperture F2.0, focus to 

the middle point of the objective, WRE i.e. white remediation for indoor situation,) were set 

manually to identical values. Table 3. 4 summarizes the parameter used for photography. 

Table 3. 4 Parameter set in Digital Camera 

Parameters Settings 

Sutter Speed 1/30 

Aperture F2.0 

Focus Mid point of the object 

White balance WRE i.e. white remediation for indoor situation 
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In order to avoid the vibration of the camera, which would cause shifting or rotation 

of the pictures, a remotely control computer program is used. Color cards are stuck on each 

window to give an ideal color as reference. A big rectangular frame holding a dark color cur-

tain is placed behind the camera to prevent any reflection of other objects.  
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4. Determination of Pore scale Transverse Dispersivity in a Helical 
Soil Column 

4.1. Introduction 
In this chapter, I develop an experimental method for the determination of pore-scale 

transverse dispersivity by Taylor-Aris dispersion theory as suggested by Cirpka and Kitanidis 

[2001b]. While their study was theoretical, I present experimental results. 

In Taylor-Aris dispersion, the longitudinal macrodispersion coefficient is inversely 

proportional to the pore-scale transverse dispersion coefficient. Cirpka and Kitanidis [2001b], 

proposed to induce shear flow, needed for Taylor-Aris dispersion, by using a helical geometry 

of the flow domain. Since the circumference of the helix is larger at the outside than that of 

the inside, the angular flow velocities are higher at the inside of the helix than at the outside. 

They presented analytical expressions for angular macrodispersion in a helical domain pro-

vided that the pitch of the helix is negligible.  

4.2. Systems of Helical Coordinates 
Consider a helical domain as shown in (Figure 4.1). The domain is characterized by 

the inner and outer radius r1 and r2, the pitch z∆ and the number of convolutions n. For the 

purposes of our analysis, we may use cylindrical coordinates. However, in the helix, a second 

coordinate system can be defined. In this helical coordinate system the z and r directions are 

the same as in the cylindrical one. The difference between the two systems of coordinates is in 

the angular coordinate. In the helical coordinate system the angular coordinate follows the 

convolution of the helix and therefore is not perpendicular to the z-r plane.  

A side effect of the system of helical coordinates, is that z ranges only from 0 to z∆ . 

The mapping from helical to Cartesian coordinates is:  

( )
( )

zzx

rx
rx

+
π
ϕ∆

=

ϕ=
ϕ=

2

sin
cos

3

2

1

 (4. 1) 

in which  and are horizontal and vertical Cartesian coordinates, r and z are the radial 

and vertical coordinates within the cross-section between two flights, and ϕ is the angular 

coordinate parallel to the flight. 

1x 2x 3x
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Figure 4.1 Visualization of the Helical Column 

4.3. Limiting Case of Negligible Pitch 

4.3.1. Governing Equation 
Cirpka and Kitanidis [2001b] analyzed flow and transport in helical porous media 

for the limiting case of . Under these conditions, there is no variation in the vertical 

direction, and the flow and transport equations can be formulated in two dimensions. The 

flow equation is: 

0→∆z
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 (4. 2) 

where h is the hydraulic head, K is the hydraulic conductivity, r is the radial, and ϕ  the angu-

lar coordinate. 

The specific discharge is always oriented into the angular direction: 

r
KJq =ϕ  (4. 3) 

where J is the negative angular head gradient. 

The corresponding transport equation for a negligible pitch ∆z→0 is: 
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subject to the boundary conditions: 
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 (4. 5) 

c(ϕ=0) = δ(t) (4. 6) 

where c is the concentration in the aqueous phase, θ is the effective porosity, t is time and Dl 

and Dt are the longitudinal (tangential) and transverse (radial) dispersion coefficients, respec-

tively [Scheidegger, 1961]: 

DD ll +
θ

α=
q

 (4. 7) 

DD tt +
θ

α=
q

 (4. 8) 

in which αl and αt are the longitudinal and transverse dispersivities, which are properties of 

the porous medium, and D is the effective diffusion coefficient, which may differ from the 

molecular one by a factor referred to as tortuosity. At the large-distance limit we impose the 

auxiliary condition: 

( ) 00,,lim ≥∀=
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∂
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ntrc
n

n

ϕ
ϕ

ϕ
 (4. 9) 

4.3.2. Temporal Moments for the Case with Negligible Pitch 
The k-th temporal moment of the flux-weighted concentration is defined as: 
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with: 
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which is the total discharge and (∆z-zf) is the height of the cross-section. For the second and 

higher moments we also define central moments Mkc(ϕ): 
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In analogy to transport in parallel flow, we expect that the flux-weighted cross-

sectional average of the concentration satisfy, after a relaxation time, a macroscopic advec-

tion-dispersion equation: 
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with the flux-weighted concentration c( : 
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ωmac and Dϕ
mac are the macroscopic rotational seepage velocity and dispersion coeffi-

cient, respectively. These macroscopic parameters can be expressed in terms of the dimen-

sions r1 and r2 of the helix, the total specific discharge Qtot, the porosity θ, and the parameters 

determining pore-scale dispersion αl, αt, and D. We relate the angular derivatives of the 

global moments to the macroscopic parameters ωmac and Dϕ
mac by: 
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By applying the method of temporal moments, it can be shown that the macroscopic 

angular velocity equals the mean rotational seepage velocity macω ω : 
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At the large-distance limit, we can derive the macrodispersion coefficient in a closed 

form for the limiting cases of a) no molecular diffusion and b) only molecular diffusion. For a 

derivation of the closed form of the macrodispersion coefficient please refer to Cirpka and 

Kitanidis [2001b]. 

By neglecting the transverse dispersivity, αt = 0 (⇒ Dt = D), we obtain: 
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By neglecting the molecular diffusion, D = 0 (⇒ Dt = αtqϕ), we obtain: 
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 (4. 20) 

Neglecting the effect of the early-time behavior on the value of M2c, we get the following 

general relationship between M2c at a given φ and Qtot: 
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tot
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in which coefficients A and B are given from equations (4.19 and 4.20).  

We can approximate the combined effects of D and αt by considering that the local 

dispersion contributions are additive and that macrodispersion is inversely proportional to 

transverse dispersion. Therefore we use the approximation: 
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Equation (4.23) is the basis for the determination of tα and from a series of tracer 

experiments at different discharge. A linear regression of as a function of yields 

the coefficient A and B that we used to determine 

D

c2Qtot M totQ

tα and D.  

4.4. Impact of Pitch 

4.4.1. Velocity Field 
In the previous derivation, I have considered the limit ∆z → 0. Here, the flow was 

always into the angular direction, and no variation in the vertical direction occurred. I now 

evaluate the impact of the pitch ∆z > 0. The pitch causes a vertical shift when following the 

angular direction along the flight. The vertical shift per rotation is identical for all radii. The 

corresponding path length, however, is smaller at the inside of the helix than at the outside. 

That is, the slope of the flight is higher at the inside than at the outside. 

In a transfer from the ring (∆z = 0) to the helix, we would expect the flow to be par-

allel to the flight over the entire height of the cross-section. As a consequence, the vertical 

hydraulic gradient within the flight would be larger at the in- than at the outside. Figure 4. 2 

shows the expected head-distribution. Obviously, because of the radial variation in the verti-
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cal hydraulic gradient, a radial gradient occurs that, for the case of flow spiraling upwards 

enforces flow into the center of the helix at the upper part of section and outwards in the 

lower part. Continuity requires a downward motion at the inside and an upward motion at the 

outside. 

 

Figure 4. 2 Expected head distribution inside the helical column  

Considering the system of helical coordinates, the steady-state continuity equation 

becomes: 
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in which the specific-discharge vector in helical coordinates has the same length as in Carte-

sian coordinates. The helical components of the specific-discharge vector are: 
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leading to the groundwater-flow equation in helical coordinates: 
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subject to the boundary conditions: 

0=zq at z = 0 and z = ∆z (4. 27) 
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0=rq at r = r1 and r = r2 (4. 28) 

At a sufficient distance from the in- and outlets, the angular hydraulic gradient be-

comes uniform: 
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∂  (4. 29) 

which simplifies the pde for the hydraulic heads to: 
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subject to: 
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The components of the specific discharge in helical coordinates are now: 
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Back-transformation into Cartesian coordinates yields: 
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Thus, the specific discharge in Cartesian coordinates normal to the vertical reference 

frame is: 
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Note that the secondary flow-field [qr, qz] is not conservative when interpreted as 

two-dimensional flow. This can be shown from the continuity equation in helical coordinates, 

taking into account ∂h/∂ϕ = 0: 
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q
r

q
r

q zrr  (4. 36) 

which does not describe a conservative behavior in 2-D. However, the secondary motion 

times the radial coordinate r is conservative: 

( ) ( )
0=

∂
∂

+
∂

∂
z

rq
r

rq zr  (4. 37) 

which means that the secondary motion must be source-sink free in a slice of the helix which, 

obviously, is thicker at the outside than at the inside. 

Figure 4.3 shows the head fluctuations within the vertical reference frame and 

streamlines calculated for the secondary motion [rqr, rqz].  

 

Figure 4.3 Head fluctuation within the vertical frame and streamlines calculated  for 
the secondary motion 

4.4.2. Forward Simulation by Particle-Tracking Random-Walk 
The forward model is developed Benekos [2004] at the department of Civil and Envi-

ronmental Engineering at Stanford University, USA. 

If we consider the secondary-flow field, for which we don’t have a closed-form solu-

tion, we can evaluate the concentration distribution within the helix and the breakthrough 

curve at its outlet only by numerical simulation. In order to prevent numerical dispersion, we 

apply the particle-tracking random walk method [Prickett et al., 1981]. Here, the advection-
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dispersion equation, Eq. (2.16.), is rewritten in the form of the Fokker-Plank equation [Tomp-

son et al., 1990]: 

( ) 0=∇−∇⋅∇−+
∂
∂ ccv

t
c 2DD  (4. 38) 

The particle tracking consist of three motions: the advective motion , the 

Brownian motion 

( cv ⋅ )

( )c⋅∇− 2D , and the drift motion ( )c∇⋅∇− D , [Prickett et al., 1981, Kinzel-

bach, 1986, Pollock, 1988, Anderson, 1992 and Zheng and Bennet, 1995]. In the Lagrangian 

framework, we express the concentration c by the spatial density of the solute particles. Then, 

the advective and the drift motions result in a spatial displacement of  , whereas 

the parabolic term  

( ∇−∫
∆+

d
tt

t

v D) τ

( )c⋅∇− 2D  is simulated as Brownian motion with spatial covariance ma-

trix . As demonstrated by [Kitanidis 1994b], applying explicit Euler integration in time 

results  in the first-order scheme: 

Dt∆2

  ( ) ( )ξ∆+∆⋅∇−+=∆+ txtttt xLttvxx 2D   (4. 39) 

in which is the Cartesian coordinates of a single particle at time t, tx ξ is a vector containing 

random numbers taken from a standard normal distribution, and L is the lower Cholesky de-

composition of the dispersion tensor meeting: 

( ) ( ) ( )tt
T

t xDxLxL =   (4. 40) 

Here, the drift motion appeared to be non-significant and is therefore ignored.  

At time zero, the domain is concentration-free: 

( ) 000 =>ϕ= ),tC  (4. 41) 

which implies that all particles start at the inlet screen. Benekos applies a Dirac-pulse injection 

into the flux by distributing the particles in the inlet of the helix inversely proportional to the 

radius and uniformly over the height of the inlet screen. 

Figure 4.4 comparing the simulated advective travel-time distributions in the outflow 

of helix with and without pitch. The geometric parameters are identical to those of the helix 

used in the experiment described below. Obviously, the secondary motion decreases the 

spread of the breakthrough curve. Interpreting the second central moment with the regression 

technique described in section 4.3 would yield transverse dispersion coefficient that, in the 

simulated reality, should be zero. In the particle tracking model, Benekos uses a model based 
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on the Finite Element Method (FEM) for solving Eqn. 4.30 and obtain the hydraulic gradients 

needed in the computational of the velocities. 

In my experiments, I inject the tracer solution continuously, which relates to a 

Heaviside rather than Dirac-pulse boundary condition with respect to time.  This breakthrough 

curve is given by the cumulative distribution function (CDF) of the particle arrival times in 

the outlet of the helix for particles starting at identical time. 

 

 

Figure 4.4 A comparison of the advective travel-time distribution  considering  with 
pitch and without pitch  

4.4.3. Levenberg-Marquardt Optimization 
Benekos [2004] used the Levenberg-Marquardt method in order to estimate the 

transverse dispersion parameters. As objective function , he used the sum of squared re-

siduals ε : 

W

ε⋅ε=W  (4. 42) 

( )pcc simmeas −=ε  (4. 43) 

in which is the vector of measured normalized concentrations in the out flow at times 

 and c  is the corresponding vector of simulated values using the set 

of dispersion parameters p . The Levenberg-Marquardt method is a stabilized version of the 

Gauss-Newton method, in which he has updated the parameter vector in the -th step 

by: 

measc

m...,t∆2 ,t,t,t i ∆∆=0 ( )psim

( 1k + )
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with the Jacobian ( )

k

T
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k
pp
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p
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J
=

∂
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=  (4. 45) 

and the Levenberg-Marquardt parameter kµ  which is adapted according to the convergence of 

the solution. In particular, when ( )
2

kkk
T
k εJJ 1 TJ− becomes smaller than a predefined level δ , 

we set µ  to zero thus retaining the standard Gauss-Newton method. Several criteria and tests 

for convergence are proposed in Dennis et al., 1981a. He has used two criteria to test the con-

vergence of the procedure. The first one is that the objective function  has to be below a 

tolerance level. The second one is the orthogonality criterion proposed by Bates and Watts, 

1981: 

k

W

( )
( )

tolerenceε
TT

TTT

<
ε⋅ε

ε
=φ

−

−

22

1

1

JJJJ

JJJJcos  (4. 46) 

Orthogonality means that the residual vector has zero projection on to the tangent 

plane. And so we may use the length of this projection as an indicator for obtaining a local 

minimum. Contrary to the absolute function criterion, which is a termination criterion, the 

orthogonality criterion assures convergence.  

4.5. Experimental Description 
Fluorescence intensity of fluorescein was measured by optic fiber probes at the in- 

and outlet of the helix. The optic fiber probes are connected to a fluorometer. A personal 

computer is used for continuous data acquisition. Details of the measurement techniques are 

given in chapter 3. To prevent reduction of the hydraulic conductivity by entrapped gas, the 

unsaturated column was first flushed with gaseous carbon dioxide and subsequently with de-

gassed water dissolving all gas. At first, 3 pore volumes of carbon dioxide gas were passed 

through the column from top to bottom displacing air from the pores. After passing the carbon 

dioxide, the column was saturated by slowly injecting degassed-deionized water to the col-

umn from top to bottom. Three pore volumes of water were passed through the column to 

reach fully saturated conditions. A constant linear relationship between head difference and 

discharge was used as criterion whether the column had reached fully saturated conditions. 

The degassed-deionized water was passed for 48 hours to be sure that all the carbon dioxide 

gas dissolved into the water. 

61 



 

Prior to injection of the tracer into the helical column, water was passed through the 

column at a constant discharge by applying a head difference between inlet and outlet of the 

helix. Starting at some time t0, a tracer was injected continuously into the porous medium. I 

measured the breakthrough curve at the outflow of the helix. Due to the velocity profile, the 

concentrations at the inner radius of the cross section contribute more to the mean mass flux 

than those at the outer radius. Therefore, the measured concentration is flux-averaged. The 

experimental setup is shown in Figure 4. 5. 
Constant-head inflow
tank

Supply tank

Computer

Helix

Constant-head
outflow tank

Pump To waste

Fluorometer

To Helix

 

Figure 4. 5 Experimental setup of the helical column experiments 

4.6. Results 

4.6.1. Experimental Results 
I present five experiments each with different discharge rate to distinguish between 

the contributions of molecular diffusion and hydrodynamic dispersion to transverse disper-

sion. The measured concentrations are normalized by the inflow concentration, so that the 

concentration values in the breakthrough curves, shown in Figure 4. 6, range from zero to one. 

62 



 

0

0.2

0.4

0.6

0.8

1

0.00E+00 2.00E+05 4.00E+05 6.00E+05 8.00E+05 1.00E+06 1.20E+06
t [sec] 

C
/C

in
 [-

]

 

Figure 4. 6 Normalized breakthrough curves as a function of real time for the different 
experiments. 
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Figure 4. 7 Normalized concentration breakthrough curves plotted in a normalized time 
axis. The time axis is normalized by the mean arrival time t50 of the tracer front 

The duration of the experiments ranged from a few hours to several days. Figure 4. 7 

shows the concentration breakthrough curves in dimensionless axes. Here, the time is divided 

by the mean arrival time of the concentration front denoted by t50. The curve in Figure 4. 7 

with the most spreading refers to the experiment with the lowest discharge rate (experiment 5 

in Table 4. 1), and the curve with the least spreading to that with the highest discharge rate 

(experiment 1 in Table 4. 1). That is, the macroscopic Peclet number Pemac= ωmacϕ/Dφ
mac  

increases with discharge rate. 
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I determine the apparent macroscopic parameters Dφ
mac and ωmac by fitting the ana-

lytical solution of [Ogata and Banks, 1961] for the Heaviside problem to the measured data. 

From the fitted macroscopic parameters, I derive the temporal moments M2c and M1 by using 

eqn. (4.16) and (4.17) and compare them to the moments calculated directly from the break-

through curves. The comparison gives us a measure for the error in M2c and M1. The effective 

porosity  is calculated by = Ω / ωeθ eθ mac in which Ω is the angular rotational specific dis-

charge: 

2
1

2
2

1

22

rr
r
rlnKJ

−










=Ω  (4. 47) 

As listed in Table 4. 1, the estimated first moment M1 has an error < 1% for all ex-

periments except experiment 5 where it has a value of 2.67%. As a consequence, we get con-

sistent estimates of the porosity. Similarly, the estimated second central moment M2c has rela-

tive error < 10% except in experiment 5 where more time should have been allowed in order 

to capture the full tail of the breakthrough curve. 

Figure 4. 8 shows a linear regression of (QtotM2c)-1 as a function of Qtot for the meas-

ured data. Obviously, coefficients A and B of Eq. (4.23) are the inverse of the slope and the 

intercept of the regression line. Considering eq. (4.19) and (4.20), we can approximate D and 

αt from A and B by: 
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Table 4. 1 Parameters calculated from different experiments 
Experiment Parameter 

1 2 3 4 5 

Total Discharge, Qtot [m3/s] 1.5×10-7 1.0×10-7 7.5×10-8 3.8×10-8 5.55×10-9 

First Moment, M1 [s] 2.88×104

±0.25% 

4.38×104 

±0.20% 

5.82×104 

±0.57% 

1.12×105 

±2.67% 

7.89×105 

±0.12% 

Second Central Moment, M2c [s2] 9.78×106 

±9.6% 

2.96×107
 

±6.4% 

5.18×107
 

±4.8% 

2.31×108
 

±9.0% 

1.64×1010
 

±25.0% 

Angular Rotational Specific Dis-

charge, Ω [1/s] 

0.0053 0.0035 0.0026 0.0013 0.00019 

Macroscopic Rotational Velocity, 

ωmac [1/s] 

0.0131 0.0086 0.0065 0.0034 0.00048 

Macroscopic Angular Dispersion 

Coefficient, Dϕ
mac [1/s] 

0.0290 0.0251 0.0181 0.0116 0.0024 

Macroscopic Peclet Number [-] 170 129 131 109 76 

Effective Porosity, θ  [-] e
0.403 0.408 0.407 0.401 0.405 
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R2 = 0.912

0.0

0.2

0.4

0.6

0.8

0.0E+00 5.0E-08 1.0E-07 1.5E-07 2.0E-07

Qtot [m³/s]

(Q
to

tM
2c

)-1
 [m

³s
]

 

Figure 4. 8: Linear regression of (QtotM2c)-1 as a function of Qtot for the given data 

The discharge rates are fairly high in all experiments. At these rates, molecular diffu-

sion contributed marginally to local transverse dispersion. As a consequence, I am not able to 

estimate D from the data. In fact, the intercept of the regression was negative. 

As noted above, eqn. (4.19) and eqn. (4.20) refer to the large-distance limit. There-

fore, early-time effects on M  are neglected in the regression-based analysis. I use the result-2c
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ing values αt and D as initial guess in a Gauss-Newton scheme that uses a numerical solution 

of the moment-generating equations accounting for the entire time range. Table 4. 2 shows the 

initial guess for parameters αt, D, and eθ  as well as their final estimates computed by the 

Gauss-Newton method. As in the regression-based analysis, I am not able to determine the 

diffusion coefficient from the data. 

 

 

 

Table 4. 2 Initial guess and final estimate for parameters D, αt, and θ  e

Parameter Initial guess Final estimate 

D [m2/s] Set to 0 Set to 0 

αt [m] 7.27×10-4 6.57×10-4 

eθ  0.404 0.405 

 

4.6.2. Simulations Results 
The basic assumption in the analytical approach was that transverse dispersion is the 

only process leading to radial exchange of the solute [Cirpka and Kitanidis, 2001b]. With the 

secondary flow, however, we have a second mechanism leading to mass transfer in the z –r 

plane. Benekos [2004] simulated conservative transport in the helix by particle-tracking ran-

dom walk of 5000 particles. The flow-field is simulated by solving Eqn. 4.25. to Eqn 4.31 

using the Galerkin Finite Element Method (FEM) with bilinear elements. A few tests were 

performed for validating the particle tracking model. The velocities in the particle tracking 

model obtained using the two-dimensional FEM compared with the ones obtained from a 

three-dimensional FEM with tri-linear elements where Darcy’s equation is solved for the en-

tire helical column. The velocities obtained from these two models agreed. 

In our model, we use the two-dimensional FEM which is computationally less inten-

sive. In addition, the second central moment  as a function of 2cM ϕ   obtained with the particle 

tracking model when the secondary flow are neglected matched the M  obtained at the same 

locations by FEM simulations using the Streamline-Upwind-Petrove-Galerkin (SUPG) meth-

ods of Brooks and Hughes, [1982] neglecting the secondary flow.  

2c

The particle-tracking simulations show that the secondary flow may have a signifi-

cant impact on transverse mixing. We perform particle tracking with and without the secon-
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dary flow component in order to assess its compact on the spread of the breakthrough curve. 

Figure 4. 9 shows plots of  normalized by the zeroth moment  as a function of the angel 

 in the helix (  in the case that secondary flow was considered). The solid lines show 

results when secondary flow is neglected, and the circles when the secondary flow is consid-

ered. In this example-simulations the parameters are: hydraulic head difference ∆Η  m, 

hydraulic conductivity  m/sec, effective porosity 

2cM

19.8=

0M

0.

ϕ sec
2cM

33.2  =
310−×K 4e =θ , transverse dispersivity 

m and the effective diffusion coefficient 41052.5 −×=tα 910mD −= m²/sec. The relative differ-

ence ( ) ( ) %100ϕ∂− M c2∂M sec
c2

∂M c2 ϕ∂∂ ×ϕ∂  is 30% in this example. Because everything scales 

with the average velocity in the transport equation (as long as the hydrodynamic part of the 

transverse dispersion is orders of magnitude larger than the effective molecular diffusion), the 

relative difference ( ) ( ) %MMM c
sec

c c
10022 2

×ϕ∂∂ϕ∂∂∂ −ϕ∂  remains the same for the same 

irrespectively of the value of the hydraulic gradient. Simulations were performed where 

and were kept constant with the same values as the one used in the aforementioned 

example and the hydraulic head varied from simulation to simulation. The relative difference 

tα

tα mD

( ) ( ) %1002cM ×ϕ∂∂ϕ∂∂−ϕ∂ sec
2c MM

2c
∂  remained equal to 30% for all simulations. However, 

when the hydrodynamic part of the transverse dispersion became of the same order of magni-

tudes as the effective molecular diffusion, the relative difference 

( ) ( ) %100∂ϕ∂ 2cM ×ϕ∂∂−ϕ∂ sec
2c MM

2c
∂  decreased. This is expected when the hydrodynamic dis-

persive mixing is not the controlling mechanism of transverse dispersion. The impact of the 

secondary flow becomes insignificant if the molecular diffusion becomes the dominant mix-

ing mechanism. We conclude that the secondary flow due to the presence of the pitch may 

have a significant effect on longitudinal macrodispersion in the case where hydrodynamic 

portion of the transverse dispersion is large compared to the effective molecular diffusion. 

Therefore, neglecting the pitch and the resulting flow anomaly in the analysis of the tracer test 

is prohibited. In this case, the analytical expressions presented by [Cirpka and Kitanidis, 

2001b] are not applicable.  

Here, the estimate the transverse dispersivity by applying the Levenberg-Marquardt 

method to the particle-tracking method. In a domain with helical geometry, the contribution of 

to the second central moment is orders of magnitude smaller than the contribution of lα tα . 

Thus we set α to a fixed value of 0.001m. was fixed to 1 m²/s which is rather typi-

cal value for small molecules and ions in water at room temperature (International Critical 

l mD 910−×
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Tables). For assessing the sensitivity of the optimization procedure a base case simulation of 

the particle-tracking model is performed. Subsequently, the parameters tα and are repeat-

edly updated by the Levenberg-Marquardt method. The iterative procedure is terminated 

when both the absolute function criterion and the orthogonality criterion, Eqn. 4.46 are met. 

Table 4. 3 shows the results for one of these simulations.  

eθ

3.82

Table 4. 4 includes the estimated parameters for the fluorescein experiments. Figure 

4.10 shows the comparison between the measured and fitted breakthrough curves for one of 

these experiments.   

Table 4. 3  Parameters values for the base case and estimated values after the  optimization 
procedures and convergence criteria values 

 Parameters 

 tα [m] eθ  [-] 

Base case 410−  0.35 
Initial case 5103 −×  0.40 

Estimated values 4102.1 −×  0.3493 
Convergence criteria 

Absolute 0.0043 
Orthogonality 0.032 

 

Table 4. 4 Estimated parameters with the Levenberg-Marquardt optimization scheme for 
the fluorescein experiments 

Tracer Fluorescein 

Experiment 1 2 3 4 Average 

tα  4105.52 −×  4103 −×  4105.3 −×  4103.15 −×  410−×  

eθ  0.400 0.421 0.403 0.398 0.406 
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Figure 4.10 Experimental and simulated breakthrough curves for experiment  1. 

4.7. Discussion and Conclusions 
I present an experimental method for the determination of pore-scale transverse dis-

persion coefficients that is based on Taylor-Aris dispersion in a helical domain. I measure the 
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spread of the breakthrough curve, which is inversely proportional to the local transverse dis-

persion coefficient. This is advantageous, because transverse-dispersion parameters are gener-

ally small. 

I perform five tracer experiments with different discharge rates (1.5×10-7 m³/s to 

5.55 10× -9m³/s). I estimate the local transverse dispersivity using analytical expressions for the 

angular macrodispersion coefficient in the large-time limit, resulting in a value of 

=7.27×10tα -4m. I use this value as initial guess in a Gauss-Newton scheme based on a nu-

merical solution of the moment generating equations accounting for the entire time range. The 

final estimate computed by the Gauss-Newton method is 6.57×10-4m. In neither case, I am 

able to determine the diffusion coefficient from the data. A possible explanation for this be-

havior might be that the discharge rates were fairly high in all experiments. The mean rota-

tional seepage velocity varied from 0.27 rotations per hour to 7.5 rotations per hour. At these 

rates, molecular diffusion contributed marginally to local transverse dispersion. 

The optimization approach for determining the transverse dispersivity coupled with 

the numerical simulation of the transport in the helix reveals that the secondary flow can have 

implications that need to be considered. The secondary flow depends entirely on the hydraulic 

gradient and the helix characteristics whether the transverse dispersivity is a property of the 

porous medium and its geometry. Particle-tracking simulations show that neglecting the sec-

ondary flow may result in significant differences in the determination of ϕ∂c2M∂ . The rela-

tive impact of the secondary flow in the second central moment of the concentration break-

through curve remains independent of the discharge as long as the hydrodynamic dispersion is 

the controlling transverse dispersion mixing mechanism. A comparison between the Leven-

berg-Marquardt optimization based on particle tracking considering the secondary motion and 

the regression technique neglecting secondary motion presented shows smaller values of 

when accounting for the secondary motion. As the first moment hardly affected by the 

secondary motion, the estimates of the porosity by the two methods agreed well. 

tα
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5. Determination of Transverse Dispersion coefficient in            
Homogeneous Porous Media 

5.1. Introduction 
A non-invasive imaging technique is developed for the determination of transverse 

dispersion coefficient in a quasi two dimensional model aquifer system by performing con-

servative and reactive tracer test. A more detailed description of the imaging techniques is 

given in the master’s thesis of Qingsong  Ju (2003).  

5.2. Conservative Tracer Test 
A conservative tracer Cochineal Red 80 E 124 with a concentration of 0.3 gm/l is 

used as a tracer for the experiment. Color intensity of the media are recorded by a digital 

camera, and stored on a computer. Details of the measurement techniques are already men-

tioned in chapter 3.6. The model aquifer was filled homogeneously with sand sizes of 1.0 mm 

– 2.5mm. The detailed descriptions of the mode aquifer and the filling procedures are de-

scribed in section 3.3 and 3.4, respectively. To prevent reduction of the hydraulic conductivity 

by entrapped gas, the unsaturated aquifer was first flushed with gaseous carbon dioxide and 

subsequently with degassed water dissolving all gas. At first, 6 pore volumes of carbon diox-

ide gas were passed through the aquifer for displacing air from the pores. After passing the 

carbon dioxide, the model aquifer was saturated by slowly injecting degassed-deionized wa-

ter. Three pore volumes of water were passed through the aquifer to reach fully saturated con-

ditions. 

While the tracer solution was pumped to the horizontal well, degassed-deionized water was 

simultaneously pumped into the inlet chamber to pass through the entire domain. After inject-

ing four pore volumes of tracer solution to the aquifer, the plume reached steady state, Ju took 

digital photos and stored on a computer. The schematic diagram of the experimental setup is 

shown in 

Figure 5. 1. 
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Figure 5. 1  Schematic of experimental setup (side view) 

5.3. Determination of transverse dispersion coefficient  
In a uniform flow field, the solute transport equation (2.16) of conservative solutes 

can be rewritten for three-dimensional transport in a porous medium as follows: 
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where c[M/L³] is the volumetric concentration of the solutes, v [L/T] is the seepage velocity 

orientated in the x-direction, Dx, Dy and Dz [L/T²] are the longitudinal and two transverse dis-

persion coefficients, lumping effective molecular diffusion and pore-scale mechanical disper-

sion, x, y and z [L] are the longitudinal and the two transverse spatial coordinates, and t [T] is 

the time. 

Furthermore, for large Peclet numbers, Pe =xv/Dx >30, we may neglect longitudinal 

dispersion [Domenico and Robbins, 1985]. Then, the three dimensional steady-state transport 

equation simplifies to: 

02

2

2

2

=
∂
∂

−
∂
∂

−
∂
∂

z
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D

y
c

v
D

t
c zy  (5. 2) 

Domenico and Robbins [1985] developed analytical solutions to equations (5.2) for 

conservative transport neglecting longitudinal dispersion coefficient, in a 2-dimensional aqui-

fer under a uniform flow velocity, where solute is continuously injected at a constant line 

source. The following equation gives the solution for the steady state of the plume. 
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where b is the size of the source in the y direction, is the transverse dispersion Coefficient.  TD

Here, I rewrite the equation (2.1), which commonly used for the parameterization for 

transverse dispersion [Fetter, 1993]  
∗+α= eTT DvD   (5. 4) 

5.4. Preprocessing of Color Images 
Although the images are taken under reproducible conditions, the spatial representa-

tion of identical objects on two images, taken at different times, may not match on a pixel-by-

pixel basis. This may be the result of removing and re-installing the camera, as the same cam-

era is used for all windows. In order to correct for geometric miss-representation, each win-

dow contains markers in the bottom left and top right corners. The digital images belonging to 

the same window are rotated and shifted so that the markers have identical pixel coordinates. 

In addition to the geometric correction, the images need to be color-calibrated. To do 

so, I attached color cards to each window. For calibration, I analyze the representation of a 

grey color bar on each image. Ideally, the values of the red (R), green (G), and blue (B) color 

channels should linearly range from 0 to 255. In order to correct the color representation of 

the images taken, I use the γ-calibration model, applied individually to each color channel. 

For the red channel, I get: 

( ) RjiRbajiR measRRcorr
γ),(),( ×+=  (5. 5) 

in which Rmeas(i,j) and Rcorr(i,j) are the measured and corrected values of the red channel at the 

pixel with indices i and j. The coefficients aR, bR, γR are the correction parameters, assumed 

spatially uniform. I use the same function to calibrate the green and blue channels, here with 

coefficients aG, bG, γG and aB, bB, γB, respectively. The values of the correction parameters are 

determined by fitting the measured color intensities of all points belonging to the color bar to 

the ideal linear model. I use the squared deviation between the corrected color values and the 

linear model as objective function and apply the Nelder-Mead simplex algorithm for optimi-

zation [Nelder & Mead, 1965]. 

After geometric correction and color calibration, all images of the same window can 

be quantitatively compared to each other in a quantitative way. In the following analysis, I 

assume that the color intensity depends linearly on the concentration of the tracer. Since the 
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colors of the individual sand grains vary, however, the parameters mapping the color intensi-

ties to the tracer concentration differ from pixel to pixel 

For the quantification of concentrations during the conservative-tracer experiment, I 

need two reference experiments. In the first, I pass tracer-free degassed-deionized water 

through the domain. Here, the normalized tracer concentration X [-] is zero. I denote the color 

intensities of this experiment R0, G0 and B0. In the other reference experiment, the entire do-

main is filled with a tracer solution at maximum concentration. Here, the normalized tracer 

concentration is unity, and I denote the color intensities Rmax, Gmax, and Bmax. In the image 

analysis, I use only the blue and green components, since the red component hardly differs 

with the concentration of the red dye. For monochromatic light, the attenuation should follow 

Lambert’s exponential law. Because the light is not monochromatic, the concentration-

intensity relationship differs from the ideal behavior. In a series of test experiments with vari-

ous concentrations, I determined the following dependence of the normalized concentration 

X(i,j) at pixel (i,j) from the color intensities of the blue and green picture components: 
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Finally, I transform the pixel-coordinates into spatial coordinates. All routines for 

image processing are written as Matlab scripts. 

.  
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  Figure 5. 2 Conservative tracer concentration profile (experimental data) 

75 



 

5.5. Results 
Figure 5. 2 shows the conservative plume with a injection width of 7 cm. Figure 5. 3 

to Figure 5. 8 show the steady-state concentration profiles at the positions down gradient 

0.05m, 1.019m, 1.74m, 2.00m, 2.62m and 3.00m. I use the analytical solution (see section 

5.3) to fit the experimental data. Two parameters, the transverse dispersivity αT and the effec-

tive injection source width h determine the shape of the concentration profile. The effective 

source width h needed to be fitted because of the heterogeneity in the porous medium.  

Using the MATLAB optimization function “fminsearch”, the best-fit-curves of the 

experimental data are shown as bold line. The fminsearch function uses the Nelder-Mead 

simplex (direct search) method to minimize the error between the best-fit-curve and the ex-

perimental data. 

 

Figure 5. 3  Concentration profile 0.05m down gradient from the injection source 

 

Figure 5. 4 Concentration profile 1.019m down gradient from the injection source 
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Figure 5. 5 Concentration profile 1.74m down gradient from the injection source 

 

Figure 5. 6 Concentration profile 2.00m down gradient from the injection source 
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Figure 5. 7 Concentration profile 2.62m down gradient from the injection source 

 

 

Figure 5. 8 Concentration profile 3.00m down gradient from the injection source 

Table 5. 1 summarizes the parameters used to fit the experimental data. By analyzing 

six profiles (Figure 5. 3 to Figure 5. 8), I determine the transverse dispersivity in the range of 

1.6×10-4 to 2.89×10-4 m/s with the effective width ranging from 3.5 to 7.5 cm. The results 

agree with literature values (about 10% the mean diameter of sand), as I use coarse sand with 

1.0-2.5 mm diameter.  

The estimated transverse dispersivity αT has an error < 5% for all vertical profiles, 

except the profile 0.05m down gradient, where it has a value of 8.9%. The high error of this 

profile is partly from the applied Domenico’s model, which differs form the exact solution 

near the injection source. The effective injection source width can be determined very accu-
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rately as it has an error smaller than 2%. The correlation coefficient of parameters are smaller 

than 0.65. This means the model parameters could be estimated jointly. 

The uncertainty of measurement data (Cyy matrix) in each profile is rather small and 

the error can be thought as random error. This verifies the advantages of the non-invasive 

imaging method providing a large quantity of data with small errors. 

By comparing the estimated parameters from different profiles, I obtain a small ef-

fective width corresponding to small transverse dispersivity in the profiles 1.09m and 1.74m. 

The underestimation of the parameters of these two profiles is obviously not due to the meas-

urement errors. If the mean transverse dispersivity around 2.5×10-4 is correct, the error bar 

only gives a deviation around 10%  (2.25×10-4 to 2.75×10-4 were the acceptable range). This 

indicates some systematic errors. Local heterogeneity is a possible explanation. For an illus-

tration see Figure 5. 9. In the middle part of the domain, there is a high hydraulic conductivity 

zone. The streamlines converge in the high conductivity zone, so that the concentration profile 

of a plume passing through that zone has a sharp fringe and is less widespread. As my model 

does not consider the change of hydraulic conductivity, it represents the converging plume as 

smaller values of h and αT. 

High hydraulic conductivity zone

 

Figure 5. 9 Streamlines in a high hydraulic conductivity zone 
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Table 5. 1 Parameters estimating transverse dispersion 

x  0.05m 1.019m 1.74m 2.00m 2.62m 3.00m

First moment (m) 0.1441 0.1964 0.22 0.218 0.255 0.2373 

α (×10-4 m) (fminsearch) 2.49 1.63 1.62 2.00 2.56 2.89 

σa (×10-4m) standard deviation 0.204 0.040 0.033 0.03 0.11 0.07 

variance Cyy of color intensity (meas-
urement error) 

0.0077      0.0027 0.012 0.00077829 0.0061 0.0056

Coefficient of variation σa/α       8.19% 2.45% 2.04% 1.5% 4.30% 2.42%

Effective width h (m) (fminsearch) 0.074984 0.035179 0.038534 0.046561 0.0618 0.072148 

σb standard deviation (m) 3.0×10-4     3.134×10-4 2.865×10-4 2.593×10-4 9.434×10-4 6.359×10-4 

Coefficient of variance σb /h 0.40%      0.89% 0.74% 0.56% 1.53% 0.88%

Correlation coefficient of parameters -0.0169 0.3914 0.6308 0.6416 0.344 0.339 

*First moment indicate the shifting of the central line of the profile.
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5.6. Reactive Tracer Test 
I perform two sets of reactive-mixing experiments. I add thymolblue and methylred 

as pH indicators to both solutions. Details of the tracer solutions are described in chapter 3. 

Sufficient amount of NaOH and HNO3 was added to adjust the pH value. I inject the alkaline 

tracer solution by an injection well in the interior of the domain whereas the acidic solution is 

pumped to the inlet by a constant head tank. By adjusting the flow rate of two pumps, I 

achieved an injection-source width of 2.10cm and 4.50 cm for the two experiments. After 

injecting three pore volumes of tracer solutions to the aquifer, the plume reached steady state, 

I took digital photos and measured the length and the effective source width of the plume. 

5.7. Conceptual and Mathematical Representation of Reactive Mixing  

5.7.1. Steady-state Transport of Reactive Solutes 
The closed-form solution to the steady-state transport equation of conservative sol-

utes in a two-dimensional domain, neglecting dispersion, as already mentioned in equation 

(5.3) [Domenico and Robbins, 1985]: 
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in which erf() is the error function. In the vertical profile, the concentration reaches the maxi-

mum along the centerline, y=0. Here, equation (5.7) simplifies to: 
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in which X(x,y0) is the normalized concentration. Thus, for a given injection height b, relative 

concentration c/c0 at the centerline, and measured longitudinal distance x, or length L, we can 

determine the vertical, transverse dispersion coefficient DT by: 

2
0

2

))),(((16 yLXinverfL
bvDT =  (5. 9) 

in which inverf() is the inverse error function. Equation (5.9) makes clear that we can deter-

mine the transverse dispersion coefficient in a homogeneous porous medium from the length 

L of a plume with injection height b provided that we are able to detect a distinct relative con-

centration.  
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For a single solute, the relative concentration X is identical to the volumetric fraction 

of the solution, originating from the line source, in the mixture with the water from ambient 

flow.  

Now we consider reactive systems in local equilibrium. The local equilibrium as-

sumption is valid whenever the time scale of reaction is considerably smaller than the time 

scale of advective-dispersion transport. This is the case of most aqueous-phase acid/base reac-

tions, but even field-scale microbial reactions are sometimes considered as equilibrium reac-

tions because transport may be slow in comparison to the biological activity. The interaction 

with the solid phase cancels out in a steady-state transport. This implies that complex hetero-

geneous reactions, although present, do not influence the aqueous-phase concentration once 

the steady state has been approached. 

For any aqueous-phase speciation, we can define quantities that do not change with 

the speciation, they are conservative. In geochemical codes, these quantities are commonly 

referred to a master species [Appelo and Postma, 1993] . Typical conservative quantities are 

the total concentrations of the elements in a certain oxidation state, the alkalinity of a solution, 

or the charge of all ions corresponding to strong acids and bases. Given the master-species 

concentrations, the speciation of all compounds can be calculated. Since the master-species 

concentration are invariant with the aqueous-phase reaction, their transport can be calculated 

with the expressions for conservative compounds. 

This brings us to applicability of Equations 5.8 and 5.9 to reactive system. I intro-

duce a solution of reacting compounds by a line source into two-dimensional domain with 

parallel flow. The ambient solution has a different chemical composition. The two solutions 

mix due to transverse dispersion. Provided that all compounds under go essentially the same 

transverse dispersion, Equation 5.8 holds to estimate the volumetric fraction of the injected 

solution in the mixture along the centerline. All master species mix according to the volumet-

ric fraction, resulting in a distribution of species according to distribution of master species 

concentration. 

A particular application of this principle is to visualize the volume fraction of the in-

jected solution by introducing a solution with a pH value different from that of the ambient 

water. Where the two solution mix by transverse dispersion, an intermediate pH will be estab-

lished according to the buffer reactions of the solutes. Now, a particular color change marks a 

specific pH value which relates to a defined volumetric fraction X of the injected solution 

within the mixture. The latter information may be given by an independent titration experi-
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ment. Measuring the length L of the pH indicator color plume, the seepage velocity v, and the 

injection width h, we can determine the transverse dispersion coefficient Dz by equation 5.9.  

5.7.2. pH of a Mixture of Buffering Solutions 
 Consider a solution with low ionic strength containing a set of buffering compounds 

undergoing the buffer reaction HBufi↔ H⊕ +Bufi
θ for each buffering compound i. All other 

ions, such as Na⊕ or Clθ, belong to strong acids and bases and do not change their charge in 

the pH range considered. Thus, at known pH and total buffer concentrations [Buftot,i] = 

[HBufi] + [Bufi
θ]. We can calculate the total charge of the remaining ions by: 
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in which Ki is the equilibrium constant of the buffer reaction i. Equation (5.10) can easily be 

extended to account for multiple charged compounds. 

We know consider an alkaline solution with total buffer concentrations [Buftot,i]alk and 

charge alk , and an acidic solution with total buffer concentrations [Buftot,i]ac and chargeac. 

When these two solutions mix, the charge and the total buffer concentrations mix linearly: 

chargemix = (1-Xalk) ×  chargeac + chargealk (5. 11) 

[Buftot,i]mix = (1-Xalk) ×  [Buftot,i]ac + Xalk ×  [Buftot,i]alk (5. 12) 

in which Xalk is the volumetric fraction of the alkaline solution in the mixture. Then, the pH of 

the mixture can be calculated by iterative solutions of: 
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using the charge and the total buffer concentrations of the mixture.  

Equation (5.11) and (5.12) exemplify that the charge of the non-buffering ions as well as the 

total concentrations  [Buftot,i] of the buffering compounds are conservative quantities, even 

though we consider a reactive system.  

It is well known, that the titration curve of a rather alkaline solution in a rather acidic 

one shows a rapid change of pH in a small range of the volumetric fraction Xalk. Adding small 

amount of a pH indicator, which must be a buffering compound, introduces a small step in the 

titration curve. Nonetheless, the color change of the indicator will mark a very distinct volu-

metric fraction Xalk. 
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5.8. Results 

5.8.1. Titration Test 
From the titration test , the pH as a function of the volumetric fraction of the alkaline solution 

Xalk is obtained. This curve is the basic quantification method, as described in section 5.7.2, in 

the mixing-controlled reactive transport experiment to determine how much alkaline solution 

is mixed with the acidic solution due to transverse dispersion at the mixing interface. 

Figure 5. 10 shows the titration curve where experimental data are fitted with model 

data. Here, the measured data are fitted by the buffer model given in equation 5.13 with two 

buffering compounds, the first of which having a total concentration of 

( )64 1043110391 −− ×±× ..  mol/L and a pKa-value of ( )02201976 .. ±  and the second with total 

concentration ( )610544 −×± .410884 −×.  mol/L and pKa ( )0210522 ..9 ± . The values in the 

brackets are the standard deviations of estimation, determined by the Levenberg-Marquardt 

optimization scheme. The estimated total concentration and pKa-value of the second buffer 

showed strong correlation, whereas all other parameters are mutually independent of each 

other. In Figure 5. 10, the pH-values of 8.8, 5.2 and 4.5 and the corresponding volumetric 

fraction of the alkaline solution, 0.703, 0.562, 0.538, are highlighted by dashed lines. At these 

pH-values, the mixture of indicators changes color, and the corresponding Xalk-values are to 

be substituted into equation 5.9 in order to determine the transverse dispersion coefficient 

from the length and height of the reactive plume. 
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Figure 5. 10 Titration curve as a function of Xalkaline 

5.8.2. Estimation of transverse dispersion coefficient from the plume length 
Figure 5. 11 and Figure 5. 12 show the images of the alkaline plumes. The end of the 

alkaline plume, where the pH indicator in plume changes color from blue to yellow, indicates 

the pH value 8.8. The volumetric fraction of alkaline solution is determined in the independ-

ent titration experiment. The other two obvious color changes occur at pH 4.5 (dark red to 

light red) and at pH 5.2 (red to yellow). Hence, the length of the plume for these two pH-

values are also measured. Table 5. 2 summarize the measured length of the plumes at three 

above mentioned pH valves of each experiment performed and the estimated transverse dis-

persion coefficient from the length and height of the plume by using eq. (5.9).  
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Figure 5. 11  Reactive-mixing plume with a 2.10 cm injection source width (experimental data) 

 

 
 
 

Figure 5. 12  Reactive-mixing plume with a 4.50 cm injection source width (experimental data) 
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Table 5. 2 Estimated transverse dispersivity from the plume length 

 Low injection 
rate 

High injection 
rate 

Injection rate 3.65 ml/min 6.2ml/min 
Seepage velocity 2.08× 10-5 m/s 2.32× 10-5m/s 
Injection width  0.021m 0.045m 

Alkaline plume length  0.202m 0.933m pH = 8.8 
(Xalk = 
0.703) Calculated transverse dispersion 

coefficient 
5.20 × 10-9 m²/s 5.79 × 10-9 m²/s 

Neutral plume length  0.360 m 1.566 m pH = 5.2 
(Xalk = 
0.562) Calculated transverse dispersion 

coefficient 
5.30 × 10-9 m²/s 5.25 × 10-9 m²/s 

pH 4.5 acidic plume length  0.430m 1.846m H = 4.5 
(Xalk = 
0.539) Calculated transverse dispersion 

coefficient 
4.91 × 10-9 m²/s 5.88 × 10-9 m²/s 

 

The estimated transverse dispersion coefficient are in the range of  4.91  × 10-9 m²/s to 

5.88 × 10-9 m²/s. The errors from two sets of experiment are within 8%, which indicates that 

the parameter can be accurately determined.  

Comparing the estimated transverse dispersivities determined by the plume length 

corresponding to different color and Xalk in each experiment, I found consistent results with 

small uncertainty. This indicates that the titration curve determined in laboratory is valid under 

the conditions of the sandbox. 

The results from the two experiments using different injection rate are quite similar. 

The difference in the results is mainly from data uncertainty. However, the DT-value estimated 

by the high injection rate is slightly larger. As we can see in eq. (5.9), the contribution to the 

larger value of DT is a smaller Lx or/and a larger b. While the length measurement is fairly ac-

curate, the error in measurement of b will squarely influence DT. Since the plume meandered, I 

first plot the centerline of the plume on the screen of sandbox and then measured the curve’s 

length. The measurement errors might also come from measurement of the long curve in the 

high injection rate experiment. 

The estimated transverse dispersivities as well as the measured injection width are 

applied in the analytical solution (equation 5.9). The resulting pH 8.8, 5.2 and 4.5 contour 

lines are plotted on the raw data. The contour lines fit quite well to the range of color changes. 

Since the plume meanders, the positions of contour lines are biased. But the length of the con-
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tour line agrees with the one of the plume. Comparing the cross-section, the width of the con-

tour line and the plume matches. The Figure 5. 13 and Figure 5. 14 illustrate the contour lines 

on the raw image. 
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Figure 5. 13 Model contour lines of pH 8.8, 5.2, 4.5 on raw data (injection source width 0.21cm) 

 

 
Figure 5. 14 Model contour lines of pH 8.8, 5.2, 4.5 on raw data (injection source width 0.450cm) 
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5.9. Discussions and Conclusion 
Transverse mixing is visualized by a conservative-tracer and a mixing-controlled 

acid-base reaction. A non-invasive image method (digital images taken by digital camera) is 

used to capture the color intensity in the mixing domain. 

By analyzing 6 vertical conservative concentration profiles and applying Domenico’s 

approximate analytical solution to fit experimental data, I estimate transverse-dispersivity 

values in the range of 1.6 ×10-4 to 2.89×10-4 m/s with an effective width ranging from 3.5 to 

7.5 cm. A simple equation (eqn.5.9) derived from Domenico’s solution is used to estimate the 

transverse dispersivity from the reactive plume length and effective source width. The esti-

mated transverse dispersivity from the two experiments are 2.31×10-4 m and 2.41×10-4 m, 

respectively. The result agrees with the literature value of about 10% of the mean grain di-

ameter. 

I use MATLAB to process the image data and perform model simulation. Image 

pixel values are transformed as ny×nx×3 array. By matrix calculation, the image pre-

processing, (shifting, rotation, color calibration and smoothing), color normalization can be 

realized. 

Equation 5.9 is derived to determine the transverse dispersion coefficient. The only 

required measurement data are the injection source width h and the end length of the plume Lx 

The transverse dispersivity  is proportional to the square of effective injection source width 

h and inversely proportional to the plume end length Lx.

tα

 Other parameters in this equation 

depended on the acid-base mixing ration, pH indicator properties and other factors. 

The reaction between an acid and a base is simple, quick and reversible. Adding a 

small amount of pH indictor hardly has buffering effects. The pH value and the mixing ratio 

of the acid and base can be easily determined by titration experiment. If the concentrations of 

the acidic and the alkaline solutions and of the pH indicator do not change, the titration results 

are reproducible. This is a reliable experimental method.   

A new non-invasive image technology tested is an innovative and accurate method. 

First, compared with other experimental methods, it does not need probes or sensors located 

in the domain. The setup is simple and the operation and control of the camera is easy. Sec-

ond, this method does not disturb the flow or dispersion because the domain is not touched. 

Burying probes in the domain could not avoid slight changes of dispersion process. Third, the 

image technology can provide millions of pixel values as experimental data. Such a large 

quantity of data is not achieved in other methods. Take the conservative tracer profile as an 

 90



 

example. The average numbers of data points in one vertical profile is around 500-900. Inci-

dent errors are dramatically reduced. The error caused by the experiment in this case is within 

8%. Image processing is an accurate method. Fourth, this method is not influenced by mean-

dering of the tracer plume as it is not based on local point probes. 

 91



 

6. Transverse Mixing in Microscopically Heterogeneous Porous 
Media 

6.1. Introduction  
In this chapter, I study the role of micro-heterogeneity on transverse mixing. I dis-

cuss multiple reactive experiments, performed in a microscopically heterogeneous model aq-

uifer with dimensions of 3.4m x 0.15m x 0.5m. The same sandbox has been used previously 

to develop a method for the determination of transverse dispersion for a reactive plume length 

for homogeneous steady-state flow condition [see chapter 5]. The sandbox was uniformly 

filled with two sand mixtures. However, the filling exhibited heterogeneities on the cm-scale. 

The microstructure resembles natural sedimentary structures such as laminations. This is in 

contrast to previous laboratory-scale studies on solute dispersion, where heterogeneities were 

created with definite sand lenses that themselves were as homogeneous as possible [Ursino et 

al., 2001, Sillman & Zheng, 2001, Grathwohl et al., 2000].  

The main goal of the study is to deepen our understanding of vertical transverse dis-

persion and mixing in natural porous media. Especially, I want to test whether microscopic 

sedimentary structures enhance transverse vertical mixing. I applied the same reactive system 

as used in chapter 5, that is, I pump an alkaline tracer solution by a horizontal well into the 

domain while injecting an acidic tracer solution as ambient water, using constant head tanks. 

The two solutions are advected through the domain and mix due to transverse dispersion, 

leading to a distinct pH pattern. After the plume has reached steady state, I measure its length 

and the width at the source and take digital images. 

6.2. Governing Equation 
I use the same expression to estimate the transverse dispersion coefficient from the 

plume geometry as used in the homogeneous domain. This way, I determine apparent trans-

verse dispersion coefficients, since Eq. (5.9) was derived for homogeneous conditions. 

6.3. Experimental Section 

6.3.1. Solutions Injected 
In the experiments on the impact of micro-heterogeneities, I used thymol blue solely 

as pH indicator because methyl red, used in the homogeneous domain, sorbed onto the Quartz 

grains. The concentration of thymol blue was 0.04µg/L in both the acidic and alkaline solu-
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tions. A sufficient amount of NaOH was added to adjust the pH in the alkaline solution to a 

value of 10, while HNO3 (65%) was added to the acidic solution, leading to a pH of 3. 

6.3.2. Reactive Tracer Tests 
Two series of reactive experiments were carried out in the quasi two-dimensional, 

micro-heterogeneous model aquifer, using two different sand mixtures (grain size 0-3mm and 

0.1-0.8mm, respectively) as filling materials. Each series contain two experiments with differ-

ent seepage velocities. Details of the physical description of the model aquifers are described 

in chapter 3. The alkaline tracer solution was injected continuously into the model aquifer via 

a horizontal injection well, while the water of ambient flow was acidic. Table 6. 1 summarizes 

the sand types, injection rates of the tracer solution and seepage velocities used in the experi-

ments. After injecting three pore volumes of tracer solutions to the aquifer, the plume reached 

steady state; I took digital photos and measured the length and the effective source width of 

the plume. The discharge rates and the pH in the inflow, within the domain and in the outflow 

were measured twice daily. 

Table 6. 1 Injection rates and Seepage velocities used in the experiments 

Seepage velocity Experiment 
No. 

Sand grain size 
(mm) 

Tracer injection rate
(ml/min) (m/s) 

1 0-3mm 7.2 2.76×10-5 
2 0-3mm 2.9 1.65×10-5 
3 0.1-0.8mm 4.3 1.65×10-5 
4 0.1-0.8mm 2.4 1.10×10-5 

 

The end of the alkaline plume, where the pH indicator in plume changes color from 

blue to yellow, indicates the pKa value of 8.8, which corresponds to the volumetric fraction of 

alkaline solution in the mixture of 0.618. While the first two experiments were performed in 

the sand filling with grain sizes of 0-3mm, the other two were conducted in a rather fine sand 

mixture with grain sizes of 0.1-0.8mm. Figure 6. 1 and Figure 6. 2 show the photographs of 

the alkaline plumes developed in different reactive experiments. The center of the plume is 

blue, the fringes are yellow. 

The transverse dispersion coefficient for each experiment was estimated by equation 

5.9. The value of Xalk was 0.618 for the current system. Table 6. 2 shows the measured plume 

heights and lengths for the color changes, and the estimated transverse dispersion coefficients 

for different seepage velocities. The estimated transverse dispersion coefficient values ranged 

between 4.64 × 10-9m2/s and 8.9 × 10-9m²/s. The transverse dispersion coefficients were 
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higher for higher seepage velocities. The estimated dispersion coefficients are less than an 

order of magnitude higher than the effective diffusion coefficient. 

In the experiments using the homogenously packed filling, the grain size was 1-

2.5mm. Using a similar setup, the transverse dispersion coefficients obtained were 4.9×10-

9m²/s to 5.9×10-9m²/s (See section 5.8). 

Table 6. 2 Plume sizes and the estimated transverse dispersion coefficients. 

Plume size (m) Experiment 
No. 

Seepage 
velocity 

(m/s) Height Length 
Transverse Dispersion 

Coefficient (m²/s)  

1. 2.76×10-5 0.060 1.82 8.90×10-9 

2. 1.65×10-5 0.040 0.50 8.60×10-9 

3. 1.65×10-5 0.060 1.84 5.26×10-9 

4. 1.10×10-5 0.050 0.97 4.64×10-9 
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Figure 6. 1 Alkaline plume developed in the micro-heterogeneous model aquifer  filled 
with the sand of size 0-3mm. A: seepage velocity of 2.76×10-5  m/s; B: seepage velocity of 
1.65×10-5m/s. 
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Figure 6. 2 Alkaline plume developed in the micro-heterogeneous model aquifer  filled 
with the sand of size 0.1-0.8mm. A: seepage velocity of  1.65×10-5m/s; B: seepage velocity 
of 1.1×10-5m/s. 
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6.4. Conclusions  
My experiments confirm that transverse dispersion coefficients are rather small. Us-

ing a filling exhibiting micro-heterogeneities, I obtained coefficients that are not larger than 

those found in homogeneous media. Therefore, I conclude that micro-heterogeneity has no 

major impact on transverse mixing. The estimated transverse coefficients are in the same or-

der as the effective molecular diffusion coefficient. For typical groundwater flow velocities, 

therefore, the velocity-independent contribution to transverse dispersion cannot be ignored. 
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7. Transverse Mixing in Macroscopically Heterogeneous Porous 
Media 

7.1. Introduction 
Here, I describe tracer experiments on vertical transverse dispersion conducted in a 

quasi two-dimensional artificial model aquifer with dimensions 14m × 0.13m × 0.5m. The 

same sandbox has been used previously to analyze longitudinal mixing [Jose, 2004]. The 

sandbox is filled heterogeneously with four types of sand mixtures [chapter 3]. In contrast to 

previous large-scale laboratory studies on solute dispersion in heterogeneous media [Silliman 

& Zheng, 2001; Barth et al., 2001; Ursino et al., 2001], I deliberately choose a filling that 

resembles natural sedimentary structures [Pettijohn et al., 1987]. In particular, the blocks of 

different sand types have the shapes of lenses rather than rectangles, and the blocks exhibit 

sedimentary micro-structures, such as laminations, created by filling the box in a settling pro-

cedure under water. Opting for closer-to-nature conditions, I sacrifice the exact knowledge 

about the hydraulic structure of the domain. While the authors of above cited studies tried to 

meet second-order statistics in order to test stochastic theory, I try to mimic natural sediments. 

The main goal of the study is to deepen the understanding of vertical transverse dis-

persion and mixing in natural heterogeneous porous media. In particular, I want to test 

whether there is any significant enhancement of vertical transverse mixing due to the hetero-

geneity of the formation. For this purpose, I inject a dye tracer in the bottom half of the inflow 

boundary of the domain and measure the steady-state tracer distribution. A similar setup was 

used in homogeneous media for the determination of the transverse dispersion coefficient by 

Grane & Gardner [1961]. In contrast to homogeneous media, I must correct for plume mean-

dering, not only because the boundary of the plume varies with distance but also because the 

transverse concentration profile is squeezed in high-velocity regions and stretched in low-

velocity regions. Like Ursino et al. [2001], I use digital imaging to quantify the concentration 

distribution. For the correction related to plume meandering, I use simulated stream-function 

values applying the hydraulic-conductivity distribution determined from inverse modeling 

[Nowak, 2004].  

7.2. Governing Equation 
The solute transport equation (2.16) can be rewritten as follows: 
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In two-dimensional, steady state flow with uniform flow-effective porosity eθ  [-], 

streamlines are oriented into the longitudinal direction, and potential lines in the transverse: 
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in which xt [L] is the remaining transverse coordinate. Φ [L] is the hydraulic head or pseudo-

potential, and Ψ [L2/T] is the value of the stream function. 

Here, I consider a domain of a limited horizontal thickness W [L]. I neglect variabil-

ity in the corresponding direction. The domain has a length L [L] and a height ∆z [L]. The 

total discharge is denoted Q [L3/T] and the total head-loss ∆Φ [L]. Then, we may choose the 

following system of distorted spatial coordinates: 
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In the system of transformed coordinates, the transport equation reads as: 
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The important difference between the original transport equation, Eq. (7.1), and the 

transformed one, Eq. (7.6), is that advection has become one-dimensional upon the transfor-

mation of coordinates. That is, effects of plume meandering have disappeared. 

I now consider steady-state transport, so that the time-derivative in Eq. (7.6) van-

ishes. In the steady state, the longitudinal concentration gradients are typically very small, at 

least at a sufficient distance from injection points. Then, I can neglect longitudinal dispersion, 

and arrive at the following steady-state transport equation: 
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As boundary conditions, I assume no mass flux across the bounding streamlines, η = 

0 and η = W, and a fixed concentration distribution at the inflow boundary, ξ = 0. In my ex-

periments, I apply a step-like distribution: 
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in which c  is the inflow concentration, H(η) is the Heaviside function and η0 b [L] marks the 

lateral position of the plume boundary. 

With varying coefficients of K, q, and Dt, no simple analytical solution of Eq. (7.9) 

exists. In my analysis, I thus determine an apparent transverse dispersion coefficient  
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Accounting for the boundary conditions, Eqs. (7.8 & 7.9), and introducing the appar-

ent transverse dispersivity  [L], the solution of Eqn. (7.10) is: Q/zDW a
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in which the infinite series arises from the no-mass-flux boundary conditions, Eqn, (7.8). 

Since the transverse dispersivities are typically rather small, the series can be truncated to i 

ranging from -1 to +1. 

In Section 6.3.2, I fit Eq. (7.11) to measured concentration profiles. I do this, using 

both the original Cartesian coordinates, x and z, and the transformed spatial coordinates, ξ and 

η, according to Eqs. (7.4 & 7.5). For the latter, I need the distribution of stream-function val-

ues, which I approximate from a calibrated numerical model. The main difference between 

the systems of coordinates is that ξ and η follow the iso-potential and streamlines whereas x1 

and z don’t. In a low-velocity region, the streamlines diverge and the concentration profile is 

stretched laterally. Interpreting the concentration profile without knowing the velocity anom-

aly leads to high apparent transverse dispersion coefficients although transverse mixing, that 

is, the exchange between streamlines, may not be enhanced whatsoever. Conversely, the con-

centration profile is squeezed in high-velocity regions, which would be explained by small 

apparent transverse dispersion coefficients when using the original coordinates. 
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7.3. Experimental Description 

7.3.1. Conservative Tracer Test 
I use the food dye Cochineal Red A (E 124) as conservative tracer because it is toxi-

cologically harmless and does neither degrade nor significantly adsorb to Quartz. 0.3 g/l of 

the tracer is dissolved into deionized-degassed water. I injected the tracer solution into the 

bottom inlet chamber, and a tracer-free solution into the separated top chamber. Cross-flow 

between the chambers was prevented by adjusting identical constant heads in both the cham-

bers, thus guaranteeing the desired step-like concentration profile of the inflow concentration. 

I measured the discharge at the outflow twice daily.  

Figure 7.1 shows a schematic diagram of the tracer test. In the course of the experi-

ment, about five pore volumes of tracer solution were passed through the aquifer. The seepage 

velocity was approximately 7.6×10-5 m/s ≈ 6.6 m/d. 

After the injection of about four pore volumes, the plume reached steady state. I took 

photos using the digital camera, stored the images on a computer, and later converted them to 

concentration data according to the procedure described in section 5.4. The red color of the 

tracer dye implies that the green and blue color channels have smaller values within the plume 

than outside. The red channel, by contrast, is hardly affected by the presence of the tracer. 

Thus, I use only the green and blue channels for the quantification of concentrations. 

CameraLight Source

Heterogeneously Packed Model Aquifer

 

Figure 7. 1 Schematic setup of the tracer test 

7.3.2. Correction for plume meandering 
I analyze the transverse concentration profiles, obtained after image processing, in 

two ways. First, I use the original spatial coordinates, that is, the distance to the inlet x [L] and 

the vertical coordinate z [L], and interpret the transverse concentration profiles as if caused by 

steady-state advective-dispersive transport with uniform coefficients. For this purpose, I fit 
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the measured concentration at a certain distance x to the analytical expression of Eq. (7.11), 

replacing ξ by x and η by z. The fitting parameters are the vertical position zb of the boundary 

line and the apparent transverse dispersivity . The parameters obtained by the fitting pro-

cedure may be biased because advective transport is not oriented strictly in the x-direction, so 

that the transverse concentration profile is squeezed in high-velocity regions and stretched in 

low-velocity zones. At distances where the transverse fringe of the plume happens to be in a 

high-velocity region, the fit will determine a small value of , whereas the fitted value will 

be large at distances where the fringe is in a low-velocity zone. 

a
tα

a
tα

In order to correct for plume meandering, I need to transform the spatial coordinates 

according to Eqs. (7.4 & 7.5). This requires detailed knowledge about the flow field. Since 

there are no direct measurements of the velocity, we can only rely on results of inverse model-

ing. For this purpose, Nowak (2004) analyzed the temporal moments of 126 point-related 

breakthrough curves obtained in the experiment described by Jose [2004]. I use the inverse 

model by Nowak (2004) where he used 121 measurements of hydraulic head within the do-

main. He applied the quasi-linear approach of geostatistical inversing by Kitanidis [1995] 

with a modified Levenberg-Marquardt method for stabilization developed for his dissertation. 

The primary result of the inverse model is a smooth distribution of the log-hydraulic 

conductivity. Simulations of flow and transport, using the estimated field, meet the data used 

for inversing within the prescribed measurement error. In the context of the present study, I 

use the field to approximate the distribution of the stream function Ψ(x) within the domain. 

Particularly, I transform the vertical coordinate z to η according to Eqn. (7.5), while I keep the 

distance x to the inlet as longitudinal coordinate. Thus I fit ηb and , so that Eqn. (7.11), 

using x rather than ξ, meets the measured vertical concentration profile for various values of 

the distance x to the inlet. If my estimate of the stream-line pattern was exact, the fitted value 

for the vertical position of the boundary line in transformed coordinates η

a
tα

b would be identical 

in each profile. 

7.3.3. Reactive Tracer Test 
In addition to the conservative tracer test, I performed a test involving a reaction that 

was controlled by transverse mixing. I applied the same type of reactive system used as de-

scribed in section 5.6. Reversing the flow field, I injected a solution with pH 10 in the middle 

of the inflow boundary over the height of 5cm. On top and underneath of that region, I in-
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jected a solution with pH3. The two solutions were advected through the domain and mixed 

due to transverse dispersion, leading to a distinct pH pattern. 

I added thymol blue as pH indicator to both solutions. Having a pKa-value of 8.5, 

thymol blue is yellowish under acidic to neutral conditions, and dark blue under alkaline con-

ditions. Thus, the boundary of the blue color marks the contour line of pH 8.5. The concentra-

tion of thymol blue in the solutions is 0.04gm/l. I dissolved the tracer in deionized-degassed 

water and added sodium hydroxide or nitric acid to adjust the pH value. 

From independent titration experiments, as described in section 5.8.1, I know that the 

point of color change refers to a relative concentration Xalk [-] of the alkaline solution in the 

mixture of 0.618% (Figure 7. 2). I measure the length L [L] of the plume and estimate the 

apparent transverse  according to Eqn. 5.9. a
tα

 

Figure 7. 2 Titration curve fitted with simulated curve  

7.4. Results  

7.4.1. Conservative Tracer Experiment  
Figure 7. 3 shows the estimated log-conductivity field, the simulated flow net and the 

digital image of the conservative tracer in the model aquifer. The ratio of the largest to the 

smallest conductivity value is about 200. In the photo, the meandering of the plume boundary 
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is quite obvious. In the first two meters, the boundary remains in the middle of the box. Be-

tween distances of 2m and 3m, the boundary rises to a rather high position where it stays until 

about x=5m. Then it drops down and reaches its minimum at about x=7m. Around x=9m, the 

boundary meanders shortly upwards, comes down and rises to a high vertical position at x ≈ 

10m. It stays there until x ≈ 12m and leaves the domain in a middle position. 

The simulated flow field, shown also in Figure 7. 3, follows essentially the same pat-

tern, although not all features match exactly. In the first meter, the estimated conductivity 

field includes a high-conductivity zone in the upper half of the domain, focusing the flow. As 

a result, the simulation shows a significant dip of the boundary line between x=1m and x=2m. 

The real boundary, however, does not meander that strongly in this region. Also, the esti-

mated high-conductivity lenses in the bottom half between x ≈ 7m and x ≈ 8m and at the very 

top at about x=12m appear slightly exaggerated, since the simulated meandering of the plume 

boundary is stronger than indicated by the photo. In this context, it may be worth noting that 

the inverse model relies mainly on the travel-time measurements presented by Jose, [2004]. 

The errors of the hydraulic-head measurements, which are also used in the inversing proce-

dure, are rather large in comparison to the total head difference in the domain. Accurate 

measurements of the heads, however, are essential to accurately estimate the field of stream-

function values, since streamlines and iso-potential lines are orthogonal to each other. 
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Figure 7. 3 Log-conductivity field, simulated flow net and measured distribution of the conservative tracer in the model aquifer. Bold 
 streamline: centerline in transformed coordinates. 

 104



 

Figure 7. 4 shows the measured vertical concentration profile at x=5.20m and the 

corresponding model fit using Eqn. (7.11). The measured concentration profile is rather scat-

tered which I attribute to the remaining spatial misalignment between the different images 

used in the analysis. Nonetheless, the high spatial resolution makes it possible to fit the ana-

lytical expression. 
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Figure 7. 4 Fit between Eqn. (7.11) and the measured vertical concentration  profile at  x 
=5.20 m 

Figure 7. 5 shows the fitted apparent transverse dispersivity  and vertical position 

of the boundary line z

a
tα

b, applying Eqn. (7.11) to the data with original spatial coordinates. The 

fitted values of zb agree with the visual observation of the plume boundary discussed above, 

whereas the fitted values of  show a physically unreasonable distribution. At distances 

where the vertical position of the plume boundary has high values, the fitted apparent trans-

verse dispersivities are very small. Between x ≈ 3.5m and x ≈ 5m, as well as between x ≈ 10m 

and x ≈ 11m, the fitted values of  are smaller than 1×10

a
tα

a
tα -4m, and between x ≈ 11m and x ≈ 

12m, they are even in the range of only 5×10-6m. At x ≈ 2m, by contrast, the fitted transverse 

dispersivity is approximately 3×10-3m. Intermediate values of about 3×10-4m can be found, 

e.g., in the last two meters of the domain. The strong variations in the fitted dispersivities re-

flect the stretching and squeezing of the streamlines rather than enhanced and diminished 

transverse mixing. This becomes particularly clear in the region with the smallest fitted values 
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of  at x ≈ 11m to x ≈ 12m. Here, the boundary of the plume is far at the top of the domain 

(z

a
tα

a

b ≈ 0.465m). Obviously, this is a high-velocity region with very small distances between 

streamlines. Further downstream, the streamlines diverge and the transverse concentration 

profile is more spread out, resulting in higher values of the apparent transverse dispersivity 

. tα
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Figure 7. 5 Apparent transverse dispersivity  and vertical position za
tα b of the 

 boundary line using the original spatial coordinates. 

Figure 7. 6 shows the fitted apparent transverse dispersivity  and vertical position 

of the boundary line η

a
tα

b, applying Eqn. (7.11) to the data after transforming the vertical coor-

dinate according to Eqn. (7.5). If the estimated velocity field, used for the transformation, 

were exact, the fitted value of ηb would be constant. Obviously, this is not the case. As men-

tioned earlier, the estimated conductivity field shows a high-permeability lens in the first me-

ter focusing the streamlines in the top half. Consequently, the initial ηb–values are rather 

small, whereas later on the values typically fluctuate about ηb ≈ 0.2m. Wherever the plume 

meanders are the strongest, the fitted values of ηb vary, indicating that the proper length of 

high- or low-conductivity lenses is not estimated correctly by the inversing procedure. To-
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wards the end of the domain, the fitted ηb–values tend again towards small numbers, which 

may be attributed to an overestimation of the high conductivity values in the top half at the 

end of the domain. Overall, however, the plume meandering is predicted rather well. While 

Figure 7. 5 shows very high values of the original vertical coordinate zb of the boundary line, 

the fitted vertical coordinate ηb in transformed coordinates, shown in Figure 7. 6, never ex-

ceeds values of 0.3m. 

 

Figure 7. 6 Apparent transverse dispersivity  and vertical position ηa
tα b of the 

 boundary line using the transformed spatial coordinates. 

Figure 7. 6 also includes the fitted values of the apparent transverse dispersivity , 

after transforming the coordinates. In general, these values fluctuate much less than those 

shown in Figure 7. 5. In the first two meters, the estimated values of the apparent transverse 

dispersivity  are rather large due to the misrepresentation of stream lines in this region. For 

x>2m, the mean value of the fitted apparent transverse dispersivity  is 6.9×10

a
tα

a
tα

a
tα -5 m, with a 

coefficient of variation of 75%. No definite trend with travel distance can be observed. Con-

sidering the mean seepage velocity of 7.6×10-5 m/s, the apparent transverse dispersion coeffi-
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cient  is 5.2×10a
t

a
t vD α×=

a
t

-9 m2/s, which is at most by a single order of magnitude larger 

than typical effective molecular diffusion coefficients. 

7.4.2. Reactive tracer experiment  
Figure 7. 7 shows the visualization of the reactive plume at the steady-state condi-

tion. Keep in mind that the flow field is reversed, the alkaline plume and the acidic ambient 

water are transported from right to left. Obviously, the plume meanders, expands and con-

tracts according to the flow field. At x= 2.4m the plume spread out and remain thick until 4m. 

Compare to the conservative plume, it has followed the same pattern of meandering. Due to 

the meandering pattern of the plume, I consider the center path line of the plume for the 

measurement of the plume length and the measured plume length is about 7.65m and the 

measured height of the plume is 0.05m. The calculated apparent vertical transverse dispersiv-

ity  using Eq. (5.9) is 5.32×10α -5m where the mixing ratio of the alkaline solution was 

0.618. Considering the mean seepage velocity of 6.41×10-5 m/s, and ignoring the effective 

diffusion coefficient the apparent transverse dispersion coefficient  is 3.41×10a
t

a
t vD α×= -9 

m2/s which is less than an order of magnitude larger than typical effective molecular diffusion 

coefficients. 
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Figure 7. 7 Reactive tracer plume in the model aquifer, source width 0.05m and the measured length of the plume is 7.65m (Color of plume 
enhanced to obtain clearer optical impression). 
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7.5. Discussions and Conclusions 
My experiments confirm that transverse vertical dispersion coefficients are fairly 

small. I have determined coefficients of approximately 5×10-9 m2/s in a heterogeneously 

packed model aquifer of 14m length. These coefficients are not larger than those found in 

homogenous systems. Therefore, I conclude that heterogeneity has only a minor impact on 

vertical mixing. It does, however, cause significant vertical plume meandering. These findings 

are in agreement with stochastic theory predicting only a small increase in transverse vertical 

macrodispersion coefficients in the large-time limit [Gelhar & Axness, 1983]. In stochastic 

theory, the plume meandering is expressed in enhanced transverse macrodispersion coeffi-

cients at intermediate times [Dagan, 1988]. However, the corresponding time-dependent ef-

fective dispersion coefficient, which is more relevant to describe mixing, does typically not 

exceed the asymptotic macrodispersion coefficient [e.g., Cirpka & Attinger, 2003]. Hence, 

small coefficients, as found in the experiment, were to be expected. 

The limitation of vertical dispersive mixing can be of great practical relevance. The 

degradation of a wide and thin plume, originating from a continuously emitting source and 

reacting with compounds in the ambient water above and underneath the plume, may be con-

trolled by vertical mixing [e.g., Thornton et al., 2001]. I may estimate a characteristic vertical 

mixing width w [L] by a
txw α= . My domain is 14m long, resulting in a vertical mixing 

width w of 3.3cm. In order to reach a mixing width w of 10cm, a travel distance of ≈ 130m 

must be traversed. Thus, a plume, the degradation of which depends on vertical dispersive 

mixing, will become rather long. 

In my experiments, I have used digital imaging techniques to quantify conservative-

tracer concentrations. Like others [Ursino et al., 2001; Huang et al., 2003], I highly recom-

mend this approach as a technique for the laboratory, because it allows for a spatial resolution 

that cannot be reached by sampling techniques. In field experiments, of course, glass panes 

are not available for optical observation. Here, optical sensors in direct-push rods may be 

suitable to obtain highly resolved vertical concentration profiles. However, my experiments 

also clearly show that concentration profiles alone are insufficient to quantify transverse mix-

ing. Spatial variability of the velocity field yields a geometric distortion of the stream-line 

pattern. In order to express the probability that a solute particle changes streamlines, the dis-

tribution of stream lines and thus the velocity distribution needs to be known. Without such 

knowledge, interpreting vertical concentration profiles at an arbitrary point may lead to highly 

biased results. In my experimental domain, I could estimate the velocity field from previous 
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tracer studies and head measurements. Even there, the boundary line of the plume could not 

be predicted accurately throughout the domain. Under field conditions, such estimates are 

even more complicated, because the distribution of the streamlines needs to be approximated 

on a scale smaller than the vertical mixing width. It may thus be more feasible to estimate 

vertical mixing coefficients by analyzing reactive systems controlled by mixing rather than by 

analyzing concentration profiles of conservative tracers. My reactive-tracer experiment, where 

I estimate the transverse dispersion coefficient from the length and height of a reacting plume 

yields an estimate of the transverse dispersivity, which is consistent to the conservative-tracer 

data.   
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8. Summary and Conclusions 

This thesis offers a promising approach to the characterization and quantification of 

transverse dispersion in heterogeneous porous media. The aim of the study is to deepen the 

understanding of transverse dispersion and mixing in natural heterogeneous porous media. 

Particularly, I verify experimentally if there is any enhancement of transverse mixing in natu-

ral heterogeneous porous media.  

I perform experiments in three different dimensions to achieve the goal of the study. 

First, I develop method for the determination of pore-scale transverse dispersivity by Taylor-

Aris-dispersion theory as suggested by Cirpka and Kitanidis [2001b] by performing experi-

ments in helical column. Second, I develop a non-invasive imaging method for the determina-

tion of transverse dispersion coefficient in porous media at the laboratory scale. I design a 

laboratory scale quasi two-dimensional model aquifer and pack it homogeneously by silica 

sand. I conduct the conservative and reactive tracer tests. Third, I quantify the impact of mi-

croheterogeneity on transverse mixing in porous media by different silica sand type mixtures 

in such a way that homogeneous and heterogeneous porous media are formed. Here, I apply 

an imaging technique to perform several reactive tracer tests to quantify the effect of micro-

heterogeneity. Fourth, I quantify vertical mixing in heterogeneous porous media by perform-

ing the conservative and the reactive tracer tests in the technical scale heterogeneous model 

aquifer. Hence, I design a technical scale quasi two-dimensional model aquifer and fill it with 

different silica sand types to create both macroscopic and microscopic sedimentary structures 

resembling natural sedimentary structures.  

The result of tracer experiments using the helical soil column shows fairly high val-

ues of local transverse dispersivity (6.57×10-4 m) as the original analysis by Cirpka and Ki-

tanidis,[2001b] did not account for the effects of the pitch, which causes secondary flow ex-

changing mass in the radial direction. The optimization approach developed by Benekos 

[2004] for determining the transverse dispersivity coupled with the numerical simulation of 

the transport in the helix reveals that the secondary flow needs to be considered. The secon-

dary flow depends entirely on the hydraulic gradient and the helix characteristics whereas the 

transverse dispersivity is a property of the porous medium and its geometry. Particle-tracking 

simulations show that neglecting the secondary flow may result in significant differences in 

determining the rate of increase of the second central moment, which describes the spread of 
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the breakthrough curve. A comparison between the Levenberg-Marquardt optimization based 

on particle tracking considering the secondary motion and the regression technique neglecting 

secondary motion shows smaller values of αt when accounting for the secondary motion. 

However, the differences are not overwhelmingly large for this particular configuration and 

the considered flow regime. 

In chapter 5, a digital imaging techniques is developed to quantify the transverse dis-

persion coefficient in porous media. The method is shown to be a simple and accurate one to 

investigate dispersive mixing in porous media. The approach as a technique for the laboratory 

is advantageous because of its high spatial resolution that cannot be reached by sampling 

techniques. Optical sensors in direct-push rods may be suitable to obtain highly resolved ver-

tical concentration profiles in the field. The equipment is of lower cost compared with other 

non-invasive techniques, such as tomography or NMR. To assure accurate measurements by 

using this techniques, one should try to decrease the geometric misrepresentation by keeping 

the camera in a fixed position during the course of the experiment to match on a pixel by pixel 

basis of identical objects of two images, taken at different times. By conducting reactive 

tracer experiments, I show the applicability of the approach by injecting alkaline plumes into 

acidic ambient water, in which the length of the plumes is measured by observing the color 

change of standard pH indicators. 

To quantify the impact of microheterogeneity on transverse mixing, I conduct two 

series of experiments packed by two different sand mixtures, which resemble microscopic 

sedimentary structures on the cm-scale. Here, I apply the reactive approach developed in 

chapter 5. The estimated transverse dispersion coefficients are in the range of 4.6x10-9m²/s to 

8.9x10-9m²/s that are at less than an order of magnitude higher than an effective diffusion co-

efficient. No significant increase of the vertical transverse dispersion coefficient is observed 

compared to those found in the homogenous system, indicating that the microscopic hetero-

geneity has only a minor impact on vertical transverse dispersion. 

For the quantification of the impact of macroheterogeneity, I performed conservative 

and reactive experiments in the technical-scale model aquifer. The result of conservative 

tracer experiments shows that interpreting the transverse concentration profiles in heterogene-

ous porous media as if caused by steady-state advective-dispersion transport with uniform 

coefficient parameters show higher values at distances where the plume fringes are in low 

velocity zones whereas lower values at distances where fringes are in high velocity zones. 

These higher or lower values of transverse dispersivities result from the plume meandering 

caused by heterogeneity, which in fact, does not reflect increase and decrease of transverse 
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mixing. But, using the transformed vertical spatial coordinates i.e. applying the knowledge of 

velocity distribution gives more consistent and accurate results. The latter shows good agree-

ment with results from reactive tracer experiments. 

The estimated transverse dispersion coefficients are not larger than those found in 

homogenous systems. Therefore, I conclude that heterogeneity has only minor impact on ver-

tical mixing. But it does cause significant vertical plume meandering. These results, in fact, 

are in good agreement with stochastic theory given by Gelhar and Axness, 1983, predicting 

only a small increase in transverse vertical macrodispersion coefficients at large times.  

My experiments confirm that concentration profiles alone are insufficient to quantify 

transverse mixing in heterogeneous media. Without knowledge about the velocity distribution 

within the domain, it is not possible to determine meaningful vertical dispersion coefficients 

from the concentration profiles. Under field conditions, the uncertainty of the velocity distri-

bution is much higher and more complex than that in the well controlled laboratory experi-

ments. Indeed, it may be more reasonable to estimate vertical mixing coefficients by analyz-

ing reactive systems controlled by mixing instead of analyzing concentration profiles of con-

servative tracers. 
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Appendix  A 

Detailed Drawings of the Sandbox 
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Appendix A.1  Side view of the Inlet
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Appendix A.2  Front view of the Inlet 
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Appendix A.3  Top cross sectional view of the Inlet
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Appendix A.4  Side view of the Outlet 
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Appendix A.5  Front view of the Outlet 
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Appendix A.6  Top cross sectional view of the Outlet 
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Appendix  B 

Detailed Drawings of the Helical Soil Column 
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Appendix B. 1  Front cross sectional view of the Constant head Inlet 
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Appendix B. 2 Plan view of the Constant head Inlet 
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Appendix B. 3 Front cross sectional view of the Constant head Outlet 
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Appendix B. 4 Plan view of the Constant head outlet  
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Appendix B. 5 Details of the inlet and outlet (1) of the helical column  

 133


	List of Tables
	Symbols and Abbreviations
	
	
	
	
	Parallel Lamination:
	Cross Lamination:
	Ripples:






