Amine und Aminmischungen zur CO₂-Absorption aus Kraftwerksrauchgasen und ihr Energiebedarf zur Regeneration

Von der Fakultät 4 Energie-, Verfahrens- und Biotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

vorgelegt von Anke Schäffer aus Herrenberg

Hauptberichter: Mitberichter: Prof. Dr. techn. G. Scheffknecht Prof. Dr.-Ing. habil. K. Görner

Tag der Einreichung:23. Januar 2013Tag der mündlichen Prüfung:29. Oktober 2013

Institut für Feuerungs- und Kraftwerkstechnik (IFK) Universität Stuttgart D 93 (Dissertation der Universität Stuttgart)

Vorwort

Diese Arbeit wurde im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Feuerungs- und Kraftwerkstechnik (IFK) der Universität Stuttgart erstellt. Der Großteil der experimentellen Untersuchungen erfolgte im nationalen Forschungsprojekt COORETEC "Chemische Absorptions-Verfahren zur CO₂-Abtrennung aus Rauchgasen" (Förderkennzeichen: 0327786B) und wurde durch die finanzielle Unterstützung des BMWi und der Industriepartner ermöglicht. Die Projekttreffen ergaben produktive Diskussionen, die interessante Impulse für die weitere Projektarbeit lieferten. In diesem Sinne möchte ich mich bei Dr. Bernd Schallert und Dr. Helmut Rode von E.ON herzlich bedanken.

Zunächst gilt mein besonderer Dank Prof. Dr. techn. Günter Scheffknecht für die mir gebotenen Arbeitsmöglichkeiten und die großzügige Unterstützung bei der Anfertigung dieser Arbeit. Meinem Mitberichter Prof. Dr.-Ing. Klaus Görner möchte ich an dieser Stelle für die Übernahme der Zweitkorrektur danken.

Weiterhin geht ein großes Dankeschön an das IFK, dessen Organisationseinheit mit guter Seele Ursula Docter, dem Werkstattteam unter damaliger Leitung von Herbert Höll sowie natürlich den technischen und wissenschaftlichen Mitarbeitern des Instituts. Für stets ein offenes Ohr und gute Ratschläge bedanke ich mich ganz herzlich bei Dieter Straub.

In der Abteilung Brennstoffe und Rauchgasreinigung (BuR) fühlte ich mich neben Katalysatoren, SO₂ und Hg mit meinem CO₂, Aminen und Kohlestaub sehr wohl, wobei mir die experimentelle Arbeit im Labor und Technikum stets viel Freude bereitet hat. Meinen direkten Kolleginnen und Kollegen aus BuR unter der Leitung von Barna Heidel danke ich für die tolle Zeit und gute Zusammenarbeit. Ganz besonders hervorheben möchte ich Paula Galindo-Cifre, Oliver Seyboth und Katharina Raab, die nicht nur mit intensiven fachlichen Diskussionen sondern auch als gute Freunde ihren Teil zum Gelingen dieser Arbeit beigetragen haben.

Mein ganz besonderer Dank gilt meinen Eltern Ruth und Rüdiger Schäffer für ihre unermüdliche Unterstützung und bedingungslosen Rückhalt sowie meinen Freunden für diverse sportliche Abwechslung und geistige Aufmunterung. Zwergdanke.

Søren, Du bist mein Rückhalt und meine Freude, meine Motivation und Geborgenheit.

D'anke.

"Empfinde Tief, Erwäge Klug, Handle Recht."

Inhaltsverzeichnis

Vor	Vorwort III				
Inh	altsv	/erzeic	hnis	V	
For	mela	zeichei	٦	VIII	
Abs	strac	:t		XIII	
Ku	zfas	suna		xıv	
4		Jaliuna			
1	EIN	ieitung	: CO ₂ -Reduktionsmoglichkeiten	1	
	1.1	Handlu	ngsbedarf und Möglichkeiten zur Reduktion von CO ₂	1	
	1.2	Ziel un	d Inhalt dieser Arbeit	3	
2	Gru	Indlage	en: CO ₂ -Abtrennung in Kohlekraftwerken	4	
	2.1	Verfah	rensarten zur Verminderung von CO ₂ -Emissionen	4	
		2.1.1	Pre-Combustion Capture – Vorgeschaltete CO ₂ -Abtrennung	4	
		2.1.2	Oxy-Fuel Combustion Capture – Verbrennung mit Sauerstoff	5	
		2.1.3	Post-Combustion Capture – Nachgeschaltete CO ₂ -Abtrennung	7	
		2.1.4	Vergleich der Verfahrensarten zur Verminderung von CO ₂ -Emissionen	8	
	2.2	CO ₂ -A	otrennung mittels Absorption	10	
		2.2.1	Absorbentien – Physikalische und Chemische Lösungsmittel	10	
		2.2.2	Prozess – Absorption und Desorption	13	
	2.3	CO ₂ -A	bsorption mit Aminlösungen	15	
		2.3.1	Absorption – Stofftransport und Energiebedarf	15	
		2.3.2	Reaktionsmechanismen – Amine und Aminmischungen	20	
		2.3.3	Forschung – Lösungsmittelentwicklung und Prozessoptimierung	23	
3	Met	thodik:	Vorgehensweise zur Charakterisierung	26	
	3.1	Aufbau	und Durchführung der experimentellen Charakterisierung	26	
		3.1.1	Ermittlung der Gleichgewichtsbeladung	26	
		3.1.2	Ermittlung der Absorptionsenthalpie	28	
	3.2	Experii	nentelle und energetische Charakterisierung	29	
		3.2.1	Screening – Versuche zum Absorptions- und Desorptionsvermögen	29	
		3.2.2	Charakterisierung – Versuche zur energetischen Prozessauslegung	30	
		3.2.3	Energetik – Modell zur Berechnung des Energiebedarfs zur Regeneration	34	
	3.3	Unters	uchte Amine	38	

4	Scr	eening	g: Ergebnisse zum Absorptions- und Desorptionsvermögen	41		
	4.1	Aminlösungen als Alternative zu MEA				
		4.1.1	MEA und primäre Amine	41		
		4.1.2	Polyamine	45		
		4.1.3	Sekundäre Amine			
		4.1.4	Tertiäre Amine	50		
		4.1.5	Aminauswahl für weiterführende Untersuchungen	51		
	4.2	Konzei	ntrierte Aminlösungen	54		
		4.2.1	Primäre Amine und Polyamine	54		
		4.2.2	Sekundäre Amine	59		
		4.2.3	Auswahl von konzentrierten Aminlösungen	61		
	4.3	Aminm	nischungen	62		
		4.3.1	Binäre Aminmischung von MEA und MDEA	64		
		4.3.2	Binäre Aminmischungen bei Variation des Aktivators MEA	65		
		4.3.3	Binäre Aminmischungen bei Ersatz des Trägeramins MDEA	71		
		4.3.4	Auswahl von Aminmischungen	72		
5	Cha	Charakterisierung: Ergebnisse zur energetischen Prozessauslegung				
	5.1	5.1 CO ₂ -Gleichgewichtsisothermen				
		5.1.1	MEA und Validierung	75		
		5.1.2	Alternative Aminlösungen	77		
		5.1.3	Konzentrierte Aminlösungen	79		
		5.1.4	Aminmischungen			
	5.2	5.2 Absorptionsenthalpie				
		5.2.1	MEA und Validierung			
		5.2.2	Alternative Aminlösungen			
		5.2.3	Konzentrierte Aminlösungen	90		
		5.2.4	Aminmischungen	91		
6	Ene	ergetik	: Ergebnisse des Energiebedarfs zur Regeneration	95		
	6.1	Minima	aler Energiebedarf zur Regeneration	95		
		6.1.1	MEA und Validierung	96		
		6.1.2	Alternative Aminlösungen			
		6.1.3	Konzentrierte Aminlösungen	100		
		6.1.4	Aminmischungen	102		
	6.2	Einflus	sfaktoren auf den Energiebedarf zur Regeneration	106		
	6.3	Korrela	ation des Energiebedarfs zur Regeneration	110		
7	Zus	samme	enfassung und Ausblick	114		

Anhang			
А	Method	ik	118
	A.1	Korrelation und Interpolation des CO ₂ -Partialdrucks	118
	A.2	Absorptionssenthalpie und Korrelation der Wärmekapazität	121
	A.3	Herleitung der Berechnung des Energiebedarfs zur Regeneration	124
	A.4	Untersuchte Amine – Aminkonzentration und Ergänzende Angaben	126
B Ergebnisse – Screening		isse – Screening	128
	B.1	Alternative Aminlösungen	128
	B.2	Konzentrierte Aminlösungen	129
	B.3	Aminmischungen	130
С	Ergebn	isse – Charakterisierung	131
	C.1	CO2-Gleichgewichtsisothermen	131
	C.2	Absorptionsenthalpie	132
D	Ergebn	isse – Energetik	133
	D.1	Minimaler Energiebedarf zur Regeneration	133
	D.2	Einflussfaktoren auf den Energiebedarf zur Regeneration	134
	D.3	Korrelation des Energiebedarfs zur Regeneration	135
Literatu	rverzei	chnis	136

Formelzeichen

Abkürzungen

ADIP	Lösungsmittel von Shell auf Basis DIPA und MDEA		
AEAE	2-(2-Aminoethyl-Amino)-Ethanol		
aMDEA	Lösungsmittel von BASF auf Basis von aktiviertem Methyldiethanolamin		
Amisol	Lösungsmittel von Lurgi auf Basis von Methanol und MEA / DEA / Diisopropylamin / Diethylamin		
AMP	2-Amino-2-Methyl-1-Propanol		
AMPD	2-Amino-2-Methyl-1,3-Propandiol		
AP	1-Amino-2-Propanol		
APKette	3-Amino-1-Propanol		
Ar	Argon		
В	Base		
BAE	2-(Butylamino)-Ethanol		
BH^+	Protonierte Base		
С	Kohlenstoff		
CaCO ₃	Calciumcarbonat		
CaO	Calciumoxid		
CASTOR	CO ₂ capture and storage, EU-Forschungsprojekt		
CATO	CO ₂ capture, transport and storage, Forschungsprojekt in den Niederlanden		
CCS	"Carbon Capture and Storage" – CO ₂ -Abscheidung und Speicherung		
-(CH ₂) ₂ -	Ethylgruppe		
-(CH ₂) ₃ CH ₃	Butylgruppe		
-CH ₃	Methylgruppe		
CO	Kohlenstoffmonoxid		
CO_2	Kohlenstoffdioxid		
CO_{3}^{2-}	Carbonation		
DAE	Ethylendiamin		
DAP	1,2-Diaminopropan		
DAPKette	1,3-Diaminopropan		
DEA	Diethanolamin		
DEEA	2-(Diethylamino)-Ethanol		
DETA	Diethylentriamin		
DGA	Diglycolamin bzw. 2-(2-Aminoethoxy)-Ethanol		
DIPA	Diisopropanolamin		
DIPPR	"Design Institute for Physical Properties" – Database		
DMX	"Demixing Solvent" Zweiphasenlösung von IFP		
EAE	2-(Ethylamino)-Ethanol		
(wird fortgeset	zt)		

IX

Economine	Lösungsmittel von Fluor auf Basis von DGA oder MEA	
eNRTL	"electrolyte Non-Random Two Liquid" – Aktivitätskoeffizienten-Modell	
Flexsorb	Lösungsmittel von EXXON auf Basis von MDEA	
H ⁺	Proton	
H_2	Wasserstoff	
HCO ₃	Hydrogencarbonation	
H ₂ O	Wasser	
IFP	Institut français du pétrole	
IGCC	"Integrated Gasification Combined Cycle" – Kombiniertes Gas- und Dampf- kraftwerk mit integrierter Kohlevergasung	
IPAE	2-(Isopropylamino)-Ethanol	
K ₂ CO ₃	Kaliumcarbonat	
K ⁺ RCOO ⁻	Aminosäuresalze	
KS-1, 2, 3	Lösungsmittel von MHI: Kansai Solvent 1, 2, 3	
MAE	2-(Methylamino)-Ethanol	
MEA	Monoethanolamin	
MDEA	Methyldiethanolamin	
MHI	Mitsubishi Heavy Industries	
N_2	Stickstoff	
-NH ₂	Aminogruppe	
NMR	"Nuclear Magnetic Resonanz" – Kernspinresonanz Spektroskopie	
NO _x	Stickoxide	
O ₂	Sauerstoff	
OH ⁻	Hydroxidion	
-OH	Hydroxylgruppe	
PAE	2-(Propylamino)-Ethanol	
Purisol	Lösungsmittel von Lurgi auf Basis von n-Methylpyrrolidon	
PZ	Piperazin	
R _i	Organischer Rest {i=1, 2, 3}	
$R_1R_2NCO_2^-$	Carbamation	
R_1R_2NH	Primäres oder sekundäres Amin	
$R_1R_2NH_2^+$	Protoniertes primäres oder sekundäres Amin	
$R_1R_2NH^+CO_2^-$	Zwitterion	
$R_1R_2R_3N$	Tertiäres Amin	
$R_1R_2R_3NH^+$	Protoniertes tertiäres Amin	
Rectisol	Lösungsmittel von Lurgi bzw. Linde auf Basis von Methanol	
Selexol	Lösungsmittel von Union Carbide bzw. UOP auf Basis von Dimethylether von Polyethylenglycol	
SO_2	Schwefeldioxid	
SO _x	Schwefeloxide	
Sulfinol	Lösungsmittel von Shell auf Basis von DIPA / MDEA, $\rm H_2O$ und Tetrahydrothiopen	
TEA	Triethanolamin	
tertBAE	2-Tert-(Butylamino)-Ethanol	
(wird fortgesetzt)		

TEPA	Tetraethylenpentamin
TETA	Triethylentetramin

Lateinische Symbole

А		Parameter
a	$[mol_{Akt}/mol_{Misch}]$	Aktivator-Anteil in Aminmischung
AG	[mol _{AG} /mol _{Amin}]	Aminogruppenanzahl
В		Parameter
С		Parameter, Konstante
с	$[mol/m^3]$	Konzentration
c	[kJ/(kg K)]	Spezifische Wärmekapazität
D		Parameter
D	$[m^2/s]$	Diffusionskoeffizient
Е		Parameter
e	[t/MWh]	Spezifische Emission
F		Parameter
G		Parameter
G	$[m_{RG}^3]$	Rauchgasvolumen
Н	[MJ]	Enthalpie
Н	[(mbar m ³)/mol]	Henrykonstante
h	[kJ/mol]	Spezifische Enthalpie
j _A	$[mol/(m^2s)]$	Molare Stoffstromdichte, Stofftransport
K	[€/t _{CO2}]	Kosten bezogen auf die abgeschiedene CO ₂ -Masse
k	[m/s]	Stoffdurchgangskoeffizient
k	[€/MWh]	Spezifische Kosten
L	[kg _{LM}]	Lösungsmittelmenge
n	[mol]	Stoffmenge
М		Steigung
М	[g/mol]	Molmasse
m	[kg]	Masse
m	[kg/kg]	Spezifische Masse
р	[mbar]	Partialdruck
Р	[mbar]	Druck
Q	[MJ]	Energie
q	[MJ/kg]	Spezifische Energie
r	[mol/(mol min)]	Absorptionsrate
Т	[K]	Temperatur
V	[m ³]	Volumen
V	[m ³ /min]	Volumenstrom
х	[g/g]	Massenkonzentration
у	$[m^3/m^3]$	Volumenkonzentration trocken

Griechische Symbole

α $[mol_{CO2}/mol_{Amin}]$ (Gleichgewichts-)Beladung β $[m/s]$ Stoffübergangskoeffizient δ $[m]$ Filmdicke γ $[-]$ Mischungsanteil η $[\%]$ Wirkungsgrad Δ Differenz ρ $[kg/m^3]$ Dichte τ [min]Zeit ϑ [°C]Temperatur	Δα	$[mol_{CO2}/mol_{Amin}]$	Arbeitskapazität, Beladungsbereich
β[m/s]Stoffübergangskoeffizientδ[m]Filmdicke γ [-]Mischungsanteil η [%]Wirkungsgrad Δ Differenz ρ [kg/m³]Dichte τ [min]Zeitθ[°C]Temperatur	α	$[mol_{CO2}/mol_{Amin}]$	(Gleichgewichts-)Beladung
δ[m]Filmdicke $γ$ [-]Mischungsanteil $η$ [%]Wirkungsgrad $Δ$ Differenz $ρ$ [kg/m³]Dichte $τ$ [min]Zeit ϑ [°C]Temperatur	β	[m/s]	Stoffübergangskoeffizient
γ [-]Mischungsanteil η [%]Wirkungsgrad Δ Differenz ρ [kg/m³]Dichte τ [min]Zeit ϑ [°C]Temperatur	δ	[m]	Filmdicke
η[%]Wirkungsgrad Δ Differenzρ[kg/m³]Dichteτ[min]Zeitθ[°C]Temperatur	γ	[-]	Mischungsanteil
ΔDifferenzρ $[kg/m^3]$ Dichteτ $[min]$ Zeitθ $[^{\circ}C]$ Temperatur	η	[%]	Wirkungsgrad
ρ $[kg/m^3]$ Dichteτ $[min]$ Zeitθ $[^{\circ}C]$ Temperatur	Δ		Differenz
τ [min] Zeit θ [°C] Temperatur	ρ	$[kg/m^3]$	Dichte
θ [°C] Temperatur	τ	[min]	Zeit
	ϑ	[°C]	Temperatur

Indizes tiefgestellt

$\Delta \alpha$	Beladungsbereich
α_L	Lean-Beladung
α_R	Rich-Beladung
AG	Aminogruppe
abs	Absorber, Absorption, Absorbiert
Amin	Amin
atm	Atmosphäre
В	Berührpunkt
С	konzentrationsbezogen
D	Sättigungsdampf
des	Desorber
G	Gasphase
geg	gegeben
ges	gesamt
GG	Gleichgewicht
h	hoch
i	Zum Zeitpunkt τ_i
К	Kolonnenkopf
K*	Kolonnenkopf – Lösungsmitteleintritt
KW	Kraftwerk
L	Lean
lin	linearisiert
LM	Lösungsmittel
LMP	Lösungsmittelprobe
Ltr	Luft trocken
max	Maximal
Misch	Mischung, Aminmischung
net	Netto
(wird fortgesetzt)	

р	Isobar
Polyamin	Polyamin
prim	Primär
R	Rich
reg	Regeneration
RG	Rauchgas
S	Kolonnensumpf
sens	Erwärmung
sg	Stromgestehung
stripp	Strippdampf
t	tief
ТВ	Thermobehälter
V	Verlust
Vd	Verdampfung

Indizes hochgestellt

*	Variante
$\alpha_{\rm R}$	Rich-Beladung
abs	Absorber, Absorption, Absorbiert
aus	Austretend
CCS	Kraftwerk mit CCS
ein	Eintretend
G	Gasphase
Κ	Kolonnenkopf
K*	Kolonnenkopf – Lösungsmitteleintritt
LM	Lösungsmittel
Misch	Mischung, Aminmischung
PG	Phasengrenze
ref	Referenzkraftwerk
vm	Vermeidung

Abstract

To reduce the greenhousegas CO_2 it may be captured and stored. Thereby post-combustion capture with amine scrubbing is one promising option to minimize CO_2 emissions from fossil-fuel power plants. An aqueous solution of 30 mass% monoethanolamine (MEA) is often used for CO_2 absorption. Its thermal regeneration requires a high energy damand, reducing the overall power plant efficiency up to 15 %-points. In order to minimize the energy requirement, it is the aim of this thesis to identify alternative solvents to MEA for a more energy efficient CO_2 capture.

To this end a methodology based on screening results for an early estimate of the regeneration energy is given in this thesis. At first the absorption and desorption behaviour of several aqueous solutions of amines and amine mixtures are acquired in this broad screening. Then solvents with advantages compared to MEA are selected. These are a high absorption rate and high cyclic capacity in combination with a low 90 °C loading. Subsequently solvent specific data required to calculate the regeneration energy are determined in an extensive characterization. These include the vapor-liquid-equilibrium data at absorption and desorption conditions as well as the enthalpy of absorption. Based thereupon a model is developed to calculate the energy demand for regeneration. The results show that the regeneration energy compared to MEA can be reduced specifically for solvents featuring a low loading at 90 °C and a high cyclic capacity, whereby the stability of the CO_2 -amine-bond plays a decisive role.

Finally, in order to estimate the energy demand a correlation is established based on the screening results and applied to all studied solvents. The results show that, especially secondary amines and amine mixtures of poly- and secondary amines with a carrier amine have strong potential to optimize the energy demand. In comparison to MEA it can be reduced by more than 40 % while still achieving similar kinetics.

Keywords: CO₂ absorption, amine, amine mixture, CO₂ vapor-liquid-equilibrium data, enthalpy of absorption, regeneration energy

Kurzfassung

Zur Reduktion des Treibhausgases CO_2 kann dieses abgeschieden und gespeichert werden. Das Post-Combustion Verfahren mit Aminwäsche bietet dabei eine vielversprechende Möglichkeit die CO_2 -Emissionen von fossil befeuerten Kraftwerken zu vermindern. Die zur CO_2 -Absorption meist eingesetzte Lösung von 30 Gew.-% Monoethanolamin (MEA) benötigt für die thermische Regeneration einen hohen Energiebedarf, der den Kraftwerkswirkungsgrad um bis zu 15 %-Punkte reduziert. Um diesen zu senken, ist es das Ziel dieser Arbeit zu MEA alternative Lösungsmittel, die eine effiziente CO_2 -Abscheidung ermöglichen, zu identifizieren.

Dazu wird in dieser Arbeit eine Methodik vorgestellt, die auf Grundlage von Screening-Ergebnissen die Abschätzung des Energiebedarfs zur Regeneration frühzeitig ermöglicht. Zunächst wird in diesem breit angelegten Screening das Absorptions- und Desorptionsvermögen einer Vielzahl an wässrigen Lösungen von Aminen und Aminmischungen ermittelt. Daraufhin wird eine Auswahl anhand vorteilhafter Eigenschaften gegenüber MEA getroffen, wobei eine hohe Absorptionsrate sowie Arbeitskapazität bei gleichzeitig kleiner 90 °C-Beladung von Vorteil sind. Anschließend werden in einer umfassenden Charakterisierung lösungsmittelspezifische Kenndaten, die zur Ermittlung des Energiebedarfs benötigt werden, bestimmt. Diese umfassen die Gleichgewichtsisothermen bei Absorptions- und Desorptionsbedingungen sowie die Absorptionsenthalpie. Auf deren Basis wird im Weiteren ein Modell entwickelt, um den Energiebedarf zur Regeneration zu berechnen. Die Ergebnisse zeigen, dass der Energiebedarf gegenüber MEA speziell für Lösungsmittel mit geringer 90 °C-Beladung und großer Arbeitskapazität reduziert werden kann, wobei die Stabilität der CO₂-Amin-Bindung eine entscheidende Rolle spielt.

Schließlich wird zur Abschätzung des Energiebedarfs eine Korrelation auf Grundlage der Screening-Ergebnisse aufgestellt und auf alle untersuchten Lösungsmittel angewendet. Die Ergebnisse dieser Arbeit zeigen, dass speziell sekundäre Amine und Aminmischungen von Poly- und sekundären Aminen mit einem Trägeramin Potential zur Senkung des Energiebedarfs aufweisen und dieser gegenüber MEA bei vergleichbarer Kinetik um über 40 % reduziert werden kann.

Schlüsselbegriffe: CO₂-Absorption, Amin, Aminmischung, CO₂-Gleichgewichtsisotherme, Absorptionsenthalpie, Energiebedarf zur Regeneration

Einleitung: CO₂-Reduktionsmöglichkeiten

1.1 Handlungsbedarf und Möglichkeiten zur Reduktion von CO₂

Kohlenstoffdioxid (CO₂) ist ein farbloses Gas, welches sauer wirkt, nicht brennbar ist und keinen Geruch aufweist. Es ist ein natürlicher Bestandteil der Atmosphäre mit einem Volumenanteil von knapp 0,04 % entsprechend 392 ppm [91]. CO₂ wirkt im natürlichen Kohlenstoffkreislauf als Austauschkomponente zwischen den Geosphären und hat vulkanische Gase, Atmungsvorgänge von Mensch und Tier sowie Gärungs- bzw. Fäulnisprozesse als natürliche Quellen. CO₂ gilt als Treibhausgas und Hauptverursacher des globalen Klimawandels. Im Jahr 2010 wurden in Deutschland 836 Mio. t CO₂ freigesetzt, die einen Anteil von 88 % der insgesamt emittierten Treibhausgase ausmachten [121]. Durch Verbrennung von fossilen Energieträgern – wie Kohle, Erdöl und Erdgas – zur Stromerzeugung verursachte die Energiewirtschaft 42 % dieser CO₂-Emissionen (Abbildung 1) [121]. Um dem fortschreitenden Klimawandel entgegenzuwirken, wird international die Beschränkung des mittleren globalen Temperaturanstiegs um 2 °C bezogen auf vorindustrielle Werte diskutiert [43]. Dazu müssen die Treibhausgas-Emissionen und somit insbesondere die CO₂-Emissionen reduziert werden. Da die Energiewirtschaft mit 42 % mehr als zwei Fünftel der CO₂-Emissionen verursacht und speziell Kohlekraftwerke große Punktquellen von CO2 darstellen, besteht hier ein großes Reduktionspotential.

Abbildung 1: Jährliche Treibhausgas-Emissionen (A) und CO₂-Emissionen nach Quellgruppe (B) in Deutschland für 2010 [121]

Es ergeben sich verschiedene Möglichkeiten die CO₂-Emissionen innerhalb der Energiewirtschaft zu begrenzen. Dabei stellt der Ausbau der regenerativen Energien als langfristiges Ziel mit anteiligen 50 % des Stromverbrauchs im Jahr 2030 und entsprechend 80 % im Jahr 2050 die nachhaltigste Lösung dar [12, 13]. Dieser Ausbau kann jedoch kurzfristig nicht flächendeckend umgesetzt werden. Er ist neben dem zügigen Ausbau und der Modernisierung der Stromnetze sowie Steigerung der Energieeffizienz und Einstellung der Kernenergienutzung wichtiger Bestandteil des von der Bundesregierung im September 2010 vorgestellten Energiekonzepts [18]. Deutschland hat in Folge der Reaktorkatastrophe in Fukushima, Japan, im März 2011 die Beendigung der Kernenergienutzung bis 2022 beschlossen [12, 13]. Um weiterhin die Versorgungssicherheit zu gewährleisten, ist der Ausbau zusätzlicher Energiequellen unumgänglich, wobei regenerative Energien sowie Kohle- und Gaskraftwerke in Frage kommen. Der Ausbau fossil befeuerter Kraftwerke wirkt der Reduktion der CO₂-Emissionen entgegen, so dass hier zusätzliche Maßnahmen getroffen werden müssen. Kurzfristig kann dabei auf die Mitverbrennung von Biomasse zurückgegriffen werden. Weiterhin wird die Effizienzsteigerung der Kraftwerke durch Parametererhöhung des Wasser-Dampf-Kreislaufs angestrebt. Dabei erfordert die sogenannte 700 °C-Technologie den Einsatz neuer hochlegierter Werkstoffe, deren Anforderungen an mechanische und thermische Festigkeit zurzeit noch nicht vollständig gewährleistet werden können.

Eine Möglichkeit zur mittelfristigen CO₂-Reduktion stellt die Abscheidung und Speicherung von CO₂, im Englischen als CCS "Carbon Capture and Storage" bezeichnet, dar. Das bei der Verbrennung von fossilen Energieträgern entstehende CO₂ wird dabei aufgefangen und einer Speicherung beispielsweise in geologischen Formationen zugeführt, anstatt es in die Atmosphäre zu entlassen. Es gibt drei Verfahrensarten zur CO2-Abscheidung, die parallel zueinander untersucht werden: Die Abscheidung vor und nach der Verbrennung sowie die Verbrennung mit reinem Sauerstoff. Nach dem Abscheidevorgang wird das CO2 aufbereitet und komprimiert, dabei wird es verflüssigt und anschließend zum Transport bereitgestellt. Dieser kann mittels Pipelines zum Ort der Speicherung in geologischen Formationen an Land oder unter dem Meeresboden erfolgen. Als Speicher können ausgeförderte Öl- und Gasfelder, nicht abbaubare Kohleflöze und saline Aquifere dienen. In diese tiefliegenden porösen (Gesteins)-Schichten wird das CO₂ gepresst, wobei sowohl eine physikalische Adsorption oder Absorption als auch eine chemische Bindung eine langfristige Speicherung unter gasdichten Deckschichten garantiert. In der Öl- und Gasindustrie wird seit Jahrzehnten CO2 in geologische Formationen erfolgreich zur erweiterten Ölförderung verpresst, dabei jedoch nicht dauerhaft gespeichert [42, 105].

Die CO₂-Abscheidung nach der Verbrennung, das sogenannte Post-Combustion Capture, mit Aminlösungen ist die am weitesten entwickelte Technologie. Das CO₂ wird dabei von einer wässrigen Aminlösung, meist Monoethanolamin (MEA), aus dem Rauchgasstrom des Kraftwerks abgetrennt. Nach thermischer Regeneration der MEA-Lösung wird das reine CO₂ der Kompression, Verflüssigung und Speicherung zugeführt. Dabei werden erhebliche Einbußen im Kraftwerkswirkungsgrad um 7-15 %-Punkte verursacht [44, 49, 68, 132]. Um den Wirkungsgradverlust zu minimieren werden zwei Möglichkeiten verfolgt: die Prozessoptimierung und die Lösungsmittelentwicklung.

1.2 Ziel und Inhalt dieser Arbeit

Ziel dieser Arbeit ist die Lösungsmittelentwicklung hin zu alternativen Lösungsmitteln, die gegenüber MEA eine energiereduzierte CO₂-Abscheidung aus Kraftwerksrauchgasen ermöglichen. Dazu wird eine Vielzahl an wässrigen Lösungen von Aminen und Aminmischungen untersucht. Nach Auswahl vielversprechender Lösungsmittel werden diese umfassend charakterisiert und darauf basierend der Energiebedarf zur Regeneration bestimmt. Zudem wird eine Korrelation zur Abschätzung des Energiebedarfs auf Basis grundlegender Messdaten derselben Lösungsmittel aufgestellt.

Nach einer kurzen Einleitung in *Kapitel 1* werden die Grundlagen der CO₂-Abtrennung von Kraftwerksrauchgasen in *Kapitel 2* erläutert, wobei näher auf die CO₂-Abscheidung mittels Aminlösungen eingegangen wird. *Kapitel 3* beschreibt die angewandte Methodik zur Charakterisierung der Lösungsmittel sowie den Aufbau und die Durchführung der Experimente.

Die Ergebnisse des Screenings zum Absorptions- und Desorptionsvermögen der Lösungsmittel werden in *Kapitel 4* gezeigt und diskutiert, woraufhin vielversprechende Lösungsmittel für die weiterführenden Untersuchungen ausgewählt werden. Diese Lösungsmittel werden in *Kapitel 5* eingehender hinsichtlich ihrer prozessrelevanten und energetischen Eigenschaften, wie z.B. der Absorptionsenthalpie, charakterisiert.

Kapitel 6 baut auf den experimentellen Ergebnissen der vorangegangenen Kapitel auf und nimmt diese als Basis zur Berechnung des Energiebedarfs zur Regeneration mit einem vereinfachten Modell des Desorbers. Anhand dessen wird der Energiebedarf zur Regeneration korreliert und dadurch eine energetische Abschätzung auf grundlegenden Messdaten ermöglicht.

Abschließend werden in *Kapitel* 7 die Ergebnisse und Diskussionen der vorherigen Kapitel zusammengefasst und ein Ausblick für mögliche zukünftige Untersuchungen gegeben.

2 Grundlagen: CO₂-Abtrennung in Kohlekraftwerken

Im diesem Kapitel werden drei Verfahrensarten zur Verminderung von CO₂-Emissionen erläutert. Dabei wird der Fokus auf Post-Combustion Capture gelegt, das als Absorptionsprozess mit Aminlösungen den weitesten Entwicklungsstand aufweist. Deswegen werden Aminlösungen und deren Reaktionsmechanismen sowie die stofflichen und energetischen Kenngrößen neben Methoden zur Lösungsmittelauswahl ausführlicher dargestellt.

2.1 Verfahrensarten zur Verminderung von CO₂-Emissionen

Es gibt drei unterschiedliche Verfahrensarten zur CO_2 -Abtrennung in Kohlekraftwerken: Pre-, Oxy-Fuel und Post-Combustion Capture. Im Folgenden wird auf deren jeweiligen Entwicklungsstand, Verfahrensprinzip, die Vor- und Nachteile sowie deren Energiebedarf für die CO_2 -Abtrennung eingegangen. Dabei beträgt nach dem heutigen Stand der Technik der Netto-Wirkungsgrad $\eta_{KW,net}$ eines mit Kohlestaub befeuerten Kraftwerks ca. 46 % [125].

2.1.1 Pre-Combustion Capture – Vorgeschaltete CO₂-Abtrennung

Pre-Combustion Capture beruht auf der Vergasung von Kohle zu Synthesegas, das aus Kohlenstoffmonoxid (CO) und Wasserstoff (H₂) besteht. Schon im 19. Jh. wurde die Vergasung von Kohle zur Stadtgaserzeugung eingesetzt. Anfang bis Mitte des 20. Jh. wurden verschiedene Vergasungssysteme (Shell, Sasol Lurgi, GE, ECUST, E-Gas) entwickelt [90]. Neben der Stromerzeugung kam das erzeugte Synthesegas bei der Methanol- und Ammoniak-Synthese sowie bei der Fischer-Tropsch-Synthese zur Erzeugung von flüssigen Kohlenwasserstoffen zur Anwendung [90]. Die Vergasung läuft üblicherweise als exotherme, partielle Oxidation mittels Sauerstoff (O₂) oder Wasserdampf bei Temperaturen von 1.300 bis 1.400 °C und einem Druck von 30 bis 80 bar ab [23, 26, 94]. Beim Pre-Combustion Capture wird dann das Synthesegas in der CO-Shift-Reaktion zu CO₂ und H₂ umgewandelt, wobei die CO₂-Konzentration bei 30-40 Vol.-% liegt [23, 60, 94]. Zur vollständigen Umsetzung des CO zu CO₂ werden Katalysatoren bei einer Temperatur zwischen 200 und 500 °C [23, 63, 94] eingesetzt. Vor der anschließenden Verwertung des H₂ wird das CO₂ mittels physikalischer Ab-

sorption, die durch die hohe CO_2 -Konzentration und den hohen Druck begünstigt wird, abgeschieden. Danach kann der H₂ in einer Gasturbine ähnlich eines kombinierten Gas- und Dampfkraftwerks zur Gewinnung von Elektrizität verbrannt werden. Darüber hinaus kann H₂ auch als mobiler Energiespeicher z.B. in Brennstoffzellen genutzt werden [23, 67]. Das Verfahrensprinzip des Pre-Combustion Capture ist als "Integrated Gasification Combined Cycle" (IGCC) bekannt und in *Abbildung 2* vereinfacht dargestellt.

Abbildung 2: CO₂-Abtrennung vor der Verbrennung – Pre-Combustion

Vor der Verwendung des Synthesegases ist zudem eine Gasreinigung erforderlich, die u.a. Schwefelwasserstoff (H_2S) aus dem Synthesegas abreinigt. Die H_2S -Abtrennung kann entweder vor, selektiv z.B. mittels Selexol, oder nach dem CO-Shift-Reaktor gemeinsam mit CO₂ erfolgen. Die gemeinsame H_2S - und CO₂-Abscheidung ermöglicht eine Einsparung im Wirkungsgradverlust von ca. 1,5 %-Punkten [60]. Das abgeschiedene H_2S wird der Schwefelrückgewinnung und das CO₂ der Kompression zugeführt. [23, 63, 67, 94]

Für die CO₂-Abscheidung im IGCC-Kraftwerk werden mehrere Verfahren diskutiert. Dabei sind die physikalische Absorption mittels Selexol, Rectisol oder Purisol und die chemische Absorption mittels aMDEA aus der Synthesegasherstellung bekannt. Der Wirkungsgradverlust beträgt dabei zwischen 8,5-14,5 %-Punkte [26, 60, 67, 106]. In der Entwicklung befinden sich zudem der Chemical-Looping Prozess mit zu erwartenden 8,3-10,4 %-Punkten Wirkungsgradverlust und selektive Membranen mit 8,5 %-Punkten [67].

2.1.2 Oxy-Fuel Combustion Capture – Verbrennung mit Sauerstoff

Oxy-Fuel Combustion Capture ist eine Variante der klassischen Verbrennung von Kohle, bei der reiner Sauerstoff (O_2) anstelle von Verbrennungsluft verwendet wird. Dieses Verfahrensprinzip wurde Anfang der 80-er Jahre entwickelt und ist vereinfacht in *Abbildung 3* dargestellt. Abraham et al. [2] schlugen es als Möglichkeit zur Bereitstellung großer Mengen an CO_2 für die erweiterte Ölförderung vor und Horn und Steinberg [59] hoben zusätzlich die Reduktion der Umweltbelastung durch vollständige Vermeidung von Emissionen hervor. Seit den 90-er Jahren wird Oxy-Fuel zur Vermeidung von CO_2 -Emissionen erforscht. Mittels Luftzerlegung wird dabei sämtlicher Stickstoff (N₂) entfernt und reines O₂ zur Kohleverbrennung verwendet. Dadurch reduziert sich der Rauchgasvolumenstrom um ca. 80 % [17, 110, 119] und besteht hauptsächlich aus 70 Gew.-% CO₂ [17] und Wasserdampf. Um die Verbrennungstemperaturen zu kontrollieren, werden ca. 60-80 % des Rauchgases rezirkuliert [17, 110, 119]. Aufgrund der besonderen Rauchgaszusammensetzung kann das CO₂ nach Auskondensation des H₂O direkt ohne zusätzlichen Abscheidungsschritt der Kompression zugeführt werden. Allerdings ist eine Aufbereitung des CO₂ hinsichtlich Staub, SO_x und NO_x erforderlich. Diese entspricht der üblichen Rauchgasreinigung und kann entweder bereits vor der Rezirkulation des Rauchgases oder erst vor der Kompression erfolgen.

Abbildung 3: CO₂-Abtrennung während der Verbrennung – Oxy-Fuel-Combustion

Mit Hilfe der Oxy-Fuel Verbrennung kann eine CO_2 -Verminderung von über 90 % erreicht werden. Dabei beträgt nach Auskondensation des H₂O die CO₂-Konzentration 80-95 Vol.-% [127]. Nach der Kompression und Verflüssigung des CO₂ werden die restlichen nicht kondensierbaren Komponenten, wie N₂, O₂, Ar oder CO, als Abgasstrom mit 50 Vol.-% CO₂ in die Atmosphäre abgelassen [119]. Um trotz veränderter Rauchgaseigenschaften die Nachrüstung eines konventionellen Kraftwerks mit Oxy-Fuel zu ermöglichen, wird eine dem Luftbetrieb vergleichbare Wärmeübertragung angestrebt. Diese wird durch entsprechende Rauchgasrezirkulation erreicht, wobei sich eine O₂-Konzentration von unter 30 Vol.-% einstellt [17, 110, 119]. Der Hauptanteil des Energiebedarfs beruht auf der Luftzerlegung, die 60 % des Wirkungsgradverlusts mit 7-9 %-Punkte verursacht [119].

Als weitere Technik wird der Chemical-Looping-Prozess zur N₂-freien Verbrennung untersucht [82]. Es erfolgt eine Aufteilung in einen Luft- und einen Brennstoffreaktor, zwischen denen ein Metall als Sauerstoffträger zirkuliert. Der Sauerstoff wird als Metalloxid dem Brennstoff zur Verfügung gestellt, so dass das Rauchgas gleich der Oxy-Fuel Verbrennung wiederum hauptsächlich aus CO_2 und H₂O besteht. Das reduzierte Metall wird in dem Luftreaktor wieder oxidiert. Vorteilhaft ist, dass so kaum Energie zur Luftzerlegung benötigt wird.

2.1.3 Post-Combustion Capture – Nachgeschaltete CO₂-Abtrennung

Post-Combustion Verfahren werden der Rauchgasreinigungsstrecke einer konventionellen Kohleverbrennung, bestehend aus Entstaubung, Entstickung und Entschwefelung, nachgeschaltet (*Abbildung 4*). Die CO₂-Abscheidung erfolgt dabei aus dem Rauchgasstrom mit einem CO₂-Anteil von 12-15 Vol.-% typischerweise über Absorption mit physikalischen oder chemischen Lösungsmitteln. Zur thermischen Regeneration des Lösungsmittels wird als Energiezufuhr Niederdruckdampf aus dem Wasser-Dampf-Kreislauf des Kraftwerks zur Verfügung gestellt. Die Dampfentnahme stellt die wesentliche Änderung der ansonsten, im Vergleich zu den anderen Verfahrensarten, einfachen Integration ins bestehende Kraftwerk dar. Das CO₂ wird nach der Abtrennung der Kompression zugeführt. Das CO₂-arme Rauchgas, das nach den erfolgten Reinigungsschritten hauptsächlich aus N₂, O₂ und Wasserdampf besteht, wird über den Kamin in die Atmosphäre abgegeben. Die CO₂-Abscheidung bewirkt Einbußen im Kraftwerkswirkungsgrad von 7-15 %-Punkten [44, 49, 68, 132].

Seit über 20 Jahren sind zur CO₂-Absorption aus Gasströmen der Economine FG (Plus)SM Prozess von Fluor [42] und der Kansai Mitsubishi Carbon Dioxid Recovery Prozess (KM-CDR ProcessTM) von MHI [105] in kommerziellen Anlagen zur erweiterten Ölförderung, der Methanol- oder Urea-Herstellung und der Lebensmittelindustrie im Einsatz.

Abbildung 4: CO₂-Abtrennung nach der Verbrennung – Post-Combustion

Zur Verminderung von Lösungsmittel Degradation und Korrosion bestehen bei Absorptionsverfahren besondere Anforderungen an die Rauchgasreinheit [21, 32]. Es besteht der Zusammenhang, dass Degradationsprodukte zur Korrosivität eines Lösungsmittels beitragen. So können Lösungsmittel mit SO_x und NO_x hitzebeständige Salze bilden, die zu Lösungsmittelverlust führen. Bei zu hohem Aschegehalt können Anlagenkomponenten verstopfen. Ist zudem O_2 präsent kann Degradation und dadurch Korrosion über anorganische Bestandteile der Asche gefördert werden. Desweiteren können Sauerstoff und hohe Temperaturen im Desorber zu oxidativer und thermischer Degradation des Lösungsmittels führen. Durch Zugabe von Inhibitoren kann die Degradation eingeschränkt und Korrosion vermieden werden. Neben den praxiserprobten Absorptionsverfahren kommen für Post-Combustion Capture alternativ Adsorptions- und Membranverfahren sowie der Calcium-Looping-Prozess in Frage. Die Adsorption [89] kann physikalisch oder chemisch an Zeoliten bzw. Aktivkohle erfolgen, wobei die Regeneration durch Druckabsenkung oder Temperaturerhöhung erfolgt. Bei großem Druckverlust über die Adsorbensschüttung oder Regeneration über Druckabsenkung, ist die Anwendung bei Kraftwerken mit großen Rauchgasvolumenströmen ungeeignet. Membrane [10, 89] sind semi-permeabel und bestehen aus organischen (Polymere) oder anorganischen (Keramiken, Metalle) Materialien. Der Stofftransport erfolgt über Diffusion, Molekularsieb oder Ionentransport. Die Permeabilität (Massenstrom über die Membran) und Selektivität für einen spezifischen Stoff bestimmen den Einsatzbereich der Membran. Vorteilhaft ist, dass keine Regeneration benötigt wird und sich damit der Wirkungsgradverlust auf die Kompression des CO₂ sowie eventuelle Verdichtung des Rauchgasstroms vor der Membran reduziert. Nachteile bestehen hingegen darin, dass Membrane bei geforderter hoher Permeabilität nicht immer ausreichende Selektivität aufweisen, was eine mehrstufige Verschaltung oder Rezirkulation erfordert. Der Calcium-Looping-Prozess [117] besteht aus zwei Wirbelschichtreaktoren mit Calciumoxid (CaO) als Bettmaterial. Im Carbonator wird das CO2 aus dem Rauchgas bei 650 °C als Calciumcarbonat (CaCO₃) absorbiert und im Regenerator bei ca. 900 °C wieder desorbiert. Zur Beheizung wird dem Regenerator Kohle zugeführt, die mit reinem Sauerstoff verbrannt wird. Dazu muss nur rund ein Drittel des Sauerstoffs im Vergleich zu einer Oxy-Fuel Verbrennung bereitgestellt werden. Bei effizienter Wärmerückgewinnung stellt die Luftzerlegung neben der Kompression den einzigen Energieverlust dar. Nachteilig sind der Sorbensverbrauch durch Deaktivierung und Abrieb sowie die schwierige Handhabung von Feststoffwirbelschichtreaktoren [54, 117]. Diese alternativen Verfahren wurden bisher nicht industriell erprobt.

2.1.4 Vergleich der Verfahrensarten zur Verminderung von CO₂-Emissionen

Die drei Verfahrensarten unterscheiden sich in ihrem Entwicklungsstand, dem Wirkungsgradverlust und den CO₂-Vermeidungskosten K_{CO2}^{vm} (*Tabelle 1*). Diese ergeben sich gemäß *Gleichung* (1) aus der Differenz der Stromgestehungskosten k_{sg}^i [€/MWh] je mit und ohne CO₂-Abscheidung bezogen auf die Differenz der CO₂-Emissionen e_{CO2}^i [t_{CO2}/MWh] je mit und ohne CO₂-Abscheidung in [€/t_{CO2}].

$$K_{CO2}^{vm} = \frac{k_{Sg}^{CCS} - k_{Sg}^{ref}}{e_{CO2}^{ref} - e_{CO2}^{CCS}}$$
(1)

	Pre-Combustion Oxy-Fuel Combustion		Post-Combustion		
Entwicklungsstand	Ökonomisch realisierbar	Demonstrationsphase	Ökonomisch realisierbar		
Pilot ^a	Puertollano (14/ES/10) Buggenum (20/NL/11)	Schw. Pumpe (30/DE/08) Compostilla (30/ES/09)	Brindisi (48/IT/10) Mongstad (<30/NO/12)		
Demonstration ^a	Don Valley (650/UK/16) Hürth (450/DE/-)	Compostilla (300/ES/15) Jänschwalde (250/DE/-)	Porto Tolle (660/IT/15) Mongstad (280/NO/16)		
Bestehende Technologien	Physikalische Absorption Chemische Absorption	Kryogene Luftzerlegung	Chemische Absorption		
Neue Technologien	Selektive Membrane Chemical-Looping	Selektive Membrane Chemical-Looping	Adsorption Calcium-Looping		
Vorteile	 Kaum Emissionen Ggf. kein Dampfbedarf Kombinierte CO₂/H₂S Abtrennung Abtrennung günstig da viel CO₂, hoher Druck 	 Bedingt nachrüstbar Reduktion des Rauch- gas- und Anlagenvolu- men durch kein N₂ Keine zusätzliche Ab- trennung des CO₂ 	 Nachrüstbar Bekannte Technologie Flexibel Selektive Abtrennung trotz wenig CO₂ Wärmeintegration 		
Nachteile	 Komplexe Technik Schlechte Verfügbarkeit Luftzerlegung Synthesegaskühlung vor CO₂-Abscheidung Energieverlust bei CO- Shift-Reaktion CO₂-Druckverlust durch Flash-Regeneration H₂-Austrag mit CO₂ 	 Luftzerlegung teuer und energieintensiv O₂-Feuerung komplex Materialprobleme we- gen hoher Temperatur Falschlufteintrag Störkomponenten (O₂, SO_x, NO_x, Hg) in CO₂ negativ für Transport und Speicherung 	 Hoher Energiebedarf zur Regeneration Bei niedrigem Energie- bedarf zur Regeneration schlechte Kinetik Bei großer LM-Menge hoher Wärme-/Kühl- /Pumpenergiebedarf 		
η _{KW,net} [%] ^b	38-46	40-46	40-46		
η_{KW} -Verlust [%-Pkt] ^c	6-11	9-11	7-15		
K_{CO2}^{vm} [\in_{2010}/t_{CO2}] ^d	32-48	30-58	29-51		

	Tabelle '	1: Vergleich der	Verfahrensarten zur	Verminderung vor	n CO	2-Emissionen	[29,	63,	68, 89	, 9
--	-----------	------------------	---------------------	------------------	------	--------------	------	-----	--------	-----

^a Anlagenbeispiele [87, 126, 133]: MW/ Land/ Jahr ^b [44, 49, 68, 125, 127, 132] ^c [44, 49, 68, 132]

^d [44, 49, 132]: CO₂-Vermeidungskosten ohne Transport und Speicherung, mit 2,26-2,72 €₂₀₁₀/GJ_{Kohle}, allgemeiner Preisangleich auf €₂₀₁₀ (1 €₂₀₁₀ = 1,3257 \$₂₀₁₀ [40], 1 € = 1,9558 DM₁₉₉₉ [33], 1,6_{€2010}/1,1_{€1999} [39])

In *Tabelle 1* werden die drei Verfahrensarten verglichen und die jeweiligen Vor- und Nachteile zusammenfassend dargestellt. Pre- und Post-Combustion Capture werden als ökonomisch realisierbar eingestuft, da alle Einzelkomponenten bereits industriell eingesetzt werden. Oxy-Fuel Combustion Capture wird auf Grund fehlender industrieller Erfahrung der Demonstrationsphase zugeordnet [29, 63]. Alle drei Verfahrensarten werden in diversen Labor- und Pilotanlagen bereits getestet. Vor dem Einsatz im Kraftwerk ist jedoch die großtechnische Demonstration zwingend erforderlich, die 2015/16 angestrebt wird [87, 126, 133]. Während die physikalische und chemische Absorption sowie die kryogene Luftzerlegung industriell etablierte Verfahren darstellen, die oft mit einem hohen Energiebedarf einhergehen, ermöglichen neue Technologien wie selektive Membrane, Adsorption und Chemical- oder Calcium-Looping eine Reduktion des Energiebedarfs. Der Energiebedarf und der damit einhergehende Wirkungsgradverlust des Kraftwerks variieren abhängig vom eingesetzten Verfahren sehr stark mit 6-15 %-Punkten [44, 49, 68, 132]. Die CO₂-Vermeidungskosten liegen für alle drei Verfahrensarten im ähnlichen Bereich von $30-60 \notin t_{CO2}$ [44, 49, 132]. Auf Grund der Ungewissheiten hebt sich aus den bisherigen Abschätzungen der Literatur keine Technologie klar hervor, so dass diese weiterhin als konkurrenzfähig gelten und die Besonderheiten in verfahrensspezifischen Vor- und Nachteilen gemäß *Tabelle 1* liegen [132].

2.2 CO₂-Abtrennung mittels Absorption

Die CO₂-Abscheidung mittels Absorption stellt das am weitesten entwickelte Verfahren dar. Dazu können physikalische und chemische Lösungsmittel im Kreislaufprozess aus Absorption und Desorption eingesetzt werden, worauf im Folgenden näher eingangen wird.

2.2.1 Absorbentien – Physikalische und Chemische Lösungsmittel

Bei der Absorption wird eine Gaskomponente in einer Flüssigkeit aufgenommen und gelöst bzw. gebunden, so dass in Abhängigkeit der Bindungskräfte die physikalische (Physisorption) bzw. chemische Absorption (Chemisorption) unterschieden werden. Dieser Sachverhalt ist in *Abbildung 5* dargestellt.

Abbildung 5: Gleichgewichtsisothermen bei hoher (A) und tiefer Temperatur (B) der CO₂-Absorption in einem physikalischen und einem chemischen Lösungsmittel

Die Absorption der Gaskomponente, hier CO₂, mit einem physikalischen Lösungsmittel erfolgt aufgrund zwischenmolekularer Wechselwirkungen wie der Van-der-Waals-Kräfte. Das physikalische Lösungsmittel geht somit im Gegensatz zum chemischen Lösungsmittel keine chemische Bindung mit dem CO₂ ein. Die Physisorption beruht allein auf der Löslichkeit des CO₂ in dem Lösungsmittel und weist damit den linearen Zusammenhang zwischen dem CO₂-Partialdruck in der Gasphase und der CO₂-Beladung des Lösungsmittels in *Abbildung 5* auf. Die Chemisorption bedarf zusätzlich einer aktiven Komponente, die das CO₂ durch eine chemische Reaktion im Lösungsmittel bindet. Dadurch kann das chemische im Vergleich zum physikalischen Lösungsmittel selektiver mehr CO₂ aufnehmen, woraus sich der exponentielle Kurvenverlauf in *Abbildung 5* ergibt. Die Kurve nähert sich der maximalen Beladung $\alpha_{max,i}$ die aus der chemischen Reaktionsgleichung folgt, an.

Die Kurvenverläufe geben die Gleichgewichte von CO_2 zwischen der Gasphase und dem physikalischen bzw. chemischen Lösungsmittel bei konstanter Temperatur wieder. Sie werden deswegen als Gleichgewichtsisothermen bezeichnet, die in *Abbildung 5 A* bei hoher und *Abbildung 5 B* bei tiefer Temperatur gezeigt sind. Bei niedriger Temperatur nehmen das physikalische und das chemische Lösungsmittel bei gleichem Partialdruck mehr CO_2 auf als bei hoher Temperatur und erreichen eine höhere Beladung. Diese wird durch starke zwischenmolekulare Wechselwirkungen bei tiefer Temperatur begünstigt. Mit steigender Temperatur folgt eine Abnahme der zwischenmolekularen Wechselwirkungen, worauf die Beladung sinkt. Bei der Chemisoption verschiebt sich mit steigender Temperatur zudem das Reaktionsgleichgewicht hin zu den Edukten, d.h. zum freiem CO_2 in der Gasphase. Dadurch wird die maximal erreichbare Beladung reduziert.

Zur CO_2 -Abscheidung können verschiedene Lösungsmittel eingesetzt werden, deren Auswahl von mehreren Faktoren abhängt. Neben einer hohen Selektivität gegenüber CO_2 ist ebenfalls eine hohe Aufnahmekapazität und leichte Regenerierbarkeit wichtig. Ein niedriger Dampfdruck zur Minimierung von Lösungsmittelverlusten, eine geringe Viskosität, Ungiftigkeit und geringe Korrosivität sind vorteilhaft. Zu beachten sind zudem der CO_2 -Partialdruck im zu reinigenden Gasstrom, der geforderte Abscheidegrad und die benötigte Reinheit des abgeschiedenen CO_2 . Weitere Kriterien sind eine hohe thermische und chemische Stabilität, z.B. gegenüber Verunreinigungen wie HCl, SO_x , NO_x und Asche, sowie die Investitions- und Betriebskosten des Verfahrens und mögliche Auswirkungen auf die Umwelt [21, 95].

Tabelle 2 gibt einen Überblick über physikalische, chemische und gemischte Lösungsmittel, die entweder industriell verfügbar oder derzeit Gegenstand der aktuellen Forschung und Entwicklung sind.

Die Absorption mit physikalischen Lösungsmitteln wird von hohem Absolutdruck und CO₂-Partialdruck sowie niedriger Temperatur begünstigt, so dass die Desorption durch Entspannung, Temperaturerhöhung oder deren Kombination erfolgen kann. Je nach Verfahren wird deswegen eine energieintensive Kompression des zu reinigenden Gasstroms oder eine starke Kühlung bei Niedertemperaturabsorption eingesetzt [62]. Im zu reinigenden Gasstrom sind Konzentrationen größer als 15 Vol.-% CO₂, vorliegend bei der Erdgas- und Synthesegasaufbereitung bzw. Pre-Combustion, erforderlich [62]. Der Abscheidegrad und die erzielbare Reinheit des abgeschiedenen CO₂ sind geringer als bei der chemischen Absorption und hängen stark von dem eingesetzten Lösungsmittel ab. Kommerziell verfügbare physikalische Lösungsmittel sind: Selexol, das zur kombinierten CO₂- und H₂S-Abscheidung eingesetzt wird, Rectisol, das sehr selektiv für CO₂ ist, Purisol, das selektiv gegenüber H₂S wirkt und die Fluor-Lösung, die bei hohen CO₂- und geringen H₂S-Konzentrationen vorteilhaft ist [19, 75].

	Name	Тур	Verfügbarkeit	Quelle
	Rectisol	Methanol	Lurgi, Linde	[63, 64, 75]
Physikalische	Purisol	n-Methylpyrrolidon	Lurgi	[63, 64, 75]
Lösungsmittel	Selexol	Dimethylether von Polyethylenglycol	Union Carbide, UOP	[21, 63, 64]
	Fluor-Lösung	Propylen Carbonat	Fluor	[64, 75]
	MEA	Monoethanolamin und Inhibitoren	Dow, EXXON, Lurgi	[21, 63, 64]
	DEA	Diethanolamin	Lurgi	[21, 64]
	Economine	Diglycolamin (DGA) oder MEA	Fluor	[42, 62]
	ADIP	Diisopropanolamin (DIPA), Methyldiethanolamin (MDEA)	Shell	[21, 64]
	MDEA	Methyldiethanolamin	BASF, DOW, Shell	[21, 63, 64]
Chemische Lösungsmittel	KS-1, KS-2, KS-3	Sterisch gehinderte Amine	MHI	[21, 62, 105]
	Chilled Ammonia	Ammoniak	Alstom	[32, 62]
	Pottasche	Kaliumcarbonat	DOW, EXXON, Lurgi	[21, 64, 74]
	PZ/K ₂ CO ₃	Piperazin und Kaliumcarbonat	verschiedene (F&E)	[32, 62, 93]
	K ⁺ RCOO [−]	Aminosäuresalze	Siemens (F&E)	[32, 62]
	Mischungen	Primäre/sekundäre Amine + tertiä- re / sterisch gehinderte Amine	verschiedene (F&E)	[32, 74, 111]
	DMX	Zweiphasenlösung: XXX + Amin	IFP (F&E)	[102, 103]
Physikalisch- chemische Lösungsmittel	Sulfinol D, Sulfinol M	DIPA / MDEA + H ₂ O + Tetrahy- drothiopen (DIPAM) / Diethylamin	Shell	[63, 64, 75]
	Amisol	Methanol + MEA / DEA / Diisopropylamin / Diethylamin	Lurgi	[64, 75]
5	Flexsorb	XXX + Methyldiethanolamin	EXXON	[64, 75]
Salzlösungen	Ionic Liquids	Ionische Flüssigkeiten	verschiedene (F&E)	[83, 128]

Tabelle 2: Absorbentien zur CO₂-Abscheidung – Industriell verfügbar und F&E

Die Absorption mit chemischen Lösungsmitteln ermöglicht den Einsatz bei geringem CO₂-Partialdruck – notwendig für Kraftwerksrauchgas – und hohem Abscheidegrad bis 95 % sowie hoher CO₂-Reinheit von über 99 Vol.-% [95]. Die Regeneration erfolgt thermisch und weist einen hohen Energiebedarf auf. Im Gegensatz zu physikalischen sind chemische Lösungsmittel anfälliger gegenüber thermischer und oxidativer Degradation sowie Reaktionen mit SO_x und NO_x, mit denen speziell Amine hitzebeständige Salze bilden [21, 42]. Es gibt eine Vielzahl von kommerziell verfügbaren chemischen Lösungsmitteln. Dazu gehören mehrere Amine, wie MEA, DGA, DEA, DIPA oder MDEA, die mit Inhibitoren gegen Degradation und Korrosion oder Aktivatoren versetzt sind. Die Lösungsmittel KS-1 bis KS-3, die auf sterisch gehinderten Aminen basieren, wurden dahingehend entwickelt, dass sie keine Inhibitoren benötigen, eine höhere CO₂-Aufnahme als MEA aufweisen und weniger Energie zur Regeneration als MEA benötigen [105]. Ammoniak soll dieselben Vorteile aufweisen und zusätzlich zur Abscheidung von SO_x und NO_x eingesetzt werden können, nachteilig ist dessen hohe Flüchtigkeit [32]. Kaliumcarbonat (Pottasche) wird unter hohem Druck eingesetzt [21], wobei mit Piperazin aktivierte Lösungen zur drucklosen Absorption erforscht werden [93]. Es werden verschiedene Ansätze für neue Lösungsmittel mit reduziertem Energiebedarf zur Regeneration verfolgt, u.a. Aminosäuresalzlösungen [32, 62], Aminmischungen [32, 74, 111], Zweiphasenlösungen [102, 103] und Ionische Flüssigkeiten [83, 128].

Als physikalisch-chemische Lösungsmittel werden kommerziell verfügbar Sulfinol, Amisol und Flexsorb eingesetzt. Sie bestehen z.B. aus Methanol mit Aminen wie MEA oder MDEA. Ziel ist eine Kombination der jeweils positiven Eigenschaften der einzelnen Komponenten. Während das physikalische Absorbens den Hauptanteil des CO_2 aus dem Gasstrom aufnimmt, entfernt das chemische Absorbens das nunmehr in geringer Menge verbliebene CO_2 fast vollständig und sorgt damit für die geforderte hohe Reinheit [75, 95].

2.2.2 Prozess – Absorption und Desorption

Die CO₂-Abtrennung mit Lösungsmitteln erfolgt in einem kontinuierlichen Kreislaufprozess aus Absorption und Desorption. Die dafür verwendeten Absorber- und Desorberkolonnen stellen einen intensiven Kontakt zwischen der Gasphase und dem Lösungsmittel sicher. Um die Kontaktfläche zu erhöhen, werden Füllkörper, die aus einer losen Schüttung oder einer strukturierten Packung bestehen, eingesetzt. Der Prozess ist schematisch in *Abbildung 6* dargestellt und wird beispielhaft anhand von Aminlösungen erläutert.

Abbildung 6: Absorber und Desorber zur CO₂-Abscheidung

Die am häufigsten eingesetzte wässrige Aminlösung ist eine 15-30% ige Lösung von MEA [76], die das CO₂ durch eine exotherme chemische Reaktion aufnimmt. Die Aminlösung wird oben am Absorberkopf mit 40 °C aufgegeben und rieselt unter dem Einfluss der Schwerkraft über die Füllkörper durch die Kolonne hindurch. Das CO₂-reiche Rauchgas strömt im Gegenstrom vom Kolonnensumpf durch den Absorber und verlässt nach 90% iger Abreinigung diesen am Kolonnenkopf CO₂-arm. Während der Absorption wird die Aminlösung mit CO₂ beladen (rich) und erwärmt sich dabei auf 60-70 °C [123, 124]. Die rich-Lösung weist für MEA eine Beladung von 0,4-0,5 mol_{CO2}/mol_{Amin} [61, 76, 118] auf. Nach Vorwärmung wird die rich-Lösung dem Desorber am Kolonnenkopf zugeführt und im Gegenstrom mit Wasserdampf beaufschlagt, der eine Absenkung des CO₂-Partialdrucks und eine Erhöhung der Temperatur bewirkt. Dadurch wird CO₂ aus der Aminlösung in die Gasphase getrieben, wodurch die Aminlösung regeneriert wird. Der Wasserdampf wird im Reboiler bei 100-120 °C und einem Druck bis zu 2 bar durch Verdampfung des Wassers aus der Aminlösung erzeugt [124]. Die dafür benötigte Energie wird durch Niederdruckdampf aus dem Wasser-Dampf-Kreislauf des Kraftwerks bereitgestellt, wodurch der Kraftwerkswirkungsgrad um 7-15 %-Punkte [44, 49, 68, 132] fallen kann. Das CO₂-Wasserdampf-Gemisch verlässt den Desorber am Kolonnenkopf und passiert einen Kondensator, in dem der Wasserdampf auskondensiert und in den Desorber zurückgeführt wird. Das 95-99 Vol.-%-haltige CO2 wird der Kompression und Speicherung zugeführt [95, 123]. Nach der Regeneration wird die CO₂-arme (lean) Aminlösung am Desorbersumpf abgezogen. Die Beladung der lean-Lösung von MEA beträgt dabei $0,2-0,3 \text{ mol}_{CO2}/\text{mol}_{Amin}$ [61, 76, 118]. Die lean-Lösung wird über den rich-/lean-Wärme-tauscher abgekühlt und in den Absorber zur erneuten CO₂-Abtrennung zurückgeführt.

2.3 CO₂-Absorption mit Aminlösungen

Für die CO₂-Abscheidung aus Kraftwerksrauchgasen eignen sich speziell Aminlösungen, da diese das CO₂ schnell und selektiv binden. Zunächst werden der Stofftransport und dessen Einflussgrößen betrachtet sowie der Energiebedarf zur Regeneration und dessen Abhängigkeit von Prozessgrößen definiert. Danach wird näher auf Aminlösungen und deren Reaktionsmechanismen sowie Methoden zur Lösungsmittelcharakterisierung und -auswahl eingegangen.

2.3.1 Absorption – Stofftransport und Energiebedarf

Bei der Absorption von CO_2 findet ein Stofftransport aus der Gasphase durch die Phasengrenzfläche in das Lösungsmittel statt. Es gibt hauptsächlich zwei Modellvorstellungen zur Beschreibung des Stofftransports an Gas-Flüssig-Phasengrenzflächen: Das im Weiteren betrachtete Zweifilmmodell nach Lewis und Whitman [79] und die Theorie zur Oberflächenerneuerung – einerseits die Grenzflächentheorie von Danckwerts [30] und andererseits die Penetrationstheorie von Higbie [56] beschrieben. Der Stofftransport kann mit der allgemeinen Formulierung nach *Gleichung (2)* beschrieben werden.

$$Stofftransport = \frac{treibende Kraft}{Widerstand} = Koeffizient \cdot treibende Kraft$$
(2)

Der Stofftransport nach der Zweifilmtheorie [79] ist in Abbildung 7A schematisch für CO₂ dargestellt. Grundannahme ist eine sehr gute Durchmischung der Gas- und Flüssigphase, innerhalb denen der Stofftransport durch Konvektion erfolgt. Auf beiden Seiten der Phasengrenze *PG* bilden sich laminare Grenzschichten mit den Filmdicken δ_G und δ_{LM} [m] aus, auf die sich der Stofftransportwiderstand verteilt. In den Grenzschichten erfolgt der Stofftransport $j_{A,CO2}$ [mol/(m² s)] bei <u>physikalischer Absorption</u> durch Diffusion und kann daher gemäß dem 1. Fickschen Gesetz mit *Gleichung (3)* beschrieben werden [11, 41]. Dabei stellen $D_{CO2}^{G/LM}$ [m²/s] die Diffusionskoeffizienten der Gas- bzw. Flüssigphase sowie $p_{CO2}^{G/PG}$ [mbar] und $c_{CO2}^{PG/LM}$ [mol/m³] die CO₂-Partialdrücke und Konzentrationen an der Phasengrenze bzw. in den Phasen dar. Das ideale Gasgesetz ($p_{CO2} = c_{CO2} RT$)¹ wird berücksichtigt.

$$j_{A,CO2} = \frac{D_{CO2}^{G} \ 100}{\delta_{G} \ RT} \ (p_{CO2}^{G} - p_{CO2}^{PG}) = \frac{D_{CO2}^{LM}}{\delta_{LM}} \ (c_{CO2}^{PG} - c_{CO2}^{LM})$$
(3)

An der Phasengrenze wird Gleichgewicht vorausgesetzt, so dass bei verdünnten Systemen und idealer Lösung das Henrysche Gesetz $(p_{CO2}^{PG} = H_C c_{CO2}^{PG})^2$ gilt. Das Verhältnis aus Diffusionskoeffizient D_{CO2} zu Filmdicke δ wird als Stoffübergangskoeffizient β bezeichnet. Weiterhin kann der Stofftransport zu *Gleichung* (4) umgeformt werden, wobei sich die Stoffdurchgangskoeffizienten $k_{G/LM}^3$ der Gas- bzw. Flüssigphase aus den messbaren Größen der Konzentrationen und Partialdrücke ergeben. Eine ausführliche Herleitung ist in [41] gegeben.

$$j_{A,CO2} = \frac{k_G \ 100}{RT} \ (p_{CO2}^G - H_C \ c_{CO2}^{LM}) = \ k_{LM} \ \left(\frac{p_{CO2}^G}{H_C} - c_{CO2}^{LM}\right) \tag{4}$$

Der Stofftransport gekoppelt mit <u>chemischer Absorption</u> des CO₂ durch eine nichtflüchtige Komponente in der Flüssigphase, hier Amin, ist in *Abbildung 7 B* und *C* für zwei unterschiedlich schnelle Reaktionen dargestellt. Der Stofftransport von der Gas- in die Flüssigphase findet entsprechend *Abbildung 7 A* über Diffusion statt, danach reagiert das gelöste CO₂ mit dem Amin. Bei langsamer Reaktion (*Abbildung 7 B*) findet die Reaktion hauptsächlich in der Flüssigphase nach der Grenzschicht statt. Mit steigender Reaktionsgeschwindigkeit verlagert sich die Reaktion in die Grenzschicht (*Abbildung 7 C*), wobei das CO₂ fast vollständig reagiert [11, 41]. Es wird angenommen, dass der Stofftransport durch Diffusion der chemisch absorbierten Menge an CO₂ entspricht. Dabei können zwei Fälle unterschieden werden [35]: Alles gelöste CO₂ reagiert bei der Stoffübergangskontrolle sofort ab, da die Geschwindigkeit der Reaktion viel höher als die der Diffusion ist. Tritt der umgekehrte Fall ein, herrscht Reaktionskontrolle, dabei diffundiert mehr CO₂ in die Flüssigphase als durch die chemische Reaktion gebunden wird. Bei der Absorption von CO₂ durch Amin ist dies in der Flüssigphase zuerst im Überschuss vorhanden, so dass die Aminkonzentration zunächst als konstant angese-

³ Gasseitig
$$k_G = 1/\left(\frac{1}{\beta_G} + \frac{100 H_C}{RG\beta_H}\right)$$
 [m/s], Flüssigseitig $k_{LM} = 1/\left(\frac{1}{\beta_{LM}} + \frac{RT}{100 H_C\beta_G}\right)$ [m/s]
³ Gasseitig $k_G = 1/\left(\frac{\beta_G}{\beta_G} + \frac{RT\beta_{LM}}{RT\beta_{LM}}\right)$ [m/s], Flüssigseitig $k_{LM} = 1/\left(\frac{\beta_{LM}}{\beta_{LM}} + \frac{100 H_C\beta_G}{100 H_C\beta_G}\right)$ [m/s]

¹ Ideale Gaskonstante R = 8,314 [J/(mol K)]

² Konzentrationsbezogene Henrykonstante H_C [(mbar m³)/mol]

hen werden kann. Es besteht Stoffübergangskontrolle bei schneller Reaktion. Mit fortschreitender Reaktion sinkt die Konzentration des Amins und es wird weniger CO_2 gebunden, so dass der Stofftransport des CO_2 durch Reaktionskontrolle limitiert ist.

Abbildung 7: Konzentrationsverläufe nach dem Zweifilmmodell mit physikalischer Absorption (A) sowie chemischer Absorption bei langsamer (B) und schneller Reaktion (C) [11, 41]

Um einen hohen Stofftransport einzustellen, sind eine hohe Konzentrationsdifferenz, eine große Phasengrenzfläche und ein hoher Stoffdurchgangskoeffizient vorteilhaft [35]. Eine hohe Konzentrationsdifferenz ist direkt von einem hohem CO₂-Partialdruck bzw. einem hohen Partialdruckgefälle abhängig. Um dazu einen möglichst gleichbleibenden Stofftransport über die gesamte Kolonnenhöhe zu realisieren, wird die Kolonne im Gegenstromprinzip betrieben. Eine hohe Phasengrenzfläche wird durch eine ausreichende Lösungsmittelumlaufmenge und den Einsatz von Füllkörpern bzw. feinen Tröpfchen sichergestellt. Da der Stoffdurchgangskoeffizient invers proportional zur Filmdicke ist, kann dieser durch Reduktion der Filmdicke über starke Turbulenz erhöht werden. Weiterhin ist der Stoffdurchgangskoeffizient von der Art und Konzentration des Lösungsmittels abhängig, wobei Temperatur und CO₂-Beladung entscheidenden Einfluss haben. Wichtige Lösungsmitteleigenschaften sind die Reaktionskonstante der Absorptionsreaktion, die Oberflächenspannung und die Viskosität. Je größer die Reaktionskonstante, desto größer ist der Stofftransport. Im Gegensatz dazu sinkt der Stofftransport mit steigender Oberflächenspannung und Viskosität. Bei Konzentrationserhöhung des Lösungsmittels stehen mehr Moleküle zur Reaktion zur Verfügung, so dass der Stofftransport steigt. Gleichzeitig nimmt die Viskosität der Lösung zu, so dass der Stofftransport gehemmt wird. Eine Temperaturerhöhung bewirkt eine Zunahme der Reaktionskonstante und eine Absenkung der Viskosität, die beide zu einem erhöhten Stofftransport beitragen. Es wird jedoch ebenfalls das Reaktionsgleichgewicht hin zu den Edukten verschoben und damit der Stofftransport eingeschränkt. Mit zunehmender CO₂-Beladung des Lösungsmittels stehen weniger Moleküle zur Reaktion zur Verfügung, wodurch der Stofftransport sinkt. Die Einflussgrößen haben gegensätzliche Auswirkungen auf den Stofftransport, die eine experimentelle Bestimmung des optimalen Absorptions- und Desorptionsbereichs für jedes Lösungsmittel erforderlich machen. Für die Lösungsmittel MEA, AMP und NaOH werden in [9] Einflussgrößen auf den Stofftransport für eine Absorberkolonne mit Packungen betrachtet.

Bei der Absorption von CO_2 mit Aminlösungen wird der Stofftransport über eine exotherme chemische Reaktion verstärkt. Um das CO_2 wieder freizusetzten, muss für die Desorption des Lösungsmittels Energie zugeführt werden. Dieser <u>Energiebedarf zur Regeneration</u> ist von großer Bedeutung für die Auswahl eines Lösungsmittels, da er maßgeblich für den Wirkungsgradverlust des Kraftwerks von 7 bis 15 %-Punkten [44, 49, 68, 132] verantwortlich ist.

Bei der Regeneration eines Lösungsmittels finden im Desorber mehrere parallel zueinander ablaufende Parameteränderungen über der Kolonnenhöhe statt, die in Abbildung 8 dargestellt sind. Die rich-Lösung mit der CO₂-Beladung α_R [mol_{CO2}/mol_{Amin}] wird dem Desorber am Kolonnenkopf nach Passieren des rich-/lean-Wärmetauschers mit der Temperatur T_{des}^{K} [K] zugeführt und während des Herabrieselns am Füllkörper bis zum Erreichen des Kolonnensumpfs auf T_{des}^{S} [K] erwärmt. Gleichzeitig wird das Lösungsmittel im Gegenstrom mit Dampf, der durch Verdampfung von Wasser aus der Lösung im Reboiler erzeugt wird, beaufschlagt. Der Dampf erwärmt das Lösungsmittel, zudem stellt er die Energie zur Spaltung der CO_2 -Amin-Bindung zur Verfügung, so dass die Beladung auf α_L [mol_{CO2}/mol_{Amin}] reduziert wird. Dabei geht das desorbierte CO₂ von der Flüssig- in die Gasphase über. Um diesen Stofftransport zu erhöhen und eine möglichst geringe CO2-Beladung des Lösungsmittels zu erreichen, ist ein großes CO₂-Partialdruckgefälle vorteilhaft. Dazu wird eine zusätzliche Menge an Strippdampf zur Verfügung gestellt, die einen geringen CO₂-Partialdruck im Kolonnensumpf p_{CO2}^{S} [mbar] ermöglicht. Über der Kolonnenhöhe geht desorbiertes CO₂ in die Gasphase über und gleichzeitig kondensiert Wasser aus dem Dampf in die Flüssigphase aus. Der CO2-Partialdruck steigt somit bis zum Erreichen des Kolonnenkopfs auf p_{CO2}^{K} [mbar] an. Das CO₂-Wasserdampf-Gemisch verlässt den Desorber am Kolonnenkopf und passiert einen Kondensator, in dem die Wassermenge m_{Vd} [kg_{H2O}] auskondensiert und in den Desorber zurückgeführt wird. Die regenerierte lean-Lösung wird über den rich-/lean-Wärmetauscher zum Absorber geleitet und erneut zur CO₂-Abscheidung eingesetzt.

Zur Regeneration werden demnach drei Energiemengen Q_i [MJ] benötigt:

- Q_{sens}: Aufwärmung des Lösungsmittels

$$Q_{sens} = m_{LM} \,\Delta T_{des} \, c_{p,LM} \tag{5}$$

- Q_{abs} : Spaltung der CO₂-Amin-Bindung

$$Q_{abs} = \Delta H_{abs} |_{\alpha_L}^{\alpha_R}$$
(6)

 $- Q_{stripp}$: Senkung des CO₂-Partialdrucks

$$Q_{stripp} = m_{Vd} \,\Delta h_{Vd} \tag{7}$$

Die Summe der Energieanteile ergeben gemäß *Gleichung* (8) die zur Regeneration benötigte Energiemenge Q_{reg} [MJ].

$$Q_{reg} = Q_{sens} + Q_{abs} + Q_{stripp}$$
 (8)

mit zugehörigen Energiemengen Q_i [MJ] bei der Regeneration

Wird die zur Regeneration benötigte Energiemenge auf die abgeschiedene Menge an CO₂ m_{CO2} [kg_{CO2}] bezogen, ergibt sich der Energiebedarf zur Regeneration zu $q_{reg} = Q_{reg}/m_{CO2}$ in [MJ/kg_{CO2}]. Beispielsweise benötigt der Economine FG Prozess von Fluor eine Energiemenge von 4,2 MJ/kg_{CO2} [21] zur Regeneration, die im FG Plus Prozess auf 3,0 MJ/kg_{CO2} [104] reduziert werden konnte.

Der Energieanteil Q_{sens} zur Aufwärmung des Lösungsmittels ergibt sich aus *Gleichung* (5). Darin ist m_{LM} [kg_{LM}] die mit CO₂-beladene Lösungsmittelmenge, ΔT_{des} [K] die Temperaturdifferenz über dem Desorber und $c_{p,LM}$ [MJ/(kg_{LM} K)] die Wärmekapazität des Lösungsmittels. Der zur Spaltung der CO₂-Amin-Bindung benötigte Energieanteil Q_{abs} leitet sich gemäß *Gleichung* (6) aus der Absorptionsenthalpie $\Delta H_{abs}|_{\alpha_L}^{\alpha_R}$ [MJ] des Lösungsmittels zwischen rich- und lean-Beladung ab. *Gleichung* (7) gibt den Energieanteil Q_{stripp} zur Senkung des CO₂-Partialdrucks mit der Verdampfungsenthalpie Δh_{Vd} [MJ/kg_{H2O}] bei T_{des}^{S} wieder.

Zur Berechnung des Energiebedarfs zur Regeneration werden die lösungsmittelspezifischen Eingangsgrößen wie die Lösungsmittelmenge, die Absorptionsenthalpie und die erforderliche

Strippdampfmenge benötigt. Dazu werden in dieser Arbeit die Gleichgewichtsisothermen bei Absorptions- und Desorptionstemperaturen sowie die Absorptionsenthalpie ermittelt und ein Modell zur Berechnung des Energiebedarfs zur Regeneration entwickelt.

2.3.2 Reaktionsmechanismen – Amine und Aminmischungen

Die CO₂-Bindung durch Aminlösungen erfolgt über eine reversible chemische Reaktion. Amine sind Derivate des Ammoniaks, so dass die reaktive Gruppe die Aminogruppe $(-NH_2)$ darstellt, deren Typ entscheidend für die Absorptionseigenschaften ist. Es werden drei Typen von Aminen unterschieden: Primäre, sekundäre und tertiäre Amine. Dabei werden je nach Amintyp entsprechend ein bis drei Wasserstoffatome des Ammoniaks durch einen organischen Rest $(-R_i)$ substituiert. *Tabelle 3* zeigt die schematische Strukturformel der Amintypen mit jeweils einem Beispielmolekül sowie Angaben über Absorptionskinetik und -enthalpie.

Amintyp	Strukturformel	Beispiel für Amin	Strukturformel	Absorptions- kinetik	Absorptions- enthalpie
				[mol _{CO2} / (mol _{Amin} min)]	[kJ/mol _{CO2}]
Primär	H ₂ N—R ₁	Monoethanolamin (MEA)	HO NH ₂	0,014 ^a	80-85 ^b
Sekundär	R ₁ NR ₂ H	Diethanolamin (DEA)	но М он	0,008 ^a	75 ^c
Tertiär	R ₁ —N—R ₂ R ₃	Methyldiethanolamin (MDEA)	сн ₃ но М он	0,003 ^a	55-60 ^b

Tabelle 3: Amintypen (R_i = organischer Rest {i=1, 2, 3})

^a [100]: 15 Vol.-% CO₂, 30 Gew.-%, 40 °C ^b [70, 72, 123]: 30 Gew.-%, 40 °C ^c [96, 123]: 35 Gew.-%, 40 °C

Das bekannteste primäre Amin ist MEA, bei dem ein Wasserstoffatom des Ammoniaks durch den organischen Rest $R_1 = CH_2CH_2OH$ ersetzt ist. Bei dem sekundären Amin Diethanolamin (DEA) sind zwei Wasserstoffatome mit diesem organischen Rest substituiert. Das tertiäre Amin Methyldiethanolamin (MDEA) ergibt sich aus DEA durch Substitution des verbleibenden Wasserstoffatoms durch eine Methylgruppe. Die Molekülstruktur wird von MEA über DEA zu MDEA komplexer, wodurch die Molmasse steigt und die Absorptionskinetik [100] sowie Absorptionsenthalpie [70, 72, 96, 123] der CO₂-Bindungsreaktion sinken. Diese Unterschiede begründen sich dadurch, dass primäre und sekundäre Amine CO₂ bevorzugt durch Bildung von Carbamationen binden. Die Reaktion kann dabei über den termolekularen oder über den Zwitterionen-Mechanismus beschrieben werden. Der Zwitterionen-Mechanismus wurde zuerst von Caplow [20] beschrieben und von Danckwerts [31] wieder aufgegriffen. Darin erfolgt die CO_2 -Bindungsreaktion zu Carbamat über den Zwischenschritt der Zwitterionenbildung ($R_1R_2NH^+CO_2^-$). Crooks und Donnellan [27] vertraten den Ansatz des termolekularen Mechanismus, der die direkte Reaktion von CO_2 mit Amin darstellt. Aus quantenmechanischen Berechnungen von da Silva [28] geht hervor, dass die direkte Reaktion zwischen CO_2 und Amin bevorzugt stattfindet, die Bildung von Zwitterionen jedoch kurzzeitig möglich ist. Bei der stark exothermen <u>Bildung von Carbamationen</u>, die hauptsächlich nach *Gleichung (9)* als Nettoreaktion der beiden Reaktionsmechanismen erfolgt, wird das CO_2 unter Abspaltung eines Protons direkt an die Aminogruppe gebunden. Das freie Proton wird von einem zweiten Aminmolekül, das als Base fungiert, aufgenommen. Die Reaktion kann ebenfalls mit jeder anderen Base, z.B. Wasser, nach *Gleichung (10)* ablaufen.

$$CO_2 + 2 R_1 R_2 NH \rightleftharpoons R_1 R_2 N CO_2^- + R_1 R_2 NH_2^+$$
 (9)

$$CO_2 + R_1 R_2 NH + B \rightleftharpoons R_1 R_2 NCO_2^- + BH^+$$
⁽¹⁰⁾

Tertiäre Amine reagieren nicht direkt mit CO_2 , sondern binden es durch die schwach exotherme <u>Bildung von Hydrogencarbonationen</u> gemäß *Gleichungen (11)* bis *(14)*. Dabei wirkt das Amin als Base und führt zur Bildung von Hydroxidionen, welche mit CO_2 zu Hydrogencarbonat und abhängig vom pH-Wert weiter zu Carbonat reagieren [27, 113].

$$H_2 O + R_1 R_2 R_3 N \rightleftharpoons OH^- + R_1 R_2 R_3 N H^+$$
(11)

$$CO_2 + OH^- \rightleftharpoons HCO_3^- \tag{12}$$

$$CO_2 + H_2O \rightleftharpoons HCO_3^- + H^+ \tag{13}$$

$$HCO_3^- \rightleftharpoons CO_3^{2-} + H^+ \tag{14}$$

Nach *Gleichungen (11)* und *(12)* können tertiäre Amine bei vollständiger Reaktion eine theoretische Beladung von 1,0 mol_{CO2}/mol_{Amin} erreichen, primäre und sekundäre Amine hingegen gemäß *Gleichung (9)* nur eine Beladung von 0,5 mol_{CO2}/mol_{Amin}. Tatsächlich werden jedoch höhere Gleichgewichtsbeladungen für primäre und sekundäre Amine erreicht, da sie parallel zu Carbamat ebenfalls Hydrogencarbonat bilden [28].

Die <u>Absorptionskinetik</u> der Hydrogencarbonatbildung ist im Vergleich zur Carbamatbildung sehr langsam, was dazu führt, dass tertiäre Amine nicht als Reinstofflösungen für die CO₂-Absorption eingesetzt werden. Bei festgelegtem CO₂-Abscheidegrad bestimmt die Absorptionskinetik die erforderliche Höhe der Absorberkolonne, die bei Einsatz einer reinen MDEA-

Lösung für eine 90% ige CO₂-Abscheidung nach [124] 200 m betragen würde. Tabelle 3 ist zu entnehmen, dass MDEA als tertiäres Amin mit 0,003 mol_{CO2}/(mol_{Amin} min) gegenüber MEA mit 0,014 mol_{CO2}/(mol_{Amin} min) eine viereinhalb-fach kleinere Absorptionsgeschwindigkeit aufweist [100]. DEA als sekundäres Amin zeigt mit 0,008 mol_{CO2}/(mol_{Amin} min) eine mittlere Absorptionskinetik [100]. Die Absorptionsenthalpie sinkt in Abhängigkeit des Amintyps von MEA mit 85 kJ/mol_{CO2} über DEA mit 75 kJ/mol_{CO2} auf 60 kJ/mol_{CO2} für MDEA [70, 72, 96, 123]. Die Absorptionsenthalpie stellt dabei eine Mischenthalpie aller bei der Absorption parallel ablaufenden exothermen Reaktionen dar, d.h. der Carbamat- und Hydrogencarbonatreaktionen. Die dabei frei werdende Energie wird von der Lösung aufgenommen, wodurch sie sich erwärmt. Die Absorptionsenthalpie ist zudem ein Maß für die Stabilität der CO₂-Amin-Bindung und entscheidend für die zur Spaltung der Bindung benötigte Energie und damit dem Energiebedarf zur Regeneration. Daraus folgt, dass die Bildung von Carbamationen, entsprechend Gleichung (9), eine schnelle Reaktion mit stabil gebundenem CO₂ darstellt, die mit einem hohen Energiebedarf zur Spaltung der Bindung verbunden ist. Dahingegen halten Hydrogencarbonationen, die gemäß Gleichungen (11) bis (14) mit langsamer Kinetik gebildet werden, das CO₂ mit schwächerer Bindung d.h. niedriger Absorptionsenthalpie in Lösung. Somit kann das als Hydrogencarbonat gebundene CO2 mit geringerem energetischen Aufwand als das als Carbamat stabil gebundene CO2 aus der Lösung ausgetrieben werden. Ein hoher Anteil an Hydrogencarbonationen ist demnach für eine hohe CO₂-Aufnahme und einen geringen Energiebedarf zur Regeneration vorteilhaft, wobei er ebenfalls eine Verringerung der Absorptionskinetik bedingt.

Die Bindungsart von CO_2 in Lösung ist nicht nur von der Art der Aminogruppe abhängig, sondern auch von weiteren strukturellen Eigenschaften des Amins. Nebengruppen der Aminogruppe können durch einen <u>induktiven Effekt</u>, d.h. eine Veränderung der Teilladung am Stickstoffatom der Aminogruppe, oder durch <u>sterische Hinderung</u>, d.h. räumliche Abschirmung der Aminogruppe, sowohl die Absorptionskinetik als auch die Stabilität der CO_2 -Amin-Bindung beeinflussen [15, 50]. 2-Amino-2-methyl-1-propanol (AMP) ist ein häufig untersuchtes sterisch gehindertes Amin, das sich durch eine hohe CO_2 -Aufnahme bei guter Absorptionskinetik [58, 109] auszeichnet. Aufgrund der räumlichen Abschirmung der primären Aminogruppe wird das CO_2 schnell jedoch instabil als Carbamat gebunden. Die Instabilität der Bindung ermöglicht eine Umlagerung des CO_2 in Hydrogencarbonat, so dass freie Aminogruppen erneut CO_2 absorbieren. Nach der Umlagerung liegt das CO_2 als Hydrogencarbonat vor, wodurch AMP mehr CO_2 aufnehmen und leichter desorbiert werden kann [48, 58].
<u>Polyamine</u> stellen eine besondere Gruppe von Aminen dar. Sie weisen mehrere gleich- oder verschiedenartige Aminogruppen in ihrer Molekülstruktur auf, so dass trotz geringer Aminkonzentration eine hohe Anzahl an reaktiven Aminogruppen in der Lösung erreicht wird. Polyamine zeigen außerdem eine hohe Affinität zu CO₂ und eine hohe Absorptionskinetik, wie z.B. 2-(2-Aminoethylamino)-ethanol (AEAE) [85], Diethylenetriamin (DETA) [51, 53] und Triethylentetramin (TETA) [112], die neu in der Literatur Beachtung gefunden haben.

Eine Möglichkeit zur Verbesserung der CO₂-Absorption besteht in der Mischung von verschiedenen Aminen, wobei deren vorteilhafte Eigenschaften kombiniert werden. Carbamatbildende Amine werden auf Grund ihrer hohen Absorptionskinetik mit Hydrogencarbonatbildenden Aminen, die einen geringen Energiebedarf zur Regeneration aufweisen, gemischt. In einer Mischung aus einem primären und einem tertiären Amin kann beispielsweise das primäre Amin als Aktivator wirken, indem es sehr schnell CO₂ aus der Gasphase in die Lösung bindet. Durch das tertiäre Amin wird eine Umlagerung des gebunden CO2 in Hydrogencarbonat ermöglicht, so dass die geringe Reaktionsenthalpie dieses Bindungstyps die Regeneration begünstigt. Die bekanntesten Aminmischungen sind binäre Mischungen aus MEA oder DEA mit MDEA [8, 47, 124]. Es wurde eine Vielzahl an Untersuchungen zu Kinetik und CO₂-Gleichgewichtsisothermen verschiedener Mischungsverhältnisse von MEA mit MDEA durchgeführt [66, 81, 114]. Weiterhin wurden binäre Mischungen aus dem sterisch gehinderten AMP mit Piperazin (PZ) [108] oder MEA [34] betrachtet und in jüngster Zeit ebenfalls Mischungen aus dem Polyamin TETA mit MDEA [5] behandelt. Untersuchungen von [8] und [47] zeigten, dass bei der Mischung eines Aktivators, bestehend aus einem primären oder sekundären Amin, mit einem tertiären Amin die Absorptionskinetik der Aminmischung der des Aktivators ähnelt. Der Energiebedarf zur Regeneration ist jedoch hauptsächlich vom tertiären Amin abhängig, wobei der Zusammenhang nicht proportional zu dem Mischungsverhältnis ist [8]. Anhand gezielter Mischungen von geeigneten Aminen kann somit ein Lösungsmittel mit hoher Absorptionskinetik und niedrigem Energiebedarf zur Regeneration gefunden werden.

2.3.3 Forschung – Lösungsmittelentwicklung und Prozessoptimierung

Das Standardlösungsmittel MEA weist nicht nur eine sehr hohe Absorptionskinetik sondern auch einen sehr hohen Energiebedarf zur Regeneration auf. Deswegen werden einerseits alternative Lösungsmittel mit geringerem Energiebedarf zur Regeneration und andererseits Maßnahmen zur Prozessoptimierung in Forschungsvorhaben untersucht. Zur Auswahl und Bewertung alternativer Lösungsmittel und Prozessvarianten werden verschiedene Ansätze verfolgt. Dazu gehören die Ermittlung von Stoffdaten, der Einsatz von Screening-Methoden sowie die Durchführung von Simulationen und Wirtschaftlichkeitsberechnungen. Zudem werden in Pilot- und Demonstrationsanlagen Laborergebnisse in größerem Maßstab überprüft.

Die Ermittlung von Stoffdaten dient als Grundlage zur Auswahl der Lösungsmittel und als unverzichtbarer Eingabedatensatz für Simulationsanwendungen. Dabei werden speziell die Absorptionskinetik, die Absorptionsenthalpie, die CO₂-Gleichgewichtsisothermen und die Wärmekapazität untersucht. Ein Großteil der Literatur über Absorptionskinetik behandelt die Standardamine MEA, DEA und MDEA bei unterschiedlichen Konzentrationen und Temperaturen [1, 27, 36, 98, 120]. Die Absorptionskinetik alternativer Aminlösungen, wie z.B. AP, EAE und DETA, sowie binärer Aminmischungen der Standardamine wurden in [52, 55, 80] bzw. [7] betrachtet. Die Absorptionssenthalpie wurde von Kim et al. [69, 70, 71, 72] für verschiedene Amine und Aminmischungen bei Temperaturen von 40 bis 120 °C untersucht. In [25, 84, 101] wurden Wärmekapazitätsdaten für Reinstoffe temperaturabhängig ermittelt. Wässrige Lösungen von Aminen [24, 88] und Aminmischungen [22] wurden in Abhängigkeit der Aminkonzentration, Temperatur und Zusammensetzung sowie der CO₂-Beladung [129] betrachtet. Die Ermittlung von Gleichgewichtsisothermen ist zwingend notwendig für die Auslegung und Simulation des Absorptions- und Desorptionsprozesses. In der Literatur wurde hauptsächlich MEA [66, 78, 85, 131] untersucht, zudem gibt es einige Datensätze für die binären Aminmischungen von MEA mit MDEA [47, 65] sowie Piperazin mit K₂CO₃ [57].

Um die Auswahlmöglichkeit an alternativen Lösungsmitteln zu erhöhen, wurden breit angelegte Untersuchungen mit geringer Detailtiefe bei einer hohen Anzahl an Lösungmitteln durchgeführt – sogenannte <u>Screenings</u>. Dabei wurden jeweils nur Teilaspekte betrachtet, wie die Absorptionseigenschaften alternativer Lösungsmittel [86, 100], der Einfluss der Molekülstruktur auf die Absorption [115, 116], die Absorptions- und Desorptionseigenschaften alternativer Lösungsmittel [6, 14] oder Aminmischungen [111] sowie die Ermittlung von Gleichgewichtsisothermen mit Simulation des Energiebedarfs zur Regeneration [48, 99].

Zunehmend werden bei Charakterisierungen neuer Lösungsmittel diese namentlich nur unvollständig offengelegt, so dass die Ergebnisse nicht nachvollziebar sind. Dadurch sind beispielsweise Daten zum Energiebedarf zur Regeneration nicht vergleichbar oder stehen lediglich für MEA zur Vefügung [48, 92, 118].

<u>Simulationen</u> stellen ein wichtiges Mittel zur Auslegung des Prozesses und dessen Integration ins Kraftwerk dar. Dazu werden detaillierte Stoffdaten der Lösungsmittel mit hoher Genauigkeit benötigt, die nur für wenige Lösungsmittel wie z.B. MEA und Mischungen von Piperazin mit K₂CO₃ vorliegen. Deswegen basieren die meisten Simulationen auf Daten von MEA. Ein Modell zur Ermittlung des Stoffübergangs wurde von Dugas in [38] aus expermentellen Daten von PZ und MEA erstellt. Hilliard führte in [57] thermodynamische Simulationen von Gleichgewichtszuständen zur Prozessauslegung verschiedener Systeme von MEA, PZ und K_2CO_3 durch. Mit Hilfe der Stoffdatensimulationen von [38, 57] ermittelte Oexmann in [93] den Energiebedarf zur Regeneration und simulierte die Prozessintegration ins Kraftwerk. Auf Grundlage der Simulationen wurden Energetik und Wirtschaftlichkeit bei MEA-Einsatz von Abu-Zahra et al. [3, 4], Aroonwilas und Veawab [8, 123] sowie Göttlicher [49] betrachtet.

Die auf Basis von Scrennings, Prozess-, Energetik- und Wirtschaftlichkeitsstudien identifizierten alternativen Lösungsmittel sowie MEA wurden in mehreren <u>Pilotanlagen</u> im Rahmen von Forschungsprojekten untersucht. In CASTOR [77] wurden die Lösungsmittel zuerst in einem sogenannten Miniplant von Notz [92] in Stuttgart (DE) und anschließend in der Pilotanlage in Esbjerg (DK) von Tobiesen et al. [118] untersucht. Die Pilotanlage von Maasvlakte (NL) wird im Rahmen des Forschungsprojekts CATO betrieben [87, 133]. Desweiteren werden verschiedene Untersuchungen an mehreren Anlagen unterschiedlicher Größe im Boundary Dam Projekt (CA) vorgenommen [87, 133].

Zusammenfassend haben Freguia und Rochelle in [45] festgestellt, dass eine Reduktion des Energiebedarfs zur Regeneration durch Prozessoptimierung um mehr als 10 % nicht möglich ist, jedoch der Energiebedarf durch Lösungsmittelentwicklung um 20 bis 40 % von bekannten MEA-Werten (3,5-4,2 MJ/kg_{CO2}) nach van Straelen und Geuzebroek [122] gesenkt werden kann. Allerdings ist eine Reduktion unter 2,0 MJ/kg_{CO2} bei konventioneller Prozessverschaltung nicht möglich, was aus idealer Berechnung des absoluten thermodynamischen Minimums hervorgeht. Um das Reduktionspotential des Energiebedarfs zur Regeneration auszunutzen, werden in dieser Arbeit alternative Lösungsmittel zu MEA nachvollziehbar und umfassend experimentell und energetisch charakterisiert und bewertet.

3 Methodik: Vorgehensweise zur Charakterisierung

Zur energetischen Bewertung alternativer Lösungsmittel werden in dieser Arbeit wässrige Lösungen von Aminen und Aminmischungen eingehend untersucht. Dazu werden Screening-Versuche für eine Vielzahl an Lösungsmitteln durchgeführt. Diese ermöglichen eine qualitative Aussage zum Absorptions- und Desorptionsvermögen, anhand derer eine Auswahl vielversprechender Lösungsmittel im Vergleich zur Referenz 30,0 Gew.-% MEA getroffen wird. Die ausgewählten Lösungsmittel werden umfassend charakterisiert, worauf die energetische Berechnung und Bewertung erfolgt. Die verwendeten Versuchsaufbauten, die Vorgehensweise zur Charakterisierung sowie die untersuchten Amine werden im Folgenden erläutert.

3.1 Aufbau und Durchführung der experimentellen Charakterisierung

In der experimentellen Charakterisierung werden im Screening zunächst die Gleichgewichtsbeladungen ermittelt und dann nach Auswahl von Lösungsmitteln die Gleichgewichtsisothermen und die Absorptionsenthalpie bestimmt. Die Durchführung der Experimente wird an den verwendeten Versuchsaufbauten erläutert.

3.1.1 Ermittlung der Gleichgewichtsbeladung

Die Ermittlung der Gleichgewichtsbeladung erfolgt in einem Blasensäulenreaktor gemäß des in *Abbildung 9* dargestellten Versuchsaufbaus, der auf Vorarbeiten von [14] basiert. Darin werden 0,2 kg Lösungsmittelprobe in einem Wasserbad auf einer regelbaren Heizplatte temperiert und mit 0,002 m³/min synthetischem Rauchgas der Zusammensetzung 15 Vol.-% CO₂, 5 Vol.-% O₂ und 80 Vol.-% N₂ beaufschlagt. Die Eindüsung des Rauchgases in die Probe erfolgt mittels Massendurchflussregler über eine Glasfritte (Porengröße 1), so dass eine gute Vermischung und eine große Stoffübergangsfläche erreicht werden. Der austretende CO₂arme Gasstrom wird über einen Rücklauf- und Messgaskühler einem Infrarot-Gasanalysator zugeführt. Der Rücklaufkühler kondensiert das verdampfte Wasser bzw. Lösungsmittel aus und leitet es zurück in die Probe. Die Gaszusammensetzung wird kontinuierlich mit dem Infrarot-Gasanalysator gemessen und über eine Computer-Schnittstelle aufgezeichnet.

Abbildung 9: Versuchsaufbau zur Bestimmung der Gleichgewichtsbeladung

Der Versuch zur Ermittlung der Gleichgewichtsbeladung ist abgeschlossen, wenn die CO₂-Austritts- der CO₂-Eintrittskonzentration y_{CO2}^{ein} [m³/m³] entspricht. Das Lösungsmittel der Masse m_{LM} [kg] steht dann im Gleichgewicht mit der CO₂-Konzentration im Rauchgas bzw. mit dem anliegenden CO₂-Partialdruck. Während der Absorption erfolgt die Aufzeichnung der CO₂-Austrittskonzentration $y_{CO2,i}^{aus}$ [m³/m³]. Gemäß *Gleichung (15)* ergibt sich das von dem Lösungsmittel absorbierte CO₂-Volumen V_{CO2}^{abs} [m³] durch Integralbildung über der Zeit τ [min]. Der eintretende Rauchgasvolumenstrom \dot{V}_G [m³/min] ist dabei konstant. Die Gleichgewichtsbeladung α [mol_{CO2}/mol_{Amin}] wird dann mit *Gleichung (16)* berechnet. Darin wird die absorbierte CO₂-Menge n_{CO2}^{abs} [mol_{CO2}] auf die eingewogene Aminmenge n_{Amin} [mol_{Amin}] im Lösungsmittel mit der Aminkonzentration x_{Amin} [g/g] bezogen. Die Dichte von CO₂ bei 0 °C und 1.013 mbar wird mit $\rho_{CO2} = 1,977$ kg/m³ [46] berücksichtigt.

$$V_{CO2}^{abs} = \dot{V}_G \int_0^\tau \frac{y_{CO2}^{ein} - y_{CO2,i}^{aus}}{1 - y_{CO2,i}^{aus}} d\tau$$
(15)

$$\alpha = \frac{n_{CO2}^{abs}}{n_{Amin}} = \frac{V_{CO2}^{abs} \rho_{CO2} M_{Amin}}{m_{LM} x_{Amin} M_{CO2}}$$
(16)

Die Ermittlung der CO₂-Gleichgewichtsisothermen erfolgt im gleichen Versuchsaufbau. Dazu werden die Gleichgewichtsbeladungen bei Temperaturen von 40, 80 und 90 °C durch Variation der CO₂-Konzentration im Gas (5, 10, 15, 50, 100 Vol.-%) ermittelt. Die Konzentrationen

von 5 und 10 Vol.-% CO_2 werden durch N₂-Dosierung zu dem synthetischen Rauchgas hergestellt. Durch Kombination von N₂ und CO_2 werden 50 Vol.-% CO_2 gemischt.

Die Ermittlung der Gleichgewichtsbeladung ermöglicht zudem eine Gegenüberstellung der Absorptionsgeschwindigkeiten der Lösungsmittel. Für den eingesetzten Versuchsaufbau ist die Absorptionsrate $r = \frac{\Delta \alpha}{\Delta \tau} [\text{mol}_{\text{CO2}}/(\text{mol}_{\text{Amin}} \text{min})]$ jedoch spezifisch, da keine definierte Phasengrenzfläche aufgrund von z.B. Form und Verweilzeit der Gasbläschen in der Probe vorliegt. Sie kann deswegen nur zu einem qualitativen Vergleich herangezogen werden und ergibt sich aus der über einem Zeitintervall $\Delta \tau$ erreichten Beladungsdifferenz $\Delta \alpha$.

Für die Gleichgewichtsbeladung wird die Einheit $[mol_{CO2}/mol_{Amin}]$ verwendet, wenn die Lösungsmittel auf ihre stoffspezifischen Eigenschaften hinsichtlich der CO₂-Absorption und Desorption untersucht werden. Dieser Vergleich ermöglicht die Betrachtung strukturspezifischer Unterschiede der einzelnen Aminmoleküle und deren Reaktionen mit CO₂. Werden Polyamine betrachtet, Lösungsmittel mit mehreren Aminogruppen, bezieht sich die Einheit $[mol_{CO2}/mol_{Amin}]$ auf die Aminogruppenanzahl im Molekül. Das Mol Amin $[mol_{Amin}]$ ist definiert aus dem Produkt von Mol Polyamin $[mol_{Polyamin}]$ und der Aminogruppenanzahl AG $[mol_{AG}/mol_{Polyamin}]$. Dadurch werden die mittleren Absorptions- und Desorptionseigenschaften pro Aminogruppe dargestellt. Eine zweite Möglichkeit zum Vergleich besteht in der Verwendung der Einheit $[g_{CO2}/kg_{LM}]$. Auf diese Weise ist ein absoluter Vergleich der Lösungsmittel unabhängig von der Aminkonzentration möglich, da diese Einheit die Gesamtmenge an CO₂ wiedergibt, die von einem Kilogramm Lösungsmittel aufgenommen werden kann.

3.1.2 Ermittlung der Absorptionsenthalpie

Die Absorptionsenthalpie wird in dem in *Abbildung 10* dargestellten Versuchsaufbau bei 40 °C und Atmosphärendruck ermittelt. Dabei werden 0,1 kg Lösungsmittelprobe mit 0,001 m³/min synthetischem Rauchgas der Zusammensetzung 15 Vol.-% CO₂, 5 Vol.-% O₂ und 80 Vol.-% N₂ über eine Glasfritte (Porengröße 1) beaufschlagt. Das synthetische Rauchgas wird mittels Massendurchflussregler dosiert und über ein temperaturgeregeltes Wasserbad bei 65 °C vorbefeuchtet. Anschließend, um die Sättigung des Gasstromes mit Wasser sicherzustellen, wird dessen Eintrittstemperatur auf 40 °C über einen Kühler mit Kondensatfalle eingestellt. Auf diese Weise werden durch konstante Bedingungen Fehler durch Verdampfungs- und Kondensationswärme minimiert. Der austretende CO₂-arme Gasstrom wird nach passieren eines Messgaskühlers einem IR-Gasanalysator zugeführt, in dem die Gaszusammensetzung gemessen wird. Die Lösungsmittelprobe wird ebenfalls auf 40 °C eingestellt und

in einen vorgewärmten Thermobehälter überführt, in dem die Absorption stattfindet. Die Temperaturen des ein- und austretenden Gasstromes sowie die Temperaturerhöhung der Lösungsmittelprobe aufgrund der exothermen Absorptionsreaktionen werden mit PT100-Thermoelementen gemessen und über eine PC-Schnittstelle kontinuierlich aufgezeichnet.

Abbildung 10: Versuchsaufbau zur Bestimmung der Absorptionsenthalpie

3.2 Experimentelle und energetische Charakterisierung

Die Vorgehensweise der experimentellen und energetischen Charakterisierung wird beschrieben, wobei auf Grundlage der Ergebnisse ein Modell zur Ermittlung des Energiebedarfs zur Regeneration entwickelt und eine Korrelation zu dessen Abschätzung aufgestellt wird.

3.2.1 Screening – Versuche zum Absorptions- und Desorptionsvermögen

Bei einer Vielzahl von Lösungsmitteln werden die Gleichgewichtsbeladungen bei 40 und 90 °C ermittelt, um das Absorptions- und Desorptionsvermögen der einzelnen Lösungsmittel zu untersuchen. Die CO₂-Abtrennung findet im Absorber bei 40 °C statt, so dass die ermittelte Gleichgewichtsbeladung Absorptionsbedingungen widerspiegelt. Die Gleichgewichtsbeladung stellt die maximal erreichbare Beladung bei unendlicher Absorberhöhe und damit einen Richtwert für die rich-Beladung im Absorber dar. Bei endlicher Absorberhöhe wird jedoch aufgrund begrenzter Kontaktzeiten zwischen Rauchgas und Lösungsmittel das Gleichgewicht nicht erreicht. Die Regeneration des Lösungsmittels wird im technischen Desorber bei 100 bis 120 °C durchgeführt, so dass der Versuch bei 90 °C nicht Desorptionsbedingungen entspricht. Trotzdem stellt er ein Maß für die Desorption und die im Desorber erreichbare lean-Beladung dar. Die Beladung wird bei 90 °C ermittelt, um einen Versuchsaufbau bei Atmosphärendruck verwenden zu können, wodurch ein breit angelegtes Screening ermöglicht wird.

Aus den Versuchen wird die Absorptionsrate der Lösungsmittel ermittelt, wodurch eine Abschätzung der Kinetik im Vergleich zu MEA möglich ist. Weiterhin ergibt sich als wichtige Kenngröße die Arbeitskapazität aus der Differenz der bei der Absorption aufgenommenen und bei der Regeneration wieder abgegebenen Menge an CO₂. Sie definiert die im Prozess benötigte Lösungsmittelumlaufmenge, die die Anlagengröße und die Pumpenergie bestimmt. Zu deren qualitativen Abschätzung wird die Differenz der ermittelten Beladungen bei 40 und 90 °C gemäß dem Vorgehen in [14] herangezogen. Dabei wird für eine kleine Umlaufmenge eine große Arbeitskapazität benötigt. Als Maß für die Stabilität der CO₂-Amin-Bindung wird die 90 °C Beladung verwendet. Die Annahme wird zugrunde gelegt, dass bei kleinerer Beladung geringere zwischenmolekulare Wechselwirkungen bestehen und das Lösungsmittel das CO₂ einfacher abgibt. Eine geringe 90 °C Beladung deutet somit, wie auch in [14] angenommen, auf eine instabile CO₂-Amin-Bindung hin und lässt eine einfache Desorption erwarten.

Auf Grundlage der Versuche erfolgt die Auswahl der Amine für die umfassende Charakterisierung und die Verwendung in erhöhter Konzentration oder in Aminmischungen. Die Auswahl erfolgt auf Grund vorteilhafter Lösungsmitteleigenschaften gegenüber MEA:

- Eine vergleichbare Absorptionsrate zu MEA für eine ausreichend schnelle Kinetik.
- Eine größere Arbeitskapazität als MEA zur Reduktion der Lösungsmittelumlaufmenge.
- Eine kleinere Gleichgewichtsbeladung bei 90 °C als MEA zur erleichterten Desorption.

Die Gleichgewichtsbeladungen bei 40 und 90 °C werden ebenfalls für wässrige Lösungen von Aminmischungen sowie konzentrierten Aminen bestimmt. Nach Vergleich mit MEA werden daraus weitere vielversprechende Lösungsmittel für die Charakterisierung ausgewählt.

3.2.2 Charakterisierung – Versuche zur energetischen Prozessauslegung

Nach dem Screening und der Auswahl vielversprechender Lösungsmittel, ist für die Ermittlung des Energiebedarfs zur Regeneration eine weiterführende Charakterisierung notwendig. Diese umfasst die Ermittlung der CO_2 -Gleichgewichtsisothermen und der Absorptionsenthalpie. Die <u>CO_2-Gleichgewichtsisothermen</u> werden für die Ermittlung der erreichbaren lean-Beladung im Desorber und des dazu erforderlichen CO_2 -Partialdrucks bei Desorptionstemperaturen benötigt. Der zur Regeneration des Lösungsmittels benötigte Strippdampf ist ebenfalls daraus ermittelbar. Dazu wird die Gleichgewichtsbeladung bei 40, 80 und 90 °C sowie Variation der CO₂-Konzentration im synthetischen Rauchgas von 5 bis 100 Vol.-% bestimmt. Der CO₂-Partialdruck stellt sich in Abhängigkeit der CO₂-Konzentration im Rauchgas, der relativen Feuchte und Temperatur sowie des Atmosphärendrucks ein. Messungen der relativen Feuchte zeigten, dass diese abhängig von der Aminkonzentration jedoch unabhängig von der Temperatur ist (*Abbildung 11 A*). Dabei wurde die bei der Absorption vom Rauchgas aufgenommene Wasserdampfmenge durch Auskondensation bestimmt und auf die bei der jeweiligen Temperatur maximal aufnehmbare Wasserdampfmenge bezogen. Die relative Feuchte ergibt sich damit zu φ [mbar/mbar] in *Gleichung (17)* mit den Parametern A = -0,906 sowie B = 0,837 und sinkt mit zunehmender Amin- und damit abnehmender Wasserkonzentration.

$$\varphi(x_{Amin}) = A x_{Amin} + B \tag{17}$$

Indessen ist der Sättigungsdampfdruck $p_{D,H20}$ [mbar] von der Temperatur *T* [K] gemäß *Gleichung (18)* abhängig und in *Abbildung 11 B* dargestellt. Laut der DIPPR Datenbank [37] betragen die Parameter $A = 7,36 \, 10^1$, $B = -7,26 \, 10^3$, C = -7,30, $D = 4,17 \, 10^{-6}$ und E = 2,00.

$$p_{D,H2O}(T) = exp\left(A + \frac{B}{T} + C\ln T + D T^{E}\right) \frac{mbar}{100}$$
(18)

Abbildung 11: Relative Feuchte in Abhängigkeit der MEA-Konzentration aus gemittelten Messdaten bei Temperaturen von 40, 80 und 90 °C (A) und Sättigungsdampfdruck von H₂O (B)

Damit ist der CO₂-Partialdruck p_{CO2} [mbar] für alle Lösungsmittel bei gleicher CO₂-Konzentration (trocken) y_{CO2} [m³/m³] im Rauchgas unterschiedlich. Der Partialdruck wird deswegen mit *Gleichung (19)* für alle Lösungsmittel einzeln in Abhängigkeit der Aminkonzentration und Temperatur berechnet. Der Atmosphärendruck p_{atm} [mbar] beträgt dabei 970 mbar.

$$p_{CO2} = y_{CO2} \left(p_{atm} - \varphi \, p_{D,H2O} \right) \tag{19}$$

Um die CO₂-Gleichgewichtsisothermen bei Desorptionstemperaturen zu ermitteln, wird die Korrelation gemäß *Gleichung* (20) aus [97] auf die Messdaten angewandt. Der CO₂-Partialdruck p_{CO2} [mbar] ist damit für jede Temperatur ϑ [°C] in Abhängigkeit der Beladung α [mol_{CO2}/mol_{Amin}] berechenbar. Die Parameter A bis F werden für die ausgewählten Lösungsmittel einzeln mit der Methode der kleinsten Quadrate ermittelt (*Anhang A.1*).

$$p_{CO2}(\alpha,\vartheta) = exp\left(A + B\alpha + \frac{C}{\vartheta} + D\frac{\alpha^2}{\vartheta^2} + E\frac{\alpha}{\vartheta^2} + F\frac{\alpha}{\vartheta}\right) mbar$$
(20)

Die <u>Absorptionsenthalpie</u> bedingt die zur Spaltung der CO₂-Amin-Bindung benötigte Energiemenge bei der Desorption. Zu deren Bestimmung wird die Temperaturerhöhung einer Lö-

sungsmittelprobe während der Absorption ermittelt. Die Berechnung erfolgt auf der in *Abbildung 12* veranschaulichten Enthalpie- und Wärmebilanzierung. Die bei der Absorption von CO₂ freiwerdende Energie $\Delta H_{abs,i}$ [kJ] zum Zeitpunkt *i* äußert sich in der Erwärmung des Lösungsmittels. Zudem wird dem Bilanzraum Energie mit dem ein- und austretenden Gasstrom zu- und abgeführt, wobei ein Wärmeverlust berücksichtigt wird. Die Enthalpie ergibt sich damit zu *Gleichung (21)*.

Abbildung 12: Bilanzierung der Absorptionsenthalpie

$$-\Delta H_{abs,i} = Q_{LM,i} + \Delta H_{G,i} + Q_{V,i}$$
⁽²¹⁾

Die Energiemenge $Q_{LM,i}$ [kJ] zur Erwärmung des Lösungsmittels um $\Delta T_{LM,i}$ [K] beinhaltet die Energie zur Erwärmung des Thermobehälters mit dessen Wärmekapazität $c_{p,TB} = 0,063$ kJ/K. In *Gleichung (22)* ist mit $m_{LM+CO2,i} = m_{LM,i} + V_{CO2,i}^{abs} \rho_{CO2}$ die Massenzunahme der Lösung durch CO₂-Aufnahme berücksichtigt. Die spezifische Wärmekapazität des Lösungsmittels $c_{p,LM,i}$ [kJ/(kg K)] ist von der Temperatur ϑ [°C] und CO₂-Beladung α [mol_{CO2}/mol_{Amin}] abhängig. Sie wird für jedes Lösungsmittel in Abhängigkeit der Aminkonzentration aus Literaturdaten nach *Gleichung (23)* korreliert (*Anhang A.2*).

$$Q_{LM,i} = m_{LM+CO2,i} c_{p,LM,i} \Delta T_{LM,i} + c_{p,TB} \Delta T_{LM,i}$$
(22)

$$c_{p,LM}(\alpha,\vartheta) = (A + B\,\vartheta + C\,\alpha) \ kJ/(kg\,K)$$
⁽²³⁾

Die Enthalpiedifferenz des ein- und austretenden Gasstroms $\Delta H_{G,i}$ [kJ] ist in *Gleichung (24)* gegeben. Dabei wird angenommen, dass die Gasströme wasserdampfgesättigt sind und das hx-Diagramm von Mollier für feuchte Luft mit den Enthalpien $h_{Ltr,i}^{ein}$ und $h_{Ltr,i}^{aus}$ [kJ/kg] angewendet werden kann. Die Masse des synthetischen Rauchgases $m_{G,i}^{ein}$ [kg] wird mit *Gleichung (25)* im Zeitschritt $\Delta \tau$ [min] mit der mittleren Dichte $\rho_G = 1,348 \text{ kg/m}^3$ [46] berechnet. Die Massenabnahme durch CO₂-Entfernung ist in $m_{G,i}^{aus}$ [kg] berücksichtig.

$$\Delta H_{G,i} = H_{G,i}^{aus} - H_{G,i}^{ein} = m_{G,i}^{aus} h_{Ltr,i}^{aus} - m_{G,i}^{ein} h_{Ltr,i}^{ein}$$
(24)

$$m_{G,i}^{ein} = \rho_G \, \dot{V}_G \, \Delta \tau \; ; \quad m_{G,i}^{aus} = \rho_G \, \dot{V}_G \, \Delta \tau \left(1 - y_{CO2}^{ein} + y_{CO2,i}^{aus} \right) \tag{25}$$

Der Wärmeverlust $Q_{V,i}$ [kJ] ist in *Gleichung (26)* gegeben und wurde in Vorversuchen in dem in *Kapitel 3.1.2* beschriebenen Versuchsaufbau ermittelt. Dabei wurde eine vorgewärmte Wasserprobe mit synthetischem Rauchgas durchströmt und die Temperaturabnahme des Wassers $Q_{V,H2O,i}$ [kJ] und die Enthalpieänderung des Gasstroms $\Delta H_{V,G,i}$ [kJ] gemessen. Der Wärmeverlust wurde innerhalb des Temperaturbereichs von 45 auf 40 °C linearisiert und der Mittelwert über dieser Zeitspanne $\Delta \tau |_{40^{\circ}C}^{45^{\circ}C}$ [min] gebildet. Daraus ergibt sich ein konstanter Wärmeverlust mit Parameter $A |_{40^{\circ}C}^{45^{\circ}C} = 0,025$ kJ/min in dem jeweiligen Zeitschritt $\Delta \tau$ [min].

$$Q_{V,i} = \frac{\Delta \tau}{\Delta \tau |_{40^{\circ}C}^{45^{\circ}C}} \sum_{0}^{\tau} \left| Q_{V,H2O,i} + \Delta H_{V,G,i} \right| = A |_{40^{\circ}C}^{45^{\circ}C} \Delta \tau$$
(26)

Die detaillierte Ermittlung des Wärmeverlusts und der Wärmekapazität des Thermobehälters sowie die Korrelation der Wärmekapazitäten für die Lösungsmittel erfolgt in *Anhang A.2*.

Die Absorptionsenthalpie Δh_{abs} [kJ/mol_{CO2}] wird mit *Gleichung* (27) als Mittelwert über eine variable Anzahl *n* von Zeitpunkten *i* mit Länge $\Delta \tau$ [min] berechnet. Dabei wird die bei der Absorption von CO₂ freiwerdende Energie $\Delta H_{abs,i}$ [kJ] auf die jeweils absorbierte CO₂-Menge $n_{CO2,i}^{abs} = V_{CO2,i}^{abs} \frac{\rho_{CO2}}{M_{CO2}}$ zum Zeitpunkt *i* bezogen. Die Werte werden dann innerhalb einer Zeitspanne mit maximalem Temperaturanstieg von 5 K aufsummiert und durch die Anzahl der Summanden *n* geteilt. Das Lösungsmittel mit der Anfangstemperatur von 40 °C erwärmt sich somit maximal auf 45 °C während der Absorption, wodurch ein konstanter Temperaturbereich für alle Messungen gewährleistet wird. Um den gesamten Beladungsbereich zu erfassen, werden Messungen bei mehreren Vorbeladungen des Lösungsmittels durchgeführt.

$$\Delta h_{abs} = \frac{1}{n} \sum_{0}^{n} \frac{\Delta H_{abs,i}}{n_{CO2,i}^{abs}}$$
(27)

Zur Berechnung der Absorptionsenthalpie in beliebigen Beladungsbereichen, d.h. zwischen lean- und rich-Beladung, werden die Messdaten der Absorptionsenthalpie über der Beladung mit *Gleichung* (28) in $\Delta h_{abs}(\alpha)$ [kJ/mol_{CO2}] interpoliert (*Anhang A.2*).

$$\Delta h_{abs}(\alpha) = -(A \,\alpha^5 + B \,\alpha^4 + C \,\alpha^3 + D \,\alpha^2 + E \,\alpha + F) \, kJ/mol_{CO2}$$
(28)

3.2.3 Energetik – Modell zur Berechnung des Energiebedarfs zur Regeneration

Die in der umfassenden Charakterisierung ermittelten lösungsmittelspezifischen Kenndaten dienen als Eingangsgrößen für das im Rahmen dieser Arbeit entwickelte Modell. Mit diesem wird der Energiebedarf zur Regeneration bei 90% iger CO₂-Abscheidung berechnet und eine Korrelation zu dessen Abschätzung erstellt. Der Energiebedarf q_{reg} [MJ/kg_{CO2}] ergibt sich aus der Summe der spezifischen Energieanteile q_i [MJ/kg_{CO2}] gemäß *Gleichung (29)*. Dazu werden in *Gleichungen (30)* bis *(32)* die drei Energiemengen Q_i [MJ] auf die abgeschiedene Menge an CO₂ m_{CO2} [kg_{CO2}] bezogen.

$$q_{reg} = \frac{Q_{reg}}{m_{CO2}} = q_{sens} + q_{abs} + q_{stripp}$$
(29)

$$q_{sens} = \frac{Q_{sens}}{m_{CO2}} = \overline{m}_{LM} \,\Delta T_{des} \, c_{p,LM} \tag{30}$$

$$q_{abs} = \frac{Q_{abs}}{m_{CO2}} = \frac{\Delta h_{abs} |_{\alpha_L}^{\alpha_R}}{M_{CO2}}$$
(31)

$$q_{stripp} = \frac{Q_{stripp}}{m_{CO2}} = \overline{m}_{Vd} \,\Delta h_{Vd} \tag{32}$$

Der Energieanteil zur Aufwärmung des Lösungsmittels q_{sens} wird mit der CO₂-beladenen Lösungsmittelumlaufmenge \overline{m}_{LM} [kg_{LM}/kg_{CO2}] berechnet. Der zur Spaltung der CO₂-Amin-Bindung benötigte Energieanteil q_{abs} ergibt sich aus der Absorptionsenthalpie $\Delta h_{abs}|_{\alpha_L}^{\alpha_R}$ [kJ/mol_{CO2}]. Dazu wird in *Gleichung (33)* die Interpolationskurve $\Delta h_{abs}(\alpha)$ im Beladungsbereich $\Delta \alpha$ zwischen lean- und rich-Beladung integriert. Das Vorgehen ist in *Abbildung 13* veranschaulicht.

$$\Delta h_{abs}|_{\alpha_L}^{\alpha_R} = \frac{1}{\Delta \alpha} \int_{\alpha_L}^{\alpha_R} \Delta h_{abs}(\alpha) \, d\alpha \tag{33}$$

Zudem bedingt die Strippdampfmenge \overline{m}_{Vd} [kg_{H2O}/kg_{CO2}], die sich aus der auf m_{CO2} bezogenen Kondensatmenge ergibt, den Energieanteil q_{stripp} zur Senkung des CO₂-Partialdrucks.

Abbildung 14: Spezifikationen im Desorber (A) und an den Gleichgewichtsisothermen bei Desorbertemperaturen (B) im Modell zur Berechnung des Energiebedarfs zur Regeneration

Für das Modell zur Berechnung des Energiebedarfs zur Regeneration sind in *Abbildung 14* die Spezifikationen im Desorber bzw. an den Gleichgewichtsisothermen bei Desorbertemperaturen gegeben. Dabei werden die folgenden Annahmen und Definitionen zu Grunde gelegt:

- Im Desorber besteht Gleichgewicht zwischen Gasphase und Lösungsmittel.
- Der Trennprozess ist ideal, d.h. mit unendlich vielen Trennstufen.
- Im Desorbersumpf siedet das Lösungsmittel, wobei sich die Siedetemperatur zu ϑ_{des}^{S} [°C] bei gegebenem Desorberdruck $p_{des} = 1.500$ mbar einstellt. Der Wasserdampfpartialdruck p_{H20}^{S} [mbar] entspricht dem Sättigungsdampfdruck $p_{D,H20}(\vartheta_{des}^{S})$ [mbar] und damit dem Desorberdruck. Es gilt $p_{H20}^{S} = p_{D,H20}(\vartheta_{des}^{S}) = p_{des}$ in [mbar].
- Am Desorberkopf bei Eintritt des mit CO₂-beladenen Lösungsmittels ist die Gasphase wasserdampfgesättigt, so dass wiederum gilt $p_{H20}^{K*} = p_{D,H20}(\vartheta_{des}^{K})$ in [mbar]. Der CO₂-Partialdruck ergibt sich damit zu $p_{C02}^{K*} = p_{des} - p_{H20}^{K*}$ in [mbar].
- Die rich-Beladung α_R [mol_{CO2}/mol_{Amin}] wird zu 80 % der Gleichgewichtsbeladung bei Absorptionstemperatur ϑ_{abs} [°C] definiert. Es gilt $\alpha_R = 0.8 \alpha(\vartheta_{abs})$ in [mol_{CO2}/mol_{Amin}].

- Die Grädigkeit des rich-/lean-Wärmetauschers und damit die zu überwindende Temperaturdifferenz zwischen Desorberkopf und -sumpf ΔT_{des} wird auf 10 K festgelegt.

Anhand der in *Abbildung 14 B* dargestellten Vorgehensweise werden die lean-Beladung α_L $[mol_{CO2}/mol_{Amin}]$ und der CO₂-Partialdruck am Desorberkopf p_{CO2}^K [mbar] bei minimalem Strippdampfbedarf und idealem Trennprozess ermittelt. Gegeben sind die Gleichgewichtsisothermen und der Zustand ⁽²⁾ bei Eintritt des Lösungsmittels am Desorberkopf (α_{K*}/p_{CO2}^{K*}). Dieser ergibt sich aus der Gleichgewichtsannahme zwischen der wasserdampfgesättigten Gasphase und dem Lösungsmittel. Unbekannt ist der Berührpunkt (α_B/p_{CO2}^B). Gesucht werden die lean-Beladung α_L , die Arbeitslinie des Desorbers und eine Beziehung für $\alpha_{K*} = f(\alpha_L)$.

- (1) Das mit CO₂-beladene Lösungsmittel der rich-Beladung α_R tritt nach Passieren des rich-/lean-Wärmetauschers in den Desorber mit der Desorberkopftemperatur ϑ_{des}^{K} ein.
- (2) Um Gleichgewicht zwischen wasserdampfgesättigter Gasphase und Lösungsmittel zu erreichen, gibt das Lösungsmittel ausgehend von α_R CO₂ ab, bis die Gleichgewichtsbeladung α_{K*} bei ϑ_{des}^K erreicht ist. Der CO₂-Partialdruck beträgt p_{CO2}^{K*} [mbar].
- (3) Da ein idealer Trennprozess vorausgesetzt wird, entspricht die Arbeitslinie des Desorbers (AL des) der Tangente an die Gleichgewichtsisotherme bei ϑ_{des}^{S} . Die allgemeine Tangentengleichung lautet $p(\alpha) = M \alpha + C$ in [mbar]. Sie verläuft durch $(\alpha_{K*}/p_{CO2}^{K*})$ und den Berührpunkt (α_B/p_{CO2}^B) . Die Steigung *M* ist identisch mit der ersten Ableitung der Interpolationskurve $p_{CO2}|_{\vartheta_{des}^{S}}'(\alpha_B)$ der Gleichgewichtsisotherme. Die Arbeitslinie des Desorbers ergibt sich nach Herleitung in *Anhang A.3* zu *Gleichung (34)* in [mbar].

$$p(\alpha) = p_{CO2}^{K*} \left(\frac{\alpha - \alpha_{K*}}{\alpha_{K*} - \alpha_L} + 1 \right)$$
(34)

(4) Die lean-Beladung α_L [mol_{CO2}/mol_{Amin}] ergibt sich aus dem Schnittpunkt der Ordinate mit der Tangente, d.h. bei $p_{CO2}^S = 0$ mbar. Die Beziehung $\alpha_{K*} = f(\alpha_L)$ ergibt sich aus den gegebenen Bedingungen nach Herleitung in *Anhang A.3* zu *Gleichung (35)*.

$$\alpha_{K*} = f(\alpha_L) = \alpha_L + \frac{p_{CO2}^{K*}}{A B} e^{-(B \alpha_L + 1)}$$
(35)

Daraus wird die lean-Beladung α_L durch Iteration ermittelt. Die Iteration erfolgt solange bis die Bedingung $\alpha_{K*} = f(\alpha_L) \equiv \{\alpha_{K*}|_{geg} bei p_{CO2}^{K*}\}$ erfüllt ist.

(5) Am Desorberkopf bei Austritt der Gasphase stellt sich nach Ausgasen des CO₂ ein erhöhter CO₂-Partialdruck p_{CO2}^{K} [mbar] bei der rich-Beladung α_{R} mit *Gleichung (34)* ein. Als Ergebnis des Modells werden die lean-Beladung und der CO₂-Partialdruck am Desorberkopf zur Berechnung der weiteren Größen verwendet. Die Strippdampfmenge \overline{m}_{Vd} $[kg_{H2O}/kg_{CO2}]$ berechnet sich mit *Gleichung (36)*. Gemäß *Gleichung (37)* und Herleitung in *Anhang A.3* ergibt sich die mit CO₂-beladene Lösungsmittelumlaufmenge \overline{m}_{LM} $[kg_{LM}/kg_{CO2}]$ aus der Lösungsmittelmenge m_{LM} $[kg_{LM}]$ und der bei rich-Beladung absorbierten CO₂-Menge $m_{CO2}|_{\alpha_R}$ $[kg_{CO2}]$ bezogen auf m_{CO2} $[kg_{CO2}]$. Die Absorptionsenthalpie $\Delta h_{abs}|_{\alpha_L}^{\alpha_R}$ $[kJ/mol_{CO2}]$ ist im Beladungsbereich $\Delta \alpha = \alpha_R - \alpha_L$ $[mol_{CO2}/mol_{Amin}]$ mit *Gleichung (33)* gegeben.

$$\bar{m}_{Vd} = \frac{p_{H2O}^K}{p_{CO2}^K} \frac{M_{H2O}}{M_{CO2}} = \frac{p_{des} - p_{CO2}^K}{p_{CO2}^K} \frac{M_{H2O}}{M_{CO2}}$$
(36)

$$\overline{m}_{LM} = \frac{m_{LM} + m_{CO2}|_{\alpha_R}}{m_{CO2}} = \frac{1}{\Delta \alpha} \frac{M_{Amin}}{x_{Amin} M_{CO2}} + \frac{\alpha_R}{\Delta \alpha}$$
(37)

Die Energieanteile q_i [MJ/kg_{CO2}] können nunmehr mit *Gleichungen (30)* bis *(32)* berechnet werden, aus deren Summe sich der Energiebedarf zur Regeneration q_{reg} [MJ/kg_{CO2}] ergibt. Um dessen Abschätzung ohne umfassende Charakterisierung zu ermöglichen, wird eine Korrelation anhand der Screening-Ergebnisse und der Absorptionsenthalpie erarbeitet. *Gleichung (38)* ist in Anlehnung der von Porcheron et al. in [99] beschriebenen Korrelation aufgestellt, jedoch wurde eine Anpassung auf die in dieser Arbeit ermittelten Beziehungen zwischen den Messwerten und dem Energiebedarf zur Regeneration vorgenommen.

$$q_{reg}|_{korr} = \left(A + B \alpha|_{90^{\circ}C} + \frac{C}{\Delta \alpha|_{90^{\circ}C}^{40^{\circ}C}} + \frac{D}{x_{Amin}} + E \Delta h_{abs}|_{\alpha=0}\right) MJ/kg_{CO2}$$
(38)

Der korrelierte Energiebedarf zur Regeneration $q_{reg}|_{korr}$ [MJ/kg_{CO2}] kann für ein beliebiges Lösungsmittel mit *Gleichung (38)* unter Verwendung der nicht lösungsmittelspezifischen Parameter *A* bis *E* berechnet werden. Dafür erforderlich sind die 90 °C-Gleichgewichtsbeladung $\alpha|_{90^{\circ}C}$ [g_{CO2}/kg_{LM}], die Arbeitskapazität $\Delta \alpha|_{90^{\circ}C}^{40^{\circ}C}$ [g_{CO2}/kg_{LM}] zwischen der 40 und 90 °C-Gleichgewichtsbeladung sowie die Aminkonzentration x_{Amin} [g/g] und die Absorptionsenthalpie $\Delta h_{abs}|_{\alpha=0}$ [MJ/kg_{CO2}] bei keiner Vorbeladung. Die Parameter *A* bis *E* werden in dieser Arbeit mit der Methode der kleinsten Quadrate ermittelt. Dabei werden die berechneten Werte des Energiebedarfs zur Regeneration sowie die experimentellen Ergebnisse in *Gleichung (38)* eingesetzt und die Parameter *A* bis *E* solange optimiert bis die Abweichung zu den korrellierten Werten des Energiebedarfs zur Regeneration minimal ist.

3.3 Untersuchte Amine

Es werden im Rahmen dieser Arbeit jeweils mehrere Amine aus den Gruppen der primären, Poly-, sekundären und tertiären Amine betrachtet. Auf diese Weise wird eine große Bandbreite verschiedener Amine mit unterschiedlichen Eigenschaften auf ihre Eignung zur CO₂-Abscheidung hin untersucht. Monoethanolamin (MEA) dient in 30,0 Gew.-%iger Lösung als Referenz. Die untersuchten Amine wurden von Merck und Sigma Aldrich bezogen und ohne weitere Vorbehandlung in Lösungen mit deionisiertem Wasser verwendet. Ergänzende Angaben zu Dampfdruck, Toxizität, Wassergefährdungsklasse und Reinheit der Amine sind in *Anhang A.4* gegeben. Gewichtsprozent [Gew.-%] werden im Weiteren mit [%] abgekürzt.

Die meisten untersuchten Amine sind Alkanolamine, die neben einer Aminogruppe $-NH_2$ mindestens eine Hydroxylgruppe -OH in ihrer Molekülstruktur aufweisen. Die Hydroxylgruppe erhöht die polaren Eigenschaften des Moleküls und führt so zu einer verbesserten Löslichkeit in Wasser und zu einem verringerten Dampfdruck des Amins. Weiterhin unterscheiden sich die untersuchten Amine sowohl in ihrem Typ als auch in ihrer Molekülstruktur.

MEA ist ein Ethanolamin mit einer primären Aminogruppe und einer geringen Molmasse von 61,08 g/mol. Die 30,0 %ige MEA-Lösung entspricht einer Molalität von 4,9 mol/kg. Die in *Tabelle 4* betrachteten primären Amine weisen als Basis ihrer Molekülstruktur MEA auf, wobei sie sich durch die Anordnung der Methyl- $-CH_3$ und Hydroxylgruppen zur Aminogruppe unterscheiden. APKette und DGA verlängern die Alkylkette von MEA. Bei AP verzweigt sich die Struktur um eine Methylgruppe. AMP und AMPD sind sterische gehinderte Amine.

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
Monoethanolamin	MEA	61,08	HO NH2	30,0
3-Amino-1-Propanol	APKette	75,11	HO NH2	36,9
1-Amino-2-Propanol	AP	75,11	OH H ₃ C NH ₂	36,9
2-(2-Aminoethoxy)-ethanol	DGA	105,14	HO NH2	51,6
2-Amino-2-methyl-1- propanol	AMP	89,14	H ₃ C NH ₂ HOCH ₃	43,8
2-Amino-2-methyl-1,3- Propandiol	AMPD	105,14	HO OH H ₂ N CH ₃	51,6

Tabelle 4: Untersuchte primäre Amine

Die Gruppe der Polyamine ist in *Tabelle 5* dargestellt. Die Diamine DAE, DAPKette und DAP weisen zwei Aminogruppen auf, die mit jeweils einer Alkylkette mit kleinen Strukturunterschieden verbunden sind. Die Polyamine AEAE, DETA, TETA und TEPA bilden eine Reihe mit steigender Anzahl von zwei auf fünf Aminogruppen, die jeweils mit einer Ethylgruppe $-(CH_2)_2$ – verbunden sind, wobei AEAE zusätzlich eine Hydroxylgruppe aufweist.

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
Ethylendiamin	DAE	60,10	H ₂ N NH ₂	14,8
1,3-Diaminopropan	DAPKette	74,13	H ₂ N NH ₂	18,2
1,2-Diaminopropan	DAP	74,13	$H_2N \xrightarrow{H_2}{H_3} H_2$	18,2
2-(2-Aminoethyl-amino)- ethanol	AEAE	104,15	HO NH2	25,6
Diethylentriamin	DETA	103,17	H ₂ N NH ₂	16,9
Triethylentetramin	TETA	146,24	H ₂ N NH ₂	18,0
Tetraethylenpentamin	TEPA	189,3	H ₂ N N H ₂	18,6

 Tabelle 5: Untersuchte Polyamine

Tabelle 6 zeigt die untersuchten sekundären Amine, die als Basis ihrer Molekülstruktur MEA aufweisen. Ein Wasserstoffatom der Aminogruppe wird mit einer Seitenkette variabler Länge ersetzt. MAE, EAE, PAE und BAE bilden eine Reihe, die durch Verlängerung der linearen Alkylkette von einer Methyl- bis zu einer Butylgruppe $-(CH_2)_3CH_3$ gekennzeichnet ist. Das neben MEA weithin untersuchte DEA besteht aus zwei MEA-Molekülen, die sich eine Aminogruppe mittig teilen. DEA gilt als Referenz für sekundäre Amine. IPAE und tertBAE weisen unterschiedlich stark verzweigte Seitenketten, die eine sterische Hinderung bedingen, auf.

Tabelle 6: Untersuchte sekundäre Amine

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
2-(Methylamino)-ethanol	MAE	75,11	HO N_CH3	36,9
2-(Ethylamino)-ethanol	EAE	89,14	HO CH3	43,8
2-(Propylamino)-ethanol	PAE	103,16	HO CH3	50,7

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
2-(Butylamino)-ethanol	BAE	117,19	HO N CH ₃	57,6
2-(Isopropylamino)-ethanol	IPAE	103,16		50,7
Diethanolamin	DEA	105,14	но М он	51,6
2-tert-(Butylamino)-ethanol	tertBAE	117,19		57,6

(Fortsetzung Tabelle 6: Untersuchte sekundäre Amine)

Außerdem werden die drei in *Tabelle 7* dargestellten tertiären Amine DEEA, MDEA und TEA auf deren Eignung als potentielle Trägeramine in Aminmischungen untersucht. Bei den tertiären Aminen werden die weiteren zwei Wasserstoffatome der Aminogruppe durch Seitenketten mit unterschiedlicher Länge und funktionellen Gruppen ersetzt.

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
2-(Diethylamino)-ethanol	DEEA	117,19	HO N CH ₃	57,6
Methyldiethanolamin	MDEA	119,16	СН ₃ НО N ОН	58,5
Triethanolamin	TEA	149,19	но М он	73,3

Tabelle 7: Untersuchte tertiäre Amine

Alle Amine weisen eine zu 30,0 % MEA äquivalente Aminkonzentration x_{Amin} [g_{Amin}/g_{LM}] auf. Sie ergibt sich gemäß *Gleichung (39)* aus der MEA-Konzentration x_{MEA} [g_{MEA}/g_{LM}] und dem Verhältnis der Molmassen *M* [g/mol] sowie der Anzahl an Aminogruppen *AG* [mol_{AG}/mol_{Amin}]. Da diese stark variieren, unterscheidet sich die Massenkonzentration mit Werten von 14,8 % DAE bis 73,3 % TEA erheblich.

$$x_{Amin} = x_{MEA} \frac{M_{Amin}}{M_{MEA}} \frac{AG_{MEA}}{AG_{Amin}}$$
(39)

In allen Lösungsmitteln liegt mit einer Molalität von 4,9 mol_{Amin}/kg_{LM} die gleiche Konzentration an Aminogruppen in Lösung vor. Dabei ist wiederum für Polyamine die Beziehung $\{[mol_{Amin}] = [mol_{Polyamin}] [mol_{AG}/mol_{Polyamin}]\}$ zu berücksichtigen.

4 Screening: Ergebnisse zum Absorptions- und Desorptionsvermögen

Anhand der Gleichgewichtsbeladungen bei 40 und 90 °C kann bereits eine Aussage über das Absorptions- und Desorptionsvermögen von wässrigen Lösungen von Aminen und Aminmischungen getroffen werden. In den folgenden Abschnitten werden die experimentellen Ergebnisse dieser Untersuchungen dargestellt, die zusätzlich tabellarisch in *Anhang B Ergebnisse – Screening* erfasst sind. Dabei werden die Lösungsmittel mit der Referenzlösung von 30,0 % MEA verglichen und eine Variation des Amintyps, der Aminkonzentration und der Lösungszusammensetzung durchgeführt. Auf Grundlage der Screening-Versuche werden vorteilhafte Lösungsmittel zur umfassenden Charakterisierung ausgewählt.

4.1 Aminlösungen als Alternative zu MEA

Im Folgenden werden die Ergebnisse für MEA und die in *Kapitel 3.3* vorgestellten Amine diskutiert. Bei Verwendung der Aminkurzform ohne Konzentrationsangabe wird die zu 30 % MEA äquivalent konzentrierte Aminlösung betrachtet.

4.1.1 MEA und primäre Amine

In *Abbildung 15 A* ist die CO₂-Austrittskonzentration von 30,0 % MEA bei 40 °C dargestellt. Diese sinkt zu Beginn der Absorption auf unter 1 Vol.-% CO₂ und bleibt auf niedrigem Niveau für ungefähr 30 min. Mit zunehmender Sättigung des Lösungsmittels mit CO₂ steigt die CO₂-Austrittskonzentration steil an und nährt sich asymptotisch der Eintrittskonzentration von 15 Vol.-%. Wenn die Eintrittskonzentration erreicht ist, besteht Gleichgewicht zwischen dem Lösungsmittel und der Gasphase, die Gleichgewichtsbeladung hat sich eingestellt und das Lösungsmittel nimmt kein weiteres CO₂ mehr auf. Aus dem Integral der absorbierten Menge an CO₂ über der Zeit wird die in *Abbildung 15 B* gezeigte Beladungskurve berechnet. Die 40 °C-Beladungskurve nimmt beinahe linear in den ersten 30 min, entsprechend der konstant niedrigen CO₂-Austrittskonzentration, zu. Mit zunehmender Sättigung des Lösungsmittels mit CO₂ ist ebenfalls ein abflachender Verlauf der Beladungskurve zu beobachten. Die Beladungskurve nährt sich asymptotisch der Gleichgewichtsbeladung an. Die erreichte Gleichgewichtsbeladung bei 40 °C beträgt für MEA 0,56 mol_{CO2}/mol_{Amin}. Die theoretisch maximal erreichbare Beladung für die stöchiometrische Bildung von Carbamat aus *Gleichung (9)* beträgt 0,5 mol_{CO2}/mol_{Amin}. Die CO₂-Beladung von MEA umfasst somit Carbamatund Hydrogencarbonationen. Aufgrund der schnellen Absorption in Kombination mit der annähernd theoretischen Beladung von 0,5 mol_{CO2}/mol_{Amin}, kann jedoch davon ausgegangen werden, dass bei MEA hauptsächlich Carbamatbildung stattfindet. NMR-Messungen von Böttinger et al. [16] und Goto et al. [48] bestätigen einen hohen Molanteil von 80 % Carbamat an der gesamten CO₂-Beladung aus Carbamat- und Hydrogencarbonationen.

Abbildung 15: CO₂-Austrittskonzentration (A) und Gleichgewichtsbeladung bei 40 °C (B) von MEA

Aus der Steigung der Beladungskurve lässt sich die Absorptionsrate, in *Abbildung 16 A* über der Beladung aufgetragen, berechnen. Bis zu einer Beladung von $0,2 \text{ mol}_{CO2}/\text{mol}_{Amin}$ ist die Kinetik konstant hoch bei maximaler Absorptionsrate von $0,0134 \text{ mol}_{CO2}/(\text{mol}_{Amin} \text{ min})$. Mit zunehmender Beladung sinkt die Absorptionsrate langsam. Erst bei einer Beladung größer $0,4 \text{ mol}_{CO2}/\text{mol}_{Amin}$, wenn die Absorption größtenteils abgeschlossen ist, fällt die Absorptionsrate zum Erreichen der Gleichgewichtsbeladung schnell auf null ab. MEA weist damit über einen breiten Beladungsbereich eine hohe Absorptionskinetik auf.

In *Abbildung 16 B* sind die Gleichgewichtsbeladungen bei 40 und 90 °C dargestellt. MEA erreicht bei 90 °C eine Gleichgewichtsbeladung von 0,35 mol_{CO2}/mol_{Amin}. Diese hohe Beladung deutet ebenfalls auf eine stabile Carbamatbindung hin. Aus der Differenz der Beladungen ergibt sich als wichtige Prozesskenngröße die Arbeitskapazität $\Delta \alpha$ zu 0,22 mol_{CO2}/mol_{Amin}.

Abbildung 16: Absorptionsrate bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazität (B) von 30 % MEA

Im Weiteren werden für die zu MEA alternativen Lösungsmittel die Absorptionsrate und die Gleichgewichtsbeladungen bei 40 und 90 °C sowie die Arbeitskapazität dargestellt.

In Abbildung 17 A sind die Ergebnisse der primären Amine APKette, AP und DGA gezeigt.

Abbildung 17: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von APKette, AP und DGA

Die Absorptionsraten weisen vergleichbare Verläufe zu MEA auf, wobei die Kurve von APKette etwas schneller als die von AP und DGA sinkt. Die primären Amine erreichen alle hohe Absporptionsraten, die geringfügig niedrigere Werte als MEA zeigen. Die Gleichgewichtsbeladungen sind in *Abbildung 17 B* dargestellt. APKette weist sowohl eine hohe 40 °C-Beladung als auch eine hohe 90 °C-Beladung auf. Diese deutet auf eine stabile Carbamatbindung hin, wobei die hohe 40 °C-Beladung dem widerspricht. Durch die Verlängerung der Molekülkette wird das protonierte Aminmolekül nach [14] stabilisiert, so dass im Vergleich zu MEA APKette bei 40 °C mehr Hydrogencarbonat bilden kann. Weiterhin bewirkt die Stabilisierung bei 90 °C, dass weniger Carbamatbindungen gespalten werden, woraus die hohe Beladung bei 90 °C resultiert. Für diese These steht ebenfalls der etwas niedrigere Kurvenverlauf der Absorptionsrate von APKette im Vergleich zu AP und DGA. Diese weisen 40 °C-Beladungen von ca. 0,5 mol_{CO2}/mol_{Amin} auf. Die 90 °C-Beladungen sind um 9 und 14 % kleiner als MEA, woraus sich für AP ebenfalls eine geringere Arbeitskapazität als für MEA ergibt. Die geringere 90 °C-Beladung von DGA im Vergleich zu MEA gleicht die ebenfalls geringere 40 °C-Beladung aus, so dass sich eine zu MEA identische Arbeitskapazität ergibt.

In *Abbildung 18* werden die Ergebnisse der primären Amine AMP und AMPD dargestellt. Diese sind sterisch gehinderte Amine, deren funktionelle Aminogruppen abgeschirmt werden durch zwei Methylgruppen sowie eine Methyl- und eine Methanolgruppe am benachbarten C-Atom. Dadurch erfolgt die CO_2 -Absorption langsamer als bei den anderen primären Aminen.

Abbildung 18: Absorptionsraten bei 40 °C (↑Beginn Kristallisation) (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von AMP und AMPD

Die Bindung des CO_2 an die abgeschirmte funktionelle Aminogruppe ist zudem instabiler. NMR-Messungen von Goto et al. [48] ergeben für AMP einen Molanteil der Carbamationen von unter 5 %. Der Großteil des CO_2 wird demnach als Hydrogencarbonat gebunden. In *Ab*- bildung 18 A sind die Absorptionsraten von AMP und AMPD dargestellt. Die Kurvenverläufe unterscheiden sich stark von den anderen primären Aminen. Zum Einen ist die maximale Absorptionsrate von AMP und AMPD um 23 und 67 % geringer als die von MEA. Zum Anderen sinken die Absorptionsraten direkt ab. Mit zunehmender Beladung steigt die Absorptionsrate von AMP wieder an und bildet ein Plateau bei knapp 50 % des Maximalwerts. Zum gleichen Zeitpunkt beginnt die Kristallisation im Lösungsmittel. Diese ist in Abbildung 18 A mit schwarzem Pfeil markiert. Das Plateau deutet darauf hin, dass durch die Kristallisation mehr CO₂ aufgenommen werden kann als ohne Feststoffbildung. Aufgrund der Bildung von überwiegend Hydrogencarbonationen ist davon auszugegehen, dass eine Hydrogencarbonat/Carbonat-Verbindung ausfällt. Bei AMPD tritt ebenfalls ab der Markierung mit dem schwarzen Pfeil Kristallisation auf. Die Kristallisation führte zu einem vorzeitigen Abbruch der Absorptionsversuche von AMP und AMPD, da die Glasfritte von Feststoff verstopft war. Die erreichten Beladungen, Abbildung 18 B, entsprechen deswegen nicht den Gleichgewichtsbeladung bei 40 °C. Trotz oder gerade wegen der Kristallisation erreicht AMP eine sehr hohe 40 °C-Beladung. AMPD weist stattdessen eine sehr geringe 40 °C-Beladung auf, die aus der sehr früh einsetzenden Kristallisation resultiert. Da kaum Carbamatbildung aufgrund der sterischen Hinderung stattfindet, sind die 90 °C-Beladungen beider Amine sehr niedrig. Dies führt für AMP zu einer sehr hohen Arbeitskapazität, die jedoch aufgrund der sehr niedrigen 40 °C-Beladung für AMPD einen geringen Wert einnimmt.

4.1.2 Polyamine

Im Folgenden werden die Ergebnisse für Amine mit mehreren funktionellen Aminogruppen pro Molekül, die sogenannten Polyamine, diskutiert. Dabei ist zu beachten, dass die Einheit $[mol_{CO2}/mol_{Amin}]$ die mittlere Beladung bezogen auf die Anzahl an Aminogruppen im Molekül darstellt. Um die Beladung bezogen auf das Mol Polyamin zu erhalten, muss der Wert mit der Anzahl an Aminogruppen AG $[mol_{AG}/mol_{Polyamin}]$ multipliziert werden.

In *Abbildung 19* sind die mit zwei primären Aminogruppen ausgestatteten Diamine DAE, DAPKette und DAP zusammengefasst. Deren Molekülstrukturen entsprechen den Aminoalkoholen MEA, APKette und AP, wobei jeweils eine Aminogruppe den Platz der Hydroxidgruppe einnimmt. DAE und DAPKette erreichen hohe Absorptionsraten vergleichbar zu MEA. DAP kommt indessen nur auf eine um 20 % gegenüber MEA reduzierte Absorptionsrate. Das könnte daran liegen, dass bei einer der Aminogruppen am benachbarten C-Atom eine Methyl-Gruppe gebunden ist. Diese kann durch einen induktiven Effekt, d.h. eine veränderte Ladungsverteilung, die Reaktion mit CO₂ gegenüber der freiliegenden Aminogruppe einschränken. Die hohen Absorptionsraten in Kombination mit den zu MEA vergleichbaren 40 °C-Beladungen, lassen darauf schließen, dass die zwei freiliegenden Aminogruppen von DAE und DAPKette entsprechend der Aminogruppe von MEA das CO₂ aufnehmen. Vergleichbar zu APKette weist DAPKette zudem eine hohe 90 °C-Beladung auf. Die Verlängerung der Molekülkette scheint somit bei Diaminen ebenfalls zu einer Stabilisierung der Carbamatbindung bei 90 °C zu führen. Dadurch zeigt DAPKette im Gegensatz zu DAE und DAP, deren 90 °C-Beladungen vergleichbar zu MEA sind, eine um 35 % reduzierte Arbeitskapazität.

Abbildung 19: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von DAE, DAPKette und DAP

Die Ergebnisse für die weiteren Polyamine AEAE, DETA, TETA und TEPA, mit je zwei bis fünf Aminogruppen, sind in *Abbildung 20* dargestellt. Diese Polyamine, insbesondere DETA und TETA, weisen eine hohe Kinetik auf. Ihre Absorptionsraten und Kurvenverläufe sind vergleichbar zu MEA. Die Absorptionsrate von AEAE ist um knapp 6 % zu der von MEA reduziert. Die Kurve bleibt jedoch auf diesem Niveau und schließt zu der Kurve von DETA auf, deren Verlauf sie zur Gleichgewichtsbeladung hin folgt. *Abbildung 20 B* zeigt die mittleren Gleichgewichtsbeladungen der Aminogruppen der Polyamine. Die 40 °C-Beladungen von AEAE und DETA betragen ca. 0,50 mol_{CO2}/mol_{Amin}. TETA und TEPA erreichen lediglich 40 °C-Beladungen um ca. 0,42 mol_{CO2}/mol_{Amin}. Die mittleren Beladungen pro Aminogruppe sind demnach von diesen Polyaminen geringer als die Beladung von MEA. Das bedeutet, dass nicht alle Aminogruppen die gleiche Menge an CO₂ und auf vergleichbare Art zu MEA absorbieren. Mit zunehmender Anzahl an Aminogruppen pro Molekül verändert sich das Verhältnis von primären Aminogruppen zur Gesamtaminogruppenanzahl, wobei sich ebenfalls die Molekülkettenlänge erhöht. Dadurch kommt es zu einer gegenseitigen Beeinflussung der Aminogruppen im Molekül, so dass diese aufgrund weniger primärer Aminogruppen zur Gesamtanzahl und zunehmender sterischer Hinderung nicht alle gleichzeitig nutzbar sind.

Amin	AEAE	DETA	TETA	TEPA
Strukturformel	HO N NH2	H H ₂ N NH ₂	H H ₂ N H N H N H ₂ N H	H ₂ N N N NH ₂
AG _{prim} /AG _{ges}	50 %	67 %	50 %	40 %

Tabelle 8: Verhältnis der Anzahl an primären Aminogruppen AG_{prim} zur Gesamtanzahl AG_{ges}

Dieser Effekt zeigt sich bei der Abstufung der 40 und 90 °C-Beladungen der Polyamine in Übereinstimmung mit dem in *Tabelle 8* aufgeführten Verhältnis von primären Aminogruppen zur Gesamtanzahl. Dabei wird deutlich, dass DETA mit einem AG_{prim}/AG_{ges} -Verhältnis von 67 % die höchsten Beladungen bei 40 und 90 °C aufweist. Obwohl AEAE eine höhere 40 °C-Beladung als TETA erreicht, stimmen die 90 °C-Beladungen mit der Abstufung überein. Die niedrigere 40 °C-Beladung von TETA kann auf eine stärkere sterischer Hinderung im Vergleich zu AEAE zurückzuführen sein. Die niedrigsten 40 und 90 °C-Beladungen zeigt TEPA mit dem kleinsten AG_{prim}/AG_{ges} -Verhältnis von 40 %. Die Arbeitskapazität ist demnach mit 0,25 mol_{CO2}/mol_{Amin} für AEAE am höchsten und nimmt mit zunehmender Aminogruppenanzahl bis zu TEPA, dessen Arbeitskapazität um 17 % gegenüber MEA reduziert ist, ab.

Abbildung 20: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von AEAE, DETA, TETA und TEPA

4.1.3 Sekundäre Amine

Die sekundären Amine MAE, EAE, PAE und BAE basieren auf der Molekülstruktur von MEA, wobei an der Aminogruppe eine Alkylseitenkette ein Wasserstoffatom ersetzt. Die Seitenkette von MAE ist eine Methylgruppe, die um jeweils eine CH₂-Gruppe bis BAE mit einer Butylseitenkette erweitert wird.

Abbildung 21: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von MEA, MAE, EAE, PAE und BAE

In *Abbildung 21 A* sind die Absorptionsraten der sekundären Amine gezeigt. Mit Ausnahme von BAE weisen alle eine hohe maximale Absorptionsrate vergleichbar zu MEA auf. Die Absorptionsraten von MAE und EAE sind zudem über einem weiten Beladungsbereich konstant und fallen erst zur Gleichgewichtsbeladung hin steil ab. Dagegen sinken die Kurven von PAE und BAE nach einem kurzen Plateau stetig zur Gleichgewichtsbeladung hin. Es besteht ein klarer Zusammenhang der in *Abbildung 21 B* dargestellten 40 und 90 °C-Beladungen mit zunehmender Alkylkettenlänge. Dabei treten folgende sich überlagernde Effekte auf.

- Die Carbamatbindung wird durch induktive Effekte oder sterische Hinderung zunehmend destabilisiert, so dass eine verstärkte Hydrogencarbonatbildung stattfindet.
- Die Absorptionsrate sinkt, so dass das CO₂ langsamer aufgenommen und das Reaktionsgleichgewicht in Richtung der Gasseite verschoben wird.
- Die Molmasse steigt, was zu einer Erhöhung der Aminkonzentration der äquivalent zu 30,0 % MEA konzentrierten Lösungsmittel führt. Diese bewirkt eine Zunahme der Viskosität, die sich negativ auf den Stofftransport auswirkt. Gleichzeitig stehen für die Absorp-

tionsreaktion von CO₂ weniger Wassermoleküle pro Aminmolekül zur Verfügung, so dass die Hydrogencarbonatbildung eingeschränkt wird (siehe *Kapitel 4.2*).

Diese Effekte überlagern sich bei den 40 °C-Beladungen, die gegenüber 0,50 mol_{CO2}/mol_{Amin} erhöht sind, wodurch eine verstärkte Hydrogencarbonatbildung vorliegt. Mit zunehmender Alkylkettenlänge steigt jedoch die Aminkonzentration bei gleichzeitiger Reduktion der Absorptionsrate und geringerem Wasser-Amin-Verhältnis. Die Überlagerung der Effekte ergibt einen maximalen Anstieg der 40 °C-Beladungen bis EAE, wonach wiederum eine Abnahme einsetzt. Die 90 °C-Beladungen sinken konstant mit zunehmender Alkylkettenlänge von MEA bis auf BAE, da der erhöhte Hydrogencarbonatanteil bei hoher Temperatur leichter gespalten wird. Die Arbeitskapazitäten ergeben sich schließlich aus der Differenz der 40 und 90 °C-Beladungen und steigen bis PAE, das eine zu MEA verdoppelte Arbeitskapazität aufweist, mit zunehmender Alkylkettenlänge an.

Ergebnisse weiterer sekundärer Amine sind in *Abbildung 22* gezeigt. IPAE, DEA und tertBAE weisen eine komplexere Molekülstruktur als die bisher betrachteten Amine auf. Ausgehend von der Grundstruktur MEA besteht die Seitenkette, die ein Wasserstoffatom der Aminogruppe ersetzt, entsprechend aus einer Isopropyl-, Ethanol- und tert-Butyl-Gruppe.

Abbildung 22: Absorptionsraten bei 40 °C (Beginn Kristallisation) (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von IPAE, DEA und tertBAE

Die komplexeren Strukturen bedingen eine langsamere Absorption, so dass die Absorptionsraten ausgehend von IPAE mit 23 % über DEA mit knapp 50 % zu tertBAE mit über 70 % deutlich gegenüber MEA reduziert sind. Die kleinere Isopropyl-Gruppe von IPAE ermöglicht somit noch eine mittlere Absorptionskinetik, die bei tertBAE von der verzweigten tert-Butyl-Gruppe sterisch stark eingeschränkt ist. Die starke Verzweigung führt zudem bei fortgeschrittener Absorption ab der mit schwarzem Pfeil markierten Beladung zu Feststoffausfall, wodurch tertBAE eine sehr hohe 40 °C-Beladung erreicht. Die starke Hydrogencarbonatbildung führt erwartungsgemäß zu einer äußerst niedrigen 90 °C-Beladung. IPAE erreicht eine zu PAE, mit identischer Summenformel, vergleichbaren 40 °C-Beladung. Dabei bewirkt die Isopropyl-Verzweigung eine Destabilisierung der CO₂-Amin-Bindung, die in einer sehr niedrigen 90 °C-Beladung resultiert. DEA weist mit 0,49 mol_{CO2}/mol_{Amin} eine vergleichsweise geringe 40 °C-Beladung auf, obwohl eine niedrige 90 °C-Beladung vorliegt, die auf verstärkter Hydrogencarbonatbildung beruht. Diese würde eine hohe 40 °C-Beladung erwarten lassen, die jedoch nur in Kombination mit einer ausreichenden Absorptionsrate oder Kristallisation eintritt. Dies trifft auf DEA nicht zu. Es ist festzuhalten, dass mit zunehmender Komplexität der Molekülstruktur von DEA über IPAE zu tertBAE die CO₂-Amin-Bindung destabilisiert wird. Die sehr niedrigen 90 °C-Beladungen führen mit den erreichten 40 °C-Beladungen zu sehr hohen Arbeitskapazitäten, die gegenüber MEA bis um das Dreifache erhöht sind.

4.1.4 Tertiäre Amine

Die bisher gezeigten primären und sekundären Amine können im Gegensatz zu den tertiären Aminen größtenteils als Reinstofflösungen für die CO₂-Absorption eingesetzt werden.

Abbildung 23: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 40 und 90 °C mit Arbeitskapazitäten (B) von DEEA, MDEA und TEA

Die Ergebnisse der tertiären Amine DEEA, MDEA und TEA sind in *Abbildung 23* dargestellt. Tertiäre Amine bilden gemäß *Gleichungen (11)* bis *(14)* ausschließlich Hydrogencarbonat. Aufgrund dieser langsamen Reaktion, die sich in den äußerst geringen Absorptionsraten in *Abbildung 23 A* widerspiegelt, werden tertiäre Amine nicht als Reinstofflösungen für die CO₂-Absorption aus Kraftwerksrauchgasen eingesetzt. DEEA weist im Vergleich zu MDEA und TEA die kleinste Molekülstruktur und damit höchste Absorptionsrate auf. MDEA und TEA besitzen sehr große Molekülstrukturen und gleichzeitig hohe Aminkonzentrationen, so dass sie nur äußerst langsam und in geringen Mengen CO₂ absorbieren. Es ergeben sich deswegen bei den 40 °C-Beladungen starke Unterschiede zwischen den tertiären Aminen. Entsprechend der Staffelung der Absorption. Die äußerst kleinen 90 °C-Beladungen der untersuchten tertiären Amine von unter 0,05 mol_{CO2}/mol_{Amin} verdeutlichen die Instabilität der Hydrogencarbonationen. Die Arbeitskapazität variiert entsprechend der 40 °C-Beladung.

4.1.5 Aminauswahl für weiterführende Untersuchungen

Zur weiteren Charakterisierung der Lösungsmittel werden einzelne Amine aus den bisher Betrachteten für die Variation der Aminkonzentration und der Lösungsmittelzusammensetzung ausgewählt. Eine erneute Auswahl von Lösungsmitteln wird nach den erfolgten Variationen durchgeführt. Zusammen mit den in *Tabelle 9* aufgeführten Reinstofflösungen werden alle ausgewählten Lösungsmittel umfassend und energetisch charakterisiert und bewertet. In *Tabelle 9* sind die ausgewählten Amine zusammengefasst. Die Auswahl erfolgt aufgrund vorteilhafter Lösungsmitteleigenschaften gegenüber MEA.

- Eine vergleichbare Absorptionsrate zu MEA für eine ausreichend schnelle Kinetik.
- Eine größere Arbeitskapazität als MEA zur Reduktion der Lösungsmittelumlaufmenge.
- Eine kleinere Gleichgewichtsbeladung bei 90 °C als MEA zur erleichterten Desorption.

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
	Amine als Re	einstofflösunge	n und Aktivatoren	
Monoethanolamin	MEA	61,08	HO NH2	30,00
1-Amino-2-Propanol	AP	75,11	OH H ₃ C	36,89
2-(2-Aminoethoxy)-ethanol	DGA	105,14	HO NH ₂	51,64

Tabelle 9: Aminauswahl für weiterführende Untersuchungen

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
Triethylentetramin	ΤΕΤΑ	146,24	$H_2N \longrightarrow N \longrightarrow NH_2$	17,96
2-(Methylamino)-ethanol	MAE	75,11	HO CH3	36,89
2-(Ethylamino)-ethanol	EAE	89,14	HO N CH3	43,78
Diethanolamin	DEA	105,14	но М он	51,64
Amine für		Mischungen a	ls Trägeramine	
2-(Diethylamino)-ethanol	DEEA	117,19		57,56
Methyldiethanolamin	MDEA	119,16	СН ₃ НО И ОН	58,53

(Fortsetzung Tabelle 9: Aminauswahl für weiterführende Untersuchungen)

Weitere Lösungsmitteleigenschaften wie Dampfdruck, Wassergefährdungsklasse und Toxizität stellen ebenfalls wichtige Gesichtspunkte oder Ausschlusskriterien beim Einsatz eines Lösungsmittels im großtechnischen Maßstab dar. Diese ergänzenden Eigenschaften der untersuchten Amine sind in *Anhang A.4 Tabelle* 19 zusammengestellt.

In Abbildung 24 sind die zur Aminauswahl vorteilhaften Eigenschaften für alle untersuchten Amine zusammenfassend dargestellt. Durch die Betrachtung der Amine in äquivalent zu 30,0 % MEA konzentrierten Lösungen, ist in allen Lösungen die gleiche Anzahl an Aminogruppen pro Kilogramm Lösungsmittel enthalten. Auf diese Weise kann ein absoluter Vergleich der Lösungsmittel anhand der gewichtsbezogenen Einheiten durchgeführt werden. Abbildung 24 A gibt die maximale Absorptionsrate $r_{abs,max}$ über der Arbeitskapazität wieder, dabei ist eine hohe Absorptionsrate bei gleichzeitig hoher Arbeitskapazität erwünscht und wird durch die Pfeilrichtung markiert. In Abbildung 24 B markiert die Pfeilrichtung eine niedrige 90 °C-Gleichgewichtsbeladung bei hoher Arbeitskapazität. Diese drei Eigenschaften, d.h. hohe Absorptionsrate und hohe Arbeitskapazität bei gleichzeitig kleiner 90 °C-Beladung, sind in der Regel gegenläufig zueinander. So ist zu erkennen, dass die meisten primären Amine und Polyamine hohe Absorptionsraten und hohe 90 °C-Beladungen bei zudem geringen Arbeitskapazitäten aufweisen. Die sekundären Amine zeigen hohe Arbeitskapazitäten und niedrige 90 °C-Beladungen, bei variierenden Absorptionsraten. Die sterisch gehinderten primären oder sekundären Amine sowie tertiären Amine zeichnen sich durch ihre geringen 90 °C-Beladungen aus. Zusätzlich kann durch die vorangegangenen Untersuchungen festgestellt werden, dass mit zunehmender Komplexität der Aminstruktur eine Reduktion der Gleichgewichtsbeladung bei 90 °C eintritt, die meistens mit einer Erhöhung der Arbeitskapazität und Senkung der Absorptionsrate einhergeht. Im Weiteren werden die untersuchten Amine diskutiert und jeweils die Auswahl begründet.

Abbildung 24: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 90 °C (B) über der Arbeitskapazität der untersuchten Amine (↑ Zielrichtung vorteilhafter Eigenschaften) [Primär: 1-APKette, 2-AP, 3-DGA, 4-AMP, 5-AMPD; Polyamin: 6-DAPKette, 7-TETA, 8-DAE, 9-DETA, 10-TEPA, 11-AEAE, 12-DAP; Sekundär: 13-MAE, 14-EAE, 15-PAE, 16-BAE, 17-IPAE, 18-DEA, 19-tertBAE; Tertiär: 20-DEEA, 21-MDEA, 22-TEA]

Es wurden die primären Amine APKette, AP, DGA, AMP und AMPD betrachtet. Dabei erreichen APKette, AP und DGA vergleichbar hohe Absorptionsraten. Eine niedrigere 90 °C-Beladung besteht bei AP und DGA sowie bei AMP und AMPD. Für AP, DGA und AMP ergeben sich ebenfalls höhere oder ähnliche Arbeitskapazitäten wie für MEA. Bei AMP und AMPD tritt während der Beladung mit CO₂ Kristallisation auf, die deren Einsatz bei den untersuchten Konzentrationen in Packungskolonnen verhindert. Im Gegensatz zu APKette, das eine geringere Arbeitskapazität als MEA und eine hohe 90 °C-Beladung aufweist, werden AP und DGA als Reinstofflösungen weiter betrachtet.

Die untersuchten Diamine DAE, DAPKette und DAP werden nicht weiter betrachtet, obwohl sie bis auf DAP hohe Absorptionsraten und zu MEA ähnliche Arbeitskapazitäten zeigen. Aufgrund der Molekülstruktur, ohne Hydroxylgruppe, besitzen die Diamine einen hohen Dampfdruck, der eine aufwändige Aminabscheidung aus dem Rauchgas am Absorberaustritt erfordern würde. Die Polyamine AEAE, DETA, TETA und TEPA zeigen ebenfalls hohe Absorptionsraten und vergleichbare oder etwas kleinere Arbeitskapazitäten als MEA. AEAE wird als giftig eingestuft und DETA sowie TEPA weisen einen höheren Dampfdruck als TETA auf, weswegen TETA für die weiteren Untersuchungen repräsentativ verwendet wird.

Die betrachteten sekundären Amine sind sehr unterschiedlich in ihren Eigenschaften. Die strukturähnlichen Amine MAE, EAE, PAE und BAE weisen alle eine sehr gute Kinetik auf, dahingegen reagieren IPAE, DEA oder tertBAE relativ langsam mit CO₂. Für alle betrachteten sekundären Amine ergeben sich größere Arbeitskapazitäten als für MEA. PAE, IPAE und tertBAE sind in Wassergefährdungsklasse 3 eingestuft, wodurch bei deren Einsatz besondere Anforderungen an den Kraftwerksbetreiber gestellt würden. DEA wird auf Grund seiner hohen Arbeitskapazität und als Referenz weiter untersucht, MAE und EAE aufgrund ihrer schnellen und guten Absorption bei gleichzeitig geringen 90°C-Beladungen.

Die tertiären Amine eignen sich aufgrund ihrer sehr langsamen Absorptionsraten nicht zum Einsatz als Reinstofflösungen zur CO₂-Abscheidung. Sie weisen jedoch großes Potential bei Verwendung als CO₂-Träger in Aminmischungen auf. Von den drei untersuchten tertiären Aminen DEEA, MDEA und TEA werden DEEA und MDEA in Aminmischungen weiter betrachtet. Dabei ist die sehr niedrige 90 °C-Beladung vorteilhaft.

4.2 Konzentrierte Aminlösungen

Die Aminkonzentration wird zwischen 20,0, 30,0, 40,0 und 50,0 % MEA variiert. Dabei wird für die ausgewählten Amine entsprechend die äquivalente Aminkonzentration, mit gleicher Konzentration an Aminogruppen in Lösung, verwendet. Die Molalität beträgt mit aufsteigender Konzentration 3,3, 4,9, 6,5 und 8,2 mol_{Amin}/kg_{LM}. Im Folgenden werden die Ergebnisse für MEA und die in *Kapitel 4.1.5* ausgewählten Amine für Reinstofflösungen diskutiert.

4.2.1 Primäre Amine und Polyamine

In *Abbildung 25* sind die CO₂-Austrittskonzentrationen und Absorptionsraten von MEA dargestellt. Die Kurven der CO₂-Austrittskonzentrationen weisen eine klare Staffelung auf. Sie verlaufen mit zunehmender Konzentration flacher, da mit ansteigender reaktiver Aminmenge die Lösungsmittel mehr Zeit benötigen um Gleichgewicht zu erreichen. Mit einer CO₂-Austrittskonzentration von unter 1,5 Vol.-% absorbieren alle Lösungen zu Beginn eine ähnliche CO₂-Menge pro Minute und erreichen mit ca. 2,9 g_{CO2}/(kg_{LM} min) hohe absolute Absorptionsraten. Die molaren Absorptionsraten sinken stattdessen mit ansteigender Konzentration, da die absorbierte CO₂-Menge auf eine zunehmende Molmenge an Amin bezogen wird.

Abbildung 25: CO₂-Austrittskonzentrationen (A) und Absorptionsraten bei bei 40 °C (B) von 3,3-8,2 mol/kg MEA, ensprechend 20,0-50,0 % MEA

Aus *Abbildung 26* ist ersichtlich, dass die 40 °C-Beladungen mit zunehmender Aminkonzentration sinken, jedoch die 90 °C-Beladungen steigen. Gleichzeitig wird das Wasser-Amin-Verhältnis $R_{H2O,Amin}$ bei 3,3 zu 8,2 mol_{Amin}/kg_{LM} MEA von knapp 14 mol_{H2O}/mol_{Amin} um 75 % stark reduziert. Es stehen somit für die CO₂-Absorptionsreaktion mit zunehmender Aminkonzentration weniger Wassermoleküle im Verhältnis zu Aminmolekülen zur Verfügung, so dass nach *Gleichungen (11)* bis *(13)* weniger Hydrogencarbonat gebildet wird.

Abbildung 26: Gleichgewichtsbeladungen bei 40 und 90 °C (A) und das Wasser-Amin-Verhältnis (B) von 3,3-8,2 mol/kg MEA, ensprechend 20,0-50,0 % MEA

Aufgrund des großen Wasserüberschusses wird deswegen bei geringerer Aminkonzentration mehr Hydrogencarbonat gebildet und eine höhere 40 °C-Beladung erreicht. Bei Temperaturerhöhung spielt das Hydrogencarbonat jedoch eine untergeordnete Rolle, da das CO₂ hauptsächlich als Carbamat gebunden ist. Die 90 °C-Beladungen zeigen den umgekehrten Verlauf zu den 40 °C-Beladungen und steigen mit zunehmender Aminkonzentration an. Das liegt daran, dass Wasser und protoniertes Amin bei Temperaturerhöhung dissoziieren und Protonen entstehen, wodurch die Lösung weniger alkalisch wird. Nach *Gleichung (10)* verschiebt sich dadurch das Reaktionsgleichgewicht in Richtung der Ausgangsseite zu freiem Amin und CO₂, so dass die Beladung reduziert wird. In *Tabelle 10* ist der pH-Wert unbeladener MEA-Lösungen erfasst. Dieser sinkt mit zunehmender Temperatur und abnehmender Aminkonzentration. Somit führt ein größeres Wasser-Amin-Verhältnis bzw. eine geringere Aminkonzentration zu einer Destabilisierung der CO₂-Amin-Bindung bei Erhöhung der Temperatur.

Temperatur	Molalität		4,9 MEA	6,5 MEA	8,2 MEA
°C	mol _{Amin} /kg _{LM}	3,3 MEA			
25		11,98	12,42	12,71	13,18
40	pH-Wert	11,62	11,89	-	12,76
90		10,37	10,48	-	11,12

Tabelle 10: pH-Wert unbeladener Lösungen von MEA bei Variation der Molalität und Temperatur

Aus der Differenz der 40 und 90 °C-Beladungen ergeben sich die in *Abbildung 27* dargestellen Arbeitskapazitäten von MEA. Aufgrund des gegenläufigen Beladungsverlaufs über der Aminkonzentration sinkt die molare Arbeitskapazität mit deren Zunahme. Die absolut von der Lösung aufgenommene Menge an CO_2 in $[g_{CO2}/kg_{LM}]$ nimmt jedoch mit Steigerung der Konzentration zu. Dadurch kann bei Erhöhung der Aminkonzentration von 3,3 auf 8,2 mol_{Amin}/kg_{LM} MEA, entsprechend von 30,0 % auf 50,0 %, eine Steigerung der absoluten Arbeitskapazität um 19 % erzielt werden.

Abbildung 27. Molare und gewichtsbezogene Arbeitskapazitäten von MEA

Die Aminkonzentration der primären Amine AP und DGA sowie des Polyamins TETA wird zwischen einer Molalität von 3,3 bis 8,2 mol_{Amin}/kg_{LM} variiert. Die Absorptionsraten sind in *Abbildung 28 A* bis *C* gezeigt. Vergleichbar zu MEA ergibt sich eine klare Staffelung der Absorptionsraten anhand der Konzentration, mit deren Zunahme diese sinken. Gleichzeitig weisen die Lösungen hohe absolute Absorptionsraten von ca. 2,8 g_{CO2}/(kg_{LM} min) auf, wobei die zwei höher konzentrierten Lösungen von AP etwas kleinere Absorptionsraten zeigen.

Abbildung 28: Absorptionsraten bei 40 °C von 3,3-8,2 mol/kg AP (A), DGA (B) und TETA (C)

Abbildung 29 fasst die 40 und 90 °C-Beladungen sowie das Wasser-Amin-Verhältnis von AP, DGA und TETA im Vergleich zu MEA zusammen. Die 40 °C-Beladungen von AP und DGA sinken entsprechend den Beladungen von MEA mit zunehmender Aminkonzentration, gleichzeitig steigen die 90 °C-Beladungen der Amine. Allein TETA weist bei den 40 °C-Beladungen ein anderes Verhalten auf. Diese bleiben über der Konzentration konstant. Aufgrund der vier Aminogruppen sind die äquivalenten Aminkonzentrationen im Vergleich zu den anderen Aminen sehr klein, so dass die maximale Konzentration von TETA nur 29,9 % beträgt. Dadurch besteht ein etwas größerer Wasserüberschuss pro Aminogruppe, so dass die Hydrogencarbonatbildung nicht durch das Wasser-Amin-Verhältnis limitiert zu sein scheint.

Die Arbeitskapazitäten der Amine ergeben sich wiederum aus der Differenz der 40 und 90 °C-Beladungen, die in *Abbildung 30* molar- und gewichtsbezogen dargestellt sind. AP und DGA weisen eine ähnlich ausgeprägte Abnahme der molaren Arbeitskapazitäten mit zunehmender Aminkonzentration auf. Der Verlauf der Arbeitskapazitäten von TETA ist etwas fla-

cher, was auf die konstanten 40 °C-Beladungen zurückzuführen ist. DGA erreicht größere AP vergleichbare und TETA geringere molare Arbeitskapazitäten als MEA.

Abbildung 29: Gleichgewichtsbeladungen bei 40 und 90 °C (A) und das Wasser-Amin-Verhältnis (B) von MEA, AP, DGA und TETA

Abbildung 30: Molare (A) und gewichtsbezogene (B) Arbeitskapazitäten von AP, DGA und TETA

Die insgesamt von der Lösung aufgenommene Menge an CO_2 ist in *Abbildung 30 B* gezeigt. Das gestrichelte Kreuz markiert die gewichtsbezogene Arbeitskapazität von 30,0 % MEA mit 47 g_{CO2}/kg_{LM}. Die gewichtsbezogenen Arbeitskapazitäten von AP und DGA verlaufen identisch, unterhalb des Verlaufs von MEA. TETA erreicht bei gleicher Aminkonzentration eine
um bis zu 32 % größere Arbeitskapazität als MEA. Andererseits kann bei gleicher Arbeitskapazität von MEA bei Verwendung von TETA die Aminkonzentration reduziert werden.

4.2.2 Sekundäre Amine

Die Aminkonzentration der sekundären Amine MAE, EAE und DEA wird zwischen 3,3 und 8,2 mol_{Amin}/kg_{LM} variiert. Die in *Abbildung 31 A* bis *C* dargestellten Absorptionsraten weisen wiederum die gleiche Staffelung auf. Dabei zeigen MAE und EAE durchweg hohe Absorptionsraten jeweils vergleichbar zur entsprechenden MEA-Konzentration. Die Absorptionsraten von DEA weisen erhebliche Unterschiede in Abhängigkeit der Konzentration auf. Während die Lösung mit 3,3 mol_{Amin}/kg_{LM} DEA eine zu 4,9 mol_{Amin}/kg_{LM} MEA vergleichbar erheblich reduziert. Prinzipiell sind die Absorptionsraten von DEA im verwendeten Versuchsaufbau um ca. 30 % geringer als die der äquivalent konzentrierten MEA-Lösungen.

Abbildung 31: Absorptionsraten bei 40 °C von 3,3-8,2 mol/kg MAE (A), EAE (B) und DEA (C)

Die in *Abbildung 32 A* aufgetragenen 40 °C-Beladungen der sekundären Amine sinken mit zunehmender Aminkonzentration viel stärker als die der primären Amine. Das ist darauf zurückzuführen, dass ein Großteil des absorbierten CO₂ als Hydrogencarbonat gebunden ist. Das Wasser-Amin-Verhältnis, *Abbildung 32 B*, hat dadurch einen weit größeren Einfluss auf deren Beladungen. Dies zeigt sich zudem in den mit steigender Aminkonzentration im Gegensatz zu MEA sinkenden 90 °C-Beladungen von MAE und EAE. Die stärkere Hydrogencarbonatbildung scheint trotz Temperaturerhöhung ebenfalls die 90 °C-Beladung zu beeinflussen.

Abbildung 32: Gleichgewichtsbeladungen bei 40 und 90 °C (A) und das Wasser-Amin-Verhältnis (B) von MEA, MAE, EAE und DEA

DEA zeigt wiederum ein anderes Verhalten. Die 90 °C-Beladungen von DEA nehmen vergleichbar zu denen von MEA mit der Konzentration zu. Eine mögliche Erklärung könnte sein, dass das CO₂ bei 90 °C hauptsächlich als Carbamat gebunden vorliegt und der Hydrogencarbonatanteil bereits gespalten wurde. Die Carbamationen könnten dann vergleichbar zu MEA aufgrund der pH-Wert-Absenkung durch abnehmende Aminkonzentration destabilisiert werden, wodurch die 90 °C-Beladungen reduziert würden.

Abbildung 33: Molare (A) und gewichtsbezogene (B) Arbeitskapazitäten von MAE, EAE, und DEA

In *Abbildung 33 A* weisen die molaren Arbeitskapazitäten der sekundären Amine einen vergleichbaren Verlauf zu denen von MEA auf und sinken mit zunehmender Aminkonzentration ab. Sie erreichen bei Weitem höhere Arbeitskapazitäten als MEA. In *Abbildung 33 B* sind die sehr hohen gewichtsbezogenen Arbeitskapazitäten von EAE auffällig. Durch Konzentrationssteigerung auf 8,2 mol_{Amin}/kg_{LM} EAE kann fast eine Verdreifachung der Arbeitskapazität erreicht werden. Bei der Lösung mit 8,2 mol_{Amin}/kg_{LM} DEA bricht die Arbeitskapazität aufgrund der äußerst hohen Aminkonzentration, die eine starke Reduktion der 40 °C-Beladung bewirkt, ein. Prinzipiell sind jedoch mit den sekundären Aminen sowohl größere molar- als auch gewichtsbezogene Arbeitskapazitäten im Vergleich zu MEA erzielbar.

4.2.3 Auswahl von konzentrierten Aminlösungen

Nach Variation der Aminkonzentration werden einzelne konzentrierte Aminlösungen zur umfassenden Charakterisierung ausgewählt. Dabei wird beispielhaft für jeden Amintyp ein Lösungsmittel weiter betrachtet, um auf diese Weise den Einfluss der Aminkonzentration auf den Prozess beurteilen zu können. Die Auswahl ist in *Tabelle 11* gegeben.

Amin		Molmasse	Strukturformel	Konzentration
		[g/mol]		[Gew%]
Monoethanolamin	MEA	61,08	HO NH2	50,00
Triethylentetramin	ΤΕΤΑ	146,24	H ₂ N NH ₂	29,93
2-(Ethylamino)-ethanol	EAE	89,14	HO HO CH3	72,97

Tabelle 11: Auswahl von konzentrierten Aminlösungen

Weiterhin gelten die in *Kapitel 3.2.1* beschriebenen Kriterien zur Auswahl von Lösungsmitteln anhand vorteilhafter Eigenschaften gegenüber dem Referenzlösungsmittel 30,0 % MEA. *Abbildung 34 A* gibt die maximale Absorptionsrate $r_{abs,max}$ über der Arbeitskapazität wieder, dabei ist eine hohe Absorptionsrate bei gleichzeitig hoher Arbeitskapazität erwünscht und wird durch die Pfeilrichtung markiert. Aufgrund der dahingehenden Vorauswahl zeigen die meisten Lösungsmittel hohe Absorptionsraten, die gehäuft bei Arbeitskapazitäten zwischen 30 und 60 g_{CO2}/kg_{LM} auftreten. Vereinzelte Lösungsmittel wie EAE und DEA erreichen höhere Arbeitskapazitäten, wobei die Kinetik von DEA gering ist. In *Abbildung 34 B* markiert die Pfeilrichtung eine niedrige 90 °C-Beladung bei hoher Arbeitskapazität. Die 90 °C-Beladungen variieren sehr stark, da im Gegensatz zu den molaren Beladungen die gewichtsbezogenen Beladungen für alle Amine mit Steigerung der Aminkonzentration zunehmen. Dadurch ergibt sich der unvorteilhafte Zusammenhang von zunehmender Arbeitskapazität bei gleichzeitig zunehmender 90 °C-Beladung. Lediglich DEA und EAE erreichen selbst bei den hoch konzentrierten Lösungen niedrige 90 °C-Beladungen unter der von 30,0 % MEA.

Abbildung 34: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 90 °C (B) über der Arbeitskapazität konzentrierter wässriger Lösungen vorausgewählter Amine (↑ Zielrichtung vorteilhafter Eigenschaften)

Um alle Amintypen und den Einfluss der Konzentration in den weiteren Untersuchungen abzubilden, wird von jedem Typ ein Lösungsmittel der Molalität 8,2 mol_{Amin}/kg_{LM} beispielhaft weiter betrachtet. Dazu gehören MEA als primäres Referenzamin, TETA als Polyamin mit geringer absoluter Aminkonzentration und EAE als sekundäres Amin, das alle vorteilhaften Eigenschaften von hoher Kinetik und Arbeitskapazität bei geringer 90 °C-Beladung vereint.

4.3 Aminmischungen

Aminmischungen werden mit dem Ziel eingesetzt, durch Kombination verschiedener Amine deren vorteilhafte Eigenschaften gezielt zu nutzten. Ein Amin mit hoher Kinetik wird als Aktivator für ein Amin mit hoher CO₂-Aufnahmekapazität bei instabiler Bindung, ein sogenanntes Trägeramin, verwendet. Auf diese Weise soll ein Lösungsmittel mit guter Kinetik und hoher Arbeitskapaztität bei gleichzeitig einfacher Regeneration hergestellt werden. Dazu werden verschiedene Aktivatoren und Trägeramine bei Variation der Mischungsverhältnisse kombiniert, um so zum Einen den Einfluss des Aktivators und des Trägeramins zu ermitteln und zum Anderen ein Lösungsmittel mit den genannten Eigenschaften zu identifizieren. Es werden die Gleichgewichtsbeladungen bei 40 und 90 °C ermittelt sowie die Kinetik und Arbeitskapazität der Aminmischungen betrachtet. Die untersuchten Aminmischungen werden auf eine Molalität von 4,9 mol_{Amin}/kg_{LM} eingestellt und sind in *Tabelle 12* zusammengefasst. Die Berechnung der Konzentrationen des Aktivators und des Trägeramins sind in *Anhang A.4* gegeben. Im Folgenden wird der Aktivatoranteil *a* in [mol_{Akt}/mol_{Misch}] bzw. [mol-%] zur Kennzeichnung des Mischungsverhältnisses in der jeweils betrachteten Aminmischung verwendet. Zunächst wird die binäre Aminmischung aus MEA mit MDEA betrachtet und danach werden der Aktivator MEA sowie das Trägeramin MDEA durch andere Amine ersetzt.

Aminmischung		Mittlere	Konzentration		Aktivator-				
		Molmasse	Mischung	Aktivator	Träger	anteil a			
		[g/mol]	[Gew%]	[Gew%]	[Gew%]	[mol-%]			
Binäre Aminmischung von MEA mit MDEA									
3,0% MEA/ 52,7% MDEA	10% MEA	113,35	55,67	3,00	52,67	10			
5,0% MEA/ 48,8% MDEA	17% MEA	109,48	53,77	5,00	48,77	17			
10,0% MEA/ 39,0% MDEA	33% MEA	99,80	49,02	10,00	39,02	33			
12,0% MEA/ 35,1% MDEA	40% MEA	95,93	47,12	12,00	35,12	40			
15,0% MEA/ 29,3% MDEA	50% MEA	90,12	44,26	15,00	29,26	50			
20,0% MEA/ 19,5% MDEA	67% MEA	80,44	39,51	20,00	19,51	67			
25,0% MEA/ 9,75% MDEA	83% MEA	70,76	34,75	25,00	9,75	83			
Binäre Aminmischungen bei Variation des Aktivators MEA									
12,3% AP/ 39,0% MDEA	33% AP	104,48	51,31	12,30	39,02	33			
14,8% AP/ 35,1% MDEA	40% AP	101,54	49,87	14,76	35,12	40			
24,6% AP/ 19,5% MDEA	67% AP	89,79	44,10	24,59	19,51	67			
17,2% DGA/ 39,0% MDEA	33% DGA	114,49	56,23	17,21	39,02	33			
20,7% DGA/ 35,1% MDEA	40% DGA	113,55	55,77	20,66	35,12	40			
34,4% DGA/ 19,5% MDEA	67% DGA	109,81	53,94	34,43	19,51	67			
6,0% TETA/ 39,0% MDEA	33% TETA	-	6,0+39,0	5,99	39,02	33			
7,2% TETA/ 35,1% MDEA	40% TETA	-	7,2+35,1	7,18	35,12	40			
12,0% TETA/ 19,5% MDEA	67% TETA	-	12,0+19,5	11,97	19,51	67			
12,3% MAE/ 39,0% MDEA	33% MAE	104,48	51,31	12,30	39,02	33			
14,8% MAE/ 35,1% MDEA	40% MAE	101,54	49,87	14,76	35,12	40			
18,5% MAE/ 29,3% MDEA	50% MAE	97,14	47,71	18,45	29,26	50			
24,6% MAE/ 19,5% MDEA	67% MAE	89,79	44,10	24,59	19,51	67			
4,4% EAE/ 52,7% MDEA	10% EAE	116,16	57,05	4,38	52,67	10			
7,3% EAE/ 48,8% MDEA	17% EAE	114,16	56,07	7,30	48,77	17			
17,5% EAE/ 35,1% MDEA	40% EAE	107,15	52,63	17,51	35,12	40			
29,2% EAE/ 19,5% MDEA	67% EAE	99,15	48,70	29,19	19,51	67			
Binäre Aminmischungen bei Ersatz des Trägeramins MDEA									
5.0% MEA/ 48,0% DEEA	17% MEA	107,84	52,97	5,00	47,97	17			
8,0% MEA/ 42,2% DEEA	27% MEA	102,24	50,21	8,00	42,22	27			
12,0% MEA/ 34,5% DEEA	40% MEA	94,75	46,54	12,00	34,54	40			
20,0% MEA/ 19,2% DEEA	67% MEA	79,78	39,19	20,00	19,19	67			

Tabelle 12: Untersuchte Aminmischungen

4.3.1 Binäre Aminmischung von MEA und MDEA

Das primäre Amin MEA wird mit dem tertiären Amin MDEA in verschiedenen Verhältnissen von 10 bis 83 mol-% Aktivatoranteil gemischt. In *Abbildung 35 A* sind die CO₂-Absorptionsraten dieser Mischungsverhältnisse der binären Aminmischung von MEA mit MDEA sowie der beiden Reinstofflösungen dargestellt. Es ist eine klare Staffelung zunehmender Absorptionsraten mit Steigerung des MEA-Anteils ersichtlich. Bei Zugabe von lediglich 10 mol-% MEA kann die Absorptionsrate gegenüber MDEA um 150 % erhöht werden. Bei Steigerung des Aktivatoranteils auf größer als 33 mol-% werden Werte besser als 80 % von MEA erreicht. Die in *Abbildung 35 B* gezeigten 40 °C-Beladungen steigen ebenfalls mit zunehmendem MEA-Anteil und nähren sich ausgehend von der MDEA-Beladung der von MEA an.

Abbildung 35: Absorptionsraten (A) und Gleichgewichtsbeladungen (B) bei 40 °C der binären Aminmischung von MEA mit MDEA

Die 40 °C-Beladungen der Aminmischung beschreiben mit steigendem Aktivatoranteil eine Kurve. Diese ist bedingt durch die Zunahme der Kinetik, mit der eine Verschiebung des Reaktionsgleichgewichts hin zum gebundenen CO₂ einhergeht. Dadurch ergibt sich eine Beladungserhöhung bei 40 °C. In *Abbildung 36 A* weisen im Gegensatz dazu die 90 °C-Beladungen einen linearen Zusammenhang mit dem MEA-Anteil auf. Die grauen Linien mit offenen Datenpunktmarkierungen stellen die anteiligen Beladungen bei 40 und 90 °C des Aktivators dar. Es besteht die Annahme, dass der Aktivator bis zum eingesetzten Anteil seine Gleichgewichtsbeladung bei gegebener Temperatur erreicht, so dass sich die anteilige Beladung aus dem Produkt von Aktivatoranteil und Gleichgewichtsbeladung des Aktivators ergibt.

Abbildung 36: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von MEA mit MDEA

Die 40 °C-Beladungen der Aminmischung sind deutlich gegenüber den anteiligen Beladungen von MEA erhöht, was auf eine zusätzliche Hydrogencarbonatbildung durch MDEA hindeutet. Die 90 °C-Beladungen stimmen mit den anteiligen Beladungen von MEA bei 90 °C überein, woraus zu schließen ist, dass der MEA-Anteil die Beladungen der Aminmischung bei 90 °C bestimmt. Aus der Differenz der 40 und 90 °C-Beladungen ergibt sich der in *Abbildung 36 B* dargestellte Kurvenverlauf der Arbeitskapazität der Aminmischung. Diese bildet ein Maximum für 40 mol-% MEA mit MDEA bei einer Arbeitskapazität von 0,29 mol_{CO2}/mol_{Amin} aus. Die Erhöhung der Arbeitskapazität der Aminmischung gegenüber den Arbeitskapazitäten der Reinstofflösungen wird durch die zusätzliche Hydrogencarbonatbildung von MDEA bei 40 °C verursacht. Das Maximum könnte sich bei dem Mischungsverhältnis ergeben, bei dem die schnelle CO₂-Aufnahme durch MEA und die Parallelreaktion zu Hydrogencarbonat durch MDEA ein optimales Zusammenspiel erreichen.

4.3.2 Binäre Aminmischungen bei Variation des Aktivators MEA

Aminmischungen werden zur Kombination einer guten Absorption bei einfacher Regeneration eingesetzt. Um die Kinetik aufrechtzuerhalten, jedoch eine weitere Vereinfachung der Regeneration zu erzielen, wird der Aktivator MEA durch primäre und sekundäre Amine, die eine instabilere CO₂-Amin-Bindung als MEA aufweisen, ersetzt. Bei Ersatz von MEA durch ein anderes Amin ist somit von Interesse, ob sich dieses als Aktivator für MDEA eignet und ob eine Erhöhung der Arbeitskapazität gegenüber den Reinstofflösungen vorliegt. In *Abbildung 37 A* und *B* sind die Absorptionsraten der binären Aminmischungen von AP und DGA mit MDEA dargestellt. Die Anteile der Aktivatoren AP und DGA betragen 33, 40 und 67 mol-%. Die Absorptionsraten der beiden Aminmischungen nehmen vergleichbar zu den entsprechenden Lösungen von MEA mit MDEA bei Reduktion des Aktivatoranteils ab. Dabei bleibt die maximale Absorptionsrate für den jeweils eingesetzten Aktivatoranteil gleich, jedoch sinken die Kurven von AP schneller im Vergleich zu DGA oder MEA mit MDEA.

Abbildung 37: Absorptionsraten der binären Aminmischungen von AP mit MDEA (A) und von DGA mit MDEA (B) bei 40 °C

Abbildung 38: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von AP mit MDEA

Abbildung 39: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von DGA mit MDEA

Abbildung 38 und *Abbildung 39* zeigen die Gleichgewichtsbeladungen bei 40 und 90 °C sowie die Arbeitskapazitäten der binären Aminmischungen von AP und DGA mit MDEA. Die Beladungen der beiden Aminmischungen weisen ähnliche Kurvenverläufe zu denen von MEA mit MDEA auf. Die 40 °C-Beladungen sind wiederum gegenüber den anteiligen Beladungen der Aktivatoren erhöht, wobei die 90 °C-Beladungen beider Aminmischungen den anteiligen Beladungen der jeweiligen Aktivatoren AP und DGA entsprechen. Die Arbeitskapazitäten der Aminmischungen bilden ebenfalls ein Maximum bei ca. 0,29 mol_{CO2}/mol_{Amin} aus. Das Maximum tritt jedoch bei höheren Aktivatoranteilen von AP und DGA im Gegensatz zu MEA mit MDEA auf, nämlich bei 50 bis 60 mol-%. Dies könnte daran liegen, dass AP und DGA eine instabilere CO₂-Amin-Bindung als MEA aufweisen und dadurch das optimale Zusammenspiel von Absorptions- und Weiterreaktion hin zum Aktivator verschoben wird.

Die Absorptionsraten der binären Aminmischung des Polyamins TETA mit MDEA sind in *Abbildung 40* gegeben. Die untersuchten Aktivatoranteile umfassen 33, 40 und 67 mol-% TETA. Es besteht die gleiche Staffelung der Absorptionsraten bei gleichem Aktivatoranteil im Vergleich zu MEA. Gleichzeitig bilden die Absorptionsraten von TETA mit MDEA wie MEA mit MDEA zuerst ein Plateau aus bevor sie zur Gleichgewichtsbeladung hin abfallen. Die Unregelmäßigkeiten der Absorptionsraten von 33 und 40 mol-% TETA bei einer Beladung um 0,40 mol_{CO2}/mol_{Amin} sind auf eine starke Schaumbildung zurückzuführen. Diese bewirkt eine Vergrößerung der Stoffaustauschfläche, so dass die Kinetik der beiden Mischungsverhältnisse bei der CO₂-Absorption kurzzeitig erhöht wird.

In *Abbildung 41* sind die Gleichgewichtsbeladungen bei 40 und 90 °C sowie die Arbeitskapazitäten von TETA mit MDEA dargestellt. Die 40 °C-Beladungen sind stark gegenüber den anteiligen Beladungen von TETA erhöht und erreichen alle eine zur Reinstofflösung vergleichbaren Beladung. Es scheint damit eine sehr starke zusätzliche Hydrogencarbonatbildung durch Zugabe von MDEA zu erfolgen. Die 90 °C-Beladungen werden wiederum vom Aktivatoranteil bestimmt, da sie mit den anteiligen 90 °C-Beladungen von TETA übereinstimmen. Die Arbeitskapazitäten

bilden ein deutliches Maximum mit mindestens $0,37 \text{ mol}_{CO2}/\text{mol}_{Amin}$ bei 33 mol-% TETA oder kleiner aus. Der geringere Aktivatoranteil würde mit vorheriger Annahme bedeuten, dass bei TETA eine stabilere CO₂-Amin-Bindung als bei MEA vorliegt, so dass sich das optimale Verhältnis von Absorptions- und Weiterreaktion hin zum Trägeramin verschiebt.

Abbildung 41: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von TETA mit MDEA

Die binären Aminmischungen der sekundären Amine MAE und EAE mit MDEA in den Mischungsverhältnissen von 33, 40, 50 und 67 mol-% MAE sowie 10, 17, 40 und 67 mol-% EAE werden im Folgenden betrachtet. In *Abbildung 42* sind die Absorptionsraten gegeben. Wiederum werden bei denselben Aktivatoranteilen vergleichbare oder höhere Absorptionsraten im Vergleich zur Aminmischung von MEA mit MDEA erreicht. 40 und 67 mol-% EAE mit MDEA weisen zudem einen weiten Bereich konstanter Absorptionsrate auf.

Abbildung 42: Absorptionsraten der binären Aminmischungen von MAE mit MDEA (A) und von EAE mit MDEA (B) bei 40 °C

Die Gleichgewichtsbeladungen bei 40 und 90 °C sowie die Arbeitskapazitäten der binären Aminmischungen von MAE und EAE mit MDEA sind in Abbildung 43 und Abbildung 44 dargestellt. Die 40 °C-Beladungen beider Aminmischungen zeigen im Gegensatz zu den bisher untersuchten Aktivatoren lediglich eine leichte Erhöhung gegenüber den anteiligen Beladungen von MAE und EAE. Vielmehr entsprechen die 40 °C-Beladungen der Aminmischungen beinahe den Geraden zwischen den Gleichgewichtsbeladungen der jeweiligen Reinstofflösungen. Diese Geraden ergeben sich aus der Summe der anteiligen Beladungen der Mischungskomponenten. Die 90 °C-Beladungen zeigen wiederum den signifikanten Zusammenhang zur jeweiligen anteiligen 90 °C-Beladung der Aktivatoren MAE und EAE. Der Aktivatoranteil bestimmt damit die Gleichgewichtsbeladung bei 90 °C nicht nur für die primären Amine und Polyamine, sondern auch für die hier untersuchten sekundären Amine. Die Arbeitskapazitäten der binären Aminmischungen von MAE und EAE mit MDEA weisen einen anderen als den bisher diskutierten Verlauf auf. Da die Erhöhung der 40 °C-Beladungen sehr gering ist, zeigen die Arbeitskapaziäten kein Maximum, vielmehr verschiebt sich das Maximum zum Aktivator. Dies könnte an der zunehmenden Instabilität der CO₂-Amin-Bindung von MAE und EAE im Vergleich zu den anderen Aktivatoren liegen. Durch die Zumischung von MDEA tritt bei Aminen mit stabiler CO₂-Amin-Bindung eine vermehrte Hydrogencarbonatbildung auf, die an den erhöhten 40 °C-Beladungen dieser Aminmischungen erkennbar ist. Bei instabilerer Bindung bildet die Reinstofflösung bereits viel Hydrogencarbonat, so dass durch Zumischung von MDEA weniger zusätzliche Hydrogencarbonatbildung mehr stattfindet. Deswegen sind die 40 °C-Beladungen der Aminmischungen von MAE und EAE mit MDEA kaum erhöht.

Abbildung 43: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von MAE mit MDEA

Abbildung 44: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von EAE mit MDEA

4.3.3 Binäre Aminmischungen bei Ersatz des Trägeramins MDEA

Um eine einfachere Regeneration von Aminmischungen zu erzielen, besteht neben dem Ersatz des Aktivators ebenfalls die Möglichkeit MDEA durch andere Trägeramine auszutauschen. Es ist weiterhin von Interesse eine gute Kinetik und hohe Arbeitskapazität beizubehalten. MDEA wird durch das tertiäre Amin DEEA ersetzt.

Abbildung 45: Absorptionsraten der binären Aminmischungen von MEA mit DEEA bei 40 °C

Abbildung 45 zeigt die Absorptionsraten der binären Aminmischung von MEA mit DEEA. Dabei werden als Aktivator 17, 27, 40 und 67 mol-% MEA betrachtet. Die Absorptionsraten der Aminmischungen von MEA mit DEEA zeigen geringere Werte als die entsprechend aktivierte Aminmischung mit MDEA. Lediglich 17 mol-% MEA mit DEEA erreicht eine um 20 % höhere Absorptionsrate als die entsprechende MDEA-Mischung. Die Gleichgewichtsbeladungen bei 40 und 90 °C sowie die Arbeitskapazitäten der binären Aminmischung von MEA mit DEEA sind in *Abbildung 46* dargestellt.

Abbildung 46: Gleichgewichtsbeladungen bei 40 und 90 °C der Mischung sowie des Aktivators (A) und Arbeitskapazitäten (B) der binären Aminmischung von MEA mit DEEA

Die 40 °C-Beladungen sind gegenüber den anteiligen Beladungen von MEA erhöht und bilden ab einem MEA-Anteil von 27 mol-% ein Plateau aus. Die Gleichgewichtsbeladungen der Aminmischungen bei 90 °C ergeben jeweils eine Gerade zwischen den Beladungen der Reinstofflösungen von MEA und DEEA bei 90 °C. Damit entsprechen die 90 °C-Beladungen der Aminmischungen den Summen aus den anteiligen Beladungen der Mischungskomponenten. Sie sind dementsprechend nicht identisch mit den anteiligen Beladungen des Aktivators MEA, sondern liegen ein wenig darüber. Der Aktivatoranteil in der Aminmischung ist somit immer noch maßgebend für die Gleichgewichtsbeladung der Aminmischung bei 90°C. Die Arbeitskapazitäten von MEA mit DEEA bilden ein Maximum mit 0,43 mol_{CO2}/mol_{Amin} bei 27 mol-% MEA aus und das obwohl die Reinstofflösung von DEEA schon eine hohe Arbeitskapazität aufweist. Dieser Wert stellt eine Verdopplung der Arbeitskapazität von MEA dar.

4.3.4 Auswahl von Aminmischungen

Nach Untersuchung verschiedener Kombinationen von Aminen zum Einsatz in Aminmischungen werden daraus einzelne Lösungen zur umfassenden Charakterisierung ausgewählt. Um den Einfluss des Aktivatoranteils auf die prozessrelevanten und stoffspezifischen Eigenschaften zu untersuchen, werden binäre Aminmischungen mit verschiedenen Mischungsverhältnissen ausgewählt. Durch die Auswahl unterschiedlicher Aktivatoren und Trägeramine sowie variablem Aktivatoranteil wird der Einfluss dieser Faktoren auf den Energiebedarf zur Regeneration untersucht, so dass letztendlich der Wirkungsgradverlust des Kraftwerks gezielt reduziert werden kann. Die Auswahl ist in *Tabelle 13* gegeben.

		1						
Aminmischung		Molmasse Konzentration		Aktivator-				
		Mischung	Mischung	Aktivator	Träger	anteil a		
		[g/mol]	[Gew%]	[Gew%]	[Gew%]	[mol-%]		
Binäre Aminmischung von MEA mit MDEA								
12,0% MEA/ 35,1% MDEA	40% MEA	95,93	47,12	12,00	35,12	40		
15,0% MEA/ 29,3% MDEA	50% MEA	90,12	44,26	15,00	29,26	50		
20,0% MEA/ 19,5% MDEA	67% MEA	80,44	39,51	20,00	19,51	67		
25,0% MEA/ 9,75% MDEA	83% MEA	70,76	34,75	25,00	9,75	83		
Binäre Aminmischungen bei Variation des Aktivators MEA								
12,0% TETA/ 19,5% MDEA	67% TETA	-	12,0+19,5	11,97	19,51	67		
17,5% EAE/ 35,1% MDEA	40% MEA	107,15	52,63	17,51	35,12	40		
29,2% EAE/ 19,5% MDEA	67% MEA	99,15	48,70	29,19	19,51	67		
Binäre Aminmischungen bei Variation des Trägeramins MDEA								
8,0% MEA/ 42,2% DEEA	27% MEA	102,24	50,21	8,00	42,22	27		
20,0% MEA/ 19,2% DEEA	67% MEA	79,78	39,19	20,00	19,19	67		

Tabelle 13: Auswahl von Aminmischungen

Weiterhin gelten die in *Kapitel 3.2.1* beschriebenen Kriterien zur Auswahl von Lösungsmitteln anhand vorteilhafter Eigenschaften gegenüber dem Referenzlösungsmittel 30,0 % MEA. In *Abbildung 47* sind diese vorteilhaften Eigenschaften für die untersuchten binären Aminlösungen zusammenfassend dargestellt. Die maximale Absorptionsrate $r_{abs,max}$ ist über der Arbeitskapazität aufgetragen, dabei sind hohe Zielgrößen vorteilhaft und mit dem Pfeil markiert. Gleichzeitig markiert die Pfeilrichtung in *Abbildung 47 B* eine niedrige 90 °C-Beladung bei hoher Arbeitskapazität. Um diese drei Eigenschaften zu vereinen, werden Amine mit den jeweiligen Merkmalen in Aminmischungen kombiniert. Die Aminmischungen weisen je nach Mischungsverhältnis mehr die Eigenschaften des Aktivator- oder des Trägeramins auf.

Abbildung 47: Absorptionsraten bei 40 °C (A) und Gleichgewichtsbeladungen bei 90 °C (B) über der Arbeitskapazität binärer Aminmischungen (↑ Zielrichtung vorteilhafter Eigenschaften) [MEA & MDEA: 1 - 83 mol-%, 2 - 67 mol-%, 3 - 50 mol-%, 4 - 40 mol-% MEA; TETA & MDEA: 5 - 67 mol-% TETA; EAE & MDEA: 6 -67 mol-%, 7 -40 mol-% EAE; MEA & DEEA: 8 - 67 mol-%, 9 - 27 mol-% MEA]

Dadurch ergibt sich eine Staffelung der Absorptionsraten, die mit zunehmendem Aktivatoranteil steigen. Die Arbeitskapazitäten erreichen Werte von 40 bis 90 g_{CO2}/kg_{LM} , wobei die meisten Aminmischungen zwischen 50 und 75 g_{CO2}/kg_{LM} liegen. Besonders hohe Arbeitskapazitäten weisen die binären Aminmischungen von TETA mit MDEA, EAE mit MDEA bei hohem EAE-Anteil und MEA mit DEEA auf. Die 90 °C-Beladungen liegen alle unter der 90 °C Gleichgewichtsbeladung von 30,0 % MEA und steigen mit zunehmendem Aktivatoranteil. Dadurch ergibt sich eine Staffelung anhand des Aktivatoranteils, so dass die abgebildeten Aminmischungen von kleinen zu großen Werten mit zunehmendem Aktivatoranteil angeordnet sind. Gleichzeitig besteht deswegen der unvorteilhafte Zusammenhang von steigender Absorptionsrate bei gleichzeitig zunehmender 90 °C-Beladung. Die Arbeitskapazitäten sind hingegen nicht direkt mit dem Mischungsverhältnis korrelierbar, da sie abhängig von der Bindungsstabilität des eingesetzten Aktivators ein Maximum ausbilden können. Die binären Aminmischungen von TETA und EAE mit MDEA sowie MEA mit DEEA liegen in der Zielrichtung und weisen damit eine hohe Arbeitskapazität bei geringer 90 °C-Beladung auf.

Die in *Abbildung* 47 mit Zahlen markierten binären Aminmischungen stellen die Auswahl zur umfassenden Charakterisierung dar. Vier Mischungsverhältnisse der binären Aminmischung von MEA mit MDEA bei Aktivatoranteilen von 40, 50, 67 und 83 mol-% (*Punkte 1-4*) werden weiter betrachtet. Die Aminmischung von 67 mol-% TETA mit MDEA (*Punkt 5*) ist ausgewählt, da sie im Gegensatz zu den anderen Mischungsverhältnissen von TETA mit MDEA nicht schäumt und sowohl eine hohe Absorptionsrate als auch eine niedrige 90 °C-Beladung bei einer um 37 % höheren Arbeitskapazität als MEA aufweist. Die binäre Aminmischung von EAE mit MDEA zeigt die geringsten 90 °C-Beladungen. Es sind zwei Mischungsverhältnisse mit hohem EAE-Anteil ausgewählt. Die Lösungen mit einem Aktivatoranteil von 40 und 67 mol-% EAE (*Punkte 6 & 7*) besitzen zudem gute Kinetik. Die Aminmischung von MEA mit DEEA weist im Vergleich geringere Absorptionsraten, jedoch sehr hohe Arbeitskapazitäten und niedrige 90 °C-Beladungen, auf. Zwei Mischungsverhältnisse mit 27 und 67 mol-% MEA (*Punkte 8 & 9*) sind ausgewählt. Dabei erreicht die Aminmischung von 27 mol-% MEA entspricht.

5 Charakterisierung: Ergebnisse zur energetischen Prozessauslegung

Die auf Grundlage der Screeningergebnisse ausgewählten Lösungsmittel werden nun einer umfassenden Charakterisierung unterzogen. Diese umfasst die Bestimmung von prozessrelevanten Lösungsmitteleigenschaften, die zur Auslegung einer Anlage zur nasschemischen CO₂-Abscheidung und Berechnung des Energiebedarfs zur Regeneration benötigt werden. In den folgenden Abschnitten werden die experimentellen Ergebnisse der Charakterisierung dargestellt, die zusätzlich tabellarisch in *Anhang C Ergebnisse – Charakterisierung* erfasst sind. Für die Lösungsmittel werden sowohl die CO₂-Gleichgewichtsisothermen als auch die Absorptionsenthalpie bestimmt und mit dem Referenzlösungsmittel 30,0 % MEA verglichen.

5.1 CO₂-Gleichgewichtsisothermen

Für die Ermittlung der erreichbaren lean-Beladung im Desorber und des dazu erforderlichen CO_2 -Partialdrucks bei Desorptionstemperaturen werden die CO_2 -Gleichgewichtsisothermen benötigt. Aus diesen ist ebenfalls der zur Regeneration des Lösungsmittels benötigte Strippdampfbedarf ermittelbar. Die CO_2 -Gleichgewichtsisothermen werden durch Bestimmung der Gleichgewichtsbeladung bei 40, 80 und 90 °C sowie Variation der CO_2 -Konzentration im synthetischen Rauchgas von 5 bis 100 Vol.-% ermittelt. Der CO_2 -Partialdruck stellt sich in Abhängigkeit der CO_2 -Konzentration im Rauchgas, der relativen Feuchte und Temperatur sowie des Atmosphärendrucks ein. Deswegen ist der CO_2 -Partialdruck für alle Lösungsmittel unterschiedlich und wird anhand der in *Kapitel 3.2.2* erläuterten Vorgehensweise berechnet.

Im Folgenden werden die CO_2 -Gleichgewichtsisothermen bei 40 und 90 °C für die in *Kapitel* 4 ausgewählten Lösungsmittel gezeigt. Zunächst werden die Ergebnisse von MEA erläutert und gegen Literaturdaten validiert. Danach werden die Ergebnisse der zu MEA alternativen Lösungsmittel diskutiert und mit dem Referenzlösungsmittel 30,0 % MEA verglichen.

5.1.1 MEA und Validierung

In *Abbildung 48* A sind die CO_2 -Gleichgewichtsisothermen von MEA bei Absorbertemperatur 40 °C sowie bei 80 und 90 °C, die Desorberbedingungen repräsentieren, dargestellt. Die

40 °C-Isotherme verläuft anfangs beinahe waagrecht und steigt ab einer Beladung von ca. $0,50 \text{ mol}_{CO2}/\text{mol}_{Amin}$ sehr steil an. Bei Erhöhung des CO₂-Partialdrucks von 46 auf 928 mbar nimmt die Beladung lediglich um 0,07 mol_{CO2}/mol_{Amin} zu, wodurch der Gradient aus Partialdruckdifferenz bezogen auf die Beladungsdifferenz sehr hoch ist. Die Isothermen bei 80 und 90 °C verlaufen im Vergleich zu der bei 40 °C flacher. Das bedeutet, dass die Erhöhung des CO₂-Partialdrucks über einen größeren Beladungsbereich erfolgt und der Gradient dadurch deutlich reduziert wird. Mit steigender Temperatur nimmt somit die Abhängigkeit der Gleichgewichtsbeladung vom CO₂-Partialdruck zu, wobei die Isothermen flacher verlaufen. Die Messpunkte der Gleichgewichtsisothermen verschieben sich mit zunehmender Temperatur zu geringeren Partialdrücken, da sich der CO₂-Partialdruck bei gleicher CO₂-Konzentration im synthetischen Rauchgas aufgrund der temperaturabhängigen Wasserdampfbildung reduziert.

Abbildung 48: Gleichgewichtsisothermen von MEA (A) und Vergleich der Gleichgewichtisothermen mit Literaturdaten von 30,0 % MEA {a & b: Jou et al. [65], Lee et al. [78], Shen und Li [114]; c: Jou et al. [65], Lee et al. [78], Shen und Li [114], Xu und Rochelle [131]} (B) bei 40, 80 und 90 °C

In *Abbildung 48 B* werden die Messwerte dieser Arbeit von MEA bei 40, 80 und 90 °C mit Literaturdaten von Jou et al. [65], Lee et al. [78], Shen und Li [114] bei 40 und 80 °C sowie zusätzlich Xu und Rochelle [131] bei 100 °C verglichen. Mit Hilfe dieses Vergleichs anhand von MEA werden der Versuchsaufbau und die Versuchsdurchführung geprüft, so dass die Qualität der Untersuchungsergebnisse für die alternativen Lösungsmittel sicher gestellt ist. Die Gleichgewichtsbeladungen bei 40 °C liegen mittig innerhalb der stark streuenden Literaturmesswerte, wobei die Gleichgewichtsisotherme etwas steiler verläuft als die Trendlinie der Literaturdaten. Die Gleichgewichtsisotherme bei 80 °C stimmt sehr gut mit den Litertaturdaten überein, was sich im identischen Verlauf der 80 °C-Isotherme mit der Literaturtrendlinie äußert. Die Literaturmesswerte bei 100 °C liegen größtenteils links von den Gleichgewichtsbeladungen bei 90 °C und bilden eine Trendlinie, die vergleichbar zu der 90 °C-Isotherme jedoch bei geringeren Beladungen verläuft. Die 90 °C-Isotherme liegt zwischen den Trendlinien der Literaturdaten von 80 und 100 °C und ordnet sich damit richtig in die Kurvenschar ein. Der Vergleich der Messwerte dieser Arbeit mit den Literaturdaten zeigt, dass die Ergebnisse sehr gut im Rahmen der Messdatenstreuung übereinstimmen. Damit gilt der Versuchsaufbau und die Versuchsdurchführung zur Ermittlung der Gleichgewichtsbeladung aus *Kapitel 3.1.1* als validiert und die Qualität der experimentellen Ergebnisse als gesichert.

Anhand der in Kapitel 2.3.2 erläuterten Reaktionsmechanismen der Carbamat- und Hydrogencarbonatbildung können im Zusammenhang mit den Gleichgewichtsisothermen von MEA folgende Aussagen getroffen werden. Da MEA überwiegend CO₂ als stabiles Carbamat bindet, scheint für diese Bindung ein steiler Verlauf der Gleichgewichtsisotherme charakteristisch. Die Beladung bei einer stabilen CO₂-Amin-Bindung weist demnach eine geringe Abhängigkeit vom CO₂-Partialdruck auf. Weiterhin liegt das Reaktionsgleichgewicht der Carbamatbildung auf der Seite des gebundenen CO₂, so dass selbst bei geringem CO₂-Partialdruck, trotzdem eine hohe Beladung erreicht wird. Mit steigender Temperatur verschiebt sich das Reaktionsgleichgewicht in Richtung des freien CO₂. Der Einfluss des CO₂-Partialdrucks auf die Beladung nimmt zu, wobei der Verlauf der Gleichgewichtsisothermen flacher wird. Im Gegensatz dazu liegt das Reaktionsgleichgewicht der Hydrogencarbonatbildung von vorne herein mehr auf der Seite des freien CO2. Um eine hohe Beladung zu erreichen, muss für die Reaktion viel CO₂ zur Verfügung gestellt werden, d.h. es muss ein hoher CO₂-Partialdruck vorliegen. Die Beladung zeigt somit eine starke Abhängigkeit vom CO₂-Partialdruck, die sich in einem flacheren Verlauf der Gleichgewichtsisotherme äußert. Bei gleicher Partialdruckabsenkung ergibt sich eine größere Reduktion der Beladung bei einem flachen im Gegensatz zu einem steilen Isothermenverlauf. Bei Lösungsmitteln mit instabilerer CO₂-Amin-Bindung als MEA ist damit ein flacherer Verlauf der Gleichgewichtsisothermen zu erwarten. Prinzipiell ist eine stärkere Partialdruckabhängigkeit der Beladung von Vorteil, da auf diese Weise bei gleicher Partialdruckabsenkung eine niedrigere lean-Beladung erreicht werden kann.

5.1.2 Alternative Aminlösungen

Nachfolgend werden die CO_2 -Gleichgewichtsisothermen bei 40 und 90 °C für die zu MEA alternativen Aminlösungen betrachtet und mit MEA verglichen. In *Abbildung 49* sind die Ergebnisse der primären Amine AP und DGA sowie des Polyamins TETA dargestellt.

Abbildung 49: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) von AP, DGA und TETA

Die 40 °C-Isothermen von AP, DGA und TETA sind zu kleineren Beladungen als MEA verschoben. Die Isothermen von AP und DGA verlaufen beinahe identisch jedoch etwas flacher als die von MEA. TETA weist einen zu MEA identischen Verlauf auf, jedoch bei kleineren Beladungen. Dies lässt darauf schließen, dass für TETA derselbe Reaktionsmechanismus zur Bindung von CO₂, die Carbamatbildung, dominiert. Das niedrigere Beladungsniveau kann darauf zurückgeführt werden, dass wie in *Kapitel 4.1.2* näher beschrieben nicht alle Aminogruppen in gleicher Weise an der Carbamatreaktion beteiligt sind, so dass die mittlere Beladung geringer ist. Die 90 °C-Isothermen von DGA und TETA sind wie die 40 °C-Isothermen zu geringeren Beladungen als MEA verschoben. Die Isotherme von AP verläuft beinahe identisch zu der von MEA. Bei DGA zeigt die 90 °C-Isotherme einen flacheren Verlauf als die von MEA und deutet damit auf eine Destabilisierung der Bindung bei höherer Temperatur hin. Die niedrigsten Beladungen bei vergleichbarem Verlauf erreicht TETA, so dass der gleiche Sachverhalt für die 90 °C-Beladungen wie für die bei 40 °C besteht. Damit ist eine einfachere Desorption mit geringerer lean-Beladung als MEA für DGA und TETA zu erwarten.

In *Abbildung 50* sind die Gleichgewichtsisothermen bei 40 und 90°C von den sekundären Aminen MAE, EAE und DEA im Vergleich zu MEA dargestellt. Sowohl die 40 °C- als auch die 90 °C-Isothermen verlaufen flacher als die von MEA. Die Gleichgewichtsbeladung der untersuchten sekundären Amine weisen somit eine deutlich stärkere Abhängigkeit vom CO_2 -Partialdruck auf als MEA. Mit dieser Beobachtung wird bekräftigt, dass MAE, EAE und DEA das CO_2 zu einem weit größeren Anteil in Form von Hydrogencarbonat binden als MEA.

Abbildung 50: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) von MAE, EAE und DEA

Da im Gegensatz zur Carbamatbildung das Reaktionsgleichgewicht der Hydrogencarbonatbildung weniger auf der Seite des gebundenen CO₂ liegt, hängt die Höhe der Beladung stärker von der verfügbaren Menge an CO₂ in der Gasphase ab. Mit steigendem CO₂-Partialdruck nimmt die Beladung stetig zu. Die 40 °C-Isothermen von EAE und DEA weisen einen sehr flachen Verlauf auf und zeigen somit eine ausgeprägte Abhängigkeit vom CO₂-Partialdruck. Die 40 °C-Isotherme von MAE verläuft flacher als die von MEA, jedoch nicht so flach wie die Kurven von EAE oder DEA. Das deutet darauf hin, dass MAE mehr Hydrogencarbonat als MEA, indes weniger als EAE und DEA bildet. Da EAE den flachsten Verlauf aufweist, ist anzunehmen, dass bei EAE am meisten Hydrogencarbonat vorliegt. Die 90 °C-Isothermen verlaufen alle flacher als die jeweiligen 40 °C-Kurven. Damit nimmt die Partialdruckabhängigkeit der Beladungen mit zunehmender Temperatur ebenfalls für die Hydrogencarbonatbildung zu. Für die sekundären Amine EAE und DEA ist eine wesentlich einfachere Desorption bei sehr niedrigen lean-Beladungen zu erwarten als für MEA.

5.1.3 Konzentrierte Aminlösungen

MEA, TETA und EAE werden in konzentrierten Aminlösungen mit einer Molalität von 4,9 und 8,2 mol_{Amin}/kg_{LM}, entsprechend äquivalent zu 30,0 und 50,0 % MEA, betrachtet und mit MEA als Referenz verglichen. In *Abbildung 51* sind die Gleichgewichtsisothermen der MEA-Lösungen bei 40 und 90 °C dargestellt. Die Isothermen beider Molalitäten verlaufen sehr ähnlich, wobei jeweils ein kleiner Versatz zwischen den Kurven besteht.

Abbildung 51: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) von 4,9 und 8,2 mol/kg MEA, entsprechend 30,0 und 50,0 % MEA

Die 40 °C-Isotherme von 8,2 mol_{Amin}/kg_{LM} MEA verläuft identisch zur 4,9 mol_{Amin}/kg_{LM}-Isotherme. Sie ist zu geringeren Beladungen verschoben, da aufgrund der höheren Aminkonzentration weniger Wasser zur Hydrogencarbonatbildung zu Verfügung steht. Entsprechend verläuft die 90 °C-Isotherme von 8,2 mol_{Amin}/kg_{LM} MEA ein wenig steiler als die 4,9 mol_{Amin}/kg_{LM}-Kurve und ist zudem zu höheren Beladungen verschoben. Die Isothermen beider MEA-Lösungen nähren sich bei höheren Partialdrücken an. Das CO₂ ist somit bei der höher konzentrierten MEA-Lösung etwas stabiler gebunden, was darauf schließen lässt, dass die Desorption etwas schwieriger ist und eine höhere lean-Beladung zu erwarten ist.

In *Abbildung 52* sind die Gleichgewichtsisothermen des Polyamins TETA bei 40 und 90 °C dargestellt. Die Isothermen beider TETA-Lösungen verlaufen sehr ähnlich, wobei weniger oder kein Beladungsversatz zwischen den Isothermen von TETA im Vergleich zu MEA besteht. Der Verlauf der 40 °C-Beladungen beider TETA-Lösungen ist beinahe identisch, da diese annährend dieselben Werte erreichen, und vergleichbar zu dem von MEA. Das ist, wie schon in *Kapitel 4.2.1* erläutert, darauf zurückzuführen, dass bei der Absorptionsreaktion die Hydrogencarbonatbildung bei TETA aufgrund der niedrigen Aminkonzentration nicht eingeschränkt ist. Die 90 °C-Isothermen verlaufen etwas steiler als die von MEA und weisen bei der höher konzentrierten TETA-Lösung ebenfalls einen Versatz zu höheren Beladungen auf. Obwohl TETA niedrigere mittlere Beladungen bei 90 °C erreicht werden als MEA, könnte der steilere Verlauf der Isotherme darauf hindeuten, dass bei TETA das CO₂ etwas stabiler als bei MEA gebunden ist. Für beide TETA-Lösungen ist eine vergleichbare Regeneration, die

gegebenenfalls etwas schwieriger ist als die für MEA, mit einer geringfügig höheren lean-Beladung der konzentrierten TETA-Lösung zu erwarten.

Abbildung 52: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) von 4,9 und 8,2 mol/kg TETA

Abbildung 53: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) von 4,9 und 8,2 mol/kg EAE

Die Ergebnisse der 4,9 und 8,2 mol_{Amin}/kg_{LM} konzentrierten Lösungen von EAE, die einer absoluten Aminkonzentration von 43,8 und 73,0 % entsprechen, sind in *Abbildung 53* dargestellt. Die Gleichgewichtsisothermen von EAE zeigen im Gegensatz zu denen von MEA große Unterschiede in ihrem Verlauf in Abhängigkeit ihrer Konzentration. Die 40 °C-Isotherme der hochkonzentrierten EAE-Lösung verläuft sehr viel steiler und bei geringeren Beladungen als die 4,9 mol_{Amin}/kg_{LM}-Lösung. Trotzdem ist ihr Kurvenverlauf zum Teil deutlich flacher als der von MEA. Wie bereits näher in *Kapitel 4.2.2* erläutert, reduziert die hohe Aminkonzentration das Wasser-Amin-Verhältnis deutlich, so dass dadurch die Hydrogencarbonatbildung stark eingeschränkt ist. Deswegen geht die Partialdruckabhängigkeit der Beladung stark zurück und bewirkt den steilen Verlauf der 40 °C-Isotherme für 8,2 mol_{Amin}/kg_{LM} EAE. Im Gegensatz zu MEA verläuft die 90 °C-Isotherme der hochkonzentrierten EAE-Lösung zu geringeren Beladungen als die 4,9 mol_{Amin}/kg_{LM}-Lösung verschoben. Trotzdem ist ihr Verlauf, vergleichbar zu MEA, steiler als die der geringer konzentrierten Lösung. Beide 90 °C-Isothermen weisen in Übereinstimmung mit vorherigen Ergebnissen einen flacheren Verlauf als die jeweiligen 40 °C-Isothermen auf. Zudem zeigen sie eine stärkere Abhängigkeit vom CO₂-Partialdruck als die von MEA, was auf eine einfachere Desorption für beide Konzentrationen hindeutet. Es ist zu erwarten, dass die höher konzentrierte Lösung bei der Regeneration eine geringere lean-Beladung bei gleichzeitig niedrigerer Arbeitskapazität aufweist.

5.1.4 Aminmischungen

Nachfolgend werden für die ausgewählten Aminmischungen mit einer Molalität von $4,9 \text{ mol}_{Amin}/kg_{LM}$ die Gleichgewichtsisothermen bei 40 und 90 °C betrachtet. Dabei ist von Interesse, ob der Aktivator gemäß den bisherigen Erkenntnissen weiterhin die Gleichgewichtsbeladung bei 90 °C unabhängig vom CO₂-Partialdruck bestimmt.

Die Gleichgewichtsisothermen der vier Mischungsverhältnisse mit 40, 50, 67 und 83 mol-% Aktivator der binären Aminmischung von MEA mit MDEA sind in *Abbildung 54* für 40 und 90 °C dargestellt. Bei beiden Temperaturen erfolgt eine Staffelung der Isothermen anhand des MEA-Anteils in der Aminmischung, wobei die Lösung mit kleinstem Aktivatoranteil die niedrigsten Beladungen aufweist. Mit steigendem Aktivatoranteil verschieben sich die Isothermen zu höheren Beladungen. Der Verlauf der 40 °C-Isothermen wird mit abnehmendem Aktivatoranteil zunehmend flacher, so dass sich die Kurven bei hohem CO₂-Partialdruck schneiden. Der stetig flacher werdende Verlauf der Isothermen bedeutet eine Zunahme der Partialdruckabhängigkeit der Beladung und somit eine Erhöhung der Hydrogencarbonatbildung. Dieser Sachverhalt bestätigt die bisherigen Beobachtungen bei der binären Aminmischung von MEA mit MDEA: Nämlich die Erhöhung der 40 °C-Beladungen der Aminmischung gegenüber den anteiligen Beladungen von MEA aufgrund der zusätzlichen Hydrogencarbonatbildung durch MDEA bei abnehmendem Aktivatoranteil. Im Gegensatz dazu schneiden sich die 90 °C-Isothermen der verschiedenen Mischungsverhältnisse nicht, sondern verlaufen versetzt zueinander mit gleicher Steigung. Die Kurven der 90 °C-Isothermen sind steiler als die bei 40 °C und weisen die gleiche Steigung wie die 90 °C-Isotherme von MEA auf. Die Isothermen sind mit abnehmendem Aktivatoranteil zu geringeren Beladungen verschoben, wobei diese mit den anteiligen Beladungen von MEA in der Aminmischung übereinstimmen. Aufgrund der übereinstimmenden Kurvenverläufe zu MEA, liegt das CO₂ in den Aminmischungen bei 90 °C hauptsächlich als Carbamat vor. Es kann somit festgehalten werden, dass der Aktivatoranteil den Verlauf der 90 °C-Isotherme der Aminmischung von MEA mit MDEA bestimmt. Gleichzeitig ist eine einfachere Desorption mit geringeren lean-Beladungen bei abnehmendem Aktivatoranteil zu erwarten.

Abbildung 54: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) der binären Aminmischung von MEA mit MDEA (Aktivatoranteil 40-67 mol-% MEA)

In *Abbildung 55* sind die Gleichgewichtsisothermen bei 40 und 90 °C für die binäre Aminmischung von 67 mol-% TETA mit MDEA im Vergleich zu den Reinstofflösungen von TETA und MEA dargestellt. Die 40 °C-Isotherme der Aminmischung liegt zunächst auf der Kurve von TETA, verläuft dann jedoch zunehmend flacher und erreicht bei hohen Partialdrücken höhere Beladungen. Dies ist auf eine vermehrte Hydrogencarbonatbildung durch MDEA zurückzuführen. Die 90 °C-Isotherme der Aminmischung ist ausgehend von der von TETA zu kleineren Beladungen verschoben. Diese entsprechen der anteiligen Beladung von TETA in der Aminmischung, wobei zudem der Kurvenverlauf der Aminmischung mit dem der Reinstofflösung vergleichbar ist. Für die Aminmischung von 67 mol-% TETA mit MDEA ist aufgrund der geringeren Beladungen bei 90 °C eine einfachere Desorption und niedrigere lean-Beladung im Vergleich zu TETA oder MEA zu erwarten.

Abbildung 55: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) der binären Aminmischung von TETA mit MDEA (Aktivatoranteil 67 mol-% TETA)

Die Gleichgewichtsisothermen bei 40 und 90 °C sind in Abbildung 56 für zwei Mischungsverhältnisse der binären Aminmischung von EAE mit MDEA im Vergleich zu den Reinstofflösungen von EAE und MEA dargestellt. Es werden die Aktivatoranteile von 40 und 67 mol-% EAE betrachtet. Die Gleichgewichtsisothermen zeigen wiederum eine Staffelung anhand des Aktivatoranteils in der Aminmischung. Mit zunehmendem Aktivatoranteil verschieben sich die Kurven jeweils zu höheren Beladungen. Die 40 °C-Isothermen der zwei Mischungsverhältnisse und der EAE-Reinstofflösung zeigen denselben Kurvenverlauf. Das deutet darauf hin, dass bei 40 °C derselbe Reaktionsmechanismus bei diesen Lösungsmitteln vorherrscht. Aufgrund der sehr flachen Kurvenverläufe ist das im Gegensatz zum steilen Verlauf von MEA vorwiegend die Hydrogencarbonatbildung. Die 90 °C-Isothermen weisen zwar die gleiche Staffelung der Kurven auf, jedoch nicht die gleiche Kurvenform. Die Staffelung bei 90 °C erfolgt gemäß der anteiligen Beladung von EAE in der Aminmischung. Die Kurvenform wird mit abnehmendem Aktivatoranteil steiler und nährt sich der Steigung der MEA-Kurve an. Dieser Sachverhält lässt darauf schließen, dass mit abnehmendem Anteil des Aktivators EAE der Anteil der Carbamat- im Vergleich zur Hydrogencarbonatbildung bei hoher Temperatur wieder zunimmt. Andererseits liegen die Isothermen aufgrund des abnehmenden EAE-Anteils bei sehr niedrigen Beladungen, so dass die Kurven automatisch steiler verlaufen. Die beiden Mischungsverhältnisse von EAE mit MDEA werden voraussichtlich sehr niedrige lean-Beladungen bei einfacherer Desorption im Vergleich zu den Reinstofflösungen von EAE und MEA erreichen.

Abbildung 56: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) der binären Aminmischung von EAE mit MDEA (Aktivatoranteil 40-67 mol-% EAE)

In *Abbildung 57* sind Gleichgewichtsisothermen bei 40 und 90 °C der binären Aminmischung von MEA mit dem tertiären Amin DEEA im Vergleich zur Reinstofflösung von MEA dargestellt. Die zwei Mischungsverhältnisse beinhalten als Aktivator 27 und 67 mol-% MEA.

Abbildung 57: Gleichgewichtsisothermen bei 90 °C (A) und 40 °C (B) der binären Aminmischung von MEA mit DEEA (Aktivatoranteil 27-67 mol-% MEA)

Die 40 °C-Isothermen der Mischungsverhältnisse überschneiden sich, da deren Kurvenverläufe stark unterschiedlich sind. Die Isotherme der Aminmischung mit 67 mol-% MEA ist ein wenig flacher als die der MEA-Reinstofflösung. Im Gegensatz dazu ist der Kurvenverlauf der Aminmischung mit 27 mol-% MEA sehr flach. Es besteht somit eine starke Abhängigkeit der Beladung vom CO₂-Partialdruck, die mit einer ausgeprägten Hydrogencarbonatbildung einhergeht. Mit zunehmendem Aktivatoranteil in der Aminmischung geht diese gemäß dem Isothermenverlauf in hauptsächlich Carbamatbildung über. Die 90 °C-Isothermen sind wiederum anhand des MEA-Anteils gestaffelt und mit abnehmendem Aktivatoranteil zu niedrigeren Beladungen entsprechend den anteiligen Beladungen von MEA in der Aminmischung verschoben. Die Isotherme von 67 mol-% MEA mit DEEA verläuft ein wenig flacher als die der MEA-Reinstofflösung. Beim Aktivatoranteil von 27 mol-% MEA entspricht die Steigung der 90 °C-Isotherme der von MEA. Der Anteil des Aktivators MEA in der Aminmischung bestimmt demnach ebenfalls die 90 °C-Gleichgewichtsisothermen der binären Aminmischung von MEA mit DEEA. Insbesondere bei 27 mol-% MEA mit DEEA ist eine einfache Desorption bei sehr kleiner lean-Beladung und großer Arbeitskapazität zu erwarten.

5.2 Absorptionsenthalpie

Die Absorptionsenthalpie stellt die Energiemenge dar, die bei der exothermen Absorptionsreaktion von CO₂ durch Amin freigesetzt wird. Diese Energiemenge muss im Gegenzug bei der Desorption zur Spaltung der CO₂-Amin-Bindung wieder bereitgestellt werden. Sie bestimmt damit, neben dem Strippdampfbedarf und der Erwärmungsenergie des Lösungsmittels, den Energiebedarf zur Regeneration. Die Absorptionsenthalpie besteht aus der mittleren Energiemenge, die bei allen parallel zueinander ablaufenden Reaktionen freigesetzt wird, und stellt damit eine Mischenthalpie dar. Sie wird bei 40 °C durch Messung der Temperaturerhöhung einer Lösungsmittelprobe bei der Absorption von synthetischem Rauchgas mit 15 Vol.-% CO₂ bestimmt. Die Absorptionsenthalpie wird über den gesamten Beladungsbereich des Lösungsmittels in Einzelmessungen mit maximalem Temperaturanstieg von 5 K ermittelt.

Im Folgenden werden die Absorptionsenthalpien für die in *Kapitel 4* ausgewählten Lösungsmittel dargestellt. Dabei werden zunächst die Ergebnisse von MEA erläutert und gegen Literaturdaten validiert. Daraufhin werden die zu MEA alternativen Lösungsmittel diskutiert und mit dem Referenzlösungsmittel 30,0 % MEA verglichen.

5.2.1 MEA und Validierung

In *Abbildung 58 A* ist die Absorptionsenthalpie von MEA über der Beladung bei 40 °C aufgetragen. Die Absorptionsenthalpie liegt zu Beginn bei 84 kJ/mol_{CO2} und bleibt auf einem Niveau von 81 kJ/mol_{CO2} bis zu einer Beladung von ca. 0,30 mol_{CO2}/mol_{Amin}. Danach sinkt die Absorptionsenthalpie zuerst langsam bis zu einer Beladung von ca. 0,40 mol_{CO2}/mol_{Amin} und dann rapide bis zum Erreichen der Gleichgewichtsbeladung auf ungefähr 40 kJ/mol_{CO2} ab. Während dem anfänglichen Plateau wird die Absorptionsenthalpie von der schnellen Carbamatbildung dominiert, wobei zu geringem Anteil parallel Hydrogencarbonatbildung stattfindet. Ab einer Beladung von ca. 0,40 mol_{CO2}/mol_{Amin} ist ein Großteil der Aminogruppen belegt und die Bildung von Hydrogencarbonat gewinnt zunehmend an Bedeutung. Die Absorptionsenthalpie der Hydrogencarbonatbildung beträgt nach Messungen in dieser Arbeit 40 kJ/mol_{CO2}. Dieser Wert stimmt sehr gut mit eNRTL-Modelberechnungen von Hilliard in [57] überein, der für die Hydrogencarbonatbildung einen Mittelwert von ca. 42 kJ/mol_{CO2} angibt. Der steile Abfall der Absorptionsenthalpie tritt zum Erreichen der Gleichgewichtsbeladung auf, da zur Gleichgewichtsbeladung hin nur noch Hydrogencarbonatbildung stattfindet. Dieser Sachverhalt gilt nicht nur für MEA sondern auch für alle weiteren Lösungsmittel.

Abbildung 58: Absorptionsenthalpie von MEA (1 bar, 15 Vol.-% CO₂) (A) und Vergleich mit Literaturdaten {a: Kim und Svendsen [71]} (30,0 %, 3 bar, 100 Vol.-% CO₂) (B) bei 40 °C

In *Abbildung 58 B* ist die Absorptionsenthalpie von MEA im Vergleich zu Literaturdaten von Kim und Svendsen [71] dargestellt. Mit Hilfe des Vergleichs anhand von 30,0 % MEA werden der Versuchsaufbau und die Versuchsdurchführung geprüft, so dass die Qualität der Untersuchungsergebnisse für die alternativen Lösungsmittel sicher gestellt ist. Die Literaturdaten bilden ebenfalls ein Plateau bei 80 bis 85 kJ/mol_{CO2} und fallen dann ab einer Beladung von ca. 0,45 mol_{CO2}/mol_{Amin} steil ab. Die in dieser Arbeit ermittelten Werte der Absorptionsenthalpie fallen etwas früher ab als die Literaturdaten. Das liegt daran, dass die Versuche bei Atmosphärendruck und 15 Vol.-% CO₂ durchgeführt, die Literaturdaten indessen bei 3 bar

und 100 Vol.-% CO₂ ermittelt wurden. Wie im vorherigen Abschnitt erläutert, erreicht MEA bei 40 °C und CO₂-Partialdrücken über 1.000 mbar Gleichgewichtsbeladungen von über $0,60 \text{ mol}_{CO2}/\text{mol}_{Amin}$. Die Literaturmesswerte fallen zwar erst bei höherer Beladung, jedoch somit ebenfalls zum Erreichen der Gleichgewichtsbeladung hin ab. Die Messwerte aus dieser Arbeit und der Literatur bilden beide ein Plateau bei 81 bis 83 kJ/mol_{CO2} aus und zeigen denselben Kurvenverlauf lediglich um den Einfluss des CO₂-Partialdrucks auf die Beladung verschoben. Der Vergleich der Messwerte dieser Arbeit mit den Literaturdaten ergibt, dass die Ergebnisse sehr gut im Rahmen der Messdatenstreuung übereinstimmen. Der Versuchsaufbau und die Versuchsdurchführung zur Ermittlung der Absorptionsenthalpie aus *Kapitel 3.1.2* gelten daher als validiert und die Qualität der experimentellen Ergebnisse als gesichert.

5.2.2 Alternative Aminlösungen

In *Abbildung 59* sind die Absorptionsenthalpien der ausgewählten alternativen Aminlösungen bei 40 °C im Vergleich zu MEA dargestellt. Die Absorptionsenthalpien der primären Amine AP und DGA, *Abbildung 59 A*, erreichen anfänglich Werte von 83 und 82 kJ/mol_{CO2} und bilden auf diesem Niveau ein Plateau aus. Die Absorptionsenthalpie von AP bleibt über einen weiten Beladungsbereich konstant und fällt dann ab einer Beladung von ca. $0,45 \text{ mol}_{CO2}/\text{mol}_{Amin}$ steil zur Gleichgewichtsbeladung hin ab. Dieser Verlauf lässt darauf schließen, dass stabiles Carbamat über fast den gesamten Beladungsbereich gebildet wird und kaum Hydrogencarbonatbildung stattfindet. Die Absorptionsenthalpiekurve von DGA beschreibt einen vergleichbaren Verlauf wie die von MEA und sinkt ab einer Beladung von ca. $0,30 \text{ mol}_{CO2}/\text{mol}_{Amin}$ ab, um dann bei ca. $0,40 \text{ mol}_{CO2}/\text{mol}_{Amin}$ steil zur Gleichgewichtsbeladung hin abzufallen. Der langsamer sinkende Verlauf von DGA und MEA im Vergleich zu AP deutet darauf hin, dass zur anfänglichen Carbamatreaktion mit zunehmender Beladung mehr Hydrogencarbonatbildung stattfindet als bei AP.

Die in *Abbildung 59 A* aufgetragene Absorptionsenthalpie von TETA verläuft auf niedrigerem Niveau im Vergleich zu MEA und bildet ein Plateau bei 73 kJ/mol_{CO2} aus. Danach fällt die Absorptionsenthalpie ab einer Beladung von ca. 0,30 mol_{CO2}/mol_{Amin} zur Gleichgewichtsbeladung hin steil ab. Der Verlauf deutet darauf hin, dass die am Anfang parallel ablaufenden Reaktionen in einem festen Verhältnis auftreten, welches sich bei höheren Beladungen zur Hydrogencarbonatbildung hin verschiebt. Auf Grund der schnellen Kinetik bildet TETA eine Form von Carbamat. Das geringere Niveau der Reaktionsenthalpie besagt jedoch, dass weniger Energie bei der Absorptionsreaktion freigesetzt wird als bei der Carbamatbildung durch MEA. Dieser Sachverhalt könnte auf eine überlagerte Carbamatbildung der zwei primären und der zwei sekundären Aminogruppen in TETA zurückzuführen sein, so dass bei der CO₂-Bindung auf Grund des Zusammenspiels beider Aminogruppen weniger Energie frei wird.

Abbildung 59: Absorptionsenthalpien von AP, DGA und TETA (A) sowie von MAE, EAE und DEA (B) bei 40 °C

Abbildung 59 B stellt die Absorptionsenthalpien der sekundären Amine MAE, EAE und DEA bei 40 °C dar. Die Absorptionsenthalpiekurve von MAE zeigt einen ähnlichen Verlauf wie die von MEA und bildet ein Plateau bei 81 kJ/mol_{CO2} aus. Die Absorptionsenthalpie fällt ab einer Beladung von ca. 0,35 mol_{CO2}/mol_{Amin} sanft zur Gleichgewichtsbeladung hin ab. Der Kurvenverlauf lässt auf einen vergleichbaren Reaktionsmechanismus zu MEA schließen. Beim Plateau wird hauptsächlich Carbamatbildung stattfinden, die während des langsamen Absinkens der Absorptionsenthalpie in zunehmendem Maße von der Hydrogencarbonatbildung ersetzt wird. Der Anfangswert der Absorptionsenthalpie von EAE beträgt 73 kJ/mol_{CO2}. In der Literatur wird von Goto et al. in [48] ein leicht höherer Wert von 78 kJ/mol_{CO2} ermittelt. Im Vergleich dazu gibt Goto et al. die Absorptionsenthalpie von MEA mit 88 kJ/mol_{CO2} an, so dass beide Literaturwerte gegenüber den Messwerten aus dieser Arbeit um ca. 5 kJ/mol_{CO2} erhöht sind. Diese Abweichung ist wahrscheinlich auf die unterschiedlichen Versuchsapparaturen zurückzuführen. Die relativen Messergebnisse mit Bezug auf MEA stimmen sehr gut überein. Die Absorptionsenthalpie von EAE bleibt auf 73 kJ/mol_{CO2} bis zu einer Beladung von ca. 0,25 mol_{CO2}/mol_{Amin}. Die niedrige Absorptionsenthalpie bei doch hoher Kinetik deutet auf ein instabileres Carbamat im Vergleich zu MEA hin. Andererseits könnte bereits zu Beginn ein größerer Anteil des CO₂ als Hydrogencarbonat gebunden werden. Nach dem Plateau sinkt die Absorptionsenthalpie bis zur Gleichgewichtsbeladung langsam ab. Dieses graduelle Absinken lässt auf einen zunehmenden Anteil an Hydrogencarbonatbildung schließen. Die Absorptionsenthalpie von DEA liegt anfänglich bei 69 kJ/mol_{CO2} und ist im Vergleich zu den anderen Aminen am niedrigsten. Dieser Wert ist im Einklang mit Literaturdaten [48, 96], die Werte zwischen 69 und 75 kJ/mol_{CO2} für DEA angeben. Die Absorptionsenthalpie bildet ebenfalls ein Plateau und fällt dann stetig ab einer Beladung von ca. 0,25 mol_{CO2}/mol_{Amin} zur Gleichgewichtsbeladung hin ab. Der Kurvenverlauf deutet darauf hin, dass die am Anfang parallel ablaufenden Reaktionen in einem festen Verhältnis auftreten, welches sich mit zunehmender Beladung zur Hydrogencarbonatbildung hin verschiebt.

5.2.3 Konzentrierte Aminlösungen

Die Absorptionsenthalpien von MEA, TETA und EAE werden in einer Molalität von 4,9 und $8,2 \text{ mol}_{Amin}/kg_{LM}$, äquivalent zu 30,0 und 50,0 % MEA, ermittelt. In *Abbildung 60* sind die Absorptionsenthalpien der zwei konzentrierten Lösungen von MEA dargestellt. Die Kurven

der Absorptionsenthalpien verlaufen bei geringen Beladungen auf dem gleichen Niveau von 81 kJ/mol_{CO2}. Die 4,9 mol_{Amin}/kg_{LM}-Kurve fällt früher zur Gleichgewichtsbeladung hin ab als die von 8,2 mol_{Amin}/kg_{LM} MEA. Diese verbleibt bis zu einer Beladung von ca. 0,45 mol_{CO2}/mol_{Amin} auf dem Plateau, wonach sie abrupt zur Gleichgewichtsbeladung abfällt. Damit bildet die höher konzentrierte Lösung bis zu größeren Beladungen verstärkt Carbamat. Der Verlauf der Absorptionsenthalpien stimmt folglich mit der zuvor getroffenen Aussage überein, dass aufgrund der höheren Aminkonzentration die Lösung mit 8,2 mol_{Amin}/kg_{LM} MEA weniger Hydrogencarbonat bildet als die mit 4,9 mol_{Amin}/kg_{LM} MEA.

In *Abbildung 61 A* sind die Absorptionsenthalpien der zwei TETA-Lösungen bei 40 °C gezeigt. Die Absorptionsenthalpiekurven von 4,9 und 8,2 mol_{Amin}/kg_{LM} TETA sind identisch. Sie bilden beide ein Plateau bei 73 kJ/mol_{CO2} aus und fallen dann ab einer Beladung von ca. 0,30 mol_{CO2}/mol_{Amin} zur Gleichgewichtsbeladung hin steil ab. Demnach finden bei beiden TETA-Lösungen die gleichen Reaktionsmechanismen im selben Verhältnis über der Beladung statt. Dies bestätigt die Annahme, dass aufgrund der geringen absoluten Aminkonzentrationen der TETA-Lösungen genügend Wasser für die Absorptionsreaktion zur Verfügung steht und die Hydrogencarbonatbildung damit nicht eingeschränkt ist.

Abbildung 61: Absorptionsenthalpien von 4,9 und 8,2 mol/kg TETA (A) und EAE (B) bei 40 °C

Die Absorptionsenthalpien von 4,9 und 8,2 mol_{Amin}/kg_{LM} EAE sind in *Abbildung 61 B* bei 40 °C dargestellt. Die Absorptionsenthalpiekurven der zwei konzentrierten EAE-Lösungen verlaufen sehr unterschiedlich. Während die Kurve von 4,9 mol_{Amin}/kg_{LM} EAE nur ein kurzes Plateau bei 73 kJ/mol_{CO2} ausbildet, verweilt die Kurve von 8,2 mol_{Amin}/kg_{LM} EAE bis zu einer Beladung von ca. 0,40 mol_{CO2}/mol_{Amin} auf einem Niveau von 77 kJ/mol_{CO2}. Danach fällt die Absorptionsenthalpie steil bis zum Erreichen der Gleichgewichtsbeladung hin ab, so dass der Kurvenverlauf vergleichbar zu dem von MEA ist. Die Absorption von CO₂ erfolgt bei der höher konzentrierten EAE-Lösung somit vorwiegend über die Bildung von Carbamat, da aufgrund der sehr hohen Aminkonzentration und des damit einhergehenden geringen Wasser-Amin-Verhältnises kaum Hydrogencarbonatbildung stattfinden kann.

5.2.4 Aminmischungen

Im Folgenden werden die Absorptionsenthalpien der ausgewählten Aminmischungen bei 40 °C betrachtet und mit dem Referenzlösungsmittel 30,0 % MEA verglichen. Anhand der Kurvenverläufe der Absorptionsenthalpien soll der Einfluss des Aktivators auf die in der Aminmischung ablaufenden Reaktionen näher bestimmt werden.

Die Absorptionsenthalpien der binären Aminmischung von MEA mit MDEA sind in Abbildung 62 A im Vergleich zu MEA und Literaturdaten von 30,0 % MDEA [69] dargestellt. Die vier Mischungsverhältnisse mit 40, 50, 67 und 83 mol-% MEA weisen eine Staffelung in Höhe und Verlauf gemäß dem Aktivatoranteil in der Aminmischung auf. Die Absorptionsenthalpien erreichen mit zunehmendem Aktivatoranteil steigende Anfangswerte von 73 bis 76 kJ/mol_{CO2}. Dabei bilden die einzelnen Kurven Plateaus unterschiedlich breiter Beladungsbereiche auf den jeweiligen Anfangsniveaus aus. Je geringer der MEA-Anteil in der Aminmischung ist, desto kürzer verbleibt die Absorptionsenthalpie auf diesem Niveau. Nach dem Plateau sinken die Kurven von 40 und 50 mol-% MEA schon bei Beladungen von 0,05 und 0,15 mol_{CO2}/mol_{Amin} ab. Die Absorptionsenthalpien mit höherem Aktivatoranteil von 67 und 83 mol-% MEA sinken erst bei einer Beladung von 0,20 und 0,30 mol_{CO2}/mol_{Amin} ab. Die Absorptionsenthalpien der Mischungsverhältnisse durchlaufen dann jeweils einen weiteren konstanten Bereich, jedoch auf unterschiedlichen Niveaus, bevor sie zum Erreichen der Gleichgewichtsbeladungen auf 40 kJ/mol_{CO2} abfallen. Der Anfang des zweiten Bereichs konstanter Absorptionsenthalpie tritt mit steigendem Aktivatoranteil bei zunehmend höheren Beladungen von ca. 0,20 über 0,30 zu 0,40 bis 0,45 mol_{CO2}/mol_{Amin} auf.

Abbildung 62: Absorptionsenthalpien der binären Aminmischungen von MEA mit MDEA (Aktivator-Anteil 40-67 mol-% MEA) (A) und TETA mit MDEA (Aktivator-Anteil 67 mol-% TETA) (B) im Vergleich zu Reinstofflösungen von MEA, TETA (B) und 30,0 % MDEA {a: Kim et al. [69]} bei 40 °C

Die Plateaus bei hoher Absorptionsenthalpie deuten darauf hin, dass in den jeweiligen Beladungsbereichen hauptsächlich Carbamatbildung mit einem gewissen Anteil an Hydrogencarbonatbildung stattfindet. Während dem ersten Absinken der Absorptionsenthalpien nimmt die Parallelreaktion von Hydrogencarbonat zu. Dies ist umso ausgeprägter je geringer der Aktivatoranteil in der Aminmischung ist. Der Übergang in den zweiten Bereich konstanter Absorptionsenthalpien erfolgt in etwa bei den jeweils anteiligen Beladungen von MEA in der Aminmischung und somit wahrscheinlich nach Abreaktion des Aktivatoranteils. Diese Bereiche konstanter Absorptionsenthalpien sind unterschiedlich lang für die verschiedenen Mischungsverhältnisse ausgeprägt und werden mit zunehmendem Aktivatoranteil kürzer. Der Vergleich der Bereiche mit dem Verlauf der Absorptionsenthalpie der Literaturdaten von 30,0 % MDEA [69] deutet auf eine Übereinstimmung hin. Das legt die Schlussfolgerung nahe, dass diese Bereiche die aktivierte Hydrogencarbonatbildung des Trägeramins MDEA darstellen, bevor die Absorptionsenthalpien auf 40 kJ/mol_{CO2} zur jeweiligen Gleichgewichtsbeladung abfallen. Der Anteil des Aktivators MEA beeinflusst demnach den Verlauf der Absorptionsenthalpie und damit die parallel ablaufenden Reaktionsmechanismen.

In *Abbildung 62 B* ist die Absorptionsenthalpie der binären Aminmischung von 67 mol-% TETA mit MDEA im Vergleich zu den Reinstofflösungen von TETA und MEA sowie den Literaturdaten von 30,0 % MDEA [69] aufgetragen. Die Absorptionsenthalpie der Aminmischung beginnt bei knapp 67 kJ/mol_{CO2} und bleibt bis zu einer Beladung von ca. $0,10 \text{ mol}_{CO2}/\text{mol}_{Amin}$ auf diesem Wert. Die geringe Absorptionsenthalpie deutet auf vermehrte Hydrogencarbonatbildung hin. Nach dem Plateau sinkt die Absorptionsenthalpie ebenfalls auf einen zweiten konstanten Bereich, wonach sie bis zum Erreichen der Gleichgewichtsbeladung abfällt. Nach diesem zweistufigen Absinken ist die anteilige Beladung von TETA in der Aminmischung erreicht. Das lässt auf die Abreaktion des Aktivators TETA schließen. Im Gegensatz zu MEA ist der zweite Bereich konstanter Absorptionsenthalpie noch innerhalb der anteiligen Beladung von TETA mit ca. $0,30 \text{ mol}_{CO2}/\text{mol}_{Amin}$. Die Kurve verläuft außerdem oberhalb der Absorptionsenthalpie von MDEA. Dies deutet darauf hin, dass die Parallelreaktion zu Hydrogencarbonat durch MDEA erst verstärkt beim Erreichen der Gleichgewichtsbeladung der Aminmischung einsetzt.

Die Absorptionsenthalpien der zwei Mischungsverhältnisse von 40 und 67 mol-% EAE mit MDEA sowie die Literaturdaten von 30,0 % MDEA [69] sind in *Abbildung 63 A* gezeigt. Die Absorptionsenthalpien der Mischungsverhältnisse erreichen Anfangswerte um 69 kJ/mol_{CO2}. Während die Absorptionsenthalpie von 67 mol-% EAE mit MDEA ein Plateau auf diesem Niveau ausbildet und erst bei einer Beladung von ca. 0,20 mol_{CO2}/mol_{Amin} absinkt, nimmt die die Absorptionsenthalpie von 40 mol-% EAE mit MDEA von Beginn an langsam ab. Dabei durchläuft die Kurve einen kurzen Bereich konstanter Absorptionsenthalpie und fällt dann zum Erreichen der Gleichgewichtsbeladung ab. Dieser Bereich beginnt in etwa nach Erreichen der anteiligen Beladung von EAE in der Aminmischung und verläuft vergleichbar zu 40 mol-% MEA mit MDEA in Höhe der aktivierten Hydrogencarbonatbildung von MDEA. Die Absorptionsenthalpie von 67 mol-% EAE mit MDEA sinkt nach dem Plateau graduell bis auf 40 kJ/mol_{CO2} ab und verbleibt auf diesem Wert bis zum Erreichen der Gleichgewichtsbeladung. Sie weist auf geringerem Niveau einen zu EAE vergleichbaren Verlauf auf, was auf die Zugabe des Trägeramins zurückzuführen ist. Das Absinken der Absorptionsenthalpie geht mit zunehmender Hydrogencarbonatbildung einher.

Abbildung 63: Absorptionsenthalpien der binären Aminmischungen von EAE mit MDEA (Aktivator-Anteil 40-67 mol-% EAE) (A) und MEA mit DEEA (Aktivator-Anteil 27-67 mol-% MEA) (B) im Vergleich zu Reinstofflösungen von MEA, EAE (A), 30,0 % MDEA {a: Kim et al. [69]} (A) und 32,0 % DEEA {b: Kim und Svendsen [72]} (B) bei 40 °C

In *Abbildung 63 B* sind die Absorptionsenthalpien der binären Aminmischung von MEA mit DEEA im Vergleich zu MEA und Literaturdaten von 32,0 % DEEA [72] bei 40 °C gegeben. Die Absorptionsenthalpien der zwei Mischungsverhältnisse mit einem Aktivatoranteil von 27 und 67 mol-% MEA erreichen beide 72 kJ/mol_{CO2} und verbleiben zunächst auf diesem Wert. Nach kurzem Plateau sinkt die Absorptionsenthalpie von 27 mol-% MEA mit DEEA auf einen zweiten konstanten Bereich ab, wonach der Abfall zum Erreichen der Gleichgewichtsbeladung eintritt. Der zweite konstante Bereich tritt ca. nach Abreaktion des Aktivatoranteils auf und liegt auf Höhe der aktivierten Hydrogencarbonatbildung durch DEEA. Die Absorptionsenthalpie von 67 mol-% MEA mit DEEA verbleibt bis zur anteiligen Beladung von MEA in der Aminmischung auf dem Plateau. Sie fällt dann bei Zunahme der Hydrogencarbonatbildung ab.
6 Energetik: Ergebnisse des Energiebedarfs zur Regeneration

Der Energiebedarf zur Regeneration wird bei 90% iger CO_2 -Abscheidung für die ausgewählten Lösungsmittel mit Hilfe des in dieser Arbeit entwickelten Modells berechnet, wobei die prozessrelevanten Lösungsmitteleigenschaften als Eingangsdaten dienen. Im Folgenden werden die Berechnungsergebnisse dargestellt, die zusätzlich tabellarisch in *Anhang D Ergebnisse – Energetik* erfasst sind. Nach Ermittlung des minimalen Energiebedarfs zur Regeneration, wird der Einfluss verschiedener Annahmen auf den Energiebedarf über eine Parametervariation anhand von MEA dargestellt. Abschließend wird eine Korrelation aufgestellt, um den Energiebedarf zur Regeneration auf Grundlage der Screeningergebnisse abzuschätzen.

6.1 Minimaler Energiebedarf zur Regeneration

Die Ermittlung des Energiebedarfs zur Regeneration erfolgt über die Berechnung der Erwärmungs-, Spaltungs- und Verdampfungsenergie, die detailliert in Kapitel 3.2.3 beschrieben ist. Das zur Berechnung des Energiebedarfs entwickelte Modell basiert auf der Annahme eines idealen Trennprozesses bei minimalem Strippdampfeinsatz. Als Eingangsdaten werden die Absorptionsenthalpie und die Gleichgewichtsisothermen bei Desorbertemperaturen benötigt. Dazu wird aus den gemessenen Gleichgewichtsisothermen für jedes Lösungsmittel eine Korrelation des CO₂-Partialdrucks in Abhängigkeit von Temperatur und Beladung in Anhang A.1 aufgestellt. Mit Hilfe dieser lösungsmittelspezifischen Korrelation werden die Gleichgewichtsisothermen bei Desorbertemperaturen berechnet. Die Temperatur im Desorbersumpf beträgt 110 °C bei einem Desorberdruck von 1.500 mbar. Bei einer Grädigkeit des rich-/lean-Wärmetauschers – d.h. der Temperaturdifferenz zwischen rich- und lean-Lösungsmittel – von 10 K, beträgt die Temperatur am Desorberkopf 100 °C. Die rich-Beladung ist im Prozess von der lean-Beladung, der Absorptionsrate und der Absorberbauweise abhängig. Aufgrund einer endlichen Absorberhöhe wird kein Gleichgewichtszustand bei der Absorption erreicht, so dass die rich-Beladung zur Vereinfachung vorgegeben wird. Entsprechend einer typischen rich-Beladung von 0,45 mol_{CO2}/mol_{Amin} für MEA, wird die rich-Beladung für alle Lösungsmittel zu 80 % der Gleichgewichtsbeladung bei 40 °C definiert.

6.1.1 MEA und Validierung

In *Abbildung 64* ist der Energiebedarf zur Regeneration von MEA bei 110 °C dargestellt. Er beträgt 3,9 MJ/kg_{CO2} und setzt sich gemäß *Abbildung 64 A* aus drei Energieanteilen zusammen. Zum Erwärmen des Lösungsmittels auf Desorbertemperatur werden 0,9 MJ/kg_{CO2} benötigt. Die Spaltung der CO₂-Amin-Bindung dominiert mit 1,7 MJ/kg_{CO2} den Energiebedarf, gefolgt von der zur Strippdampferzeugung benötigten Energiemenge mit 1,3 MJ/kg_{CO2}. In *Abbildung 64 B* ist der Energiebedarf über dem L/G-Verhältnis, das sich aus der Lösungsmittelumlaufmenge über dem Rauchgasvolumenstrom ergibt, aufgetragen. Das L/G-Verhältnis beträgt 5,7 kg_{LM}/m³_{RG} und berechnet sich aus der Arbeitskapazität, die in *Abbildung 64 C* als dunkelgrauer Balken dargestellt mit 0,22 mol_{CO2}/mol_{Amin} ist. Die rich-Beladung von MEA ist durch den roten Rahmen markiert und ist mit 0,45 mol_{CO2}/mol_{Amin}, d.h. 80 % der Gleichgewicht zwischen der Flüssig- und der Gasphase bei der Desorbersumpftemperatur von 110 °C besteht. Sie ist durch den hellgrauen Balken abgebildet und beträgt 0,23 mol_{CO2}/mol_{Amin}.

Abbildung 64: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität $\Delta \alpha$, rich- α_R und lean-Beladung α_L (C) von MEA bei 110 °C

Der hohe Anteil der Spaltungsenergie mit 44 % des Energiebedarfs zur Regeneration ist auf die vorherrschende stabile Carbamatbindung von MEA zurückzuführen. Diese äußert sich in der konstant hohen Absorptionsenthalpie über weitem Beladungsbereich und bedingt die energieintensive Spaltung der CO₂-Amin-Bindung. Die Erzeugung des Strippdampfs benötigt mit 33 % ein Drittel des Energiebedarfs zur Regeneration. Der hohe Energieaufwand ist auf

den geringen CO₂-Partialdruck zurückzuführen, der zur Erreichung der lean-Beladung nötig ist und über eine große Menge an Strippdampf bereitgestellt wird. Die restlichen 23 % des Energiebedarfs werden zum Aufwärmen des Lösungsmittels auf Desorbertemperatur benötigt und hängen von der Wärmekapazität des Lösungsmittels und der Lösungsmittelumlaufmenge ab. Dabei variiert die Wärmekapazität nur geringfügig für die verschiedenen Lösungsmittel.

In *Abbildung 65* wird der bei unterschiedlichen Einstellungen anhand des Modells berechnete Energiebedarf zur Regeneration von 30,0 % MEA mit Literaturdaten bei Desorbertemperaturen von 100 bis 115 °C verglichen. Die Literaturdaten bei 100 °C sind von Sakwattanapong et al. [107] sowie Wilson et al. [130], bei 110 °C von Abu-Zahra et al. [4] und bei 115 °C von Knudsen et al. [73]. Die Validierung des Modells mit Messwerten von MEA ermöglicht die Qualitätssicherung der Berechnungsergebnisse für die alternativen Lösungsmittel.

Abbildung 65: Energiebedarf zur Regeneration q_{reg} in Abhängigkeit von L/G für 30,0 % MEA im Vergleich zu Literaturdaten bei Desorbertemperaturen von 100 °C {a: Sakwattanapong et al. [107]; b: Wilson et al. [130]} (A) sowie 110 °C {c: Abu-Zahra et al. [4]} und 115 °C {d: Knudsen et al. [73]} (B)

Abbildung 65 A zeigt den Energiebedarf zur Regeneration gemessen in einer Labor- (a) [107] und einer Pilotanlage (b) [130] bei 100 °C und Atmosphärendruck sowie einer vorgegebenen rich-Beladung von 0,50 mol_{CO2}/mol_{Amin}. Es ist erkennbar, dass der in dieser Arbeit berechnete Wert von den Literaturmessdaten für eine rich-Beladung von 0,50 mol_{CO2}/mol_{Amin} abweicht, jedoch für eine rich-Beladung von 0,45 mol_{CO2}/mol_{Amin} bzw. einer Temperatur von 110 °C sehr gut übereinstimmt. Diese Werte wären gegeben, wenn die Literaturangaben der rich-Beladung oder Temperatur zu den tatsächlichen Werten im Experiment um weniger als

10 % abwichen. In *Abbildung 65 B* wird der Energiebedarf zur Regeneration einerseits ermittelt durch Simulation bei 110 °C (c) [4] und andererseits gemessen in der CASTOR-Pilotanlage in Esbjerg bei ca. 115 °C (d) [73] im Vergleich zu den Berechnungsergebnissen dieser Arbeit dargestellt. Die vorgegebenen rich-Beladungen und herrschenden Drücke im Desorber ergeben sich entsprechend zu $0,48 \text{ mol}_{CO2}/\text{mol}_{Amin}$ und 1.500 mbar sowie $0,45 \text{ mol}_{CO2}/\text{mol}_{Amin}$ und 1.900 mbar. Die berechneten Werte dieser Arbeit stimmen sehr gut mit den Literaturdaten bei 110 und 115 °C überein. Die Qualität der Berechnungsergebnisse des Energiebedarfs zur Regeneration mittels des entwickelten Modells ist damit sichergestellt.

6.1.2 Alternative Aminlösungen

In *Abbildung 66* sind die Ergebnisse des Energiebedarfs zur Regeneration bei 110 °C von den primären Aminen AP und DGA sowie von dem Polyamin TETA dargestellt. AP und TETA benötigen mit 5,5 und 4,4 MJ/kg_{CO2} mehr Energie zur Regeneration als MEA und weisen zudem ein höheres L/G-Verhältnis auf. DGA benötigt ein geringfügig kleineres L/G-Verhältnis als MEA und ebenfalls etwas weniger Energie zur Regeneration mit 3,7 MJ/kg_{CO2}. Mit abnehmendem L/G-Verhältnis sinkt damit der Energiebedarf zur Regeneration.

Abbildung 66: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität $\Delta \alpha$, rich- α_R und lean-Beladung α_L (C) von AP, DGA und TETA bei 110 °C

Die Erwärmungsenergie der Lösungsmittel korreliert indirekt mit deren Arbeitskapazitäten, die sich in *Abbildung 66 C* als Differenz der vorgegebenen rich-Beladungen und der im Modell ermittelten lean-Beladungen ergeben. Für DGA mit der gleichen Arbeitskapazität wie MEA ist die Erwärmungsenergie vergleichbar zu MEA. AP und TETA erreichen gegenüber MEA um ca. 30 % reduzierte Arbeitskapazitäten, die sich in der sehr hohen Energie zur Erwärmung der Lösungsmittelumlaufmenge äußert. Die Energie zur Spaltung der CO2-Amin-Bindung unterscheidet sich für AP, DGA und TETA gemäß den Differenzen zwischen deren Absorptionsenthalpien. Deswegen benötigt AP mit der größten Absorptionsenthalpie am meisten Energie zur Spaltung der CO₂-Amin-Bindung, hingegen TETA mit der kleinsten die wenigste Energie. Die Spaltungsenergie nimmt außer für AP den Hauptanteil des Energiebedarfs zur Regeneration ein. Der zur Strippdampferzeugung erforderliche Energiebedarf variiert für die Lösungsmittel sehr stark. Bei AP nimmt dieser Anteil 38 % des Energiebedarfs zur Regeneration ein und geht gleichzeitig mit einer hohen lean-Beladung einher. DGA erreicht eine kleinere lean-Beladung als MEA und weist zudem den niedrigsten Strippdampfbedarf auf. TETA zeigt zwar eine zu DGA vergleichbare lean-Beladung, benötigt jedoch einen höheren Energieanteil zur Strippdampferzeugung. Dies kann zurückgeführt werden auf den steileren Verlauf der Gleichgewichtsisotherme von TETA im Vergleich zu DGA oder MEA. Das bedeutet, dass die gleiche Partialdruckabsenkung bei TETA eine geringere Reduktion der Beladung bewirkt als bei DGA oder MEA. Darum tritt bei TETA eine geringere Arbeitskapazität auf, die die erhöhte Erwärmungsenergie und letztlich den hohen Energiebedarf bewirkt.

Der Energiebedarf zur Regeneration sowie die Ergebnisse der Modellberechnung sind in *Abbildung* 67 für die sekundären Amine MAE, EAE und DEA zusammengestellt.

Abbildung 67: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität $\Delta \alpha$, rich- α_R und lean-Beladung α_L (C) von MAE, EAE und DEA bei 110 °C

MAE benötigt mit 3,9 MJ/kg_{CO2} denselben Energiebedarf zur Regeneration wie MEA, jedoch bei einem kleineren L/G-Verhältnis. EAE und DEA benötigen mit je 2,8 MJ/kg_{CO2} erheblich weniger Energie zur Regeneration im Vergleich zu MEA. Gleichzeitig weisen EAE und DEA äußerst niedrige L/G-Verhältnisse auf. Die für die Erwärmung der Lösungsmittelumlaufmenge benötigte Energie korreliert wiederum indirekt mit den in Abbildung 67 C gezeigten Arbeitskapazitäten. Die Erwärmungsenergie wird von MAE zu EAE halbiert, wobei sich die Arbeitskapazität um ca. 80 % erhöht. DEA zeigt von den sekundären Aminen eine mittlere Arbeitskapazität bei einer ebenfalls mittleren Erwärmungsenergie. Die Energie zur Spaltung der CO₂-Amin-Bindung ist für MAE vergleichbar zu MEA und für EAE sowie DEA um jeweils ca. 12 % gegenüber MEA reduziert. Diese Differenzen sind direkt auf die unterschiedlichen Absorptionsenthalpien zurückzuführen. Die Spaltungsenergie macht den Hauptanteil des Energiebedarfs zur Regeneration mit 45, 53 und 55 % für MAE, EAE und DEA aus und nimmt an Bedeutung zu je geringer dieser ist. Die Energie, die zur Strippdampferzeugung aufgebracht werden muss, nimmt von MAE über EAE zu DEA hin ab, wobei ebenfalls die lean-Beladungen sinken. EAE und DEA haben sich in den vorherigen Untersuchungen durch sehr niedrige 90 °C-Beladungen und eine starke CO2-Partialdruckabhängigkeit ausgezeichnet. Die daraus abgeleitete instabilere CO₂-Amin-Bindung ermöglicht bei deren Einsatz eine Senkung des Energiebedarfs zur Regeneration um knapp 30 % gegenüber MEA.

6.1.3 Konzentrierte Aminlösungen

Der Energiebedarf zur Regeneration bei 110 °C wird für konzentrierte Aminlösungen von MEA, TETA und EAE in einer Molalität von 4,9 und 8,2 mol_{Amin}/kg_{LM} , äquivalent zu 30,0 und 50,0 % MEA, betrachtet und mit MEA als Referenz verglichen.

In *Abbildung 68* sind die Ergebnisse des Energiebedarfs zur Regeneration von 4,9 und 8,2 mol_{Amin}/kg_{LM} MEA dargestellt. Der Energiebedarf der höher konzentrierten MEA-Lösung beträgt 4,4 MJ/kg_{CO2} und nimmt damit um 11 % gegenüber 4,9 mol_{Amin}/kg_{LM} MEA zu. Die einzelnen Energieanteile der zwei konzentrierten MEA-Lösungen weisen prinzipiell ähnliche Werte auf, obwohl die Beladungen stark variieren. Beide benötigen die gleiche Energiemenge zur Erwärmung der Lösungsmittelumlaufmenge, obwohl die Arbeitskapazität von 8,2 gegenüber 4,9 mol_{Amin}/kg_{LM} MEA fast halbiert ist. Das L/G-Verhältnis zeigt trotz-dem ähnliche Werte, was daran liegt, dass die gewichtsbezogenen Arbeitskapazitäten mit entsprechend 44 und 47 g_{CO2}/kg_{LM} ebenfalls vergleichbar sind. Der geringe Unterschied in der Energie zur Spaltung der CO₂-Amin-Bindung beruht auf der kleinen Differenz zwischen den

Absorptionsenthalpien. Der Strippdampfbedarf und die sich bei Desorbertemperatur einstellende lean-Beladung variieren am meisten. Dabei weist die höher konzentrierte MEA-Lösung sowohl eine um 32 % größere lean-Beladung als auch einen um 28 % höheren Energieanteil zur Strippdampferzeugung als 4,9 mol_{Amin}/kg_{LM} MEA auf. Der Grund hierfür besteht in der höheren Aminkonzentration, wodurch das CO_2 stabiler in Lösung gebunden ist. Dies bewirkt einerseits eine geringere Partialdruckabhängigkeit der Beladungen, so dass die Gleichgewichtsisothermen steiler verlaufen. Andererseits liegen die Gleichgewichtsisothermen aufgrund veränderter Reaktionsverhältnisse (*Kapitel 4.2.1* und *5.1.3*) näher beieinander. Dadurch ist die lean-Beladung entsprechend hoch und die molare Arbeitskapazität stark reduziert.

Abbildung 68: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität $\Delta \alpha$, rich- α_R und lean-Beladung α_L (C) von 4,9 und 8,2 mol/kg MEA, entsprechend 30,0 und 50,0 % MEA bei 110 °C

Anders als bei MEA wird durch die Konzentrationserhöhung auf $8,2 \text{ mol}_{Amin}/kg_{LM}$ bei TETA und EAE eine Reduktion des Energiebedarfs zur Regeneration erreicht, die in *Abbildung 69* dargestellt ist. Bei TETA kann der Energiebedarf zur Regeneration auf 4,0 MJ/kg_{CO2} um knapp 9 % reduziert werden, bei EAE auf 2,7 MJ/kg_{CO2} um 4 %. Die Erwärmungsenergie wird für die höher konzentrierte TETA-Lösung signifikant gesenkt, da aufgrund der Konzentrationserhöhung das L/G-Verhältnis bei ähnlicher molarer Arbeitskapazität um 35 % reduziert wird. Die zur Spaltung der CO₂-Amin-Bindung benötigte Energie ist für beide TETA-Lösungen wie auch ihre Absorptionsenthalpien identisch. Lediglich eine leichte Erhöhung des Strippdampfbedarfs tritt bei 8,2 mol_{Amin}/kg_{LM} TETA auf, die ebenfalls mit einer etwas höheren lean-Beladung einhergeht. Bei EAE wird durch die Konzentrationserhöhung die Energie zur Erwärmung der Lösungsmittelumlaufmenge um 40 % gesenkt, da das L/G-Verhältnis reduziert wird. Dies tritt auf, obwohl die molare Arbeitskapazität der höher konzentrierten EAE-Lösung ebenfalls sinkt. Die molare Abnahme wird jedoch durch die absolute Mehraufnahme von CO₂ durch die Konzentrationserhöhung ausgeglichen. Im Gegensatz dazu nimmt der Energiebedarf zur Spaltung der CO₂-Amin-Bindung für 8,2 mol_{Amin}/kg_{LM} EAE zu, was in Übereinstimmung mit der Höhe und dem Verlauf der Absorptionsenthalpie ist. Die hoch-konzentrierte EAE-Lösung benötigt bei einer geringeren lean-Beladung zudem weniger Energie zur Strippdampferzeugung als die 4,9 mol_{Amin}/kg_{LM}-Lösung. Das liegt an der bei äußerst niedrigen Beladungen verlaufenden Gleichgewichtsisotherme der Desorbersumpftemperatur.

Abbildung 69: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität Δα, rich- α_R und lean-Beladung α_L (C) von 4,9 und 8,2 mol/kg TETA sowie 4,9 und 8,2 mol/kg EAE bei 110 °C

Der Energiebedarf zur Regeneration ist damit nicht direkt von der Aminkonzentration abhängig, sondern vielmehr von den lösungsmittelspezifischen Kenngrößen. Diese ändern sich mit der Aminkonzentration für verschiedene Lösungsmittel auf unterschiedliche Art und Weise. Entscheidend ist vielmehr die Veränderung der Stabilität der CO₂-Amin-Bindung, die direkten Einfluss auf den Verlauf der Gleichgewichtsisothermen und der Absorptionsenthalpie hat.

6.1.4 Aminmischungen

Nachfolgend wird der Energiebedarf zur Regeneration bei 110 °C für die ausgewählten Aminmischungen mit einer Molalität von 4,9 mol_{Amin}/kg_{LM}. Die binären Aminmischungen von MEA, TETA und EAE mit MDEA sowie MEA mit DEEA werden untersucht. Die richBeladungen werden für die Aminmischungen ebenfalls auf 80 % der Gleichgewichtsbeladungen festgelegt. Der Einfluss des Aktivatoranteils und des Mischungsverhältnisses auf den Energiebedarf zur Regeneration ist wiederum von Interesse.

Abbildung 70 fasst die Ergebnisse der Modellberechnung für die vier Mischungsverhältnisse mit 40 bis 83 mol-% Aktivator der binären Aminmischung von MEA mit MDEA zusammen. Durch Senkung des Aktivatoranteils auf 40 mol-% MEA wird der Energiebedarf zur Regeneration auf bis zu 2,6 MJ/kg_{CO2} stark reduziert. Die Aminmischungen mit 50 und 67 sowie 83 mol-% MEA erreichen entsprechend Werte von 2,8 und 3,1 sowie 3,5 MJ/kg_{CO2}. Das L/G-Verhältnis nimmt ebenfalls mit steigendem Aktivatoranteil leicht zu, wobei die Arbeitskapazitäten beinahe konstant bleiben. Deswegen zeigt die Erwärmungsenergie mit steigendem Aktivatoranteil gleichermaßen nur eine leichte Zunahme.

Abbildung 70: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität Δα, rich- α_R und lean-Beladung α_L (C) der binären Aminmischung von MEA mit MDEA (Aktivatoranteil 40-83 mol-% MEA) bei 110 °C

Die Energie zur Spaltung der CO_2 -Amin-Bindung nimmt den Hauptanteil des Energiebedarfs zur Regeneration ein. Sie sinkt mit abnehmendem Aktivatoranteil, gewinnt dabei jedoch gleichzeitig an Bedeutung und steigt von anteilig 44 bis auf 51 %. Die Abnahme der Spaltungsenergie bei Reduktion des MEA-Anteils in der Aminmischung ist in Übereinstimmung mit der sinkenden Absorptionsenthalpie. Der größte Unterschied besteht in der Energie zur Strippdampferzeugung, die von 83 auf 40 mol-% MEA beinahe halbiert wird und gegenüber MEA eine Einsparung von 57 % ermöglicht. Die lean-Beladungen sinken mit abnehmendem Aktivatoranteil ausgehend von MEA mit 0,23 auf 0,10 mol_{CO2}/mol_{Amin} für 40 mol-% MEA ab. Die lean-Beladungen der Aminmischungen entsprechen wiederum dem anteiligen Wert der für MEA ermittelten lean-Beladung. Sie ergeben sich aus dem Produkt von Aktivatoranteil und lean-Beladung von MEA, so dass sich die lean-Beladung von 67 mol-% MEA mit MDEA auf $0,16 \text{ mol}_{CO2}/\text{mol}_{Amin}$ beläuft. Mittels Ersatz von 17 mol-% MEA durch MDEA kann der Energiebedarf zur Regeneration um 10 % gesenkt werden. Eine weitere Reduktion um bis zu 33 % kann bei Einsatz der Aminmischung mit 40 mol-% MEA erzielt werden.

In *Abbildung 71* wird die Desorption bei 110 °C für die binären Aminmischungen von TETA mit MDEA sowie EAE mit MDEA betrachtet. Diese Aminmischungen benötigen sehr viel weniger Energie zur Regeneration als MEA. 67 mol-% TETA mit MDEA benötigt zur Regeneration 2,6 MJ/kg_{CO2} bei einem L/G-Verhältnis von 4,8 kg_{LM}/m³_{RG}. Die zwei Mischungsverhältnisse von EAE mit MDEA erreichen noch kleinere Werte von nur 2,2 und 2,3 MJ/kg_{CO2} bei 40 und 67 mol-% EAE als Aktivator und L/G-Verhältnissen von 4,1 und 3,6 kg_{LM}/m³_{RG}.

Abbildung 71: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität Δα, rich- α_R und lean-Beladung α_L (C) der binären Aminmischungen von TETA mit MDEA (Aktivatoranteil 67 mol-% TETA) sowie EAE mit MDEA (Aktivatoranteil 40-67 mol-% EAE) bei 110 °C

Gemäß den Erkenntnissen aus dem Screening steigen bei der Aminmischung von EAE mit MDEA mit zunehmendem Aktivatoranteil die Arbeitskapazität und die lean-Beladung. Die L/G-Verhältnisse sind damit in Übereinstimmung mit den Arbeitskapazitäten. Die Erwärmungsenergie variiert wenig, dennoch proportional zum L/G-Verhältnis. Die zur Spaltung der CO₂-Amin-Bindung benötigte Energie ist für die drei Lösungsmittel identisch, obwohl die Anfangswerte der drei Absorptionsenthalpien leicht voneinander abweichen. Der leichte Unterschied wird jedoch durch deren unterschiedliche Verläufe und die abgestuften Beladungsbereiche, über die integriert wird, ausgeglichen. Die größte Varianz besteht im Strippdampfbedarf, der für die drei Aminmischungen gegenüber MEA sehr klein ist. Die Energie zur Strippdampferzeugung ergibt sich zu 0,5 MJ/kg_{CO2} für 67 mol-% TETA mit MDEA und ist im Vergleich zu den Mischungsverhältnissen von EAE mit MDEA höher. Das liegt daran, dass die Gleichgewichtsisothermen von TETA mit MDEA bei höheren Beladungen und steiler als die von EAE mit MDEA verlaufen. Entsprechend der Abstufung des Strippdampfbedarfs sind die lean-Beladungen der drei Aminmischungen gestaffelt und nehmen sehr niedrige Werte von unter 0,10 mol_{CO2}/mol_{Amin} ein. Die sich ergebenden lean-Beladungen sind zwar mit dem jeweiligen Aktivatoranteil abgestuft, stimmen jedoch nicht mit den anteiligen Beladungen der lean-Beladung des Aktivators überein. Unabhängig davon, kann der Energiebedarf zur Regeneration durch den Einsatz der binären Aminmischung von EAE mit MDEA um bis zu 45 % gegenüber MEA reduziert werden.

In *Abbildung 72* ist der Energiebedarf zur Regeneration der binären Aminmischung von MEA mit DEEA bei den Mischungsverhältnissen 27 und 67 mol-% Aktivator gegeben und beträgt für diese 2,1 und 3,5 MJ/kg_{CO2}. Die L/G-Verhältnisse sind aufgrund der hohen Arbeitskapazitäten sehr klein, so dass ebenfalls der Energieanteil zur Erwärmung der Lösungsmittelumlaufmenge eine untergeordnete Rolle spielt. Der Hauptanteil des Energiebedarfs zur Regeneration mit 65 und 45 % nimmt wiederum die Energie zur Spaltung der CO₂-Amin-Bindung ein.

Abbildung 72: Energiebedarf zur Regeneration q_{reg} (A), bezogen auf L/G (B) sowie die Arbeitskapazität Δα, rich- α_R und lean-Beladung α_L (C) der binären Aminmischung von MEA mit DEEA (Aktivatoranteil 27-67 mol-% MEA) bei 110 °C

Der Anfangswert der Absorptionsenthalpie ist für beide Mischungsverhältnisse identisch, jedoch bildet 67 mol-% MEA mit DEEA über dem gesamten Beladungsbereich ein Plateau aus, während die Kurve von 27 mol-% MEA nach einem kurzen Plateau abfällt. Dadurch ergibt sich die höhere Spaltungsenergie für die Aminmischung mit höherem Aktivatoranteil. Zwischen der benötigen Energie zur Strippdampferzeugung besteht für die beiden Mischungsverhältnisse der größte Unterschied. Die Aminmischung mit 27 mol-% MEA benötigt lediglich 0,2 MJ/kg_{CO2} zur Strippdampferzeugung. Im Gegensatz dazu umfasst der Strippdampfbedarf von 67 mol-% MEA mit DEEA identisch zu MEA 1,3 MJ/kg_{CO2}. Die lean-Beladungen sind für beide Aminmischungen niedrig, entsprechen jedoch nicht den anteiligen Beladungen des Aktivators MEA. Bei Verwendung von 27 mol-% MEA mit DEEA ist der Energiebedarf zur Regeneration gegenüber MEA stark dezimierbar.

Der Energiebedarf zur Regeneration von Aminmischungen nimmt durch Verringerung des Aktivatoranteils stetig ab, wobei eine Reduktion um 45 % gegenüber MEA erzielt werden kann. Die sich bei Desorbertemperatur einstellende lean-Beladung der Aminmischung stimmt nur bei MEA mit MDEA mit der anteiligen lean-Beladung des Aktivators überein. Die lean-Beladungen der anderen Aminmischungen nehmen mit Senkung des Aktivatoranteils ab. Letztendlich bestimmen wiederum die lösungsmittelspezifischen Kenndaten den Energiebedarf zur Regeneration, wobei das Mischungsverhältnis und die Wechselwirkungen zwischen den Aminen sowie die daraus resultierende Bindungsstabilität entscheidend sind.

6.2 Einflussfaktoren auf den Energiebedarf zur Regeneration

Der Energiebedarf zur Regeneration ist von mehreren Faktoren abhängig, die dessen Höhe, die drei Energieanteile und das L/G-Verhältnis beinflussen. Dabei sind die Desorbertemperatur, die Grädigkeit des rich-/lean-Wärmetauschers und die rich-Beladung wichtige Stellgrößen. Bei gegebener Desorbertemperatur ist der Desorberdruck ebenfalls festgelegt, so dass das Lösungsmittel beim Sättigungsdampfdruck von Wasser sieden kann. Gleichzeitig stellt sich die lean-Beladung im Gleichgewicht mit der Gasphase ein. Die Grädigkeit des rich-/lean-Wärmetauschers bestimmt die Desorbereintrittstemperatur und damit die Temperaturdifferenz, über die das Lösungsmittel im Desorber erwärmt werden muss. Die rich-Beladung wirkt auf das treibende Konzentrationsgefälle innerhalb des Desorbers und beeinflusst damit den Übergang des CO_2 von der Flüssig- in die Gasphase. Um den Einfluss dieser Faktoren auf den Energiebedarf zu bestimmen, wird eine Parametervariation anhand von MEA durchgeführt. Dabei wird jeweils nur ein Parameter variiert und die anderen Werte konstant gehalten. In *Abbildung 73* ist der Energiebedarf zur Regeneration mit dessen Energieanteilen über den Parametern aufgetragen. Dabei werden die rich-Beladung α_R , die Desorbertemperatur ϑ_{Des} und die Grädigkeit des rich-/lean-Wärmetauschers ΔT_{WT} gegenüber den in dieser Arbeit festgelegten und in rot markierten Werten variiert. Zusätzlich ist der Energiebedarf zusammenfassend für die Parametervariationen in *Abbildung 74* über dem L/G-Verhältnis aufgetragen.

Abbildung 73: Energiebedarf zur Regeneration q_{reg} bestehend aus Erwärmungs- q_{sens}, Spaltungsq_{abs} und Verdampfungsenergie q_{stripp} in Abhängigkeit der rich-Beladung α_R (A), der Desorbertemperatur θ_{des} (B) und der Grädigkeit des Wärmetauschers ΔT_{WT} (C)

Die rich-Beladung ist im realen Prozess von den Absorberbedingungen und der lean-Beladung abhängig, deren Werte sich im Absober-Desorber-Kreislaufprozess bei stationären Bedingungen einstellen. Da die rich-Beladung zur Vereinfachung festgelegt wurde, wird diese nun verändert, um den Einfluss auf den Energiebedarf zur Regeneration festzustellen. Die Variation der rich-Beladung von MEA erfolgt zwischen 60 und 100 % der Gleichgewichtsbeladung bei 40 °C. Im Vorhinein wurde für alle Lösungsmittel eine rich-Beladung von 80 % der Gleichgewichtsbeladung, die in *Abbildung 73 A* rot markiert ist, festgelegt. Der Energiebedarf zur Regeneration ist sehr stark von der rich-Beladung des Lösungsmittels abhängig. Bei Reduktion der rich-Beladung auf 60 % der Gleichgewichtsbeladung erhöht sich der Energiebedarf zur Regeneration um 86 %, jedoch nimmt er nur um 32 % ab bei Steigerung der rich-Beladung auf 100 % der Gleichgewichtsbeladung. Durch Reduktion der rich-Beladung wird die Arbeitskapazität verringert und damit das L/G-Verhältnis erhöht. Dadurch verdoppelt sich die Energie zur Erwärmung der Lösungsmittelumlaufmenge mit abnehmender rich-Beladung bei 60 % gegenüber 80 % der Gleichgewichtsbeladung. Die Energie zur Spaltung der CO₂-Amin-Bindung nimmt mit zunehmender rich-Beladung ab, da mit dieser die Absorptionsenthalpie ebenfalls sinkt. Diese Veränderung ist jedoch gegenüber der Erwärmungs- oder Verdampfungsenergie vernachlässigbar. Die Energie zur Strippdampferzeugung steigt mit abnehmender rich-Beladung von 80 % auf 60 % der Gleichgewichtsbeladung am meisten und wird beinahe verdreifacht. Um bei geringerer Beladung das CO₂ gleichermaßen aus der Lösung zu strippen, muss der CO₂-Partialdruck durch mehr Strippdampf reduziert werden. Dadurch bleibt das treibende Konzentrationsgefälle erhalten und der Energiebedarf steigt.

Die Desorbertemperatur entspricht der Siedetemperatur des Lösungsmittels und legt dadurch den Desorberdruck fest, der ungefähr dem Sättigungsdampfdruck von Wasser entspricht. Bei Variation der Desorbertemperatur zwischen 90 und 130 °C wird damit gleichzeitig der Desorberdruck zwischen 725 bis 2.750 mbar angepasst. Die bisherigen Berechnungen wurden bei 110 °C und 1.500 mbar durchgeführt und sind in Abbildung 73 B rot markiert. Der Energiebedarf zur Regeneration nimmt ausgehend von der Grundeinstellung bei Reduktion der Desorbertemperatur um 24 % zu. Indessen sinkt er bei Erhöhung der Desorbertemperatur leicht um 8 %. Aufgrund der Variation der Desorbertemperatur werden die Gleichgewichtsisothermen mit steigender Temperatur in Richtung kleinerer Beladungen verschoben. Dadurch sinkt die lean-Beladung und steigt die Arbeitskapazität, so dass das L/G-Verhältnis abnimmt. Die Erwärmungsenergie nimmt deswegen ebenfalls mit zunehmender Desorbertemperatur ab. Im Gegensatz dazu steigt die Energie zur Spaltung der CO₂-Amin-Bindung leicht an, da die Absorptionssenthalpie bei geringeren Beladungen höhere Werte erreicht. Desweiteren nimmt mit steigender Desorbertemperatur die Energie zur Strippdampferzeugung ab, da der spezifische Wasserdampfverlust \bar{m}_{vap} in $[kg_{H2O}/kg_{CO2}]$ am Desorberkopf geringer wird. Mit zunehmender Desorbertemperatur verschiebt sich das Gleichgewicht der CO₂-Amin-Bindung hin zu freiem CO₂. Dadurch gast mehr CO₂ bei Lösungsmitteleintritt am Desorberkopf, so dass spezifisch weniger Wasserdampf pro desorbierte Menge an CO₂ den Desorber verlässt. Es wird somit weniger Energie zur Strippdampferzeugung benötigt.

Die Grädigkeit des rich-/lean-Wärmetauschers ist abhängig von der Wärmeübertragungsfläche und der Lösungsmittelumlaufmenge. Indem die Grädigkeit reduziert wird, steigt die Desorbereintrittstemperatur bei konstanter Desobersumpftemperatur von 110 °C. Die Temperaturdifferenz zwischen Desorberkopf und –sumpf sinkt. In *Abbildung 73 C* wird die Grädigkeit des rich-/lean-Wärmetauschers zwischen 5 und 15 K variiert, wobei 10 K in rot markiert die Ausgangsituation darstellt. Der Energiebedarf zur Regeneration verändert sich nur geringfügig und bleibt zwischen 5 und 10 K annähernd konstant. Die Erwärmungsenergie nimmt linear mit Erhöhung der Grädigkeit stark zu, da die zu überwindende Temperaturdifferenz im Desorber steigt. Der Beladungsbereich ändert sich jedoch kaum, so dass die Energie zur Spaltung der CO₂-Amin-Bindung beinahe konstant bleibt. Mit zunehmender Grädigkeit nimmt die zur Strippdampferzeugung benötigte Energie gegenläufig zur Erwärmungsenergie ab. Dabei sinken die Desorbereintrittstemperatur und zugleich der Sättigungsdampfdruck des Wassers am Desorberkopf bei konstantem Desorberdruck. Der spezifische Wasserdampfverlust nimmt ab, da annähernd die gleiche Menge an CO₂ desorbiert wird. Aufgrund der geringeren Strippdampferzeugung nehmen zudem die lean-Beladungen als auch das L/G-Verhältnis leicht zu. Die Verläufe der Energieanteile gleichen sich somit annähernd aus, weshalb der Energiebedarf zur Regeneration über der Grädigkeit nahezu unverändert bleibt.

In *Abbildung 74* ist der Energiebedarf zur Regeneration über dem L/G-Verhältnis zusammenfassend für die Parametervariationen dargestellt. Das L/G-Verhältnis und der Energiebedarf nehmen mit Abnahme der rich-Beladung und der Desorbertemperatur sowie Zunahme der Grädigkeit zu. Dabei hat die Variation der rich-Beladung den größten Einfluss auf den Energiebedarf und das L/G-Verhältnis. Die Anpassung der Grädigkeit ist dagegen vernachlässig-

bar. Eine möglichst hohe rich-Beladung ist deshalb anzustreben und kann durch den Einsatz von strukturierter Packung, die eine große Oberfläche zur Verfügung stellt, oder durch Vergrößerung der Absorberhöhe, womit die Verweilzeit des Lösungsmittels erhöht wird, erreicht werden. Beide Maßnahmen sind kostenintensiv und damit nicht beliebig einsetzbar, da die Gleichgewichtsbeladung im realen Prozess techno-ökonomisch nicht erreicht werden kann. Als zweite Möglichkeit den Energiebedarf zu senken, steht die Erhöhung der Desorbertemperatur zur Verfügung. Diese kann jedoch abhängig vom eingesetzten Lösungsmit-

tel zu einer Zunahme von Korrosion der Materialien und Degradation des Lösungsmittels führen. Außerdem sind gegebenenfalls die Materialauswahl und Druckauslegung des Desorbers auf Grund des höheren Temperatur- und Druckniveaus anzupassen. Die Grädigkeit des rich-/lean-Wärmetauschers hat den geringsten Einfluss auf den Energiebedarf zur Regeneration. Eine Verringerung der Temperaturdifferenz erreicht keine nennenswerte Reduktion, würde jedoch durch Vergrößerung der Wärmeübertragungsfläche erhebliche Kosten verursachen.

6.3 Korrelation des Energiebedarfs zur Regeneration

Um eine Abschätzung des Energiebedarfs zur Regeneration zu ermöglichen, ohne eine umfassende und aufwändige Charakterisierung jedes Lösungsmittels durchzuführen, wird eine Korrelation anhand der Screening-Ergebnisse und der Absorptionsenthalpie aufgestellt. Wichtige Kenngrößen aus den Screening-Versuchen mit Einfluss auf den Energiebedarf sind:

- Die Gleichgewichtsbeladung bei 90 °C $\alpha|_{90^{\circ}C}$ in $[g_{CO2}/kg_{LM}]$.
- Die Arbeitskapazität $\Delta \alpha |_{90^{\circ}C}^{40^{\circ}C}$ in $[g_{CO2}/kg_{LM}]$ zwischen der 40 und 90 °C-Beladung.
- Die Aminkonzentration x_{Amin} in [g/g].
- Die Absorptionsenthalpie $\Delta h_{abs}|_{\alpha=0}$ [MJ/kg_{CO2}] bei keiner Vorbeladung.

Die Abhängigkeit des Energiebedarfs zur Regeneration q_{reg} [MJ/kg_{CO2}] von den aufgezählten Messgrößen ist in *Abbildung 75* und *Abbildung 76* dargestellt. Der Energiebedarf ist dabei, wie bisher, mit Hilfe des in dieser Arbeit entwickelten Modells auf Basis der experimentellen Daten der umfassenden Charakterisierung für die Lösungsmittelauswahl berechnet.

Abbildung 75: Abhängigkeit des Energiebedarfs zur Regeneration q_{reg} von der Gleichgewichtsbeladung bei 90 °C (B) und der Arbeitskapazität (C)

Der Energiebedarf zur Regeneration ist direkt proportional zur Gleichgewichtsbeladung bei 90 °C und steigt mit dieser linear an. Eine geringe 90 °C-Beladung wurde als Auswahlkriterium der Lösungsmittel für eine erleichterte Desorption verwendet, diese Annahme wird hiermit bestätigt. Mit steigender Arbeitskapazität sinkt der Energiebedarf. Es besteht damit ein inverser Zusammenhang zwischen diesen Größen und belegt das Auswahlkriterium einer großen Arbeitskapazität als vorteilhaft gegenüber MEA. Weiterhin geht aus *Abbildung 76 D* hervor, dass der Energiebedarf mit Erhöhung der Aminkonzentration reduziert werden kann. Im Gegensatz dazu steigt der Energiebedarf stark mit zunehmender Absorptionsenthalpie an.

Abbildung 76: Abhängigkeit des Energiebedarfs zur Regeneration q_{reg} von der Aminkonzentration (D) und der Absorptionsenthalpie (E)

Die ermittelten Beziehungen zwischen den Messgrößen und dem Energiebedarf sind in *Gleichung (40)* aufgenommen. Die Korrelation $q_{reg}|_{korr}$ [MJ/kg_{CO2}] ermöglicht eine Abschätzung des Energiebedarfs zur Regeneration für ein beliebiges Lösungsmittel bei Kenntnis der Messgrößen. Die nicht lösungsmittelspezifischen Parameter *A* bis *E* werden mit der Methode der kleinsten Quadrate ermittelt. Dabei werden jeweils die Werte der Modellberechnung des Energiebedarfs und die entsprechenden Messwerte in *Gleichung (40)* eingesetzt. Die Parameter *A* bis *E* werden dann iterativ optimiert bis die Abweichung zwischen den Werten der Modellberechnung und der Korrelation minimal ist. Die Parameter sind in *Tabelle 14* gegeben.

$$q_{reg}|_{korr} = \left(A + B \alpha|_{90^{\circ}C} + \frac{C}{\Delta \alpha|_{90^{\circ}C}^{40^{\circ}C}} + \frac{D}{x_{Amin}} + E \Delta h_{abs}|_{\alpha=0}\right) MJ/kg_{CO2}$$
(40)

Da die Absorptionsenthalpie, wie in *Abbildung 76 E* ersichtlich, für alle Lösungsmittel ähnliche Werte einnimmt und somit annähernd eine Konstante dargestellt, wird in *Gleichung (41)* eine vereinfachte Korrelation aufgestellt. Die vereinfachte Korrelation $q_{reg}\Big|_{korr}^{*}$ [MJ/kg_{CO2}] berechnet den Energiebedarf zur Regeneration ohne Berücksichtug der Absorptionsenthalpie.

Dadurch wird eine Abschätzung rein auf Basis der Screening-Versuche, d.h. der 40 und 90°C-Beladungen, ermöglicht. Die Parameter *A* bis *D* sind ebenfalls in *Tabelle 14* gegeben.

$$q_{reg}\Big|_{korr}^{*} = \left(A + B \alpha\Big|_{90^{\circ}C} + \frac{C}{\Delta \alpha}\Big|_{90^{\circ}C}^{40^{\circ}C} + \frac{D}{x_{Amin}}\right) MJ/kg_{CO2}$$
(41)

Der Mittelwert der gewichteten Abweichungen zwischen den Modell- und Korrelationswerten $\overline{\Delta q_{reg}^2/q_{reg}^2}$ ist sehr klein und ändert sich kaum durch Anwendung der vereinfachten Korrelation. Dadurch ist eine gute Übereinstimmung zwischen Modell und Korrelation zu erwarten. Weiterhin behalten die Parameter *B* bis *D* vergleichbare Werte, lediglich Parameter *A* zeigt eine deutliche Veränderung. Dabei ergibt sich $A|_{korr}^*$ ungefähr aus der Summe des wegfallenden Parameters *E* multipliziert mit dem Mittelwert der Absorptionsenthalpien plus $A|_{korr}$.

 Tabelle 14:
 Korrelation des Energiebedarfs zur Regeneration

Parameter	А	В	С	D	E	$\overline{\Delta q_{reg}^2/q_{reg}^2}$
	[-]	[-]	[-]	[-]	[-]	[-]
Korrelation Q _{reg} _{korr}	-1,12	0,016	71,3	0,19	1,08	0,005
Vereinfachte Korrelation q _{reg} korr	* 0,53	0,019	84,6	0,11	-	0,006

In *Abbildung* 77 ist die Qualität der Ergebnisse der beiden Korrelationen des Energiebedarfs durch den direkten Vergleich zu den Modellergebnissen verdeutlicht. Sowohl die Ergebnisse der Korrelation als auch die der vereinfachten Korrelation stimmen sehr gut mit den Modellberechnungen überein und liegen jeweils in einem Bereich von ± 10 % des Sollwerts.

Abbildung 77: Vergleich des Energiebedarfs zur Regeneration einerseits der Korrelation q_{reg}|_{korr} mit der Modellberechnung q_{reg} (A) und andererseits der vereinfachten Korrelation ohne Absorptionsenthalpie q_{reg}|_{korr}* mit der Modellberechnung q_{reg} (B)

Aufgrund der sehr guten Übereinstimmung der Ergebnisse der vereinfachten Korrelation mit den Modellberechnungen, wird die vereinfachte Korrelation im Folgenden auf alle in *Kapitel 4* untersuchten Lösungsmittel angewendet. Der mittels vereinfachter Korrelation berechnete Energiebedarf zur Regeneration $q_{reg}\Big|_{korr}^{*}$ ist in *Abbildung 78* über der maximalen Absorptionsrate $r_{abs,max}$ aufgetragen. Die folgenden Zusammenhänge sind dabei festzustellen:

- Der Energiebedarf kann zu Lasten der Kinetik gesenkt werden.
- Primäre Amine, ausgenommen AMP und AMPD, sowie Polyamine weisen sehr hohe Absorptionsraten bei gleichzeitig hohem Energiebedarf auf.
- Eine starke Reduktion des Energiebedarfs ist bei sekundären Aminen und Aminmischungen zu erreichen, die teilweise zudem eine hohe Kinetik aufweisen.

Regeneration q_{reg | korr}* über der Absorptionsrate r_{abs,max}

Zielrichtung für einen optimalen Prozess ist ein möglichst niedriger Energiebedarf zu Regeneration bei gleichzeitig hoher Absorptionsrate. Dadurch wird einerseits der Wirkungsgradverlust des Kraftwerks minimiert und andererseits bleiben die Absorber- und Desorberdimensionen techno-ökonomisch ausführbar. Potential zur Reduktion des Energiebedarfs zeigen die Lösungsmittel EAE und BAE sowie TETA oder MAE mit MDEA. Dabei erreichen einen besonders niedrigen Energiebedarf zu Regeneration mit max. 2,3 MJ/kg_{CO2} bei zudem sehr hoher Kinetik von mind. 2,9 g_{CO2}/(kg_{LM} min) das sekundäre Amin PAE und die binäre Aminmischung von 67 mol-% EAE mit MDEA. Durch deren Einsatz kann der Energiebedarf um über 40 % gegenüber MEA bei vergleichbarer Kinetik reduziert werden.

7 Zusammenfassung und Ausblick

Das Post-Combustion Capture Verfahren mit Aminwäsche bietet eine vielversprechende Möglichkeit die Emissionen des Treibhausgases CO_2 bei großen Punktquellen, wie z.B. Kraftwerken, zu vermindern. Dabei setzt diese bisher am weitesten entwickelte Technik meist auf die Verwendung einer 30% igen MEA-Lösung zur CO_2 -Absorption aus Rauchgasen. Die Regeneration des mit CO_2 beladenen Lösungsmittels erfolgt thermisch und benötigt, im Fall von MEA, einen hohen Energiebedarf. Dieser verursacht erhebliche Einbußen im Kraftwerkswirkungsgrad, die es zu minimieren gilt. Deshalb ist es Ziel dieser Arbeit zu MEA alternative Lösungsmittel, die eine energiereduzierte CO_2 -Abscheidung aus Kraftwerksrauchgasen ermöglichen, zu identifizieren.

Dazu wird eine Vielzahl an wässrigen Lösungen von Aminen und Aminmischungen in einem breit angelegten Screening untersucht. Zunächst wird das Absorptions- und Desorptionsvermögen der betrachteten Lösungsmittel ermittelt. Neben der Untersuchung von Reinstofflösungen und Aminmischungen mit einer Molalität von 4,9 mol_{Amin}/kg_{IM}, d.h. äquivalent zu 30,0 % MEA, wird eine Konzentrationsvariation für ausgewählte Amine zwischen 3,3 und 8,2 mol_{Amin}/kg_{LM} durchgeführt. Auf Grundlage des Screenings werden Lösungsmittel mit vorteilhaften Eigenschaften gegenüber MEA zur umfassenden Charakterisierung ausgewählt. Dabei wird als vorteilhaft angesehen: Eine vergleichbare Absorptionsrate zu MEA für eine realisierbare Absorberhöhe, eine größere Arbeitskapazität als MEA zur Reduktion der Lösungsmittelumlaufmenge und eine kleinere 90 C-Gleichgewichtsbeladung als MEA zur erleichterten Desorption, wobei die Annahme getroffen wird, dass eine kleinere 90 °C-Beladung als MEA mit einer instabileren CO₂-Amin-Bindung einhergeht. Diese drei Eigenschaften, d.h. hohe Absorptionsrate und hohe Arbeitskapazität bei gleichzeitig kleiner 90 °C-Beladung, sind in der Regel gegenläufig zueinander. Prinzipiell kann festgestellt werden, dass mit zunehmender Komplexität der Aminstruktur eine Reduktion der Gleichgewichtsbeladung bei 90 °C eintritt, die meistens mit einer Erhöhung der Arbeitskapazität und Senkung der Absorptionsrate einhergeht. Dabei weisen einige sekundäre Amine sowohl eine hohe Absorptionsrate als auch eine hohe Arbeitskapazität bei geringer 90 °C-Beladung auf. Desweiteren kann mit zunehmender Aminkonzentration die absolute Arbeitskapazität der Lösungsmittel erhöht werden, jedoch steigt ebenfalls die 90 °C-Beladung. Schließlich ist bei Aminmischungen festzuhalten, dass der Aktivatoranteil die 90 °C-Beladung der Aminmischung unabhängig vom eingesetzten Aktivator oder Trägeramin bestimmt. Die 90 °C-Beladung sowie die Absorptionsrate sinken mit abnehmendem Aktivatoranteil. Bei einigen Mischungsverhältnissen von Poly- und sekundären Aminen mit Trägeramin MDEA können hohe Arbeitskapazitäten bei niedrigen 90 °C-Beladungen und mittleren Absorptionsraten erreicht werden.

Für die im Screening ausgewählten Lösungsmittel werden in der umfassenden Charakterisierung die Gleichgewichtsisothermen bei Absorptions- und Desorptionsbedingungen sowie die Absorptionsenthalpie bestimmt. Diese lösungsmittelspezifischen Kenndaten ermöglichen später die Ermittlung des Energiebedarfs zur Regeneration. In Abhängigkeit der Stabilität der CO₂-Amin-Bindung zeigen die Kenndaten signifikante Verläufe, wodurch die im Screening getroffenen Annahmen bezüglich der Bindungsstabilität bestätigt werden können. Bei stabiler CO₂-Amin-Bindung, wie der Carbamatbildung bei MEA, liegt das Reaktionsgleichgewicht auf der Seite des gebundenen CO₂. Damit wird selbst bei geringem CO₂-Partialdruck eine hohe Beladung erreicht, so dass der Verlauf der Gleichgewichtsisotherme steil ist und eine geringe Abhängigkeit vom CO₂-Partialdruck besteht. Mit Temperaturerhöhung verschiebt sich das Reaktionsgleichgewicht zur Seite des freien CO₂, so dass der Einfluss des CO₂-Partialdrucks auf die Beladung zunimmt und der Kurvenverlauf etwas flacher wird. Bei instabilerer Bindung, wie der Hydrogencarbonatbildung, liegt das Reaktionsgleichgewicht von vorne herein auf der Seite des freien CO₂. Ein hoher CO₂-Partialdruck muss zur Verfügung gestellt werden, damit eine hohe Beladung erreicht werden kann, wodurch der Verlauf der Gleichgewichtsisotherme abflacht. Damit kann bei gleicher Partialdruckabsenkung eine größere Reduktion der Beladung für eine flach verlaufende im Gegensatz zu einer steil verlaufenden Gleichgewichtsisotherme erreicht werden. Daraus ergibt sich der allgemeine Zusammenhang, dass eine stärkere Partialdruckabhängigkeit der Beladung von Vorteil ist, da auf diese Weise bei gleicher Partialdruckabsenkung eine niedrigere lean-Beladung ermöglicht wird. Da die Absorptionsenthalpie eine Mischenthalpie aller parallel ablaufenden Reaktionen dargestellt, gibt deren Höhe die Intensität bzw. Stabilität der CO₂-Amin-Bindung wieder und deren Verlauf die Veränderung der Reaktionsanteile zueinander. Dadurch ergeben sich signifikante Unterschiede zwischen den beiden Hauptreaktionswegen: Die stabile Carbamatbildung zeigt eine konstant hohe Absorptionsenthalpie über dem gesamten Beladungsbereich; Bei instabilerer Bindung, d.h. zunehmender Hydrogencarbonatbildung, ist die Absorptionsenthalpie in deren Höhe reduziert und sinkt langsam mit Zunahme der Beladung ab. Prinzipiell kann festgehalten werden, dass für Lösungsmittel, die bereits im Screening eine geringe 90 °C-Gleichgewichtsbeladung zeigten, die Instabilität ihrer CO₂-Amin-Bindung durch deren Verlauf der Gleichgewichtsisothermen und der Absorptionsenthalpie bestätigt wurden. Desweiteren bestimmt der Aktivatoranteil in der Aminmischung ebenfalls den Verlauf der Gleichgewichtsisotherme bei 90 °C, so dass dieses bereits im Screening beobachtete Verhalten unabhängig vom CO_2 -Partialdruck eintritt.

Auf Basis der umfassenden Charakterisierung wird ein Modell entwickelt, um den Energiebedarf zur Regeneration, bestehend aus Erwärmungs-, Spaltungs- und Verdampfungsenergie, zu berechnen. Die gute Übereinstimmung der Modellberechnungen des Energiebedarfs mit Literaturdaten von 30,0 % MEA erlaubt die Anwendung des Modells für die zu MEA alternativen Lösungsmittel. Aufgrund der Vorauswahl im Screening kann der Energiebedarf für alle untersuchten Lösungsmittel mit Ausnahme von AP und TETA gegenüber MEA reduziert werden. Die Erwärmungsenergie ist direkt von der Lösungsmittelumlaufmenge abhängig, die mit zunehmender Arbeitskapazität gesenkt werden kann. Da die Arbeitskapazität stark für die untersuchten Lösungsmittel variiert, gilt dies ebenfalls für die Erwärmungsenergie. Eine möglichst große Arbeitskapazität ist demnach vorteilhaft. Die Energie, die zur Spaltung der CO₂-Amin-Bindung benötigt wird, korreliert direkt mit der Absorptionsenthalpie und ist für alle Lösungsmittel vergleichbar hoch. Daher spielt die Spaltungsenergie eine untergeordnete Rolle. Es hat sich gezeigt, dass die Variation der Absorptionsenthalpie bei den potentiell einsetzbaren Lösungsmitteln gering ausfällt. Die Unterschiede zwischen den Lösungsmitteln, die sich bereits in den Messungen der Absorptionsenthalpie ergeben haben, bleiben jedoch qualitativ erhalten. Das größte Potential zur Reduktion des Energiebedarfs liegt in der Energie zur Strippdampferzeugung, die ausgehend von MEA um bis zu 65 % gesenkt werden kann. Dabei ist eine starke Abhängigkeit der Beladung vom CO₂-Partialdruck von Vorteil, so dass bei flacherem Verlauf der Gleichgewichtsisotherme und gleicher Partialdruckabsenkung eine geringere lean-Beladung erreicht werden kann. Prinzipiell kann festgehalten werden, dass für einen reduzierten Energiebedarf zur Regeneration eine geringe 90 °C-Beladung kombiniert mit einer hohen Arbeitskapazität und einem flachen Verlauf der Gleichgewichtsisotherme entscheidend ist. Diese Eigenschaften werden in Lösungsmitteln mit instabiler CO₂-Amin-Bindung vereint.

Schließlich wird eine <u>Korrelation</u> zur Abschätzung des <u>Energiebedarfs zur Regeneration</u> auf Grundlage der Screening-Ergebnisse aufgestellt. Die Korrelation ermöglicht zukünftig eine frühzeitige energetische Abschätzung alternativer Lösungsmittel. Dazu ist lediglich die Kenntnis der Gleichgewichtsbeladungen bei 40 und 90 °C sowie der Aminkonzentration des eingesetzten Lösungsmittels erforderlich. Es hat sich zudem gezeigt, dass bei gleichbleibend guter Übereinstimmung von ± 10 % der Korrelationswerte gegenüber denen der Modell-

berechnung die Absorptionsenthalpie bei der Korrelation vernachlässigt werden kann. Der Energiebedarf zur Regeneration zeigt die folgenden Zusammenhänge: Er ist direkt proportional zur 90 °C-Gleichgewichtsbeladung und steigt mit dieser linear an, er sinkt mit zunehmender Arbeitskapazität und er kann mit Erhöhung der Aminkonzentration reduziert werden. Für den Einsatz eines Lösungsmittels im Prozess ist jedoch nicht nur ein geringer Energiebedarf zur Regeneration von Vorteil sondern auch eine gute Absorptionsrate zwingend erforderlich. Nur auf diese Weise kann sichergestellt werden, dass sowohl die Betriebs- als auch die Investitionskosten, die von den Absorber- und Desorberdimensionen entscheidend mitbestimmt werden, reduziert werden können. Die Untersuchungen dieser Arbeit zeigen, dass die Lösungsmittel EAE und BAE sowie die Aminmischungen von TETA oder MAE mit MDEA Potential zur Senkung des Energiebedarfs aufweisen. Durch den Einsatz des sekundären Amins PAE oder der binären Aminmischung von 67 mol-% EAE mit MDEA kann der Energiebedarf gegenüber MEA bei vergleichbarer Kinetik um über 40 % reduziert werden.

Die Abschätzung des Energiebedarfs zur Regeneration mit den in dieser Arbeit ermittelten Parametern ist vorerst auf Lösungen von Aminen und Aminmischungen beschränkt. Die Übertragbarkeit auf andere Lösungsmittel bleibt zu ermitteln. Die in dieser Arbeit entwickelte Methodik kann jedoch <u>zukünftig</u> für diverse Lösungsmittel angewendet werden, um die Abschätzung des Energiebedarfs zur Regeneration in einem frühen Laborstadium für eine Vielzahl von Lösungsmitteln zu ermöglichen. Weiterhin kann die Herangehensweise dieser Arbeit auf eine Wirtschaftlichkeitsbetrachtung übertragen werden, wobei eine Integration der CO₂-Abscheidung mittels Aminwäsche in den Kraftwerksbetrieb vorzunehmen ist. Dabei kann über den Energiebedarf zur Regeneration der Wirkungsgradverlust des Kraftwerks, der von diesem maßgeblich bestimmt wird, abgeschätzt werden.

Anhang

A Methodik

A.1 Korrelation und Interpolation des CO₂-Partialdrucks

Mit der <u>Korrelation</u> gemäß *Gleichung* (42) aus [97] ist der CO₂-Partialdruck p_{CO2} [mbar] für jede Temperatur ϑ [°C] in Abhängigkeit der Beladung α [mol_{CO2}/mol_{Amin}] berechenbar, wodurch die CO₂-Gleichgewichtsisothermen bei Desorptionstemperaturen ermittelt werden können. Die Parameter *A* bis *F* sind für die ausgewählten Lösungsmittel in *Tabelle 15* erfasst.

					p _{co2} -Para	meter		
Amin	X _{Amin}	А	В	С	D	E	F	$\Delta p_{CO2}^2/p_{CO2}^2$
	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[-]
		Lö	sungen	von Am	inen			
MEA	30,00	9,63	12,25	-984	19.840	22.772	65,19	0,020
AP	36,89	3,47	19,93	-280	19.790	22.714	-962	0,017
DGA	51,64	5,63	19,33	-452	19.801	22.718	-799	0,023
TETA	17,96	6,54	17,54	-608	19.824	22.743	-205	0,015
MAE	36,89	3,50	21,42	-249	19.766	22.705	-1.207	0,011
EAE	43,78	9,69	6,99	-664	-16.128	29.440	0,42	0,012
DEA	51,64	6,20	11,68	-292	10.182	-3.415	-	0,030
Konzentrierte Lösungen von Aminen								
8,2 MEA	50,00	3,26	23,95	-613	19.810	22.726	-540	0,028
8,2 TETA	29,93	7,35	16,08	-764	19.837	22.754	100	0,015
8,2 EAE	72,97	7,76	10,10	-434	14.273	-	-	0,020
		Lösung	gen von <i>i</i>	Aminmis	schungen			
40% MEA/ MDEA	47,12	6,31	14,20	-360	-23.442	16.684	-9,58	0,019
50% MEA/ MDEA	44,26	6,59	13,07	-421	-19.954	19.898	-17,52	0,021
67% MEA/ MDEA	39,51	7,19	13,04	-569	-15.232	24.822	-4,01	0,034
83% MEA/ MDEA	34,75	8,19	12,38	-739	-8.521	31.456	-33,93	0,021
67% TETA/ MDEA	12,0+ 19,5	7,94	17,64	-524	6.487	30.726	-627	0,018
40% EAE/ MDEA	52,63	7,33	24,59	-367	-24.497	36.411	-969	0,033
67% EAE/ MDEA	48,70	5,24	24,09	-196	6.456	30.690	-1.480	0,027
27% MEA/ DEEA	50,21	4,51	24,91	-146	9.280	23.403	-1.421	0,078
67% MEA/ DEEA	39,19	10,04	7,51	-770	9.372	23.454	-	0,046

 Tabelle 15: Korrelation des CO₂-Partialdrucks aus Messdaten

$$p_{CO2}(\alpha,\vartheta) = exp\left(A + B\alpha + \frac{C}{\vartheta} + D\frac{\alpha^2}{\vartheta^2} + E\frac{\alpha}{\vartheta^2} + F\frac{\alpha}{\vartheta}\right) mbar \quad 4$$
(42)

Zur Anwendung im Modell werden die korrelierten Isothermen anhand der <u>Exponentialfunk-</u> <u>tion</u> $p_{CO2}|_{\vartheta}(\alpha)$ in *Gleichung (43)* interpoliert. Die Parameter *A* und *B* sind in *Tabelle 16* für die Temperaturen ϑ [°C] in Abhängigkeit von α [mol_{CO2}/mol_{Amin}] aufgeführt.

$$p_{CO2}|_{\vartheta}(\alpha) = A e^{B \alpha} mbar^{5}$$
(43)

Abbildung 79: Messwerte bei 40 bis 90 °C und korrelierte Werte bei 40 bis 120 °C (A) sowie korrelierte Werte mit Interpollationskurven bei 40 bis 120 °C und Literaturdaten bei 110 °C {Xu und Rochelle [131]} und 120 °C { Jou et al. [65], Lee et al. [78], Ma'mun et al. [85]; Xu und Rochelle [131]} (B) der CO₂-Gleichgewichtsisothermen von 30,0 % MEA

In *Abbildung 79 A* sind die Messwerte der CO_2 -Gleichgewichtsisothermen für 40, 80 und 90 °C in rot dargestellt. Im Vergleich dazu sind ebenfalls die mit *Gleichung (42)* korrelierten Werte für Temperaturen von 40 bis 120 °C gezeigt. Die Werte aus der Korrelation stimmen sehr gut mit den Messwerten überein. Zusätzlich zu den korrelierten Werten sind in *Abbildung 79 B* Literaturdaten bei 110 °C und 120 °C gegeben. Diese stimmen ebenfalls sehr gut

⁴ Im Gegensatz zur physikalisch korrekt verlaufenden Gleichgewichtsisotherme, deren Kurve im Nullpunkt beginnt, ergibt sich für die *Korrelationsgleichung (42)* bei $\alpha = 0$ ein CO₂-Partialdruck ungleich Null mit $p_{CO2}(\alpha = 0, \vartheta) \neq 0$. Die entsprechende Abweichung ist jedoch minimal, so dass die Anwendbarkeit der Korrelation nicht beeinträchtigt wird.

⁵ Entsprechend der *Fußnote 4* ergibt sich für die *Interpolationsgleichung (43)* bei $\alpha = 0$ ein CO₂-Partialdruck ungleich Null mit $p_{CO2}|_{\vartheta}(\alpha = 0) = A \ mbar \neq 0$. Die entsprechende Abweichung ist jedoch minimal, so dass die Anwendbarkeit der Interpolation nicht beeinträchtigt wird.

mit den korrelierten Werten der CO_2 -Gleichgewichtsisothermen bei 110 °C und 120 °C überein. Dadurch ist sichergestellt, dass bei Verwendung der Korrelation aus *Gleichung (42)* CO₂-Gleichgewichtsisothermen bei beliebiger Temperatur zwischen 40 °C und 120 °C korrekt berechnet werden können. Die in *Abbildung 79 B* eingezeichneten Trendlinien, entsprechen der Exponentialfunktion gemäß *Gleichung (43)* und werden zur Ermittlung des CO₂-Partialdrucks im Modell zur Berechnung des Energiebedarfs zur Regeneration herangezogen.

		p _{CO2} -Parameter											
Amin	X Amin	$\vartheta = 4$	10 °C	ϑ = 9	0°0	$\vartheta = 1$	00 °C	ϑ = 1	10 °C	ϑ = 1	20 °C		
		Α	В	Α	В	Α	В	Α	В	Α	В		
	[%]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]		
			Lösungen von Aminen										
MEA	30.00	2,53E	4,37E	2,49E	1,69E	7,55E	1,61E	1,87E	1,55E	4,02E	1,49E		
	00,00	-09	+01	-01	+01	-01	+01	+00	+01	+00	+01		
AP	36,89	1,07E -03	2,30E +01	1,31E +00	1,32E +01	1,82E +00	1,35E +01	2,38E +00	1,38E +01	2,99E +00	1,41E +01		
DGA	51,64	1,22E -04	2,65E +01	1,72E +00	1,42E +01	2,87E +00	1,44E +01	4,37E +00	1,46E +01	6,23E +00	1,48E +01		
ΤΕΤΑ	17,96	1,87E	3,73E	7,67E	1,90E	1,52E	1,85E	2,67E	1,82E	4,27E	1,79E		
		-00-	+01 2.05E	-01 1 80E	+01 1 20E	+00 2.54E	+01 1 26E	+00 3 23E	+01 1 31E	+00 3.07E	+01 1 36E		
MAE	36,89	-04	2,05∟ +01	+00	+01	2,54∟ +00	+01	+00	+01	+00	+01		
EAE	43,78	9,65E	1,17E	1,10E	9,68E	2,26E	9,17E	4,08E	8,79E	6,66E	8,54E		
			+01	+01	+00	+01	+00	+01	+00	+01	+00		
DEA	51,64	0,09E -02	+01	+01	+01	2,59E +01	+01	3,40E +01	+01	4,25E +01	+01		
Konzentrierte Lösungen von Aminen													
8,2 MEA	50,00	4,28E	4,05E +01	2,64E	2,19E +01	5,31E -02	2,17E +01	9,37E	2,17E +01	1,51E -01	2,16E +01		
8,2 TETA	29,93	9,48E	4,31E	3,02E	2,09E	7,12E	2,01E	1,44E	1,95E	2,59E	1,90E		
		-07 2.48E	+01 2.04F	-01 1.82E	+01 1.07E	-01 2.07E	+01 1.06E	+00 4 42E	+01 1.05E	+00 6 20E	+01 1 04E		
8,2 EAE	72,97	-03	2,04∟ +01	+01	+01	2,37∟ +01	+01	+01	+01	0,20∟ +01	+01		
	0	Lösu	ngen v	on Ami	nmisch	ungen		-	-	-			
40% MEA/ MDEA	47 12	1,84E	1,02E	1,05E	1,53E	1,56E	1,51E	2,15E	1,49E	2,80E	1,48E		
	,	+00	+01	+01	+01	+01	+01	+01	+01	+01	+01		
50% MEA/ MDEA	44,26	5,17E	1,22E	7,10E	1,45E +01	1,12E +01	1,42E	1,64E	1,40E +01	2,23E +01	1,39E +01		
	20.54	2,34E	1,72E	2,49E	1,54E	4,65E	1,49E	7,75E	1,46E	1,18E	1,44E		
67% MEA/ MDEA	39,51	-02	+01	+00	+01	+00	+01	+00	+01	+01	+01		
83% MEA/ MDEA	34,75	3,89E	2,39E +01	1,00E +00	1,54E +01	2,27E +00	1,48E +01	4,43E +00	1,44E +01	7,69E +00	1,41E +01		
	12.0+	4.74E	2.34E	7.98E	1.53E	1.45E	1.48E	2.34E	1.48E	3.52E	1.47E		
67% TETA/ MDEA	19,5	-03	+01	+00	+01	+01	+01	+01	+01	+01	+01		
40% EAE/ MDEA	52,63	4,59E +00	8,24E +00	2,64E +01	1,77E +01	3,95E +01	1,81E +01	5,50E +01	1,84E +01	7,25E +01	1,87E +01		
67% EAE/ MDEA	48,70	4,94E -01	1,06E +01	2,13E +01	1,17E +01	2,65E +01	1,26E +01	3,17E +01	1,33E +01	3,69E +01	1,40E +01		
27% MEA/ DEEA	50,21	4,62E	1,03E	1,75E	1,23E	2,07E	1,33E	2,37E	1,42E	2,66E	1,49E		
67% MEA/ DEEA	39 10	-01 1,10E	+01 2,55E	+01 4,20E	+01 1,10E	+01 9,97E	+01 1,03E	+01 2,02E	+01 9,82E	+01 3,64E	+01 9,45E		
	00,10	-04	+01	+00	+01	+00	+01	+01	+00	+01	+00		

Tabelle 16: Interpolation des CO2-Partialdrucks aus korrelierten Daten für Modell

A.2 Absorptionssenthalpie und Korrelation der Wärmekapazität

Der <u>Wärmeverlust</u> $Q_{V,i}$ [kJ] ist in *Gleichung (44)* gegeben und wurde in Vorversuchen ermittelt. Dabei wurde eine vorgewärmte Wasserprobe m_{H2O} [kg] mit synthetischem Rauchgas \dot{V}_G [m³/min] durchströmt und die Temperaturabnahme des Wassers $Q_{V,H2O,i}$ [kJ] und die Enthalpieänderung des Gasstroms $\Delta H_{V,G,i}$ [kJ] gemessen. Die Berechnung erfolgt in *Gleichungen (45)* und *(46)*. Es wird davon ausgegangen, dass die Gasströme wasserdampfgesättigt sind und das h-x-Diagramm für feuchte Luft mit $h_{Ltr,i}^{ein}$ und $h_{Ltr,i}^{aus}$ [kJ/kg_{trL}] angewendet werden kann. Der Wärmeverlust wurde innerhalb des Temperaturbereichs $\Delta T_{H2O,i}$ [K] linearisiert und der Mittelwert über der Zeitspanne $\Delta \tau |_{T=45^{\circ}C}^{T=45^{\circ}C}$ [min] gebildet. Daraus ergibt sich ein konstanter Wärmeverlust mit $A|_{T=40^{\circ}C}^{T=45^{\circ}C} = 0,025$ kJ/min in dem jeweiligen Zeitschritt $\Delta \tau$ [min].

$$Q_{V,i} = \frac{\Delta \tau}{\Delta \tau |_{T=40^{\circ}C}^{T=45^{\circ}C}} \sum_{0}^{\tau} |Q_{V,H2O,i} + \Delta H_{V,G,i}| = A|_{T=40^{\circ}C}^{T=45^{\circ}C} \Delta \tau$$
(44)

$$Q_{V,H2O,i} = m_{H2O} c_{p,H2O} \Delta T_{H2O,i} + c_{p,TB} \Delta T_{H2O,i}$$
(45)

$$\Delta H_{V,G,i} = m_{G,i} \left(h_{Ltr,i}^{aus} - h_{Ltr,i}^{ein} \right) = \rho_G \, \dot{V}_G \, \Delta \tau \left(h_{Ltr,i}^{aus} - h_{Ltr,i}^{ein} \right) \tag{46}$$

Die <u>Wärmekapazität des Thermobehälters</u> ist wichtig für die Berechnung des Wärmeverlusts, da sich der Thermobehälter mit dem Lösungsmittel erwärmt. Die Herleitung ist in *Abbildung* 80 veranschaulicht.

Abbildung 80: Wärmeverlust durch Abkühlung und Wärmeaufnahme des Thermobehälters

Der Thermobehälter wird mit Eiswasser gekühlt, wonach er eine Ausgangstemperatur von 0°C besitzt. Nach Befüllung mit heißem Wasser m_{H20} [kg] der Starttemperatur 68°C wird der Thermobehälter mit einem Stopfen verschlossen. Der Wärmeverlust wird über *Gleichung (47)* anhand der Temperaturabkühlung $\Delta T_{H20,i}$ [K] mit der spezifischen Wärmekapazität von Wasser $c_{p,H20} = 4,18$ kJ/(kg K) berechnet. Direkt nach Befüllung des Thermobehälters mit Wasser, kühlt sich das Wasser von 68 auf 63 °C ab, wobei ein Temperaturausgleich stattfindet. Mithilfe einer Linearisierung lässt sich der Wärmebedarf $Q_{V,lin}$ [kJ] mit A = 0,059 kJ/min und B = 3,99 kJ über der Zeit τ [min] ermitteln, der nur für das Aufheizen des Thermobehälters von 0 auf 63 °C anfällt. Die Wärmekapazität des Thermobehälters $c_{p,TB}$ [kJ/K] ergibt sich mit *Gleichung (48)* aus dem Quotient des Achsenabschnitts $Q_{V,lin}|_{\tau=0}$ und der Temperaturerhöhung des Thermobehälters ΔT_{TB} mit 63 K zu 0,063 kJ/K.

$$-Q_{V,lin} = m_{H20} c_{p,H20} \Delta T_{H20,i} = A \tau + B$$
(47)

$$c_{p,TB} = \frac{\left|Q_{V,lin}\right|_{\tau=0}}{\Delta T_{TB}}$$
(48)

Zur Berechnung der Spaltungsenergie wird die Absorptionsenthalpie im jeweiligen Beladungsbereich $\Delta h_{abs}|_{\alpha_L}^{\alpha_R}$ benötigt. Dazu werden die Messdaten der <u>Absorptionsenthalpie</u> über der Beladung mit *Gleichung (49)* in $\Delta h_{abs}(\alpha)$ [kJ/mol_{CO2}] interpoliert (*Abbildung 81 A*), wobei die Parameter *A* bis *F* für die einzelnen Lösungsmittel in *Tabelle* 17 aufgeführt sind.

$$\Delta h_{abs}(\alpha) = -(A \ \alpha^5 + B \ \alpha^4 + C \ \alpha^3 + D \ \alpha^2 + E \ \alpha + F) \ kJ/mol_{CO2}$$
(49)

 Tabelle 17: Interpolation der Absorptionsenthalpie aus Messdaten

Amin	V.			∆h _{abs} -Para	meter		
	^ Amin	А	В	С	D	Е	F
	[%]	[-]	[-]	[-]	[-]	[-]	[-]
		Lösun	igen von Am	inen			
MEA	30,00	7.854	-11.402	5.179	-930	49	82
AP	36,89	-18.588	19.835	-8.080	1.533	-126	86
DGA	51,64	-	-	-1.057	530	-69	83
TETA	17,96	-	115,8	-1.507	556	-51	73
MAE	36,89	-	-15	-485	204	-13	81
EAE	43,78	-	2.117	-2.438	721	-73	76
DEA	51,64	-	-	-627	272	-46	72
	ł	Konzentrierte	e Lösungen v	von Aminen			
8,2 MEA	50,00	-28.567	32.043	-12.743	2.129	-143	85
8,2 TETA	29,93	-	-	-1.617	717	-85	75

Amin	V			∆h _{abs} -Para	meter		
	^ Amin	А	В	С	D	E	F
	[%]	[-]	[-]	[-]	[-]	[-]	[-]
8,2 EAE	72,97	-	-4.941	4.206	-1.196	124	74
		Lösungen	von Aminmis	schungen			
40% MEA/ MDEA	47,12	-42.852	30.699	-4.548	-581	44	73
50% MEA/ MDEA	44,26	-48.320	53.679	-19.720	2.478	-99	75
67% MEA/ MDEA	39,51	-	270	-146	-204	33	75
83% MEA/ MDEA	34,75	6.403	-4.200	-702	614	-75	77
67% TETA/ MDEA	12,0+ 19,5	-	-	-526	205	-51	68
40% EAE/ MDEA	52,63	-	-6.483	4.687	-1.067	21	69
67% EAE/ MDEA	48,70	-	2.827	-2.620	586	-50	69
27% MEA/ DEEA	50,21	-6.022	4.246	539	-827	88	71
67% MEA/ DEEA	39,19	28.215	-37.361	16.472	-2.844	157	71

(Fortsetzung Tabelle 17: Interpolation der Absorptionsenthalpie aus Messdaten)

Abbildung 81: Interpolation der Absorptionsenthalpie aus Messwerten (A) und Korrelation der Wärmekapazität von MEA in Abhängigkeit der Temperatur aus Literaturdaten (B)

Die <u>Wärmekapazität</u> $c_{p,LM}(\alpha, \vartheta)$ [kJ/(kg K)] wird für jedes <u>Lösungsmittel</u> einzeln aus Literaturdaten gemäß *Gleichung (50)* temperatur- [°C] und beladungsabhängig [mol_{CO2}/mol_{Amin}] korreliert. Die Wärmekapazität von 30 % MEA ist beispielhaft in *Abbildung 81 B* dargestellt. Die Parameter *A*, *B* und *C* sind in *Tabelle* 18 aufgeführt und gelten jeweils für die angegebene Aminkonzentration. Bei fehlenden Literaturdaten für Lösungsmittel werden die Daten des nächsten strukturähnlichen Lösungsmittels verwendet, wobei jeweils die Konzentration des Lösungsmittels angepasst wird. Für alle Aminmischungen werden die Wärmekapazitäten der binären Aminmischung von MEA mit MDEA herangezogen, wobei die Aminkonzentration und Zusammensetzung aufgrund des jeweiligen Mischungsverhältnisses angepasst wird.

$$c_{p,LM}(\alpha,\vartheta) = (A + B\,\vartheta + C\,\alpha) \, \text{ kJ/(kg K)}$$
(50)

Amin	~	c _{p,LM} -Pa	arameter [kJ/	′(kg K)]	Amin	Qualla
Amin	X Amin	А	В	С	Amin	Quelle
	[%]	[-]	[-]	[-]		
		Lösun	gen von Amin	en		
MEA	30,00	3,58	0,0056	-0,772	MEA	[24, 25, 129]
AP	36,89	3,52	0,0125	-0,980	AP	[88, 129]
DGA	51,64	3,22	0,0044	-1,316	DGA	[24, 25, 129]
TETA	17,96	3,761	0,005	-0,460	MEA	[24, 25, 129]
MAE	36,89	3,58	0,0120	-0,980	MAE	[88, 129]
EAE	43,78	3,44	0,0125	-1,137	MAE	[88, 129]
DEA	51,64	3,37	0,0076	-0,745	DEA	[24, 25, 129]
	ŀ	Konzentrierte	Lösungen vo	n Aminen		
8,2 MEA	50,00	3,29	0,0059	-1,279	MEA	[24, 25, 129]
8,2 TETA	29,93	3,584	0,006	-0,663	MEA	[24, 25, 129]
8,2 EAE	72,97	2,85	0,0109	-1,801	MAE	[88, 129]
		Lösungen v	on Aminmisc	hungen		
40% MEA/ MDEA	47,12	3,24	0,0060	-0,804	MEA/MDEA	[22, 129]
50% MEA/ MDEA	44,26	3,27	0,0067	-0,804	MEA/MDEA	[22, 129]
67% MEA/ MDEA	39,51	3,36	0,0068	-0,804	MEA/MDEA	[22, 129]
83% MEA/ MDEA	34,75	3,41	0,0070	-0,804	MEA/MDEA	[22, 129]
67% TETA/ MDEA	12,0+ 19,5	3,36	0,0068	-0,804	MEA/MDEA	[22, 129]
40% EAE/ MDEA	52,63	3,24	0,0060	-0,804	MEA/MDEA	[22, 129]
67% EAE/ MDEA	48,70	3,36	0,0068	-0,804	MEA/MDEA	[22, 129]
27% MEA/ DEEA	50,21	3,21	0,0065	-0,804	MEA/MDEA	[22, 129]
67% MEA/ DEEA	39,19	3,36	0,0068	-0,804	MEA/MDEA	[22, 129]

Tabelle 18: Korrelation der Wärmekapazitäten aus Literaturdaten

A.3 Herleitung der Berechnung des Energiebedarfs zur Regeneration

Die Arbeitslinie im Desorber ergibt sich zur Tangentengleichung $p(\alpha) = M \alpha + C$ in [mbar] an die Gleichgewichtsisotherme bei ϑ_{des}^{S} [°C]. Sie verläuft durch $(\alpha_{K*}/p_{CO2}^{K*})$ und den Berührpunkt (α_{B}/p_{CO2}^{B}) . Die Steigung *M* ist identisch mit der Steigung der Interpolationskurve $p_{CO2}|_{\vartheta}(\alpha)$ der Gleichgewichtsisotherme bei ϑ_{des}^{S} (Vgl. *Gleichung (43)*, *Anhang A.1*) und ergibt sich zu der ersten Ableitung $p_{CO2}|_{\vartheta_{des}^{S}}'(\alpha_{B})$ im Berührpunkt gemäß *Gleichung (51)*.

$$M = p_{CO2}|_{\vartheta^S_{des}}'(\alpha_B) = A B e^B \alpha_B$$
⁽⁵¹⁾

Gegeben: Eintritt des Lösungsmittels am Desorberkopf (α_{K*}/p_{CO2}^{K*}), Gleichgewichtsisotherme Unbekannt: Berührpunkt (α_B/p_{CO2}^B)

Gesucht: lean-Beladung α_L , Arbeitslinie des Desorbers und eine Beziehung für $\alpha_{K*} = f(\alpha_L)$ zur iterativen Ermittlung der lean-Beladung α_L

Bedingung 1: Die Tangente verläuft durch $(\alpha_{K*}/p_{CO2}^{K*})$. Mit *Gleichung* (51) berechnet sich die Konstante zu $C = p_{CO2}^{K*} - \alpha_{K*} p_{CO2}|_{\vartheta_{des}^S}'(\alpha_B)$. Nach Einsetzen von $(\alpha_L/p_{CO2}^S = 0)$ in die allgemeine Tangentengleichung ergibt sich der Berührpunkt zu *Gleichung* (52).

$$\alpha_B = \frac{1}{B} \ln \frac{p_{CO2}^{K*}}{A B \left(\alpha_{K*} - \alpha_L\right)}$$
(52)

Durch Einsetzen von Gleichung (52) in Gleichung (51) beträgt die Steigung M:

$$M = p_{CO2}|_{\vartheta_{des}^S}'(\alpha_B) = \frac{p_{CO2}^{K*}}{\alpha_{K*} - \alpha_L}$$
(53)

Die Arbeitslinie des Desorbers ergibt sich aus der Tangentengleichung zu Gleichung (54).

$$p(\alpha) = p_{CO2}^{K*} \left(\frac{\alpha - \alpha_{K*}}{\alpha_{K*} - \alpha_L} + 1 \right)$$
(54)

Bedingung 2: Die Tangente verläuft durch $(\alpha_L/p_{CO2}^S = 0)$. Mit *Gleichung (51)* berechnet sich die Konstante zu $C = -\alpha_L p_{CO2}|_{\vartheta_{des}^S}'(\alpha_B)$. Die Tangente ist in *Gleichung (55)* gegeben.

$$p(\alpha) = (\alpha - \alpha_L) p_{CO2} |_{\vartheta_{des}^S} '(\alpha_B)$$
(55)

Bei Gleichsetzen der *Gleichung* (55) mit der Interpolationskurve $p_{CO2}|_{\vartheta_{des}^S}(\alpha)$ und Einsetzen des Berührpunkts (α_B/p_{CO2}^B), folgt der Zusammenhang $\alpha_B = 1/B + \alpha_L$. Unter dessen Verwendung und Einsetzen von (α_B/p_{CO2}^B) in *Gleichung* (55) ergibt sich die Beziehung:

$$\alpha_{K*} = f(\alpha_L) = \alpha_L + \frac{p_{CO2}^{K*}}{A B} e^{-(B \alpha_L + 1)}$$
(56)

Da *Gleichung* (56) nicht nach α_L aufgelöst werden kann, wird die lean-Beladung durch Iteration ermittelt. Dabei muss die Bedingung $\alpha_{K*} = f(\alpha_L) \equiv \{\alpha_{K*}|_{geg} bei p_{CO2}^{K*}\}$ erfüllt sein. Die mit CO₂-beladene Lösungsmittelumlaufmenge \overline{m}_{LM} [kg_{LM}/kg_{CO2}] berechnet sich aus der Summe der Lösungsmittelmenge m_{LM} [kg_{LM}] und der bei rich-Beladung absorbierten CO₂-Menge $m_{CO2}|_{\alpha_R}$ [kg_{CO2}] bezogen auf m_{CO2} [kg_{CO2}] zu *Gleichung* (57).

$$\overline{m}_{LM} = \frac{m_{LM} + m_{CO2}|_{\alpha_R}}{m_{CO2}} = \frac{n_{Amin}}{\underbrace{\Delta n_{CO2}}_{\frac{1}{\Delta \alpha}}} \frac{M_{Amin}}{x_{Amin} M_{CO2}} + \underbrace{\frac{n_{CO2}|_{\alpha_R}}{\Delta n_{CO2}}}_{\underbrace{\Delta n_{CO2}}{\frac{\alpha_R}{\Delta \alpha}}} \frac{n_{Amin}}{M_{CO2}} \underbrace{\frac{M_{CO2}}{M_{CO2}}}_{\underbrace{\Delta \alpha}}$$
(57)

A.4 Untersuchte Amine – Aminkonzentration und Ergänzende Angaben

Aminmischungen werden ebenfalls äquivalent zu 30 % MEA angesetzt. Die Konzentration der Aminmischung x_{Misch} [g_{Misch}/g_{LM}] setzt sich aus der Summe der anteiligen Konzentrationen der Mischungskomponenten Amin 1 bzw. Amin 2 $x_{Amin1/2}^{Misch}$ [$g_{Amin1/2}/g_{LM}$] zusammen. Diese berechnen sich wiederum gemäß *Gleichung (58)* aus dem Produkt des jeweiligen Mischungsanteils von Amin 1 bzw. Amin 2 $\gamma_{1/2}$ [-] und dessen jeweiliger äquivalenter Aminkonzentration $x_{Amin1/2}$ [$g_{Amin1/2}/g_{LM}$]. Die Summe der Mischungsanteile ergibt 1.

$$x_{Misch} = x_{Amin1}^{Misch} + x_{Amin2}^{Misch} = \gamma_1 x_{Amin1} + \gamma_2 x_{Amin2}$$
(58)

Die Molmasse der Aminmischung M_{Misch} [g/mol] berechnet sich analog zur Mischungskonzentration in *Gleichung* (59) aus der Summe der jeweiligen Molmassen $M_{Amin1/2}$ [g/mol] multipliziert mit den Mischungsanteilen $\gamma_{1/2}$ [-].

$$M_{Misch} = \gamma_1 M_{Amin1} + \gamma_2 M_{Amin2}$$
⁽⁵⁹⁾

Amin		Strukturformel	CAS- Nummer	p _D 20°C	Toxizität	WGK	Reinheit
				[mbar]			[%]
		Primäre An	nine				
Monoethanolamin	MEA	HO NH2	141-43-5	0,50	С	1	≥ 99
3-Amino-1- Propanol	AP Kette	HO NH ₂	156-87-6	16 (80°C)	С	1	≥ 98
1-Amino-2- Propanol	AP	H ₃ C NH ₂	78-96-6	1,93	С	1	93
2-(2-Amino- ethoxy)-ethanol	DGA		929-06-6	0,10	С	1	98
2-Amino-2-methyl- 1-propanol	AMP	H ₃ C HOCH ₃	124-68-5	1,33	Xi, N	1	95

Tabelle 19: Untersuchte Amine – Ergänzende Angaben

Amin		Strukturformel	CAS- Nummer	p _D 20℃	Toxizität	WGK	Reinheit
				[mbar]			[%]
2-Amino-2-methyl- 1,3-Propandiol	AMPD	HO OH H ₂ N CH ₃	115-69-5	13,33 (152°C)	Xi	1	≥ 99
		Polyamin	e				
Ethylendiamin	DAE	H ₂ N ^{NH} 2	107-15-3	12,00	С	2	≥ 99
1,3- Diaminopropan	DAP Kette	H ₂ N///NH ₂	109-76-2	< 10	Т	2	99
1,2- Diaminopropan	DAP	H ₂ N CH ₃	78-90-0	14,00	С	1	≥ 98
2-(2-Aminoethyl- amino)-ethanol	AEAE	HO NH ₂	111-41-1	0,01	Т	1	99
Diethylentriamin	DETA	H H ₂ N NH ₂	111-40-0	0,50	С	2	99
Triethylentetramin	TETA	H_2N N NH_2 H_2N H_2	112-24-3	0,01	С	2	≥ 97
Tetraethylen- pentamin	TEPA		112-57-2	0,10	C, N	2	> 95
		Sekundäre A	mine				
2-(Methylamino)- ethanol	MAE	HO N_CH ₃	109-83-1	1,00	С	1	≥ 98
2-(Ethylamino)- ethanol	EAE	HO N CH3	110-73-6	1,00	С	1	≥ 98
2-(Propylamino)- ethanol	PAE	HO CH ₃	16369- 21-4		С	3	≥ 99
2-(Butylamino)- ethanol	BAE	H HO CH ₃	111-75-1	6 (80°C)	С	1	≥ 98
Diethanolamin	DEA	но М ОН	111-42-2	0,01	Xn	1	≥ 98
2- (Isopropylamino)- ethanol	IPAE		109-56-8		Xn	3	70
2-tert- (Butylamino)- ethanol	tert BAE	$HO \longrightarrow H CH_3 CH_3 CH_3$	4620-70- 6	1,93	Xn	3	99
		Tertiäre An	nine				
2-(Diethylamino)- ethanol	DEEA	HO N CH ₃	100-37-8	1,90	С	1	99
Methyldiethanola min	MDEA	СН ₃ НОСИВОН	105-59-9	0,01	Xi	1	≥ 99
Triethanolamin	TEA	но М	102-71-6	0,01	Xi	1	≥ 99

(Fortsetzung *Tabelle 19: Untersuchte Amine – Ergänzende Angaben*; C - ätzend, N - umweltgefährlich, T – giftig, Xi - reizend, Xn - reizend und gesundheitsschädlich)

B Ergebnisse – Screening

B.1 Alternative Aminlösungen

Amin	Mol-	Konzen-	G bela	leichg adung	ewicht bei 0 [s- [°C]	Arbe kapa	eits- izität	Absorptions	rate 40 °C
	masse	tration	40	90	40	90	Δα	Δα	r _{abs,max}	r _{abs,max}
	[g/mol]	[Gew %]	[mol mol,	co2/ _{Amin}]	[g _{CO2} /	/kg _{LM}]	[mol _C / mol _A]	[g _{CO2} / kg _{LM}]	[mol _{CO2} / (mol _{Amin} min)]	[g _{CO2} / (kg _{LM} min)]
					Primä	re Ami	ine			
MEA	61,08	30,00	0,56	0,35	122	75	0,22	47	0,013	2,9
APKette	75,11	36,89	0,58	0,41	126	89	0,17	37	0,013	2,7
AP	75,11	36,89	0,50	0,32	109	69	0,18	40	0,013	2,8
DGA	105,14	51,64	0,52	0,30	113	64	0,22	48	0,013	2,7
AMP	89,14	43,78	0,65	0,08	141	17	0,58	124	0,010	2,2
AMPD	105,14	51,64	0,16	0,06	34	13	0,09	20	0,004	1,0
					Poly	/amine	;		·	
DAE	60,10	14,76	0,53	0,32	114	70	0,21	45	0,014	2,9
DAPKette	74,13	18,20	0,57	0,43	123	93	0,14	30	0,014	2,9
DAP	74,13	18,20	0,53	0,31	115	67	0,22	48	0,011	2,3
AEAE	104,15	25,58	0,49	0,25	107	53	0,25	53	0,013	2,7
DETA	103,17	16,89	0,51	0,30	111	64	0,22	47	0,013	2,9
TETA	146,24	17,96	0,43	0,24	92	52	0,18	40	0,013	2,9
TEPA	189,3	18,60	0,42	0,24	90	52	0,18	39	0,013	2,8
				S	Sekund	läre Ar	nine			
MAE	75,11	36,89	0,60	0,32	130	70	0,28	60	0,014	2,9
EAE	89,14	43,78	0,63	0,23	136	51	0,39	85	0,014	2,9
PAE	103,16	50,67	0,57	0,13	124	28	0,44	95	0,013	2,9
BAE	117,19	57,56	0,52	0,12	112	26	0,40	87	0,012	2,6
DEA	105,14	51,64	0,49	0,13	106	28	0,36	79	0,007	1,5
IPAE	103,16	50,67	0,56	0,07	120	15	0,49	105	0,010	2,2
tertBAE	117,19	57,56	0,69	0,04	148	8	0,65	141	0,004	0,8
					Tertiä	re Ami	ne			
DEEA	117,19	57,56	0,36	0,03	77	6	0,33	71	0,005	1,0
MDEA	119,16	58,53	0,15	0,02	32	4	0,13	29	0,003	0,6
TEA	149,19	73,28	0,04	0,02	8	3	0,02	4	0,002	0,4

B.2 Konzentrierte Aminlösungen

Amin	Mol-	Kon- zentra-	Gleic	hgewic bei ୫	htsbela [°C]	dung	Arbo kapa	eits- azität	Absorptions	rate 40 °C
	masse	tion	40	90	40	90	Δα	Δα	r _{abs,max}	r _{abs,max}
	[g/mol]	[Gew %]	[mol mol	CO2/	[g _{CO2} /	/kg _{LM}]	[mol _C / mol _A]	[g _{CO2} / kg _M]	[mol _{CO2} / (mol _{Amin} min)]	[g _{CO2} / (kg _{LM} min)]
			,		M	ΞA	7.2			
3,3 MEA	61,08	20,00	0,57	0,33	83	47	0,25	36	0,020	2,8
4,9 MEA	61,08	30,00	0,56	0,35	122	75	0,22	47	0,013	2,9
6,5 MEA	61,08	40,00	0,55	0,36	159	105	0,19	54	0,010	2,9
8,2 MEA	61,08	50,00	0,54	0,39	194	139	0,15	55	0,008	2,8
					A	Р				
3,3 AP	75,11	24,59	0,52	0,32	75	46	0,21	30	0,019	2,8
4,9 AP	75,11	36,89	0,50	0,32	109	69	0,18	40	0,013	2,8
6,5 AP	75,11	49,19	0,50	0,34	143	97	0,16	46	0,009	2,5
8,2 AP	75,11	61,48	0,48	0,34	174	123	0,14	51	0,007	2,6
					D	GA				
3,3 DGA	105,14	34,43	0,55	0,27	79	39	0,27	39	0,020	2,9
4,9 DGA	105,14	51,64	0,52	0,30	113	64	0,22	48	0,013	2,7
6,5 DGA	105,14	68,85	0,52	0,32	150	93	0,20	56	0,010	2,8
					TE	TA				
3,3 TETA	146,24	11,97	0,43	0,23	62	34	0,20	28	0,020	2,9
4,9 TETA	146,24	17,96	0,43	0,24	92	52	0,18	40	0,013	2,9
6,5 TETA	146,24	23,94	0,43	0,25	124	72	0,18	52	0,010	2,9
8,2 TETA	146,24	29,93	0,43	0,26	156	95	0,17	61	0,008	2,8
	1	I			M	AE	I	I		I
3,3 MAE	75,11	24,59	0,66	0,36	95	52	0,30	43	0,020	3,0
4,9 MAE	75,11	36,89	0,60	0,32	130	70	0,28	60	0,014	2,9
6,5 MAE	75,11	49,19	0,55	0,33	160	95	0,22	64	0,010	2,9
8,2 MAE	75,11	61,48	0,52	0,32	189	116	0,20	73	0,008	2,9
					E/	٩E				
3,3 EAE	89,14	29,19	0,70	0,26	101	37	0,45	65	0,021	3,0
4,9 EAE	89,14	43,78	0,63	0,23	136	51	0,39	85	0,014	2,9
6,5 EAE	89,14	58,38	0,57	0,22	163	63	0,35	100	0,010	2,8
8,2 EAE	89,14	72,97	0,53	0,17	191	61	0,36	130	0,008	2,8
					DI	ΞA				
3,3 DEA	105,14	34,43	0,53	0,11	77	16	0,42	61	0,014	2,0
4,9 DEA	105,14	51,64	0,49	0,13	106	28	0,36	79	0,007	1,5
6,5 DEA	105,14	68,85	0,46	0,14	132	41	0,32	91	0,004	1,0
8.2 DEA	105.14	86.07	0.36	0.15	130	56	0.21	75	0.002	0.8
8,2 DEA	105,14	86,07	0,36	0,15	130	56	0,21	/5	0,002	0,8

 Tabelle 21: Ergebnisse aus Abschnitt 4.2 – Konzentrierte Aminlösungen

B.3 Aminmischungen

Amin	Mol-	Konzen-	GI bela	eichge Idung	ewich bei θ	ts- [°C]	Arb kapa	eits- azität	Absorptions	rate 40 °C
,	masse	tration	40	90	40	90	Δα	Δα	r _{abs,max}	r _{abs,max}
	[g/mol]	[Gew%]	[mol mol	CO2/	[g _C ka	02/	[mol _C / mol₄]	[g _{CO2} / kg]	[mol _{CO2} / (mol _{Amin} min)]	[g _{CO2} / (kgmin)]
					MEA/		A 7	JLW1		(
10% MEA	113.35	55.67	0.23	0.05	49	10	0.18	40	0.007	1.5
17% MEA	109.48	53.77	0.32	, 0.08	70	17	0.24	52	0.008	1.6
33% MEA	99.80	49.02	0.40	0.13	87	28	0.27	59	0.010	2.3
40% MEA	95.93	47.12	0.44	0.15	94	31	0.29	63	0.011	2.4
50% MEA	90,12	44,26	0,47	0,18	101	39	0,29	62	0,012	2,6
67% MEA	80,44	39,51	0,51	0,23	110	49	0,28	61	0,012	2,6
83% MEA	70,76	34,75	0,53	0,30	115	65	0,23	51	0,014	3,0
			,		AP/N	/DEA			· ·	
33% AP	104,48	51,31	0,38	0,13	82	29	0,25	54	0,011	2,3
40% AP	101,54	49,87	0,41	0,14	89	31	0,27	59	0,010	2,2
67% AP	89,79	44,10	0,48	0,20	104	42	0,29	62	0,012	2,6
					DGA/	MDE	Ą			
33% DGA	114,49	56,23	0,37	0,10	79	21	0,27	58	0,011	2,4
40% DGA	113,55	55,77	0,39	0,11	84	23	0,28	61	0,010	2,3
67% DGA	109,81	53,94	0,48	0,20	104	43	0,28	60	0,012	2,6
				-	ΓΕΤΑ	/MDE	A			
33% TETA	-	6,0+39,0	0,45	0,08	97	18	0,37	79	0,010	2,3
40% TETA	-	7,2+35,1	0,45	0,10	97	21	0,35	76	0,011	2,5
67% TETA	-	12,0+19,5	0,44	0,15	96	32	0,30	64	0,013	2,8
			1		MAE/	MDE	4	l.	1	
33% MAE	104,48	51,31	0,37	0,10	81	21	0,28	60	0,012	2,6
40% MAE	101,54	49,87	0,40	0,13	87	27	0,28	60	0,012	2,5
50% MAE	97,14	47,71	0,44	0,15	96	32	0,29	64	0,013	2,8
67% MAE	89,79	44,10	0,51	0,21	111	45	0,30	65	0,014	3,0
		r	1		EAE/	MDE/	4	1		
10% EAE	116,16	57,05	0,25	0,03	55	5	0,23	49	0,006	1,3
17% EAE	114,16	56,07	0,29	0,03	63	7	0,26	56	0,008	1,7
40% EAE	107,15	52,63	0,40	0,07	87	15	0,33	72	0,012	2,6
67% EAE	99,15	48,70	0,52	0,13	112	29	0,39	84	0,014	2,9
			1		MEA	DEE/	4	[
17% MEA	107,84	52,97	0,48	0,10	103	21	0,38	83	0,010	2,1
27% MEA	102,24	50,21	0,56	0,14	122	30	0,43	93	0,010	2,1
40% MEA	94,75	46,54	0,56	0,19	122	40	0,38	82	0,011	2,3
67% MEA	79,78	39,19	0,56	0,28	121	60	0,28	61	0,011	2,5

Tabelle 22: Ergebnisse aus Abschnitt 4.3 – Aminmischungen
C Ergebnisse – Charakterisierung

C.1 CO_2 -Gleichgewichtsisothermen

Tabelle 23: Ergebnisse aus	Kapitel 5.1 – CO	2-Gleichgewichtsisothermen.	, CO ₂ -Konzentration	[Vol%]
	,	2 0	· 2	

Amin	v	Gleic	hgewic	htsbela	adung 4	40 °C	Gleichgewichtsbeladung 90 °C					
	*Amin	5	10	15	50	100	5	10	15	50	100	
	[%]		[mol _o	_{CO2} /mo	I _{Amin}]		[mol _{CO2} /mol _{Amin}]					
			_ösung	en von	Amine	n						
MEA	30,00	0,54	0,55	0,56	0,59	0,62	0,29	0,31	0,35	0,41	0,45	
AP	36,89	0,47	0,49	0,50	0,57	0,60	0,25	0,30	0,32	0,42	0,45	
DGA	51,64	0,49	0,51	0,52	0,57	0,60	0,19	0,28	0,30	0,37	0,41	
TETA	17,96	0,40	0,41	0,43	0,45	0,48	0,18	0,22	0,24	0,31	0,33	
MAE	36,89	0,54	0,58	0,60	0,64	0,69	0,24	0,28	0,32	0,41	0,48	
EAE	43,78	0,53	0,58	0,63	0,72	0,79	0,11	0,16	0,23	0,35	0,41	
DEA	51,64	0,40	-	0,49	0,54	0,60	0,08	0,10	0,13	0,22	0,31	
		Konzer	trierte	Lösung	jen vor	n Amine	ien					
8,2 MEA	50,00	0,52	0,54	0,54	0,56	0,59	0,33	0,36	0,39	0,44	0,46	
8,2 TETA	29,93	0,42	0,42	0,43	0,46	0,48	0,22	0,26	0,26	0,33	0,35	
8,2 EAE	72,97	0,49	0,52	0,53	0,59	0,64	0,10	0,13	0,17	0,28	0,37	
		Lösu	ngen v	on Ami	nmisch	ungen						
40% MEA/ MDEA	47,12	0,33	0,37	0,44	0,53	0,62	0,08	0,11	0,15	0,22	0,26	
50% MEA/ MDEA	44,26	0,36	0,44	0,47	0,55	0,61	0,10	0,15	0,18	0,26	0,30	
67% MEA/ MDEA	39,51	0,45	0,47	0,51	0,57	0,62	0,14	0,21	0,23	0,30	0,35	
83% MEA/ MDEA	34,75	-	0,52	0,53	0,59	0,61	0,21	0,26	0,30	0,36	0,40	
67% TETA/ MDEA	12,0+ 19,5	0,39	0,42	0,44	0,49	-	0,09	0,12	0,15	0,24	0,28	
40% EAE/ MDEA	52,63	0,30	0,35	0,40	0,56	0,66	0,02	0,05	0,07	0,13	0,18	
67% EAE/ MDEA	48,70	0,45	0,49	0,52	0,65	0,72	0,04	0,09	0,13	0,22	0,28	
27% MEA/ DEEA	50,21	0,43	0,53	0,56	0,66	0,73	0,07	0,11	0,14	0,18	0,22	
67% MEA/ DEEA	39,19	0,50	0,55	0,56	0,59	0,62	0,19	0,25	0,28	0,36	0,44	

C.2 Absorptionsenthalpie

Amin	x _{Amin}	Beladung [mol _{CO2} /mol _{Amin}]								nin]	
	[%]	Abso	Absorptionsenthalpie bei 40 °C [kJ/mol _{CO2}]								
	И		Lösung	en von	Amine	n					
MEA 30,	20.00	0,04	0,04	0,14	0,22	0,26	0,32	0,34	0,41	0,46	0,48
	30,00	81,3	84,5	80,5	79,8	81,0	79,6	77,3	70,1	58,9	63,0
	26.90	0,04	0,14	0,23	0,33	0,42	0,50				
	30,89	83,0	83,1	82,8	84,3	78,2	65,6				
DCA	51 64	0,04	0,14	0,23	0,32	0,39	0,44				
DGA	51,04	80,5	82,1	83,0	76,6	73,6	68,0				
ТЕТА	17,96	0,04	0,13	0,20	0,29	0,34	0,36	0,39			
		72,0	73,4	72,9	69,8	64,7	57,1	51,2			
ΜΔΕ	36.89	0,03	0,12	0,22	0,34	0,40	0,48	0,51	0,55		
	36,89	80,4	81,9	82,2	80,6	75,8	73,6	56,9	52,2		
FAF	43,78	0,05	0,14	0,27	0,43	0,48					
	40,70	73,5	74,2	71,1	57,0	49,9					
FA 51.64	0,04	0,17	0,24	0,33	0,36	0,43					
	51,64	70,2	69,3	67,9	63,3	60,8	55,0				
Konzentrierte Lösungen von Aminen											
8 2 MEA	50.00	0,01	0,03	0,15	0,30	0,42	0,48	0,50			
0,2 WEA 50,	30,00	83,2	83,2	81,9	80,6	77,7	76,1	58,1			
8 2 TETA	29,93	0,03	0,09	0,15	0,21	0,24	0,31	0,36			
8,2 TETA 29,9	20,00	71,8	73,8	73,1	73,0	71,6	69,6	63,4			
8,2 EAE 72,97	0,03	0,15	0,20	0,30	0,44	0,46					
	12,31	76,9	77,8	76,6	77,3	70,6	65,3				
	1	Lösu	ngen v	on Ami	nmisch	ungen					
40% MEA/ MDEA 47	47 12	0,02	0,05	0,08	0,12	0,16	0,21	0,25	0,28	0,30	
	77,12	73,8	73,8	72,1	67,3	62,5	58,4	53,0	56,3	56,0	
50% MEA/ MDEA	44 26	0,01	0,03	0,14	0,23	0,32	0,36	0,40			
	,20	74,0	74,0	73,2	62,7	51,6	49,7	49,6			
67% MEA/ MDEA	39 51	0,14	0,24	0,33	0,37	0,42	0,45	0,50			
	00,01	74,6	70,8	61,0	57,4	48,7	47,9	34,2			
83% MEA/ MDEA	34 75	0,03	0,13	0,23	0,33	0,38	0,42	0,47	0,52		
	01,70	75,4	75,5	75,9	69,3	63,4	54,4	45,6	44,9		
	12,0+	0,03	0,11	0,19	0,25	0,30	0,37				
	19,5	66,6	66,4	61,5	59,1	58,7	50,9				
	52.63	0,01	0,05	0,14	0,24	0,32	0,33				
	52,05	69,0	69,0	60,9	57,2	51,9	51,4				
	18 70	0,05	0,17	0,31	0,38	0,41	0,46				
	40,70	67,9	67,3	58,0	49,4	46,7	41,1				
	50.21	0,01	0,04	0,12	0,19	0,24	0,31	0,36	0,45		
	50,21	72,7	72,0	72,7	65,8	59,9	57,6	56,1	55,1		
	20.10	0,01	0,05	0,13	0,23	0,39	0,50				
07% MEA/ DEEA	39,19	72,3	72,3	72,2	71,0	70,6	44,2				

Tabelle 24: Ergebnisse aus Kapitel 5.2 – Absorptionsenthalpie

D Ergebnisse – Energetik

D.1 Minimaler Energiebedarf zur Regeneration

						-				
Amin	X _{Amin}	Energiel	bedarf z	ur Regei	neration	Beladungsbereich				
		9 _{reg}	q _{sens}	q_{abs}	q _{stripp}	L/G	Δα	α_L	α_R	
	[%]			[kg _{LM} / m ³ _{RG}]	[mol _{CO2} /mol _{Amin}]					
		Lösur	ngen vor	n Aminei	า					
MEA	30,00	3,9	0,9	1,7	1,3	5,7	0,22	0,23	0,45	
AP	36,89	5,5	1,5	1,9	2,1	8,4	0,15	0,26	0,40	
DGA	51,64	3,7	0,8	1,8	1,1	5,6	0,22	0,20	0,42	
ТЕТА	17,96	4,4	1,4	1,6	1,4	8,3	0,15	0,19	0,34	
MAE	36,89	3,9	1,0	1,8	1,1	5,2	0,24	0,24	0,48	
EAE	43,78	2,8	0,5	1,5	0,8	2,9	0,43	0,07	0,50	
DEA	51,64	2,8	0,7	1,5	0,6	4,0	0,31	0,09	0,39	
	Kon	zentriert	e Lösun	gen von	Aminen					
8,2 MEA	50,00	4,4	0,9	1,8	1,7	6,0	0,12	0,31	0,43	
8,2 TETA	29,93	4,0	0,9	1,6	1,5	5,4	0,14	0,21	0,35	
8,2 EAE	72,97	2,7	0,3	1,7	0,7	2,0	0,36	0,06	0,42	
	Lċ	ösungen	von Am	inmischu	ungen					
40% MEA/ MDEA	47,12	2,6	0,7	1,4	0,6	4,9	0,25	0,10	0,35	
50% MEA/ MDEA	44,26	2,8	0,7	1,4	0,7	4,9	0,25	0,12	0,37	
67% MEA/ MDEA	39,51	3,1	0,8	1,5	0,8	5,0	0,25	0,16	0,41	
83% MEA/ MDEA	34,75	3,5	0,8	1,6	1,1	5,4	0,23	0,20	0,43	
67% TETA/ MDEA	-	2,6	0,7	1,4	0,5	4,8	0,26	0,10	0,35	
40% EAE/ MDEA	52,63	2,2	0,6	1,4	0,2	4,1	0,30	0,02	0,32	
67% EAE/ MDEA	48,70	2,3	0,5	1,4	0,4	3,6	0,34	0,07	0,42	
27% MEA/ DEEA	50,21	2,1	0,5	1,4	0,2	3,4	0,36	0,09	0,45	
67% MEA/ DEEA	39,19	3,5	0,6	1,6	1,3	4,0	0,31	0,13	0,45	

 Tabelle 25: Ergebnisse aus Kapitel 6.1 – Minimaler Energiebedarf zur Regeneration

D.2 Einflussfaktoren auf den Energiebedarf zur Regeneration

A main	Para-	Energiel	bedarf z	ur Rege	neration	Beladungsbereich			
Amin	meter	q _{rea}	q _{sens}	q _{abs}	q _{stripp}	L/G	Δα	α_L	α _R
	[]			[kg _{LM} / m ³ _{RG}]	[mol _{CO2} /mol _{Amin}]				
Variati	ion der ric	h-Beladı	ung [% d	ler Gleic	hgewich	tsbeladu	ng]		
MEA	60	7,3	1,9	1,8	3,6	11,7	0,11	0,23	0,34
MEA	70	5,0	1,2	1,8	2,0	7,7	0,16	0,23	0,39
MEA	80	3,9	0,9	1,7	1,3	5,7	0,22	0,23	0,45
MEA	90	3,2	0,7	1,7	0,8	4,5	0,27	0,23	0,51
MEA	100	2,7	0,6	1,6	0,5	3,7	0,33	0,23	0,56
Variation	n der Des	orbertem	peratur	[°C] bzw	. Desort	perdruck	[bar]		
MEA	90 / 0,7	4,9	1,2	1,7	2,0	7,5	0,16	0,29	0,45
MEA	100 / 1,1	4,3	1,0	1,7	1,6	6,4	0,19	0,26	0,45
MEA	110 / 1,5	3,9	0,9	1,7	1,3	5,7	0,22	0,23	0,45
MEA	120 / 2,1	3,7	0,8	1,7	1,2	5,1	0,24	0,21	0,45
MEA	130 / 2,8	3,6	0,8	1,7	1,1	4,7	0,26	0,19	0,45
Variat	tion der G	rädigkeit	des rich	n-/lean-V	Värmeta	uschers	[K]		
MEA	5,0	3,9	0,4	1,7	1,8	5,3	0,24	0,21	0,45
MEA	7,5	3,9	0,7	1,7	1,5	5,5	0,22	0,23	0,45
MEA	10,0	3,9	0,9	1,7	1,3	5,7	0,22	0,23	0,45
MEA	12,5	4,1	1,2	1,7	1,2	5,8	0,21	0,24	0,45
MEA	15,0	4,3	1,4	1,7	1,2	5,9	0,21	0,24	0,45

 Tabelle 26: Ergebnisse aus Kapitel 6.2 – Parametervariation anhand von 30,0 % MEA

D.3 Korrelation des Energiebedarfs zur Regeneration

Amin	Absorp- tionsrate	Energie- bedarf	Amin	Absorp- tionsrate	Energie- bedarf	Amin	Absorp- tionsrate	Energie- bedarf
/	r _{abs,max}	q _{reg} korr*	/	r _{abs,max}	q _{reg} korr*	/	r _{abs,max}	q _{reg} korr*
	[g/ (kg min)]	[MJ/kg]		[g/ (kg min)]	[MJ/kg]		[g/ (kg min)]	[MJ/kg]
	Lösungen von Aminen							
MEA	2,9	4,2	AP	2,8	4,3	AMP	2,2	1,8
APKette	2,7	4,9	DGA	2,7	3,7	AMPD	1,0	5,1
DAE	2,9	4,5	AEAE	2,7	3,6	TETA	2,9	4,3
DAPKette	2,9	5,7	DETA	2,9	4,2	TEPA	2,8	4,3
DAP	2,3	4,2						
MAE	2,9	3,6	BAE	2,6	2,2	IPAE	2,2	2,4
EAE	2,9	2,7	DEA	1,5	1,8	tertBAE	0,8	1,5
PAE	2,9	2,2						
DEEA	1,0	2,0	MDEA	0,6	3,7	TEA	0,4	20,8
		K	onzentrierte L	.ösungen v	on Amine	n		
3,3 MEA	2,8	4,4	6,5 MEA	2,9	4,4	8,2 MEA	2,8	4,9
3,3 AP	2,8	4,7	6,5 AP	2,5	4,5	8,2 AP	2,6	4,7
3,3 DGA	2,9	3,7	6,5 DGA	2,8	4,0			
3,3 TETA	2,9	5,1	6,5 TETA	2,9	4,0	8,2 TETA	2,8	4,1
3,3 MAE	3,0	3,9	6,5 MAE	2,9	3,9	8,2 MAE	2,9	4,1
3,3 EAE	3,0	2,9	6,5 EAE	2,8	2,8	8,2 EAE	2,8	2,5
3,3 DEA	2,0	2,5	6,5 DEA	1,0	2,4	8,2 DEA	0,8	2,9
			Lösungen vo	n Aminmis	schungen		1	
10% MEA/ MDEA	1,5	3,0	40% MEA/ MDEA	2,4	2,7	67% MEA/ MDEA	2,6	3,1
17% MEA/ MDEA	1,6	2,7	50% MEA/ MDEA	2,6	2,9	83% MEA/ MDEA	3,0	3,8
33% MEA/ MDEA	2,3	2,7						
33% AP/ MDEA	2,3	2,9	40% AP/ MDEA	2,2	2,8	67% AP/ MDEA	2,6	3,0
33% DGA/ MDEA	2,4	2,6	40% DGA/ MDEA	2,3	2,6	67% DGA/ MDEA	2,6	3,0
33% TETA/ MDEA	2,3	2,2	40% TETA/ MDEA	2,5	2,3	67% TETA/ MDEA	2,8	2,8
33% MAE/ MDEA	2,6	2,5	50% MAE/ MDEA	2,8	2,7	67% MAE/ MDEA	3,0	3,0
40% MAE/ MDEA	2,5	2,7						
10% EAE/ MDEA	1,3	2,5	40% EAE/ MDEA	2,6	2,2	67% EAE/ MDEA	2,9	2,3
17% EAE/ MDEA	1,7	2,4						
17% MEA/ DEEA	2,1	2,2	40% MEA/ DEEA	2,3	2,6	67% MEA/ DEEA	2,5	3,4
27% MEA/ DEEA	2,1	2,2						

Tabelle 27: Ergebnisse aus Kapitel 6.3 – Korrelation des Energiebedarfs zur Regeneration

Literaturverzeichnis

- [1] ABOUDHEIR, A., TONTIWACHWUTHIKUL, P., CHAKMA, A., AND IDEM, R. Kinetics of the reactive absorption of carbon dioxide in high CO₂-loaded, concentrated aqueous monoethanolamine solutions. *Chemical Engineering Science* 58, 23-24 (2003), 5195–5210.
- [2] ABRAHAM, B., ASBURY, J., LYNCH, E., AND TEOTIA, A. Coal-oxygen process provides CO₂ for enhanced oil recovery. *Oil and Gas Journal 80* (1982), 68–75.
- [3] ABU-ZAHRA, M. R., NIEDERER, J. P., FERON, P. H., AND VERSTEEG, G. F. CO₂ capture from power plants: Part II. A parametric study of the economical performance based on monoethanolamine. *International Journal of Greenhouse Gas Control 1*, 2 (2007), 135–142. GHGT-8.
- [4] ABU-ZAHRA, M. R., SCHNEIDERS, L. H., NIEDERER, J. P., FERON, P. H., AND VERSTEEG, G. F. CO₂ capture from power plants Part I. A parametric study of the technical performance based on monoethanolamine. *International Journal of Greenhouse Gas Control 1* (2007), 37–46.
- [5] AMANN, J.-M. G., AND BOUALLOU, C. A new aqueous solvent based on a blend of Nmethyldiethanolamine and triethylene tetramine for CO₂ recovery in postcombustion: Kinetics study. *Energy Procedia* 1, 1 (2009), 901–908. GHGT-9.
- [6] ARONU, U. E., HOFF, K. A., AND SVENDSEN, H. F. CO₂ capture solvent selection by combined absorption–desorption analysis. *Chemical Engineering Research and Design 89*, 8 (2011), 1197–1203. Special Issue on Distillation & Absorption.
- [7] AROONWILAS, A., AND VEAWAB, A. Characterization and comparison of the CO₂ absorption performance into single and blended alkanolamines in a packed column. *Industrial & Engineering Chemistry Research 43*, 9 (2004), 2228–2237.
- [8] AROONWILAS, A., AND VEAWAB, A. Cost, energy consumption and performance of CO₂ capture process using MEA/MDEA and DEA/MDEA. Tech. rep., Faculty of Engineering, University of Regina, 2005.
- [9] AROONWILAS, A., VEAWAB, A., AND TONTIWACHWUTHIKUL, P. Behavior of the masstransfer coefficient of structured packings in CO₂ absorbers with chemical reactions. *Industrial & Engineering Chemistry Research 38*, 5 (1999), 2044–2050.
- [10] BAILEY, D., AND FERON, P. Post-combustion decarbonisation processes. *Oil & Gas Science and Technology Rev. IFP 60*, 3 (Mai-Juni 2005), 451–459.
- [11] BEHR, A., AGAR, D., AND JÖRISSEN, J. *Einführung in die Technische Chemie*. Spektrum Akademischer Verlag, 2009.
- [12] BMU, MUSIOL, F., VAN MARK, K., NIEDER, T., ZIMMER, U., MEMMLER, M., MORITZ, S., AND SCHNEIDER, S. Erneuerbare Energien in Zahlen - Nationale und internationale Entwicklung. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU), Juli 2011.
- [13] BMWI. *Umbau der Energieversorgung in Deutschland Wichtige nächste Schritte*. Bundesministerium für Wirtschaft und Technologie (BMWi), Dezember 2011.

- [14] BRECHTEL, K. Einfluss der Molekülstruktur auf die CO₂-Abtrennung mit wässrigen Aminlösungen aus Rauchgasen fossil befeuerter Kraftwerke. Dissertation, Universität Stuttgart, 2011.
- [15] BROWN, H. C. A new steric effect in organic chemistry. *Science 103*, 2674 (1946), 385–387.
- [16] BÖTTINGER, W., MAIWALD, M., AND HASSE, H. Online NMR spectroscopic study of species distribution in MEA-H₂O-CO₂ and DEA-H₂O-CO₂. *Fluid Phase Equilibria* 263, 2 (2008), 131–143.
- [17] BUHRE, B., ELLIOTT, L., SHENG, C., GUPTA, R., AND WALL, T. Oxy-fuel combustion technology for coal-fired power generation. *Progress in Energy and Combustion Science 31*, 4 (2005), 283–307.
- [18] BUNDESKABINETT. Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung. Beschluss des Bundeskabinetts am, 28. September 2010.
- [19] BURR, B., AND LYDDON, L. A comparison of physical solvents for acid gas removal. Tech. rep., Bryan Research & Engineering, Inc., Bryan, U.S.A., 2008.
- [20] CAPLOW, M. Kinetics of carbamate formation and breakdown. *Journal of the American Chemical Society* 90, 24 (1968), 6795–6803.
- [21] CHAPEL, D. G., MARIZ, C. L., AND ERNEST, J. Recovery of CO₂ from flue gases -Commercial trends. In *Canadian Society of Chemical Engineers annual meeting* (Saskatoon, Canada, 04.-06. Oktober 1999), FluorDaniel.
- [22] CHEN, Y.-J., SHIH, T.-W., AND LI, M.-H. Heat capacity of aqueous mixtures of monoethanolamine with N-methyldiethanolamine. *Journal of Chemical & Engineering Data 46*, 1 (2001), 51–55.
- [23] CHIESA, P., CONSONNI, S., KREUTZ, T., AND WILLIAMS, R. Co-production of hydrogen, electricity and CO₂ from coal with commercially ready technology. Part A: Performance and emissions. *International Journal of Hydrogen Energy 30*, 7 (2005), 747–767.
- [24] CHIU, L.-F., AND LI, M.-H. Heat capacity of alkanolamine aqueous solutions. *Journal* of Chemical & Engineering Data 44, 6 (1999), 1396–1401.
- [25] CHIU, L.-F., LIU, H.-F., AND LI, M.-H. Heat capacity of alkanolamines by differential scanning calorimetry. *Journal of Chemical & Engineering Data 44*, 3 (1999), 631–636.
- [26] CORMOS, C.-C., CORMOS, A.-M., AND AGACHI, S. Power generation from coal and biomass based on integrated gasification combined cycle concept with pre- and postcombustion carbon capture methods. *Asia-Pacific Journal of Chemical Engineering* 4, 6 (2009), 870–877.
- [27] CROOKS, J. E., AND DONNELLAN, J. P. Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. J. Chem. Soc. Perkin Trans. II 4 (1989), 331–333.
- [28] DA SILVA, E. F. *Computational chemistry study of solvents for carbon dioxide absorption*. Dissertation, Norwegian University of Science and Technology, 2005.
- [29] DAMEN, K., VAN TROOST, M., FAAIJ, A., AND TURKENBURG, W. A comparison of electricity and hydrogen production systems with CO₂ capture and storage. part a:

Review and selection of promising conversion and capture technologies. *Progress in Energy and Combustion Science* 32, 2 (2006), 215–246.

- [30] DANCKWERTS, P. V. Significance of liquid-film coefficients in gas absorption. *Industrial & Engineering Chemistry 43*, 6 (1951), 1460–1467.
- [31] DANCKWERTS, P. V. The reaction of CO₂ with ethanolamines. *Chemical Engineering Science 34*, 4 (1979), 443–446.
- [32] DAVIDSON, R. M. Post combustion carbon capture from coal fired plants Solvent scrubbing. IEA Clean Coal Centre, London, Juli 2007. CCC/125.
- [33] DBB. Deutsche Bundesbank Umrechnungskurs DM/Euro, 20. Dezember 2011. http://www.bundesbank.de/Redaktion/DE/Standardartikel/Kerngeschaeftsfelder/Barg eld/dm_euro_umtausch.html.
- [34] DEY, A., AND AROONWILAS, A. CO₂ absorption into MEA-AMP blend: Mass transfer and absorber height index. *Energy Procedia 1*, 1 (2009), 211–215. GHGT-9.
- [35] DIETZSCH, B., DOMKE, R., FLEISCHHAUER, W., LEVEN, V., MÜLLER, W., OHLING, W., SCHÖN, I., SCHWISTER, K., AND TARJÁN, I. *Taschenbuch der Verfahrenstechnik*, Vol. 3. Carl Hanser Verlag, 2007.
- [36] DIMONTIGNY, D. Carbon dioxide absorption studies using ultra-highly concentrated monoethanolamine solutions. Masterarbeit, University of Regina, 1998.
- [37] DIPPR. Design Institute for Physical Properties (DIPPR) Database of the American Institute of Chemical Engineers (AIChE), 05. Oktober 2004. http://www.aiche.org/dippr.
- [38] DUGAS, R. E. Carbon dioxide absorption, desorption, and diffusion in aqueous piperazine and monoethanolamine. Dissertation, University of Texas, 2009.
- [39] ECB. European Central Bank Indices of consumer prices in Euro, 09. Januar 2013. http://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=122.ICP.M.U2.N.000000.4. ANR.
- [40] ECB. European Central Bank Reference exchange rate: US dollar/Euro, 09. Januar 2013. http://sdw.ecb.europa.eu/quickview.do?SERIES_KEY=120.EXR.A.USD. EUR.SP00.A.
- [41] EMIG, G., AND KLEMM, E. *Technische Chemie: Einführung in die Chemische Reaktionstechnik*, Vol. 5. Springer-Verlag, 2005.
- [42] ENDO, T., KAJIYA, Y., NAGAYASU, H., IIJIMA, M., OHISHI, T., TANAKA, H., AND MITCHELL, R. Current status of mhi CO₂ capture plant technology, large scale demonstration project and road map to commercialization for coal fired flue gas application. *Energy Procedia* 4 (2011), 1513–1519. GHGT-10.
- [43] EU-KOMMISSION. Limiting global climate change to 2 degrees celsius The way ahead for 2020 and beyond. Tech. rep., Europäische Kommission, 2007. COM(2007) 10. Januar 2007.
- [44] FINKENRATH, M. Cost and performance of carbon dioxide capture from power generation. Tech. rep., IEA - International Energy Agency, Paris, France, 2011.
- [45] FREGUIA, S., AND ROCHELLE, G. T. Modeling of CO₂ capture by aqueous monoethanolamine. *AIChE Journal* 49, 7 (2003), 1676–1686.
- [46] GESTIS. Gefahrstoffinformationssystem GESTIS: Stoffdatenbank Kohlendioxid. Tech. rep., IFA - Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversi-

cherung, 17. April 2012. http://gestis.itrust.de/nxt/gateway.dll/gestis_de/001120. xml?f=templates*fn=default.htm*3.0.

- [47] GLASSCOCK, D. A., CRITCHFIELD, J. E., AND ROCHELLE, G. T. CO₂ absorption/desorption in mixtures of methyldiethanolamine with monoethanolamine or diethanolamine. *Chemical Engineering Science* 46, 11 (1991), 2829–2845.
- [48] GOTO, K., OKABE, H., CHOWDHURY, F. A., SHIMIZU, S., FUJIOKA, Y., AND ONODA, M. Development of novel absorbents for CO₂ capture from blast furnace gas. *International Journal of Greenhouse Gas Control* 5, 5 (2011), 1214–1219.
- [49] GÖTTLICHER, G. Energetik der Kohlendioxidrückhaltung in Kraftwerken. Dissertation, Universität GH Essen, 1999.
- [50] HALL, H. K. Correlation of the base strengths of amines 1. *Journal of the American Chemical Society* 79, 20 (1957), 5441–5444.
- [51] HARTONO, A., DA SILVA, E. F., GRASDALEN, H., AND SVENDSEN, H. F. Qualitative determination of species in DETA-H₂O-CO₂ system using 13C NMR spectra. *Industrial & Engineering Chemistry Research 46*, 1 (2007), 249–254.
- [52] HARTONO, A., DA SILVA, E. F., AND SVENDSEN, H. F. Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA). *Chemical Engineering Science* 64, 14 (2009), 3205 – 3213.
- [53] HARTONO, A., AND SVENDSEN, H. F. Kinetics reaction of primary and secondary amine group in aqueous solution of diethylenetriamine (DETA) with carbon dioxide. *Energy Procedia 1*, 1 (2009), 853–859. GHGT-9.
- [54] HAWTHORNE, C., TROSSMANN, M., CIFRE, P. G., SCHUSTER, A., AND SCHEFFKNECHT, G. Simulation of the carbonate looping power cycle. *Energy Procedia* 1, 1 (2009), 1387–1394. GHGT-9.
- [55] HENNI, A., LI, J., AND TONTIWACHWUTHIKUL, P. Reaction kinetics of CO₂ in aqueous 1-amino-2-propanol, 3-amino-1-propanol, and dimethylmonoethanolamine solutions in the temperature range of 298-313 K using the stopped-flow technique. *Industrial* & Engineering Chemistry Research 47, 7 (2008), 2213–2220.
- [56] HIGBIE, R. Rate of absorption of a pure gas into still liquid during short periods of *exposure*. New York, 1935.
- [57] HILLIARD, M. D. A predictive thermodynamic model for an aqueous blend of potassium carbonate, piperazine, and monoethanolamine for carbon dioxide capture from flue gas. Dissertation, University of Texas, 2008. 404.
- [58] HOOK, R. J. An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. *Industrial & Engineering Chemistry Research 36*, 5 (1997), 1779–1790.
- [59] HORN, F. L., AND STEINBERG, M. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). *Fuel 61*, 5 (1982), 415–422.
- [60] HUANG, Y., REZVANI, S., MCILVEEN-WRIGHT, D., MINCHENER, A., AND HEWITT, N. Techno-economic study of CO₂ capture and storage in coal fired oxygen fed entrained flow IGCC power plants. *Fuel Processing Technology* 89, 9 (2008), 916–925.
- [61] IDEM, R., WILSON, M., TONTIWACHWUTHIKUL, P., CHAKMA, A., VEAWAB, A., AROONWILAS, A., AND GELOWITZ, D. Pilot plant studies of the CO₂ capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regi-

na CO_2 capture technology development plant and the Boundary Dam CO_2 capture demonstration plant. *Industrial & Engineering Chemistry Research 45*, 8 (2006), 2414–2420.

- [62] IEA. *CO*₂ *capture and storage A key carbon abatement option*. International Energy Agency, Paris, France, 2008.
- [63] IPCC, METZ, B., DAVIDSON, O., DE CONINCK, H., LOOS, M., AND MEYER, L. *Carbon dioxide capture and storage*. Intergovernmental Panel on Climate Change, Cambridge University Press, England, 2005.
- [64] JANSEN, D. Pre combustion CO₂ capture. In 2. *International Workshop: CCS and CCU* (Düsseldorf, Germany, 09.-10. November 2011), ECN.
- [65] JOU, F.-Y., MATHER, A. E., AND OTTO, F. D. The solubility of CO₂ in a 30 mass percent monoethanolamine solution. *The Canadian Journal of Chemical Engineering* 73, 1 (1995), 140–147.
- [66] JOU, F.-Y., OTTO, F. D., AND MATHER, A. E. Vapor-liquid equilibrium of carbon dioxide in aqueous mixtures of monoethanolamine and methyldiethanolamine. *Industrial & Engineering Chemistry Research 33*, 8 (1994), 2002–2005.
- [67] KANNICHE, M., AND BOUALLOU, C. CO₂ capture study in advanced integrated gasification combined cycle. *Applied Thermal Engineering* 27, 16 (2007), 2693–2702. PRES 2006.
- [68] KANNICHE, M., GROS-BONNIVARD, R., JAUD, P., VALLE-MARCOS, J., AMANN, J.-M., AND BOUALLOU, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO₂ capture. *Applied Thermal Engineering 30*, 1 (2010), 53–62. PRES 2008.
- [69] KIM, I., HOFF, K. A., HESSEN, E. T., HAUG-WARBERG, T., AND SVENDSEN, H. F. Enthalpy of absorption of CO₂ with alkanolamine solutions predicted from reaction equilibrium constants. *Chemical Engineering Science* 64, 9 (2009), 2027–2038.
- [70] KIM, I., MA'MUN, S., TOBIESEN, F. A., AND SVENDSEN, H. F. Determination of the enthalpies of absorption of CO₂ in the aqueous solutions of MEA, MDEA and AEEA. Tech. rep., Norwegian University of Science and Technology (NTNU), 2005.
- [71] KIM, I., AND SVENDSEN, H. Heat of absorption of carbon dioxide (CO₂) in monoethanolamine (MEA) and 2-(aminoethyl)ethanolamine (AEEA) solutions. *In*-*dustrial & engineering chemistry research 46*, 17 (2007), 5803–5809.
- [72] KIM, I., AND SVENDSEN, H. F. Comparative study of the heats of absorption of postcombustion CO₂ absorbents. *International Journal of Greenhouse Gas Control* 5, 3 (2011), 390–395. TCCS-5 2009.
- [73] KNUDSEN, J. N., JENSEN, J. N., VILHELMSEN, P.-J., AND BIEDE, O. Experience with CO₂ capture from coal flue gas in pilot-scale: Testing of different amine solvents. *Energy Procedia 1* (2009), 783–790. GHGT-9.
- [74] KNUUTILA, H., JULIUSSEN, O., AND SVENDSEN, H. F. Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions. *Chemical En*gineering Science 65, 23 (2010), 6077–6088.
- [75] KOHL, A. L., AND NIELSEN, R. B. Chapter 14 Physical solvents for acid gas removal. In *Gas Purification (Fifth Edition)*. Gulf Professional Publishing, Houston, USA, 1997, S. 1187–1237.

- [76] KOHL, A. L., AND NIELSEN, R. B. Chapter 2 Alkanolamines for hydrogen sulfide and carbon dioxide removal. In *Gas Purification (Fifth Edition)*. Gulf Professional Publishing, Houston, USA, 1997, S. 40–186.
- [77] LE THIEZ, P. CASTOR CO₂ from capture to storage. Tech. rep., Institut français du pétrole (IFP), 2006.
- [78] LEE, J. I., OTTO, F. D., AND MATHER, A. E. Equilibrium between carbon dioxide and aqueous monoethanolamine solutions. *Journal of Applied Chemistry and Biotechnology* 26, 1 (1976), 541–549.
- [79] LEWIS, W. K., AND WHITMAN, W. G. Principles of gas absorption. *Industrial & Engineering Chemistry 16*, 12 (1924), 1215–1220.
- [80] LI, J., HENNI, A., AND TONTIWACHWUTHIKUL, P. Reaction kinetics of CO₂ in aqueous ethylenediamine, ethyl ethanolamine, and diethyl monoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique. *Industrial & Engineering Chemistry Research 46*, 13 (2007), 4426–4434.
- [81] LI, Y.-G., AND MATHER, A. E. Correlation and prediction of the solubility of carbon dioxide in a mixed alkanolamine solution. *Industrial & Engineering Chemistry Research 33*, 8 (1994), 2006–2015.
- [82] LYNGFELT, A., LECKNER, B., AND MATTISSON, T. A fluidized-bed combustion process with inherent CO₂ separation: Application of chemical-looping combustion. *Chemical Engineering Science* 56, 10 (2001), 3101–3113.
- [83] MAGINN, E. J. Design and evaluation of ionic liquids as novel CO₂ absorbents. Tech. rep., University of Notre Dame, 2005.
- [84] MAHAM, Y., G. HEPLER, L., E. MATHER, A., W. HAKIN, A., AND A. MARRIOTT, R. Molar heat capacities of alkanolamines from 299.1 to 397.8 K Group additivity and molecular connectivity analyses. J. Chem. Soc. Faraday Trans. 93 (1997), 1747– 1750.
- [85] MA'MUN, S., JAKOBSEN, J. P., SVENDSEN, H. F., AND JULIUSSEN, O. Experimental and modeling study of the solubility of carbon dioxide in aqueous 30 mass % 2-((2aminoethyl)amino)ethanol solution. *Industrial & Engineering Chemistry Research* 45, 8 (2006), 2505–2512.
- [86] MA'MUN, S., SVENDSEN, H. F., HOFF, K. A., AND JULIUSSEN, O. Selection of new absorbents for carbon dioxide capture. *Energy Conversion and Management* 48, 1 (2007), 251–258.
- [87] MIT. Massachusetts Institute of Technology: CCS Project Database, 02. Juni 2012. http://sequestration.mit.edu/tools/projects/index.html.
- [88] MUNDHWA, M., AND HENNI, A. Molar heat capacity of various aqueous alkanolamine solutions from 303.15 k to 353.15 k. *Journal of Chemical & Engineering Data 52*, 2 (2007), 491–498.
- [89] NETL. *DOE/NETL Carbon Dioxide Capture and Storage R&D Roadmap*. National Energy Technology Laboratory, U.S. Department of Energy, 2010.
- [90] NETL. Gasification 2010 Worldwide Database. Tech. rep., National Energy Technology Laboratory, U.S. Department of Energy (DOE), 2010. http://www.netl.doe.gov/technologies/coalpower/gasification/worlddatabase.

- [91] NOAA. Global trends in carbon dioxide, 01. April 2012. http://www.esrl.noaa.gov/gmd/ccgg/trends/.
- [92] NOTZ, R. *CO*₂-*Abtrennung aus Kraftwerksabgasen mittels Reaktivabsorption*. Dissertation, Universität Stuttgart, 2009.
- [93] OEXMANN, J. Post-combustion CO₂ Ccapture: Energetic evaluation of chemical absorption processes in coal fired steam power plants. Dissertation, Technische Universität Hamburg-Harburg, 2011.
- [94] O'KEEFE, L., GRIFFITHS, J., WEISSMAN, R., EAST, N., DE PUY, R., POWER, T., AND WAINWRIGHT, J. A single IGCC design for variable CO₂ capture. In 2000 Gasification Technologies Conference (2000), S. 1–10. GTC 2000.
- [95] OLAJIRE, A. A. CO₂ capture and separation technologies for end-of-pipe applications A review. *Energy 35*, 6 (2010), 2610–2628. SET 2008.
- [96] OSCARSON, J., DAM, R. V., CHRISTENSEN, J., AND IZATT, R. Enthalpies of absorption of carbon dioxide in aqueous diethanolamine solutions. *Thermochimica Acta 146*, 0 (1989), 107–114.
- [97] OYENEKAN, B. A. *Modeling of strippers for CO₂ capture by aqueous amines*. Dissertation, University of Texas, 2007.
- [98] PANI, F., GAUNAND, A., CADOURS, R., BOUALLOU, C., AND RICHON, D. Kinetics of absorption of CO₂ in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K. *Journal of Chemical & Engineering Data 42*, 2 (1997), 353– 359.
- [99] PORCHERON, F., GIBERT, A., JACQUIN, M., MOUGIN, P., FARAJ, A., GOULON, A., BOUILLON, P.-A., DELFORT, B., PENNEC, D. L., AND RAYNAL, L. High throughput screening of amine thermodynamic properties applied to post-combustion CO₂ capture process evaluation. *Energy Procedia* 4, 0 (2011), 15–22. GHGT-10.
- [100] PUXTY, G., ROWLAND, R., ALLPORT, A., YANG, Q., BOWN, M., BURNS, R., MAEDER, M., AND ATTALLA, M. Carbon dioxide postcombustion capture: A novel screening study of the carbon dioxide absorption performance of 76 amines. *Environmental Science & Technology 43*, 16 (2009), 6427–6433.
- [101] RAYER, A. V., HENNI, A., AND TONTIWACHWUTHIKUL, P. Molar heat capacities of solvents used in CO₂ capture: A group additivity and molecular connectivity analysis. *The Canadian Journal of Chemical Engineering 9999* (2011), 1–10.
- [102] RAYNAL, L., BOUILLON, P.-A., GOMEZ, A., AND BROUTIN, P. From MEA to demixing solvents and future steps: A roadmap for lowering the cost of post-combustion carbon capture. *Chemical Engineering Journal 171*, 3 (2011), 742–752. Symposium on Post-Combustion Carbon Dioxide Capture.
- [103] RAYNAL, L., LEMAIRE, E., BROUTIN, P., AND NORMAND, L. CCS at IFP From MEA to new processes for post combustion capture. In *11. Meeting of the International Post Combustion CO₂ Capture Network* (Wien, Austria, 20.-21. Mai 2008), IFP.
- [104] REDDY, S. Fluor Economine FG Plus technology for post-combustion CO₂ capture. In *11. Meeting of the International Post-Combustion CO₂ Capture Network* (Vienna, Austria, 20.-21. Mai 2008).
- [105] REDDY, S., JOHNSON, D., AND GILMARTIN, J. Fluor's Econamine FG Plus SM technology for CO₂ capture at coal-fired power plants. In *Proceedings of Power Plant*

Air Pollutant Control'Mega'Symposium, Air & Waste Management Association, Baltimore (2008).

- [106] REZVANI, S., HUANG, Y., MCILVEEN-WRIGHT, D., HEWITT, N., AND MONDOL, J. D. Comparative assessment of coal fired IGCC systems with CO₂ capture using physical absorption, membrane reactors and chemical looping. *Fuel 88*, 12 (2009), 2463– 2472. 7. ECCRIA.
- [107] SAKWATTANAPONG, R., AROONWILAS, A., AND VEAWAB, A. Behavior of reboiler heat duty for CO₂ capture plants using regenerable single and blended alkanolamines. *Industrial & Engineering Chemistry Research 44*, 12 (2005), 4465–4473.
- [108] SAMANTA, A., AND BANDYOPADHYAY, S. Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. *Chemical Engineer*ing Science 64, 6 (2009), 1185–1194.
- [109] SARTORI, G., AND SAVAGE, D. W. Sterically hindered amines for carbon dioxide removal from gases. *Industrial & Engineering Chemistry Fundamentals* 22, 2 (1983), 239–249.
- [110] SCHEFFKNECHT, G., AL-MAKHADMEH, L., SCHNELL, U., AND MAIER, J. Oxy-fuel coal combustion A review of the current state-of-the-art. *International Journal of Greenhouse Gas Control 5*, Supplement 1 (2011), 16–35.
- [111] SCHÄFFER, A., BRECHTEL, K., AND SCHEFFKNECHT, G. Untersuchung von wässrigen Mehrkomponentenaminsystemen - Waschlösungen zur Abtrennung von CO₂ aus Rauchgasen. VGB PowerTech 4 (2010), 66–71.
- [112] SCHÄFFER, A., BRECHTEL, K., AND SCHEFFKNECHT, G. Comparative study on differently concentrated aqueous solutions of MEA and TETA for CO₂ capture from flue gases. *Fuel 101*, 0 (2012), 148–153. 8. ECCRIA.
- [113] SHARMA, M. M., AND DANCKWERTS, P. V. Catalysis by Bronsted bases of the reaction between CO₂ and water. *Trans. Faraday Soc.* 59 (1963), 386–395.
- [114] SHEN, K. P., AND LI, M. H. Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. *Journal of Chemical & Engineering Data* 37, 1 (1992), 96–100.
- [115] SINGH, P., NIEDERER, J. P., AND VERSTEEG, G. F. Structure and activity relationships for amine based CO₂ absorbents I. *International Journal of Greenhouse Gas Control 1*, 1 (2007), 5–10. GHGT-8.
- [116] SINGH, P., NIEDERER, J. P., AND VERSTEEG, G. F. Structure and activity relationships for amine-based CO₂ absorbents II. *Chemical Engineering Research and Design* 87, 2 (2009), 135–144.
- [117] STRÖHLE, J., GALLOY, A., AND EPPLE, B. Feasibility study on the carbonate looping process for post-combustion CO₂ capture from coal-fired power plants. *Energy Procedia 1*, 1 (2009), 1313–1320. GHGT-9.
- [118] TOBIESEN, A., MEJDELL, T., AND SVENDSEN, H. F. A comparative study of experimental and modeling performance results from the CASTOR Esbjerg pilot plant. In *GHGT-8* (2006).
- [119] TOFTEGAARD, M. B., BRIX, J., JENSEN, P. A., GLARBORG, P., AND JENSEN, A. D. Oxyfuel combustion of solid fuels. *Progress in Energy and Combustion Science 36*, 5 (2010), 581–625.

- [120] TONTIWACHWUTHIKUL, P., MEISEN, A., AND LIM, C. CO₂ absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. *Chemical Engineering Science* 47, 2 (1992), 381–390.
- [121] UBA. Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen 1990-2010. Tech. rep., Umweltbundesamt, 14. Dezember 2011. www.umweltbundesamt.de/emissionen/archiv/2012/2011_12_14_EM_Entwicklung_ in_D_Trendtabelle_THG_v1.2.0.zip.
- [122] VAN STRAELEN, J., AND GEUZEBROEK, F. The thermodynamic minimum regeneration energy required for post-combustion CO₂ capture. *Energy Procedia* 4, 0 (2011), 1500–1507. GHGT-10.
- [123] VEAWAB, A., AND AROONWILAS, A. CO₂ capture by blended alkanolamines Experiments, modeling & simulation, cost analysis. In 8. International CO₂ Capture Network (03.-04. Oktober 2005), Vol. 8, IEA.
- [124] VERSTEEG, G. F. CO₂ post combustion capture Solvent development: "The Quest for the Holy Grail", Panacee or Fata Morgana. In *International Symposium on Post Combustion Capture* (Düsseldorf, Deutschland, 30.-31. Juli 2009).
- [125] VGB. Konzeptstudie Referenzkraftwerk Nordrhein-Westfalen. VGB PowerTech Service GmbH, Verlag technisch-wissenschaftlicher Schriften, Essen, Deutschland, Februar 2004.
- [126] WALL, T., STANGER, R., AND SANTOS, S. Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment. *International Journal of Greenhouse Gas Control 5*, Supplement 1 (2011), 5–15.
- [127] WALL, T. F. Combustion processes for carbon capture. *Proceedings of the Combustion Institute 31*, 1 (2007), 31–47. Combustion Institute 31.
- [128] WAPPEL, D. CO₂-Abtrennung aus Rauchgasen mit ionischen Flüssigkeiten. Tech. rep., Montanuniversität Leoben, Institut für Verfahrenstechnik des industriellen Umweltschutzes, 2007.
- [129] WEILAND, R. H., DINGMAN, J. C., AND CRONIN, D. B. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and Nmethyldiethanolamine-based blends with carbon dioxide. *Journal of Chemical & Engineering Data 42*, 5 (1997), 1004–1006.
- [130] WILSON, M., TONTIWACHWUTHIKUL, P., CHAKMA, A., IDEM, R., VEAWAB, A., AROONWILAS, A., GELOWITZ, D., AND STOBBS, R. Evaluation of the CO₂ capture performance of the University of Regina CO₂ technology development plant and the Boundary Dam CO₂ demonstration plant. Tech. rep., International Test Centre for CO₂ Capture (ITC) and University of Regina, 2004. GHGT-7.
- [131] XU, Q., AND ROCHELLE, G. Total pressure and CO₂ solubility at high temperature in aqueous amines. *Energy Procedia* 4, 0 (2011), 117–124. GHGT-10.
- [132] ZEP. The Costs of CO₂ Capture Post-demonstration CCS in the EU. Tech. rep., European Technology Platform for Zero Emission Fossil Fuel Power Plants, Brussels, Belgium, Juli 2011. http://www.zeroemissionsplatform.eu/library/publication/ 166-zep-cost-report-capture.html.
- [133] ZEP. Global CCS Projects on the Zero Emissions Platform, 03. Juni 2012. http://www.zeroemissionsplatform.eu/projects/global-projects.