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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die Entwicklung einer verbesserten Methode zur

Simulation turbulenter Sprayflammen. Die Sprayverbrennung ist ein typisches Mul-

tiskalenproblem. Es ist praktisch nicht möglich alle relevanten physikalischen Skalen

aufzulösen, weshalb geeignete Modelle für die nicht aufgelösten Skalen verwendet

werden müssen. Innerhalb dieser Arbeit werden Large-Eddy Simulationen (LES) für

die Berechnung des Strömungsfeldes zusammen mit dem Conditional Moment Clo-

sure (CMC) Ansatz zur Modellierung der Turbulenz-Chemie Interaktion verwendet.

Basierend auf einer Lagrange’schen Partikelbeschreibung mit stochastischer Mod-

ellierung des Transports und der Verdampfung von Tropfen wird die Flüssigphase

erfasst und mit LES und CMC zu einem vollständigen Modell für die Sprayverbren-

nung gekoppelt.

Der LES Strömungslöser und die Modelle für die Flüssigphase wurden durch

einen Vergleich mit Experimenten eines verdampfenden Sprayjets validiert. Die nu-

merischen Voraussagen zeigen eine gute Übereinstimmung mit den experimentellen

Messungen. Der Einfluss der stochastischen Partikelverteilung und der Verdamp-

fungsmodelle wurde untersucht. Die stochastische Verteilung hat, wahrschein-

lich aufgrund der niedrigen Turbulenzintensität in den untersuchten Fällen, keinen

starken Einfluss auf die Statistik der Tropfenverteilung. Allerdings wurden bei Ver-

wendung des stochastischen Verdampfungsmodells erhöhte Verdampfungsraten fest-

gestellt.

In einem weiteren Schritt wurden die Effekte zusätzlicher Terme in der CMC For-

mulierung, die durch das Vorhandensein verdampfender Tropfen aufkommen, durch

einen Vergleich mit Experimenten einer turbulenten Ethanol-Sprayflamme unter-
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sucht. Insgesamt zeigen die numerischen Ergebnisse eine gute Übereinstimmung

mit den Experimenten, aber große Abweichungen der Temperatur entlang der Mit-

telachse wurden in stromab gelegenen Bereichen beobachtet. Die Gründe hierfür

liegen in den relativ einfachen konventionellen Randbedingungen, die für diese er-

sten Untersuchungen verwendet worden sind. Die einfache Behandlung der Randbe-

dingungen kann für einfache Gasflammen oder Sprayflammen ohne Vorverdampfung

ausreichen. Allerdings sind diese Randbedingungen für die innerhalb dieser Arbeit

untersuchten Sprayflammen nicht gültig. Eine neue Behandlung der Randbedin-

gungen für die obere Grenze im Mischungsbruchraum ist erforderlich und deshalb

wurden zwei neue Ansätze für eine konsistente Modellierung von Sprayflammen mit

Vorverdampfung vorgeschlagen und entwickelt.

Das erste Modell ist ein Two-Conditional-Moment Ansatz. Hierbei werden zwei

Sätze Conditional Moments gelöst. Der erste Satz wird auf einen vollständig erhalte-

nen Mischungsbruch konditioniert und berücksichtigt die Tropfenverdampfung nicht.

Der zweite Satz ist auf einen Mischungsbruch konditioniert, der auf der Summe aus

vorverdampftem und in der Brennkammer verdampftem Brennstoff basiert. Die LES

Lösung kann aus den gewichtet gemittelten und über den Mischungsbruchraum in-

tegrierten Conditional Moments ermittelt werden. Der Ansatz mit zwei Conditional

Moments wurde zur Simulation turbulenter Sprayflammen verwendet und die Ergeb-

nisse sind im Vergleich zur konventionellen Methode deutlich besser.

Das zweite Modell basiert auf einem CMC Ansatz der an tabellierte Chemie

gekoppelt ist. CMC beschreibt dabei die instationären und inhomogenen

Conditional Moments, wohingegen die tabellierte Chemie im Pre-Processing erstellt

wird und sich in Raum und Zeit nicht verändert. Die tabellierte Chemie kann auch

in Abhängigkeit mehrerer charakteristischer Variablen erstellt werden, während in

CMC typischerweise auf eine bestimmende Größe konditioniert wird. Deshalb wurde

CMC mit tabellierter Chemie entwickelt, um die Vorteile der beiden Ansätze zu

verbinden. Die numerischen Simulationen wurden gegen experimentelle Daten vali-

diert und zeigen insgesamt gute Übereinstimmung mit allen aus den Experimenten

verfügbaren Daten.



Kurzfassung XXXI

Zusammenfassend wurden eine neue Methode zur Behandlung der Randbedin-

gung für den Mischungsbruch und zwei neue CMC Ansätze entwickelt, die die An-

wendbarkeit der CMC Modellierung auf Sprayflammen mit teilweise verdampftem

Brennstoff erweitern. Die neuen Modelle wurden durch Vergleiche mit Messungen

einer Serie von Sprayflammen validiert, die an der Universität Sydney durchgeführt

worden sind. In zukünftigen Arbeiten sollen die neuen Ansätze auf komplexere

Flammenbereiche wie z.B. eine teilweise vorgemischte Sprayflamme erweitert wer-

den.
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Summary

The scope of this thesis is to develop an improved methodology for the simulation

of turbulent spray flames. Spray combustion is a typical multi-scale problem. It

is practically impossible to resolve all physical scales, and appropriate models need

to be used for the subgrid scales. Here, large eddy simulation (LES) for the com-

putation of the flow field, conditional moment closure (CMC) for the modelling

of turbulence-chemistry interactions, and a Lagrangian particle tracking approach

with stochastic droplet modelling for transport and evaporation of the droplets are

combined to form a comprehensive spray combustion model.

The LES flow solver and the liquid phase models have been validated by com-

parison with experimental data from an evaporating spray jet. The numerical

predictions show good agreement with the measurements. The influence of the

stochastic particle dispersion and evaporation models is assessed. The stochastic

dispersion does not have large effects on the droplet dispersion statistics probably

due to low levels of turbulence in the cases investigated here. However, higher

evaporation rates are seen when the stochastic evaporation model is used.

In a further step, the effects of additional terms in the CMC formulation that

arise due to the presence of the evaporating droplets are investigated by compa-

rison with experiments from a series of turbulent ethanol spray flames. Overall, the

numerical predictions show good agreement with measurements, but large discre-

pancies of centerline temperature are found in downstream regions of the flow. The

reasons can be found in the rather simplistic conventional boundary conditions used

in this first study. The simplistic boundary treatment may suffice for simple gaseous

flames or spray flames without pre-evaporation. However, it is not applicable to the
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spray flames under investigation here, and a new boundary treatment of the up-

per limit in mixture fraction space is necessary. Therefore, two novel approaches

are proposed and developed for the consistent CMC modelling of spray flames with

pre-evaporation.

The first model is a two-conditional moment approach. It solves for two sets

of conditional moments. The first set is conditioned on a fully conserved mixture

fraction that does not take droplet evaporation into account. The second set is

conditioned on a mixture fraction that is based on the fuel originating from the pre-

evaporated droplets plus the fuel evaporated within the combustion chamber. The

LES solution can be found by using the weighted average of these two conditional

moments and integration across mixture fraction space. The two-conditional mo-

ment approach is applied to simulate the turbulent spray flames and the accuracy of

the numerical predictions is markedly improved when compared to the conventional

approach.

The second model is based on a CMC approach coupled with tabulated chemistry.

CMC can solve for unsteady and inhomogeneous conditional moments, whereas tab-

ulated chemistry is pre-processed and it is usually not a function of space or time.

On the other hand, tabulated chemistry can be constructed over multiple sam-

pling spaces, while CMC is typically conditioned on only one characteristic quantity.

Therefore, CMC with tabulated chemistry is developed to couple the advantages of

the two approaches. The numerical simulations have again been validated by compa-

rison with experiments, and overall good agreement with all available experimental

data are obtained.

In conclusion, a new mixture fraction boundary treatment and two novel CMC

approaches have been developed that expand the applicability of CMC to spray

flames with partial pre-evaporation of the fuel. The new models are validated by

comparison with measurements from a spray flame series conducted at the University

of Sydney. Future work will seek the extension of the current approaches to more

complex flame regimes such as partially premixed spray flames.



Chapter 1

Introduction

1.1 Motivation

Liquid fuel is utilized by many modern combustion devices such as IC engines, gas

turbines, aircraft engines and rocket propulsion, and it plays an important role in

our daily life. In fact, liquid fuel has been the largest energy resource in the world

as shown in Fig. 1.1. Moreover, the consumption of liquid fuel has been increased

till now, and it is even expected to increase 1.1 % every year in future [179]. Also, a

large portion of liquid fuels is consumed in transportation (Fig. 1.2). Therefore, an

improvement of the efficiency of liquid combustion devices directly benefits the life

of end users. On the other hand, liquid fuel is responsible for pollution to a great

extent. For example, the largest CO2 emission originates from petroleum (liquid

fuel) and transportation (Fig. 1.3). Also, it causes many other pollutants such as

NOx, CO, SOX and particulates that must be regulated to maintain air quality

[111]. Thus, liquid combustion devices must be developed to increase performance

and reduce pollutants, but it is still difficult to perform such an optimization since

physics of turbulent spray combustion is not yet fully understood [82]. Various types

of experimental studies have been carried out to gain fundamental knowledge, and

parametric studies have been conducted. At the same time, the recent increase of the

computational resources enables detailed simulations of large scale devices, and CFD

is considered to be a more valuable tool in terms of design and optimization. For

1
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that purpose, it is necessary to simulate turbulent spray combustion accurately, but

a difficulty arises from the very wide physical length scales of turbulence, droplets

and chemical reactions. Since it is practically impossible to resolve all physical

scales, the turbulence-spray-chemistry interaction must be modelled appropriately.

Therefore, the aim of the present study is to develop a methodology to simulate

turbulent spray flames.

Figure 1.1: World energy consumption by fuel type (quadrillion Btu) (U.S. EIA
[179]).

Figure 1.2: Liquid fuel consumption by sector type (quadrillion Btu) (U.S. EIA
[180]).

1.2 Background

Since turbulent spray flames involve multiscale phenomena, small scale physics are

described by sub-grid models. Here, a development of each sub-model is briefly

reviewed.
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(a) Fuel type (b) Sector type

Figure 1.3: CO2 emission in Million Metric Tons (U.S. EIA [180]).

1.2.1 Turbulent Flow

Turbulent flows are characterized by various sizes of eddies, and direct numerical

simulation (DNS) can be performed to resolve the smallest eddy size. Even though

DNS can provide insights of turbulent flow physics, it is not feasible to perform DNS

on a practical engineering device due to limitations of computational resources.

Thus, multiple modelling approaches have been proposed. Reynolds-averaged

Navier-Stokes (RANS) equations provide a time-averaged solution. However, there

are some physical phenomena unsuitable for RANS analysis, especially when un-

steady effects play very important roles such as flow separation or instability. On

the other hand, large eddy simulation (LES) solves unsteady spatially-averaged

equations to capture large scale motions while modelling subgrid fluctuations. LES

can capture unsteady turbulent physics with a reasonable computational power.

In the 1980s and early 1990s, LES has been usually applied with a tuned model

coefficient depending on a flow configuration. A breakthrough was made by the

introduction of the dynamic subgrid scale model [65] based on the scale similarity

within the inertial range. The dynamic subgrid model provided more flexibility of

applicability of the LES, and other dynamic models have been developed later on

[92]. Recently, investigations of LES closures have been extended to more complex

environments such as turbulence in a compressible flow [64, 8, 29] and magnetohy-

drodynamic turbulence [119].
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1.2.2 Turbulent Combustion

Turbulence is often favored in combustion devices since it enhances mixing (of

fuel/oxidizer in non-premixed flames and of reactants/products in premixed flames)

and eventually leads to higher reaction rates. Therefore, an accurate turbulent

combustion model is necessary to develop a modern combustion device. One of

the most challenging issues is the modelling of the filtered chemical source terms.

Since the term is highly non-linear, a first order approximation is usually insuffi-

cient. Thus, various combustion models have been developed to close these terms

along with LES or RANS, such as the flamelet approach [144, 79, 186], the PDF

model [147], the linear-eddy model [117], the Eulerian stochastic field method [86],

the multiple mapping conditioning (MMC) [63] and the conditional moment closure

(CMC) [132] and so on.

1.2.3 Two-Phase Turbulent Flow

Many combustion devices are operated with liquid fuel, and it is important to

model droplet behavior. One of the most popular and flexible models is the La-

grangian scheme that tracks individual particle motions and conditions. Turbulent

fluctuations can influence dispersion and evaporation processes of droplets, and such

small scale interactions must be considered properly. Stochastic models have been

proposed for RANS applications [18]. Since RANS captures only the mean profiles,

the stochastic model plays a very important role in droplet dispersion. However, it is

worth noting that the stochastic model does not necessarily improve instantaneous

droplet distributions. For example, preferential concentration of particles found in

DNS analysis [56] cannot be captured in RANS, since there is no turbulent eddy

resolved in the flow field, and the model is usually based on single point statistics

which means that stochastic fluctuations in each particles are independent. In an

LES, the large eddies resolved in the flowfield are considered to have large effects

on the particle behavior, so the subgrid effects are often considered to be small and

neglected [123, 117, 5]. However, some studies claim that subgrid fluctuations in the
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LES cell have large influences, and stochastic dispersion and evaporation models are

proposed [15, 16, 17, 150, 47].

1.3 Present Contributions

The scope of this study is to establish methodologies to simulate turbulent spray

flames. An LES-CMC formulation is chosen since it has been very well validated for

many types of the flame configurations such as piloted flames [132, 61], bluff-body

flames [129] and lifted flames [130, 137, 131, 165]. Also, the Lagrangian scheme is

used to model the spray behavior, and the stochastic models are applied to include

subgrid turbulence fluctuations. Then, the study focuses on the interactions of

turbulence-spray-chemistry.

Several early studies have applied single-phase CMC equations to simulate spray

combustion in RANS [191, 190] and LES [21]. Also, some simplified two-phase CMC

formulations have been utilized in RANS [91, 154]. Later, Mortensen and Bilger [126]

mathematically derived extra terms within the CMC equation for spray combustion,

and they were applied to turbulent spray flames successfully in auto-ignition studies

[20, 172], where one conditional moment can sufficiently approximate the correct

solution. This study focuses on the development of robust models based on the

LES-CMC approach to simulate turbulent spray flames with pre-evaporation. First,

an evaporating spray jet is analyzed to validate the LES and the Lagrangian scheme.

Then, CMC with spray source terms is tested on a turbulent spray flame, and a

detailed analysis of modelling difficulties is reported. To cope with the issue, two

novel approaches are introduced: a two-conditional moment approach and CMC

with tabulated chemistry. The two-conditional moment approach solves for two

conditional moments based on different mixture fractions to account for conditional

variations in the flow field. Similarly, CMC with tabulated chemistry combines

the CMC solution and tabulated chemistry with a progress variable to allow for

conditional fluctuations. These novel methodologies are validated against a recent

set of turbulent spray flame experiments performed by Masri and Gounder [113, 69].
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1.4 Outline

The outline of this thesis is as follows: Chapter 2 introduces the gas phase for-

mulations. The Favre-filtered transport equations are introduced, and modelling

approaches for the subgrid terms are explained. The Lagrangian particle tracking

approach is discussed in Chapter 3. The governing equations of particle dispersion

and evaporation models are outlined, and stochastic terms to model the turbulence-

droplet interactions are discussed. In Chapter 4, a background of CMC is given,

and the two-phase CMC equations and the closures are discussed. Chapter 5 ex-

plains the target experiments. The experimental configurations are described, and

conditions of turbulent spray flame experiments are presented. The simulations

of non-reacting evaporating spray jets are conducted in Chapter 6. The effects of

the stochastic terms in the Lagrangian method are analyzed. Then, the study is

further extended to a simulation of turbulent spray flames in Chapter 7. CMC

including spray source terms is applied, and the results of the simulation and the

modelling limitations are discussed. To resolve some arising shortcomings of the

CMC approach, a new methodology called “two-conditional moment approach” is

introduced in Chapter 8. The modelling approach is described, and improvements

in the results are discussed. Chapter 9 proposes another methodology called “CMC

with tabulated chemistry”. The formulation and the implementation of the method-

ology are explained, and the results are discussed. Chapter 10 concludes the present

work and provides suggestions for future improvements.



Chapter 2

Gas Phase Formulation and

Modelling

2.1 Governing Equations

The mass and momentum equations for a dilute spray (with negligible liquid volume

fraction) are expressed by the Einstein notation as [43, 148]

∂ρ

∂t
+

∂

∂xj
(ρuj) = ρ̇, (2.1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

+ Ḟi, (2.2)

where ρ is density, ui is the velocity component in the i-direction, p is pressure and

τij denotes the viscous stress tensor. ρ̇ and Ḟi are source terms accounting for the

mass and momentum added from the liquid to the gas phase. The viscous stress

tensor is expressed as a function of the strain rate tensor, Sij .

τij = µ

ñ
2Sij −

2

3
δij
∂uk
∂xk

ô
, (2.3)

where µ is the dynamic viscosity, δij denotes the Kronecker delta and the strain rate

tensor, Sij , is defined as

Sij =
1

2

Ç
∂ui
∂xj

+
∂uj
∂xi

å
. (2.4)

7
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The transport equations of the reactive scalars are

∂

∂t
(ρYα) +

∂

∂xj
(ρujYα) = −∂Jα,j

∂xj
+ ρωα + ρ̇α, (2.5)

∂

∂t
(ρh) +

∂

∂xj
(ρujh) = − ∂qj

∂xj
+ Q̇, (2.6)

where Y is the mass fraction, ω is the reaction rate, Jα is the diffusion flux of the α-

th species, h is enthalpy, and q is the heat flux. ρ̇α and Q̇ are source terms describing

mass and enthalpy transfer from the liquid to the gas phase. Note that low Mach

number is assumed, so that the work term and the kinetic energy in the enthalpy

equation are neglected. The enthalpy is defined assuming ideal gas as

h(T ) =
Ns∑

α=1

Yα

Ç
∆h0f,α +

∫ T

T0

cp,α(T
′)dT ′

å
, (2.7)

where Ns is the number of the species, cp is the specific heat capacity at constant

pressure and h0f is the enthalpy of formation at the reference state. The species

diffusion flux is modelled by the gradient model (Fick’s law) as

Jα,j = −ρDα
∂Yα
∂xj

= − µ

Sc

∂Yα
∂xj

, (2.8)

where Dα is the diffusion coefficient of α, and Sc is the Schmidt number Sc = µ
ρDα

.

Similarly, the heat diffusion flux is modelled assuming the Lewis number equals

unity (Le = Sc
Pr

= 1.0) as

qj = −ραh
∂h

∂xj
= − µ

Pr

∂h

∂xj
, (2.9)

where αh is the enthalpy diffusion coefficient, and Pr is the Prandtl number

Pr = µ
ραh

. Note that the Soret effect and the Dufour effect are neglected. The

thermodynamics properties are correlated by the equation of state for an ideal gas

p = ρRT (2.10)
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and R is the gas constant of the mixture

R =
Ns∑

α=1

Yα
Ru

MWα

, (2.11)

where Ru is the universal gas constant, and MWα is the molecular weight of species

α.

2.2 Turbulent Flows

Turbulent flows are characterized by multiple length and time scales, which would

need to be fully resolved by a direct numerical simulation (DNS). The smallest scale

in turbulence is so-called the Kolmogorov length scale, η, and it can be shown to

scale as [45]

η ≈ Re−3/4l, (2.12)

where Re is the Reynolds number of the turbulence defined as u
′

l
ν

with u
′

being the

turbulent fluctuation velocity, and l is the integral length scale that is the size of the

large energy containing eddy. The grid size of the simulation must be of the order

of η or smaller to resolve all scales. Thus, assuming the three dimensional isotropic

turbulence, the number of grid points necessary for the simulation is

Ncell ≈
Ç
Lbox

η

å3

≈
Ç
Lbox

l

å3

Re9/4, (2.13)

where Ncell is the number of CFD cells, and Lbox is the length of the domain. Since

Ncell increases exponentially with Reynolds number, the required computational

power increase exponentially, and it is too expensive to perform DNS of large scale

devices such as aircraft engines and gas turbines.

The Reynolds-averaged NavierStokes (RANS) equations are introduced to obtain

time-averaged solution of the turbulent flows at low computational costs. It solves

the time-averaged equations, and all the fluctuations are modelled. RANS has been

used successfully for a long period, especially for large-scale devices. However, RANS
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might not be suited to simulate time transient processes and effects of localized flow

structures.

Therefore, large eddy simulation (LES) has been proposed to capture un-

steady physics at affordable computational cost and to make large scale simulations

tractable. LES resolves turbulent eddies down to the size of the computational grid,

and the small-scale motions are modeled assuming local isotropy. LES has been

validated on various types of turbulent flows including reacting, two-phase flows.

This study takes the advantages of LES to model turbulent flows.

2.2.1 Spatial Filtering

LES solves for spatially filtered governing equations. The filtered variable is defined

as [148]

f̄(x) =
∫

Ω
f(x)G(r)dr, (2.14)

where G(r) is a filter kernel, and Ω indicates the control volume of the LES cell. A

box function is used conventionally due to its simplicity, and a filter kernel is written

as

G(r) =
3∏

i=1

G(ri), (2.15)

where

G(ri) =





1/∆i |r| < ∆i/2

0 |r| > ∆i/2
, (2.16)

and ∆i indicates the LES filter size in i−th direction.

In variable density flows, it is useful to apply Favre-filtered (or density-weighted)

averaging, where f̃ denotes a Favre averaged quantity defined as

f̃ =
ρf

ρ
. (2.17)

The advantage of Favre averaging is that it reduces the number of unclosed terms

in the filtered equations (e.g. if only the spatial filtering is used, an unclosed term

appears even in the continuity equation.)
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2.2.2 Favre-Filtered Governing Equations

The Favre-filtered mass, momentum, species and enthalpy equations for two-phase

flow are [14, 17]:
∂ρ̄

∂t
+

∂

∂xj
(ρ̄ũj) = ¯̇ρ, (2.18)

∂

∂t
(ρ̄ũi) +

∂

∂xj
(ρ̄ũiũj) = − ∂p̄

∂xi
+
∂τij
∂xj

− ∂τ sgsij

∂xj
+ ¯̇Fi, (2.19)

∂

∂t
(ρ̄›Yα) + ∂

∂xj
(ρ̄ũj›Yα) = −∂Jα,j

∂xj
− ∂Jsgs

α,j

∂xj
+ ρ̄ω̃α + ¯̇ρα, (2.20)

∂

∂t
(ρ̄h̃) +

∂

∂xj
(ρ̄ũjh̃) = − ∂qj

∂xj
− ∂qsgsj

∂xj
+ ¯̇Q, (2.21)

where τ sgsij , Jsgs
α,j and qsgsj are the subgrid terms of the stress tensor, species diffusion

and heat flux,

τ sgsij = ρ̄(fluiuj − ũiũj), (2.22)

Jsgs
α,j = ρ̄(flujYα − ũj›Yα), (2.23)

qsgsj = ρ̄(fiujh− ũjh̃). (2.24)

The subgrid stress tensor is traditionally modelled by an eddy viscosity model

as

τ sgsij = −2µt
‹Sij, (2.25)

where µt is the turbulent viscosity. Then, the Smagorinsky model [161] is often used

to provide the closure of µt as

µt = ρ̄(Cs∆)2 ‖ ‹S ‖, (2.26)

where ∆ is the filter size, ‖ ‹S ‖ is the Frobenius norm of the resolved shear stress

tensor
√
2‹Sij

‹Sij, and Cs is the Smagorinsky constant. The coefficient Cs in Eqn. 2.26

is usually tuned between 0.05 and 0.2 based on the flow configurations. However,

a single value of Cs is unsuitable to describe every region within a turbulent flow.

It is also shown that the flow is very sensitive to the choice of Cs [14]. Therefore,
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a dynamic model has been proposed to obtain locally optimized Cs to improve

predictions [65, 106, 116], it is used in this study.

Similarly, closures for Jsgs
α,j and qsgsj are given as

Jsgs
α,j = − µt

Sct

∂‹Yα
∂xj

, (2.27)

qsgsj = − µt

Prt

∂h̃

∂xj
, (2.28)

where Prt and Sct are the turbulent Prandtl and Schmidt number. In this study,

Prt and Sct are set to be 0.7.

2.3 Mixing and Reacting Fields

2.3.1 Mixture Fraction

The mixture fraction, ξ is a useful concept to describe the degree of mixing between

fuel and oxidizer in non-premixed flame analysis. The mixture fraction is defined

based on the elemental mass fraction as

ξ =
Zi − Zi,2

Zi,1 − Zi,2

, (2.29)

where Z refers to the mass fraction of the i-th element, and subscripts 1 and 2

indicate fuel and oxidizer conditions, respectively. Since the mixture fraction is

based on elements, the transport equation of the mixture fraction does not contain

a chemical source term,

∂

∂t
(ρξ) +

∂

∂xj
(ρujξ) = −∂Jξ,j

∂xj
+ ρ̇ξ, (2.30)

with ρ̇ξ being the spray source term. In LES, the Favre-filtered transport equation

is given as
∂

∂t
(ρ̄ξ̃) +

∂

∂xj
(ρ̄ũj ξ̃) = −∂Jξ,j

∂xj
− ∂Jsgs

ξ,j

∂xj
+ ¯̇ρξ. (2.31)
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The advantage of the mixture fraction is that the transport equation can be easily

solved in reacting flows since it is an inert (no chemical source term) quantity. Also,

it is used as a sample space in a manifold method to model turbulent combustion (see

Sec. 2.6.2). The definition of the mixture fraction in two-phase flows is discussed in

later sections (in Sec. 7.1.2).

2.3.2 Progress Variable

Another scalar used to characterize combustion is the progress variable, c, that

indicates the degree of completion of a reaction for a specific mixture. The progress

variable can be used to describe premixed flames and variable definitions of the

progress variable can be used. c is often conventionally chosen as a summation of

the major species as

c = YCO2
+ YH2O + YCO + YH2

, (2.32)

or additional weighting by molecular weight is modelled:

c =
YCO2

MWCO2

+
YH2O

MWH2O

+
YCO

MWCO

+
YH2

MWH2

. (2.33)

Also, a progress variable can be defined based on temperature or sensible enthalpy

c =
T − Tmin

Tmax − Tmin

, (2.34)

c =
hs − hs,min

hs,max − hs,min

, (2.35)

where min and max indicate the solution at equilibrium and cold mixing,

respectively, and hs is sensible enthalpy. Further definitions of the progress variable

using various combinations of weighting factors can be found in the literature [133].

The transport equation of the progress variable reads

∂

∂t
(ρc) +

∂

∂xj
(ρujc) = −∂Jc,j

∂xj
+ ρωc + ρ̇c, (2.36)
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where ρ̇c is the spray source term of the progress variable, which depends on the

definition of c. Then, the Favre filtered form is

∂

∂t
(ρ̄c̃) +

∂

∂xj
(ρ̄ũj c̃) = −∂Jc,j

∂xj
− ∂Jsgs

c,j

∂xj
+ ρ̄ω̃c + ¯̇ρc. (2.37)

It is not straightforward to solve Eqn. 2.37 due to the presence of the filtered

reaction rates ω̃c. The modelling of ω̃c is one of the biggest challenges in turbulent

combustion and briefly reviewed in Sec. 2.6. The progress variable space is also

often chosen as a sample space in a manifold method especially for premixed and

partially premixed flames.

2.4 Scalar Dissipation

Scalar dissipation is an important parameter to describe turbulent flames, since it

is closely correlated with the chemical reaction rate [11]. In LES, the filtered scalar

dissipation rate is given as

Ñ = D

Ñ‚�∂ξ
∂xi

∂ξ

∂xi

é
= Ñres + Ñsgs, (2.38)

where Ñres and Ñsgs are a resolved and subgrid scale scalar dissipation rate. Ñres is

modelled by using the filtered quantities

Ñres = D

(
∂ξ̃

∂xi

∂ξ̃

∂xi

)
. (2.39)

However, the closure of Ñsgs requires some considerations. One methodology is to

solve the transport equation of the mixture fraction variance, ξ̃′′2, with the presence

of the spray source term given by
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∂

∂t

(
ρ̄ξ̃′′2

)
+

∂

∂xj

(
ρ̄ũj ξ̃′′2

)
=

∂

∂xj



Ç
ρ̄D +

µt

Sct

å
∂ξ̃′′2

∂xj


− 2ρ̄Ñsgs︸ ︷︷ ︸

dissipation

+2
µt

Sct

(
∂ξ̃

∂xj

)2

︸ ︷︷ ︸
production

+ σs︸︷︷︸
spray source term

,

(2.40)

and σs is the source term associated with the evaporation process such as

σs = 2ρ̄
(
ξ̃Π− ξ̃‹Π

)
+ ρ̄

(
ξ̃2‹Π−fiξ2Π

)
, (2.41)

where Π is the volumetric expansion rate due to spray evaporation.

In LES, it is common to assume local equilibrium, which is to balance the

production and dissipation terms, so

2ρ̄Ñsgs = 2
µt

Sct

(
∂ξ̃

∂xj

)2

+ σs. (2.42)

If there is no spray source term (single-phase flow), it follows from Eqn. 2.42 that

Ñsgs =
νt
Sct

(
∂ξ̃

∂xj

)2

, (2.43)

where Sct = 0.7. Also, there are a couple of dynamic models to compute the

coefficient [143, 88].

Under two-phase flow conditions with evaporating droplets, extra considerations

are necessary to treat the spray source term. Pera et al. [138] found a significant

contribution of the second RHS-term of Eqn. 2.42 to the balance of Nsgs for all their

investigated cases and suggested a dynamic modelling procedure. This modelling is

not attempted here, but Nsgs is modelled as

Ñsgs = CN
νt
Sct

(
∂ξ̃

∂xj

∂ξ̃

∂xj

)
, (2.44)

where CN is a model coefficient and set to 5.0. The DNS data from [138] justify
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this ad hoc correction by this model coefficient to account for gradient steepening

effects due to evaporation. Another argument for large CN within spray flames is

discussed by Hasse [74]. Considering a transport equation with a source term such

as
∂

∂t
(ρξ) +

∂

∂xj
(ρujξ) =

∂

∂xj

Ç
ρD

∂ξ

∂xj

å
+ Cξ, (2.45)

where the last term on the RHS is the source term assumed to be a linear function

of ξ with C being a constant for the source term. Then, Hasse [74] has shown that

the time scale of the scalar dissipation is the function of the the source term as

CN =
3Cτ

1− exp(−3Cτ)
, (2.46)

where τ is the eddy turnover time scale. Eqn. 2.46 indicates that a source term

(positive C) in the mean transport equation would increase CN .

2.5 Chemical Reaction

The combustion process usually involves a number of elementary reactions. A chem-

ical reaction can generally be represented as

Ns∑

i=1

ν
′

iMi ↔
Ns∑

i=1

ν
′′

i Mi, (2.47)

where Ns is the total number of species (including both reactants and products),

Mi represents the i-th molecule, and ν
′

i and ν
′′

i are the stoichiometric coefficients

of reactants and products, respectively. Then, the reaction rate of the molecule Mi

becomes
dCMi

dt
= (ν

′′

i − ν
′

i)k
Ns∏

i=1

(CMi
)ν

′

i , (2.48)

where CMi
represents the concentration of Mi, and k is the reaction rate constant

modelled by the Arrhenius law as

k = AT bexp

Ç
− Ea

RuT

å
, (2.49)
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where A is the pre-exponential factor, b is the temperature exponent, and Ea is

the activation energy. Reaction mechanisms specifying these values of can be found

elsewhere [171, 72].

Early DNS of reacting flows were only tractable with simple single-step (global)

chemistry [181]. Recently, DNS with simple chemistry became possible with recent

computer developments [30]. However, the combustion of a complex fuel involves

a large number of species and elementary reactions, and it is computationally too

expensive to solve all the reactions [104, 141]. For example, a recent detailed chem-

istry mechanism for a biofuel involves 3012 species and 8820 elementary reactions

[76]. Therefore, reduced mechanisms are often used to minimize the computational

requirements. The reviews of recent developments of a reduced mechanism can be

found elsewhere [108, 55].

2.6 Combustion Modelling

The main challenge of turbulent combustion modelling is to accurately describe

subgrid scale physics. Assuming the Arrhenius law, the reaction rates of species α

is a function of mass fraction of species and temperature such

ωα = f {Y1, Y2, ..., YN , T} . (2.50)

However, in LES and RANS, the reactive scalar fields are represented by filtered

quantities, and exact local solutions of Y and T are not available. Therefore, it is

not straightforward to obtain filtered reaction rates since the correlation is quite

non-linear, as

ω̃α = Â�{Y1, Y2, ..., YNs
, T} 6= f

¶‹Y1, ‹Y2, ..., ‹YNs
, ‹T© . (2.51)

Here, the most common turbulent combustion modelling approaches are briefly re-

viewed. Note that various review papers [149, 141, 104, 145, 13, 181] and books

[55, 28, 140, 146] about turbulent combustion modelling are available.
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2.6.1 Algebraic Models

2.6.1.1 Eddy Break Up Model

One of the first successful turbulent combustion models is the Eddy Break Up (EBU)

Model. EBU assumes that the reaction occurs faster than the rate of mixing of

reacting species, so that the reaction rate is considered to be same as the rate of

scalar dissipation. The filtered reaction rates can then be represented as [140]

ω̃P = CEBU
ǫ

k

…
fiY ′′2
P , (2.52)

where the subscript P indicates a product species, CEBU is the EBU constant, fiY ′′2
P

the variance of the product mass fraction. Eqn. 2.52 can be further simplified to

[28]

ω̃P = CEBU
ǫ

k
‹YP (1− ‹YP ), (2.53)

by modelling
√fiY ′′2

P = ‹YP (1 − ‹YP ) assuming there is no intermediate combustion

state.

2.6.1.2 Eddy Dissipation Model

Later, the Eddy Dissipation Model (EDM) was developed by extending the EBU

concept considering all fuel, oxidizer and products. By EDM, the mean reaction

rate is written as [28]

ω̃F = A
ǫ

k
min

(
‹YF ,

‹YOx

S
,B

‹YP
1 + S

)
, (2.54)

where the subscripts Ox and F refer to oxidizer and fuel, S is the oxygen-fuel

stoichiometric mass ratio, and A and B are model parameters. EBU and EDM are

still used in many CFD software packages due to their simplicity, but it is worth

noting that they can be only used for infinitely fast chemistry unless the chemical

time scales are explicitly taken into account [28]. Note that the terminology of

EDM varies in the literature and there are also EDM variants which account for
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small-scale effects of chemical kinetics.

2.6.2 Low Dimensional Manifold Approaches

Combustion usually is a function of many parameters, but the system can be simpli-

fied by assuming that selected controlling parameters are dominant. Once properties

are characterized by a function of the selected sample spaces variables, filtered quan-

tities can be obtained by integration with a subgrid filtered density function (FDF).

A common choice of a sample space for non-premixed flame analysis is the mixture

fraction, ξ, and a filtered quantity can be calculate as

f̃ =
∫ 1

0
fηP (η)dη, (2.55)

where fη is a scalar, f , conditioned on the sample space of mixture fraction η. It

is also possible to have multiple sample spaces (e.g. mixture fraction and progress

variable) to account for more complex flames such as a partially premixed flame and

stratified flame. Here, a brief review of the low dimensional manifold approaches is

given.

2.6.2.1 The Burke-Schumann and Equilibrium Solutions

The Burke-Schumann solution assumes one step irreversible fast chemistry and

provides piece-wise linear profiles of species and temperature in mixture fraction

space. Also, the profile can be improved by assuming the chemical equilibrium that

is fast but reversible. If the chemical time scales of the major reactions were faster

than the flow time scales, the equilibrium solution can approximate flame condi-

tions. Knowing the limitation of the assumption, equilibrium chemistry can be used

in LES and results in an adequate agreement with experimental data [89].

2.6.2.2 Flamelet Model

The flamelet model assumes a thin flame and characterizes flame properties within

the reaction zone. Transforming the spatial coordinate perpendicular to the flame
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surface to the mixture fraction space, the unsteady laminar flamelet equation can

be derived as [140]

∂Yα
∂t

= N
∂2Yα
∂η2

+ ωα, (2.56)

where N is the scalar dissipation rate. To adapt the flamelet approach to the

LES framework, it is common to solve steady or unsteady flamelet equations and

construct a chemical table (usually in low dimensions). Since a turbulent flame can

be considered as an ensemble of laminar flamelets, integration of the chemical table

with a joint-FDF yields the filtered quantities. For example, for the non-premixed

flow, the chemical table can be a function of ξ and N , and the filtered quantities

can be found as

f̃ =
∫ 1

0

∫ ∞

0
P (η,N)f(η,N)dNdη. (2.57)

The selection of the chemical table parameters can be optimized for the respective

flame configurations.

2.6.2.3 Conditional Moment Closure

The conditional moment closure (CMC) solves a transport equation for the

conditional moments. The CMC equation was derived for single phase reacting

flow assuming unity Lewis number and high Reynolds number as [96]

∂

∂t
Qα + Uη · ∇Qα +

∇ ·
(
ρ̄η ‹Pη

¨
U

′′

Y
′′

α

∣∣∣η
∂)

ρ̄η ‹Pη

= ω̃η,α +Nη
∂2Qα

∂η2
, (2.58)

where Qα is the conditional moment of species α, U
′′

and Y
′′

α are the conditional

fluctuation terms related to the instantaneous velocity and species mass fractions by

U = Uη+U
′′

and Yα = Qα+Y
′′

α , the subscript η indicates the conditionally averaged

properties. Modelling the fluctuation term
¨
U

′′

Y
′′

α

∣∣∣η
∂
by the gradient diffusion model

as
¨
U

′′

Y
′′

α

∣∣∣η
∂
= −Dt∇Qα, Eqn. 2.58 can be re-written in its classical conservative
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form as
∂

∂t
Qα +

1

ρ̄η ‹Pη

∇ ·
î
ρ̄η ‹Pη (UηQα −Dt,η∇Qα)

ó

= ω̃η,α +Nη
∂2Qα

∂η2
+

Qα

ρ̄η ‹Pη

∇ ·
Ä
ρη ‹PηUη

ä
.

(2.59)

As CMC is in the focus of the present thesis, further details and formulations for

two-phase flames are discussed in Chapter 4 and the later chapters.

2.6.2.4 Conditional Source-Term Estimation

Conditional Source-term Estimation (CSE) takes a unique approach to construct

a manifold. Flamelet and CMC provide conditional moments and obtain filtered

quantities as shown in Eqn. 2.55. However, CSE solves for unconditional scalar

transport equations (e.g. Eqns. 2.20 and 2.21) and inversely reconstructs conditional

moments to obtain the conditional chemical reaction rates (see Chapter 4) [167].

Inversion methods are discussed in detail elsewhere [26, 103]. In addition, a brief

history and introduction of CSE is described in [25].

2.6.3 Stochastic Approaches

Another type of the turbulent combustion modelling is the stochastic approach. An

advantage of the stochastic approach is that it is theoretically independent of the

flame configuration such as premixed, non-premixed or partially premixed flame,

whereas a low dimensional manifold approach must consider the type of flame to

choose appropriate reference spaces. Here, brief reviews of stochastic approaches

are given.

2.6.3.1 PDF Method

In the most general case, the PDF method solves for the joint-PDF of the velocity

and scalars. Since it is computationally very expensive to solve the high-dimensional

PDF transport equation, an equivalent set of Langevin equations for notional

(stochastic) particles are solved to construct scalar statistics. Because the notional

particle represents instantaneous local properties, reaction rates can be accurately
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computed. Similarly, the Eulerian stochastic field method solves sets of Eulerian

stochastic fields instead of Lagrangian notional particles. A number of stochastic

Eulerian transport equations are solved and used to construct the subgrid PDF [86].

Extensive reviews of the PDF method can be found elsewhere [147, 75].

2.6.3.2 Multiple Mapping Conditioning

Multiple Mapping Conditioning (MMC) is a new approach first developed by Kli-

menko and Pope [97] that claims to combine advantages of CMC and PDF methods.

MMC reduces the dimensions of the space by considering major and minor spaces

with the minor species fluctuating jointly with the major species. Thus, the sim-

ilarity of CMC and MMC is to describe minor species by major species, as CMC

describes all reactive species by the mixture fraction. At the same time, MMC can

have a higher number of dimensions similarly to PDF methods. In its stochastic

form, the MMC equations are solved by notional particles [185]. A new mixing

model based on a mapping concept has been also proposed [41]. Note that it is also

possible to have a deterministic solution of MMC, but that is inefficient if more than

one major species is chosen. In this case, MMC equations can be solved in Eulerian

space as conventionally done in the CMC framework [183, 184, 49].

2.6.3.3 Linear Eddy Model / One Dimensional Turbulence

The linear eddy model (LEM) describes a turbulent mixing in one-dimensional space.

It assumes that the mixing is fully resolved along a selected alignment of a turbulent

mixing, and the mixing process is modelled by remapping the 1D profile stochasti-

cally. Then, the diffusion and reaction of the re-mapped profiles are computed by

solving one dimensional unsteady species and energy transport equations. Because

each 1D cell is small and fully resolved, the reaction rate can be obtained by the

first order model. LEM has been successfully combined with LES [31]. Similarly,

One Dimensional Turbulence (ODT) performs the 1D mixing on velocity fields that

allows a coupling of momentum and reactive scalars [54].
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2.7 Numerical Approach

The governing equations are solved in Cartesian coordinates by using the in-house

code BOFFIN, that has been used in various simulations of turbulent flows [23, 86,

85]. A finite volume method (FVM) is used to discretize the set of equations. The

mass and the momentum equations are discretized by a central differencing scheme

with a SIMPLE-type predictor-corrector procedure with pressure smoothing, and

cell quantities are stored on the cell centers (co-located). Additionally, the scalar

transport equations are solved by a total variation diminishing (TVD) approach to

avoid over- and undershoots of the solution. Since the implementation of BOFFIN

has been discussed in various previous papers and theses, the reader is referred to

the past work [22, 50, 189] and the manual [83].
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Chapter 3

Liquid Phase Formulation and

Modelling

The scale of liquid fuel droplets occurring in combustion devices tends to be very

small to enhance evaporation, mixing and combustion. Therefore, it is not computa-

tionally feasible to fully resolve every detail of particle behavior. There are multiple

methods to compute the dynamics of a multiphase flow depending on aims and flow

conditions, and governing equations of the liquid phase depend on the model. In

this study, a Lagrangian scheme is applied due to its flexibility to obtain detailed

information of individual particles. This chapter discusses turbulent-spray-reaction

interactions in Sec. 3.1, reviews modelling approaches in Sec. 3.2, and presents the

Lagrangian scheme formulations in Sec. 3.3.

3.1 Backgrounds of Two-Phase Flow Phenomena

The behavior of turbulent flames and droplets are correlated to each other and can-

not be neglected. The presence of the turbulence influences the particle dispersion

profiles and causes so-called preferential concentration. Also, the particle within

turbulent flow can change the turbulent flow structures. In addition, flame profiles

can be characterized by fuel droplet distributions. Here, some aspects of particle-

turbulence and particle-combustion interactions are reviewed. There are various

25
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summary papers available [44, 6, 7, 124].

3.1.1 Preferential Concentration

Dispersion of spray in a turbulent flow results in a high concentration of droplets

where the strain rate is high and the vorticity is low. Such a profile is denoted as

“preferential concentration”, and it becomes apparent when the Stokes number, St,

is of order of unity, which is defined as the ratio of the particle response time to the

fluid time scales. Figure 3.1 shows an example of preferential particle concentration

in isotropic homogeneous turbulence. When the particle time scale is small (e.g.

St = 0.05), the particle distribution seems relatively uniform. However, as St

increases, non-homogeneous structures become apparent within the turbulence field.

(a) St = 0.05 (b) St = 0.1 (c) St = 0.2 (d) St = 0.5

(e) St = 1.0 (f) St = 2.0 (g) St = 5.0 (h) St = 10.0

Figure 3.1: Distributions of particles within isotropic homogeneous turbulence with
different St (Yoshimoto and Goto [192]).

3.1.2 Turbulence Modulation

The presence of droplets may also affect turbulence characteristics. Due to two-way

coupling of momentum between gas-phase and particles, turbulence intensity can be
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attenuated or enhanced depending on the Stokes number [44]. It is also known that

particles introduces small scale motions that influences turbulence spectra [73, 6].

3.1.3 Group Combustion

Flame structures of fuel droplet clouds can vary depending on features of clusters.

Chiu and co-workers [35, 34] considered a spherical droplet cloud in a hot oxidizing

environment and proposed a group combustion model, that determines how droplet

clouds burn based on droplet spacing and the evaporation process. Here, the group

combustion number, G, is introduced as [35]

G = 3
Ä
1 + 0.276Re1/2Sc1/3

ä
Le N

Ç
rl
Rb

å
, (3.1)

where Rb is the radius of droplet clouds, N is the total number of droplets in the

clouds, rl is the radius of the droplet, and G describes the ratio of the evaporation

rate to the fuel diffusion rate. Also, the non-dimensional separation, S, is defined

as [34],

S =
0.05

1 + 0.276Re1/2Sc1/3
. (3.2)

Then, four combustion regimes can be defined (Fig. 3.2) as: 1) single droplet

combustion, 2) internal group combustion, 3) external group combustion and 4)

external sheath combustion. The single droplet combustion causes the individ-

ual droplets in the cloud to burn independently, and an envelope flame is seen

around each droplet. The internal group combustion regime is characterized by

a combustion zone along the outer shell where individual droplets burn, and a

pre-heating zone at the center of the cloud where only pre-evaporation caused by

thermal diffusion occurs. In the external group combustion regime, there are no

more droplets burning individually, but all the droplets evaporate and emit gaseous

fuel, and the flame is located only outside the droplet cloud. The external sheath

combustion regime occurs around very dense particles clouds and in this regime

spray droplets evaporate only at the sheath, while the inner droplets are shielded

and do not even evaporate.
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While the group combustion diagram is instructive to distinguish the various

possible spray combustion modes, it is very complex [33] to apply to the prediction

of spray flames in engineering applications due to the prevalent conditions (e.g.

polydispersion, non-uniform particle distribution, random cluster shape, etc.). Thus,

the group combustion model is rather applied as a post-processing analysis of spray

flames. Recent studies have shown group combustion both experimentally [163,

155] and numerically [128, 193, 93]. Also, the group combustion model has been

analyzed by percolation theory, which describes the propagation of a flame between

the droplets [178].

Figure 3.2: Group combustion regimes (Chiu et al. [34]).
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3.2 Review of Two-Phase Flow Modelling

Approaches

There are different approaches to simulate turbulent spray flames depending on the

physical scale sizes to resolve. This section provides a brief summary of the main

simulation approaches for multiphase flows. More detailed reviews can be found

elsewhere[6, 7, 82] as well.

3.2.1 Fully Resolved Droplet

The most precise approach is to resolve all physical scales down to the droplet size,

boundary layer and flame thickness, which allows to extract detailed statistics and

to validate empirical models (e.g. for evaporation). Imaoka and Sirignano [81, 80]

have studied quasi-steady combustion of droplet arrays. Stauch and Maas [166] have

analyzed the autoignition of a single droplet under laminar convection. Zoby et al.

[194, 193] used a level set method to track the liquid-gas interface of single droplets

and droplet arrays and analyzed mixing and combustion statistics. Also, Duret

et al. [52] have performed a parametric study of mixing statistics with different

gas-liquid volume ratios. Similarly, Shinjo and Umemura [156] have simulated the

atomization of liquid jets by resolving the liquid-gas interface. However, a drawback

of the approach is the computational cost. It is not yet possible to fully resolve a

large number of particles.

3.2.2 Lagrangian Point-Particle Approach

The Lagrangian scheme tracks the properties of each particle, and detailed informa-

tion of particle clouds can be obtained (e.g. preferential dispersion). Also, it is more

flexible than an Eulerian scheme since assumptions such as equilibrium or monodis-

persity are not necessary, and properties of particles do not need to be consistent in

the flow fields. Note that advanced Eulerian models without such assumptions exist,

but the formulation tends to be very complex. Also, a subgrid scale turbulence can
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be modelled stochastically in the Lagrangian scheme. Therefore, the Lagrangian

scheme is used for the present study. This section describes various Lagrangian par-

ticle approaches, and details of the Lagrangian scheme used in this work are given

in Sec. 3.3.

3.2.2.1 DNS-Lagrangian Approach

DNS combined with a Lagrangian approach resolves all scales of the turbulent flow,

but as the droplets may be considerably smaller than the Kolmogorov scale, they

are modelled as point particles. Fessler et al. [56] have performed DNS of dispersing

particles and the development of preferential particle concentrations by different

Stokes numbers. Later, DNS of evaporating fuel droplets have been performed to

examine the mixing of the evaporated fuel [105]. Recent carrier-phase DNS study the

combustion of point particles under various conditions [153, 151, 187, 109, 19]. Since

the turbulent flow is fully resolved, no stochastic modifications to the dispersion and

evaporation models are required.

3.2.2.2 LES-Lagrangian Approach

LES with point particles are used very often to simulate engineering devices [117,

123, 85]. However, the importance of the stochastic dispersion terms in the LES

framework is not fully validated yet. Since LES resolves the dynamics of the large

scale motions and a large portion of the turbulent kinetic energy, subgrid effects

can be relatively small. At the same time, Jones and his coworkers [16, 17, 84,

85] have analyzed the influence of the stochastic dispersion terms and found that

the addition of the stochastic terms influences the flow field. Pozorski and Apte

[150] have compared DNS and post-filtered DNS with typical LES subgrid terms.

They reported that when the subgrid kinetic energy is chosen to recover the kinetic

energy in LES, the subgrid stochastic term is too large to destroy small structures

of preferential concentration, since the model is based on one-point statistics only.

Thus, by including a stochastic model the prediction of particle dispersion statistics

(mean and RMS) can improve, but this does not necessarily mean that the stochastic
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model can reproduce the instantaneous flow field correctly.

3.2.2.3 RANS-Lagrangian Approach

In RANS, stochastic dispersion and evaporation terms are critical, since all turbulent

fluctuations remain unresolved. Thus, several stochastic dispersion models have

been proposed and tested in non-reacting [107, 18] and reacting flows [47, 46]. Since

stochastic models based on the Langevin equations are usually based on one-point

statistics, preferential droplet concentrations (see Sec. 3.1.1) cannot be captured.

Another approach is to solve a Fokker-Plank equation which represents the Eulerian

formulation of the Langevin equation. With the Fokker-Plank equation, the PDF

can be solved and higher moments can be modelled [148, 57].

3.2.3 Eulerian Approach

The Eulerian scheme treats the liquid phase as a continuous fluid medium and

describes particle dispersion by solving additional scalar transport equations.

Therefore, the approach is suited to handle a large number of particles within the

system especially when the particles are small. However, it can be computationally

expensive when polydisperse systems are considered, since transport equations for

different droplet size ranges must be solved [59]. Also, closures of the subgrid terms

in the particle transport equations are not fully established yet, unless an equilib-

rium assumption is used [157, 58]. If the particle response time is very small, the

two-phase fluid might be treated as a single phase flow (the dusty-flow assumption),

the properties of which are adjusted to account for the droplet phase [6, 7]. Ukai et

al. [173] have shown that the dusty-flow assumption works well if the Stokes number

is very small.
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3.3 Lagrangian Approach

3.3.1 Particle Dispersion

The governing equations of the particle trajectories used in this work are given as

[17]

dxp = vpdt, (3.3)

dvp = τ−1
p (u− vp)dt+

√

C0

ksgs
τt
dW , (3.4)

where xp is the position of the particle, u is the local velocity of the gas at the

location of the particle, vp is the velocity of the particle, τp is the particle response

time, C0 is a model coefficient, ksgs is the subgrid kinetic energy, τt is the subgrid

flow time scale, and dW is the increment of a Wiener process. The general form of

Eqn. 3.4 contains other terms on the right hand side to include the effect of pressure

gradient, the Basset term, the Saffman lift and the Magnus lift [114]. For this dilute

study, all these effects are neglected as a first approximation. The particle response

time scale τp is defined as

τ−1
p =

3

8

ρgCd

ρprp
|u− vp|, (3.5)

where rp is the particle radius, ρg is the gas density, ρp is the density of the particle,

and CD is the drag coefficient. The drag coefficient is generally expressed as a

function of the particle Reynolds number, Red =
2rpρ|u−vp|

µ
, where µ is the viscosity

of the gas. Assuming spherical particles, the drag coefficient, CD, is obtained from

empirical relations [43] as

CD =





24
Red

(
1 + 1

6
Re

2/3
d

)
Red < 1000

0.424 Red > 1000
. (3.6)

The second term on the right hand side of Eqn. 3.4 is associated with the subgrid
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fluctuation in LES. Many LES studies in the past have neglected the small scale

fluctuations. However, recent studies have reported the importance of the subgrid

fluctuation terms in LES [16, 17, 150]. Here, the effect of subgrid kinetic energy is

described by a Wiener process. The subgrid flow time scale is given as

τt =
τ 2αpÇ

∆√
ksgs

å2α−1 , (3.7)

where α = 0.8 is recommended [16]. This study uses C0 = 1.0 as originally suggested

[17], but the selection of C0 is still under debate. Pesmazoglou et al. [139] have

compared the effects of different choices of C0, and C0 = 1 is found to agree with

the DNS solution. Also, the same authors have also developed a dynamic model to

locally determine C0 based on the Germano model [65].

3.3.2 Particle Temperature and Size

While particle dispersion models are relatively well established, droplet evaporation

models are still under discussion. Abramzon and Sirignano [2] have proposed an

evaporation model which is commonly used in the spray community[122, 17]. The

temperature and radius of the particles are computed as [122, 17].

dTp =

Ç
NuCpg
3PrgCpl

ñ
Tg − Tp
τp

ô
+
hfg
Cpl

ṁp

mp

å
dt, (3.8)

dmp = −Sh+ Shsgs

3Scg

mp

τp
HMdt, (3.9)

where Tp is the particle temperature, Nu is Nusselt number, Cpg and Cpl are the

specific heat of gas and liquid respectively, Prg is the gas phase Prandtl number,

hfg is the latent heat of evaporation, mp is the particle mass, ṁp is the rate of

evaporation and Scg is the gas phase Schmidt number, Sh is the Sherwood number,

Shsgs is the subgrid Sherwood number, and HM is the convective correction to the

evaporation rate. Shsgs is modelled to account for the turbulent fluctuations and a
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closure is proposed [17] as

Shsgsdt = CV Sc
1/3
G

(
ρg
k1/2sgsD

µg

)1/2

|dWt|1/2τ 3/4p , (3.10)

where CV is a model coefficient, and this study uses CV = 1.0. Jones et al. [84]

have compared the effects of different choices of CV , and CV = 1.0 is found to agree

with experimental results. Derivations of the stochastic terms can also be found in

[14, 17]. There are various empirical methods to approximate Nu, Sh and HM , and

the present study uses correlations proposed by Abramzon and Sirignano [2, 158]

that account for a Falkner-Skan boundary layer solution around the droplets. The

coefficients are given as

Nu = 2 +
Nu∗ − 2

FT

, (3.11)

Sh = 2 +
Sh∗ − 2

FM

, (3.12)

where

Nu∗ = 2 + 0.552Re
1/2
d Pr1/3g , (3.13)

Sh∗ = 2 + 0.552Re
1/2
d Sc1/3g , (3.14)

with the following correlations

FT = (1 +BT )
0.7 ln(1 + BT )

BT

, (3.15)

FM = (1 + BM)0.7
ln(1 + BM)

BM

, (3.16)

where BT and BM are the Spalding number for heat and mass transfer, respectively,

and defined as

BT = (Tg − Td)
Cpvap
hfg

, (3.17)

BM =
Ys − Yg
1− Ys

, (3.18)

where Cpvap is the specific heat of the vapour, Ys and Yg are the mass fractions of
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the vapour at the interface and in the gas phase.

Ys can be found by the Clausius-Clapeyron equation assuming liquid-vapour equi-

librium. It obtains the mole fraction of vapour at the surface, Xs, as a function of

the vapour pressure PG such as

Xs =
Patm

PG

exp

ñ
hfgMWV

R
(T−1

B − T−1
d )

ô
, (3.19)

where TB is the boiling temperature, and PG is found based on empirical correlations

often available in a chemical handbook (for example, acetone properties used in this

study are available in [71]). HM is modelled as

HM = ln(1 + BM). (3.20)

There are also non-equilibrium evaporation models that can improve a prediction

[122, 98, 53, 93]. The transport properties of the fluid near the droplets are usually

evaluated by a one-third rule to estimate a reference temperature and species mass

fraction as

Tr = TS +
1

3
(TG − TS), (3.21)

Yr = YS +
1

3
(YG − YS). (3.22)

However, “one-third” is an empirical choice, and some DNS studies also suggest a

different ratio [193].

3.3.3 Two-Way Coupling

The gas and liquid phases are strongly coupled in multiphase systems. For example,

the turbulence modulation (Sec. 3.1.2) due to particles can be seen in the shape of

turbulence spectra [1], and evaporation of liquid fuel is crucial for spray combustion

systems (Sec. 3.1.3). The source terms in the gas-phase equations are found by

a summation of the effects that individual droplets exert on the gas phase. The

present study applies the concept of computational parcels that consist of multiple
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real droplets with identical characteristics such as position, velocity, temperature

and radius. The spray source terms in Eqns. 2.18 - 2.21 are

¯̇ρ =
1

V

N∑

n=1

np,nṁp,n, (3.23)

¯̇
F =

1

V

N∑

n=1

np,n

Ä
mp,nτ

−1
p (vp − u) + ṁp,nvp

ä
, (3.24)

¯̇Q =
1

V

N∑

n=1

np,n

Ç
mp,n

NuCpg
3Prg

Ç
Tp − Tg
τp

å
+ ṁp,nhv

å
, (3.25)

¯̇ρk =
1

V

N∑

n=1

Yd,αnp,nṁp,n. (3.26)

Here, np,n is the number of particles per parcel, N is the number of total parcels

inside the computational cell, V is the cell volume, hv is the enthalpy carried by

the vapour, and Yd,α is the mass fraction of species α in the vapour. The parcel

concept is applied to simulations of evaporating spray jets in Chapter 6, but not

to simulation of spray flames in Chapters 7-9 due to an instability caused by large

source terms (see Chapter 7).

3.3.4 Numerical Integration

The sets of ODEs (Eqns. 3.3, 3.4, 3.8, 3.9) are integrated by explicit Euler integra-

tion such that

yn+1 = yn + y′n∆t
p, (3.27)

where ∆tp is the time step for the particle tracking. ∆tp is chosen from the smallest

time scales of the system, such as

∆tp = min {Cintτp, Cintτtemp, Cintτmass,∆t} , (3.28)

where τp is the particle response time scale defined in Eqn. 3.5, τtemp is the time scale

of Eqn. 3.8 defined as τtemp =
3PrgCpl
NuCpg

τp, τmass is the time scale of Eqn. 3.9 defined as

τmass =
3Scg
Sh

τp, Cint is the time constant factor for the time scale, and ∆t is the time
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step of the CFD solver. Since this study uses Euler explicit time integration, a small

value, Cint = 0.1, is chosen to avoid overshoots and ensure temporal accuracy, but

this could be relaxed if a higher order scheme were chosen. ∆tp is usually smaller

than a time step of the fluid solver (∆tp < ∆t) especially when the particle size is

small, and therefore multiple sub-integrations are performed within each CFD time

step.
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Chapter 4

Conditional Moment Closure

The conditional moment closure has been established independently by Klimenko

[95] and Bilger [10] based on different derivation approaches [96]. Conditional mo-

ment closure has been developed to model turbulent combustion and validated for

many types of flame configurations. This study aims to apply CMC in spray flames

that require additional modelling. In this chapter, the fundamentals of the CMC

approach are provided, and the formulations of the two-phase CMC equations and

the closures are discussed.

4.1 Fundamentals of CMC

4.1.1 Conditional Reaction Rate

As discussed in Sec. 2.6, the challenge of turbulent combustion is to model the

filtered reaction rates,

ω̃α = Â�f {Y1, Y2, ..., YN , T} 6= f
¶
Ỹ1, Ỹ2, ..., ỸN , T̃

©
. (4.1)

Favre-filtered quantities can be written as

Yα = ‹Yα + Y
′

α, (4.2)

39
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where Y
′

α is the fluctuation around the Favre-averaged quantity. Here, the

conditional moment Qα of species α is defined as

Qα(ξ,x, t) ≡ 〈Yα(x, t)|ξ(x, t) = η〉 , (4.3)

where angular brackets denote the average and the condition is given by the ex-

pression on the right of the vertical bar. Considering a non-premixed flame, the

variable η is the sample space of the random variable ξ (mixture fraction). The

instantaneous unconditional quantity can be related to the conditional quantity as

Yα = Qα(η,x, t) + Y
′′

α , (4.4)

where Y
′′

α is the conditional fluctuation at a certain mixture fraction. Since the

conditional average carries an additional correlation with the mixture fraction,

the conditional fluctuations are a lot smaller than the unconditional fluctuations

(Y
′′

α ≪ Y
′

α). In fact, past experimental studies indicate a decent agreement between

conditionally averaged quantities and experimental samples. Figure 4.1 shows

scatter plots of temperature and species compared to the conditional averages taken

in a non-premixed flame experiment. It shows the clear correlation of temperature

and species mass fraction with the mixture fraction, and the conditional fluctuations

are found to be small. Therefore, a first order approximation is considered to be

sufficient to approximate the conditional reaction rates as

ω̃η,α = f {Q1, Q2, ..., QN , Tη} , (4.5)

where the subscript η indicates the conditional properties.
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Figure 4.1: Scatter plot of the experimental datasets of Sandia flame D at z/D=45
[170]. Solid red lines are the conditional averages of the experimental results.

4.1.2 Conditional Filtering

In the LES formulation, the filter for the conditional moment must be properly

defined [132]. First, define the fine-grained PDF, ψ, as

ψη ≡ δ [η − ξ(x, t)] , (4.6)

where δ indicates Dirac’s delta function. With ψη and the spatial filter kernel defined

for LES, G (in Sec. 2.2.1), the spatially filtered conditional moment of a scalar Φ

can be defined by

Φη =

∫
Ω ΦψηG(r)dr

P(η)
(4.7)

with a filtered PDF given by

P(η) =
∫

Ω
ψηG(r)dr. (4.8)

As in LES, Favre-filtering is applied to the conditional quantities as

‹Φη =
〈ρΦ|η〉
ρ

. (4.9)

The unconditionally filtered mass fraction is given by integration across mixture
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fraction space

‹Φ =
∫ ‹Φη

‹P (η)dη. (4.10)

The functional dependence on space and time is dropped here for convenience of

notation, and ‹P (η) = ‹Pη is the filtered conditional probability density function.

4.2 Two-Phase CMC Equations

Mortensen and Bilger [126] have developed a mathematically rigorous form of the

CMC equations in two-phase flow. Based on a two-fluid model [87], gas and liquid

phases are treated separately with interface conditions, and the CMC equation for

liquid fuel combustion is derived as

∂

∂t
Qα +

1

ρ̄η ‹Pη

∇ ·
î
ρ̄η ‹Pη (UηQα −Dt,η∇Qα)

ó
= ω̃η,α +Nη

∂2Qα

∂η2

+
Qα

ρ̄η ‹Pη

∇ ·
Ä
ρη ‹PηUη

ä
+

ñ
Q1,α −Qα − (1− η)

∂

∂η
Qα

ô
Πη

− 1

ρ̄η ‹Pη

∂

∂η

Ä
(1− η)ρ̄η ‹Pη 〈Y ′′

αΠ
′′ | η〉

ä
.

(4.11)

Here, subscript ‘1’ denotes the conditions in the liquid fuel, Π is the volumetric

fuel evaporation rate, N is the scalar dissipation, ω̃α is the chemical source term of

species α that can be closed by a first order approximation, and subscript η denotes

the conditioned value at ξ = η. Also, the conditionally averaged enthalpy equation

is

∂

∂t
Qh +

1

ρ̄η ‹Pη

∇ ·
î
ρ̄η ‹Pη (UηQh −Dt,η∇Qh)

ó
= Nη

∂2Qh

∂η2

+
Qh

ρ̄η ‹Pη

∇ ·
Ä
ρη ‹PηUη

ä
+ erad,η +

ñ
Q1,h −Qh − (1− η)

∂

∂η
Qh

ô
Πη

+Ψη −
1

ρ̄η ‹Pη

∂

∂η

Ä
(1− η)ρ̄η ‹Pη 〈h′′Π′′ | η〉

ä
,

(4.12)

where Le = 1 has been assumed, Qh is the conditionally averaged enthalpy, and

erad,η is the radiation heat loss that is modelled assuming an optically thin flame.

Ψη is the energy transfer term between spray and gas phase. As in earlier CMC
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spray studies, 〈Y ′′
αΠ

′′ | η〉 and 〈h′′Π′′ | η〉 are assumed to be small and negligible [20]

in the present study.

4.3 Closures

4.3.1 Conditional Velocity

The conditional properties Uη and Dt,η are necessary to solve Eqns. 4.11 and 4.12.

Various closures have been developed to model these conditional quantities. One of

the simplest methods is a linear approximation given as [96, 127]

Uη ≈ ‹U +
U

′′

ξ
′′

ξ̃′′2

Ä
η − ξ̃

ä
, (4.13)

and it is assumed to be accurate when
∣∣∣η − ξ̃

∣∣∣ is small. Another common model is

a gradient model [42] described by

Uη ≈ ‹U − Dt

‹P (η)∇P (η). (4.14)

The gradient model is considerably better than the linear model since the linear

model can only satisfy first moments whereas the gradient model is consistent in

first and second moments [125]. In practice, both linear and gradient models are

used in many computations. Earlier studies tested both models and reported that

no significant difference is found [39, 40, 164]. Also, conditional averages can be es-

tablished by taking samples from CFD cells since a CMC cell consists of a number of

CFD cells, ∆CMC ≫ ∆CFD (see Sec. 4.4.1). Therefore, sampling can be performed

to construct the conditional velocity as [132]

Uη ≈
¨‹U
∣∣∣ξ̃ = η

∂
. (4.15)
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Similarly, the conditional turbulent diffusivity is modeled as

Dt,η ≈
¨
D̃t

∣∣∣ξ̃ = η
∂
. (4.16)

This thesis uses this sampling process to construct conditionally averaged quantities.

4.3.2 Conditional Scalar Dissipation

There are sets of standard models for conditional scalar dissipation. The amplitude

mapping closure (AMC) [134] is one of the most common approaches. AMC specifies

a profile of Nη over mixture fraction space, and an amplitude is selected to recover

a scalar dissipation rate at a reference point. AMC is given as

Nη = N0exp
(
−2
î
erf−1 (2η − 1)

ó2)
, (4.17)

where N0 is the scaling parameter chosen as

N0 =
Ñ

∫ 1
0
‹P (η)exp Ä−2 [erf−1 (2η − 1)]2

ä
dη
. (4.18)

A drawback is that the model assumes the presence of unmixed fluid, so AMC might

not be strictly applicable in the mixing region of a complex system. However, it is

often used due to its simplicity. Girimaji’s model [68] is given as [164]

Nη = −2Ñ
ξ̃(1− ξ̃)

ξ̃′′2

I(η)
‹P (η) , (4.19)

where

I(η) =
∫ η

0

ß
ξ̃(ln η

′ − filn ξ + (1− ξ̃)
ï
ln(1− η

′

)− ‰�ln(1− ξ)
ò
)
™ ‹P (η′

)(η − η
′

)dη
′

.

(4.20)

Girimaji’s model assumes a homogeneous flow, so that it might not be valid for

strong shear layers. Kronenburg et al. [100] have proposed a PDF transport equa-

tion model that does not require assumptions used in AMC and Girimaji’s model.
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Assuming high-Reynolds number flow, the PDF transport equations can be written

as [100]
∂ρηPη

∂t
+∇ · (〈ρU |η〉Pη) +

∂

∂η2
(〈ρN |η〉Pη) = 0. (4.21)

Depending on the flow configuration, a spatial averaging process can be carried

out to simplify Eqn. 4.21. Assuming local self-similarity, steady-state and small

conditional fluctuations of Uη (Uη ≈ ũ), Eqn. 4.21 can be rewritten as

¶
ρNη

‹Pη

©
R
=

∂

∂x

®
ρũ
∫ 1

η

‹Pη(η
′

, r)(η − η
′

)dη
′

´
R

, (4.22)

where { }R denotes averaging in radial direction. Even though this approach does

not rely on assumptions used for the AMC and Girimaji’s model, it can be com-

putationally expensive if a robust solution procedure that involves a coordinate

transformation and double integration is employed [100]. A comparison of AMC,

Girimaji’s model and a PDF transport equation model has been carried by Sreed-

hara et al. [164]. Even though some differences between models are observed, it is

difficult to argue superiority of one of the models. A more general form including

unsteadiness and conditional velocity fluctuations was developed by Devaud et al.

[48]. Assuming Eqn. 4.13, Eqn. 4.21 can be rewritten as [48],

‹PηNη = −1

ρ




∂ρĨ1(η)

∂t
+∇ ·

Ñ
ρ‹UĨ1(η) +ρU

′′

ξ
′′

ξ̃′′2
Ĩ2(η)

é

 , (4.23)

where

Ĩn(η) =
∫ 1

η
(η

′ − η)(η
′ − ξ̃)n−1‹P (η′

)dη
′

, n = 1, 2. (4.24)

The new PDF transport equation model and its derivation with a coupling with

the gradient model (Eqn. 4.14) are analyzed and compared to AMC and Girimaji’s

model for a lifted jet flame in [120, 24].

Even though the PDF transport equation model may improve the prediction of

Nη, it still is restricted by the models for conditional velocity. Also, the integration

of the probability can be computationally expensive in LES. Therefore, this study
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uses the sampling from LES cells by assuming that ∆CMC ≫ ∆LES [132] as

Nη ≈
¨
Ñ
∣∣∣ξ̃ = η

∂
. (4.25)

4.3.3 Conditional Spray Source

The two-phase CMC equations introduce extra spray terms appearing as

ñ
Q1,α −Qα − (1− η)

∂

∂η
Qα

ô
Πη. (4.26)

in Eqn. 4.11. A major difficulty of this term is the selection of a mixture fraction for

conditioning, and there are two major approaches: the microscopic and macroscopic

approach. The microscopic approach models the small scale physics around individ-

ual droplets. The droplet evaporation physically occurs at the surface condition, so

the mixture fraction at the surface, ξsurf is selected for conditioning, and Borghesi

et al. [20] have modelled the conditional evaporation term as

Πη =
‹Πδ(η − ξsurf )

‹P (η) . (4.27)

This approach requires subsequent models for the probability 〈N |ξsurf〉 and scalar

dissipation rate on a droplet surface ‹P (ξsurf ). Moreover, the microscopic approach

requires proper models for ξ̃ and ξsurf since ξsurf tends to be a lot larger than ξ̃, and

it is usually possible only under a certain flow condition such as steady stationary

condition as demonstrated in the Appendix A.2. Under a fully resolved droplet

simulation, the microscopic approach would be appropriate, and no extra subgrid

modelling associated with droplets would be necessary. However, it would be difficult

to apply the microscopic approach with a Lagrangian tracking approach where the

microstructures around droplets are empirically modelled. Therefore, this study

chooses the macroscopic approach that models the spray source terms based on the

filtered quantities. Assuming a droplet diameter is a lot smaller than an LES cell

size, the scalar dissipation rate near the droplet surface is a lot larger than the scalar
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dissipation rate at the filtered mean due to the large gradient (see. Appendix A.2).

Therefore, the effects of the spray evaporation source terms are rapidly transferred

from ξsurf to ξ̃. Thus, the conditional spray evaporation term is modelled as

Πη =
‹Πδ(η − ξ̃)
‹P (η) , (4.28)

and similarly the conditional heat transfer term is

Ψη =
‹Ψδ(η − ξ̃)
‹P (η) , (4.29)

where the unconditional quantities are

‹Π =
1

ρ̄V

N∑

n=1

ṁp,n, (4.30)

‹Ψ =
1

ρ̄V

N∑

n=1

mp,n
NuCpg
3Prg

Ç
Tp − Tg
τp

å
. (4.31)

Here, Nu is the Nusselt number, Cpg is the specific heat of the gas, Prg is the gas

phase Prandtl number, and Tp and Tg are the temperatures of the droplet and the

gas phase, respectively. More discussion of the conditional spray source terms is

given in Sec. 7.1.4. A detailed discussion of micro- against macroscopic approaches

is given in Appendix A with examples.

4.3.4 Heat Radiation

Radiation is often neglected in turbulent combustion models, but it is well known to

cause noticeable differences in the flame temperature profiles. It is common to follow

an optically thin medium assumption in single phase flow, and a computationally

cheap radiation model is well established [9, 170]. In case of solid fuel combustion

(e.g. coal), the effect of radiation interactions are very strong, and the optically

thin assumption is not usually valid [162]. Regarding the spray flame, Watanabe et

al. [188] tested a radiation model based on the discrete ordinate method and found

that radiative heat transfer between gaseous phase and liquid fuels to be negligible.
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Thus, this study utilizes the optically thin radiation model. In the conditionally

averaged form, the radiation model is

erad,η = 4σB
Ä
T 4
η − T 4

0

ä∑
i=1

(Pi ap,i), (4.32)

where Pi is the partial pressure of the i-th radiating species, ap,i is the Planck mean

absorption coefficient of the i-th species, σB is the Stefan-Boltzmann constant and

T0 is the background temperature. The radiating species are chosen as CO2, H2O,

CO and CH4, and the coefficients are available in [9, 170].

4.3.5 Subgrid FDF

Once conditional moments are obtained by solving their transport equations, the

LES-filtered quantity is obtained by integrating over the filtered density function.

For example, the LES-filtered species mass fraction is computed as

‹Yα =
∫
Qη
‹P (η)dη. (4.33)

Here, the subgrid scale FDF ‹P (η) must be modelled appropriately. Since it is

computationally very expensive to obtain the subgrid FDF in each LES cell, an

assumed form is often utilized. Usually, an assumed FDF requires two inputs, the

mean and the variance of the distribution. Even though the mean of the mixture

fraction is easily obtained by solving the transport equation, the variance of the

mixture fraction, ξ̃′′2, requires extra modelling. In RANS, ξ̃′′2 is often obtained by

solving its transport equation of ξ̃′′2 (cf. Eqn. 2.40). In the LES study, ξ̃′′2 is often

modelled by the local gradient of the resolved mixture fraction as

fiξ′′2sgs = Cξ∆
2

(
∂ξ̃

∂xi

∂ξ̃

∂xi

)
. (4.34)

where Cξ = 0.1 [132]. Comparisons of the local gradient model and the transport

equations with three different spray source term closures are performed in Appendix

A, but due to the uncertainty of the spray source term closures, this study chooses
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the local gradient model.

For the case of binary mixing of a passive scalar, the β-FDF is known to represent

the FDF well [67, 121, 57]. The β-FDF can be written as

P (η) = f(η; s, t) =
Γ(s+ t)

Γ(s)Γ(t)
ηs−1(1− η)t−1, (4.35)

where Γ is the gamma function, and s and t are the shape factors given as functions

of mean and variance of the mixture fraction,

s = ξ̃


 ξ̃
Ä
1− ξ̃

ä

ξ̃′′2
− 1


 , (4.36)

t = (1− ξ̃)


 ξ̃
Ä
1− ξ̃

ä

ξ̃′′2
− 1


 . (4.37)

However, strictly speaking, the conventional β-FDF is only valid if the unmixed

properties (or initial state) is bounded by 0 and 1. If the scalar has a source or

sink term (e.g. evaporation or condensation), the bounds may change. Therefore,

to ensure validity of the FDF modelling approach, a bounded β-FDF is introduced

as

P (η) = f(η; p, q, ξLL, ξUL) =
Γ(p+ q)

Γ(p)Γ(q)

(η − ξLL)
p−1(ξUL − η)q−1

(ξUL − ξLL)p+q−1
, (4.38)

where ξLL and ξUL are the lower and upper bounds of the FDF, and p and q are

shape parameters for the bounded β-FDF constructed as

p =
ξ̃ − ξLL
ξUL − ξLL



Ä
ξ̃ − ξLL

ä Ä
ξUL − ξ̃

ä

ξ̃′′2
− 1


 , (4.39)

q =
ξUL − ξ̃

ξUL − ξLL



Ä
ξ̃ − ξLL

ä Ä
ξUL − ξ̃

ä

ξ̃′′2
− 1


 . (4.40)

Chapter 8 proposes a new modelling approach of ξUL in two-phase flows, and ξLL in

this thesis is kept as zero.
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4.4 Numerical Approach

The conservative form of the two-phase CMC equations (Eqns. 4.11 and 4.12) are

discretized using the finite volume method. The numerical schemes are presented

elsewhere [39, 182, 159, 160] and adapted without major modifications. Here, a brief

description of the numerical approach is given.

4.4.1 Computational Grid

Since the CMC equation is solved using one additional independent scalar, (e.g.

mixture fraction space), the dimensionality of the problem is higher, and it is not

computationally tractable to have a CMC cell as small as an LES cell. Therefore,

a large CMC grid is constructed over ensembles of LES cells as shown in Fig. 4.2,

and conditional quantities are assumed to be homogeneous within a CMC cell.

CMC cell

LES cell

Figure 4.2: Diagram of CMC and LES cells. Thick lines indicate CMC cell
boundaries, and thin lines represent LES cell boundaries.

4.4.2 Discretization

The finite volume method solves for the transport equation with the volume inte-

gration. The Gauss’s divergence theorem is applied to transform divergence terms
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into the surface integration that can be represented as the surface area and the flux.

A section of the CMC cell (Fig. 4.3) is shown as an example for the discretization

in 2D space, and the discretization of Eqn. 4.11 is given as

∂

∂t

Ä
γQαV

ä
P

+γeAe

Ç
ũηQα −Dt,η

∂Qα

∂x

å

e

− γwAw

Ç
ũηQα −Dt,η

∂Qα

∂x

å

w

+γnAn

Ç
ṽηQα −Dt,η

∂Qα

∂y

å

n

− γsAs

Ç
ṽηQα −Dt,η

∂Qα

∂y

å

s

= γV

Ç
‹wα,η + Ñη

∂2Qα

∂η2
+

ñ
Q1,α −Qα − (1− η)

∂

∂η
Qα

ô
Πη

å

P

+Qα,P ((γũηA)e − (γũηA)w + (γṽηA)n − (γṽηA)s).

(4.41)

where, γ is the density weighted FDF, γ ≡ ρηPη, A and V is the face area and

the volume of the CMC cell, respectively, and subscripts e, w, n and s denote the

conditions of faces at the CMC cell P .

Figure 4.3: Discretization of CMC cells in space [39].

The scalar dissipation is discretized by a standard finite difference method (FDM)

in mixture fraction space. The discretization approaches of the spray source terms
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are given as

ñ
Q1,α −Qα − (1− η)

∂

∂η
Qα

ô
Πη =

ñ
Q1,α −Qα − (1− η)

Qα (η)−Qα (η
∗)

η − η∗

ô
Π

1 +∆Π

δ(η − ξ̃)

P (η)
,

(4.42)

where ∆Π is the volume of fuel evaporated within a time step, ∆t, given as ∆Π =

∆t·Π and η∗ is the pseudo-mixture fraction before the evaporation step and found as

η∗ = η(1+∆Π)−∆Π. Detailed derivations of the discretization of the spray source

term is given in Appendix B. Readers may find further details on the numerical

scheme employed in past theses [39, 182, 159].



Chapter 5

Target Flame Configurations

Experimental datasets lay the foundation for the validation of numerical mod-

els. The workshop series on turbulent non-premixed flames (TNF), for example,

has established a culture for worldwide collaboration between many numerical and

experimental groups which led to high quality databases of well-defined turbulent

flames (e.g. the Sandia flame series) and has set the grounds for model validation

and comparison which is almost unique for the community. In a similar vein, a

new workshop called “Workshop on Measurement and Computation of Turbulent

Spray Combustion” (TCS) has been established in 2009. In TCS 2, spray flame

experiments were reviewed and summarized (also seen in [82]), and a series of spray

flame studies performed by Masri and Gounder [69, 113] were chosen to be refer-

ence cases to test numerical approaches. They have conducted experiments for a

series of acetone evaporating jets, acetone spray flames and ethanol spray flames

by changing jet velocity and the amount of fuel, and prepared datasets available to

researchers for model development and validation. This chapter briefly introduces

the experimental configurations, and selected cases are used for validation of the

proposed new models. Detailed information on the experiments can be found in

[113, 69, 118, 70, 82]

53
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5.1 Burner Configuration

Figure 5.1 shows the setup and configuration of the burner. An ultrasonic nebulizer

is used to atomize the liquid fuel upstream of the jet inlet. The nozzle diameter, D,

is 10.5 mm, the outer annulus diameter of the piloted flow is 25 mm, and the co-flow

diameter is 104 mm. Parametric studies of bulk velocities and spray mass flow rates

were conducted in the experiments. The bulk velocity of the pilot is 4.5 m/s for a

non-reacting jet and 11.9 m/s for a reacting flame, and the bulk velocity of the co-

flow is 4.5 m/s for both reacting and non-reacting flows. Acetone spray is generated

upstream of the nozzle exit, so that a certain portion of the spray evaporates before

reaching the nozzle exit.

Mean temperature profiles were measured by an R-Type thermocouple. The

spray velocities were obtained by phase-Doppler anemometry (PDA) at different

cross sections. Also, laser induced fluorescence (LIF) was used to take images of

acetone and OH. Typical measurement uncertainties that can be associated with

these techniques are of the order of 10% for the temperature measurements, and 6%

and 15% for the velocity measurements of mean and rms, respectively [112].

5.2 Selection of Target Cases

Masri and Gounder [113] have performed a parametric study of non-reacting spray

jets (the SP series) and reacting acetone spray flames (the AcF series) by changing

the gas and liquid flow rates, and the diagram of the parametric study is shown in

Fig. 5.2. This study selects some cases as target experiments and performs numerical

analysis. First, the LES and the spray modelling introduced in Chapters 2 and 3 are

tested based on SP 4 in Chapter 6. Then, simulations of acetone spray flames are

carried out to test different CMC approaches in Chapters 7 - 9. Since the present

CMC is an extension of a mixture fraction based approach for non-premixed gaseous

flames, the flame shall burn largely in non-premixed mode which excludes flames

with pre-evaporation leading to a gaseous mixture being close to stoichiometric at

the nozzle exit. Therefore, the study considers the four cases, AcF 1, AcF 2, AcF 3
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Figure 5.1: Schematics of the spray burner inlet [118].

and AcF 5. The inflow gas velocity and liquid fuel flow rates of the selected cases are

listed in Table 5.1. Since the maximum mixture fraction within the domain changes

dynamically due to the evaporation, the mixture fraction is scaled such that it is

unity for pure fuel mixtures. Thus, the mixture fraction of the jet fuel is simply

taken as

ξjet =
ṁvf

ṁvf + ṁair

, (5.1)
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where ṁvf and ṁair are the mass flow rate of fuel vapour and air, respectively. The

mixture fraction of the pilot is ξpilot = 0.0858, and ξjet of each case is listed in Table

5.1.

Figure 5.2: Diagrams for the parameters for the acetone flame cases (AcF series)
taken from [70]. The lines indicate the blowoff limits. Conditions are identical for
the evaporating spray jet case (SP series).

Table 5.1: Parameters of an evaporating spray jet (SP) and reacting acetone flames
(AcF).

SP 4 AcF 1 AcF 2 AcF 3 AcF 5
Bulk velocity (m/s) 24 24 36 24 48
Carrier mass flow rate (g/min) 150 150 225 150 301
Liquid fuel injection rate (g/min) 23.4 75 75 45 75
Measured liquid fuel rate at inlet (g/min) 10.6 18.0 23.9 15.9 27.8
Vapour fuel rate at inlet (g/min) 12.8 57.0 51.1 29.1 47.2
ξjet - 0.275 0.185 0.162 0.136

5.3 Numerical Configurations and Setups

Mean and fluctuation of the axial velocity at the nozzle exit were measured in the

experiments, and the mean inflow velocity profiles for LES are generated based on

it. The digital filtering technique developed by Klein et al. [94] is used to generate
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inflow turbulence. More detailed investigations of inflow turbulence generators can

be found elsewhere [51]. The temperature of the jet was not measured in the exper-

iments, so that 293 K is used as proposed in [69]. Since the particle statistics are

measured at z/D = 0.3, the particles are inserted into the numerical domain at this

location using the measured size and velocity distribution.

For the non-reacting study (Chapter 6), the numerical domain is taken to be a

rectangular box with 20D×20D×50D, and 82×82×252 LES cells are used with grid

clustering close to the jet nozzle. To reduce the computational cost of the particle

tracking scheme, computational parcels representing 20 spray particles are used. A

slip-wall BC is used at the side, and a zero-gradient BC is applied at the outflow

boundary. Then, the reacting spray flame simulations conducted in Chapters 7 - 9

use a diverging domain with 40D in axial direction and 10D×10D at the inlet cross

section to cluster more grid points near the jet inlet. In Chapter 7, 96×96×240 LES

cells and 3× 3× 40 CMC cells are applied. The two-conditional moment approach

developed in Chapter 8 focuses on the effects of evaporated vapour on conditional

moments, so that finer CMC grids are applied. Thus, 90 × 90 × 240 LES cells and

15 × 15 × 40 CMC cells are used. Note that the LES grid size is slightly modified

to adjust the CMC cell distribution. CMC with tabulated chemistry in Chapter

9 uses 90 × 90 × 240 LES cells 3 × 3 × 16 and CMC cells. The coarse CMC grid

resolution is applied since the memory and computational loads of the employed

two-dimensional tabulated chemistry is large. In the analysis of reacting flows, the

computational parcel approach is not applied to avoid large source terms and to

keep the computation stable.

The properties of acetone are adapted from [71]. There are several acetone mech-

anisms available in past studies. Chong and Hochgreb [36] have extended GRI 3.0

by additional acetone sub-mechanisms, and it consists of 38 species and 224 reac-

tions. Pichon et al. [142] have developed another acetone mechanism based on

the dimethyl ether mechanism, and it involves 81 species and 419 reactions. Note

that this thesis assumes N2 to stay inert to reduce computational requirements, so

both mechanisms are reduced from the original sets by removing nitrogen related
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reactions. Both mechanisms are compared, but no significant difference could be

observed under the condition discussed in Chapter 7. Thus, Chong’s mechanism is

preferred because the number of species and reactions are lower, and it is applied to

simulations presented in Chapters 7 and 8. However, in Chapter 9, Chong’s mecha-

nism causes some instabilities when computing the equilibrium solution needed for

the construction of the tabulated chemistry, so that Pichon’s mechanism is used

instead. The computational considerations are summarized in Table 5.2.

Table 5.2: Grid size and chemistry used in each methodology.
LES grid CMC grid Parcel size Chem. Mech.

Chapter 6 82× 82× 252 - 20 -
Chapter 7 96× 96× 240 3× 3× 40 1 Chong
Chapter 8 90× 90× 240 15× 15× 40 1 Chong
Chapter 9 90× 90× 240 3× 3× 16 1 Pichon



Chapter 6

Evaporating Spray Jet

The scope of this chapter is to analyze the behavior of the non-reacting evaporating

spray jets that is essential for the understanding of spray combustion. Experiments

of evaporating spray jets of acetone have been conducted [32], and numerical studies

based on the configuration were successfully performed with the combination of

LES and the Lagrangian particle tracking approach with stochastic dispersion and

evaporation models [17]. However, these studies lack the direct link to reacting flows.

A series of non-reacting and reacting spray jets was performed with well defined

boundary conditions [69, 113]. One of the non-reacting cases from the database

is chosen to test LES and a Lagrangian approach with and without the stochastic

particle models developed by Bini and Jones [17] to establish a baseline analysis of

non-reacting two-phase flows [174].

6.1 Numerical Modelling Approach

This evaporation study is to validate the LES-particle interactions. Mass, momen-

tum, fuel species and enthalpy transport equations are solved simultaneously (see

Eqn. 2.18-2.21). A Lagrangian approach is used to solve spray dispersion and evap-

oration (cf. Eqns. 3.3, 3.4, 3.8 and 3.9). The effects of the stochastic terms in Eqns.

3.4 and 3.9 are also examined. The simulation is based on one of the acetone evapo-

rating spray jet experimental cases, SP 4, and the conditions are given in Table 5.1.

59
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Also, numerical configurations are summarized in 5.3

6.2 Results and Discussion

Two different simulations have been performed: in Case 1 the Lagrangian particles

are not subject to any turbulent (stochastic) subgrid effects on transport and evap-

oration. They move deterministically following the instantaneous, filtered velocity

vectors interpolated on the particle location. In Case 2, a Lagrangian particle track-

ing method with additional stochastic motion and evaporation terms are employed

[17]. Then, the effects of the stochastic model on particle distributions and evapo-

ration can be examined for the present flow configuration.

First, an instantaneous profile of gas flow and particle distributions is shown in

Fig. 6.1. Liquid particles initially stay near the center of the jet, but after the jet

breakup, turbulent eddy motion causes the dispersion of particles in radial direction.

Figure 6.1: Instantaneous snapshot of the gas axial velocity (color contour), and the
liquid droplets (black dots) from Case 1.
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6.2.1 Mean Velocity Profiles

Since the relative motion between particle and gas phase strongly depends on the

particle response time given by Eqn. 3.5, the different particle statistics are based on

the particle diameter, D. Here, five particle size classes are defined as Class 1 with

D < 10µm, Class 2 with 10 µm < D < 20 µm, Class 3 with 20 µm < D < 30 µm,

Class 4 with 30 µm < D < 40 µm and Class 5 with 40 µm < D < 50 µm. The

effect of the particle diameter on droplet velocity is clearly observed in Fig. 6.2.
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Figure 6.2: Comparisons of computations (Case 1) and experiments of the axial
velocities of different particle size classes along the centerline. Lines represent results
from the simulations with different particle size classes, and symbols represent the
experimental results of each corresponding class.

The initial axial velocities of each size class are different. The mean axial velocity

of Class 1 is about 31m/s, whereas it is for Class 5 only 29m/s. After the jet breaks

up at around z/D = 5, the small particles decelerate more rapidly following the gas

flow, while the larger particles (Classes 4 and 5) conserve their larger axial velocities

due to their inertia. The mean velocities of Classes 1-3 do not vary significantly

since their particle response times are small enough for the particles to follow the

spreading of the jet and the accompanying decay of the axial gas velocity. Overall,

the numerical predictions match the experimental results for all classes quite well,

and particle dispersion can be modelled reasonably well using LES even without

subgrid-scale models as will be quantified now. The turbulent eddies have strong

effects on the radial dispersion of the particles. Here, the numerical predictions and

experimental results are compared in two planes, at z/D = 10 and z/D = 20, and
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the effect of the stochastic models is explicitly examined. The mean axial and radial

velocity profiles are presented in Fig. 6.3. The mean axial velocities of the numerical

and experimental results agree very well in both planes. The mean radial velocity

profiles tend to be underpredicted but predictions are still very good. The effects of

the stochastic models (Case 2) on the axial and radial mean profiles are found to be

small.
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Figure 6.3: Comparisons of numerical predictions and experimental results for the
axial velocity, W , (right half) and the radial velocity, V , (left half). Green dots
represent computed particle velocities from Case 1, and all statistics are based on
particle size Class 2.

6.2.2 RMS Velocity Profiles

The root mean square (rms) profiles of the axial and radial velocities at different

cross sections are presented in Fig. 6.4. At z/D = 10, the rms of the axial velocities

closely follows the experimental data. However, at z/D = 20, the numerical results

predict 10 % to 20 % smaller values than observed in the experiments. The rms of

the radial velocity shows the correct qualitative behavior, but the numerical study

underpredicts the measured magnitude by about 20 %. However, more importantly,

the effects of subgrid scale models are not very prominent and do affect neither

the predictions of mean velocities nor their rms. One of the reasons may be the

relatively low jet exit Reynolds number of the jet investigated here.
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Figure 6.4: Comparisons of numerical predictions and experimental results for the
rms of axial (right half) and radial velocities (left half). All statistics are based on
particle size Class 2.

6.2.3 Evaporation Rates

In addition to spray dispersion, the evaporation rates are an important parameter

for spray combustion. The flow rate of the liquid phase is a good indicator for

the evaporation rate, and computed and measured liquid volume flow rates are

compared in Fig. 6.5 as functions of the axial distance from the nozzle. Rapid

evaporation is found right after the injection, and the flow rate decreases linearly

in axial direction. It is notable that now the subgrid scale seems to affect the

evaporation rate. This is in contrast to the droplet motion that was only weakly

affected by the introduction of the stochastic model. With respect to the evaporation

rates, however, the subgrid effects cause larger evaporation rates since the subgrid

term is always positive (Shsgs ≥ 0 from Eqn. 3.10). This is consistent with the

finding of [17] for a similar evaporation study.

6.3 Summary

The current study has examined the evaporating spray jet by LES and a Lagrangian

tracking scheme with a stochastic subgrid model. Two numerical simulations, a

Lagrangian model with and without stochastic subgrid scale closure have been com-

pared with the experimental results. The numerical studies recover the mean axial
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Figure 6.5: Comparisons of the liquid flow rates of simulations and experiments.

velocity profile in axial and radial directions. Also, the rms profiles of axial velocity

are well predicted. However, the mean and rms profiles of the radial velocities are

underpredicted by about 20 %. Effects of subgrid scales on velocity statistics are

not very important, probably due to the moderate turbulence levels of the spray jet

investigated here. This chapter indicates that the basic LES and spray modelling ap-

proach is valid. From the next chapter, CMC is added in the modelling methodology

to simulate turbulent spray flames.



Chapter 7

Turbulent Spray Flame with

Conventional CMC

As discussed earlier in Chapter 1, turbulent spray combustion involves a very wide

range of physical scales. Chapter 6 shows that the numerical predictions of evapo-

ration spray jets agree well with experimental results. This chapter further extends

the analysis into turbulent spray flames, and performs the LES-CMC with the spray

source term for the first time [175]. The modelling of the conditionally averaged

evaporation terms in the CMC species and enthalpy equations are examined, and

improved closures are suggested to ensure consistency with the LES-filtered values.

Also, the treatment of the boundaries in mixture fraction space is investigated. Af-

ter the justifications of the modelling approach, a simulation of a turbulent spray

flame (AcF 3 in Table 5.1) is conducted, and the results are compared with the

experiments.

7.1 Two-Phase LES-CMC

7.1.1 Formulations

In the LES context, the mass, momentum and mixture fraction transport equations

are solved (Eqns. 2.18, 2.19 and 2.31). The Lagrangian method is used to com-

65
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pute the droplet behavior. To reduce the complexity, the stochastic dispersion and

evaporation model is not used unless noted (except for the analysis in Sec. 7.2.3)

The CMC equations with spray source terms (Eqns. 4.11 and 4.12) are solved, and

closures of the spray source term follows Eqns. 4.28 and 4.29.

7.1.2 Definition of Mixture Fraction

It is necessary to define the upper bound of mixture fraction to solve the CMC

equations. Usually, mixture fraction is defined to be unity in the fuel mixture and

zero in the oxidizer stream. The boundary conditions in the mixture fraction space

can then easily be defined at these bounds, and they do not vary with time. The

definition is valid only because mixture fraction is strictly conserved and cannot

increase above one anywhere in the computational domain. In spray flames with

pre-vapor, however, mixture fraction can be locally higher than the jet condition

due to the evaporation process. Therefore, the upper bound of mixture fraction is

defined as being pure fuel as given by the liquid droplets, and the mixture fraction

transport equation therefore includes an evaporation source term as can be seen

in Eqn. 2.31. Mixture fraction is not a fully conserved quantity, since the maxi-

mum value can vary in space and time, but cannot exceed ξ = 1.0 which would be

equivalent to being a mixture of pure acetone. An alternative possible definition

is to consider the sum of the fuel in the gaseous and liquid phase will lead to the

definition of a fully conserved scalar [12]. This may facilitate the definition of the

upper mixture fraction bound, but it will invoke different modelling challenges re-

lated to the correlation of the reactive species with this new mixture fraction. Also,

the mixture fraction works with Eulerian-Eulerian approaches where liquid fuel is

treated with a scalar transport equation, but a coupling with a Lagrangian approach

is not straightforward. Thus, these fully conservative approaches are not pursued

here.
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7.1.3 Boundary Condition in Mixture Fraction Space

In the present case some of the fuel is pre-evaporated leading to a rich mixture of

ξjet = 0.162 exiting the jet, and the filtered mixture fraction can locally increase due

to further evaporation of the droplets. Even though the range of mixture fraction

space is specified, the upper bound of the mixture fraction, ξUL, must be properly

set to solve the CMC equations. To illustrate the problem, consider a simplified

unsteady zero-dimensional CMC equation,

∂Qα

∂t
= Nη

∂2Qα

∂η2
+ ωη,α. (7.1)

To solve the dissipation term (1st term on RHS), the range of the lower and up-

per mixture fraction boundaries must be specified. However, within a two-phase

flow, ξUL depends on flow configurations and physical scales. As an example of a

conceptual spray flame study, consider a CMC cell that contains a fuel jet with pre-

evaporation and a liquid droplet located within a piloted flame as in Fig. 7.1(a). If

there is no liquid droplet, the conditional temperature profile within the CMC cell

would follow the black line in Fig. 7.1(b), and so ξUL = ξjet in this case. On the

other hand, with the presence of a liquid droplet, an LES cell in the pilot flame with

the droplet can locally have a high mixture fraction at the surface of the droplet,

such as ξUL = ξsurf , and takes another conditional moment solution (the green line

in Fig. 7.1(b)). However, there is only one conditional moment available within

a CMC cell. If the mixing between the jet and pilot mixture fractions (the black

line in Fig. 7.1(b)) is enforced, the high mixture fraction regime around the droplet

follows the non-reacting solution. If the mixing between the droplet surface and

pilot mixture fractions (the green line in Fig. 7.1(b)) is considered, ξUL = ξsurf , and

the temperature increases for η = ξjet due to diffusion in mixture fraction space.

This implies that the non-reacting solution cannot be preserved at ξjet, even though

the droplet does not physically interact with the jet as in Fig. 7.1(a). Thus, in

theory, one single droplet in the pilot suffices to raise the jet temperature since the

reactive-diffusive balance (the first and second RHS-terms in Eqn. 4.11) is indepen-
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dent of mixture fraction probabilities and cannot distinguish between one droplet

with low probability and a spray of pure fuel with high probability. These modelling

difficulties can be relaxed if there is no pre-evaporated fuel, such as spray ignition

processes [20].

(a) Physical space representation. The large
box with the bold line represents a CMC cell,
and small boxes shown by dotted lines are
LES cells. The left half (red zone) of the do-
main is reacting solution originated from a
piloted flame, and the right half of the do-
main (white zone) is non-reacting gas from
the jet. A blue circle represents a droplet.

(b) Mixture fraction space representation.
The thick solid black line indicates the
conditionally averaged temperature close to
the jet exit, the curved black line indicates
the droplet surface temperature as function
of the equilibrium surface mixture fraction.
The grey and black dashed lines illustrate the
evolution of the conditional temperature due
to diffusion in mixture fraction space.

Figure 7.1: Conceptual issues with mixture fraction boundaries in two-phase flows.

7.1.4 Conditioning of Spray Source Term

The conditioning of spray source terms are discussed in Sec. 4.3.3. Here, a more de-

tailed discussion of the choice of the conditioning mixture fraction is given. Consider

a zero dimensional unsteady CMC equation with the spray source term,

∂Qα

∂t
= Nη

∂2Qα

∂η2
+ ωη,α +

ñ
Q1,α −Qα − (1− η)

∂

∂η
Qα

ô
Πη. (7.2)
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If the spray source term is conditioned on ξsurf , the conditional evaporation rate

can be written as

Πη =
‹Πδ(η − ξsurf )

‹P (η) . (7.3)

However, when the droplet temperature is high, ξsurf might be a lot higher than the

filtered mixture fraction, ξ̃, and the spray source term appears far away from the

high probability regime in mixture fraction space as show in Fig. 7.2. It is obvious

that there is a large gap between ξsurf and the region with non-zero P (η), and if the

unconditional quantities are obtained by integrating Qα with P (η), the spray source

term does not influence the unconditional moment at all, unless P (η) is modified to

account for the presence of the droplet. However, under the complex flow conditions,

it is not feasible to estimate the right profile of P (η) between ξ̃ < η < ξsurf .

Also, it is not clear how to model the transport of mass and heat in mixture

fraction space from the relatively high mixture fraction ξsurf to the usually much

lower filtered mixture fraction ξ̃. Only the scalar dissipation can carry the effect

of the spray source term to the lower mixture fraction regime. However, the cor-

rect conditionally averaged scalar dissipation needs to be known for the range of

ξ̃ < η < ξsurf , but the necessary data are not available from LES-CMC. Recently,

new models to describe the probability density function and scalar dissipation rate

around stationary spherically symmetric droplets have been discussed [12], but with

the presence of convective flows and turbulence, such idealized models are not di-

rectly applicable [96]. DNS of fully resolved evaporating droplets can provide this

information [194], but validated models do not yet exist. The conditioning on the

spray surface mixture fraction, ξsurf , requires these two unsolved problems (the

predictions of the FDF and Nη between ξ̃ < η < ξsurf ), so this study conditions the

spray source term on ξ̃. The validation of the approach is shown in the next section.

7.1.5 Validation of Two-Phase CMC in Cold Flow

The closure of the spray source terms in the CMC equation (4th term on the RHS of

Eqn. 4.11 ) is examined by comparing CMC and LES solutions under the cold flow
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Stoic Jet Spray Surface

P(η)

Spray Source 

Figure 7.2: An example of spray source term conditioned on ξsurf . Black line -
conditional moment of CO2, red line - the spray source term (the third term of RHS
in Eqn. 7.2) with Π conditioned on ξsurf , green line - Probability within the CMC

cell constructed by assumed PDF by ξ̃ and ξ̃′′2.

assumption (the reaction rate is zero) to clearly separate the effects of evaporation

from reaction. To compute the LES solution of the acetone, an additional transport

equation is solved, and it is given as

∂

∂t
(ρ̄‹Yace) + ∂

∂xj
(ρ̄ũj‹Yace) = −∂Jace,j

∂xj
− ∂Jsgs

ace,j

∂xj
+ ¯̇ρace, (7.4)

where ‹Yace is the mass fraction of acetone, and closures are modelled as the mixture

fraction transport equation (Eqn. 2.31). Fig. 7.3 compares the result of CMC

and LES predictions. The lines represent the conditional Moment Qace, the dots

represent the LES-filtered solution ‹Yace. ‹Yace can be obtained from Eqn. 2.31 in the

case of this non-reacting acetone spray jet since it is then only different from mixture

fraction due to different inflow boundary conditions (no acetone in the hot pilot). As

can be seen, the conditional moment without the CMC spray source term (Πη = 0)

shows a large offset around ξ = 0.15, whereas the solution with the CMC spray

source term closely follows the LES solution. It is also noted that the difference

between the two conditional moments shown in Fig. 7.3 should not necessarily be
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interpreted as a decrease of the conditionally averaged acetone mass fraction due

to including Πη in the CMC equation. It is rather a shift in mixture fraction space

towards higher values due to evaporation and therefore increasing values of the

underlying mixture fraction field (compare also the analysis in Appendix B).
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Figure 7.3: Comparison of acetone mass fraction in mixture fraction space at z/D=5.
Solid line - CMC spray source terms on; dashed line - CMC spray source terms off;
scattered green dots - solution of Eqn. 2.31 for acetone with the LES-filtered spray
source term on.

7.1.6 Implementation of the Two-Phase LES-CMC

Figure 7.4 summarizes the sequence of the numerical approaches used in this chapter.

Boffin provides the flow and mixing fields that is used to solve the spray formulations

and CMC equations. Also, the FDF within each cell is computed by mean and vari-

ance of mixture fraction, and the LES quantities are computed by integrating along

the conditional moments provided by CMC. Then, the unconditioned quantities and

spray source terms are applied to update flow fields for the next time step.
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Figure 7.4: Flowchart of the conventional CMC approach in two-phase flows.

7.2 Results and Discussion

The effects of the evaporation source terms are now examined for the LES-CMC

simulations of a reacting acetone spray flame. Here, AcF 3 from Table 5.1 is chosen

as a reference case, and the numerical configurations are given in Sec. 5.3. First,

the effect of the CMC spray source terms, Πη and Ψη on the conditional moments

is analyzed. Then, the method is evaluated by comparison of the unconditional

temperature and spray velocity statistics with the experimental data from Masri

and co-workers [113].

7.2.1 Conditional Moment

The conditionally averaged mass fractions of acetone and CO2 obtained from the

solution of Eqns. 4.11 and 4.12 are shown Fig. 7.5. Results have been obtained

for cases where Πη and Ψη are modelled and for cases where these terms have been

neglected. As discussed above, the inclusion of the CMC spray source shifts Qace

towards higher mixture fraction values. As expected, all conditionally averaged

species and temperature (see Fig. 7.6) are hardly affected by evaporation on the

lean side. The spray source terms will only affect mixture fraction ranges on the

rich side of stoichiometric. Droplets evaporate predominantly in regions where the
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filtered mixture fractions are larger than stoichiometric since the flame is piloted

and fully burning, and droplets are unlikely to cross the stoichiometric contour (see

Fig. 7.8). Consistent with lower conditional acetone mass fractions on the rich side

are increased product mass fractions and temperature. The inner flame structure

around stoichiometric does not seem to be affected at positions closer to the jet,

but further downstream, a clear shift of the maximum temperature away from the

stoichiometric value towards higher mixture fraction values can be observed. The

reduction of the maximum temperatures by 4K (x/D=10) and 24K (x/D=30) can be

associated with the energy transfer between droplets and gas phase that is modelled

in the CMC equations by Ψη.

0 0.05 0.1 0.15
Mixture Fraction

0

0.05

0.1

0.15

0.2

Q

CO
2

Acetone

Figure 7.5: Comparison of QCO2
and QAce. Solid line - z/D=10, dashed line -

z/D=30, black line - with spray source terms, red line - without spray source terms.

7.2.2 Unconditional Moment

Temperature profiles at selected planes are compared to experimental values in Fig.

7.7. At z/D=10, both numerical results with and without CMC spray source terms

predict the flame to be shifted slightly inward. Further downstream, the case with

the CMC spray source term shows better agreement in the radial location and in

peak temperature. As seen from the conditional moment, the CMC spray source
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Figure 7.6: Temperature profile over mixture fraction. Solid line - z/D=10, dashed
line - z/D=30, black line - with spray source terms, red line - without spray source
terms.

makes the high mixture fraction regime more “reacted”. Therefore, the peak lo-

cation is found to be shifted inwards, towards richer mixtures, consistent with the

trend of the conditional temperature in Fig. 7.6. At z/D=30, the conditional mo-

ment also suggests a temperature shift to higher mixture fractions due to the CMC

spray source terms, and the unconditional average exhibits the temperature peak

slightly inward, at a larger mixture fraction. However, it can be observed that

the centerline temperature is underpredicted. This is most probably caused by the

choice of boundary condition. As discussed in Sec. 7.1.3, the mixture fraction space

above the upper bound, ξ > ξjet, is fixed to the cold solution to keep the jet non-

reactive. In reality, the upper mixture fraction bound may shift based on the spray

evaporation, and the conditional average at this bound will change with downstream

position reflecting diffusion of heat and products into the jet core. Similar trends

can be observed in Fig. 7.8. The jet core stays at low temperature at all axial

position since the evaporation maintains the relatively high mixture fraction values

in regions close to the centerline. However, this conventional CMC approach can

only describe on conditional moment even though it is not sufficient. Alternative

approaches to improve these shortcomings are proposed in Chapters 8 and 9.
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Figure 7.7: Radial profiles of mean temperature. Crosses - experiments [113], solid
line - with spray source terms, dashed line - without spray source terms.

7.2.3 Spray Statistics

Mean and rms of the axial spray droplet velocity at z/D=10 are compared to the

experiments in Fig. 7.9(a). The mean velocity profiles from the simulations both

agree well with the experimental data, with the trend of a slight underprediction at

the centerline and an overprediction near r/D=1 which is consistent with the slight

temperature discrepancies seen in Fig. 7.7(a). The rms velocities near the center-

line are captured well, particularly by the simulation with the spray source terms,

whereas the rms is underpredicted at higher radii. Comparisons of downstream

velocities at z/D=20 (Fig. 7.9(b)) indicates that the numerical predictions tend to

underpredict mean velocities near the centerline. The effects of the stochastic dis-

persion and evaporation models are examined in Fig. 7.10. The stochastic models

do not show large impact on the spray statistics as present in non-reacting analysis
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(a) Mixture fraction (b) Temperature (c) Mixture fraction spray
source term

Figure 7.8: Instantaneous contour plot of AcF3 with conventional CMC.

(Sec. 6.2), and still exhibit the same problem: low velocity along the centerline and

small rms at outer radii. The low velocity can be attributed to the lack of predicted

thermal expansion in these regions. A possible reason of the small rms is further

discussed in a later section with multiple cases (see Sec. 8.2.3).
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Figure 7.9: Mean (right) and rms (left) axial droplet velocity profiles for the diameter
range 20-30 µm. Crosses - experiments [113], green scatter points - single realization
of a simulated droplet, black line - with spray source terms, line - without spray
source terms.
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Figure 7.10: Mean (right) and rms (left) axial droplet velocity profiles for the diam-
eter range 20-30 µm at z/D=20. Crosses - experiments [113], green scatter points -
single realization of a simulated droplet, black line - with spray source terms, blue
line - with spray source terms and stochastic spray terms.

7.3 Summary

This chapter presents simulations of evaporating spray flames with LES-CMC. The

CMC source terms due to evaporation that has often been neglected in earlier CMC

studies, have now been modelled within the LES framework, and some conceptual

difficulties with respect to the correct choice of boundary conditions are discussed.

The closures of CMC spray terms are first validated by comparison of an LES-

filtered solution for acetone with the CMC solution for a non-reacting jet. The

computations of the acetone spray flames show that the CMC spray source terms

shift the reacting solution to higher mixture fraction values, and inclusion of the

CMC spray sources should not be neglected. The consistent CMC model gives very

good agreement of predicted and measured temperatures, with the only exception

of some locations near the centerline. This can mainly be attributed to the selected

boundary conditions that are implemented to avoid the prediction of an unphysical

heating of the jet near the nozzle. The predictions of the mean and rms axial

velocity distribution are good at x/D=10, but at the downstream position (x/D=20),

low mean velocities are predicted. The low velocities are attributed to the low

temperature predictions along the centerline that reduce the velocity of the flow by

lower heat expansion rates. No noticeable differences are observed in spray statistics

between CMC with and without spray terms. Also, the stochastic particle dispersion
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and evaporation models do not influence the spray statistics as shown in the non-

reacting study in Chapter 6.

The main reason for the very localized low temperature prediction and low mean

velocity profiles can be associated with the selection of the upper mixture fraction

boundary in CMC equation as ξUL = ξjet. However, within the conventional CMC

framework, it is difficult to model the upper bound appropriately. Therefore, two

different approaches are proposed: two-conditional moment approach in Chapter 8

and CMC with tabulated chemistry in Chapter 9.



Chapter 8

Two-Conditional Moment

Approach

In the previous Chapter, two-phase LES-CMC has been applied to a dilute acetone

spray jet flame, and the impact of the additional spray terms has been discussed.

However, “conventional” CMC indicates difficulties of selecting an appropriate upper

limit of mixture fraction, ξUL, due to the evaporating droplets. In general, a single-

phase CMC implementation (or non-premixed approaches in general) assumes ξUL to

be fixed according to the fuel condition. However, the maximum mixture fraction

varies in space and time due to evaporation, and it is difficult to define a single

upper limit applicable throughout the entire domain. One compromise has been

applied in Chapter 7 where ξUL has been fixed to be equal to the fuel jet mixture

fraction ξjet originating from pre-evaporation inside the jet nozzle. This approach

leads to a good match of the predictions with experiments near the jet inlet where

most of the evaporation occurs without any mixing with the surrounding streams.

However, the assumption is not fully valid where droplet vapour and oxidizer are

mixed more homogeneously, and, as a result, low temperature regimes have been

wrongly observed along the centerline further downstream. An alternative approach

is to adjust ξUL dynamically based on the mixing fields, and better predictions can

be expected downstream. However, if only the dynamically moving ξUL is used, the

scalar dissipation can cause unphysical mixing in the jet core where mixing with the

79



8.1. TWO-CONDITIONAL MOMENT APPROACH 80

surrounding flow should not occur (see Sec. 7.1.3). Thus, a new method must be

developed to treat evaporating sprays more appropriately.

This chapter aims to develop a two-conditional moment approach that can deal

with a shift of ξUL dynamically that accounts for the existence of pre-evaporated

fuel by introducing two sets of conditional moments based on two different def-

initions of mixture fraction [176]. First, the formulations of the two-conditional

moment approach are presented. Then, the conditional fluctuations and dynami-

cally moving upper mixture fraction boundary caused by the evaporation process

are demonstrated, and modelling approaches are discussed using a test case with a

non-reacting evaporating spray jet in Sec. 8.1. Then, the effect of the modelling ap-

proach using two-conditional moments is analyzed and discussed, and the improved

numerical predictions are compared with the experimental results in Sec. 8.2.

8.1 Two-Conditional Moment Approach

Chapter 7 discusses modelling limitations of the upper mixture fraction boundaries.

A compromise is found by fixing the upper bound at the jet condition, but in real-

ity, the mixture fraction changes due to the evaporation process, and the nominal

upper mixture fraction boundary changes with time and position. Also, the evapora-

tion process can violate the assumption of small conditional fluctuations in mixture

fraction space. Therefore, not one but two conditional moments are computed that

represent the extrema, and an interpolation routine is implemented to determine a

suitable average of the two.

8.1.1 Formulations

Here, two definitions of mixture fraction are introduced: the total mixture fraction,

ξtot, and the conserved mixture fraction, ξcons. ξtot represents the mixture fraction

associated with the inlet conditions (a pilot flame and fuel originating from pre-

evaporated droplets that lead to fuel vapour at the jet exit) and fuel originating

from droplet evaporation within the domain. ξcons is based on the fuel from pre-
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evaporation within the nozzle and the fuel elements of the pilot flame. ξcons is not

affected by the fuel evaporating from the droplets within the domain. Solving these

two mixture fractions, the mixture fraction evaporated from the droplets after exit-

ing the nozzle can be computed as ξ∆ = ξtot−ξcons, and it plays an important role in

the following modelling approach. The maximum value of ξtot changes dynamically

and is defined to be unity when the mixture is pure fuel. The maximum value of

ξcons corresponds to the maximum inlet mixture fraction. The Favre-filtered scalar

transport equations for these mixture fractions are

∂

∂t
(ρ̄ξ̃tot) +

∂

∂xj
(ρ̄ũj ξ̃tot) = −∂Jtot,j

∂xj
− ∂Jsgs

tot,j

∂xj
+ ¯̇ξ, (8.1)

∂

∂t
(ρ̄ξ̃cons) +

∂

∂xj
(ρ̄ũj ξ̃cons) = −∂Jcons,j

∂xj
− ∂Jsgs

cons,j

∂xj
. (8.2)

The CMC equations usually assume that the conditional fluctuations within the

flow are relatively small. However, in practice, the conditional fluctuations can be

very large for spray flames, and it might be impractical to represent the properties

by only one conditional moment as discussed in Sec. 8.1. Therefore, two sets of

conditional moments conditioned on ξcons and ξtot are solved simultaneously, and

the solution is obtained by interpolation between the two conditional moments as

presented later. Based on Eqn. 4.11, the CMC equations for moments conditioned

on the total mixture fraction can be written as

∂

∂t
Qα,tot +

1

ρ̄η,tot‹Pη,tot

∇ ·
î
ρ̄η,tot‹Pη,tot (Uη,totQα,tot −Dt,η,tot∇Qα,tot)

ó

= ω̃η,α,tot +Nη,tot
∂2Qα,tot

∂η2
+

Qα,tot

ρ̄η,tot‹Pη,tot

∇ ·
Ä
ρ̄η,tot‹Pη,totUη,tot

ä

+

ñ
Q1,α −Qα,tot − (1− η)

∂

∂η
Qα,tot

ô
Πη,

(8.3)

where the subscript −tot− indicates conditioning on the random variable ξtot and

all conditional properties in Eqn. 8.3 are conditioned on ξtot. Similarly, the CMC
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equations for moments conditioned on the conservative mixture fraction is

∂

∂t
Qα,cons +

1

ρ̄η,cons‹Pη,cons

∇ ·
î
ρ̄η,cons‹Pη,cons (Uη,consQα,cons −Dt,η,cons∇Qα,cons)

ó

= ω̃η,α,cons +Nη,cons
∂2Qα,cons

∂η2
+

Qα,cons

ρ̄η,cons‹Pη,cons

∇ ·
Ä
ρ̄η,cons‹Pη,consUη,cons

ä
,

(8.4)

where the subscript −cons− means conditioning on the random variable ξcons. Note

that since the transport equations of ξcons does not have a spray evaporation term

(Eqn. 8.2), no CMC spray source term is included in Eqn. 8.4. The conditionally

averaged enthalpy equations are given by (see Eqn. 4.12)

∂

∂t
Qh,tot +

1

ρ̄η,tot‹Pη,tot

∇ ·
î
ρ̄η,tot‹Pη,tot (Uη,totQh,tot −Dt,η,tot∇Qh,tot)

ó

= Nη,tot
∂2Qh,tot

∂η2
+

Qh,tot

ρ̄η,tot‹Pη,tot

∇ ·
Ä
ρ̄η,tot‹Pη,totUη,tot

ä

+erad,η,tot +

ñ
Q1,h −Qh,tot − (1− η)

∂

∂η
Qh,tot

ô
Πη +Ψη,

(8.5)

and

∂

∂t
Qh,cons +

1

ρ̄η,cons‹Pη,cons

∇ ·
î
ρ̄η,cons‹Pη,cons (Uη,consQh,cons −Dt,η,cons∇Qh,cons)

ó

= Nη,cons
∂2Qh,cons

∂η2
+

Qh,cons

ρ̄η,cons‹Pη,cons

∇ ·
Ä
ρ̄η,cons‹Pη,consUη,cons

ä
+ erad,η,cons.

(8.6)

The closures for the conditionally averaged quantities are explained and discussed

in Chapter 4, and the current study considers that these terms are identical for both

the formulations of Qtot and Qcons. The terms ω̃η,α and erad,η are functions of each

conditional moment, (e.g. ω̃η,α,tot = f(Qα,η,tot, Tη,tot)), so that ω̃η,α,tot 6= ω̃η,α,cons and

erad,η,tot 6= erad,η,cons.
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8.1.2 LES Representations in Mixture Fraction Space

The evaporation within the domain can increase ξtot beyond ξjet, and the minimum

ξ∆ to reach a certain ξtot can be estimated. The effects of the evaporation ξtot, ξ∆

and ρ are given as

ρn+1ξn+1
tot = ρnξntot +∆ρ̇, (8.7)

ρn+1ξn+1
∆ = ρnξn∆ +∆ρ̇, (8.8)

ρn+1 = ρn +∆ρ̇. (8.9)

where ∆ρ̇ refers the amount of the evaporation within the time step, ∆t, found as

∆ρ̇ = ∆tρ̇ the superscript refers the time step. Assuming that the conditions at

time step n are the jet inlet condition (ξtot = ξjet and ξ∆ = 0), Eqns. 8.7 and 8.8

can be written as

ρn+1ξn+1
tot = ρnξjet +∆ρ̇, (8.10)

ρn+1ξn+1
∆ = ∆ρ̇. (8.11)

Using Eqns. 8.9, 8.10 and 8.11, ξ∆ can be given as (by omitting the superscript)

ξ∆ =
ξtot − ξjet
1− ξjet

, (8.12)

and it indicates the “minimum” ξ∆ necessary to reach a certain ξtot. More generally,

a base mixture fraction ξbase is defined as the minimum amount of vapour emitted

from the droplets, i.e.,




ξbase = 0 if ξtot < ξjet

ξbase =
ξtot−ξjet
1−ξjet

if ξtot ≥ ξjet
. (8.13)

In other words, fluid originating from the jet and vapour originating from the liquid

fuel exist along ξbase for ξtot ≥ ξjet, and mixing with the surrounding fluid (e.g. from

the pilot or co-flow) has not yet occurred. These relationships are illustrated with

the configuration of AcF 3 in Fig. 8.1, and it shows the mixture fraction originating

from the droplets in the domain for two different CMC cells. Since there is no



8.1. TWO-CONDITIONAL MOMENT APPROACH 84

mixing with the surrounding material, ξ∆ within the jet core clusters near ξbase,

and the conditional fluctuation is relatively small. However, the samples from the

CMC cell containing the jet core and the pilot show a wide distribution of ξ∆ around

ξtot ≈ 0.16. It is obvious that a simple first order closure is not forthcoming with only

one conditional moment since realizations along the base line must represent cold

(or non-reacting) solutions but those with large ξ∆ can be hot and thus, conditional

fluctuations will not be negligible.

0.1 0.12 0.14 0.16 0.18
ξ

tot

0

0.01

0.02

0.03

ξ ∆

Figure 8.1: Realizations of ξ̃∆ within a CMC cell that lies within the jet core (black)
and a CMC cell at the interface of the jet core and the pilot (red). The green line
is ξbase (Eqn. 8.13). The condition is based on AcF 3 (Table 5.1).

8.1.3 Selection of Upper Mixture Fraction Boundary

The definition of the upper mixture fraction boundary has not been fully justified.

Two possible characteristics (macro- and microscopic) of the boundary conditions

are discussed in Secs. 7.1.3 and 7.1.4, and a compromise has been made to choose

the jet mixture fraction as the boundary (ξUL = ξjet) in the previous chapter. Here,

a new methodology is presented to determine ξUL from LES-filtered quantities. In a

single phase flow, a non-reacting scalar mixes linearly between fuel and oxidizer in

mixture fraction space. Thus, if a quantity of the conserved scalar, φ, at a certain
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mixture fraction is known, the value of φ at the upper boundary, φUL, is given by

φUL =
ξUL

ξ
φ, (8.14)

and the slope is denoted as a mixing line. Using a single phase flow as an analogy,

ξUL must be unmixed with the surroundings. In other words, the solution must lie

on the unmixed limit which is denoted as ξbase in Eqn. 8.13. Thus, the current study

proposes a new selection method of ξUL with the combination of the base mixture

fraction and the mixing line as shown in Fig. 8.2. From the base mixture fraction

(Eqn. 8.13), an amount of ξ∆ at ξUL can be determined as

ξ∆,@ξUL
=
ξUL − ξjet
1− ξjet

, (8.15)

and the linear mixing line as in Eqn. 8.14, (with φUL = ξ∆,@ξUL
and φ = ξ̃∆) can be

deduced,

ξ∆,@ξUL
=
ξUL

ξ̃tot
ξ̃∆. (8.16)

Thus, the upper mixture boundary in mixture fraction space, ξUL, is obtained as a

pseudo-unmixed material and can be written as

ξUL =
ξjet

1− ξ̃∆
ξ̃tot

+ ξ̃∆
ξ̃tot
ξjet

. (8.17)

8.1.4 Interpolation Method

The conditional moments in each LES cell, Qα,η, are needed to calculate the LES-

filtered quantities, and they are estimated by interpolation betweenQα,tot andQα,cons

depending on the amount of ξ̃∆. It can be said that Qα,cons is the solution along

ξbase, and Qα,tot is approximately the solution along the conditional mean of the

evaporated fuel 〈ξ∆|η〉. Thus, when ξ̃∆ is close to ξbase, the solution must be close to

Qα,cons, and large amounts of ξ̃∆ should weight the solution towards Qα,tot as shown
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Figure 8.2: Estimation of ξUL. Cross - actual quantity in a LES cell (ξ̃tot, ξ̃∆), circle
- (imaginary) unmixed property corresponding to the LES cell (ξUL, ξ∆,@ξUL

), solid
line - mixing line, dashed line - ξbase.

in Fig. 8.3. The weighting factor θ is given by

Qα,η = θQα,η,tot + (1− θ)Qα,η,cons, (8.18)

with 


θ = ξ̃∆−ξbase

〈ξ∆|η〉−ξbase
if ξbase < ξ̃∆ < 〈ξ∆|η〉

θ = 1.0 if ξ̃∆ > 〈ξ∆|η〉
. (8.19)

As in the previous chapters, the unconditional moment is found by integrating

the conditional moment across mixture fraction space using an assumed FDF (Eqn.

4.33). A β-function is often utilized as an assumed FDF (Eqn. 4.35) of the mixing

field. However, considering that there is an upper bound of the mixture fraction

space, a bounded β-FDF (Eqn. 4.38) is used to compute the LES-filtered quantities

by using ξUL from Eqn. 8.17

‹Yα =
∫ ξUL

0
Qα,ηP (η)dη. (8.20)

by setting ξLL = 0.0. where P (η) is the assumed FDF based on a bounded β-

function. In an earlier study, Ge and Gutheil [62] have proposed the bounded β-
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Figure 8.3: Realization of ξ̃∆ in the CMC cell over the core (black crosses) and the
pilot (red square) with 〈ξ∆|η〉 (blue line). The green line is the base mixture fraction
(Eqn. 8.13).

FDF, but the drawback is that the clear definition of ξUL and ξLL were not specified,

but rather selected to fit the profile.

Currently, P (η) is assumed to be based on ξtot instead of ξcons by considering two

limiting cases of θ in Eqn. 8.18. Firstly, if θ = 1.0, Qα,η is only based on Qα,η,tot,

and ξtot is an appropriate choice to obtain P (η). Secondly, if θ = 0.0, Qα,η is only

based on Qα,η,cons, and the P (η) should be rather based on ξcons. However, when

θ = 0.0, ξ∆ = 0 as in Eqn. 8.19 so that ξtot = ξcons, and ξtot would be a good choice

for P (η). Since P (η) can be correctly modelled by ξtot in these two limiting cases,

an intermediate solution is assumed to follow P (η) based on ξtot.

8.1.5 Comparisons of CMC and LES Solutions

This two-conditional moment approach is validated by comparing CMC solutions

with the LES results for a non-reacting case as in Sec. 7.1.5. Here, an additional

transport equation of Yace is solved to obtain LES-filtered solutions as in Sec. 7.1.5.

The CMC solution is given by integrating the conditional moments as in Eqn. 8.20.

Even though LES and CMC solutions are obtained by different methods, Fig. 8.4
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shows that the distributions of Yace within a CMC cell seem to agree very well.

It indicates that the two-conditional moment approach is capable of modelling an

evaporating spray with pre-evaporated fuel. If only one set of conditional moments

is used, the LES solution cannot be reproduced.
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Figure 8.4: Realization Yace of LES (black plus symbol) and CMC (red X symbol)
solutions over profiles of Qace,tot (green line) and Qace,cons (blue line).

8.1.6 Implementation of the Two-Conditional Moment Ap-

proach

The overall flowchart of the two-conditional moment approach is shown in Fig. 8.5.

It is basically similar to Fig. 7.4, but there are a few improvements. First, the FDF is

computed by using the bounded β-function, instead of the conventional β-function.

Secondly, two sets of CMC equations are solved instead of only one. Then, finally,

the conditional moments are computed by interpolating two conditional moments

for each LES cell by using the weighting factor to obtain the unconditional quantities

integrating along the subgrid FDF.
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Figure 8.5: Flowchart of the two-conditional moment approach.

8.2 Results and Discussion

In this section, the two-conditional moment approach is tested for the four spray

flame cases: AcF 1, 2, 3, and 5 introduced in Table 5.1, and the computational

configurations are explained in Sec. 5.3. The results of conditional moment profiles,

unconditional moments and spray statistics are discussed.

8.2.1 Conditional Moment

The conditional moments of acetone and OH for different locations in flame AcF 3

are shown in Fig. 8.6. It is apparent that the upper bound of Qace,cons is fixed at the

value determined by the amount of pre-evaporation at the nozzle exit. In contrast,

the upper bound of Qace,tot moves towards higher values due to the evaporation

of the droplets within the domain. The movement can be quite large in regions

with high evaporation rates. However, note that the particle-source in cell model

is implied, and the upper limit is determined by an LES averaged value, but not
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by the maximum mixture fraction found at the (unresolved) surface of the droplet.

While clear differences can be observed between Qace,tot and Qace,cons, the differences

between QOH,tot and QOH,cons are much less pronounced. This is due to an effective

upper boundary of conditional OH close to 0.16 where OH mass fractions tend to

zero, and any change beyond this value does not affect the conditional moment.

The reaction zone is hardly affected by the moving boundary. However, diffusion

in mixture fraction space is, and this will be discussed further below. Also, OH

profiles are noticeably affected if the amount of pre-evaporation is lowered. Clear

differences can be seen in Fig. 8.7 for AcF 5 where the amount of pre-evaporation is

relatively low restricting the width of the reaction zone for the conditional moments

conditioned on the conserved mixture fraction.
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Figure 8.6: Instantaneous conditionally averaged mass fractions of acetone (left)
and OH (right) in flame AcF 3. The center of each CMC cell is located (r/D=0,
z/D=10) - black, (r/D=0, z/D=20)- red and (r/D=0.8, z/D=20) -blue. Solid line -
Qtot, dashed line - Qcons.

Fig. 8.8(a) compares the distribution of
Ä
ξ̃∆ − ξbase

ä
(on the LES grid) and

(〈ξ∆|η〉 − ξbase) (on the CMC grid) to determine the effect of the weighting factor as

introduced in Eqn. 8.19. The corresponding temperature profiles are shown in Fig.

8.8(b). Since some of the fluid elements from the jet remain unmixed at (r/D=0,

z/D=10), the difference
Ä
ξ̃∆ − ξbase

ä
equals zero around ξjet and consequently, some

of the LES temperature solutions are found to lie on Tη,cons. However, solutions

along Tη,tot also exist within the same CMC cell and the majority of LES real-

izations (crosses) lie between these two values. It is therefore important to dis-
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Figure 8.7: Instantaneous conditionally averaged mass fraction of acetone (left)
and OH (right) at (r/D=0.8, z/D=20) for the different flames. Black - AcF 2, red -
AcF 3 and blue - AcF 5. Solid line - Qtot, dashed line - Qcons.

tinguish between the two CMC solutions and to obtain an accurate LES-filtered

value by using an appropriate weighting factor θ for Qα which is then used in

Eqn. 8.20. More mixing with the surrounding fluid elements occurs further down-

stream, and no unmixed elements can be found at (r/D=0, z/D=20). Despite

the mixing, however, large fluctuations of
Ä
ξ̃∆ − ξbase

ä
can be observed leading to

large conditional fluctuations in the temperature profiles. At the position (r/D=0.8,

z/D=20) a relatively wide range of mixture fraction values can be seen due to the

mixing of jet and pilot and continuous evaporation of the fuel. The conditional

fluctuations around (〈ξ∆|η〉 − ξbase) are, however, small such that the temperature

profiles can be well approximated by one conditional moment Tη,tot only. Note that

(〈ξ∆|η〉 − ξbase) can be non-zero for certain mixture fraction values even if none of

the LES realizations provides this value of ξ̃tot within the CMC cell. This is due to

the subgrid fluctuations of mixture fraction that are included via weighting with the

β-FDF when computing 〈ξ∆|η〉 (see also [132]).

8.2.2 Unconditional Moment

Computed profiles of the unconditionally averaged temperature are compared with

experiments in Fig. 8.9. The comparisons of the two-conditional moment approach

and the conventional one-moment (or “conventional”) approach used in Chapter 7
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(a) Profiles of ξ∆ − ξbase. Crosses - LES re-
alization, ξ̃∆ − ξbase, solid line - conditional
profiles, 〈ξ∆|η〉 − ξbase.

0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
ξ

tot

500

1000

1500

2000

T
em

pe
ra

tu
re

 (
K

)

(b) Profiles of temperature. Crosses - LES
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Figure 8.8: Instantaneous LES values and conditional moments plotted over
mixture fraction for different CMC cells in flame AcF 3. The centers of the CMC
cells are located at (r/D=0, z/D=10) – black; (r/D=0, z/D=20) – red; (r/D=0.8,
z/D=20) – blue.

are shown for AcF 3. Very low temperatures are observed near the centerline when

using one moment only as similarly observed in the previous Chapter (Fig. 7.7),

since the upper mixture fraction bound was fixed at ξjet and the temperature rise in

rich mixtures along the centerline cannot possibly be predicted. The two-conditional

moment approach predicts the increase of centerline temperature successfully. Sim-

ilarly, AcF 1 shows good agreement at all three positions. AcF 2 follows the experi-

ments relatively well, except a continuous under- and overprediction of temperature

at the centerline. It may be possible to improve the predictions somewhat by tuning

of the LES inflow and boundary conditions, but this is not attempted here (see also

discussion in Sec. 8.2.3). Computations of AcF 5 also show rather good agreement

with the experimental results. A large offset is seen close to the centerline at z/D

=10, but the accuracy of the measurements may be questioned here since the steep

slope at r/D ≈ 0.2 does not seem physical. The numerical predictions generally

agree well with the experimental results, but slight overpredictions of temperature

are consistently found especially at downstream positions. It is noted, however, that

the predictions presented here are very competitive in terms of quantitative agree-

ment with experiments when compared with predictions of these and similar flames
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presented in the literature [38, 37, 77, 46].

Figure 8.10 shows instantaneous snapshots of AcF 3. It is seen that ξtot increases

due to evaporation at the centerline. Also, the largest ξtot found within the domain

is 0.2587 whereas the largest ξ by the conventional CMC is only 0.167 (Fig. 7.8). On

the other hand, ξcons does not have any source term, and it only decreases towards

the outlet. Thus, relatively large ξ∆ exists downstream, and the effect of the two-

conditional moment approach becomes effective. The temperature increases where

ξ∆ is non-zero, whereas the conventional CMC yields low temperatures along the

centerline down to the outflow boundary.
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Figure 8.9: Radial profiles of mean temperature. Crosses - experiments [113], solid
line - the two-conditional moment approach, dashed line - one-conditional moment
approach.



8.2. RESULTS AND DISCUSSION 94

(a) ξtot (b) ξcons (c) ξ∆ (d) Temperature

Figure 8.10: Instantaneous Contour plot of AcF3 with the two-conditional moment
approach.

8.2.3 Spray velocity statistics

The computed spray axial velocity statistics are compared with measurements in

Fig. 8.11. AcF 3 shows that the conventional one-moment approach leads to lower

velocities, whereas the two-conditional moment approach markedly improves the

predictions. This is due to the improved temperature prediction: the increased

temperature along the centerline leads to thermal expansion and increased droplet

velocities. Both AcF 1 and 3 show good prediction of the mean spray velocity at

all locations. AcF 2 shows good predictions at the outer radii, but lower centerline

velocity is predicted. This may be due to early jet break-up and would be consis-

tent with the overprediction of the centerline temperature reported above. AcF 5

shows very good agreement except the slight underprediction on the centerline at

z/D=30. The variances of the axial velocity profiles are compared in Fig. 8.12. The

numerical predictions show acceptable agreement near the centerline, but predicted

rms remains rather constant whereas all the experimental results indicate the rms

to increase towards outer radii. It is emphasized here that the computations seem

to present a more consistent picture if it is assumed that fluctuations are primarily

induced by the velocity gradient. As example may serve here the measurements of

the mean velocity profile of AcF 3 at z/D=30 as shown in Fig. 8.11. The velocity
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gradient is relatively constant, leading –in theory– to relatively constant rms inde-

pendent of the radial position, and the experimentally observed rms increase towards

outer radii can therefore not easily be explained.
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Figure 8.11: Mean axial droplet velocity profiles for the diameter range 20-30 µm.
Crosses - experiments [113], scatter points - single realization of a simulated droplet,
solid line - the two-conditional moment approach, dashed line - one-conditional
moment approach.

8.3 Summary

The previous chapter showed limited capabilities of a conventional CMC approach

to predict spray flames with pre-evaporation. In contrast, this study develops a
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Figure 8.12: rms of axial droplet velocity profiles for the diameter range 20-30 µm.
Crosses - experiments [113], solid line - the two-conditional moment approach.

two-conditional moment approach to extend the applicability of CMC. The two-

conditional moment approach solves two conditional moments based on the total

mixture fraction and the conserved mixture fraction to account for the shift of the

upper limit of mixture fraction due to the evaporation process. A new method to se-

lect the upper boundary is also proposed, and the two-conditional moment is tested

and validated using a non-reacting test case. Then, the methodology is validated by

its application to a wide range of flames with different degrees of pre-evaporation

(and Reynolds numbers). Four cases have been selected from the series of acetone

flame experiments [113]. The conditional moment profiles clearly demonstrate the



8. Two-Conditional Moment Approach 97

effects of the two-conditional moment approach. The conditional moment based

on ξtot becomes very important when non-reacting and reacting solutions co-exist

within one CMC cell. Using the correct weighting between the two moments leads

to significant improvements of the predicted radial temperature profiles, particularly

near the centerline. It is also shown that the new model is robust enough to predict a

flame series with varying degrees of pre-evaporation as long as the equivalence ratio

of the fuel vapour exiting the jet does not allow for a flame burning largely in the

premixed mode. Predictions of the spray mean velocity have also been improved.

The mean velocity profiles show good agreement, but a slight underestimation is

consistently found downstream. The predictions of the axial velocity rms are ac-

ceptable along the centerline, but the experimental trend of an increase of the rms

at the outer radii is not captured.
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Chapter 9

CMC with tabulated chemistry

A new methodology called two-conditional moment approach has been proposed

to describe the dynamic shift of ξUL in time and space and quantify conditional

fluctuations of properties by the amount of vapour originating from the liquid fuel

after leaving the nozzle. The predictions of the flame have been greatly improved by

the two-conditional moment approach. However, it might not be easily extendable to

other flame configurations, since only the conditional fluctuations caused by droplet

evaporation are modelled with the current methodology. Therefore, for example, the

same methodology is not directly applicable to simulate a high Reynolds number

flame with local extinction and reignition effects such as Sandia Flame F [101].

Therefore, a more robust methodology that can be applied to wider ranges of flame

configurations would be beneficial, and a coupling of CMC and tabulated chemistry

is proposed.

Tabulated chemistry is one of the most popular methods to simulate various

turbulent flame configurations including spray flames. There are various methodo-

logies to generate tabulated chemistry such as ILDM [110], REDIM [27, 115], FPI

[66] and FGM [135, 38, 46]. A main advantage of the tabulated chemistry is its

easy adaptivity to different flow and flame conditions, the flexibility to introduce

additional (characteristic, conditioning) parameters, and the subsequent relatively

low computational requirements for their use. A mixture fraction and a reaction

progress variable are often chosen as parameters that allow for the characterization

99
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of a relatively wide range of flame conditions [79]. However, the introduction of a

second conditioning variable in the CMC context increases computational demands

significantly and raises other closure issues [99]. The tabulated chemistry approach

conventionally uses only one set of a chemical table (as opposed to CMC with its spa-

tial and temporal variation of the composition space), and unsteady slow chemistry

effects cannot be captured [168, 90]. Also, the method to construct the chemical

table must be carefully chosen and is dependent on the target flame configurations.

Of particular relevance are recent studies [60, 136] that indicate classical models that

assume premixed or non-premixed configurations to be potentially inappropriate for

spray flames.

Thus, this chapter discusses a new methodology that couples CMC and tabulated

chemistry to enhance the modelling capabilities [177]. Some earlier studies [102, 101]

have applied a chemical table to model the conditional chemical source terms in

the CMC equation. The method has been applied to RANS predictions of flames

with moderate to significant local extinction leading to large fluctuations around

the conditional mean. The objective of this chapter is to establish a methodology

that combines CMC and tabulated chemistry for spray combustion in LES. Sec.

9.1 discusses formulations and the new coupling approach of CMC and tabulated

chemistry. Then, the results of the spray flame analysis is given in Sec. 9.2.

9.1 Coupling of CMC and Tabulated Chemistry

The spray flames with the amount of pre-evaporation investigated here cause some

premixing and deviations of the typical non-premixed flame structure that could

be solely parameterized by mixture fraction. A progress variable is introduced to

capture different types of flame structures and conditional fluctuations. The reader

is reminded here that in general the CMC cells are quite large in comparison with

the LES cells (see e.g. [132]). The LES (in contrast to the singly conditioned

CMC) resolves most of the fluctuations, and the LES-filtered progress variable can

provide a local estimate of the reaction progress and hence of the deviations from
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the conditional mean if –and only if– the chemical source term in Eqn. (9.1) can be

modelled accurately. For the latter, this study introduces tabulated chemistry where

the composition field is scaled for consistency with the CMC solution. This method

is called extended CMC (CMCe), and a similar procedure had been introduced for

gaseous flames with significant extinction in [101].

9.1.1 Formulations

The mass, momentum, mixture fraction (both ξtot and ξcons) and progress variable

transport equations are solved (Eqns. 2.18, 2.19, 2.31 and 2.37 ). Note that the

mixture fraction used in this chapter is equivalent to ξtot (see Sec. 8.1.1), and

ξcons is still necessary to estimate ξUL. The progress variable is defined by c =

YCO2
+ YCO + YH2O + YH2

as in [78]. Since the progress does not include the liquid

fuel composition, Eqn. 2.37 can be written as

∂

∂t
(ρ̄c̃) +

∂

∂xi
(ρ̄ũic̃) = −∂Jc,j

∂xi
− ∂Jsgs

c,j

∂xi
+ ρ̄ω̃c, (9.1)

where ω̃c is a summation of reaction rates of all four species, ω̃c = ω̃CO2
+ ω̃CO +

ω̃H2O + ω̃H2
. The CMC equation with spray source term (Eqn. 4.11) is solved using

the boundary conditions in mixture fraction space as introduced in Sec. 8.1. The

Lagrangian approach is used to solve the transport of the droplet, and the stochastic

dispersion and evaporation models are applied.

9.1.2 Tabulation of the Composition Space

A two-dimensional table that lists the chemical compositions, the chemical source

terms and the thermodynamic properties are generated as functions of the mixture

fraction and the progress variable. A flamelet generated manifold method is uti-

lized to compute the table as described in [38] with the only exception that the

0-dimensional unsteady CMC equations is used for its generation

∂Qα

∂t
= Nη

∂2Qα

∂η2
+ ωη,α, (9.2)
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where Nη is approximated by the AMC method (Eqn. 4.17). The conditionally

averaged reactive species – and thus the conditionally averaged reaction progress –

is varied by varying Nη. For Nη larger than the extinction value, unsteady solutions

are used for the table which is equivalent to the procedure outlined in [38].

9.1.3 Scaling of the Tabulated Composition Space

The tabulated composition space, Q0(η, ζ), is invariant in space and time while the

CMC solution can account for finite rate chemistry effects, so that in general

Qα(η) 6=
∫
Q0

α(η, ζ)P (ζ | η)dζ. (9.3)

Here, ζ is the sample space of the reaction progress variable. To ensure consistency

between the table and the CMC solution, a rescaling procedure presented in [101]

for gaseous combustion is implemented. The table needs to be rescaled by a scaling

factor

gα(η) =
Qα(η)∫

Q0
α(η, ζ)P (ζ | η)dζ

, (9.4)

and the scaled field for the computation of the chemical source term is obtained

from

Q0,sc
α (η, ζ) = gα(η)Q

0
α(η, ζ). (9.5)

Subsequent normalizations are performed at each table cell to maintain a certain

criteria. First, the summation of the mass fractions is unity as

Nsp∑

α=1

Q0,sc
α (η, ζ) = 1.0. (9.6)

Also, the progress variable of the tabulated chemistry cannot be modified by the

scaling, so that the reference space in the progress variable given as

Q0,sc
CO2

(η, ζ) +Q0,sc
CO (η, ζ) +Q0,sc

H2O
(η, ζ) +Q0,sc

H2
(η, ζ) = ζ. (9.7)

The chemical source terms of the CMC equation (Eqn. (4.11)) and of the LES-
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filtered reaction progress variable (Eqn. (9.1)) are computed by

ωη,α =
∫
ωα

Ä
Q0,sc

1 , ..., Q0,sc
Ns
, Q0,sc

h

ä
PCMC(ζ | η)dζ, (9.8)

and

ω̃c =
∫∫

ωc

Ä
Q0,sc

1 , ..., Q0,sc
Ns
, Q0,sc

h

ä
PLES(η, ζ)dζdη, (9.9)

where PCMC(η, ζ) and PLES(η, ζ) denote the Favre-filtered density functions of the

CMC cells and the LES cells, respectively.

9.1.4 FDFs and the Integration of Conditional Moments

Similar to the filtered source terms, any LES-filtered reactive species can be com-

puted from

‹Yα =
∫∫

Q0,sc
α (η, ζ)PLES(η, ζ)dζdη. (9.10)

Any joint FDF can be expressed by the marginal FDF and the conditional FDF,

P (η, ζ)LES = P (η)LES · P (ζ|η)LES, (9.11)

and each part is modelled separately. On the CMC and LES grids, P (η) is given

by a bounded β-FDF to account for the dynamic changes of ξUL [62]. In ab-

sence of any more convincing model and for simplicity, most studies using two-

dimensional flamelet generated manifolds assume statistical independence between

mixture fraction and the reaction progress, i.e. P (ζ|η)LES = P (ζ) [38, 144]. Often,

a δ-FDF is assumed, yielding

PLES(η, ζ) ≈ P (η)LES · δ(c̃− ζ). (9.12)

However, the validity of this assumption is more than questionable since the reaction

progress will correlate with mixture fraction. This is certainly true close to the nozzle

where the pilot should be associated with a normalized reaction progress variable

close to unity while reaction progress should be close to zero elsewhere. Information
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from the CMC equation for the modelling of P (ζ | η) is employed, viz.

PCMC(ζ | ξ) ≈ δ(Qc(η)− ζ), (9.13)

PLES(ζ | ξ) ≈ δ(〈c | η〉⋆LES − ζ), (9.14)

where Qc(η) = QCO2
+QCO +QH2O +QH2

refers to the conditional moment of the

progress variable, and 〈c | η〉⋆LES is the conditionally averaged progress variable on

an individual LES grid which needs to be modelled. Note that the LES-filtered

progress variable, c̃, evolves by Eqn. (9.1) and largely independently of Qc(η) that

evolves by Eqn. (4.11). It follows that

c̃cmc =
∫ 1

0
Qc(η)PLES(η)dη, (9.15)

and c̃cmc is not necessarily equals c̃. Consistency requires modelling of 〈c | η〉⋆LES by

〈c | η〉⋆LES =
c̃

c̃cmc

Qc(η). (9.16)

Any LES property that is dependent on the mixture composition can then be

obtained from

φ̃ =
∫ ∫

φ0,sc(η, ζ)P (η) · δ(〈c | η〉⋆LES − ζ)dζdη. (9.17)

A further comment refers to the relationship between PCMC and PLES and differences

to corresponding RANS-based studies. Kronenburg and Kostka [101] solved a sep-

arate transport equation for the conditionally averaged variance of c and modelled

PCMC(ζ | η) assuming a β-shape of the distribution. In LES-CMC, this may not be

necessary, because the conditional variance could be approximated by conditional

sampling of the LES values, c̃, within one larger CMC cell. This procedure would be

similar to the modelling of the conditional dissipation and the conditional velocity

where LES sgs-correlations are neglected. However, currently the equality of c̃ and

c̃cmc is not enforced (see above), since differences in the mean value prevent the
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use of the modelling of PCMC(ζ | η) by LES quantities, and some inconsistencies

between PCMC and PLES need to be accepted. Eqns. (9.13) and (9.14) are used

instead and future studies will investigate possibilities to enforce closeness of c̃ and

c̃cmc.

Difference between Eqns. 9.12 and 9.14 are illustrated in Fig. 9.1. If Eqn. 9.12

was applied, the LES quantities are integrated using tabulated values for a constant

reaction progress variable values as indicated by the orange line. If the integration

is simply using Qc, the corresponding LES-filtered values c̃cmc, is underestimated

(cross) compared to the LES solution, c̃. Therefore, the rescaled profiles, 〈c | η〉⋆LES,

is needed to make the integrated solution and LES solution consistent, and Eqn.

9.14 uses the values from the purple dashed profile P (ζ|η = ξ) = δ(〈c | η〉⋆LES − ζ),

that is closely correlated with the CMC solution. If the quantities are highly non-

linear (e.g. reaction rates), the integration method can lead to large differences, and

comparisons are shown in the next section.
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Figure 9.1: Diagram of the joint FDF structures. Black solid line - Qc, purple dashed
line - 〈c | η〉⋆LES, brown square dotted line - P (η) constructed by assuming a β-FDF

with ξ̃ = 0.12, ξ̃′′2 = 0.004 and ξUL = 0.162, circle - (ξ̃,c̃), cross - (ξ̃, c̃cmc).
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9.1.5 Implementation of CMC with Tabulated Chemistry

The flowchart with CMC with tabulated chemistry is shown in Fig. 9.2. It addi-

tionally includes the scaling of tabulated chemistry, and modelling of the subgrid

joint-FDF by scaling with c̃ and c̃cmc. Also, the transport equation of the progress

variable is solved, and the LES-filtered reaction rate must be obtained properly by

integration over the rescaled tabulated chemistry.

CFD

SPRAY

Assumed 

Bounded

beta-FDF

CMC

Compute

Unconditional Moment 

Scale Tabulated 

Chemistry by 

factors 

Compute

Find

Figure 9.2: Flowchart of CMC coupled with LES using tabulated chemistry (CMCe).

9.2 Results and Discussion

The validity of CMCe is first discussed by analyzing the solutions of the progress

variable. Then, the statistics obtained by CMCe and the conventional CMC ap-

proach are compared to experimental results, and the improvements by the CMCe

are highlighted. AcF 1 and 3 are chosen as test cases, and their parameters are
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given in Table 5.1 and details of the numerical configurations are given in Sec. 5.3.

9.2.1 Conditional Moment

In the current approach, the progress variable is computed by two different

equations: the Favre-filtered transport equation (Eqn. (9.1)) and the CMC

equations (Eqn. (4.11)). Both equations are closely correlated [96], however, the

solutions may differ due to different degrees of modelling involved which is neces-

sitated by the large differences in cell size. However, the two solutions should stay

“close” to ensure reasonable scaling by Eqn. (9.5). Fig. 9.3 shows a comparison of

the progress variables for both test flames at different downstream positions. The

LES solutions do not fluctuate around a conditional mean and agree with Qc for

both cases on the lean side and at every position in the domain. This is because

the evaporation process hardly affects the lean side and cannot generate any de-

viations from a conditional mean there. Large conditional fluctuations of the LES

solutions are, however, observed on the rich side. These are triggered by the spray

evaporation processes since evaporation randomly changes the cell mixture fraction

but leaves the reactive species composition largely unchanged. At z/D=10, the

LES solution averaged within one CMC cell, 〈c | η〉 ≈ 〈c̃ | ξ̃ = η〉, shows a sharp

discontinuity around ξjet for AcF 1 and AcF 3. There, a high probability of find-

ing unmixed fluid originating from the jet exists. In contrast, the CMC solution

shows a much smoother profile due to the existence of the dissipation term in Eqn.

(4.11). Such a sharp gradient cannot be captured by CMC. At this position, AcF

3 is influenced more strongly by the evaporation effects due to the lower amount

of pre-evaporation, i.e. lower ξjet. Further downstream, the CMC solutions agree

well with the averaged LES solution, despite relatively large fluctuations around the

conditional mean as indicated by the strong variation of the LES-filtered solutions.

Closeness of 〈c | η〉 and Qc(η) results in reasonable scaling of the tabulated chemistry

values and it seems that no further external forcing is needed to drive Qc(η) towards

〈c | η〉. Differences between these two expressions for the conditionally averaged

reaction progress are larger for larger mixture fraction values. This is due to some
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uncertainty in the modelling of suitable boundary conditions for the reactive scalars

at the upper mixture fraction bound (remember, the correct boundary values would

be known at the droplet surface, but droplets are unresolved here as is common in

Euler-Lagrange computations for spray flames). The FDF plotted in the same figure

shows, however, that the probability for these high mixture fraction values is low,

and that discrepancies will not unduly affect the solution.
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Figure 9.3: Progress variable comparisons. Green dots - LES-filtered values; Black
solid line - conditionally averaged LES-filtered values 〈c | η〉; Red solid line - CMC
solution Qc; dashed line - PCMC(η) within the corresponding CMC cell.

The effect of the modelling of the joint FDF (Eqns. (9.12) and (9.14)) is examined
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Figure 9.4: Effects of joint FDF modelling on progress variable at z/D=20 in flame
AcF 3. Solid line - 〈c | η〉 using the correlated joint FDF (Eqn. (9.14)); dashed line
- 〈c | η〉 using the statistically independent joint FDF Eqn. (9.12); red line - Qc.

in Fig. 9.4. Using the statistically independent joint FDF (Eqn. (9.12)), the peak

of 〈c | η〉 is shifted towards the rich-side, and a relatively large offset from Qc is

observed. In contrast, the correlated FDF (Eqn. (9.14)) provides better agreement

with Qc, and a more realistic approximation of the physical value is to be expected

here. The modelling of PLES(η, ζ) does not affect Qc directly, since indirect effects

through modified density and velocity fields are very small, so that only one solution

for Qc is shown here.

Fig. 9.5 compares the CMC solution and the unscaled tabulated values

(
∫
Q0

α(η, ζ)PLES(ζ | η)dζ) of two of the chemical species that constitute the reaction

progress variable. The solutions for the species H2O agree very well everywhere in

the domain. However, a noticeable difference appears for CO, correctly indicating

finite rate effects of the CMC solution due to the relatively slow conversion from

CO to CO2.

9.2.2 Unconditional Moment

Chapter 7 predicted the measured temperature profiles quite well with the notable

exception of significant underprediction of the temperature along the centerline. The
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Figure 9.5: Conditional averages of four species constituting the progress variable:
comparison of the CMC solution (Qα(η) – solid line), with the respective values
from unscaled chemistry table (

∫
Q0

α(η, ζ)PLES(ζ | η)dζ – dashed line). Black lines
- z/D=10, red lines - z/D=30.

underprediction originated from the CMC solution that did not allow for a variation

of the reaction progress on the LES grid for a similar mixture fraction distribution.

However, large variations exist (see Fig. 9.3), and CMCe can now account for these

fluctuations on the LES grid. A direct comparison of conventional CMC and CMCe

is shown for flame AcF 3 in Fig. 9.6. The new implementation is clearly capable of

approximating the variation of the filtered temperature along the centerline much

better than previous implementations. Also, the temperature profiles of AcF 1

show reasonably good agreement with the experiments and compare very favorably

with all other predictions of this flame published in the literature [38, 37]. The

instantaneous mixture fraction and temperature fields of AcF3 are shown in Fig.

9.7. The temperature along the centerline increases towards the downstream part of
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the domain, and it is not correctly captured when using the conventional CMC (Fig.

7.8). Also, the progress variable profile is very similar to the temperature profile as

expected. It is shown from the conditional plots in Fig. 9.3 that most of the LES

cells have non-zero progress variables. More fuel evaporates due to the temperature

increase, and a much higher increase in mixture fraction values can be seen when

compared to the conventional CMC where ξ̃ did not significantly surpass ξjet in the

entire domain.
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Figure 9.6: Mean temperature profiles. Solid lines - CMCe, dashed lines - conven-
tional CMC without spray source term in CMC equations, X - experiment with error
bars.
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(a) Mixture fraction (b) ξ∆ (c) Progress variable (d) Temperature

Figure 9.7: Instantaneous contour plot of AcF3 with CMCe.

9.2.3 Spray Statistics

The mean axial spray velocity profiles are compared in Fig. 9.8. Conventional

CMC in AcF 3 predicts lower velocities due to the significant underprediction of

temperature (and consequently, the underprediction of thermal expansion) close

to the centerline, especially at downstream positions beyond z/D = 10. Results

improve markedly when CMCe is applied and the accurate modelling by CMCe is

corroborated by the good agreement of velocity data for flame AcF 1. The rms of the

spray also shows acceptable agreement at z/D = 10, and z/D = 20 in Fig. 9.9 along

the centerline. However, it is still found that rms at outer radii is underpredicted as

discussed in Secs. 7.2.3 and 8.2.3

9.2.4 Model Comparisons

In Chapter 7, the conventional CMC with spray source terms has been investigated,

Chapter 8 has introduced a two-conditional moment approaches, and this chapter

proposes another model, CMC with tabulated chemistry. Figure 9.10 shows all

three modelling approaches on temperature and droplet velocity predictions. The

temperature profile clearly indicates that new approaches improve the prediction

along the centerline. No significant difference at outer radii is found since the most

of the evaporation processes occurs at the jet-pilot interface as seen in Figs. 8.10
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Figure 9.8: Radial profiles of the mean axial droplet velocities for the droplet diam-
eter range 20-30 µm. Solid line - CMCe, scattered green points - single realization
of a simulated droplet, dashed line - conventional CMC without spray source term
in CMC equations, X - experiment with error bars.

and 9.7. Remarkable improvements of the mean velocity profiles are achieved by

both new methodologies due to the better predictions of the temperature profiles

that lead to larger thermal expansion.
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Figure 9.9: Radial profiles of rms of the axial droplet velocity for the diameter range
20-30 µm of AcF 3. Solid line - CMCe, X - experiment with error bars.

9.3 Summary

A new methodology to couple CMC with tabulated chemistry has been introduced.

The CMC solution is used to scale the tabulated composition space, and LES

properties are computed by integration over the scaled composition space using a

joint FDF that uses a correlation between the progress variable and mixture fraction

derived from the CMC solution. CMCe is validated by comparison with experiments
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from two acetone spray flames. The conditional profiles indicate that the CMC and

LES solutions are well correlated, and their solutions do not diverge. CMCe results

in improved temperature predictions and mean spray profiles when compared to the

conventional CMC modelling, and overall good agreement is observed for both flame

configurations.
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Figure 9.10: Left - radial profiles of mean temperature, right - radial profiles of the
mean axial droplet velocities for the droplet diameter range 20-30 µm. Crosses -
experiments, black solid line - conventional CMC with spray source terms (Chapter
7), red line - the two-conditional moment approach (Chapter 8), blue line - CMC
with tabulated chemistry (This Chapter).



Chapter 10

Conclusions and Future Work

10.1 Conclusions

The scope of the thesis is to establish a methodology to improve the modelling

of turbulent spray flames. Due to its multi-scale nature, small scale physics must

be modelled appropriately. Large eddy simulation (LES), a Lagrangian approach

with stochastic particle dispersion and evaporation and conditional moment closure

(CMC) have been coupled, and new closures and modelling approaches within the

CMC context have been derived and discussed.

First, simulations of an evaporating spray jet have been performed by LES and

the Lagrangian tracking scheme with and without the stochastic subgrid model. The

numerical predictions have agreed with the mean axial velocity profile in axial and

radial directions. Also, the rms profiles of axial velocity have been well predicted.

However, the mean and rms profiles of the radial velocities have been underpredicted

by about 20 %. Effects of subgrid scales on velocity statistics have found not to be

very important, probably due to the moderate turbulence levels of the spray jet

investigated here. Subgrid scale effects , however, have been important for the

accurate prediction of the droplet evaporation rates and might have strong effects

on the combustion regimes and turbulent spray flames.

The analysis has been then extended to an evaporating spray flame. The LES-

CMC methodology has been first applied, and unclosed terms of the spray source

117
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terms in the CMC equations have been analyzed and discussed. Also, several imple-

mentations of the boundary condition in mixture fraction space have been discussed.

The macroscopic view has been identified as the possibly more feasible implemen-

tation, so that the boundary conditions have been defined by LES-filtered quan-

tities (macroscopic) rather than the surface droplet quantities (microscopic view).

The modified implementation of the CMC spray terms has been first validated by

comparison of an LES-filtered solution for acetone with the CMC solution for a

non-reacting jet. Then, the computations of the acetone spray flames have been

performed, and it has showed that the CMC spray source terms shift the reacting

solution to higher mixture fraction values, and inclusion of the CMC spray sources

should not be neglected. The consistent CMC model has given very good agreement

of predicted and measured temperatures, with the only exception of some locations

near the centerline. The predictions of the mean and rms axial velocity distribu-

tion have been good, while some discrepancies could have been explained by small

temperature deviations.

The underprediction of temperature have been observed in conventional LES-

CMC is due to limitations of the chosen boundary condition at the upper mixture

fraction limit. The upper mixture fraction boundary is set to the jet condition in

conventional non-premixed flame configurations, and dependent quantities are fixed

and equal to the fuel conditions. However, in the evaporating spray flames, it is

possible to have large evaporation which leads to local mixture fractions larger than

the jet values. Therefore, new methodologies that allow for freely moving upper

boundaries have been developed. This study has proposed two different methods: a

two-conditional moment approach and CMC with tabulated chemistry.

First, the two-conditional moment approach has been proposed to take account

for the shift of the upper mixture fraction boundary caused by the evaporation pro-

cess. It solves two conditional moments based on the total mixture fraction and

the conserved mixture fraction, and a new method to select the upper boundary has

been proposed. The LES quantities are computed by integrating the conditional mo-

ments estimated by interpolating two conditional moments by the weighting factor.
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The two-conditional moment approach has been applied to a wide range of flames

with different degrees of pre-evaporation (and Reynolds numbers). The effects of

the two-conditional moment approach has been demonstrated when analyzing the

scattering of ξ∆ within a CMC cell. Using the correct weighting between the two

moments has led to significant improvements of the predicted radial temperature

profiles, particularly near the centerline. It has been also shown that the new model

is robust enough to predict a flame series with varying degrees of pre-evaporation

as long as the equivalence ratio of the fuel vapour exiting the jet does not allow

for a flame burning largely in the premixed mode. Predictions of the spray mean

velocity have also been improved. The mean velocity profiles have shown good

agreement, but a slight underestimation have been consistently found downstream.

The predictions of the axial velocity rms have been found to be acceptable along

the centerline, but the experimental trend of an increase of the rms at outer radii

have not been captured.

Another methodology called CMCe which is equivalent with CMC using tabu-

lated chemistry has been developed. The CMC solution is used to scale the tabu-

lated composition space, and LES properties are computed by integration over the

scaled composition space using a joint FDF that uses a correlation between the

progress variable and mixture fraction derived from the CMC solution. CMCe has

been validated by comparison with experiments from two acetone spray flames. The

conditional profiles have indicated that the CMC and LES solutions have been well

correlated, and their solutions have not diverged. CMCe have resulted in improved

temperature predictions and mean spray profiles when compared to the conven-

tional CMC modelling, and overall good agreement have been observed for both

flame configurations.

As a summary, this thesis has constructed new methodologies to simulate

turbulent spray flames. The accurate implementation of LES-CMC of two-phase

flows has been analyzed in detail, and two novel CMC approaches have been pro-

posed and validated. Since this study has mainly focused on fuel rich spray flames,

the two-conditional moment approach has been sufficient. However, since CMCe is
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more generic approach, it is possible to be extended to simulate other complex flow

configurations.

10.2 Recommendations for Future Work

There are some suggestions towards future developments. Even though the new

approaches have improved on the rather strict limitation of the upper boundary

conditions, non-premixed configurations were still assumed. Therefore, they are

most likely not applicable to some of the spray flame configurations investigated in

[113, 69] that have small mixture fraction values in the jet at the nozzle exit due

to low amounts of pre-evaporation and that form premixed (or partially premixed)

flame structures. It would be beneficial to develop a novel CMC approach that can

simulate non-premixed and premixed type flames at the same time. Perhaps, recent

premixed CMC studies [169, 4, 3] might provide a hint to add a premixed flame

feature to the approaches developed in this thesis. Especially with the combina-

tion with CMCe, it might be able to establish a new CMC methodology that can

simulate all regimes ranging from non-premixed and partially premixed flame with

evaporating sprays.

In addition, CMC coupled with a microscopic view would aid the development

of more accurate boundary conditions in mixture fraction space. The current CMC

configurations are based on a macroscopic view which used LES-filtered quantities.

However, within a spray flame, there are many micro structures near the droplets

[96, 194] that are not fully considered in this study. Therefore, it might be beneficial

to establish a new subgrid model based a on microscopic approach that can account

for details of mixing between the droplet surface and the LES-filtered mean.
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Appendix A

Conditional Scalar Dissipation in

Two-Phase Flows

The accurate prediction of conditional scalar dissipation rates is of primary impor-

tance for CMC simulations. Approaches developed in past studies can be mainly

sorted into two categories: macroscopic and microscopic. Here, a macroscopic ap-

proach is defined as the methodology where subgrid model are a function of filtered

quantities, and a microscopic approach is understood as an approach to construct

subgrid (or micro-sized) structures in detail at or around the droplets. This appendix

briefly reviews both approaches.

A.1 Macroscopic Approach

In the macroscopic approach, the conditional scalar dissipation rate is constructed

taking samples from the LES cells as discussed in Sec. 4.3.2. Therefore, the

modelling of the filtered subgrid scalar dissipation, Ñsgs, plays an important role.

The scalar dissipation rate is closely connected with the mixture fraction variance,

ξ̃′′2, as often modelled as

Ñsgs =
1

2

µt

Sct∆2Cξ

ξ̃′′2. (A.1)
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One of the simplest models to estimate the mixture fraction variance is an algebraic

model that is based on local mixture fraction gradients as

ξ̃′′2 = Cξ∆
2

(
∂ξ̃

∂xj

)2

, (A.2)

where Cξ is usually set to equal Cξ = 0.09 [132]. Another approach is to solve a

transport equation of the mixture fraction variance for two-phase flow written as

∂

∂t
(ρ̄ξ̃′′2) +

∂

∂xj
(ρ̄ũj ξ̃′′2) =

∂

∂xj



Ç
ρ̄D +

µt

Sct

å
∂ξ̃′′2

∂xj


− 2ρ̄Ñsgs + 2

µt

Sct

(
∂ξ̃

∂xj

)2

+ σs,

(A.3)

where σs is the source term associated with the evaporation process are given by

σs = 2ρ̄(ξ̃Π− ξ̃‹Π) + ρ̄(ξ̃2‹Π−fiξ2Π), (A.4)

and three deferent closures were suggested as listed in Table A.1. Model 1 was

developed by Pera et al. [138] and is fully based on the local quantities within

the cell. Model 2 is used by Borghesi et al. [20], and it computes filtered terms

by summing up the droplet evaporation given by the Lagrangian particle tracking

method. Then, Model 3 was proposed by Revillon and Vervisch[152] and couples

the subgrid scale spray evaporation with filtered quantities. These models are tested

by simulating the spray flames with conditional moments obtained a priori by using

the algebraic model (see Chapter 7). The transport equations are solved with the

respective closures, and results are compared to the algebraic model. Note that the

conditional moments are unchanged during the simulation to focus on the analysis

of ξ̃′′2 excluding the coupling by Nη in the CMC equations.

Fig. A.1 shows the mixture fraction variances computed by each approach,

and it becomes immediately apparent that notable differences exist. Not only the

magnitude of the variance is different, but also the profile shapes. For example, the

algebraic model and Model 1 show small ξ̃′′2 at the center of the jet near the inlet,

but Models 2 and 3 predict large ξ̃′′2 at the same location. Also, the maximum value
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Table A.1: Closures of σs based on the variance transport equation. ‹Π is the volume

expansion rate per unit volume, ‹Π = 1
ρ̄V

Nd∑

i=1

ṁi, ṁi is the mass evaporation rate of

of i-th droplet, Nd is the number of the droplets per LES cell, V is the cell volume,
and ξsurf is the mixture fraction at each droplet surface.

Model 1 [138] σs = αρ̄ξ̃′′2
Ä‹Π/ξ̃ä

α = 0.5

Model 2 [20] σs = 2ρ̄(ξ̃Π− ξ̃‹Π) + ρ̄(ξ̃2‹Π−fiξ2Π)
ξ̃Π = 1

ρ̄V

Nd∑

i=1

ξs,iṁi,
fiξ2Π = 1

ρ̄V

Nd∑

i=1

ξ2s,iṁi

Model 3 [152] σs = 2ρ̄fiξ′′Π(1− ξ̃)− ρ̄flξ′′2Π
fiξ′′Π = 1

ρ̄V

Nd∑

i=1

√
ξ̃′′2ṁi,

flξ′′2Π = 1
ρ̄V

Nd∑

i=1

ξ̃′′2ṁi

in Model 2 is found to be 5×10−4 whereas the algebraic model and Model 1 predict

peak values almost two orders of magnitude lower. This implies the variance source

term estimated by Model 2 is at least two orders of magnitude larger than the shear

production term (third term in Eqn. A.3). Such a large ξ̃′′2 might lead to a large

scalar dissipation rate (Eqn. A.1) that can extinguish flames. Therefore, the current

study is based on the algebraic model, and the scalar dissipation rates is estimated

with the correction factor (see Sec. 2.4).

(a) Algebraic model (b) Model 1 (c) Model 2 (d) Model 3

Figure A.1: Comparisons of the mixture fraction variances.
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A.2 Microscopic Approach

While the macroscopic approach provides scalar dissipation as a function of other

filtered quantities, a microscopic approach attempts to obtain detailed information

around small scale structures. However, there is no simple model applicable to gen-

eral flow fields. Fully resolved DNS is currently the only approach to obtain all the

necessary statistics, but it is not computationally tractable. Therefore, this section

introduces two methodologies investigated in the past literature: conditioning on

droplet surface quantities and a single droplet stationary flow assumption.

A.2.1 Conditioning on Droplet Surface

Borghesi et al. [20] have discussed the scalar dissipation and PDF on the spray

surface. They applied the surface density, Σs, and the gradient as

P (ξsurf ) |〈|∇ξ||ξsurf〉| = Σs. (A.5)

Since the surface density and the gradient of mixture fraction at the surface can be

given as

Σs =
1

V

Nd,ξsurf∑

i=1

4πr2i , (A.6)

〈|∇ξ||ξsurf〉 = ln[1 + Bm,v]Sh
1− ξsurf

2r
, (A.7)

where Nd,ξsurf is the number density with the specific surface mixture fraction, Bm,v

is the Spalding number for the vapour, r is the radius of the droplet, and Sh is the

Sherwood number. Then, the PDF of the surface condition can be given as

P (ξsurf ) =
Σs

| 〈∇ξ|ξsurf〉 |
=
Nd,ξsurf

V

Nd,ξsurf∑

i=1

4πr2i

Nd,ξsurf∑

i=1

ln[1 + Bm,v]Sh
1− ξsurf

2r

. (A.8)
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Also, conditional scalar dissipation on the droplet surface can be estimated based

on the local gradient as

〈N |ξsurf〉 = D
¨
∇ξ2|ξsurf

∂
=

D

Nd,ξsurf

Nd,ξsurf∑

i=1

Ç
ln[1 + Bm,v]Sh

1− ξsurf
2r

å2

. (A.9)

They have also carried extra validation of the model based on the transported PDF

model as discussed by Kronenburg et al. [100]. The two-phase PDF transport

equation obtained by Mortensen and Bilger [126] is given by

∂ρ(η)Pη

∂t
+∇ · (〈ρu|η〉Pη) +

∂2

∂η2
(〈ρN |η〉Pη)

= ∇ · (〈ρD|η〉Pη)−
∂ρ(1− η) 〈π|η〉Pη

∂η
+ ρ 〈π|η〉Pη. (A.10)

In stationary environments, Eqn. A.10 can be re-written as [20]

ρ 〈N |ξsurf〉P (ξsurf ) = ρ
∫ 1

ξsurf

(1− ξsurf ) 〈π〉P (ηo)dηo. (A.11)

Then, it is shown that the equation is satisfied when using the models presented in

Eqns. A.8 and A.9.

The advantages of the approach are that the model can be valid even in a complex

flow field, and it can also handle polydispersed droplet clouds at the same time.

However, the PDF and the conditional scalar dissipation rate of the mixture fraction

are given only at surface, but not for values between the filtered mean and at the

surface (ξ̃LES < ξ < ξsurf ). Therefore, it is difficult to establish a subgrid model

applicable in an LES studies (also see Secs. 7.1.3 and 7.1.4).

A.2.2 Droplet in Stationary Flow

Bilger [12] has derived conditional scalar dissipation around a stationary spherical

isolated droplet. As the results, the following expressions are given as

〈N |η〉 = D

r2s

[ln(1− η)]4

[ln(1 + B)]2
(1− η)2, (A.12)
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P (η) ≡ Ση

〈|∇ξ||η〉 = 3fv
[ln(1−B)]3

[ln(1− η)]4 (1− η)
, (A.13)

where rs is the radius of the droplet, B =
ξsurf−ξ∞
1−ξsurf

, fv is the volume fraction of the

droplets and Ση and 〈|∇ξ||η〉 are defined as

Ση =
3fv
rs

[ln(1 + B)2]

[ln(1− η)]2
, (A.14)

〈|∇ξ||η〉 = [ln(1− η)]2

[ln(1 + B)]

(1− η)

rs
. (A.15)

Note that 1
1−η

in Eqn. A.13 is missing in the original paper.

The advantage of Bilger’s model is that it can model the PDF and Nη between

the far field and ξsurf . Bilger only considered far field condition as ξ∞ = 0.0, and it

should be generalized for variable ξ∞ In the LES context, ξ∞ can be selected as a

filtered cell value, ξ∞ = ξ̃LES, and models (Eqns. A.12 - A.15) are modified as

〈N |η〉 = D

r2s

ï
ln
Å

1−η

1−ξ̃LES

ãò4

[ln(1 +B)]2
(1− η)2, (A.16)

P (η) ≡ Ση

〈|∇ξ||η〉 = 3fv
[ln(1−B)]3ï

ln
Å

1−η

1−ξ̃LES

ãò4
(1− η)

, (A.17)

Ση =
3fv
rs

[ln(1 + B)]2ï
ln
Å

1−η

1−ξ̃LES

ãò2 , (A.18)

〈|∇ξ||η〉 =

ï
ln
Å

1−η

1−ξ̃LES

ãò2

[ln(1 + B)]

(1− η)

rs
. (A.19)

The scalar dissipation rates obtained by macroscopic and microscopic approaches

are shown in Fig. A.2. The macroscopic approach (with Model 1) shows Ñsgs in the

order of 0.01 1/s, whereas the microscopic model results 〈N |η〉 near droplet surface
(1000 1/s) that is several orders of magnitude greater than the filtered dissipation

rates due to very sharp gradients near the droplet surface. Since the droplet size is

assumed to be very small compared to the grid size, 〈N |η〉 near the droplet surface



A. Conditional Scalar Dissipation in Two-Phase Flows 149

should always be larger than the filtered quantity. Such a large 〈N |η〉 implies that

the time scale of vapour dissipation is very small and cannot be resolved within

one CFD time step. In practical simulations, turbulence and shear flows increase

the scalar dissipation rate further, so it might be adequate to assume fast mixing

between ξ̃ and ξsurf . Thus, a linear relation such as

Qα(η) = Qα

Ä
ξ̃LES

ä
+

η − ξ̃LES

ξs− ξ̃LES

î
Qα(ξsurf )−Qα

Ä
ξ̃LES

äó
(A.20)

can be assumed. However, there are still some difficulties to apply such models.

One example is estimation of the probability (P (η)) between ξ̃ and ξsurf where

the relative motion to the surrounding gas is non-zero. Also, if the particle cloud

is polydispersed, multiple conditional moments exist whereas only one solution is

usually available in a CMC solution. It might be possible to have an ensemble

average within the LES cell, but a numerical procedure to compute the PDF around

every particle would be expensive.

A.3 Discussion and Summary

In this appendix, two different approaches are reviewed and analyzed to include the

effects of evaporation in the subgrid scalar dissipation modelling. Both macro- and

microscopic approaches are essentially modelling the same physics from the different

approach, but results very different profiles. These are the questions and possible

suggestions for the discrepancy. The spray source term in the ξ̃′′2 transport equation

assumes that the vapour stays unmixed during the LES time steps (Model 2 and

3). However, Bilger’s model results very large scalar dissipation rate at high ξ, and

it suggests that the diffusion time scale around spray is a lot smaller than the LES

time step and cause very rapid mixing. Therefore, the assumption of very high scalar

dissipation rate near droplets could lead to a quasi-steady equilibrium condition. It

would be possible to develop a model to find ξ̃′′2 by considering the quick diffusion.

In fact, a two-phase LES with the Lagrangian scheme normally assumes all vapour is



A.3. DISCUSSION AND SUMMARY 150

(a) Contour plots of the filtered scalar
dissipation rate with Model 1

(b) The conditional scalar dissipation rate
around a droplet with 10 µm radius, for two
different conditions (droplet temperatures)

with ξ̃ = 0.16 and ξsurf = 0.9 (Blue line) or
ξsurf = 0.3 (Red line)

Figure A.2: Scalar dissipation rates in different physical scale.

equally distributed among LES cells. However, it is still not applicable to establish

the subgrid model based on the microscopic approach yet. Therefore, the current

study follows the macroscopic approach, and model the subgrid scalar dissipation by

spray evaporation by simply multiplying with the factor. More detailed discussion

is given in Sec. 2.4.



Appendix B

Spray Source Terms in Two-Phase

CMC Equations

The closures of the spray source terms in CMC equations are proposed in Chapter

4, and this appendix attempts to clarify their discretization approaches. In theory,

scalar transport equations (CFD) and CMC equations describe same physics from

different approaches, and their solutions should be identical. Thus, the spray source

terms in both approaches are compared to validate the closures and discretization

for the CMC equations. Here, only to focus on the effects of the spray source terms,

unsteady inviscid stationary (no convective velocity) assumptions are enforced. CFD

cell quantities are given by following unsteady inviscid stationary (zero-velocity)

transport equations as
∂ρ

∂t
= ρ̇, (B.1)

∂ρξ

∂t
= ρ̇, (B.2)

∂ρYα
∂t

= ζαρ̇, (B.3)

where ζα is the mass fraction α-th species within liquid vapour, and ρ̇ is the spray

source term given as (see Sec. 3.3.3)

ρ̇ =
1

V

Ns∑

n=1

np,nṁp,n. (B.4)
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Similarly, the CMC equation under same assumptions reads as

∂Qα

∂t
=

ñ
ζα −Qα − (1− η)

∂Qα

∂η

ô
Πη, (B.5)

where Πη the expansion rate by evaporation modelled in Sec. 4.3.3 as

Πη =
‹Πδ(η − ξ̃)
‹P (η) , (B.6)

with

‹Π =
1

ρ̄V

Ns∑

n=1

ṁp,n =
ρ̇

ρ̄
. (B.7)

Here, the former approach with the transport equations is referred as the “La-

grangian approach” as it describes the behavior of the CFD cell quantities in the

mixture fraction space as a point, and the latter approach with CMC solution is de-

noted as the “Eulerian approach” that update the conditional quantities in mixture

fraction bins. The Lagrangian approach is first analyzed to provide some insights

how CMC solution should behave in Sec. B.1, and discretization schemes of the

spray source terms are proposed and tested in Sec. B.2. Then, Sec. B.3 demon-

strates that the Lagrangian approach and the Eulerian approach with the proposed

discretization are equivalent. Finally, Sec. B.4 explains the implementation in the

CMC solver.

B.1 Behavior of CFD Cell Quantities (Lagrangian

Approach)

The evaporation process increases the mixture fraction and the fuel species mass

fraction in each CFD cell, and the cell quantities of a CFD cell in mixture fraction

space can be treated as a Lagrangian point. Eqns. B.1 - B.3 are discretized in time

and re-written as

ρn+1 = ρn +∆ρ̇, (B.8)
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ρn+1ξn+1 = ρnξn +∆ρ̇, (B.9)

ρn+1Y n+1
α = ρnY n

α + ζα∆ρ̇, (B.10)

where ∆ρ̇ is the source term emitted within the time step, ∆t, shown as ∆ρ̇ = ∆tρ̇,

and superscripts n and n + 1 denote the time step. At the time step n, the CFD

quantities represents a Lagrangian point in mixture fraction space at (ξn, Y n
α ), and

after the evaporation process (at the time step n+1), the Lagrangian point is shifted

to a new location, (ξn+1, Y n+1
α ). ξn+1 and Y n+1

α can be represented as:

ξn+1 =
ρn+1ξn+1

ρn+1
=
ρnξn +∆ρ̇

ρn +∆ρ̇
=
ξ +∆Π

1 +∆Π
, (B.11)

Y n+1
α =

ρn+1Y n+1
α

ρn+1
=
ρnY n

α + ζα∆ρ̇

ρn +∆ρ̇
=
Y n
α + ζα∆Π

1 +∆Π
, (B.12)

where ∆Π is the volume expansion by spray source defined as ∆Π = ∆ρ̇
ρ
. Then, the

slope of the shift is given as

dYα
dξ

=
Y n+1
α − Y n

α

ξn+1 − ξn
=
ζα − Y n

α

1− ξn
. (B.13)

A sample study is performed to see how a Lagrangian point in mixture fraction

space behaves. A profile of mass fraction of acetone, Yace, is correlated with mixture

fraction, and a profile at time step n is given as following three segments:

Yace = 0 if ξ < 0.1,

Yace = 2(ξ − 0.1) if 0.1 ≤ ξ < 0.2,

Yace = ξ if 0.2 ≤ ξ,

(B.14)

and the liquid fuel is considered as pure acetone, so ζace = 1.0. Here, let us assume

that the value of the spray source term is given as ∆Π = 0.04 for every CFD cell,

the profile after evaporations (at the time step n + 1) is obtained as in Fig. B.1.

Evaporation acts differently in each of the three segments. In the first segment,

(ξ < 0.1), the evaporation increases Yace. However, in the second segment, the

addition of the spray source term to reduce the Yace profiles. It might be wrongly
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assumed that the source term should increase Yace in the region, but the change of

Yace by evaporation (Eqn. B.13) is actually weaker (dYα

dξ
≈ 1) than the gradient of

dYα

dξ
imposed at the time step n (dYα

dξ
= 2). This effect could be also viewed as that

the evaporation carries low Yace mixture into higher mixture fraction space. In the

third segment, the evaporation does not influence the slope at all since both of the

slope of the profile initial profile and Eqn. B.13 are unity.
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Figure B.1: Comparisons of Yace profiles between before and after the addition of
the spray source term. Black circles - CFD cell quantities at the time step n, red
circle - CFD cell quantities at the time step n+ 1.

B.2 Behavior of Conditional Moments (Eulerian

Approach)

The CMC equation describes the change of conditionally averaged quantity in each

mixture fraction bin, and the solution should recover the same solution obtained by

the Lagrangian approach as in Fig. B.1. Eqn. B.5 discretized in time gives,

∆Qα = Qn+1
α −Qn

α = ∆t

ñ
ζα −Qn

α − (1− η)
∂Qα

∂η

ô
Πη, (B.15)

and the modelling approaches of ∂Qα

∂η
and Πη are discussed. First, intuitive discretiza-

tion schemes (Model 1) are tested, and improved discretization schemes (Model 2)

are suggested.
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B.2.1 Intuitive Discretization Scheme (Model 1)

Model 1 is established by classical (or so to speak, intuitive) approaches. The

discretization of the gradient term in Eqn. B.5, ∂Qα

∂η
, can be discretized by a finite

difference method as
∂Qα,j

∂η
=
Qα,j+1 −Qα,j−1

ηj+1 − ηj−1

, (B.16)

where j denotes the cell index in the mixture fraction space. Also, Πη is simply

modelled based in Eqns. B.6 and B.7 as

Πη =
Πδ(η − ξ)

P (η)
=

ρ̇

ρn
δ(η − ξ)

P (η)
, (B.17)

by conditioning the spray source term on the mixture fraction in a CFD cell before

the evaporation at the time step n.

A conditional moment at the time step n+1 is computed using the same condition

(Eqn. B.14) compared to the Lagrangian solution in Fig. B.2(a). Large offsets from

the Lagrangian solution are found where the curvature of the slope is non-zero, and it

indicates that the discretization scheme of ∂Qα

∂η
is not appropriate. Also, Fig. B.2(b)

shows that a slight difference exists even within the first segment where ∂Qα

∂η
= 0,

and it indicates that Πη closed by Eqn. B.17 have overestimated by the conventional

discretization. Thus, the discretization approaches should be improved to fix these

deficiencies.

B.2.2 Improved Discretization Scheme (Model 2)

Since the Model 1 (or intuitive discretization approach) indicates large offset from

the Lagrangian solution, the appropriate discretization for the gradient term, ∂Qα

∂η

and the evaporation term, Πη are necessary here. Two factors are considered here.

First, the CMC equations should be conditioned at ξn+1 instead of ξ. Consider-

ing the Lagrangian approach, the source term added on a Lagrangian point (ξn, Y n
α )

moves the point onto (ξn+1, Y n+1
α ). Therefore, the source term on ξn actually

influence statistics at ξn+1. From the Eulerian (or CMC equation) point of view,



B.2. BEHAVIOR OF CONDITIONAL MOMENTS (EULERIAN APPROACH)156

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Mixture Fraction

Y
 ac

e

 

 

(a)

0.06 0.07 0.08 0.09 0.1
0.034

0.036

0.038

0.04

0.042

0.044

Mixure Fraction

Y
 ac

e

 

 

(b)

Figure B.2: Comparisons of acetone species profile: Green line - CMC solution with
conventional discretization, Blue crosses - CFD cell solutions in the initial profile
(at n), Black crosses - CFD cell solutions after the evaporation process (at n+ 1).

the source term that influences the statistics at ξn+1 should be conditioned by the

properties at ξn+1 as well. Therefore, the conditional spray source term can be

slightly modified as

Πη =
ρ̇

ρn+1

δ(η − ξ)

P (η)
=

Π′δ(η − ξ)

P (η)
, (B.18)

where Π′ can be also described as,

Π′ =
ρ̇

ρn+1
=

ρ̇

ρn(1 + ∆Π)
=

Π

1 +∆Π
. (B.19)

Secondly, the gradient of Qα should not be simply modelled by the neighboring

mixture fraction bins. Considering the Lagrangian view, the gradient is character-

ized by two points (ξn, Y n
α ) and (ξn+1, Y n+1

α ) shown as in Eqn. B.13. Similarly, the

gradient of the conditional moment can be represented as

∂Qα (ξ
n+1)

∂η
=
Qn

α (ξ
n+1)−Qn

α (ξ
n)

ξn+1 − ξn
, (B.20)

and ξn+1 corresponds to the mixture fraction bin η. ξn are computed based on be

computed by replacing ξn = ξn+1(1 + ∆Π) − ∆Π (by modifying Eqn. B.11), and

the corresponding conditional moment Qn
α (ξ

n) is taken.

Figs. B.3(a) and B.3(b) show improvements of Model 2. The kinks near the
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large curvatures have disappeared by introducing the new gradient model. Also, the

small offset caused by the evaporation terms in Model 1 is correctly removed by the

new evaporation term in Model 2.
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Figure B.3: Comparisons of acetone species profile with improved discretization
approaches: Red line with circles - CMC solution with Model 2, Green line - CMC
solution with Model 1, Black crosses - CFD cell solutions after the evaporation
process.

The test case so far applies a uniform Π in the entire mixture fraction space,

and conditional fluctuations of the solution are not included. Thus, another test

case with a random evaporation source term is conducted. Π is taken as the ran-

dom distribution ranged [0, 0.04], and the CMC solutions are compared against the

conditionally averaged solution, Qave, constructed by taking samples of Lagrangian

solutions. Fig. B.4 demonstrates that the improved discretization (Model 2) success-

fully reconstruct Qave, whereas the intuitive discretization (Model 1) still produces

the offsets as seen in the earlier test case (Fig. B.2(a)). Thus, Model 2 is shown to

be applicable for general cases.

B.3 Lagrangian vs. Eulerian approaches

This section demonstrates that the discretization approaches in Model 2 in the

CMC equation (or the Eulerian approach) is consistent to the CFD (or Lagrangian)

solutions. If the Lagrangian and the Eulerian approaches are consistent, a following
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Figure B.4: Comparisons of acetone profiles. Red line with circles - the improved
discretization, green line - the intuitive discretization, blue line - the averaged from
the Lagrangian solutions, crosses - the analytical Lagrangian solution. Π is taken
as the random uniform distribution ranged [0, 0.04].

relation is valid:

Qn+1
α

Ä
ξn+1

ä
= ∆Qα

Ä
ξn+1

ä
+Qn

α

Ä
ξn+1

ä
= Y n+1

α . (B.21)

First, with Model 2, 〈∆Qα|ξn+1〉 is re-formulated manipulating the CMC equation

(Eqn. B.5):

∆Qα

Ä
ξn+1

ä
= ∆t

ñ
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α

Ä
ξn+1

ä
−
Ä
1− ξn+1
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α (ξ

n+1)−Qn
α (ξ

n)

ξn+1 − ξn

ô
∆Π

1 +∆Π
.

(B.22)

The profile of CFD and CMC profiles are consistent at the time step n, so that

Qα (ξ) = Yα. Also, replacing ξ
n by (ξn+1(1 + ∆Π)−∆Π) (by modifying Eqn. B.11),

ξn+1 − ξn = ξn+1 − ξn+1(1 + ∆Π)−∆Π =
Ä
1− ξn+1

ä
∆Π. (B.23)
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Then, Eqn. B.22 is simplified as,
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(B.24)

Also, replace Y n
α = Y n+1

α (1 + ∆Π)−∆Π (from Eqn. B.12),
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Thus, Eqn. B.21 satisfies

∆Qn
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α
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ä
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α +Qn
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= Y n+1
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and demonstrates that the discretization in the CMC equation are consistent to the

Lagrangian solution.

B.4 Numerical Implementations in CMC Solver

In the previous sections, the closures of the spray source terms are discretized with

two different time steps n and n+1. However, during the simulation the conditions

are only available at one time step only, and conditions at the other time step (n)

must be modelled. Here, the discretization approaches implemented for CMC solver
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are presented (see also, Sec. 4.4.2). Πη is simply represented as

Πη =
Π′δ(η − ξ)

P (η)
=

Π

1 + ∆Π

δ(η − ξ̃)

P (η)
. (B.27)

The gradient term requires a slight transformation to adjust the sample space and

given as
∂Qα(η)

∂η
=
Qα(η)−Qα (η

∗)

η − η∗
, (B.28)

where η∗ is η∗ = η(1 + ∆Π)−∆Π.
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