
Task Allocation in Distributed Multimedia Systems
based on the Host-Satellite Model

Gabriel Dermler, Ashraf Iqbal

Abstract. Multimedia applications require intermediate processing between media sources and sinks. In addi-
tion to end-user machines intermediate computers can be used for performing media processing. This possi-
bility leads to the problem of allocating processing components on various computers. In this paper, we study
this problem in the context of star-shaped application graphs which have to be allocated between given end-
user machines (satellites) and a central computer (host). The problem is formulated in terms of best achiev-
able bottleneck resource usage. Several approaches are considered including an approximate scheme and
two fast-heuristics. Performance measurements show the efficiency of the considered approaches. A discus-
sion of our approach shows important differences to solutions provided for related problems of graph parti-
tioning and mapping.

1 Introduction

Advances in the computer and communication technology have stimulated the integration of

digital audio and video with computing, leading to the development of distributed multimedia

systems [StNa95]. This class of systems combines the advantages of distributed computing

with the ability of processing several media in an integrated fashion. This capability enhances

conventional application environments and opens the door for new innovative applications

ranging from on-demand teleservices and teleconferencing systems to distributed game and

virtual reality applications ([DVV94], [BLMS96]), [DGRO95], [SMK96], [HaSm96]).

The value of a distributed multimedia application to its end-users is measured in terms of the

delivered Quality-of-Service ([VKBG95]), e.g. the video window size and/or rate. In order to

guarantee a requested QoS, the availability of resources such as CPU, memory and communi-

cation bandwidth has to be ensured by resource reservation prior to using the application. Re-

source reservation protocols have been proposed for the coordination of resource allocation for

the entire distributed application ([NaSm95], [Wo96], [DFR96], [RDF97]). These protocols

attempt to find the best possible QoS under the constraint of limited resource availability.

Above protocols assume that the distributed processing tasks of the application, referred to

here as application components, are allocated, i.e. there is no degree of freedom in selecting

- 2 -

processing sites. This assumption is often unavoidable for source and sink components, since

their location is determined by the availability of source data and the location of end-users gen-

erating respectively consuming source resp. sink data. For instance, in a teleconferencing ap-

plication, source data will be generated by camera components capturing videos at the sites of

the conference participants while (sink) display components will display a mixture of these

videos at the same sites.

Intermediate processing components (i.e. such processing media streams between sources and

sinks) have been proposed for various purposes, e.g. for conversion between different formats

(e.g. different encoding schemes , large and small video, high- and low-rate video, etc.; e.g.

[YMGH96], [BeSt97], [ShSe95]), media content processing (video/audio smoothing, feature

detection and analysis; e.g. [SSJH96], [MAHT97]) and for mixing several media streams into

a new stream (e.g. virtual reality, picture-in-picture video, audio mixing; e.g. [HaSm96],

[KKKM95], [MXBX96]). Intermediate components are not subject to the location restrictions

mentioned above. In fact, several projects aim at developing efficient computer platforms for

supporting intermediate processing (e.g. [Sren96], [SSJH96], [AMZ95]), in order to relieve

end-user computers from heavy processing load.

This paper considers the problem of finding an optimised allocation of intermediate processing

components in order to maximize achievable QoS. Its basic model assumes a star shape for ap-

plications (Figure 1) and thus covers typical multimedia application scenarios such as multi-

casting, mixing and conferencing ([DFR96]). In this model source and sink components are

attached to satellites (end-user computers) while the component at the star center is attached

to a host (intermediate processing computer). Our goal in this paper is to describe algorithms

deciding whether intermediate components are to be allocated on satellite or host computers,

while taking into account the specific requirements arising for multimedia applications.

The paper is structured as follows. In Section 2 we first present our application model in detail

and explain the relationship between QoS requests, application load requirements and resource

constraints. Based on this, in Section 3 we formulate the task allocation problem for host/sa-

tellite scenarios. In Section 4 we describe both approximate and heuristic solution schemes and

present measurement results. In Section 5 we discuss our results and relate our approch to ear-

liear work in the area of task allocation for multiprocessing and distibuted systems. The paper

concludes with a short summary and an outlook on future work.

- 3 -

2 Quality-of-Service and Resource Model

Application Abstractions

We briefly introduce our abstractions for modeling distributed multimedia applications. Simi-

lar concepts have been proposed by other groups including the one defining IMA MMS

[IMA93]. Here, we describe the terminology used for our CINEMA platform [RDF97].

In CINEMA, distributed multimedia applications are represented by flow graphs, consisting of

components interconnected via links. Components are processing elements encapsulating

functions for capturing, storing, presenting and manipulating continuous data streams. They

are associated with ports, which allow them to communicate media data. Flow graphs are con-

figured by linking the ports of components, where a link is an abstraction of a unidirectional

communication channel. Links can be of both unicast or multicast type.

As mentioned, in this paper we focus on star-shaped flowgraphs which only require certain

component types for flowgraph construction. We distinguish source components, associated

with one output port only, sink components, which only have one input port, and intermediate

components, which receive data from input ports, perform some operation and send the result

via output ports (see Figure 1). Intermediate components can be of two types. Filters (or con-

Figure 1 : A Conferencing Scenario with Mixer and Converters

Port Link Component

So1

So2

Mix

Conv1

Conv3

Sink1

Sink2

Conv2

Conv4

Sat 1

Sat 2

Sat 1

Sat 2

Host

Computers

- 4 -

verters) have one input port and one output port, while mixers may have several input and out-

put ports (see [RDF97] for more complex settings).

In CINEMA, media streams are typed. For example, the media type of a stream may be

"uncompressed_video", or "JPEG_encoded_video". Each media type defines a set of media

parameters, which specifies the characteristics of a particular stream instance. For example,

"uncompressed_video" may be associated with parameters, such as frame rate and frame size.

For simplicity, in this paper we assume that only one media parameter (e.g. video frame size)

is given at each port in the flowgraph.

Components may be restricted in their support for media (parameter) values by their functional

design. For instance, a source component may only support one media value, though the cor-

responding media type allows for a set of values. In order to reflect such design limitations1,

each component port is associated with a format constraint indicating the possible media va-

lues at the port. In this paper, initially we assume that format constraints can be selected indi-

vidually for sources and sinks, but are the same for all other components.2

Figure 2 shows the format constraints for a flowgraph. It also indicates (encircled) the best pos-

sible consistent media value selection at all component ports. For setting the media values un-

der format constraints, two flowgraph properties have to be observed. Firstly, the media value

at two interconnected ports has to be the same. The reason is simple: the media data provided

at an output port has to be the same like the one consumed through the connected input port.

Secondly, media values can vary within a flowgraph. One reason is that processing involving

several media streams (done in a mixer) requires different media values for incoming streams.

For instance, the mixer in Figure 2 requires that the media value at port 1 is half the value of

the value at port 2, since it is supposed to generate a picture-in-picture mixture of the incoming

video streams. Another reason is that media conversions are required whenever the media va-

lues expected at sink components are different (see end-user QoS requests below) such that

media conversions have to take place prior to them (see Figure 2). A similar argument applies

to media values provided by source components.

Quality-of-Service Model

In multimedia systems, QoS implies considerations at various levels of abstraction. We refer

to the architecture given in [RDF97] which distinguises an application and a resource level.

1. Note that format constraints do not depend on reource availability.

2. This is done for simplifying descriptions and will be discussed at the end of the paper.

- 5 -

At the application level, QoS requests (A-QoS) are issued by clients describing the QoS they

expect to be delivered. A-QoS has to relate to sink components, since these are responsible for

media presentation to end-users. Like in [DFR96], we require an A-QoS to be specified at the

input ports of sink components, using the media parameter given there (e.g. video frame size).

Also, we allow that for each sink a different request can be issued, thus allowing for “hetero-

geneous” receivers ([Zhan93]).

In this paper, an A-QoS request is assumed to fix the media value at a sink component’s port.

Of course, a request has to select a valid value, i.e. one supported by the corresponding sink

Figure 2 : Format Constraints and Media Value Selection

Fig. 3 : Quality-of-Service Architecture

So1

So2

Mix

Conv1

Conv3

Sink1

Sink2

Conv2

Conv4

400

400

400

200

100

400

200

100

400

200

100

400

200

100

200

100

100

compo-compo-

A - QoS

resource

level

application

level

SFS

link

T - QoS

- 6 -

format constraint. As can be seen from Figure 2, fixing the media values at the sinks, automa-

tically fixes the media values to be supported at all component ports in a flowgraph. Note that

this fixing is done in such a way that media value reduction is done as closely as possible to

the sources. Also note, that fixing the media values for converters may imply different conver-

sion factors (e.g. coverter 1 may convert from 400 to 400, 200 or 100), depending on the re-

quested A-QoS. This is a property of so-called variable converters introduced and motivated

in [DFR96].

Resource Requirements

Components and links require resources for media data processing resp. communication. A

component implies load on several resources, e.g. CPU, memory, DSP processor. Resources

are shared among parts of an application and among several applications. In order to guarantee

resource availability at run-time, a component has to reserve resource loads in advance. A com-

ponent’s load requirement is given by a tuple (LRT), e.g. (CPU-load, Mem-load, etc.). The

LRT figures depend on the media values to be supported by the component at its ports.

For links, we distinguish between local and remote types. A local link employs media data pas-

sing by reference to a main memory location and hence implies no resource load. A remote

link employs a transport system to communicate media data between remote locations. Its re-

source requirements concern both the two interconnected end-systems and the interconnecting

network. We model a remote link as consiting of two objects: a send link and a receving link

object. Each of them is treated like an ordinary component with respect to end-system re-

sources, i.e. both of them imply an LRT for their corresponding end-system. An LRT for a link

object contains figures for CPU and main memory as well as for bandwidth. The latter can be

regarded as the required load on an I/O processor attached to the end-system.

The LRT for components depend on the selected location of a component. We do not assume

any homogenity between the LRTs required by a component for a host or a satellite computer.

This reflects the fact that components may be supported by totally heterogeneous hardware,

and that even their functional design may be different. Similarly, we do not assume homo-

geineity concerning resource types and capacity available on satellites and host. Each satellite

is assumed to have its set of resources with its individual capacities.

The load description we assume is based on a component related to a location (i.e. a (compo-

nent, location) pair) indicating the LRT for the specific location. For a link object we require a

- 7 -

similar description. Note that each link can become a remote link, since it may connect two

components allocated on two remote compters.

Remote Communication Requirements

A remote link does not only imply data transfer between two locations. Multimedia streams

are often compressed for communication, in order to reduce the high badwidth requirements

(especially of video). Compression is reversed by decompression on the receiving side prior to

further processing. Therefore, the send and receive link objects making up a link contain com-

ponents not just for data transport but also for compression/decompression (Figure 4). The

LRT description for a link object has to take both load requirements into account (see below).

3 The Component Allocation Problem

Allocation Model

The problem definition is based on a star-shaped flowgraph and the mentioned host-satellite

model. The flowgraph consists of component chains merging at a central component (mixer).

The host-satellite model requires that sources and sinks (i.e. chain ends) are fixed on (not ne-

cessarily different) satellite computers, while the central component is fixed on the host com-

puter. Intemediate components form component chains and each chain connects one satellite

with the host.

The allocation process starts when A-QoS requests have been specified by end-users and me-

dia values at all component ports have been derived (as explained above). Given these values,

the LRTs for (component, location) pairs are available as well as the LRTs for all send and re-

ceive link objects. Based on this data, for each component chain cut two cut LRTs can be com-

puted (Figure 4), one for the load implied on the corresponding satellite (S-LRT), one for the

Fig. 4 : Internal Structure of a Remote Link

Com
press-
ion

Data
Trans-
port

Data
trans-
port

Decom
press-
ion

Sending Side Receiving Side
Link Object Link Object

Remote Link

- 8 -

load on the host (H-LRT). For the satellite all component LRTs are included up to the cut; in

addition the load of the send link object (for the considered cut) is computed and added up. For

the host, the procedure includes the LRTs beyond the cut and the LRT for the receive load ob-

ject of the cut.1

Allocation is constrained by resource availability on satellites, hosts and the interconnecting

network. Each satellite and host resource (CPU, memory, DSP processor, I/O bandwidth, etc.)

has a capacity limiting the sum of the LTRs implied by a specific allocation of components.

The network is assumed to be able to indicate the available bandwidth capacity for the com-

munication channel of any (satellite, host) pair.

The allocation problem is then to find the component allocation with the least bottleneck re-

source usage (BRU). The botlleneck resource, which may be any of the satellite or host re-

sources, is the one which is used by an allocation in relative terms maximally (e.g. 120% of its

capacity are required by the allocation and no other resource is used that much).

Minimising the BRU is linked to achieving maximal A-QoS in the following way. First, for

given A-QoS requests, it finds a feasible allocation if there is one. If there is none (indicated

by a BRU of more than 100%), the allocation indicates which of the satellites or the host is

mostly overloaded. This gives opportunity to reduce A-QoS requests at the sinks accordingly.

If the bottleneck resource is on the host, it makes sense to reduce A-QoS at some or all flow-

graph sinks. If the bottleneck resource is on one of the satellites it makes sense to reduce A-

QoS for that sink only. In short, the indication of a bottleneck resource indicates a feasible alo-

1. Note that the LRT of chain end-components are not included, since these are fixed in advance

Fig. 5 : LRT Calculation for a Chain Cut

Conv1 Conv2 Conv3

Satellite Host

Chain Cut 1

Source
Chain

S-LRT for Cut 1 =
LRT(Conv1) +
LRT(SndLink)

H-LRT for Cut 1 =
LRT(RcvLink) +
LRT(Conv2) + LRT(Conv3)

End

- 9 -

cation if there is one and helps to develop A-QoS reduction policies appropriately (which,

however, are out of the scope of this paper).

Abstract Problem Formulation

We are given a flowgraph consisting of a set CS of c chains. Each chain is assumed to contain

(m+1) modules, thus allowing for m possible chain cuts. Each chain is characterized by a sa-

tellite identifier chainSat, indicating on which satellite it is anchored and a set of (S-LRT, H-

LRT) pairs, one for each cut of the chain. For a chain cut, the S-LRT tuple indicates the LRT

implied for chainSat, while H-LRT indicates the LRT implied for the host. Both are given as

k-dimensional tuples, since (at most) k resources are assumed for each of the satellites and the

host.

A component allocation is given by a set of cuts (C) for the c chains. An allocation implies a

requested load for each satellite and the host (S-Load resp. H-Load). For a satellite i, S-Loadi

is given as the (k-vector) sum of all S-LRTs of cuts in C which belong to chains anchored on

satellite i. For the host, H-Load is given as the sum of H-LTRs of all cuts in C.

Each satellite and the host is associated with a (k-dimensional) constraint vector (SC resp. HC)

indicating the respective resource capacacity constraints. When an allocation is given, for each

satellite i the maximum resource usage factor SMRUi can be calculated, which is defined as

the highest ratio between the requested load for a satellite resource and the corresponding re-

Fig. 6 : Layered Graph Problem Representation

Chain 1:
SatOfChain 1

Chain c:
SatOfChain c

S-LRT(load 1, ..., load k)
H-LRT(load 1, ..., load k)

m (here 3) possible cuts per chain

- 10 -

source constraint. Simlarly, for the host a HMRU can be obtained. The bottleneck resource usa-

ge BRU for an allocation is given as the maximum of all SMRUi and HMRU.

Our goal is to find an allocation with a minimal BRU.

4 Solution Approaches

The problem of partitioning chain-structured programs over a single host and multiple satellite

system is discussed in [BOKH88]. A number of other researchers have also attacked this pro-

blem using faster exact algorithms or efficient approximation schemes [IQBL91], [IQBL95].

All these researchers work under the constraint that there is a single chain anchored on a satel-

lite and the H-LRT tuple associated with the host is of a single dimension. With multiple me-

trics the problem is essentially to find an allocation (or a path in a graph) subject to multiple

constraints. This is an NP-complete problem [GARY79], and can only be solved by pseudo-

polynomial algorithms, approximation schemes [IQBL93], [IQBL96], or by using fast heuri-

stics.

4.1 Approximate Solutions

In this section we discuss the concept of multiple weighted graphs and multiple sum paths in

them. We would present an efficient algorithm for finding the multiple sum path which is use-

ful in solving various task allocation problems in distributed multimedia systems. We first de-

scribe a pseudo-polynomial algorithm for finding a Two Sum (TS) path in a layered graph. We

shall use the TS path technique to find the Multiple Sum (MS) path again in a layered graph.

A layered allocation graph is shown in Fig. 7, it is the same graph as shown in Fig. 6, we have

added a start and an end node, and a number of directed edges between two adjacent chains.

The start node is connected to all m possible cuts in Chain 1, all m possible cuts in the last

Chain c are connected to the end node. Similarly all m possible cuts in Chain i are connected

to all m possible cuts in Chain i+1. It is important to note that no cut of Chain i is connected

to a cut of any chain other than i+1 (where i is greater than or equal to 1 and less than or equal

to c-1).

A path between the start and the end vertex passes through exactly one possible cut of each of

c chains and thus corresponds to an allocation, there is in fact a one to one correspondence bet-

ween an allocation and a path in the layered graph.

- 11 -

4.1.1 A Multiple Sum Path in a Layered Graph

A Two Sum Path

In case of a TS path we consider a doubly (FW, SW) weighted graph in which there are only

two weights associated with each edge. Thus instead of a single weight on each edge as in tra-

ditional graphs we have an ordered pair of weights on each edge. As usual, a path between the

start and the end node would be composed of edges, the First Sum (FS) associated with the

path would be the sum of the first elements of the ordered pairs of all edges in the path while

the Second Sum (SS) would be the sum of the second element of the ordered pairs of all the

edges in the path. We further assume that each weight associated with an ordered pair is an

integer. The problem is to find a path between the start and the end node such that the FS and

the SS associated with the path are constrained by an upper limit which is an integer, let us

denote this by L. Note that the number of incoming paths at any cut belonging to layer i would

be equal to mi-1, that means the total number of paths between the start and the end node would

be proportional to O(mn).

We try to restrict these paths at every layer by using the following procedure. Suppose there

are two paths arriving at a cut belonging to any layer from the start node. We reject path P1 as

Fig. 7 : A Cut Path in the Layered Graph

S

E

layer 1

layer 2

layer c

(FW, SW) (FW, SW) (FW, SW)

(FW, SW) (FW, SW) (FW, SW)

(FW, SW) (FW, SW) (FW, SW)

(FW, SW) (FW, SW)

- 12 -

compared to a path P2 provided FS(P1) as well as SS(P1) are larger than or equal to FS(P2)

and SS(P2) respectively. Note that we can not reject a path P3 as compared to path P1 if

FS(P3)>FS(P1) and SS(P3)<SS(P1). Thus we limit the number of paths leaving a cut to only

L. That means that the number of incoming paths at any cut belonging to a layer i from all ver-

tices belonging to layer i -1 would be at most equal to mL but the outgoing path from this very

vertex would be only equal to L. A total number of O(mL) comparisons would have to be made

at each cut in a layer in order to reduce the number of paths from mL to L. Thus the total num-

ber of comparisons per layer would be proportional to O(m2L). In order to find whether a path

between the start and the end node exists such that FS as well as SS are both constrained by an

integer limit L, would take time proportional to O(cm2L).

A Multiple Sum Path

The layered graph is now assumed to be a multiple weighted graph in which there are k weights

associated with each edge, and each weight is an integer. The problem is to find a path between

the start and the end node in the layered graph such that the First Sum (FS), Second Sum (SS),

..., and the Kth Sum (KS) associated with the path are constrained by an upper limit which is

we also denote by L. We can use a similar procedure to limit the number of outgoing paths from

a cut, thus we have to make a total number of O(mLK-1) comparisons in order to reduce the

number of mL-power K-1 incoming paths at each cut to LK-1 outgoing paths from that very

cut. The total comparisons made per layer would thus be at the most equal to m2LK-1. The total

complexity of this pseudo-plynomial algorithm would be limited by O(cm2LK).

The Special Case of Uniform Edge Weights

We consider here the special case where all edges, incident on a cut, in between any two adja-

cent layers in the graph have the same K weights associated with them. We can use a similar

procedure to limit the number of outgoing paths from a cut, and we have to make a total num-

ber of mLK-1 comparisons in order to reduce the number of mLK-1 incoming paths at each cut

to LK-1 outgoing paths from that very cut. The total steps made per layer would, however, be

limited to mLK-1. The total complexity of the pseudo-polynomial algorithm would thus be

O(cm LK) under the condition of uniform weights on edges in between two adjacent layers in

the graph. Note that this case corresponds to our component allocation problem, since each

edge leading to the same cut carries the same load tuples which are implied by the cut.

- 13 -

4.1.2 Task Allocation for One Chain per Satellite

We would use the Multiple Sum Path Algorithm to find a task allocation with minimal BRU.

The layered allocation graph is shown in Fig. 8, note that there is only one chain anchored on

a satellite. All m incoming edges at any cut ct in chain i from all possible cuts in chain i-1 are

weighted with two k-dimensional tuples, i.e., the S-LRT, and the H-LRT pair associated with

the cut ct in chain i. All incoming edges at the end node have zero weights associated with

them.

In order to find a task allocation with minimal BRU we use a function Probe(L) to find if an

allocation exits with BRU bounded by L. If Probe(L) returns true meaning that such an alloca-

tion really exists then we lower the limit L otherwise we increase it. We thus make an efficient

search for an allocation with minimal BRU. The working of the function Probe(L) is described

below.

The Function Probe(L)

We remove each edge in the layered allocation graph for which the maximum resource usage

factor SMRUi is higher than L for each satellite i. Note that in the special case of one chain per

Fig. 8 : One Chain per Satellite

S

E

layer 1

layer 2

layer c

(S-LRT, H-LRT) (S-LRT, H-LRT) (S-LRT, H-LRT)

(0, 0)
(0, 0)

(0, 0)

(S-LRT, H-LRT) (S-LRT, H-LRT) (S-LRT, H-LRT)

(S-LRT, H-LRT) (S-LRT, H-LRT) (S-LRT, H-LRT)

sat 1

sat 2

sat c

- 14 -

satellite each edge (except the one’s terminating at the end node), in the allocation graph, re-

presents an allocation for a chain i which is the only chain anchored on satellite i.

In the remaining layered allocation graph we ignore the k-dimensional S-LRT tuple and only

consider the k-dimensional H-LRT tuple associated with each edge. Using the Multiple Sum

Path algorithm we try to find if HMRU is less than or equal to L. If HMRU is bounded by L

then the function Probe(L) returns true (as well as the possible allocation), otherwise it returns

false. The complexity of the function Probe(L) is O(cm Lk). We can thus find an allocation with

minimal BRU in steps proportional to O(cm [Lk]*log L).

4.1.3 Task Allocation for Multiple Chains per Satellite

We would use a similar Probe(L) function and the Multiple Sum Path algorithm to find a pos-

sible allocation where the BRU is bounded by L. We again use an efficient search technique to

find the allocation with minimal BRU.

We group all chains anchored on satellite 1, we shall first consider only these chains. The lay-

ered allocation graph is shown in Fig. 9, where all the d chains anchored on satellite 1 are

shown. All m incoming edges at any cut ct in chain i are weighted with two k-dimensional

Fig. 9 : Chain Grouping per Satellite

S1

S2

layer 1

layer d

(S-LRT, H-LRT) (S-LRT, H-LRT) (S-LRT, H-LRT)

(0, 0)
(0, 0)

(0, 0)

(S-LRT, H-LRT) (S-LRT, H-LRT) (S-LRT, H-LRT)

sat 1

sat 1

layer 1
sat 2

- 15 -

tuples, one such tuple is S-LRT, and the other is H-LRT, both these tuples corresponds to cut

ct in chain i (note that all d chains are anchored on satellite 1). Thus each incoming edge at any

cut in the allocation graph is weighted with 2k weights. We can now design a suitable Probe(L)

based on the Multiple Sum Path algorithm to find if a path between the start node and the end

node exists in the layered graph for which both SMRU1 and HMRU are bounded by L.

The total number of distinct paths leaving each cut in the last chain anchored on satellite 1

would be proportional to L2k. Thus there would be at most mL2k paths arriving at the end node.

Corresponding to each path there would be an associated H-Load which is equal to the k-vector

sum of all H-LTR’s correspoding to all cuts of all chains anchored on Satellite 1. The k-dimen-

sional H-Load can have at the most O(Lk) distinct possibilities, thus mL-power 2k allocations

(or paths) can be reduced into O(Lk) distinct paths by rejecting unnecessary paths or paths that

would lead to an overall degraded performance. The total number of comparisons made so far

would be proportional to O(dmL2k).

This process is repeated for each satellite and it will take dmsL2k steps to find if an allocation

exists where the BRU is bounded by L. The total complexity of finding an allocation with mi-

nimal BRU would be O(dms[L2k]*log L).

4.2 Fast Heuristics

The previously described algorithms imply an overhead which is increasing exponentially with

increasing number of constraints. As measurements show (see below), time overhead is at most

tolerable for the case of 1 constraint. In order to cope with situations where many constraints

are considered, we have developed and analyzed several heuristics. The most performant one,

referred to as the SQ(ueeze) algorithm, is presented here along with performance measurement

results. SQ is compared with an algorithm proposed earlier, MMKP (m-dimensional multiple-

choice knapsack algorithm []), which was designed for a different optimisation model. Howe-

ver, this model, with small modifications, is applicable to the host-satellite allocation model as

well. We postpone a review of other heuristic approaches to Section xxx.

The SQ Algorithm

The basic idea of SQ is to calculate intial chain cuts using a greedy-type approach, and then to

gradually improve the chain cuts by excluding “bad” alternatives, until, for each chain, only

one alternative is left (see Figure below).

- 16 -

The intial cut set is computed considering the chains one after the other in a fixed, though ar-

bitrary sequence. For each chain, the cut is computed which yields the lowest BRU. The pro-

cedure is continued until all chains have been cut. The second part of SQ is based on several

iterations. During each iteration, the chains are considered in the given fixed order. For each

chain, both the best and the worst cut (in terms of BRU) are derived. For this, each chain cut is

considered as a possible replacement for the cut of the previous iteration (or the initialization

part). The best cut is then used as replacement, The worst cut is disabled, i.e. is not considered

during following iterations.

The computation complexity of SQ is determined by the iterative part. During each iteration,

one cut is disabled for each chain. Since there are m cuts, there is a total of (m-1) iterations.

Per iteration, at most c*m cuts are considered, where each cut consideration involves k additi-

ons and comparisons. Hence, the overall complexity is of order o(k * c * m2).

The MMKP Algorithm for the Host-Satellite Problem

The optimzation model of the MMKP algorithm assumes c groups (here chains), where from

each group one of m elements (here cuts) has to be selected. All elements make use of the re-

sources of one knapsack with r resources. Each element implies an (r-dimensional) load vector

for the knapsack resources. Knapsack resources are limited by finite capacities. The goal of

MMKP is to find the element selection (one from each group) which is within the given resour-

ce constraints and which minimizes overall cost (given as the sum of selected element costs).

The reader is referred to [Mose96] for a more detailed description.

The host-satellite allocation model fits into the MMKP model, if all satellites and the host are

considered as one super-system with a total of r = k*(noSatellites+1) constraints. Each chain

forms an element group, where elements correspond to the cuts of a chain. However, there are

two notable differences.

Firstly, the MMKP model seeks a solution withtin the resource constraints, not necessarily a

solution with minimal BRU. However, the MMKP algorithm iteratively calculates and reduces

the load for the bottleneck resource. It stops, when the (relative) BRU is below 100%. It is

straight-forward to see from [Mose96], that if this stopping criterion is removed, the MMKP

algorithm seeks a solution with minimal BRU. Secondly, the MMKP model seeks a solution

optimizing for cost, in this respect it is more general than the SQ model. Including cost into

- 17 -

Fig. 10 : The SQ algorithm

Input: c chains Xi, 1≤ i ≤ c each with
m cuts XiCj 1≤ j ≤ m each with a 2*k-dimensional load tuple

XiCjL
1

1 satId XiS 1≤ i ≤ c
s satellites Sp 1≤ p ≤ s
1 host H

Output: Set of Cuts { 1≤ i ≤ c | XiC }
Bottleneck resource usage BRU
Bottleneck resource id BR

Step 0: satellite and host load initialisation
for all Sp, set used load(-vector) to 0
for H, set used load(-vector) to 0

Step 1: calculate inital cuts for chains
for(i = 1; i <= c; i++) {

for(j = 1; j <= m; j++) {
vector-add load tuple of chain i at cut j to used load of XiS and H
get the currentBRU
if currentBRU lower than bestBRU so far,

store j as best cut so far, update bestBRU
remove load of chain i from XiS and H

}
vector-add load of chain i at the best cut found to used load of XiS and H

}

Step 2: improve iteratively the selected cuts
for(iter = 1; iter <= m-1; iter++) {

for(i = 1; i <= c; i++) {
remove load of chain i from XiS and H as implied by best cut so far
find best cut and worst cuts for chain i as in Step 0

}
mark worst cut as disabled
vector-add load of chain i at the best cut found to used load of XiS and H

}

Step 3: compile result
for(i = 1; i <= c; i++)

XiC = best cut after last iteration of Step 2
BRU = bottleneck resource usage after last iteration of Step 2

1. Load elements are assumed to be normalized to values between 0 and 1 with respect to the corresponding capacity constraints.

- 18 -

our model is easy, for instance each cut may be associated with the communication cost of the

cut.

The main expected drawback of MMKP was its relatively high complexity o(k* c2 *NC2),

when applied to the host-satellite allocation problem. However, measurement results (see be-

low) show that the SQ algorithm is superior not only with respect to time complexity but also

concerning the quality of achieved results.

4.3 Measurement Results

We implemented the three approaches introduced above and evaluated them for various pro-

blem sizes. In addition we considered a fourth approach (RCut) randomly selecting for each

chain a cut.

Since the approximative scheme yields optimal solutions, we used it as an absolute comparison

base. However, this scheme proved to imply too much overhead for problems including more

than one constraint per computer. For these cases, the results were compared in relative terms.

We considered various problem sizes, varying both the number of chains and the number of

cuts per chain, while keeping the number of chains per satellite fixed (to 2 for the measure-

ments below). We selected for each cut (linearly distributed) random load figures between a

minimum and a maximum value [minload = 100, maxload = 300]. Similarly, for all satellite

capacities we assumed random values between [mincap = 800, maxcap = 2400].

We balanced the host capacities accordingly, i.e. its constraints were randomly set between

[mincap*NoSatellites, maxcap*NoSatellites], given that a host has to support all chains co-

ming from all satellites. We selected this setting since it allows to consider settings where the

botlleneck resource varies its location equally between satellites and the host. For each pro-

- 19 -

blem setting, we performed a run of 200 measurements and computed for each approach the

averaged relative BRU with respect to the optimum result (of the approximative scheme).

Table 1. Relative BRU (1 constraint per computer)

Table 2. Time Overhead in msec (1 constraint per computer)

.....noSats
noCuts

2 4 8

2: Approx
RCut
SQ

MMKP

100
134
101
102

100
146
100
102

100
153
100
102

4: Approx
RCut
SQ

MMKP

100
153
102
107

100
182
102
110

100
221
101
113

8: Approx
RCut
SQ

MMKP

100
164
104
114

100
189
103
120

100
236
101
128

.....noSats
noCuts

2 4 8 16

2: Approx
RCut
SQ

MMKP

261
0
0
0

594
0
0
0

3019

0

1

3

4118

0

1

3

4: Approx
RCut
SQ

MMKP

333
0
0
0

721
0
0
2

1141
0
1
5

5449
0
2
15

8: Approx
RCut
SQ

MMKP

515
0
0
2

950
0
1
7

1700
0
3
20

7932
0
5
56

- 20 -

Table 1 shows the relative BRU (in %) obtained for the RandomCut, SQ and the MMKP algo-

rithms for various problem sizes, while Table 2 shows worst-case time overheads. It is obvious

that the approximative scheme is too slow for a computation which is required to be done in

real-time. For more than one computer constraint, the overhead is in the range of, at least, mi-

nutes. On the other hand, the tables show that SQ performs very well both in terms of achieved

BRU and time overhead. The achieved BRU deviates only 2% from the optimum, while time

overhead stays within the range of a few msec. SQ always outperforms the MMKP approach.

More measurements have been done, confirming qualitatively above results. For instance, in

cases when satellites had abundant resources (i.e. the host was the bottleneck), MMKP results

deteriorated, while SQ results did not. Also, the results were comparable for higher number of

constraints. For instance, Table 3 shows the BRU achieved for the case of three constraints

again indicating the superiority of SQ over the other approaches.1

.

Table 3. Relative BRU (3 constraints per computer)

4.4 Related Work

The multimedia component allocation problem, as presented in this paper, bears similarity to

the problem of partitioning and mapping parallel programs onto multiprocessor architectures

1. For small problem sizes the table contains results obtained by enumeration. In these cases the absolute optimum could be considered as
reference base.

.....noSats
noCuts

2 4 8 16

2: Enum
RCut
SQ

MMKP

100
145
100
121

100
142
100
109

X
146
100
105

X
146
100
105

4: Enum
RCut
SQ

MMKP

100
191
101
111

X
184
100
114

X
183
100
120

X
183
100
124

8: Enum
RCut
SQ

MMKP

100
202
103
117

X
197
100
122

X
200
100
133

X
195
100
139

- 21 -

or distributed systems (e.g. [NoTh93] and other references below). The general representation

of this problem is that of a static program graph consisting of modules interconnected via links,

where modules serve to perform various processing tasks and links indicate required intermo-

dule communication. Both modules and links are labelled with figures indicating load or cost

properties.

A multiprocessor or distributed system graph is used to describe possible computation sites for

program modules. Nodes and links of this graph are labelled with resource constraints limiting

node processing or communication capabilities. The goal is to find a program partitioning and

mapping on the system graph without violating any of the given constraints and minimizing

overall cost. This problem formulation seems similar to the one considered in this paper.

However, important differences and mismatches exist.

First, most suggested approaches consider specific resource load types (and constraints) only.

In fact, a large group does not consider load constraints at all, but aims solely at finding a graph

mapping with minimum cost ([KLZ97], [LeSh97], [BiEl95], [Bill94], [LLK92], [Fern89],

[Lo88], [Tows86], [Ston77]). A second group considers for each program module a (CPU) pro-

cessing load figure and aims at a mapping implying a balanced load on each processor

([OlMa95], [IqBo95], [HaLi92], [NiHa91], [Bokh88]). Further load types (e.g. memory, com-

munication loads) are not considered. Other approaches extend the model by considering cost

in addition ([SBAM96]), [YaSa93], [BNA92], [KiPa90], [Efe82]).

A few approaches have been described taking into account many resource constraints given in

a particular mapping problem context. In [YWPS95] the mapping problem is considered ta-

king into account (among others) CPU load, memory load and communication bandwidth.

However, the approach employs branch-and-bound and simulated annealing techniques, both

of which have exponential worst-case complexity. Similarly, in [MLT82] an approach based

on branch-and-bound techniques is described. The approach presented in ([WoMo93]) has po-

lynomial time complexity and takes both a processing and a shared bus communication load

into account. However, it does not consider more endsystem load types (e.g. memory, network

I/O).

A second important aspect concerns the cut-oriented description of the multimedia allocation

problem. Here, each cut is associated with load figures, not each module. This description al-

lows to take into account for each cut both the processing load(-tuple) implied by allocated

components and the load(-tuple) implied by the remote communication at a specific chain cut

- 22 -

(see Section 3). This allows to take into account the endsystem load required for remote com-

munication which can be very significant, given that compression/decompression may be pro-

vided. Using cut descriptions for solving the problem is accurate. Almost all existing approa-

ches consider endsystem load as being not influenced by communication requirements (i.e.

communication implies load within the network only). The approach in [WoMo93] does a first

step in this direction. However, it simplifies the relationship by interpreting required commu-

nicaton load twofold: as network bandwidth requirement and as a processing load requirement

which has to be added to a processor’s workload. In general (and especially when compression/

decompression is done), this simplification does not hold.

Finally, existing approaches imply a higher computation complexity than our approach. One

reason is that many of them were designed for other, in some respect more general, mapping

problems (e.g. for instance for arbitrary program graph shapes). Another reason is the method

used. The approach in [SBAM96] was specifically designed to achieve a low computational

complexity, which is also lower than our protocol’s. However, when applied to the host/satel-

lite problem, the method is basically equivalent to the initialisation part of the SQ algorithm,

which (as a stand-alone solution) delivers significantly worse solutions.1 This also shows that

solutions exhibiting good average behaviour in general settings (as indicated in [SBAM96]),

can prove inferior to specialized solutions when applied to special cases.

In summary, none of the existing approaches can be considered as fully applicable to the map-

ping problem considered in this paper. In constrast, our approach directly targets the require-

ments of the multimedia host-satellite allocation problem including independence of the num-

ber of load types considered, cut-oriented load considerations and computation efficiency.

5 Summary and Future Work

Many multimedia applications require intermediate processing between media sources and

sinks. In order to support such applications computers are being designed relieving end-user

terminals from heavy processing load. In this paper, the problem of allocating intermediate

processing components on such computers was studied. The problem was formulated for com-

mon structures occuring in multimedia application settings, namely star-shaped application

graphs and host-satellite distributed computer settings.

1. Also, the approach does not consider all required load types and is also not cut-oriented in the sense decribed above.

- 23 -

The allocation problem was formulated in terms of chain cuts taking into account both proces-

sing and communication load requirements. Several approaches for determining optimized

cuts have been considered including an approximation scheme and several fast heuristics. All

of these are capable to take into account as many load constraints as required. Performance

measurements showed the efficiency of the SQ algorithm delivering chain cut solutions very

close to the optimum, while requiring less time than other approaches, both in comparison with

an optimal scheme which was used for benchmarking and an approach designed for the related

multiple-choice multiple-knapsack problem.

Though designed for the described host-satellite problem, the SQ algorithm is applicable to

more general cases as well. It is easy to see that SQ is applicable without modifications to the

case of several star-shaped graphs using the same host. In addition, with minor modifications,

SQ can be used for sets of star-shaped and linear graphs traversing the same host. Currently,

we investige settings where sets of graphs are allocated using several of a set of potential hosts.

Along another line, we look at an integrated way to couple QoS calculations and determining

component distribution. Finally, we design a protocol for gathering required QoS and alloca-

tion information and performing resource reservation in accordance to calculated QoS and

mapping decisions.

References

[AMZ95] E. Amir, S. McCanne, H. Zhang. An Application Video Level Gateway. 3rd ACM
Int. Multimedia Conference, San Francisco, Nov. 1995.

[BeSt97] R. Bertram, R. Steinmetz. Scalability of Audio Quality for Networked Multime-
dia Environments. IEEE Int. Conference on Multimedia Computing and Systems, Ottawa,
June 1997.

[BiEl95] A. Billionnet, S. Elloumi. An Algorithm for Finding the k-best Allocations of a
Tree Structured Program. Journal of Parallel and Distributed Computing, 26, pp/ 225-232,
1995.

[Bill94] A. Billionnet. Allocating Tree Structured Programs in a Distributed System with
Uniform Communication Costs. IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No.
4, Apr 1994.

[BLMS96] H. Bryhni, H. Lovett, E. Maartmann-Moe, D. Solvoll, T. Sorenson. On-Demand
Regional Television over the Internet. 4th ACM Int. Multimedia Conference, Boston, Nov.
1996.

[Bokh88] Partitioning Problems in Parallel, Pipelined, and Distributed Computing. IEEE
Transactions on Computers, Vol. 37, No. 1, pp 48-57, Jan 1988.

[BNG92] N.S. Bowen, C.N. Nikolau, A. Ghafoor. On the Assignment Problem of Arbitrary

- 24 -

Process Systems to Heterogeneous Distributed Computer Systems. IEEE Trans. on Comput-
ers, Vol. 41, No. 3, pp. 257-273, 1992.

[DFR96] G. Dermler, W. Fiederer, I. Barth, K. Rothermel. A Negotiation and Resource
Reservation Protocol (NRP) for Distributed Multimedia Applications. IEEE Int. Conference
on Multimedia Computing and Systems, Hroshima, Japan, June 1996.

[DFR97] G. Dermler, W. Fiederer, K. Rothermel. QoS Negotiation and Resource Reserva-
tion for Distributed Multimedia Applications. IEEE Int. Conference on Multimedia Comput-
ing and Systems, Ottawa, June 1997.

[DGOR94] G. Dermler, T. Gutekunst, F. Ruge, E. Ostrowski. Sharing Audio/Video Applica-
tions among Heterogeneous Platforms. 5th IEEE COMSOC Int. Workshop on Multimedia
Communications, Kyoto, Japan, 1994.

[DVV94] D. Deloddere, W. Verbiest, H. Verhille. Interactive Video on Demand. IEEE Com-
munications, Vol. 32, No. 5, pp. 82-88, May 1994.

[Efe82] K. Efe. Heuristic Models of Task Assignment Scheduling in Distributed Systems.
IEEE Computer, pp. 50-56, June 1982.

[Fern89] D. Fernandez-Baca. Allocating Modules to Processors in a Distributed System.
IEEE Trans. on Software Engineering, Vol. 15, No. 11, Nov 1989.

[GaJo79] M. R. Garey, D.S. Johnson. Computers and Intractability- A Guide to the Theory of
NP-Completeness, Freeman, California, USA, 1979.

[IMA93] HP Company, IBM Corp., SunSoft Inc. Multimedia System Services, Version 1.0,
available via ftp from ibminet.awdpa.ibm.com.

[HaLi92] P. Hansen, K.W. Lih. Improved Algorithms for Partitioning Problems in Parallel,
Pipelined and Distributed Computing. IEEE Trans. on Computers, Vol. 41, No. 6, pp. 769-
771, June 1992.

[HaSm96] J. Han, B. Smith. CU-SeeME VR Immersive Desktop Teleconferencing. 4th
ACM Int. Multimedia Conference, Boston, Nov. 1996.

[Iqbl91] M.A. Iqbal. Approximate Algorithms for Partitioning Problems, International
Journal of Parallel Programming, October 1991.

[IqSh93] M.A. Iqbal, M.E. Shaaban. Heterogeneous Partitioning of Chain Structured
Image Processing Tasks, IEEE Workshop on Computer Architectures for Machine Perception
(CAMP’93), December 1993.

[IqBo95] M.A. Iqbal, S.H. Bokhari. Efficient Algorithms for a Class of Partitioning Prob-
lems, IEEE Trans. Parallel & Distributed Systems, vol.6, no. 2, February 1995.

[KiPa90] C.H. Lee, M. Kim, C.I. Park. An Efficient K-Way Graph Partitioning Algorithm
for Task Allocation in Parallel Computing Systems. IEEE Computer, pp. 748-751, 1990.

[KKKM95]P.H. Kelly, A. Katkere, D.Y. Kuramura, S. Moezzi, S. Chtterjee, R. Jain. An archi-
tecture for multiple perspective interactive video. 3rd ACM Int. Multimedia Conference, Bos-
ton, San Francisco, Nov 1995.

[LeSh97] C.H. Lee, K.G. Shin. Optimal Task Assignment in Homogeneous Networks.
IEEE Trans. on Parallel and Distributed Systems, Vol. 8, No. 2, Feb 1997.

- 25 -

[Lo88] V.M. Lo. Heuristic Algorithms for Task Assignment in Distributed Systems.
IEEE Trans. on Computers, Vol. 37, No. 11, pp. 1384-1397, Nov 1988.

[KLZ97] Y. Kopidakis, M. Lamari, V. Zissimopoulos. On the Task Assignment Problem:
Two New Efficient Heuristic Algorithms. Journal of Parallel and Distributed Computing, Vol.
42, pp. 21-29, 1997.

[LLK92] C.H. Lee, D. Lee, M. Kim. Optimal Task Assignment in Linear Array Networks.
IEEE Trans. on Computers, Vol. 41, No. 7, pp. 877-880, July 1992.

[MAHT97]K. Minami, A. Akutsu, H. Hamada, Y. Tonomura. Enhanced Video Handling
based on Audio Analysis. IEEE Int. Conference on Multimedia Computing and Systems,
Ottawa, June 1997.

[MLT82] P.R. Ma, E.Y.S. Lee, M. Tsuchiya. A Task Allocation Model for Distributed Com-
puting Systems. IEEE Trans. on Computers, Vol. 31, No. 1, Jan 1982.

[Mose96] M. Moser. Declarative Scheduling for Optimally Graceful QoS Degradation.
IEEE Int. Conference on Multimedia Computing and Systems, Hiroshima, Japan, June 1996.

[MXBX96]Z. Maojun, H. Xiaofeng, Y. Bing, K. Xishu. Fats Algorithms for Compositing
Multi-Way Compressed Video. IEEE Int. Conference on Multimedia Computing and Sys-
tems, Hiroshima, Japan, June 1996.

[NaSm95] Klara Nahrstedt, Jonathan Smith. The QoS Broker. IEEE Multimedia, Vol. 2, No.
1, pp. 53-67, Spring 1995.

[NiHa91] D.M. Nicol, D.R. O’Hallaron. Improved Algorithms for Mapping Pipelined and
Parallel Computations. IEEE Trans. on Computers, Vol. 40, No. 3, pp. 295-305, Mar 1991.

[NoTh93] M.G. Norman, P. Thanisch. Models of Machines and Computation for Mapping
in Multicomputers. ACM Computing Surveys, Vol. 25, No. 3, Sep. 1993.

[OlMa95] B. Olstad, F. Manne. Efficient Partitioning of Sequences. IEEE Trans. on Com-
puters, Vol. 44, No. 11, pp. 1322-1326, Nov 1995.

[RBH94] K. Rothermel, I. Barth, T. Helbig. CINEMA - An Architecture for Distributed
Multimedia Applications. Architecture and Protocols for High-Speed Networks, pp. 253-271,
Kluwer Academic Publishers, 1994.

[SBAM96] A.D. Stoyenko, J. Bosch, M. Aksit, T.J. Marlowe. Load Balanced Mapping of
Distributed Objects to Minimize Network Communication, Journal of Parallel and Distrib-
uted Computing 34, pp. 117-136, 1996.

[ShSe95] B. Shen, I.K. Sethi. Inner-Block Operations on Compressed Images. 3rd ACM
Int. Multimedia Conference, San Francisco, Nov 1995.

[SMK96] L.C. de Silva, T. Miyasato, F. Kishino. Emotion Enhanced Multimedia Meetings
Using the Concept of Virtual Space Teleconferencing. IEEE Int. Conference on Multimedia
Computing and Systems, Hiroshima, Japan, June 1996.

[Sren96] C.J. Sreenan. Resource Management System for a Broadband Multipoint Bridge.
IEEE Int. Conference on Multimedia Computing and Systems, Hiroshima, Japan, June 1996.

[SSJH96] F. Samaria, H. Syfrig, A. Jones, A. Hopper. Enhancing Network Services through
Multimedia Data Analysers. 4th ACM Int. Multimedia Conference, Boston, Nov. 1996.

- 26 -

[StNa95] R. Steinmetz, K. Nahrstedt. Multimedia: Computing, Communications and
Applications. Prentice Hall, Innovative Technology Series, 1995.

[Ston77] H.S. Stone. Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms. IEEE Trans. on Software Engineering, Vol. 3, No. 1, Jan 1997.

[Tows86] D. Towsley. Allocating Programs Containing Branches and Loops Within a Mul-
tiple Processor System. IEEE Trans. on Software Engineering, Vol. 12, No. 10, pp. 1018-
1024, Oct 1986.

[VKBG95] Andreas Vogel, Brigitte Kerherve, Gregor von Bochmann and Jan Gecsei. Dis-
tributed Multimedia and QOS: A Survey. IEEE Multimedia, Summer 1995, pp. 10-18.

[Wo96] Lars Wolf. Resource Management for Distributed Multimedia Systems. Kluwer
Academic Publisher, Boston/Dordrecht/London 1996.

[WoMo93] C.M. Woodside, G.G. Monforton. Fast Allocation of Processes in Distributed and
Parallel Systems. IEEE Trans. on Parallel and Distributed Systems, Vol. 4, No. 2, Feb 1993.

[YMGH96] N. Yeadon, A. Mauthe, F. Garcia, D. Hutchison. QoS Filters: Addressing the Het-
erogeneity Gap. European Workshop on Interactive Distributed Multimedia Systems and Ser-
vices, Berlin, Germany, March 1996.

[Zhan93] L. Zhang et al. RSVP: A New Resource Reservation Protocol. IEEE Netowrks
Magazine, pp. 8-18, Sep 1993.

[YaSa93] S.S. Yau, V.R. Satish. A Task Allocation Algorithm for Distributed Computing
Systems. IEEE Computer, pp. 336-342, 1993.

[YWPS95] S. Yalamanchili, L.T. Winkel, D. Perschbacher, B. Shenoy. Partitioning and Map-
ping in Embedded Multiprocessor Architectures in the Presence of Constraints. Concurrency:
Practice and Experience, Vol. 7(3), pp. 167-189, May 1995.

