Existential and Positive Theories of Equations in Graph Products

Volker Diekert, Markus Lohrey

Report Nr. 2001/10
Abstract

We prove that the existential theory of equations with normalized rational constraints in a fixed graph product of finite monoids, free monoids, and free groups is PSPACE-complete. Under certain restrictions this result also holds if the graph product is part of the input. As the second main result we prove that the positive theory of equations with recognizable constraints in graph products of finite and free groups is decidable.
1 Introduction

Since the seminal work of Malanin [19] on equations in free monoids, the decidability of various theories of equations in different monoids and groups has been studied, and several new decidability and complexity results have been shown. Let us mention here the results of [25, 27] for free monoids, [6, 15, 20, 21] for free groups, [8] for free partially commutative monoids (trace monoids), [9] for free partially commutative groups (graph groups), and [7] for plain groups (free products of finite and free groups).

In this paper we continue this stream of research. We will present two main results. The first one concerns existential theories of equations. We start with the definition of a class of monoids, which are constructed from finite monoids, free monoids, and free groups using the graph product construction, which is a well-known construction in mathematics. This class of graph products strictly covers all classes mentioned above. Then we prove that for such a graph product the existential theory of equations is PSPACE-complete, where in addition we are allowed to specify constraints for the variables. These constraints are taken from a class of sets, called normalized rational sets, which (in general) lies strictly between the class of recognizable and rational sets. Furthermore under certain restrictions our PSPACE upper-bound holds also in the case that (a suitable description) of the graph product is part of the input.

Our second main result concerns positive theories of equations. We prove that if we restrict our class of graph products to groups, then for each group from the resulting class the positive theory of equations with recognizable constraints for the variables is decidable. Under certain restrictions we obtain an elementary complexity. Up to now only for the class of free groups a decidability result for the positive theory was known, in particular it was open whether the positive theory of equations for a free partially commutative group is decidable.

2 Preliminaries

An involution on a set is a mapping $\overline{\cdot}$ such that $\overline{x} = x$ for all elements x. For an involution on a monoid we demand in addition that both $\overline{\overline{x}} = x$ and $\overline{1} = 1$, where 1 is the neutral element of the monoid. Taking the inverse in a group is for instance an involution. In our setting we let Γ be a finite alphabet of constants and $\Delta \subseteq \Gamma$ such that an involution $\overline{\cdot}$ is defined on Δ. This involution is extended to Δ^* by $\overline{x_1 \cdots x_n} = x_n \cdots x_1$. For a monoid M we denote by $\mathcal{I}(M)$ a submonoid of M such that an involution $\overline{\cdot}$ is defined on $\mathcal{I}(M)$. In many cases we choose $\mathcal{I}(M)$ to be the submonoid of elements having left- and right-inverses, i.e., $\mathcal{I}(M)$ is the group of units of M, but this is not necessarily the case, for instance for $M = \Gamma^*$ we take $\mathcal{I}(M) = \Delta^*$. We consider only finitely generated monoids. More precisely, we consider monoids M together with a fixed surjective homomorphism $\psi : \Gamma^* \to M$ such that $\psi^{-1}(\mathcal{I}(M)) = \Delta^*$ and $\psi(\overline{x}) = \overline{\psi(x)}$ for all $x \in \Delta^*$. Moreover, we assume that there is a normal form mapping $\nu : M \to \Gamma^*$, i.e., $\psi(\nu(x)) = x$ for all $x \in M$, such that $\nu(M)$ is a
regular subset of Γ^*. Note that it is allowed that $\nu(\overline{x}) \neq \nu(x)$ for some $x \in M$. A language $L \subseteq M$ is called

- **recognizable** if $\psi^{-1}(L) \subseteq \Gamma^*$ is regular;
- **normalized rational** if $\nu(L) \subseteq \Gamma^*$ is regular;
- **rational** if $L = \psi(L')$ for some regular language $L' \subseteq \Gamma^*$.

The corresponding classes are denoted by REC(M), NRAT(M), and RAT(M), respectively. In general we have REC(M) \subseteq NRAT(M) \subseteq RAT(M). The classes REC(M) and RAT(M) are classical, see e.g. [4], their definitions do neither depend on ν nor on ψ as can be seen easily. The definition of NRAT(M) is less robust, it depends on the normal form mapping ν. The classes REC(M) and NRAT(M) are Boolean algebras, whereas RAT(M) is not a Boolean algebra in general. For free monoids we have REC(M) = NRAT(M) = RAT(M). For the canonical normal form mappings which we will use we have REC(M) \neq NRAT(M) $= \text{RAT}(M)$ for free groups [3], REC(M) = NRAT(M) \neq RAT(M) for free partially commutative monoids (trace monoids) [24], and REC(M) \neq NRAT(M) \neq RAT(M) for free partially commutative groups (graph groups). The later holds for instance in $M = \mathbb{Z} \times \mathbb{Z}$.

3 The theory of equations with constraints

Let M be a monoid as above and let C be a family of subsets of M such that $\mathcal{I}(M) \in C$. Let Ω be a set of variables and $\overline{\Omega} = \{ \overline{X} \mid X \in \Omega \}$ a disjoint copy of Ω. An **equation** is a pair (U, V) with $U, V \in (\Gamma \cup \Omega \cup \overline{\Omega})^*$, it is written as $U = V$. Equations and constraints of the form $X \in L$ with $X \in \Omega \cup \overline{\Omega}$ and $L \in C$ are called **atomic formulae**. From these we construct first order formulae using conjunctions, disjunctions, negations, and universal and existential quantification over variables from Ω. We impose the syntactical restriction that whenever we use a variable $\overline{X} \in \overline{\Omega}$, then this goes together with the implicit constraint $X \in \mathcal{I}(M)$. Given $\psi : \Gamma^* \to M$, $\mathcal{I}(M)$, the involution $\overline{\cdot} : \mathcal{I}(M) \to \mathcal{I}(M)$, and a sentence ϕ, i.e., a formula in the sense above without free variables, we can evaluate ϕ over M in the obvious way with the restriction that if a variable X evaluates to $x \in M$, then \overline{X} must evaluate to \overline{x}. The **theory of equations with constraints** in C, briefly Th(M, C), denotes the set of all sentences that are true in M. A well-known example of a decidable theory of equations is the Presburger Arithmetic [26]. Translated into our framework this gives the following proposition.

Proposition 1. Th$(\mathbb{N}^k, \text{RAT}(\mathbb{N}^k))$ and Th$(\mathbb{Z}^k, \text{RAT}(\mathbb{Z}^k))$ are decidable.

Note that RAT(\mathbb{N}^k) and RAT(\mathbb{Z}^k) are the classes of semilinear sets in \mathbb{N}^k and \mathbb{Z}^k, respectively. The following result can be easily deduced from Proposition 1 since the free product $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$ of two copies of $\mathbb{Z}/2\mathbb{Z}$ is isomorphic to the semi-direct product of \mathbb{Z} by $\mathbb{Z}/2\mathbb{Z}$.
Corollary 2. \(\text{Th}(\mathbb{Z}/2\mathbb{Z} \star \mathbb{Z}/2\mathbb{Z}, \text{RAT}(\mathbb{Z}/2\mathbb{Z} \star \mathbb{Z}/2\mathbb{Z})) \) is decidable.

Proof. Let \(M = \mathbb{Z}/2\mathbb{Z} \star \mathbb{Z}/2\mathbb{Z} \) be generated by the generators \(a, b \) and the defining relations \(a^2 = b^2 = 1 \). Every \(x \in M \) can be represented uniquely as \(x = (ab)^i a^j \) where \(i \in \mathbb{Z} \) and \(j \in \{0, 1\} \) (note that \((ab)^{-1} = ba \) in \(M \)). The subgroup \(K \) of \(M \) generated by \(ab \) is isomorphic to \(\mathbb{Z} \). Furthermore let \(Q \) be the subgroup of \(M \) generated by the generator \(a \). It is easy to see that \(M \) is the semidirect product of \(K \) by \(Q \), thus \(M \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \). An isomorphism \(\sigma : M \to \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) can be defined by \(\sigma((ab)^i a^j) = (i, j) \), where \(i \in \mathbb{Z} \) and \(j \in \{0, 1\} \). In the following let \(\sigma(x) = (n_x, a_x) \). Thus, \(xy = z \in M \) if and only if \(n_z = n_x + (-1)^{n_y} n_y \wedge a_x + a_y \equiv a_z \mod 2 \). Furthermore it is easy to see that if \(L \in \text{RAT}(M) \), then \(\sigma(L) = S_0 \times \{0\} \cup S_1 \times \{1\} \) where \(S_0, S_1 \subseteq \mathbb{Z} \) are semi-linear (and can be constructed effectively).

Now given a first-order sentence \(\phi \) we replace every quantification \(\exists x \in Z \) (similarly for \(\forall \)-quantifications). W.l.o.g. all equations in \(\phi \) have the form \(xy = z \) with \(x, y, z \in \Omega \cup \overline{\Omega} \cup \{a, b\} \). Such an equation is replaced by \((n_z = n_x + (-1)^{n_y} n_y \wedge a_x + a_y \equiv a_z \mod 2) \), where \(n_x, a_x \) are either new variables (if \(x \in \Omega \cup \overline{\Omega} \) or integer constants, similar for \(y \) and \(z \). A constraint \(x \in L \) with \(L \in \text{RAT}(M) \) is replaced by \((n_x = 0 \wedge a_x = 0) \vee (n_x \in S_1 \wedge a_x = 1) \) where \(\sigma(L) = S_0 \times \{0\} \cup S_1 \times \{1\} \). Occurrences of the variables \(n_x \) and \(a_x \) for \(X \in \Omega \) can be replaced by \((-1)^{n_x + 1} n_x \) and \(1 - a_x \), respectively. Finally by substituting for the variables \(a_x \) the values \(0 \) and \(1 \) we obtain a Presburger formula. Now the corollary follows from Proposition 1. \(\square \)

The positive theory of equations with constraints in \(C \) is the set of all sentences in \(\text{Th}(M, C) \) that do not use negations. The existential theory of equations with constraints in \(C \) is the set of all sentences in \(\text{Th}(M, C) \) that are in prenex normal form without universal quantifiers. We will need the following result, which is a decomposition lemma in the style of the Feferman Vaught theorem [13]. Its proof is due to Yuri Matiyasevich (personal communication).

Proposition 3. Let \(M_1 \) and \(M_2 \) be monoids with classes \(C_1 \subseteq 2^{M_1} \) and \(C_2 \subseteq 2^{M_2} \). Let \(C \) be a class of subsets of \(M_1 \times M_2 \) such that each \(L \in C \) is a finite union of sets of the form \(L_1 \times L_2 \) with \(L_1 \in C_1 \) and \(L_2 \in C_2 \). If both \(\text{Th}(M_1, C_1) \) and \(\text{Th}(M_2, C_2) \) are decidable, then \(\text{Th}(M_1 \times M_2, C) \) is decidable, too. The same implication also holds for positive theories.

Proof. Since \(M = M_1 \times M_2 \) is generated by \(\Gamma \), we may assume that \(\Gamma \) is the disjoint union of \(\Gamma_1 \) and \(\Gamma_2 \), where \(M_1 \) is generated by \(\Gamma_1 \). Let \(\phi \) be a formula with free variables whose atomic subformulæ are all of the form \(U = V \) with \(U, V \in (\Gamma \cup \Omega \cup \overline{\Omega})^* \), or \(X \in L \), where \(X \in \Omega \cup \overline{\Omega} \) and \(L \in C \). Now for each \(X \in \Omega \) that appears in \(\phi \) let \(X_1 \) and \(X_2 \) be new variables. Furthermore for \(a \in \Gamma \) and \(i \in \{1, 2\} \) let \(a_i = a \) if \(a \in \Gamma_i \) and \(a_i = 1 \) otherwise. Then we replace each quantification \(\exists X \) (resp. \(\forall X \)) by \(\exists X_1, X_2 \) (resp. \(\forall X_1, X_2 \)). Furthermore each equations \(U = V \) is replaced by the conjunction \(U_1 = V_1 \wedge U_2 = V_2 \), where \(U_i \) and \(V_i \) result from \(U \) and \(V \), respectively, by replacing every occurrence of \(X \in \Omega, X \in \overline{\Omega} \), and \(a \in \Gamma \) by \(X_1, X_2 \), and \(a_i \), respectively. Finally given a
constraint $X \in L$ in ϕ, where $L = \bigcup_{i=1}^{n} L_{i,1} \times L_{i,2}$ with $L_{i,1} \in C_1$ and $L_{i,2} \in C_2$, we replace this constraint by $\bigvee_{j=1}^{m}(X_1 \in L_{i,1} \wedge X_2 \in L_{i,2})$. Let us call the resulting formula ψ. If we let the variables with index $i \in \{1,2\}$ only range over M_i, then in the case that ϕ does not contain free variables, the truth value of ψ and ϕ are the same. We claim that ψ is logically equivalent to a formula of the form $\bigwedge_{j=1}^{m}(\varphi_{j,1} \vee \varphi_{j,2})$, where for $i \in \{1,2\}$ the formula $\varphi_{j,i}$ only contains variables with index i. Note that this proves the proposition. The claim above can be shown by an induction on the quantifier rank of ϕ. The case that ϕ is quantifier free is clear. Assume that $\phi \equiv \exists X \phi'$. Hence, ψ is of the form $\varphi \equiv \exists X_1, X_2 \varphi'$. By induction we can assume that φ' is logically equivalent to a formula $\bigvee_{j=1}^{m}(\varphi'_{j,1} \land \varphi'_{j,2})$, where for $i \in \{1,2\}$ the formula $\varphi'_{j,i}$ only contains variables with index i. Thus, $\exists X_1, X_2 \varphi'$ is equivalent to $\bigvee_{j=1}^{m}(\exists X_1 \varphi'_{j,1} \land \exists X_2 \varphi'_{j,2})$. In the case of an universal quantification we can conclude similarly, but we first have to transform the formula $\bigvee_{j=1}^{m}(\varphi'_{j,1} \land \varphi'_{j,2})$ into a formula of the form $\bigvee_{j=1}^{m} \varphi'_{j,1} \lor \varphi'_{j,2}$ where $\varphi'_{j,i}$ only contains variables with index i. This is of course possible with a possible exponential size increase. Finally note that the construction above does not introduce negations and thus can be also used for positive formulae.

4 Graph products

Let (V,E) be a finite undirected graph with vertex set V and edge set $E \subseteq \binom{V}{2}$. Every node $n \in V$ is labeled with a monoid M_n which is either a free monoid, a free group, or a finite monoid. In fact, it is enough (and convenient) to assume that M_n is either isomorphic to \mathbb{N} or to \mathbb{Z}, or M_n is finite. If $M_n = \mathbb{N}$, then we let $\Gamma_n = \{a_n\}$ and $\Delta_n = \emptyset$. If $M_n = \mathbb{Z}$, then we let $\Gamma_n = \Delta_n = \{a_n, a_n^{-1}\}$. Finally, if M_n is finite, then we let $\Gamma_n = M_n \setminus \{1\}$ and $\Delta_n = \mathcal{I}(M_n) \setminus \{1\}$, where $\mathcal{I}(M_n)$ is the subgroup of units of M_n, i.e., $\mathcal{I}(M_n) = \{a \in M_n \mid \exists b : ab = ba = 1\}$. Thus, for each $n \in V$ we have a canonical homomorphism $\psi_n : \Gamma_n \to M_n$ with $\psi_n^{-1}(\mathcal{I}(M_n)) = \Delta_n$. To see this note that if $uv \in \mathcal{I}(M_n)$ and if M_n is finite, then $u, v \in M_n$, too. The graph product defined by (V,E) is the free product of the monoids M_n, $n \in V$, modulo commutation relations $xy = yx$ for all $x \in M_n$, $y \in M_n$ with $(m,n) \notin E$. Graph products of arbitrary groups and monoids were investigated in [5, 14]. Note that we have defined a commutation, if there is no edge, so an edge corresponds to a rigid ordering. The choice for this convention is due to the representation of elements which is best based on dependence graphs, see e.g. [10]. Before we make our definition more formal let us mention some examples.

If all M_n are equal to \mathbb{N}, then we obtain free partially commutative monoids, which are also known as trace monoids, see [10] for more details. Extreme cases are free monoids (if $E = \binom{V}{2}$) and free commutative monoids (if $E = \emptyset$). If all M_n are equal to \mathbb{Z}, we obtain free partially commutative groups, which are also known as graph groups [11]. Again free groups and free commutative groups arise as the extreme cases. If $E = \binom{V}{2}$ and all M_n are groups, then we obtain
plain groups in the sense of Haring-Smith [16].

Let us proceed with an explicit definition of the graph product using generators and relations. First we may assume that all the alphabets Γ_n are pairwise disjoint. Let $\Gamma = \bigcup_{n \in V} \Gamma_n$ and $\Delta = \bigcup_{n \in V} \Delta_n$. There is a natural involution $\overline{\cdot}$ on Δ and this involution has fixed points as soon as some Δ_n contains an element of order two. We define an independence relation $I \subseteq \Gamma \times \Gamma$ by $I = \{(a, b) \in \Gamma \times \Gamma \mid a \in \Gamma_m, b \in \Gamma_n, m \neq n, (m, n) \not\in E\}$, which is irreflexive and symmetric. The basic reference monoid for the following consideration is the trace monoid $M = \Gamma^* / \{ab = ba \mid (a, b) \in I\}$, it is equipped with a partially defined involution. More precisely, since I is compatible with the involution in the sense that $(a, \overline{b}) \in I$ if $(a, b) \in I$ and $b \in \Delta$, we can lift $\overline{\cdot} : \Delta \rightarrow \Delta$ to an involution on the recognizable subset $\Delta^* = I(M)$ of M. We now define a trace rewriting system S, i.e., a subset of $M \times M$, by

$$S = \{(a\overline{a}, 1) \mid a \in \Delta\} \cup \{(ab, c) \mid \exists n \in V : a, b, c \in \Gamma_n, ab = c \text{ in } M_n\}.$$

The graph product $\mathbb{G}P$ of the monoids M_n, $n \in V$, over the graph (V, E) is defined as the quotient monoid $\mathbb{G}P = M / \{\ell = r \mid \ell, r \in S\}$. Clearly $\mathbb{G}P = \Gamma^* / \{ab = ba \mid (a, b) \in I\} \cup \{\ell = r \mid \ell, r \in S\}$. Elements of $\mathbb{G}P$ can be represented as words from Γ^* or as traces from M. It will be always clear from the context, which representation is chosen. Furthermore the canonical homomorphism $\psi : \Gamma^* \rightarrow \mathbb{G}P$ factorizes as $\psi = \psi_1 \circ \psi_2$, where $\psi_1 : \Gamma^* \rightarrow M$ and $\psi_2 : M \rightarrow \mathbb{G}P$. Note that the trace monoid M itself is a graph product, where the vertex set is Γ and the edges are given by the complement of I. The example of a trace monoid shows that rational constraints are too strong in order to obtain decidability results. Since it is undecidable whether $L_1 \cap L_2 = \emptyset$ for $L_1, L_2 \in \text{RAT}(\mathbb{N} \times \{a, b\}^*)$, see [1], the following result holds:

Proposition 4. Let $M = \mathbb{N} \times \{a, b\}^*$. Then for M the existential positive theory of equations with constraints in $\text{RAT}(M)$ is undecidable.

Thus, we have to restrict the class of constraints. We shall consider normalized rational constraints. In order to define a suitable normal form mapping $\nu : \mathbb{G}P \rightarrow \Gamma^*$ we define analogously to string rewriting systems the one-step rewrite relation $\rightarrow_S \subseteq M \times M$ of the trace rewriting system S by $s \rightarrow_S t$ if $s = u \ell v$ and $t = u \overline{\ell} v$ for some $(\ell, r) \in S$ and $u, v \in M$. Its transitive reflexive closure is \rightarrow_S. The following lemma is fundamental for the following.

Lemma 5. S is a confluent trace rewriting system, i.e., for all $s, t, u \in M$ with $s \rightarrow_S t$ and $s \rightarrow_S u$ there exists $v \in M$ with $t \rightarrow_S v$ and $u \rightarrow_S v$.

Proof. We use Lemma 2.3, from [18]. According to this lemma it suffices to consider for all rules $(ab, d), (bc, e)$ from S and all traces $w \in M$ such that $(b, w) \in I$ the following situation: $dwc \leftarrow abwc = awbe \rightarrow awc$. We have to show that there exists an $s \in M$ such that $dwc \rightarrow_S s$ and $awc \rightarrow_S s$. Note that

1One can argue also directly by an application of Lemma 10 similarly to the proof of Lemma 14.
a, b, c ∈ Γ_n for some n ∈ V. Since (b, w) ∈ I, also each of the traces a, c, d, and e is independent from w. Thus, it suffices to show that \(\ell c \rightarrow_S s \) and \(\ell e \rightarrow_S s \) for some s (then also \(dwc = wd \ell c \rightarrow_S s \) ws and \(awc = wa \ell e \rightarrow_S s \) ws). But this is easy. Let us consider for instance the case that \(b = \overline{a}, d = 1, \) and \(e \in \Gamma_n. \) Thus, \(\overline{ac} = e, \) i.e., \(c = ae \) in \(M_n, \) and \((ae, c) \) is a rule of \(S. \) Hence, we can choose \(s = c. \)

Let \(\text{RED}(S) = \{ u \ell v \mid u, v \in M, \exists r : (\ell, r) \in S \} \) and \(\text{IRR}(S) = M \setminus \text{RED}(S). \) Thus, \(\text{IRR}(S) \) is the set of traces that are irreducible with respect to \(S. \) Since \(\text{REC}(M) \) is closed under complement and concatenation, see e.g. [10, Chap. 6], \(\text{IRR}(S) \) is recognizable. Since \(\rightarrow_S \) is a Noetherian relation, Lemma 5 implies that for each \(x \in \mathbb{G} \) there exists a unique \(\mu(x) \in M \cap \text{IRR}(S) \) with \(x = \psi_\ell(\mu(x)). \) The trace \(\mu(x) \) is the shortest trace representing \(x. \) Now let us fix a linear order on \(\Gamma \) and let \(\text{Inf}(t) \in \Gamma^+ \) for \(t \in M \) be the lexicographical first word from \(\Gamma^+ \) that represents the trace \(t, \) see also [2]. Then for \(x \in \mathbb{G} \) we define \(\nu(x) = \text{Inf}(\mu(x)). \) Since \(L \in \text{REC}(M) \) if and only if \(\text{Inf}(L) \in \Gamma^+ \) is regular [24], we obtain:

Lemma 6. We have \(L \in \text{NRAT} \left(\mathbb{G} \right) \) if and only if \(\mu(L) \in \text{REC}(M) \) if and only if \(\psi_\ell^{-1}(\mu(L)) \in \text{REC}(\Gamma^+). \)

In particular we see that \(\text{NRAT} \left(\mathbb{G} \right) \) does not depend on the chosen lexicographical ordering. It is really a canonical class depending only on the natural trace rewriting system \(S. \)

5 Existential theories of equations in graph products

In this section we prove that for the graph product \(\mathbb{G} \) the existential theory of equations with constraints in \(\text{NRAT} \left(\mathbb{G} \right) \) is decidable. Since we will also deal with complexity issues, we have to define the input length of a formula. We assume some standard binary coding of formulae, where a constraint \(X \in L \) is represented by some finite non-deterministic automaton that accepts \(\psi_\ell^{-1}(\mu(L)). \) The input length of a formula is the length of this description. In order to obtain existing results for free monoids as special cases, we will put a description of the graph product \(\mathbb{G} \) into the input, too. This description contains the adjacency matrix of \((V, E),\) and for each node either the multiplication table of \(M_n \) if \(M_n \) is finite or a bit indicating whether \(M_n \in \mathbb{N} \) or \(M_n = \mathbb{Z}. \) In order to obtain convenient complexity bounds we will restrict to graphs \((V, E)\) with a bounded number of **complete thin clans,** see [9] for the definition. It is easy to see that the number of complete thin clans of \((V, E)\) is at most \(|V|, \) furthermore it is 0 for a complete graph.

Theorem 7. The following problem is PSPACE-complete for every \(k \geq 0. \)

INPUT: A graph product \(\mathbb{G} \) whose underlying graph \((V, E)\) has at most \(k \) complete thin clans and an existential formula \(\phi \) with constraints in \(\text{NRAT} \left(\mathbb{G} \right). \)
QUESTION: Does ϕ belong to $\text{Th}(\mathbb{G}, \text{NRAT}(\mathbb{G}))$?

If the number of complete thin clans of (V,E) is not bounded, then the problem above is in EXPSPACE.

Remark 8. Formally, Theorem 7 generalizes results of [6, 7, 8, 9, 15, 19, 20, 25]. For this it is enough to give a reduction to the main result of [9].

The next lemma is the main technical tool for proving the theorem above. First we need some further definitions concerning traces. The set $\text{IC} \subseteq \mathbb{M} \cap \text{IRR}(S)$ consists of all traces $a_1 \cdots a_n$, $a_i \in \Gamma$, such that $(a_i, a_j) \in I$ if $i \neq j$. Thus, traces in IC correspond to independence cliques of (Γ, I). Note that if $u \in \text{IC}$, then the length of u is at most $|\Gamma|$. We identify $u \in \text{IC}$ with the set of symbols that occur in u. For instance for $s \in \mathbb{M}$ the set of maximal symbols $\text{max}(s) = \{a \in \Gamma \mid s = ta\}$ of s and the set of minimal symbols $\text{min}(s) = \{a \in \Gamma \mid s = at\}$ of s belong to IC.

Lemma 9. Let $x, y, z \in \mathbb{M} \cap \text{IRR}(S)$. Then $xy \rightarrow^*_s z$ if and only if there exist $p, s, t, w \in \text{IRR}(S)$ and $u, v \in \text{IC}$ such that

$$uv \rightarrow^*_s w, \quad x = su, \quad y = pv, \quad z = swt. \quad (1)$$

Note that since $u, v \in \text{IC}$, there exist only finitely many possibilities for w in (1). The proof of Lemma 9 as well as other proofs in rest of this paper are best carried out by an application of the following factorization lemma, which is well-known as Levi’s lemma for traces, see e.g. [10, p 74]. For two traces $s, t \in \mathbb{M}$ we write $(s, t) \in I$ if for all $a, b \in \Gamma$ such that a occurs in s and b occurs in t it holds $(a, b) \in I$.

Lemma 10. Let $u_1, \ldots, u_m, v_1, \ldots, v_n \in \mathbb{M}$. Then it holds

$$u_1u_2 \cdots u_m = v_1v_2 \cdots v_n$$

if and only if there exist $w_{i,j} \in \mathbb{M}$ ($1 \leq i \leq m, 1 \leq j \leq n$) such that

- $u_i = w_{i,1}w_{i,2} \cdots w_{i,n}$ for every $1 \leq i \leq m$,
- $v_j = w_{1,j}w_{2,j} \cdots w_{m,j}$ for every $1 \leq j \leq n$, and
- $(w_{i,j}, w_{k,l}) \in I$ if $1 \leq i < k \leq m$ and $1 \leq l < j \leq n$.

The situation in the lemma will be visualized by a diagram of the following kind, where $n = m = 4$. The i-th column corresponds to u_i, the j-th row corresponds to v_j, and the intersection of the i-th column and the j-th row represents $w_{i,j}$. Furthermore $w_{i,j}$ and $w_{k,l}$ are independent if one of them is right-above the other one.

<table>
<thead>
<tr>
<th>v_4</th>
<th>$w_{1,4}$</th>
<th>$w_{2,4}$</th>
<th>$w_{3,4}$</th>
<th>$w_{4,4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_3</td>
<td>$w_{1,3}$</td>
<td>$w_{2,3}$</td>
<td>$w_{3,3}$</td>
<td>$w_{4,3}$</td>
</tr>
<tr>
<td>v_2</td>
<td>$w_{1,2}$</td>
<td>$w_{2,2}$</td>
<td>$w_{3,2}$</td>
<td>$w_{4,2}$</td>
</tr>
<tr>
<td>v_1</td>
<td>$w_{1,1}$</td>
<td>$w_{2,1}$</td>
<td>$w_{3,1}$</td>
<td>$w_{4,1}$</td>
</tr>
<tr>
<td>u_1</td>
<td>u_2</td>
<td>u_3</td>
<td>u_4</td>
<td></td>
</tr>
</tbody>
</table>
Proof of Lemma 9. Let \(x, y, z \in \text{IRR}(S) \). If (1) from Lemma 9 holds, then of course \(xy \to_S z \). Now assume that \(xy \to_S z \). We can choose \(p \in M \) of maximal length such that \(x = x'p \) and \(y = y'p \). Let \(u = \max(x') \in I \), \(v = \min(y') \in I \), and \(w \to_S w \in \text{IRR}(S) \). Hence, \(x = \sup, y = \max, \) and \(xy \to_S \text{swt} \). Note that

\[s, t, u, v, p \in \text{IRR}(S) \]

Due to the choice of \(p \), only rules of the form \((ab, c)\), where \(a \in u, b \in v \), and \(a, b, c \in \Gamma_n \) for some finite monoid \(M_n \), can be applied to the trace \(uv \). In particular if \((d, w) \in I \) for \(d \in \Gamma \), then also \((d, u) \in I \). We claim that \(swt \in \text{IRR}(S) \) which implies \(z = swt \). Assume that there exist a left-hand side \(ab \) of a rule in \(S \) and traces \(q, r \) such that \(swt = qabr \). By Lemma 10 we obtain up to symmetry one of the following two diagrams.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(s_2)</th>
<th>(w_2)</th>
<th>(t_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ab)</td>
<td>(a)</td>
<td>(1)</td>
<td>(b)</td>
</tr>
<tr>
<td>(q)</td>
<td>(s_1)</td>
<td>(w_1)</td>
<td>(t_1)</td>
</tr>
<tr>
<td>(s)</td>
<td>(w)</td>
<td>(t)</td>
<td></td>
</tr>
</tbody>
</table>

Let \(n \in V \) such that \(a, b \in \Gamma_n \). Let us first consider the left diagram. Since \((a, u_1) \in I \) and \((b, w_2) \in I \) we obtain \((a, w) \in I \) and thus \((a, u) \in I \). Furthermore from the diagram we obtain \((b, s_2) \in I \). Thus, \((a, s_2) \in I \) which implies \(a \in \max(s) \). Together with \((a, u) \in I \) it follows that \(a \in \max(su) = u \) which is a contradiction. Now let us consider the right diagram. Again we have \(a \in \max(s) \). Furthermore since \(b \in \min(w) \), there are two possibilities. Either there exists a \(d \in u \cap \Gamma_n \). But then \(su \) would contain the factor \(ad \) which contradicts \(x = \sup \in \text{IRR}(S) \). The second possibility is that \(b \in v \) and \((b, u) \in I \). But then \((a, u) \in I \), which implies \(a \in \max(su) = u \), a contradiction. \(\square \)

Proof of Theorem 7. PSPACE-hardness follows from the fact that for \(\{a, b\} \) the existential theory of equations with constraints in \(\text{REC}(\{a, b\}^*) \) is PSPACE-hard, see [17, Lem. 3.2.3] and [25, Thm. 1]. Membership in PSPACE will be shown by a reduction to the following problem, which was shown to be in PSPACE for every \(k \geq 0 \) in [9].

INPUT: A trace monoid \(M \), specified by an independence relation \(I \subseteq \Gamma \times \Gamma \) such that the graph \((\Gamma, (\Gamma \times \Gamma) \setminus I) \) has at most \(k \) complete thin clans, a completely defined involution \(\neg : \Gamma \to \Gamma \) that is compatible with \(I \) (i.e. \((a, \neg b) \in I \) if \((a, b) \in I \)), and an existential formula \(\phi \) with constraints in \(\text{REC}(M) \).

QUESTION: Is \(\phi \) true in \(M \) with the lifting \(\neg : M \to M \) of \(\neg : \Gamma \to \Gamma \)?

In this problem a set \(L \in \text{REC}(M) \) is specified via an automaton for \(\phi^{-1}(L) \).

Now let \(k \) be a fixed bound for the number of complete thin clans, and let \(\text{GP} \) be a graph product, specified by a graph \((V, E)\) with at most \(k \) complete thin clans. Furthermore let \(\phi \) be an existential formula with constraints in \(\text{NRA}(\text{GP}) \). Using standard methods, see e.g. [6], we may assume that \(\phi \) is an existentially quantified conjunction of equations of the form \(xy = z \), where \(x, y, z \in \Gamma \cup \Omega \cup \overline{\Omega} \), and of constraints \(X \in L \) or \(X \notin L \), where \(X \in \Omega \cup \overline{\Omega} \) and \(L \in \text{NRA}(\text{GP}) \). Next we will move from the graph product \(\text{GP} \) to its underlying trace monoid \(M \) (it is easy to see that the number of complete thin clans of \((\Gamma, (\Gamma \times \Gamma) \setminus I) \) is also at most \(k \)). We replace syntactically every
subformula \(xy = z \) (resp. \(X \in L \)) by \(\psi_2(xy) = \psi_2(z) \) (resp. \(X \in \mu(L) \)) and add the negated constraint \(X \not\in \text{RED}(S) \) for every variable \(X \). \(^2\) We obtain an existential formula which evaluates to true in \(M \) if and only if the original formula evaluates to true in \(\mathbb{G} \). Note also that the automaton used to specify \(\mu(L) \) is the same as the one for \(L \). It remains to eliminate all occurrences of \(\psi_2 \) from equations. Since \(\Gamma \subseteq \text{IRR}(S) \) and \(S \) is confluent, we can replace an equation \(\psi_2(xy) = \psi_2(z) \) by \(xy \rightarrow_s z \), which by Lemma 9 is equivalent to an existentially quantified conjunction of equations.

Now we can almost apply the result of [9] cited above. The only remaining problem is that due to the presence of non-invertible generators in \(\mathbb{G} \), the involution \(- \) may only be partially defined on \(\Gamma \). But this can be resolved by introducing a new dummy symbol \(\pi \) for every \(a \in \Gamma \setminus \Delta \) and by adding the constraint \(X \in \Gamma^* \) for every variable \(X \). This shows the first statement from Theorem 7.

For the case that the number of complete thin clans is not bounded, an \textsc{EXPSPACE}-algorithm can be deduced from the proof in [9]. \(\square \)

6 Positive theories of equations in graph products

The aim of this section is to prove our second main result. In the following we throughout assume that all generators in \(\Gamma \) have inverses, i.e., \(\Gamma = \Delta \). In particular \(\mathbb{G} \) is a graph product of finite and free groups, and hence itself a group.

Theorem 11. The following problem is decidable.

INPUT: A graph product \(\mathbb{G} \) which is a group and a closed positive formula \(\phi \) with constraints in \(\text{REC}(\mathbb{G}) \).

QUESTION: Is \(\phi \) true in \(\mathbb{G} \)?

Complexity issues will be postponed to the end of this section. Note that Theorem 11 cannot be extended to the full class of graph products considered in the previous section. Already for a free monoid \(\{a, b\}^* \) the \(\forall \exists^n \)-theory of equations is undecidable [12, 22]. Similarly, Theorem 11 cannot be extended to the case of normalized rational constraint, since for a free group \(F \) of rank 2 a free submonoid \(\{a, b\}^* \) belongs to \(\text{NRAT}(F) \).

We will prove Theorem 11 by reducing the positive theory of equations with constraints in \(\text{REC}(\mathbb{G}) \) to the existential theory of equations with normalized rational constraints in a free extension of \(\mathbb{G} \), which allows us to apply Theorem 7. Our proof strategy will follow a technique developed in [21, 23]

\(^2\)Of course this constraint is equivalent to \(X \in \text{IRR}(S) \), but we prefer the negated constraint \(X \not\in \text{RED}(S) \) since an automaton for \(\psi_1^{-1}(\text{RED}(S)) \) can be easily constructed in polynomial time, whereas the construction of an automaton for \(\psi_1^{-1}(\text{IRR}(S)) \) would involve an additional complementation with a possible exponential blow-up.
by Merzlyakov, but the presence of partial commutation and recognizable constraints makes the construction more involved.

In a first step we may assume that none of the finite groups M_n, $n \in V$, is a direct product of two finite non-trivial groups since otherwise we could replace n by two non-connected nodes. In particular, if M_n is not $\mathbb{Z}/2\mathbb{Z}$, then there must exist $a \in \Gamma_n$ such that $a \not\equiv a$ in \mathbb{G}. Next assume that the graph (V, E) consists of two non-empty disjoint components (V_1, E_1) and (V_2, E_2), which define graph products \mathbb{G}_1 and \mathbb{G}_2, respectively. Then $\mathbb{G} = \mathbb{G}_1 \times \mathbb{G}_2$. Furthermore by Mezei’s Theorem, see e.g. [4], every $L \in \text{REC}(\mathbb{G})$ is a finite union of sets of the form $L_1 \times L_2$ with $L_i \in \text{REC}(\mathbb{G}_i)$. Thus, we may apply Proposition 3 and proceed with the two graphs (V_1, E_1) and (V_2, E_2). Hence, for the rest of the proof we may assume that the graph (V, E) is connected. Furthermore since by Proposition 1 the (positive) theory of equations with rational constraints in \mathbb{Z} is decidable and the same holds for finite monoids for trivial reasons, we may assume that $|V| > 1$. By Corollary 2 we can also exclude the case that V contains exactly two adjacent nodes which are both labeled by $\mathbb{Z}/2\mathbb{Z}$. Thus, we may assume that either the graph (V, E) contains a path consisting of three different nodes or one of the groups labeling the nodes has a generator $x \in \Gamma$ with $\overline{x} \neq x$. Hence, there exist three generators $a, b, c \in \Gamma$ such that a and b belong to E-adjacent (and hence different) nodes from V, b and c also belong to E-adjacent nodes from V, and finally either a and c belong to different nodes from V or $a \not\equiv \overline{a} \equiv c$. In particular $(a, b), (b, c) \not\subseteq I$, i.e., the dependency between a, b, and c being used is $a \equiv b \equiv c$. For the rest of the proof we will fix these three symbols a, b, and c.

Since $L \in \text{REC}(\mathbb{G})$ if and only if there exists a homomorphism $\rho : \mathbb{G} \to H$ onto a finite group H such that $L = \rho^{-1}(\rho(L))$, see e.g. [4], we may fix for the further consideration such a homomorphism ρ and assume that all recognizable constraints are given in the form $\rho(X) = g$ for $X \in \Omega \cup \overline{\Omega}$ and $g \in H$.

We proceed with the definition of a trace rewriting system $R^{(h)}$, where $N \subseteq \mathbb{N}$ and $h \in H$. This trace rewriting system will be defined over some free extension of \mathbb{M}. First we need some preliminaries. A chain is a trace $a_1 \cdots a_m \in \mathbb{M}$, where $a_1, \ldots, a_m \in \Gamma$, and a_i and a_{i+1} belong to E-adjacent (and hence different) nodes from V, $1 \leq i \leq n-1$. Note that a chain belongs to $\text{IRR}(S)$.

Lemma 12. For all $h \in H$ there exists a trace $C_h \in \mathbb{M} \cap \text{IRR}(S)$ such that $\text{min}(C_h) = \text{max}(C_h) = c$ and $\rho(C_h) = h$.

Proof. First for every $x \in \Gamma$ we construct a trace $t_x \in \text{IRR}(S)$ with $\text{min}(t_x) = x$, $\text{max}(t_x) = \overline{x}$, and $\rho(t_x) = 1$. First assume that $a \not\equiv \overline{a} = c$, i.e., $a^2 = a$ \in Γ in \mathbb{G}. Let $x x_1 \cdots x_k a$ be a chain, which exists since (V, E) is connected. Then we can define

$$t_x = x x_1 \cdots x_k a (ba')^{[H]} b a \overline{x}_k \cdots \overline{x}_1 \overline{x},$$

which is in \mathbb{G} equal to $x x_1 \cdots x_k (a ba)^{[H]} \overline{x}_k \cdots \overline{x}_1 \overline{x}$. Now assume that a, b, and c belong two pairwise different alphabets Γ_n. Let $x x_1 \cdots x_k b$ be a chain. Then we can define

$$t_x = x x_1 \cdots x_k (ba)^{[H]} (cb)^{[H]} \overline{x}_k \cdots \overline{x}_1 \overline{x}.$$
Now for a given $h \in H$, we construct C_h as follows:

- Select a trace $s = b_1b_2 \cdots b_n \in \text{IRR}(S)$, $b_i \in \Gamma$, such that $\rho(b_1 \cdots b_n) = h$.
- If $(b_i, b_{i+1}) \in I$, then choose a chain $b_i c_1 \cdots c_k b_{i+1}$ and insert into s between b_i and b_{i+1} the trace $t_{c_1} \cdots t_{c_k}$.
- Similarly let $c_1 \cdots c_k b_1$ be a chain and append on the left end of s the trace $t_{c_k} t_{c_{k-1}} \cdots t_{c_1}$. Proceed analogously for the right end of s.

It is easy to see that the trace constructed in this way has the desired properties.

We will use the traces C_h in order to glue irreducible traces together such that the resulting trace is again irreducible. Let C be a chain with $\min(C) = c$ and $|C| > |C_h|$ for all $h \in H$ such that for every node $n \in V$ at least one symbol from Γ_n occurs in C. Since (V, E) is connected, such a C exists. Let η be such that $|b(ab)^n| > |C| + 2$. Then let

$$p = b(ab)^n C (ba)^n b$$

and for $i \geq 1$ and $h \in H$ let

$$\ell_i(h) = (ab)^i |H| C_h (ba)^{2+i |H|}.$$

Note that $p \ell_i(h) p \in \text{IRR}(S)$ and $\rho(\ell_i(h)) = h$. In the following lemmas, for $s \in \mathbb{M}$ we denote by s^{-1} the trace π and by s^{+1} the trace s. The following lemma collects some important facts about the traces p and ℓ_i, $i \in \mathbb{N}$.

Lemma 13. Let $\alpha, \beta \in \{-1, +1\}$.

1. $(p, x) \not\in I$ for all $x \in \Gamma$

2. If u (resp. v) is a non-empty prefix or suffix of p^α (resp. p^β), then $(u, v) \not\in I$.

3. If $\ell_i^\alpha = \ell_j^\beta$, then $i = j$ and $\alpha = \beta$.

4. If $(p \ell_i p)^\alpha = s p^\beta t$, then $s = 1$ or $t = 1$, i.e., the only potential occurrences of p^β in $(p \ell_i p)^\alpha$ are its suffix and prefix, respectively, of length $|p|$.

The last point in the previous lemma implies that the only non-trivial overlapping of two traces $(p \ell_i p)^\alpha$ and $(p \ell_j p)^\beta$ happens in their p-parts.

Proof of Lemma 13. Note that by the construction of p and ℓ_i the trace $p \ell_i p$ is almost a chain. Commutations may only occur inside the factor C_h of ℓ_i. The following figure visualizes this almost-chain $p \ell_i p$ and the relationship between the lengths of it’s factors.
The properties (1) and (2) follow immediately from the construction of \(p \). For (3) note that \(|\ell_i^p| \neq |\ell_j^p| \) if \(i \neq j \). Furthermore \(\ell_i \neq \ell_j \) since \(\ell_i \) is of the form \((ab)^nc\cdots c(ab)^2m\). For (4) first note that from \(\min(C) = \max(C) = c, |C| > |C_b| \), and the choice of \(\eta \) in the definition of \(\ell_i \) it follows that the factor \(C \) of \(p \) occurs in the trace \(p\ell_i p \) only in the prefix \(p \ell_i \) and the suffix \(p \). Thus, \(p \) cannot occur properly in \(p \ell_i p \). For the same reason \(\mathcal{F} \) cannot occur properly in \(p \ell_i p \) in the case that \(a, b, \) and \(c \) belong to pairwise different nodes (note that in this case the worst case happens if \(a = c, b = b, \) and \(c = c \)). Finally if \(a \neq c = c \), then even the prefix \(\mathcal{F}(c^n \mathcal{F})^n \) of \(\mathcal{F} \) cannot occur in \(p \ell_i p \) due to the choice of \(\eta \) in the definition of the trace \(p \).

For every \(i \in \mathbb{N} \) let us take two new constants \(k_i, \overline{k_i} \notin \Gamma \) and set \(\overline{k_i} = k_i \). For every \(N \subseteq \mathbb{N} \) and every \(h \in H \) we define over the trace monoid \(\mathbb{M} \ast \{ k_i, \overline{k_i} \mid i \in N \}^* \) the free product of our trace monoid \(\mathbb{M} \) and the free monoid \(\{ k_i, \overline{k_i} \mid i \in N \}^* \), the trace rewriting system \(R_N^{(h)} \) by

\[
R_N^{(h)} = \{(p \ell_i(h)p, p k_i p), (p \ell_i(h)p, p \overline{k_i} p) \mid i \in N \}.
\]

Note that \(R_N^{(h)} \) is length-reducing and thus, \(\rightarrow_{R_N^{(h)}} \) is Noetherian. Let us fix \(h \in H \) for the rest of this section We write \(R_N \) and \(\ell_i \) instead of \(R_N^{(h)} \) and \(\ell_i(h) \), respectively. We write \(s \rightarrow_i t \) if the trace \(t \) can be obtained from the trace \(s \) by an application of one of the rules \((p \ell_i p, p k_i p) \) or \((p \ell_i p, p \overline{k_i} p) \).

For the following lemmas and proofs let us fix a set \(N \subseteq \mathbb{N} \). If not stated otherwise, all traces will range over the trace monoid \(\mathbb{M} \ast \{ k_i, \overline{k_i} \mid i \in N \}^* \), which is the trace monoid over which the trace rewriting system \(R_N \) is defined, and \(i, j \in N \).

Lemma 14. If \(s \rightarrow_i t \) and \(s \rightarrow_j u \), then either \(t = u \) or there exists a trace \(v \) such that \(t \rightarrow j v \) and \(u \rightarrow_i v \).

Proof. Assume that \(s \rightarrow_i t \) and \(s \rightarrow_j u \). We assume that the rules \((p \ell_i p, p k_i p) \) and \((p \ell_j p, p k_j p) \), respectively, are applied in these rewrite steps, the other three cases can be dealt analogously. There exist traces \(t_1, t_2, u_1, \) and \(u_2 \) such that

\[
s = t_1(p \ell_i p)t_2 = u_1(p \ell_j p)u_2 \quad \text{and} \quad t = t_1(p k_i p)t_2, \quad u = u_1(p k_j p)u_2.
\]

Now we apply Lemma 10 to the identity \(t_1(p \ell_i p)t_2 = u_1(p \ell_j p)u_2 \). Since non-empty prefixes (resp. suffixes) of \(p \) are dependent (Lemma 13(1)) and every symbol of \(\Gamma \) is dependent from \(p \) (Lemma 13(1)), we obtain up to symmetry one of the following diagrams:

\(u_2 \)	1	\(s_2 \)	\(w_2 \)
\(p \ell_i p \)	1	\(p \ell_j p \)	\(1 \)
\(u_1 \)	\(w_1 \)	\(s_1 \)	\(1 \)
\(t_1 \)	\(p \ell_i p \)	\(t_2 \)	

\(u_2 \)	1	\(1 \)	\(w_2 \)
\(p \ell_i p \)	1	\(s \)	\(s_2 \)
\(u_1 \)	\(w_1 \)	\(s_1 \)	\(w \)
\(t_1 \)	\(p \ell_i p \)	\(t_2 \)	
In the first case, Lemma 13(4) implies \(s_1 = 1 = s_2 \) and thus \(t_1 = u_1 \) and \(t_2 = u_2 \). Hence, \(p \ell_i p = p \ell_j p \) which implies \(i = j \) by Lemma 13(3). It follows \(t = u \). In the second case we may assume that \(s_1 \neq 1 \neq s_2 \), since otherwise we obtain a special case of the first diagram. Furthermore if \(s = 1 \), then obviously \(t \xrightarrow{\kappa_N} v \) and \(u \xrightarrow{\kappa_N} v \) for some \(v \). Thus, assume that also \(s \neq 1 \). Since \(p \ell_i p = s_1 \) and \(p \ell_j p = s_2 \). Lemma 13(4) implies that there exist traces \(p_1, p_2, p_3 \) such that \(s_1 = p \ell_i p_1, s = p_2, s_2 = p_3 \ell_j p \), and \(p = p_1 p_2 = p_2 p_3 \). Since \((w, p_2) \in I\) we obtain

\[
t = t_1(p \ell_i p)t_2 = w_1 p k_i p_1 p_2 w_3 \ell_j p w_2
\]

and similarly

\[
u = u_1(p \ell_j p)u_2 = w_1 p \ell_i p_1 w_2 p_3 k_j p w_2
\]

In particular, \(R_N \) is confluent. Since \(R_N \) is also Noetherian, for every \(s \in M \), there exists a unique trace \(\kappa_N(s) \in M \ast \{k_i, \widehat{k}_i \mid i \in N\} \cap \text{IRR}(R_N) \) with \(s \xrightarrow{\kappa_N} \kappa_N(s) \).

Lemma 15. If \(s \xrightarrow{t} t \xrightarrow{u} s \) then there exist \(\alpha, \beta \in \{-1, +1\} \) and traces \(s_1, s_2, s_3, p_1, p_2, p_3 \) such that

- \(p^\alpha = p_1 p_2, p^\beta = p_2 p_3 \),
- \((p_2, s_2) \in I\),
- \((s = s_1 p^\alpha \ell_i p_1 p_2 s_2 \ell_j p^\beta s_3 \) and \(u = s_1 p^\alpha k_i p_1 p_2 s_3 k_j p^\beta s_3 \)) or
- \((s = s_1 p^\alpha \ell_i p_1 p_2 s_3 \ell_j p^\beta s_3 \) and \(u = s_1 p^\alpha k_i p_1 p_2 s_2 p_3 k_j p^\beta s_3 \)).

Proof. Assume that \(s \xrightarrow{t} t \xrightarrow{u} s \). We assume that the rules \((p \ell_i p, p k_i p)\) and \((p \ell_j p, p k_j p)\), respectively, are applied in these rewrite steps, the other three cases can be dealt analogously. We obtain traces \(s_1, v, u_1, \) and \(u_2 \) such that \(s = s_1 p \ell_i p v, t = s_1 p k_i p v = u_1 p \ell_j p u_2, \) and \(u = u_1 p k_j p u_2 \). Next we apply Lemma 10 to the identity \(s_1 p k_i p v = u_1 p \ell_j p u_2 \). Since the symbol \(k_i \) does not occur in \(p \ell_j p \) and is furthermore dependent from all other symbols, we obtain the following diagram (or a symmetric one where \(k_i \) occurs in \(u_2 \), which can be dealt analogously).

<table>
<thead>
<tr>
<th>(v)</th>
<th>(s_2)</th>
<th>(w)</th>
<th>(s_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(p_1)</td>
<td>(p_2)</td>
<td>(p)</td>
</tr>
<tr>
<td>(k_i)</td>
<td>(k_i)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(p)</td>
<td>(p)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>(u_1)</td>
<td>(p \ell_j p)</td>
<td>(u_2)</td>
<td></td>
</tr>
</tbody>
</table>
Since $p \ell_j p = p_2 w$ and $|p_2| \leq |p|$, we must have $w = p_3 \ell_j p$ and $p = p_2 p_3$. Thus, $(w, p') \in I$ implies $p' = 1$ by Lemma 13(2). Thus $p = p_1 p_2$ and the lemma follows.

The next lemma is an immediate consequence of Lemma 15.

Lemma 16. If $s \rightarrow_i t \rightarrow_j u$, then there exists a trace v such that $s \rightarrow_j v \rightarrow_i u$.

Proof. First we claim that if $s, t \in \text{IRR}(R_N)$ and $s t \rightarrow_i \rightarrow_j u$, then $u \in \text{IRR}(R_N)$. By Lemma 15 we can assume that $s t = s_1 p^\alpha \ell_i p_1 p_2 s_2 p_3 \ell_j p^\beta s_3$ and $u = s_1 p^\alpha k_i^p p_1 p_2 s_2 p_3 k_j^p s_3$ where $p^\alpha = p_1 p_2$, $p^\beta = p_2 p_3$ and $(p_2, s_2) \in I$. We only consider the case $\alpha = \beta = 1$, the other cases are analogous.

Case 1. $p_2 = 1$: Thus, $s t = s_1 p \ell_i p s_2 p \ell_j p s_3$ It is easy to see that either $p \ell_i p$ is a factor of s or $p \ell_j p$ is a factor of t, which is a contradiction.

Case 2. $p_2 \neq 1$: First we show that $s_1 p$, $p s_3 \in \text{IRR}(R_N)$. Lemma 10 applied to the identity $s t = s_1 p \ell_i p_1 p_2 s_2 p_3 \ell_j p s_3$ gives the following diagram.

<table>
<thead>
<tr>
<th>t</th>
<th>s_1, p</th>
<th>q_2, s_2, s_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>s_1, p</td>
<td>q_1, p_1, p_2, p_3, ℓ_j, q_3</td>
</tr>
</tbody>
</table>

Assume that $q_2 \neq 1$, i.e., q_2 is a non-empty suffix of p. Then $p_{1,1} p_{2,1}$, which is a prefix of $p = p_{1,2} p_{2,2}$, must be empty. Thus, $p = p_{1,2} p_{2,2}$ and $(p, p_{1,1} \ell_{j,1} q_3) \in I$. Hence, $p_{1,1} \ell_{j,1} q_3 = 1$ by Lemma 13(1) and thus, $p \ell_j p$ is a factor of t, which is a contradiction. Thus, $q_2 = 1$ and analogously $q_3 = 1$. Hence, $q_1 = q_4$ and therefore $s_{1,2} = 1 = s_{3,1}$ by Lemma 13(1). It follows that $s_1 p$ (resp. $p s_3$) is a prefix (resp. suffix) of s (resp. t) and therefore is irreducible. Now assume that $u \not\in \text{IRR}(S)$, i.e.,

$$s_1 p \ell_j p s_2 p_3 s_3 = t_1 (p \ell p)^\gamma t_2$$

where $\ell \in \ell_i$ and $\gamma \in \{-1, +1\}$. We have to deduce a contradiction. We only consider the case $\gamma = 1$. Let us apply Lemma 10 to the identity (2). Since $s_1 p$, $p s_3 \in \text{IRR}(R_N)$ and k_i, k_j do not occur in $p \ell p$ and are dependent from all other symbols, we obtain the following diagram.

<table>
<thead>
<tr>
<th>t_2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \ell p$</td>
<td>1</td>
</tr>
</tbody>
</table>

Note that $|p_{1,2} p_{2,2} p_{3,2}| \leq |p_{1,2} p_{2,3}| < 2 \cdot |p|$. Thus, $|s_{2,2}| > |\ell|$. Since $s_{2,2}$ is a factor of $p \ell p$, the trace $s_{2,2}$ starts with a non-empty suffix of p or ends with a non-empty prefix of p. But by Lemma 13(2) this contradicts $(s_2, p_2) \in I$ and $p_2 \neq 1$. Thus, $u \in \text{IRR}(R_N)$ is shown also for case 2.
It follows that for all \(s, t \in \mathcal{M} \) either \(\kappa_N(s) \kappa_N(t) \rightarrow_i \kappa_N(st) \) for some \(i \in \mathbb{N} \) or \(\kappa_N(s) \kappa_N(t) \rightarrow_i u \rightarrow_j \kappa_N(st) \) for \(i, j \in \mathbb{N} \). Assume that the later holds and let \(A = \{i, j\} \), \(N' \subseteq N \setminus A \), and \(N = N' \cup N'' \) with \(N' \cap N'' = \emptyset \). Note that by Lemma 16 we can arbitrarily reorder the applications of rewrite rules from \(R_N \) in derivations. In particular we have \(\kappa_{N'}(s) \rightarrow_{R_{N'}} \kappa_N(s) \) and similarly for \(t \). Thus, \(\kappa_N(s) \kappa_N(t) \rightarrow_{R_{N'}} \kappa_N(s) \kappa_N(t) \rightarrow_{R_{N'}} \kappa_N(st) \). If we would have \(\kappa_{N'}(s) \kappa_{N'}(t) \neq \kappa_{N'}(st) \), then a rule from \(R_{N'} \) could be applied to \(\kappa_{N'}(s) \kappa_{N'}(t) \). Since \(\kappa_{N'}(s) \kappa_{N'}(t) \rightarrow_{R_{N'}} \kappa_N(st) \), Lemma 14 implies that this rule could be also applied to \(\kappa_N(st) \), which is a contradiction. \(\square \)

6.1 Reduction to the existential theory

In the following symbols with a tilde like \(\tilde{x} \) will denote sequences of arbitrary length over some set, which will be always clear from the context. If say \(\tilde{x} = x_1 \cdots x_i \), then \(\tilde{x} \in A \) means \(x_1 \in A, \ldots, x_i \in A \) and \(f(\tilde{x}) \) for some function \(f \) denotes the sequence \(f(x_1) \cdots f(x_i) \).

For the rest of the paper let us take some subset \(K = \{k_1, \ldots, k_n\} \) of our new constants and let \(\overline{K} = \{\overline{k}_1, \ldots, \overline{k}_n\} \). Let \(k, \overline{k} \not\in \Gamma \cup K \cup \overline{K} \) be two additional constants, as usual let \(\overline{k} = k \). The following lemma will be the key for reducing the positive theory to the existential theory, it allows the elimination of one universal quantifier. In this lemma we have to deal with formulae \(\phi \) that are interpreted over the free product \(\mathbb{G} \ast \mathbb{F}(K) \) of the graph product \(\mathbb{G} \) and the free group \(\mathbb{F}(K) \). Furthermore different recognizable constraints in \(\phi \) are given by different extensions \(\rho : \mathbb{G} \ast \mathbb{F}(K) \rightarrow H \) of our fixed morphism \(\rho : \mathbb{G} \rightarrow H \). For \(h \in H \) we denote by \(\phi_h \) the formula that results from \(\phi \) by replacing every constraint \(\phi(X) = g \) by \(\phi_h(X) = g \), where \(\phi_h \) is the canonical extension of \(\phi : \mathbb{G} \ast \mathbb{F}(K) \rightarrow H \) to \(\mathbb{G} \ast \mathbb{F}(K \cup \{k\}) \) which is defined by \(\phi_h(k) = h \). Note that \(\psi_2 : \mathcal{M} \rightarrow \mathbb{G} \) can be extended to a canonical morphism from \(\mathcal{M} \ast (K \cup \overline{K}) \) to \(\mathbb{G} \ast \mathbb{F}(K) \), which will be also denoted by \(\psi_2 \).

Lemma 18. Let \(\phi(X, Y_1, \ldots, Y_m, \tilde{Z}) \) be a positive Boolean formula with constraints of the form \(\phi(Y) = g \) for (possibly different) extensions \(\rho : \mathbb{G} \ast \mathbb{F}(K) \rightarrow H \) of \(\rho : \mathbb{G} \rightarrow H \). Let \(K_i \subseteq K \). Then for all \(\tilde{z} \in \mathbb{G} \) we have

\[
\forall X \in \mathbb{G} \exists Y_1, \ldots, Y_m \left\{ \phi(X, Y_1, \ldots, Y_m, \tilde{Z}) \land \left(\bigwedge_{i=1}^{m} Y_i \in \mathbb{G} \ast \mathbb{F}(K_i) \right) \right\} \text{ in } \mathbb{G} \ast \mathbb{F}(K) \tag{3}
\]

if and only if

\[
\bigwedge_{h \in H} \exists Y_1, \ldots, Y_m \left\{ \phi_h(k, Y_1, \ldots, Y_m, \tilde{Z}) \land \left(\bigwedge_{i=1}^{m} Y_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \right) \right\} \text{ in } \mathbb{G} \ast \mathbb{F}(K \cup \{k\}) \tag{4}
\]

Proof. First assume that (4) holds for \(\tilde{z} \in \mathbb{G} \). In order to prove (3), let us choose an arbitrary \(s \in \mathbb{G} \) and let \(h = \rho(s) \). Then there exist \(t_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \) with \(t_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \). Then there exist \(t_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \) with \(t_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \). Then there exist \(t_i \in \mathbb{G} \ast \mathbb{F}(K_i \cup \{k\}) \) with
\{ k \}, 1 \leq i \leq m, such that \(\phi_k(k, t_1, \ldots, t_m, \bar{z}) \) holds in \(\mathbb{G}^* F(K \cup \{ k \}) \). Let us define a homomorphism \(\sigma : \mathbb{G}^* F(K \cup \{ k \}) \to \mathbb{G}^* F(K) \) by \(\sigma(k) = s \) and \(\sigma(x) = x \) for \(x \in \mathbb{G}^* F(K) \). Since \(\rho(s) = h \) and \(\phi_k \) is positive, the sentence \(\phi(s, \sigma(t_1), \ldots, \sigma(t_m), \bar{z}) \) holds in \(\mathbb{G}^* F(K) \) (note that \(\sigma(\bar{z}) = \bar{z} \)). Thus, (3) holds.

For the other direction assume that (3) holds for \(\bar{z} \in \mathbb{G}^* \). Define a trace rewriting system \(T \) over \(\mathbb{M} \ast (K \cup \overline{K})^* \) by \(T = S \cup \{ x \bar{x} \to 1, \bar{x} x \to 1 \mid x \in K \} \). Completely analogously to the proof of Theorem 7 we can now change into the trace monoid \(\mathbb{M} \ast (K \cup \overline{K})^* \). We obtain a sentence of the form

\[
\forall X \in \text{IRR}(S) \exists Y_1, \ldots, Y_m, \bar{Y} \in \text{IRR}(T) \left\{ \varphi(X, Y_1, \ldots, Y_m, \bar{Y}, \bar{u}) \wedge \bigwedge_{i=1}^{m} Y_i \in \mathbb{M} \ast (K_i \cup \overline{K_i})^* \right\}
\]

which evaluates to true in \(\mathbb{M} \ast (K \cup \overline{K})^* \). Here \(\bar{u} = \mu(\bar{z}) \in \text{IRR}(S) \), and the positive Boolean formula \(\varphi \) results from the original positive Boolean formula \(\phi \) by applications of the transformation in Lemma 9 to equations \(xy = z \). These transformations only introduce new existentially quantified variables, which correspond to \(\bar{Y} \) in (5). The constraints in (5) are the same as in (3) (formally we identify a homomorphism \(\rho : \mathbb{G}^* F(K) \to H \) with \(\psi_2 \circ \rho : \mathbb{M} \ast (K \cup \overline{K})^* \to H \). Let \(\mathcal{M} \subseteq \mathbb{M} \) consist all traces in \(\bar{u} \) plus \(\Gamma \). W.l.o.g we assume that all equations in (5) have the form \(xy = z \) for \(x, y, z \in \Omega \cup \mathbb{M} \cup \mathcal{M} \cup \overline{\mathcal{M}} \). Let \(\lambda \) be the maximum of \(n \) (the largest index of the constants in \(K \)) and the maximal length of the traces in \(\bar{u} \). Let \(d \) be the number of equations in (5). Fix an \(h \in H \) in (4) and let \(s \in \mathbb{M} \) be the trace

\[s = C_g p \ell_{\lambda+1}(h) p c p \ell_{\lambda+2}(h) p c \cdots p \ell_{\lambda+2d+1}(h) p \in \text{IRR}(S), \]

where \(g \in H \) is chosen such that \(\rho(s) = h \). Then by (5) there exist traces \(t_1, \ldots, t_m, \hat{t} \in \text{IRR}(T) \) with \(t_i \in \mathbb{M} \ast (K_i \cup \overline{K_i})^* \) and

\[\varphi(s, t_1, \ldots, t_m, \hat{t}, \bar{u}) \text{ in } \mathbb{M} \ast (K \cup \overline{K})^*. \]

Let \(N = \{ \lambda+1, \ldots, \lambda+2d+1 \} \) and add to \(\mathcal{M} \) all traces from \(\{ s, t_1, \ldots, t_m \} \). Then \(\varphi(s, t_1, \ldots, t_m, \hat{t}, \bar{u}) \) is a true statement, which contains \(d \) atomic statements of the form \(xy = z \) with \(x, y, z \in \mathcal{M} \cup \overline{\mathcal{M}} \) plus recognizable constraints. Of course some of these atomic statements may be false. But since there are only \(d \) equations in (7), we have to remove from \(N \) by Lemma 17 at most \(2d \) numbers such that for the resulting set \(N' \) we have \(\kappa_{N'}(x) \kappa_{N'}(y) = \kappa_{N'}(z) \) \((x, y, z \in \mathcal{M} \cup \overline{\mathcal{M}}) \) whenever \(xy = z \) is a true atomic statement in (7). Since \(|N'| = 2d + 1 \), we have \(N' \neq \emptyset \), let \(i \in N' \). Note that \(k_i \not\in K \) since \(\lambda \geq n \). We rename the constant \(k_i \) into \(k \) and abbreviate \(\kappa_{\{i\}}(x) \) by \(\kappa(x) \). Again by Lemma 17 we have \(\kappa(x) \kappa(y) = \kappa(z) \) for every true statement \(xy = z \) \((x, y, z \in \mathcal{M} \cup \overline{\mathcal{M}}) \) in (7). Furthermore if one of the constraints \(g(x) = g \) in (7) is true, where \(g \) is an extension of \(\rho \), then also \(g_1(\kappa(x)) = g \) holds (note that \(g(\ell_i(h)) = \rho(\ell_i(h)) = h = \phi_h(k) \)). Finally \(\kappa(\hat{u}) = \hat{u} \) since \(\lambda \) was chosen big enough in (6).
Altogether it follows that the statement \(\varphi_{k}(\kappa(s), \kappa(t_1), \ldots, \kappa(t_m), \kappa(\tilde{t}), \tilde{u}) \) is true in \(M \ast (K \cup \overline{\mathcal{K}} \cup \{k, \overline{k}\})^* \). Next we can write \(\kappa(s) = s_1 k s_2 \) for \(s_1, s_2 \in M \). Let us define a homomorphism \(\sigma : M \ast (K \cup \overline{\mathcal{K}} \cup \{k, \overline{k}\})^* \to M \ast (K \cup \overline{\mathcal{K}} \cup \{k, \overline{k}\})^* \) by \(\sigma(k) = \overline{s}_1 k \overline{s}_2, \sigma(\overline{k}) = s_2 \overline{s}_1 \), and \(\sigma(x) = x \) otherwise. Note that \(\rho(s_1) \rho(p(s_2)) = \rho(s) = h \) and hence, \(g_\rho(\overline{s}_1 k \overline{s}_2) = \rho(s_1)^{-1} \rho(p(s_2))^{-1} = h \) for every extension \(g_\rho \) of \(\rho \). Thus, the statement \(\varphi_{\rho}(\sigma(\kappa(s))), \sigma(\kappa(t_1)), \ldots, \sigma(\kappa(t_m)), \sigma(\kappa(\tilde{t})), \tilde{u} \) is true in \(M \ast (K \cup \overline{\mathcal{K}} \cup \{k, \overline{k}\})^* \), hence, it is also true in \(\mathbb{G} \ast F(K \cup \{k\}) \). But in this group \(\sigma(\kappa(s)) = s_1 \overline{s}_1 k \overline{s}_2 s_2 = k \). Since furthermore \(\sigma(\kappa(t_i)) \in M \ast (K_i \cup \overline{\mathcal{K}_i} \cup \{k, \overline{k}\})^* \), the sentence \(\exists Y_1, \ldots, Y_m, \tilde{Y} : \varphi_{\rho}(k, Y_1, \ldots, Y_m, \tilde{Y}, \tilde{z}) \land \bigwedge_{i=1}^{m} Y_i \in \mathbb{G} \ast F(K_i \cup \{k\}) \) is true in \(\mathbb{G} \ast F(K \cup \{k\}) \) for every \(h \in H \). But then also (4) holds, since if (1) from Lemma 9 holds in \(\mathbb{G} \ast F(K \cup \{k\}) \), then also \(xy = z \) in \(\mathbb{G} \ast F(K \cup \{k\}) \).

Let us now fix a formula

\[\theta(\tilde{Z}) \equiv \forall X_1 \exists Y_1 : \ldots \forall X_n \exists Y_n \phi(X_1, \ldots, X_n, Y_1, \ldots, Y_n, \tilde{Z}), \]

where \(\phi \) is a positive Boolean formula with constraints of the form \(\rho(X) = g \). For \(h_1, \ldots, h_n \in H \) we denote by \(\rho_{h_1, \ldots, h_n} : \mathbb{G} \ast F(K) \to H \) the canonical extension of \(\rho \) with \(\rho_{h_1, \ldots, h_n}(k_i) = h_i \) for \(1 \leq i \leq n \). With \(\phi_{h_1, \ldots, h_n} \) we denote the formula, where every constraint \(\rho(X) = g \) in \(\phi \) is replaced by \(\rho_{h_1, \ldots, h_n}(X) = g \). The following theorem is the main result of this section, it can be easily deduced from Lemma 18 by an induction on \(n \).

Theorem 19. For all \(\tilde{z} \in \mathbb{G} \) we have \(\theta(\tilde{z}) \) in \(\mathbb{G} \) if and only if

\[\bigwedge_{h_1 \in H} \exists Y_1 \cdots \bigwedge_{h_n \in H} \exists Y_n \left\{ \phi_{h_1, \ldots, h_n}(k_1, \ldots, k_n, Y_1, \ldots, Y_n, \tilde{z}) \land \bigwedge_{i=1}^{n} Y_i \in \mathbb{G} \ast F(\{k_1, \ldots, k_i\}) \right\} \]

in \(\mathbb{G} \ast F(K) \).

Proof. We prove the theorem by an induction on \(n \). The case \(n = 0 \) is clear. If \(n > 0 \), then inductively we can assume that for all \(x_1, y_1, \tilde{z} \in \mathbb{G} \) we have

\[\forall X_2 \exists Y_2 : \ldots \forall X_n \exists Y_n \phi(x_1, X_2, \ldots, X_n, y_1, Y_2, \ldots, Y_n, \tilde{z}) \]

in \(\mathbb{G} \)

if and only if

\[\bigwedge_{h_1 \in H} \exists Y_2 \cdots \bigwedge_{h_n \in H} \exists Y_n \left\{ \phi_{h_1, \ldots, h_n}(x_1, k_2, \ldots, k_n, y_1, Y_2, \ldots, Y_n, \tilde{z}) \land \bigwedge_{i=2}^{n} Y_i \in \mathbb{G} \ast F(\{k_2, \ldots, k_i\}) \right\} \]

is true in \(\mathbb{G} \ast F(\{k_2, \ldots, k_n\}) \). Thus, for all \(\tilde{z} \in \mathbb{G} \) we have

\[\forall X_1 \exists Y_1 : \ldots \forall X_n \exists Y_n \phi(x_1, X_2, \ldots, X_n, y_1, Y_2, \ldots, Y_n, \tilde{z}) \]

in \(\mathbb{G} \).
if and only if

$$\forall X_1 \in \mathcal{G}\mathcal{P} \exists Y_1 \bigwedge_{h_2 \in H} \exists Y_1 \cdots \bigwedge_{h_n \in H} \exists Y_n \left\{ \phi_{h_2, \ldots, h_n}(X_1, k_2, \ldots, k_n, Y_1, \ldots, Y_n, z) \right\}$$

$$\wedge \bigwedge_{i=1}^n Y_i \in \mathcal{G}\mathcal{P} \ast F(\{k_2, \ldots, k_i\})$$

is true in $\mathcal{G}\mathcal{P} \ast F(\{k_2, \ldots, k_n\})$. Note that if we transform this formula into prenex normal form, in the resulting existential formula the constraints are given by different extensions of the morphism ρ. Hence, by Lemma 18 this formula is true in $\mathcal{G}\mathcal{P} \ast F(\{k_2, \ldots, k_n\})$ if and only if

$$\bigwedge_{h_1 \in H} \exists Y_1 \bigwedge_{h_2 \in H} \exists Y_1 \cdots \bigwedge_{h_n \in H} \exists Y_n \left\{ \phi_{h_1, h_2, \ldots, h_n}(k_1, k_2, \ldots, k_n, Y_1, \ldots, Y_n, z) \right\}$$

$$\wedge \bigwedge_{i=1}^n Y_i \in \mathcal{G}\mathcal{P} \ast F(\{k_1, k_2, \ldots, k_i\})$$

is true in $\mathcal{G}\mathcal{P} \ast F(\{k_1, \ldots, k_n\}) = \mathcal{G}\mathcal{P} \ast F(K)$. □

Since $\mathcal{G}\mathcal{P} \ast F(\{k_1, \ldots, k_i\}) \in \text{NRA}(\mathcal{G}\mathcal{P} \ast F(K))$, Theorem 11 is a consequence of Theorem 7 and Theorem 19. Concerning the complexity, it can be shown that in general our proof of Theorem 11 gives us a non-elementary algorithm due to the construction in our proof of Proposition 3. If we restrict to connected graphs (V, E), then we obtain an elementary algorithm. For this we have to use the fact that Presburger arithmetic (without negations), which occurs for the cases $\mathcal{G}\mathcal{P} = \mathbb{Z}/2\mathbb{Z}$ and $\mathcal{G}\mathcal{P} = \mathbb{Z}/2\mathbb{Z} \ast \mathbb{Z}/2\mathbb{Z}$ as a special case, is elementary.

References

