
Vicente Ferreira de Lucena Jr.

Flexible Web-based Management
of Components for Industrial
Automation

Band 4/2002

Forschungsbericht
Institut für Automatisierungs- und
Softwaretechnik
Hrsg: Prof. Dr.-Ing. Dr. h. c. P. Göhner

IA
S
-F
or
sc
hu
ng
sb
er
ic
ht

Universität Stuttgart

Flexible Web-based Management of Components for
Industrial Automation

Von der Fakultät Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines

Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von
Vicente Ferreira de Lucena Junior

aus São Paulo - Brasilien

Hauptberichter: Prof. Dr.-Ing. Dr. h. c. Peter Göhner
Mitberichter: Prof. Dr.-Ing. Dr. h. c. mult. Günter Pritschow

Tag der Einreichung: 19.06.2002
Tag der mündlichen Prüfung: 18.11.2002

Institut für Automatisierungs- und Softwaretechnik
der Universität Stuttgart

2002

IAS – Forschungsberichte

Band 4/2002

Vicente Ferreira de Lucena Junior

Flexible Web-based Management of Components
for Industrial Automation

D 93 (Diss. Universität Stuttgart)

Shaker Verlag
Aachen 2002

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

de Lucena Junior, Vicente Ferreira:
Flexible Web-based Management of Components for Industrial Automation /
Vicente Ferreira de Lucena Junior.
Aachen : Shaker, 2002
 (IAS-Forschungsberichte ; Bd.2002,4)
 Zugl.: Stuttgart, Univ., Diss., 2002
ISBN 3-8322-1011-3

Copyright Shaker Verlag 2002
Alle Rechte, auch das des auszugsweisen Nachdruckes, der auszugsweisen
oder vollständigen Wiedergabe, der Speicherung in Datenverarbeitungs-
anlagen und der Übersetzung, vorbehalten.

Printed in Germany.

ISBN 3-8322-1011-3
ISSN 1610-4781

Shaker Verlag GmbH ● Postfach 101818 ● 52018 Aachen
Telefon: 02407 / 95 96 – 0 ● Telefax: 02407 / 95 96 –9

Internet: www.shaker.de ● eMail: info@shaker.de

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am
Institut für Automatisierungs- und Softwaretechnik (IAS) der Universität Stuttgart.

Mein besonderer Dank gilt

Herrn Prof. Dr.-Ing. Dr. h. c. P. Göhner für die Betreuung dieser Arbeit sowie für den Freiraum
zur Vollendung dieser Arbeit,

Herrn Prof. Dr.-Ing. Dr. h. c. mult. Günter Pritschow für die Übernahme des Mitberichts,

allen Kolleginnen und Kollegen am Institut für die gute Zusammenarbeit und hilfsbereite
Unterstützung,

den Studenten, die im Rahmen von Studien- und Diplomarbeiten zum Gelingen dieser Arbeit
beitrugen, damit die vorgestellten Konzepte nicht nur Ideen blieben, sondern auch verwirklicht
werden konnten,

der brasilianischen Forschungsgesellschaft CNPq für die finanzielle Unterstützungen und
Förderung des Forschungsvorhabens,

und Juliana, Paula, Mateus und meiner Familie in Brasilien für ihr Verständnis, ihre Geduld und
ihren Ansporn während der Entstehung dieser Arbeit.

Stuttgart, im Juni 2002

Vicente Ferreira de Lucena Junior

i

Table of Contents

Table of Contents .. i

List of Figures.. iv

List of Tables .. v

List of Abbreviations...vi

Glossary... x

Abstract..xiii

Zusammenfassung...xiv

1 Introduction and Motivation.. 1

1.1 Reasons for the Management of Components ... 2
1.2 Requirements and Goals of the Management of Components 3
1.3 Overview of the Next Chapters ... 5

2 State of the Art of the Management of Components ... 6

2.1 Most Relevant Component Management Approaches .. 6
2.1.1 Guide to Available Mathematical Software... 7
2.1.2 Reusable Software Library .. 7
2.1.3 GURU .. 8
2.1.4 Kiosk.. 8
2.1.5 Large Software System Information Environment.. 9
2.1.6 Artificial Intelligence based Reuse System ... 9
2.1.7 Software Engineering Library ... 10
2.1.8 Multimedia Oriented Repository Environment Plus 10
2.1.9 Federal Reuse Repository .. 11
2.1.10 Specification and Signature Matching... 11
2.1.11 Feature Oriented Classification System... 12
2.1.12 Asset Source for Software Engineering... 12
2.1.13 Java Repository.. 13
2.1.14 Software Asset Library Management System ... 13
2.1.15 A Search Engine for Software Components .. 14
2.1.16 Summary-based Object Oriented Reuse Library System 14
2.1.17 Komponenteninformationsystem... 15
2.1.18 Some Other Approaches .. 15

2.2 Comparison of the Approaches Presented... 16
2.3 Management of Hardware Components .. 19
2.4 Lessons Learned .. 20

ii

3 Component Technologies used in the Industrial Automation Domain.......................... 23

3.1 Most Common Commercial Components Approaches ... 23
3.1.1 CORBA.. 24
3.1.2 COM and DCOM... 25
3.1.3 JavaBeans and Enterprise JavaBeans .. 27
3.1.4 Microsoft .NET.. 28

3.2 Proprietary Industrial Components.. 29
3.2.1 Koala.. 29
3.2.2 ASCET-SD .. 31

3.3 Component Approaches Proposed by Universities ... 32
3.3.1 ViPER – Synchronous Components .. 32
3.3.2 Distributed Intelligent Objects... 35
3.3.3 ACPLT Components.. 37

3.4 Summary of the Presented Component Approaches ... 39

4 Knowledge Representation for Industrial Automation Components 41

4.1 Representing Information about Components ... 42
4.1.1 Usual Representation of Components.. 42
4.1.2 How to Represent the Information about Components 44
4.1.3 Representing Industrial Automation Components... 49

4.2 Characterizing Industrial Automation Applications.. 51
4.3 Additional Desirable Knowledge about Components ... 55

4.3.1 Non-Technical Characteristics of Components ... 55
4.3.2 Technical Characteristics of Components ... 57

4.4 Classification Scheme for Components in the Industrial Automation Domain 60
4.4.1 Faceted Classification .. 60
4.4.2 Industrial Automation Classification Scheme ... 61
4.4.3 Classifying Industrial Automation Components.. 65

5 Conception of a Flexible Component Management System.. 67

5.1 Application Development Based on Components... 67
5.1.1 Selection of Components ... 71
5.1.2 Publication of Components.. 72
5.1.3 Interfaces to the Users and to the Repository .. 73

5.2 Development of Component Management Systems ... 74
5.2.1 Usual Conception of Component Management Systems 74
5.2.2 Ideal Conception of Component Management Systems.................................. 76
5.2.3 Modeling Industrial Automation Components Information 78
5.2.4 Desired Architecture of the Flexible Component Management System 80

6 Web-Based Realization of the Component Management System 83

6.1 Web-based Systems... 83
6.2 Architectural Conception of the Component Management System 89

6.2.1 Interface to the Users – Data Presentation Tier ... 90
6.2.2 Manipulating Component’s Information – Data Processing Tier.................... 94
6.2.3 Storing the Component’s Information – Data Storage Tier............................. 96

6.3 Choices among the Presented Technologies ... 101

iii

7 Description of the Flexible Web-based Component Management System
Prototype.. 105

7.1 Implementation of the Data Storage Tier .. 105
7.2 Flexible Storage of Components ... 107

7.2.1 Objectives of the XML-INI File .. 108
7.2.2 Description of the Client-Side Elements ... 109
7.2.3 Server-Side Elements Description ... 110

7.3 Searching on the Repository Dynamically .. 111
7.3.1 Guided Search and Free-Text Search over the Repository............................ 113
7.3.2 Browsing the Complete Repository Structure ... 114
7.3.3 Additional Implemented Features to Find a Component............................... 115

7.4 Dynamical Presentation of the Component’s Information .. 116
7.4.1 Dynamic Interface Content Generation Part.. 117
7.4.2 HTML Generator Details... 117
7.4.3 Description of the E-Mail and Comparison Modules.................................... 118

7.5 Exemplary Use of the Component Management System.. 119
7.6 Some Final Considerations about the Prototype.. 125

8 Conclusions and Related Future Work... 127

8.1 Start-up Scenario of this Research... 127
8.2 Evaluation of the Presented Concept... 127
8.3 Possible Future Works... 129

Appendix A: Complete Documentation of a ViPER Synchronous Component................. 130

A.1 General Information about the Component Timer-ON (TON) 130
A.2 Functional Information about the Component TON ... 130
A.3 Operational Information about the Component TON.. 132
A.4 Commercial Information about the Component TON... 132

Bibliography ... 133

iv

List of Figures

Figure 2.1: Chronological Presentation of Component Management Approaches........................ 6
Figure 3.1: Request from Client to Object and from ORB to ORB Communication. 24
Figure 3.2: COM Interface Representation. ... 26
Figure 3.3: Relationship Between Interfaces and Methods in a JavaBeans Component. 28
Figure 3.4: Synchronous Software Components Architecture... 33
Figure 3.5: Elements of the ViPER Concept. .. 34
Figure 3.6: Basic Elements of DIO Components and their External and Internal Connections. . 36
Figure 3.7: Elements of the ACPLT Family. ... 37
Figure 4.1: Most Common Way of Representing Components. .. 42
Figure 4.2: Extended Representation for Components. ... 43
Figure 4.3: Example of a Hypertext-based Representation of a Component............................... 47
Figure 4.4: Global Knowledge for Understanding Industrial Automation Components. 50
Figure 4.5: Particularities of a Component for Industrial Automation Applications................... 54
Figure 4.6: Representation of the Non-Technical Information of a Component. 56
Figure 4.7: Representation of the Technical Information of a Component. 59
Figure 4.8: UML Representation of the Industrial Automation Component Descriptor 64
Figure 4.9: Example for the Classification of one Software Component using the IACd. 66
Figure 5.1: Main Steps of the Publication and of the Selection of Components Processes......... 69
Figure 5.2: Details of the Systematic Management Concept proposed in this thesis. 70
Figure 5.3: Conventional Design Steps of a Component Management System. 74
Figure 5.4: Ideal Generation Path of a Component Management System. 77
Figure 5.5: Example of the Information needed to Find, Understand and Use a Component. 79
Figure 5.6: Architecture of a Component Management System able to deal with Diverse

Component Technologies.. 81
Figure 6.1: Three-tier Architecture of the Web-based Component Management System........... 90
Figure 6.2: Classification of Database Systems Applicability... 97
Figure 6.3: Selected Technologies for Each Tier of the Component Management System. 104
Figure 7.1: Table Structures and Relations of the Core-Data Part of the Component’s Model.106
Figure 7.2: Architecture of the Flexible Storage of Components Prototype.............................. 107
Figure 7.3: Architecture of the Dynamical Search of Components Prototype. 112
Figure 7.4: Front-end Mask presented for the Guided-Search Option....................................... 113
Figure 7.5: Architecture of the Dynamical Presentation Prototype. .. 116
Figure 7.6: HTML Generator Overview. ... 118
Figure 7.7: Partial Content of the XML-INI File for the ViPER Synchronous Component

Technology.. 121
Figure 7.8: Exemplary Result of the Search Prototype.. 122
Figure 7.9: Component Information Page in HTML Format... 123
Figure 7.10: List with Pre-Selected Components and Comparison Criteria. 124
Figure 7.11: Dynamically generated Comparison Table. .. 124
Figure A.1: Graphical Description of the Functionality of the Component TON. 131

v

List of Tables

Table 2.1: Comparison of Management of Components Approaches. .. 18
Table 3.1: Component Technologies used in Industrial Automation Applications. 39
Table 6.1: Criteria for Evaluating Web-based Applications with Data Storage. 85
Table 6.2: Characterization of a Web-based Component Management System.......................... 87
Table 7.1: XML Tags used in the XML-INI File... 109

vi

List of Abbreviations

ACPLT AaChener ProzessLeitTechnik (Aachen Process Control Engineering)

AIRS Artificial Intelligence based Reuse System

API Application Programming Interface

ASP Active Server Pages

ASSET Asset Source for Software Engineering

AWT Abstract Window Toolkit

BLOB Binary Large OBject

CDL Component Description Language

CE Consumer Electronics

CID Component ID

CLR Common Language Runtime

COM Component Object Model

CORBA Common Object Request Broker Architecture

COTS Commercial Off-The-Shelf software

DARPA Defense Advanced Research Project Agency

DBMS DataBase Management Systems

DCOM Distributed Component Object Model

DIO Distributed Intelligent Objects

DIRECT Digital Resource Catalogue

DNS Domain Name System

DOM Document Object Model

DTD Document Type Definition

ESDL Embedded Software Description Language

FAQ Frequent Asked Questions

FOCS Feature Oriented Classification System

vii

FRR Federal Reuse Repository

FTP File Transfer Protocol

GAMS Guide to Available Mathematical Software

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP HyperText Transport Protocol

IACd Industrial Automation Components Descriptor

IAS Institut für Automatisierungs- und Softwaretechnik – Universität Stuttgart
(Institute of Industrial Automation and Software Engineering – University of
Stuttgart)

IB InterBase

IDL Interface Description Language

IFA Institut Für Automatisierungstechnik – Technische Universität Dresden
(Institute of Automation - University of Technology – Dresden)

IIOP Internet Inter-ORB Protocol

JAXP Java API for XML Processing

JDBC Java DataBase Connectivity

JDK Java Development Kit

JNLP Java Network Launch Protocol

JRE Java Runtime Environment

JSP Java Server Pages

JWS Java Web Start

KIS KomponentenInformationsSystem

LaSSIE Large Software System Information Environment

MOREplus Multimedia Oriented Repository Environment Plus

NAS Network Architecture Service

viii

ODBC Open DataBase Connectivity

OID Object Identifiers

OMG Object Management Group

OQL Object Query Language

ORB Object Request Broker

PLT Institut für ProzessLeitTechnik – Technische Universität Aachen (Process
Control Engineering Institute – University of Technology – Aachen)

RBSE Repository Based Software Engineering

RMI Remote Method Invocation

RSL Reusable Software Library

SALMS Software Asset Library Management System

SAX Simple API for XML

SEL Software Engineering Library

SIM Standard Interface Mechanism

SMTP Simple Mail Transport Protocol

SOAP Simple Object Access Protocol

SOORLS Summary-based Object Oriented Reuse Library System

SQL Structured English Query Language

TCP/IP Transmission Control Protocol / Internet Protocol

TON Timer-ON Component

UDDI Universal Description, Discovery and Integration

ViPER Visual Programming Environment for Embedded Real-Time Systems

W3C World Wide Web Consortium

WAIS Wide Area Information Search

WSDL Web Services Description Language

ix

WIMP Window, Icons, Menus, and Pointer principle

XML EXtensible Markup Language

XSL EXtensible Stylesheet Language

XSLT XSL Transformation

x

Glossary

API: Application Programming Interface. An API is an interface to a specific environment. For
example: The Windows API exposes interfaces to the Windows environment, allowing
developers to access and control Windows functions. The Java API provides similar
interfaces to a Java Virtual Machine.

Applet: An applet is a self contained Java programme designed for Web applications. Applet is
downloaded and run on the client to provide specific functionality.

Application: Any stand-alone programme that accomplishes a pre-determined task.

Application Server: An application server is a network server that hosts and runs applications
or components.

AWT: The Abstract Window Toolkit is an API for providing Graphical User Interfaces (GUI)
to Java applications. It includes user interface components and graphics and imaging tools.

Embedded System Software: Software used to control specialized hardware attached to the
computer system. Embedded systems have normally limited computation power and small
memory capacity.

Executable: An executable is essentially a programme. It can be run independently of a host
application. The only requirements for an executable are a compatible operating system
and any associated runtime library.

Hard Real-Time System: Systems where failures to meet response time constraints leads to
system failure.

HTML: The Hypertext Markup Language is a "tagged" language for transferring data using
HTTP. It allows users to format text, include pictures, and insert hyperlinks to other data.
The Web browser reads the "tags" and displays the data accordingly.

HTTP: The Hypertext Transmission Protocol is an Internet standard protocol for exchanging
files (text, images, sound, video, etc.) over the Internet.

IDL: An Interface Definition Language file is a file that contains definitions of interfaces to
components, consisting of an interface header and interface body. The header contains
attributes that apply to the interface as a whole. The body contains individual interface
definitions such as data types used in remote procedure calls and prototypes for the remote
procedures. While not required, an IDL makes it easier for a developer to define and query
information about a component's interfaces.

xi

Java (Programming Language): Java is a development language used to build components
and applications.

Java (Virtual Machine): A Java VM is required on any computer where you intend to run a
Java application. Sun Microsystems, who owns Java, has licensed the specifications for
the virtual machine so that manufacturers of operating systems can build Java VMs for
their environment. As a result, the Java language is compatible with a wide range of
platforms.

JDBC: Java Database Connectivity is an API for connecting Java applications to databases.
JDBC is similar to ODBC.

ODBC: Open Database Connectivity is an Application Programming Interface (API) that
provides access to a variety of data sources. It is an industry standard for exchanging data.
As such, it allows computers in a multi-platform environment to access data on a SQL (or
any ODBC-compliant) database.

OMG: The Object Management Group is a non-profit corporation founded by eleven
companies including 3Com, American Airlines, Hewlett-Packard, Sun Microsystems, and
Unisys. It supports a component-based software marketplace through industry standards.

OOP: Object Oriented Programming is the process of building applications by encapsulating
functionality into individual objects. These objects feature polymorphism and inheritance.

Reactive System: System that has some on-going interaction with its environment.

Real-Time System: Systems that must satisfy explicit (bounded) response time constraints or it
will fail.

Servlet: A Servlet is a self contained Java programme designed for Web applications. Servlets
are run on the Web server and data is sent to the client via HTML or XML.

SOAP: Simple Object Access Protocol is a message-based protocol based on XML for
accessing services on the Web. Initiated by Microsoft, IBM and others, it employs XML
syntax to send text commands across the Internet using HTTP.

Soft Real-Time System: Systems where performance is degraded but not destroyed by failure
to meet response time constraints.

SQL: The Structured Query Language is an industry standard programming language for
accessing and updating a database. SQL is also used to refer to the database management
system (DBMS) that stores this data. SQL queries allow you to select, insert, update, and
find data in the SQL database.

xii

Swing: The Swing classes provide support for forms-based Java programming. It provides the
ability to include trees, tabbed panes, splitter panes, and other user interface enhancements
to Java applications, giving them the look-and-feel expected in today’s application
marketplace.

TCP/IP: The Transmission Control Protocol/Internet Protocol is the base protocol used for
communication over the Internet. It allows both connection-based and non connection-
based (fire and forget) transmission of data over the Internet. Essentially, TCP/IP is the
language spoken by the Internet Protocols/Services such as HTTP, SMTP, FTP, etc.

UDDI: Universal Description, Discovery and Integration is an industry initiative for a universal
business registry of Web services. Led by Ariba, IBM, Microsoft and others, UDDI is
designed to enable software to automatically discover and integrate with services on the
Web.

UML: The Unified Modeling Language is designed to specify and document the structure of
system under development. It is a graphical language for expressing programme design in
a standard way.

Web Services: Web-based applications that dynamically interact with other Web applications
using open standards that include XML, UDDI and SOAP. Microsoft's .NET and Sun's
Sun ONE (J2EE) are the major development platforms that natively support these
standards.

WSDL: Web Services Description Language is a protocol for a Web service to describe its
capabilities. Co-developed by Microsoft and IBM, WSDL describes the protocols and
formats used by the service.

XML: The Extensible Markup Language (XML) is an industry standard method for using
“tags” to describe data for exchange between different platforms, languages and
applications.

XSL: The Extensible Stylesheet Language is used to describe XML data that is sent over the
Web to be presented to the user. It is an industry standard language that gives the Web
page author control over how XML data is displayed, which fields are presented, where
they are displayed on the page and in what order.

XSLT: XSL Transformations is an industry standard that describes how to change an XML
document from one structure to another structure. It is used to transform the source tree of
one XML document into a result tree for a new XML document.

xiii

Abstract
The development of applications based on elementary components is one of the oldest known
engineering approaches. Such a procedure is well practiced, for example, in the hardware
electronics industry and has been applied more and more in other domains. In the last years
software components have been adopted as a meaningful solution for the construction of larger
software applications improving the development productivity and improving the quality of the
final products. But the more components that are available the more difficult is the proper
management of those components and consequently more difficult is the proper choice of the
most suitable one for solving a specific task.

This thesis deals with this problem and proposes a systematic way of managing components.
How to store components properly is investigated and later on how to find, understand and
decide about the reuse of the most appropriate component. This thesis was centered in the
industrial automation domain and a study of the most relevant characteristics of that domain was
done. There is no common standardized model available for representing software components
used in the industrial automation domain mainly because of the great amount of quite different
component technologies being used in that domain. In fact, it is not possible to summarize all of
them in only one model. The problem faced was to propose a way of constructing a repository
able to deal with those technologies together and be able to represent the technical details of
each one of them properly. The proposed solution involves a flexible representation for the
components that consists of two parts, the first one with the common information for every
component technology involved, and the second one where the specificity of each component
technology is summarized. Additionally, through the systematic management process proposed,
recently developed components are published before being used, and component users are
conducted during the search for desired components.

A prototypic tool for the management of components was constructed using technologies
associated with the Internet. The necessary flexibility of the component management system
was obtained through the representation of the specificity of each component technology with
the eXtended Markup Language (XML) and associated technologies. In the example presented,
different component technologies like JavaBeans and ViPER are successfully managed together.

xiv

Zusammenfassung:

Flexibles netzbasiertes Management von
Komponenten für die Automatisierungstechnik

Die Entwicklung von Komponenten für den Einsatz in unterschiedlichen Anwendungs-
bereichen, z.B. im Bauingenieurwesen oder in der Hardwareentwicklung ist eine der ältesten
Ingenieurtätigkeiten. In den letzten Jahren wurde die Anwendung von Komponenten auch für
die Entwicklung großer Softwareapplikationen eingeführt, wodurch die Produktivität erhöht und
die Qualität des Endproduktes verbessert werden konnte. Aber je mehr Softwarekomponenten
verfügbar sind, desto schwieriger ist die Verwaltung der Komponenten und desto schwieriger ist
auch die Auswahl einer passenden Komponente, die es erlaubt, eine spezifische Aufgabe zu
lösen.

Der Anwender von Komponenten benötigt bei der Suche nach geeigneten Komponenten als
Grundlage eine Bibliothek mit Softwarekomponenten. In dieser Bibliothek versucht er eine
Komponente zu finden, die seinen Wünschen und Anforderungen genügt. Diese Entscheidung
wird er auf der Basis von Informationen über die Schnittstellen und das Verhalten der gespei-
cherten Komponenten treffen. Die Komponenten und die dazugehörigen Informationen stam-
men von den Entwicklern der Komponenten. Der Umfang, die Qualität und auch die Termino-
logie der Dokumente kann deshalb sehr stark variieren, was die Effizienz bei der Suche stark
beeinträchtigt. Diese Arbeit befasst sich mit dieser Problematik und macht einen Vorschlag, wie
die Informationen über Komponenten, die speziell für den Einsatz in der Automatisierungs-
technik entwickelt wurden, einheitlich dargestellt und verwaltet werden können, um dadurch die
Qualität der gespeicherten Informationen zu erhöhen.

Hat ein Anwender eine Komponente gefunden, welche das von ihm gewünschte Verhalten auf-
weist und eine geeignete Schnittstelle besitzt, muss geprüft werden, ob sich diese Komponente
in seine Applikation integrieren lässt. Das ist von verschiedenen Rahmenbedingungen abhängig,
die bei Komponente und Applikation übereinstimmen müssen. Rahmenbedingungen können
beispielsweise die verwendete Komponententechnologie, das Betriebssystem, Echtzeitbe-
dingungen usw. sein. Zudem werden für verschiedene Rahmenbedingungen unterschiedliche
Informationen benötigt, um entscheiden zu können, ob die Komponente geeignet ist. Ein Ziel
dieser Arbeit war es, eine Möglichkeit zur Darstellung von Komponenten vorzuschlagen,
welche die Rahmenbedingungen integriert. Dies erfordert natürlich eine gewisse Flexibilität bei
der Ablage der Informationen, da diese nicht nur aktuelle Technologien umfassen darf, sondern
auch zukünftige Entwicklungen berücksichtigen muss.

Um die Suche von Komponenten zu erleichtern, wird ein Klassifikationsschema vorgeschlagen.
Dieses ist spezifisch für die Automatisierungstechnik und berücksichtigt verschiedene

xv

Rahmenbedingungen, die für diesen Anwendungsbereich typisch sind. Zusätzlich werden für
das Verwalten von Komponenten Vorgehen definiert, die durch ein Werkzeug unterstützt
werden.

Ein Klassifizierungsschema bestimmt, wie die Einordnung von Komponenten in eine vorge-
gebene Struktur durchzuführen ist. Die Anbieter können die vorgeschlagenen Regeln und
Kriterien übernehmen und haben die Freiheit neue einzuführen. Beim Suchen wird der
Anwender von Komponenten durch die Struktur und die damit verbundene Reduzierung der
Auswahl unterstützt. Das vorgeschlagene Klassifizierungsschema für Komponenten der Auto-
matisierungstechnik besteht aus elf Klassen. Diese Klassen decken die Hauptaspekte ab, die bei
der Softwareentwicklung für Automatisierungssysteme auftreten.

Der Prozess zur Verwaltung der Komponenten umfasst die Prozesse für das Ablegen und das
Suchen. Sie werden als Veröffentlichungsprozess und Auswahlprozess bezeichnet. Der Veröf-
fentlichungsprozess garantiert, dass alle für ein gutes Verständnis einer Komponente notwen-
digen Informationen beim Ablegen einer Komponente in die Bibliothek aufgenommen werden.
Dazu muss der Anbieter einer Komponente eine Reihe von Informationen bereitstellen, die für
das spätere Auffinden, Verstehen der Komponente und für die Entscheidung über den Einsatz
der Komponente wichtig sind. Dieser Veröffentlichungsprozess wird in drei Schritten
durchgeführt: Die Klassifizierung der Komponente, ihre vollständige Dokumentation und
schließlich die Ablage aller Informationen in einer Bibliothek. Der Auswahlprozess stellt sicher,
dass ein Anwender bei der Suche nach einer Komponente effizient unterstützt wird und alle für
seine Entscheidung notwendigen Informationen bereitstehen. Der Auswahlprozess besteht aus
drei Schritten: Der Suche nach Komponenten in einer Bibliothek durch die Einschränkung von
Kriterien und die Auswahl von Merkmalen, der Analyse des Funktionsumfangs der gefundenen
Komponenten und der Entscheidung über die Anwendung einer gefundenen Komponente.

Es ist nicht möglich eine einheitliche Beschreibung für die Ablage von Komponenten zu finden,
da die Beschreibungen für verschiedene Rahmenbedingungen unterschiedlich sein müssen.
Deshalb wurde die Beschreibung von Komponenten in dieser Arbeit in einen invarianten und
einen flexiblen Teil aufgetrennt. Der invariante Teil enthält grundlegende Informationen, die für
jede Komponententechnologie einheitlich beschrieben werden müssen. Der flexible Teil enthält
Informationen, die spezifisch für eine Komponententechnologie sind. Er wird von Technologie
zu Technologie angepasst und enthält Daten, die unterschiedlich aufgebaut sein können. Das
vorgeschlagene System für das Management von Komponenten benutzt für jede Komponenten-
technologie die Summe aus invarianten und flexiblen Daten.

Auf der Basis von Internet-Technologien wurde ein Werkzeug für das Management von
Komponenten einer Bibliothek prototypisch realisiert, dessen Flexibilität bei der Repräsentation
der verschiedenen Komponententechnologien durch den Einsatz der eXtended Markup
Language (XML) und ihr verwandter Technologien erreicht wird. Für die Repräsentation der

xvi

invarianten Daten wurde eine relationale Datenbank gewählt. Die graphische Anwendungs-
schnittstelle (Graphical User Interface - GUI) wurde ebenfalls in zwei Teile, einer statischen
GUI und einer dynamischen GUI, aufgeteilt. In einem Beispiel wird gezeigt, wie verschiedene
Technologien mit dem erstellten Werkzeug gemeinsam in der selben Komponentenbibliothek
verwaltet werden können.

Als Ergebnis steht ein System zur Verfügung, das das Management von Komponenten für die
Automatisierungstechnik unterstützt. Die flexible Charakteristik des Konzepts ermöglicht das
Einfügen von Komponenten mit neuen Rahmenbedingungen.

1

1 Introduction and Motivation
Classical software development weaknesses such as inaccurate schedules and cost estimates,
inadequate productivity of software developers, and unsatisfactory level of quality of developed
systems, are still problems to be solved. In the last decades, many different development
approaches have been tried in order to suppress such difficulties as for example the object-
oriented analysis and design [Booc94, Balz96]. Nevertheless, it is not possible to affirm that
such methodologies were able to attend all necessities and wishes of software development
people [Udel94, BrSi02].

Component-based software development is one of today’s hottest discussed topics in the
software community. The creation of reusable components has been seen as the most
appropriate way of increasing the production of reliable software systems. After their
construction, components are stored in libraries in order to be re-utilized in future projects. As
the cost of reusable software components are normally many times greater than the equivalent
conventional software artifacts [KAO91, BCE+97], developers have to make their reuse as
efficient as possible by compensating those additional costs through the increase of the
reusability level of the components.

Although many authors have written about software components and the advantages of
developing such software pieces in the last years, it was not possible to find a consensual
technical definition about components themselves that could be accepted by the majority of
experts. Some authors define software components as an evolution of the object-oriented
approach and the concepts used for components and classes (or objects) are the same [BaSc92,
Sugi95, Yu97, SPH98]. Some others authors presented their own definitions for software
components [Udel94, Dell97b, Trac97, Szyp98], some of them well accepted by the software
community. In more general approaches, all reusable parts of a software system (e.g.: routines
of C programming language, specific modules, set of functions) or even part of the software
development process (e.g. requirements specifications, tests results) are presented and treated as
components themselves [ZaWi95a, ZaWi95b, KeSc98].

Components have also been used in the industrial automation domain in the last years [Göhn98,
HoRi99, Dujm02]. This domain has very specific characteristics that were not sufficiently
investigated by the community of researchers and practitioners working with components
[Kope00]. Nevertheless, component technologies’ proposals with use at industrial automation
applications have been presented recently by the process automation industry, by the embedded
systems industry, and by university research centers. These facts show the potential of such
component-based approaches for the industrial automation domain.

An additional problem is that the most common representation of components suggested in
publications consists of one interface and one behavior description part and this representation is

2

not able to express all necessary information about components being used in the industrial
automation domain. For example, important real-time characteristics are often not being
represented in the behavioral description documentation part. In fact, one main difficulty
observed is that the information needed to correctly understand one component varies from user
to user, and more importantly this information varies among different component technologies.

1.1 Reasons for the Management of Components
Component based software development has as objective the implementation of software
systems by the assembly of prefabricated software building blocks. These pieces of software
must be generalized enough in order to be easily utilized in future projects. Nevertheless, it is
not enough to design software components to assure a great level of reuse. The developed
component itself must contain some properties that encourage and facilitate its reuse. The most
important ones are summarized below:

• A good component should be easily understood. Its interface (inputs and outputs),
adjustment parameters, and the way one connects it to another component should be clear.
That is not an easy characteristic to achieve as the specifications of a component depend on
the description of the technology in which the component was developed, demanding the
intervention of specialists to be well understood.

• A good component should also be useful. As previously stated in [JSW92] even if a
component is functionally rich, the totality of its functionality may not be useful to all
applications where it could be inserted. For the case of a user searching for a specific
functionality, a good component is not the one that can do many different tasks, but the one
that can do exactly what is needed by the user.

• A last characteristic of a good component is its applicability. A component reaches a high
level of applicability only if the effort to accomplish its integration is low. That means, that
the way components are integrated should be made clear enough to reduce the time of
adaptation rework on the desired component.

Even if all these features are achieved, it is not possible to assure that a large margin of reuse
will be reached. There are some organizational problems that complicate the reutilization of
components [Luce00]. New mechanisms or tools shall be introduced in the development process
to try to guarantee that a useful, functional, and (re-) usable component is found and will
eventually be reused in new projects.

These organizational elements shall be created in order to enable developers to take advantage
of reusable software components. A component must have sufficiently many uses and therefore
many clients to be economically viable. Additionally, for clients to use a component instead of a
specialized solution, the component needs to have substantial advantages [Szyp98]. One
advantage could be technological superiority, but other advantages are more likely to help, as

3

for example, being the first solution of an open problem, having a broad support base and a
brand name, and so on. In other words, it is necessary to expose a developed component in an
attractive form, covering all relevant technical and commercial details.

Software components stored in a library must be readily accessible. A user supporting tool must
be devised to search and retrieve the closest match that meets the programmer’s needs. One
technical problem causing poor reuse of existing software components is that the information
about the data structures, interface of each component and behavior description is implicitly
rather than explicitly specified [Dai95]. Some authors recommend, in spite of additional costs,
the standardization of the component’s representation in terms of an internal specification (the
functionality) and an external specification (interface and associated documentation) as a way to
improve the component’s understandability [SuBa97]. But this procedure alone is not enough to
reach the proposed goals because even where the documentation is fully created and stored, the
necessary information may be neither quick to find nor easy to understand. This thesis deals
with this problem, making a suggestion on how to organize the information of different
component technologies used in the industrial automation domain in the most appropriate way.

1.2 Requirements and Goals of the Management of
Components

The management of components must support the people involved in the development of
component-based applications, i.e. component developers and component users. In fact such a
system will only be successful if it is well accepted by component developers (who create,
classify, and store components in a proper form), and by component users, i.e. system
developers (who search for, try to understand, and try to integrate diverse software components
together). Based on this global scenario the desired requirements and goals may be formulated.

Requirements of this thesis
• This thesis should attend the needs of component developers, helping them to document

their components properly and to store their components in a common electronic repository.

• The proposed management concept should support component users to find components
previously stored in an electronic repository and to correctly understand their usage.

• Users considered by the management concept must be conducted along each desired
management procedure.

• Components managed by the concept presented in this thesis are supposed to be components
with use in industrial automation applications.

• The management concept should be widely accessible.

4

Goals of this thesis
The concept presented in this thesis proposes a systematic management approach able to help
component developers to offer their components with a meaningful strategy, and able to support
component users to find a stored component based on the desired functionality, to access the
right information about one component, and to help component users to decide properly about
the reuse of a component. The idealized management of components has three major features, it
must be easy to use, it shall work with components dedicated to the industrial automation
domain, and it shall be widely accessible.

• Easy to use means that the global concept must be user-friendly, with different interfaces for
different users, and shall also conduct the actions of all users involved in the management
process. It is expected that the component management system provides guidance on how to
obtain the information desired by a specific user. The exchange of information between
component developers and component users may be enabled in a convenient way. The
introduction of new data or the access to existing data shall be done in a decentralized form.
The confrontation of the desired functionality against the one of an existing component shall
also be supported. Nevertheless, the decision about using a component will be done by the
potential component user.

• The concept is dedicated to the industrial automation community. It is not a goal of this
thesis to propose a new formal component model for the industrial automation domain. The
goal is to propose a common flexible model for the representation of component
technologies that actually have any application in industrial automation systems. Such a
management concept shall be used by customers with diverse backgrounds. It is assumed
that most of these users will be experts on industrial automation, or software engineers. In
spite of that, no user expertise shall be admitted as a pre-requisite for the usage of the
concept. Moreover, any potential user shall be able to verify the contents of potential
component candidates. Nevertheless, the storage of new components shall respect some
rules and someone storing a component must be previously known by the system.

• Lastly, the desired wide accessibility may be achieved easier by an Internet-based system.
The goal is to propose a system where users will be able to access it from any computer
connected to the Internet. For that purpose the most relevant characteristics of Internet-based
systems and the respective Internet technologies will be studied.

Components shall be represented considering the particularities of their original construction
technology. In that sense, the terms used to represent each part of the component representation
must be respected. Diverse component technologies are also supposed to share the same
repository and to be managed by the same procedures.

5

1.3 Overview of the Next Chapters
In the next chapter, the most relevant works about management of components reported in
publications are presented. The reports about these approaches help to properly understand the
problem involved and to learn from the experience of other groups of researchers having similar
goals as the ones of this thesis. A comparison of the studied approaches and some fundamental
conclusions are also presented in this chapter.

As said before, the goal of this thesis is to manage components with any use in the industrial
automation domain. Many of the most successful component models proposed by market
leaders have been used to construct industrial automation applications. Moreover, some other
proposals come from specialized industry areas and from universities. The most relevant
component proposals are discussed in chapter 3.

But those components must be represented in a meaningful manner in order to be properly
managed later on. In chapter 4, the necessary knowledge about components developed
particularly for the industrial automation domain is represented using semantic networks. The
most relevant aspects of components designed to be used at those domains are considered in the
proposed representation model.

The concept of a systematic management of components procedure is presented in chapter 5. An
application development process composed of two main parts is proposed, the publication of
components and the selection of components. The ideal way of creating a component
management system, flexible enough to work with diverse technologies is also presented.

The technologies available to convert the theoretical study of the previous chapter in a
meaningful Internet-based application are discussed in chapter 6. There, some architectural and
technological decisions developed during this thesis are presented in order to sustain the
practicality of the study done.

The flexible Web-based management of components for industrial automation was implemented
in a prototype. Three main tasks are developed by this prototype, the storage of components, the
search for components, and the understanding and comparison of components. The description
of the implementation details of the elements composing the component management system
and an exemplary usage are presented in chapter 7.

The conclusions of this thesis are presented in chapter 8. A summary of the most important
considerations and about the obtained results are presented in that chapter. Additionally some
insights of possible future works in this amazing research area are presented. This thesis is then
closed with the Appendix A where an example of the documentation of a ViPER synchronous
component is presented. This component is called TON and it is used to illustrate the generation
of the interfaces to the users of the component management system.

6

2 State of the Art of the Management of Components
In this chapter a summary of the most relevant approaches for the management of components is
presented. The selection of the commented works was based on their contribution to the state of
the art and on their similarities with the system to be proposed later. The presentation is made in
a chronological way. All of them had a very important role at the instant of their publication and
still give helpful insights about the requirements of future works. The approaches are presented
by trying to answer the following questions:

a) What is a software component at this approach?
b) How is a component represented here?
c) How is the information that represents a component obtained?
d) How can somebody find a desired component?
e) Is there any additional support to facilitate the understandability and reuse of a pre-selected

component?

At the end of this chapter a table summarizing all approaches is presented. The items in the table
should enable a comparison of the presented works at a common basis and should make it easier
to understand where efforts are still needed to construct a meaningful component management
system.

2.1 Most Relevant Component Management Approaches

The management approaches presented in this section are shown in Figure 2.1. A time scale is
used to locate the works when they were proposed.

1985 1987 1991 1992 1994 1995 1996 1997 1999

GAMS RSL GURU

Kiosk

LaSSIE
AIRS

SEL

MOREplus

FRR
Signature
Matching

FOCS

DIRECT

Java
Repository

SALMS

AGORA

SOORLS

KIS

1989

Figure 2.1: Chronological Presentation of Component Management Approaches.

It is possible to see that this area of interest is the same as some researching groups world wide
since the middle of the 80’s when the first suggestions appeared. With the advent of new
information processing technologies at the beginning of the 90’s, mainly the internet and related

7

technologies, a large amount of new proposals were presented again. In spite of the great
number of interesting proposals, the evolution of those theories proved that a definitive answer
was not yet obtained. Recent works, as for example the ones dated 1999, pointed out some
difficulties that they themselves were not able to solve. That means that a significant
contribution to this amazing area is still possible to be proposed. Particularly, it was not possible
to find a well suited proposal for the management of components with use in the industrial
automation domain.

2.1.1 Guide to Available Mathematical Software

This system, also called GAMS, was proposed in 1985 and provided a conceptual framework
for scientist-end-users and librarian-maintainers to deal with large quantities of mathematical
and statistical software. It was developed in the Scientific Computing Division of the National
Bureau of Standards (NBS) in Maryland [BHK95]. The main idea was to offer a classification
scheme for mathematical and statistical software, a database system to manage information
about this software, and both an on-line interactive consulting system and a printed catalogue for
providing users with one overview of the available information. A goal of the system was to
improve the level of reusability of FORTRAN subprogrammes available for the NBS’
researchers. It used a subject-oriented classification scheme organizing the programmes in pre-
defined areas of interest (e.g. integral calculation, Fourier series, etc). The description of the
reusable artifacts was implemented through a dictionary containing a set of basic information
about each one. This information (variables types, parameters involved, etc) was also introduced
manually by the storing of the component. The searching and finding of components were done
based on this description through the browsing of the desired functionality. Only elementary
help was offered for the reuse of available components, because the system was supposed to be
used by experts with some confidence with computational systems and with the mathematical
and statistical applications involved. This help facility was based only on the documentation of
the FORTRAN subprogrammes. It also assumed the employment of someone to manage the
whole system doing the job of a database administrator.

2.1.2 Reusable Software Library

The prototype called RSL was developed by Intermetrics Inc. in 1987 and coupled a passive
database with interactive tools designed to make reuse of integral parts of the software
development process [BAB+87]. The original intention was to accept and support reusable
software written in any programming language, but the most successful examples were
demonstrated using Ada. The complete concept was composed of a library management, a user
query, a component retrieval and evaluation, and a software computer aided design tool. The
library management included an automated data collection, based on specially commented lines.
The special characters limiting the comment lines were inserted manually in the source code. It

8

also offered a standardized data entry. The RSL’s software classification strategy was based
upon the combination of two mechanisms. The first was the assignment of a hierarchical
category code to each component added to the library, specifying the type of component (e.g.
math functions, data structures, etc). The second mechanism permitted the insertion of up to five
descriptive keywords for each component. The query subsystems provided users with a menu-
driven interface to search for components with specific attributes and to generate reports about
their attributes. The search could be targeted on a particular attribute (author, unit name,
category code) or be expressed in English with the RSL’s natural language searching feature.
The system was able to evaluate the most suitable component through a score subsystem. Based
on the information entered by the user, candidates were presented with their rating scores. The
end selection could then be done. At last, the RSL had an integrated component design tool.
Although it was said that components written in any programming language could make use of
the RSL, the developed system worked only with Ada programmes. The system was not able to
cooperate with different partners and was developed in a single user mode. No special advisory
functionality was presented.

2.1.3 GURU

This system was constructed in 1989 and considered that, due to the costs of redoing, a manual
classification of reusable software components could not be commercially viable. The authors
proposed an automatic mechanism for recovering and saving a description of the components
[MaSm89, Maar91, MBK91]. A full text indexing was generated using the existing electronic
documentation for each component. This data was than organized through a cluster technique
generating a specific vocabulary. The search for components was done based on this self
generated vocabulary and on natural language. In this second case, the proposed phrases should
be reworked in order to obtain keywords that could fit to the pre-existent vocabulary. For the
case of an unsuccessful search, the system offered a basic navigation mechanism enabling the
consultation of similar components. The system was developed to work with proprietary
software programmes. The tests presented were done with executable software components
written for a Unix-like operating system called AIX. No help, but only the original component’s
documentation, was offered for the users. No comparison between components, or additional
information about their applicability, was available.

2.1.4 Kiosk

Kiosk was a set of hypertext-based tools developed in the Hewlett Packard Laboratories in
California in 1991 [CFG91]. The main goal was to improve the selection process of
components. The term component was understood as all related software work-products,
comprising for example source code, tests documentation, and design notes. No specific
programming language was specified as compulsory in the component construction. A key

9

element of Kiosk was a simple, general purpose hypertext system that allowed the generation of
non-intrusive links between nodes. The hypertext structure for the libraries was automatically
generated from a batch tool called Cost++, which used a description of the components and the
desired classification to create links. Nodes were understood as Unix text files plus all links that
pointed into or out of those files. Editing mechanisms were also provided allowing standard
operations such as inserting and deleting text and new links. Nodes and links were represented
using a proper model with an in-memory representation. Kiosk offered limited browsing and
navigation mechanisms, and a full-text pattern matching procedure used for selecting reuse
candidates. The insertion of new elements was not allowed for every user, demanding special
rights and additional help. Mechanisms for the evaluation, understandability and quality
measures of components were not particularly considered and were based only at the original
component’s documentation.

2.1.5 Large Software System Information Environment

The system called LaSSIE was developed by Devanu [DBSB91] at the AT&T Bell Labs in
1991. This was an attempt to build software information systems that integrated architectural,
conceptual, and code views of a large software system into a knowledge base. This knowledge
base was built using a classification based knowledge representation language, called
KANDOR, to provide the retrieval semantics. The knowledge base was constructed with three
different views of the reusable object: the code, the architecture, and the application domain. It
provided a user interface with a graphical browser and a natural language query processing
system. The data is automatically classified during its insertion in the database. Nevertheless, a
manual insertion of the component itself and all related data was necessary. All limitations of
the KANDOR were inherited by LaSSIE. The classification algorithm, well suited for
telecommunication components, was not fast and was difficult to be adequate enough for new
application domains. No help for understanding the pre-selected component was given.

2.1.6 Artificial Intelligence based Reuse System

The AIRS knowledge based software library was developed at the University of Maryland in
1992 [OHPB92]. That system allowed developers to browse a software library, searching
components that best met some stated requirement. A component was described by a set of pairs
(feature, term), that could represent all available software artifacts, such as sub-programmes,
procedures, and functions. A feature represented a classification criterion, and was defined by a
set of related terms. The system allowed the representation of packages (logical units that group
a set of components), which were also described in terms of features. Candidates for reuse,
components or packages, were selected from the library based on the degree of similarity
between their descriptions and a given target description. Similarity was quantified by a
nonnegative magnitude (distance) proportional to the effort required to obtain a candidate.

10

Based on this distance, the user could decide on the direct reuse of a component. This distance
also gave an idea of the amount of work necessary for a possible modification on the component
for reuse. The functionality of a prototype implementation of the AIRS system was illustrated by
its usage at two different software libraries, a set of Ada packages for data structure
manipulation, and a set of C components for use in command, control, and information systems.
The feature-term pair could not be modified and the way a distance value was obtained was not
precise. As the authors said, “sometimes this value expressed the intuition of the component
developer” [OHPB92]. The system was neither scaleable nor easy to adapt to other domains. No
additional help for the understanding of reuse candidates was offered.

2.1.7 Software Engineering Library

SEL is a hypertext based tool for the presentation of dependencies among components through
hyperlink structures and for the search of these structures firstly presented in 1994. This library,
used for the management of already developed components, was proposed by Freitag [Frei94] in
a cooperation work with BMW Germany. The basic idea was to introduce a separation of the
software component from its functional description. A component was every reusable software
artifact. Every single component was manually described by an additional document that could
be linked to a document net, composing an information network. The relationship among
components could be generated semi-automatically based on their own description. In order to
obtain the complete relationship among components it was also necessary to manually introduce
a relationship description document. The search of components could not be done based on a
semantic point of view. That means that users could not search for a specific application
domain, or for a particular characteristic of a component. The possibility of navigating through
the whole system was also not considered. The search was implemented based on expected
related keywords resulting in links to similar components able to fulfil the desired search
criterion. Besides the general description and the links, no additional information about the
component itself, its usability or quality evaluation was given.

2.1.8 Multimedia Oriented Repository Environment Plus

This commercial tool also called MOREplus was proposed in 1994 and was used to create web-
based software libraries. It was commercialized by MountainNet Inc., and it was an evolution of
the MORE environment [EMD94], a tool resulted from the NASA’s RBSE-Project (Repository
Based Software Engineering). The RBSE was a public repository of thousands of software
engineering information and application source artifacts with over one thousand remote users
[Eich94]. MOREplus was supposed to work with self-developed artifacts and with components
from other manufactures. The component representation was based on a metadata structure
which should be filled in manually. The information stored in its underlying database was not
the artifacts themselves, but rather information concerning those stored artifacts which were

11

obtained by other mechanisms. The users-interfaces were based on HTML pages developed with
TCL scripts. Diverse users or user groups had some limitation of privileges, what enabled the
implementation of different views based on this grouping classification. The search was
implemented by single navigation on the data or by natural language query on the metadata.
There was no information about the usage of the components, no active help or notes about the
best way of reuse.

2.1.9 Federal Reuse Repository

The FRR system was a web-based Reusable Software Library (RSL) interface and searching
tool implemented using the web-browser Mosaic presented in 1994. Mosaic provided a simple,
easy-to-use method to find and extract reusable assets from a RSL, allowed distributed access to
assets from a variety of platforms, and could support most of the features of other formal RSLs
without any modification [PoWe94, PoWe95]. At the FRR, components represented abstract
data types, system utilities, Application Programming Interfaces (APIs), and other general-
purpose functions. The search and the data presentation mechanisms were implemented through
a structured abstract that was generated and stored manually. The main efforts were done in the
generation of a friendly interface for the search of software components and for the respective
documentation. A user could search for a component using a hierarchical view, arranged by
language or library, by subject listing, or by keywords. Through the use of HTML formularies,
functions normally found in commercial-grade RSLs, such as component searching, user
registration, and problem reporting, were also implemented. Automatic generation of HTML
pages and the use of command scripts were further allowed to provide different views of the
RSL, such as searching by subject. The integration of the RSL with a Wide Area Information
Search (WAIS) provided a searching functionality based on keywords. Nothing else but the
original documentation was added, resulting in no additional help, nor comments about the
usability of the stored software components.

2.1.10 Specification and Signature Matching

Specification matching is a way to compare two software components, based on descriptions of
the component’s behavior presented in 1995. It was supposed to help determine whether one
component could be substituted by another or how it could be modified to fit to new
requirements. Signature matching is a method for organizing, navigating through, and retrieving
from software libraries based on formal specifications [MoWi95a, MoWi95b]. A formal
specification has an interface described by a signature, and a behavior specified through pre- and
post- conditions. Those systems worked only with components that obey these specifications.
Two kinds of software items were considered as components, functions and modules, and hence
two kinds of matching, function matching and module matching. The signature of a function
was simply its type, and the signature of a module was a multi-set of user-defined types and a

12

multi-set of function signatures. For both, functions and modules, were not considered an exact
match but also various flavors of relaxed matches. As the tools were based on the formal
definition of a component model, the collection of necessary information could be done
automatically. A good level of knowledge by the user was also presumed because no facilities
for searching or deciding about the reuse of a component was provided.

2.1.11 Feature Oriented Classification System

This approach was also known as FOCS and was a graphical prototype developed by Börstler in
1995 [Börs95] based on an extension of the facet classification [PrFr87] with additional
functionalities for the finding of similar components, and for the entry and query through textual
description. Components here were any reusable piece of software that could be classified by the
facet approach. The feature oriented classification and the component description were
graphically modeled and stored at the GRAS graphical database [KSW92] in a manual way. A
comparison scheme for the stored components was not offered, which made any kind of
evaluation of similar components impossible. The entry of components’ description and the later
search for stored components were done through a syntax oriented text editor. The help
mechanism was limited. No information about the usability, nor additional links to the
developers of the stored components were presented.

2.1.12 Asset Source for Software Engineering

The Asset Source for Software Engineering tool was an internet library designed to work with
different software-related reusable products also called DIRECT-ASSET and firstly presented in
1995. The Digital Resource Catalogue (DIRECT) was an internet catalogue developed by the
Science Applications International Corporation commercially offered to the public through the
ASSET-Server [DRC02]. The development of ASSET started in 1991 at DARPA - Defense
Advanced Research Project Agency, as part of the programme STARS. That was simply an
electronic catalogue with direct query procedures. The result of such a query, was a list with
components that fulfiled the proposed requirements. The requirements could be called up based
on some valid keywords. This catalogue worked not only with software components but also
with products related to the reuse of software. That included for example, technical papers and
proceedings of conferences that treated the theme “reuse”. This model was developed to enable
the data transfer among different software libraries. The Assets were classified using a pre-
defined set of keywords and also based on their programming language. The insertion of
components was done manually and the system was planned to work with components from any
developers wanting to publish their work. A commercial version including electronic commerce
functions was planned. The introduction of documents and papers related to the components was
a very interesting feature of this tool. The search and finding of desired components had no
built-in help mechanism.

13

2.1.13 Java Repository

The Java Repository approach was an electronic marketplace for Java classes and Java related
artifacts based on a fixed description scheme proposed in 1996 [BKR96]. The main objective
was the exchange of free Java resources between developers and users. The resources were
described by some obligatory fields such as product category and pre-defined keywords. Some
of the stored information was the internet address of the developer, a reference to pre-defined
categories, and some relevant keywords. All information about the components was introduced
manually by their developers. The user of a resource could evaluate it through a post-defined
quality grade (a judgement scale from 1 to 10). This grade contained no quantitative criteria,
making its usage sometimes dubious. The grade was presented to other potential users in order
to support their decisions about reusing a component. The selection was done based on the
searching of terms already stored in the description text or based on the browsing of the
available categories. A measurement for the system’s usage and a registration of products were
part of this system. No additional help for understanding the components was given. Some
additional characteristics such as e-commerce were announced to be integrated in the future.

2.1.14 Software Asset Library Management System

This system also called SALMS was a client/server application with graphical user interface for
the classification and exact finding of components, and for the collection of related components
proposed in 1997 [Soda97]. SALMS was developed by Sodalia, a joint venture of Bell Atlantics
and Telecom Italia. Its goal was the classification, description, and searching of reusable
software components. A component alone was denominated an Artifact while a set of logically
related components had the name Asset. Assets were classified into SALMS using a so-called
faceted scheme. For each Asset, the library administrator could manually select a particular
keyword (or term) which best characterized the asset in a given perspective (or facet). Facets
were organized as hierarchies of terms, from the most general down to the most specific term.
Facets and terms were editable in SALMS in order to customize the tool to a particular
environment. A set of information about the asset and its artifacts were provided in the
descriptors. Indeed, information such as an overall description of the asset, its author, size, level
of reusability, level of testing (hence of quality), data about who maintained it and under which
conditions, previous reuse experience reports, etc, were added. Some retrieving mechanisms
were offered by SALMS such as, direct access by specifying the unique identifier, filtered
access by specifying a filtering criteria on asset attributes, text based access, navigation in the
asset relationship network, and facet access by specifying a term for each facet or relaxing the
search towards similar keywords. No help or understandability mechanisms were offered.

14

2.1.15 A Search Engine for Software Components

The code-name AGORA was attributed to this system which was a specialized search engine
able to generate and automatically index a world-wide data base of software products. This
prototype system was developed by the Software Engineering Institute at Carnegie Mellon
University in 1997 [SHW98]. After searching for components, a database is built by AGORA
where the found components are classified by their construction types. Users of this system
could search for components in the created database describing specific properties of a
component’s interface. The system combined Web searching engines with an introspection
process. Introspection describes the capability of components to provide information about their
own interfaces. AGORA was specially successful when working with JavaBeans and CORBA
components, and supported two basic processes, data collection, and data search and retrieval.
Data collection consists of two new sub-processes, location and indexing. Location involves
finding components on the internet while indexing means collecting interface information about
the already found components, and recording this information in a local database. Based on this
information a component index was constructed. The data collection process was primarily an
automated background task, while search and retrieve were typically performed by humans.
There was no feature to help users to evaluate the real applicability of a component. The
definition of a component was also strongly attached to the JavaBeans and CORBA models.

2.1.16 Summary-based Object Oriented Reuse Library System

This tool also called SOORLS was developed at the Department of Computer Science and
Engineering, at the Arizona State University in 1999 [LeUr99]. Its main goal was to support
librarians, who managed data bases of object oriented reusable components, and software
developers who intended to reuse these components in the development of new software
applications. In this approach classes and interfaces of the Java programming language were
considered as reusable components. By parsing the declaration of such a component, SOORLS
automatically extracted information such as the access modifier of the component, its return
type, name, and structural related information acquiring knowledge about the relationship
among other components. This information was stored in the form of a descriptor and a
declaration for each component. An automatic indexing process that encoded the properties of
the components was applied to the descriptors and declarations of each available component.
Similar components were then grouped in a classification process. Reusable candidates were
retrieved based on this classification, allowing the future browsing by category of the same
purpose components. This query was based on input data given by the user. The system offered
also a post-comprehension procedure in order to enable a better understandability of pre-select
components. It gave users more detailed information about the selected components. The
automatic retrieval of component information proved to work with Java-based software artifacts,
but it was not extended to other types of components.

15

2.1.17 Komponenteninformationsystem

This system also known as KIS was a cooperative information system for software components
developed at the Department of Computer Science III at the University of Aachen, Germany, in
1999 [Behl99]. This decentralized system used the Internet as intercommunication media. The
original project was a cooperation work among diverse local industries and the University of
Aachen [Behl98]. Its goal was the increase of the reuse of components offered by diverse
developers through the distribution of a comprehensive amount of information about each
software artifact. Software components, also called reusable assets, were understood as
commercial off-the-shelf software (COTS) and public domain software or shareware, which
could be provided by any interested developer. The representation of components was based on
a pre-defined metaschema where all necessary information about the component was determined
previously. The functionality of the system was divided into three main parts according to the
users’ needs. Users are system developers searching for reusable components, component
developers offering their components, and someone with the role of the manager maintaining
the system accordingly. The search for components could be done by the selection of pre-
defined categories through a browsing system, or could be based on the search of keywords. The
insertion of new components was supported by a man-machine interface that demanded the
introduction of a series of compulsory data. Every single interaction with the system was done
via the Internet. An automatic search for new components in the Web and an automatic retrieval
of the related data was also integrated. The system offered the possibility of communication
between a developer and a user of components through electronic media.

2.1.18 Some Other Approaches

Although the most relevant works were already presented above, some other approaches are
described in this section in order to increase the completeness of this text. One of the most
frequent definition of software component originated with the Ada programming language.
Many authors proposed ways to improve the readability and understandability of Ada libraries.
In 1987 Dausmann proposed a new library structure for reusable Ada components [Daus87]. His
work made the access to components stored in different libraries possible. He also considered
the possibility of adapting a component in order to apply it to diverse new needs. The proposed
work failed to solve the problem of retrieval of a desired functionality among diverse
components. In 1988 Ouwen proposed a set of tools for the storage and retrieval of reusable
software components which consisted of Ada packages and procedures. He introduced a
functional specification document for each component and used a faceted classification scheme
[OGH88]. Royce related his experience at the Defense System Group with the Network
Architecture Service (NAS), trying to improve the reusability level of over 120,000 Ada sources
lines of safety critical software programmes [Royc89]. Jensen reported more successful research
with the so called AdaSAGE [JSW92] which was a library that worked with Ada reusable

16

components trying to help to identify and to create new reusable components. One problem was
that the known attempts to create a reuse environment often resulted in the increase of
development time and cost. AdaSAGE tried to support the whole production and maintenance
process. It also enabled better communication among project workers.

Some other authors have expressed very particular views of software management. In 1988,
Damier and Defude described ESTRELLA a multimedia object-oriented data model based upon
objects, classes and functions [DaDe88]. They proposed a document model capable of managing
structured documents and to index them with a superimposed code method. The search and
retrieval of software artifacts were implemented based on an Oracle database. Multimedia here
was very far from the actual concept and meant only the access of different text files. Beckman
described his Encyclopedia of Software Components in 1991. That was one of the first attempts
to integrate a structured search by interactive browsing, a goal directed search based on
keywords query, and an automated component insertion as hypermedia data, in one unique
system [BBJ+91]. In 1992 Swanson and Samadzadeh identified that one of the most frequent
problems in the reuse of components was the inefficient use of the library [SwSa92]. That led
programmers not to use such new systems either as customers or as contributors. With their
catalogue interface, they tried to solve this problem for a library of C functions. A set of
additional files were organized in order to facilitate the man-machine interaction.

Another line of research tried to propose ways of explaining the meaning of management of
components. In 1993 Podgurski and Pierce proposed a method called behavior sampling for
automated retrieval of reusable components [PoPi93]. Behavior sampling was able to identify
relevant routines by executing reusable candidates on a search procedure. The candidates were
selected based on a sample of operational inputs and outputs given by the user, and the
comparison of the correspondent obtained results. Dellarocas believes that in component based
software development the identification and proper management of interconnections among the
participating pieces is the central concern for improving the reusability of components [Dell97a,
Dell97b]. With his environment called SYNTHESIS, he tried to support software development
through the representation and management of interdependencies among software components.
He proposed a design handbook of software component interconnections, which catalogued
common software interconnection dependencies and sets of alternative protocols for managing
them.

2.2 Comparison of the Approaches Presented

In the last two decades many researchers tried to increase the reusability of diverse software
artifacts (programmes, modules, functions, objects, and components) introducing libraries or
other management approaches. The concept of what was really a component and the ways one
could improve its reusability varied in a very wide range. A summary of the main characteristics

17

of the most relevant commented approaches is presented in Table 2.1. Five points are analyzed,
the type of each component, the way components are represented, how the necessary
component’s data is acquired, the way somebody can find desired information, and what kind of
support is given for the reuse.

As seen in Table 2.1, some approaches were dedicated for components that fulfil a particular
technology specification, for example the Java Repository system worked only with software
components written in Java. A great number of systems were able to treat only self-developed
components, on the other hand only a few did not create their own components, and three
approaches were able to work both with self-developed and third-party components. Almost all
presented systems tried to be as general as possible, dealing with software components
independently from a specific domain.

The second sub-title of the table deals with the form a software component was represented with
at each system. This representation form enables diverse ways of divulging later information
about the stored software artifacts. It also influences the process of storing components. The
most used representation scheme was based on a classification structure where the components
were related to specific pre-defined items. Some approaches accepted a post insertion of new
categories, expanding the original classification scheme. The indexing of components, creating
links among functional related pieces, was also a very frequent feature. Some systems were able
to work with these two ways of representation. The formal specification of components was
avoided by almost all presented systems, probably due to the difficulties in proposing a formal
method that could be accepted by a large number of researchers and practitioners. Two other
ways of representing a component, by a knowledge based model and by the introduction of a
quality measurement were also not used overall.

Another important item is the way someone can insert new components in a component
management system, or how the system obtains new elements. Here basically two different
approaches exist, manually at the very first moment a component is created, or automatically
making a search of new elements on third-party databases. This search for new elements is done
based on pre-defined characteristics. The first approach is said to be an additional cost factor as
it implies in some pre-work of specialists. The automatic retrieval of data implies the definition
of a desired model (although this model might not necessarily be a formal one), able to contain
all necessary information. The component itself must obey this model, otherwise it would not be
included in the system.

The way users obtained information about a desired component also varied. The most popular
form was the browsing through a classification scheme. This browsing returned a list of
probable items to be reused. As the browsing was usually based only on general points, the list
of candidates could be longer than desired, making the reuse process harder and sometimes not
viable. Direct retrieval of candidates based on some desired characteristics was not easy to

18

implement and very inefficient as it implied previous knowledge about the stored items.
Nevertheless, this way of recovering components can be improved by the creation of advisory
support for the users. That can be implemented, for example, by using a set of pre-defined
keywords, already presented in many systems. These keywords must be carefully defined as
they are supposed to describe the essential characteristics of a component. The presentation of
components that attended only partially the original requirements of the user was
straightforward. This option led to the identification of components that through modification
was able to be successfully reused.

Table 2.1: Comparison of Management of Components Approaches.

 Type of

Components

Representation Data

Acquisition

Searching and

Retrieving

Reuse

Support

Technical

Characteristics

Presented
Approaches

D
om

ai
n

Sp
ec

ifi
c

Te
ch

no
lo

gy
 S

pe
ci

fic

Pr
op

rie
ta

ry

Th
ird

 P
ar

ty

C
la

ss
ifi

ca
tio

n

In
de

xi
ng

Fo
rm

al
 S

pe
ci

fic
at

io
n

K
no

w
le

dg
e

B
as

ed

Q
ua

lit
y

M
ea

su
re

M
an

ua
l

A
ut

om
at

ic

B
ro

w
si

ng

D
ire

ct
 R

et
rie

ve

Pr
e-

de
fin

ed
 K

ey
w

or
ds

Si
m

ila
rit

y

G
en

er
al

 D
es

cr
ip

tio
n

Q
ua

lit
y

Ev
al

ua
tio

n

A
ct

iv
e

H
el

p

U
nd

er
st

an
da

bi
lit

y

1- GAMS X X X X X X

2- RSL X X X X X X X X

3- GURU X X X X X X X

4- Kiosk X X X X X X X

5- LaSSIE X X X X X X X X

6- AIRS X X X X X X X

7- SEL X X X X X X X

8- MOREplus X X X X X X X

9- FRR X X X X X X X X

10- Sig. Matching X X X X X

11- FOCS X X X X X

12- DIRECT X X X X X X X

13- Java Repository X X X X X X X X

14- SALMS X X X X X X X X

15- AGORA X X X X X X

16- SOORLS X X X X X X X X X

17- KIS X X X X X X X X X X

19

The last characteristic shown in Table 2.1 deals with the form developers tried to support users
to understand and reuse existent components. That is a decisive factor on the quality of the
component management system. Almost the total of the presented approaches offered only a
general description of the software component. This description was arbitrarily imposed and
sometimes did not fulfil the users’ expectations. Proposals to evaluate the quality of the
components, or component presentation, in the aspect of reuse, were rarely presented. Proposals
to improve the understandability of components were also rare. The idea of including an active
help facility, based on the exchange of electronic mails, was only recently suggested.

2.3 Management of Hardware Components

The characteristics of the hardware components industry, where great companies control the
market, make the approaches for the management of these components quite different from the
one proposed for software components. Moreover, it was not possible to find any specific
reference in publications about the topic management of hardware components. Nevertheless, it
was possible to verify that there are two approaches in the market that have similar
characteristics to the management of software components. They are the hardware components
catalogues and the hardware components simulators, the main characteristics of both approaches
are described below.

• Hardware Components Catalogues: In these applications a complete list of electronic
hardware ships of a specific producer is presented. Examples of well designed catalogues
may be found in the Web-pages of Philips Semiconductors [Phil02] and in the Web-page of
Intel Company [Inte02]. In general, the hardware components presented in these catalogues
are divided in terms of well defined application domains. They also are grouped according to
their basic technology (digital or analog electronic components) and their implemented
functionality. For example, it is possible to select all digital electronic components that
implement one OR gate in the catalogue of Philips. Users can receive the complete
information about one hardware component in the form of a data sheet. These electronic data
sheets reproduce their own paper version exactly. The insertion of new components is
restricted to the maintainers of the catalogue and, consequently, normal users have no access
to this insertion mechanism. As the hardware component catalogues are developed to attend
the necessities of a particular company they do not compare similar components of third
party companies.

• Hardware Components Simulators: The electronic simulators available on the market
contain a basic library of components simulations which may be used during the design of
electronic circuits. Examples may be found at the following Web-pages [EWB02, DLS02].
It is normally possible to design larger components using the ones available on the
simulation environment and to store these new constructed components into self defined

20

directories. The functionality of the resulting component may be then tested having their
behavior registered in the form of signal waves. These new simulation circuits can be stored
later. Similar procedures such as the ones used by the hardware electronic catalogues, where
components are grouped in terms of their application domain, technology, and functionality,
may be adopted by the developer of new simulation components. Nevertheless, only simple
mechanisms to document these new components are available. The creation of the
directories and the correspondent maintenance of new components is the responsibility of
the users themselves. It is also usual to buy a new set of components (called libraries)
designed to solve problems of a particular application domain, but normally the libraries
designed for a specific simulator do not work in other simulators offered by third parties. In
contrast to the design of software components, the design of a simulation of a hardware
component on simulation environments is far from the construction of the real hardware
elements.

The study of catalogues and simulators of hardware components available on the market done
during this thesis was a profitable source of ideas. The hardware electronic industry has been
working for a long time based mainly on components. Many concepts applied in the software
components approaches were inspired by this industry. The flexible management of components
proposed in this thesis will also be able to deal with the information about hardware components
with application in the industrial automation domain.

2.4 Lessons Learned

None of the presented approaches were able to completely fulfil the requirements of a
component management system specially designed for industrial automation components. In
spite of it, they have many good characteristics that may be incorporated in the concept of such
a system. Some relevant technical conclusions about those approaches are presented in this
section, as well as a description of the previously exposed ideas that might be reused and the
kind of mistakes that might be avoided in future research.

Almost all presented researches have tried to deal with a large range of different components.
There is no problem with this consideration whenever the components can be represented by a
common model. The absence of a common specific model proved to be one serious drawback,
because it made it impossible to work under a common platform. The correct retrieval of a
component based on a wide range of models is not easily done. On the other hand, the adoption
of only a specific technology of components limits the usability of any management concept.
Additionally, it is nowadays not possible to affirm that a unique component technology will ever
be able to accomplish all requirements of industrial automation applications. It is necessary to be
able to work with different technologies. One specific characteristic of the concept presented in

21

this thesis is the use of a flexible common presentation model where all important characteristics
of an industrial automation component must be considered.

The classification of components based on pre-defined categories was very well used and it is
still an interesting way of retrieving components from a repository. These classification schemes
made the indexing of components and the respective finding of similar ones possible.
Approaches using a formal specification model were less successful mainly due to their intrinsic
difficulties to propose a model that could be accepted by a large number of users. Approaches
based on formal knowledge representation models were difficult to generate because they
normally demanded an automatic retrieval of information that is not always possible.

Every single component must be classified based on a domain specific classification scheme.
Some authors have avoided this procedure attributing an insupportable cost increase. The same
authors tried to develop sophisticated data acquisition algorithms, but the lack of clarity made
the later finding and reusing of components a hard task. In the assumptions of this thesis, it is
considered that the cost of classifying a new component is not a deciding factor. Indeed, a
meaningful classification is a key concern on the later reuse of components. The system must
help users to classify their components using an active support tool based on the common
domain model.

The finding of components based on the navigation of existent descriptions of components was
used overall. The advantages of this approach was that users could learn from the navigation and
as much as they searched for components as easy was to use the system and to find appropriate
components. This characteristic shall be maintained in future works, but should not be the only
way of finding a component. It is interesting to include the possibility of retrieving a component
directly based on any known characteristics. Pre-defined keywords closely related to the domain
are another very interesting way of finding one desired functionality.

A very important factor increasing the possibility of finding and reusing components is the
support to understand their correct application. As a matter of fact, the presentation of a general
usage description is not enough to guarantee a good level of comprehension and further reuse of
a component. The available documentation must be organized in a well structured way
facilitating its access. The introduction of mechanisms of exchanging information between
component developers and component users is very interesting as it permits an active interaction
between them. A concrete example of such interaction can be represented by the introduction of
a component’s quality evaluation generated by users. Lastly, the component management
system must be easy to use.

As seen in this chapter, the general approaches for the management of components have as a
main goal the increase of reusability of already developed software components. Although many
different attempts were proposed, none of them could fulfil all requirements of a meaningful
component management system for industrial automation components. Mainly two factors were

22

decisive for this undesired level of acceptance: firstly, developers tried to offer systems so
general and complex that they could never really foresee all involved problems, and secondly,
only recently the support for users was implemented in an acceptable level. These two problems
are considered in this thesis where a particular management solution for components used in
industrial automation applications will be presented. Additionally, the potentiality of internet-
based systems are investigated in order to make the accessibility and usability of the final
component management system easier.

The conception of the flexible web-based component management system for industrial
automation presented here will have some common points with the researches cited in this
chapter. The main objective of this thesis is to investigate how to efficiently store, find,
understand, evaluate, and finally decide about the reuse of components. This research was
concentrated on a specific domain, the industrial automation applications, leading to a flexible
common model able to describe components used in this domain. All users involved in the reuse
process must also be supported, component developers by the insertion of new components,
component users by the searching, finding and evaluating of components. The idea of an active
advisory system, where users are conducted all over the process, is also considered.

In order to propose a meaningful component management system it is necessary to know
precisely the characteristics of the elements being managed. One question that remains to be
answered is if there are components being used in the industrial automation domain and, if so,
what these components are like. The research developed along the years of this thesis shown
that many different component approaches currently available have particular usage in industrial
automation systems. For example, many of the most successful component models designed by
market leaders as Microsoft and Sun Microsystems have been used to realize industrial
automation applications. Other component approaches were designed exclusively for that
domain and were proposed by the electronic devices industry or by research groups inside
universities. The characteristics of the most relevant component approaches with use in
industrial automation and examples of already developed applications for the industrial
automation domain are the main subject of the next chapter.

23

3 Component Technologies used in the Industrial
Automation Domain

The main idea behind components is to construct any useful product based on the composition
of smaller and elementary (or even complex) building blocks. The definition of software
components is not easy at all, and as stated in [HeCo01], in order to properly understand
software components technologies it is necessary to define three concepts: software component
itself, component model, and software component infrastructure. Those definitions are shown
below:

A software component is a software element that conforms to a component model and can be
independently deployed and composed without modifications according to a composition
standard.

A component model defines specific interaction and composition standards. A component
model implementation is the dedicated set of executable software elements required to
support the execution of components that conform to the model.

A software component infrastructure is a set of interacting software components designed to
ensure that a software system or sub-system constructed using those components and
interfaces will satisfy clearly defined performance specifications.

In order to properly manage components it is necessary to understand those three aspects
mentioned above. That is the reason why during this thesis research about some technologies
with any use in the industrial automation was done. The results of this research are related in
this chapter where the most relevant component technologies (software component itself,
component model, and software component infrastructure) with use at the desired domain are
presented. Those component approaches are grouped in accordance with their origin, i.e.
technologies proposed by the software industry, technologies used solely by the automation
industry, and technologies proposed by university research centers. The main characteristics of
each technology is discussed below, followed by some examples of usage at industrial
automation applications.

3.1 Most Common Commercial Components Approaches
The most successful software companies and software organizations worldwide have their own
concept about components and their usage. Some technologies were also proposed as standards
but it was impossible to obtain any consensus about only one technology being recognized as
standard for any possible application case. In fact many component technologies live together

24

sharing their insertion on the market. In the following sections the most relevant commercial
technologies are presented.

3.1.1 CORBA

The Common Object Request Broker Architecture (CORBA) was developed as a standard
distributed object architecture by Object Management Group (OMG). CORBA objects differ
from typical programming language objects because they can be located anywhere on a
network, and can operate with objects written to run on other platforms [Szyp98, HeCo01].
CORBA objects can also be written in any programming language whenever there is a mapping
from the Interface Description Language (IDL) to the desired language platform. This
technology works as the object-oriented middleware architecture in heterogeneous distributed
object systems. The server provides a remote interface and the client calls this remote interface.
The architecture is built around three key building blocks:

• OMG Interface Definition Language (OMG IDL), which is used to define object types by
specifying their interfaces. An interface consists of a set of operations and the parameters of
those operations. This interface definition is independent of the programming language used,
but maps to all of the popular programming languages via a set of OMG standards, for
instance C, C++, Java, COBOL, Smalltalk, Ada, Lisp, and IDLscript were all mapped by the
OMG standards.

• The Object Request Broker (ORB) is responsible for all mechanisms required to find the
requested object implementation, to prepare the object implementation to receive the
request, and to communicate the data completing the request.

• The Internet Inter-ORB Protocol (IIOP) is the standard communication protocol that allows
vendors of ORBs to interact over the Internet successfully. It is a representation to specify
the target objects, operations, and all parameters of every type that client’s ORB and object’s
ORB may use.

Figure 3.1 shows how the CORBA architecture is implemented and works.

Client

IDL
stub

Object
Implementation

IDL
Skeleton

Object Request Broker 1
Request

Client

IDL
stub

Object
Implementation

IDL
Skeleton

Object Request Broker 2

IIOP
Protocol Request

Figure 3.1: Request from Client to Object and from ORB to ORB Communication.

25

Stubs and skeletons work as proxies for clients and servers, respectively. IDL defines interfaces
so strictly that the stub on the client side has no trouble meshing with the skeleton on the server
side. In CORBA, every object instance has its own unique object reference, which is the
information needed to specify an object within an ORB. Clients use the object references to
direct their invocations, identifying to the ORB the exact instance they are supposed to invoke.
The object implementation receives a request through the IDL skeleton. The object
implementation provides the semantics of the object, usually by defining data for the object
instance and code for the object’s methods. In case of a remote invocation, the client first
obtains its object reference. When the ORB examines the object reference and discovers that the
target object is remote, it marshals the arguments and routes the invocation out over the network
to the remote object’s ORB. In this case, the client’s ORB and object’s ORB must agree on the
standard protocol IIOP.

CORBA has been used in automation systems and electronic devices in many situations. Such
applications generally comprise of many software objects that interact with each other.
Specialized versions of CORBA run real-time systems, and small embedded systems. For
example, Foliage Software Systems, an American software company [Foli02], developed an
upgrade package for an old generation of a commercial electron-beam lithography system used
to make semiconductor masks based on CORBA. The older system was written in FORTRAN
and used a 1980's minicomputer as its control system. The upgrade package reused the material
handling, vacuum control, and mechanical-drive stage components from the original system,
while replacing the electron-beam column, control system, and pasteurization engine. This
upgrade package more than doubled the placement accuracy, while increasing the system speed
by a factor of eight. This is a high-precision, high-speed system with placement accuracy
measured in billionths of meters, and throughput measured in tens of millions of images
processed per second. The system was developed using C++ and CORBA in a distributed,
heterogeneous environment incorporating systems running Windows-NT, Unix, as well as other
platforms.

3.1.2 COM and DCOM

COM stands for Component Object Model, whereas DCOM stands for Distributed COM which
is an extension of COM, both were developed by Microsoft Corporation. COM and DCOM
provide a framework for supporting communication and interaction among programmes across
processes and machine boundaries. COM allows software components to interact via interfaces
which are described by an Interface Description Language (IDL), this description enables the
interfaces to be used by various programming languages [Stal98]. An object that implements an
interface and provides COM binary-compliant pointers to a table of function is shown in Figure
3.2.

26

QueryInterface

AddRef

Release

[other methods]

Interface pointer v-table pointer

[internal data]

Figure 3.2: COM Interface Representation.

COM makes those functions available to any client who asks for a pointer to the interface,
whether the client is inside or outside of the process that implements those functions [GHL+98].
Objects with multiple interfaces can provide pointers to more than one function table. The three
elements of the v-table have the following functionalities. The QueryInterface takes the name of
an interface, checks whether the current COM object supports the interface and if so, returns
pointers to the supported interfaces. AddRef increments reference count and lastly, Release
decrements reference count to enable the server to know when all clients have finished using the
interface. Distributed COM transparently expands the concepts and services of COM. COM
defines how components and their clients interact. DCOM supports communication among
objects on different computers or machines [Carn97]:

Several features in COM and DCOM satisfy and simplify some constraints in distributed
computing system. DCOM completely hides the location of a component, whether it is in the
same process as the client or on a machine halfway around the world. In all cases, the way a
client connects to a component and calls the component's methods is identical. Not only does
DCOM require no changes to the source code, it does not even require that the programme be
recompiled. A simple reconfiguration changes the way components connect to each other.
DCOM is completely language-independent, application developers can choose the tools and
languages that they are most familiar with. These technologies manage connections to
components by maintaining a reference count on each component. DCOM increments the
components reference count whenever a client connects to a component and decrements
reference count whenever the client releases its connection. If it detects a broken connection,
DCOM decrements the reference count and releases the component if the counter has reached
zero. DCOM can also use any transport protocol, including TCP/IP, UDP, IPX/SPX and
NetBIOS. It provides a security framework on all of these protocols, including connectionless
and connection-oriented protocols.

COM and DCOM have been used to build control applications in automation systems, as for
example the “Distributed Control System for Semiconductor Processing Tool” [Foli02]. It is a
distributed control system architecture for a precise manufacturing tool used in the
semiconductor manufacturing process. The tool has more than 1,500 analog and digital I/O
points, as well as intelligent motion controllers, embedded DSPs, a variety of serial I/O devices
and multiple CPUs, and requires five to twenty millisecond sustained response servicing. The

27

architecture is designed around DCOM and supports multi-threading, distributed I/O, high-
speed processing, client-server data storage, and an internationalized, ActiveX-based, touch-
screen user interface. This application was designed primarily in C++ for Windows NT and
incorporated an assortment of development tools, libraries, databases, and embeddable
components.

3.1.3 JavaBeans and Enterprise JavaBeans

The Java platform has been used worldwide in the industry for some years, and today more than
one million developers around the world have already deployed a Java application [DeDe99].
The component technology JavaBeans is pointed as one meaningful solution to deliver highly
reusable components due to its interoperability standard. The JavaBeans component architecture
is a portable and platform-independent architecture for the Java application environment.
JavaBeans component is written just the same way as any other Java class [Trac97]. Moreover,
the existing components, or even Java classes can be turned into JavaBeans.

In fact, a JavaBean is a component that allows developers to reap the benefits of rapid
application development in Java by assembling predefined software components to create
powerful applications and applets with use in many different areas. Graphical programming and
design environments that support beans provide programmers with flexibility by allowing
programmers to reuse and integrate existing disparate components that in many cases were
never intended to be used together. These components can be linked together to create applets,
applications, or even new Beans being reused in new applications.

A Bean is comprised of two primary elements: data and methods. The data part of a Bean
completely describes the state of the Bean, whereas the methods act on this data. A JavaBeans
component may have methods with different types of access. For instance, private methods are
accessible only within the internals of a Bean, whereas protected methods are accessible both
internally and in derived Beans. The methods with the most accessibility are public methods,
which are accessible internally, from derived Beans, and from outside parties such as
applications and other components. These public methods are grouped to form the component’s
interface. The Bean interacts with the outside world through such interfaces using specific
protocols. Therefore, programmers just need to know the interfaces of a Bean to be able to
manipulate and interact with it. They do not need to know any detail of the internal
implementation of the Bean itself. Figure 3.3 represents this architecture.

A powerful advantage of JavaBeans is that they are able to integrate existing component models
to work with the other component architectures, for example, CORBA, ActiveX, etc. JavaBeans
were originally designed for user-interface and client-side tasks but their functionalities have
been extended to support distributed computing and server-side features by the introduction of
the Enterprise JavaBeans (EJB) [Dail01, Zona99]. EJB components allow applications to

28

communicate across multitiered client and server environments, and across Internet and Intranet
structures.

JavaBeans Component

data

Private
Methods

Protected
Methods

Public
Methods

InterfaceA

InterfaceB

Figure 3.3: Relationship Between Interfaces and Methods in a JavaBeans Component.

JavaBeans and Enterprise JavaBeans have been used to develop software components with
applications in industrial automation systems for some years. For example, ErgoTech Systems,
Inc., a leading independent developer of component software for manufacturing, factory
automation and machine control in the USA, announced the release of its Professional Edition
Virtual Instrumentation Beans™ product in 1998 [Ergo98]. VIB™ is a suite of JavaBeans used
as components for building Java graphical user interfaces for real-time data access and display.
The VIB products are used to develop graphical user interfaces for industrial, laboratory and
building monitoring, control and automation. Their Professional Edition eases the creation of
client-server solutions, the user interfaces can be distributed over a network and viewed
remotely. This suite composed of JavaBeans components creates meters, strip charts, active
input devices (buttons, knobs, sliders), bar charts, seven-segment displays, among other
technical devices. Additional components for building automation applications offered by this
company include components such as switches, smoke alarms and motion detectors.

3.1.4 Microsoft .NET

The Microsoft .NET technology is based on the Extensible Markup Language (XML) Web
services platform. It enables users to interact with a broad range of smart devices via the Web,
while ensuring that the user, rather than the application, controls the interaction [Micr01a]. This
platform consists of the following core elements [Micr01b]:

• .NET infrastructure and tools which are used to build and operate this new generation of
services. It is composed of four main parts: the Microsoft Visual Studio.NET, the Microsoft
.NET Enterprise Servers, the .NET Framework, and the Microsoft Windows.NET.

29

� .NET services are an integrated set of building block services for Internet operating systems,
including Passport.NET (for user authentication and services for file storage), user
preference management, calendar management, and many other functions.

� .NET user experience network that is a broad and adaptive user experience platform, where
information is delivered in a variety of ways on a variety of different devices.

� .NET device software that enables a new breed of smart Internet devices that can leverage
Web services.

The core architecture of the Microsoft .NET platform is the so-called .NET framework, which is
an environment for developing, deploying, and running Web services and other applications. It
consists of three main parts: the Common Language Runtime, the Framework Classes, and the
ASP.NET [Micr01c]. The Common Language Runtime (CLR) allows multi-languages
components to work together. CLR is able to execute programmes written in many different
languages, therefore it can run applications written using multiple languages within a single
application. The second part of .NET framework is a common set of class libraries that works
with any language in order to facilitate interoperability between languages. With Visual
Studio.NET, developers are able to debug applications written across languages, many third
party companies intend to provide languages and tools to work with it and the .NET framework
architecture. The third element is the extended Active Server Pages, called ASP+, which
provides a high-level application model for building Web applications and services.

This technology shall be important in the near future being widely used in embedded systems.
The Microsoft’s .NET vision entails a world of mobile users, with PDAs and mobile phones as
standard access devices [Micr00, Micr01d]. Someone using Visual Studio.NET to develop
mobile solutions may receive a derivative of the Web forms technologies (called mobile forms)
from Microsoft. Mobile forms are designed to allow device-independent application
development, so for example, the same mobile form will work with a Nokia 7110 mobile phone
and with a Palm PDA, as it will deliver content based on the type of the device accessing an
application.

3.2 Proprietary Industrial Components
Sometimes the characteristics of a business area forces industries to adopt particular production
methodologies and tools better suited for their needs. The embedded electronic industry is one
of these areas with very specific needs. In this section two component approaches used for
embedded systems are presented. The first has been used in consumer electronic devices and the
second in automotive electronic systems.

30

3.2.1 Koala

Koala is a component model developed by the Philips Research Laboratories specially to be
used in embedded systems which is composed of units of design, development, and reuse, each
of them designed independently of each other [OLKM00]. A Koala component communicates
with its environment and with other components through interfaces, in the same way as COM
and Java, i.e. a Koala interface is a small set of semantically related functions. A simple IDL is
used which contains functions for initializing a component, and a Component Description
Language (CDL) used to describe the boundaries of each component. Interfaces are labelled
with two names, a globally unique name which refers to a particular description interface
repository, and a local name to refer to the particular interface instance. A configuration is a set
of components connected together to form a product, where a typical configuration contains tens
of components, and a typical component may contain 10 interfaces. Modules are declared within
a component and connect to its interfaces or to the interfaces of its sub-components. Modules
have access to any interface whose base is bound to the module itself, working like an
interfaceless component that can be used to glue other interfaces.

The connection between components in Koala are implemented by the compiler at compilation
time. Koala obtains a directed graph of modules, interfaces, and bindings, and it generates a
header file by renaming macros. The following features of the Koala approach show how Koala
can deal with diversity in the development of software:

� Interface Compatibility: It is possible to create a new interface type that contains all the
functions of the previous interface plus some additional ones.

� Function Binding: This feature is used to bind functions of different names or even different
interfaces by allowing a function to be bound to an expression in CDL. The generated macro
will contain calls to functions of interfaces bound to that module.

� Partial Evaluation: Koala understands a subset of the C expression language and partially
evaluates certain expressions.

� Diversity Interfaces: Components may be parameterized, they might not contain
configuration-specific information in order to be reusable in many different platforms. In
Koala, a Standard Interface Mechanism (SIM) was developed to reach this goal.

� Diversity Spreadsheets: Each component is allowed to provide an interface that contains the
number of threads required in real-time kernel usage. It is also possible to use Koala to add
all the threads at compilation time.

� Switches: This feature is used to handle the structural diversity in the connections between
components. Koala also supports a limited form of dynamic binding in real-time kernel
usage.

System developers within Philips Consumer Electronics (CE) are currently using Koala for
developing embedded software in TV sets, set-top boxes, video recorders and DVD players

31

[Omme00]. Due to the large variety of products in the product population of Philips, many of
their architecture concepts have a scope that is not global. This fact, let them create a family of
components that may be easily adaptable to regional requirements through the Koala component
approach [Omme01].

3.2.2 ASCET-SD

ASCET-SD is a component-based development tool for embedded control systems, developed
by ETAS GmbH [ETAS99] hosted in Stuttgart, Germany. The tool is a graphical development
environment that allows target-in-dependent functional specifications, where components are
represented by block diagrams. Control software for embedded systems is generated
automatically from those diagrams. Target-identical prototyping is provided at early tests phases
in the development cycle enabling the designer to concentrate on the physics of the embedded
control system, and design the control unit in an abstract environment in order to finally
generate the desired target code.

In ASCET-SD components and their functionality are described by block diagrams, state
machines, text specifications, and C-interfaces all together providing design engineers with
some description options for control algorithms [Flei00]. With the ASCET-SD tool, the
specification of developing project is translated into C-code automatically. Afterwards, this code
may be transformed into executable binary code using target-specific tools (compilers, linkers,
debuggers), and loaded on the target platform. Code generation is supported in the scenarios of
physics experiments, implementation probes, and controller tests.

The block description of control systems is based on interfaces in the control process. ASCET-
SD blocks represent objects which encapsulate items of information and are interconnected by
interfaces. The object-based presentation of ASCET-SD ensures that those blocks can be reused
reliably. The block diagrams contain a purely physical presentation of control algorithms.
Information about the implementation is added to the block diagram by means of editors, where
the order of computation is defined. In addition to the typical data flow elements, block
diagrams in ASCET-SD contain also control flow elements such as branches. The control flow
is shown in separated line and link types. It is also possible to specify the processing order of
block operations directly by assigning block attributes to the graphic. Complex algorithm can be
presented in graphic form by means of sequencing of elementary blocks and respective control
flow elements.

ASCET-SD makes use of state machines, a widespread modeling technique in use by the control
systems developers community. This modeling method is of special interest for systems where
different control strategies are required depending on the working point. Trigger conditions and
state methods are also specified by block diagrams or even by texts. Text specification of
control algorithms are implemented in the Embedded Software Description Language (ESDL),

32

which contains a portable physical description of the component. Instances are encapsulated in
classes and modules. In ASCET-SD, all objects are fixed at compilation time. C sources can be
integrated in two ways, internal C-code is managed in the ASCET-SD database in the same way
as ESDL classes, whereas external C-code is stored in the user’s final system being used directly
for other applications. Binary code can also be integrated if programme sources are not
available. In the ASCET-SD tool set, the operating system is configured visually in an editor.

The main application area of this tool are embedded systems for automotive industry. Vehicle
electronics have already penetrated nearly all parts of those systems. Historically, development
started with engine and transmission control, but nowadays electronic control units also includes
the brakes and the suspension as well as comfort systems (cockpit features, navigation systems,
etc). Knorr-Bremse [HSW01], a manufacturer of brake systems for rail and commercial
vehicles, has already relied on ASCET-SD for brake systems for rail vehicles since 1998. The
main reason for that decision was because ASCET-SD ensures consistency from analysis to the
finished code and optimizes the interface between project engineering and software
development. At the same time, it improves the quality of the code and it is compatible to the
internal operating system. Knorr-Bremse was also able to save on resources by replacing certain
development steps with standard ASCET-SD modules.

3.3 Component Approaches Proposed by Universities
In spite of the above mentioned approaches, component based development is one of the hottest
topics of interest in many university research groups nowadays. In the next sections three
component proposals developed at German universities are described. They were investigated in
the scope of this thesis because they have applications in the industrial automation domain.

3.3.1 ViPER – Synchronous Components

The concept of synchronous components has been applied at the Institute of Industrial
Automation and Software Engineering (IAS) at the University of Stuttgart for developing
software for embedded real-time systems since 1997 [LuGu98, Gunz02]. This approach utilizes
the fact that embedded real-time systems are reactive systems [HaPn85] which are computer
systems interacting continuously with their environment. Synchronous languages have been
developed to simplify the programming of reactive systems. They are based on the synchrony
hypothesis [BeGo92] which makes the following abstractions:

� The computer is infinitely fast.
� Each reaction is instantaneous and atomic, dividing time into a sequence of discrete instants.

Different reactions cannot interfere with one another.
� A system’s reaction to an input appears at the same instant as the input.

33

A real system behaves synchronously if it is fast enough. It must always finish its computations
before more events arrive from the environment. The synchrony hypothesis is a generalization
of the synchronous model used for digital circuits where each reaction must be finished in one
clock cycle. The synchronous model of time simplifies the design of correct systems. Temporal
details are hidden during specification and so the behavior of the system is also simplified. Non-
deterministic behavior caused by the interference of parallel actions cannot occur. Deterministic
systems are one order of magnitude easier to specify, analyze and test than non-deterministic
ones. The most important languages based upon the synchrony hypothesis are ESTEREL,
LUSTRE, SIGNAL, STATECHARTS and ARGOS [HLR92, Halb93, Hare87]. ESTEREL is an
imperative language while LUSTRE and SIGNAL are declarative and STATECHARTS and
ARGOS are graphical languages.

On the basis of the synchrony hypothesis it is possible to define components which can be easily
composed to form larger systems. Since the components communicate through signals being
sent by broadcast, the components are not required to make any assumptions about each other.
They work independently like software ICs. A synchronous software component consists of a
reactive part and a transformational part. The reactive part is specified in a synchronous
language. The transformational part is optional and consists of data-type specifications and
several data-handling functions written in the host language (Figure 3.4). At the IAS’
synchronous component approach, ESTEREL is used to implement the reactive part and C to
implement the transformational part of the components. The interface of a component consists
of input and output signals [GuNä99] as presented in the figure below.

input signals . .
 .

. .
 . output signals

Synchronous Component

data processing
functions

transformational part

reactive part

control & data
variables

data type
definitions

Figure 3.4: Synchronous Software Components Architecture.

ESTEREL is a synchronous language based on a mathematically precise defined semantics
developed specifically for deterministic reactive systems. The programming model of
ESTEREL is the specification of modules which are assumed to be executed in parallel. The
modules communicate with one another and with their environment through signals. The signals

34

are broadcasted and can be received from each module. A signal has a state and can optionally
have a value of an arbitrary type in each instant of time. Sending and receiving signals is
performed instantaneously according to the synchrony hypothesis. ESTEREL only allows the
specification of deterministic behavior. The input signals for each reaction step determine the
output signals uniquely (and their values) to be sent in this instant as well as the input output
behavior of the programme. If reactions are not instantaneous, they are as fast as they can be,
because they include only actions that must be done during one cycle time. Process-handling
and synchronization are done at compilation time, therefore produce no actions. ESTEREL only
supports some basic data types (boolean, integer, float, double and string) and operations. Any
other necessary data types, their possible operations, and external implementations must be
provided by additional code written in the host language.

The synchronous components developed at IAS are used under the ViPER concept. The name
ViPER stands for Visual Programming Environment for Embedded Real-Time Systems and
summarizes both a method and a tool environment for visual component-based development of
embedded real-time systems [Gunz02]. The concept consists of the design model, the generation
model and the execution model as shown in Figure 3.5. The three models are described in the
following paragraphs.

Logical View Architecture View Timing View

Node

Verification Timing
Analysis

Design Model

Generation Model

Execution Model

Implementation

Specification

t
µC

C_2

C_3

C_1

Project
Database

Component
Libraries

Code
Generation Optimization

Reactive Kernel

Data Processing

Communication
Interface

Field I/O
Interface

Figure 3.5: Elements of the ViPER Concept.

35

� In the design model, application software can be constructed from components provided in
several libraries. At this level of abstraction only high-level descriptions of components are
used. Components are specified with their interfaces and parameters. The implementation of
the components is not visible to the user. For the development of embedded systems the
hardware platform must also be considered. For each platform a hardware library has to be
provided. This library includes the specification of the hardware components which can be
used from the software. The design model itself has three different views – the logical view,
the architecture view and the timing view. In the logical view, the logical structure of the
system is specified, components are connected and data and control flow are defined. For
this purpose block diagrams are used which can be hierarchically composed. In the
architecture view software components can be connected with platform-specific hardware
components. This includes connections with hardware ports to which sensors or actuators
are connected as well as communication connections between the nodes of a distributed
system. The timing view specifies the temporal behavior of the system based on the division
of time in time-slots in which certain actions are performed.

� The generation model describes the process of generating executable code from the high-
level graphical specifications. In order to meet the requirements of a specific application, the
code produced must have minimal overhead. This is achieved using the synchronous model,
generative techniques and code optimization. Moreover, it is also possible to generate code
for simulation and verification purposes. The generation process consists of several stages
where ESTEREL code, C-code and makefiles are generated. The intermediate code is a
finite state machine driving action tables that call the data processing functions. For a
specific hardware platform, a platform-specific C-compiler and a development environment
has to be provided to compile, link and download the generated code to the targets.

� The execution model is an execution framework for a single node in a time-triggered system.
It provides a generalized view on a distributed time-triggered application. For a concrete
application, the component-based design is mapped into this framework by the generation
model automatically where the overall structure does not need to be changed. This can be
reached by clearly separating platform-specific and application-specific parts from platform-
or application-independent parts.

Some examples of successful usage of this component approach were the development of the
control systems for a steer-by-wire application [GuNä99] and the construction of a library of
synchronous components based on the IEC norm number 1131-3 for the usage at programmable
controllers applications [Luce99].

3.3.2 Distributed Intelligent Objects

The component model Distributed Intelligent Objects (DIO) permits the utilization of
standardized object technologies and frameworks to configure a particular, custom-made

36

solution for distributed, heterogeneous automation systems [RiHo99]. This component approach
was developed at the Dresden University of Technology at the Institute of Automation (IFA). In
order to create or adapt an application, the DIO software model, offers a set of libraries
containing pluggable components that are manipulated through a graphical environment. Within
this environment, available components are inserted into projects by mouse-click and may also
be connected to other components graphically having their parameters adjusted afterwards in
order to generate the desired application.

A DIO component encases certain functionalities and data of a system unit (hard and software)
in a unique identifiable object and offers their services, or their service dependencies, over pre-
defined software interfaces with help from typed ports. At the run time, components exchange
events and data over established connections among themselves, without having to possess
mutual knowledge of their concrete static interfaces. DIO components implement a special
interface, which is specified with CORBA-IDL or COM-IDL, depending on which technology
is to be used in the complete specification of a particular project. DIO components are produced
and destroyed by a DIO server which is normally associated with a task of an object and, where
the actual component implementations are located. DIO ports represent a concept for event-
oriented and strictly typed object interactions, working well at run-time and in real-time
conditions. This technique is used for the access and for the exchange of variables such as
process signals, control data, and events (timer, interrupts, alarms, etc.). Figure 3.6 presents the
basic elements of a DIO component and the connection between two components.

Type

x a
y b
z c

[Parameter]

O-PortsI-Ports

Task

Internal connection

CORBA

COM

Object A Object B

CORBACORBA

Figure 3.6: Basic Elements of DIO Components and their External and Internal Connections.

An I-Port represents an offered service of a component (similar as a method), an O-Port is used
to communicate with a service (similar as an event or a method call). The implementation of
ports is made through normal CORBA objects or CORBA object references. This decision
depends on whether a port is to be exported for inter-process communication with other
components or whether it is to be used internally in the actual process. DIO defines three
primitive communication modes. The first is denominated NORMAL_MODE and implements
the simple exchange of objects, whose processing does not depend on another event. The second
communication mode is called ONEWAY_MODE where an object can be transmitted, without
acknowledgement and can be returned immediately. The last mode is the BLOCKING_MODE,

37

a port in this mode implements the exchange of objects, whose processing depends on certain
events. Every DIO component may have parameters which are accessed from outside via their
names and the desired values. DIO accepts parameter modifications during run-time of a
component. Parameters are useful for the design phase of an application permitting the
adjustment of different levels but will only be effective at run-time when they really receive a
value. An operation mode specification is introduced to the component model in order to
achieve safer run-time behavior and optimal performance. In DIO, operation mode is defined as
a type of enumeration. DIO prescribes itself, in two possible models, the configuring mode if
they do not transmit or receive objects over their ports, and the remark mode if it can
communicate with other objects over their ports.

There are features of DIO-applications that proved to be useful for automatic controller design
programmes, real time simulation programmes, control systems programmes, process
visualizations as related by the University of Dresden [RiHo99]. Moreover, DIO has
frameworks for CORBA and COM so that development and application of user-specific
components are substantially facilitated.

3.3.3 ACPLT Components

ACPLT stands for AaChener ProzessLeitTechnik (Aachen Process Control Engineering) and it
was developed and maintained by the Aachen University of Technology at the Process Control
Engineering Institute (PLT). Its main goal is to give a platform for the component-based
development of tasks used in process control systems. ACPLT works seamlessly in
heterogeneous systems, because its message transfer mechanism is based on existing standards
like TCP/IP. Moreover, ACPLT offers an application layer with a degree of abstraction more
suited to the purpose of process control engineering [Albr00]. The structure of the ACPLT
product family is presented in Figure 3.7 [AMU00].

Process Control Application

Standard Operating System

Process
Control

Operating
System

Function Blocks System
ACPLT/FB

Reserved for
Future ACPLT

Elements

Communication
System

ACPLT/KS

Management of
Objects System

ACPLT/OV

Figure 3.7: Elements of the ACPLT Family.

38

The lowest functional level of ACPLT is composed of a communication system (ACPLT/KS)
and a management of objects system (ACPLT/OV). Potential users of these middleware
components are developers of new functional units (also called components) implementing new
communication features, or end users wanting to access information available at this
architectural level. The upper level of the architecture is denominated ACPLT/FB and is
responsible for the realization of classical process control software structures using the services
offered by the middleware components. Potential users of this layer are end users developing
process control applications.

These process control applications may be developed by the deployment of already stored
components or by the generation of new components not yet available on the library. Such a
new component does not need always to be developed from scratch, rather it may be constructed
upon other components that partially fulfil the requirements. The open structure of ACPLT
components make this adaptation procedure easy to be implemented. The main characteristics of
the three elements of the ACPLT family are described in the following paragraphs.

ACPLT/KS is a platform-independent communication system, and network-capable
communication environment. It supports various flavors of Unix operating systems (for instance
HP-UX, IRIX, Linux, Solaris) as well as Microsoft's Windows NT/95/98, and
COMPAQ's/Digital's OpenVMS (on Alpha hardware). Communication within ACPLT/KS is
based on the client-server model and happens by synchronous message exchange implemented
through the Remote Procedure Call mechanism. The ACPLT/OV is responsible for the
realization of the system objects in accordance with the desired platform for the end application
[PLT99]. ACPLT/OV manages not only the application objects but also the model of the objects
in a persistent data base. Classes and respective associations are stored in libraries and can be
called during run-time execution. The final code is automatically obtained by the usage of a
code generator able to read the model representation and convert it to the C programming
language. ACPLT/OV is completely integrated to ACPLT/KS which enables the access to the
network environment permitting transparent communication among distributed objects.

The function block system ACPLT/FB offers users the possibility of constructing their own
process control applications by the choice of available blocks [PLT99]. The basic function
blocks of ACPLT/FB can be seen as representatives for the well-known single hardware
modules. They combine the advantages of encapsulated functionality known from single
hardware modules with the flexibility of modular software realizations. The ACPLT/FB is based
on a static object model that describes the most important classes and their associations.
Engineering using function blocks is straightforward since no programming is necessary, users
need only to set the desired structure and parameterize the function blocks properly. The only
situation where users may need to programme themselves is when the desired functionality is
not yet available. In these cases they need to programme their own function block and load it
dynamically into the system.

39

Some software packages based on ACPLT are already available as commercial products of
many companies, as for example Endress+Hauser, Commutec and Foxboro [Eppl02]. At EC
Erdölchemie GmbH, ACPLT is used in an industrial communication system providing access in
a heterogeneous environment to about 100,000 technological objects, which are rendered during
run-time into approximately 1.4 million communication objects. In another application at
Cologne-Stammheim, a large-scale wastewater treatment plant, ACPLT is responsible for a
system to handle the messages and alarm archives, trend information, and process data. Some
other publications relate about the successful usage of this component technology at laboratory
automation applications.

3.4 Summary of the Presented Component Approaches
All technologies discussed in this chapter are grouped in Table 3.1, where the main
characteristics of each one is summarized. The table shows how different may be the
technologies with any application in the industrial automation domain.

Table 3.1: Component Technologies used in Industrial Automation Applications.
Developed by Coded in Platform Interoperability Interface

Commercial Approaches
CORBA OMG Mapped to: C, C++,

Java, Ada
Any platform if
there is CORBA
ORB Compatible

ORB in IIOP Defined IDL, Supports
multiple inheritance at
interface level, Binary
standard

COM
DCOM

Microsoft
Corporation

Specification in:
Binary level, C++,
Java, COBOL, VB

Any platform if
there is COM
Service

RPC in Object
Remote
Procedure Call, in
Binary Standard

Defined IDL in MIDL
data type, Support
multiple interfaces for
objects, Binary
standard

JavaBeans
EJB

Sun
Microsystem

Java JVM Java Remote
Method Protocol

Defined in Java,
Support multiple
inheritance at interface
level, Byte code
standard

.NET Microsoft
Corporation

C# and others With
support of Common
Language Runtime

.NET platform
based on XML
service platform

XML and Simple
Object Access
Protocol (SOAP)

IDL standard

Industry Approaches
KOALA Philips C Windows Through

interfaces
Defined IDL and CDL

ASCET-SD ETAS GmbH C ETAS-OS
ERCOSEK

Messages ASAP standard

Academic Approaches
ViPER University

Stuttgart (IAS)
C and Esterel Unix (extensible

to other OS)
Signals and
Sensors

Defined in Esterel

DIO TU Dresden
(IFA)

C++ Windows RPC like CORBA
or DCOM

Defined in IDL
standard

ACPLT RWTH Aachen
(PLT)

C++ Windows like,
Unix like

TCP/IP and
ONC/RPC

Defined in IDL
standard

40

It is possible to conclude, based on the study presented in this chapter, that the diversity among
the component technologies used in industrial automation applications really is one important
aspect to be considered by any management proposal. A meaningful component management
system must be able to work with many different component specifications, meaning that it
must deal with different representations simultaneously. One goal of this thesis is to propose a
way of representing components able to respect the specificity of each component technology
without limiting the usage of the management approach only to this technology. In other words,
the way of representing the component technologies adopted by the desired component
management system must be flexible being able to be adapted to other technologies and even to
receive new representation models of future component technologies. This flexibility was not
present in the management of components proposals found in publications (see chapter 2) and
will increase the final value of this thesis.

In this chapter the most relevant component approaches with any usage in the industrial
automation domain were presented. Not only the software industry proposes and produces
software components, there are also proposals of component technologies coming from the
hardware industry. Developers of consumer electronics and embedded systems need efficient
software artifacts and also proposed their own components and component-based development
approaches. Moreover many university research centers have been studying and developing
components specially designed to the industrial automation applications. One meaningful
component management system shall be able to deal with such variety of component
approaches. More than that it should be able to accept new approaches whenever these new
technologies have any usage in the industrial automation domain.

But what differentiates components developed to be used in the industrial automation domain
from other components? Which kind of information must a user receive about such components
in order to properly decide about their reuse? How is it possible to represent this knowledge and
how is it possible to model it? These questions are very important for this thesis and are the
main theme of chapter 4. In this chapter a study of how the knowledge about components can be
represented is presented. Afterwards, the most important knowledge about the industrial
automation domain is summarized in a graphical manner. All this information will be used in
the formulation of a flexible model able to represent different component technologies
simultaneously which will be the basis of the component management system proposed in
chapter 5.

41

4 Knowledge Representation for Industrial
Automation Components

The usage of large collections of reusable, domain specific software components poses new
problems for software engineers. The best way to locate and retrieve appropriate components
and how to meaningfully browse and navigate among functionally related components are some
of these open problems, that have been tried to be solved through the introduction of new tools
to support the whole component-based development process. Central to such tools is one
component repository, which contains the actual reusable components, and, more importantly, it
must contain information about these components enabling users to retrieve and discriminate
between functionally related components.

But what is the right information to be represented about one component and how should this
information be organized? The effective choice of a component requires a deep and detailed
understanding of diverse knowledge about the component’s functionality [Fisc87, HeMa91]. In
order to properly use a component in the way it was intended to be used, users must understand
performance characteristics, function call sequences, and even pathological behavior [Kotu98,
CiRo99]. In other words, system developers need to know what to expect from a software
component, they must have access to documentation about the component’s interface, behavior,
and respective operational conditions.

As seen in last chapter, there are many technologies that have applications in the industrial
automation domain. The differences among those technologies make it impossible to adopt a
unique formal model for representing components able to cover them all. Nevertheless, the
representation model to be proposed in this thesis must be well suited to all those technologies
and must constitute a collection of information capable of well describing a component
facilitating its understanding. Industrial automation applications are essentially real-time
systems that are constrained by hardware limitations, what makes it generally more challenging
to develop than general applications. Real-time systems frequently execute under tight time
requirements in low memory using low computing power. A well designed representation model
must put in evidence the most important real-time characteristics of the components used in this
domain.

In the following sections a study about the usual ways of representing components are
presented. In section 4.2 one of the most important aspect of the presented concept is discussed,
i.e. the particular knowledge someone needs to deal with in order to understand the
particularities of the industrial automation applications. Following this section, a discussion
about the technical and non-technical information needed about components is done. The

42

concept for a classification scheme for the domain of interest for this thesis is presented in
section 4.4.

4.1 Representing Information about Components

The question proposed in this section is how the available information about reusable
components must be represented in such a way that the management of these components can be
done better later. Different approaches are found in various publications as the index based,
knowledge-based and hypertext-based. Additionally, components were represented through
formal specification methods [FrGa90]. After the study of these approaches it is possible to
define which one may fit better to the problem presented, i.e. the management of components
used in the industrial automation domain.

4.1.1 Usual Representation of Components

As stated in [Szyp98]: “For a component to be composable with other components it needs to be
sufficiently self-contained. Also, it needs to come with clear specification of what it requires and
provides. In other words, a component needs to encapsulate its implementation and interact with
its environment through well defined interfaces”. That is actually the most acceptable way to
represent components nowadays. Here the functional view of components is emphasized and
only two aspects are represented:

• What the component can do, its functionality or in other words its behavior (what it requires
and provides), and

• How the component can communicate with other components and systems, or its interaction
description (well defined interfaces).

The definition of components as independently deliverable packages of software functionalities
leads to a representation where the technical information aspect is the most important one. More
precisely, the only technical information needed for the reuse of a component is a description of
its behavior and a description of its interface. This way of representing components is
summarized in Figure 4.1.

Component Technical
Information

Interface
Description

Behavior
Description

described-by

organized-in

organized-in

Figure 4.1: Most Common Way of Representing Components.

43

One question to be answered is if this information is enough to achieve a good management
concept, able to facilitate the searching, the finding, the understanding, and finally the decision
about reusing components. Indira Kurugant from Lucent Technologies, a company of the Bell
Laboratories, wrote in 1999 [Kuru99] that the component selection for reuse purposes is
difficult due to the lack of clarity on what constitutes a component, due to the incomplete
understanding of the functional specification, of the performance attributes, and the deployment
constraints that must be met, and lastly due to the non-uniformity in vendor offerings with
respect to packaging of functionality into components. None of those desired characteristics are
represented in Figure 4.1.

Other aspects that must be taken into consideration are the non-functional requirements that
originated in the component being managed [LeWi00]. For the goals of this thesis, important
non-functional requirements are the usability, reliability, performance, and supportability
offered by components. Some decisive characteristics of a component are originated from these
requirements and must be presented as a possible way of selecting components for reuse. The
more developers add technical and non-technical descriptions to their components the greater
the chances of someone reusing them [PSB00]. Examples of such descriptions considered in
this thesis are on-line documentation, demonstrations of use, evaluation procedures, sample of
code and a complete set of read-me files describing for example product changes, bug fixing,
systems requirements, and some other issues.

But a component may also be selected based on a different set of values that classify it on a
specific aspect of interest for the domain of usage, as for example, on the desired hardware
platform, on the operating system, or on programming language [DuKn93, MMM94, DaFu95,
Henn95]. All these aspects are also neglected in the model of Figure 4.1. A better representation
composed of technical and non-technical aspects of a component, and with a mechanism for the
searching and finding of desired components proposed here is presented in Figure 4.2.

Component Technical
Information

Non-Technical
Information

described-bydescribed-by

Classification
Scheme

classified-by

composed-of composed-of

Figure 4.2: Extended Representation for Components.

44

This representation is a refinement of the most common way of representing the knowledge
about a component more suited to the component management system described in this thesis. It
is divided in two blocks of information, technical and non-technical and additionally has a
classification scheme composed of information obtained from the two mentioned blocks.

4.1.2 How to Represent the Information about Components

The central goal of those developing reuse repository systems is to find some manner of
searching for a component that satisfies the specific needs of an individual component user. The
component must be appropriate for the user but it must also be recognized as being appropriate
otherwise it would never be used. This search and find of desirable components is obtained
easier through a well designed component representation. Frakes and Gandel [FrGa90] defined a
representation mechanism as being a language (textual, graphical, or other), used to describe a
set of objects. For example, books in a library are represented by bibliographic records in a
library catalogue. The reason that a representation is created is to allow operations on it that
would be more difficult or even impossible to be done on the represented object itself. Using the
above mentioned example, it is much easier to sort a set of bibliographic records according to
author than to sort the same number of books by the same criteria. In the rest of this section
methods to represent the knowledge about a component are studied. In a first step, three non-
formal approaches frequently discussed in various publications are presented. They are the
indexing-based, the knowledge-based, and the hypertext-based representations. Afterwards
some discussion are presented about representing components using formal specification
methods.

Informal Methods for Representing Components
The indexing-based approaches are based on the proposition that there is a characteristic
vocabulary, globally accepted, well known, and recognized by specialists of a specific domain.
This vocabulary is then used as the basis for representing components in this domain and it is
obtained in two different ways: through controlled or through uncontrolled mechanisms. A
controlled vocabulary considers the semantics of the associated terms and must be developed by
specialists. An uncontrolled vocabulary is developed without any previous intervention or
semantic specification, the terms that appear are not previously defined. The indexing of
components themselves is done in a manual procedure (implemented by a specialist) or in an
automatic procedure (using specially developed tools).

The indexing-based representation used in the Information Retrieval Approach [SaMc83]
extracted the characteristic vocabulary of a component domain based on their frequency of
appearance in the available documentation. In this representation, the selection of terms was
done based only on statistical results obtained, no semantic consideration was taken into
account. In some other works this way of characterizing components was treated as automatic

45

classification [Luqi87, FrFo87, LoMi89, Bond97]. In accordance with the automatic indexing
method, all components having the same terms are arranged together in groups. The
classification is done in a mechanical procedure and no reference to the intellectual analysis of
creating similar classes based on the semantic relationship is done.

Indexing representation can also be generated based on keywords or classes previously selected.
Generally the terms are derived using a combination of two methods. The first method is
denominated “Literary Warrant”, the index terms are derived from the examination of the
subject area and a term will be used only if it occurs often enough in publications of that subject
area or domain. The second method is the “User Warrant” and the index terms are included in
the controlled vocabulary list if they are of interest to the user population.

In the indexing-based approach, classes that cluster the pre-defined vocabulary together are used
to organize a domain specific hierarchic structure. The representation of components is then
done by the association of one component to each term from the vocabulary. Additionally each
term may have one specific semantic definition. In the indexing representation based on
uncontrolled vocabulary no restriction is placed on what terms can be used to describe a
component. Terms used in uncontrolled vocabulary approaches can be drawn from any source.
Nonetheless, those terms are usually obtained from the available component documentation
through a free text analysis procedure. In a second step some level of hierarchy are imposed to
the terms selected.

Knowledge-based approaches deal with methods for the representation of knowledge about
objects of interest, relationships among these objects, and respective rules. They were mainly
developed and applied in artificial intelligence applications. Two useful factors to consider when
evaluating knowledge representations are their representational adequacy and their heuristic
power. Representational adequacy refers to how much one can express with the representation.
A simple list of keywords has poor representational adequacy because the syntactic and
semantic relationship between the keywords is missing. Heuristic power refers to the kinds of
inference one can do with the representation.

One appeal of the knowledge-based approach is that the representation offers a powerful way of
expressing the relationships between system components. This is important for helping users to
understand the function of components. One potential problem with knowledge-based methods
is that the knowledge acquisition itself has proved to be a barrier, as it was in other investigation
areas of artificial intelligence. Some publications shown that it was too difficult or to expensive
to acquire the knowledge needed to feed knowledge-based reuse systems [Stef95]. There are
three basic flavors for knowledge-based systems: semantic networks, production rules, and
frames structuring.

A semantic network is a graphic descriptive language used as network model of information.
The network is presented as a directed graph where nodes correspond to conceptual objects and

46

which arcs correspond to relationships between those objects. An arc is labeled by the name of
the relationship between objects. Several arcs can have the same label. However each object is
represented by only a single node. Given a node in the network, it is assumed that the network
provides direct access to all the relationships in which the node participates, independent of the
direction of the arc.

The Figures 4.1. and 4.2 previously presented are examples of simple semantic networks. The
syntax of the graphical representation of semantic networks here adopted considered that nodes
are depicted as ovals and that arcs are depicted as arrowheads and labels. Arcs naturally have
two ends, so they are most useful for representing two-part or binary relationships. Relations
involving more than two parts (n-array relations) can be represented as nodes. Thus, in addition
to nodes that correspond to physical objects there may exist nodes that stand for relations.

Moreover, the relationships represented in semantic networks can be expressed in the clausal
form of logic. Examples of such usage were related by Deliyanni and Kowalski [DeKo79]. The
graphical approach of semantic networks have good knowledge representation adequacy. It is
also well known that many other representations in knowledge systems are based on graphs
[Stef95] making the choice of semantic networks appropriate and well accepted by knowledge
experts. In fact, it is quite easy to express knowledge in this form, nevertheless, its heuristic
adequacy is quite poor. It is very difficult to do useful reasoning with this representation unless a
more powerful semantics is imposed on it.

Production rules is a good knowledge representation formalism. An example of the
classification of a component using this technique is shown below.

IF component needed IS control system

AND algorithm IS pid

THEN component to use IS pid10.c

Note that the knowledge representation is quite precise, but the way of acquiring these rules are
not trivial, demanding much time and effort and causing an increase of the costs because human
intervention is necessary to formulate the rules.

The knowledge representation approach called frames structuring is based on data structure
composed of slots and fillers. Using the example of the previous paragraph the component
“pid10” is represented as:

pid10

AKO: algorithm

Operation: controlling

Operands: control signals

47

The slots here are in the left hand columns and the fillers in the right following the colons. From
the representation, it is possible to conclude that “pid10” is a kind of algorithm (AKO) which
implements a control task using specific control signals. The mechanism for the acquisition of
knowledge of this approach has the same problems presented in the production rules approach.

Differently from the other two presented approaches, the hypertext-based approach [Frei94,
GaSc90] considers that the document or its description is part of one information network. This
network is then constructed based on the Hypertext-Concept [Land94] where the reusable
artifacts represent the nodes and the relationships and dependencies between artifacts are
represented by the arcs. This structure allows users to move from one place to another in a body
of text via links. Making use of the example above, someone searching for the component
“pid10” could arrive at a complete documentation on control systems. Figure 4.3 shows a
hypertext representation for that component. From the representation it is assumed that “pid10”
is a code written in C, which is also used in the programme “PowerControl”, and both
programmes are additionally discussed in the book Automatic Control Systems. As much as the
two other presented approaches, hypertexts represent knowledge in a very well described form
[CFG91]. One interesting but also problematic aspect is that the information may be distributed
in different locations and sources. The generation of links also needs human intervention.

 Name: PID10.c
 Type: Code

:
 Language: C

 Title: Automatic Control Systems
 Author: Kuo

:
 Type: Book

 Name: PowerControl.c
 Type: Code

:
 Author: Ogata

used in discussed in

discussed in

Figure 4.3: Example of a Hypertext-based Representation of a Component.

For the three above presented approaches the acquisition of knowledge about one object is done
in a manual form based on the proper choice of attribute-value couples or through semantic text
analyses [Nie92, NPV93]. For the end user of such a knowledge system this relation among
elements and their attributes is transparent because the gathering of knowledge is a procedure
done beforehand based on the expertise of the people involved. For someone developing such
systems the quality of the knowledge acquired is a very important factor that may determine the

48

success of the final system. In the same way as by the indexing-based approaches some related
systems gave support for the user by natural language approaches [DBSB91, DeJo97], some
others needed the manual introduction of desired attributes [OHPB92]. A characteristic for all
knowledge-based approaches is that they offer to their users not only the information acquired
but also additional intrinsic knowledge about the studied objects.

Formal Methods for Representing Components
All the above mentioned methods of representing components are classified as informal
approaches, nevertheless they do represent components in a correct, precise and accurate way.
On the other hand, it is also interesting to investigate some formal approaches as Estelle,
LOTOS and SDL [Turn93], Z [Spiv92], and CSP [Hoar78] where software artifacts were
formally described. These approaches tried to precisely describe the interface and the semantics
of software components using different mathematical tools. For example, through the
introduction of a signature for each artifact [ZaWi95a] and its specification (behavior and
semantics) [ZaWi97], or using an algebraic specification methodology. But solving the problem
of matching algebraic specifications of components is not decisive for reuse purposes. Some
other authors tried to add a kind of semantics to the specification matching, but could not prove
any decisive advantages of their approaches [JeCh93, JeCh95, MMM95, MoGa91]. Another
limitation is that the algebraic specification is applicable only to the description of components
in a limited amount of application domains. In fact, no successful attempt to the industrial
automation domain, the central goal of this thesis, could be found in publications.

The proved advantages of such approaches are the powerful and precise evaluation if an existing
specification meets the requirements of a desired specification. A disadvantage is that the usage
of mechanisms to find components that only partially meet the desired requirements are
confused and difficult to implement. Nevertheless, not all aspects of a component are described
by formal specification, as for example time constraints, or hardware requirements. An effective
usage of formal methods that could increase the reuse of software artifacts could not yet be
proven to exist in the praxis [MoBa91], nevertheless some approaches tried this way [JeCh93,
JeCh95, ZaWi95b, ZaWi97, Chen93]. Meyers et al justifies the avoidance of formal methods for
representing components with the following arguments [MMS98]:

• “It is too difficult to build mathematical models of the most delicate aspects of ‘real’
programmes, from floating-point computation to pointers;

• There are few powerful tools to assist this effort;
• Even more fundamentally, it is just too expensive and difficult to apply formal techniques

thoroughly.”

The small contribution in practice in contradiction with the enormous effort to construct such
models (specification of the reusable component model must be precise, correct, and complete)
turned this approach to be not viable to be applied to the components designed for industrial

49

automation. Another problem is that the user must be accustomed to new formalisms applied to
the component model, what makes the costs even higher.

Concluding Notes on How to Represent Components
The main goal of the concept presented in this thesis is to facilitate the finding and
understanding of components for a specific domain area that has no standard model previously
defined. The definition of a formal model for the components is out of the scope of this thesis
mainly because such approaches have already proved to be inadequate to solve similar problems
when applied at industrial approaches [MMS98, Wieg98, Seli01]. The concepts of indexing-
based and hypertext-based representation are used later when talking about the possible ways of
organizing and presenting the information acquired about one component.

After experimenting with the approaches mentioned above and judging their pros and cons,
semantic networks proved to be the most appropriate form of describing the knowledge
someone needs to have in order to meaningfully understand the functionality, usage and
limitations of components for the industrial automation domain. The graphical representation of
this knowledge obtained using semantic networks is much easier to understand and reason about
than the one offered by the other approaches studied. It was also observed that modifications on
the desired representation were easily implemented in the network. Moreover, the elements
composing the necessary knowledge and the relationships among these elements offered a better
global overview when represented by a network.

Semantic networks is then the approach used until the end of this chapter to organize the large
amount of information necessary to correctly work with components themselves and to work in
the industrial automation domain. The goal is to represent the necessary knowledge to work with
components and to work in the industrial automation domain through semantic networks in
order to manage this knowledge properly later on through a suitable component management
system. Sources used for the compilation of this knowledge, and consequently for the
construction of the semantic networks, are the findings and opinions of experts on components
and experts on the industrial automation domain presented in publications and the experiences
developed at the IAS during this research work. The result of this research lead to a global
knowledge representation containing the most relevant information about components for that
domain which is presented and explained in the next sections.

4.1.3 Representing Industrial Automation Components

The knowledge model of Figure 4.2 is a good representation for components in general but has
no particular aspects from the target usage domain of this thesis. The necessary knowledge and
the way of presenting this knowledge vary if the final users have different goals and
backgrounds. In fact a representation of a component must consider particularities of the

50

application domain that are decisive to the understanding of the component and consequently to
the reuse decision.

A better representation must consider how the technical and non-technical knowledge varies
inside different component technologies used in the desired domain. In Figure 4.4 an
improvement of the component representation of Figure 4.2 is presented. The new
representation considers the above mentioned semantics relationships. In this thesis the target
domain is industrial automation, and the different technologies applied at this domain must be
taken into consideration. Additionally, it is necessary to develop a classification scheme able to
deal with the domain particularities resulting in a better representation for industrial automation
components.

Component Technical
Information

Non-Technical
Information

described-bydescribed-by

Classification
Scheme

classified-by

composed-of composed-of Industrial
Automation

Domain

designed-to

used-at

Component
Technology

depends-ondeveloped-in

Figure 4.4: Global Knowledge for Understanding Industrial Automation Components.

The presented diagram represents only the main aspects of the knowledge needed to work with a
component at the industrial automation domain. In fact, it is necessary to refine this model even
more exploring the particularities and special needs that must appear in every represented
conceptual object and respective relationships. This refinement is done in the next three sections
specifically for the industrial automation domain, for the technical and non-technical
information, and for one classification scheme designed for industrial automation applications.

51

4.2 Characterizing Industrial Automation Applications

Industrial automation applications and real-time applications often have the same meaning and
these terms are interchangeable. The one common feature of all real-time software system is
timeliness; that is, the requirement to respond correctly to inputs with acceptable time intervals.
However, this simple property characterizes a vast spectrum of very different types of systems
ranging from purely time-driven to purely event-driven systems, from soft real-time systems to
hard real-time systems, and so on. Over time, each of these categories of systems has developed
its own idioms, design patterns and modeling styles that collectively capture the distilled
experience of many projects.

The software control of any real-time system and associated hardware is maintained by the
software’s ability to predict the next state of the system given the current state and the set of
inputs. The goal is to predict how a system will behave in all possible circumstances. In other
words, an industrial automation application must be deterministic. A deterministic system is
defined as the one that for each possible state, and each set of input, determines a unique set of
outputs and next state of the system.

Real-time systems change their states based on the occurrence of events, which are divided into
two categories: synchronous and asynchronous. Synchronous events are those which occur at
predictable times. Asynchronous events occur at unpredictable moments and are usually caused
by external sources. Based on these facts, components for industrial automation applications are
classified into two major categories based on their trigger characteristic: event-triggered or time-
triggered. Components that were developed to work in synchronous platforms are said to be
time driven or time-triggered. Components developed to work in asynchronous platforms are
denominated event driven or event-triggered. The possible applications of such component types
vary strongly making the previous knowledge of this characteristic an important factor. From
the point of view of temporal performance a system can be primarily classified as real-time or
non real-time. Additionally, two types of real-time systems are distinguished:

• Soft real-time systems which are systems where the failure to meet a specified deadline
reduces the utility of the result, but does not lead to a significant financial loss. An example
of such a system is a letter sorting machine, if a letter is dropped into the wrong box because
of a timing failure of the system, no serious consequences will result.

• Hard real-time systems which are systems where the failure to meet a specified deadline can
lead to catastrophic consequences. An example of a hard real-time application is a computer
system controlling a railway system. If a wagon is released on the wrong track because of a
timing failure of the computer, a serious accident may occur.

In a hard real-time system, a failure in the temporal domain is as critical as a failure in the value
domain. Temporal properties, as for example the expected response time, are system properties

52

that depend on the proper cooperation of all levels of design: hardware, synchronization
mechanism, operating system, etc. In a hard real-time environment, it cannot be assumed that
timeliness can be tested into a system in a stand alone way, timeliness must be the consequence
of a rational system and software design process. Nevertheless, even some of the more recent
software specification and design technologies that are targeted specifically at real-time
applications, such as UML-RT [Seli99], real-time CORBA [OMG98], or real-time Java
[CaRu99], are not based on precise model of time and do not consider temporal properties as
first order quantities, but rather as an addendum.

Talking about software components for real-time applications Kopetz [Kope97] wrote: “One
problem with the use of software components in real-time applications is that a software
component per se does not have any temporal properties – the temporal behavior only emerges
if the software is bound to a particular hardware component. It follows that the user has to
investigate the temporal performance and the fault-model of a software component on the
selected hardware platform.”

In any real world system there is some delay between the presentation of the inputs and the
appearance of the outputs. This time between these events is called the response time. How fast
the response time needs to be depends on the desired application for the system. The real
response time of a component depends on many factors as for example the utilized hardware
system and operating system. In addition, there is no way to write a tool able to determine
precisely the response time of a software component in the same way one can do for hardware
components, where the presented values are precise or are expressed under acceptable error
percentages. In spite of that, the way to represent the response time for software components is
similar to the one of hardware components. Based on a set of operating conditions considered
ideal, the response time is measured. A second measure is obtained for the worst imagined
conditions. After validating these two values some statistical analyses are applied and a medium
value, denominated as expected response time, is obtained. A component user uses these
measures as reference values that are corrected under certain restricted system conditions.

Developers of components for real-time applications are expected to measure and divulge the
obtained values of the worst case, best case, and expected response time. Most important is to
communicate under which conditions the measures were obtained. It is also desirable to receive
a well described test environment specification with the component including instructions of
how to reproduce the original tests. The hardware components industry has adopted this
procedure for many years. It is common to find a section in every data sheet of hardware
components with a complete description of test circuitry, necessary wave forms, and expected
results for certain operation conditions.

Depending on the size or complexity of the technical process and also in accordance with the
way of implementing the automation procedures, a system is classified into two different ways.

53

The first one is called plant automation and deals with great industry plants composed of many
smaller parts that work together to implement the desired functionality. One example of plant
automation is the control of the complete production system of a manufacturing plant. The
second way of classifying is called product automation and deals with products having small
computational power where all desired functionality must be self embedded. Such an industrial
automation system is also called embedded system and is used to control specialized hardware
systems in which the computer system is installed. One example of those applications is the
control system of fuel/air mixture in the carburetor of automobiles. Embedded systems may also
be distributed. Here an individual processor executes an assigned specific task and cooperates
with other processors to execute a more complex task. This type of system is widely used in
areas of avionics, astronautics and robotics.

In the plant automation the costs of computational resources are not a decisive factor [LaGö99]
and sometimes the automation solution involves specific hardware platforms [PrWu96]. In spite
of it, some solutions involving components tend to reduce this cost [PTH97]. In embedded
systems any single cost reduction may determine the viability or non-viability of the complete
automation project. It is necessary to know the exact resource usage whenever talking about
embedded applications. Components developed to work in such systems are expected to have
their resource usage demands clearly and precisely specified in terms of memory usage.

At the hardware component’s world each component has specific implemented tasks associated
to it. Those components are idealized to be applied at a particular application domain. Industrial
automation itself is the global domain of this thesis but it is necessary to classify the components
used in this domain in sub-domains in order to determine their possible usage better. Each of the
two main divisions of the industrial automation, i.e. product automation and plant automation,
have many other sub-divisions. That is where the terms chosen to specify the real target domain
of a specific component must be originated, for example, a component belonging to the sub-
division “Product Automation” should be classified as “Home Entertainment” another one
should belong to “Medicine Systems”. Additionally, industrial automation applications can be
distributed in a hierarchical classification in accordance with their management level [LaGö99].

The description of the task a component implements is important to help users to find possible
reuse candidates. No precise description of the implemented task is supposed to be given here,
but only a high level description of the component’s ability and applicability. Standard terms of
the industrial automation domain should express these categories of component’s functionality.
The considerations presented in this section summarize the knowledge about the industrial
automation domain necessary to make any decision towards the reuse of components specially
developed for this thesis. This knowledge is represented using a semantic network in Figure 4.5.
This information is not always available, in fact no similar approach could be found in
publications. The presented concept solves this problem proposing a model where this data is
represented and will always be asked from the component developer.

54

C
om

po
ne

nt
 fo

r
In

du
st

ria
l A

ut
om

at
io

n
R

ea
l-T

im
e

C
ha

ra
ct

er
is

tic
s

ha
s-

sp
ec

ifi
c

R
es

po
ns

e
Ti

m
e

H
ar

d
R

ea
l-T

im
e

So
ft

R
ea

l-T
im

e

N
o

R
ea

l-T
im

e
is

-a

is
-a

is
-a

is
-a

ha
s-

no

ha
s-

no
-s

tre
ng

th

ha
s-

st
re

ng
th

H
ar

dw
ar

e
Pl

at
fo

rm

O
pe

ra
tin

g
Sy

st
em

Pe
rf

or
m

an
ce

V
er

ifi
ca

tio
n

Sp
ec

ifi
c

En
vi

ro
nm

en
t

de
pe

nd
s-

on

de
pe

nd
s-

on

de
sc

rib
ed

-a
t

w
or

ks
-w

ith

va
lid

-to de
sc

rib
ed

-a
t

ex
pl

ai
ne

d-
at

Tr
ig

ge
r T

yp
es

Ev
en

t-T
rig

ge
re

d

Ti
m

e-
Tr

ig
ge

re
d

Sy
st

em
 P

la
tfo

rm

us
e-

sp
ec

ifi
c

de
pe

nd
s-

on

de
pe

nd
s-

on

is
-a

is
-a

ha
s-

di
ff

er
en

t

H
ie

ra
rc

hy
 o

f S
ub

-
D

om
ai

ns

Pl
an

t A
ut

om
at

io
n

Pr
od

uc
t

A
ut

om
at

io
n

R
es

ou
rc

e
U

sa
ge

M
em

or
y

U
sa

ge
Sp

ec
ifi

c
Su

b-
D

om
ai

n

In
du

st
ria

l
A

ut
om

at
io

n
Ta

sk
s

is
-a

im
pl

em
en

ts

us
ed

-a
t

is
-a

is
-a

ex
pr

es
se

d-
in

ge
ne

ra
te

s

ge
ne

ra
te

s

us
es

-u
nl

im
ite

d

us
es

-li
m

ite
d

sp
ec

ifi
ed

-a
t

Sp
ec

ifi
c

Fu
nc

tio
na

lit
y

im
pl

em
en

te
d-

as

D
iff

er
en

t T
yp

es

H
ar

dw
ar

e
C

om
po

ne
nt

s
So

ftw
ar

e
C

om
po

ne
nt

s

is
-a

is
-a

im
pl

em
en

te
d-

as

Sp
ec

ifi
c

Ta
sk

as
so

ci
at

ed
-to

Figure 4.5: Particularities of a Component for Industrial Automation Applications.

55

4.3 Additional Desirable Knowledge about Components

Although the information about components already discussed covers intrinsically technical
aspects there are still some other perspectives that need to be analyzed as, for example, the
functional and the operational characteristics of components. Some other details that also might
not be neglected are those related to commercial and organizational issues. In this section, all
these aspects are worked out leading to a more sophisticated representation of the knowledge
necessary for the reuse of components.

4.3.1 Non-Technical Characteristics of Components

When reasoning about the reuse of a component, users need to know some non-technical
information in order to build their final decision. The choice between two technical equivalent
components sometimes relies on items like the developer company or the type of support
offered [PSB00, PhBr00]. Experts affirm that users want to reduce the post sales problems and
need to know some details about the suppliers beforehand [PhAr01, PhBr01]. These
characteristics are often treated as irrelevant but they do have a great importance and must be
represented in a meaningful component management system.

With respect to the organizational perspective each component must have an identification
mechanism able to make its recognition unique. Additionally, a component may have different
versions with different implications on its functional and operational behavior. Each new
version of a component may be presented with the respective date of purchase. The price of the
component may vary within its different versions. New versions could have different prices, in
some cases even cheaper than the one of the previous version. The end price of a component is
supposed to be advertised whenever the policy of the company permits. Nowadays, it is
common to present a scale of pricing depending on the services offered, as for example the kind
of support the developer provides. The diverse ways of support the company is able to offer
must also be clearly specified.

Every company has its history of good and bad services that is associated with an image of
quality. Components are delivered by these companies and normally developed by employees of
these companies. The publication of additional information about the employee technically
responsible for the component is a way of reducing the distance between users and technical
people that influence the reuse decision. Users that can solve their doubts about a component in
a fast and direct way increase their confidence in the company, leading to a better overall
evaluation.

In Figure 4.6 the most relevant non-technical information about components is summarized.
This knowledge is fundamental to support users decisions about reusing available components
and might not be omitted in a meaningful management concept. When talking about a

56

component management system based on a repository of components used by different
component developers and by different component users, the information represented in that
figure must be given whenever possible. That is the approach considered in this thesis.

has

Component

developed-by
Developer

Developer
Identification

Address

Support

Company

has
has

works-for
delivered-by

offers

Different Forms
has

Pricedepends-on

part-of

has

Different Forms Component
Identification

has

Unique ID

Version

part-of

Date

depends-on
has

has

is a

Company
Identification

Contact
Information

Hierarchic
Classification

belongs-to

Figure 4.6: Representation of the Non-Technical Information of a Component.

Some other social and organizational factors towards component reuse were discussed in
[KuBr00]. Interesting is the position that the major cause of most failures in the reuse of
components process is the people involved rather than technical issues. It is not enough to show
that a component fulfils every single requirement of the user, it is necessary to convince the
potential user that a component based approach is good for the project and, consequently, good
for the application developers themselves.

A well succeeded component management system must take facts like those into consideration
making the relationship between component users and component developers as easy and
convenient as possible. The component management system proposed in this thesis introduces
communication mechanisms among those users and facilitates the relationship mentioned above.
Nevertheless, before arriving at this level of decision, potential users should make
considerations about the technical characteristics of the desired component. Even the most
attractive component from the point of view of costs may not be used if it does not attend an
excluding technical requirement.

57

4.3.2 Technical Characteristics of Components

In order to describe better what a component can do, it is necessary to precisely document three
aspects:

• A functional specification, which describes the component’s semantics. This explains what a
component does and how a user should use it.

• An implementation description, which details the decisions of the component designers on
how to construct the components and on how to store the data meeting the intended
specification.

• An executable which delivers the component’s capability on a designated platform.

In other words, a component is described in a set of technical information which is supposed to
be organized in functional-related information, the specification of a component, and in
operational-related information, the implementation design of a component. All these aspects
are also represented by an executable which depends on a specific environment to precisely
realize the advertised functionality. It is worth emphasizing that not all three aspects have to be
presented to make a component reusable. For example, the developer of a component may be
happy to publish details of the specification to maximize the component’s visibility, but may not
want to publish his implementation design which he may regard as his own intellectual property.

The specification of a component describes what that component does, and how it behaves. The
functionalities are rendered by some designer who provides an implementation for the
component, expressed in terms of code and data which is guaranteed to meet the specifications.
In general, the implementation is written in different programming languages as well as it
executes on different platforms, from the users’ language and platform. One component may be
replaced by another in an application, as long as both implement the same specification. The
split between specification and implementation is the essence of the term encapsulation.

The importance of a rich component specification is critical. It is the functional specification
that allows component users to understand quickly what functionalities are offered by the
component. It allows users to match the component’s capabilities to their specific needs. Useful
components exhibit varying degrees of completeness and usefulness in their specifications,
ranging from natural language description to highly formalized models and graphics. The
specification of components also varies in accordance with the technology used.

A specification describes the functionality of a component in terms of an interface description
complemented by a behavior description. Interfaces summarize how a user should interact with
a component but still hides underlying implementation details. In fact, one interface has no
detail about how the data, which is managed by the component, is organized and stored. The
internal working of the component is completely hidden. Component users may only utilize
them by calling the operations defined in the interface, no other access is possible. The

58

complementary behavior description assumes different forms. Some approaches use diagrams to
explain the behavior better, others prefer a set of pre- and post-conditions. A well described
component behavior must have a combination of different information about each operation
contained at the interface. Among this information is the operation name, its textual description,
the parameters involved, the pre- and post-conditions, and the intent of the operations.

Although the specification of a component is independent from its implementation, the most
appropriate way of representing interfaces and behaviors of components depends on the
technology in which the component is supposed to be implemented. That is not only a technical
specific problem, it involves also the repertory used by specialists in different technologies.
Someone looking for the interface description of a JavaBean component wants to receive an API
description as a result. Another one looking for a synchronous component interface wants to
receive a list with signals, their respective types, and textual descriptions. In fact there is not a
unique way of describing interfaces and behavior of components among different component
technologies [NaTa01, Ster98, HeCo01]. Even looking at a specific domain as the industrial
automation applications, specialists diverge on using a unique model for such description
[Seli99, Kope00]. Some operational information must be given in order to clarify
implementation details of the component. The most relevant knowledge about this aspect was
already discussed in section 4.2. It is important to remember that the operational information
necessary to decide about the reuse of a component is understood better if the developer is able
to publish some usage examples. With these examples, component users can reproduce the
divulged implemented functionality making the component’s understandability easier. The
necessary knowledge about the technical information of components is presented in Figure 4.7.

59

Component

Technical
Information

described-by

System Platform

Component
Technology

depends-on

developed-in

Functional
Information

Operational
Information

Implemented
Functionality

Interface
Description Behavior

Description

Graphical Form

Textual Form

Parameters
Specification

Usage Examples

Specific
Environment

organized-in

organized-in

described-by

described-to

depends-on

belongs-to belongs-to

represented-by

represented-by

supported-by

modified-by
explained-by

valid-to

related-to

implemented-by

depends-on

Executable

Figure 4.7: Representation of the Technical Information of a Component.

The complete information is easily obtained by the superposition of the last three figures, i.e.
4.5, 4.6 and 4.7. Note that someone investigating other aspects of a component could obtain
quite a different knowledge representation. The semantic networks presented in this section
were obtained exclusively for representing the knowledge necessary to understand a component
well. Therefore they only represent the knowledge necessary to support the decision about
reusing a component for a desired application. Additionally, the networks were designed
considering the particular characteristics of the industrial automation domain. As written before,
these semantic networks were based on the expertise of researchers and engineers working with
components and working in the industrial automation domain related in the specialized
publications and based on the experiments done along this research in the IAS. Based on this
knowledge a concept to manage all necessary information about components for the industrial
automation domain is proposed in the next chapter. In the following section a classification
scheme specially designed for the industrial automation domain is presented. This classification
scheme is based on the information available for components discussed in the last sections.

60

4.4 Classification Scheme for Components in the Industrial
Automation Domain

Large repositories of components represent valuable assets but the larger they grow, the harder it
becomes to capitalize them for reuse purposes. Among the main problems are how to extract
appropriate components with minimal effort and how to do it with maximum efficiency. As
presented in chapter 2, the automatic retrieval of software components has proven to work well
for a specific component modeling, but approaches for general components could not reproduce
the success of the first ones.

Given a set of entities (objects, concepts) represented by descriptors (keywords), the grouping of
those entities into disjoint classes according to some criterion of descriptor matching is called
classification. Matching may express some kind of semantic similarity. A classification scheme
determines how to perform classification in a given setting, prescribing the sets of descriptors
and possible internal ordering, matching criteria, and rules for class assignment.

Depending on the number of descriptors used, a classification scheme can be uni- or multi-
dimensional. A classical example of uni-dimensional scheme is the Universal Decimal
Classification [Robi79]. In library science, multi-dimensional (also called faceted) classification,
was introduced by Ranghanathan [Rang57], breaking down information into a number of
categories thus addressing corresponding aspects of the classified entities.

There are two kinds of relationships a classification scheme may express: hierarchical and
syntactical. Hierarchical relationships are based on the principle of subordination or inclusion,
while syntactical relationships are those created to relate two or more concepts belonging to
different hierarchies [Prie91]. The hierarchical approach permits a better conceptual
classification of components.

4.4.1 Faceted Classification

Prieto-Diaz and Freeman developed a faceted classification scheme for software reuse [PrFr87,
Prie91] in which they use six facets to describe software: function, object, medium, system type,
functional area, and setting. The last three facets describe the internal and external environment.
Each facet proposed has a term space, i.e. a fixed set of values, in the same sense of a controlled
vocabulary, and has also an extensible set of user terms. Concepts are organized by a directed
acyclic specialization relationship, and terms are assigned as leaves of the concepts.

A variant of the scheme of Prieto-Diaz and Freeman was developed in the ESPRIT REBOOT
project [KST92, SSS93]. This scheme comprises four facets, suited better for describing object-
oriented components: abstraction, operations, operates on, and dependencies. The first three are
analogous to subject, verb and object in a natural language sentence describing component

61

functionality, while the fourth is the counterpart of the three environmental facets of the Prieto-
Diaz and Freeman scheme. The terms spaces are also structured by relations such as
specialization and synonymy. Classification in REBOOT fails to relate to structural
dependencies that exist between components [SSS93].

Faceted classification offers certain features that not only improve the search, but also support
potential reuser’s selection process and contribute to the development of a standard vocabulary
for the component attributes. Facets must be considered as perspectives, viewpoints, or
dimensions of a particular domain. As stated in the expressions (4.1) and (4.2), in principle a
component description Cd may have as many classification facets as desired. Each facet Fm may
also have as many terms tmi as wanted. In the presented notation the term tm0 represents that no
term was given, in other words the component has no value for a specific facet.

Cd ⊃ {F1, F2, ..., Fn} n ≥ 1 (4.1)

Fm where m=1,...,n ⊃ {tm1, tm2, ..., tmp} p ≥ 0 where tm0 = 0 (4.2)

The greater the value of n at (4.1) the harder it is to obtain a classification for the components.
On the other hand, the choice of a small n leads to a restrictive set of facets that makes it
impossible to implement any meaningful distinction among components. Nevertheless, it is
important to emphasize that the choice of the quantity of facets that will compose the
classification scheme is better to be done in a qualitative way, i.e. the chosen facets must
properly describe the components in their specific domain.

4.4.2 Industrial Automation Classification Scheme

Faceted classification of elements has been already applied to many different engineering
domains [MMM95, MAGM97]. Common sense shows that the conditions to use facets
successfully by the classification of an element are the following:

• A facet must be composed of terms, that meet a meaningful description of the possible
users’ requirements

• A facet must be oriented for reuse
• A facet must be organized in accordance with the relevance for the user
• The amount of facets that will compose the classification scheme shall be limited
• The classified element may be associated to as many sets of facets as needed.

The facets adopted for the component’s taxonomy used in this thesis are based on the theoretic
knowledge already acquired about components and about the industrial automation domain.
Three main aspects are covered by the chosen set of facets: the functionality implemented by the
components, the way they perform it together with implementation details, and finally the

62

description of the domain where the components should be used. In other words, with this set of
facets the participating components may be classified towards what they do, how they do it, and
where they do it.

Looking back to Figures 4.5, 4.6 and 4.7, it is possible to infer that some of the presented
information will be decisive when reasoning about reusing components. Some other points help
to decide about the viability of some components but do not imply in the acceptance or rejection
of them. In order to specify what a component does, it is important to know the implemented
industrial automation task and the associated functionality. How the component implements its
functionality is expressed by the choice of a technology, i.e. hardware or software, and among
the software components in any of the technologies that are used in industrial automation
applications. The system platform is also a decisive factor and must be represented by the
operating system and associated hardware platform. The real-time environment must be
expressed by the expected component’s time behavior and the possible trigger type. Finally, in
order to know where a component is supposed to be used, someone needs to know to which sub-
domain and to which hierarchy level it belongs.

In this thesis a classification scheme, from here on referred to as “Industrial Automation
Component Descriptor – IACd“, is defined which is composed of eleven facets covering the
main aspects and terms used by industrial automation engineers [Luce01a]. The expression (4.3)
represents the descriptor. Following, a textual description of each term is presented.

IACd ⊃ {F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11} (4.3)

• F1: Application Domain – Industrial automation itself is a large domain that has many sub-
domains. In order to determine the possible usage of a component better, developers need to
specify as near as possible where the component is supposed to be used. For example, a
component belonging to the domain “Product Automation” should be classified as “Home
Entertainment” another one should belong to the “Medicine Systems” sub-domain. One
“Plant Automation” component may belong to the sub-domain “Building Systems”.

• F2: Specialization of the Domain – This facet is used to specify the component’s area of
usage in more detail. The examples mentioned above could receive terms like “Image
Adjust” as specialization for “Home Entertainment”, or “Fire Protection” as specialization
for “Building Systems”.

• F3: Hierarchic Classification – Industrial automation applications are distributed in a
hierarchical classification in accordance with their management level. The adopted terms for
this facet were originated from the classification discussed in [LaGö99], where three
different aspects are presented. These aspects are the levels of hierarchy, levels in
distribution, and levels of a company. The adopted terms are Business Level, Production
Level, Process Control Level, Process Variable Level, and Field Level.

63

• F4: Industrial Automation Task – Here standard terms of the industrial automation domain
express the category of the component’s functionality. As far as possible, terms used in the
ACM’s Computing Classification System [Coul97, ACM98] must be used. Some examples
of usual terms are: Input Device (Sensor), Output Device (Actuator), Supervision, Control,
Command, Communication. No precise description of the implemented functionality is
given here, but only a high level description of the component’s usage.

• F5: Implemented Functionality – This facet contains the implemented functionality of one
component. As the goal here is to publish the component’s characteristic many terms may be
needed to summarize all capabilities of one component. A complete textual description of
the component’s functional characteristics is part of the complete documentation given later.

• F6: Trigger Type – As seen before, event-triggered and time-triggered components are of
great importance at industrial automation applications and have quite distinguished usage.
Users interested in components for event-triggered applications will probably have no
interest in searching among time-triggered components.

• F7: Real-Time Characteristic – Three standard values are adopted for this facet, i.e. Hard
Real-Time, Soft Real-Time and No Real-Time. Deciding which approach needs to be taken
is part of the earlier stages of analysis when working on such industrial automation
applications.

• F8: Component Technology – A specific software functionality is implemented using
different component technologies, this kind of information is expressed at this facet. In some
design processes the decision about the usage of specific technologies is already done and
must be respected. When talking about hardware components this facet receives values as
for example TTL or MOS technology, which give the user a precise insight into the
component capabilities and limitations.

• F9: Hardware Platform – The originally planned hardware platform is expressed in this facet.
In some cases different components implement the same functionality for different hardware
systems presenting different response-time in accordance with where they will be used. On
the other hand, it is possible that the decision on where the application will run is already
taken and the searched component must work under this limitation.

• F10: Operating System – As seen before many decisions are taken just by choosing the target
operating system. Nobody should wish to obtain any real-time characteristic from a
component if it was designed to be implemented under a non real-time operating system.

• F11: Type of Component – The proposed classification scheme is supposed to work with
hardware and software components. Which kind of component will be used in any
application is a fundamental decision that should be taken at the beginning of the project.

64

A formal representation of the classification scheme developed specifically for this thesis is
presented in Figure 4.8 using the UML notation. The facets Hierarchic Classification, Trigger
Type, Real-Time Characteristic, and Type of Component have pre-defined values that must be
respected. During the classification process some value suggestions for each facet may be
offered based on a set of values already recognized as important for the domain. Developers
may adopt one of these values but may also have the freedom of introducing new terms
whenever they believe these new terms should describe their components better.

-Business Level
-Production Level
-Process Control Level
-Process Variable Level
-Field Level

«enumeration»
Hierarchy

-Event-Triggered
-Time-Triggered

«enumeration»
Trigger

-Hard Real-Time
-Soft Real-Time
-No Real-Time

«enumeration»
Time Behavior

-Hardware Component
-Software Component

«enumeration»
Construction Type

Classification Scheme

- F1: Application Domain: String
- F2: Specialization of the Domain: String
- F3: Hierarchic Classification: Hierarchy
- F4: Industrial Automation Task: String
- F5: Implemented Functionality: String
- F6: Trigger Type: Trigger
- F7: Real-Time Characteristic: Time Behavior
- F8: Component Technology: String
- F9: Hardware Platform: String
- F10: Operating System: String
- F11: Type of Component: Construction Type

Figure 4.8: UML Representation of the Industrial Automation Component Descriptor

Note that the facets of the classification scheme derived from the semantic networks proposed in
the previous sections of this chapter. The facet F3 comes from Figure 4.6 where the non-
technical information of a component is represented. F8 comes from the representation of the
technical knowledge about one component shown in Figure 4.7. The other nine facets were
derived from the knowledge representation shown in the semantic network of Figure 4.5. That
network contains the particularities of components used in industrial automation applications
which confirms the specificity of the classification scheme proposed in this thesis.

65

4.4.3 Classifying Industrial Automation Components

Classification is an interactive process that must be used to help users wanting to find a
component later. Users understand the functionality of a component by studying documentation,
by static analysis data, or by studying the code itself. Term understanding is supported by the
linguistic form of the term, by its position in a hierarchic structure, through text comments on its
meaning, or by its usage in the classification of similar code already known. Users must decide
if a given term matches the component’s characteristics and if the term is specific enough to
describe its real objectives. With use and experience the term space becomes more and more
stable and complete. A user must be aware not only of the meaning of terms, but also of their
expected quality. The following criteria are proposed for selecting terms for the industrial
automation:

• Terms must be well-known words, usually technical terms or expressions, widely accepted
in the domain community, or at least by experts in the particular domain of interest.

• Terms must have clear meanings, be relative and easily associated with the concepts covered
by their specialization, in the classification structure. Moreover, they must be distinct and
precise, in order to facilitate the direct linking of the component to the corresponding
classification term.

• Terms must also be general enough, in the sense that a term may encompass more than one
specialized term in the classification structure. In other words, every term may be used to
address more than one component, or a specific set of components. Keeping a set of general
terms, therefore small enough, and expressive at the same time, thus useful for the reuse
process, is one of the basic and most difficult tasks in classification. On the contrary,
keeping a large term space usually means confusion for suppliers and reusers of
components, inconvenient browsing, and poor search performance.

• Redundancy must be avoided, in the sense that there might not be two terms with very close
meanings in the same classification hierarchy. If this happens, then a synonym relationship
shall be created, with only the most representative terms presented in the classification
hierarchy.

In order to improve the quality of the terms used, component developers are supposed to be
supported during the classification of their components, which is the last phase considered at the
development process developed for this thesis. As it is explained in the next chapter, this
support is done presenting a well organized assistance, which is responsible for describing the
facets used and to offer taxonomic values for each facet of the scheme. A list with pre-defined
values are used as a base for the classification of new components. These values shall be
presented dynamically, i.e. if a user decides to classify a component as belonging to the
application domain “Automobile” (the facet Application Domain will receive the value

66

“Automobile”), a list with suggestions for the facet Specialization of the Domain will only
contain meaningful values in reference to the first choice (e.g. ESP, ABS, etc).

Nevertheless, the responsibility of a meaningful classification of components belongs to the
developers, the ones who know the exact usage of their components best. Developers may adopt
one of the suggested values but may also have the freedom of introducing new terms whenever
they believe these new terms describe their component better. These new values must be
automatically introduced at the repository and may be used later as a suggestion during the
classification of new components. In Figure 4.9 a classification example for one software
component is presented.

 Component X

F1: Application Domain Medicine System

F2: Specialization of the Domain Patient Observer

F3: Hierarchic Classification Field Level

F4: Industrial Automation Task Sensor

F5: Implemented Functionality Pulse Frequency Measurement

F6: Trigger Type Events-Triggered

F7: Real-Time Characteristic Hard Real-Time

F8: Component Technology C++

F9: Hardware Platform PC Based

F10: Operating System Windows NT

F11: Type of the Component Software

Figure 4.9: Example for the Classification of one Software Component using the IACd.

In this chapter the most relevant ways of representing knowledge about objects were discussed.
Afterwards the knowledge necessary for the understanding of a component developed to be used
in the industrial automation domain was modeled using the semantic networks technique. This
representation was obtained after a discussion of the main characteristics of industrial
automation systems. One classification scheme is a meaningful issue used to index any object
permitting its later finding and grouping. In the last section of this chapter a classification
scheme composed of facets specially chosen for the industrial automation domain was proposed.

The concept of a flexible component management system able to work with components
designed for the industrial automation domain is the main theme of the next chapter. There, an
optimized development process based on components is presented. The elements of the
proposed component management system are detailed and lastly the complete architecture of the
desired system is presented.

67

5 Conception of a Flexible Component Management
System

The representation of the knowledge about components used in industrial automation
applications presented in the last chapter needs to be meaningfully organized and manipulated in
order to permit that users accessing already developed components have a good chance of
understanding them and deciding about their reuse. In this chapter, how to deal with that
representation in order to construct a flexible component management system is presented. First
of all, how somebody can manage components considering the usual application development
process is discussed. The necessary steps for a meaningful development of applications based on
components is divided into two procedures, one involving the component developer and another
one involving the component user. The second section treats how to properly manage the
components involved on that development procedure. The most current way of developing
component management systems is presented and, afterwards, an ideal conception for a
component management system specially developed for this thesis is discussed. This system is
able to work with different component technologies and present an adaptable interface to the
users and a variable data structure.

5.1 Application Development Based on Components

The main objective of component based development is the implementation of application
systems by the assembly of prefabricated building blocks. Over the years stabilized industries
developed their own ways of producing products based on already available components. In the
construction industry for example, it is well known that it is impractical to build everything from
scratch every time. Doors, windows, and bricks are all built off-site, often by different
companies. In most cases, standard construction components will fit the needs of designers. At
other times, a new component will be specified and built to suit the needs of a single building.
The hardware electronics industry proceed in a similar way. Components that may have diverse
usage are designed and built in series in order to be reused later in specific hardware projects. In
this industry the usage of available standard components is already planned at the very early
phases of the development. Very often, designers adapt their work to fit to the standard
components they were able to find on the market. The goal of software development based on
software components is not different from the objective of the two examples mentioned above
[BrWa98, RNJ99].

In order to be successful, the development process based on reusable components depends on
two main factors, the component developer and the application developer (component user)

68

[McCl95]. The main job of component developers is firstly to investigate what kind of
functionality is needed and secondly to develop the final artifact. Component developers also
receive the requirements of desired components from system analysis teams or obtain these
components from legacy code [CAP95, GWS96, KeSc98, Trau98]. After the necessary
development work, the component is tested in order to verify its functionality and, if approved,
it must be stored in a repository to be used later [BSST93, Henn96]. Indeed, since the beginning
of the development process it is necessary to invest as much as possible in the construction of
standard software components. These pieces of software shall be generalized enough to be
easily utilized in diverse future projects [Frei00, LuFr00]. On the other hand, components
designed to implement very specific tasks tend not to be used in many different applications but
may be used many times in a same application. In other words, software components must be
designed for reuse being used later on real application development as many times as possible
[Radd98, Weyu98]. By their side, application developers are interested in building their work
based on components. The development of applications based on reusable components starts
with the reception of the systems requirements. Application developers realize their analysis
based on the components available, i.e. during the analysis they search for existing components
in order to guide their work.

The development process described above have not solved some problems yet. Components are
not like Lego bricks, where anyone with a little experience may obtain the requirements to meet
the standard size for plugs and sockets. But lacking the Lego users’ ability to guess, discover
and experiment with different pieces during construction, how should component developers
convey the functionality of their work to prospective customers? How should application
developers address business problems given that the solutions are intended to comprise a
number of assembled components? Now consider the task of finding a suitable component. How
good are the components described in the repository? When given the possibility of using a
component, how will application developers know what the component does? How will they
know whether it is a good fit for the requirements? Given the prospect of reusing many well
described components from a repository, which one shall be the best fit for the requirements of
the current job?

In fact, in order to solve the questions mentioned above properly it is necessary to propose a
systematic procedure for the management of components. The systematic management
procedures proposed in this thesis are able to guarantee that all information necessary for a good
understanding of a component will be previously stored in a common repository. Additionally,
this information will be easily found and presented for interested users making use of modern
internet technologies. These management procedures are presented in Figure 5.1 and must be
inserted on the development process in two separated parts covering the side of the component
developer and the side of the application developer.

69

Component
Repository

Repository Interface

1st Step:
 Search and Find
 Candidates

Selection Process

2nd Step:
 Understand
 Components

3rd Step:
 Decide about
 using Candidate

Component User

1st Step:
 Classify the
 Component

Publication Process

2nd Step:
 Document the
 Component

3rd Step:
 Store the
 Component

Component Developer

Figure 5.1: Main Steps of the Publication and of the Selection of Components Processes.

Just after concluding the development of a component the one responsible for this component
must store it in the repository [SKS93, FrFo95, BUSF98]. This developer is supposed to insert a
series of information that is important for the later finding, understanding, and deciding about
the use of the newly developed component. This procedure is done in three steps, a classification
of the component, its complete documentation, and lastly the saving of all information in the
repository [Poul94, Gree99]. The denomination adopted here for this procedure is “Publication
Process”. On the component users side a procedure denominated “Selection Process” is
proposed which involves the search of a desired functionality, the technical understanding of the
found component candidates, and a final decision about their utilization [Luce01a, Luce01b]. As
a result of the search of components, application developers must receive a list with all available
components that fulfil the functionality they are searching for. As a matter of fact, there is not
yet a way of assuring a minimal quality measure for the components or for the information
divulged about these components [CTW98], in other words there is no guarantee that the
components attend their requirements completely. That is why in the proposed procedure, the
next step must be a detailed understanding of the suggested components. Some of those selected
components may not exactly fulfil the applications requirements and constraints but, on the
other hand, some components may be exactly what users need. Lastly, developers are able to
decide, among the components that work properly which one suits their application better.

70

The contents of the component information (documentation and classification) are based on the
discussion presented in chapter 4, their organization is discussed later on in this chapter. The
simplified representation of the publication and selection processes is presented in Figure 5.1
and is improved in Figure 5.2. In fact, intern to each step presented in that figure there are some
important procedures that must be taken into consideration in order to guarantee a meaningful
management of components which are discussed in the next paragraphs.

Component
Classification

 Component
Documentation

Data
Consistency
Verification Component

Storing

New
Component

Reuse the Best
One

Searching for a
Component

Found?

Technical
Evaluation

Is Anyone
Usable?

Decision
Making

Collecting
Requirements of

desired Component

No

No

Yes

Yes

Component
Repository

Component Publication

Anyone really
fits to the job?

No

Requirement for
a new

Component

Yes

Component Selection

In
te

rf
ac

e
to

 th
e

C
om

po
ne

nt
 D

ev
el

op
er

Repository Interface

In
te

rf
ac

e
to

 th
e

A
pp

lic
at

io
n

D
ev

el
op

er

Selected
Component

Classification Scheme for
Industrial Automation

Set of Specific Information for
each Component Technology

Classification and
Documentation

OK?

No

Yes

Initialization of
the Publication

Advertising
Requirements of
new Components

Figure 5.2: Details of the Systematic Management Concept proposed in this thesis.

71

5.1.1 Selection of Components

The first step towards the selection of a component consists of searching candidates that fulfil
some desired characteristics. The goal is to provide system developers with a list of components
which, in accordance with their needs, may fulfil expected requirements [O’De89, Cham96].
The second step, the technical evaluation, must offer a set of information that helps to certify
that the presented components meet the desired technical requirements completely. At last,
during the decision making step, another group of information will be studied by developers in
order to support their decisions if a component shall be used in their applications in accordance
with commercial aspects.

The way someone searchs for a component varies, but has some well identified common points
[MiNo99]. For example, in order to perform the identification of possible candidates, users start
searching for information related to the functional characteristics as well as related to the
operational characteristics of the desired component. In other words, they search using terms
that may limit the number of possible candidates and they take into consideration some previous
technical decisions. Someone who has a good insight into the desired object is able to retrieve it
easily by choosing convenient keywords in a free text search engine. But in the case of newly
users or developers with less knowledge about the taxonomy involved at the domain, better
results are obtained through some kind of guided search or even through a complete browsing
on the objects available in the repository [Belk00]. Information like the application domain
name and some kind of specialization of this domain, the automation task to be fulfiled, the
operating system, or the hardware platform are good examples of searching criteria. Note that
these are some of the items that compose the classification scheme of the last chapter.

In the second step of the selection process, the number of components are expected to be
reduced to a small set of potential candidates. Component users must now study the candidates,
understand them, and lately verify if these candidates really meet their needs. The main work
here is to check the divulged characteristics of the component, eventually through some test
situations, either in the actual development environment (or deployment environment) or in
closely-related environments, to confirm that each component runs as advertised, and meets the
desired requirements [SBP99]. Typical information required at this level are functionality
textual description, parameters and interface description, usage examples, response-time and
resource usage constraints, and performance verification among others. At this point some
support is desired in order to facilitate the user’s evaluation process. The use of checklists,
where the most important original requirements are presented, facilitates a confrontation with
the divulged component’s characteristics. This may help to conclude if a component is
applicable or not. The technical evaluation is an excluding step but it is not enough to conclude
which component is the better one for a specific application. In fact, more than one component
may have the same characteristics and equivalent performance, and shall be eligible for the next
step where the final conclusion will be met.

72

At this final step, component users work only with the components that were approved in the
previous ones. The goal is to determine which component may be integrated into their
application. In this thesis, a commercial evaluation is proposed in order to compare all
previously selected components enabling users to formulate their final decision. It is assumed
that the amount of possible components that could arrive at this step will be small. But the final
evaluation procedure must be executed even if only one component could be pre-selected,
because items like the developer marketplace position and the component’s price may be an
exclusion factor. Some other comparison points that users may be interested in are the kind of
support offered by the component developers, the quality measure of the component itself, or
one more specific technical aspect like the expected memory usage. In this thesis, an adaptable
comparison table is proposed to compare components that arrive at this last phase.

The desired final result of the selection process is the choice of one component that may be used
in the application under consideration. In the most successful situation this component will be
the best one of a set of components with similar characteristics and performances. Nevertheless,
this situation will not occur every time as in some other cases it will not be possible to select any
component that could fit to the desired requirements. Sources for this situation are the facts that
sometimes the desired component does not exist, or a probable component does not work as
advertised, or even a usable component does not meet the desired non-technical requirements as,
for example, the available budget. In the work related here, whenever a desired component is
not available, an individual list containing the user requirements are generated, being used later
in the possible development of new components.

5.1.2 Publication of Components

The main goal of the publication process is to guarantee that component developers will feed the
repository with the most relevant information for a later selection. In accordance with chapter 4
that means that a domain specific classification and a complete documentation of the component
must be done during this process. The whole work starts after the completion of the component
development. This new component must be classified using the previously presented
classification scheme for industrial automation applications. If a component is “well classified”,
the probability that it will be found later increases [BrBu00]. In order to improve the conformity
of the classification of new components some help and guidance must be offered to developers,
making clear the meaning of the facets of the classification scheme and giving hints on the
possible taxonomy value for each one of them. This approach generates a semi-controlled
vocabulary increasing the probability of possible hits later on during the search of components
[LHG+96]. It increases the knowledge acquisition creating a list of terms chosen by the experts.

The second important aspect is the documentation of new components. As the way of
documenting a component is different among different developers and certainly very different

73

among different component technologies, it is necessary to support developers to feed the
repository with the information considered relevant for the later understanding of this
component [MLP+01]. A common set of information listing the necessary data for each
component technology must be available and should guide developers during this step of the
publication process. A separation among mandatory and desired information is also a useful
mechanism that must be supported.

The responsibility of classifying a new component and to document it accordingly belongs to
component developers themselves as they know the characteristics and potential usage of their
products better. This procedure enhances the quality of the data stored at the repository
[BaTa99]. Nevertheless, before storing a component it is necessary to verify if the data
introduced is consistent with the data needed. In the procedure proposed here, components are
stored only after the confirmation that their classification and their documentation were done in
accordance with the classification scheme and to the data needed for their respective technology.

5.1.3 Interfaces to the Users and to the Repository

As presented in Figure 5.2 two interfaces must be considered, the interface between users and
the component management system, and the interface between the component management
system and the repository. One deciding factor for the success of such systems is the good
acceptance of the interfaces to the users [BMJH96]. It is important to remember that component
developers interact with the system in order to classify and document their work, and also
component users are supposed to be guided during the whole selection process. These users’
interfaces must be intuitive and convenient otherwise the system will not be well accepted
[LaMy01]. The proposed component management system is planned to work with diverse
component technologies and their specificity must be taken into consideration. This fact will
reflect on the interface design that must respect the characteristics of the component
technologies leading to better communication with the users.

Additionally, the insertion of new component models representing future relevant component
technologies shall be done without great efforts. Nevertheless, this insertion will ever demand
the specialized work of a system administrator able to deal with the chosen technology. In this
thesis no specific interface to this user will be offered. The interface system-repository is
responsible for the checking of the consistency and of the integrity of the data. It must also be
robust enough to avoid loss of information. The data captured by the component developer
interface shall be processed and stored on the repository in such a way that the component could
be found and understood later. Different component technologies are supposed to receive
different processing. Similar considerations are valid for component users wishing to receive
information adapted to the technology they are looking for. The way of storing the data about
components must take these requirements into consideration.

74

5.2 Development of Component Management Systems

In this section a concept for a component management system for industrial automation
components is presented. As seen in chapter 2, many other component management systems
were already proposed in previously related works. It is important to study, at a conceptual
level, how such systems were originated. During this study, some pros and cons are discussed.
Afterwards, a management concept that takes the particular characteristics of components used
in the industrial automation applications into consideration is presented.

5.2.1 Usual Conception of Component Management Systems

Components are developed to be used later as many times as possible. In the last years many
component technologies proposals and many component-based development approaches were
related in publications [Szyp98, HeCo01]. Component management systems were also
generated to care about the most relevant component’s information trying to present it as clear
as possible and making it accessible for a great number of users. A common way of maintaining
this information readable and understandable is to adopt a model able to describe the
component’s technology in a simple but complete form. That is the point where the conception
of a component management system starts. Figure 5.3 shows the conventional design path that
leads to the implementation of a component management system.

Component
Technology

Specification

Component
Repository

Model
Description

Data
Structure

Interfaces
with

Users

Component Users

Component Developers

represented by

originates

mapped tooriginates

store and recover

Figure 5.3: Conventional Design Steps of a Component Management System.

After specifying a component technology in detail, experts are able to propose a model to
represent this technology properly [FrTe96, Digr98]. Models are developed to simplify the real

75

world and are supposed to communicate, as far as possible, all the relevant characteristics of the
modeled elements. Using a common model is the most appropriate way of communication
among diverse users of a same element [BRJ99]. From the inherent complexity of component
technologies nowadays, it is possible to conclude that a model representing any of these
technologies will suffer some modifications and corrections along the time [Wieg98], and it will
take some time until such a model reaches a mature standard.

A mature and well accepted model is the basis for a meaningful design of the repository where
the component will be managed. Firstly the model, containing all necessary elements for the
understanding and later reuse of a component, must be used to originate a data structure
mapping all its elements. Every single component’s information, as for example the graphical
way of documenting a component’s behavior, must have a corresponding element on the
designed data structure. In a second step, designers using the obtained structure are able to
project the component repository itself.

Those components and the information about them must be stored at the repository as soon as
they are developed. The communication among potential users and the repository is done
through user’s interfaces that support component developers to correctly introduce new
components on the repository and also support component users to find already stored
components. These interfaces (it is expected to have at least two interfaces one for each kind of
users) are strongly influenced by the model description in use. Clearly, the interfaces to
component developers should ask them to introduce the information that compose the
component’s model, and the interfaces to component users can not offer information that was
not previously stored in the repository.

This design of repositories and associated management mechanisms proved to succeed for
systems working with only one technology of components. Even though, problems may occur if
the system was designed based on an inaccurate model. The introduction of modifications on the
model demands changes on the data structure specification and consequently on the repository
itself [Poul96]. The interfaces will also need to be adapted to the new characteristics of the
model. Depending on the technology used for the implementation of such a system those
modifications could cost to much effort [BCE+97]. It is important to note that models are in
their essence not precise enough to represent all aspects of real objects and even mature models
may have mistakes.

Another undesired situation happens whenever a new component technology is supposed to be
inserted on an existent repository. The same amount of effort and additional costs considered for
the case of single modifications on an old model would be also applicable here [SuBa97,
MFC+00]. A new technology will necessarily be represented by a new model description that
will generate new data structures and interfaces. These two situations, the modification of an
actual component model and the introduction of new models, are problems still to be solved

76

because the data structures usually adopted are not flexible enough to deal with such
modifications. Moreover, interfaces are often designed using static approaches making them
dependent from the model adopted.

Lastly, component repositories are normally implemented using relational database management
systems what theoretically should not pose big problems to process possible modifications on its
table structure [ElNa94]. But if those modifications are frequent, they may not constitute a
desirable situation, because such modifications are supposed to be implemented by experts with
special access rights. Otherwise, some security inadequacies may cause improper functioning of
the system and eventually lost of information.

5.2.2 Ideal Conception of Component Management Systems

Some component management systems implemented using the sequence explained above,
presented good results when applied to a single component technology (see chapter 2). In those
cases, a well defined model was responsible for the repository mapping and for the interface
design [Ning97]. Attempts to include more than one technology by adopting a model
specification general enough to cover all desired component technologies fails because such a
global model will never be specific enough to give the users all necessary information about one
component technology and shall limit the possibility of understanding these components
properly.

This kind of reduction of the representative quality of a model to increase its range of
applicability results in a lack of precision on the component’s information that reduces the
chances of this component to be reused [Sate95]. In an ideal component management system,
the model (or models) used to generate the repository data structure and the interfaces to the
users must be as rich and precise as possible. Figure 5.4 summarizes the idealized way for the
generation of a flexible component management system.

In this new way of managing components proposed here many different technologies may live
together at the same repository. First of all, an accurate model description must be developed for
each desired component technology. This model must represent all important aspects of the
technology giving the necessary information for the understanding and for the reusing of
components. Nevertheless, not all information contained on the model description should be
considered mandatory. Component developers may want to omit some information they judge as
business secrets. In other words, the model description must be complete but must also be
flexible to attend individual user’s wishes.

77

Component
Technology

Specification 1...n

Component
Repository

Model
Description

1...n

Flexible
Data

Structure

Flexible
Interfaces

with
Users

Component Users

Component Developers

represented by

originates

mapped tooriginates

store and recover

Figure 5.4: Ideal Generation Path of a Component Management System.

All available component models must be part of a set of model descriptions that will be used to
generate the interfaces to the users and the data structure of the repository. The interfaces to the
users must be able to adapt themselves to the type of user because component developers and
component users may wish to receive different information [HBD00]. Additionally, these
interfaces must be able to adapt themselves to the particular technology of the component being
evaluated. The repository is expected to be flexible enough to accept different data structures,
which are also derived from the models available at the set of descriptions. The insertion of new
models or the modification of an existent model must generate an automatic actualization of
both interfaces.

Observe that only two interfaces are considered in this component management system, one to
the component developer and another one to the component user. It would be possible to foresee
the necessity of a third interface designed to help a system administrator. This administrator will
be responsible, for example, to develop model descriptions and to insert these descriptions into
the component management system. Nevertheless, it was considered that the main focus of this
thesis should be oriented to component users and to component developers. The insertion of new
models shall be as easy as possible but it will demand the work of an administrator, who will
have specialized access rights over the system and, more importantly, who needs to pursue
specialized knowledge about the technology used to describe the component model and about
the technologies used to integrate these new models on the component management system.
Based on these considerations, a graphical interface to such an administrator is left as a
suggestion for future works.

78

5.2.3 Modeling Industrial Automation Components Information

As seen in chapter 4, the knowledge necessary for the practical use of a component designed for
industrial automation applications is very complex. Talking about the organization and
presentation of this knowledge must result in models able to contain all the diversity of
information required for each technology involved [Dai95, Pedn00]. The analysis of this
information leads to a model structure divided into two blocks, one composed of information
that may help users to easily find a desired component and another one composed of technical
related information that may help users to understand the functionalities of a component and
decide about its applicability. In summary, the desired model must help users to search and find,
understand, and finally decide about the reuse of previously developed components [ShSh99],
being able to contain the complex information needed to properly execute those tasks.

The data necessary for the search and find of a component is designed better for machine
consumption, i.e. information characterized by a fairly regular structure, fine grained data, and
little or no mixed content. The main objective is to be able to query fast and efficiently. This
kind of information is denominated in technical publications as data-centric information. Such a
set of data is well represented by a relational model. An example for such data is the information
about the developer or about the company responsible for the component that consists of
standard data as the address or telephone number. The classification scheme presented in
chapter 4 is also suitable for search purposes.

On the other hand, the technical data about one component may be represented better as a set of
information that varies in accordance with the component technology. This kind of information,
may be characterized as document-centric information, and is typically designed for human
consumption. The documents involved are composed of less regular or even irregular structures,
larger grained data, and lot of mixed contents [PSB00, PhBr00, PhAr01, PhBr01]. This data is
well represented as a set of document files with free content. In the case of components for
industrial automation these data must fit to one specific component technology containing the
information needed to well understand this technology. Note that the technical information
varies strongly among the technologies applied to industrial automation systems (see chapter 3).
This variation not only occurs in the content of this documentation but also in the form it should
be presented in order to guarantee a good level of understanding by the users. For example, a
user searching for a synchronous component wishes to receive the information about the
component’s interface, another user with interest for JavaBeans expects to receive information
about the API reference of the component, and a third user searching for hardware components
wants to receive the component’s ports and pins description. Although all of them want to study
the interface of the components, these users will understand the interfaces better if they are
presented using the terms the users are accustomed to. This kind of variation is considered in
the component management system proposed in this thesis.

79

Examples of the entities and respective relations involved for representing a component are
shown in Figure 5.5 where a simplified representation of the two blocks of information
mentioned above is presented. A meaningful component management system needs to help
component developers to properly feed the repository with the data required by each model
representation during the publication process, and will help component users to receive this
information properly formatted and presented during the selection process. Note that the general
information is the same for whatever technology involved. For that purpose, any kind of
information that may be pertinent only to a specific technology type must be located at the
technical information part. This technical part must be as detailed as possible for each
technology used, but as said before the technical information is supposed to contain mandatory
data and is also supposed to accept optional data that may be omitted whenever the users desire.

Functionality

Interface

ViPER
Component

Overview

Graphical Description

Etc.

Overview

API Reference

JavaBeans
Component

Class Diagram

Text Description

Etc.

Hardware
Component

Block Diagram

DC Characteristics

Port

Datasheet

Etc.

Component Model

Technical Information Non-Technical
Information

Flexible Set of Data Variable in
Accordance with the Desired Technology

Classification Scheme

Component

Company Developer1:n

1:n 1:n

1:1

Represented by a Relational Model

Figure 5.5: Example of the Information needed to Find, Understand and Use a Component.

80

5.2.4 Desired Architecture of the Flexible Component Management
System

If the desired system was designed in the conventional way of developing component
management systems presented in Figure 5.3 it would have the same undesirable problems cited
in section 5.2.1 when applied to the management of components with any use at the industrial
automation domain. The components’ technologies used in that domain tend to be constantly
improved because they have not reached a good level of maturation yet [Doug99, Kope00]. For
example, experts have been working hard towards a meaningful and well accepted way of
representing real-time characteristics components without much success in the last years
[Seli99]. Additionally, from time to time new component technologies that may also be used in
industrial automation applications come up on the market and should be incorporated to the
component management system. As discussed before, a meaningful component management
system must permit the introduction of such modifications in a simple and convenient way.

As seen before, it is not viable to propose only one model able to contain all the necessary
information about every component technology used in industrial automation applications. A
general model would not contain the level of information needed for a correct understanding of
such components making it impossible to reach an acceptable level of reuse. A very specific
model, based mainly on one technology, would solve the understandability problem for that
technology but would certainly contain some information details that would not make sense for
the other technologies. Using the abstraction presented in Figure 5.5, it is possible to conclude
that part of the information about components is generally enough to be present on every desired
technology. On the other hand, the specificity of each technology located at the technical
information part must contain the desired level of details and must be unique for each
component technology managed by the system.

In fact, information such as the address records of the company which has developed the
component and some similar information are always independent from the component’s
technology description. It is true that the conventional way of describing a company address
may vary, it certainly depends on the designer’s particular way of working, but the content of
this information will not vary and will have similar elements for whatever component
technology discussed.

Based on these facts, in this thesis the information about the components is divided into two
basic groups, one containing the same type of information independently from the technology,
and a second one containing specific data for the particular information about the component’s
technology. The invariant part of the component’s model shall be as small as possible belonging
to every component technology stored at the repository. The denomination for this part is “Core
Data”, meaning that it contains basic information about the component that may help users to
precisely identify possible candidates and that it is as small as possible. The technological part

81

must be variable, being adapted from technology to technology and containing different types of
data. It must be able to accept not only text and graphics, but also modern ways of describing
technical elements such as videos and graphical animations among others. This part must also be
able to accept the inclusion of optional fields inside one similar component technology. The
most usual terms adopted at each component technology must be respected, i.e. the terms used
must receive the most accepted nomenclature by the experts of that technology. The name given
for this part of the model is “Flexible Data”, with flexible here meaning that it varies among
technologies and that it is composed of mandatory and optional parts.

Component Repository

Graphical User Interfaces

Dynamic GUI
Based on the “Flexible Data”

Static GUI
Based on the “Core Data”

Core Data: Non-technical
 Information

Flexible Data: Technical
 Information

Initialization information
about the component
technologies being
managed

GenerateRead Data Store Data

Figure 5.6: Architecture of a Component Management System able to deal with Diverse
Component Technologies.

The ideal architecture for managing components is presented in Figure 5.6 and it shall work
with those core and flexible data together for each technology. The graphical user interface
(GUI) is composed of two parts, the static GUI and the dynamic GUI. The first one is
constructed based on the core data part of the model and is supposed to always be the same. The
second part is adapted dynamically to the technology being managed at the moment. These
GUIs are responsible for collecting the necessary data for each technology and for presenting
the already stored data in a meaningful way in accordance with the technology being currently
managed. Similar conclusions are possible for the data structure of the component repository
where part of the data is based on a static data structure derived from the core data, and the other
part is generated dynamically in order to contain the flexible data. Core and flexible data must
be stored on the repository independently because the core data may be mapped to a static data
structure, while the flexible data may be represented in a variant form in the repository.

82

Additionally, as they will be used in different moments, one basically for the search and find of
desired components, and the other for the understanding and final decision about using a
component, core and flexible data may be stored independently only keeping the necessary
linkage between them current.

The flexibility or variation desired at the graphical interfaces and at the repository data structure
must be dynamically generated based on some initialization information previously available.
This initialization part is expected to contain the specific information needed for each
component technology managed by the system. In such an ideal system any modification done
at the original component’s model is automatically implemented at the GUIs and data structure
only by modifying this initialization part. This part is also specific for each component’s
technology and it is necessary to have as many descriptors as technologies being currently
managed. The insertion of new technologies is implemented only by the generation of a new
initialization description instruction.

In summary, it was shown in this chapter that a component management system shall be
dynamically adapted to the diverse component technologies with any use in industrial
automation applications and shall also be able to receive new technologies in the future. One
optimized development process based on components was presented. The component model was
divided into two basic parts, one composed of fundamental information about components and
developers here named core data, and a second one composed of variable contents that may be
adapted to the component technology named flexible data. This structure is the basis for a
component management system able to deal with the complexity of the components with any
usage at the industrial automation domain. Such a system could be designed and implemented at
many different electronic forms, nevertheless the main goal of producing components is to make
them available and above all trying to increase their possibility of being reused.

A way of reaching many potential users and a very popular work platform nowadays is the
Internet, which has proved to be an excellent platform for exchanging information and divulging
products and services. Additionally, it is possible to implement very efficient ways of
communication among users using this technology making it a natural choice as a basis
technology for designing such a component management system. That introduces some specific
requirements that will be presented in the next chapter. There, the main characteristics of Web-
based applications are discussed. The most appropriate communication architecture for a
component management system able to fulfil the requirements of the ideal management process
suggested in this chapter is also presented. Later on, the technologies able to realize the desired
system are studied and compared among themselves. Based on this comparison the most
appropriate ones are selected generating the specification of the desired flexible Web-based
component management system.

83

6 Web-Based Realization of the Component
Management System

A Web-based application is basically an Internet service that links documents locally and
remotely (Intranet vs. Internet). Documents are stored on the Internet in Web-servers that store
and disseminate Web-pages. The Web-pages are accessed by users with software applications
called Web-browsers, and those pages contain text, graphics, animations and videos as well as
hypertext links. The links in the pages let users jump from page to page (hypertext), whether the
pages are stored on the same server or on servers around the world. In the last half of the 1990s,
the Web became the center of Internet activity mainly because the Web-browsers provided an
easy, point and click interface to the largest collection of online information in the world. Ever
since the Web became the focal point of the Internet, the amount of information available has
increased at a staggering rate [Cail95].

In this chapter, the most relevant characteristics of Web-based systems are discussed. The goal
of this discussion is to identify the necessary Web abilities that must be present at the desired
component management system. Afterwards, the most appropriate architecture to realize such
management of components able to deal with the knowledge about components for industrial
automation described in chapter 4 is presented. And the desired management characteristics
related in chapter 5 will also be considered. This architecture is composed of three independent
layers, also called tiers, that will be implemented by Internet-enable technologies currently
available. These technologies are briefly analyzed and compared, and the most appropriate are
chosen to realize the complete system.

6.1 Web-based Systems

The final goal of a component management system is to satisfy the necessity of transmitting and
receiving different information from all users involved. The two potential users of such systems
have specific needs and requirements that must be attended to. On the one hand, the component
management system must receive data, verify if this data is consistent with pre-defined
structures, and decide about storing it or asking for further human intervention before storing the
data. On the other hand, the system must help somebody to find the desired information,
interpret it in accordance with previous knowledge, and help users to properly decide about
using a component.

Most recently the usage of the Internet and associated technologies expanded the potential usage
and the probability of success for industrial information systems [SeMi98]. These Web-based
information systems are not more than information systems that work under the World Wide

84

Web [GaMy01]. Their functionalities are similar to the traditional ones but they may be reached
through Web-based interfaces. Such systems make use of dedicated communication protocols,
specially designed for the Web, and present the same advantages and problems of other Web-
based systems [RFPG96, RRW00, ZSN01]. In order to access the desired information, users of a
Web-based system only need to make use of a Web-Browser, which is able to communicate
using those internet protocols.

Characterizing Web-based Systems
Web-based information systems have basically three different application usage:

• The first one is the in-house information system, whose goal is to enable the communication
among business partners using local area networks. These applications are also called
business-internal communication systems and are designed specifically for the internal
public of a single company.

• The second usage type deals with electronic business systems among the external public and
companies. These systems help users to proceed with complete business procedures and
implement the denominated business-to-consumer process.

• Finally, the third usage form helps companies to implement electronic business among each
other. They are the so called business-to-business communication systems.

The component management system developed in this thesis is able to support the necessities of
the first two categories mentioned above. Moreover, it is possible to foresee the introduction of
new modules able to attend specific business-to-business requirements.

A growing number of information systems based on the Internet and associated technologies is
currently available on the market covering the three usages described above. But the most
popular systems implement the role of a mediator in a sale-buy business process [LoSp98]. That
is the case of business contacts obtained through electronic catalogues. The expectation is that
such systems will divulge products in a significantly wider area than the conventional client-
server applications could do. The Web-based management of components studied here has the
same expectation willing to reach as many potential users as possible. A common characteristic
of systems implementing sale-buy processes is that they do not work exclusively with text and
pictures as other applications, but deal with data stored in some kind of database.

Among the most successful Web-applications having data storage are the electronic address
books, on-line news, informative catalogues of products some of them with ordering and paying
facilities, and on-line banking [Bent99]. Although a Web-based component management system
does not fit 100% to only one of the listed applications it may inherit the main concepts of some
of them. The specific requirements of the most relevant Web-applications and their
characteristics were summarized in a criteria catalogue presented by Löser [Loes98]. The eleven
criteria presented there are listed and briefly described in Table 6.1. An analysis using this

85

catalogue to characterize the requirements of a Web-based component management system is
done in the sequence.

Table 6.1: Criteria for Evaluating Web-based Applications with Data Storage.

Criteria Description

1- Type of Access Most all of the Web-applications may permit only the reading of information
from the database. That is the case of a catalogue of products. Nevertheless,
if the catalogue should have ordering facilities, it may be necessary to write
some information as for example the part number of the selected items
associated with the buyer information.

2- Data Actualization Some applications may actualize their data in a very fast pace, some others
may have non-variable data. For the second case, it should be desirable to
introduce buffers able to temporarily keep the results of frequent queries
speeding up the access to those data.

3- Number of Simultaneous
 Accesses

 Different systems will present different reaction times depending on the
simultaneous number of accesses they are designed to support. It is
meaningful to design the architecture and select the technology involved in
accordance with this expectation avoiding an undesired bottleneck slowing
down the global performance.

4- Accesses Superposition This kind of superposition occurs on applications that present frequent
repetitions of the same query resulting in the same data presentation. Some
actual techniques may increase the speed and reduce the number of queries
buffering the results properly.

5- Type of Data If the desired interface of a Web-based system is purely based on text and
pictures, it may be easy to be designed and implemented using popular
technologies. If it is supposed to present sophisticated data, as for example
geometric data, it should be necessary to use some specific implementation
technique.

6- Data Sensibility Sensibility deals here with the publicity of a set of data. In that sense the
credit card number of a user is a very sensible data and should be protected.
This protection is obtained with encryption techniques that may have
different security levels.

7- Security Requirements These requirements refer to the integrity of the database and to the protection
developed against possible damage of this data. The main goal is to protect
the data from possible misuse resulting in the destruction of the database.

8- User Authentication Some applications may restrict the access to their databases to a limited
number of users. Normally, this is implemented by the introduction of user
categories recognized by user names and corresponding passwords.

9- User Identification Differently from the previously described criteria, the identification of users
may be implemented not to limit their access, but to customize them. Some
applications have a kind of tracking system designed to identify the users
profile and to offer them the most convenient services.

10- Session Duration Time Some Web techniques create a context that will be valid for a pre-defined
amount of time. That is very useful for example, for the case of the fulfiling
of formularies composed of many steps. Someone designing a Web-
application should estimate what kind of interactions will exist and how long
a user’s action should be active.

11- Response Time There is a relationship between this criterion and the last one. For the case of
applications where the user must navigate through many pages, case of a
long section time, it is desired to obtain response times as small as possible
for each page. The worst situation would be to have an application with
many pages, each of them with a long response time.

86

Specific Needs of the Web-based Component Management System

As component users and component developers have quite different interests, it is desired to
implement an authentication of users given them the exact rights they need to execute their job.
The additional identification of users may permit the introduction of features customizing the
application. The nature of the work of both users varies strongly, the duration of the usage
sessions for component users and component developers tends to have different dimensions. The
time necessary to fill up the system with the information contained in the classification and
documentation of a component is expected to be longer than the time necessary for searching
and understanding one single component candidate. Finally, it is desired to offer a small
response time between pages for both users, and the pages that compose the unitary steps of the
publication and selection processes must be present as fast as possible leading to a convenient
man-machine interaction.

From the technical conception of components considered in this thesis, it is possible to affirm
that a typical component will neither suffer actualization nor modification in short periods of
time. It is also not expected to have one component that will be accessed frequently by potential
users simultaneously. This reduces the necessity buffering data, limiting the buffer usage to
general information pages and avoiding to buffer component’s specific data. Additionally, it is
not supposed to have many users searching for components at the same time, meaning that
performance should not be a problem for such systems.

The interface with the users must support textual information as well as graphical ones. The
system is planned to support modern ways of presenting information about components
including the use of videos and other animation techniques that facilitate the comprehension of
the technical aspects of a component. As the concept of component itself hides the
implementation details of the functionalities, a small degree of sensibility of the data involved is
assumed. The major amount of information consists of public information about components
and developers. A pre-requirement for this thesis is that no kind of commercial transaction
procedure will be implemented. Details containing any kind of financial secret information is
not part of this component management system. Nevertheless, security considerations about the
component’s data itself must be taken whenever one developer is willing to save one new
component on the repository. In these cases, the interfaces to the users must be able to interact
with developers, asking them to properly feed the system with the desired information and to
keep the necessary security level.

Table 6.2 summarizes the considerations presented above. In order to make a general
comparison with other kind of Web-applications, the values for the applications Address Book,
Ordering Catalogue, and On-line Banking presented in [Loes98] are repeated in this table. It is
possible to verify that the Web-based component management system really does not fit to any

87

applications previously analyzed. The particular requirements and characteristics of this new
system guided this thesis to a unique proposal to be described in the course of this chapter.

Table 6.2: Characterization of a Web-based Component Management System.

 T
ype of A

ccess

D
ata A

ctualization

Sim
ultaneous A

ccess

A
ccess Superposition

T
ype of D

ata

D
ata Sensibility

Security

A
uthentication

Identification

Session D
uration

R
esponse T

im
e

Web-based Component

Management

R/W 0-3 0-3 0-3 M N/Y 1-3 Y D CU 5-7

CD 7-9

1-3

Address Book W 0 0-1 0 A N 1-3 N N 0 0

Ordering Catalogue R/W 3-9 6-9 0-3 A N/Y 7-9 N/Y Y 5-9 4-9

On-line Banking R/W 3-9 6-9 0-3 A Y 9 Y Y 5-9 4-9

R – Read; W – Write; M – Multimedia; A – Alphanumeric; N- No; Y – Yes; D – Desirable;
Scale: 0 – Very Small, 9 – Very High; CU – Component User; CD – Component Developer

Ergonomic Aspects of the desired Web-based Component Management System
Another very important aspect from Web-based applications deals with ergonomic concepts
applied to software systems. The norm ISO 9241 part 11 discussed this subject and established
some directions on how to measure the usefulness of software applications [ISO98]. Three main
criteria are considered in this thesis, the effectiveness, the efficiency, and the user satisfaction by
the software system:

• Effectiveness characterizes how effectively a tool may be considered, or in other words, how
precise and complete an application fulfils its proposed goals in comparison with the original
requirements.

• The efficiency of an application will be evaluated better if users are easily able to work with
this tool and, more important than that, if they are able to reach their objectives easily
incrementing their productivity.

• The user satisfaction measures how good the user-application relationship is. It is important
to note that even applications with good levels of effectiveness and efficiency can lead to a
poor acceptance level if they are not able to adapt themselves to the users way of working.

Here again the interface to the users plays a decisive role, being one of the most important
factors when talking about ergonomic aspects [Heil99]. Nowadays, the implementation of well

88

designed graphical user interfaces capable of being customized to different users is a preeminent
necessity. Additionally, users expect to work with interfaces that fit to the WIMP principle
(Window, Icons, Menus, and Pointer) leading to a better navigation platform and reducing the
learning effort. The desired component management system must be effective and efficient
enough to permit its usage as a support tool for the component-based development process.
Additionally, it must be able to offer different interface designs for users in order to increase the
global satisfaction.

Insertion of the Web-based Component Management Systems in the
Development Process
Two other factors, as important as the user interface design, are the business context where the
application is supposed to be used and the final objective of the people using it. Depending on
these two points software applications are used in three different forms [Wöhe96]:

• The first one is to use them as support applications where the software tools are designed to
help users to develop their work, but the work itself does not depend on the tools.

• In the second form, applications are considered as factory tools, for such cases no work can
be done without the usage of these software applications. More than a support tool it is an
essential part of the production process.

• Finally, in the third approach, software applications are used as strategic weapons where
they are used as a fundamental stone of the global business process of the company. No
work can be done without the support of those tools.

The Web-based component management system proposed in this thesis is classified better as a
support tool for component users and at least as a factory tool for component developers.
Someone searching for components may find what they want in third-party repositories.
Additionally, if they work with an ill-designed development process, they may construct their
own components whenever they need a new one. Nevertheless, considering the concepts of
component-based software development from chapter 5, where any new application is supposed
to be developed by the assembly of already existing components, it is possible to affirm that the
Web-based component management system must be used during the whole development
process. Such a system is able to improve the productivity and, if well designed, increase the
satisfaction of users. From the view of component developers, a component management system
must be used after every single component development. For those professionals, such a system
works as a display window where their products are advertised, evaluated, and, more
importantly, selected for reuse.

89

6.2 Architectural Conception of the Component
Management System

The basic architectural concept for internet applications is the client/server architecture. This is
an architecture in which the user's computer (the client) is the requesting machine and the server
is the supplying machine, both of them are connected via a local area network or via a wide area
network. In client/server applications, the client processes the user interface and can perform
some or all of the application processing. Servers range in capacity from high-end personal
computers to mainframes. A database server maintains the databases and processes requests
from the client to extract data or to update the database. An application server provides
additional business processing for the clients.

Because of the Internet, terms such as "Web-based" and "Web-enabled" have replaced the
client/server nomenclature, yet the client/server architecture is conceptually the same [FiTa00].
Users' computers are still clients, and there are tens of thousands of Web-servers throughout the
Internet delivering Web-pages. Nevertheless, the terms client/server is mostly used to refer to
non-Web-based systems. On the Web, the clients run browsers and just like legacy client/server
systems, they can perform little or a lot of processing, simple displaying of HTML pages, more
processing with embedded scripts, or considerable processing with Java applets and associated
technologies. A myriad of browser plug-ins provide all sorts of client processing. The server
side of the Web is a multi-tier server architecture with linked Web-servers, application servers,
database servers and caching servers.

As seen in section 5.2, three main tasks must be developed for a proper management of
components. Firstly, it is necessary to develop a suitable interface to potential users. This means
that two well designed and, as much as possible, customized interfaces must be developed
because component users and component developers have very different goals. The second task
involves the processing of the data someone wants to store or the data someone wants to read. In
accordance with section 5.1, some processing must be implemented because some interaction
will occur during the publication process as well as during the selection process. Lastly, the data
itself must be manipulated and stored properly (section 5.2). That is not a trivial job as the data
representing a component designed for industrial automation applications is somehow complex
as studied in chapter 4.

Based on this division in three main tasks, it is possible to conclude that the most appropriate
architecture for a Web-based component management system must contain three tiers as
presented in Figure 6.1. The first tier is responsible for the data presentation, the second for the
data processing, and the third for the data storage [Cruz96]. For security and privacy purposes, it
is desired that almost all processing be implemented at the server side. That is also a way to
guarantee a conformity for all users. Leaving the major processing tasks at the server side
permits having users with less processing power which avoids non-desired running problems. A

90

description of the work developed in each tier followed by a study of the most suitable
technologies to implement this desired work are presented in the next sections.

Server Side

Data
Storage

Repository

Client Side

Data
Presentation

Users Interface Application

Data
Processing

Figure 6.1: Three-tier Architecture of the Web-based Component Management System.

6.2.1 Interface to the Users – Data Presentation Tier

Component users and component developers have quite different needs, that may lead them to
make use of different technologies to reach their goals. It is interesting to remember the two
workflow scenarios to keep in mind how these two users are supposed to work. After finishing
their development work, component developers have their components for industrial automation
applications ready for publishing. The component publication process is composed of a
classification and of a documentation procedure. Both procedures are divided into a series of
interactions where the component management system will ask for information that developers
should introduce. These procedures may take some time because the documentation can be a
little complex depending on the component’s technology. The interface must also guide
component developers helping them to classify their components using the classification scheme
for industrial automation presented in chapter 4. It involves the explanation of the facets that
compose the scheme and some help to choose the values of these facets for each component
classification.

A desirable feature to be included is the possibility of reusing standard information already
stored for other components, as for example the company’s data. It is also desirable to have the
possibility of interrupting a classification or documentation section without losing the work
already done. The introduction of a new component technology must be possible to do and the
eventual introduction of new interactions with the component developers due to model
modifications should also be supported.

Application developers wish to find components that may fit to the application they are working
with. The interface of the component management system must help these users to find the
desired components on the repository. But searching for an element is not a trivial task because

91

users may conduct a search based on wrong parameters or through wrong approaches [Henn94].
The interface to the component users must cover the most conventional ways of searching for
elements in an electronic platform [LRS99, WaWa98, Blah01]. In this thesis, three searching
approaches are considered: the searching based on free-text values that might be present
somewhere on the documentation of the elements, the searching based on previously known
classification characteristics, and lastly the browsing over the complete repository in order to get
accustomed with the elements stored there. These approaches will be called free-text search,
guided search, and browsing respectively.

After finding some potential candidates, component users must be supported to evaluate if any
of these candidates are appropriate for the purpose they are looking for. This involves a detailed
presentation of the component’s information helping users to really understand what the
component can do and what it can not do. This presentation must be well organized including
separated information about the functional characteristics of the component as well as about
operation characteristics and non-functional information. Additionally, it is desirable that the
interface permits users to start an electronic contact with component developers or someone else
responsible for this component in order to elucidate eventual questions about the component
itself.

From the technical evaluation it may result that more than one component implements exactly
what users are searching for. In such cases, the component management system must offer the
users a way of comparing candidates, helping users to decide properly about the real potential of
candidates [Aunv01, Paiv02]. The interface is expected to give support to pre-select the most
appropriate components and to choose some desired comparison criteria. The result of such
procedure may be a table where the pre-selected components and the desired criteria are
presented simultaneously facilitating the user’s decision. After deciding on the use of one
component, the users must receive help to acquire this component.

It is also possible that none of the already available components fulfil the desired requirements
of the user. This is detected during the searching procedure whenever receiving an empty list as
a result of the search, or afterwards during the technical evaluation when the probable
candidates prove not to fulfil the desired characteristics, or lastly, during the decision making
when the resulting components may be considered non-viable due to their cost, for example. For
each of these cases the system proposed here must give support for component users to generate
an order publishing the requirements of the new component they need. The interface must be
able to guide these users during the preparation of their request for new components.

These desired features for the interface between the component management system and the
component users and the component developers may be implemented using a variety of Web-
based technologies. All these technologies have positive points and disadvantages that must be
pondered before deciding about the use of one of them. In order to fulfil all the above mentioned

92

requirements of the desired component management system, three technologies used for the
generation of Web-based interfaces were investigated. In the next paragraphs the results of this
research are presented for the interfaces designed using pure HTML, using dedicated client-side
applications, and using Java applets.

Pure HTML Interfaces

The Hypertext Markup Language is a standard language for describing documents that uses a
Document Type Definition (DTD) for specifying the structure of the document itself [Grah96].
Regarding the design of user interfaces, HTML is able to send information from the client-side
to the server-side using the HTML-formulary. With formularies it is possible to implement some
information exchange between users and systems permitting the design of communication
features. A HTML-formulary is divided into fields identified by names and contains values to
represent their contents. Different communication elements are available at the standard HTML
as for example checkboxes, radio buttons, and pull-down lists that are able to generate a
convenient way of collecting the desired information.

An interface based only on the HTML language is very easy to install because it only needs a
conventional browser to work properly. As it is a standard accepted overall, interfaces designed
with HTML are able to work with the most popular browsers and do not present any
communication problems. Modifications are easily implemented using a simple text-editor.
During the tests done for this thesis, some incompatible problems occurred whenever wanting to
introduce graphical elements to the interface. Features like drag-and-drop, point-and-click, and
other popular interface elements can not be designed using only the HTML language. Moreover,
it is not possible to introduce any pre-processing over the input data which limits the possibility
of programming interactions before sending the data to be stored.

Client-side Interface Applications

The design of graphical applications to implement Web interfaces may be also done when using
Java as a programming language [RFPG96, AyBe99]. Nevertheless, Java programmes need a
run-time interpreter at the client-side otherwise they do not run, but this problem is easily solved
through the installation of the Java Runtime Environment (JRE) that must be running at the
client-side before starting the application. This installation is not a problem nowadays due to the
popularity of the Java platform and because the JRE may be downloaded without any additional
cost. This interesting fact makes Java programmes platform independent, which guarantees that
Java applications will run overall. Moreover, the Swing library of components, which was
introduced by the Java Development Kit (JDK) version 1.2, greatly increased the number of
resources available to design graphical interfaces. This library is an extension of the Abstract
Window Toolkit (AWT) from JDK 1.1 and offers common elements of modern GUIs permitting

93

an easy design of interfaces with the look and feel of Windows compatible systems [WiKo99,
TaWo00].

Additional problems occurred for the cases where the applications were developed based on a
different version of the JRE from the one installed at the platform where they are supposed to
run. That is a common situation because developers usually work with the most actual
development tools while normal users may take more time to actualize their systems. In order to
minimize this problem, the tool Java Web Start (JWS) [JWS01a, JWS01b] from the Sun
Microsystems company was investigated and proved to be a successful approach because after
installing the JWS at the client system and associating it to the desired application it
automatically takes care of all necessary updates (inclusive support programmes) available for
the application in question. This is done through the generation of an XML document describing
the actual configuration of the application itself. Whenever a new version of the application is
available on the Web, JWS detects it by comparing the local description file with the one
available on the network, an actualization is commanded and automatically installed. This
concept guarantees an easy installation and maintenance of client-side Java applications.

The combination JDK, Swing components, and JWS proved to be a very powerful platform for
developing well designed users interface. The installation of such an application demands some
time and effort only at the very first moment. From this point on the application itself is able to
command updates automatically. Such interfaces are easily modified or extended to cover new
requirements, the only skill necessary for those modifications is fluency in the Java
programming language.

Interfaces Based on Java Applets

Similar to the Java applications, applets are computer programmes written in the Java language
that may use the classes and tools available at the JDK platform (including the Swing
components). On the other hand, applets do not reside originally on the client-side but on the
Web-side. They are downloaded whenever the user needs and run only under browsers able to
deal with Java applets [Schu99]. An advantage of this technique is that the applet is always in
the most actual version, i.e. users do not need to worry about actualizing their applications.

An applet developed to implement a well designed graphical interface is large, what causes
some problems, for example is its great downloading time. Additionally, the usage of the Swing
components is absolutely necessary to develop a nice interface. As a consequence, none of the
Swing components used by the application shall be missing at the client-side, otherwise it would
not work properly. For these cases, it is necessary to order the additional installation of plug-ins
leading to even greater download periods. Applet developers must pursue a good level of
expertise on the JDK platform. Later modifications on the interface are possible, but it is
important to remember that these modifications will be restricted to the user’s browser
capability of dealing with Java applets.

94

6.2.2 Manipulating Component’s Information – Data Processing Tier

In the Web-based component management system proposed here, the data processing tier is
responsible for the preparation of the data introduced by component developers to be stored on
the repository from one side, and accesses the desired data, preparing it for its presentation
whenever asked by component users from the other side. Some processing power is necessary to
complete these two tasks successfully. During the component publication, component
developers are asked to give some information in order to classify and document their
components properly. This information must be verified, firstly to prove if it is in accordance
with the classification scheme for industrial automation systems proposed in chapter 4, and
secondly to verify if all important data about the component technology was given accordingly.
Whenever the classification or the documentation fails, the system must ask for complementary
information and must insist on it until the inserted data is consistent with the pre-defined model.
This tier must also be able to deal with different models simultaneously, and the insertion of
new models should be as easy as possible.

Component users should not worry about how they can reach the information stored on the
repository. These data must be worked out for the searching of components, offering to users
meaningful ways of searching and browsing the repository in a transparent approach.
Information about one specific component is expected to be prepared during the technical
evaluation facilitating the user’s comprehension of the most relevant information in a very
convenient way. Lastly, the decision process involves processing of specific information about
some components that may be retrieved and processed after being sent to the interface to the
users at a real-time pace. The contents of the interfaces are generated dynamically in accordance
with the current information demand and is composed of data stored at the repository. The most
relevant technologies investigated that are able to implement such communication and
processing tasks via Web are briefly presented in the next paragraphs. They are the Servlets, the
Java Server Pages, and the Remote Method Invocation.

Processing Data with Servlets

Servlets are platform-independent, 100% pure Java server-side modules that fit seamlessly into a
Web-server framework and that can be used to extend the capabilities of a Web-server with little
overhead, maintenance, and support. These programmes are accessed through pre-defined set of
interfaces distributed by Sun Microsystems called Servlet-API, where all possible interfaces are
declared and some of them are also implemented. The connection of a Web-server to a servlet is
done using the so called Servlet Engine, which is a container where the servlets really run.
During the installation procedure, a set of configuration data must be adjusted at the Web-server
and at the Servlet Engine in order to enable a proper communication between both of them.
After this adjustment, each HTTP request is checked out to see if it includes access to the
servlets. And if it does so the request is redirected to the Servlet engine in order to be processed.

95

The communication between servlets and users interfaces can be implemented by a simple
HTML-formulary using the GET and POST commands. The desired servlet is accessed through
the methods doPost and doGet. The real functionality of these methods must be programmed in
accordance with the desired processing task. The response of the servlet is then sent back to the
client who must understand the data and present it to the user. But the interface can also be
implemented through an applet or a real Java application. For these cases better communication
is obtained, starting a direct connection between client and server and sending the data in binary
format (or ASCII). Using this approach, the proper presentation of the data to the users relies on
the interface designers, that must interpret the received data and present it meaningfully.

Dynamical Data Manipulation with Java Server Pages

One problem detected during the construction of interface logic based on servlets is that each
single modification on the interface design requires a complete regeneration of this interface.
Additionally, the programming of HTML-pages inside the source code of a servlet requires a lot
of work. The Java Server Pages (JSP) technology separates the user interface design from
content generation enabling designers to change the overall page layout without altering the
underlying dynamic content [Tura00, Hall01]. The processing of data using this technology is
divided into two parts. Firstly it is necessary to generate HTML documents representing the
interface to the user, and afterwards the necessary logic is introduced through special tags that
are responsible for calling the desired programmes.

This technology uses XML-like tags and scriptlets written in the Java programming language to
encapsulate the logic that generates the content of the page. Additionally, the application logic
resides in server-based resources that the page accesses with those tags and scriptlets. By
separating the page logic from its design and display, JSP proved to be a suitable technology to
build Web-based applications. In fact, JSP is an extension of the Java-Servlet technology.
Similar to the servlets, JSP pages need a run-time environment here called JSP Engine. Most all
new versions of Servlet Engines come nowadays with a JSP Engine integrated, and JSP pages
must reside on the Web-server containing this engine. Together, JSP technology and servlets
provided an attractive alternative to other types of dynamic Web scripting or programming that
offers platform independence, enhanced performance, and separation of logic from display.

Data Processing Using the Remote Method Invocation

The Remote Method Invocation (RMI) technique is the Java approach for the Remote Procedure
Call concept [WiKo99, RMI00]. The main goal here is to give developers the possibility of
using objects remotely located as they were on the client-side computer. RMI allows parameters,
return values and exceptions passed in RMI calls to be any object that is serializable. It uses the
object serialization mechanism to transmit data from one virtual machine to another and also
records the call stream with the appropriate location information so that the class definition files

96

can be loaded at the receiver. Parameters and return values for a remote method invocation
become live objects in the receiving Java Virtual Machine.

Some additional work must be done in order to implement an application able to use the RMI
architecture. First of all, it is necessary to design the classes interfaces, what is done in the same
form of a normal Java class plus the declaration of a pre-defined method called Remote. The
services offered by this class must then be implemented respecting the previous declaration of
classes and methods. These classes must finally be registered at the client and at the server sides
following specific procedures. Of course, the collection of the necessary data and the desired
processing over this data must be programmed as client and server-side applications
respectively. The RMI solution for the communication between user interfaces and processing
tier is more suitably applicable for the cases where no HTML are used as client side front end.
Additionally, specific knowledge about the RMI architecture is necessary making the
programming of such applications a little bit more difficult than the other two technologies
investigated to implement this tier of the component management system.

6.2.3 Storing the Component’s Information – Data Storage Tier

The right ways of formatting and of accessing data are the most important questions to be
answered when talking about data storage. Decisions about these two points must be based on
the desired information structure and on how potential users are supposed to manipulate the
stored data. Additionally, the communication through networks, and in particular via the Web,
poses some other requirements to this thesis that must be obeyed. Final goals are to keep the
data consistent and to avoid the lost of information previously stored at the repository. Many
tools specially designed to deal with these questions have been available on the market for a
long time and were examined for the development of this thesis.

Database Management Systems (DBMS) are software systems developed to control the
organization, the storage, the retrieval, the security, and the integrity of data in a database
system [HeSa00]. They accept requests from the application and instruct the operating system to
transfer the appropriate data. DBMSs work with traditional programming languages, but some
of them have their own programming language. They let information systems be changed as the
organization’s requirements change and new categories of data can be added to the database
without disrupting to the existing system. Additionally, DBMSs help users to formulate queries
over the data stored on them and from time to time stabilized query techniques are improved and
adjusted to new technologies available on the market [SeMi99, SWM01]. Mitschang
[Mits01].classified the possible usage of different database systems in accordance with their
ability to deal with the data type complexity and with the available query complexity as
reproduced in Figure 6.2

97

Object-Oriented
Database System

Object-Relational
Database System

File System Relational
Database System

Complex

Complex

Simple

Requests

D
at

a
Ty

pe

Simple

Figure 6.2: Classification of Database Systems Applicability.

Among the major attractive features of DBMSs for the component management system are their
ability to deal with data security. They can prevent unauthorized users from viewing or updating
the database. Using passwords, users are allowed to access the entire database or a subset of it.
The DBMSs can also ensure that no more than one user can update the same record at the same
time, which is a way of assuring the data integrity. With DBMSs, the details of the data structure
are not stated in each application programme. Without a DBMS, the programmer must reserve
space for the full structure of the record in the programme and any change in data structure
requires changing all application programmes.

In the next paragraphs some important characteristics of the relational DBMS, the object-
oriented DBMS, and about the eXtensible Markup Language (XML) are presented. The goal is
to verify which one is more suitable to work with the data structure of a component for
industrial automation. Such data base systems must be able to deal with a well structured data
originated from the core data, and simultaneously able to deal with an unstructured and variable
data originated from the flexible data.

Characterizing Relational Database Systems

The main criterion normally used to classify database management systems is the data model on
which the DBMS is based [ElNa94]. The data model used most often in current commercial
DBMSs is the relational one, which represents a database as a collection of tables, where each
table can be stored as a separate file. The first task to design such a relational database is to
obtain a relation model able to properly represent the elements to be inserted on the database.
The translation from such a relational model to a set of tables representing it is then done in a
straightforward manner. Relationships among objects are represented by associations among
entities on the relational model using three available types of associations, the 1-to-1, the 1-to-n,
or the n-to-m association. The numbers and the variables represent the possible cardinality
among the entities.

98

DBMS systems are able to deal with the Structured English Query Language (SQL) and the
desired queries on a database are designed using this language. Routine queries often involve
more than one data file. A relational DBMS is designed to handle numeric data types like
integers and floating point numbers, alphanumeric characters, fixed length strings, date, time,
and money data type. Enumeration composed of a set of possible values explicitly listed are also
available. Additionally, relational DBMSs support a Binary Large OBject (BLOB) field, which
holds any binary data (image, video, etc.), but the database programme does not manipulate the
BLOB directly. Another application has to be written or some middleware has to be used to
process the BLOB file.

The communication between a data storage tier implemented by a relational DBMS and the data
processing tier is easily realized using the interfaces Open DataBase Connectivity (ODBC) or
Java DataBase Connectivity (JDBC) [Dehn98]. ODBC is a database programming interface
from Microsoft that provides a common language for Windows applications to access databases
on a network. It is made up of the function calls and the ODBC drivers themselves. JDBC is the
Java counterpart of Microsoft's ODBC, and is a programming interface that lets Java
applications access a database via the SQL language.

The core data of the component’s representation of section 5.2 is well suited to be represented
by a relational model and consequently to be managed by a relational DBMS. Positive points in
adopting this approach are the easy implementation of queries over the data which are based on
standard SQL, and the direct incorporation of the features presented in common commercial
relational DBMSs, for example, the data security and integrity will be under the responsibility of
the chosen database management system. On the other hand, the implementation of the flexible
data part of components into a relational DBMS constitutes a problem as the variant
characteristic of this part does not fit completely to a relational model. Additionally, although
relational DBMS are able to work with BLOB (large object) fields that hold anything, extensive
use of these fields can overload the processing on the data base. Storing such kind of data as part
of a file system proved to be a more suitable alternative [Aunv01].

Using Object-Oriented Database Management Systems

One goal of OO databases is to maintain a direct correspondence between real-world and
database objects so that objects do not lose their integrity and identity and can easily be
identified and operated upon [ElNa94]. OO databases provide a unique system-generated object
identifiers (OID) for each object, which is similar to the primary key attribute of the relational
model. A real-world object possesses different keys in different relations, making it difficult to
ascertain that the keys do indeed stand for the same object. Another interesting feature of OO
databases is that they are able to deal with object structures of arbitrary complexity, containing
all significant information that describes those objects. In contrast, in relational database
systems, information about a complex object is often scattered over many relations or records,

99

leading to loss of direct correspondence between a real-world object and its database
representation.

Object databases handle one-to-many relationships combined with many-to-one relationships.
Using the object model, an object-oriented DBMS can store anything or refer to anything. Some
OODBMSs allow access via an SQL-like language, the so called Object Query Language
(OQL). Increasingly, OODBMSs are being merged with relational databases, providing a single
environment for traditional business transactions, multimedia data and complex structures. Most
recently the use of parallel data object-relational DBMS have been tried to improve the
performance of database systems even more [JaMi98]. In an object database, a picture or video
clip object can include the routine to display it, which is dynamically invoked by the DBMS.
Communications features with other systems can also be implemented using appropriate ODBC
or JDBC interfaces.

As presented in Figure 6.2 object-oriented database systems and object-relational database
systems are supposed to be used better for applications dealing with complex data types. The
first is more suitable for working with simple requests while the second is able to deal with
complex requests. The representation of components for industrial automation is composed of a
part that can be certainly classified as having a simple data structure, the core data, and it is over
this part that the search requests will be processed. These requests may reach a certain level of
complexity. The other part of the representation, the flexible data, has a complex structure,
having for example multimedia elements, but no request shall be implemented over it.

Storing Data Modeled by the Extensible Markup Language

The eXtensible Markup Language (XML) is an open standard for describing data from the W3C
– World Wide Web Consortium [W3C, W3C01]. It is used for defining data elements on a Web
page and business-to-business documents. It uses a similar tag structure like HTML, however
whereas HTML defines how elements are displayed, XML defines what those elements contain
[BeMi00]. Unlike HTML, which uses a rather loose coding style and which is tolerant of coding
errors, XML files have to be well formed, which means they must comply with rigid rules.
XML has been quoted as one of the most promising technologies for sharing data over the Web
[CaCa01, SeRo01].

One important feature of XML that proved to be well adapted for this thesis is that the validation
of an XML file is done comparing its content to a pre-defined file structure. Two techniques
have been used to create this structure definition, the DTD and the XML Schema. DTD stands
for Document Type Definition and is the standardized schema of the Standard Generalized
Markup Language. DTDs act as rulebooks that allow authors to create new documents of the
same type and with the same characteristics [LaCe99, GoPr01]. They are used to define contents
as well as determine the elements allowed in one file and which elements can be contained in
other elements. The XML Schema is a superset of DTD also used to define the contents

100

characteristics of an XML file. Unlike DTD, XML Schemas are written in XML syntax and are
created with any XML tool. XML Schema is flexible and simple to use because it contains user-
defined data types what makes the global comprehension of the Schema easier than others based
on standard tags. Using Schemas designers are able to specify their own meaning, usage, and
function of elements of an XML document.

As a matter of fact, an XML file is not more than a set of characters divided into tags and
contents that must be processed to gain some valued significance. This processing is normally
done by XML parsers. A parser is a computer programme able to rip apart the textual
representation of a document and turn it into a set of conceptual objects to be used later. Parsers
are designed to identify XML tags and to work properly with the contents under these tags.
There are many XML parsers on the market for use with many different programming
languages, some of them suitable to be used with the Java programming language [JXML01].
These parsers will be compatible among themselves if they are able to work with one same
standard parser API. The most usable parser APIs nowadays are the DOM – Document Object
Model, the SAX – Simple API for XML, and the JAXP – Java API for XML [JDOM00,
McLa00].

Another very important aspect of the XML technology appropriate to the component
management system under consideration, is its ability to carry instructions about the desired
presentation style of a document in an independent form. Through the use of stylesheets, the
visual style of a document is reported without any modification on the document itself. The
eXtensible Stylesheet Language (XSL) is a specification of the W3C for applying formatting to
XML documents in a standard way. Over time, a part of XSL called the XSL Transformation
(XSLT) has evolved into an independently useful language for transforming one XML
document to another.

More recently, some proposals appeared talking about the XML databases [BeFe01, Bour01a,
Bour01b]. That is a database able to manipulate and to store XML documents. There are two
possible approaches for these databases. The first is the XML-enabled database, which is a
relational or object-oriented database that has been extended to hold XML data. In this method,
there is always a conversion to and from the XML document to the underlying structure such as
rows and columns in the relational model. In addition, the XML-enabled database may only
store part of the XML document. The second is the native XML database, which indexes XML
documents directly and stores the entire XML document and related elements.

From the research developed, it was possible to conclude that the XML technology offers tools
able to deal with any data type, and these tools are flexible enough to accept user specified data
structure. Changes over previously specified data structures are easily modified and
simultaneously the work with diverse structures is also possible and easy to be implemented.
These characteristics are very well suited to process the flexible data part of the component’s

101

model of section 5.2. The possibility of inserting meaning for each element of a file from one
side, and additionally communicating presentation formatting specifications for those elements
from another side, is a powerful characteristic of XML with potential usage to manage the
flexible data part of the component’s model, and to develop adaptable interfaces to the users
respectively.

6.3 Choices among the Presented Technologies

The decision about the most appropriate technologies for realizing each tier took into
consideration the requirements of the component management system and is presented in this
section. More than one technology will be adopted at each tier, because the requirements of the
system vary in accordance with the type of user, with the amount of work to be done over the
data, and with the data itself.

Technologies Selected for the Data Presentation Tier

The judgement criteria for the data presentation tier involved four points:

• The first one is the necessary installation work done by the client whenever wanting to use
the component management systems. Important here is to compare how much effort is
necessary to properly install and work with the interfaces using the presented technologies.

• The second criterion is the interface usability, i.e. how easy it is to use and how convenient
the interfaces constructed with each technology are.

• Then the extensibility offered by the technologies is judged, verifying if it is possible to
introduce new functionalities on already implemented interfaces.

• Lastly, the alteration capability of the interfaces is compared or in other words, how easy it
is to modify already designed and implemented interfaces issues.

The alteration capability is a decisive factor, because the system is supposed to work with
different component models, which may lead to different interfaces to the users. This tier must
also consider the special necessities of component users and component developers. Developers
want to publish their components, storing their information on the component repository. These
users are expected to have a professional relation with the component management system using
this system as a strategic weapon for their business. In spite of that, the interaction between
component developers and component management system might not abdicate features that
facilitate the communication between the system and the users. For example, component
developers must be able to stop their actual work at any point of the documentation procedure
without losing the classification already done. Additionally, the possibility of working off-line
in a local machine must be considered in order to avoid long connection periods and to reduce
costs. The above mentioned scenario is realized better by a Java application programme
[Serh01, Paiv02]. Whenever this application is associated to the Java Web Start (JWS)

102

technology, it is guaranteed that the application will be flexible and will always be at the most
actual version. This feature is obtained because JWS keeps a configuration file adapting the
application to what is described in this file. Any desired modification on the interface
application is implemented directly only by modifying the initialization file once for all users.
This technique enables a synchronization between server and clients applications not presented
in any other technology evaluated during this thesis. On the other hand, component users are
expected to proceed with simple tasks and may have less compromise with the component
management system. They may interrupt their working sections in any stage of their job without
saving the actual situation. Avoiding any installation procedure at the component user side is
also desired, which would reduce the acceptance of the component management system.
Component users may utilize the component management system selecting components without
great effort which means they need a powerful interface. Such interfaces are obtained using
HTML associated to any scripting language. For conformity and portability purposes Java Script
is the most appropriate choice here.

Technologies Selected for the Data Processing Tier

As a matter of fact, a comparison between servlets and JSPs is redundant as JSP was developed
based upon the Java servlets technology. Both present the same potentials and problems. While
servlets are used to work better with Java applications, JSPs are well suited to be embedded in
HTML code. Three comparison points were judged for this tier:

• The first comparison criterion is the internet capability of each technology, i.e. how easy is
to apply each technology in the construction of Inter- and/or Intranet applications.

• In the sequence the system’s interfaces characteristics that are obtained using those
technologies is compared.

• The last criterion is the amount of work necessary to implement any processing task using
each technology.

The data processing tier is implemented better with the Java programming language and
associated technologies (servlets or JSPs). All interactions with users need data that will be
processed at this tier reducing at most the necessary computational power from the users side.
The communication with users must be constructed in such a way that no special features from
the users side is needed. This tier must also communicate with the data storage tier through
technologies related to the way of storing the data itself. In this thesis the communication occurs
through JDBC technology and through XML parsers [Aunv01, Horn01, Paul01]. Although RMI
configures a relatively easy and very powerful alternative to implement distributed applications,
it is not the best choice for the component management system under consideration. One reason
is that the complete component management system will be constructed on a client server
architecture composed of only one central server. The system does not need to use the powerful
but complex mechanisms offered by the RMI technology to deal with distributed applications.

103

Additionally, RMI applications need to implement connections to computer ports that may be
blocked by firewalls in some systems. This configures a problem leading to malfunction of the
application. Such problems are avoided using servlets or Java Server Pages.

Technologies Selected for the Data Storage Tier

Four aspects were used as criteria for judging the technologies investigated for implementing the
data storage tier of the flexible Web-based component management system:

• The available storage mechanisms where the ways of storing data offered by each
technology were tested and evaluated considering the characteristics of the components that
will be manipulated by this tier.

• The flexibility grade offered by each technology where it is mainly investigated how easy
the introduction of new data structure elements is or the modification of existing ones on
already developed data structures.

• The queries mechanisms comparing the search alternatives available for each technology.
• The last item deals with the presentation and distribution of the search results, here it is

investigated which data formats are used and how someone can work it out for the above
mentioned technologies used in the data storage tier.

In accordance with the characteristics of the component models, where a very important part
may vary strongly depending on the technology of the component being currently handled, it is
possible to affirm that flexibility is a decisive factor for choosing the technology to be used for
the realization of this tier of the component management system. Moreover, the presentation of
the flexible data, containing the technical information of a component, shall be more accepted
by users if the system is able to adapt the contents to a desired presentation style in accordance
with the component technology. This separation of content from style is easily implemented
using XML and associated technologies [Aunv01, Paiv02]. Nevertheless, the component model
also contains a core data that must be always the same and that is used as a searching source.
The query mechanisms offered by RDBMSs and OODBMSs are much easier to use than any
similar implementations applied to XML data. Additionally, the storage and consistence of data
is managed better by mature DBMSs. Finally, the great advantage of the object-oriented
approach over the relational one is its ability to deal with flexible structures. But the flexibility
obtained using XML is much more promising and easy to deal with. Whenever ignoring this
characteristic of OO-approaches, the choice of the DBMS technology relies on a relational
system, which is the easier and less expensive alternative to work with the core data. In most
cases, the maintenance of a heterogeneous data format is undesirable. Nevertheless, the
characteristics of the component model for industrial automation, composed of a core data and a
flexible data part, is managed better by such a heterogeneous approach. Core data is well suited
to be represented by a relational model and consequently better managed by a RDBMS. Flexible
data is represented better as an XML document fulfiling all requirements towards the desired

104

flexibility and modifiability for this part of the model. A link between the core data and the
flexible data must be introduced and maintained properly.

Resulting System based on the Evaluation of the Technologies

The resulting architecture for the flexible Web-based management of components of industrial
applications is presented in Figure 6.3. It is not represented in the figure, but it was already
mentioned, that the Data Processing and the Data Storage tiers are implemented better on the
same computer at the server-side. The desired flexibility is obtained using the set of component
models and every component technologies that will be managed by the system will have a
representation stored.

HTML +
Java Script RDBMS

JDBC
+

XML
Parser

Component
Users

Component
Developers

Data Presentation

Application

JSP Pages

Servlets

Data StorageData Processing

XML

Set of Models
Described by the
XML Technology

Figure 6.3: Selected Technologies for Each Tier of the Component Management System.

The Web-based component management system proposed in this chapter was originated from
the analyses of the most relevant technologies currently available for constructing those kind of
applications. First of all, the technological aspects of Web-based systems were presented. After
analyzing the characteristics of desired application, it was possible to conclude that a three tier
architecture was more suited for the system to be realized. As many different technologies
available nowadays are able to implement the necessary tasks for each tier, comparisons were
made permitting the formulation of proper decisions about each one. Afterwards, the most
appropriate technologies to fulfil the desired requirements of the system were selected, which
resulted in the system realization proposition presented in the end of this chapter.

But the characteristics of the component management system proposed in this thesis must be
verified. In order to proceed with this verification, prototypes were developed using the above
selected technologies for each tier. The complete description of each prototype realization and
the exemplary usage of the complete system is the subject of next chapter.

105

7 Description of the Flexible Web-based Component
Management System Prototype

A prototype of the flexible Web-based component management system proposed in this thesis
was implemented using the technologies suggested in section 6.4. (see Figure 6.3). The
complete system is divided into three smaller prototypes each of them covering tasks that could
be meaningfully grouped together. One first prototype is responsible for implementing the
insertion of new components at the repository. It covers the interface to component developers,
the necessary data processing before the storage, and the storage itself. The second prototype
implements the necessary tasks for the search and find of components, and it is designed to deal
with users wanting to search at the repository for a component with particular characteristics and
in different ways of searching. The last prototype covers the presentation of the information
about previously selected components. Its responsibility starts after the finding of possible
candidates, presenting the technical information about these candidates dynamically and in
accordance with their particular technology. A common part of the global system is the
repository where the data about components is stored and from where users receive the desired
information. This part is composed of a relational data base system containing the core data, and
a file system containing the flexible data of the component’s model written as an XML
document (see chapter 5). Additional information about the models themselves and about the
proper way of presenting the component’s information to users are also stored in this common
repository. Implementation details of the data storage part as well as the description of the three
above mentioned prototypes are presented in this chapter, which is closed with a usage example
based on the synchronous component technology.

7.1 Implementation of the Data Storage Tier

As stated in chapters 5 and 6, the core-data part of the component’s representation model
contains information shared by all component’s technologies being managed by this system. In
this prototype, the core-data was reduced to a minimum amount of data chosen to help users to
search and find desired components. Basically, this part contains data about developers and
companies responsible for the components, the facets of the classification scheme presented in
chapter 4, and a representation for the possible dependencies among components. Figure 7.1
presents the table structure of the relational model representing the core data.

The facets F1 and F2 of the classification scheme for industrial automation components (IACd),
Application Domain and Specialization of the Domain respectively, are modeled through two
tables where domains and sub-domains names are stored. This is supported by the specification
of the actual level of the domain associated to the identification of the immediately upper
domain level.

106

COMPANY

Company Identification
Company Name
Address
WWW Page
Email
Phone Number
Fax Number

Primary Key
(Company Identification)

DEVELOPER

Developer Identification
Developer Name
WWW Page
Email
Phone Number
Fax Number
Company Identification
Password

Primary Key
(Developer Identification)

DOMAIN

Domain Identification
Sub-Domain Identification
Component Identification

Primary Key
(Domain Identification)

SUB-DOMAIN

Sub-Domain Identification
Sub-Domain Name
Level
Mother

Primary Key
(Sub-Domain Identification) FUNCTIONAL

Description Identification
Component Identification
Implemented Functionality

Primary Key
(Description Identification)

OPERATIONAL

Operational Identification
Component Identification
Hierarchic Classification
Industrial Automation Task
Trigger Type
Real-Time Characterisitc
Component Technology
Hardware Platform
Operation System
Memory Usage

Primary Key
(Operational Identification)

DEPENDENCIES

Dependency Identification
Component Identification
Partner Identification
Dependency Description

Primary Key
(Description Identification)

COMPONENT

Component Identification
Component Name
Version Number
Version Date
Price
Short Description
Developer Identification
Company Identification
Component Type
Link to XML File
Link to Model Description

Primary Key
(Component Identification)

1 : n

1 : n n : 1

1 : 1

n : 1

1 : 1

1 : n

1 : n

Figure 7.1: Table Structures and Relations of the Core-Data Part of the Component’s Model.

As a component may implement many different functions, it may have many different textual
descriptions explaining those functions. This fact is represented by the table called
FUNCTIONAL. The other facets of the classification scheme were represented in the table
OPERATIONAL and the facet Component Type is contained in the table COMPONENT. The
connection between core-data and flexible data, where the technical information about each
component is stored, is implemented through the information about where the XML file of the
component itself and its model description is stored. These two fields are also represented in the

107

table called COMPONENT. The relational data base system was realized by the Interbase 6.0
(IB) data base management system. The communication between this RDBMS and the elements
of the data processing tier was implemented through the respective JDBC drivers.

All other information about components was modeled and stored in the flexible data part. A
model description for each technology is represented by XML Schemas and the corresponding
presentation style by XML stylesheets. An example of the desired contents of the flexible data
for the synchronous component model is presented later in this chapter. In the next sections,
each prototype implementation is described in detail.

7.2 Flexible Storage of Components

The main architectural elements of the prototype system responsible for the storage of
components are presented in Figure 7.2. It contains the global data flow, the division of the data
storage in a relational database system and in a file system, all servlets installed at the server
side, and the classes and elements of the Application Component Developer at the client side.

Communication with the Data Processing Tier through JDBC and XML Parsers

File System

XML-file (flexible data) +
uploaded binary files (avi,jpg..)

Relational Database
XML-INI-file

Core-data and
Additional Tables

Component Repository

Web Server

Java Web Start
Application Component Developer

CDataManager
CDynamicDataManager

CXMLManager
CUserManager

Servlet Engine Tomcat
Load-

Servlet
XML-

Servlet
User-

Servlet
Store-
Servlet

Upload-
Servlet

LoadModels-
Servlet

UniqueId-
Servlet

AppDomain-
Servlet

Static GUI
Dynamic GUI JDOM Xerces

Client

Figure 7.2: Architecture of the Flexible Storage of Components Prototype.

108

7.2.1 Objectives of the XML-INI File

The initialization file contains a description of the desired GUI and is used whenever a client
starts the component developer application programme [Serh01]. The main goal is to generate a
flexible interaction acquiring different information based on the actual component technology in
use. That is why the initialization file not only contains parameters to configure a proper GUI
presentation style of the user interface (adaptable background colors, fonts types, etc), but also
contains descriptions of the desired input elements and instructions on how to verify the
conformity of this data.

In principle, a initialization file could be written in any electronic form or data format as it is
always possible to develop a particular parser to read this file, understand its commands and
parameters, and convert it into the desired programme application. In the construction of this
prototype, the XML language was chosen to compose the initialization file because XML has a
standard and well accepted syntax and because there are currently many tools available on the
market that can manage XML files properly. The choice of such tools reduce the effort by
constructing a parser for a private usage.

Nevertheless, a description language still needs to be developed, with valid tags and parameters,
able to represent all elements that must be present at a component developer interface for this
component management system. The XML-INI file developed for this prototype contains these
elements describing the desired fields and data types used to format the interface to component
developers, whose main goal is to acquire data about components being classified and
documented. Some rules about the desired interactions between users and system were
previously defined and are listed below:

• The input data must contain text fields (only one line of text), memo fields (many lines of
text), lists with pre-defined values (enumeration), and dialogue fields to represent the
elements of the desired interface to the user.

• The input fields must contain integer, double, string, binary, large binary and date data types.
• One item field is able to receive more than one value.
• Every element of the interface is expected to contain a description of the element itself that

may be used as help for users.
• The pre-defined data must contain information about the accepted range represented by the

insertion of default, maximum, and minimum values. These values are supposed to be
interpreted in the context of the particular data type.

The above mentioned characteristics of the initialization file are implemented with the help of
the XML tags presented in Table 7.1.

109

Table 7.1: XML Tags used in the XML-INI File.

Tag Description
<IASCGUI> Denotes the root-element
<Item> Tag specifying that this is a new graphical element. Item elements are identified through an

attribute called ID, which is unique inside an XML-INI-file
<Type> Specify the description of data types
<Caption> Denotes the headlines of one graphical element
<Name> That is the name of one element, the way it is referenced inside the document
<Min> Symbolize the minimal valid value of a field element and varies in accordance with the data

type of this element. For non-numeric data types the comparison is implemented using the Java
method “equal”

<Max> This is the maximal value of a field element
<DefaultValues> Denotes the standard value of a field. The input data contains this value if no action contrary to

this occurs
<Presentation> Designates a desired input element
<MultiAllowed> Boolean variable communicating if one item accepts more than one input value
<Description> Denotes textual explanation about the items to be inserted

The next question after having decided about the initialization file format is how to parse this
file properly. As cited in chapter 6, there are many different parsers available on the market able
to deal with XML files, most of them appropriate to work with the SAX and DOM APIs. SAX
is an event-based interface that generates events during the parsing of a file whenever a tag is
identified. These events are captured and processed by the application. Users have no access to
the whole document but only to the actual element being processed. DOM offers the possibility
of manipulating the whole document as well as representing this document in a tree structure. In
this prototype it is necessary to execute some elaborate processing tasks over the whole XML
file as for example reading the whole file and comparing it with the desired model. This fact
leads to the decision of working with a parser compatible with DOM and able to present a good
performance over the concurrency. The chosen parser was the JDOM which offers the access to
the whole XML document, supports write and read operations, has a close relation to the Java
programming language, and has efficient methods that results in concrete Java objects. The used
version of JDOM was the Beta version number seven.

7.2.2 Description of the Client-Side Elements

The interface to the component developers is implemented as an application that must be
distributed with the support of the Java Web Start, which is the reference implementation of the
Java Network Launch Protocol (JNLP). The client side application is divided into three smaller
functional elements, the application component developer, the Java Web Start, and JDOM
together with Xerces that are described below.

The task of the application Component Developer is to offer a convenient interface for the
classification, for the documentation, and later on for the storage of components. It additionally

110

supports the actualization or modification of already stored data. This application interface was
developed using the SWING library of the JDK 1.3 and contains the following features:

• Possible usage in off-line mode
• Run-time dynamic generation of GUI elements using the XML-INI file contents
• Efficient presentation and manipulation of information about the components with support

of GUI elements like lists, tree structures, and other dialog fields
• Support of different component models
• Data upload from the Web-server side.

The features mentioned above were implemented by some Java classes, and the most significant
classes used are presented in Figure 7.2. The class CUserManager is responsible for the
management of the data about users and companies. CdataManager deals with the core-data of
the component model implementing read and storage mechanisms. CDynamicDataManager
manages the flexible-data part of the component and also covers the generation of GUI elements
based on the XML-INI file contents. Lastly, the class CXMLManager is responsible for the
manipulation and generation of XML data files containing the technical information about the
inserted components.

In this prototype the combination of JDOM and the parser Xerces is basically responsible for
three activities. The first is the parser of the XML-INI files where the dynamic GUI to the users
is described permitting a run-time adaptation to users and to component models. The second is
the conversion of the core-data stored on the relational data base system to an XML string
whenever it is used, for example to present the classification values already stored as
suggestions for new classifications. And lastly, they are responsible for the generation of
complete document files containing a combination of the core-data and the flexible-data, usable
for example, for data exchange with different systems. The installation of JDOM is done
directly. It is only one file distributed together with the application, while the Xerces is sent to
clients as a separate data with help from JWS.

7.2.3 Server-Side Elements Description

As seen in Figure 7.2, eight servlets were developed for the realization of this prototype whose
functionalities are briefly described in the next paragraphs.

a) LoadServlet – This servlet is used when component developers select one already stored
component as a basis for the classification or documentation of a new component. It is also
used for the modification of existing information. The information stored in the data base
and the respective XML file are loaded and sent to the client side application in the form of
an object that will be manipulated by the class CDataManager.

111

b) StoreServlet – Whenever someone commands the storage of a component at the client side,
this servlets receives the data stored in the memory at this moment and stores the core-data
part in the RDBS and the flexible-data in the file system.

c) UserServlet – This servlet is responsible for verifying the kind of user who is trying to
access the component management system. Depending on this category, the user will be
asked to introduce password and will receive the corresponding access rights.

d) AppDomainServlet – The classification structure of a component considering its domain and
sub-domain is handled by this servlet. It reads the actual domain tree from the data base and
presents this structure as a suggestion for the classification of a new component. Users are
supposed to select one of the available values, but they are also free to introduce new
specifications. Whenever detecting that a new specification for the domain was suggested,
this servlet stores it in the repository making those new values available for further usage.

e) UniqueIdServlet – The main task of this servlet is to generate a unique identification for any
new component managed by this system. This is done with help from the RDBMS using the
primary keys created for each component.

f) UploadServlet – Representation models may be configured to contain large binary data as,
for example, video or audio files explaining the correct usage of components. The proper
transfer of this data from its original location to the repository is done by this servlet. Such
procedure results in the creation of new sub-directories and links written at the file system.

g) XMLServlet – This servlet is responsible for verifying the consistency of a recently
generated XML file containing the information about one component and the respective
model representing the desired elements of this technology. After this verification,
XMLServlet generates all necessary subdirectories and commands the storage of the
component’s XML file.

h) LoadModelsServlet – This is the servlet that loads one or more different component models
available, preparing the system to deal with these models. It reads the information of the
desired model from the file system and sends the necessary information to the client side
application, that works this data properly.

7.3 Searching on the Repository Dynamically

The way someone searches for a desired object in an electronic library or any other similar
application may have many variations [Horn01]. In this prototype three alternatives were
considered:

• Users may search based on pre-defined and well known keywords or keywords categories.
This approach is well suited for the usage of the IACd, its facets and respective values as
search criteria.

• The second alternative consists of searching all over the repository towards any desired
textual formulation.

112

• The last search alternative is based on the browsing of the existing structure of the data and
their classification categories, which enables a complete overview of all elements stored at
the repository.

But the repository may not contain the desired artifact resulting in empty lists of candidates for
any of the searching alternatives mentioned above. For these cases, some helping procedures
were added to this prototype in order to permit a later request of a desired component.
Additionally, a procedure to notify users whenever a stored component does not fulfil the
published characteristics was implemented. This feature was developed through an evaluation
system where users may give a grade for components they have already used. Figure 7.3
presents the main elements of this prototype.

Communication with the Data Processing Tier through JDBC and XML Parsers

File System

XML-file (flexible data) +
uploaded binary files (avi,jpg..)

Relational Database
XML-INI-file

Core-data and
Additional Tables

Component Repository

Any Browser Compatible with HTML 4.0 and JavaScripts

JSP Engine JakartaTomcat and Sun JRE

Client
Web Server

MainMenu.htm HelpPage.htmStart.htm StructurePage.htm

Request.jsp Browse.jspRating.jsp GuidedSearch.jsp TextSearch.jsp

Figure 7.3: Architecture of the Dynamical Search of Components Prototype.

Note that the client side was implemented as a set of HTML documents embedded with Java
scripts. These pages call the necessary Java Server Pages generating the dynamical searching in
accordance with the contents stored at the repository. The data processing tier, also hosted at the
server side, consists of a JSP engine able to process the desired functionalities. The Web-server

113

used has the Sun JRE version 1.3.1 running on it. The communication between the processing
tier and the data storage tier was also implemented via JDBC drivers, and via an XML parser. In
the next sections some details of the implemented Java Server Pages are presented.

7.3.1 Guided Search and Free-Text Search over the Repository

One problem of searching approaches using controlled vocabulary is the proper way of
communicating the search criteria and corresponding valid values of the vocabulary to potential
users. In this prototype, a mask presenting all search criteria was developed as a front page for
users researching the repository. The searching criteria of the mask were derived from the IACd
plus the name of the developer company. A screenshot of this mask is presented in Figure 7.4.

Figure 7.4: Front-end Mask presented for the Guided-Search Option.

114

This Guided Search alternative is implemented by the page GuidedSearch.jsp. The presentation
is dynamically adapted in accordance with the repository content. Users are supposed to select
one of the presented values by clicking on it. This selection generates a SQL query over the data
base whose results are meaningfully presented with the actualized contents of all other selection
criteria for further interactions. Every time users refine their selections, the number of available
components decrease. Whenever users believe the number of pre-selected components is small
enough for a detailed evaluation, they may request to see the results which are presented as a list
with the name of the available components.

In case users believe that the offered search criteria or the presented values are not enough to
attend to their necessities they may use the Free-Text search implemented by the page
TextSearch.jsp. Here a string comparison is implemented over the files containing information
about components stored in the file system. Additionally, a query is generated to search the data
base for the desired value. This procedure was implemented to cover the cases where users
prefer the Free-Text approach and just ignore the values presented in the guided search.

7.3.2 Browsing the Complete Repository Structure

The above mentioned search options were developed to serve users that know what they are
searching for. That is the case of application developers looking for functionalities they need
based on their top-down analyses of the application being constructed. Nevertheless, the
component based development sometimes starts from already existent components being used as
the base of a desired application that will be completed by some additional work. In this
approach, requirements which are not completely fulfiled are programmed from scratch being
integrated to the components previously selected.

Users wanting to proceed in this second way need to receive a wide view of the components
stored at the repository, which is acquired easier through the browsing over the whole content of
the system. The page Browse.jsp implements this browsing mechanism. The IACd is used as a
tree structure where each leaf is one of its facets. Users navigate on this structure receiving a list
with all components available at the last level of one branch. The facets Application Domain
and Specialization of the Domain were combined to generate a browsing tree with a dynamical
number of levels. This number depends on how detailed the original classification of a
component is. The other facets of the scheme always result on a browse tree with only one level.

The browsing items are always obtained from the values stored at the data base system. For that
purpose a SQL query is generated for each click of the users on a desired topic. This permits a
dynamical generation of navigation items containing the values stored at the repository at this
moment. New values recently stored, i.e. the most recent values used for the classification of a
brand new component, are automatically incorporated as browsing items the next time a user
clicks on the upper level of this classification values.

115

7.3.3 Additional Implemented Features to Find a Component

Three additional features were implemented in order to increase the interaction options between
users of this prototype. The first was a thesaurus functionality applied to discover possible
synonyms not yet considered in the component management system. The second is an optional
rating procedure for users that have already tried to use a component. And the last feature is the
support for the generation of a request for new components. All three features needed additional
tables at the DBMS in order to store data from users. No modification was necessary to be
implemented at the core data structure, but each new table has one reference to the components.
These three alternatives are described below:

• Thesaurus: The thesaurus functionality was developed to cover cases where users of the
Free-Text search are not able to find any component based on the string they used. In such
situations, a page is presented where the values available for the facet Implemented
Functionality are listed. Users are asked to verify if any of these values may be used as a
synonym for the string they were originally searching for. If this is the case the original
string and the selected value are stored in a new table in the data base. The next time,
someone searches for the first string, all components classified using this string and the
values stored in the table as synonyms of this string will be presented. This functionality was
implemented as part of the page TextSearch.jsp. It was considered that a term may have at
maximum of five synonyms.

• Rating Procedure: It is known that many times the published characteristics of components
does not conform exactly with what they really implement. Component users must trust
component developers but may also claim against wrong documented components. This
feature is implemented by a rating procedure where users are able to register their
satisfaction or disappointment with a component previously used. In this rating procedure
component users introduce their opinion and emit a grade for one specific component. The
comments are stored as textual fields and can receive many lines of text, while the grade is a
numeric value based on a scale of integers from 1 to 10 (1 is the worst grade). Authors of
commentaries must identify themselves through the insertion of their email addresses. All
these data are stored at an additional table that has also a field to receive the calculation of
the grade average of each component. The page Rating.jsp is responsible for this feature.
Here a kind of forum is generated where dissatisfied component users are able to register
their claims and, on the other hand, component developers may detect and eventually correct
failures of their products.

• Request Generation: As already mentioned, there may be occasions when no component
could be found to fulfil the user requirements. The solution proposed by this prototype,
implemented by the page Request.jsp, is to give support to component users to generate a
request based on their original requirements. Someone using this feature is asked to fill a

116

formular describing the possible application area of the component, and the correspondent
functional and non-functional requirements. Users must introduce their contact address.
Component developers are able to browse all requests available in a dynamically generated
page. This procedure facilitates the communication between component developers and
component users working like an opportunity table for the first and like a wanted
announcement for the second category of users.

7.4 Dynamical Presentation of the Component’s Information

The system architecture of the dynamic presentation of component’s information prototype is
shown in Figure 7.5 and consists of four main parts, which are the Dynamic Interface Content,
HTML Generator, E-Mail Module, and Comparison Module [Aunv01]. As seen in the
architecture below, the client part of this presentation system only needs a web browser to
communicate with and to request for services from the Web server side. The server side system
elements are described in the following sections.

Web Server

JSP Engine JakartaTomcat and Sun JRE

Communication with the Data Processing Tier through JDBC and XML Parsers

File System

XML-file (flexible data) +
uploaded binary files (avi,jpg..)

Relational Database

XML-INI-file

Core-data and
Additional Tables

Component Repository

Dynamic Interface Content

Beans
SaxParser

(MySAXParser)

HTML Generator

XSL Transformer
(XSLTServlet)

Component
Information

(HTML format)

Comparison Module

Compare
Servlet

E-Mail Module

E-Mail form
(Mail.jsp)

Mail Servlet

Interest List
(interest.jsp)

Beans
ItemList

Navigator
Page

(Menu.jsp)

Any Browser Compatible with HTML 4.0 and JavaScripts

Client

MainMenu.htm HelpPage.htmStart.htm StructurePage.htm

Figure 7.5: Architecture of the Dynamical Presentation Prototype.

117

7.4.1 Dynamic Interface Content Generation Part

There are two elements within this sub-system, a Navigator Page and an XML Parser. The
Navigator Page generates the static HTML web page sent to component user’s web-browser
whereas its contents are dynamically adapted depending on the component in interest. The
system part Menu.jsp receives the identification of the desired component, here called
Component ID (CID), from the searching part of the complete component management systems.
The CID number is enough to identify the name of the XML file where the flexible-data of the
desired component is stored. From this point on, the XML parser knows which XML document
must be read, and the desired element values are returned to the JSP page composing the desired
content dynamically.

Differently from the flexible storage prototype, in the dynamic presentation, the component
information documented in XML is read by a SAX parser. The main reason for this choice is
that in this prototype no global insight of the structure of the document is needed. There are
several Java APIs for XML offered on the market for parsing XML documents compatible with
SAX. Here the so-called MySAXParser was used, which is implemented using the JavaBeans
technology and has all the advantages of this software component technology being reusable as
well as compatible to the Java environment as applets, servlets, standalone Java applications,
and especially JSP pages. The Java class MySAXParser is used by Menu.jsp to parse through
XML document in order to get particular element values to configure the navigator page for
component users studying a specific component.

7.4.2 HTML Generator Details

The HTML Generator part of the dynamic presentation prototype is used for solving the lack of
XML supporting browsers in the meantime. The most important system component in this part
is the XSL Transformer which was implemented using Servlets, and plays an important role in
the presentation of component information making this information viewable in the current
browsers available in the market. The Extensible Stylesheet Language (XSL), is the part of the
XML family which is used to describe the presentation rules that apply to XML documents.
This is an important task because XML is not suitable for displaying information directly on
Web pages as it does not include any information about what the visual presentation should be.
XSL enables the reusability of styling templates as well as forces a clean separation of contents
from presentation. XSL includes both a transformation language, called XSLT, and a formatting
language, which are independent of each other. XSLT is an XML-based language and W3C
specification that describes how to transform an input XML document into another XML
document, or even into HTML, PDF or some other document format.

In this prototype, several XSL stylesheets were prepared for the sake of representing the
information within XML documents appropriate to particular component technologies.

118

Therefore, whenever an XML document is requested to be read, the type of the component is
considered selecting the proper XSL Stylesheet permitting that the XML data be rendered
suitably and correctly in the desired format. This procedure starts with users selecting their
interested component. The system searches for the parameter value that defines the path to get
the XML document in the file system within the web server. For each technology considered
there is a respective stylesheet that must be used. Finally, the XSL Transformer is called and the
HTML document is generated and sent to the users.

Recently, only the Internet Explorer version five or later contains XSL display engines enabling
XML data to be applied to XSL Stylesheet on the client browser to produce HTML pages.
However, in the meantime, it is more reliable to convert all desired XML files to the HTML
format on the server side even considering the frequent industry announcements of future
browsers able to render XML directly. Additionally, the performance of XML parsers and XSL
processors is presently sufficient to be used within the server without decreasing the server
performance in real world applications. The HTML Generator was implemented to do the
transformation of XML documents as shown in Figure 7.6.

Parser & Transformer
JAXP

(Java API for XML Parsing)

HTML

XML

XSL stylesheet

Figure 7.6: HTML Generator Overview.

This generator was implemented using Java API for XML Processing (JAXP), which was
developed by Sun Microsystems and provides basic support for parsing and transforming XML
documents through a standardized set of Java platform APIs. This XSL Transformer engine is
called XSLTServlet and it is used whenever an XML document is requested to render
information by component users. From the navigator web page (Menu.jsp), XSLTServlet is
called and it gets the required input parameters such as XML file name and XSLT style sheet
type that are stored in the file system. Component information within XML document is
converted into HTML format page on the server, and then the resulting document from the
transformer engine is sent to the component user’s web-browser.

7.4.3 Description of the E-Mail and Comparison Modules

In this prototype, an E-Mail module is the communication tool that has been prepared for
component users to communicate with developers. This E-Mail module works on the server
side, therefore it does not require any special application from client side to be used. Component

119

users just click on an e-mail address presented on the information web page and the e-mail
module is automatically started. Then component users can express their needs or requirements
about components via a textual message.

There are two elements inside this e-mail module. The first one is the E-Mail form (called
Mail.jsp) and the second one is the Mail Servlet. The E-Mail form is an interface to fill in
mandatory information such as user’s name, e-mail address, subject of contact, as well as
complementary information that the user wants to communicate to the e-mail receiver. At the
end, component users click on a “Send” button calling the Mail Servlet which receives the
content of the formular sending it to the receiver. If the service is successfully done, the Mail
Servlet sends feedback to the user informing them that the “Message was successfully sent”.

It is assumed that there will sometimes be several components that can be used to complete one
desired task. In this prototype, a comparison module implements a help tool for users to decide
which component is the most suitable one for satisfying their requirements. The criteria to be
compared by this module are dynamically chosen, i.e. users can select the desired criteria
according to their interests. The offered criteria are Company Name, Price, Component
Technology, Operating System, Hardware Platform, RAM Usage, Response Time, Trigger
Type, Complete Size, and Real-Time Classification, Reusability Grade, and Quality Measure.
There are three parts within this comparison module, the Interest List, the Item List, and the
Compare Servlet. The Interest List is a JSP page that is used to display the interested component
names already selected by users and to display the comparison criteria. If the user hits on the
“add” button in the navigator web page, the Interest List (interest.jsp) is called, then the Item
List, developed as a JavaBean, is employed by this JSP page to keep track of the user’s interest.
The selected components are listed and displayed to the users within the interest.jsp web page,
which is shown whenever the “add” or “remove” button is hit. From the Interest List page, users
may hit a “compare” button whenever they want to make a comparison of listed components
versus selected criteria. Then, the Compare Servlet is called and executed in the server side.
This Servlet connects the database system via JDBC in order to fetch information of the
component regarding to the selected criteria. After getting all required information, the results
are sent to the users in HTML format.

7.5 Exemplary Use of the Component Management System

The prototypes described in this chapter were tested using diverse component technologies.
XML-INI files, Stylesheets and Schemas were developed to cover the JavaBeans, ViPER
Synchronous, and Hardware component technologies. In order to illustrate the potential of the
conception presented in this thesis better, some details about the creation of the components
documentation for the synchronous technology are given in this section followed by some
screenshots of the component management system.

120

A ViPER synchronous component, called TON (Timer-On), was chosen as a basis for the
example explained here. The complete data available about this component is reproduced in
Appendix A. Such a datasheet is the origin of the analysis of what shall be included as flexible-
data about one component technology. In this particular case, it is possible to conclude from the
general information part about TON that one technical related link, the complete documentation,
and the quality measure of this component are information normally available. In this case, the
technical link is a line of text, the complete documentation is a PDF file and the quality measure
is a number. ViPER components are supposed to have a textual description of their functionality
and whenever possible, a graphical description to help understanding this information. Some of
them have parameters to adjust their behavior and the interface is described as a table with
called signals followed by their direction (input or output), their type, and by a small textual
description. Three keywords were chosen to classify the implemented functionality of this
component better. This field shall contain as many values as desired by the component
developer. In this case, three usage examples were added, one post script file, a video
presentation, and a flash animation. The response-time was attributed as a percentage of the
system’s clock period. Three post-script documents relating the performance verifications about
this component were introduced permitting users to receive documentation proving the way the
operational information was obtained. Such fields may contain documents stored in different
formats but may also be omitted. Lastly, the commercial information contains exemplary data
about the company and the developer responsible for the component.

The XML-INI file is obtained based on such analysis of a standard data sheet of the component
technology. Here it is assumed that the presented datasheet contains all standard elements
composing the information about synchronous components. Figure 7.7 shows parts of the
obtained XML-INI file for that technology. In the figure, three elements represent the textual
description of the functionality of the component, the component’s quality measure, and the
performance verification of the component. These three pieces of code are described in
sequence in order to clarify their meaning and the way they were obtained.

From the datasheet of the component TON, it is possible to conclude that the textual description
of the component’s functionality is a paragraph containing normal text characters. This
information is mapped to the XML-INI file at the item number seven where it is specified that
this item is a memo field. It is also a unique value as the element MultiAllowed is set to false.
Lastly, a small description of what is expected to be inserted by component developers at this
field is described under the element Description. The information about the quality of
synchronous components, the item number thirteen of the example, was mapped as a numeric
value composed of integers where the minimal value is one and the maximal is ten. It is also a
unique value, it is assumed that a component may receive only one quality grade. Lastly, the
performance, item seventeen, is a set of large binary fields which is the category for PDF
documents and other types of large files. The default value is set to Not Available meaning that

121

this is an optional field. Users are supposed to describe the type of the verification implemented
and to insert the respective file. In this example, the developer of the component TON will insert
this information contained on the data sheet. The first one is called Set of Test Cases and is
associated with the file TON_Tests.pdf. The other two follow the same logic. The totality of the
datasheet is mapped using the same procedure of the three examples described above.

<?xml version="1.0" encoding="UTF-8"?>
<IASCGUI Model_ID="1">
...
<Item id="7">
 <Name>Textual_Description</Name>
 <Type>MemoField</Type>
 <Caption>Textual Description of the Functionality</Caption>
 <Presentation>MemoField</Presentation>
 <DefaultValues> </DefaultValues>
 <MultiAllowed>false</MultiAllowed>
 <Description>
 Please enter a text describing your component
 </Description>
</Item>
...
<Item id="13">
<Name>Quality</Name>
 <Type>Integer</Type>
 <Caption>Quality Specification</Caption>
 <Min>1</Min>
 <Max>10</Max>
 <Presentation>IntegerField</Presentation>
 <DefaultValues>
 <Value>1</Value>
 </DefaultValues>
 <MultiAllowed>false</MultiAllowed>
 <Description>
 Please enter the Quality Measure of your Component
 </Description>
 <Description>The value 1 means that no Measure is available
 and 10 is the best value possible </Description>
</Item>
...
<Item id="17">
<Name>Performance</Name>
 <Type>largebinary</Type>
 <Caption>Performance Verification</Caption>
 <Presentation>TextField</Presentation>
 <Presentation>LargeBinaryField</Presentation> <DefaultValues>
 <Value>Not Available</Value>
 </DefaultValues>
 <MultiAllowed>true</MultiAllowed>
 <Description>
 Please enter the name of the verification and your PDF file
 </Description>
</Item>
...
</IASCGUI>

Figure 7.7: Partial Content of the XML-INI File for the ViPER Synchronous Component
Technology.

122

Such analysis of a component technology is done one time being modified as many times as
necessary throughout the usage of the system. Based on this information, the flexible data about
the component is acquired and stored on the file system and on the database. The desired way of
presenting this information for component users is configured in an XML Stylesheet that is also
designed specially for each component technology to be managed by the system. As said above,
similar procedures were done for the JavaBeans and for the Hardware component technologies.
Figure 7.8 shows a exemplary list of available components that could be obtained from the
guided search or from the free-text search containing five component candidates.

Figure 7.8: Exemplary Result of the Search Prototype.

Whenever users decide to evaluate a specific component, they click on the desired component
name. The result of the choice of the ViPER component called TON from Figure 7.8 is
presented in Figure 7.9. This page is the result of the transformation of the XML file containing
the flexible information part of the component TON using the instructions contained in the
Stylesheet developed for its component technology. The information structure is also
dynamically generated being adaptable in relation to different component technologies, and
inside one same technology being adaptable in relation to the information available for one
specific component. For example, the item Additional Document presented for the ViPER

123

component TON in Figure 7.9 may not be presented for the another ViPER synchronous
component. In the same sense some other field may appear in other components that are not
presented for the component TON.

Figure 7.9: Component Information Page in HTML Format.

In Figure 7.9, it is possible to see the buttons “add” and “remove” used to generate the
dynamical comparison. Whenever component users are interested in selecting one component
they must activate the “add” button. This component is then inserted into a list of interest of the
user currently working with the system. Wrongly inserted components may be removed from
the list through the button “remove”. After selecting the desired components, users are able to
command the comparison among those components. For this purpose, they must choose the
comparison criteria and may also annotate their own expected requirements inserting those
values in a dynamic generated table. Figure 7.10 shows a list with two selected components and
the comparison criteria available to chose. The last column in this figure is where users are
supposed to annotate their desired values for each criterion. In Figure 7.11 the result of the
comparison commanded is presented. Note that the table is dynamically generated based on the
selected components and on the chosen criteria. The desired values inserted by the user are also
presented in the table.

124

Figure 7.10: List with Pre-Selected Components and Comparison Criteria.

Figure 7.11: Dynamically generated Comparison Table.

125

7.6 Some Final Considerations about the Prototype

In this section some personal considerations about the developed prototype are formulated in
order to give the reader a better insight into the work developed. The main reason is to compare
some theoretical suppositions about the concept of the component management system with
some real aspects observed during the construction of the prototype and later on during its tests.

The insertion of new component technologies in the repository is really a task that demands
some effort. The first analysis about one component technology always resulted in a model that
could not attend the necessities of all users and all developers of components of the specific
technology. For example, to reach the model and documentation structure of the ViPER
components presented in Appendix A of this thesis four modifications were necessary. These
modifications demanded some work over the XML-INI files and XML Schemas but they did not
form a big problem due to the easiness of the XML technology and due to the flexibility offered
by the component management system.

The way of storing new components in the repository proposed in this thesis facilitates the work
of component developers. The classification of components is easily done due to the
presentation of the classification scheme itself. More interesting than that is the presentation of
value suggestions for each facet of the scheme. The documentation itself demands some work
but does not take much time if the component is already documented electronically. Moreover,
asking component developers for specific information about one component being documented
guides developers resulting in a uniform component structure inside each component technology
involved.

Selecting components through the guided-search mechanism offered by this prototype is more
convenient than searching through the free-text way. Through the refinement implemented
during the first search mechanism mentioned, users receive the information about the available
amount of components and can command the presentation of results only when these amount of
components is meaningful for an effective understanding of each component separately. The
dynamical comparison of components is really a helpful feature and the possibility of selecting
the field to be compared is one of the more interesting features of this comparison mechanism.

Some additional work is necessary to transform the prototype in an actual product. Nevertheless,
the global documentation of the prototype was completely implemented which will make this
work easier. Some points that were not implemented, as for example security and privacy
features, will certainly demand more effort. A meaningful future step is to register the
component management system as a Web service. In fact, even the selection part or the
publication part of the work here presented could be registered as such a service. Web services
enable software systems to interact with each other around the world. In the past, this has only
occasionally been realized within private networks using the industry standard CORBA and

126

Microsoft's DCOM distributed component platforms. Web services still require cooperation and
agreement among people to define business transactions and processes. Web services standards
only define the format and transport architectures, but the meaning of each element of data
exchanged also has to be defined ahead of time by industry consensus.

The registration of the developed system as a Web service may be done by the WSDL (Web
Services Description Language) which is a protocol for a Web service to describe its
capabilities. WSDL describes the protocols and formats used by the service and can be housed
in a UDDI (Universal Description, Discovery and Integration) directory, and the combination is
expected to promote the use of Web services worldwide. UDDI is an industry initiative for a
universal business catalogue of Web services and it is designed to enable software to
automatically discover and integrate with services on the Web. Using a UDDI browser, users
can also review the information contained in the registry, which is a network of servers on the
Internet similar to the Domain Name System (DNS). UDDI contains white pages (addresses and
contacts), yellow pages (industry classification) and green pages (description of services). The
green pages include the XML version, type of encryption and a Document Type Definition
(DTD) of the standard. UDDI messages ride on top of the SOAP protocol, which invokes
services on the Web.

In this chapter the prototyping of the Flexible Web-based Component Management System for
Industrial Automation was presented. The global system was divided into three small functional
related prototypes described here. An exemplary usage, and some screenshots of the system
were added to improve the illustration of the work realized. The prototypes run currently with
three different component technologies, the Synchronous Component, the JavaBeans
Component, the Hardware Component. In the next chapter some conclusions about the complete
work and some insights into possible future works related to this one are presented.

127

8 Conclusions and Related Future Work
In this chapter, the original scenario of the start-up situation of this research work is reviewed.
Afterwards, the evaluation of the work presented is done. This chapter and the global work is
closed with some insights about possible future works about this research area.

8.1 Start-up Scenario of this Research

Component-based development is a standard methodology of producing artifacts in many
engineering areas of actuation. Dividing a bigger problem into many smaller ones, more suitable
for being manipulated, is the everyday practice of engineers all around the world. This
successful history led people interested in software development to try similar procedures. One
of the most current solutions proposed for these problems is the creation and use of the
denominated software components which are one central point of this thesis.

These components have been used in many application areas. Libraries of components designed
to be used in the development of graphical users interfaces, for example, are easily found in
many common tools on the market. Moreover, the advantages of using software components to
develop end-users applications were also tried by other specific application domains. In
particular, the component-based approach has been used in the industrial automation domain
which is the domain of interest of this thesis.

As the amount of components increases, some problems occur because it is difficult to keep the
necessary overview of all components available. Trying to solve these problems, some research
has been carried out in order to properly manage such sets of components. At the beginning of
this thesis, the most important approaches for the management of components were studied.
This literature research proved that many problems were still to be solved. Moreover, solutions
specifically proposed for the industrial automation domain could not be found.

8.2 Evaluation of the Presented Concept

Based on the scenario mentioned above, a study about the most relevant components
technologies with any application in the industrial automation domain was developed. This
study was presented in chapter 3 of this thesis. It was proved that, in fact, components have been
used to implement many different tasks in the industrial automation domain. Some existing
approaches are specially designed for embedded systems, while other ones are specific for the
plant automation. The diversity of these technologies proved that one component management
system designed based on only one component model would not be able to contain the most
relevant technologies used in industrial automation domain. In spite of that, the goal of this
thesis was to deal with all that diversity simultaneously.

128

The final concept started to be formulated by the analysis of the necessary knowledge to work
with components in the industrial automation domain. It was shown, that this domain contains
many particular aspects, very relevant for the selection, understanding and reuse of components,
which are normally not considered by those developing components. Moreover, the way this
information is communicated among practitioners must respect nomenclatures and usage of the
original component technologies.

In order to guarantee the observation of these aspects, a model composed of a classification
scheme and the technical and non-technical characteristics of components was proposed. For the
purposes of this thesis, a classification scheme specially designed for the industrial automation
domain was developed. The scheme is composed of eleven facets selected based on the most
relevant aspects that users of the industrial automation domain are interested in when searching
for components. The facets may receive the values desired by users classifying their
components, but a suggestion mechanism based on the values currently stored by each facet was
implemented later. This approach leads to a semi-controlled vocabulary for the classification of
components.

The model is the central part of the component-based development process described in this
thesis. In this process, component users are supposed to classify and document their products in
accordance with a specific set of data. This classification and documentation was denominated
as publication process. Component users will search, evaluate, and decide about the use of
already developed and published components. The complete data of a component was divided
into two blocks, one denominated core-data, where the general information was organized and
stored, and another one called flexible data, responsible for containing the technological specific
data of the components being managed by the system. This separation between technical and
general data was the key point to propose one concept able to work with all diverse technologies
used in the industrial automation domain.

The main idea of such a concept is to reach as many potential users as possible. That is why, it
was researched how the concept presented could be implemented by an Internet-able platform.
The desired system was divided into three functionally related tiers. The most appropriate
technologies able to implement those aspects were verified. After choosing the most successful
technologies for each tier, a prototype was developed. In the prototype, the technical
characteristics of a component are represented using the XML and related technologies. The
core-data of components is stored as an XML document, the flexible interface to the users is
represented by a self developed XML-INI file and by XML Schemas. The generation of this INI
file was exemplary shown for the synchronous software component. The prototype proved to be
able to receive different technologies respecting their specificity. Currently, it is able to manage
the above mentioned synchronous components, the JavaBeans components, and a representation
of hardware components.

129

8.3 Possible Future Works

An interesting feature to be studied in the future is how to translate existing datasheets of
specific component technologies automatically into the XML-INI files and the XML Schemas
used in this thesis. Currently this transformation needs human intervention, because it was
considered that this job must be done by an administrator with specific knowledge about the
component management system. Nevertheless, it is possible to foresee that standard datasheets
stored in electronic form could be parsed by specially developed applications and translated
automatically into the desired initialization files.

Another aspect that could be enhanced in this thesis is the control of the reusability level of
components. Much more research must be done in order to achieve a scientific approved
reusability grade. The one suggested here is based on empirical considerations and depends
strongly on the collaboration of the component users. The automatic acquisition of statistical
information about the level of reuse of the components stored in the repository may introduce a
better overview of what kind of components are being used more regularly. More that that, it
may give important advice about the most accepted component technologies. This statistical
information may be divulged in order to guide new component developers towards the
necessities of the component users market.

A third point that could be originated from this thesis is the development of a quality
certification procedure for components being managed by this system. In the system proposed
here, the information given by component developers is not verified. The adoption of quality
certification for components is not a consensus yet. Many researchers affirm that this
certification is necessary but could not propose a meaningful procedure to achieve it. As soon as
one acceptable standard appears on the research community it shall be inserted and tested on this
component management system. Such a quality certification could enhance the confidence of
users over the components stored in the component management system.

A last point would be to expand the prototype presented here to receive electronic commerce
features. Such a platform would work as a real marketplace for component users and component
developers with special interest on industrial automation applications. For that purposes many
special considerations about privacy and security, not originally considered during this thesis,
should be incorporated. Nevertheless, the absence of such a specialized forum in the current
marketplace makes this suggestion an interesting point to be discussed in the future.

130

Appendix A: Complete Documentation of a ViPER
Synchronous Component

In this appendix an example of the documentation available for a ViPER synchronous
component is presented. The component has the name TON (Timer-ON) and implements the
functionality of one of the standard function blocks defined at the norm IEC 1131-3 for the
usage at programmable controllers.

A.1 General Information about the Component Timer-ON
(TON)

• Type of Component: Software

• Identification:
 General Name: TON
 Short Description: Timer detector with positive output
 Version Number and Date: Version 1.0 30/01/2002

• Technical Related Links: ANSI Organization (http://www.ansi.org/)

• Complete Documentation: TON.pdf

• License: Free of charge for academic purposes

• Classification Tag:

 Application Domain: Assembly System
 Specialization of the Domain: SPS Systems; SPS Programming; Control Systems
 Industrial Automation Task: Actuator; Timer; Alarm
 Automation Hierarchy: Field Level

A.2 Functional Information about the Component TON

• Textual Description of the Functionality:

The numerical input PT will be read and internally stored. The binary output
Q will follow a false-to-true jump of the binary input IN after a waiting time
of PT, if and only if IN is still true. The time after the jump of the input IN
is presented in the numerical output ET until it reaches the value of PT. If
IN = false, Q = false and ET = false.

131

• Graphical Description of the Functionality:

Graphic symbol of TON:

Time diagram of the component TON:

Diagram description:

If the step occur at the input IN:

While IN = 1, ET increase at each clock pulse and:

If ET = PT, Q = 1.

End while

If IN = 0, Q = 0 and ET = 0.

TON

IN

PT

ET

Q

t0 t1 t3 t4t2 t5

t1t0+PT t5t4+PT

t0 t1 t3 t4t2 t5

IN

Q

ET

PT

Figure A.1: Graphical Description of the Functionality of the Component TON.

• Parameters: No parameters available

• Interface Description:

Interface of the component TON

Name Direction Type Description

PT Input Integer Numerical input value:
Waiting time in seconds.

IN Input Boolean Binary input value.

ET Output Integer Numerical input value:
Actual waiting time in seconds.

Q Output Boolean Binary output value.

132

• Implemented Functionality:

1) Timer

2) Positive Output Timer

3) Input Defined Counter

• Differences from Previous Version: None

• Usage Examples:

 Description of Examples: TON_Example.pdf
 Usage Demos: TON_Video.avi
 Simulations Example: TON_Simul.swf

• On-line Help link: not available

• References and Experiences: http://www.esterel.org/

• Additional Documents: Consult the Norm IEC 1131-3

A.3 Operational Information about the Component TON

• Run-Time Environment:

 Operating System: UNIX
 Hardware Platform: PC – Intel Pentium
 Response Time: ≤ 10% of used Clock
 Resource Usage: ROM = 17 KBytes

RAM = 17 KBytes
 Real-Time Classification: Soft Real-Time
 Trigger Type: Time Triggered

• Component Technology: ViPER Synchronous Component

• Performance Verification:

 Set of Test Cases: TON_Tests.pdf
 Instructions for Test: TON_Inst_Test.pdf
 Test Environment Description: TON_Test_Env.pdf

A.4 Commercial Information about the Component TON

• Developer Name: IAS – Uni-Stuttgart; Dipl.-Ing Lucena

• Developer Contact:

 Conventional Address: IAS – Uni Stuttgart, Pfaffenwaldring 47
 Electronic Address: lucena@ias.uni-stuttgart.de

• Price: not available

133

Bibliography

[ACM98] ACM – Association for Computing Machinery: The ACM Computing
Classification System (1998), http://www.acm.org/class/1998/ccs1998.html,
January 1998

[Albr00] Albrecht, H.: Object Model of a Process Control Engineering Internet, ISA Expo
200, New Orleans, August 2000

[AMU00] Albrecht, H., Meyer, D., Uecker, F.: ACPLT – Komponenten für die
Prozessleittechnik, White paper, Lehrstuhl für Prozessleittechnik, RWTH
Aachen, http://www.plt.rwth-aachen.de, 2000

[AyBe99] Ayers, D., Bergsten, H.: Java Server Programming, Birmingham: Wrox Press
Ltd., 1999

[Aunv01] Aunvichit, K.: Conception and Development of a Dynamic Presentation System
for Component in Industrial Automation, INFOTECH Master Thesis No. 1821,
IAS, Universität Stuttgart, November 2001

[Balz96] Balzert, H.: Lehrbuch der Software-Technik : Software-Entwicklung.
Heidelberg, Berlin, Oxford; Spektrum Akad. Verl. 1996

[BAB+87] Burton, B. A., Aragon, R. W., Bailey, S. A., Koehler, K. D., Mayes, L. A.: The
Reusable Software Library. IEEE Software, Special Issue on Reusability, Vol. 4,
No. 4, July 1987, pp. 25 – 33

[BaSc92] Banner, B., Schonberg, E.: Assessing Ada 9X OOP Building a Reusable
Components Library. Conference proceedings on TRI-Ada '92. 1992, pp. 79 –
90

[BaTa99] Ballou, D. P., Tayi, G. K.: Enhancing Data Quality in Data Warehouse
Environments, Communications of the ACM Magazine,Vol. 42, No. 1, January
1999, pp. 73 – 78

[BBJ+ 91] Beckman, B., Boyd, B., Jupin, J., Shen, S., van Snyder, W., Tausworthe, R., van
Warren, L.: Encyclopedia of Software Components. Third annual ACM
Conference Proceedings on HYPERTEXT '91, 1991, pp. 425–426

[BCE+97] Basili, V. R., Condon, S. E., Emam, K. E, Hendrick, R. B., Melo, W.:
Characterizing and Modeling the Cost of Rework in a Library of Reusable
Software Components, Proceeding of the International Conference on Software
Engineering 1997, Boston, USA, 1997, pp. 282 – 291

[BeFe01] Bertino, E., Ferrari, E.: XML and Data Integration, IEEE Internet Computing
Magazine, Vol. 5, No. 6, November/December 2001, pp. 75 – 79

[BeGo92] Berry, G., Gonthier, G.: The ESTEREL Synchronous Programming Language –
Design, Semantics, Implementation, Science of Computer Programming, Vol.
19, No. 2, 1992 pp. 87 –152

[Behl98] Behle, A.: An Internet-based Information System for Cooperative Software
Reuse. Proceedings of the 5th International Conference on Software Reuse, June
1998, pp. 236 – 245

134

[Behl99] Behle, A.: Wiederverwendung von Softwarekomponenten im Internet.
Dissertation RWTH Aachen D 82, June 1999

[Belk00] Belkin, N. J.: Helping People find What They Don’t Know, Communications of
the ACM, Vol. 43, No. 8, August 2000, pp. 58 – 61

[BeMi00] Behme, H., Mintert, S.: XML in der Praxis, München: Addison-Wesley 2000

[Bent99] Benton, W.: Interfacing Relational Databases to the Web, Linux Journal, Vol.
1999, Issue 67es, November 1999

[BHK85] Boisvert, R. F., Howe, S. E., Kahaner, D. K.: GAMS - A Framework for the
Management of Scientific Software. ACM Transactions on Mathematical
Software, Vol. 11, No. 4, 1985, pp. 313 – 355

[BKR96] Buxmann, P., König, W., Rose, F.: The Java Repository – An Electronic
Intermediary Java Resource. Proceedings of the 7th Annual Conference of the
International Information Management Association (IIMA), Colorado, USA,
December 1996

[Blah01] Blaha, M.: Data Warehouses and Decision Support Systems, IEEE Computer
Magazine, Vol. 34, No. 12, December 2001, pp. 38 – 39

[BMJH96] Bruckhaus, T., Madhavji, N. H., Janssen, I., Henshaw, J.: The Impact of Tools
on Software Productivity, IEEE Software, Vol. 13, No. 5, September1996; pp.
29 – 38

[Bond97] Bondeli. P.: Developing Reusable Multi-Tasking Components Using Object-
Oriented Techniques in Ada 95, Proceedings of the 8th International Workshop
on Real-Time Ada, 1997, pp. 33 – 34

[Booc94] Booch, G.: Object Analysis and Design with Applications. The Benjamin /
Cummings Publishing Company, Inc. 1994

[Börs95] Börstler, J.: Feature-Oriented Classification for Software Reuse. Proceedings of
the 7th International Conference on Software Engineering and Knowledge
Engineering (SEKE ’95), Rockville, USA, June 1995, pp. 204 – 211

[Bour01a] Bourret, R.: XML Database Products,
http://www.rpbourret.com/xml/XMLDatabaseProds.html, 2001

[Bour01b] Bourret, R.: XML and Databases,
http://www.rpbourret.com/xml/XMLandDatabases.html, 2001

[BrBu00] Brereton, P., Budgen, D.: Component-Based Systems: A Classification of Issues,
IEEE Computer Magazine, Vol. 33, No. 11, November 2000, pp. 54 – 62

[BRJ99] Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide, Addison-Wesley, 1999

[BrSi02] Broy, M., Siedersleben, J.: Objektorientierte Programmierung und
Softwareentwicklung – Eine Kritische Einschätzung, Iformatik Spektrum
Zeittschrift, February 2002, pp. 3 – 11

[BrWa98] Brown, A. W., Wallnau, K. C.: The Current State of CBSE. – IEEE Software
Magazine September/October 1998; pp. 37 – 46

[BSST93] Batory, D., Singhal, V., Sirkin, M., Thomas, J.: Scalable Software Libraries,
Proceedings of the First ACM Symposium on Foundations of Software
Engineering, 1993, pp. 191 – 199

135

[BUSF98] Balci, O., Ulusarac, C., Shah, P., Fox, E. A.: A Library of Reusable Model
Components for Visual Simulation of the NCSTRL System, Proceedings of the
1998 Winter Simulation Conference, 1998, pp. 1451 – 1459

[CaCa01] Cafarro, M. A. G., Caffaro, M. G.: The Challenges that XML Faces, IEEE
Computer Magazine, Vol. 34, No. 10, October 2001, pp. 15 – 18

[Cail95] Cailliau, R.: A Little History of the World Wide Web,
http://www.w3.org/History.html, 1995

[CAP95] Castano, S., Antonellis, V., Pernici, B.: Building Reusable Components in the
Public Administration Domain, Proceedings of the 17th International Conference
on Software Engineering on Symposium on Software Reusability, 1995, pp. 81 –
87

[Carn97] Carnegie Mellon Software Engineering Institute. Software Technology Review :
Component Object Model (COM), DCOM, and Related Capabilities
(http://www.sei.cmu.edu/str/descriptions/com_body.html#1457065), 1997

[CaRu99] Carnahan, L., Ruark, M.: Report from the Requirements Group for Real-time
Extensions for the JavaTM Platform, National Institute of Standards and
Technology, http://www.nist.gov/rt-java, September 1999

[CFG91] Creech, M. L., Freeze, D. F., Griss, M. L.: Using Hypertext in Selecting
Reusable Software Components, 3rd Annual ACM Conference Proceedings on
HYPERTEXT '91 , 1991, pp. 25 – 38

[Cham96] Chambers, C.: Towards Reusable, Extensible Components, ACM Computing
Surveys 28, December 1996

[Chen93] Chen, S.: Retrieval of Reusable Components in a Deductive, Object-Oriented
Database Environment, Ph.D. Thesis, RWTH Aachen, 1993

[CiRo99] Cicalese, C. D. T., Rotenstreich, S.: Behavioral Specification of Distributed
Software Component Interfaces, IEEE Computer, July 1999, pp. 46 – 53

[Coul97] Coult, N.: ACM’s Computing Classification System Reflects Changing Times,
Communications of the ACM, Vol. 40, No. 12, December 1997

[Cruz96] Cruz, I. F.: Tailorable Information Visualization, ACM Computing Surveys 28
(4es), December 1996

[CTW98] Chávez, A., Tornabene, C., Wiederhold, G.: Software Component Licensing: A
Primer, IEEE Software Magazine, September-October 1998, pp. 47 – 53

[DaDe88] Damier, C., Defude, B.: The Document Management Component of a
Multimedia Data Model. ACM ISBN 0-89791-274-8, 1988, pp. 451 – 464

[DaFu95] Damiani, E., Fugini, M. G.: Automatic Thesaurus Construction Supporting
Fuzzy Retrieval of Reusable Components, Proceedings of the 1995 ACM
Symposium on Applied Computing, 1995, pp. 542 – 547

[Dai95] Dai, W.: Development of Reusable Expert System Components: Preliminary
Experience, Proceedings of the 17th International Conference on Software
Engineering on Symposium on Software Reusability, 1995, pp. 238 – 246

[Dail01] Dail, H.: Working Smarter – Building with J2EE Components, Java – Sun
Homepage, http://java.sun.com/features/2001/06/j2eesmrt.p.html, 2001

136

[Daus87] Dausmann, M.: Library Structures for Reusable Components. Proceedings of the
1987 ACM SIGAda International Conference on Using Ada, 1987, pp. 226 –
235

[DBSB91] Devanbu, P., Brachmann, R. J., Selfridge, P. G., Ballard, B. W.: LaSSIE: A
Knowledge-based Software Information System, CACM, Vol. 34, No. 5, May
1991, pp. 35 – 49

[DeDe99] Deitel, H. M., Deitel, P. J.: Java – How to Programme, Prentice Hall, New
Jersey, 1999

[Dehn98] Dehnert, W.: Anwendungsprogrammierung mit JDBC, München: Hanser Verlag
1998

[DeJo97] Devanbu, P., Jones, M. A.: The Use of Description Logics in KBSE Systems,
ACM Transactions on Software Engineering and Knowledge Engineering, Vol.
6, No. 2, April 1997, pp. 141 – 172

[DeKo79] Deliyanni, A., Kowalski, R. A.: Logic and Semantic Networks, Communications
of the ACM, Vol. 22, No. 3, March 1979, pp. 184 – 192

[Dell97a] Dellarocas, C.: The SYNTHESIS Environment for Component-Based Software
Development. Proceedings of the 8th IEEE International Workshop on Software
Technology and Engineering Practice, 1997, pp. 434 – 443

[Dell97b] Dellarocas, C.: Towards a Design Handbook for Integrating Software
Components. Proceedings of the 5th International Symposium on Assessment of
Software Tools and Technologies, 1997, pp. 3 – 13

[Digr98] Digre, T.: Business Object Component Architecture, IEEE Software Magazine,
September / October 1998, pp. 60 – 69

[DLS02] Digital Logic Simulator, Web-Page of the Research Systems Company, DLS
Simulator, http://www.research-systems.com/easysim/, 2002

[DRC02] The Digital Resource Catalogue, http://direct.asset.com

[Doug99] Douglas, B. P.: Creating Executable Models, Software Development Magazine,
September 1999

[Dujm02] Dujmovic, S.: Anwendungsentwicklung mit Komponenten-Frameworks in der
Automatisierungstechnik, Ph.D. Thesis (under evaluation at the University of
Stuttgart), IAS, Universität Stuttgart, 2002

[DuKn93] Dunn, M. F., Knight, J. C.: Automating the Detection of Reusable Parts in
Existing Software, Proceedings of the 15th International Conference on Software
Engineering, 1993, pp. 381 – 390

[Eich94] Eichmann, D.: Ethical Web Agents. Electronic Proceedings of the 2nd World
Wide Web Conference, October 1994,
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings

[ElNa94] Elmasri, R. A., Navathe, S. B.: Fundamentals of Database Systems, 2nd Edition,
The Benjamin / Cummings Publishing Company, 1994

[EMD94] Eichmann, D., McGregor, T., Danley, D.: Integrating Structured Databases into
the Web: the MORE System. Proceedings of the First International Conference
on the World Wide Web, Geneva, May 1994, pp. 369 – 378

137

[Eppl02] Epple, U.: Aachener Prozessleittechnik / Kommunikationssystem
(http://www.plt.rwth-aachen.de/english/welcome.html), 2002.

[Ergo98] ErgoThech: Business Wire, ErgoTech Announces New Release of JavaBeans for
Virtual Instrumentation http://industry.java.sun.com/javanews/ stories/print/
0,1797,8860,00.html, 1998

[ETAS99] ETAS GmbH&Co.KG. ASCET-SD White Paper : Development Environment
for Embedded Control Systems, 1999

[EWB02] Electronic WorkBench Company, Web-Page with the Electronic Hardware
Simulation Products, http://www.interactiv.com/, 2002

[Fisc87] Fischer, G.: Cognitive View of Reuse and Redesign, IEEE Software, July 87, pp.
60 – 72

[FiTa00] Fielding, R. T., Taylor, R. N.: Principled Design of the Modern Web
Architecture, Proceedings of the International Conference on Software
Engineering ICSE 2000, Limerick, Ireland, pp. 407 – 416

[Flei00] Fleisch, W.: Simulation and Validation of Component-Based Automotive
Control Software, Proc. Of the 12th European Simulation Symposium, Hamburg,
Germany, September 2000

[Foli02] Foliage Software Systems,Inc. Success Stories : DCOM/CORBA
http://www.foliage.com/success/index.shtml, 2002

[Frei94] Freitag, B.: A Hypertext-Based Tool for Large Scale Software Reuse,
Proceedings of the 6th International Conference on Advanced Information
System Engineering, LNCS 811, 1994, pp. 283 – 296

[Frei00] Freining, C.: Reengineering zur Komponentenidentifikation einer
Steuerungssoftware, Diplomarbeit No. 1749, IAS, Universität Stuttgart, May
2000

[FrFo87] Frakes, W. B., Fox, C. J.: An Approach to Integrating Expert System
Components into Production Software, Proceedings of the 1987 Fall Joint
Computer Conference on Exploring Technology: Today and Tomorrow, 1987,
pp. 50 – 56

[FrFo95] Frakes, W. B., Fox, C. J.: Sixteen Questions About Software Reuse,
Communications of the ACM, Vol. 38, No. 6, June 1995, pp. 75 – 87

[FrGa90] Frakes, W. B., Gandel, P. B.: Representing Reusable Software, Information and
Software Technology, Vol. 32, No. 10 December 1990, pp. 653 – 664

[FrTe96] Frakes, W. B., Terry, C.: Software Reuse: Metrics and Models, ACM
Computing Surveys, Vol. 28, No. 2 June 1996, pp. 415 – 435

[GaMy01] Gal, A., Mylopoulos, J.: Toward Web-Based Application Management Systems,
IEEE Transactions on Knowledge and Data Engineering, Vol. 13, No. 4,
July/August 2001, pp. 683 – 702

[GaSc90] Garg, P. K., Scacchi, W.: A Hypertext System to Manage Software Life-Cycle
Documents, IEEE Software, Vol.7 No. 3, May 1990, pp. 90 – 98

[GHL+98] Gray, D. N., Hotchkiss, J., LaForge, S., Shalit, A., Weinberg, T.: Modern
Languages and Microsoft’s Component Object Model. Communication of the
ACM, Vol.41, No.5, May 1998

138

[Göhn98] Göhner, P.: Komponentenbasierte Entwicklung von Automatisierungssystemen,
VDE-GMA Kongress 1998 (VDI Berichte Nr. 1397), Ludwigsburg, 1998, S.
513-521

[GoPr01] Goldfarb, C. F., Prescod, P.: The XML Handbook, Prentice Hall PTR, 2001

[Grah96] Graham, I. S.: HTML Sourcebook, John Wiley & Sons, Inc., 1996

[Gree99] Green, R.: Component-Based Software Development: Implications for
Documentation, Proceedings on the 17th Annual International Conference on
Computer Documentation, 1999, pp. 159 – 164

[GuNä99] Gunzert, M., Nägele, A.: Component-Based Development and Verification of
Safety Critical Software for a Brake-by-Wire System with Synchronous
Software Components, Proc. International Symposium on Parallel and
Distributed Systems Engineering PDSE 99, Los Angeles

[Gunz02] Gunzert, M.: Komponentenbasierte Softwareentwicklung für sicherheitskritische
eingebettete Systeme, Ph.D. Thesis (under evaluation at the University of
Stuttgart), IAS, Universität Stuttgart, 2002

[GWS96] Greenwood, R. M., Warboys, B. C., Sa, J.: Cooperating Evolving Components a
Rigorous Approach to Evolving Large Software Systems, Proceedings of the
18th International Conference on Software Engineering, 1996, pp. 428 – 437

[Halb93] Halbwachs, N.: Synchronous Programming of Reactive Systems, Kluwer
Academic Publishers, 1993

[Hall01] Hall, M.: Servlets und Java Server Pages, München: Markt+Technik Verlag
2001

[HaPn85] Harel, D., Pnueli, A.: On the Development of Reactive Systems: Logic and
Models of Concurrent Systems, Proc. NATO Advanced Study Institute on
Logics and Models for Verification and Specification of Concurrent Systems,
NATO ASI Series F, vol. 13, Springer-Verlag, 1985, pp. 477 – 498

[Hare87] Harel, D.: Statecharts - A visual Approach to Complex Systems, Science of
Computer Programming, Vol. 8-3, 1987, pp. 231 – 275

[HBD00] Hirsh, H., Basu, C., Davison, B. D.: Learning to Personalize, Communications
of the ACM, Vol. 43, No. 8, August 2000, pp. 102 – 106

[HeCo01] Heineman, G. T., Councill, W. T.: Component-Based Software Engineering
Putting the Pieces Together, Addison-Wesley, 2001

[Heil99] Heilmann, H.: Skript zur VorlesungWirtschaftsinformatik, BWI, Stuttgart 1999

[HeMa91] Helm, R., Maarek, Y. S.: Integrating Information Retrieval and Domain Specific
Approaches for Browsing and Retrieval in Object-Oriented Class Libraries,
Proceedings of the OOPSLA 1991, pp. 47 – 61

[Henn94] Henninger, S.: Using Iterative Refinement to Find Reusable Software, IEEE
Software Magazine, September 1994, pp. 48 – 59

[Henn95] Henninger, S.: Supporting the Process of Satisfying Information Needs with
Reusable Software Libraries: an Empirical Study, Proceedings of the 17th
International Conference on Software Engineering on Symposium on Software
Reusability, 1995, pp. 267 – 270

139

[Henn96] Henninger, S.: Supporting the Construction and Evolution of Component
Repositories, Proceedings of the International Conference on Software
Engineering 1996, pp. 279 – 288

[HeSa00] Heuer, A., Saake, G.: Datenbanken: Konzepte und Sprachen, Bonn: MITP-
Verlag 2000

[HLR92] Halbwachs, N., Lagnier, F., Ratel, C.: Programming and Verifying Real-Time
Systems by means of the Synchronous Data-Flow Language LUSTRE,
Transactions on Software Engineering, Vol. 18, No. 9, 1992, pp. 785 – 793

[Hoar78] Hoare, C. A. R.: Communicating Sequential Processes, CACM, Vol. 21, No. 8,
August 1978, pp. 666 – 677

[HoRi99] Hoang, M., Rieger, P.: Komponentenbasierte Automatisierungssoftware:
Objektorientiert – anwendungsnah, München, Hanser Verlag, 1999

[Horn01] Horn, H.: Konzeption eines dynamischen, internetfähigen Beratersystems für die
Auswahl von Komponenten aus einer Bibliothek, Diplomarbeit No. 1810, IAS,
Universität Stuttgart, December 2001

[HSW01] Heintz, P., Siller, A., Waldmann, P.: ASCET-SD Traffics Trade : Safe rail
vehicles thanks to ETAS tools, Knorr-Bremse Systems for Rail Vehicles GmbH.
Real Times, January 2001, pp. 16 – 17

[Inte02] Web-Page of the Intel Corporation, Intel Products,
http://www.intel.com/products/, 2002

[ISO98] ISO 9241-11:1998 Ergonomic requirements for office work with visual display
terminals (VDTs) – Part 11: Guidance on usability, 1998

[JaMi98] Jaedicke, M., Mitschang, B.: On Parallel Processing of Aggregate and Scalar
Functions in Object-Relational DBMS, Proc. of the ACM SIGMOD Int.
Conference on Management of Data, Vol. 27, Issue 2, 1998, pp. 379 – 389

[JDOM00] JDOM.ORG : JDOM Homepage, www.jdom.org, 2000

[JeCh93] Jeng, J. J., Cheng, B. H. C.: Using Formal Methods to Construct a Software
Component Library, Proceedings of the 4th European Software Conference,
Springer-Verlag, LNCS 717, September 1993, pp. 397 – 417

[JeCh95] Jeng, J. J., Cheng, B. H. C.: Specification Matching for Software Reuse: A
Foundation, ACM SIGSOFT Software Engineering Notes , Proceedings of the
17th International Conference on Software Engineering on Symposium on
Software Reusability, Volume 20, Issue SI, August 1995, pp. 97 – 105

[JSW92] Jensen, J. S., Stewart, H. D., Whittington, P. H.: Successful Experience with
AdaSAGE Reusable Component Library. Conference Proceedings on TRI-Ada
'92, 1992, pp. 276 – 280

[JWS01a] Sun Microsystems Inc.: Java Web Start,
http://java.sun.com/products/javawebstart/index.html, 2001

[JWS01b] Java Web Start: Support Readiness Document Java Web Start 1.0,
http://java.sun.com/products/javawebstart/index.html, 2001

[JXML01] Developing XML Solutions with Java Server Pages Technology,
http://java.sun.com/products/jsp/jspxml.html, 2001

140

[KAO91] Krutz, W. K., Allen, K., Olivier, D. P.: The Costs Related to Making Software
Reusable: Experience from a Real Project, Proceedings of the Conference on
Ada: Today's Accomplishments – Tomorrow's Expectations, 1991, pp. 437 –
443

[KeSc98] Keller, R. K., Schauer, R.: Design Components: Toward Software Composition
at the Design Level, Proceedings of the 1998 International Conference on
Software Engineering, 1998, pp. 302 – 311

[Kope97] Kopetz, H.: Real-Time Systems, Design Principles for Distributed Embedded
Applications, Kluwer Academic Publishers, 1997

[Kope00] Kopetz, H.: Software Engineering for Real-Time: A Roadmap, 22nd ICSE, The
Future of Software Engineering, 2000, pp. 201 – 211

[Kotu98] Kotula, J.: Using Patterns to Create Component Documentation, IEEE Software,
March/April 1998, pp. 84 – 92

[KST92] Karlsson, E. A., Sorumgard, S., Tryggeseth, E.: Classification of Object-
Oriented Components for Reuse, Proceeding of the TOOLS Europe, Dortmund,
1992

[KSW92] Kiesel, N., Schürr, A., Westfechtel, B.: GRAS - A Graph-Oriented (Software)
Engineering Database System. Information System, Vol. 20, No. 1, Oxford:
Pergamon Press, 1995, pp. 21 – 52

[KuBr00] Kunda, D., Brooks, L.: Assessing Organizational Obstacles to Component-Based
Developement: A Case Study Approach, Information and Software Technology,
Vol. 42, 2000, pp. 715-725

[Kuru99] Kuruganti, I.: A Component Selection Methodology with Application to the
Internet Telephony Domain, Slides of the Software Technology Center, Lucent
Technologies – Bell Laboratories – Advanced Technologies, 1999

[LaCe99] Laurent, S. S., Cerami, E.: Building XML Applications, McGraw-Hill, 1999

[LaGö99] Lauber, R., Göhner, P.: Prozessautomatisierung I, Third Edition, Springer –
Verlag Berlin – Heidelberg, 1999

[LaMy01] Landay, J. A., Myers, B. A.: Sketching Interfaces: Towards More Human
Interface Design, IEEE Computer Magazine, Vol. 34, No. 3, March 2001, pp. 56
– 64

[Land94] Landow, G. P.: Hypertext Theory, John Hopkins University Press, 1994

[LeUr99] Lee, S. K., Urban, J. E.: SOORLS - A Software Reuse Approach on the Web.
International Journal of Software Engineering and Knowledge Engineering, Vol.
9, No.3, 1999, pp. 279 – 296

[LeWi00] Leffingwell, D., Widrig, D.: Managing Software Requirements – A Unified
Approach, Addison-Wesley, 2000

[LHG+96] Liu, L., Halper, M., Gu, H., Geller, J., Perl, Y.: Modeling a Vocabulary in an
Object-Oriented Database, Proceedings of the 5th International Conference on
Information and Knowledge Management, November 1996, pp. 179 – 188

[Loes98] Loeser, H.: Techniken für Web-basierte Datenbankanwendungen:
Anforderungen, Ansätze, Architekturen, Informatik Forschung und
Entwicklung, Vol. 13, 1998, pp. 196 – 216

141

[LoMi89] London, R. L., Milsted, K. R.: Specifying Reusable Components Using Z:
Realistic Sets and Dictionaries, Proceedings of the 5th International Workshop on
Software Specification and Design, 1989, pp. 120 – 127

[LoSp98] Lohse, G. L., Spiller, P.: Electronic Shopping, Communications of the ACM,
Vol. 41, No. 7, July 1998, pp. 81 – 88

[LRS99] Lam, W., Ruiz, M., Srinivasan, P.: Automatic Text Categorization and Its
Application to Text Retrieval, IEEE Transactions on Knowledge and Data
Engineering, Vol. 11, No. 6, November/December 1999, pp. 865 – 879

[Luce99] Lucena Jr, V. F.: Entwicklung einer Komponentenbibliothek mit Synchronen
Softwarekomponenten für Verteilte Deterministische Echtzeitsysteme,
Diplomarbeit No. 1689, Institut für Automatisierungs- und Softwaretechnik,
Universität Stuttgart, 1999

[Luce00] Lucena Jr, V. F.: Towards the Use of Active Information Presentation in the
Management of Software Components, Proceeding of the 45. International
Wissenschaftliches Kolloquium, Ilmenau, Germany, October 2000

[Luce01a] Lucena Jr, V. F.: A Domain Specific Classification Scheme for the Management
of Industrial Automation Components, ASSE 2001 International Symposium on
Software Engineering, Buenos Aires, Argentina, September 2001

[Luce01b] Lucena Jr, V. F.: Facet-Based Classification Scheme for Industrial Automation
Software Components, 6th International Workshop on Component-Oriented
Programming at the Ecoop 2001, Budapest, Hungary, 2001

[LuFr00] Lucena Jr, V. F., Freinning, C.: Reverse Engineering Konzept zur Gewinnung
von Verhaltensinformationen aus OO-Software, 2. Workshop Software-
Reengineering, Bad Honnef, Germany, May 2000

[LuGu98] Lucena Jr, V. F., Gunzert, M.: Komponentenbasierte Softwareentwicklung für
eingebettete Systeme mit synchronen Softwarekomponenten, TAE Kolloquium,
Esslingen, Germany, May 1998

[Luqi87] Luqi, A.: Normalized Specifications for Identifying Reusable Software,
Proceedings of the 1987 Fall Joint Computer Conference on Exploring
Technology: Today and Tomorrow, 1987, pp. 46 – 49

[Maar91] Maarek, Y. S.: Software Library Construction from IR Perspective. ACM Sigir
Forum, Vol. 25, No. 2, 1991, pp. 08 – 18

[MAGM97] Mili, H., Ah-Ki, E., Godin, R., Mcheick, H.: Another Nail to the Coffin of
Faceted Controlled-Vocabulary Component Classification and Retrieval,
Proceedings of the 1997 Symposium on Software Reusability (SSR'97), May
1997, Boston USA, pp. 89 – 98

[MaSm89] Maarek, Y. S., Smadja, F. Z.: Full Text Indexing Based on Lexical Relations an
Application: Software Libraries. Proceedings of the 12th Annual International
ACMSIGIR Conference on Research and Development in Information Retrieval,
1989, pp. 198 – 206

[MBK91] Maarek, Y. S., Berry, D. M., Kaiser, G. F.: An Information Retrieval Approach
for Automatically Constructing Software Libraries. IEEE Transactions on
Software Engineering, Vol. 17 , No. 8, August 1991, pp. 800 – 813

142

[McCl95] McClure, C.: Model-Driven Software Reuse Practicing Reuse Information
Engineering Style, Extended Intelligence Inc., Software Reuse Resource Center
for Business, http://www.reusability.com/, 1995

[McLa00] McLaughlin, B.: Java and XML, Sebastopol: O‘Reilly & Associates 2000

[MFC+00] Mili, A., Fowler, S., Gottumkkala, R., Zhang, L.: An Integrated Cost Model for
Software Reuse, Proceeding of the International Conference on Software
Engineering 2000, Limerick, Ireland, 2000, pp. 157 – 166

[Micr00] Microsoft Corporation. What Microsoft´s .NET Vision Means for Businesses,
October 2000, http://www.microsoft.com/business/vision/netvision.asp, 2000

[Micr01a] Microsoft Corporation. XML Web Services,
http://msdn.microsoft.com/netframework/, 2001

[Micr01b] Microsoft Corporation. Microsoft .NET Framework Description,
http://msdn.microsoft.com/netframework/, 2001

[Micr01c] Microsoft Corporation. Microsoft .NET-Related Standards,
http://msdn.microsoft.com/netframework/, 2001

[Micr01d] Microsoft Corporation. Next Generation Business Integration – The Advantages
of Microsoft .NET, http://msdn.microsoft.com/netframework/, 2001

[MiNo99] Michail, A., Notkin, D.: Assessing Software Libraries by Browsing Similar
Classes, Functions and Relationships, Proceedings of the 1999 International
Conference on Software Engineering, 1999, pp. 463 – 472

[Mits01] Mitschang, B.: Datenbankbasierte Anwendungen, Lecture Script at the Institute
of Parallel and Distributed High-Performance Systems University of Stuttgart,
Summer Semester 2001

[MLP+01] Morris, J., Lee, G., Parker, K., Bundell, G. A., Lam, C. P.: Software Component
Certification, IEEE Computer Magazine, Vol. 34, No. 9, September 2001, pp. 30
– 36

[MMM94] Mili, A., Mili, R., Mittermeir, R.: Storing and Retrieving Software Components
a Refinement Based System, Proceedings of the 16th International Conference on
Software Engineering, 1994, pp. 91 – 100

[MMM95] Mili, H., Mili, F., Mili, A.: Reusing Software: Issues and Research Directions,
IEEE Transactions on Software Engineering, Vol. 21 No.6, June 1995

[MMS98] Meyers, B., Mingis, C., Schmidt, H.: Providing Trusted Components to the
Industry, IEEE Computer, Vol. 31, No.5, May 1998, pp. 104 – 105

[MoBa91] Moore, J. M., Bailin, S. C.: Domain Analysis: Framework for Reuse, Domain
Analysis and Software Systems Modeling, IEEE Computer Society Press
Tutorial, 1991, pp. 179 – 203

[MoGa91] Moineau, T., Gandel, M. C.: Software Reusability through Formal
Specifications, Proceedings of the First International Workshop on Software
Reusability, Dortmund, Germany, July 1991, pp. 202 – 212

[MoWi95a] Moormann, Z. A., Wing, J. M.: Signature Matching - A Tool for Using Software
Libraries. ACM Transactions on Software Engineering and Methodology, Vol.
4, No. 2, April 1995, pp. 146 – 170

143

[MoWi95b] Moormann, Z. A., Wing, J. M.: Specification Matching of Software
Components. ACM Software Engineering Notes, Vol. 20, No. 4, October 1995,
pp. 6 – 17

[NaTa01] Nakajima, S., Tamai, T.: Behavior Analysis of the Enterprise JavaBeansTM
Component Architecture, SPIN 2001, LNCS 2057, 2001, pp. 163 – 182

[Nie92] Nie, J. Y.: Towards a Probabilistic Modal Logic for Semantic-Based Information
Retrieval, Proceedings of the Fifteenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, June 1992,
pp. 140 – 151

[Ning97] Ning, J. Q.: ADE – An Architecture Design Environment for Component-Based
Software Engineering, Proceeding of the International Conference on Software
Engineering 1997, Boston, USA, 1997, pp. 614 – 615

[NPV93] Nie, J. Y., Paradis, F., Vaucher, J.: Adjusting the Performance of an Information
Retrieval System, Proceedings of the Second International Conference on
Information and Knowledge Management, December 1993, pp. 726 – 728

[O’De89] O'Dell, J. A.: Oh Where, Oh Where has my Software gone...New Techniques for
Managing the Software Library, ACM SIGUCCS - XVII Conference on User
Services, 1989, pp. 363 – 366

[OGH88] Owen, G. S., Gagliano, R., Honkanen, P.: Tools for the Storage and Retrieval of
Reusable MIS Software in Ada. Proceedings of the 1988 ACM 6th Annual
Conference on Computer Science, 1988, pp. 535 – 539

[OHPB92] Ostertag, E., Hendler, J., Prieto-Díaz, R., Braun, C.: Computing Similarity in a
Reuse Library System: An AI-Based Approach, ACM Transactions on Software
Engineering and Methodology, Vol. 1, No. 3, July 1992, pp. 205 – 228

[OLKM00] van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala
Component Model for Consumer Electronics Software. IEEE Computer, March
2000, pp.78 – 85

[OMG98] OMG: Real-Time CORBA, Object Management Group, www.omg.org, 1998

[Omme00] van Ommering, R.: A Composable Software Architecture for Consumer
Electronics Products, Xootic Magazine, March 2001, pp. 37 – 47

[Omme01] van Ommering, R.: Techniques for Independent Deployment to Build Product
Populations, Proceedings of the Conference on Software Architecture, Working
Group IEEE/IFIP 2001, pp. 55 – 64

[Paiv02] Paiva, D. A.: Development of Dynamic Web-Pages for the Presentation of
Software Components Technical Information, Studienarbeit No. 1822, IAS,
Universität Stuttgart, Januar 2002

[Paul01] Paula, L. G. S.: Development of a Database Interface Using Active Server
Pages, Studienarbeit No. 1818, IAS, Universität Stuttgart, December 2001

[Pedn00] Pednault, E. P. D.: Representing is Everything, Communications of the ACM,
Vol. 43, No. 8, August 2000, pp. 80 – 83

[PhAr01] Pharoah, A., Arni, F.: Creating Commercial Components Enterprise
JavaBeansTM Technology, Technical White Papers, www.componentsource.com,
2001

144

[PhBr00] Pharoah, A., Arni, F.: Creating Commercial Components Microsoft® COM and
.NET Framework, Technical White Papers, www.componentsource.com, 2000

[PhBr01] Pharoah, A., Arni, F.: Creating Commercial Components Microsoft® .NET
Framework, Technical White Papers, www.componentsource.com, 2001

[Phil02] Web-Page of the Philips Corporation, Philips Semiconductors Division,
http://www.semiconductors.philips.com/products/, 2002

[PLT99] PLT – Lehrstuhl für Prozessleittechnik: ACPLT/OV Technologie-Papier No. 3:
Spezifikation der Modellierungssprache, Version 1.0.0 , August 1999

[PoPi93] Podgurski, A., Pierce, L.: Retrieving Software by Sampling Behavior, ACM
Transactions on Software Engineering and Methodology, Vol. 2, No. 3, July
1993, pp. 286 – 303

[Poul94] Poulin, J. S.: Balancing the Need for Large Corporate and Small Domain-
Specific Reuse Libraries, Proceedings of the 1994 ACM Symposium on Applied
Computing, April 1994, pp. 88 – 93

[Poul96] Poulin, J. S.: Evolution of a Software Architecture for Management Information
Systems, Workshop of the SIGSOFT 1996, San Francisco, USA, 1996, pp. 134
– 137

[PoWe94] Poulin, J. S., Werkman, K. J.: Software Reuse Libraries with Mosaic. Electronic
Proceedings of the 2nd World Wide Web Conference, October 1994

[PoWe95] Poulin, J. S., Werkman, K. J.: Melding Structure Abstracts and the WWW for
Retrieval of Reusable Components. ACM Sigsoft Software Engineering Notes,
August 1995, pp. 160 – 168

[Prie91] Prieto-Díaz, R.: Implementing Faceted Classification for Software Reuse,
Communication of the ACM, Vol. 34, No. 5, May 1991

[PrFr87] Prieto-Díaz, R., Freeman, P.: Classifying Software for Reusability, IEEE
Software, January 1987, pp. 6 – 16

[PrWu96] Pritschow, G., Wurst, K.-H.: Modular Robots for Flexible Assembly. Proc. of
the 28th CIRP International Seminar on Manufacturing Systems, Johannesburg,
1996, pp. 153 – 158

[PSB00] Pharoah, A., Siegel, J., Brooke, C.: Creating Commercial Components
CORBATM Component Model, Technical White Papers,
www.componentsource.com, 2000

[PTH97] Pritschow, G., Tran, T. L., Hohenadel, J.: Standalone PC-Controller on an Open
Platform. Proc. of the 30th International Symposium on Automotive Technology
& Automation, Florence, 1997

[Radd98] Radding, A.: Hidden Costs of Code Reuse, Information Week Magazine,
November 1998, http://www.informationweek.com/708/08iuhid.htm

[Rang57] Ranganathan, S. R.: Prolegomena to Library Classification, The Garden City
Press, Letchworth, Hertfordshire, 1957

[RFPG96] Rice, J., Farquhar, A., Piernot, P., Gruber, T.: Using the Web Instead of a
Window System, Proceedings of the Conference on Human Factors in
Computing Systems, April 1996, pp. 103 – 110

145

[RiHo99] Rieger, P., Hoang, M. S.: Komponentenbasierte Automatisierungssoftware.
Hanser, München, 1999

[RMI00] Support Readiness Document Java 2 Standard Edition, Remote Method
Invocation, http://java.sun.com/, 2000

[RNJ99] Rine, D., Nada, N., Jaber, K.: Using Adapters to Reduce Interaction Complexity
in Reusable Component-Based Software Development, Proceedings of the 5th
Symposium on Software Reusability, 1999, pp. 37 – 43

[Robi79] Robinson, G.: Universal Decimal Classification: A Brief Introduction, Technical
Report, International Federation of Documentation, 1979

[Royc89] Royce, W.: Reliable, Reusable Ada Components for Constructing Large,
Distributed Multi-Task Networks: Networks Architecture Services (NAS).
Conference Proceedings on Ada Technology in Context: Application,
Development, and Deployment, 1989, pp. 500 – 516

[RRW00] Rao, D. M., Radhakrishnan, R., Wilsey, P. A.: Web-Based Network Analysis
and Design, ACM Transactions on Modeling and Computer Simulation, Vol. 10,
No. 1, January 2000, pp. 18 – 38

[SaMc83] Salton, G., McGill. M.: Introduction to Modern Information Retrieval, New
York, McGraw-Hill, 1983

[Sate95] Sateesh, T. K.: Conceptual Model of Real-Time Systems: A Perspective,
Proceedings of the 1995 ACM Symposium on Applied Computing February
1995, pp. 206 – 209

[SBP99] Smith, I. N. C., Ballou, D. P., Pazer, H. L.: The Impact of Data Quality
Information on Decision Making: An Exploratory Analysis, IEEE Transactions
on Knowledge and Data Engineering, Vol. 11, No. 6, November-December
1999, pp. 853 – 862

[Schu99] Schulz, K.: Java professionell programmieren, Berlin: Springer Verlag 1999

[Seli99] Selic, B.: Turning Clockwise: Using UML in the Real-Time Domain,
Communications of the ACM, Vol. 42, No. 10, October 1999, pp. 46 – 54

[Seli01] Selic, B.: Specification and Modeling: An Industrial Perspective, Proc. of Int. the
Conf. On Software Engineering 2001, ICSE 2001, pp. 676 – 677

[SeMi98] Selletin, J., Mitschang, B.: Data-Intensive Intra- & Internet Applications –
Experiences Using Java and CORBA in the World Wide Web, Proc. of the 14th
Int. Conference on Data Engineering, 1998, pp. 302 – 311

[SeMi99] Selletin, J., Mitschang, B.: Design and Implementation of a CORBA Query
Service Accessing EXPRESS-Based Data, Proc. of the Int. Conference on
Database Systems and Advanced Applications, 1999, pp. 273 – 282

[Serh01] Serhan, B.: Konzeption und Implementierung einer internetfähigen
Informationsdatenbank für Komponenten in der Automatisierungstechnik,
Diplomarbeit No. 1807, IAS, Universität Stuttgart, August 2001

[SeRo01] Seligman, L., Rosenthal, A.: XML’s Impact on Databases and Data Sharing,
IEEE Computer Magazine, Vol. 34, No. 6, June 2001, pp. 59 – 67

[ShSh99] Shah, K., Sheth, A.: InfoHarness: Managing Distributed, Heterogeneous
Information, IEEE Internet Computing Magazine, November/December 1999;
pp. 18 – 28

146

[SHW98] Seacord, R. C., Hissam, S. A., Wallnau, K. C.: AGORA - A Search Engine for
Software Components. IEEE Internet Computing Magazine, November-
December 1998, pp. 62 – 70

[SKS93] Sindre, G., Karlson, E. A., Staalhane, T.: A Method for Software Reuse through
Large Component Libraries, Proceedings of the 5th International Conference on
Computing and Information, 1993. pp. 464 – 468

[Soda97] Sodalia SpA: SALMS v5.1 - A System for Classifying, Describing, and
Querying About Reusable Software Assets Produced Throughout the Software
Life-Cycle. March 1997, http://www.gipsy.lii.unitn.it/tarsal/sodalia/flyer.html

[SPH98] Smith, R. K., Parrish, A., Hale, J.: Cost Estimation for Component Based
Software Development, Proceedings of the 36th Annual Conference on Southeast
Regional Conference, 1998, pp. 323 – 325

[Spiv92] Spivey, J.: The Z Notation – A Reference Manual, Second Edition, Prentice
Hall, 1992

[SSS93] Sorumgard, L. S., Sindre, G., Stokke, F.: Experiences from Application of a
Faceted Classification Scheme, 2nd International Workshop on Software
Reusability, Lucca, Italy, 1993

[Stal98] Stal, M.: COMmunication Everywhere – Microsoft DCOM im Überblick:
Objekt Spektrum Magazine, January, 1998, pp. 78 – 87

[Stef95] Stefik, M.: Introduction to Knowledge Systems, Morgan Kaufmann Publishers,
1995

[Ster98] Sterling Software Application Management Group: The CBD96 Standard
Version 2.1, Standards for Specifying and Delivering Software Components
Using COOL:Gen, Part number 261639-004, July 1998

[SuBa97] Succi, G., Baruchelli, F.: The Cost of Standardizing Components for Software
Reuse, Standard View Magazine, Vol. 5, No. 2, June 1997, pp. 61 – 65

[Sugi95] Sugiyama, Y.: Object Make: A Tool for Constructing Software Systems from
Existing Software Components. Proceedings of the 17th International Conference
on Software Engineering on Symposium on Software Reusability. 1995, pp. 128
–136

[SWM01] Schwarz, H., Waner, R., Mitschang, B.: Improving the Processing of Decision
Support Queries: The Case for a DSS Optimizer, Proc. of the Int. Symposium on
Database Engineering and Applications, 2001, pp. 177 – 186

[SwSa92] Swanson, J. E., Samadzadeh, M. H.: A Reusable Software Catalogue Interface.
Proceedings of the 1992 ACM/SIGAPP Symposium on Applied Computing,
Vol. II: Technological Challenges of the 1990's, 1992, pp. 1076 – 1082

[Szyp98] Szyperski, C.: Component Software – Beyond Object-Oriented Programming,
Addison-Wesley, 1998

[TaWo00] Tabatt, P., Wolf, H.: Java programmieren mit JBuilder, Frankfurt: Software &
Support Verlag 2000

[Trac97] Tracz, W.: Developing Reusable Java Components. Proceedings of the 1997
Symposium on Symposium on Software Reusability, 1997, pp. 100–103

147

[Trau98] Trauter, R.: Design-Related Reuse Problems - An Experience Report,
Proceedings of the Fifth International Conference on Software Reuse, 1998, pp.
176 –183

[Tura00] Turau, V.: Java Server Pages, Heidelberg: dpunkt.verlag 2000

[Turn93] Turner, D.: Using Formal Description Techniques – An Introduction to Estelle,
LOTOS and SDL, Wiley, 1993

[Udel94] Udel, J.: ComponentWare. BYTE Magazine. Number 19, May 1994, pp. 46–56

[Yu97] Yu, H.: Using Object-Oriented Techniques to Develop Reusable Components.
Proceedings of the conference on TRI-Ada '97, 1997, pp. 117 – 124

[W3C] World Wide Web Consortium: Leading the Web to its Full Potential.
http://www.w3.org/

[W3C01] XML Schema Parts 0, 1 and 2: Primer W3C Recommendation, 2 May 2001
http://www.w3.org/TR/xmlschema-0/ (/xmlschema-0/, /xmlschema-0/)

[WaWa98] Watson, I., Watson, H.: Case-based Content Navigation, Knowledge-based
Systems Magazine, Vol. 11, 1998, pp. 345 – 353

[Weyu98] Weyuker, E. J.: Testing Component-Based Software: A Cautionary Tale, IEEE
Software Magazine September/October 1998; pp. 54 – 59

[Wieg98] Wiegers, K. E.: Read my Lips: No New Models!, IEEE Software Magazine,
September/October 1998, pp. 10 – 13

[WiKo99] Wilhelms, G., Kopp, M.: Java professionell, Bonn: MITP-Verlag 1999

[Wöhe96] Wöhe, G.: Einführung in die Allgemeine Betriebswirtschaftslehre, München:
Verlag Vahlen 1996

[ZaWi95a] Zaremski, A. M., Wing, J. M.: Signature Matching: A Tool for Using Software
Libraries, ACM Transactions on Software Engineering and Methodology, Vol.
4, No. 2, April 1995, pp. 146 – 170

[ZaWi95b] Zaremski, A. M., Wing, J. M.: Specification Matching of Software Components.
Proceedings of the 3rd ACM SIGSOFT Symposium on the Foundations of
Software Engineering, 1995, pp. 6 – 17

[ZaWi97] Zaremski, A. M., Wing, J. M.: Specification Matching of Software Components,
ACM Transactions on Software Engineering and Methodology, Vol. 6, No. 4,
October 1997, pp. 333 – 369

[Zona99] Zona Research, Inc.: Enterprise JavaBeans Technology : A business benefits
analysis (htttp://www.javasoft.com/products/ejb/pdf/zona.pdf), June 1999

[ZSN01] Zari, M., Saiedian, H., Naeem, M.: Understanding and Reducing Web Delays,
IEEE Computer Magazine, Vol. 34, No. 12, December 2001, pp. 30 – 37

148

Lebenslauf

Persönliche Daten

18. 10. 1965 geboren in São Paulo - Brasilien

Schulbildung

Mär. 1972 – Dez. 1974 Grundschule „Colégio Estadual do Jardim Nordeste“ – São Paulo

Mär. 1975 – Dez. 1979 Grundschule „Márcio Nery“ - Manaus

Mär. 1980 – Dez. 1982 Gymnasium und Berufsausbildung bei der „Technischen
Bundesschule von Amazonas“ Manaus - Abschluss als
Elektrotechniker

Studium

Mär. 1983 – Aug. 1987 Studium der Elektrotechnik an der Bundesuniversität von
Amazonas – Manaus

 Praktikum bei „Philips“, Abteilung für Produktentwicklung

Aug. 1987 Abschluss Diplom-Ingenieur

Weiterbildung

Aug. 1990 – Feb. 1991 Spezialisierung in Automatisierungstechnik – FUCAPI /
Bundesuniversität von Paraíba – Manaus

Mär. 1991 – Aug. 1993 Magisterprogramm – Bundesuniversität von Paraíba, Campina
Grande – Forschungsgebiet der Informationsverarbeitung.
Abschluss „Master of Science – MSc“ im Rahmen der
Automatisierungstechnik

Berufstätigkeit

Mär. 1987 – Feb. 1988 Mitarbeiter als Diplom-Ingenieur bei „Philips“

Feb. 1988 – Mär. 1991 Mitarbeiter als Diplom-Ingenieur bei „Eletronorte“

Seit Dez. 1989 Dozent für Elektrotechnik bei der „Centro Federal de Ensino
Tecnológico do Amazonas – CEFET-Am“

Seit Jan. 1991 Dozent für Elektrotechnik an der Bundesuniversität von
Amazonas auf dem Gebiet der Digitalen Elektronik und
Regelungstechnik

Apr. 1998 – Juli 2002 Wissenschaftlicher Mitarbeiter am Institut für Automatisierungs-
und Softwaretechnik der Universität Stuttgart

SHAKER
VERLAG

ISBN 3-8322-1011-3

