
Direct Volume Visualization of
Geometrically Unpleasant Meshes

Von der Fakultät Informatik, Elektrotechnik und
Informationstechnik der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Martin Kraus

aus Erlangen

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. R. Westermann

Prof. Dr. N. Max

Tag der mündlichen Prüfung: 24. April 2003

Institut für Visualisierung und Interaktive Systeme
der Universität Stuttgart

2003

2

David: You’re O.K.?
George: Yeah. Not fair, you know?

You get used to one thing and then ...
David: I know, it’s not.

Dialog from the movie Pleasantville

Contents

List of Abbreviations and Acronyms 5

Abstract and Chapter Summaries (in English and German) 7

1 Introduction 31
1.1 Outline of This Thesis . 32
1.2 Acknowledgments . 33

2 Direct Volume Visualization 35
2.1 Applications . 36
2.2 Visualization Pipeline . 37
2.3 Volume Rendering Algorithms 39
2.4 Ray Integration . 41

2.4.1 Volume Rendering Integral 41
2.4.2 Pre- and Post-Classification 42
2.4.3 Numerical Integration 43

2.5 Pre-Integrated Classification . 48
2.5.1 Ray Integration with Pre-Integrated Classification 48
2.5.2 Accelerated Approximative Pre-Integration 51
2.5.3 Applications to Volume Rendering Algorithms 52

2.6 Classification of Meshes . 53
2.6.1 Structured Meshes . 53
2.6.2 Unstructured Meshes . 54
2.6.3 Hybrid and Hierarchical Meshes 54

2.7 Interpolation in Meshes . 55
2.7.1 Nearest-Neighbor Interpolation 55
2.7.2 Linear, Bilinear, and Trilinear Interpolation 55
2.7.3 Linear Interpolation in Simplices 57
2.7.4 Higher-Order Interpolation 58

2.8 Geometrically Unpleasant Meshes 59

3

4 CONTENTS

3 Non-Uniform Meshes 61
3.1 Pre-Integrated Cell Projection 61

3.1.1 Projected Tetrahedra Algorithms 62
3.1.2 Pre-Integrated Classification for Projected Tetrahedra . . . 63

3.2 Hardware-Assisted Resampling 77
3.3 Hardware-Assisted Ray Casting 79

4 Non-Convex and Cyclic Meshes 85
4.1 Convexification of Non-Convex Meshes 85
4.2 Edge Collapses in Non-Convex Meshes 88

4.2.1 Edge Collapses in Convex Meshes 88
4.2.2 Edge Collapses in Convexified Meshes 89

4.3 Cell Sorting for Non-Convex and Cyclic Meshes 95
4.3.1 Cell Sorting for Convex, Acyclic Meshes 96
4.3.2 Cell Sorting for Convex, Cyclic Meshes 98
4.3.3 Cell Sorting for Non-Convex, Cyclic Meshes 101

4.4 Cell Projection for Cyclic Meshes 104
4.4.1 Rendering of Cyclic Occlusions of Polygons 104
4.4.2 Rendering of Cyclic, Convex Polyhedral Cells 109

5 Non-Simplicial and Non-Adaptive Meshes 111
5.1 Texture-Based Pre-Integrated Volume Rendering 112
5.2 Topology-Guided Downsampling 113

5.2.1 Algorithm . 115
5.2.2 Examples . 121

5.3 Adaptive Volume Textures . 124
5.3.1 Adaptive Texture Mapping in Two Dimensions 124
5.3.2 Volume Rendering with Adaptive Volume Textures 133

6 Geometrically Unpleasant Meshes in General 135
6.1 Proposed Solutions . 136
6.2 Problem-Solving Strategies . 138

6.2.1 Understanding the Problem 138
6.2.2 Simplifying the Problem 140
6.2.3 Solving the Problem . 141

6.3 Further Problems . 143

Color Plates 145

Bibliography 151

Peggy Jane: Hey, M.S., how you doin’?
Jennifer: Cool, P.J., how you doin’?

Peggy Jane: Cool. Cool.
Jennifer: Cool.

Dialog from the movie Pleasantville

List of Abbreviations and Acronyms

�
triangle

�
tetrahedron

2D two-dimensional
3D three-dimensional
a. answer
BFS breadth-first search
BSP binary space partitioning
CPU central processing unit
CT computer tomography
CTA CT angiography
def. definition
depend. dependent
DFS depth-first search
d.h. das heißt (that is)
Dr. rer. nat. Doctor rerum naturalium

(Doctor of Science)
e.g. exempli gratia

(for example)
et al. et alii, et aliae, et alia

(and others)
etc. et cetera (and so forth)
HIAC high accuracy
i.e. id est (that is)
KB kilobyte

MAD multiply & add
MB megabyte
MHz megahertz
MPVO meshed polyhedra

visibility ordering
MPVOC MPVO cyclic
MPVONC MPVO non-convex
MPVONCC MPVO non-convex cyclic
MR magnetic resonance
M.S. Mary Sue
O.K. “oll korrect”
orig. impl. original implementation
pixel picture element
P.J. Peggy Jane
Prof. Dr. Professor Doctor
PT projected tetrahedra
q. question
RGB red, green, and blue
RGBA red, green, blue, and alpha
texel texture element
voxel volume element
XMPVO extended MPVO
z.B. zum Beispiel

(for example)

5

6 LIST OF ABBREVIATIONS AND ACRONYMS

David: I thought the books were blank?
Will: They were.

Jennifer: O.K. This was not my fault.
When they asked me what it was about,
I didn’t remember
because I read it like back in tenth grade.
When I told them what I did remember,
that’s when the pages filled in.

David: The pages filled in?
Jennifer: Uh-huh, but only up until the part with the raft,

’cause that’s as far as I read.
Tommy: Do you know how it ends?

David: Yeah, I do.
Margaret: So how does it end?

Dialog from the movie Pleasantville

Abstract and Chapter Summaries
(in English and German)

Abstract . 7
Chapter Summaries . 8
Zusammenfassung (Abstract in German) . 18
Kapitelzusammenfassungen (Chapter Summaries in German) 19

Abstract

Interactive volume visualization (i.e., the visualization of scalar data defined on
volumetric meshes in real time) is not only difficult to achieve for large meshes
but it is also complicated by particular geometric features of volumetric meshes,
e.g., non-uniform cells, non-convex boundaries, or visibility cycles.

This thesis addresses several of these geometric features and their unpleasant
consequences with respect to direct volume visualization, which is one of the most
successful techniques for interactive volume visualization. In order to overcome,
or at least alleviate, these difficulties, several new algorithmic solutions are pre-
sented: pre-integrated cell projection and hardware-assisted ray casting for non-

7

8 ABSTRACT AND CHAPTER SUMMARIES

uniform meshes, edge collapses in non-convex meshes, cell sorting and cell pro-
jection for non-convex and cyclic meshes, as well as texture-based pre-integrated
volume rendering, topology-guided downsampling, and adaptive volume textures
for non-simplicial volumetric meshes (i.e., non-tetrahedral meshes).

As this work cannot cover all geometrically unpleasant features of volumetric
meshes, particular emphasis is put on a description of the development of the
proposed algorithms. In fact, most of the presented techniques are (or may be
interpreted as) generalizations, adaptations, or extensions of existing methods.
The intention of explaining these origins is to motivate new solutions for those
geometrically unpleasant features of meshes that were out of the scope of this
work.

Chapter Summaries

The following summaries give a rather detailed overview of the contents of each
chapter. The form of these summaries is as compact as possible in order to facili-
tate a quick orientation. Note that section headings are set in italics.

Chapter 1: Introduction

The primary goal of Chapter 1 is to introduce and motivate the subject of this
thesis.

Direct volume visualization is often complicated by large data sets, high res-
olution output images, or the need for real-time interactive frame rates. Because
of these difficulties, research on direct volume visualization usually focuses on
“appropriate” meshes, in contrast to “geometrically unpleasant” meshes, which
include any mesh with an exceptional or (for any reason) “difficult” geometric
shape of its cells or boundary. Two reasons for this approach are, for example:

� It is sensible to solve the simple cases before addressing the more challeng-
ing cases.

� It is useful to address the most relevant problems (i.e., the most popular
meshes) first.

However, there are also several disadvantages:
� geometrically unpleasant meshes occur in real-life applications;

� all meshes are geometrically unpleasant in some respects; and

� restricting research to particular meshes hampers progress in direct volume
visualization in the long run.

ABSTRACT AND CHAPTER SUMMARIES 9

These reasons motivate the subject of this thesis, i.e., algorithms for direct vol-
ume visualization of geometrically unpleasant meshes, in particular more effi-
cient, more robust, and more general algorithms.

Section 1.1 (page 32) of the introduction gives a brief outline of this thesis,
which is more detailed than the abstract and includes references to individual sec-
tions.

Chapter 2: Direct Volume Visualization

Chapter 2 introduces direct volume visualization and presents many of the meth-
ods and concepts employed in subsequent chapters, in particular

� applications of direct volume visualization (Section 2.1),

� a visualization pipeline for direct volume visualization (Section 2.2),

� volume rendering algorithms (Section 2.3),

� ray integration (Section 2.4),

� pre-integrated classification (Section 2.5),

� a basic classification of meshes (Section 2.6),

� data interpolation in meshes (Section 2.7), and

� an informal definition of geometrically unpleasant meshes (Section 2.8).

Direct volume visualization assigns opacities to all data points; thus, occluded
data points are not necessarily invisible but may be visible through the semi-
transparent, occluding points in front of them. Advantages of this technique are:

� It offers a continuous trade-off between the opaque occlusion and the visi-
bility of data points.

� The rendering of isosurfaces and slices are special cases of direct volume
rendering.

� The performance of direct volume rendering algorithms is often indepen-
dent of the actual scalar values of the volumetric data.

Disadvantages include:

� The resulting images are often “nebulous” and “fuzzy”.

� The choice of appropriate colors and opacities for data points is not trivial.

10 ABSTRACT AND CHAPTER SUMMARIES

In Section 2.1 (page 36), actual and potential applications of direct volume
visualization are discussed, e.g., visualization of medical scans, data from other
physical or chemical measurements, data from numeric simulations, or mathemat-
ical functions.

Several additional reasons for the limited popularity of direct volume visual-
ization are mentioned, e.g., insufficient support by standard graphics hardware, a
lack of non-commercial tools, uncomfortable and inefficient interfaces of existing
tools, or the rare use of volume visualization for publications. Apart from these
difficulties, there are also several unsolved problems in direct volume visualiza-
tion, e.g., the specification of multi-dimensional transfer functions, the automatic
generation of transfer functions, the visualization of time-dependent data sets, or
real-time interactive rendering of large volumes.

Section 2.2 (page 37) describes the main stages of the visualization pipeline,
i.e.,

� data acquisition (resulting in raw data),

� filtering (resulting in visualization data),

� mapping (resulting in geometric data), and

� rendering (resulting in image data).

Specializing this pipeline for direct volume visualization results in the following
stages:

� data acquisition (resulting in raw data),

� filtering (resulting in volume data),

� classification and shading (resulting in color and opacity data), and

� ray integration (resulting in image data).

Several volume rendering algorithms are presented in Section 2.3 (page 39),
in particular

� ray casting (see also Section 3.3),

� cell projection (see also Section 3.1),

� splatting,

� texture-based volume rendering (see also Section 5.1), and

� the shear-warp algorithm.

ABSTRACT AND CHAPTER SUMMARIES 11

Section 2.4 (page 41) discusses ray integration, in particular

� the volume rendering integral for the integration of colors and opacities
along viewing rays;

� transfer functions mapping scalar data to colors and opacities;

� the difference between pre- and post-classification, i.e., the difference be-
tween applying transfer functions before or after the interpolation of the
scalar data;

� the numerical integration of the volume rendering integral by discretization;
and

� an estimation of the required sampling rate by comparison with Carson’s
rule for frequency-modulated signals.

Pre-integrated classification is presented in Section 2.5 (page 48). This tech-
nique requires considerably lower sampling rates while still offering an improved
accuracy. It was developed together with Stefan Röttger and Klaus Engel and was
first published in [56] and [18].

The primary disadvantage of pre-integrated volume rendering is the required
computation of a (possibly large) lookup table. Several techniques for the accel-
eration of this computation are presented:

� constant sampling rate,

� local updates of the lookup table, and

� the approximative computation of lookup tables with integral functions.

Pre-integrated classification may be applied to many volume rendering algo-
rithms, in particular

� cell projection (see Section 3.1),

� texture-based volume rendering (see Section 5.1),

� ray casting (see Section 3.3, [30], and [47]), and

� the shear-warp algorithm ([57]).

A basic classification of meshes is presented in Section 2.6 (page 53). It dis-
tinguishes between

� structured meshes, e.g., uniform, rectilinear, and curvilinear meshes, and

12 ABSTRACT AND CHAPTER SUMMARIES

� unstructured meshes, e.g., simplicial and zoo meshes.

There are meshes that do not fit into this classification, e.g., hybrid and hierarchi-
cal meshes. However, these meshes are not discussed in detail in this thesis.

Interpolation in meshes is discussed in Section 2.7 (page 55), in particular

� nearest-neighbor interpolation;

� linear interpolation on line segments, bilinear interpolation within rectan-
gles, and trilinear interpolation in boxes; and

� linear interpolation in simplices, i.e., on line segments and within triangles
and tetrahedra.

The computation of the bilinear and trilinear interpolation and of the linear inter-
polation within triangles and tetrahedra by sequences of linear interpolations on
line segments is described in detail.

In Section 2.8 (page 59), geometrically unpleasant meshes are discussed with
respect to the information provided in the preceding sections. In particular, the
following issues are mentioned:

� consequences of a non-convex mesh boundary for volume rendering algo-
rithms,

� the limitation of a continuous, piecewise linear interpolation to simplicial
meshes,

� the restriction of hardware-supported interpolation to uniform meshes, and

� other unpleasant geometric features of meshes apart from the shape of cells
and the boundary of meshes, e.g., visibility cycles and a non-adaptive mesh
resolution.

Chapter 3: Non-Uniform Meshes

One of the basic problems of direct volume visualization of non-uniform meshes is
the lack of native hardware support for any non-uniform mesh, i.e., the restriction
to trilinear interpolation. Therefore, three hardware-assisted volume rendering
algorithms for non-uniform meshes are presented in this chapter:

� pre-integrated cell projection (Section 3.1),

� hardware-assisted resampling (Section 3.2), and

� hardware-assisted ray casting (Section 3.3).

ABSTRACT AND CHAPTER SUMMARIES 13

Pre-integrated cell projection is presented in Section 3.1 (page 61). It com-
bines pre-integrated classification (see Section 2.5) with the Projected Tetrahe-
dra algorithm (see [61]) and was first published together with Stefan Röttger and
Thomas Ertl in [56]. The main features of pre-integrated cell projection are:

� decomposition of the projections of tetrahedra into triangles and hardware-
accelerated rasterization of these triangles (as in the Projected Tetrahedra
algorithm),

� hardware-accelerated interpolation of scalar data on the surface of tetrahe-
dral cells and of the thickness of tetrahedra along viewing rays, and

� computation of the resulting colors and opacities by table lookups, which
are implemented by hardware-accelerated three-dimensional texture map-
ping.

As the precomputation of the required three-dimensional textures is not pos-
sible at real-time interactive frame rates, an approximation is presented, which
requires only two-dimensional texture mapping at the cost of a reduced image
quality.

Pre-integrated cell projection is particularly useful for the rendering of a large
number of isosurfaces as the rendering performance depends only on the number
of cells intersected by isosurfaces (without double-counting). The rendering of
isosurfaces requires

� the computation of appropriate pre-integrated lookup tables, in particular
for multiple isosurfaces;

� the rendering of smoothly shaded isosurfaces, which is achieved by a new,
hardware-assisted implementation of the interpolation between two shad-
ings suggested by Westermann in [73]; and

� the combination of isosurfaces with semi-transparent volumes.

The rendering of shaded isosurfaces requires two rasterization passes; thus, the
rendering performance is reduced to about one half of the rendering performance
for unshaded isosurfaces. The latter is comparable to previously reported imple-
mentations of the Projected Tetrahedra algorithm.

In Section 3.2 (page 77), the basic idea of an algorithm for hardware-assisted
resampling of tetrahedral meshes published by Westermann in [71] is sketched
because it is based on the technique employed for smoothly shaded isosurfaces in
Section 3.1.

14 ABSTRACT AND CHAPTER SUMMARIES

Section 3.3 (page 79) presents a new algorithm for hardware-assisted ray cast-
ing in tetrahedral meshes on programmable graphics hardware. The primary ad-
vantage of this algorithm is the dramatically reduced communication between the
main processor and the graphics board. This is achieved by

� storing the complete tetrahedral mesh encoded in textures on the graphics
board and

� tracing all viewing rays in parallel by repeatedly rasterizing screen-filling
rectangles with appropriate per-pixel operations.

Chapter 4: Non-Convex and Cyclic Meshes

This chapter’s subject is the direct volume visualization of non-convex and cyclic
meshes. Several algorithms for tetrahedral meshes are discussed, in particular

� the convexification of non-convex meshes (Section 4.1),

� edge collapses in non-convex meshes (Section 4.2),

� cell sorting for non-convex and cyclic meshes (Section 4.3), and

� cell projection for cyclic meshes (Section 4.4).

Section 4.1 (page 85) describes the convexification of non-convex meshes, i.e.,
the conversion of a non-convex mesh into a convex mesh. The algorithm was
proposed by Williams in [80] and consists of the following steps:

� computation of the convex hull of the non-convex mesh,

� computation of the space between the convex hull and the boundary of the
mesh, and

� decomposition of this space and of all holes inside the mesh into tetrahedra,
which are called “imaginary”.

The algorithm is illustrated with several examples; however, a general implemen-
tation of it is out of the scope of this work as the efficient decomposition of an
arbitrarily shaped polyhedron into tetrahedra is an extremely challenging prob-
lem.

Provided that the algorithm can be applied, it permits to apply slightly adapted
algorithms for convex meshes to non-convex meshes, e.g., for

� cell sorting (see [80] and Section 4.3),

ABSTRACT AND CHAPTER SUMMARIES 15

� point location (see [80]),

� ray casting (see Section 3.3), or

� edge collapses (see Section 4.2).

A new algorithm for the latter problem, edge collapses in non-convex meshes,
is presented in Section 4.2 (page 88). This solution was first published together
with Thomas Ertl in [35]. The goal is to avoid edge collapses that cause self-
intersections of the mesh. This is achieved by performing edge collapses in the
corresponding convexified mesh (see Section 4.1) and testing the cells in the local
neighborhood of the collapsed edge for inversions. Additionally, a method for the
preservation of the convex hull is proposed, and local tests for the preservation of
the mesh’s topology are suggested.

Section 4.3 (page 95) discusses cell sorting for non-convex and cyclic meshes;
more specifically spoken, a new variant of a topological sorting algorithm for con-
vex tetrahedral meshes is presented that can be applied to meshes with visibility
cycles, i.e., cyclic cell occlusions. This algorithm was first published together
with Thomas Ertl in [31] and combines the MPVO (Meshed Polyhedra Visibil-
ity Ordering) algorithm published by Williams in [80] with the depth-first search
algorithm for the computation of strongly connected components of a directed
graph published by Tarjan in [66].

Moreover, extensions of this algorithm for non-convex, cyclic meshes are dis-
cussed, in particular

� an adaptation for convexified meshes (see Section 4.1) and

� an adaptation of the inexact sorting for non-convex meshes proposed by
Williams in [80].

Cell projection for cyclic meshes is discussed in Section 4.4 (page 104). The
proposed algorithm was first published together with Thomas Ertl in [31] and is
based on an algorithm for cyclic occlusions of triangles published by Snyder and
Lengyel in [63]. The basic idea is to decompose the projection of the tetrahedra
of one visibility cycle into several passes, namely

� the attenuation of the background by all tetrahedra,

� the attenuation of the emission of each tetrahedron by the occluding tetra-
hedra, and

� the summation of all contributions.

These steps can be implemented very efficiently on standard graphics hardware as
attenuation and summation are commutative image operations.

16 ABSTRACT AND CHAPTER SUMMARIES

Chapter 5: Non-Simplicial and Non-Adaptive Meshes

This chapter is primarily about uniform meshes, which are geometrically unpleas-
ant because of some specific geometrical features:

� The cells are not simplicial; therefore, a linear interpolation within the cells
is impossible.

� The boundary of the mesh has to be a box, i.e., it cannot be adapted to the
data. Similarly, the resolution of the mesh is uniform, i.e., it is also not
adaptive to the data.

These features have several unpleasant consequences for direct volume visual-
ization. In order to overcome (or at least alleviate) these problems, three new
algorithms are proposed:

� texture-based pre-integrated volume rendering (Section 5.1),

� topology-guided downsampling (Section 5.2), and

� adaptive volume textures (Section 5.3).

In Section 5.1 (page 112), the first algorithm, texture-based pre-integrated
volume rendering, is presented. It was first published together with Klaus En-
gel and Thomas Ertl in [18] and combines pre-integrated classification (see Sec-
tion 2.5) with texture-based volume rendering (see Section 2.3) by exploiting pro-
grammable graphics hardware, in particular “dependent texture lookups”, which
are employed for the lookup in a pre-integrated table of colors and opacities.

Topology-guided downsampling is discussed in Section 5.2 (page 113). This
algorithm was first published together with Thomas Ertl in [32] and demonstrates
how to apply concepts related to the topology of a volumetric scalar field in the
case of non-simplicial meshes.

The goal of this downsampling algorithm is to preserve as many of the criti-
cal points (maxima, minima, and saddle points) of a volumetric mesh as possible.
This is achieved by virtually decomposing the uniform mesh into tetrahedra, com-
puting critical points for this simplicial mesh, and preferably selecting the scalar
values of critical points in the downsampling process. Thereby, more of the topol-
ogy of the scalar field is preserved than by other downsampling methods and,
therefore, the topology of isosurfaces extracted from the downsampled mesh is
much closer to the topology of the isosurfaces of the original mesh. This effect is
demonstrated with three different examples.

In Section 5.3 (page 124), adaptive volume textures are discussed. This tech-
nique was first published together with Thomas Ertl in [34]. Its main features
are:

ABSTRACT AND CHAPTER SUMMARIES 17

� adaptive storage of mesh data in uniform textures (“adaptive” with respect
to the boundary and the resolution of the mesh) and

� fast random access by an efficient decoding with the help of per-pixel oper-
ations offered by programmable graphics hardware.

Based on the proposed data structures, which are “derived” from some basic re-
quirements (adaptivity, fast random access, and limitations of current graphics
hardware), an implementation of the sampling (i.e., decoding) of adaptive tex-
tures is discussed first. Then, the generation of adaptive textures from uniform
meshes is presented, and the application of this technique to volume rendering is
illustrated with an example.

Chapter 6: Geometrically Unpleasant Meshes in General

In this chapter an attempt is made to identify and generalize the methods that have
been employed to find the algorithms proposed in this work. Therefore,

� the new algorithms are summarized and categorized (Section 6.1),

� problem-solving strategies and their applications in this work are discussed
(Section 6.2), and

� further problems caused by geometrically unpleasant meshes that were out
of the scope of this work are proposed (Section 6.3).

Section 6.1 (page 136) summarizes the proposed solutions presented in this
thesis. Although most of these algorithms are limited to either simplicial or uni-
form meshes, they can be applied to more meshes by certain conversions, e.g.,
resampling and cell triangulation. The algorithms proposed in this work are cate-
gorized according to

� the kind of mesh they can be applied to (simplicial or uniform) and

� the kind of geometrically unpleasant feature, i.e., whether the feature is
related to individual cells, groups of cells, or the mesh’s boundary.

In Section 6.2 (page 138) several problem-solving strategies from [41] are dis-
cussed and their application to the problems addressed in this work are presented.
The strategies include techniques to

� understand a problem (especially a problem caused by a geometrically un-
pleasant mesh);

� simplify a problem by redefining, generalizing, or dividing the problem, and

18 ABSTRACT AND CHAPTER SUMMARIES

� actually solving a problem by directly attacking, avoiding, masking, or ig-
noring the problem.

Several further problems that were out of the scope of this work are proposed
in Section 6.3 (page 143). They are categorized according to the classification of
geometrically unpleasant features of meshes suggested in Section 6.1:

� problems of individual cells, e.g., “badly” shaped cells, polyhedral cells, or
cells with non-planar faces;

� problems of groups of cells, e.g., “unfair” intersections; and

� problems that do not fit into this classification, e.g., problems of hierarchical
or hybrid meshes, or problems of mesh generation.

Zusammenfassung (Abstract in German)

Interaktive Volumenvisualisierung (also die Visualisierung von auf räumlichen
Gittern definierten, skalaren Daten in Echtzeit) ist nicht nur für große Gitter eine
schwierige Aufgabe, sondern wird auch durch spezielle geometrische Eigenschaf-
ten räumlicher Gitter erschwert, zum Beispiel durch nicht uniforme Zellen, nicht
konvexe Gitterränder oder zyklische Verdeckungen von Zellen.

Diese Dissertation behandelt einige dieser geometrischen Eigenschaften und
deren unangenehme Konsequenzen für die direkte Volumenvisualisierung, die
eine der erfolgreichsten Techniken zur interaktiven Volumenvisualisierung dar-
stellt. Um diese Schwierigkeiten zu beheben oder zumindest zu entschärfen, wer-
den mehrere neue algorithmische Lösungen vorgestellt: vorintegrierte Zellpro-
jektion und Hardware-unterstützte Sehstrahlintegration für nicht uniforme Gitter,
Kantenkontraktionen in nicht konvexen Gittern, Zellsortierung und -projektion für
nicht konvexe und zyklische Gitter sowie Textur-basiertes vorintegriertes Volu-
men-Rendering, Topologie-gestütztes Ausdünnen und adaptive Volumentexturen
für nicht simpliziale Gitter, d.h. Gitter deren Zellen keine Simplizes (in drei Di-
mensionen also Tetraeder) sind.

Da in dieser Arbeit nicht alle geometrisch unangenehmen Eigenschaften von
räumlichen Gittern behandelt werden können, wurde besonderer Wert auf die
Darstellung der Entwicklung der vorgeschlagenen Algorithmen gelegt. Tatsäch-
lich entstanden die meisten der vorgestellten Techniken als Verallgemeinerun-
gen, Adaptionen oder Erweiterungen von bekannten Methoden. Diese Zusam-
menhänge werden vor allem deswegen beschrieben, um neue Lösungen für die-
jenigen geometrisch unangenehmen Gittereigenschaften anzuregen, die nicht im
Rahmen dieser Arbeit behandelt werden konnten.

ABSTRACT AND CHAPTER SUMMARIES 19

Kapitelzusammenfassungen (Chapter Summaries in
German)

Die folgenden Zusammenfassungen bieten einen recht detaillierten Überblick zum
Inhalt der einzelnen Kapitel. Sie wurden so kompakt wie möglich gehalten, um
dem Leser eine schnelle Orientierung zu erlauben. Zu diesem Zweck wurden auch
die übersetzten Überschriften von Abschnitten kursiv gesetzt.

Kapitel 1: Einführung

Kapitel 1 soll vor allem in das Thema dieser Dissertation einführen und die Moti-
vation des Themas erläutern.

Direkte Volumenvisualisierung wird oft erschwert durch große Datensätze,
hochaufgelöste Bildausgaben oder die Notwendigkeit von hohen Bildwiederhol-
raten zur Interaktion in Echtzeit. Aufgrund dieser Schwierigkeiten konzentriert
sich die Forschung zur direkten Volumenvisualisierung üblicherweise auf

”
geeig-

nete“ Gitter, im Gegensatz zu
”
geometrisch unangenehmen“ Gittern, zu denen

alle Gitter mit einer außergewöhnlichen oder (aus welchen Gründen auch immer)

”
schwierigen“ geometrischen Gestalt ihrer Zellen oder ihrer Ränder zählen. Zwei

Gründe für diese Vorgehensweise sind zum Beispiel:

� Es ist sinnvoll, zunächst die einfacheren Fälle zu lösen, bevor man die
schwierigeren Fälle behandelt.

� Es ist nützlich, die relevantesten Probleme (d.h. die verbreitesten Gitter)
zuerst zu behandeln.

Aber der Ansatz birgt auch einige Nachteile:

� geometrisch unangenehme Gitter treten in praktischen Visualisierungsan-
wendungen tatsächlich auf;

� alle Gitter sind in gewisser Hinsicht geometrisch unangenehm und

� Forschung auf bestimmte Gitter einzuschränken behindert auf lange Sicht
den Fortschritt auf dem Gebiet der direkten Volumenvisualisierung.

Diese Gründe rechtfertigen das zentrale Thema dieser Dissertation, nämlich Al-
gorithmen zur direkten Volumenvisualisierung von geometrisch unangenehmen
Gittern, insbesondere effizientere, robustere und allgemeinere Algorithmen.

Abschnitt 1.1 (Seite 32) der Einführung gibt einen kurzen Überblick zu dieser
Dissertation, der detaillierter als die Zusammenfassung ist und Referenzen auf
einzelne Abschnitte enthält.

20 ABSTRACT AND CHAPTER SUMMARIES

Kapitel 2: Direkte Volumenvisualisierung

Kapitel 2 führt genauer in die direkte Volumenvisualisierung ein und stellt viele
der Methoden und Konzepte vor, die in den folgenden Kapiteln eingesetzt werden,
insbesondere

� Anwendungen der direkten Volumenvisualisierung (Abschnitt 2.1),

� eine Spezialisierung der Visualisierungspipeline für die direkte Volumenvi-
sualisierung (Abschnitt 2.2),

� Algorithmen zur Volumendarstellung (Abschnitt 2.3),

� Sichtstrahlintegration (Abschnitt 2.4),

� vorintegrierte Klassifikation (Abschnitt 2.5),

� eine einfache Klassifikation von Gittern (Abschnitt 2.6),

� Dateninterpolation in Gittern (Abschnitt 2.7) und

� eine nicht formale Definition von geometrisch unangenehmen Gittern (Ab-
schnitt 2.8).

Für die direkte Volumenvisualisierung werden allen Datenpunkten Opazitäten
zugeordnet, so dass verdeckte Datenpunkte nicht notwendigerweise unsichtbar
sind, sondern eventuell durch die halbtransparenten, verdeckenden Punkte vor ih-
nen sichtbar bleiben. Die Vorteile dieser Technik sind:

� Sie erlaubt einen kontinuierlichen Kompromiss zwischen der opaken Verde-
ckung und der Sichtbarkeit von Datenpunkten.

� Die Darstellung von Isoflächen und Schnittebenen sind Spezialfälle der di-
rekten Volumenvisualisierung.

� Die Geschwindigkeit von Algorithmen zur Volumendarstellung ist oft un-
abhängig von den tatsächlichen Skalarwerten in den Volumendaten.

Zu den Nachteilen zählt:

� Die resultierenden Bilder erscheinen oft
”
neblig“ und

”
unscharf“.

� Die Wahl geeigneter Farben und Opazitäten für Datenpunkte ist nicht trivial.

ABSTRACT AND CHAPTER SUMMARIES 21

In Abschnitt 2.1 (Seite 36) werden existierende und potenzielle Anwendun-
gen der direkten Volumenvisualisierung besprochen, z.B. die Visualisierung von
medizinischen Aufnahmen, Daten anderer physikalischer oder chemischer Mes-
sungen, Daten aus numerischen Simulationen oder mathematischen Funktionen.

Einige weitere Gründe für die begrenzte Popularität der direkten Volumenvi-
sualisierung werden erwähnt, z.B. die diesbezüglich unzureichenden Fähigkeiten
von gängiger Graphikhardware, der Mangel an nicht kommerziellen Software-
Werkzeugen, unbequeme und ineffiziente Benutzungsschnittstellen existierender
Werkzeuge oder der seltene Einsatz von Volumenvisualisierung in Publikationen.
Neben diesen Schwierigkeiten gibt es auch eine Reihe ungelöster Probleme in
der direkten Volumenvisualisierung, z.B. die Spezifikation von mehrdimensiona-
len Transferfunktionen, die automatische Erzeugung von Transferfunktionen, die
Visualisierung von zeitabhängigen Datensätzen oder die Darstellung von großen
Volumen in Echtzeit.

Abschnitt 2.2 (Seite 37) beschreibt die wesentlichen Schritte der Visualisie-
rungspipeline, d.h.

� Datenerfassung (die zu den Rohdaten führt),

� Datenaufbereitung (die zu den Visualisierungsdaten führt),

� Erzeugung einer geometrischen Repräsentation (die zu Graphikdaten führt),
und

� Darstellung (die zu Bilddaten führt).

Die Spezialisierung dieser Pipeline auf die direkte Volumenvisualisierung ergibt
folgende Schritte:

� Datenerfassung (die zu den Rohdaten führt),

� Datenaufbereitung (die zu den Volumendaten führt),

� Klassifikation und Schattierung (die zu Farb- und Opazitätsdaten führt), und

� Sichtstrahlintegration (die zu Bilddaten führt).

Mehrere grundlegende Algorithmen zur Volumendarstellung werden in Ab-
schnitt 2.3 (Seite 39) vorgestellt, insbesondere

� Ray-Casting-Algorithmen (siehe auch Abschnitt 3.3),

� Zellprojektion (siehe auch Abschnitt 3.1),

� Splatting,

22 ABSTRACT AND CHAPTER SUMMARIES

� Textur-basiertes Volumen-Rendering (siehe auch Abschnitt 5.1), und

� der Shear-Warp-Algorithmus.

Abschnitt 2.4 (Seite 41) behandelt die Sichtstrahlintegration, insbesondere

� das Volumen-Rendering-Integral (“volume rendering integral”) zur Integra-
tion von Farben und Opazitäten entlang von Sichtstrahlen;

� Transferfunktionen, die Skalardaten auf Farben und Opazitäten abbilden;

� den Unterschied zwischen vor- und nachgeschalteter Klassifikation, d.h. der
Unterschied zwischen der Anwendung der Transferfunktionen vor und nach
der Interpolation der Skalardaten;

� die numerische Integration des Volumen-Rendering-Integrals durch Diskre-
tisierung und

� eine Abschätzung der benötigten Samplingrate über einen Vergleich mit der
Regel von Carson für Frequenz-modulierte Signale.

Vorintegrierte Klassifikation wird in Abschnitt 2.5 (Seite 48) vorgestellt. Diese
Technik benötigt erheblich geringere Samplingraten und bietet dennoch eine er-
höhte Genauigkeit. Sie wurde zusammen mit Stefan Röttger und Klaus Engel
entwickelt und zuerst in [56] sowie [18] veröffentlicht.

Der wichtigste Nachteil der vorintegrierten Klassifikation ist die notwendige
Berechnung einer (unter Umständen großen) Nachschlagetabelle. Mehrere Tech-
niken zur Beschleunigung dieser Berechnung werden dargestellt:

� konstante Samplingrate,

� lokale Aktualisierungen der Nachschlagetabelle und

� eine näherungsweise Berechnung der Nachschlagetabelle mit Hilfe von In-
tegralfunktionen.

Vorintegrierte Klassifikation kann mit vielen Algorithmen zur Volumendar-
stellung kombiniert werden, insbesondere

� Zellprojektion (siehe Abschnitt 3.1),

� Textur-basiertes Volumen-Rendering (siehe Abschnitt 5.1),

� Ray-Casting-Algorithmen (siehe Abschnitt 3.3, [30] und [47]) und

� dem Shear-Warp-Algorithmus ([57]).

ABSTRACT AND CHAPTER SUMMARIES 23

In Abschnitt 2.6 (Seite 53) wird eine einfache Klassifikation von Gittern vor-
gestellt. Sie unterscheidet zwischen

� strukturierten Gittern, insbesondere uniformen, rectilinearen und curviline-
aren Gittern, sowie

� unstrukturierten Gittern, insbesondere simplizialen Gittern und
”
Zoo-Git-

tern“ aus verschiedenartigen Polyedern.

Einige Gitter, wie z.B. hybride oder hierarchische Gitter, werden nicht von dieser
Klassifikation erfasst, sind aber in dieser Dissertation auch nicht von Bedeutung.

Die Interpolation in Gittern wird in Abschnitt 2.7 (Seite 55) besprochen, ins-
besondere

� Interpolation anhand des nächsten Nachbarn;

� lineare Interpolation auf Linienstücken, bilineare Interpolation in Recht-
ecken und trilineare Interpolation in Quadern sowie

� lineare Interpolation in Simplizes, d.h. auf Linienstücken, in Dreiecken und
Tetraedern.

Die Berechnung der bilinearen und trilinearen Interpolation in Dreiecken und
Tetraedern mit Hilfe von mehreren linearen Interpolationen auf Linienstücken
wird detailliert dargestellt.

In Abschnitt 2.8 (Seite 59), werden geometrisch unangenehme Gitter auf der
Grundlage der Darstellungen aus den vorhergehenden Abschnitten beschrieben.
Insbesondere werden folgende Aspekte erwähnt:

� Konsequenzen eines nicht konvexen Randes für Algorithmen zur Volumen-
darstellung,

� die Beschränkung einer kontinuierlichen, stückweise linearen Interpolation
auf simpliziale Gitter,

� die Einschränkung der Hardware-unterstützten Interpolation auf uniforme
Gitter und

� andere unangenehme geometrische Eigenschaften abgesehen von der Form
der Zellen und des Randes von Gittern, z.B. zyklische Verdeckungen von
Zellen oder eine nicht adaptive Gitterauflösung.

24 ABSTRACT AND CHAPTER SUMMARIES

Kapitel 3: Nicht uniforme Gitter

Eines der grundsätzlichen Probleme der direkten Volumenvisualisierung von nicht
uniformen Gittern ist die fehlende Hardware-Unterstützung für nicht uniforme
Gitter, d.h. die Beschränkung auf trilineare Interpolation. Wie sich Graphikhard-
ware dennoch zur Volumendarstellung nicht uniformer Gitter einsetzen lässt, wird
in diesem Kapitel anhand von drei Algorithmen gezeigt:

� vorintegrierte Zellprojektion (Abschnitt 3.1),

� Hardware-unterstütztes Resampling (Abschnitt 3.2) und

� Hardware-unterstütztes Ray-Casting (Abschnitt 3.3).

Vorintegrierte Zellprojektion wird in Abschnitt 3.1 (Seite 61) beschrieben. Das
Verfahren verbindet vorintegrierte Klassifikation (siehe Abschnitt 2.5) mit dem
“Projected Tetrahedra”-Algorithmus (siehe [61]) und wurde zuerst zusammen mit
Stefan Röttger und Thomas Ertl in [56] veröffentlicht. Vorintegrierte Zellprojek-
tion zeichnet sich durch folgende Schritte aus:

� Zerlegung der projizierten Tetraeder in Dreiecke und Hardware-beschleu-
nigte Rasterisierung dieser Dreiecke (wie im “Projected Tetrahedra”-Algo-
rithmus),

� Hardware-beschleunigte Interpolation der Skalardaten auf der Oberfläche
der Tetraeder und der Dicke der Tetraeder entlang der Sichtstrahlen, und

� Berechnung der Farben und Opazitäten durch Tabellennachschläge, die mit
Hilfe von dreidimensionalen Texturen implementiert werden können.

Da die Vorberechnung der benötigten dreidimensionalen Texturen nicht in
Echtzeit möglich ist, wird auch eine Näherung vorgestellt, die nur zweidimen-
sionale Texturen benötigt, gleichzeitig aber die Bildqualität beeinträchtigt.

Vorintegrierte Zellprojektion ist besonders gut für die gleichzeitige Darstel-
lung vieler Isoflächen geeignet, da die Darstellungsgeschwindigkeit nur von der
Anzahl der von Isoflächen geschnittenen Zellen abhängt (ohne Mehrfachzählung).
Für die Darstellung von Isoflächen ist es nötig,

� entsprechende Nachschlagetabellen zu berechnen,

� glatt schattierte Isoflächen darzustellen, was mit Hilfe einer Hardware-un-
terstützten Implementierung der Interpolation zwischen zwei Schattierun-
gen, die von Westermann in [73] vorgeschlagen wurde, erzielt wird, und

� semi-transparente Volumendarstellungen mit Isoflächen zu kombinieren.

ABSTRACT AND CHAPTER SUMMARIES 25

Da die Darstellung schattierter Isoflächen zwei Rasterisierungsschritte benötigt,
wird die Darstellungsgeschwindigkeit im Vergleich zu unschattierten Isoflächen
etwa halbiert. Letztere ist vergleichbar mit der Geschwindigkeit von früheren
Implementierungen des “Projected Tetrahedra”-Algorithmus.

Abschnitt 3.2 (Seite 77) skizziert das grundlegende Konzept eines Hardware-
unterstützten Algorithmus zum Resampling von Tetraedergittern, der von Wes-
termann in [71] veröffentlicht wurde. Der Algorithmus ist vor allem deshalb in
dieser Arbeit interessant, da er auf der Technik basiert, die in Abschnitt 3.1 zur
Darstellung von schattierten Isoflächen eingesetzt wird.

Abschnitt 3.3 (Seite 79) stellt einen neuen Hardware-unterstützten Ray-Cas-
ting-Algorithmus für Tetraedergitter vor, der auf den Möglichkeiten von program-
mierbarer Graphikhardware aufbaut. Der wesentliche Vorteil dieses Algorithmus
ist die drastisch reduzierte Kommunikation zwischen dem Hauptprozessor und
der Graphikkarte. Dies ist möglich, da

� das vollständige Tetraedergitter in Texturen kodiert auf der Graphikkarte
gespeichert wird und

� alle Sichtstrahlen parallel verfolgt werden, indem wiederholt Bildschirm-
füllende Rechtecke mit geeigneten Pixel-Operationen rasterisiert werden.

Kapitel 4: Nicht konvexe und zyklische Gitter

Das Thema dieses Kapitels ist die direkte Volumenvisualisierung von nicht kon-
vexen und zyklischen Gittern. Dazu werden mehrere Algorithmen für Tetraeder-
gitter diskutiert, insbesondere

� die Konvexifizierung von nicht konvexen Gittern (Abschnitt 4.1),

� Kantenkontraktionen in nicht konvexen Gittern (Abschnitt 4.2),

� Zellsortierung für nicht konvexe und zyklische Gitter (Abschnitt 4.3) und

� Zellprojektion für zyklische Gitter (Abschnitt 4.4).

Abschnitt 4.1 (Seite 85) beschreibt die Konvexifizierung von nicht konvexen
Gittern, d.h. die Konvertierung eines nicht konvexen Gitters in ein konvexes Gitter.
Dieser Algorithmus wurde von Williams in [80] vorgeschlagen und besteht aus
folgenden Schritten:

� die Berechnung der konvexen Hülle des nicht konvexen Gitters,

� die Berechnung des Raums zwischen der konvexen Hülle und des Randes
des Gitters, und

26 ABSTRACT AND CHAPTER SUMMARIES

� die Zerlegung dieses Raums und aller Leerräume innerhalb des Gitters in
Tetraeder, die

”
imaginär“ genannt werden.

Der Algorithmus wird anhand mehrerer Beispiele veranschaulicht; eine allge-
meine Implementierung ist aber im Rahmen dieser Dissertation nicht möglich,
da die effiziente Zerlegung eines beliebig geformten Polyeders in Tetraeder ein
extrem schwieriges Problem darstellt.

Falls der Algorithmus anwendbar ist, erlaubt er angepasste Algorithmen für
konvexe Gitter auch für nicht konvexe Gitter einzusetzen, z.B. zur

� Zellsortierung (siehe [80] und Abschnitt 4.3),

� Punktlokalisierung (siehe [80]),

� Ray-Casting-Algorithmen (siehe Abschnitt 3.3) oder

� Kantenkontraktionen (siehe Abschnitt 4.2).

Ein neuer Algorithmus für das letztere Problem, Kantenkontraktionen in nicht
konvexen Gittern, wird in Abschnitt 4.2 (Seite 88) vorgestellt. Diese Lösung
wurde zuerst zusammen mit Thomas Ertl in [35] veröffentlicht. Ihr Ziel besteht
darin Kantenkontraktionen zu vermeiden, die zu Selbstüberdeckungen des Gitters
führen. Dies wird erreicht, indem die Kantenkontraktionen in dem entsprechen-
den konvexifizierten Gitter (siehe Abschnitt 4.1) durchgeführt und die Zellen in
der lokalen Nachbarschaft der kontrahierten Kante auf Invertierungen geprüft wer-
den. Darüber hinaus wird eine Methode zur Erhaltung der konvexen Hülle vorge-
schlagen und lokale Kriterien zur Erhaltung der Gittertopologie diskutiert.

Abschnitt 4.3 (Seite 95) behandelt Zellsortierung für nicht konvexe und zyk-
lische Gitter. Dazu wird eine neue Variante einer topologischen Sortierung für
konvexe Tetraedergitter vorgestellt, die auch auf Gitter mit zyklischen Verde-
ckungen angewendet werden kann. Dieser Algorithmus wurde zuerst zusammen
mit Thomas Ertl in [31] veröffentlicht und verbindet den MPVO-Algorithmus
(Meshed Polyhedra Visibility Ordering) von Williams [80] mit der Tiefensuche
zur Berechnung der stark zusammenhängenden Komponenten eines gerichteten
Graphen von Tarjan [66].

Außerdem werden Erweiterungen dieses Algorithmus für nicht konvexe, zyk-
lische Gitter besprochen, insbesondere

� eine Anpassung für konvexifizierte Gitter (siehe Abschnitt 4.1) und

� eine Integration der inexakten Sortierung für nicht konvexe Gitter, die von
Williams in [80] vorgeschlagen wurde.

ABSTRACT AND CHAPTER SUMMARIES 27

Zellprojektion für zyklische Gitter wird in Abschnitt 4.4 (Seite 104) behan-
delt. Der vorgeschlagene Algorithmus wurde zuerst zusammen mit Thomas Ertl
in [31] veröffentlicht und basiert auf einem Algorithmus für zyklische Verdeckun-
gen von Dreiecken, der von Snyder und Lengyel in [63] veröffentlicht wurde. Die
grundlegende Idee ist, die Projektion der sich zyklisch verdeckenden Tetraeder in
mehrere Schritte zu unterteilen, nämlich

� die Abschwächung des Hintergrunds durch alle Tetraeder,

� die Abschwächung der Emission jedes Tetraeders durch die verdeckenden
Tetraeder und

� die Addition aller resultierenden Beiträge.

Diese Schritte können sehr effizient mit Hilfe von gängiger Graphikhardware im-
plementiert werden, da die Abschwächungen und die Addition kommutative Bild-
operationen sind.

Kapitel 5: Nicht simpliziale und nicht adaptive Gitter

In diesem Kapitel werden vor allem uniforme Gitter behandelt, die aufgrund fol-
gender geometrischer Eigenschaften unangenehm sind:

� Die Zellen sind keine Simplizes, daher ist eine lineare Interpolation inner-
halb der Zellen nicht möglich.

� Der Rand eines uniformen Gitters muss ein Quader sein, d.h. er kann nicht
an die tatsächlichen Daten angepasst werden. Ebenso ist die Auflösung
uniform, d.h. sie kann ebenfalls nicht lokal an die Daten angepasst werden.

Diese Eigenschaften haben einige unangenehme Konsequenzen für die direkte
Volumenvisualisierung. Um diese Probleme (zumindest ansatzweise) zu lösen,
werden drei neue Algorithmen vorgeschlagen:

� Textur-basiertes vorintegriertes Volumen-Rendering (Abschnitt 5.1),

� Topologie-gestütztes Ausdünnen (Abschnitt 5.2) und

� adaptive Volumentexturen (Abschnitt 5.3).

In Abschnitt 5.1 (Seite 112) wird der erste Algorithmus, Textur-basiertes vor-
integriertes Volumen-Rendering, vorgestellt. Er wurde zuerst mit Klaus Engel
und Thomas Ertl in [18] veröffentlicht und verbindet vorintegrierte Klassifika-
tion (siehe Abschnitt 2.5) mit Texture-basiertem Volumen-Rendering (siehe Ab-
schnitt 2.3) unter Zuhilfenahme von programmierbarer Graphikhardware. Ins-
besondere werden

”
abhängige Texturnachschläge“ (“dependent texture lookups”)

28 ABSTRACT AND CHAPTER SUMMARIES

eingesetzt, um Farben und Opazitäten aus einer vorintegrierten Nachschlagetabel-
le zu bestimmen.

Topologie-gestütztes Ausdünnen wird in Abschnitt 5.2 (Seite 113) dargestellt.
Dieser Algorithmus wurde zuerst zusammen mit Thomas Ertl in [32] veröffent-
licht und zeigt, wie Konzepte, die auf der Topologie eines räumlichen Skalarfeldes
basieren, auf nicht simpliziale Gitter angewendet werden können.

Das Ziel dieses Algorithmus ist es, trotz des Ausdünnens möglichst viele der
kritischen Punkte (Maxima, Minima und Sattelpunkte) eines räumlichen Gitters
zu erhalten. Dies wird erreicht durch eine virtuelle Zerlegung des uniformen Git-
ters in Tetraeder, die Berechnung der kritischen Punkte für dieses simpliziale Git-
ter und der bevorzugten Erhaltung der Skalarwerte der kritischen Punkte während
des Ausdünnens. Dadurch bleibt ein größerer Teil der Topologie des Skalar-
feldes erhalten als bei anderen Methoden zum Ausdünnen und entsprechend ist
die Topologie der aus einem so ausgedünnten Gitter extrahierten Isoflächen näher
an der Topologie der Isoflächen aus dem ursprünglichen Gitter. Dieser Zusam-
menhang wird anhand von drei verschiedenen Beispielen erläutert.

In Abschnitt 5.3 (Seite 124) werden adaptive Volumentexturen vorgestellt.
Diese Technik wurde zuerst zusammen mit Thomas Ertl in [34] veröffentlicht.
Die wesentlichen Vorteile sind:

� adaptive Speicherung der Gitterdaten in uniformen Texturen (
”
adaptiv“ be-

züglich des Randes und der Auflösung des Gitters) und

� schneller, wahlfreier Zugriff durch effiziente Dekodierung mit Hilfe von
Pixel-Operationen, die von programmierbarer Graphikhardware zur Verfü-
gung gestellt werden.

Ausgehend von den vorgeschlagenen Datenstrukturen, die aus einigen grundle-
genden Anforderungen (Adaptivität, schneller, wahlfreier Zugriff und die Be-
schränkungen aktueller programmierbarer Graphikhardware)

”
abgeleitet“ wer-

den, wird eine Implementation des Texturnachschlags (d.h. der Dekodierung) in
adaptiven Texturen vorgestellt. Sodann wird die Erzeugung adaptiver Texturen
aus uniformen Gittern diskutiert und die Anwendung dieser Technik auf Volumen-
Rendering mit Hilfe eines Beispiels verdeutlicht.

Kapitel 6: Geometrisch unangenehme Gitter im Allgemeinen

In diesem Kapitel wird versucht, diejenigen Methoden zu identifizieren und zu
verallgemeinern, mit deren Hilfe die in dieser Arbeit vorgeschlagenen Algorith-
men er- bzw. gefunden wurden. Dazu werden

� die neuen Algorithmen zusammengefasst und kategorisiert (Abschnitt 6.1),

ABSTRACT AND CHAPTER SUMMARIES 29

� allgemeine Strategien zur Problemlösung und ihre Anwendung in dieser
Arbeit besprochen (Abschnitt 6.2) und

� weitere Probleme von geometrisch unangenehmen Gittern vorgeschlagen,
die nicht in dieser Dissertation behandelt werden konnten (Abschnitt 6.3).

Abschnitt 6.1 (Seite 136) fasst die in dieser Arbeit vorgestellten Lösungen
zusammen. Obwohl die meisten dieser Algorithmen entweder auf simpliziale
oder uniforme Gitter beschränkt sind, können sie mit Hilfe geeigneter Gitterkon-
vertierungen, z.B. Resampling oder Zelltriangulierung, auf weitere Gitter ange-
wendet werden. Die Kategorisierung der vorgestellten Algorithmen erfolgt an-
hand

� der Art des Gitters, auf die sie angewendet werden können (simplizial oder
uniform), und

� der Art der geometrisch unangenehmen Eigenschaft, d.h. ob sich diese Ei-
genschaft auf einzelne Zellen, Gruppen von Zellen oder den Rand des Git-
ters bezieht.

In Abschnitt 6.2 (Seite 138) werden einige Strategien zur Problemlösung aus
[41] erörtert und ihre Anwendung auf die in dieser Arbeit behandelten Probleme
vorgestellt. Diese Strategien beinhalten Techniken, um

� ein Problem zu verstehen (insbesondere ein Problem, das von einem geo-
metrisch unangenehmen Gitter verursacht wird),

� ein Problem zu vereinfachen, indem es neu definiert, verallgemeinert oder
aufgeteilt wird, und

� ein Problem tatsächlich zu lösen, indem es direkt gelöst, vermieden, mas-
kiert oder ignoriert wird.

Auf einige weitere Probleme, die nicht in dieser Arbeit behandelt werden
konnten, wird in Abschnitt 6.3 (Seite 143) hingewiesen. Auch sie werden an-
hand der Kategorien für geometrisch unangenehme Gittereigenschaften aus Ab-
schnitt 6.1 eingeteilt:

� Probleme von einzelnen Zellen, z.B.
”
schlecht“ geformte Zellen, Polyeder-

Zellen oder Zellen mit nicht flachen Seiten;

� Probleme von Gruppen von Zellen, z.B.
”
unfaire“ Zellüberschneidungen,

und

� Probleme, die in keine der Kategorien fallen, z.B. Probleme von hierarchi-
schen oder hybriden Gittern oder Probleme der Gittererzeugung.

30 ABSTRACT AND CHAPTER SUMMARIES

David: I’ve got something to say.
Big Bill: Very well.

David: You don’t have a right to do this.
I mean, I know you want to stay pleasant around here,
but there are so many things that are so much better.
Like silly or sexy or dangerous or brief.
And every one of those things is in you all the time,
if you just have the guts to look for them.

Big Bill: That’s enough.
David: I thought I was allowed to defend myself.

Big Bill: You’re not allowed to lie.
David: I am not lying.

Dialog from the movie Pleasantville

Chapter 1

Introduction

In principle, direct volume visualization offers the possibility to visualize all the
scalar data given on a volumetric mesh at the same time in a single image. More-
over, recent implementations achieve real-time interactive frame rates, even for
useful image dimensions and data volumes. However, many real-life applications
require image dimensions of several millions of pixels and data volumes of up to
several gigabytes or even terabytes. Thus, even with high-end graphics hardware
these requirements are hard to fulfill, if a solution is feasible at all.

Because of these difficulties, research on direct volume visualization usually
focuses on “geometrically simple” meshes, i.e., complications are avoided by re-
stricting all considerations to certain kinds of “appropriate” meshes. Thus, any
mesh with an exotic, pathologic, exceptional, or simply more difficult geometric
shape of its cells or boundary is excluded.

There are good reasons for this practice as there is no need to solve the general
problem of handling arbitrary meshes as long as the simpler special cases are not
completely solved. Also, it is obviously more important to find algorithms for the
most relevant volumetric meshes than to design algorithms without applications.

Nonetheless, the focus of this work is on exactly those exotic, unpopular, non-
simple, and “difficult” meshes, which will be called “geometrically unpleasant”

31

32 CHAPTER 1. INTRODUCTION

here. It is neither mercy with these neglected meshes, nor pure academic curiosity
that motivates this approach but a few basic observations: Firstly, meshes with an
exceptional geometry, e.g., numeric degeneracies, occur in real-life applications.
Ignoring these cases means to reduce the robustness of an algorithm. Even if these
special cases were correctly identified and rejected, the range of applications of
an algorithm would be reduced.

Secondly, there is no “geometrically pleasant mesh”: From the point of view
of direct volume visualization, the geometries of all meshes have some unpleasant
features. For example, a uniform mesh of cubic cells is usually considered to be
particularly simple. However, cubic cells are not simplicial in the geometric sense
and, therefore, give rise to several serious problems in direct volume visualization.
For instance, any linear interpolation in cubic cells results in a non-continuous
scalar field.

Thirdly, the identification of unpleasant features of meshes helps to improve
volume visualization algorithms by precisely specifying problems and possible
shortcomings. Also, the comparison between algorithms for meshes with and
without a certain unpleasant feature helps to understand the nature of a particular
problem and may indicate ways to solve it.

Therefore, research on direct volume visualization of unpleasant meshes is
likely to lead to more efficient, more robust, and more general algorithms. This
work is an attempt to give an overview of problems associated with geometrically
unpleasant meshes, solve some of them, and sketch solutions to others. Of course,
a complete treatment of this subject is beyond the scope of this work; thus, only
a selection of problems is addressed. However, these problems appear to be di-
verse enough to let us extract several strategies, which might help to solve similar
problems.

1.1 Outline of This Thesis

Chapter 2 offers an introduction to direct volume visualization, briefly discusses
applications, and describes the most popular rendering algorithms. In particu-
lar, pre-classification, post-classification, and pre-integrated classification are pre-
sented. The chapter also introduces a classification of meshes and discusses spe-
cific problems of particular kinds of meshes. Thereby, an informal definition of
“geometrically unpleasant meshes” is given.

The main part of this work is to be found in Chapters 3 to 5. Each chapter
discusses the (unpleasant) consequences of particular geometric features of vol-
umetric meshes and offers solutions to these problems. Some of these solutions
are well-known in the literature on volume visualization, some were implemented
and published as part of this work, and some have not been published before.

1.2. ACKNOWLEDGMENTS 33

As these chapters are for the most part independent of each other, the reader is
free to read them in any order he or she prefers. However, some cross-references
were included in order to avoid unnecessary repetitions. Chapters 3 and 4 cover
unstructured — in particular tetrahedral — meshes, while structured — especially
uniform — meshes are discussed in Chapter 5.

More specifically, Chapter 3 is about algorithms for non-uniform meshes, i.e.,
meshes that cannot easily be stored in a three-dimensional texture, especially tetra-
hedral meshes. This includes algorithms for cell projection with pre-integrated
classification (Section 3.1), hardware-assisted resampling (Section 3.2), and hard-
ware-assisted ray casting (Section 3.3). Chapter 4 covers problems specific to
meshes with a non-convex boundary, i.e., non-convex meshes, and meshes with
visibility cycles, i.e., cyclic meshes. It presents algorithms for edge collapses
(Section 4.2), cell sorting and cell projection for non-convex and cyclic tetrahe-
dral meshes (Sections 4.3 and 4.4).

Chapter 5 presents three algorithms for non-simplicial and non-adaptive mesh-
es, in particular uniform meshes. One general problem of non-simplicial cells
is a non-linear data interpolation within cells. Therefore, pre-integrated volume
rendering and many topology-related compression algorithms cannot easily be
applied to these meshes. However, modifications of these algorithms for uni-
form meshes are feasible as demonstrated with two algorithms presented in Sec-
tions 5.1 and 5.2. The third algorithm attempts to overcome the non-adaptivity
of three-dimensional textures with the help of programmable graphics hardware
(Section 5.3).

As mentioned, Chapters 3 to 5 cover only a selection of specific problems
caused by geometrically unpleasant meshes. In Chapter 6 the new algorithms pro-
posed in Chapters 3 to 5 are summarized (Section 6.1) and an attempt is made
to find strategies to solve similar problems by generalizing these solutions (Sec-
tion 6.2). Chapter 6 is concluded with a list of “further problems” (Section 6.3),
i.e., geometrically unpleasant features of meshes that are not covered in this work.

1.2 Acknowledgments

The Bluntfin data set visualized in Figures 3.11b, 4.3a, and C.5b is used courtesy
of C. M. Hung and P. G. Buning. The Tapered Cylinder data set in Figure 4.3b
is used courtesy of D. Jespersen and C. Levit. The CTA scan in Figures 5.9 and
C.7 is used courtesy of Bernd Tomandl. The Engine data set in Figures 5.10 and
C.8 is used courtesy of General Electric. The CT scan of a bonsai in Figures 5.11
and C.9 is used courtesy of Bernd Tomandl and Stefan Röttger. The CT scan of
the Stanford terra-cotta bunny in Figures 5.16 and C.11 is used courtesy of Terry
Yoo, Sandy Napel, Geoff Rubin, and Marc Levoy.

34 CHAPTER 1. INTRODUCTION

This work would not exist without the help and support of a lot of people.
Many thanks to my advisor, Thomas Ertl, in particular for his supportive advice
and his confidence in my ideas. I am greatly indebted to Nelson Max and Daniel
Weiskopf for their thorough reading of earlier drafts of this thesis and their de-
tailed and valuable comments. Particular thanks to Stefan Röttger for his contribu-
tions to (what we now call) our pre-integrated cell projection algorithm presented
in Section 3.1, to Klaus (Dieter) Engel for his contributions to our pre-integrated
texture-based rendering algorithm discussed in Section 5.1, to Günter Knittel and
Christianne Leidecker for the fruitful discussions about the appropriate sampling
rate for volume rendering with post-classification (see Section 2.4.3), to Thomas
Gerstner for his comments on topology-guided downsampling (see Section 5.2),
to Manfred Weiler for asking the right question when I only had the answer and
for making my idea work (see Section 3.3 and [69]), and to Jürgen Schulze for
our work on the pre-integrated shear-warp algorithm. Thanks to Joachim Diep-
straten, (my long-term office mate) Matthias Hopf, Marcelo Magallón, (again)
Daniel Weiskopf, and Rüdiger Westermann for lots of discussions, suggestions,
and criticism related to this work.

Many thanks also to the people I have had the pleasure to work with at the
University of Stuttgart and at the Computer Graphics Group of the Friedrich-
Alexander-University Erlangen-Nuremberg; in particular (in alphabetic order;
without the ones already mentioned) Nicolas Bardili, Maria Baroti, Katrin Bid-
mon, Michael Braitmaier, Marianne Castro, Volker Diekert, Wilhelm (“Willy”)
Dilly, Mike Eissele, Norbert Frisch, Rul Gunzenhäuser, Kenji Hanakata, Peter
Hastreiter, (my short-term office mate) Kai Hormann, Andreas Hub, Sabine (“I got
you, babe”) Iserhardt-Bauer, Thomas Klein, Hermann (“there is tea”) Kreppein,
Andreas Mailänder, Markus Merz, Guido Reina, Matthias (“the Older”) Ressel,
Christof Rezk-Salama, Ulrike (“U.”) Ritzmann, Dirc (“lowering the level”) Rose,
Alexander Rosiutar, Martin Rotard, Martin Schmid, Martin (“the First”) Schulz,
Waltraud Schweikhardt, Ove (“Dr.”) Sommer, Simon (“Martin is the evil in-
carnate”) Stegmaier, Christian (“Mr. Pro7”) Teitzel, and Alfred (“we will see”)
Werner.

It goes without saying that I am most thankful to my family and friends.

David: It’s an art book.
[...]

Mr. Johnson: It’s beautiful, Bud ...
David: What’s wrong?

Mr. Johnson: No, it’s just I’ll never be able to do that.
David: Well, you just started.

I mean, you can’t do it now.
Mr. Johnson: No, no, no, that’s not it.

Just where am I gonna see colors like that?
Must be awful lucky to see colors like that.
I bet they don’t know how lucky they are.

Dialog from the movie Pleasantville

Chapter 2

Direct Volume Visualization

The visualization of volumetric data is particularly challenging because occlu-
sions are often severely limiting the efficiency of volume visualizations. There-
fore, many techniques in volume visualization aim at extracting a subset of a vol-
umetric scalar field (or “volume” for short) in order to minimize occlusions.

A simple example is a single slice through a volume, which avoids any oc-
clusions by reducing the dimensionality of the visualized data set. Similarly, an
isosurface, i.e., the set of all points of a volumetric scalar field associated with the
same scalar value (the isovalue), is only a two-dimensional subset with less occlu-
sions than the whole volume. Other structures of lower dimensionality extracted
from scalar fields are level set surface models (see [77]) and topological informa-
tion (see [2]). The common disadvantage of these techniques is the limitation to a
subset of the data, i.e., the invisibility of a large part of the volume.

Direct volume visualization, on the other hand, aims at a continuous trade-
off between occlusions and the visibility of data points by assigning opacities to
all data points. Points with high opacities will be more prominent in the final
image but usually occlude other points, while points with low opacity will be less
prominent but also less occluding. Unfortunately, this smooth transition between
transparent and opaque data points frequently leads to rather nebulous and fuzzy
images. Moreover, the choice of appropriate opacities and colors is not trivial.

35

36 CHAPTER 2. DIRECT VOLUME VISUALIZATION

However, direct volume visualization offers important advantages. For ex-
ample, isosurfaces and slices through a volume may be rendered with the help
of direct volume rendering as these techniques are only special cases of direct
volume visualization. Furthermore, the performance of rendering algorithms for
direct volume visualization is often independent of the complexity of the visual-
ized volume data and independent of user-specified visualization parameters, e.g.,
transfer functions. Therefore, it is often possible to maintain a constant frame rate
in interactive applications.

2.1 Applications

There is no doubt that direct volume visualization has not reached its “mass mar-
ket” yet. This “mass market” is in fact rather small, namely scientists, researchers,
engineers, and other professionals who deal with continuous volumetric fields or
discrete approximations to them. Currently, the vast majority of these profes-
sionals is still using simple plotting techniques in order to visualize data on axes-
parallel slices or opaque isosurfaces. Even semi-transparent isosurfaces or slices
that are not axis-aligned are not commonly used.

While volume graphics, i.e., the rendering of volumetric objects, has found its
way into movie and video game productions, volume visualization has only found
some niches, although it has been successfully applied in almost all sciences, in-
cluding mathematics, physics, chemistry, biology, geology, medicine, many en-
gineering sciences, etc. Not only does it allow users to visualize measured data,
e.g., medical scans, but also data from numeric simulations, e.g., finite-element
simulations, or any other computation, e.g., arbitrary mathematical functions in
three dimensions.

However, volume visualization is by far less popular than one might expect
from the large range of potential applications. In particular, direct volume visual-
ization is frequently rejected for quantitative analyses because of the fuzzy nature
of the resulting images. In these cases, isosurfaces are often strongly preferred.
Thus, the visualization of medical scans, e.g., CT (computer tomography) or MR
(magnetic resonance) scans, is still by far the most important field of application
of direct volume visualization.

There are many reasons for this limited popularity of volume visualization
apart from the mentioned “fuzzyness”: the insufficient support by standard graph-
ics hardware, a lack of non-commercial tools, uncomfortable and inefficient in-
terfaces of existing tools, the rare use of volume visualization for publications
outside of the visualization community, and the lack of education about volume
visualization, to name just a few. Unfortunately, some of these reasons reinforce
each other.

2.2. VISUALIZATION PIPELINE 37

Besides these problems, there are still many unsolved problems (or “chal-
lenges”) in direct volume visualization, which have not been solved completely,
e.g., the specification of multi-dimensional transfer functions, the automatic gen-
eration of transfer functions, the visualization of time-dependent data sets, real-
time interactive rendering of large volumes, etc. Thus, in order to exploit the full
potential of direct volume visualization and to encourage actual applications, it is
necessary to solve at least some of these problems. Therefore, one should not be
tempted to believe that all fundamental problems of direct volume visualization
have been solved yet.

2.2 Visualization Pipeline

In analogy to the concept of a graphics pipeline in computer graphics, there is a
visualization pipeline in computer visualization. It is one of the most valuable
concepts in visualization, not only for the basic design of visualization applica-
tions but also for the discussion of visualization algorithms.

data acquisition e.g. importing, reading

filtering e.g. data reduction

mapping generation of geometric primitives

rendering rendering of geometric primitives

Figure 2.1 Main stages of the visualization pipeline.

There are many variants of the visualization pipeline; however, they all de-
scribe the data flow from some source, e.g., measurements or computer simula-
tions, to some kind of image data, e.g., in the form of static pictures or animated
movies. The stages of the visualization pipeline sketched in Figure 2.1 are data
acquisition, filtering, mapping, and rendering. Figure 2.2a shows an extended
scheme of this pipeline, which includes the names of intermediate data structures.

Data acquisition comprises all operations necessary to make the raw data
available to the visualization pipeline, e.g., reading files, requesting and receiving
data, or low-level data conversion. As the raw data is often too detailed and/or
not all of it should be visualized at the same time, several filtering operations
are usually performed to reduce and preprocess it. The filtering results in the

38 CHAPTER 2. DIRECT VOLUME VISUALIZATION

data acquisition

raw data

filtering

visualization data

mapping

geometric data

rendering

image data

(a)

data acquisition

raw data

filtering

volume data

classification & shading

RGBA data

ray integration

image data

(b)

Figure 2.2 (a) Main stages and data structures of the visualization pipeline.
(b) Variant of the visualization pipeline for direct volume visualization.

so-called visualization data, i.e., the data for which a graphical representation is
computed. This mapping step is the next stage of the pipeline, which transforms
the visualization data to the geometric data, i.e., a set of geometric primitives,
which might be structured by a scene graph or similar constructs. By computing
pure geometric data it is ensured that the last stage of the visualization pipeline,
i.e., the rendering, is independent of the particular visualization problem and just
renders geometric data by employing appropriate techniques of general computer
graphics.

The mapping stage is of particular relevance as the graphical representations
employed in a visualization are defined exclusively in this stage. However, the
performance of the rendering stage is usually more important for the interactivity
of a visualization application. Also, the choice of an appropriate filtering step is
often crucial in order to generate a useful visualization.

2.3. VOLUME RENDERING ALGORITHMS 39

For volume visualization, the filtering operations might include the sampling
or the geometric clipping of a volume data set. Useful mapping techniques for
volume visualization include the extraction of slices through the volume data,
which can be represented by textured polygons, or the computation of polygo-
nal approximations to isosurfaces. However, this work focuses on direct volume
visualization, which does not easily fit into this pipeline.

Figure 2.2b depicts a modification of the general visualization pipeline that is
specialized for direct volume visualization. In particular, the mapping and ren-
dering stages were replaced by a classification & shading stage, which generates
RGBA data, i.e., sets of red, green, blue, and alpha components, and a ray integra-
tion stage, which composites this data in order to generate the image data. Since
the visualization data corresponds to volumetric data in this case, the latter two
stages are also referred to as volume rendering.

2.3 Volume Rendering Algorithms

As there is a large number of published volume rendering algorithms, only a few
of the most important concepts are discussed in this section. The common tasks of
sampling volumetric data, assigning colors, and integrating them will be described
in subsequent sections.

viewing ray

eye point

view plane volume

(a)

eye point

view plane volume

(b)

Figure 2.3 (a) Direct volume rendering with ray casting: One viewing ray is
traced for each pixel. (b) Direct volume rendering with cell projection: Cells of
the volume mesh are projected to the view plane.

As depicted in Figure 2.3a, the basic idea of ray casting algorithms for volume
visualization is to trace viewing rays through a volumetric scalar field. Along each
ray, colors and opacities are calculated at discrete sampling points and composited
in order to compute the total color of each ray. Usually, at least one ray is traced
for each pixel and the final image is built pixel by pixel, i.e., in image-order. Ray
casting algorithms are among the earliest volume rendering algorithms; see for

40 CHAPTER 2. DIRECT VOLUME VISUALIZATION

example [39, 22]. Nonetheless, ray casting is still an active research area; one of
today’s topics is, for example, hardware support for ray casting, see Section 3.3.

In contrast to image-order algorithms, object-order algorithms process part
after part of the volumetric data. Each part, usually a cell of a volumetric mesh,
can contribute to the color of many pixels; however, there are very efficient ways
to compute all contributions of a single cell of the mesh.

One of the most important object-order algorithms in volume rendering is cell
projection, in particular the projection of tetrahedra as first suggested by Shirley
and Tuchman in [61]. However, cells of other shapes may also be projected to the
view plane, e.g., cubes as indicated by Figure 2.3b. Cell projection is discussed in
more detail in Section 3.1.

In [76], Westover suggested a different object-order algorithm, which is called
splatting. This algorithm accelerates the computation of color contributions to dif-
ferent pixels by pre-computing the contributions of voxels in a so-called “footprint
table”.

eye point

view plane 2D textured slices

(a)

eye point

view plane 3D textured slices

(b)

Figure 2.4 (a) Direct volume rendering with 2D textured slices: The slices are
aligned to the volumetric object. (b) Direct volume rendering with 3D textured
slices: The slices are usually aligned to the view plane.

The availability of hardware-accelerated texture mapping led to texture-based
volume rendering algorithms, first published by Cabral et al. in [7]. Figure 2.4 il-
lustrates the difference between the use of two-dimensional and three-dimensional
textures.

As depicted in Figure 2.4a, the 2D texture-based variant renders a set of tex-
tured slices that are aligned to the axes of the cubic volumetric mesh. The slices
are oriented perpendicular to the axis of the volume that is closest to the view-
ing direction. Therefore, the volume data has to be encoded in three stacks of
two-dimensional textures: one stack for each of the three axes. In contrast, the
3D texture-based variant requires only one three-dimensional texture and renders
slices parallel to the view plane, as depicted in Figure 2.4b. Texture-based volume
rendering will be discussed in more detail in Section 5.1.

2.4. RAY INTEGRATION 41

The shear-warp algorithm (see for example [37]) is in some sense related to
the 2D texture-based rendering algorithm; however, it is usually implemented in
software. Instead of texturing and projecting slices through the volume with the
help of graphics hardware, they are efficiently rasterized in software by a clever
decomposition of the viewing transformation.

Many more volume rendering algorithms have been proposed; in particular
extensions, enhancements, and hybrid combinations of the mentioned techniques.
Moreover, these algorithms differ in the way they solve the common operations
of interpolating data, assigning colors, and integrating them, which are discussed
in the following sections.

2.4 Ray Integration

2.4.1 Volume Rendering Integral

The basic task of any volume renderer is an (approximate) evaluation of the vol-
ume rendering integral for each pixel, i.e., the integration of attenuated colors
and extinction coefficients along each viewing ray. While this is obvious for ray
casting algorithms as illustrated in Figure 2.3a, many other volume rendering al-
gorithms do not explicitly represent viewing rays. Instead, viewing rays are often
defined implicitly by the positions of the eye point and the view plane. Also,
the volume rendering integrals do not always have to be evaluated one by one;
rather the integrals for all pixels may be evaluated simultaneously. For example,
all object-order algorithms compute the contributions of parts of the volume to
all ray integrals and then update the preliminary values of these integrals, usually
by updating an intermediate image. In this larger sense, the evaluation of volume
rendering integrals is common to all volume rendering algorithms.

We assume that the viewing ray x
�
λ � is parametrized by the distance λ to

the eye point, and that color densities color
�
x � together with extinction densities

extinction
�
x � may be calculated for any point in space x. (The units of color

and extinction densities are color intensity per length and extinction strength per
length, respectively. However, we will refer to them as colors and extinction co-
efficients when the precise meaning is clear from the context.) The volume ren-
dering integral is then

I ��� D

0
color � x � λ ��� exp �
	�� λ

0
extinction � x � λ ���� dλ ��� dλ

with the maximum distance D, i.e., there is no color density color � x � λ ��� for λ
greater than D. In words, color is emitted at each point x according to the function

42 CHAPTER 2. DIRECT VOLUME VISUALIZATION

color
�
x � , and attenuated by the integrated extinction coefficients extinction

�
x � be-

tween the eye point and the point of emission.
Unfortunately, this form of the volume rendering integral is not useful for the

visualization of a continuous scalar field s
�
x � , because the calculation of colors

and extinction coefficients is not specified yet. We distinguish two steps in the
calculation of these colors and extinction coefficients: the classification is the
assignment of a primary color and an extinction coefficient. (The term primary
color is borrowed from OpenGL terminology [85] in order to denote the color
before shading.) The classification is achieved by introducing transfer functions
for color densities c̃

�
s � and extinction densities τ

�
s � , which map scalar values

s � s
�
x � to colors and extinction coefficients. In general, c̃ is a vector specifying

colors in a color space, while τ is a scalar extinction coefficient.
The second step is called shading and calculates the color contribution of a

point in space, i.e., the function color
�
x � . The shading depends, of course, on the

primary color, but may also depend on other parameters, e.g., the gradient of the
scalar field ∇s

�
x � , ambient and diffuse lighting parameters, etc. In the remainder

of this section we will not be concerned with shading but only with classification;
therefore, we choose a trivial shading, i.e., we identify color

�
x � with the primary

color c̃ � s � x � � assigned in the classification. Analogously, extinction
�
x � is identi-

fied with τ � s � x ��� . The volume rendering integral is then written as

I ��� D

0
c̃
�
s � x � λ ����� exp � 	�� λ

0
τ
�
s � x � λ ������ dλ � � dλ � (2.1)

2.4.2 Pre- and Post-Classification

Direct volume rendering techniques differ considerably in the way they evaluate
Equation (2.1). One important and very basic difference is the computation of
c̃
�
s
�
x � � and τ

�
s
�
x � � . The scalar field s

�
x � is usually defined by a mesh with scalar

values si defined at each vertex vi of the mesh in combination with an interpolation
scheme, e.g., one of the interpolation schemes discussed in Section 2.7.

The ordering of the two operations, interpolation and the application of trans-
fer functions, defines the difference between pre- and post-classification. Post-
classification is characterized by the application of the transfer functions after
the interpolation of s

�
x � from the scalar values at several vertices (as suggested by

Equation (2.1)); while pre-classification is the application of the transfer functions
before the interpolation step, i.e., colors c̃

�
si � and extinction coefficients τ

�
si � are

calculated in a pre-processing step for each vertex vi and then used to interpolate
c̃
�
s
�
x � � and τ

�
s
�
x � � for the computation of the volume rendering integral. The

difference is also illustrated in Figures 2.7a and 2.7b.

2.4. RAY INTEGRATION 43

Obviously, pre- and post-classification will produce different results whenever
the interpolation does not commute with the transfer functions. As the interpo-
lation usually is non-linear (e.g., trilinear in uniform meshes), it will only com-
mute with the transfer functions if the transfer functions are constant or the iden-
tity. Otherwise, pre-classification will in general result in deviations from post-
classification, which is “correct” in the sense of applying the transfer functions to
a continuous scalar field defined by a mesh in combination with an interpolation
scheme. Nonetheless, pre-classification is useful under certain circumstances; in
particular, because it may be used as a simple segmentation technique.

There is some confusion in the literature about the correctness of pre-classifi-
cation with linear transfer functions. The discussion above shows that this requires
a linear interpolation, which is in fact common in tetrahedral (more generally
spoken, in simplicial) meshes but not in uniform meshes. Moreover, both transfer
functions have to be linear. However, c̃

�
s � usually corresponds to a product of a

color c
�
s � and an extinction coefficient τ

�
s � (which is usually called a “density” in

this context, and an “opacity” in the discretized form, see below):

c̃
�
s �
� τ

�
s � c � s � �

(See [42] for a comparison between a direct specification of the transfer function
c̃
�
s � and the specification of c

�
s � .)

Therefore, c̃
�
s � is only linear if either the transfer function of the color c

�
s �

or of the extinction coefficient τ
�
s � is constant and the other transfer function is

linear. This restriction can be weakened by defining a transfer function for c̃
�
s �

directly (see for example [78]) or by employing pre-multiplied colors (see for ex-
ample [84]). However, even in this case the transfer functions for (pre-multiplied)
colors and extinction coefficients are both restricted to linear functions.

For non-linear transfer functions (including piecewise linear functions) and/or
non-linear interpolation only post-classified rendering will “correctly” visualize a
continuous scalar field provided the volume rendering integral is evaluated with
sufficient accuracy.

2.4.3 Numerical Integration

An analytic evaluation of the volume rendering integral is possible in some cases,
in particular for linear interpolation and piecewise linear transfer functions (see
[81] and [82]). However, this approach is not feasible in general; therefore, a
numerical integration is usually required.

The most common numerical approximation of the volume rendering integral
in Equation (2.1) is the calculation of a Riemann sum for n equal ray segments
of length d : � D

�
n. (See also Figures 2.5 and 2.6, and Section IV.A in [42].) It

44 CHAPTER 2. DIRECT VOLUME VISUALIZATION

sHxHi dLL
sHxHHi + 1L dLL

d

sHxHΛLL

Λi d Hi + 1L d

xHΛLxHi dL xHHi + 1L dL
Figure 2.5 Piecewise constant approximation of the function s

�
x
�
λ ��� along a

viewing ray.

is straightforward to generalize the following considerations to unequally spaced
ray segments.

We will approximate the factor

exp � 	 � λ

0
τ
�
s � x � λ � ��� � dλ ���

in Equation (2.1) by

exp

� 	�� λ � d �∑
i � 0

τ
�
s � x � i d � � � d � �

��� λ � d �∏
i � 0

exp � 	 τ
�
s � x � i d ��� � d �	� � λ � d �∏

i � 0

�
1 	 αi ��

where the opacity αi of the i-th ray segment is defined by

αi : � 1 	 exp � 	 � i � d 1 �
i d

τ
�
s � x � λ � � � � dλ � � � (2.2)

and approximated by

αi � 1 	 exp � 	 τ
�
s � x � i d ��� � d � �

2.4. RAY INTEGRATION 45

This approximation assumes a piecewise constant value of s
�
x
�
λ ��� as illustrated

in Figure 2.5. The result is often further approximated to

αi � τ
�
s � x � i d � � � d �

1 	 αi will be called the transparency of the i-th ray segment.
Similarly, the color C̃i emitted in the i-th ray segment is defined by

C̃i : � � i � d 1 �
i d

c̃
�
s � x � λ ��� � exp � 	 � λ

i d
τ
�
s � x � λ ���� � dλ � � dλ � (2.3)

C̃i may be approximated by

C̃i � c̃ � s � x � i d � ��� d �
Thus, the approximation of the volume rendering integral in Equation (2.1) is

I � � D � d �∑
i � 0

C̃i

i � 1

∏
j � 0

�
1 	 α j � � (2.4)

Therefore, a back-to-front compositing algorithm will implement the equation

C̃ �i � C̃i
� �

1 	 αi � C̃ �i 1
 (2.5)

where C̃ �i is the color accumulated from all ray segments j with j � i.
Substituting c̃

�
s � by τ

�
s � c � s � and employing the approximations

Ci � c � s � x � i d � ��� and αi � τ
�
s � x � i d ��� � d

will result in the more common approximation

I ��� D � d �∑
i � 0

αiCi

i � 1

∏
j � 0

�
1 	 α j �

with the corresponding back-to-front compositing equation

C̃ �i � αiCi
� �

1 	 αi � C̃ �i 1 � (2.6)

This compositing equation indicates that C̃ corresponds to a pre-multiplied
color αC; which is also called opacity-weighted color (see [84]) or associated
color. According to Blinn in [6], associated colors have their opacity associated
with them, i.e., they are regular colors composited on black. Blinn also notes
that some intensity computations result in associated colors, although they are not

46 CHAPTER 2. DIRECT VOLUME VISUALIZATION

explicitly multiplied by an opacity. In this sense, the transfer function c̃
�
s � is in

fact a transfer function for an associated color density.
A coherent discretization of viewing rays into equal segments may be inter-

preted as a discretization of the volume into slabs. Each slab emits light and
absorbs light from the slabs behind it. However, the light emitted in each slab is
not attenuated within the slab itself. (Exactly this approximation is also employed
in Section 2.5.2 for pre-integrated classification.)

The discrete approximation of the volume rendering integral will converge to
the correct result for d � 0, i.e., for high sampling rates 1

�
d. According to the

sampling theorem, a correct reconstruction is only possible with sampling rates
greater than the Nyquist frequency. However, non-linear features of transfer func-
tions may considerably increase the sampling rate required for a correct evaluation
of the volume rendering integral as this sampling rate depends on the product of
the Nyquist frequencies of the scalar field s

�
x � and the maximum of the Nyquist

frequencies of the two transfer functions c̃
�
s � and τ

�
s � (or of the product c

�
s � τ � s �).

The actual relation may be obtained by comparison with the required sampling
rate for a frequency-modulated signal sfm

�
t � (see Section 6.4 in [59]):

sfm
�
t � : � Acos

�
2π fct

� �
∆ f

�
fm � sin

�
2π fmt ���

where fc specifies the carrier frequency, ∆ f the maximum deviation from fc, and
fm the modulation frequency or the maximum frequency of the modulation signal
if it is not a single-frequency tone. With the help of the identity

cos
�
a

�
xsin

�
b � � � ∞

∑
k � � ∞

cos
�
a

�
k b � Jk

�
x �

(where Jk denotes the Bessel function of the first kind of order k), the modulated
signal may be written as

sfm
�
t � � A

∞

∑
k � � ∞

Jk
�
∆ f

�
fm � cos

�
2π fct

�
2π fmk t � �

The spectrum of sfm
�
t � may be obtained directly from this representation: Apart

from the carrier frequency fc, there is an infinite number of sidebands at frequen-
cies fc

�
fmk with k ��� . Thus, the modulated signal is not bandwidth-limited and

there is no maximum frequency. However, according to an approximation by John
Remington Carson (known as “Carson’s rule”), the actually required bandwidth
(for more than 98 % of the signal power) is 2

�
∆ f

�
fm � , i.e., contributions of side-

bands outside the interval � fc 	 �
∆ f

�
fm ��
 fc

� �
∆ f

�
fm ��� are negligible. (It might

be worth noting that Carson abandoned the concept of frequency modulation in
the 1920s because it required a larger bandwith than amplitude modulation.)

2.4. RAY INTEGRATION 47

In order to apply this result to the problem of determining an appropriate sam-
pling frequency along a viewing ray, some additional symbols have to be intro-
duced. Let U

�
S � denote a transfer function for scalar values S � � 0
 1 � with Nyquist

frequency fU. In order to define values U
�
S � for S

�� � 0
 1 � , let U
�
S � be a symmet-

ric function with period 2, i.e., U
�
S �
� U

� 	 S � and U
�
S �
� U

�
S

�
2k � for k � � .

Furthermore, let S
�
t � denote a scalar field with Nyquist frequency fS. Thus, the

problem is to determine an appropriate sampling frequency for U
�
S
�
t � � . This

problem can be simplified with the help of a Fourier cosine series:

U
�
S
�
t � � � ∞

∑
k � 0

ak cos
�
π k S

�
t � � �

As the appropriate sampling rate for this sum corresponds to the maximum of the
sampling rates for the individual summands, it is possible to restrict the follow-
ing considerations to the summand with the maximum k with ak

�� 0. This kmax

corresponds to a maximum frequency kmax
�
2, which is given by half the Nyquist

frequency fU, i.e.

kmax
�
2 � fU

�
2 �

Thus, U
�
S
�
t � � can be specialized to the form

Acos
�
π kmax S

�
t � � � Acos

� �
2π fU

�
2 � S

�
t � �

with A � akmax . This function is already close to a frequency-modulated signal,
where S

�
t � corresponds to the modulation signal. As mentioned above, it is com-

mon to replace an arbitrary modulation signal by a single-frequency tone of the
maximum frequency for the purpose of estimating an appropriate sampling rate.
Thus, S

�
t � is replaced by sin

� �
2π fS

�
2 � t � . The new form of U

�
S
�
t ��� is:

Ũ
�
S̃
�
t � � � Acos

���
2π fU

�
2 � sin

� �
2π fS

�
2 � t ��� �

In order to apply Carson’s rule, Ũ
�
S̃
�
t � � has to be matched to sfm

�
t � , which is

defined by

sfm
�
t � : � Acos

�
2π fct

� �
∆ f

�
fm � sin

�
2π fmt ��� �

For this purpose, fm should be identified with half the Nyquist frequency fS of the
scalar field, and fc has to be 0 as there is no “carrier frequency” for the transfer
function. Thus, ∆ f

�
fm should be identified with 2π fU

�
2.

According to Carson’s rule, the required frequencies for this signal (fc � 0)
are in the interval � 0
 ∆ f

�
fm � corresponding to � 0
 2π fU fS

�
4

�
fS

�
2 � . For fU fS �

fS this interval is given by � 0
 π fU fS
�
2 � , i.e., the required sampling frequency is

π fU fS.

48 CHAPTER 2. DIRECT VOLUME VISUALIZATION

Thus, it is by no means sufficient to sample the volume rendering integral
with the Nyquist frequency fS of the scalar field if non-linear transfer functions
are employed. Artifacts resulting from this kind of undersampling are frequently
observed unless they are avoided by very smooth transfer functions, i.e., transfer
functions with a small Nyquist frequency fU.

2.5 Pre-Integrated Classification

In order to overcome the limitations discussed above, the approximation of the
volume rendering integral has to be improved. In fact, many improvements have
been proposed, e.g., higher-order integration schemes, adaptive sampling, etc.
However, these methods do not explicitly address the problem of high sampling
frequencies required for non-linear transfer functions. With pre-integrated clas-
sification these high sampling frequencies are avoided by reconstructing a piece-
wise linear, continuous scalar function along the viewing ray, and evaluating the
volume rendering integral between each pair of successive samples of the scalar
field by table lookups. This allows us to avoid the problematic product of Nyquist
frequencies mentioned in the previous section since the sampling rate for the re-
construction of the scalar function along the viewing ray does not dependent on
the transfer functions.

Pre-integrated classification was developed together with Stefan Röttger and
Klaus Engel as part of this work; therefore, it will be described in some detail
here. Applications of this technique to particular volume rendering algorithms
are discussed in Sections 3.1, 3.3, and 5.1. This section was first published in a
similar form in [18].

2.5.1 Ray Integration with Pre-Integrated Classification

Ray integration requires the sampling of a continuous scalar field s
�
x � along a

viewing ray. Note that the Nyquist frequency for this sampling is not affected by
the transfer functions, in contrast to the sampling of the volume rendering integral,
which was discussed in detail in the previous section. For the purpose of pre-
integrated classification, the sampled values of the three-dimensional scalar field
define a one-dimensional, piecewise linear scalar field, which approximates the
original scalar field along the viewing ray. The volume rendering integral for this
piecewise linear scalar field is efficiently computed by one table lookup for each
ray segment. The three arguments of this table lookup for the i-th ray segment
from x

�
i � to x

�
i d � are the scalar value at the start (front) of the segment s f : �

s � x � i d ��� , the scalar value at the end (back) of the segment sb : � s � x ��� i �
1 � d ��� ,

and the length of the segment d; see Figure 2.6. For the purpose of illustration,

2.5. PRE-INTEGRATED CLASSIFICATION 49

s f = sHxHi dLL
sb = sHxHHi + 1L dLL

d

sHxHΛLL

Λi d Hi + 1L d

xHΛLxHi dL xHHi + 1L dL
Figure 2.6 Piecewise linear approximation of the function s

�
x
�
λ � � along a view-

ing ray.

we assume that the lengths of the segments are all equal to a constant d. In this
case, the table lookup is independent of d.

More precisely spoken, the opacity αi of the i-th segment defined in Equa-
tion (2.2) is approximated by

αi � 1 	 exp � 	 � 1

0
τ � � 1 	 ω � s f

� ωsb � ddω � � (2.7)

Thus, αi is a function of s f , sb, and d. (Or of s f and sb, if the lengths of the
segments are equal.)

The (associated) color C̃i defined in Equation (2.3) is approximated corre-
spondingly:

C̃i � � 1

0
c̃ � � 1 	 ω � s f

� ωsb �
� exp

� 	 � ω

0
τ � � 1 	 ω ��� s f

� ω � sb � ddω � � ddω �
(2.8)

Analogously to αi, C̃i is a function of s f , sb, and d.
Thus, pre-integrated classification will approximate the volume rendering in-

tegral by evaluating Equation (2.4):

I � � D � d �∑
i � 0

C̃i

i � 1

∏
j � 0

�
1 	 α j �

50 CHAPTER 2. DIRECT VOLUME VISUALIZATION

with colors C̃i pre-computed according to Equation (2.8) and opacities αi pre-
computed according to Equation (2.7).

For non-associated color transfer function, i.e., if c̃
�
s � is substituted by τ

�
s �

c
�
s � , we will also employ Equation (2.7) for the approximation of αi and the

following approximation of the associated color C̃τ
i :

C̃τ
i � � 1

0
τ � � 1 	 ω � s f

� ωsb � c � � 1 	 ω � s f
� ωsb �

� exp
� 	 � ω

0
τ � � 1 	 ω �� s f

� ω � sb � ddω � � ddω �
(2.9)

Note that pre-integrated classification always computes associated colors, whether
a transfer function for associated colors c̃

�
s � or for non-associated colors c

�
s � is

employed.
In both cases, pre-integrated classification allows us to sample a continuous

scalar field s
�
x � without the need to increase the sampling rate for any non-linear

transfer function. Therefore, pre-integrated classification has the potential to im-
prove the accuracy (by less undersampling) and the performance (by fewer sam-
pling operations) of a volume renderer at the same time.

Figure 2.7c summarizes the basic steps of pre-integrated classification and
compares them with pre-classification (Figure 2.7a) and post-classification (Fig-
ure 2.7b).

scalar data at vertices

classification & shading

RGBA tuples at vertices

interpolation

RGBA tuple for one point

(a)

scalar data at vertices

interpolation

scalar value at one point

classification & shading

RGBA tuple for one point

(b)

scalar data at vertices

two interpolations

scalar values at two points

table look-up

RGBA tuple for line segment

(c)

Figure 2.7 Data flow schemes for (a) pre-classification, (b) post-classification,
and (c) pre-integrated classification.

2.5. PRE-INTEGRATED CLASSIFICATION 51

2.5.2 Accelerated Approximative Pre-Integration

The primary drawback of pre-integrated classification in general is the required
pre-computation of the lookup tables that map the three integration parameters
(scalar value at the front s f , scalar value at the back sb, and length of the seg-
ment d) to pre-integrated colors C̃ � C̃

�
s f
 sb
 d � and opacities α � α

�
s f
 sb
 d � .

As these tables depend on the transfer functions, any modification of the transfer
functions requires an update of the lookup tables. This might be no concern for
games and entertainment applications, but it strongly limits the interactivity of
applications in the domain of scientific volume visualization, which often depend
on user-specified transfer functions. Therefore, we will suggest three approaches
to accelerating the pre-integration step.

Firstly, it is sometimes possible to reduce the dimensionality of the tables from
three to two (only s f and sb) by assuming a constant length of the segments. Ob-
viously, this applies to ray casting with equidistant samples. It also applies to
3D texture-based volume visualization with orthographic projection and is a good
approximation for most perspective projections. It is less appropriate for object-
aligned 2D texture-based volume rendering as discussed in Section 5.1. Even if
very different lengths occur, the complicated dependency on the segment length
might be approximated by a linear dependency as suggested in [56]; thus, the
lookup tables may be calculated for a single segment length.

Secondly, a local modification of the transfer functions for a particular scalar
value s does not require to update the whole lookup table. In fact, only the values
C̃
�
s f
 sb
 d � and α

�
s f
 sb
 d � with s f

�
s
�

sb or s f � s � sb have to be updated;
i.e., in the worst case about half of the lookup table has to be updated.

Finally, the pre-integration may be greatly accelerated by evaluating the inte-
grals in Equations (2.7), (2.8), and (2.9) by employing integral functions for τ

�
s � ,

c̃
�
s � , and τ

�
s � c � s � , respectively. A very similar technique has been first published

by Max et al. in [44]. More specifically, Equation (2.7) for αi � α
�
s f
 sb
 d � can

be rewritten as

α
�
s f
 sb
 d � � 1 	 exp � 	 � 1

0
τ � � 1 	 ω � s f

� ωsb � ddω �
� 1 	 exp �
	 d

sb 	 s f
� sb

s f

τ
�
s � ds �

� 1 	 exp �
	 d
sb 	 s f

� T �
sb � 	 T

�
s f ��� �

(2.10)

with the integral function T
�
s � : ��� s

0 τ
�
s � � ds � , which is easily computed in practice

as the scalar values s are usually quantized.

52 CHAPTER 2. DIRECT VOLUME VISUALIZATION

Equation (2.8) for C̃i � C̃
�
s f
 sb
 d � may be approximated analogously; how-

ever, this requires to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume rendering and
is well justified for small products τ

�
s � d.

C̃
�
s f
 sb
 d � � � 1

0
c̃ � � 1 	 ω � s f

� ωsb � ddω

� d
sb 	 s f

� sb

s f

c̃
�
s � ds

� d
sb 	 s f

� K �
sb � 	 K

�
s f ���

(2.11)

with the integral function K
�
s � : ��� s

0 c̃
�
s � � ds � . For the non-associated color transfer

function c
�
s � we approximate Equation (2.9) by

C̃τ � s f
 sb
 d � � � 1

0
τ � � 1 	 ω � s f

� ωsb �
� c � � 1 	 ω � s f

� ωsb � ddω

� d
sb 	 s f

� sb

s f

τ
�
s � c � s � ds

� d
sb 	 s f

� Kτ � sb � 	 Kτ � s f � � �
(2.12)

with Kτ � s � : � � s
0 τ

�
s � � c � s � � ds � .

Thus, instead of numerically computing the integrals in Equations (2.7), (2.8),
and (2.9) for each combination of s f , sb, and d, it is possible to compute the
integral functions T

�
s � , K

�
s � , or Kτ � s � only once and employ these to evaluate

colors and opacities according to Equations (2.10), (2.11), or (2.12) without any
further integration.

2.5.3 Applications to Volume Rendering Algorithms

Pre-integrated classification is not restricted to a particular volume rendering al-
gorithm, rather it may replace the post-classification step of various algorithms.
The application to a cell projection algorithm is discussed in Section 3.1, while
texture-based rendering algorithms with this kind of classification are discussed
in Section 5.1. Furthermore, pre-integrated classification has been combined with
the shear-warp algorithm [57] and has been employed for ray casting in software
[30] and in hardware [47]. Additional improvements of various aspects of pre-
integrated volume rendering are discussed in [24], [46], and [55].

2.6. CLASSIFICATION OF MESHES 53

2.6 Classification of Meshes

As mentioned above, the volume rendering integral is defined for a scalar func-
tion in three spatial dimensions, which is usually specified by a volumetric mesh
in combination with an interpolation scheme. However, a rich variety of mesh data
structures has been suggested in order to meet different requirements of particu-
lar applications. Unfortunately, the requirements of the visualization process are
usually not taken into consideration; therefore, volume visualization is required to
cope with all kinds of meshes.

all meshes

structured meshes

uniform meshes rectilinear meshes curvilinear meshes

unstructured meshes

simplicial meshes zoo meshes

Figure 2.8 Basic classification of meshes with two-dimensional examples.

2.6.1 Structured Meshes

Figure 2.8 depicts are rough classification of meshes with two-dimensional exam-
ples. The most general distinction is between structured and unstructured meshes.
While the connectivity of cells in a structured mesh is implicit, this connectivity
is not fixed for an unstructured mesh.

Structured meshes may be further classified into uniform, rectilinear, and
curvilinear meshes. The cells of uniform meshes are of uniform shape and size.
Often, and in particular in this thesis, only uniform meshes with orthogonal axes
are considered, i.e., the cells are cuboids or “boxes”. In this case, the position of
a vertex vuni

i � j � k of a uniform volume mesh of dimensions nx
� ny

� nz with cells of
size ∆x � ∆y � ∆z may be written as

vuni
i � j � k � t

�
O

��
i∆x
j∆y
k∆z

��
 i � 1
 � � �
 nx; j � 1
 � � �
 ny;k � 1
 � � �
 nz

with a (translation) vector t and a rotation matrix O.

54 CHAPTER 2. DIRECT VOLUME VISUALIZATION

Rectilinear meshes are slightly more general as the sizes ∆x, ∆y, and ∆z of the
cells may depend on the indices i, j, and k. However, ∆x may only depend on i,
∆y on j, and ∆z on k. Therefore, the position of a vertex vrect

i � j � k can be specified as

vrect
i � j � k � t

�
O

��
x
�
i �

y
�
j �

z
�
k �

��
 i � 1
 � � �
 nx; j � 1
 � � �
 ny;k � 1
 � � �
 nz

with coordinate functions x

�
i � , y

�
j � , and z

�
k � .

While the connectivity of vertices in a curvilinear mesh is the same as that of
a uniform or rectilinear mesh, the position of a vertex vcurv

i � j � k of a curvilinear mesh
is not restricted in a similar way; therefore, a three-dimensional vector has to be
stored for each vertex specifying its position. However, the cells of a curvilinear
mesh are often restricted to be non-intersecting or even non-degenerate.

2.6.2 Unstructured Meshes

Unstructured meshes have no predefined connectivity; therefore, the connectivity
has to be stored explicitly. While this requires larger data structures, it also leads to
greater flexibility, i.e., more adaptivity. Thus, unstructured meshes can discretize
domains of any shape and topology. Also, the resolution of an unstructured mesh
may be adapted locally.

In particular in the context of finite-element computation, many variants of
unstructured meshes have been suggested. Among the most important are simpli-
cial meshes, i.e., meshes with cells that are simplices. An n-dimensional simplex
is the simplest polytope in n dimensions, i.e., the n-dimensional generalization of
a tetrahedron. Therefore, a simplicial mesh in three dimensions is a tetrahedral
mesh and a triangular mesh in two dimensions. An important feature of simpli-
cial meshes is the possibility of linear interpolation within each simplicial cell as
discussed in the next section.

Non-simplicial unstructured meshes may be further classified by the shapes of
their cells. For example, an unstructured mesh with several different cell shapes
(e.g., tetrahedra, octahedra, cubes, and prisms) is sometimes called zoo mesh.

2.6.3 Hybrid and Hierarchical Meshes

There are also several kinds of meshes that do not fit into this basic classification
of structured and unstructured meshes. For example, hybrid meshes, i.e., combi-
nations of different kinds of meshes, and hierarchical meshes, i.e., meshes that are
defined for different levels of detail. As the particular problems associated with
these meshes are usually not of a geometric nature, these meshes are not discussed
in detail in this work.

2.7. INTERPOLATION IN MESHES 55

2.7 Interpolation in Meshes

As mentioned in Section 2.4, almost all volume rendering algorithms sample
scalar fields that are defined by the data values associated with the vertices of
a discrete volumetric mesh. This sampling requires an interpolation scheme that
computes an interpolated value from the vertices’ scalar values and the position
of the sampling point.

2.7.1 Nearest-Neighbor Interpolation

The simplest interpolation scheme is a nearest-neighbor interpolation, i.e., the
scalar value of a sampling point is determined by the scalar value associated with
the nearest vertex of the mesh. For an appropriately transformed mesh (the dual
mesh), this is equivalent with a constant scalar value per volumetric cell or voxel.
As a nearest-neighbor interpolation results in discontinuous “jumps” of the in-
terpolated value, more elaborated interpolation schemes have to be employed in
order to guarantee interpolated values that are continuous at boundaries of cells.

2.7.2 Linear, Bilinear, and Trilinear Interpolation

Trilinear interpolation is a continuous interpolation scheme for uniform and rec-
tilinear volumetric meshes. As illustrated in Figure 2.9 it reduces to bilinear in-
terpolation in two dimensions and linear interpolation in one dimension.

For the linear interpolation in one dimension, two scalar values s
�
A � and s

�
B �

at points A and B are required (Figure 2.9a). The linearly interpolated value s
�
X �

at any point X between A and B is then defined by

s
�
X � � �

1 	 α � s
�
A � � α s

�
B � with α � �

X 	 A
�

�
B 	 A

� �
Bilinear interpolation in a rectangle requires four points with associated scalar

values, see Figure 2.9b. The interpolated value s
�
X � at a point X is then given by

s
�
X � � �

1 	 α � � 1 	 β � s
�
A � � α

�
1 	 β � s

�
B � � α β s

�
C � � �

1 	 α � β s
�
D �

with

α � �
XAB 	 A

�

�
B 	 A

� and β � �
XAD 	 A

�

�
D 	 A

�

where XAB and XAD are the projections of X onto the lines AB and AD, respectively.

56 CHAPTER 2. DIRECT VOLUME VISUALIZATION

A BX

(a)
A B

CD

XA B

XA D

D

X

(b)

A
B

C

D

XA B

XA D

D

E
XA E

F

GH

X

(c)

Figure 2.9 Interpolation in n-dimensional cubic cells: (a) linear on a line seg-
ment, (b) bilinear in a square, and (c) trilinear in a cube.

Analogously, trilinear interpolation in a cuboid requires eight points and their
scalar values, as illustrated in Figure 2.9c. s

�
X � at X is then interpolated as

s
�
X � � �

1 	 α � � 1 	 β � � 1 	 γ � s
�
A � � α

�
1 	 β � � 1 	 γ � s

�
B �

� α β
�
1 	 γ � s

�
C � � �

1 	 α � β
�
1 	 γ � s

�
D �

� �
1 	 α � � 1 	 β � γ s

�
E � � α

�
1 	 β � γ s

�
F �

� α β γ s
�
G � � �

1 	 α � β γ s
�
H �

with

α � �
XAB 	 A

�

�
B 	 A

�
 β � �
XAD 	 A

�

�
D 	 A

�
 and γ � �
XAE 	 A

�

�
E 	 A

�

where XAB, XAD, and XAE are projections of X as indicated in Figure 2.9c.

It should be noted that any bilinear and trilinear interpolation may be com-
puted by a sequence of linear interpolations. For example, the bilinear interpola-
tion of s

�
X � in Figure 2.9b may be written as the three linear interpolations

s
�
XAB � � �

1 	 α � s
�
A � � α s

�
B �

s
�
XCD � � �

1 	 α � s
�
D � � α s

�
C �

s
�
X � � �

1 	 β � s
�
XAB � � β s

�
XCD ��

where XCD is the projection of X onto the line CD, and the weights α and β are
defined as above. Analogously, a trilinear interpolation may be computed by a
sequence of seven linear interpolations.

Another important feature of these interpolation schemes is the restriction to
the vertices of a cell, i.e., in order to interpolate the value of any point within a
cell only the values of the vertices of this cell are required.

2.7. INTERPOLATION IN MESHES 57

2.7.3 Linear Interpolation in Simplices

Linear interpolation is not only useful in one dimension but may be employed
for a continuous interpolation in any simplicial mesh, e.g., in triangular and tetra-
hedral meshes. The one-dimensional case depicted in Figure 2.10a is equivalent
to the linear interpolation in a one-dimensional cube, which is covered by the
discussion of Figure 2.9.

A BX

(a)
A B

C

X

(b)
A

B

C

D
X

(c)

Figure 2.10 Linear interpolation in n-dimensional simplices: (a) on a line seg-
ment, (b) in a triangle, and (c) in a tetrahedron.

In two dimensions, a linear interpolation of the scalar value s
�
X � at a point X

within a triangle
�

ABC (see Figure 2.10b) may be written as

s
�
X � � α s

�
A � � β s

�
B � � γ s

�
C ��

where the weights α, β, and γ are the barycentric coordinates of X in
�

ABC, i.e.,
α, β, and γ are the areas of the triangles

�
XBC,

�
AXC, and

�
ABX , respectively,

each divided by the area of
�

ABC for normalization.
Analogously, a linear interpolation for s

�
X � at X within a tetrahedron

�
ABCD

(see Figure 2.10c) may be computed as

s
�
X � � α s

�
A � � β s

�
B � � γ s

�
C � � δ s

�
D �

with the weights α, β, γ, and δ given by the volumes of the tetrahedra
�

XBCD,
�

AXCD,
�

ABXD, and
�

ABCX , respectively, again each divided by the volume
of the whole tetrahedron

�
ABCD.

Similarly to the decomposition of any bilinear or trilinear interpolation into
linear interpolations, any linear interpolation in triangles or tetrahedra can be de-
composed into a sequence of linear interpolations on lines (and triangles). For the
case of the linear interpolation in the triangle of Figure 2.11a, let XAC and XBC be
any two points on the line segments AC and BC, respectively, such that X is on the

58 CHAPTER 2. DIRECT VOLUME VISUALIZATION

A B

C

XXA C XB C

(a)
A

B

C

D
X

XA C

XB C
XC D

(b)
A

B

C

D X
XA B C

XB C D

(c)

Figure 2.11 Decomposition of linear interpolations: (a) in a triangle, (b) in a
tetrahedron, and (c) alternative decomposition in a tetrahedron.

line XACXBC. Then s
�
X � can be calculated by these three linear interpolations on

lines:

s
�
XAC � � �

1 	 α � s
�
A � � α s

�
C ��

s
�
XBC � � �

1 	 β � s
�
B � � β s

�
C ��

s
�
X � � �

1 	 γ � s
�
XAC � � γ s

�
XBC �

with

α � �
XAC 	 A

�

�
C 	 A

�
 β � �
XBC 	 B

�

�
C 	 B

�
 and γ � �
X 	 XAC

�

�
XBC 	 XAC

� �
For the case of the linear interpolation in a tetrahedron there are several pos-

sible decompositions. One approach is to interpolate the value s at three points
on edges of the tetrahedron, which form a triangle that contains X , and then to
interpolate s

�
X � in this triangle as illustrated in Figure 2.11b. Of course, the in-

terpolation in the triangle
�

XACXBCXCD may be further decomposed as explained
above.

Another approach starts by interpolating the value s at two points of two faces
of the tetrahedron. This is illustrated in Figure 2.11c for a point XABC, which is
part of the triangle

�
ABC, and a point XBCD, which is part of

�
BCD. The line

between these two points has to contain X ; thus, s
�
X � can be computed by a linear

interpolation along this line.

2.7.4 Higher-Order Interpolation

Although there are many more elaborated interpolation schemes, in particular of
higher order, we will not discuss any of them as the choice between particular
interpolation schemes usually does not depend on the geometry of the cells of a

2.8. GEOMETRICALLY UNPLEASANT MESHES 59

mesh. (An important exception is that a continuous linear interpolation is only
possible in simplicial meshes.) Moreover, real-time interactive volume visualiza-
tion requires interpolation schemes that can be evaluated extremely efficiently; a
requirement that is hard to fulfill with any higher-order interpolation scheme.

2.8 Geometrically Unpleasant Meshes

The discussion of different volume rendering algorithms, meshes, and interpo-
lation schemes in the previous sections of this chapter leads to several important
questions that are related to geometric features of meshes. Partial answers to these
questions can be given based on the previous sections and the literature on volume
visualization:

Q.: How do geometric features of the boundary of a volumetric mesh affect
volume rendering algorithms?

A.: The volume rendering integral is defined on the intersection of a viewing
ray with the spatial domain of a volume mesh. This intersection is empty
or exactly one line segment for convex meshes, i.e., meshes with a convex
boundary, and it is empty or a set of disconnected line segments for non-
convex meshes. Therefore, volume visualization of non-convex meshes is
in general more difficult than volume visualization of convex meshes.

Q.: The possibility of a simple, continuous, linear interpolation within volumet-
ric meshes is limited to simplicial meshes. What are the consequences of
this geometric feature and/or of its absence?

A.: As discussed in Section 2.5, pre-integrated classification implicitly assumes
a linear interpolation between samples. Moreover, almost all algorithms
that compute single features or the complete topology of a scalar field are
restricted to piecewise linear scalar fields as provided by simplicial meshes
with a linear interpolation scheme. Adaptations of pre-integrated classi-
fication and topology-related algorithms to non-simplicial meshes would
considerably increase the range of application of these concepts.

Q.: The accurate evaluation of the volume rendering integral requires a large
number of interpolations. How can these interpolations be computed effi-
ciently with the help of graphics hardware for cells of different geometric
shapes?

A.: With standard graphics hardware, only trilinear interpolation in uniform
volumetric meshes is supported natively by means of three-dimensional tex-
ture mapping. There is little to no native support for non-uniform meshes.

60 CHAPTER 2. DIRECT VOLUME VISUALIZATION

Q.: Apart from the shape of cells and the boundary of a mesh, which other ge-
ometric features of a volumetric mesh affect volume rendering algorithms?

A.: Previous research in volume visualization has shown that the acyclicity of
volumetric meshes is a crucial requirement of some algorithms. Only very
few publications were concerned with problems caused by cyclic meshes.
Mesh simplification is necessary in many applications of volume visualiza-
tion in order to achieve a sufficient visualization performance. However,
mesh simplification usually exploits the possibility to adapt the boundary
and the local resolution of a mesh to the data defined on it; thus, the simpli-
fication of non-adaptive meshes poses particular challenges.

These answers identify specific geometric features of volume meshes that
cause particular problems. These features are called “geometrically unpleasant” in
this work and lead to its overall structure, i.e., each of the Chapters 3 to 5 is about
algorithms for the direct volume visualization of particular classes of unpleasant
meshes. More specifically, Chapter 3 discusses non-uniform meshes, Chapter 4
non-convex and cyclic meshes, and Chapter 5 non-simplicial and non-adaptive
meshes.

Of course, there are — even from the limited perspective of volume visu-
alization — more geometrically unpleasant meshes than mentioned above (see
Section 6.3 for a list of examples). Therefore, the results of Chapters 3 to 5 are
generalized in Chapter 6 in order to find more abstract strategies for the direct
volume visualization of geometrically unpleasant meshes.

Big Bill: People, please. Please.
I think we all know what’s been going on here.
Up until now everything around here has always been,
well, pleasant.
Recently, certain things have become unpleasant.
Now, it seems to me that the first thing we have to do
is to separate out the things that are pleasant
from the things that are unpleasant.

Monolog from the movie Pleasantville

Chapter 3

Non-Uniform Meshes

While volume rendering of uniform meshes may be implemented with the help
of three-dimensional texture mapping as described in Section 2.3, there is no
comparable hardware support for any non-uniform mesh. This lack of hardware
support is particularly unpleasant since non-parallel, pure software solutions are
usually considerably slower than hardware-assisted implementations. Therefore,
this chapter presents three hardware-assisted approaches to volume rendering of
non-uniform meshes. However, the discussion will be restricted to simplicial (i.e.,
tetrahedral) meshes. In order to apply the presented methods to other non-uniform
volumetric meshes, they have to be converted to tetrahedral meshes by decompos-
ing all non-tetrahedral cells into tetrahedra.

3.1 Pre-Integrated Cell Projection

Cell projection probably is the most common method of exploiting graphics hard-
ware for the rendering of tetrahedral meshes and unstructured meshes in gen-
eral. As mentioned in Section 2.5, pre-integrated classification can be applied
to many volume rendering algorithms in order to improve image quality and re-
duce the number of sampling operations. The goal of this section is to combine
pre-integrated classification with a cell projection algorithm without sacrificing
the use of graphics hardware. This section presents the results of joint work with
Stefan Röttger, which were first published in [56].

61

62 CHAPTER 3. NON-UNIFORM MESHES

3.1.1 Projected Tetrahedra Algorithms

The first cell projection algorithm that exploited graphics hardware efficiently was
the Projected Tetrahedra (PT) algorithm by Shirley and Tuchman, which was pub-
lished in [61]. As this algorithm accelerated direct volume rendering of tetrahedral
meshes considerably, many research groups started to use and improve the algo-
rithm. In fact, several aspects of the PT algorithm are still subject to research, e.g.,
the sorting of tetrahedral cells (see also Section 4.3). In this section, however, only
the rendering of projected tetrahedra is discussed.

The basic idea of the PT algorithm is to visualize a scalar function s
�
x � defined

for any point x in a region of three-dimensional space by rendering partially trans-
parent polygons, which can be processed extremely fast by specialized graphics
hardware.

The original PT algorithm can be summarized as follows (see also [61]):

1. Decompose the volume into tetrahedral cells. Scalar values are defined at
each vertex of the mesh. Inside each tetrahedral cell, s

�
x � is assumed to be

a linear combination of the vertex values as described in Section 2.7.3.

2. Sort the cells according to their visibility.

3. Classify each tetrahedron according to its projected profile and decompose
the projected tetrahedron into smaller triangles (see Figure 3.1).

4. Find color and opacity values for the triangle vertices using ray integration.

5. Render the triangles.

class 1a class 1b class 2

Figure 3.1 Classification of non-degenerate projected tetrahedra (top row) and
the corresponding decompositions (bottom row) according to [61].

3.1. PRE-INTEGRATED CELL PROJECTION 63

As mentioned, the methods presented in this section only improve on the latter
two points: ray integration and rendering of the decomposed triangles with an
emphasis on hardware-accelerated rendering. Visibility sorting is discussed in
Section 4.3 as it is particularly complicated for non-convex and cyclic meshes,
which are the topic of Chapter 4.

The original PT algorithm interpolates color and opacity linearly between the
triangle vertices. This, however, is an approximation which leads to rendering
artifacts as demonstrated in [43, 65].

In order to avoid these artifacts Stein et al. suggested in [65] to use a two-
dimensional texture with the texture coordinates being the thickness l of the pro-
jected cell and the average τ of the two extinction coefficients on the entry and
the exit face (see also Figure 3.2). These texture coordinates are computed only
at the triangle vertices. The texture specifies an α-component that is set to α �
1 	 exp

� 	 τ l � . This α-component is used to modulate the (unattenuated) vertex
colors; thus, the exponential attenuation is computed for each pixel instead of each
vertex. In between the vertices of each triangle the texture coordinates and, there-
fore, τ and l are interpolated linearly; thus, this approach is restricted to a linearly
varying extinction coefficient τ, i.e., a linear transfer function τ � τ

�
s � . Moreover,

the color is still linearly interpolated in between vertices. Williams et al. extended
these ideas to piecewise linear transfer functions in [82].

3.1.2 Pre-Integrated Classification for Projected Tetrahedra

In the context of projected tetrahedra, pre-integrated classification is just a gen-
eralization of the method of Stein et al. [65], as it works for color and opacity,
and places no restrictions on the transfer functions. These benefits are achieved
by employing three-dimensional instead of two-dimensional texture mapping as
explained next.

Figure 3.2 depicts the intersection of a viewing ray with a tetrahedral cell.
More precisely spoken, this particular tetrahedron corresponds to a triangle gener-
ated by the PT decomposition. The goal is to render this tetrahedron by rasterizing
its front face. Thus, the ray integration within the tetrahedron has to be performed
by appropriate texture mapping.

As texture coordinates are interpolated linearly, only those variables should be
used that vary vary linearly with screen coordinates. For orthographic projections,
l varies linearly for geometric reasons; s f and sb vary linearly because they are
interpolated linearly between vertices as mentioned above. Therefore, s f , sb, and
l should be the three texture coordinates. Fortunately, all other values, e.g., color,
opacity, etc., can be calculated from l, s f , and sb. Thus, a three-dimensional
texture can be computed that specifies the color and opacity characterizing the
intersection of a ray and a cell in dependency of l, s f , and sb.

64 CHAPTER 3. NON-UNIFORM MESHES

l

s f sb

Figure 3.2 Intersecting a tetrahedral cell with a viewing ray. s f and sb are the
scalar values on the entry (front) and exit (back) face, respectively; l denotes the
thickness of the cell for this ray.

For many applications the calculation of the texture is a preprocessing step
and, therefore, not time-critical. Usually it includes a numerical integration of a
ray for each texel in the three-dimensional texture. In the notation of Section 2.5,
the transfer functions are specified by an associated color c̃ � c̃

�
s � and an opacity

τ � τ
�
s � .

Assuming that cells are processed back to front, the addition of the projection
of a cell changes an existing pixel color C̃ to a new pixel color C̃ � by the formula
(compare Section 2.4 in this work and Equation (4) in [81])

C̃ � � � l

0
exp � 	 � t

0
τ
�
sl
�
u � � du � c̃

�
sl
�
t � � dt

� ��� �

RGBt3D

�
exp � 	 � l

0
τ
�
sl
�
t ��� dt �

� ��� �

1 	 αt3D

C̃ (3.1)

with the abbreviation

sl
�
t � � s f

� t
l

�
sb 	 s f � �

RGBt3D denotes the color components (note that c̃
�
s � is a vector), and αt3D the

opacity of an entry in the three-dimensional texture. RGBt3D and αt3D depend on
the texture coordinates l, s f , sb, and the transfer functions c̃

�
s � and τ

�
s � . Thus, the

texture has to be updated whenever the transfer functions are modified.
It is an intrinsic limitation of the pre-integrated classification that c̃

�
s � and τ

�
s �

have to depend on the same scalar field. Note that this approach is not limited to
associated colors. For a non-associated color transfer function c

�
s � , Equation (3.1)

reads

C̃ � � � l

0
exp � 	 � t

0
τ
�
sl
�
u � � du � c

�
sl
�
t � � τ � sl

�
t � � dt

� ��� �

RGBt3D

�
exp � 	 � l

0
τ
�
sl
�
t ��� dt �

� ��� �

1 	 αt3D

C̃

3.1. PRE-INTEGRATED CELL PROJECTION 65

After the calculation of the texture in a preprocessing step, all tetrahedra are
projected from back to front. Before rendering the triangles of one projected
tetrahedron, the three texture coordinates l, s f , and sb are set for each vertex of
the triangles. The required blending operation corresponds to

C̃ � � RGBt3D
� �

1 	 αt3D � C̃

and is performed very efficiently by today’s graphics hardware.

A synthetic example generated with this rendering method is depicted in Fig-
ure 3.3a. The scalar values at the vertices of the visualized tetrahedral mesh are
determined by the (unsigned) distance of each vertex to the surface of a sphere.
The transfer function of the opacity is 0 except for a small interval, which results
in the two partially opaque rings in Figure 3.3a.

In summary, pre-integrated classification allows us to exploit hardware-sup-
ported three-dimensional texture mapping in order to render projected tetrahedra
without the need to do any time-consuming calculations for each pixel. The ap-
proach is not as accurate as ray casting algorithms or the high accuracy (HIAC)
volume rendering system described in [82] because of limited texture memory
and non-linear transformations in the case of perspective projections. Especially
limited texture memory will limit the size of the three-dimensional texture result-
ing in a less accurate resampling of the transfer functions. Within this limited
accuracy, however, arbitrary transfer functions may be used without affecting the
rendering times whereas the performance of the HIAC system crucially depends
on the chosen transfer functions. In particular, arbitrarily thin peaks are possible
resulting in unshaded isosurfaces as discussed below.

Compared to other volume rendering techniques using three-dimensional tex-
ture mapping, the projection of tetrahedra with pre-integrated classification has
several specific advantages; for example, it is neither necessary to resample the
mesh nor to store the data in texture memory. Moreover, existing implementa-
tions of the PT algorithm can easily be extended with this method in order to
exploit three-dimensional texture mapping if available.

The most important disadvantages are the need for hardware-supported three-
dimensional texture mapping and rather large textures. Moreover, pre-integration
is computationally expensive; thus, modifications of the transfer functions cannot
be performed in real time.

Approximative Pre-Integrated Classification Using 2D Texture Mapping

In order to overcome these disadvantages, an approximation can be employed that
requires only two-dimensional texture mapping. The computation of the corre-
sponding two-dimensional textures is considerably faster than the computation

66 CHAPTER 3. NON-UNIFORM MESHES

(a) (b)

Figure 3.3 Visualization of a synthetic data set with non-linear transfer functions.
(a) Pre-integrated classification with a three-dimensional texture of dimensions
64 � 64 � 64 (1 MB). (b) Approximative pre-integrated classification with a two-
dimensional texture of dimensions 256 � 256 (256 KB). (See also Figure C.1 on
page 145 in the color plate section.)

of the full three-dimensional texture described above because of the reduced di-
mensionality. This approximative method interpolates the opacity linearly and
therefore shows visible artifacts. However, it allows us to use arbitrary trans-
fer functions while existing hardware-accelerated solutions are limited to linear
transfer functions within each cell (e.g., [65]).

The basic idea is to approximate the dependencies of the integrals in Equa-
tion (3.1) on l by linear terms, and to implement these terms by a modulation of
the vertex colors. The remaining integrals depend only on s f and sb; thus, they
can be tabulated in a two-dimensional texture.

The dependencies on l in Equation (3.1) become more explicit with the vari-
able substitutions t � � t

�
l and u � � u

�
l:

C̃ � � l � 1

0
exp � 	 l � t

�

0
τ
�
s1
�
u � � � du � � c̃

�
s1
�
t ��� � dt � �

exp �
	 l � 1

0
τ
�
s1
�
t ����� dt � � C̃

with s1
�
t � � s f

�
t
�
sb 	 s f � , which is consistent with the previous definition of

sl
�
t � . For l � 0 this equation reduces to C̃ � � C̃. For given τ

�
s � , c̃

�
s � , s f and sb the

integrals are evaluated for another value l � l � const � and extrapolated linearly
in l as illustrated in Figure 3.4 for the opacity 1 	 exp

� 	 l � 1
0 τ

�
s1
�
t � � � dt � � . The

optimal choice of l depends on the particular application, but choosing l equal

3.1. PRE-INTEGRATED CELL PROJECTION 67

0.5 1 1.5 2 2.5 3
l

0.2

0.4

0.6

0.8

1
l
_

Figure 3.4 Linear approximation of the functions 1 	 exp
� 	 χ l � for χ � 2 (solid

thin line), χ � 1 (dashed thin line), and χ � 1
2 (dotted thin line) by linear functions

(corresponding thick lines) through
�
0
 0 � and

�
l
 exp

� 	 χ l � � . All function values
are clamped to the range � 0
 1 � . χ corresponds to integrals that do not depend on l.

to the average cell thickness has proven to be a good approximation. Note that
this approximation is improved for large l by clamping the linear term to values
between 0 and 1, which is done automatically by many graphics systems.

The two-dimensional texture is defined by

RGBt2D � l � 1

0
exp � 	 l � t

�

0
τ
�
s1
�
u ��� � du � � c̃

�
s1
�
t � � � dt �

αt2D � 1 	 exp �
	 l � 1

0
τ
�
s1
�
t ��� � dt � �

(3.2)

and is modulated by colors at the vertices with the RGBA components set equal
to

�
l

�
l
 l �

l
 l �
l
 l �

l � . In practice, these colors should be scaled by the maximum
opacity value in the texture in order to avoid clamping for values l � l. This
scaling is compensated by multiplying the entries in the texture with the recip-
rocal value. The combined effect of texturing and blending with appropriate
blending coefficients (e.g., in OpenGL GL ONE for the source blend factor and
GL ONE MINUS SRC ALPHA for the destination blend factor) is

C̃ � � �
l

�
l � RGBt2D

� � 1 	 �
l

�
l � αt2D � C̃

which is our new approximation of Equation (3.1).
On the one hand, this approximation results in artifacts because of the linear

interpolation (see [65]); on the other hand, the use of two-dimensional texture
mapping enables us to utilize larger textures compared to the three-dimensional
textures described above, which results in an improved resampling of the transfer

68 CHAPTER 3. NON-UNIFORM MESHES

functions. Moreover, this technique allows us to employ graphics hardware that
supports only two-dimensional texture mapping. Another way of achieving the
latter goal was published by Röttger and Ertl in [55].

Figure 3.3b shows the synthetic example from Figure 3.3a rendered with two-
dimensional instead of three-dimensional texture mapping. The linear approx-
imation leads to slightly smaller opacities resulting in lighter colors while the
improved resampling results in sharper edges of the structures generated by the
transfer functions. An example of a two-dimensional texture computed with Equa-
tion (3.2) is depicted in Figure 3.5a.

(a) (b)

Figure 3.5 Textures for projected tetrahedra with pre-integrated classification.
The horizontal (texture) coordinate is s f , the vertical coordinate is sb. Black pix-
els in these images correspond to completely transparent texels. (a) The texture
employed for the semi-transparent volume in Figure 3.11b. (b) In this variant the
integration is stopped at the isovalues, which correspond to opaque isosurfaces.
(See also Figure C.2 on page 146 in the color plate section.)

Rendering of Isosurfaces

As mentioned in Chapter 2, the rendering of isosurfaces is only a special case of
direct volume visualization with appropriate transfer functions. For pre-integrated
volume rendering these transfer functions correspond to particularly simple pre-
integrated textures, which can be derived as follows.

In order to render the isosurface for an isovalue siso, the opacity transfer func-
tion τ

�
s � should be defined by τ

�
s � � 0 for s

�� siso and “τ
�
siso � � ∞”. Formally,

we set τ
�
s � � ξδ

�
s 	 siso � with a constant ξ and Dirac’s delta function δ(x) (see

[70]); multiple isosurfaces correspond to a sum of delta functions. As c̃
�
siso � (and

3.1. PRE-INTEGRATED CELL PROJECTION 69

c
�
siso �) is constant, we are only interested in the value of α as defined in Equa-

tion (3.1):

1 	 α � exp � 	 � l

0
τ
�
sl
�
t � � dt �

� exp � 	 � l

0
ξδ

�
sl
�
t � 	 siso � dt �

� exp � 	 � l

0
ξδ

�
s f

� t
l

�
sb 	 s f � 	 siso � dt �

� exp � 	 � l

0
ξ

�
�
�
�

l
sb 	 s f

�
�
�
� δ � t 	 l

siso 	 s f

sb 	 s f
� dt �

� exp �
	 ξ � H � siso 	 s f

sb 	 s f
� H � 1 	 siso 	 s f

sb 	 s f
� �

� exp �
	 ξ � H � siso 	 s f

sb 	 s f
� H � sb 	 siso

sb 	 s f
� �

with ξ � � ξ
�
�
�

l
sb

� s f

�
�
� and the Heaviside step function H

�
x � (see [70]). Thus, for

ξ � ∞ we obtain

α � H � siso 	 s f

sb 	 s f
� H � sb 	 siso

sb 	 s f
�

which is independent of l. The dependency on s f and sb results in a checkerboard-
like texture, which is visualized in the right-hand column of Figure 3.6. These
two-dimensional textures are in fact special cases of the three-dimensional texture
defined in Equation (3.1). An alternative derivation of this result, which is closer
to the previous work in [73], is given in [56].

The resulting texture may also be described as follows: Its α-component, i.e.,
the opacity, has to be 1 for opaque isosurfaces if either the first or the second
texture coordinate (but not both) is less than the isovalue, and 0 otherwise (see the
right-hand column of Figure 3.6). For flat shading, the RGB-components of the
textures and of the vertex colors of the triangles are constant.

Unfortunately, edges of isosurface patches within triangles (see the middle
column of Figure 3.6 for some examples) will cause rendering artifacts as there is
no mechanism which aligns them exactly to the corresponding edges in the pro-
jected tetrahedra in front or behind. Gaps can be avoided by slightly modifying
the texture, effectively ‘thickening’ the isosurface. This eliminates artifacts for
opaque isosurfaces; for partially transparent isosurfaces, however, this will visu-
ally enhance edges of the tetrahedral mesh by rendering pixels twice. In fact, these

70 CHAPTER 3. NON-UNIFORM MESHES

0.7 0.

0.4
0.9

0.3

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.3

0.3

0.7 0.

0.4
0.9

0.5

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.5

0.5

0.7 0.

0.4
0.9

0.75

(0.,0.7)

(0.4,0.4) (0.9,0.9) 0 0.5 1
0

0.5

1
0.75

0.75

Figure 3.6 Textured triangles for one part of a decomposed projected tetrahedron
(middle column) with isosurfaces for isovalues 0.75 (top row), 0.5 (middle row),
and 0.3 (bottom row). The left-hand column shows the corresponding part of the
tetrahedron slightly rotated with scalar data at the vertices. These values define the
texture coordinates included in the images of the actual projections in the middle
column. The right-hand column shows the corresponding textures including the
triangles in the space of texture coordinates.

edges help to comprehend the three-dimensional structure of flat-shaded isosur-
faces. Nonetheless, removing these artifacts for partially transparent isosurfaces
is an open problem.

For the special case of a single, semi-transparent isosurface in a tetrahedral
mesh these artifacts can be avoided by appropriate fragment tests and a second
rasterization of each tetrahedron. This is achieved by clearing the stencil buffer
when the polygons of a projected tetrahedron are rendered for the first time. Right
afterwards, the same polygons are rendered a second time and the stencil buffer
is set where the isosurface cuts the front face of the projected tetrahedron, i.e., for
s f � siso. These pixels can be selected with the help of an alpha test and an ad-
ditional texture (with texture coordinate s f) that specifies a particular alpha value
for texels with s f � siso. If only fragments that satisfy the mentioned condition
pass the alpha test, the stencil buffer is set only at those pixels. After these two
rasterizations of a tetrahedron, those pixels of the isosurface are set in the stencil
buffer that are in danger of being rasterized multiple times. In order to avoid a
second rasterization of these pixels, it is necessary to activate a stencil test in the

3.1. PRE-INTEGRATED CELL PROJECTION 71

first rendering pass of each tetrahedron that is only passed if the stencil buffer was
not set before.

For smoothly shaded isosurfaces the concepts of Westermann’s algorithm for
shaded isosurfaces in unstructured meshes [73] can be adapted; however, there are
several crucial differences. For each triangle of the decomposed projection of a
tetrahedron the steps of the algorithm presented here are:

1. Render the shaded back face triangle restricted to the projection of an iso-
surface patch as explained above.

2. Repeat the preceding step for the front face triangle.

3. Form the weighted sum of the two images.

The shading and lighting of triangles may employ standard OpenGL shading and
lighting with the normals determined by the gradient of the scalar field at the ver-
tices of the tetrahedron. (In a tetrahedral mesh with piecewise linear interpolation,
the gradient is not defined at the vertices but it may be interpolated from the gra-
dients of the incident tetrahedra for the purpose of shading and lighting.) Note
that the vertices of a back face triangle are the same as those of the corresponding
front face triangle except for one, which is the “thick” vertex in the decomposition
step of the PT algorithm.

s f sb

siso

Figure 3.7 Rendering smoothly shaded isosurfaces by shading the back and front
face triangle, and forming the weighted sum. Weights are symbolized by gray
scales and are determined by the relative distances of the front and back faces to
the isosurface given by

�
siso 	 sb � � �

s f 	 sb � and
�
siso 	 s f � � �

sb 	 s f � , respectively.

The weights differ for each pixel as they depend on the relative distances of
the isosurface to the front and back face, respectively (see Figure 3.7). For reasons
which will become clear in the next paragraph, let α denote the weight of a pixel
of the front triangle. According to Figure 3.7 the weight α is

α � siso 	 sb

s f 	 sb
for s f

� siso
� sb or s f

� siso
� sb

72 CHAPTER 3. NON-UNIFORM MESHES

with the isovalue siso; s f and sb are the scalar values at the front and back face
triangle, see Figures 3.2 and 3.7. The weight of a corresponding pixel on the
back face triangle is 1 	 α. While weights for all pixels were calculated in soft-
ware in [73], the weighted sum can also be computed completely in hardware by
appropriate texture mapping.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3

0.3

sb

sf

(a)

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1
0.3 0.5 0.75

0.3

0.5

0.75

sb

sf

(b)

Figure 3.8 (a) A two-dimensional texture used for a front face triangle; black
corresponds to opacity 1 (opaque), white to opacity 0 (transparent). It is a modu-
lation of the lower texture in Figure 3.6 with the weights α � siso

� sb
s f

� sb
and siso � 0 � 3.

(b) The correct combination of the textures from Figure 3.6 into a single texture
for multiple isosurfaces.

For the back face triangle the usual two-dimensional texture for unshaded iso-
surfaces is used, but a modified version of this texture is employed for the front
face triangle. This new texture (see Figure 3.8a for an example) is modulated
with the weights α. As the original texture contains only opacity values 0 and
1, this modulated texture in fact stores the weights α � siso

� sb
s f

� sb
for the front face

triangle. (Remember that s f and sb are the texture coordinates and that the texture
already depends on siso.) Thus, the weights α in fact specify opacities. Applying
this texture when rendering the front face triangle and blending it appropriately
onto the opaque back face triangle generates, therefore, the correct weighted sum
of both triangles. Thus, the algorithm for smoothly shaded isosurfaces can be
reformulated in two passes for each tetrahedron:

1. Render the shaded back face triangle restricted to the projection of an iso-
surface patch.

2. Blend the shaded front face triangle modulated with a texture containing the
correct weights onto the back face triangle.

3.1. PRE-INTEGRATED CELL PROJECTION 73

(a) (b)

Figure 3.9 (a) Several isosurfaces extracted from the data set shown in Figures
3.3a and 3.3b. (b) Smooth combination of (a) with Figure 3.3b. (See also Fig-
ure C.3 on page 146 in the color plate section.)

For examples of smoothly shaded isosurfaces rendered with this algorithm see
Figure 3.9a.

Special care has to be taken with vertices from the decomposition of projected
tetrahedra because they can result in artifacts similar to those induced by hanging
nodes. In order to avoid these, the color of a vertex inserted between two ver-
tices of the mesh has to be equal to the color generated by the graphics hardware
interpolating between these vertices.

Isosurfaces rendered by the proposed two-dimensional texture mapping may
be colored by setting the vertex colors to white and modulating them with colored
RGBA textures. Note that the two faces of an isosurface can be colored indepen-
dently by choosing different colors for texels with s f

� sb and s f
� sb respectively.

When rendering multiple isosurfaces, the two-dimensional textures of the in-
dividual isosurfaces have to be combined. An example of a combined texture is
sketched in Figure 3.8b, which shows the combination of the (colored) textures
from Figure 3.6. The ‘visibility ordering’ is easy to understand: For s f

� sb we
view along the gradient of the scalar field, thus isosurfaces for smaller isovalues
occlude those for greater isovalues, and vice versa for s f

� sb. A more realis-
tic example of textures for multiple, smoothly shaded isosurfaces is depicted in
Figure 3.10.

Assuming that all cells are rendered, the number of isosurfaces does not af-
fect the rendering time. In fact, the presented method shares this feature with
Westermann’s algorithm for multiple isosurfaces [74].

74 CHAPTER 3. NON-UNIFORM MESHES

(a) (b)

Figure 3.10 These two-dimensional textures of dimensions 256 � 256 were used
to render the Bluntfin data set depicted in Figure 3.11b. The horizontal (texture)
coordinate is s f , the vertical coordinate is sb. Back face triangles were textured
with the image in (a), while the texture in (b) was employed for the front face
triangles. (See also Figure C.4 on page 147 in the color plate section.)

Mixing Isosurfaces with Semi-Transparent Volumes

It was claimed that rendering mixtures of opaque polygons and volumetric data is
straightforward, e.g., in [36]. This claim, however, does not apply to cell project-
ing approaches including the PT algorithm since special attention has to be paid
to partially occluded cells.

In [82], Williams et al. suggest slicing each cell at user-specified isovalues.
The time complexity of this method, however, depends linearly on the number of
isosurfaces. As the time complexity of the algorithm discussed above does not de-
pend on the number of isosurfaces, two alternative methods of mixing isosurfaces
and semi-transparent tetrahedra are discussed next, which are more appropriate in
this context.

The algorithm for smoothly shaded isosurfaces allows us to smoothly include
semi-transparent tetrahedra by rendering them after the corresponding back face
triangle and before the front face triangle. This order ensures that the semi-
transparent volume is completely occluded where the front face triangle is opaque,
i.e., where the isosurface is in front of the volume at the front face, and that the
volume is not affected where the front face is transparent, i.e., where the isosur-
face is behind the volume at the back face. Figure 3.7 illustrates this correlation:
The relative thickness of the occluded part of the tetrahedron (white) corresponds
to the weight of the front face (left gray scale).

3.1. PRE-INTEGRATED CELL PROJECTION 75

(a) (b)

Figure 3.11 (a) Visualization of the opacity of the three-dimensional texture that
corresponds to the two-dimensional texture in Figure 3.5b. The additional dimen-
sion parameterizes the length of the viewing ray within a tetrahedral cell. The
isosurface represents an opacity value of 0.25. (b) Visualization of the Bluntfin
data set with three isosurfaces mixed with projected tetrahedra. (See also Fig-
ure C.5 on page 147 in the color plate section.)

Examples employing this method are given in Figure 3.9b, which mixes the
isosurfaces of Figure 3.9a with the projected tetrahedra of Figure 3.3b, and in
Figure 3.11b, which visualizes the NASA Bluntfin data set. The isosurfaces in
the latter figure were rendered with the textures shown in Figure 3.10, while the
semi-transparent volume was rendered with the texture in Figure 3.5a.

Although this approach avoids discontinuities, it is not completely accurate
with respect to correct ray integration. Therefore, it might be necessary to employ
a more rigorous method. For opaque isosurfaces the ray integration in Equa-
tion (3.2), respectively Equation (3.1) if three-dimensional texture mapping is
employed, has to be stopped as soon as one of the isovalues is reached, i.e.,
for sl

�
t � � siso (see Figure 3.7). By rendering the isosurfaces for each triangle

first (either in one pass for flat-shaded isosurfaces or two passes for smoothly
shaded isosurfaces), followed by the semi-transparent volume with the modified
two-dimensional or three-dimensional texture, it is possible to generate an accu-
rate image.

An example of a two-dimensional texture generated this way is given in Figure
3.5b, which corresponds to the texture in Figure 3.5a. The isosurfaces manifest
themselves in transparent vertical stripes which correspond to a scalar value s f

on the front face of a tetrahedron slightly greater than one of the isovalues. In
Figure 3.11a this technique is used to visualize the opacity of the corresponding
three-dimensional texture.

Both methods for mixing isosurfaces and semi-transparent volumes can be
generalized to partially transparent isosurfaces.

76 CHAPTER 3. NON-UNIFORM MESHES

Performance Comparison

Provided that hardware-accelerated texture mapping is available, pre-integrated
cell projection is essentially as fast as existing implementations of the PT algo-
rithm. It should be emphasized that the rendering times for the discussed methods
are not affected by the form of the transfer functions.

It is difficult to compare these extensions of the PT algorithm with “non-PT”
algorithms for direct volume rendering because another time critical step of the PT
algorithm is the sorting of the tetrahedral cells, which is not affected by the ex-
tensions presented in this section. The algorithms for the rendering of isosurfaces
depend on the correct sorting and decomposition of the tetrahedral cells while
most of the previously published algorithms for the extraction and rendering of
isosurfaces do not require any sorting or decomposition of tetrahedra. On the
other hand, the rendering times for pre-integrated cell projection are independent
of the number of isosurfaces (see Table 3.1).

Moreover, the presented rendering algorithms greatly benefit from a combina-
tion with projected volume cells because the sorting and decomposition of tetra-
hedra can be reused in this scenario. As the rendering includes the “extraction”
and “triangulation” of the isosurfaces, the rendering time (without sorting and
decomposition of tetrahedra) should be compared to the sum of the extraction,
triangulation, and rendering times of other algorithms. Additional efforts required
by other algorithms for partially transparent isosurfaces and mixing with volume
cells should also be considered in a fair comparison.

The rendering times in Table 3.1 were obtained on an Octane MXE with an
MIPS R10K 250 MHz CPU. The isosurfaces were extracted from the NASA
Bluntfin data set, which was converted into 187,395 tetrahedra. An image with

Table 3.1 Rendering times (including “extraction” and “triangulation”) for isosur-
faces from the NASA Bluntfin data set. The number of cells refers to the number
of tetrahedra intersected by at least one isosurface. Timings for the sorting and
decomposition of tetrahedra are not included as these steps are already part of the
original PT algorithm.

rendering times (in seconds)

number of number flat-shaded smoothly shaded
isosurfaces of cells

1 14,729 0.09 0.22
2 25,361 0.20 0.41
10 25,361 0.20 0.41

3.2. HARDWARE-ASSISTED RESAMPLING 77

three isosurfaces is depicted in Figure 3.11b. Obviously, the rendering times
for flat-shaded isosurfaces depend on the number of intersected tetrahedra (no
double-counting) instead of the number of isosurfaces. Smoothly shaded isosur-
faces require about twice as much time because the back and front faces have to
be rendered separately. For a single, smoothly shaded isosurface the rendering
time is close to the 0.2 seconds reported by Westermann in [73].

3.2 Hardware-Assisted Resampling

As mentioned above, graphics hardware usually does not support the rendering
of tetrahedral meshes. In contrast, volume rendering of uniform meshes is well
supported by means of three-dimensional texture mapping; thus, non-uniform
meshes, in particular tetrahedral meshes, are often resampled to uniform meshes
in order to visualize them. As this resampling requires a large number of inter-
polations, several hardware-assisted algorithms have been suggested, e.g., [68] or
[71]. As the algorithm published by Westermann in [71] is based on the rendering
technique for smoothly shaded isosurfaces described in Section 3.1, it is briefly
sketched in this section.

For the purpose of resampling a tetrahedral mesh to a uniform mesh, the scalar
field defined by the tetrahedral mesh has to be interpolated on a stack of slices
corresponding to the uniform mesh. Most hardware-assisted approaches to this
problem compute the values for each slice separately by assembling the contri-
butions of all intersected tetrahedra in the frame buffer. Note that this setting
corresponds to slices that are orthogonal to the viewing direction. The problem of
determining the set of intersected tetrahedra will not be addressed here; thus, the
remaining problem is to interpolate the scalar values on a patch of a slice within
an intersected tetrahedron.

As indicated by Figure 3.12, a slice that is orthogonal to the viewing direction
is geometrically equivalent to an isosurface of depth in an orthogonal projection.
Thus, the projection of a patch of a slice within a tetrahedron can be rendered by
the same technique that was employed to render patches of flat-shaded isosurfaces
in Section 3.1 if the scalar data at vertices are replaced by the depths of these
vertices and the isovalue (siso in Figure 3.7) is identified with the depth of the
slice dslice (see Figure 3.7). Analogously, the scalar values s f on a front face and
sb on a back face are identified with the depths d f at a front face and db at a back
face. Thereby, uniformly colored patches of the slice can be efficiently rendered.
In order to color these patches with the interpolated scalar data, the rendering
technique for smoothly shaded isosurfaces may be employed as described next.

The problem of rendering smoothly shaded isosurfaces in Section 3.1 is to
linearly interpolate between two different shadings, i.e., the shading on the front

78 CHAPTER 3. NON-UNIFORM MESHES

d f db

dslice depth

slice plane

Figure 3.12 A slice orthogonal to the viewing direction through a tetrahedron.

face of a projected tetrahedron and on its back face. Similarly, the scalar value at
a point within a tetrahedron can be obtained by a linear interpolation between the
scalar value on the front face and the scalar value on the back face. This idea is
discussed in more detail in Section 2.7.3 and depicted in Figure 2.11c. While the
last linear interpolation along a line may be performed with the help of hardware-
accelerated blending, the linear interpolations of the scalar data on the front and
back faces may be accomplished by setting the colors of all vertices to their scalar
values and rendering the faces without lighting.

Thus, a patch of a slice within a tetrahedron that is colored with the interpo-
lated scalar data can be rendered by these three steps:

1. Render the back face triangle restricted to the projection of a slice patch as
explained above.

2. Repeat the preceding step for the front face triangle.

3. Form the weighted sum of the two images.

According to Figure 3.12 (and in analogy with the discussion in Section 3.1), the
weight of the scalar value at the front face is α � �

db 	 dslice � � �
db 	 d f � and the

weight for the back face is 1 	 α � �
dslice 	 d f � � �

db 	 d f � . Note that the depth
may be transformed by any linear function f

�
d � � c0

�
c1 d without affecting α

because the constants c0 cancel due to the differences and the constants c1 cancel
due to the division. In particular, all depths may be mapped to the range 0 to 1,
which is appropriate for texture coordinates, by applying the function

f
�
d �
� d 	 dslice

2dmax

� 1
2

where dmax is the maximum thickness of the tetrahedra.

3.3. HARDWARE-ASSISTED RAY CASTING 79

As discussed in Section 3.1, the algorithm may be implemented in two ren-
dering passes per tetrahedron. In [71], Westermann describes a completely elab-
orated implementation of these ideas and gives further details about employing
programmable pixel shading to implement them in one rendering pass.

3.3 Hardware-Assisted Ray Casting

There are, of course, more approaches to hardware-assisted volume rendering of
non-uniform meshes than cell projection and resampling. For example, Wester-
mann and Ertl suggested a hardware-assisted technique for ray casting in tetrahe-
dral meshes in [72]. In this section, a different hardware-assisted implementation
of the ray casting algorithm is sketched. It is closer to ray casting in unstructured
meshes as proposed by Garrity in [22] and employs programmable pixel shading
to perform basically all computations in graphics hardware. Thereby it avoids any
significant data transfer between the graphics subsystem and the main memory.
This approach was not implemented yet, and it is not likely to perform as well
as the previously described methods on today’s graphics hardware. However, it
has the potential of overcoming bandwith limitations on future graphics hardware.
Another disadvantage of this approach is the restriction to convex meshes. How-
ever, a feasible extension for non-convex meshes is discussed in Section 4.1. The
algorithm was first described in a very similar form in [33]. A related approach to
ray tracing was published independently by Purcell et al. in [53].

pixels in
view plane

tetrahedral mesh
(a)

e
t

Λ2 r Λ1 r
Λ0 r

vt,1

vt,2

vt,0

nt,0

nt,2

nt,1

(b)

Figure 3.13 Hardware-assisted ray casting: (a) For each pixel one viewing ray
is traced, which stops at all intersected cell boundaries. The initial intersections
are marked with dots (�), further intersections with circles (�), squares (�), and
diamonds (�). (b) Intersections of a viewing ray with the boundary of a cell.

The basic principle of a ray casting implementation based on programmable
pixel shading is to trace all viewing rays from front to back at the same time; see
Figure 3.13a. Each of these viewing rays corresponds to one pixel of the frame

80 CHAPTER 3. NON-UNIFORM MESHES

buffer. In an initialization step, the first intersection of each ray with the mesh
is computed. After this, the rays are propagated one cell in each of the following
passes. Note that one of these passes might require several actual rendering passes
because of limitations of the pixel shading hardware. Several two-dimensional
RGBA textures of the dimensions of the frame buffer are necessary to store the
intermediate information on intersections of rays with cells of the mesh. Each
texel of these textures corresponds to exactly one pixel of the frame buffer and,
therefore, to exactly one of the viewing rays. Thus, the algorithm will work as
follows:

1. Clear the frame buffer and initialize the textures that contain the information
on intersections. The initial values are determined by the first intersection
of the viewing ray associated with each texel and the cells of the mesh.

2. Update each of the mentioned textures by rendering one screen-filling rect-
angle into the texture memory. In the rasterization of each texel, compute
the next intersection point of the ray corresponding to the texel with the
boundary of a cell. Duplicate the previous intersection point if there are no
further intersections.

3. Render another screen-filling rectangle into the frame buffer. This time,
compute the volume rendering integral between the previous intersection
point and the point computed in step 2 and blend the resulting color into the
frame buffer.

4. Continue with step 2 unless a specified time limit (or a maximum number
of iterations) has been reached.

Step 1 may be implemented using a rasterization of the visible boundary faces
of the mesh. As there are usually far less boundary faces than cells in a mesh, this
step is not time critical and may also be performed in software.

The computation of the volume rendering integral in step 3 may be performed
as discussed for pre-integrated classification in Section 2.5. However, the blending
has to be adapted from back-to-front to front-to-back blending. In the notation of
Chapter 2 the accumulated associated color C̃ �i and opacity α �i after i passes with
front-to-back blending is given by

C̃ �i � C̃ �i � 1
� �

1 	 α �i � 1 � C̃i and α �i � α �i � 1
� �

1 	 α �i � 1 � αi

where C̃i and αi denote the associated color and the opacity of the segment of the
volume rendering integral in the i-th pass.

The stop condition in step 4 guarantees an almost constant frame rate and is
easy to evaluate; however, the algorithm might not render the whole mesh. In

3.3. HARDWARE-ASSISTED RAY CASTING 81

t

vt,1

vt,2

vt,0

nt,0

nt,2 nt,1

(a)

t

at,0

at,2
at,1

(b)

t

ft,0

ft,2 ft,1

(c)

Figure 3.14 Nomenclature in this section: (a) The vertex vt � i is in and the face
normal nt � i is perpendicular to the i-th face of cell t. For tetrahedral cells i is 0, 1,
2, or 3. (b) The neighbor at � i of cell t shares the i-th face. (c) Face indices ft � i of
t’s neighbors: The i-th face of t corresponds to the ft � i-th face of t’s neighbor at � i.
order to guarantee the rendering of the complete mesh, one has to test whether
any new intersection points have been computed in step 2.

In order to describe the computations of step 2, a few notations have to be
introduced; see also Figure 3.14. Tetrahedral cells of a mesh consisting of n cells
will be identified by an integer index from 0 to n 	 1; often this index will be called
t. Each tetrahedron t has four faces, the normal vectors of which are denoted by
nt � i, where i specifies the face and is 0, 1, 2, or 3. Note that normal vectors will
always point to the outside of their cell. Each tetrahedron t also defines four
vertices vt � i; see Figure 3.14a. In contrast to the standard convention, vertex vt � i is
part of the i-th face. As indicated in Figure 3.14b, the neighbor of a tetrahedron
t that shares the i-th face is denoted by at � i. The index of the face of at � i that
corresponds to the i-th face of t is denoted by ft � i; see Figure 3.14c.

As explained in Chapter 2, the scalar field value s
�
x � at a point x usually is

linearly interpolated from the scalar values at the vertices of the mesh; thus, s
�
x �

within one tetrahedral cell t is a linear function and can be computed as

st
�
x � � gt

�

�
x 	 x0 � �

st
�
x0 �
� gt

� x
� � 	 gt

� x0
�

st
�
x0 � �

where gt is the gradient of st
�
x � and x0 is any point, e.g., one of the vertices.

Therefore, st
�
x � may be specified by the vector gt and the scalar ĝt � 	 gt

� x0
�

st
�
x0 � .
As indicated in Figure 3.13b, e denotes the eye point and the direction of a

viewing ray is specified by a normalized vector r. Any point x on a viewing ray
will be identified by the factor λ such that x � e

� λr.
All data have to be stored in textures in order to access them in a pixel shading

program. Table 3.2 summarizes one possibility to organize these textures. Note

82 CHAPTER 3. NON-UNIFORM MESHES

Table 3.2 Summary of the textures described in the main text.

texture coordinates texture data

data in texture u v w r g b α

vertices t i vt � i —
face normals t i nt � i —
neighbor data t i at � i ft � i —
st
�
x � t — gt ĝt

ray directions raster position — r for this ray —
entered cells raster position — t i —
intersection points raster position — — — λ s

�
e

� λr �
that the cell indices are encoded in two texture coordinates and two color com-
ponents as their range might exceed the range of a single texture coordinate or
color component. Apart from the five constant textures for vertices, face normals,
neighbor data, linear functions, and normalized directions of the viewing rays as-
sociated with the pixels of the frame buffer, there are two textures specifying the
intersections of viewing rays with the boundaries of cells: One texture specifies
the most recently entered cell for each viewing ray indexed by the raster position
of the corresponding pixel, and similarly another texture specifies the position of
and the scalar value at the last intersection point. This information is necessary
in order to compute the segment of the volume rendering integral between two
successive intersection points in step 3 of the algorithm. In fact, the latter texture
has to be duplicated as the algorithm needs to access the data of the new and the
previous intersection point and because it is usually impossible to read and write
to a texture at the same time.

In step 2 of the algorithm the next intersection of each viewing ray has to be
determined; thus, the two textures specifying the entered cells and the intersection
points have to be recomputed. The next intersection point is the exit point of the
cell entered at the previous intersection point. This point may be determined by
computing all intersection points of the ray with the four faces of the entered cell
and choosing the intersection point that is closest to the eye point but not on a face
that is visible from the eye point.

With the eye point e and the normalized direction r of the viewing ray (see
Figure 3.13b), the four intersection points with the faces of cell t are e

� λir with
0
�

i � 4 and

λi � �
vt � i 	 e � � nt � i

r � nt � i �

3.3. HARDWARE-ASSISTED RAY CASTING 83

This equation is easily implemented with pixel shading operations as three-di-
mensional vector operations are usually well supported. A face is visible if the
denominator in the previous equation is negative; thus, this test comes almost for
free. If λi is set to an appropriately large number for all visible faces, min

�
λi

�
0
�

i � 4 � will identify the exit point. Determining the minimum of four numbers is
usually less well supported by pixel shading hardware, but it may be implemented
with the help of a sequence of conditional per-pixel operations. (An alternative
solution based on texture mapping is discussed in [69].)

Once the minimum λi and its face i are identified, the intersection point x
may be computed as x � e

� λir and the value of the scalar field at that point
is s

�
x � � gt

� x
�

ĝt . For each intersection point, λi and s
�
x � is stored as this

information is required in step 3 of the algorithm to compute the volume rendering
integral between two successive intersection points.

The cell entered at x is given by at � i and the new face index in this cell is ft � i.
The values of at � i and ft � i will also indicate whether x is on the boundary of the
mesh as there is no neighbor in this case. Once a viewing ray leaves the mesh,
the intersection point should be kept constant because constant intersection points
will result in segments of length zero, which will not contribute to the volume
rendering integral. However, this procedure is only useful for convex meshes as
there may be re-entries if the mesh is non-convex. This is one of the problems
associated with non-convex meshes that is addressed in Section 4.1.

As each pass of the algorithm requires the update of two textures and one up-
date of the frame buffer, there are at least three rendering passes per iteration of
the algorithm unless a pixel shading program may have multiple outputs (see for
example [29]). Further rendering passes and additional textures for intermediate
results may be necessary because of restrictions on the maximum number of op-
erations of a pixel shading program. Another disadvantage of this method is the
need to rasterize texels and pixels although their viewing rays have already left
the mesh. However, it might be possible to use early depth tests, stencil tests, or
pixel “kill” operations (see for example [29]) in order to minimize the associated
performance penalty.

The main advantage of this approach is that the complete mesh data is stored
in the texture memory. Therefore, there is almost no data transfer between the
main memory and the graphics subsystem provided that there is enough texture
memory. Although this algorithm has not been implemented yet, there is a first
spin-off product, which is the hardware-based, view-independent cell projection
published by Weiler et al. in [69].

84 CHAPTER 3. NON-UNIFORM MESHES

Miss Peters: Mary Sue.
Jennifer: Yeah. What’s outside of Pleasantville?

Miss Peters: I don’t understand ...
Jennifer: Outside of Pleasantville ...

What’s at the end of Main Street?
Miss Peters: Oh, Mary Sue. You should know the answer to that.

The end of Main Street is just the beginning again.

Dialog from the movie Pleasantville

Chapter 4

Non-Convex and Cyclic Meshes

If the boundary of an unstructured mesh is non-convex, additional algorithmic
efforts are necessary compared to the case of a convex boundary. This chapter
discusses a general approach to the problems caused by non-convex meshes (Sec-
tion 4.1) and applies it to edge collapses in non-convex meshes (Section 4.2) and
the visibility sorting of cells in non-convex meshes (Section 4.3).

Another possibly unpleasant feature of the geometry of general unstructured
meshes are visibility cycles as defined in Section 4.3. Since a general solution of
this problem (e.g., by splitting enough cells in order to break all cycles) is hard to
achieve, only specific solutions to the two most important problems are discussed
here, which are cell sorting (Section 4.3) and cell projection (Section 4.4).

Similarly to Chapter 3, the discussion in this chapter is restricted to tetrahedral
meshes. Most of the results of this chapter have been published in different forms
in [31] and [35].

4.1 Convexification of Non-Convex Meshes

In [80], Williams proposed to convert non-convex meshes to convex meshes by
triangulating (i.e., tetrahedralizing) all voids and cavities and marking the cells
generated by this triangulation as imaginary. (Virtual is today’s more fashionable
word for the same idea.) This conversion is usually a preprocessing step, which is
called a convexification of a non-convex mesh in this work.

85

86 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

(a) (b) (c)

Figure 4.1 A step-by-step convexification of a triangular, two-dimensional mesh.
(a) The convex hull (thick line), (b) the non-convex polygon (thick line) between
the convex hull and the boundary of the mesh, and (c) the mesh together with
imaginary cells (white) generated by the triangulation of the non-convex polygon.

Figures 4.1 and 4.2 summarize the basic steps of the convexification of a tri-
angular and a tetrahedral mesh, respectively. Firstly, the convex hull of the mesh
is computed; then all voids and cavities are identified and triangulated; finally, the
new imaginary cells are attached to the existing mesh. In two dimensions, these
steps are straightforward and the number of imaginary triangles is linear in the
number of vertices on the boundary.

However, the problem of tetrahedralizing the space between the convex hull
and the mesh’s boundary is considerably more difficult in three dimensions. More-

(a) (b) (c)

Figure 4.2 (Intermediate) results of the convexification of a tetrahedral mesh (see
also Figure 4.7a): (a) the convex hull of the mesh, (b) the non-convex polyhedron
between the convex hull and the boundary of the mesh, which has to be tetrahe-
dralized, and (c) the original mesh (a trefoil knot) together with the edges of the
imaginary tetrahedra generated by the tetrahedralization.

4.1. CONVEXIFICATION OF NON-CONVEX MESHES 87

(a) (b) (c)

Figure 4.3 (a) Boundary of the convexified Bluntfin data set. The tetrahedralized
cavity is at the bottom of the original mesh. (b) Boundary of the Tapered Cylinder
data set. The thin cavity is in the center of the cylinder. (c) Boundary of the
convexified HeatSink data set. The cubic cavity in front has been tetrahedralized
with 2,484 imaginary tetrahedra.

over, the number of imaginary tetrahedra is quadratic in the number of vertices of
the mesh’s boundary in the worst case. Although a general algorithm for this
problem exists [9], its implementation is beyond the scope of this work. Thus,
only a strongly simplified variant of this algorithm and very specific solutions are
employed in this work to achieve the convexifications depicted in Figures 4.2 and
4.3. Figure 4.3a shows the boundary of the convexified Bluntfin data set. This
convexification added 3,534 imaginary tetrahedra to the 187,318 tetrahedra of the
tetrahedralized Bluntfin data set (without degenerate tetrahedra). Analogously,
Figure 4.3b depicts the Tapered Cylinder data set with 624,960 actual and 5,766
imaginary tetrahedra. The HeatSink data set in Figure 4.3c consists of 121,668
actual and 2,484 imaginary tetrahedra.

The convexification of a non-convex mesh allows us to apply slightly modified
algorithms for convex meshes to the convexified versions of non-convex meshes.
Thus, convexification may be called a meta-algorithm because it acts as a tool for
the generation of algorithms; for example, Williams proposed in [80] to employ
the convexification step for cell sorting of non-convex meshes, as will be discussed
in Section 4.3. Moreover, Williams discussed the spatial point location problem,
which will not be described in this work. Instead, Section 4.2.2 shows how to
overcome problems of edge collapses introduced by non-convexities (including
non-trivial topologies of the boundary) with the help of the convexification step.
Another algorithm that could benefit from this preprocessing step is the ray casting
algorithm discussed in Section 3.3, which is restricted to convex meshes since
it does not compute re-entries of rays that have exited the mesh. With a small
extension for imaginary cells, the algorithm could be applied to any convexified
non-convex mesh.

88 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

4.2 Edge Collapses in Non-Convex Meshes

As proposed in [35], edge collapses in non-convex meshes may be performed by
convexifying a non-convex mesh and performing the edge collapses in the convex-
ified mesh. In order to set the stage for the discussion of these edge collapses in
Section 4.2.2, the well-known case of edge collapses in convex meshes is briefly
summarized first.

4.2.1 Edge Collapses in Convex Meshes

In the following, edge collapses in fair tetrahedral meshes are discussed, i.e., each
face of a tetrahedral cell is either part of the boundary of the mesh or shared
by (at most) two cells. Note that the term edge collapse in computer graphics
corresponds to the term edge contraction in computational geometry. In this work,
the former is used in order to be consistent with the majority of the references.

Intersections of cells are not allowed; in fact, avoiding them is the primary
concern. As edge collapses in triangular meshes in two dimensions are very sim-
ilar to the three-dimensional case of tetrahedral meshes, most concepts will be
illustrated with triangular meshes.

It is useful for the discussion in Section 4.2.2 to define some particular terms.
A tetrahedron is called a vertex neighbor of a vertex if the vertex is shared by the
tetrahedron. A tetrahedron is an edge neighbor of an edge if the edge is shared,
and a vertex neighbor of an edge if one of the vertices of the edge is shared.
Finally, a tetrahedron is a face neighbor of another tetrahedron if the tetrahedra
share one face. The definitions of vertex and edge neighbors can also be applied
to triangles in triangular meshes.

An edge collapse (see Figure 4.4 for a two-dimensional example) is performed
by removing all edge neighbors of the collapsing edge and by joining the two
vertices of the collapsing edge in a new vertex. Figure 4.4 also indicates the
inverse operation, which is called a vertex split.

edge collapse

vertex split

Figure 4.4 The collapse (contraction) of an edge (thick line) to a vertex (dot) and
the inverse vertex split.

4.2. EDGE COLLAPSES IN NON-CONVEX MESHES 89

Edge collapses are one of the most powerful tools to simplify triangular or
tetrahedral meshes. They can be employed to remove vertices or edges [64] and
also to remove triangles or tetrahedra by successive edge collapses [11, 67]. More-
over, a sequence of edge collapses can be applied in order to produce hierarchical
representations of triangular and tetrahedral meshes as demonstrated in many pub-
lications, for example [11, 52, 64, 67].

As illustrated in Figure 4.5, an edge collapse can cause an intersection of cells
in a triangular, convex mesh. In order to avoid such self-intersections of a mesh,
edge collapses are tested before they are performed [11, 64, 67].

In convex meshes, i.e., meshes the boundary of which are convex polytopes,
the test for intersections is particularly simple because any intersection of cells
is accompanied by an inversion of at least one cell, i.e., a sign flip of the signed
volume of a cell. (The inverted cell is marked gray in Figure 4.5.) Therefore, it is
sufficient to test all vertex neighbors of a collapsing edge for inversions in order to
avoid self-intersections. This test is local as only vertex neighbors are involved.

edge

collapse

Figure 4.5 An edge collapse that causes several intersections of cells and one
inversion of a cell (dark gray).

4.2.2 Edge Collapses in Convexified Meshes

In contrast to edge collapses in convex meshes, there is no local test for intersec-
tions of cells caused by edge collapses in non-convex meshes. More precisely
spoken, if a collapsing edge in a non-convex mesh has vertex neighbors that are
cells at the boundary (i.e., one of the faces of the cell is part of the boundary of
the mesh), then the edge collapse can cause self-intersections of the mesh without
causing an inversion of a cell as demonstrated in Figures 4.6 and 4.7.

A naive procedure to avoid such intersections is to test the vertex neighbors
of the collapsing edge for intersections with all boundary cells of the mesh. As
the worst-case time complexity of this global test depends linearly on the number
of cells of the whole mesh, it is usually too expensive to be performed without
additional auxiliary data structures. A more elaborated implementation of this test

90 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

edge

collapse

Figure 4.6 An edge collapse that causes an intersection of two cells without
causing an inversion of any cell.

(a) (b)

Figure 4.7 (a) A tetrahedral mesh with the shape of a trefoil knot. (b) The same
mesh after one particular edge collapse.

is discussed in [11] and [64] while the system described in [67] tries to preserve
the boundary of the tetrahedral mesh.

However, performance issues are not the only problem of edge collapses in
non-convex meshes. Additional problems occur in disconnected meshes as edge
collapses are obviously not able to join clusters of disconnected meshes in order
to simplify them. More generally spoken, it is desirable to modify the topology of
the mesh’s boundary in a controlled way when performing edge collapses.

In order to overcome these problems of non-convex meshes, a convexified
version of the same mesh (as described in Section 4.1) may be employed. The
remainder of this section will present the details of this approach.

Geometric Tests

As mentioned previously, edge collapses in non-convex meshes can cause inter-
sections of cells without causing an inversion of any cell. In convexified meshes,
however, such edge collapses will always cause an inversion of at least one imag-
inary cell as shown in Figure 4.8 for the same edge collapse as in Figure 4.6 in a
convexified version of the same triangular mesh.

4.2. EDGE COLLAPSES IN NON-CONVEX MESHES 91

edge

collapse

Figure 4.8 The edge collapse of Figure 4.6 in the convexified mesh of Figure 4.1
causes an inversion of an imaginary cell (dark gray). (Compare also with Fig-
ure 4.5.)

Therefore, convexified meshes allow us to test for self-intersections of cells by
simply testing all vertex neighbors (including imaginary cells) of the collapsing
edge for sign flips of the signed cell volume, which is a local, geometric test as
in the case of convex meshes. Thus, the total number of new imaginary cells
generated by the convexification is not relevant for the efficiency of this test.

An example in three dimensions is depicted in Figure 4.9a. The tetrahedral
mesh from Figure 4.7a was simplified by a series of edge collapses. The employed
geometric tests for cell inversions guarantee that there are no self-intersections and
hamper further edge collapses. Note that more edge collapses are possible if the
new vertex is not positioned at the center of the collapsed edge.

(a) (b)

Figure 4.9 (a) The result of a simplification of the convexified mesh depicted in
Figure 4.2 without topological tests. (b) Same as (a) with additional topological
tests.

92 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

Preservation of the Convex Hull

Not only are edge collapses in non-convex meshes more complicated than in con-
vex meshes, they can also transform a convex mesh into a non-convex mesh.

An example is depicted in Figure 4.10, which also presents a suitable solu-
tion: Instead of recomputing the convex hull (a global operation if implemented
naively), new imaginary cells are inserted between the new vertex and the convex
hull in order to preserve the original convex hull. (The effect can also be found at
the bottom of Figure 4.9a.)

This is an efficient, local operation. However, it will also insert some new
edges; therefore, a simplification process might run into an endless loop by col-
lapsing edges that are instantly reconstructed by the insertion of imaginary cells.
In order to avoid this problem, edge collapses should be avoided if the following
three conditions are met: All edge neighbors of the collapsing edge are imaginary,
one vertex is part of the boundary of the mesh, and all vertex neighbors of this ver-
tex are imaginary. (For an example see the edge between the new imaginary cells
in the right-hand side of Figure 4.10.)

edge

collapse

Figure 4.10 An edge collapse that could generate a non-convexity. Two new
imaginary cells are inserted in order to preserve the original convex hull.

Incomplete Topology Preservation

Edge collapses in convexified meshes are considerably more powerful than edge
collapses in the original meshes. For example, disconnected meshes can be joined
in order to be simplified, tunnels in the boundary of a mesh can be closed, bridges
between meshes can be broken, etc. In Figure 4.9a, a new connection between
originally disconnected parts of the mesh may be found in the top-right corner
and a disconnection of cells at the bottom.

However, not all of these features are always welcome; instead, it is more
appropriate to have full control over the modifications of the topology of the
mesh’s boundary. Here, two very simple tests for edge collapses are presented
that are sufficient to avoid topological changes of the mesh. The tests guarantee

4.2. EDGE COLLAPSES IN NON-CONVEX MESHES 93

the preservation of a certain edge connectivity but do not avoid all possible topo-
logical changes. Both tests involve only vertex neighbors of the collapsing edge.
Before presenting these topological tests, some basic terms have to be defined:

Def.: The type of a cell is either imaginary or non-imaginary.

Def.: A cell T1 is connected to a cell T2 of the same type if the cells share a vertex
(direct connection), or if T1 is connected to a third cell T3 of the same type
that is connected to T2 (indirect connection).

Def.: Two cells are disconnected if they are not connected.

Figure 4.11 shows an example of an edge collapse that establishes a new con-
nection between two non-imaginary cells. In general, the collapse of an edge e
between two vertices v1 and v2 can connect two previously disconnected cells if
all of the following three conditions are met: All of the edge neighbors of e are of
the same type t; at least one of the vertex neighbors of v1 is not of type t; and at
least one of the vertex neighbors of v2 is not of type t. This is a necessary condi-
tion; therefore, it is sufficient to avoid edge collapses that fulfill it in order to avoid
new connections between cells. The test is the same for triangular and tetrahedral
meshes.

edge

collapse

Figure 4.11 An edge collapse that connects two non-imaginary cells (gray).

edge

collapse

Figure 4.12 An edge collapse that disconnects two non-imaginary cells (gray).

94 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

Edge collapses are also able to disconnect cells; an example is depicted in
Figure 4.12. In order to formulate a test for disconnecting edge collapses, one
more definition is required:

Def.: An edge neighbor T of type t of an edge e is isolated if none of the faces of
T that do not share e are shared by a face neighbor of T of type t.

This definition is needed for the statement that the collapse of an edge e can dis-
connect two previously connected cells if at least one of the edge neighbors of e
is isolated. This is again a necessary condition, which works for triangular and
tetrahedral meshes. (Note that the faces of a triangular cell are its edges.)

These two topological tests allow us to avoid new connections and/or discon-
nections simply by avoiding edge collapses that fulfill the conditions stated above.
An example in three dimensions is presented in Figure 4.9b: Topological tests in
a simplification of the convexified mesh of Figure 4.2 guarantee the preservation
of edge connectivity; therefore, the simplification process is halted earlier than
without these tests. Further simplification steps are possible with more general
edge collapses.

Complete Topology Preservation

It is possible to extend the discussed concept of edge connectivity to faces of cells
by defining a corresponding face connectivity:

Def.: A cell T1 is face connected to a cell T2 of the same type if the cells share a
face (direct face connection), or if T1 is face connected to a third cell T3 of
the same type that is face connected to T2 (indirect face connection).

Def.: Two cells are face disconnected if they are not face connected.

Def.: An edge neighbor T of type t of an edge e is actively isolated if all of the
faces of T that do not share e are shared by face neighbors of T that are not
of type t.

The collapse of an edge e can face connect previously face disconnected cells if
at least one of the edge neighbors of e is actively isolated.

It is necessary to test all edge neighbors of the collapsing edge for face discon-
nections. This is a sufficient test because face disconnections of cells that are not
edge neighbors of the collapsing edge imply the existence of a face disconnection
between edge neighbors of the collapsing edge.

This is again a simple, local test, which is easily implemented. However, even
the combined tests for edge and face connectivity do not preserve the topology
completely. Fortunately, a rigorous solution to this problem has been published
by Dey et al. in [16]. In fact, the tests presented here turn out to be special cases
of the Link Conditions for 3-complexes. (See Theorem C in [16].)

4.3. CELL SORTING FOR NON-CONVEX AND CYCLIC MESHES 95

4.3 Cell Sorting for Non-Convex and Cyclic Meshes

Direct volume rendering based on cell projection as presented in Section 3.1 re-
quires a visibility ordering of the cells of a mesh in order to composite the projec-
tions of cells correctly. A visibility ordering (or depth ordering) of a set of cells is
an ordering of the cells such that a cell b precedes another cell a in the ordering if
a obstructs b. (This defines a back-to-front ordering; reversing the ordering will
result in a front-to-back ordering.) While the visibility ordering is trivial for cer-
tain meshes (e.g., rectilinear meshes), the ordering for unstructured or curvilinear
meshes has to be computed explicitly. The computation of a visibility ordering
is crucial for interactive volume visualization as it has to be performed for each
viewpoint separately. Thus, several algorithms have been proposed that exploit
particular properties of meshes (e.g., convexity or the Delaunay property) in order
to improve the performance of the visibility sorting. An overview of some of these
algorithms is given in Section 4.3.1.

Unfortunately, the price of exploiting certain properties of meshes is the re-
striction to the corresponding classes of meshes. The goal of the methods pro-
posed in Sections 4.3.2 and 4.4, which were first published in [31], is to overcome
one particular constraint, namely the acyclicity of tetrahedral meshes and meshes
with convex polyhedral cells in general. Acyclic meshes are characterized by the
absence of visibility cycles for all viewpoints. (Figures 4.17 and 4.21 show exam-
ples of visibility cycles formed by polygons and tetrahedra, respectively.)

While image-order algorithms (e.g., ray casting) are usually not affected by
visibility cycles as they calculate the cells’ visibility ordering for each viewing
ray separately, most algorithms based on hardware-assisted cell projection cannot
sort visibility cycles — simply because there is no visibility ordering of a visi-
bility cycle. One possible approach to this problem is to split cells of a cyclic
mesh appropriately in order to transform it into an acyclic mesh. However, the re-
sulting additional cells will decelerate the visibility sorting. Moreover, numerical
instabilities might still generate visibility cycles.

The solution proposed here is twofold: Firstly, the visibility sorting suggested
by Williams in [80] and described in Section 4.3.1 is extended in order to compute
and sort visibility cycles. This is achieved by computing visibility cycles with a
standard graph algorithm and gathering all cells of each cycle in one “cell cluster”
for each cycle. This allows us to find a visibility ordering of the combined set of
single cells that are not part of a cycle and of cell clusters resulting from visibility
cycles. This sorting algorithm is described in Section 4.3.2. While Sections 4.3.1
and 4.3.2 are restricted to convex meshes, extensions for non-convex meshes are
discussed in Section 4.3.3.

Of course, sorting cyclic meshes is only one part of a solution, which is incom-
plete without a possibility to render cyclic cell clusters. Therefore, Section 4.4

96 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

presents an enhanced variant of an algorithm for resolving cyclic occlusions of
polygons published by Snyder and Lengyel in [63], which allows us to render vis-
ibility cycles without splitting cells. However, the rendering time for each cluster
is quadratic in the number of its cells.

4.3.1 Cell Sorting for Convex, Acyclic Meshes

Remarkably, the two most important approaches to the computation of visibility
orderings of unstructured meshes are both based on results of Edelsbrunner [17]
and published by Max et al. in [44]. The first method is to sort the cells of a
tetrahedral mesh with respect to the tangential distance from the viewpoint to the
circumscribing sphere of each cell. The resultant visibility orderings are exact for
Delaunay meshes; however, they may be inexact if the Delaunay property does not
apply. Note that the visibility ordering has to be inexact for a mesh with visibility
cycles as there is no ordering of the cells of a visibility cycle. Nonetheless, vari-
ants of this ordering algorithm are often employed (see for example [12, 27, 83]),
in particular because of the algorithm’s high performance. Unfortunately, this al-
gorithm appears to be inappropriate for the purpose of computing (and rendering)
visibility cycles.

In [44], Max et al. also presented a second visibility sorting algorithm for
convex, acyclic meshes, i.e., meshes with a convex boundary but without visibility
cycles. This algorithm was published independently by Williams in [80], who
named it MPVO (Meshed Polyhedra Visibility Ordering).

Williams defines three phases of the MPVO algorithm: Phase I is a prepro-
cessing step, i.e., the computations are independent of the viewpoint. Thus, the
results can be reused for different viewpoints. In particular, coefficients of the
plane equations for all faces of all cells are calculated in this phase. Moreover,
most of the data structures required in the following phases are constructed and
initialized.

Phase II is a loop over all faces that are shared by two cells. For each face
the behind relation “ � ” (a � b if a is behind b, i.e., b obstructs a) between the
two cells is calculated by evaluating the plane equation of the face for the given
viewpoint. (This assumes a perspective projection; see [80] for the calculation
of the behind relation for orthographic projections.) From these behind relations
a directed graph is built, where each cell is represented by a node and each face
shared by two cells is represented by an edge between two nodes. The directions
of the edges of this graph correspond to the behind relation between the corre-
sponding cells, i.e., the edge is directed from node a to b if a � b.

An example in two dimensions is sketched in Figure 4.13. The acyclic tri-
angular mesh consists of eight labeled cells and is viewed from a point at the
top of the figure. Figure 4.13a depicts the behind relation for each shared face

4.3. CELL SORTING FOR NON-CONVEX AND CYCLIC MESHES 97

1
2

3 4

56

7 8

(a)

1
2

3 4

5
6

7
8

(b)

Figure 4.13 (a) Behind relations in an acyclic triangular mesh. (b) The directed
acyclic graph corresponding to the behind relations in (a).

(i.e., shared edge of two triangular cells) while Figure 4.13b shows the resulting
directed acyclic graph.

Phase III of the MPVO algorithm computes a visibility ordering of the mesh
by topologically sorting the directed acyclic graph constructed in phase II. The
topological sorting can be implemented by a breadth-first search (phase III-BFS)
or a depth-first search (phase III-DFS). However, for the depth-first search the
directions of all edges have to be reversed prior to the topological sorting.

The breadth-first search of the graph of Figure 4.13 is depicted in Figure 4.14a.
It starts with the set of source nodes, i.e., nodes without incoming edges; in our
example nodes 3 and 4. Note that the set of source nodes necessarily corresponds
to a set of non-obstructing cells. In fact, the breadth-first search will result in a
sequence of sets of non-obstructing cells. The corresponding sets of nodes are
separated by gray horizontal lines in Figure 4.14a.

Figure 4.14b visualizes the depth-first search of the reversed directed acyclic
graph of Figure 4.13. The search is in fact a sequence of recursive graph traversals
starting at each of the source cells, which are nodes 1 and 2. (The set of source
nodes of the graph with reversed edges in Figure 4.14b corresponds to the set of
sink nodes of the graph in Figure 4.13, i.e., the nodes without outgoing edges.)
The two traversals are marked by gray lines in Figure 4.14b.

An extension of the MPVO algorithm for non-convex meshes (called MPVO-
NC) was also published by Williams in [80] and is described in Section 4.3.3.
However, the computed visibility orderings are inexact for particular non-convex

98 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

front

back

1

2

3 4

5

6

7
8

1

2

3 4

5
6

7
8

(a)

front

back

1
2

3
4

56

7
8

1st

2nd

(b)

Figure 4.14 (a) Topological sorting of the graph of Figure 4.13b using a breadth-
first search. (b) Same as (a) but using a depth-first search. Note that all directions
have been reversed for the depth-first search.

meshes (see [80]). Several years later, Silva et al. published an extension of the
MPVO algorithm for non-convex meshes called XMPVO in [62]. The perfor-
mance of this algorithm was improved by the BSP-XMPVO algorithm proposed
by Comba et al. in [13].

4.3.2 Cell Sorting for Convex, Cyclic Meshes

The MPVO algorithm and its descendants are limited to acyclic meshes as the
topological sorting of the MPVO algorithm is not applicable to cyclic meshes.
However, it is possible to compute visibility cycles by employing an algorithm for
the computation of strongly connected components of a directed graph published
by Tarjan in [66]. This approach is well-known for visibility cycles formed by
polygons (see [20] or [63]).

Strictly speaking, there is no visibility ordering of a cyclic mesh. In particu-
lar, a phase III-DFS will detect a cycle and return an inexact visibility ordering.
For example, Figure 4.15a depicts a cyclic mesh as the cells labeled 5, 6, and 7
form a visibility cycle, i.e., each of these cells (indirectly) obstructs each other.
This cycle is more obvious in Figure 4.15b and corresponds to a non-atomic
strongly connected component that includes the nodes labeled 5, 6, and 7. All
other strongly connected components in this example consist of single nodes. (A
strongly connected component of a directed graph is characterized by its property
that all nodes of the component are mutually accessible.) Note that the algorithms
discussed in this work cannot handle non-convex cells in general; however, the

4.3. CELL SORTING FOR NON-CONVEX AND CYCLIC MESHES 99

1
2

3 4

5

6

7

(a)

1
2

3 4

5

6

7

(b)

Figure 4.15 (a) Behind relations of a cyclic mesh. (b) The directed cyclic graph
corresponding to the behind relations in (a).

non-convex cell 5 in Figure 4.15a allowed us to create a simple cyclic mesh in
two dimensions. In fact, cyclic tetrahedral meshes are more easily constructed
than cyclic triangular meshes; see Figure 4.21a.

A failed depth-first topological sort of the graph with reversed directions is
visualized in Figure 4.16a: The cycle is detected when the algorithm descends
from node 5 to node 6 (see the position marked with “!”) as node 6 was visited
earlier in the same descent.

In order to compute the strongly connected components of the visibility graph,
a depth-first search algorithm published by Tarjan in [66] may be employed. For-
tunately, this algorithm also computes a visibility ordering of the strongly con-
nected components; thus, these components have to be rendered instead of single
cells. If a component does not consist of a single cell, a visibility cycle has to be
rendered as discussed in Section 4.4.

The basic idea of the algorithm by Tarjan is to keep track of the highest node
(frontmost cell) that can be accessed from the current node. This node will usually
be identical to the current node as outgoing edges are in general directed to the
back of the mesh (compare Figures 4.14b and 4.16), i.e., by following any outgo-
ing edge one is usually not able to reach a cell that is closer to the front than the
current cell. The situation is, however, different for a cycle. For example, node 7
in Figure 4.16b has an outgoing edge to node 5, which has an edge to node 6,
but cell 6 is in front of cell 7. This feature is exploited by Tarjan’s algorithm to
compute and topologically sort the strongly connected components of a directed

100 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

!

front

back

1 2

3
4

5

6

7

1st

2nd

(a)

front

back

1 2

3
4

56

7

56
7

1st

2nd

(b)

Figure 4.16 (a) Failed topological sort of the cyclic graph of Figure 4.15b (with
reversed directions) using a depth-first search for acyclic graphs. (b) Topological
sorting of the strongly connected components of the graph of Figure 4.15b (with
reversed directions) using an extended depth-first search.

graph as illustrated in Figure 4.16b. The algorithm given in [66] is quite simple;
however, the pseudo code presented here is based on a slightly improved version
published in [58], which can be easily adapted to replace the phase III-DFS algo-
rithm given in [80]. The resulting variant of the MPVO algorithm will be called
MPVOC (C for cyclic).

MPVOC Phase III Algorithm

set i : � 0;
empty stack S;
for each cell of the mesh

set cell’s num : � 0;
for each cell on the source cell list

dfs(cell);

dfs(cell):
push cell onto the stack S;
set i : � i

�
1;

set front : � i;
set cell’s num : � front;

4.3. CELL SORTING FOR NON-CONVEX AND CYCLIC MESHES 101

for each successor p of cell
if p’s num � 0

set front : � min
�
front
 dfs

�
p ���

else
set front : � min

�
front
 p’s num �

if cell’s num � front
pop all cells from S until cell has been popped;
set these cells’ nums : � 1

�
number of the mesh’s cells;

output these cells (including cell);
return front.

When comparing this pseudo code with the pseudo code of the MPVO phase
III-DFS algorithm in [80], note that the graph’s edges have been reversed as de-
picted in Figure 4.16b. Consequently, the terms sink and source cells, and prede-
cessor and successor switch their meanings. Also note that each cell of the mesh
is required to store one additional integer variable (called num), which is not re-
quired by the original phase III-DFS algorithm. The time and space complexities
of the MPVOC phase III algorithm are O

�
n � , where n is the number of cells of the

mesh. These complexities are inherited from the algorithm by Tarjan (see [66]).
Strongly connected components are identified by the last if-statement in the

procedure dfs. If one of these components consists of more than one cell, it corre-
sponds to a visibility cycle and has to be rendered as discussed in Section 4.4.
However, the MPVOC is advantageous even without the possibility to render
cyclic obstructions: It turns out that the phase III-BFS algorithm is slower than
the MPVOC phase III while it does not visit all cells of a mesh if a cycle exists
(see [80]). Note that numerical errors can generate cycles even in acyclic meshes.
The phase III-DFS algorithm is slightly faster but does not compute any infor-
mation about the cycles. On the other hand, the MPVOC algorithm computes
minimal sets of cyclic cells; thus, if only one cell in a group is visible (i.e., all
other cells are either completely transparent, degenerate, or “imaginary”; see [80]
and Section 4.1) then the MPVOC algorithm can still guarantee that the mesh is
rendered exactly. This is also true if only two adjacent convex cells of a visibility
cycle are visible.

4.3.3 Cell Sorting for Non-Convex, Cyclic Meshes

In [80], Williams proposed two extensions of the MPVO algorithm for non-convex
meshes. Both may be integrated in the MPVOC algorithm presented in the previ-
ous section. The first adaptation of the MPVO algorithm for non-convex meshes
(here called MPVONC) is a heuristic technique, the limitations of which are dis-
cussed in detail in [80]. The basic idea is to replace the source cell list (i.e., the

102 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

sink cell list for the non-reversed directions) by a new list that contains all cells
with (at least) one boundary face that faces the viewpoint (i.e., is a front face of
the cell). After sorting the list according to the distances of the centroids of the
cells to the viewpoint, a depth-first search is performed for each cell in the list
starting with the most distant one.

Obviously, this extension works without modifications for the MPVOC algo-
rithm as the only differences of the MPVOC algorithm are encapsulated in the
depth-first search, i.e, in the function dfs specified in Section 4.3.2. The resulting
algorithm will be referred to as the MPVONCC algorithm.

Unfortunately, the MPVONCC (and the MPVONC) algorithm does not guar-
antee a correct visibility ordering for all non-convex meshes. Therefore, Williams
also proposed an alternative extension of the MPVO algorithm, namely the con-
vexification of non-convex meshes, which is described in detail in Section 4.1.
For the purpose of cell sorting, the imaginary tetrahedra of a convexified mesh
are treated in exactly the same way as all other cells, but they are simply ignored
in the rendering step. In other words, convexified meshes may be sorted in the
same way as any other convex mesh; therefore, the MPVOC algorithm is able to
process any cyclic, non-convex mesh, provided the convexification of the mesh
can be computed.

In order to compare the performance of the discussed sorting algorithms (MP-
VO and MPVOC for convexified meshes; MPVONC and MPVONCC for non-

Table 4.1 Sorting times for the convexified meshes with the MPVOC algorithm
for convex, cyclic meshes. For comparison, the times of a slightly improved im-
plementation and Williams’ original implementation of the MPVO algorithm with
a recursive depth-first search are included. The first number in parentheses is the
time for phase II (computation of the behind relations), the second for phase III
(topological sorting).

sorting times (in seconds)

convexified number of MPVOC MPVO MPVO
data set tetrahedra (orig. impl.)

HeatSink 124,152 0.23 0.21 0.25
(0.12+0.11) (0.13+0.08) (0.17+0.08)

Bluntfin 190,852 0.34 0.31 0.34
(0.17+0.17) (0.19+0.12) (0.23+0.11)

Tapered 630,726 1.20 1.07 1.26
Cylinder (0.59+0.61) (0.63+0.44) (0.87+0.39)

4.3. CELL SORTING FOR NON-CONVEX AND CYCLIC MESHES 103

Table 4.2 Sorting times for the (non-convex) meshes with the MPVONCC algo-
rithm for non-convex, cyclic meshes. For comparison the times of a slightly im-
proved implementation and Williams’ original implementation of the MPVONC
algorithm for non-convex, acyclic meshes are included. Times are specified as in
Table 4.1.

sorting times (in seconds)

(non-convex) number of MPVONCC MPVONC MPVONC
data set tetrahedra (orig. impl.)

HeatSink 121,668 0.27 0.25 0.25
(0.14+0.13) (0.15+0.10) (0.18+0.07)

Bluntfin 187,318 0.40 0.36 0.35
(0.20+0.20) (0.22+0.14) (0.24+0.11)

Tapered 624,960 1.37 1.24 1.29
Cylinder (0.66+0.71) (0.72+0.52) (0.88+0.41)

convex meshes), several tests were performed. Table 4.1 summarizes time mea-
surements for the MPVOC algorithm compared to a slightly improved implemen-
tation (see [31]) and Williams’ original implementation of the MPVO algorithm.
As the MPVOC and MPVO algorithms are restricted to convex meshes, the con-
vexified versions of the data sets presented in Section 4.1 have been used. The
measurements were performed on an SGI Octane using one 250 MHz R10000
processor. Each number is the average of a set of sorting times for 100 differ-
ent viewpoints. Note that no cycles were found in these data sets for any of the
viewpoints and no rendering times are included.

Table 4.1 indicates that the time complexity of the MPVOC algorithm is in-
deed linear in the number of tetrahedra, and that the MPVOC algorithm is only
about 12 % slower than a comparable implementation of the MPVO algorithm.

Table 4.2 includes the analogous measurements for the MPVONCC and MP-
VONC algorithms. As mentioned, this extension for non-convex meshes scarcely
affects the new phase III of the MPVOC algorithm; therefore, the discussion of
the differences between the MPVO and the MPVOC algorithm from above also
applies to the comparison between the MPVONC and the MPVONCC algorithm.
The times in Table 4.2 confirm this result.

Apart from the MPVOC and MPVONCC algorithms there are no visibility
sorting algorithms for cyclic meshes. Ray casting algorithms, however, perform a
visibility ordering for each pixel; therefore, they offer an alternative for rendering
cyclic meshes. However, they are considerably slower for useful image sizes. For

104 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

example, Farias et al. report a total rendering time of 6 seconds for the Bluntfin
data set for a 256 � 256 pixels image in [19]. Note that this time includes the
computation and composition of color contributions of the cells.

The best exact visibility sorting algorithms for acyclic meshes (assuming that
numerical errors do not generate cycles) are the MPVO algorithm for convex
meshes and the BSP-XMPVO algorithm for non-convex meshes. The latter was
published by Comba et al. in [13] and is considerably slower than the MPVO
algorithm (about factor 3.5).

A visibility sorting algorithm for non-convex, acyclic meshes that is image-
space correct was proposed by Cook et al. in [14]. In contrast to other variants of
the MPVO algorithm, its complexity depends on the image size. For not too large
images, the algorithm performs almost as well as the MPVONC algorithm.

Inexact visibility sorting algorithms for acyclic meshes are substantially faster
than the MPVO algorithm according to [83]. However, these algorithms (see for
example [12, 27, 83]) appear to be inappropriate for rendering visibility cycles in
principle as no information about a possible cyclic structure is computed.

4.4 Cell Projection for Cyclic Meshes

This section presents a hardware-assisted algorithm for rendering possibly semi-
transparent and/or intersecting polygons that may form visibility cycles (Sec-
tion 4.4.1). The rendering of visibility cycles of convex polyhedral cells (as
required by the MPVOC and MPVONCC algorithms presented in the previous
section) will be discussed in Section 4.4.2.

The algorithm presented here was first published in [31]. It was derived from
an algorithm by Snyder and Lengyel published in [63]. However, there are several
crucial differences, which will be discussed below.

4.4.1 Rendering of Cyclic Occlusions of Polygons

Before specifying the algorithm, some formal definitions have to be introduced.
Following the notation of [63], an image I

�
P � of an orderless collection of n poly-

gons P : � �
Pi � with i � 1
 � � �
 n is represented as a two-dimensional array of

4-tuples with red, green, blue, and α components:

I
�
P � : � � Ir

�
P ��
 Ig

�
P ��
 Ib

�
P ��
 Iα

�
P ��� �

Note that the red, green, and blue components specify an associated color (also
called pre-multiplied color), which are usually denoted C̃ in this work (see Sec-
tion 2.4.3).

4.4. CELL PROJECTION FOR CYCLIC MESHES 105

Two operations on images are required in the following, which are addition

A
�

B : � � Ar
�

Br
 Ag
�

Bg
 Ab
�

Bb
 Aα
�

Bα �
and “out” (which has higher precedence than “+”):

AoutB : � � Ar
�
1 	 Bα ��
 Ag

�
1 	 Bα ��
 Ab

�
1 	 Bα ��
 Aα

�
1 	 Bα � � �

In plain words, AoutB is the image A attenuated by B. Based on these operations
accumulator operators ∑ and OUT are defined, e.g.,

∑�
A � B � C �

� A
�

B
�

C or D OUT�
A � B � C �

� � �
DoutA � outB � outC �

Note that the order of the arguments
�
A
 B
 C � is not relevant. Additionally, the

“over” operator is defined as

AoverB : � A
�

BoutA

which is the composition of a background image B with a foreground image A.

The proposed algorithm solves the following problem: Given a background
image Ibg and a set of polygons P : � �

Pi � with i � 1
 � � �
 n, what is the final
image I

�
P � overIbg?

According to [63] I
�
P � (for non-intersecting polygons) is given by

I
�
P � � n

∑
i � 1

I
�
Pi � OUT�

I � Pj ���Pi � Pj �

where Pi
� Pj means that the polygon Pj occludes Pi; i.e., the image I

�
P � is given

by the sum of the images of all polygons Pi, each being attenuated by all polygons
that occlude Pi. Since it is possible to replace all occlusion tests by z-tests, this
equation is rewritten as

I
�
P � � n

∑
i � 1

I
�
Pi � n

OUT
j � 1 � j �� i

I �
�
Pj �

where I �
�
Pj � denotes the image of Pj rasterized with active z-test but disabled

writing to the z-buffer. The z-buffer was set by rendering I
�
Pi � with active writing

into a previously cleared z-buffer.
The final image could be calculated by evaluating I

�
P � overIbg. However, it is

preferable to implement the equivalent expression Ibg out I
�
P � �

I
�
P � in order to

avoid the need to buffer opacities. Inserting the result for I
�
P � yields

I
�
P � � Ibg

n
OUT

i � 1
I
�
Pi � � n

∑
i � 1

I
�
Pi � n

OUT
j � 1 � j �� i

I �
�
Pj �
 (4.1)

106 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

i.e., the background image Ibg is attenuated by all polygons and the contribution
of the attenuated images of these polygons are added.

It is straightforward to translate Equation (4.1) into an algorithm. The steps of
this algorithm are:

1. Set the display buffer Id to the background image: Id : � Ibg. (This is, of
course, unnecessary if Ibg is already stored in Id.)

2. For each polygon Pi with i � 1
 � � �
 n attenuate the display buffer:

Id : � Id out I
�
Pi � �

3. For each polygon Pi with i � 1
 � � �
 n set the additional image buffer:

IP : � I
�
Pi � n

OUT
j � 1

I �
�
Pj �

and add the resultant image to the display buffer: Id : � Id �
IP.

Before discussing the main features of this algorithm, a simple step-by-step ex-
ample is given.

Example: Ternary Cycle

The goal in this example is to render a visibility cycle formed by three polygons
P1, P2, and P3 in front of a white background Ibg as depicted in Figure 4.17b. The
geometry of this scene is sketched in Figure 4.17a. Each polygon has a constant

P1

P2
P3

(a) (b) (c)

Figure 4.17 (a) Geometry of three polygons P1, P2, and P3 that form a visibility
cycle. (b) Colored rendering of the polygons P1, P2, and P3 in front of a white
background. (c) Ibg out I

�
P1 � out I

�
P2 � out I

�
P3 � : the white background attenuated

by the three polygons.

4.4. CELL PROJECTION FOR CYCLIC MESHES 107

(a) (b) (c)

Figure 4.18 (a) I
�
P1 � : the image of polygon P1; Iα

�
P1 � is 0 � 9 within the polygon

and 0 otherwise. (b) I
�
P2 � ; Iα

�
P2 � is 0 � 8 within the polygon and 0 otherwise. (c)

I
�
P3 � ; Iα

�
P3 � is 0 � 7 within the polygon and 0 otherwise.

(a) (b) (c)

Figure 4.19 (a) I
�
P1 � out I

�
P2 � : the image of polygon P1 attenuated by the image

of polygon P2. (b) I
�
P2 � out I

�
P3 � . (c) I

�
P3 � out I

�
P1 � .

color (see Figure 4.18) and a constant α-value, which is 0 � 9, 0 � 8, and 0 � 7 for P1,
P2, and P3, respectively.

In terms of our formal specification of the algorithm, n is set to 3 and P to�
P1
 P2
 P3 � . Moreover, Ibg is a completely white image. Therefore, the first step of

the proposed algorithm is to copy this white background into the display buffer I d.
The second step is to attenuate the display buffer by the images of the poly-

gons. The result of the three (commutative) attenuation operations is depicted in
Figure 4.17c.

The third step consists of a loop over the three polygons. Each polygon is
attenuated by the occluding polygon, i.e., P1 by P2 (Figure 4.19a), P2 by P3 (Fig-
ure 4.19b), and P3 by P1 (Figure 4.19c). The sum of the three resulting images is
shown in Figure 4.20b. Finally, this sum is added to the attenuated background
(see Figure 4.20a). The result is depicted in Figure 4.20c. More precisely spoken,
the sum corresponding to Figure 4.20b is evaluated and added to the attenuated

108 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

(a) (b) (c)

Figure 4.20 (a) Ibg out I
�
P1 � out I

�
P2 � out I

�
P3 � : the (white) background atten-

uated by the three polygons P1, P2, and P3. (b) I
�
P1 � out I

�
P2 � �

I
�
P2 � out I

�
P3 ��

I
�
P3 � out I

�
P1 � : the final contribution of the images of the polygons. (c) Ibg out

I
�
P1 � out I

�
P2 � out I

�
P3 � �

I
�
P1 � out I

�
P2 � �

I
�
P2 � out I

�
P3 � �

I
�
P3 � out I

�
P1 � :

the final image.

background by sequentially adding the contribution of each polygon (Figure 4.19)
to the display buffer, which initially holds the attenuated background image (Fig-
ure 4.20a).

Comparison with the Algorithm by Snyder and Lengyel

Compared to the original algorithm by Snyder and Lengyel published in [63], the
proposed algorithm features several advantages:

� only one (instead of two) additional image buffer is required;

� no α-values (opacities) are buffered;

� no occlusion tests have to be performed in software;

� no occlusion graph is constructed or sorted;

� intersecting polygons do not need any particular treatment.

As all occlusion tests are performed by z-tests instead of complex calculations in
software, a naive implementation of the algorithm will be rather small. In fact, a
prototypical implementation of this algorithm is possible with about 50 lines of C
code (excluding the code required to render a single polygon).

The disadvantages include the need for a z-buffer and additional image oper-
ations. As the algorithm is of time complexity O

�
n2 � , where n is the number of

polygons, it is impractical for rendering complex scenes. However, it is useful for
rendering visibility cycles formed by a few primitives.

4.4. CELL PROJECTION FOR CYCLIC MESHES 109

4.4.2 Rendering of Cyclic, Convex Polyhedral Cells

Cyclic obstructions of convex polyhedral cells (instead of polygons) can be ren-
dered by cell projection of the cells because cell projection reduces the problem
of rendering a volumetric cell to the problem of rendering a polygon. However,
the polygonal projection of each cell must be placed within the cell as the z-
coordinates of the pixels of the polygons are used in z-tests. Note that cells with a
volumetric intersection cannot be rendered this way. However, this kind of inter-
section is already excluded by the requirements of phase III of the MPVOC and
MPVO algorithms (see Section 4.3.2).

The combination of a projected tetrahedra algorithm (see Section 3.1) with the
presented algorithm for the rendering of visibility cycles of polygons allows us to
render any visibility cycles of tetrahedra. For example, Figure 4.21a depicts three
tetrahedra that form a visibility cycle. After defining colors and opacities at the
vertices of the tetrahedra, the proposed method may be employed to render these
tetrahedra in front of a white background as shown in Figure 4.21b. The geometry
of this example is discussed in more detail in [80].

(a) (b)

Figure 4.21 (a) A visibility cycle formed by three tetrahedra. (b) Volume render-
ing of the tetrahedra depicted in (a). (See also Figure C.6 on page 148 in the color
plate section.)

110 CHAPTER 4. NON-CONVEX AND CYCLIC MESHES

David’s Mom: I mean, it’s not supposed to be like this.
David: It is not supposed to be anything.

Dialog from the movie Pleasantville

Chapter 5

Non-Simplicial and Non-Adaptive
Meshes

While the previous chapters have discussed several unpleasant geometric fea-
tures of non-uniform meshes, there are also important advantages of certain non-
uniform meshes. For example, meshes consisting of simplicial cells, i.e., tetra-
hedral meshes in three dimensions, offer the possibility of a continuous, piece-
wise linear interpolation as discussed in Section 2.7.3. In contrast, non-simplicial
meshes lack this possibility; therefore, algorithms that rely on a linear inter-
polation are less suited for non-simplicial meshes. Two examples are the pre-
integrated classification presented in Section 2.5 and many algorithms based on
the topology of scalar fields. (The topology of a scalar function is introduced in
Section 5.2.)

In this chapter, two such algorithms are modified in order to apply them to
non-simplicial meshes, in particular uniform meshes. In both cases, approxima-
tions are employed in order to overcome the problems originating from the miss-
ing linear interpolation. More specifically, Section 5.1 presents pre-integrated
volume rendering for uniform meshes, which has been published previously to-
gether with Klaus Engel and Thomas Ertl in [18], and in Section 5.2 an algorithm
for “topology-guided” downsampling of uniform meshes is discussed, which has
been published together with Thomas Ertl in [32]. Both algorithms are of partic-
ular interest for interactive direct volume visualization because of the hardware
support for uniform meshes by modern graphics adapters.

Another important geometric feature of tetrahedral meshes — and unstruc-
tured meshes in general — is their adaptivity, i.e., the possibility of a locally adap-
tive resolution and an adaptive boundary, which uniform meshes lack. However,
Section 5.3 presents a method to exploit the programmability of modern graphics
hardware to emulate this feature with a two-level hierarchy of uniform meshes.
This technique has been first published together with Thomas Ertl in [34].

111

112 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

5.1 Texture-Based Pre-Integrated Volume Render-
ing

This section presents a texture-based algorithm for hardware-accelerated volume
visualization of uniform meshes that implements pre-integrated classification (see
Section 2.5). The algorithm requires dependent texture lookups, i.e., the texture
coordinates of one texture lookup are determined by a previous texture lookup
(instead of a linear interpolation of texture coordinates). Texture-based volume
rendering has been presented in Section 2.3: The basic idea is to render a stack
of textured slices with either a stack of two-dimensional textures (see Figure 2.4a
and [54]) or one three-dimensional texture (see Figure 2.4b and [7]).

The concepts of pre- and post-classification for direct volume rendering are
discussed in detail in Section 2.4.2. For texture-based volume rendering, pre-
classification is either implemented by applying transfer functions once for each
texel and storing colors and opacities in the textures or with the help of paletted
textures (see [28]), while post-classification is implemented by storing the original
scalar data in textures and applying transfer functions during the rasterization of
the slices after interpolating scalar values but before compositing the colors.

Unfortunately, pre-integrated volume rendering is not appropriate for uniform
meshes since a linear interpolation between the data samples is assumed, while
at least a trilinear interpolation within cells is necessary in order to achieve a
continuous interpolation in uniform meshes. However, the approximation error of
the discrete evaluation with pre-classification or post-classification is even worse
since it is assumed that the data is almost constant between samples. On the other
hand, the use of pre-integrated classification for texture-based volume rendering
requires a sampling rate that is high enough to reconstruct a proper approximation
of the original data by linear interpolation between samples.

With this assumption, pre-integrated classification may be implemented as fol-
lows: The textures contain the original scalar data of the volume analogously to
the case of post-classification. For each rasterized pixel, pre-integrated classifi-
cation requires the scalar data at the front and the back slice of each slab (see
Figure 5.1a) between two adjacent slices (either object-aligned or view-aligned).
Thus, the textures of the two slices have to be mapped onto one slice — either the
front or the back slice; the latter case is illustrated in Figure 5.1b. This mapping of
the two textures onto one slice requires multi-texturing and an appropriate calcu-
lation of texture coordinates. Thereby, the scalar values of both slices are fetched
for every pixel of the slice corresponding to one slab. These two scalar values are
necessary for a third texture lookup operation, which fetches pre-integrated colors
and opacities from a two-dimensional texture. For view-aligned slices, the depen-
dency on the length of the pre-integrated ray segment is often negligible since the

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 113

s f
sb

front slice
back slice

(a)

projection
center

front slice back slice

(b)

Figure 5.1 (a) A slab of the volume between two slices. The scalar value on the
front (back) slice for a particular viewing ray is called s f (sb). (b) Projection of
the front slice onto the back slice of a slab.

distances between slices are constant and, therefore, the lengths of the ray seg-
ments are approximately constant. As this texture lookup depends on previously
fetched data, it is called a dependent texture lookup, which is supported by mod-
ern programmable graphics hardware, e.g., NVIDIA’s GeForce3 or ATI’s Radeon
8500.

In order to render shaded isosurfaces, the dependent texture has to contain
color, transparency, and also an interpolation value if the isovalue is in between
the front and back scalar value. The interpolation value is necessary in order
to weight per-voxel gradient data fetched from an additional texture, since the
interpolated (and normalized) gradient is required for lighting calculations. More
details about the algorithm and a discussion of an implementation for NVIDIA’s
GeForce3 may be found in [18].

5.2 Topology-Guided Downsampling

As discussed in Section 5.2.1, it is an important feature of simplicial meshes with
linear interpolation that all critical points are located at the positions of vertices
of the mesh. Therefore, the application of topology-related concepts to non-
simplicial — and in particular structured — meshes is rather uncommon, although
these concepts have proven to be very useful for simplicial meshes. Thus, non-
simplicial cells are also in this respect an unpleasant feature of meshes.

In order to show how to use topology-related concepts for structured meshes,
this section presents a downsampling method for uniform volume meshes that

114 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

preserves much more of the topology of a scalar field than existing downsam-
pling methods by preferably selecting scalar values of critical points. In particu-
lar, many critical points that are lost by traditional downsampling methods can be
preserved. This section was first published together with Thomas Ertl in a similar
form in [32].

Traditional downsampling methods include subsampling, i.e., successively
deleting vertices, and the replacement of groups of vertices (for structured volume
meshes usually 2 � 2 � 2) by one vertex with the average data value as suggested
for two-dimensional mip maps by Williams in [79] and for three-dimensional mip
maps by Levoy and Whitaker in [40]. One generalization of this method is to filter
a mesh before sampling it at a lower resolution; for a recent application see [26].
Many algorithms for volume visualization have been accelerated by employing
downsampled meshes, e.g., ray casting [15, 40], splatting [38], and isosurface ex-
traction [26, 60, 51, 75]. For all these techniques downsampling is an essential
preprocessing step.

However, traditional downsampling methods ignore and, therefore, destroy the
topology of the original scalar field. Unfortunately, there is no unique definition of
the topology of a scalar field; related concepts are the contour tree [8], the (hyper)
Reeb graph [21], and the topology graph [2]. All these concepts are, however,
based on the critical points of a scalar field. Therefore, topology preservation
of a scalar field is often defined as the preservation of all critical points; see for
example [3, 23]. The theoretical framework for this definition is provided by
Morse theory, see [48].

While the topology of a scalar field is not uniquely defined, the topology of
surfaces — and isosurfaces in particular — is well defined. In fact, the topology
of isosurfaces is strongly related to the critical points of the corresponding scalar
field. Thus, the topology of isosurfaces extracted from downsampled meshes will
usually deviate strongly from the topology of the original isosurfaces, i.e., the
number of disconnected components, tunnels, and holes will strongly differ.

Unfortunately, the topology of an isosurface is in many cases its most impor-
tant feature as it allows the user to navigate in a volume, to identify noise in a data
set, or to estimate the quality and plausibility of extracted shapes or structures.
Therefore, it is often useful to use topology-preserving simplification techniques
in order to extract isosurfaces with the correct topology even from coarse meshes.
Examples of such techniques have been published in [3, 23]. However, these ap-
proaches are limited to simplicial meshes and are, therefore, not very well suited
for visualization algorithms for structured meshes.

Topology-guided downsampling, the method presented here, fills this gap by
providing a simple algorithm for downsampling structured meshes without blindly
destroying the topology of the scalar field. This is achieved by calculating critical
points and determining the data values of the downsampled mesh from this clas-

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 115

sification. The method is named “topology-guided downsampling” as topology-
preserving downsampling is impossible in general. However, even an approximate
preservation of topology is highly desirable if isosurfaces are extracted from the
downsampled volume mesh, e.g., for interactive previewing, because many topo-
logical features of the isosurfaces, e.g., the number of components, tunnels, and
holes, are preserved.

After describing the algorithm in Section 5.2.1, some examples from medical
and technical applications of volume visualization are presented in Section 5.2.2.

5.2.1 Algorithm

As topology-guided downsampling works as well in two dimensions as in three
dimensions, the algorithm will be illustrated with the help of the two-dimensional
scalar field f

�
x
 y � depicted in Figure 5.2a, which is defined by a bilinear interpo-

lation between scalar values at the vertices of a two-dimensional uniform mesh.
Isolines are extracted from this mesh by a decomposition into triangular cells and
slicing the resultant height field with a horizontal plane as depicted in Figure 5.2b.

In order to (approximately) preserve the topology of this scalar field, its critical
points have to be preserved. The first step is therefore to identify critical points in
two- and three-dimensional structured meshes.

Critical Points in Two Dimensions

Critical points are local maxima, local minima, and saddle points. They indicate
points where an isoline or isosurface changes its number of components or its
genus. It is an important advantage of simplicial meshes, i.e., triangular meshes in
two dimensions and tetrahedral meshes in three dimensions, that all critical points
are located at vertex positions. Therefore, two-dimensional structured meshes are

x

y

f Hx, yL

(a) (b)

Figure 5.2 (a) A two-dimensional scalar (height) field. (b) Piecewise linear ap-
proximation to an isoline in the scalar field of (a).

116 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

Figure 5.3 The critical points of the field of Figure 5.2a. Maxima are marked with
dotted circles (�), minima with disks (�), and saddle points with empty circles (�).

(a) (b)

Figure 5.4 The surrounding polygon (thick line) of a vertex (
�

) with (a) four
neighbors and (b) eight neighbors.

usually decomposed into simplicial meshes as illustrated in Figures 5.2b and 5.3.
It should be noted that this decomposition is only virtual, i.e., it is not stored in
any data structures but performed on-the-fly whenever it is required.

In order to handle vertices at the boundary of the mesh, the missing neighbors
are (virtually) generate by mirroring neighboring vertices across the boundary (see
[23]). With this in mind, the decomposition into triangles employed in Figure 5.3
generates only two kinds of vertex neighborhoods: one with four neighbors de-
picted in Figure 5.4a and another with eight neighbors depicted in Figure 5.4b.

In analogy to [23], the corresponding surrounding polygon of a vertex is de-
fined as the boundary of the adjacent triangles. The surrounding polygon defines
an edge graph, which will be used in order to classify the surrounded vertex as a
regular point, local maximum, local minimum, or saddle point.

This classification is achieved by marking each node of the edge graph, i.e.,
each vertex neighbor of the surrounding polygon of a vertex. A neighbor is
marked with a 1 if its data value is greater than the value at the surrounded vertex,
and a 0 otherwise. Then all edges between a 1 node and a 0 node are deleted and
the number of remaining connected components of the edge graph is counted. The
point is an extremum if this number is one. If it is two, then the point is regular;
otherwise the point is a saddle point. The results of this classification for each

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 117

vertex of the mesh of Figure 5.2a is visualized in Figure 5.3. Note that this clas-
sification ignores any degeneracies. This is legitimate as we are only concerned
with an approximate preservation of critical points.

Automatic Lookup Table Generation

In order to speed up the classification of points discussed above, precalculated
lookup tables may be employed. This is achieved by numbering all nodes of the
edge graph. The number of each node corresponds to a bit position that holds the
mark 0 or 1 of the corresponding node. The resultant bit pattern is interpreted as an
integer index into a lookup table that specifies a classification code for each index.
For example, the bit pattern for a local maximum will only consist of 0s, i.e., the
index will be 0. Thus, the first entry in the lookup table will be the classification
code for a local maximum. Similarly, the bit pattern for a local minimum will
only consist of 1s, i.e., the last entry in the lookup table will be the classification
code for a local minimum.

Note that local maxima and minima are easily identified; therefore, only one
bit per entry in the lookup table is needed in order to distinguish between regular
and saddle points; thus, the minimal table size for the surrounding polygon of
Figure 5.4a is only 24 �

8 � 2 bytes. The size of the corresponding lookup table for
the surrounding polygon of Figure 5.4b is 28 �

8 � 32 bytes.

Critical Points in Three Dimensions

The first problem of a generalization to three dimensions is to find a suitable tetra-
hedralization of a structured hexahedral mesh. In [8], Carr et al. discuss vari-
ous decomposition schemes for three-dimensional structured meshes and choose
a subdivision of each hexahedral cell into six square pyramids with their apices in
the cell center although this requires that new data points are interpolated. In this
work, new data points are avoided and therefore each hexahedron is subdivided
into five tetrahedra. As mentioned in [8], this decomposition is not symmetrical as
it generates two kinds of vertex neighborhoods. Also note that the decomposition
is only virtual, i.e., it is performed on-the-fly.

In analogy to the two-dimensional case, the corresponding surrounding poly-
hedron of a vertex is defined by the boundary of the adjacent tetrahedra (see [23]).
In the case of the decomposition of hexahedral cells into five tetrahedra, there are
two different kinds of surrounding polyhedra: an octahedron and a triangulated
cubeoctahedron; see Figures 5.5a and 5.5b. However, the approximative nature
of the presented algorithm allows us to relax the need for a correct simplicial de-
composition. Thus, the same surrounding polyhedron is used for all vertices. As

118 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

(a) (b)

Figure 5.5 Surrounding polyhedra of a vertex: (a) six neighbors define an octa-
hedron. (b) 18 neighbors define a triangulated cubeoctahedron.

the triangulated cubeoctahedron generated better results in several experiments, it
was employed for all examples in Section 5.2.2.

The classification of vertices as regular points, local maxima, local minima,
and saddle points is performed in a similar way as in the two-dimensional case.
In particular, nodes of the edge graphs defined by the surrounding polyhedra are
marked in the same way: Nodes with a data value greater than the data value at
the surrounded vertex with a 1, otherwise with a 0. All marks are collected in
a bit pattern, which is used to index a precomputed lookup table containing the
classification bit for the vertex as discussed above. The table size is 26 �

8 � 8 bytes
for the octahedron and 218 �

8 � 32768 bytes for the triangulated cubeoctahedron.

Preservation of Critical Points

One of the results of Morse theory is that all critical points of a scalar field have
to be preserved in order to preserve the topology of all its isosurfaces. However,
it is not necessary to preserve the exact geometric position of the critical points.
Nonetheless, the scalar values at all critical points have to be preserved exactly.
Otherwise the topology of isosurfaces for isovalues in the interval between the
old and the new scalar value at a critical point is changed. For example, if a local
maximum is preserved but its scalar value vmax is decreased to v �max

� vmax, all
isosurfaces for isovalues in the interval � v �max
 vmax � will be modified topologically.
This is what usually happens to local extrema with the traditional combination of
filtering and downsampling.

An example is given in Figures 5.2, 5.6, and 5.7. The scalar field of Fig-
ure 5.2a is downsampled by averaging the scalar values (i.e., heights) over groups
of four (or less) vertices as indicated in Figure 5.6 (for now the marks of the crit-
ical vertices should be ignored). Each group of vertices corresponds to one new

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 119

Figure 5.6 The partitioning of the mesh of Figure 5.2a employed for downsam-
pling. Critical points are marked as in Figure 5.3.

(a) (b)

Figure 5.7 (a) The scalar field obtained by averaging downsampling of the mesh
of Figure 5.2a. (b) Piecewise linear approximation to an isoline in the field of (a)
for the same isovalue as in Figure 5.2b.

vertex of the downsampled mesh depicted in Figure 5.7a. Because of the aver-
aging the height of both maxima is decreased in the new field. Therefore, the
isolines for the same isovalue are topologically different for the original field and
its downsampled version as illustrated by Figures 5.2b and 5.7b.

The goal of the presented method is to avoid these changes whenever possible;
therefore, linear filtering has to be avoided. Thus, an appropriate downsampling
principle is to select and thereby preserve the scalar values of critical points. Al-
though this selection does not guarantee the preservation of critical points, the
preservation of the selected scalar values is a necessary condition for the preser-
vation of critical points.

The selection is illustrated in Figure 5.6, where all critical points are marked.
In this example each group of vertices contains exactly one critical point. The
scalar value of each critical point is then used for downsampling instead of the
average height of the group of vertices. The resultant downsampled mesh is de-
picted in Figure 5.8a. Figure 5.8b demonstrates that the topology of the isoline of
Figure 5.2b is preserved with this downsampling technique. The following section
describes topology-guided downsampling for three-dimensional meshes in more
detail.

120 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

(a) (b)

Figure 5.8 (a) Same as Figure 5.7a but for topology-guided downsampling.
(b) Same as Figure 5.7b for the field in (a).

Steps of the Algorithm

Topology-guided downsampling reduces the number of vertices of a volumetric
structured mesh with even dimensions by a factor of eight by replacing groups
of 2 � 2 � 2 � 8 vertices by one vertex. For each disjoint group of 8 vertices the
following steps are performed in order to determine the scalar value of the new
vertex. (If not given implicitly, the position of the new vertex is determined by the
average position of the 8 vertices.)

1. For each vertex of the group, compute whether it is a regular point, a saddle
point, or an extremum. Also, compute the average scalar value of these
vertices.

2. If there is no critical point, the average scalar value is the result.

3. If there is only one critical point, its scalar value is the result.

4. If there are multiple saddle points but no extremum, the scalar value of the
saddle point with the largest absolute distance to the average scalar value is
the result.

5. If there are (multiple) saddle points but only one extremum, the scalar value
of the extremum is the result.

6. Otherwise, the scalar value of the extremum with the largest absolute dis-
tance to the average scalar value is the result.

Steps 1 to 3 are motivated by the considerations described above. Steps 4 to 6
reflect an interest in the most “important” critical points, since many saddle points
would not exist without a neighboring extremum and distant critical points are

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 121

likely to have more influence on the topology of isosurfaces than critical points
close to the average scalar value.

This downsampling procedure can be applied repeatedly — each time reduc-
ing the number of vertices by a factor of 8. However, in comparison to averaging
downsampling methods, much more of the topological information is preserved
by this algorithm as is demonstrated with the help of several examples in the next
section.

5.2.2 Examples

Blood Vessels

The first example is a CTA (computer tomography angiography) volume data
set showing blood vessels around an aneurysm. It is well suited to demonstrate
topology-guided downsampling as it contains noise and structures of very differ-
ent sizes. The resolution of this data set is 128 � 128 � 60 voxels and 8 data bits
per voxel. In order to visualize it, an isosurface for a fixed isovalue is extracted
with a simple marching tetrahedra algorithm after decomposing the uniform mesh
into tetrahedra as explained in the previous section. Figure 5.9a depicts the re-
sultant isosurface of the original data set. All isosurfaces are rendered using flat
shading with surface normals calculated directly from each triangle in order to
emphasize the underlying mesh structure even for very fine meshs. Of course,
pre-integrated volume rendering for uniform meshes (see Section 5.1) could also
be used to render these images.

The downsampling results of the presented algorithm will be compared to a
simple averaging downsampling that replaces eight vertices by one vertex with

(a) (b) (c)

Figure 5.9 (a) An isosurface extracted from a 128 � 128 � 60 CTA volume data
set. (b) Same isosurface extracted from a mesh downsampled to dimensions 32 �

32 � 15 with averaging downsampling. (c) Same as (b) with topology-guided
downsampling. (See also Figure C.7 on page 148 in the color plate section.)

122 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

the average data value as employed in [79, 40, 15]. More general filtering and
downsampling methods, e.g., [26], suffer essentially from the same problems for
a comparable downsampling rate.

Figure 5.9b depicts the isosurface to the same isovalue as in Figure 5.9a but
extracted from a downsampled volume of dimensions 32 � 32 � 15 using tradi-
tional averaging downsampling. In contrast, Figure 5.9c depicts the result for the
same settings but using topology-guided downsampling as described in the pre-
vious section with the cubeoctahedron being the surrounding polyhedron of all
vertices. The compression rate is

�
1

�
8 � 2 � 1 � 6% in both cases. Note that none

of the two downsampling methods depends on a particular isovalue, i.e., the user
may choose an isovalue after the downsampling, which is only a preprocessing
step.

Obviously, the noise manifesting itself in small disconnected parts of the orig-
inal isosurface in Figure 5.9a is partially preserved with topology-guided down-
sampling in Figure 5.9c but is almost completely lost with averaging downsam-
pling in Figure 5.9b. More importantly, several crucial connections of blood ves-
sels visible in Figure 5.9a become disconnected in Figures 5.9b and 5.9c. How-
ever, topology-guided downsampling preserves at least parts of the vessels while
averaging downsampling results in larger gaps, or even the complete vanishing of
parts of vessels, e.g., at the top of Figure 5.9b.

Engine Block

The second volume data set is a volumetric scan of an engine block. This example
differs considerably from the first: Instead of a continuum of intensities, there are
only three materials, i.e., air and two kinds of alloys. Due to noise, however,
isosurfaces corresponding to isovalues between the two material values are likely
to consist of many disconnected components as illustrated in Figure 5.10a.

(a) (b) (c)

Figure 5.10 (a) Isosurface extracted from the original 256 � 256 � 110 mesh.
(b) Same isosurface extracted from a mesh of dimensions 64 � 64 � 28 obtained
by averaging downsampling. (c) Same as (b) but using topology-guided down-
sampling. (See also Figure C.8 on page 149 in the color plate section.)

5.2. TOPOLOGY-GUIDED DOWNSAMPLING 123

This rather complicated topological structure cannot be preserved by averag-
ing downsampling (see Figure 5.10b), while topology-guided downsampling pre-
serves many more of the components of a typical isosurface (see Figure 5.10c). Of
course, preservation of noise is not always desirable. However, for the purpose of
previewing isosurfaces that might be distorted by noise the preservation of these
topological features is very useful in order to recognize noise in isosurfaces even
in a coarse preview.

Bonsai

The third and last example is a CT scan of a bonsai, which features a sharp but very
complex border between air and the plant with many fine details. Figure 5.11a
depicts the whole isosurface. The mesh’s resolution of 256 � 256 � 128 vertices
is high enough to reconstruct single leaves.

(a) (b) (c)

Figure 5.11 (a) An isosurface extracted from a CT scan of a bonsai. (b) Same
isosurface but extracted from a mesh of dimensions 32 � 32 � 16 obtained with
averaging downsampling. (c) Same as (b) with topology-guided downsampling.
(See also Figure C.9 on page 149 in the color plate section.)

This way of representing a tree is related to shape modeling techniques based
on voxelized scenes (see [26]). Again, we will show that topology-guided down-
sampling preserves more details of the shape for higher downsampling rates,
which is crucial for this kind of applications.

Figures 5.11b and 5.11c show the same isosurface after three downsampling
steps. While the shape is no longer recognizable after averaging downsampling
in Figure 5.11b, topology-guided downsampling preserves a coarse representa-
tion of the original shape, as demonstrated by Figure 5.11c. (The isosurface in
Figure 5.11c was clipped at the borders of the volume; this resulted in two dark
holes.)

124 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

This example suggests that topology-guided downsampling is not only useful
for scientific volume visualization but also for volume graphics, in particular if
models have to be represented with different levels of detail.

5.3 Adaptive Volume Textures

One important advantage of simplicial meshes — and unstructured meshes in gen-
eral — is their adaptive geometry, i.e., a locally adaptive resolution is possible and
the mesh’s boundary may be adapted to an arbitrary shape. On the other hand,
structured meshes are less adaptive and, in particular, uniform meshes are almost
perfectly non-adaptive. In order to compensate for this lack of adaptivity, uni-
form meshes usually have to have a higher resolution and a larger domain than
unstructured meshes for the same problem. This, however, results in large mesh
sizes, which are inappropriate for texture-based volume visualization algorithms
because of the usually quite limited texture memory of graphics hardware. Thus,
the main advantage of uniform meshes, i.e., the support by texturing hardware, is
often severely diminished.

In order to overcome this dilemma and to offer at least a limited form of adap-
tivity in the two-fold sense of a locally adaptive resolution and an arbitrary bound-
ary of the mesh, this section presents a two-level representation of mesh data that
is appropriate for hardware-accelerated on-the-fly decoding with programmable
texturing hardware. This kind of texture compression is particularly well suited
for the texture-based volume rendering algorithms discussed in Sections 2.3 and
5.1. This section was first published together with Thomas Ertl in [34].

5.3.1 Adaptive Texture Mapping in Two Dimensions

Before discussing the case of adaptive volume textures in Section 5.3.2, the pre-
sented approach to adaptive texture mapping is discussed for two-dimensional
textures in this section. Note that the example presented in this section is for the
purpose of illustration only. In fact, the approach appears to be much more useful
in three than in two dimensions; however, an explanation of the two-dimensional
case is likely to be more comprehensible than an immediate discussion of the
three-dimensional case.

This section begins with a specification of requirements for adaptive texture
mapping, which are in fact restrictive enough to determine the basic data struc-
tures. These data structures lead to the decoding scheme, i.e., the algorithm for a
texture lookup. Furthermore, a prototypical implementation of the decoder in cur-
rent programmable graphics hardware, namely the ATI Radeon 8500, is presented
and the generation of adaptive textures is discussed.

5.3. ADAPTIVE VOLUME TEXTURES 125

Requirements

As mentioned, the primary goal is an adaptive representation of texture data that
features a locally varying resolution and an adaptive boundary of the texture’s
domain. Moreover, the decoder should be implemented within the rasterization
pipeline of off-the-shelf programmable graphics hardware, such that the texture
data is decoded “on the fly” for each texture lookup. This approach allows for a
fast random access, which is usually required for texture decoding techniques (see
[1, 4, 49]).

As the flexibility of current programmable graphics hardware, e.g., the ATI
Radeon 8500 or NVIDIA’s GeForce3, is rather limited, the data structures are
limited to only one level of indirection, which can be implemented with dependent
texture mapping. I.e., the data structures may include references but no nested
references.

Furthermore, different interpolation schemes should be supported (see Sec-
tion 2.7); in particular, nearest-neighbor interpolation and a continuous interpola-
tion, i.e., linear, bilinear, or trilinear interpolation.

Representation of Adaptive Textures

In the context of meshing, there are basically two approaches to locally adaptive
resolutions: hierarchical meshes and unstructured meshes. The latter are not suit-
able here because of the problem of cell location, which is part of any random
access in an unstructured mesh. On the other hand, hierarchical meshes are also
inappropriate as any hierarchy implies the need for nested references, which have
to be avoided here. The solution proposed in the following is to employ a hierar-
chical representation that is restricted to just two levels. Thus, a restricted form
of locally adaptive resolution can be retained and at the same time the nesting of
references is avoided.

The first (upper) level of our representation is a coarse uniform mesh covering
the domain of the texture. The data defined on this mesh will be called the index
data. For each cell, these data consist of one reference to the texture data of the
cell, which is called a data block, and a scaling factor specifying its resolution
relatively to the maximum resolution; an example is given in Figure 5.12a. The
second (lower) level contains the actual data blocks remapped to a uniform reso-
lution such that all data blocks may be packed into one uniform mesh; therefore,
these data will be called the packed data; see Figure 5.12b for an example. Al-
though the cells of the coarse mesh are of uniform size, the packed data blocks are
of different sizes depending on their resolution, i.e., data blocks of a high resolu-
tion will correspond to large blocks of the packed data because of the remapping
to a uniform resolution.

126 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

1
8

212 � 33

1
4

195 � 33
1

65 � 0 1
8

212 � 33

1
8

212 � 33

1
8

212 � 33

1
8

212 � 33
1

130 � 0
1
2

0 � 65
1

0 � 0 1
8

212 � 33

1
2

66 � 65

1
2

195 � 0 1
2

33 � 65

1
8

212 � 33

1
8

212 � 33

127

0
0 255(a) (b)

Figure 5.12 Representation of adaptive textures. (a) Index data: scale factors and
coordinates of packed data blocks are stored for each cell of a 4 � 4 mesh repre-
senting the whole texture, which is included for the purpose of illustration only.
(Actual coordinates are between 0 and 1.) (b) Packed data: the data blocks packed
into a uniform mesh of 256 � 128 texels. The blocks’ frames are for illustration
purposes only. (See also Figure C.10 on page 150 in the color plate section.)

For a continuous interpolation of the texture data, we replicate the texels of
the data blocks’ boundaries and employ bilinear interpolation of the texels’ data.
This corresponds to the space-filling block arrangement suggested by Ning and
Hesselink in [50] and is illustrated in Figure 5.13. Note that (in contrast to the
OpenGL definition of textures) texel values are specified at vertices and the do-
main of valid texture coordinates is limited by the vertices’ positions in order to
allow for the bilinear interpolation. For a block of size b � b texels, the replication
of boundary texels causes an increase in the amount of data by a factor of about�
b

�
1 � 2 �

b2, e.g., an acceptable memory overhead of 13 % for image blocks of
size 16 � 16 texels.

Neither the mentioned requirements nor the chosen data structures impose any
restriction on multiple references to a single data block. In particular, it is useful
to always include an empty data block, which is referenced (at least) by all cells
of the coarse mesh outside the domain of the texture. All texels of the empty data
block are set to an empty texel value, which depends on the particular application.
For color images this value is usually the background’s color or a completely
transparent color. As the empty data block is perfectly homogeneous, it may be
stored with the minimum resolution, i.e., the minimum block size.

Before presenting one particular way of computing the index data and packed
data, the sampling of adaptive textures and its implementation is discussed in the

5.3. ADAPTIVE VOLUME TEXTURES 127

(a) (b) (c)

Figure 5.13 Decomposition of a 3 � 3 mesh into four blocks. Bilinear interpola-
tion may be employed within the gray regions. (a) The original mesh. (b) Decom-
position into four 2 � 2 blocks. Vertices at the blocks’ boundaries are replicated.
(c) Packing of the four blocks into one 4 � 4 mesh.

next two sections since the efficient sampling of adaptive textures is the most
important requirement for the chosen representation.

Sampling of Adaptive Textures

A texture lookup in an adaptive texture at texture coordinates
�
s
 t � (see also Fig-

ure 5.14) is performed in five steps:

1. determination of the cell of the index data that includes the point
�
s
 t � ;

2. computation of the coordinates
�
so
 to � corresponding to the origin of this

cell;

3. lookup of the index data for this cell, i.e., of the associated scale factor m
and the origin

�
s �o
 t �o � of the data block in the packed data;

4. computation of the coordinates
�
s �
 t � � in the packed data corresponding to�

s
 t � in the index data; and

5. lookup and interpolation of the actual texture data at
�
s �
 t � � in the packed

data.

The dimensions of the index data are denoted by ns and nt , i.e., there are ns
� nt

cells in the coarse mesh of the upper level of the adaptive texture’s representation;
n �s and n �t are the dimensions of the packed data, i.e., all data blocks are packed
into a mesh of n �s � n �t texels. Additionally, the maximum resolution of a data
block is defined by a maximum size of bs

� bt texels. Note that replicated texels
are included in bs and bt , e.g., the data blocks of Figure 5.13c are of size 2 � 2

128 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

� �
so
 to �

� �
s
 t �1

0
0 1

1

0
0 1

� �
s �o
 t �o �

� �
s �
 t � �

(a) (b)

Figure 5.14 Texture lookup in an adaptive texture for texture coordinates s and
t. (a)

�
s
 t � specifies a cell of the index data, the origin of which is denoted by�

so
 to � . (b)
�
so
 to � corresponds to the origin

�
s �o
 t �o � of a packed data block and�

s
 t � corresponds to a point
�
s �
 t � � in that data block.

although the area for interpolation is only of the size of one texel, or in general of�
bs 	 1 � �

�
bt 	 1 � texels. The scale factor m will be set to 1 for this maximum

resolution. These definitions are particularly convenient if the adaptive texture is
derived from a uniform texture image of size

�
ns
�
bs 	 1 � � �

�
nt
�
bt 	 1 � � because

the maximum size of a data block is limited to bs
� bt in this case.

With these definitions the origin
�
so
 to � of the cell including the point

�
s
 t �

can be computed by

so � �
s ns �
ns

and to � �
t nt �
nt

 (5.1)

where the floor function
�
x � gives the largest integer less than or equal to x. The

scale factor m and the origin
�
s �o
 t �o � of the corresponding packed data block are

given as functions of
�
so
 to � . Thus, the texture coordinates

�
s �
 t � � in the packed

data can be computed by

s � � s �o � �
s 	 so � mns

�
bs 	 1 �
n �s and (5.2)

t � � t �o � �
t 	 to � mnt

�
bt 	 1 �
n �t
 (5.3)

i.e., the offset
�
s
 t � 	 �

so
 to � is scaled with m and two additional factors, and this
scaled offset is added to the origin

�
s �o
 t �o � . (The reciprocal factors in Equation (2)

and (3) in [34] are incorrect.)

5.3. ADAPTIVE VOLUME TEXTURES 129

These additional factors
�
ns
�
bs 	 1 � � �

n �s and
�
nt
�
bt 	 1 ��� �

n �t stem from the
scaling of all texture coordinates to the range between 0 and 1. In the example
depicted in Figure 5.14, m is 1, ns and nt are 4, bs and bt are 65, n �s is 256, and n �t is
128. Thus, the factor m

�
ns
�
bs 	 1 � � �

n �s equals 1, but the factor m
�
nt
�
bt 	 1 � � �

n �t
equals 2. Although the offsets

�
s
 t � 	 �

so
 to � and
�
s �
 t � � 	 �

s �o
 t �o � in Figure 5.14
appear to be equal on first sight, they are actually different as the coordinate sys-
tem in Figure 5.14b is only half the height of that in Figure 5.14a. The factor�
nt
�
bt 	 1 � � �

n �t � 2 takes care of exactly this difference.

Implementation of Adaptive Texture Sampling

This section discusses an implementation of the texture lookup described in the
previous section on ATI’s Radeon 8500 using the “fragment shader” extension
(see [25]). The two-dimensional texture lookup could also be implemented on
NVIDIA’s GeForce3 with the help of the “texture shader” extension (see [28]);
however, this possibility is not discussed here since the required texture shader
programming is less straightforward.

In the presented fragment shader implementation, the mesh dimensions ns,
nt , n �s, and n �t are restricted to powers of two as these meshes are implemented
with OpenGL textures. In particular, there is one texture of size ns

� nt for the
index data and one texture of size n �s � n �t for the packed data. While the latter
employs bilinear interpolation and contains the actual image data, the texture for
the index data uses nearest-neighbor interpolation and contains for each texel one
pair of coordinates

�
s �o
 t �o � specifying the origin of the corresponding data block in

the texture for the packed data and one scale factor m, i.e., three components per
texel, which can be stored in an RGB texture. Note that the limitation to 8 bits of
precision for the specification of s �o and t �o limits n �s and n �t to a maximum value of
256. The scale factor m is restricted to values of the form 2

� n with 0
�

n
�

7 as
it is also specified by 8 bits. Therefore, the data blocks’ dimensions are restricted
to values of the form 2n �

1 with an integer n greater than or equal to 0, where the
term

�
1 stems from the replication of texels at block boundaries.

A fragment shader program on the ATI Radeon 8500 consists of either one or
two “passes” each consisting of up to six texture sampling and/or texture coordi-
nate routing instructions followed by up to eight arithmetic instructions. Only the
sampling instructions of the second pass may be dependent texture lookups, i.e.,
their texture coordinates may be the results of previous instructions. This makes a
total of four blocks of instructions, which are illustrated in Figure 5.15. The par-
ticular instructions in the four blocks of the proposed fragment shader program
are discussed in the next three paragraphs.

The first block of texture sampling instructions has to fetch the scale factor
m and the coordinates s �o and t �o by one nearest-neighbor lookup in the ns

� nt

130 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

texture coordinates,
constants,

primary & secondary color

temporary
registers

texture
memory

fragment
color

1st pass

2nd pass

sampling & routing

arithmetic

Hdepend.L sampling & routing

arithmetic

Figure 5.15 Scheme of the structure of a two-pass fragment shader program, its
inputs, temporary registers, and the resulting fragment color.

index data mesh at texture coordinates s and t. Additionally, the coordinates so

and to corresponding to the origin of the fetched texel (see Equation (5.1)) may
be computed from s and t by a second nearest-neighbor texture lookup in another
ns

� nt texture containing coordinates
�
i

�
ns
 j �

nt � in the
�
i
 j � -th texel with 0

�
i �

ns and 0
�

j � nt . Alternatively, so and to may be computed separately by two
texture lookups in two one-dimensional textures containing values i

�
ns in the i-th

texel with 0
�

i � ns and j
�
nt in the j-th texel with 0

�
j � nt , respectively.

The following block of arithmetic instructions computes the texture coor-
dinates s � and t � for the lookup in the packed data as described above; see in
particular Equations (5.2) and (5.3). Note that the terms

�
ns
�
bs 	 1 ��� �

n �s and�
nt
�
bt 	 1 � � �

n �t are constant for all texels; therefore, the computation reduces
to one subtraction, two multiplications, and one addition for each coordinate,
which can be performed by four fragment shader instructions since these vec-
tor instructions may affect up to four components (red, green, blue, and alpha).
Moreover, one of the products and the final sum can be evaluated by a single
“MAD” (multiply and add) instruction. However, an additional addition is neces-
sary as the center of the

�
i
 j � -th texel in the n �s � n �t texture is at the coordinates� �

i
�

1
�
2 � �

n �s ��
 � j
�

1
�
2 � �

n �t � ; thus, the constant vector
�
1

� �
2n �s �
 1 � �

2n �t � � has to
be added to

�
s �
 t � � . Furthermore, additional operations are necessary in order

to reduce artifacts stemming from the limited precision of the fragment shader’s
arithmetic. In particular, decreasing m slightly (and at the same time increas-

5.3. ADAPTIVE VOLUME TEXTURES 131

ing
�
1

� �
2n �s ��
 1 � �

2n �t � �) helps to reduce artifacts significantly as this allows us to
restrict the computed coordinates s � and t � to the correct packed data block. How-
ever, these modifications introduce new artifacts by causing additional disconti-
nuities at block boundaries. A strong reduction of these artifacts is to be expected
on future graphics hardware supporting more accurate arithmetic.

The second block of texture sampling instructions employs the coordinates
s � and t � for a bilinearly interpolated texture lookup in the texture containing the
packed data blocks. This completes the computations of the fragment shader pro-
gram. Of course, additional texture lookups and arithmetic instructions are possi-
ble in the second pass, e.g., in order to blend the resulting color with the primary
color and/or with colors resulting from further (standard) texture lookups.

Generation of Adaptive Textures

In order to complete the discussion of two-dimensional adaptive textures, one par-
ticular way of generating them from data defined on uniform meshes is presented
next. If the data is not specified on a uniform mesh but on an unstructured mesh
or in parametric form, it has to be resampled to a uniform mesh in order to apply
the techniques presented in this section. Optimizations will not be discussed since
the generation of an adaptive texture will usually be a pre-processing step.

In addition to the nomenclature introduced above, the dimensions of the orig-
inal uniform mesh are denoted by Ns and Nt . If one of these dimensions is not a
power of two, it has to be increased to the next greater power of two. In this case,
the additional texels should be set to the empty texel value such that the additional
empty regions are encoded efficiently.

The algorithm for generating an adaptive texture consists of the following
steps, which are discussed in detail below (compare also with Figure 5.12):

1. Build a hierarchy of downsampled versions of the original mesh with the
mesh of the i-th level being of size 2

� iNs
� 2

� iNt vertices.

2. Given the maximum data block size bs
� bt introduced above, decompose

the original mesh, i.e., the 0-th level of the hierarchy, into ns
� nt cells of

size bs
� bt using the replication of boundary vertices explained above.

3. For each of the cells of step 2, test whether the data values of the cell are
“sufficiently” close to the empty data value. In this case, mark the cell as
empty; otherwise, determine an “appropriate” scale factor m � 2

� i and copy
a corresponding data block of size

�
m
�
bs 	 1 � �

1 � �
�
m
�
bs 	 1 � �

1 � from
the data of the i-th level of the meshes’ hierarchy.

4. Build a list of data blocks created in the previous step and append an empty
data block, which is referenced by all marked cells.

132 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

5. Ensure consistent block boundaries by modifying the data blocks of neigh-
boring cells such that data on shared boundaries is identical. This may be
performed, for example, with the method proposed by Westermann et al. in
[75]. However, the empty data block must not be modified.

6. Pack all data blocks into a mesh of size n �s � n �t , which represents the packed
data of the adaptive texture.

7. Based on the cells’ references to data blocks established in steps 3 and 4, the
scale factors of step 3, and the positions of the packed data blocks computed
in step 6, assemble the cells’ data in an ns

� nt mesh, which represents the
index data of the adaptive texture.

The downsampling of step 1 should include some filtering in order to mini-
mize approximation errors, e.g., a simple averaging of neighboring vertices may
be employed. The implementation may be simplified by choosing the vertex po-
sitions of a downsampled mesh from the vertex positions of the original mesh. In
this case, it is advantageous to choose dimensions of the form 2n �

1 for Ns and Nt .
Therefore, the size of the i-th mesh should be

�
2

� i � Ns 	 1 � �
1 � �

�
2

� i � Nt 	 1 � �
1 � .

In order to choose appropriate dimensions bs and bt of the cells of step 2, sev-
eral dependencies should be considered: The larger the cells are, the smaller is
the amount of index data and the smaller is the memory overhead due to repli-
cated boundary texels. On the other hand, the data representation becomes more
adaptive with smaller cells, i.e., a larger region of the texture’s domain may be
covered by the memory-efficient empty data blocks and the resolution of individ-
ual cells may be adapted to local features more efficiently. For this reason, the
cells depicted in the illustrative Figures 5.12a and 5.14a are far too large. The op-
timal choice depends not only on the size, shape, and dimensions of the texture’s
domain but also on the particular texture data. Therefore, the cells’ dimensions
should be optimized for each particular application or even for each texture.

In step 3, one possible criterion for data values “sufficiently” close to the
empty data value is a user-specified limit of the L∞-norm (maximum norm) of
the difference between the interpolated data within the cell and the empty data
value. The “appropriate” scale factor m � 2

� i may be determined by calculat-
ing the L∞-norm or the L2-norm (depending on the application) of the difference
between the interpolated data of the 0-th and the i-th level and choosing the maxi-
mum i that results in a norm still smaller than a user-defined limit. Of course, any
other criterion could be employed, e.g., a position-dependent metric.

It should be noted that the proposed algorithm does not produce multiple refer-
ences to data blocks apart from the references to the empty data block. If multiple
references to other data blocks were allowed, it would be far more complicated

5.3. ADAPTIVE VOLUME TEXTURES 133

to guarantee identical data on shared cell boundaries, which are required for con-
tinuous interpolation. Moreover, this requirement is likely to restrict the use of
multiple references to data blocks that feature only constant values; however, these
blocks are already efficiently compressed because strongly downsampled versions
of them are generated in step 3.

Step 6 requires an approximate solution to a variant of the well-known bin-
packing problem. In this context, a simple recursive procedure is sufficient that
fills a rectilinear empty region with blocks of only one size and calls itself recur-
sively for the remaining empty region, which is decomposed into rectilinear parts.
The block size is determined by searching for the largest unpacked block that still
fits into the empty region.

All steps of this algorithm may be generalized to three and more dimensions
without complications. However, the implementation of the texture sampling to
more dimensions is less obvious; therefore, it will be discussed in detail in the next
section. Once more, it should be emphasized that this approach to adaptive texture
mapping appears to be less useful for two-dimensional applications; in particular
because there are more appropriate methods that are based on triangulations of
texture images.

5.3.2 Volume Rendering with Adaptive Volume Textures

Volume data may be rendered with the help of three-dimensional texture mapping
by blending a set of view-plane-aligned, textured slices into the frame buffer as
discussed in Sections 2.3 and 5.1, and illustrated in Figure 2.4b. However, one of
the main problems of this technique is the large amount of texture memory neces-
sary for standard volume textures. Adaptive texture mapping, on the other hand,
compresses the texture data and, therefore, allows us to employ three-dimensional
texture mapping for considerably larger data sets.

The approach discussed in Section 5.3.1 is easily generalized to three dimen-
sions, provided that the graphics hardware supports three-dimensional RGBA tex-
tures. Moreover, one more one-dimensional texture lookup is required in the first
pass of the fragment shader program to determine the three texture coordinates of
the origin of the current voxel in the index data since it is usually not practical to
employ a (possibly large) three-dimensional texture for this purpose.

In Figures 5.16c, a volume rendering of the 512 � 512 � 360 � 2 bytes CT scan
of the Stanford terra-cotta bunny is depicted. In order to generate the adaptive rep-
resentation, the data was first converted to a 5123 � 1 byte volume. Then, most of
the noise was removed before computing the index and packed data in a variant
of the algorithm described above for three-dimensional data. The non-empty cells
of the resulting index data, which is stored in a small 323 RGBA texture, are de-
picted in Figure 5.16a. Figure 5.16b visualizes the packed data blocks, which fit

134 CHAPTER 5. NON-SIMPLICIAL AND NON-ADAPTIVE MESHES

(a) (b) (c)

Figure 5.16 Volume rendering of a 512 � 512 � 360 CT scan with adaptive texture
mapping. (a) Non-empty cells of the 323 index data mesh. (b) Data blocks packed
into a 2563 texture. (c) Resulting volume rendering. (See also Figure C.11 on
page 150 in the color plate section.)

into a 2563 texture with luminance and alpha components requiring 32 MB of tex-
ture memory. A prototypical volume renderer based on the proposed algorithms
achieves a performance of about 6 frames per second for a 512 � 512 image with
about 500 slices on an ATI Radeon 8500 graphics board.

Higher frame rates are possible for smaller images, which are, however, not
appropriate for a volume of virtually 5123 voxels. As mentioned above, it appears
to be impossible to remove all rendering artifacts at block boundaries on current
hardware. In Figure 5.16c, these artifacts manifest themselves as rather large,
lighter rings.

Margaret: So what’s it like?
David: What?

Margaret: Out there.
David: Well, it’s ... it’s louder, and ... scarier, I guess.

And it’s ... a lot more dangerous.
Margaret: Sounds fantastic.

Dialog from the movie Pleasantville

Chapter 6

Geometrically Unpleasant Meshes in
General

One result of this work is the identification of geometrically unpleasant features
in basically any kind of mesh — at least with respect to volume visualization. This
implies that there is probably no perfectly pleasant mesh for volume visualization.
However, the existence of such a mesh is not very relevant since the decision for
a particular mesh type is seldomly determined by the requirements of the visu-
alization process in real-life applications. Thus, direct volume visualization will
always have to deal with a variety of meshes, which implies the need for a variety
of algorithms for different kinds of meshes with different, more or less unpleasant
features.

Several of these volume visualization algorithms have been discussed in the
previous chapters with a special emphasis on the restrictions on the geometry of
the visualized meshes. For some of these algorithms it was demonstrated how to
overcome particular restrictions (corresponding to particular unpleasant features
of meshes) and, therefore, how to apply an algorithm to a larger class of meshes.
In several cases, a generalization was not possible but new algorithms had to be
developed in order to apply at least the underlying concepts of an algorithm to
other classes of meshes. It is very likely that there are many more well-known
algorithms for volume visualization that are overly restrictive with respect to the
kinds of meshes they can process. Therefore, research on the generalization of
volume visualization algorithms and concepts appears to be a particularly promis-
ing area for future research in volume visualization. In fact, it is one of the main
goals of this work to suggest and motivate more research in this direction.

135

136 CHAPT. 6. GEOMETRICALLY UNPLEASANT MESHES IN GENERAL

Of course, there are several reasons for the lack of more general algorithms and
concepts: Research in volume visualization focuses (too?) often on specific appli-
cations and, therefore, on particular kinds of meshes without a strong motivation
to generalize algorithmic solutions. Moreover, the generalization of algorithms
and their prototypical implementations often requires considerably more effort
and resources than specific solutions. The generalization of a underlying concept
is often even more difficult to achieve. Furthermore, restrictions of volume visu-
alization algorithms to certain kinds of meshes are (almost traditionally) played
down in publications, thereby indirectly hindering the subsequent publication of
more general solutions, which are often less efficient. On the other hand, this work
led to several successful publications (in particular [18, 31, 32, 34, 35, 56, 69])
proving that research on this subject is definitely worthwhile.

Since the generalization of algorithms for volume visualization is a necessar-
ily unlimited research topic, it was certainly not possible to cover it completely
in this work. Thus, there are many known (and unknown!) further problems; a
selection is given in Section 6.3. In order to help solving these problems, the fol-
lowing Section 6.1 summarizes the solutions proposed in the previous chapters,
and Section 6.2 tries to generalize the ideas that led (or could have led) to these
algorithms. More specifically spoken, several problem-solving strategies and their
applications in this work are presented in order to demonstrate in which way these
abstract strategies may be (and actually were) helpful for the development of al-
gorithms for direct volume visualization.

6.1 Proposed Solutions

This section briefly summarizes the new algorithms presented in this work since
these solutions (and their development) serve as examples for the problem-solving
strategies discussed in Section 6.2.

simplicial meshes

�

trivial

�

cell triangulation

zoo meshes

�
resampling

�

cell triangulation

�

trivial

uniform meshes

�
trivial

rectilinear meshes

�
trivial

curvilinear meshes

Figure 6.1 Trivial and common conversions between different kinds of meshes.
(See Section 2.6 for a description of these meshes.)

6.1. PROPOSED SOLUTIONS 137

Although the proposed solutions generalize previously published algorithms,
they are usually restricted to either simplicial or uniform meshes. Uniform meshes
are of particular interest because of their widespread use and the hardware-support
by means of three-dimensional textures, while simplicial meshes offer the possi-
bility of a continuous, piecewise linear interpolation. Moreover, many meshes
are easily converted to simplicial meshes by triangulating (i.e., tetrahedralizing in
three dimensions) all cells; see Figure 6.1, which summarizes trivial and common
conversions between the kinds of meshes introduced in Section 2.6. Note that the
direct conversions of rectilinear and curvilinear meshes to simplicial meshes by
cell triangulation are implied by the trivial conversions to zoo meshes.

Figure 6.2 organizes the new algorithms presented in this work according to
the kind of processed mesh (simplicial or uniform) and the kind of geometrically

unpleasant
features of simplicial meshes ... uniform meshes

... individual non-uniform cells non-simplicial cells
cells � no native hardware- � no linear interpolation

support within cells
� pre-integrated cell � pre-integration not

projection (3.1) applicable
� hardware-based � texture-based pre-

ray casting (3.3) integrated volume
rendering (5.1)

� critical points not
only at vertices

� topology-guided
downsampling (5.2)

... groups of visibility cycles non-adaptive resolution
cells � cell sorting for � adaptive volume

cyclic meshes (4.3) textures (5.3)
� cell projection for

cyclic meshes (4.4)

... the mesh’s non-convex boundary non-adaptive boundary
boundary � edge collapses in � adaptive volume

non-convex meshes textures (5.3)
(4.2)

Figure 6.2 New solutions proposed in this work (in boldface; references to the
corresponding sections are given in parentheses).

138 CHAPT. 6. GEOMETRICALLY UNPLEASANT MESHES IN GENERAL

unpleasant feature, which led to the development of each algorithm. The em-
ployed classification of geometrically unpleasant features distinguishes between
features associated with the geometry of individual cells (here: a non-uniform
or non-simplicial shape), the geometry of groups of cells (here: the existence of
visibility cycles or of a non-adaptive resolution), and the geometry of the mesh’s
boundary (here: a non-convex or non-adaptive shape).

6.2 Problem-Solving Strategies

Before discussing particular problem-solving strategies and their applications to
direct volume visualization some remarks are in order: The strategies mentioned
in this section were chosen because they turned out to be useful in this work —
or at least could have been useful. Thus, it is no coincidence that there is an ex-
emplary application for each of them in this work. Most strategies were taken
from [41], but no attempt was made to track references to the original publica-
tions. Usually, a single strategy is not sufficient to solve a problem, but a couple
of strategies have to be combined to develop a solution. Also note that — regard-
less of the chosen strategy — it is always reasonable to seek help in the form of
publications, experts, or available software implementations; publications from
other subjects and/or disciplines are sometimes of particular interest. It should
also be noted that strategies to find an optimal solution or to find a solution in
optimal time were not included.

The strategies are grouped (compare [41]) into strategies helping to under-
stand (Section 6.2.1), simplify (Section 6.2.2) and actually solve (Section 6.2.3)
problems. Of course, the power of problem-solving strategies is limited. In fact,
many algorithms (including several of the algorithms presented in this work) had
to evolve slowly over time or were based on accidents, misunderstandings, or sud-
den inspirations. In other words, there is no guarantee that the following strategies
lead to a good — or any — solution; however, they usually serve as a good starting
point.

6.2.1 Understanding the Problem

The first step in solving a serious problem should be to gain a thorough under-
standing of it. This may include

� isolating,

� clarifying,

� formulating,

6.2. PROBLEM-SOLVING STRATEGIES 139

� defining, and

� visualizing

the problem. Often it is helpful to

� explain the problem to someone else,

� think of specific examples and extreme cases,

� imagine oneself to be part of the problem or its solution, or to

� search for key elements.

In order to understand the nature of a geometrically unpleasant feature of a
mesh, it might be helpful to answer questions like:

� Why, exactly, is a particular mesh unpleasant?

� In what kind of meshes does this unpleasant feature occur? (If there are
meshes in which it does not occur: Why? Are there any analogous features
in these meshes?)

� Is it a problem of a specific algorithm or its implementation? (Is it a prob-
lem of the algorithm’s assumptions? Its time or memory efficiency? The
available hardware-support?)

� What are the worst-case and the expected consequences? (How relevant is
the problem?)

For example, since the publication of [56] it was well understood how to ap-
ply pre-integrated classification (see Section 2.5.1) to tetrahedral meshes (see Sec-
tion 3.1), but it was not obvious how to use pre-integrated classification for uni-
form meshes and in particular texture-based volume rendering. The problem is
the assumption of a piece-wise linear interpolation in tetrahedral meshes (see Sec-
tion 2.7.3), which is not valid for uniform meshes as their cells are not simplicial.

Based on this insight, the obvious solution would be to convert any uniform
mesh into a tetrahedral mesh by decomposing each cubic cell into five tetrahedra
(for an example of this approach see Section 5.2) and employ pre-integrated cell
projection as discussed in Section 3.1 for the volume rendering. However, this
approach leads to serious performance problems as a rather small data set of 2563

voxels would already correspond to 83,886,080 tetrahedra — far too many for a
real-time interactive volume visualization based on cell projection.

A deeper understanding of the problem led to the conclusion that the missing
piece-wise linear interpolation only impedes an exact ray integration. However,

140 CHAPT. 6. GEOMETRICALLY UNPLEASANT MESHES IN GENERAL

this possibility is usually already excluded by the discretized evaluation of the ray
integral employed in texture-based volume rendering. Because of the associated
discretization error, it is often legitimate to assume an approximately linear in-
terpolation between samples. This realization led to texture-based pre-integrated
volume rendering as presented in Section 5.1 and published in [18].

6.2.2 Simplifying the Problem

Many problems are much easier to solve if they are simplified first. This sec-
tion discusses three popular strategies for this task and several applications in this
work.

Redefining the Problem

Reformulating a problem or taking a different look at a problem may already help
to solve it (or at least to gain a better understanding of it). However, redefining
a problem usually implies an even deeper change of perspective, which often has
better chances of helping to solve a problem.

The mentioned example of pre-integrated classification for uniform meshes
(see Section 5.1) also serves as an example of a redefined problem: Instead of
projecting cubic cells (as suggested by pre-integrated cell projection; see Sec-
tion 3.1), ray segments between samples are pre-integrated in order to exploit the
advantages of texture-based volume rendering.

Another example is topology-guided downsampling discussed in Section 5.2:
As there is no topology-preserving downsampling of uniform meshes, the prob-
lem was redefined — in this case relaxed — to an approximative preservation of
critical points.

Generalizing the Problem

Generalizing a problem usually means to make it worse. However, whenever there
is a solution available for the more general problem, generalizing a problem might
directly lead to a solution.

For example, one very popular approach to direct volume visualization of
curvilinear meshes is to forget about the structure of a curvilinear mesh and con-
vert it to a tetrahedral mesh by decomposing the cells into tetrahedra. Thus, the
specific connectivity of a curvilinear mesh cannot be exploited in the volume vi-
sualization algorithm and, therefore, one might expect that the task of volume vi-
sualization becomes more difficult. However, cell projection algorithms for tetra-
hedral meshes (see Section 3.1) work very well for the converted meshes, while it

6.2. PROBLEM-SOLVING STRATEGIES 141

appears to be difficult to exploit the particular structure of curvilinear meshes for
the purpose of volume visualization.

Dividing the Problem

One of the classical approaches in problem solving is to split a difficult problem
into several less difficult problems. (A special case of this approach is the concept
of “divide and conquer” algorithms.)

Several examples for this strategy can be found in this work, e.g., the problem
of projecting cyclic meshes is split into the problem of sorting cyclic meshes (Sec-
tion 4.3) and actual projecting visibility cycles (Section 4.4). Topology-guided
downsampling (Section 5.2) is another example: The problem of preserving as
much of the topology of a scalar field as possible is divided into the computation
of critical points and an algorithm for the selection of downsampled values that
tends to preserve critical points.

A special case of this strategy is to divide a problem into the task of finding
any solution and the optimization of this solution. For example, texture-based pre-
integrated volume rendering (Section 5.1) improves image quality considerably
but the costly pre-integration of transfer functions was a serious drawback until
the acceleration of the pre-integration discussed in Section 2.5.2 was discovered.

Another popular variant of dividing algorithmic problems is to find an algo-
rithm for special cases and then generalizing the solution. As mentioned before,
many of the algorithms discussed in this work are examples for this strategy as
they generalize existing algorithms to larger classes of meshes.

6.2.3 Solving the Problem

In practice, it is often difficult to distinguish between understanding, simplifying,
and actually solving a problem. In fact, the classification does not only depend on
the problem itself but also on the point of view taken by the problem solver. Thus,
there is definitely some overlap between the following four strategies for actually
solving a problem and the simplification discussed in the previous section.

Directly Attacking the Problem

Directly attacking a problem is (and probably should be) the most common and
usually the first approach in problem solving. As the resulting algorithmic so-
lutions usually lack a certain elegance, they are sometimes qualified as “naive”,
“brute-force”, or “standard” solutions. This, however, should not hinder anyone
from employing them if they are appropriate.

142 CHAPT. 6. GEOMETRICALLY UNPLEASANT MESHES IN GENERAL

The most important supplementary strategy for this method is to seek help, in
particular from experts and published literature: If there is a direct solution to a
particular (not too obscure) problem, then this solution has probably been pub-
lished before and — equally important — it may probably be found by searching
for the problem.

For example, the problems of sorting and projecting visibility cycles (Sec-
tions 4.3 and 4.4) were solved long before this work for visibility cycles formed
by polygons instead of tetrahedra. Thus, the problem of sorting and projecting
cyclic tetrahedral meshes was reduced to an adaptation of these published solu-
tions.

Another example is the implementation of ray casting algorithms using pro-
grammable graphics hardware (Section 3.3). Ray casting is a well established
technique for direct volume visualization without hardware-acceleration; see [22].
Thus, an implementation of these algorithms using graphics hardware is anything
but far-fetched. The difficulty is just that graphics hardware has not been flexible
enough for this kind of algorithms before the advent of programmable graphics
hardware. In fact, it is likely that the enormous progress of graphics hardware
development creates exactly this kind of situation for a lot more algorithms in
computer graphics.

Avoiding the Problem

Avoiding problems is in many cases much more effective than dealing with them.
In the context of developing algorithms for direct volume visualization of geomet-
rically unpleasant meshes, avoiding such meshes means to convert them to more
pleasant meshes before visualizing them. Although the conversion itself might be
an extremely difficult problem, the fundamental advantage of this strategy is that
the volume visualization algorithm does not need any modification at all.

Examples include resampling of unstructured meshes (Section 3.2), convexifi-
cation of non-convex meshes (Section 4.1), or the conversion of cyclic into acyclic
meshes by splitting particular cells, which was not discussed in this work.

Masking the Problem

Masking or hiding a problem is similar to by-passing it or finding a work-around.
Usually, this strategy implies a very specific treatment of a problematic case such
that it may be processed without difficulties. The difference with avoiding the
problematic case is that the problem still exists and requires particular treatment.
However, this treatment is usually very localized and on a rather low level, such
that the (larger) rest of the solution does not need to take care of it.

6.3. FURTHER PROBLEMS 143

For example, the virtual tetrahedralization utilized for topology-guided down-
sampling (Section 5.2) hides the cubic shape of the cells, such that the rest of the
algorithm works on a uniform mesh in the same way it would work on a tetrahe-
dral mesh.

A less obvious example is texture-based volume rendering with object-aligned
slices (Section 2.3): By choosing particular slice directions, the problem of three-
dimensional texture lookups is masked and appears to the graphics hardware as a
problem of two-dimensional texture lookups.

Another example of on-the-fly masking is provided by adaptive volume tex-
tures (Section 5.3): While they are sampled very similarly to usual volume tex-
tures, i.e., by the specification of three texture coordinates, their internal represen-
tation overcomes some important disadvantages of traditional volume textures.

Ignoring the Problem

Ignoring a problem usually means to accept its unpleasant consequences. Al-
though this approach does not appear to be very attractive, it can be very effective
if the consequences are unimportant.

For example, the approximation error caused by assuming a linear interpola-
tion in uniform meshes for texture-based pre-integrated volume rendering (Sec-
tion 5.1) is often acceptable because of the discretization error of texture-based
volume rendering. Another example would be to accept the incorrect rendering of
visibility cycles of cyclic meshes, as these cycles occur rarely in real-life applica-
tions and the resulting artifacts are often hardly visible.

6.3 Further Problems

In order to conclude this chapter, some of the problems of direct volume visualiza-
tion of geometrically unpleasant meshes that are not covered by this work should
be mentioned.

First of all, a general solution to all problems stemming from any of the men-
tioned unpleasant features is usually not available. For example, the discussion
of non-simplicial meshes in Chapter 5 is limited to uniform meshes, while the
discussion of non-uniform meshes in Chapter 3 covers only meshes that can be
converted to simplicial meshes. Moreover, there is hardly any reason to assume
that the solutions proposed in this work are in any sense optimal.

Following the classification employed in Figure 6.2, several unpleasant geo-
metric features of meshes that were not discussed in this work are easily identified.
For example, further unpleasant features that are associated with the geometry of
individual cells include: badly shaped cells (e.g., so-called “slivers”, see for exam-

144 CHAPT. 6. GEOMETRICALLY UNPLEASANT MESHES IN GENERAL

ple [10]), polyhedral cells (see for example [5]), and cells with non-planar faces
(see for example [45]).

Another unpleasant feature associated with the geometry of groups of cells
are “unfair” intersections of cells, i.e., intersections of two cells that are neither a
shared face, nor a shared edge, nor a shared point, e.g., so-called “T-vertices”.

Also, particular problems of hierarchical and hybrid meshes are not covered in
this work. Moreover, the complete topic of mesh generation, e.g., from meshless
point data, is out of this work’s scope.

George: So what’s gonna happen now?
Betty: I don’t know.

Do you know what’s going to happen now?
George: No. I don’t.

Mr. Johnson: I guess I don’t either.

Dialog from the movie Pleasantville

Jennifer: We’re supposed to be in color!

Quote from the movie Pleasantville

Color Plates

(a) (b)

Figure C.1 Visualization of a synthetic data set with non-linear transfer functions.
(a) Pre-integrated classification with a three-dimensional texture of dimensions
64 � 64 � 64 (1 MB). (b) Approximative pre-integrated classification with a two-
dimensional texture of dimensions 256 � 256 (256 KB). (See also Figure 3.3 on
page 66.)

145

146 COLOR PLATES

(a) (b)

Figure C.2 Textures for projected tetrahedra with pre-integrated classification.
The horizontal (texture) coordinate is s f , the vertical coordinate is sb. Black pix-
els in these images correspond to completely transparent texels. (a) The texture
employed for the semi-transparent volume in Figure 3.11b. (b) In this variant the
integration is stopped at the isovalues, which correspond to opaque isosurfaces.
(See also Figure 3.5 on page 68.)

(a) (b)

Figure C.3 (a) Several isosurfaces extracted from the data set shown in Figures
3.3a and 3.3b. (b) Smooth combination of (a) with Figure 3.3b. (See also Fig-
ure 3.9 on page 73.)

COLOR PLATES 147

(a) (b)

Figure C.4 These two-dimensional textures of dimensions 256 � 256 were used
to render the Bluntfin data set depicted in Figure 3.11b. The horizontal (texture)
coordinate is s f , the vertical coordinate is sb. Back face triangles were textured
with the image in (a), while the texture in (b) was employed for the front face
triangles. (See also Figure 3.10 on page 74.)

(a) (b)

Figure C.5 (a) Visualization of the opacity of the three-dimensional texture that
corresponds to the two-dimensional texture in Figure 3.5b. The additional dimen-
sion parameterizes the length of the viewing ray within a tetrahedral cell. The
isosurface represents opacity values of 0.25. (b) Visualization of the Bluntfin data
set with three isosurfaces mixed with projected tetrahedra. (See also Figure 3.11
on page 75.)

148 COLOR PLATES

(a) (b)

Figure C.6 (a) A visibility cycle formed by three tetrahedra. (b) Volume render-
ing of the tetrahedra depicted in (a). (See also Figure 4.21 on page 109.)

(a) (b) (c)

Figure C.7 (a) An isosurface extracted from a 128 � 128 � 60 CTA volume data
set. (b) Same isosurface extracted from a mesh downsampled to dimensions 32 �

32 � 15 with averaging downsampling. (c) Same as (b) with topology-guided
downsampling. (See also Figure 5.9 on page 121.)

COLOR PLATES 149

(a) (b) (c)

Figure C.8 (a) Isosurface extracted from the original 256 � 256 � 110 mesh.
(b) Same isosurface extracted from a mesh of dimensions 64 � 64 � 28 obtained
by averaging downsampling. (c) Same as (b) but using topology-guided down-
sampling. (See also Figure 5.10 on page 122.)

(a) (b) (c)

Figure C.9 (a) An isosurface extracted from a CT scan of a bonsai. (b) Same
isosurface but extracted from a mesh of dimensions 32 � 32 � 16 obtained with
averaging downsampling. (c) Same as (b) with topology-guided downsampling.
(See also Figure 5.11 on page 123.)

150 COLOR PLATES

1
8

212 � 33

1
4

195 � 33
1

65 � 0 1
8

212 � 33

1
8

212 � 33

1
8

212 � 33

1
8

212 � 33
1

130 � 0
1
2

0 � 65
1

0 � 0 1
8

212 � 33

1
2

66 � 65

1
2

195 � 0 1
2

33 � 65

1
8

212 � 33

1
8

212 � 33

127

0
0 255

(a) (b)

Figure C.10 Representation of adaptive textures. (a) Index data: scale factors
and coordinates of packed data blocks are stored for each cell of a 4 � 4 mesh rep-
resenting the whole texture, which is included for the purpose of illustration only.
(Actual coordinates are between 0 and 1.) (b) Packed data: the data blocks packed
into a uniform mesh of 256 � 128 texels. The blocks’ frames are for illustration
purposes only. (See also Figure 5.12 on page 126.)

(a) (b) (c)

Figure C.11 Volume rendering of a 512 � 512 � 360 CT scan with adaptive tex-
ture mapping. (a) Non-empty cells of the 323 index data mesh. (b) Data blocks
packed into a 2563 texture. (c) Resulting volume rendering. (See also Figure 5.16
on page 134.)

Bibliography

[1] C. L. Bajaj, I. Ihm, and S. Park. Compression-Based 3D Texture Mapping
for Real-Time Rendering. In Graphical Models, 62(6):391-410, 2000.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Visualization of Scalar Topol-
ogy for Structural Enhancement. In Proceedings Visualization ’98, pages
51-58, 1998.

[3] C. L. Bajaj and D. R. Schikore. Topology Preserving Data Simplification
with Error Bounds. Computers & Graphics, 22(1):3-12, 1998.

[4] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from Compressed
Textures. In Proceedings SIGGRAPH 96, pages 373-378, 1996.

[5] J. Bennet, R. Cook, N. Max, D. May, and P. Williams. Parallelizing a High
Accuracy Hardware-Assisted Volume Renderer for Meshes with Arbitrary
Polyhedra. In Proceedings 2001 Symposium on Parallel and Large-Data Vi-
sualization and Graphics, pages 101-106, 2001.

[6] J. F. Blinn. Jim Blinn’s Corner — Compositing, Part I: Theory. IEEE Com-
puter Graphics and Applications, 14(5):83-87, 1994.

[7] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomo-
graphic Reconstruction Using Texture Mapping Hardware. In Proceedings
1994 Symposium on Volume Visualization, pages 91-98, 1994.

[8] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All Dimen-
sions. In Proceedings ACM-SIAM Symposium on Discrete Algorithms 2000,
pages 918-926, 2000.

[9] B. Chazelle, L. Palios. Triangulating a Nonconvex Polytope. Discrete &
Computational Geometry, 5:505-526, 1990.

[10] S.-W. Cheng, T. K. Dey, H. Edelsbrunner, M. A. Facello, and S.-H. Teng.
Sliver Exudation. Journal of the ACM, 47(5):883-904, 2000.

151

152 BIBLIOGRAPHY

[11] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, R. Scopigno. Simplifica-
tion of Tetrahedral Meshes with Accurate Error Evaluation. In Proceedings
Visualization 2000, pages 85-92, 2000.

[12] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the Optimization of
Projective Volume Rendering. In R. Scateni, J. van Wijk, and P. Zanarini
(editors), Visualization in Scientific Computing ’95, pages 58-71. Springer-
Verlag, 1995.

[13] J. Comba, J. T. Klosowski, N. Max, J. S. B. Mitchell, C. T. Silva, and
P. L. Williams. Fast Polyhedral Cell Sorting for Interactive Rendering of
Unstructured Grids. In Computer Graphics Forum (Proceedings EURO-
GRAPHICS ’99), 18(3):369-376, 1999.

[14] R. Cook, N. Max, C. Silva, and P. Williams. Efficient, Exact Visibility Or-
dering of Unstructured Meshes. Lawrence Livermore National Laboratory
technical report UCRL-JC-146582, 2002.

[15] J. Danskin and P. Hanrahan. Fast Algorithms for Volume Ray Tracing. In
Proceedings 1992 Workshop on Volume Visualization, pages 91-98, 1992.

[16] T. K. Dey, H. Edelsbrunner, S. Guha, and D. V. Nekhayev. Topology Preserv-
ing Edge Contraction. Publ. Inst. Math. (Beograd) (N.S.), 66:23-45, 1999.

[17] H. Edelsbrunner. An Acyclicity Theorem for Cell Complexes in d Dimen-
sions. Combinatorica, 10(3):251-260, 1990.

[18] K. Engel, M. Kraus, and T. Ertl. High-Quality Pre-Integrated Volume Ren-
dering Using Hardware-Accelerated Pixel Shading. In Proceedings Graph-
ics Hardware 2001, pages 9-16, 2001.

[19] R. Farias, J. S. B. Mitchell, and C. T. Silva. ZSWEEP: An Efficient and Exact
Projection Algorithm for Unstructured Volume Rendering. In Proceedings
Volume Visualization and Graphics Symposium 2000, pages 91-99, 2000.

[20] H. Fuchs, Z. M. Kedem, and B. Naylor. Predetermining Visibility Priority
in 3-D Scenes. In ACM Computer Graphics (Proceedings SIGGRAPH ’79),
13(2):175-181, 1979.

[21] I. Fujishiro, T. Azuma, and Y. Takeshima. Automating Transfer Function
Design for Comprehensible Volume Rendering Based on 3D Field Topology
Analysis. In Proceedings Visualization ’99, pages 467-470, 1999.

BIBLIOGRAPHY 153

[22] M. P. Garrity. Raytracing Irregular Volume Data. ACM Computer Graphics
(Proceedings San Diego Workshop on Volume Visualization), 24(5):35-40,
1990.

[23] T. Gerstner and R. Pajarola. Topology Preserving and Controlled Topology
Simplifying Multiresolution Isosurface Extraction. In Proceedings Visual-
ization 2000, pages 259-266, 2000.

[24] S. Guthe, S. Roettger, A. Schieber, W. Strasser, and T. Ertl. High-Quality Un-
structured Volume Rendering on the PC Platform. In Proceedings Graphics
Hardware 2002, pages 119-125, 2002.

[25] E. Hart and J. L. Mitchell. Hardware Shading with EXT vertex shader and
ATI fragment shader. ATI Technologies, 2001.

[26] T. He, L. Hong, A. Varshney, and S. W. Wang. Controlled Topology Sim-
plification. IEEE Transactions on Visualization and Computer Graphics,
2(2):171-184, 1996.

[27] M. Karasick, D. Lieber, L. Nackman, and V. Rajan. Visualization of Three-
Dimensional Delaunay Meshes. Algorithmica, 19(1-2):114-128, 1997.

[28] M. J. Kilgard (editor), NVIDIA OpenGL Extension Specifications, NVIDIA
Corporation, 2001.

[29] M. J. Kilgard (editor), NVIDIA OpenGL Extension Specifications for the
CineFX Architecture (NV30), NVIDIA Corporation, 2002.

[30] G. Knittel. Using Pre-Integrated Transfer Functions in an Interactive Soft-
ware System for Volume Rendering. In Proceedings Short Presentations
EUROGRAPHICS 2002, pages 119-123, 2002.

[31] M. Kraus and T. Ertl. Cell-Projection of Cyclic Meshes. In Proceedings Vi-
sualization 2001, pages 215-222, 2001.

[32] M. Kraus and T. Ertl. Topology-Guided Downsampling. In K. Mueller and
A. Kaufmann (editors), Volume Graphics 2001, pages 223-234. Springer-
Verlag, 2001.

[33] M. Kraus and T. Ertl. Implementing Ray Casting in Tetrahedral Meshes with
Programmable Graphics Hardware. Technical Report 1/2002, Visualization
and Interactive Systems Group at the University of Stuttgart, 2002.

[34] M. Kraus and T. Ertl. Adaptive Texture Maps. In Proceedings Graphics
Hardware 2002, pages 7-15, 2002.

154 BIBLIOGRAPHY

[35] M. Kraus and T. Ertl. Simplification of Nonconvex Tetrahedral Meshes. In
G. Farin, B. Hamann, and H. Hagen (editors), Hierarchical and Geometrical
Methods in Scientific Visualization, pages 185-196. Springer-Verlag, 2003.

[36] K. Kreeger and A. Kaufman. Mixing Translucent Polygons with Volumes.
In Proceedings Visualization ’99, pages 191-198, 1999.

[37] P. Lacroute and M. Levoy. Fast Volume Rendering Using a Shear-Warp Fac-
torization of the Viewing Transformation. In Proceedings SIGGRAPH 94,
pages 451-458, 1994.

[38] D. Laur and P. Hanrahan. Hierarchical Splatting: A Progressive Refinement
Algorithm for Volume Rendering. ACM Computer Graphics (Proceedings
SIGGRAPH ’91), 25(4):285-288, 1991.

[39] M. Levoy. Display of Surfaces from Volume Data. IEEE Computer Graphics
and Applications, 8(3):29-37, 1988.

[40] M. Levoy and R. Whitaker. Gaze-Directed Volume Rendering. ACM Com-
puter Graphics (Proceedings 1990 Symposium on Interactive 3D Graphics),
24(2):217-223, 1990.

[41] J. Malouff, Fifty Problem Solving Strategies Explained, http://www.
une.edu.au/psychology/staff/malouff/problem.htm,
2002.

[42] N. Max. Optical Models for Direct Volume Rendering. IEEE Transactions
on Visualization and Computer Graphics, 1(2):99-108, 1995.

[43] N. Max, B. Becker, and R. Crawfis. Flow Volumes for Interactive Vector
Field Visualization. In Proceedings Visualization ’93, pages 19-24, 1993.

[44] N. Max, P. Hanrahan, and R. Crawfis. Area and Volume Coherence for Effi-
cient Visualization of 3D Scalar Functions. ACM Computer Graphics (Pro-
ceedings San Diego Workshop on Volume Visualization), 24(5):27-33, 1990.

[45] N. Max, P. Williams, C. Silva. Cell Projection of Meshes with Non-Planar
Faces. In F. H. Post, G. M. Nielson, and G.-P. Bonneau (editors), Data Vi-
sualization — The State of the Art (Proceedings Dagstuhl 2000, Seminar on
Scientific Visualization). Kluwer Academic Publishers, 2002.

[46] M. Meißner, S. Guthe, and W. Straßer. Interactive Lighting Models and Pre-
Integration for Volume Rendering on PC Graphics Accelerators. In Proceed-
ings Graphics Interface 2002, pages 209-218, 2002.

BIBLIOGRAPHY 155

[47] M. Meißner, U. Kanus, G. Wetekam, J. Hirche, A. Ehlert, W. Straßer,
M. Doggett, P. Forthmann, and R. Proksa. VIZARD II: A Reconfigurable
Interactive Volume Rendering System. In Proceedings Graphics Hardware
2002, pages 137-146, 2002.

[48] J. Milnor. Morse Theory. Princeton University Press, 1963.

[49] P. Ning and L. Hesselink. Vector Quantization for Volume Rendering. In
Proceedings 1992 Workshop on Volume Visualization, pages 69-74, 1992.

[50] P. Ning and L. Hesselink. Fast Volume Rendering of Compressed Data. In
Proceedings Visualization ’93, pages 11-18, 1993.

[51] M. Ohlberger and M. Rumpf. Hierarchical and Adaptive Visualization on
Nested Grids. Computing, 59(4):365-385, 1997.

[52] J. Popović and H. Hoppe. Progressive Simplicial Complexes. In Proceedings
SIGGRAPH 97, pages 217-224, 1997.

[53] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan. Ray Tracing on Pro-
grammable Graphics Hardware. ACM Transactions on Graphics (Proceed-
ings SIGGRAPH 2002), 21(3):703-712, 2002.

[54] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive Vol-
ume Rendering on Standard PC Graphics Hardware Using Multi-Textures
and Multi-Stage Rasterization. In Proceedings Graphics Hardware 2000,
pages 109-118, 2000.

[55] S. Roettger and T. Ertl. A Two-Step Approach for Interactive Pre-Integrated
Volume Rendering of Unstructured Grids. In Proceedings Volume Visualiza-
tion and Graphics Symposium 2002, pages 23-28, 2002.

[56] S. Röttger, M. Kraus, and T. Ertl. Hardware-Accelerated Volume and Isosur-
face Rendering based on Cell-Projection. In Proceedings Visualization 2000,
pages 109-116, 2000.

[57] J. Schulze. Personal communication, 2002.

[58] R. Sedgewick. Algorithms, 2nd edition. Addison-Wesley, 1988.

[59] K. S. Shanmugam. Digital and Analog Communication Systems. John Wiley
& Sons, 1979.

[60] R. Shekhar, E. Fayyad, R. Yagel, and J. F. Cornhill. Octree-Based Decima-
tion of Marching Cubes Surfaces. In Proceedings Visualization ’96, pages
335-342, 1996.

156 BIBLIOGRAPHY

[61] P. Shirley and A. Tuchman. A Polygonal Approximation to Direct Scalar
Volume Rendering. ACM Computer Graphics (Proceedings San Diego
Workshop on Volume Visualization), 24(5):63-70, 1990.

[62] C. T. Silva, J. S. B. Mitchell, and P. L. Williams. An Exact Interactive Time
Visibility Ordering Algorithm for Polyhedral Cell Complexes. In Proceed-
ings 1998 Symposium on Volume Visualization, pages 87-94, 1998.

[63] J. Snyder and J. Lengyel. Visibility Sorting and Compositing without Split-
ting for Image Layer Decomposition. In Proceedings SIGGRAPH 98, pages
219-230, 1998.

[64] O. G. Staadt and M. H. Gross. Progressive Tetrahedralizations. In Proceed-
ings Visualization ’98, pages 397-402, 1998.

[65] C. M. Stein, B. G. Becker, and N. L. Max. Sorting and Hardware Assisted
Rendering for Volume Visualization. In Proceedings 1994 Symposium on
Volume Visualization, pages 83-89, 1994.

[66] R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal
on Computing, 1(2):146-160, 1972.

[67] I. J. Trotts, B. Hamann, K. I. Joy, and D. F. Wiley. Simplification of Tetrahe-
dral Meshes. In Proceedings Visualization ’98, pages 287-295, 1998.

[68] M. Weiler and T. Ertl. Hardware-Software-Balanced Resampling for the In-
teractive Visualization of Unstructured Grids. In Proceedings Visualization
2001, pages 199-206, 2001.

[69] M. Weiler, M. Kraus, and T. Ertl. Hardware-Based View-Independent Cell
Projection. In Proceedings Volume Visualization and Graphics Symposium
2002, pages 13-22, 2002.

[70] E. W. Weisstein. Eric Weisstein’s World of Mathematics. http://math-
world.wolfram.com/, 2002.

[71] R. Westermann. The Rendering of Unstructured Grids Revisited. In D. Ebert,
J. M. Favre, and R. Peikert (editors), Data Visualization 2001 (Proceedings
VisSym ’01), pages 65-74. Springer-Verlag, 2001.

[72] R. Westermann and T. Ertl. The VSBUFFER: Visibility Ordering of Unstruc-
tured Volume Primitives by Polygon Drawing. In Proceedings Visualization
’97, pages 35-42, 1997.

BIBLIOGRAPHY 157

[73] R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Vol-
ume Rendering Applications. In Proceedings SIGGRAPH 98, pages 169-
177, 1998.

[74] R. Westermann, C. Johnson, and T. Ertl. A Level-Set Method for Flow Vi-
sualization. In Proceedings Visualization 2000, pages 147-154, 2000.

[75] R. Westermann, L. Kobbelt, and T. Ertl. Real-Time Exploration of Regular
Volume Data by Adaptive Reconstruction of Isosurfaces. The Visual Com-
puter, 15(2):100-111, 1999.

[76] L. Westover. Footprint Evaluation for Volume Rendering. ACM Computer
Graphics (Proceedings SIGGRAPH ’90), 24(4):367-376, 1990.

[77] R. Whitaker, D. Breen, K. Museth, and N. Soni. Segmentation of Biological
Volume Datasets Using a Level-Set Framework. In K. Mueller and A. Kauf-
mann (editors), Volume Graphics 2001, pages 249-263. Springer-Verlag,
2001.

[78] J. Wilhelms and A. van Gelder. A Coherent Projection Approach For Di-
rect Volume Rendering. ACM Computer Graphics (Proceedings SIGGRAPH
’91), 25(4):275-284, 1991.

[79] L. Williams. Pyramidal Parametrics. ACM Computer Graphics (Proceedings
SIGGRAPH ’83), 17(3):1-11, 1983.

[80] P. L. Williams. Visibility Ordering Meshed Polyhedra. ACM Transactions on
Graphics, 11(2):103-126, 1992.

[81] P. L. Williams and N. Max. A Volume Density Optical Model. In Proceed-
ings 1992 Workshop on Volume Visualization, pages 61-68, 1992.

[82] P. L. Williams, N. L. Max, and C. M. Stein. A High Accuracy Volume Ren-
derer for Unstructured Data. IEEE Transactions on Visualization and Com-
puter Graphics, 4(1):37-54, 1998.

[83] C. M. Wittenbrink. CellFast: Interactive Unstructured Volume Rendering.
Proceedings Visualization 1999 Late Breaking Hot Topics, pages 21-24,
1999.

[84] C. M. Wittenbrink, T. Malzbender, and M. E. Goss. Opacity-Weighted Color
Interpolation for Volume Visualization. In Proceedings 1998 Symposium on
Volume Visualization, pages 135-142, 1998.

158 BIBLIOGRAPHY

[85] M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide:
The Official Guide to Learning OpenGL, Version 1.2, 3rd edition. Addison-
Wesley, 1999.

I need to tell you now
As we leave

That it’s much worse
Than you would believe

And no matter how far
You think you’ve been

The beginning
Well, that’s where your are

So I’m using my last match
To put a fire up on every hill
And burn down Pleasantville

Verse from the song Here in Pleasantville by Jakob Dylan

