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Abstract a 

Abstract 

The present work models and characterizes the electronic properties of 

polycrystalline silicon films and solar cells. The analytical and numerical models 

provide limiting values of solar cell efficiency that can be reached with 

polycrystalline silicon. These limit efficiencies are of prime interest for the 

development of the polycrystalline silicon solar cell technology. The electronic 

characterization of laser-crystallized silicon films given in this work, provides a 

complete picture of the electronic transport and recombination parameters, which 

were unknown up to now.  

Polycrystalline silicon solar cells show a grain size dependence of the 

electrical output parameters, regardless of the preparation method. This work 

develops an analytical model considering the recombination in the space-charge 

region and in the base of the cell, finding that the open circuit voltage and the short 

circuit current density are linked by a single parameter, which is the effective 

diffusion length. Additionally, I develop a second model that relates the effective 

diffusion length to the short-circuit current density and the optical generation rate. 

Both models constitute new methods to extract the diffusion length in a solar cell.  

The model is then utilized to explain the grain size dependence of 

polycrystalline silicon solar cells output parameters over six orders of magnitude of 

the grain size. I show that the literature data of 10 % efficient cells with grain sizes 

as small as 10 nm, is explained by a very low grain boundary recombination velocity 

between 100 and 1000 cm/s. The origin of such low recombination velocities is 

proposed in a recent paper, which explains that since all the cells with small grains 

and high efficiency were reported to have a {220} surface texture, the low 

recombination velocity could be explained by a large amount of defect-free [110]-tilt 

grain boundaries. 

A two-dimensional numerical model developed specifically for pin solar cells 

with small grain sizes, confirms that the efficient cells made from small-grained 

films, must have grain boundary recombination velocities in the range of 100-1000 

cm/s, in agreement with the predictions of the analytical model. The simulations 
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also set bounds upon the efficiency of microcrystalline solar cells: with a grain size 

and cell thickness around 1 µm, and a recombination velocity between 100 and 1000 

cm/s, an efficiency of 10 % can be reached using a pin structure (as confirmed by the 

record values found in literature); while a higher limit of 15 % is found for pn cells 

with highly passivated contacts. The higher efficiency limit found in the pn cells is a 

consequence of the Shockley-Read-Hall recombination statistics, which yields lower 

recombination rates at defect levels in the center of the energy gap in a doped 

material, leading to higher open circuit voltages of the pn cells compared to pin 

cells. 

To give a more simple picture of the pin cells modeled numerically, an 

analytical model for the current/voltage characteristics of the pin cell is developed. 

Unlike the models shown up to now in the literature, the current/voltage equation 

of the pin structure developed in this work applies to the whole range of applied 

voltages between short-circuit and open-circuit conditions. I show that this model 

also explains many features observed in fine-grained silicon pin solar cells, and 

establish conceptual bridges between the pin and the pn cell. Thus, this model 

constitutes a new analytical tool to analyze pin solar cells. 

The electrical characterizations of laser-crystallized silicon show that the 

films have p-type conduction, with a strong anisotropy of the conductivity due to the 

elongated shape of the grains. Hall measurements reveal a hole density between 

4x1012 and 4x1013 cm-3, indicating a compensated material, and mobilities between 

12 and 120 cm2/Vs. The conductivity of the undoped films lies at 10-4 S/cm at room 

temperature. The temperature-dependent conductivity reveals a distribution of 

grain boundary barrier heights, which are about 100 meV high. The carrier density 

and the barrier heights, imply a minimum defect density at the grain boundaries of 

1.6x1010 cm-2. The photoconductivity measurements give a mobility-lifetime product 

of 2.3x10-5 cm2/V, a value that implies a high electronic quality of the films, which 

explains the high-quality thin-film transistors obtained with this material. These 

measurements permit to explain the good quality of laser-crystallized silicon, by 

means of fundamental electronic parameters of the films.  
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Furthermore, this work demonstrates that the use of laser-crystallized silicon 

may also be considered for vertical electronic devices, by preparing a test-diode 

structure made from laser-crystallized silicon prepared on a metallic instead of an 

insulating layer. The model of the pin cell fits the current/voltage characteristics of 

the diode with mobility-lifetime products greater than 4x10-6 cm2/V, revealing good 

electronic quality also in these films.  

The high electronic quality of laser-crystallized silicon films revealed by the 

electrical characterizations performed in this work, indicates that the application of 

this material to minority carrier devices, like bipolar junction transistors or solar 

cells, should deserve further investigation. 
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Zusammenfassung 

Die vorliegende Arbeit stellt analytische und numerische Modelle zur 

Beschreibung von Schichten und Solarzellen aus polykristallinen Halbleiter vor. 

Weiterhin werden die elektrischen und optischen Eigenschaften laserkristallisierter 

Siliziumschichten untersucht.  

Grundlagen (Kapitel 2). Die elektrische Modellierung von polykristallinen 

Schichten erfolgt durch die Beschreibung der im Bild 1 dargestellten 

Ladungsträgertransport- und Rekombinationsprozesse an einer Korngrenze. Das 

Banddiagramm an einer Korngrenze (KG) in p-Typ Material zeigt die 

Energieniveaus der Störstellen an der KG, die durch die Unterbrechung der 

Kristallstruktur zwischen den zwei benachbarten Körner hervorgerufen wird.  

 

Bild 1. Dieses Banddiagramm um einer Korngrenze (KG) zeigt die Defektniveaus an der 
Korngrenze, in denen Ladungsträger eingefangen werden. Der Einfang von 
Ladungsträgern verändert die Ladung an der Korngrenze und es führt zu einer 
Bandverbiegung.  

Die Störstellen fangen freie Ladungsträger aus den Bändern ein und bilden 

somit die Korngrenzladung. Diese Ladung führt zur Verbiegung der Bänder, die im 

Bild 1 zu sehen ist. Die entstandene Korngrenzbarriere behindert den Transport 

von Majoritätsladungsträgern von Korn zu Korn (im Bild 1 Löcher). Dieses 

Hindernis erklärt den in der Praxis gemessenen Anstieg des spezifischen 

Widerstands im Vergleich zu einkristallinem Material. Die Korngrenze wirkt 

außerdem als Senke für Minoritätsladungsträger (im Bild 1 Elektronen), die dort 

über die Defektniveaus mit Löchern rekombinieren. Die Korngrenzen stellen also 

im Vergleich zu einkristallinem Material einen zusätzlichen Rekombinationspfad 

EC

EV

EFp

   KG 
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dar. Aufgrund dieses zusätzlichen Rekombinationspfades ist die Diffusionslänge 

von Minoritätsladungsträgern im polykristallinem Material niedriger. Die 

beobachtete Korngrößenabhängigkeit des Wirkungsgrades von Solarzellen spiegelt 

den großen Einfluss der Korngrenzrekombination wieder. 

Modellhafte Beschreibung polykristalliner Solarzellen (Kapitel 3).  Die über 

20 Jahre gesammelte Erfahrung in der Herstellung von polykristallinem Silizium 

stellt einen sehr reichen Datensatz von Solarzellenparametern unterschiedlicher 

Korngröße zur Verfügung. Die Abhängigkeit der Solarzellenparameter von der 

Korngröße ist jedoch bisher nicht vollständig erklärt worden. Bereits vor einigen 

Jahren wurden Solarzellen aus polykristallinem Silizium mit einer Korngröße 

unter 1 µm mit 10 % Wirkungsgrad hergestellt. Diese Rekordwerte sind bei solch 

kleinen Körner schwierig zu verstehen. Diese Arbeit stellt ein Modell vor, das 

Solarzellenparameter von Zellen mit Korngrößen zwischen 10-2 bis 104 µm durch 

eine Korngrenzrekombinationsgeschwindigkeit SGB erklärt. Das Modell zeigt, dass 

die hohen Wirkungsgrade der feinkörnigen Zellen nur mit sehr niederen Werten 

von SGB zwischen 100 und 1000 cm/s zu erklären sind.  

Dieses Modell berücksichtigt die Rekombination von Ladungsträger in der 

Basis und in der Raumladungszone (RLZ) der Zellen. Mit der Annahme, dass die 

Diffusionslänge geringer als die Zelldicke ist, definiere ich eine effektive 

Diffusionslänge Leff, die sowohl die Rekombination in der RLZ als auch in der Basis 

beschreibt. Diese Annahme führt zu einer Gleichung, welche die Leerlaufspannung 

VOC und die Kurzschlussstromdichte JSC mit Leff verbindet. Hiermit erstelle ich also 

eine Methode, um Leff aus VOC und JSC zu extrahieren. Zur Überprüfung dieser 

Methode vergleiche ich die extrahierten Werte von Leff mit direkt aus der 

Quantenausbeute (IQE) extrahierten Literaturdaten. Bild 2 zeigt, dass die mit 

beiden Methoden extrahierten Werte von Leff über einem Intervall von drei 

Größenordnungen von Leff gut übereinstimmen. Die gestrichelten Linien in Bild 2 

stellen die Standardabweichung der Daten von der Geraden y = x dar, die einen 

Faktor 1.3 beträgt. Wegen der in der Praxis leichten Messbarkeit von VOC und JSC, 

bietet diese Methode ein einfaches Verfahren zur Abschätzung von Leff.  
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Bild 2. Dieses Bild zeigt die Übereinstimmung der aus der internen Quantenausbeute 
(IQE) gemessenen Werte der effektiven Diffusionslänge Leff und den aus VOC und JSC 
extrahierten Werten. Die gestrichelten Linien stellen die Standardabweichung der 
Datenpunkte von der geraden y = x dar.  

Kapitel 3 stellt auch ein zweites Modell zur Extraktion von Leff aus JSC und 

der Generationsrate in der Zelle vor. Dieses Modell beruht nicht auf der Kennlinie 

der Zelle, sondern auf der Sammlungsfunktion von Ladungsträgern, die den Beitrag 

von den lichterzeugten Ladungsträgern zu JSC berücksichtigt. 

Des Weiteren benutze ich die vorgestellte Methode zur Extrahierung der 

Diffussionslänge Leff,poly polykristalliner Solarzellen aus Literaturdaten. Hierzu 

erstelle ich eine Sammlung von Werten von VOC und JSC polykristalliner 

Siliziumzellen unterschiedlicher Korngrößen und extrahiere Leff,poly. Die 

Abhängigkeit von Leff,poly mit der Korngröße g ergibt den im Bild 3 dargestellten 

Zusammenhang. Die Datenpunkte zeigen einen Anstieg von Leff,poly mit der 

Korngröße. Die feinkörnigen Zellen mit g < 1 µm, hier durch Dreiecke dargestellt, 

sind pin Zellen; die pn Zellen sind mit Kreisen dargestellt. Die durchgezogenen 

Linien in Bild 3 stammen von einem Modell, das die Abhängigkeit der 

Diffusionslänge Leff,poly mit der Korngröße g beschreibt. Als Parameter benutzt das 

Modell die Rekombinationsgeschwindigkeit SGB an der Korngrenze. Die 

eingetragenen Kurven zeigen, dass die Zellen mit g < 1 µm nur mit SGB < 1000 cm/s 

zu erklären sind, während die grobkörnigeren Zellen meist zwischen 105 < SGB < 107 

cm/s liegen.  
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Ursache für die relativ hohe Wirkungsgrade von bis zu 10 % der feinkörnigen 

Zellen (g < 1 µm) sind demnach die niedrigen Werte von SGB. Eine solch geringe 

Rekombinationsgeschwindigkeit muss durch eine sehr niedrige Dichte von 

Defektniveaus an der Korngrenze gegeben sein. Dies führt zur Vermutung, dass die 

feinkörnigen Zellen besondere strukturelle Korngrenzeigenschaften haben, die eine 

geringe Defektdichte ergeben. 

 

Bild 3. Die aus dem in dieser Arbeit vorgestellten Modell errechneten effektiven 
Diffusionslängen Leff,poly von polykristallinen Silizium-Solarzellen (Datenpunkte) zeigen eine 
Abhängigkeit von der Korngröße g. Zur Korngrößenabhängigkeit wird ein Modell aus der 
Literatur angewandt (Linien), was eine Rekombinationsgeschwindigkeit SGB an der 
Korngrenze annimmt. Aus dem Bild ersieht man, dass die Zellen mit g < 1 µm nur durch 
niedrige Werte von SGB < 103 cm/s zu erklären sind. 

Eine vor kurzem publizierte Arbeit erläutert, dass die feinkörnigen Zellen 

eine Oberflächentextur in der {220}-Richtung zeigen. Dies führt bei dieser 

Publikation zur Annahme, dass viele Körner dieser Schichten [110]-

Kippkorngrenzen haben könnten. Solche Korngrenzen zeigen insbesondere keine 

gebrochenen Bindungen und haben daher eine sehr geringe Dichte von 

Defektniveaus. Diese Überlegung bietet also eine mögliche Erklärung für die 

geringe Werte von SGB.  

Bisher wurde die Rekombination an der Korngrenze durch SGB beschrieben, 

ohne den Zusammenhang zwischen Defektdichte der Korngrenzzustände und 

Rekombination zu erläutern. Kapitel 4 vertieft die Beschreibung der Rekombination 

durch die Untersuchung der Rekombinationsrate an der KG. Die 

Rekombinationsrate ist proportional zu SGB und zur 
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Überschussladungsträgerkonzentration, wobei SGB proportional zur Defektdichte 

sein muss.  

Analytische Modelle für die elektrischen Eigenschaften von Korngrenzen 

(Kapitel 4). In diesem Teil der Arbeit beschreibe ich mit einem eindimensionalen 

Modell eines polykristallinen Halbleiters die Ladung, die Bandverbiegung und die 

Rekombinationsrate an der Korngrenze. Bei Beleuchtung liefert das Modell 

zusätzlich noch die maximale Leerlaufspannung V0
OC, die als Obergrenze für die 

Leerlaufspannung einer Zelle gilt. Diese maximale Leerlaufspannung ist eine 

Funktion der Korngröße, der Defektdichte, der Dotierung NA und der 

Generationsrate G. Bild 4 zeigt die Ergebnisse dieses Modells bei einer Korngröße 

von 1 µm und einer Defektdichte von 1011 cm-2, bei Generationsraten zwischen 0.1 

und 10 Sonnen (1 Sonne = 1020 cm-3s-1). Wir sehen, dass V0
OC mit der Dotierung und 

der Generationsrate zunimmt. Solarzellen mit ausschließlicher 

Korngrenzrekombination müssten also bei Dotierungen NA > 5x1016 cm-3 

Leerlaufspannungen VOC > 0.5 V liefern.  

 

Bild 4. Die maximal erreichbare Leerlaufspannung V0
OC einer Solarzelle aus 

polykristallinem Silizium als Funktion der Dotierung NA und der Generationsrate G; bei 
einer angenommenen Korngröße  von 1 µm und einer Defektdichte von 1011 cm-2. Das 
Modell nimmt an, dass die Ladungsträger ausschließlich an der Korngrenze rekombinieren 
und zeigt eine kontinuierliche Zunahme von V0

OC mit NA. Die Bandverbiegung qVb hat 
dagegen ein Maximum, welches sich mit G verändert. 

Des Weiteren ersehen wir aus Bild 4, dass die Bandverbiegung an der 

Korngrenze qVb ein Maximum bei Dotierungen zwischen 1015 und 5x1016 cm-3 zeigt. 

Die Bandverbiegung verringert sich mit der Lichtintensität aufgrund der 
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Neutralisierung der Korngrenzladung durch die lichterzeugten Ladungsträger. 

Diese Verringerung der Bandverbiegung bedeutet einen leichteren Transport von 

Ladungsträger von Korn zu Korn und eine geringere Anziehungskraft für 

Minoriätsladungsträger hin zur Korngrenze. Am meisten profitieren von dieser 

Eigenschaft dünne Schichten, da hier die Generationsraten am höchsten sind. 

Dieser Fall ist bei feinkörnigen Dünnschichtsolarzellen gegeben.  

Bild 5 zeigt die Zunahme von V0
OC mit der Defektdichte Nt und der Korngröße 

g, bei einer Dotierung NA = 1015 cm-3 und einer Generationsrate G = 1 Sonne. Die 

kontinuierliche Zunahme von V0
OC mit g führt zu zwei wichtigen Aussagen: für eine 

erwünschte Zunahme von der Leerlaufspannung von z.B. VOC = 0.1 V muss man 

entweder die Korngröße g um eine Größenordnung erhöhen, oder die Defektdichte 

NGB um eine Größenordnung verringern. Der ersten Strategie folgen etwa die 

Herstellungsverfahren aus denen die grobkörnigen Zellen mit  g > 1 µm in Bild 3 

stammen. Die zweite Strategie wird durch Zellen mit g < 1 µm verfolgt. Wie ich in 

der vorliegenden Arbeit zeige, hat außerdem eine Erhöhung der Generationsrate G 

den gleichen Effekt wie eine Erniedrigung von NGB um eine Größenordnung. 

Hiermit kann erklärt werden, dass die feinkörnigen Dünnschichtzellen mit hohen 

Generationsraten von 10 Sonnen eine Leerlaufspannung von etwa 550 mV liefern, 

sofern die Defektdichte den Wert NGB = 1011 cm-2 nicht überschreitet. 

 

Bild 5. Die maximal erreichbare Leerlaufspannung V0
OC einer Solarzelle aus 

polykristallinem Silizium als Funktion der Korngröße g und der Dichte an 
Korngrenzdefekten NGB zeigt, dass eine etwaige Zunahme von qV0

OC um 0.1 eV eine 
zehnfach größere Korngröße erfordert, oder eine zehnfach geringere Defektdichte. Die 
Dotierung beträgt in diesem Fall NA = 1015 cm-3 und die Generationsrate G = 1 Sonne. 
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Das eindimensionale Modell nimmt nur unkontaktierte Körner an und 

ermöglicht daher keine Modellierung von Solarzellen. Zur vollständigen 

Beschreibung polykristalliner Solarzellen entwickle ich ein numerisches Modell. 

Numerische Simulation von pin-Solarzellen aus mikrokristallinem Silizium 

(Kapitel 5). Ein numerisches Modell finiter Differenzen in zwei Dimensionen wird 

zur Simulation von pin-Solarzellen erstellt. Hierbei bezeichnet die i-Schicht eine 

sich zwischen zwei hochdotierten Schichten befindender Zwischenschicht, die aber 

auch dotiert sein kann. Die erste Dimension im Simulationsfeld breitet sich in die 

Tiefe der Solarzelle aus (von der Vorder- bis zur Rückseite), während die zweite 

Dimension sich über die Kornbreite erstreckt. Die wichtigste Annahme des Modells 

ist, dass die Korngrenze senkrecht zur Zellenoberfläche steht. An dieser einzigen 

Korngrenze im Simulationsfeld befinden sich Defektniveaus, die einer Shockley-

Read-Hall Rekombinationsstatistik folgen. Außer der Rekombination an der 

Korngrenze, nehme ich auch Volumenrekombination und Rekombination an den 

Kontakten der Zelle an. Die für die Simulationen benötigte Generationsrate wurde 

numerisch für eine Standardstrahlungsleistung von 100 mW/cm-2 bei einem AM1.5 

Sonnenspektrum und mit dem Absorptionskoeffizienten von Silizium berechnet. 

Bild 6 fasst die Ergebnisse der Simulationen durch die Abhängigkeit von 

Leerlaufspannung und Wirkungsgrad von der Dotierung der i-Schicht zusammen. 

Die Kreise gehören zu Simulationsergebnissen bei einer Korngrenzdefektdichte von 

NGB = 1011 cm-2 mit unterschiedlicher Rekombinationsgeschwindigkeit SC an den 

Kontakten.  

Bei niedrigen Rekombinationsgeschwindigkeiten an den Kontakten von SC = 

102 cm/s zeigen die Simulationen einen Anstieg von VOC und η mit der Dotierung 

der i-Schicht bis zu einem Maximum von η = 15 %, das bei einer Konzentration von 

etwa 1018 cm-3 liegt. Dieses Maximum ist auf die bei hohen Dotierungen einsetzende 

Auger-Rekombination im Volumen zurückzuführen. Konzentriert man sich auf die 

Korngrenzeffekte, dann sieht man, dass die Simulationen bei geringem SC mit dem 

eindimensionalen Modell aus Kapitel 4 (graue Kurve in Bild 6) übereinstimmen. 

Die errechnete maximale Leerlaufspannung polykristalliner Solarzellen aus Kapitel 

4, das nur unkontaktierte Körner behandelt, ist somit überprüft worden. 
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Bild 6. Die aus der zweidimensionalen Simulation errechneten Datenpunkte (Kreise) 
zeigen, dass Wirkungsgrade von 10 % in pin-Zellen mit undotierten i-Schichten und bis zu 
15 % bei hohen Dotierungen erreichbar sind. Der Wert η = 15 % kann allerdings nur bei 
mit niedere Rekombinationsgeschwindigkeiten an den Kontakten unter SC = 104 cm/s 
erreicht werden. Die Leerlaufspannungen VOC des eindimensionalen Modells (graue Linie) 
stimmt mit den Simulationen bei niederem SC sehr gut überein.  

Außerdem lässt sich aus den Simulationen errechnen, dass die 

Rekombinationsgeschwindigkeit SGB an der Korngrenze unter 1100 cm/s liegen 

muss, um mit pin-Zellen einen Wirkungsgrad von 10 % zu erreichen (vgl. Sterne in 

Bild 6). Dieses Ergebnis stimmt exakt mit den Vorhersagen des Modells von Leff aus 

Kapitel 3 überein. Hieraus kann gefolgert werden, dass die feinkörnigen 

Rekordzellen aus der Literatur mit 10 % Wirkungsgrad, zwanghaft eine 

Korngrenzdefektdichte unter 1011 cm-2 haben müssen.  

Analytisches Modell für die Kennlinie von pin-Solarzellen (Kapitel 5). In 

diesem Kapitel leite ich analytische Ausdrücke für die Dunkel- und Hellkennlinie 

der pin-Solarzelle her. Die Ergebnisse ergeben eine, in der Literatur bisher nicht 

vorhandene, analytische Darstellung der gesamten Kennlinie von pin-Zellen und 

pin-Dioden. Das Modell ist eindimensional und basiert auf der Lösung der 

Kontinuitätsgleichungen in der i-Schicht. Vereinfachenden Annahmen sind die 

Konstanz des elektrischen Feldes in der i-Schicht, die Flachheit der Quasi-
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Zusammenfassung ix 
Ferminiveaus der Majoritätsladungsträger und die Gleichheit von 

Ladungsträgerlebensdauern und Beweglichkeiten für Elektronen und Löcher. Die 

Dunkelkennlinien zeigen Analogien zur bekannten Kennlinie der pn-Zelle mit 

Rekombination in der RLZ: ist die Diffusionslänge gering, so ergibt sich ein 

Idealitätsfaktor von nid = 1.8, was vergleichbar mit dem Wert nid = 2.0 des 

Rekombinationstromes in der RLZ einer pn-Diode ist. Bei höheren Diffusionslängen 

ist das bei pn-Dioden bekannte Doppeldiodenverhalten zu sehen: bei niederen 

Spannungen ergibt sich ein Idealitätsfaktor nid = 1.8, während bei höheren 

Spannungen der Wert nid = 1.2 vorkommt, was ähnlich zu dem Wert von nid = 1.0 in 

pn-Zellen bei hohen Spannungen ist. Kapitel 5 diskutiert weitere Analogien 

zwischen pn- und pin-Dioden.  

Unter Beleuchtung ergibt das analytische pin-Diodenmodell eine starke 

Abhängigkeit zwischen dem eingebauten elektrischen Feld und dem 

Kurzschlussstrom der Zelle. Die starke Abhängigkeit zwischen Feld und 

Kurzschlussstrom erlaubt eine recht einfache Quantifizierung der feldbedingten 

Ladungsträgersammelwahrscheinlichkeit von pin-Zellen.  

Das neue, analytische pin-Diodenmodell erlaubt auch eine Beschreibung der 

Abhängigkeit des Wirkungsgrades η von pin-Solarzellen und vom Produkt µτ aus 

Beweglichkeit und Lebensdauer. Bild 7 zeigt diese Abhängigkeit bei 

Dünnschichtzellen aus feinkörnigem Silizium (Datenpunkte) und die Anpassung 

durch das Modell mittels zweier verschiedener Zellendicken W. Wie aus Bild 7 zu 

sehen ist, bietet das Modell eine sehr gute Anpassung an die Daten und stellt somit 

die erwünschte analytische Beschreibung der pin-Zelle dar. Dieses Modell dient 

auch im nächsten Kapitel zur Charakterisierung von Test-Dioden aus 

laserkristalliertem Silizium. 
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Bild 7. Die Abhängigkeit des Wirkungsgrades η von pin-Solarzellen vom Produkt µτ aus 
Beweglichkeit und Lebensdauer aus Literaturdaten (Datenpunkte) wird durch das 
analytische pin-Diodenmodell mit zwei verschiedener Zellendicken W gut angepasst 
(Kurven). 

Laserkristallisiertes Silizium (Kapitel 6). Dieses Kapitel befasst sich mit der 

Präparation und der optischen und elektrischen Charakterisierung von laser-

kristallisiertem Silizium. Die oft erreichte hervorragende elektronische Qualität 

dieses Materials ist aus der hohen Feldbeweglichkeit von Feldeffekttransistoren 

bekannt, die aber Bauelement- und Schichteigenschaften zusammenfasst. Die 

elektronischen Eigenschaften des Materials selbst sind aus der Feldbeweglichkeit 

von Feldeffekttransistoren nicht zu extrahieren. Zielsetzung dieses Kapitels ist 

daher eine elektrische Charakterisierung laserkristallisierten Schichten zu bieten, 

die Werte von Transportparametern in den Schichten liefern soll. Messungen des 

Ladungsträgertyps, des Hall-Effekts, der temperaturabhängigen Leitfähigkeit und 

der Photoleitfähigkeit wurden dazu durchgeführt und analysiert. 

Zur Isolierung gegen atomarer Diffusion zwischen den zu kristallisierenden 

Schichten und Substrat werden Silizium-Nitrid Pufferschichten benutzt, auf denen 

die Siliziumschichten deponiert und kristallisiert wurden. Für die elektrischen 

Charakterisierungen werden auf den kristallisierten Schichten Metallkontakte 

aufgedampft. Die Messungen des Leitungstyps ergeben eine leichte p-Typ-

Leitfähigkeit, die auf eine hohe n-Typ-Kompensation durch 

Verunreinigungsdotieratome zurückzuführen ist. Die Schichten zeigen eine starke 

Abhängigkeit der Leitfähigkeit von der Stromrichtung: parallel zur Scanrichtung 

des Lasers, ist die Leitfähigkeit bis zu 100-fach höher als senkrecht zur 

Scanrichtung. Dieses Ergebnis demonstriert, dass der Transport von Majoritäten 
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tatsächlich durch Korngrenzen dominiert ist, weil das Verhältnis von Kornlänge zu 

Kornbreite etwa den Wert 100 zeigt. Die Leitfähigkeit senkrecht zur Scanrichtung 

liegt in der Größenordnung von 10-4 Ω-1cm-1. Der Hall-Effekt liefert Beweglichkeiten 

zwischen 12 und 120 cm2/Vs und eine mittlere Ladungsträgerkonzentration 

zwischen 4x1012 und 4x1013 cm-3. Diese niedrige Konzentration entspricht einer 

Lage des Ferminiveaus tief in der Bandlücke. Aus der Messung der 

temperaturabhängigen Leitfähigkeit ergibt sich folgerichtig, dass das Ferminiveau 

etwa in der Bandlückenmitte sitzt. Die errechnete Bandverbiegung an den 

Korngrenzen liegt bei etwa 120 meV mit einer Barriereninhomogenität von 80 mV. 

Eine solche Bandverbiegung ergibt eine Defektdichte an den Korngrenzen von Nt ≥ 

1.6x1010 cm-2. Diese niedrige Defektdichte spiegelt sich auch in dem hohen Wert des 

µτ-Produkts von µτ = 2.3x10-5 cm2/V aus der Abhängigkeit der Photoleitfähigkeit mit 

der Korngröße wider. Der hohe Wert des µτ-Produkts spricht für eine gute 

elektrische Qualität der Schichten, die sich bisher nur durch die hohen 

Feldbeweglichkeiten der Feldeffektransistoren abschätzen ließ. 

Der letzte Teil des Kapitels 6 beschreibt die Präparation und 

Charakterisierung von Test-Dioden aus laserkristallisierten Siliziumschichten. 

Diese Schichten sind auf einer dünnen Chromschicht kristallisiert, die den 

Rückkontakt der Diode bildet. Die gemessenen Kennlinien lassen sich durch das 

Modell der Kennlinie von pin-Dioden aus Kapitel 5 anpassen und ergeben eine 

eingebaute Spannung von 0.49 V und ein µτ-Produkt von µτ = 4x10-6 cm2/V. Eine 

Übereinstimmung mit den Werten des µτ-Produkts aus der Photoleitfähigkeit ist 

nicht zu erwarten, weil die Test-Dioden nicht auf Silizium-Nitrid, sondern auf einer 

Chromschicht kristallisiert sind. 

Die hier erwähnten Charakterisierungen ergeben zum ersten Mal einen 

vollständigen Blick auf die elektrischen Eigenschaften von laserkristallisiertem 

Silizium. Die hohen Werte des µτ-Produkts weisen darauf hin, dass weitere 

Untersuchungen der Minoritätsladungsträgereigenschaften sinnvoll wären. Solche 

Untersuchungen sollten sich mit der Frage befassen, ob sich laserkristallisiertes 

Silizium ausschließlich für Feldeffektransistoren eignet, oder ob es auch für 

Minoritätsladungsträgerbauelemente wie Solarzellen oder Bipolartransistoren 

geeignet ist.  
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1 Introduction 

Since about 20 years, the market of photovoltaic products shows an annual 

growth of 15-20 % [1], and reached a remarkable 40 % growth in 2001 [2]. Despite 

this high increase of its production volume, photovoltaics is still far from being a 

common energy source. As pointed out by Goetzberger and Hebling [1], the main 

reason for this low market impact of photovoltaics is the high cost of photovoltaic 

modules, and the resulting high price per Watt solar energy.  

About 85 % of the modules produced in the world are based on silicon wafers, 

i.e. on silicon slices cut off from ingots [2]. The ingots require expensive and energy-

intensive preparation processes, requiring 13 KWh/Kg already to reduce silicon 

from quartzite [3] (without counting purification steps). In addition, the process of 

cutting off the wafers is accompanied by a 30 % of material loss [1], rising the cost 

per wafer. Thus, using as less silicon as possible is a mandatory condition to 

fabricate cheap photovoltaic products.  

An additional reason for a low acceptance of wafer-based photovoltaics, is the 

unclear balance between the negative environmental impact associated to the 

fabrication of the silicon wafers, and the environmental relief offered by the module 

in its lifetime. A recent study shows that, if the ingots were obtained using non-

ecological sources of electrical energy, like coal combustion, then the environmental 

relief (in terms of CO2 and SO2 emissions) offered by the photovoltaic module in its 

lifetime would be negligible [4]. Fortunately, silicon is obtained in countries where 

the electricity comes from sources that are less stressful for the environment than 

coal combustion. However, the wafer-based technology still comprises the drawback 

of needing large amounts of non-renewable energy, downgrading the ecological 

value of photovoltaics. 

A possible solution to both, the economical and the ecological shortcomings of 

Si-based photovoltaics, would be to reduce drastically the amount of silicon needed 

for the production of a solar cell [4]. This idea led to thin-film (TF) photovoltaics, 

which uses Si films instead of wafers. The TF technology does not use ingots, it is 
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based on the deposition of silicon onto a substrate from the vapor phase. With a 

thickness between 1 and 20 µm, the films are one to two orders of magnitude 

thinner than the 300 µm thick wafers, achieving the required material saving. 

Therefore, a number of promising techniques to prepare low-cost TF silicon cells, 

like the chemical vapor deposition and the physical vapor deposition, are currently 

under development [5].  

Though material consumption is reduced by TF technologies, the TF 

approach brings up new questions about its usability for low-cost applications. 

Unlike wafers, thin films prepared directly on low-cost substrates are 

polycrystalline. Due to grain boundaries and intra-grain defects, the recombination 

of carriers increases, reducing the electronic quality of polycrystalline Si compared 

to monocrystalline silicon. In order to overcome this problem, the direction followed 

by the research groups was either to:  

1. increase the grain size, reducing the amount of harmful grain 

boundaries per unit volume, or 

2. to reduce the recombination at the grain boundaries without caring 

about the grain size.  

As pointed out by Catchpole et al. [5], approach 1 does not help from the 

economical point of view, because the techniques to increase grain size involve high-

temperature processes that need heat-resistant substrates, which result in 

expensive cells. There is, however, one method that yields large grains using cheap 

substrates: the laser-crystallization method. Even cheap plastic substrates may be 

utilized as support for the silicon film [6]. The laser-crystallization uses a thin film 

of amorphous silicon deposited onto a substrate, which is melted and crystallized by 

a laser pulse. Since the crystallization takes place in a very short time interval, no 

heat-resistant substrate is needed. The resulting TF polycrystalline silicon shows 

excellent properties for applications that use small to medium areas such as TF 

transistors [7]. The application of this technique to large area technologies, such as 

photovoltaics, is still subject of investigations.  

The second approach, based on the reduction of the recombination of carriers 

at grain boundaries, is less intuitive than the first one. By tweaking the preparation 
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conditions, some research groups [8] managed to produce a polycrystalline silicon 

from the vapor phase that shows relatively high open circuit voltages of 553 mV, 

indicating low recombination activity in their films. They even prepared these films 

using low-temperature processes and cheap, large-area glass substrates. Using 

their technique, laboratory-scale cells with 10 % efficiency were prepared a few 

years ago [8], which is a high mark considering the small grain sizes between 10-2 

and 1 µm that result with this technique.  

The first and second approaches, led to films with grain sizes ranging from 

10-2 to 104 µm. There is therefore a considerably large experimental basis to obtain 

several types of TF silicon. However, there is little theoretical knowledge that 

explains the influence of grain size on cell efficiency. It is only understood that, for 

example, the open circuit voltage (and therefore the efficiency) of solar cells 

increases with grain size (See Refs. [9] and [10]). But the model of Ref. [9] cannot be 

utilized to fit a broad set of solar cell data, because it neglects a possible 

simultaneity of space-charge region and neutral region recombination. 

Furthermore, the model of Ref. [9] considers films with grain boundaries 

perpendicular as well as parallel to the plane of the film, which is not the case of the 

cells obtained with the new preparation techniques. When using the model of Ref. 

[10] to fit the data, we have to assume the same proportion of space-charge region 

and neutral region recombination for all cells under study, an assumption that 

cannot be made when fitting data of cells with different grain sizes and preparation 

techniques.  

Another complication is the np- versus pin-type cell dilemma: the cells with 

10 % efficiency mentioned above use a pin-structure, while other cells succeed only 

with pn-structures. Since there is no simple equation to the current/voltage 

characteristics of pin-cells, most debates about the convenience of np or pin-

structures lack a solid theoretical basis. 

There are cases where even the electronic properties of bare films are still 

unknown. In particular, the laser-crystallization technique succeeded in the thin 

film transistor technology, but surprisingly, most of the electronic properties of the 

basic material are unknown. The material for the transistors has always been 

qualified by the channel mobility of the transistors, which depends not only on the 
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material’s transport parameters, but also on the shape and sizes of the transistor. 

Little is known about the transport parameters of the material itself, making its 

application to other fields than transistor technology unpredictable.  

The aim of the present work is to shed some light on the aspects mentioned 

above, by giving answers to the following questions:  

1. Is it possible to understand the observed increase in cell efficiency with 

grain size (over the whole range of grain sizes obtained by the 

polycrystalline silicon technology), by modeling the grain size dependence 

of the cell’s open circuit voltage and short circuit current?  

2. What role plays the adoption of a np/pin structure on cell efficiency? 

Which of these two structures is better suited for a material with 

large/small grains, and which one for high/low grain boundary 

recombination activity? Is it possible to beat the 10 % efficiency mark [8] 

reached with small-grained materials just by using a pn- instead of a pin-

structure? 

3. What are the electronic properties of laser-crystallized silicon? What 

are the values of the conductivity and the minority carrier lifetime? Is it 

possible to prepare a good solar cell based on laser-crystallized Si? 

I treat each of these questions in the following five chapters. 

Chapter 2 gives the definitions and equations to model the electrical behavior 

of a semiconductor device. Furthermore, the chapter provides a qualitative 

explanation of the electrical behavior of grain boundaries. Finally, I briefly explain 

how a solar cell works, and show the specific features that appear in a 

polycrystalline solar cells. 

Chapter 3 presents a one-dimensional model to explain the grain size 

dependence of the photovoltaic output parameters of np-type solar cells. The model 

considers only two parameters: the grain size, and the recombination velocity at 

grain boundaries. The recombination velocity is then treated in detail considering 

the density of defects at the grain boundary in Chapter 4, which gives also simple 
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models to the electrical properties of polycrystalline silicon films, such as the 

conductivity of polycrystalline films, needed in Chapter 6. 

Chapter 5 presents a numerical model that simulates solar cells in two 

dimensions. The chapter establishes conceptual bridges to the models of Chapter 3 

for solar cells as well as to the models for thin films given in Chapter 4. To provide a 

more simple tool for the analysis of pin diodes and cells than the numerical 

simulations, I develop a new, analytical model for the current/voltage 

characteristics of pin-type structures, and use it to fit experimental data. 

Finally, I introduce the preparation and characterization of laser-crystallized 

silicon, in Chapter 6. The interpretation of the measurements of electrical 

properties are made using the models from the previous chapters. 
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2 Fundamentals 

The electronic behavior of any semiconductor device is explained by modeling 

the transport, generation and recombination of charge carriers in the device. Solar 

cells need, additionally, knowledge of the interaction between the semiconductor 

and light. In a solar cell, light photons generate electron-hole pairs, increasing the 

carrier concentrations, and therefore affecting the charge distribution and the 

electronic transport in the device. We can therefore obtain the electrical output 

characteristics of any solar cell by modeling the charge transport and the 

interaction of the semiconductor with light. This chapter gives the fundamentals 

needed to explain the electrical characteristics of semiconductor devices, focusing on 

polycrystalline semiconductors and solar cells. 

2.1 Charge transport in semiconductors 
In most semiconductor devices, three gradients cause carrier movement: the 

gradient of the electrostatic potential, and the two gradients of carrier 

concentrations. The local charge density determines the electric field. Considering a 

one-dimensional system with the spatial coordinate x, Poisson’s equation relates the 

electric field F to the charge density ρ by 

 
s

x
dx
dF

ε
ρ

=
)(

, (2.1) 

where εs is the absolute dielectric constant of the semiconductor. The electric field F 

is related to the electrostatic potential ψ by F = -dψ/dx. To determine ρ(x), we need 

to know the net local charge, which is determined by the concentrations of mobile 

and fixed charges. The mobile charges are given by the free electron concentration 

n, and the free hole concentration p. The fixed charge is constituted by ionized 

dopant atoms, and by defects that get charged after they capture or emit carriers 

from or into the semiconductor’s bands. The ionized donor dopants (positive), have a 

charge concentration ND
+, and the ionized acceptors (negative), a concentration NA

-. 

Deep defects have negative or positive charges, described by nt and pt, respectively.  
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The sum of the above charges define ρ(x) by 

 ( )−+ −+−+−=ρ ADtt NNnpnpqx)( , (2.2) 

where q is the elementary charge. The densities p and n depend on the valence 

band energy EV and the conduction band energy EC respectively, and the quasi-

Fermi levels EFp and EFn (QFLs) of both type of carriers. The densities pt and nt 

depend on EV and EC respectively, and the energy ET of the traps. Figure 2.1 shows 

a band diagram of a semiconductor, indicating the different energies defined up to 

now.  

 

Figure 2.1: Band diagram of a semiconductor out of thermal equilibrium, showing the 
energies of the conduction and valence band edges EC and EV, respectively, the electron and 
hole Quasi-Fermi levels Efn and Efp, and a deep defect at the energy ET. 

For the situations of work the doping levels are not high enough to shift the 

equilibrium Fermi level close to the band edges. Assuming that |EF — EV/C| > 3kT, 

where kT is the thermal energy given by Boltzmann’s constant k and the absolute 

temperature T, p and n are written as 
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=
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EE
Np FpV

V exp  (2.3) 

and  
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where NV and NC are the effective densities of states in the valence or conduction 

band, respectively. Under thermal equilibrium conditions, i.e., in a device, which is 

neither subjected to excitation nor to an external voltage, but only to the radiation 

of its surroundings, the QFLs coincide at a unique Fermi level EF = EFn = EFp. 
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The ionized impurity concentrations will be treated as constants throughout 

this work, namely NA
- and ND

+. Moreover, I assume that all impurity atoms are 

ionized, which is a common assumption that holds for most impurity atoms at room 

temperature. Thus, NA
- ≈ NA, and ND

+ ≈ ND. 

The carrier concentrations at the defect levels, are given by the product 

between the density Nt of defect states at the energy Et (within the forbidden gap), 

and an occupancy function f, yielding 

 ( ).
,

f1Nn

fNp

tt

tt

−=

=
 (2.5) 

Under thermal equilibrium conditions, the occupancy function is the Fermi-

Dirac distribution function, given by [11] 

 






 −
+

=

kT
EE

1

1
f

Ftexp
, 

(2.6) 

The occupancy takes the value 1 for a state occupied with an electron, and 0 

for an unoccupied state. At a given temperature, any state with Et > EF is filled with 

a hole (or has no electrons), and the states below EF, are occupied by an electron 

(the sharpness of this behavior is regulated by the temperature T, the smaller T is, 

the sharper becomes f). Out of thermal equilibrium, for example when we 

illuminate a semiconductor or when we inject carriers artificially into it, we need 

the Shockley-Read-Hall (SRH) distribution fSRH, which is a function of the free 

carrier concentrations, and the capture cross sections σn and σp for electrons and 

holes. The distribution function is given by [12] 

 ( ) ( )1p1n

1pn
SRH ppnn

pn
f

+σ++σ

σ+σ
= , (2.7) 

where the quantities n1 and p1 are defined by 

 ,exp 
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With equations (2.3) to (2.9), the charge density needed to determine the 

electric field is completely defined.  

The electric field and the gradients of the carrier concentrations define the 

currents in the semiconductor. The current densities Jp,n at the coordinate x are 

described by the equations [13] 

 ,)(
dx

dE
p

dx
dp

qDpFqxJ Fp
pppp µ=−µ=  (2.10) 

and 

 ,)(
dx

dE
n

dx
dn

qDnFqxJ Fn
nnnn µ=+µ=  (2.11) 

where µ is the carrier mobility and Dn/p the diffusion constant (with the subscripts 

‘p’ for holes, and ‘n’ for electrons). The component of the currents that contains the 

electric field, is called drift current. The component containing the concentration 

gradient of the carrier density is the diffusion current. These equations give the 

electrical current considering positive charges. The flow of electrons seen as 

particles is in the opposite direction as predicted by Jn from (2.10).  

The diffusion and drift processes are linked by the Einstein relation, which 

establishes that 

 pntpn VD // µ= , (2.12) 

where Vt is the thermal voltage, given by Vt = kT/q. 

2.2 Generation and recombination 
Defining the electron-hole generation rate by G, and the recombination rate 

by R, the local continuity under steady state establishes the relationships [13] 

 ( ),RGq
dx

dJ p −=  (2.13) 

 and  

 ( ).RGq
dx

dJn −−=  (2.14) 

The next section explains how to obtain the generation and recombination 

rates. 
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2.2.1 Generation rate 

The absorption of radiation in any material is given by the Lambert-Beer law, 

which predicts that at a given wavelength, the radiation is absorbed in such a way 

that the photon flux φphot decays exponentially from the surface towards the bulk of 

the material obeying the equation 

 ( )xx 0phot α−φ=φ exp)( , (2.15) 

where x is the spatial coordinate measured from the surface facing to the light 

source towards the bulk, φ0 the photon flux at x = 0, and α the semiconductor’s 

wavelength-dependent absorption coefficient. The generation rate contained in Eqs. 

(2.13) and (2.14) is the rate determined by all external energy sources that generate 

electron-hole pairs, barring the 300 K black-body radiation of the semiconductor’s 

environment. For solar cells, the rate G must be calculated from the spectrum and 

intensity of the sunlight, the absorption coefficient α of the semiconductor, and the 

optical properties of all surfaces between the absorbing layer and the surroundings. 

In this work, I calculate the generation rate in different ways, depending on the 

case under study. For exact solutions, I obtain G by numerical simulations that 

consider the exact absorption coefficient of the semiconductor, reflections and 

dispersions at surfaces, and the experimental values of the solar spectrum. Within 

analytical models, I take simplified expressions and values for G that are simple to 

handle. In that case, the values or expressions for G will be explained later. 

2.2.2 Recombination rate 

The recombination rate R describes the process by which the concentrations 

of electron-hole pairs return to their values before generation. The most important 

recombination mechanisms in semiconductors are 

- the radiative recombination, 

- the Auger-recombination, and  

- the recombination via defect levels. 

The total recombination rate R that results from all this mechanisms is given 

by the sum 

 defectsAugerradiative RRRR ++= . (2.16) 
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The radiative recombination Rradiative is given by [14] 

 ( )2
iradiative nnpBR −= , (2.17) 

where B is a constant that depends on the material, and ni is the intrinsic carrier 

concentration. The Auger recombination rate RAuger depends on two constants Cp and 

Cn, via the equation [14] 

 ( ) ( )0
2

0
2

n0
2

0
2

pAuger pnpnCnpnpCR −+−= . (2.18) 

Regarding the recombination rate Rdefects at defect levels, one has to consider 

that in general, there are several recombination levels in the band gap, or even a 

uniform distribution of defect levels. Every level has its energy Et, density Nt and 

capture cross-sections σp, σn. The capture cross sections reflect the probability for a 

carrier to be captured by a given defect level. The expression of the recombination 

rate Rdefects at defect levels that I use in this work is the Shockley-Read-Hall 

recombination rate RSRH. Considering defect levels of concentration Nt serving as 

recombination paths, the total recombination rate is given by [12] 

 ( ) ( )∑
= +τ++τ

−
=≈

N

1k k1kn0k1kp0

2
i

SRHdefects ppnn
nnp

RR
,,,,

, (2.19) 

where τ0p and τ0n are capture-emission lifetimes defined by 
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 (2.20) 

From Eqs. (2.19) and (2.20), we see that the larger the defect density or the 

capture cross-sections, the larger is the recombination rate Rdefects. The 

recombination rate describes two different situations:  

i. the recombination at a surface (or interface), in which case Nt is given 

in cm-2, and R in cm-2s-1, and  

ii. for bulk recombination, the concentration of defect levels Nt is given in 

cm-3, and R in cm-3s-1.  

For silicon devices, especially those having low-quality material, it is 

sufficient to calculate the total recombination rate with RSRH only, neglecting the 

radiative and Auger components . Therefore, I use the complete expression for R 
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given by (2.16) only within numerical modeling, and assume R = RSRH, given by 

(2.19), within analytical models. 

2.2.3 Definitions  

It is convenient to define the recombination velocity S, the recombination 

lifetime τ and the diffusion length L, because these are quantities commonly used in 

analytical models. Assuming recombination of carriers taking place at a surface of a 

p-type semiconductor, the recombination velocity for electrons is defined by 

 
0

n nn
R

S
−

= . (2.21) 

An analogous expression holds for the recombination velocity Sp of holes at 

the surface of an n-type semiconductor by replacing n by p and n0 by p0 in Eq. (2.21).  

The recombination lifetime for minority carriers is defined as the ratio 

between excess carriers and the recombination rate. In a p-type semiconductor, the 

recombination lifetime τn of electrons is given by 

 
R

nn 0
n

−
=τ , (2.22) 

being the analogous equation valid to calculate τp in a n-type material. These 

lifetimes define the diffusion length of minority carriers within a semiconductor. 

The diffusion length determines the quality of a solar cell, because it combines 

transport and recombination parameters, namely the carrier lifetime defined by 

(2.22) and the diffusion constant. The diffusion lengths Lp, Ln for holes and 

electrons, are defined by the equations 
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 (2.23) 

2.3 Polycrystalline silicon 
Grain boundaries are interfaces that separate two regions or grains of a solid, 

which have different crystallographic orientations. At a  grain boundary (GB), the 

crystal lattices of both regions do not match perfectly. The resulting mismatch 

originates several crystallographic defects, such as vacancies, bended, strained and 

broken bonds, and dislocations, which constitute the GB. Additionally, impurity 
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atoms tend to diffuse to the GBs, where they are retained. Hence, the impurities 

also increase the defect density at the grain boundaries [15]. All these 

crystallographic imperfections originate electronic defects, which have energy levels 

in the energy gap of the semiconductor (See Refs. [15] and [16]). Every defect has its 

own energy Et, capture cross sections, and density Nt (given in cm-2).  

The band diagram at the grain boundary shows several defect levels 

distributed over the energy within the band gap. Thus, if the variety and density of 

defects is high, one usually finds a continuous distribution of defect levels. Such 

distributions were measured in polycrystalline silicon by Hirae [17], de Graaf et al. 

[18], and Werner and Peisl [19]. Grovenor pointed out, however, that the presence of 

discrete levels, or a continuous distribution, could be induced by the measurement 

technique [20]. Atomistic simulations of grain boundaries in silicon showed that the 

defect distributions are continuous, and that levels lying deep in the gap form a 

sharp defect density peak [21]. In order to explain the electrical properties of 

polycrystalline silicon, however, it is sufficient to model the grain boundary using 

one or a few defects around the center of the band gap. Indeed, theories that 

consider only one defect level at the GBs succeeded in explaining the doping 

dependence of the hall mobility and conductivity in polycrystalline silicon, as shown 

for the first time by Kamins [22] and Seto [23]. In this work, I also make use of this 

simplification. 

The defect levels at grain boundaries behave as traps for free carriers. The 

trapping behavior varies from material to material. There are basically five types of 

grain boundary trapping behaviors [24]. In silicon, the defect states trap electrons 

as well as holes; if it is n-type, the GBs will predominantly trap electrons, and holes 

if p-type [24]. In either case, the trapped carriers build up a charge QGB at the grain 

boundary, which is positive in p-type, and negative for n-type silicon.  

The charging of the traps at the grain boundary implies a removal of free 

charges from the grain, leaving space-charge regions near the GBs. The charge 

density of the SCRs is given by the density of dopant atoms. Figure 2.2a, depicts 

this situation for a p-type material, showing the positive GBs, and the negative 

SCRs surrounding the GBs. The charge neutrality condition establishes the width 

of the SCR. In the SCR, we have an electric field, which bends the energy bands at 
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each side of the GB (similarly to a double metal-semiconductor contact). If we plot 

the band diagram along the line AA shown in part a) of Figure 2.2, we obtain the 

scheme of part b). There we see that at the grain boundary, we find many defect 

levels at different energies. Obeying the Fermi-Dirac statistics, all levels above the 

Fermi energy level EF are charged positively. The diagram also shows the band 

bending qVb, developed along the SCRs. 

(a)  

(b)  

Figure 2.2: Part a) shows a schematic cross section of a p-type polycrystalline 
semiconductor, showing charges at the grain boundaries, and the space-charge regions that 
surround them. Part b) shows the band diagram along the line AA’ depicted in part a), 
which contains a grain boundary with its defect levels in the band gap, partially filled with 
holes. Far away from the grain boundary, the energy of the Fermi-level EF lies closer to the 
valence band, corresponding to the p-type nature. The electric field present in the space-
charge region bends the band diagram downwards, with a band bending qVb. This figure 
also defines the width W of the space-charge region, and the width δ of the grain boundary. 
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The band bending has two consequences for carrier transport and 

recombination. Figure 2.3 shows that majority carriers (holes in this case) that flow 

from grain to grain, must overcome a potential barrier. Kamins pointed out that the 

sole presence of a GB, i.e. neglecting potential barriers, perturbs the carrier flow 

from one grain to the next one because of the disorder and discontinuity of the 

crystal lattice found there [25], and the impurity atoms that diffused into the GB. 

The effect seen externally is an increase of the resistivity of the material. Under 

illumination, minority carriers suffer from the GB barriers, because they act as 

sinks for electrons (see Figure 2.3). Once they reach the grain boundary, they 

recombine via the defect levels. The external effect, for example, is an increase of 

the diode saturation current, and as a consequence a decrease in the open circuit 

voltage of a solar cell.  

 

Figure 2.3 The flow of majority carriers (holes in this case) between to grains, is hindered 
by the potential barrier developed in the space-charge regions. This implies an increase in 
the resistivity of the material. For minority carriers (electrons), the potential barrier acts as 
a sink, enhancing the trapping and recombination of electrons through the defect levels at 
the grain boundary.  

2.4 Solar Cells 

2.4.1 Basic concepts  

Solar cells convert the electromagnetic energy contained in the sunlight into 

electrical energy. This conversion involves basically three steps: the absorption of 

light, which implies the generation of excess carriers, the separation of the excess 

carriers, and finally the delivery of the collected carriers to the consumer or load. In 

practice, the absorption of light takes place within a semiconducting material. 

Commonly, the element that separates the carriers generated in the absorbing layer 

is an np- or pin- or nip-type junction, which is achieved by doping the absorbing 

EC

EV

EFp
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layer with donors (forming the n-side), and acceptors for the p-side. Special 

electrical contacts to the n and p-sides of the cell drive the generated carriers 

outside the cell. 

Figure 2.4 shows cross sections of two basic types of solar cells. In part (a), we 

see an np-type solar cell connected to an external load. The curved arrows represent 

the path followed by a photon-generated electron (solid circle) and the 

corresponding hole (open circle). The junction separates carriers by its type, 

sweeping electrons towards the n-region, but retaining holes in the p-region. The np 

junction has fixed charges on each side, which cause a local electric field that 

separates the electrons from the holes. After separation, the carriers drift to the 

contacts. The contacts permit the flux of carriers from the cell to the external 

circuit. To enhance the optical generation in the cell, the front contact is 

transparent, and the back contact is  reflecting.  

(a) np-type solar cell (b) pin-type solar cell  

Figure 2.4: In part (a), we see an np-type solar cell connected to an external load. The np-
junction separates the carriers that were generated by the light and diffused to that region 
without recombining. The generated carriers are extracted by a transparent front-side 
contact, and a reflecting back contact. Part (b) shows a pin-type cell. The electric field in the 
i-layer separates the carriers, driving them to their respective contacts. 

We note that when using an np-type cell, the diffusion length must be long 

enough for all the carriers to reach the junction without recombining. After Eq. 

(2.23), high diffusion lengths require high recombination lifetimes and high 
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diffusion constants. In practice, the parameter that drastically influences the 

diffusion length is the lifetime, because it varies by orders of magnitude depending 

on the preparation process of the material, its structural perfection, and the 

recombination at grain boundaries, if the material is polycrystalline. In high-purity, 

monocrystalline Silicon, the density of recombination centers is so low that diffusion 

lengths of the order of 1 mm are achieved.1 Part (b) of Figure 2.4 shows a pin-type 

cell. The intrinsic layer is the thickest layer of the cell, where most of the carriers 

are light-generated. The two space charge regions separated, originating a constant 

electric field in the i-layer. The electric field separates the carriers, driving them 

into their respective contacts. In a pin-type cell, the collection of a carrier depends 

on the diffusion length but also on the electric field, which depends on the applied 

voltage.  

Figure 2.5 shows the band diagrams under thermal equilibrium of a np cell 

(part a) and a nip cell (part b), indicating the Fermi-level EF and the built-in voltage 

Vbi in each case. Below each band diagram, we see the electric-field profiles, with 

the maximum electric field Fmax.  

(a) (b) 
 

 

Figure 2.5: Thermal equilibrium Band diagram of a pn cell (part a) and a pin cell (part b), 
showing the Fermi-level EF and the built-in voltage Vbi. The lower part of the figure shows 
the electric field (with maximum value Fmax) in each cell as a function of the position x. 

                                            

1 Obtained from Eq. (2.23) with τp = 2.5x10-3 s [26] and µp = 450 cm2/Vs (value given in Appendix H in 
Ref. [13]). 
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If we make an np-cell using a polycrystalline semiconductor, we get the 

structure shown schematically in Figure 2.6. The grain boundaries are represented 

by the irregular lines. The additional recombination sites added by the grain 

boundaries, reduce the performance of solar cells, and mainly the open-circuit 

voltage. The next chapter provides the models to understand the influence of the 

grain boundaries on the open-circuit voltage.   

The influence of grain boundaries on the electrical behavior of a 

semiconductor, and in particular of solar cells, can be manipulated. The most 

intuitive solution to minimize the influence of grain boundaries, is to reduce its 

number. Minimizing the number of GBs implies a maximization of the grain size. In 

practice, the preparation method determines the maximum grain size and even the 

electrical activity of the grain boundaries. 

 

Figure 2.6: An np-cell in a polycrystalline material. The irregular lines represent grain 
boundaries, which constitute defects that harm the electrical properties of the cell. 

2.4.2 Current(J)/voltage(V) characteristics  

The current density J of a solar cell as a function of the voltage V is written 

as 

 )()()( , VJVJVJ phot
k

krec −= ∑ , (2.24) 

where Jrec,k are the recombination currents in the cell, and Jphot the current provided 

by the generation. Each recombination current represents a particular 

recombination mechanism. In general, Jrec(V) gives the diode-like characteristic 

observed in solar cells. For np junctions Jrec,k(V) is given by 
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where J0,k is the saturation current density, and nid,k the ideality factor. Both 

J0,k and nk are constants that depend on the recombination current under 

consideration. Three recombination mechanisms must be considered to model the 

characteristics of np junctions: the recombination of carriers in their diffusion path, 

in the space-charge region, and at the interfaces between the semiconducting layers 

and the contacts. In chapter 5, I obtain the J/V characteristics of the pin cell, which 

shows recombination currents that are mathematically more complicated than 

(2.25). It turns out that neither the saturation currents J0,k nor the photogeneration 

currents are constants. Instead, these quantities depend on the applied voltage V. 

In practice, a solar cell shows contact and internal resistances and shunting 

currents. The shunting currents are usually modeled by resistances connected in 

parallel to the solar cell, while the contact resistances are series connected. Both 

resistances affect the current voltage characteristic given by (2.24). The series 

resistance RS reduces the measured voltage by the amount IRS, being I defined by 

 JAI = , (2.26) 

where A is the cell area; while the parallel resistance RP adds a current (V - 

IRS)/RP. Figure 2.7 shows the equivalent circuit for a solar cell, which includes a 

current source to represent the generation, the diodes corresponding to the 

recombination currents, and the resistive elements.  

 

Figure 2.7: This circuit describes the electrical operation of a solar cell, where the current 
source delivers a current density Jgen, and part of this current is lost by recombination 
mechanisms, modeled by the diodes. Behind the resistances RS and RP, the load sees a 
voltage V. 

In chapter 6, I correct the J/V characteristics measured on test cells by RS 

and RP. After that correction, I obtain the J/V characteristics with the model of the 

RS

RP

J1 JNJ2

loadJphot V
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pin cell obtained in chapter 5, and gain information about the recombination 

mechanisms and transport parameters of laser-crystallized silicon. 

The electrical parameters that characterize a solar cell are the open circuit 

voltage VOC, the short circuit current JSC, the fill factor FF, and the efficiency η. The 

fill factor is the relation between the electrical power given by the product of 

current and voltage at the maximum power point (mpp) ImppVmpp, with respect to the 

value ISCVOC. The values at the mpp must be calculated from the I(V) curve 

multiplied by V. The fill factor is then given by the quotient 

 
OCSC

mppmpp
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FF = . (2.27) 

With the optical input power Plight, the efficiency η of the solar cell is given by 
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3 Solar cell modeling 

This chapter gives the current/voltage characteristics on np-cells, considering 

two components of the recombination currents: the current associated to the 

recombination in the space-charge region, and the current from the recombination 

in the neutral regions of the cell. I show that, under certain conditions, the 

current/voltage equation becomes a function of an unique effective diffusion length. 

Moreover, I give an equation that relates unambiguously the open-circuit voltage, 

the short circuit current, and the effective diffusion length. This equation 

constitutes a tool to extract the diffusion length from measured values of short-

circuit current and open-circuit voltage. Additionally, I develop a second method to 

extract Leff, considering JSC and the optical absorption in the cell. 

At the end of this chapter, I adapt this model to polycrystalline solar cells, 

explaining the experimentally observed increase of efficiency with grain size.  

3.1 Efficiency limitations in polycrystalline silicon cells 
The efficiency of a solar cell generally increases with increasing grain size 

[27]. The origin of that increase is found in the increase of the open circuit voltage, 

the short circuit current, and the fill factor. This behavior was first shown by Gosh 

et al. in 1980 [27], who put together the output parameters of np solar cells with 

grain sizes between 10-1 and 104 µm. These authors showed that the trend was 

observed regardless of the preparation method utilized by the different research 

groups. The explanation for this increase is simple: if one increases the grain size, 

the amount of grain boundary area per unit volume decreases, reducing the total 

amount of recombination centers in the cell. The density of recombination centers 

determines the minority carrier lifetime, and hence the minority carrier diffusion 

length. Since VOC and JSC increase with the diffusion length, we expect that VOC, JSC 

and η increase with grain size, as observed experimentally. The observed increase 

of the FF with g is also understood along these lines, because FF is a function of 

VOC.  
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To explain the experimental data, Gosh et al. adapted the theory for 

monocrystalline np junctions to polycrystalline cells. They replaced the minority 

carrier diffusion length contained in the J(V) equation, by an effective diffusion 

length that takes into account recombination at grain boundaries.  

The data available at the time of Gosh’s paper belonged to cells that had 

much lower efficiencies than today’s cells. With a grain size of 100 µm, efficiencies 

of 7 % were achieved back in 1980 [27], while cells having the same grain size reach 

16.6 %, as reported recently (see Table 3.1 below). The differences between the old 

an new cells comes from structural differences: the films of the 7 % efficient cells 

had grain boundaries parallel as well as perpendicular to the carrier’s current flow. 

With the preparation techniques used nowadays, the perpendicular grain 

boundaries are eliminated on purpose, boosting the efficiency of solar cells. An 

extensive review on the preparation methods and the solar cells obtained with each 

technique was given recently (See Refs. [28] and [29]). In addition, the paper of 

Gosh did not consider recombination in the SCR and in the neutral regions of the 

cells simultaneously. 

A grain size dependence of VOC, JSC and FF is also observed in modern poly-Si 

solar cells, but the model of Gosh no longer explains the experimental data! 

Therefore, the model must be reworked to explain the new experimental results. In 

this section, I give a model for np cells that explains the solar cell parameters 

obtained with the new technologies, and the influence of the grain size. The model 

follows the lines described in Ref. [30], where the open circuit voltage is modeled as 

a function of an effective diffusion length that contains the grain size. That diffusion 

length unifies the effects of the recombination in base of the cell, as well as at the 

contacts of it. However, the quantities left unsolved in [30] are JSC and FF, and VOC 

taking into account recombination in the SCR. Here I solve VOC as well as JSC and 

FF, and improve the model by including the recombination in the base as well as in 

the SCR of the cell.  
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3.2 Extraction of effective diffusion lengths 
This section gives a general model for the J/V characteristics, which 

considers an effective diffusion length. The diffusion length is called effective 

because it contains all of the recombination processes present in the cell. By using 

this quantity, the theory presented here applies to any np solar cell. In the next 

section, I adapt the diffusion length, and hence the J/V characteristics, to a 

polycrystalline cell. 

Considering a double-diode model of a solar cell, the current/voltage 

characteristics are given by [31] 
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Here, the first term represents the recombination current in the base, and it 

assumes that n << p (in a p-type base), giving an ideality factor nid = 1. The second 

term belongs to the recombination in the SCR. The SCR-recombination is modeled 

considering SRH recombination via a single trap located in the middle of the 

bandgap, where n and p are assumed to have similar values, resulting nid = 2 [31]. 

The saturation current densities J01,2 depend on recombination parameters such as 

the effective diffusion length Leff of carriers. In a monocrystalline material, J01 is a 

function of an effective diffusion length Leff = Leff,mono, which is given by [32] 
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This equation considers a solar cell with a p-type base with a thickness W, and a 

recombination velocity Sb at the back contact contained in σ, which is defined by σ = 

SbLn/Dn. 

The current density J02 depends only on the diffusion length Ln of carriers, 

not including contact recombination [31]. In order to simplify the analysis, but 

without loosing generality, I make an assumption that allows to use the same 

diffusion length to calculate J01 and J02: the value of Ln does not depend on the 

position in the cell (SCR or bulk), and the recombination of carriers at the back 
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contact does not affect strongly Leff. In a monocrystalline material, this assumption 

imposes that the carrier diffusion length is smaller than the thickness of the cell, 

since, after Eq. (3.30), Leff,mono equals Ln within an error smaller than 20 % provided 

Ln/W < 1. The present model assumes Ln/W < 1, and considers that the error made 

in Leff,mono is affordable. In this case, both current densities J01 and J02 become a 

function of a unique diffusion length Leff. In the p-type base, the saturation current 

density J01 is given by [32] 
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where NA is the doping density in the base of the cell. In the SCR, the saturation 

current density J02 is a function of the maximum electric field Fmax and Leff, as [33] 
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If the doping profiles are step-like, Fmax is given by [33] 
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where Vbi is the built-in voltage (see Figure 2.5).  

Having defined J01 and J02 as a function of Leff, we write the whole J/V 

characteristics as a function of Leff. Thus, we express Leff as a function of solar cell 

output parameters such as JSC and VOC. 

3.2.1 Method to extract Leff from VOC and JSC 

At J = 0, we have V = VOC, and using the definitions of J01, J02, and Fmax, Eq. 

(3.31) is rewritten as 
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From this equation, it is possible to extract Leff as a function of VOC and JSC. Note 

that since NA has an exponent of -1 in the first term, and -½ in the second term, Eq. 

(3.34) is a function of exponentials of [VOC - Vt ln(NA/ni)]. The solution of Leff from 

Eq. (3.34) is then given by 
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where z is given by2 
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Separating the known from the unknown quantities in Eqs. (3.35) and (3.36), 

we find that: the values of εS and ni are material constants, and the influence on Leff 

of Vbi in its practical range from 0.5 to 0.9 V can be neglected. Thus, we can conclude 

that Eq. (3.35) gives a unique relationship between the effective diffusion length Leff, 

the open circuit voltage VOC, and the short circuit current density JSC, which holds 

for both, cells with dominating recombination in the SCR, or in the bulk.  

Figure 3.1 shows the increase of Leff with [VOC - Vt ln(NA/ni)], given by Eqs. 

(3.35) and (3.36) with Dn = 10 cm2/s, and Vbi = 0.8 V. The curves indicate that a 

material with low recombination (high Leff) is required to obtain solar cells with high 

values of VOC. The plot shows two regions: the region for low Leff, where the 

recombination in the SCR determines VOC, and nid = 2; and the region of higher Leff, 

where VOC is limited by bulk recombination, resulting nid = 1.  

The curves in Figure 3.1 suggest that, by calculating the ideality factor nid at 

VOC from the slope of a measured J/V curve, one can determine where the highest 

recombination takes place: in the SCR, or in the bulk. Cells with a small diffusion 

length, will show nid = 2, and will have VOC limited by the recombination in the SCR. 

By increasing Leff,  the generated electron-hole pairs will not recombine in the SCR 

but mainly in the bulk, showing nid = 1. In the case of a measured value of nid = 1.5, 

for example, Leff will belong to the transition region between SCR and bulk 

recombination (curved part of the lines in Figure 3.1). This suggests that in order to 

increase VOC, the experimentalist must redesign the cell or the preparation process 

attempting to reduce the recombination in the SCR, for example by narrowing it. If 

                                            

2 The equation for z can be simplified further, but it is useful to let it expressed this way. 
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he eventually reaches the region with nid = 1, he has then to concentrate in the base, 

trying to reduce the recombination there. 

 

Figure 3.1: The effective diffusion length Leff as a function of the open circuit voltage VOC, 
and the short circuit current density JSC, as obtained by the present model. This 
relationship holds for both, cells with dominating recombination in the SCR, or in the bulk. 
At low VOC (or Leff) the curves are determined by the recombination in the SCR, where nid = 
2. The recombination in the base (where nid = 1) determines VOC in cells with high Leff. 

Equation (3.35) is extremely useful for the experimentalist who wants to 

estimate Leff, because JSC, VOC, and NA are easy to measure. The standard technique 

to determine Leff is much more complicated, since it is based on internal quantum-

efficiency (IQE) measurements, which require an exact knowledge of the absorption 

constant of the material [32], making a determination of Leff rather intricate. 

Now I want to prove that Eq. (3.35) gives the correct value of Leff. I select 

literature data of silicon solar cells where Leff was obtained from IQE 

measurements, and compare them to the values of Leff predicted by Eq. (3.35). To 

ensure a correct use of the model, I select data that meat the condition Leff/W < 1. 

Figure 3.2 shows that the values of Leff obtained with the present model, agree with 

the IQE values over three orders of magnitude of Leff. The solid line shown in the 

figure gives the identity Leff (modeled) = Leff (measured by IQE). The dashed lines 

represent the least-square standard deviation of the data from the identity line, 

which show that the present model predicts Leff with an error of 35 % (assuming 

that the IQE values are exact). The circles in Figure 3.2 belong to silicon epitaxial 

cells prepared with the ion-assisted deposition method [34], while the triangles 

belong to multicrystalline silicon cells [35].  
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Figure 3.2: The effective diffusion length Leff of silicon solar cells, determined by our model 
agrees with the values of Leff obtained by IQE measurements, over three orders of 
magnitude of Leff. The circles in belong to silicon epitaxial cells prepared with the ion-
assisted deposition method [34], while the triangles belong to multicrystalline silicon cells 
[35]. 

3.2.2 Method to extract Leff from JSC 

This section develops a model that shows that it is possible to describe JSC as 

a function of Leff without using the J/V equation. The short-circuit current is the 

sum of all collected carriers at every position of the cell. Carriers generated by the 

light near the junction than others deep in the base, will more likely be collected 

and contribute to JSC. Thus, the short-circuit current density depends on the 

thickness W of the base3, Leff, and the generation rate G. In Appendix A, I show that 

it is a reasonable approximation to express JSC by the equation 
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The generation rate depends on the spatial coordinate x, with the origin (x = 

0) placed at the np junction. The exponential term in (3.37) is the collection 

efficiency fC of the cell. At the junction (x = 0), fC is 1, indicating that all carriers 

contribute to JSC. When we go from the junction to the rear of the cell by increasing 

x, the collection efficiency decreases because the minority carriers recombine before 

                                            

3 Which is almost equal to the cell thickness, because the emitter is very narrow in practice. 
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reaching the junction. This recombination vs. collection process is weighted by the 

value of Leff. 

Figure 3.3 shows JSC to increase with both W and the ratio Leff/W, as 

calculated from Eq. (3.37). The generation rate to evaluate these curves was 

calculated assuming AM1.5 irradiation, some ‘light trapping’ provided by a reflector 

at the rear of the cell, and an antireflecting coating on the front. Appendix A gives 

more details on the calculation of G(x). Figure 3.3 shows that if the diffusion length 

exceeds the cell thickness (Leff/W > 1), JSC saturates, indicating that almost all the 

carriers generated by the light are extracted. 

 

Figure 3.3: The short circuit current density JSC of a solar cell is improved by increasing the 
ratio Leff/W, or simply by increasing the cell thickness W to absorb more light.  

Figure 3.3 gives the whole physical picture of JSC: the increase of JSC with W 

reflects that more photons are absorbed in thicker cells, while the increase of JSC 

with Leff/W reflects that the collection-recombination balance is more efficient at 

high Leff/W. Thus, in order to improve JSC, it is sufficient to have high values of 

Leff/W rather than Leff, as in the case of VOC. 

Additionally, if we have a material with high density of recombination 

centers (low Leff), we can still achieve a good JSC by reducing W, increasing the value 

of Leff/W. Certainly, with low values of W, we force a closeness between the 

generated carriers and the junction, enabling the carriers to reach the junction. 

This increase of JSC takes place only if we provide additional light trapping in order 

to compensate for the smaller absorption caused by the lower thickness. 
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Comparing both methods to extract Leff, we note that it is much less certain to 

extract Leff from JSC (method 2), than obtaining Leff from the double diode model 

(method 1). The difficulty in method 2 lies in the fact that the light trapping and the 

absorption coefficient may vary from cell to cell. In silicon films with small grains, 

even the grain size increases light absorption, since the GBs serve as light 

scattering centers [36]. Figure 3.3 considers generation rates with no special light 

trapping artifacts or enhanced absorption at scattering centers. 

The two methods to extract Leff described here are utilized in the next section 

to analyze polycrystalline solar cell data. 

3.3 Effective diffusion length in polycrystalline 
material 

In a polycrystalline material, we define a  diffusion length Leff,poly, which 

contains an additional recombination process: the recombination at the grain 

boundaries (GBs). The recombination at GBs incorporates two quantities into our 

analysis: the grain size g, and the recombination velocity SGB of carriers at the GBs. 

The knowledge of SGB is important because it quantifies the GB recombination 

activity. If we had a functional dependence between g, SGB and Leff,poly, we were able 

to calculate SGB from any polycrystalline cell by extracting Leff (using the methods 

developed in this chapter) and measuring g. In Ref. [37], the diffusion length Leff,poly 

was calculated considering the diffusion and recombination of minority carriers in 

the base of a pn cell. The three-dimensional model assumes square, columnar 

grains, with no GBs perpendicular to carrier flow. With the recombination of 

carriers inside the grains described by Leff,mono, the diffusion length Leff,poly is given by 
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= , 
(3.38) 

which includes the grain size g, and the recombination velocity SGB at the grain 

boundaries. This equation shows us that if we have a large-grained material (high 

g), Leff,poly approaches the limit given by the monocrystalline value Leff,mono. That 

behavior is physically correct because there are few grain boundaries per unit 

volume. For Leff,poly < 0.8Leff,mono, Leff,poly can simply be expressed by Leff,poly = 
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GBn g/2SD . In Figure 3.4, the solid lines show the increase of Leff,poly with g and 

SGB, from Eq. (3.38). The double logarithmic axis reveal the slope of ½. For the 

design of solar cells, this slope implies that if we want to obtain an increase of one 

order of magnitude for Leff,poly, one has to increase g by two orders of magnitude! The 

solid lines in Figure 3.4 saturate at the value of Leff,mono at the chosen value for 

Leff,mono = 102 µm.  

 

Figure 3.4: Solid curves show that the diffusion length in polycrystalline silicon increases 
with grain size, and with the surface recombination velocity SGB, showing a limit value 
given by the diffusion length Leff,mono without grain boundaries. The dashed lines assume 
Leff,mono = ∞. 

Knowing Leff,poly via Leff, enables one to obtain values for the minimum 

diffusion length L0
eff,mono in the grains, and the maximum recombination velocity 

S*
GB. Thus, assuming no grain boundary recombination (SGB = 0), we get L0

eff,mono = 

Leff,poly. If the recombination at GBs dominates Leff,poly, which is equivalent to assume 

Leff,mono = ∞, then Eq. (3.38) defines S*
GB as 

 2
polyeff

n
GB L

1
2

gD
S

,

* = . (3.39) 

This equation indicates that by extracting Leff, and knowing g, we can directly 

extract information about the recombination at the grain boundaries in our solar 

cell. In Figure 3.4, the dashed lines are calculated with Leff,mono = ∞. The value of the 

parameter near each dashed line corresponds to S*
GB from Eq. (3.39).  
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3.4 Application to polycrystalline silicon cells 
This section extracts Leff from VOC and JSC from a vast polycrystalline silicon 

cells data set, with grain sizes varying from 10-2 to 104 µm. Then I model the Leff 

data with Eq. (3.38), showing the grain size dependence of Leff in polycrystalline 

silicon cells. Table 3.1 lists the data extracted from the literature of the past eight 

years.  

Table 3.1: Experimental polycrystalline silicon solar cell parameters extracted from the 
literature. The geometrical quantities given are the area A, the cell thickness W, and the 
grain size g. The doping density NA corresponds to the p-type base of the cells. The 
electrical parameters, given under AM1.5 illumination conditions, are the efficiency η, the 
open circuit voltage VOC, the fill factor FF, and the short circuit current density JSC. Cells 
denoted as pνn-type have low doped and n-type middle-layers.  

cell cell 
type 

Ref. A 
[cm2

] 

W 
[µm] 

g 
[µm] 

NA 
[cm-3] 

η 
[%] 

VOC 
[mV

] 

FF 
[%] 

JSC 

[mA/cm2] 

A np [38] 4 60 104 2x1016 (a) 16.5 608 77 35.1 
B np [39] 1 100 103 2x1016 (a) 16.6 608 82 33.5 
C np [40] 1 72 103 2x1016 (b) 9.3 567 76 21.6 
D np [40]  1 30 103 2x1016 (b) 11 570 76 25.6 
E np [42] 1 300 500 2x1016 (b) 9.95 517 7.2 27.1 
F np [42]  1 300 500 2x1016 (b) 11.1 538 72.4 28.5 
G np [41]  1 500 250 2x1016 (b) 10.7 527 69 31.1 
H np [44]  1 49 200 2x1017 8.2 525 66 23.8 
I np [43]  1.3 30 150 3x1016 8.3 561 74 20.1 
J np [45] ? 330 20 2x1016 (b) 4.3 430 64 16.7 
K np [46]  0.01 4.2 10 4.3x1017 6.5 480 53 25.5 
L np [48]  1 15 7 1x1017 5.2 461 64 17.5 
M np [44] 1 15 5 2x1017 2.8 368 59 12.8 
N np [47]  0.17 15 1 1x1017 5.3 400 58 23 
O np [49]  1 20 1-3 2x1017 2.0 340 59 10.1 
P pνn [50]  ?1 2 ≈0.5 2x1016 (b) 10.1 539 77 24.35 
Q pνn [51] 1 5.2 1 2x1016 (b) 9.2 553 66 25 
R pin [53]  0.7 2 0.05 2x1016 (b) 7.5 499 68.7 22 
S pin [52] 0.25 2.1 0.042 2x1016 (b) 9.5 500 68 28 
T pin [54] 0.25 2.5 ≈0.01 [55] 2x1016 (b) 8.6 500 66 26.2 
U pin [56,57]  0.33 2 ≈0.01 2x1016 (b) 8.5 531 70 22.9 

a) this value is an estimate that corresponds to commonly utilized doping levels.  
b) value estimated from the resistivity values between 1-2 Ωcm (p-type material), given in 
the paper corresponding to each cell. 

3.4.1 Extraction of Leff from VOC and JSC 

Figure 3.5 shows the increase of Leff with g, where the values of Leff were 

calculated with the data of Table 3.1 using Eq. (3.35). All the circles belong to np-
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type cells, and all triangles to pin- or pνn- cells. The solid lines give Leff,poly from 

Eq.(3.38), with Dn = 10 cm2/s, Leff,mono = 102 µm, and Vbi = 0.8 V. This value of Vbi is an 

estimate that agrees with commonly found values in silicon cells. As explained in 

section 3.2.1, the exact value of Vbi of each cell is not needed to extract Leff. 

 

Figure 3.5: Data points give the diffusion lengths extracted from the data of Table 3.1 using 
Eq. (3.35). Circles belong to np cells, while the triangles use a pin structure. The overall 
increase of Leff with the grain size g, indicates that the recombination at the grain 
boundaries generally determines Leff, and hence the solar cell parameters. The lines model 
Leff considering the recombination velocity SGB at the grain boundaries.  

Associating the data points to the solid lines in Figure 3.5, we distinguish two 

groups of data with different ranges of SGB: 

i) cells with g > 1 µm, have values of SGB between 105 and 107 cm/s, 

ii) for the nano- and microcrystalline cells, where g < 1 µm, the data is only 

understood with SGB between 101 and 103 cm/s. 

Despite the fact that the present model assumes np junctions and not pin 

junctions, the difference of SGB between the two regions is large. Are the low SGB 

values found for the pin cells misleading because the model does not apply to them? 

The answer to this question is given by the numerical simulations of pin cells given 

in chapter 5. The simulations show that SGB must certainly have values between 

300 to 1100 cm/s in those pin cells (at a grain size of around 1 µm). 
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Since the triangles of Figure 3.5 belong to cells with thicknesses between 2 

and 10 µm, and the values of Leff lie in the same range, we could suspect that the 

use of Eq. (3.35), which holds for Leff/W < 1, is misleading in these cells. This would 

imply that the values of SGB predicted by the model for the cells with g < 1 µm would 

be incorrect. Nevertheless, the numerical simulations of pin cells given in chapter 5, 

are in agreement with the values of SGB predicted by the present model. 

3.4.2 Extraction of Leff from JSC 

In this section, the second method to extract Leff is utilized. From Figure 3.3, I 

determine graphically Leff from the values of JSC and W of Table 3.1, and model it 

with Leff,poly. The data points in Figure 3.6 show the resulting grain size dependence 

of Leff, as extracted from JSC. The solid lines are given by Leff,poly from Figure 3.4, 

which assume a limit value of 102 µm. All the circles belong to np-type cells, while 

the triangles are pin cells. The model predicts that all the cells have values of SGB 

between 101 and 106 cm/s. Similarly to the VOC(g) plot of Figure 3.5, most of the 

small-grained cells (stars), have much lower recombination velocities than the cells 

in the range g > 1 µm.  

 

Figure 3.6: The diffusion length Leff  extracted from the values of the short circuit current 
density JSC, shows an increase with the grain size g. The lines correspond to the model for 
Leff,poly given by Eq. (3.38).  

10-1 100 101 102 103 104

10-1

100

101

102

Q

R

O

N

M
L

K

J I

H

G

C
F

E
D

105

107

103

SGB = 101 cm/s

 

L ef
f f

ro
m

 J
SC

, L
ef

f,p
ol

y [
µm

]

grain size g [µm]



34 Solar cell modeling 
Some data points (especially most cells with g < 0.1 µm) were omitted in 

Figure 3.6, since the extraction of Leff from JSC yielded Leff/W >> 1, where the 

present model does not apply. By comparing the values of Leff of Figure 3.6 (method 

2) with those shown in Figure 3.5 (method 1), we note that both methods give 

different values of Leff. The present method yields values that are up to an order of 

magnitude larger. It is possible that such values are overestimated because the 

generation rate profiles I calculated for the curves of Figure 3.3 have too small 

values for some cases. Indeed, most cells with g < 0.1 µm yielded false values of Leff 

because nanocrystalline silicon has a higher absorption coefficient than the 

assumed monocrystalline values [36]. Among the large-grained cells, the present 

method gives a misleading Leff for example in the cell of Ref. [38], which uses a front 

surface with pyramidal texturing, increasing the generation rate. Such light 

trapping artifacts where not contemplated in this work.  

These statements indicate that the extraction of Leff and hence SGB via JSC for 

many different cells, is not reliable if one considers only one light-trapping scheme 

(as done here). A correct estimation of Leff via method 2, requires an exact 

knowledge of the light trapping in each cell under study. This makes method 2 more 

case dependent, and thus less general, than method 1, which does not need any 

knowledge about light trapping. Therefore, I assume that the correctly modeled Leff 

as a function of g is that obtained with method 1 (Figure 3.5). 

3.4.3 Fill factor 

The FF-analysis is simple because the FF is exclusively dependent on nid and 

VOC, regardless of JSC. However, unlike VOC and JSC, the fill factor is strongly 

affected by the series resistance RS of the cell. With RS, the fill factor takes the form 

[58]  

 ( )S0 r1FFFF −= , (3.40) 

where FF0 is the fill factor with no parallel or series resistances, obtained from Jmpp 

and Vmpp, VOC and JSC, all calculated using Eq. (3.29). In Eq. (3.40), rS is a relative 

characteristic resistance, given by 

 
SCOC
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Figure 3.7 shows the increase of FF with VOC found in the experimental data 

of Table 3.1 (triangles and circles), and the solid curves calculated with Eqs. (3.29), 

(3.40) and (3.41). The data point ‘K’ shows a very low FF, which may be explained 

by the high series resistance of several Ohms reported by the authors [46].4  

The procedure to obtain each point of these curves consists in choosing a 

value of Leff, and utilize Eq. (3.29) to calculate JSC, VOC, Jmpp and Vmpp to determine 

FF, at every rS. The lowest values of FF, for example, result from considering the 

least values of Leff (since low value of Leff give low values of JSC, VOC, Jmpp and Vmpp). 

The parameters utilized here are again Dn = 10 cm2/s, Leff,mono = 102 µm, Vbi = 0.8 V, 

NA = 2x1016 (equal to the most common values of Table 3.1). Calculations with 

different values of Vbi and NA left the curves shown in Figure 3.7 almost unchanged.  

 

Figure 3.7: The data points show that fill factor increases with the open circuit voltage, and 
decreases with the characteristic resistance rs. The circles belong to np cells, while the 
triangles are pin cells. The double-diode model (solid lines) is the combination of the single 
diode model considering recombination in the base (nid = 1), and recombination in the 
space-charge region (nid = 2), shown individually by the dashed lines. The single-diode 
model gives a correct value of FF only if the cells have nid ≈ 1, or nid ≈ 2. The double diode 
model explains that from VOC = 400 mV, the cell’s strongest recombination region shifts 
from the space-charge region to the base. The good fit to the data is only explained by the 
double diode model. 

                                            

4 However, they did not report the value of RS. 
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The dashed lines in Figure 3.7 correspond to a single-diode approach. These 

were calculated at rS = 0 with either the SCR-recombination (nid = 2) or the bulk 

recombination (nid = 1) currents. The curve with nid = 2 neglects the term of bulk 

recombination current, while the curve with nid = 1 neglects the SCR-recombination 

current (See Eq. (3.29)). The dashed lines show that FF approaches the double diode 

model on its extremes. However, the single-diode models do not fit the data! This 

finding, together with the good fit to the data of the double diode model (solid lines), 

strongly indicates that only the double-diode equation explains correctly np-cells. 

The commonly assumed single-diode model is only valid to calculate the whole J/V 

characteristics provided one of both recombination terms in Eq. (3.29) is negligible, 

which is unknown a priori. 

The double-diode model explains how the effective diffusion length controls 

the fill factor: a solar cell with a small diffusion length, suffers from SCR-

recombination, showing nid = 2. As seen in Figure 3.7, the SCR-recombination limits 

the FF to the range 50 — 60 %. No cell with high SCR-recombination can reach a 

higher fill factor than 60 %! Furthermore, as the diffusion length increases, the 

double diode model gives the range of VOC where the critical region of recombination 

shifts from the SCR to the base. This occurs between VOC = 400 and VOC = 500 mV. A 

further increase of Leff shifts completely the critical recombination region to the 

base, in which case FF reaches between 70 and 80 %. To resume this results, we can 

say that the closer a cell comes to nid = 1, the highest chances to yield a high 

efficiency it will have. 

This observations allow us to interpret the position of the triangles shown in 

Figure 3.7. Since the triangles lie in the range of moderate to high voltages and fill 

factors, which can only be reached with moderate to large values of Leff, I arrive at 

the same conclusion of the previous analyses: SGB must be low in the cells with g < 1 

µm. 

3.5 Conclusions 
The modeled data leave an important question unanswered: how is it possible 

that the small-grained pin cells have such low values of SGB? An explanation for this 
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is given in Refs. [30] and [59], where it was predicted that the low SGB comes from 

structural differences between the cells with g < 1 µm and with g > 1 µm. The 

pattern found to make that estimation is that all the cells with g < 1 µm, were 

reported to have a {220} surface texture. With that information, the low SGB is 

explained as follows: “The measured {220}-texture implies a (110)-oriented surface 

for most of the grains. A large number of the columnar grains must therefore be 

separated by [110] tilt grain boundaries. Symmetrical grain boundaries of this type 

are electrically inactive because they contain no broken bonds” [30]. The background 

behind this argument is that in general, an interrupted crystal lattice (like a grain 

boundary) shows energy states in the band gap. These states constitute the 

recombination centers. However, if a silicon atom of the GB uses all of its four 

bonds, and if these bonds are not too stressed, no energy states appear in the gap. 

That is exactly what happens in the case of [110] tilt boundaries, as explained in 

[30]. Therefore, as a result of the formation of a {220} surface texture, we get mostly 

[110] tilt boundaries, with a very low defect-level density. The modeling of cell data 

given in this chapter supports an occurrence of low defect densities at the GBs in 

the small grained cells via the low values of SGB predicted. 

The next chapter goes into the details of the grain boundary recombination 

velocity, which was only given as a parameter here. The influence of the grain size 

and the defect density on VOC will be shown. 
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4 Models for grain boundaries 

In the previous chapter, the recombination velocity SGB was introduced to 

describe the recombination at grain boundaries in a simple way. The physical 

background of the recombination velocity is described by the equation SGBn = RGB/(n 

- n0), considering electrons as minority carriers (see Eq. (2.21)). Here, RGB is the 

areal recombination rate at the GB, while n and n0 are the electron concentrations 

at the GB and at the grain center, respectively. Assuming a single defect level in the 

center of the energy gap (i.e. n1, p1 << n, p) of a p-type material under low injection 

conditions (i.e. n << p), the SRH recombination rate RSRH at the GB is given by  

 ( ) 1
tpth

0
SRH

Nv

nn
R

−σ

−
≈  (4.1) 

Thus, in this case of a single defect in the center of the gap, it is possible to express 

SGB by the equation 

 tpthGB NvS σ= , (4.2) 

which shows that the recombination velocity SGB at the GB is proportional to the 

defect density Nt at the GB. Although this definition can be made only with one 

defect level, a distribution of defects leads also to an equation where SGB is 

proportional to Nt [61] (provided the capture cross sections of each defect level σn 

and σp are equal). 

In this chapter, I solve RGB, n and n0. This analysis enables to calculate the 

band bendings and the splitting of the Fermi-levels. Both quantities are then taken 

to calculate the maximum open-circuit voltage, and the conductivity of a 

polycrystalline film. 

4.1 Grain boundaries in silicon 

4.1.1 Band bending and maximum open circuit voltage 

The model considers one-dimensional grains, i.e. a sequence of 

monocrystalline grains separated by grain boundaries. The grains have no contact 

to an external circuit, and no current flows out of the grains. The upper part of 
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Figure 4.1 shows such a one-dimensional polycrystal, where all grains are assumed 

to have the same size. Since the resulting structure is periodic, it is sufficient to 

consider the region that extends from one grain center to the next, covering exactly 

the grain size g. The lower part of the figure shows the band diagram of the 

modeled region assuming p-type material, introducing the QFLs with energies EFp 

and EFn, and the widths δ and W of the grain boundary and the SCRs, respectively. 

The rightmost part of the band diagram introduces the splitting qV0
OC of the QFLs, 

supposed constant throughout the grain, and the quantity qζ. As shown in Ref. [62], 

the assumption of flat QFLs is valid at generation rates occurring under daylight 

illumination (above 0.1 Sun). It makes sense to utilize the symbol qV0
OC for the 

energy difference between the quasi-Fermi levels, because, as explained in the next 

sections, this quantity corresponds to the maximum open circuit voltage a solar cell 

can reach. 

To solve the band bendings and the splitting of the QFLs, we need to write 

Poisson’s and the continuity equations throughout the band diagram of Figure 4.1. 

The analysis has two parts:  

i) the equilibrium analysis, where the material is in the dark, and 

ii) out of equilibrium, e.g. when we generate electron-hole pairs using light. 

Under equilibrium, only one Fermi-level is present, resulting in EFp =  EFn (see 

section 2.1). Thus, we only need to solve Poisson’s equation. Out of equilibrium, 

where EFp ≠ EFn, we need to solve the coupled Poisson and continuity equations for 

the extra unknown we introduced.  
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Figure 4.1: One-dimensional picture of a polycrystalline material. Assuming that all grains 
have the same size, it is sufficient to take the region between the dotted lines to model the 
electrical properties of the film. The band diagram defines some variables assuming a p-
type material. 

4.1.2 Electrostatics  

To solve Poisson’s equation, we have to determine the space-charge density at 

every position x. Out of the SCRs, the net charge is zero. In the SCRs, assuming 

that they are completely depleted, we have no free carriers, and the charge is given 

by the dopant ions. Throughout this chapter, I assume p-type material with a 

doping density NA, and that all acceptors are ionized, i.e. NA =  NA
-. The amount of 

charge QGB at a grain boundary is given by the density of defects, and by the 

available free charge within the grains, fixed by NA. To solve Poisson’s equation, I 

assume that the width of the grain boundary is negligible, i.e. δ ≈ 0. Thus, the 
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charge at the GB is an areal charge (in As/cm2), and the trap density Nt of defect 

levels has units of cm-2. With all these considerations, the charge neutrality 

condition for one grain establishes that the areal charge QGB at the grain boundary 

must equal the charge (of opposite sign) in the two adjacent SCRs. This condition is 

given by the equation 

 AGB qWN2Q = . (4.3) 

This equation is valid until the SCR reaches the center of the grains, i.e. until W = 

g/2. In that case, the whole grain is depleted, and there are no carriers left to charge 

the GB. This situation of total depletion, is described by the condition QGB = qgNA, 

which, replaced in Eq. (4.3) gives the total depletion condition 

 
2
g

W = . (4.4) 

If the width of the SCR is smaller than g/2, the carrier-capture process 

stopped before the whole grain was depleted. In that case, all traps are charged, 

being the limiting quantity the defect density Nt, and we have 

 At qWN2qN = . (4.5) 

Having all the charges defined, Poisson’s equation becomes 

 
S0

AqN
dx
dF

εε
−= . (4.6) 

To solve the electrostatic potential Ψ, and the band bending qVb, we need two 

boundary conditions for Eq. (4.6): the electric field is zero at the border of the SCRs 

and, for convenience, Ψ = 0 at the borders of the SCRs. Integrating twice Eq. (4.6), 

the band bending qVb results in [23] 
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If we have completely depleted grains, W = g/2 and Eq. (4.7) predicts that the 

band bending increases linearly with both NA and g,  
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On the other extreme, if all traps are filled, Eq. (4.5) gives W = Nt/2 NA. 

Replacing this width in Eq. (4.7), we find that qVb is proportional to 1/ NA and 

independent of grain size, following the expression 
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Between the two extremes of low and high dopings, the actual value of QGB is 

unknown a priori. The band bending is given by Eq. (4.7), but W must be solved 

from Eq. (4.3) and a convenient expression of QGB that contains the sum of the 

charges of every defect state. The charge of every defect results from the 

distribution function f multiplied by the density of states found at the defect energy 

Et. Assuming N positively charged defects and M charged negatively, the total 

charge becomes 
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1k
kkt

N

1i
iitGB fNqf1NqQ ,, . (4.10) 

In this situation, the band bending is obtained solving numerically Eqs. (4.3), (4.7) 

and (4.10). Figure 4.2 shows schematically the influence of grain size and doping 

density on qVb. For completely depleted grains, we observe the linear dependence of 

qVb on NA. At very high dopings, the band bending qVb decreases with 1/ NA. 

Between the two extremes, we find a maximum. I give quantitative results for qVb 

as a function of NA in the next sections. 

 

Figure 4.2: The band bending towards a grain boundary shows a maximum when plotted 
against the doping concentration. At high values of NA, the band bending qVb disappears 
because the space charge regions needed to balance the charge at the grain boundary are 
very narrow. In the other extreme (at very low values of NA, qVb) is negligible because there 
is no sufficient free charge in the grains to fill the grain boundary. Between both extremes, 
we have the maximum of qVb. The width of the maximum is controlled by the grain size. 

If one has an energetically continuous distribution of defect states, QGB must 

be calculated similarly as in (4.10), but with an integral expression containing the 

energy distribution of the defect level density in units of cm-2eV-1. As shown in a 

previous work [62], assuming a continuous distribution of defect levels does not 

change the results of qVb and its qualitative dependence on NA and g. Moreover, 

ba
nd

 b
en

di
ng

 q
V b

doping concentration NA

g increasing



Models for grain boundaries 43 
including the free carriers in the space charge region has no influence over all the 

practical range of doping concentrations, i.e. for NA > 1014 cm-3 in polycrystalline 

silicon [62]. 

4.1.3 Fermi level pinning 

The quantity qζ shown in Figure 4.1 denotes the distance between the Fermi-

level and the band edge of majority carriers. At the grain boundary, qζ differs from 

its value in the center of the grain, exactly by qVb. At low or at very high dopings, 

where we have low values of qVb, the value of qζ at the GB approaches the value in 

the middle of the grain. Thus, for intrinsic material, the Fermi-level approaches the 

gap center, resulting in qζ ≈ Eg/2 at any position in the grain. For highly doped 

material, qζ is usually smaller than 0.1 eV, corresponding to the position of the 

Fermi-level given by the doping density. At moderate dopings, qζ differs strongly 

between its value at the GB and in the grain center, due to the significant band 

bending (see Figure 4.1). In the middle of the grain, qζ lies between the valence 

band and the Fermi-level, corresponding to the moderate doping level. At the grain 

boundary, qζ is still large, like in the intrinsic case, due to the high value of qVb. 

This constancy of qζ for the wide range of dopings (from intrinsic to moderate 

dopings), is called “Fermi-level pinning”. The Fermi-level at the GB is pinned to a 

fixed position, at about Eg/2 above the valence band in p-type silicon. The energy at 

which the Fermi-level gets pinned is given by the energy of the traps within the 

bandgap. In silicon, the value qζ ≈ Eg/2 is reached because there is a significant 

density of trapping states near gap center. If the levels were shallower, the pinning 

position would also be more shallow.  

4.1.4 The grain boundary under illumination 

Upon illumination, the generated carriers use the defect levels as 

recombination sites. Additionally, the states at the GB trap generated carriers, 

modifying the charge QGB. Assuming that the recombination at GBs obeys SRH 

statistics, the charge at the GB must be calculated using (4.10) but replacing f by 

fSRH (see chapter 2). The continuity equation, which considers the recombination, 

provides the additional equation needed to solve the additional Fermi-level. To 

simplify the problem, I neglect any recombination inside the grains, i.e. an infinite 
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diffusion length inside the grains Leff,mono = ∞. This approach is mainly valid for 

relatively low grain sizes (below 10 µm in silicon), because in electronic-grade 

material, the number of defects per unit volume inside the grains is surely much 

smaller than the defect density at the grain boundary. Since Leff,mono = ∞, there is no 

recombination inside the grains, implying that the QFLs are flat throughout the 

grain, giving Jp(x) = Jn(x) = 0, after Eqs. (2.10) and (2.11). Integrating the continuity 

equation (2.13) for holes between x = 0 and x = g/2, we find 

 GBRgG0 −= . (4.11) 

This equation says that all the light-generated carriers, flow to the grain boundary 

and recombine there with a rate RGB. This recombination rate is fixed by G and the 

grain size g. For a given G, an increase of g means a decrease of the recombination 

rate because the GB area per unit volume decreases. The recombination rate must 

be calculated using the Shockley-Read-Hall expression for every defect level. Under 

illumination, the carrier densities increase. This increase is expressed by the 

splitting of the quasi-Fermi levels. The higher the generation rate, and the lower 

the recombination rate, the higher becomes qV0
OC. In fact, qV0

OC is an indirect way 

to obtain the recombination rate, since RSRH is proportional to exp(qV0
OC/kT) [63]. 

Since it is possible to write the quantities n, p, n1 and p1 intervening in RSRH  

(see sections 2.1 and 2.2.2) as a function of the unknowns qVb and qV0
OC, both 

quantities must be solved using Eqs. (4.3), (4.7), (4.10) and (4.11). Figure 4.3 shows 

qVb and qV0
OC in polycrystalline silicon with g = 1 µm, as a function of the dopant 

atoms concentration NA. The carrier generation rate G is the parameter taken to 

calculate the different curves, measured in suns (1 sun = 1020 cm-3s-1). The 

calculation of G is described in section 5.1. The different values of G are taken 

because, as shown below, useful information about the behavior of the GB 

recombination can be extracted from an analysis at different illumination 

intensities. The calculations involved in Figure 4.3 consider five acceptor and five 

donor-type defect levels distributed symmetrically around the gap center with 100 

meV between each other, having an acceptor and donor-type defect at each energy 

value. Each defect level has a concentration Nt = 1011 cm-2 (resulting in a total 

concentration of 1012 cm-2 counting the 10 defects). The QFL splitting is low at low 

doping concentrations, because the function RSRH has a maximum value for Quasi-
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Fermi levels that enclose the defect levels [63]. Indeed, at low dopings the QFL of 

majority carriers lies closer to the gap center (and hence to the defect levels, which 

lie around the gap center) than at higher doping levels. Additionally, the Fermi-

level pinning below a certain value of NA makes that qV0
OC stays at its minimum 

value below that doping value, as seen in Figure 4.3. The whole behavior of qV0
OC is 

determined by the band bending, because it controls the pinning. 

 

Figure 4.3: The QFL splitting, which can be thought as the maximum open circuit voltage a 
solar cell can reach, shows its lowest values at low doping concentrations. The increase of 
qV0

OC in about 0.2 eV from G = 0.1 to 10 suns, shows that the concentration of light strongly 
determines the open circuit voltage of a solar cell. 

Figure 4.3 shows also that the band bending qVb decrease with the generation 

rate, because the generated carriers flow towards the grain boundary, interacting 

with the defect levels by occupying them, or recombining with other carriers. The 

occupancy of the defects means that the GB charge will be partly neutralized, which 

results in a decrease of the band bending. Hence, the whole effect is proportional to 

G, because the higher is G, the higher is the neutralization, and the lower the 

resulting qVb.  

From Figure 4.3 we can say that, as a rule of thumb, at low doping levels, 

qV0
OC increases around 0.1 eV for every order of magnitude increased in G. At high 

doping levels, we only obtain 0.05 eV (for the same increase in G). This result is 

important for the design of solar cells with polycrystalline silicon: with its high light 

trapping (> G), thin-film solar cells profit from this increase of qV0
OC with G, 

enabling the realization of solar cells with higher VOC’s than thick cells. 

1014 1015 1016 1017 1018
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6

 

Q
FL

 s
pl

itt
in

g 
qV

0 O
C
 [e

V]

doping concentration NA [cm-3]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.1
1

1

10

0.1

G=10 suns

dark

 b
an

d 
be

nd
in

g 
qV

b [e
V]



46 Models for grain boundaries 
Now I discuss how qV0

OC changes with grain size and defect density. The 

same calculus method as in the previous analysis is utilized, but considering Nt 

instead of G as parameter. The number, type, and energetic position of the defect 

levels at the GB utilized in this case are the same as those of Figure 4.3. Since these 

calculations consider 10 defects in total, we have a total GB defect density NGB = 

10Nt. Figure 4.4 shows a linear increase of qV0
OC with log(g), calculated at a 

generation rate G = 1 sun,5 and with the values of NGB indicated near each line. 

These curves are calculated with a doping level NA = 1014 cm-3, which places us at 

the left part of Figure 4.3, where total depletion is present. 

 

Figure 4.4: The splitting of the Quasi-Fermi levels qV0
OC (calculated with G = 1 sun) 

depends linearly on log(g). The lines have a slope of 0.1 eV per order of magnitude 
increased in g. A decrease by one order of magnitude in the total defect density NGB has the 
same effect as increasing the grain size by an order of magnitude. To obtain the maximum 
qV0

OC, one can either reduce the defect density at the grain boundaries, increase the grain 
size, or both. 

As shown in Figure 4.4, the lines give a slope of 0.1 eV by order of magnitude 

increased in g. A decrease in NGB (or Nt) of one order of magnitude, increases qV0
OC 

by the same amount than increasing g by an order of magnitude. This behavior has 

a simple physical explanation: for a given defect density Nt, increasing the grain 

size means a reduction of grain boundary charge per unit volume, which has the 

same effect as reducing Nt at a fixed g. Thus, a solar cell’s open-circuit voltage 

                                            

5 In a 10 µm-thick silicon layer, this value is reached for example by shining 100 mW/cm2 with a 
photon energy of 1.3 eV. Such photon energies close to the bandgap of silicon of 1.12 eV must be 
chosen in order to obtain the spatially homogeneous generation rate required by the present model. 
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profits from an increase of g, and also from a reduction of Nt. These two alternatives 

were discussed in chapter 3, where the open-circuit voltage of solar cells increased 

with g, and also with a low recombination velocity SGB, which implied low values of 

Nt. 

As shown in section 5.1.3, the linearity of qV0
OC as a function of Nt or NGB (on 

a logarithmic scale), does not hold strictly at doping levels NA >> 1014 cm-3, because 

of the increasing influence of the band bending qVb on the recombination rate RGB. 

However, the qualitative result is the same at high values of NA: large grains and 

low defect densities are needed to reach high values of qV0
OC.  

The next section considers that we contact the poly-Si to an external circuit, 

producing a current flow of carriers along grains. The resistivity that arises from 

that current shows strong differences when compared respect to a monocrystalline 

material. 

4.1.5 Resistivity of a polycrystalline material 

The transport of carriers from one grain to its neighbor has three stages: the 

first one is the flow through the neutral part of the grain, secondly through the 

SCR, and thirdly through the GB. Thus, to obtain the resistivity of a polycrystal, 

the continuity equations must be solved considering the equivalent circuit shown in 

Figure 4.5. 

 

Figure 4.5: Equivalent circuit to model the resistivity of a polycrystalline grain. 

In the neutral region, the resistivity ρ is given by the mobility µp of majority 

carriers (considering p-type material) and the hole concentration p0, by the equation 

 
0p pq

1
µ

=ρ . (4.12) 

In the present model, I neglect the resistivity of the neutral part, which is a 

reasonable assumption for moderately to highly doped material. In low-doped 
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material this assumption has no sense, since there is no neutral region inside the 

grains.  

Here I consider the width δ of the grain boundary, which defines the GB as a 

region with specific transport parameters. As noted by Grovenor [20], the most 

common assumption is that the boundary is a narrow region of high defect density 

and particular transport parameters. Under this assumption, the GB has its own 

carrier density and mobility. 

Assuming that the voltage applied to each grain boundary is smaller than Vt, 

i.e. under the so-called small signal  regime, the solution of Poisson’s and continuity 

equations define the resistivity ρ by the equation6 
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where µpGB and pGB are the mobility and the hole concentration at the GB, 

respectively, and p0 the concentration of holes in the middle of the grain. The 

resistivity has two terms: the first one corresponds to the grain boundary, while the 

second term belongs to the SCR. In grains with small SCRs, the ratio δ/W is large, 

and Eq. (4.13) predicts that the GB dominates the resistivity. To understand the 

SCR component, we have to give a look at the function containing the ratio Vb/Vt in 

Eq. (4.13). Figure 4.6 shows a plot of this function (solid line). At small values of Vb, 

the function tends to 1, which means that the SCR resistivity is given by 1/qµpp0, 

which is the value of the resistivity in a neutral grain. At high band bendings, the 

function increases sharply and goes parallel to exp(Vb/Vt), which is given by the 

dashed line. 

In chapter 6, I model the grain size dependence of the resistivity of laser-

crystallized silicon using Eq. (4.13). 

                                            

6 Obtained from Ref. [64], by replacing properly the Dawson’s integrals by the error function erf. 
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Figure 4.6: The resistivity of the space-charge region near grain boundaries in poly-Si is 
proportional to the function plotted  here (see Eq. (4.13)). The higher the band bendings 
(high Vb), the higher are the values of this function, and the resistivity increases according 
to Eq. (4.13). The dashed line is given by the function exp(Vb/Vt), for comparison.  

The resistivity explained so far considers an infinitely thick polycrystalline 

material. The situation in practice is that one has a film of material, with a 

thickness usually of the order of a micrometer. Surprisingly, this finite thickness is 

rarely considered in publications that study the resistivity of thin-film silicon. In 

the next section, I treat the problem of the resistivity of a thin film. 

4.2 Transport in thin polycrystalline films  
Thin films show higher resistivity than bulk material due to surface 

scattering. When analyzing resistivity data in thin poly-Si films, one has to find out 

if the material’s resistivity is masked by surface effects or not. During my work I 

prepared thin films of laser-crystallized silicon with thicknesses between 100 and 

400 nm. In this section, I investigate if surface effects on resistivity can be neglected 

or not.  

The electrical resistivity in any conducting media is determined by the 

scattering events suffered by electrons or holes. In semiconductors, carriers scatter 

with lattice atoms, impurities, and with other carriers [65]. The scattering time τ is 

an average time between two scattering processes occurred to the same carrier. In 

that time, a carrier traveling at a mean velocity v through a bulk semiconductor, 

0 1 2 3 4
100

101

102

103

104

105

106

tb VV /

( )
tb

tb

VV

VVerfi

2 /

/π  



50 Models for grain boundaries 
travels a mean distance l = τv, defined as the mean free path. The resistivity of the 

semiconductor is proportional to the scattering time (or, to the mean free path).   

At semiconductor surfaces, we find reordered atoms, segregated impurities 

and oxides, which are all sources for carrier scattering. Surface scattering will then 

increase the resistivity of the surface-layer system. For semiconducting films of 

sufficient thickness, the amount of carriers near the surfaces is negligible compared 

to the bulk carrier density, and the measured resistivity becomes nearly equal to 

the bulk value. If, however, the film thickness is of the order of the mean free path 

in the bulk, most of the carriers reach the surface in their random movement, and 

suffer scattering there. The measured resistivity is then a function of the film 

thickness d. A study of these effects is given in  textbooks [67], showing that surface 

scattering effects are negligible if l/d << 1. The mean free path will now be 

calculated for the laser crystallized films used in this work. Considering the bulk 

carrier mobility µp and carrier concentration p, the mean free path is given by 

 3
p p

8
3

q
h

l
π

µ= . (4.1) 

Since the films characterized are undoped, the carrier concentration is rather 

low. Therefore, considering p ≤ 1016 cm-3, and even with a high value µp = 1000 

cm2/Vs, the mean free path becomes l ≤ 4.4 nm. With a film thickness of 100 nm, we 

obtain l/d ≤ 0.044, and the condition l/d << 1 is satisfied. This result implies that 

surface scattering effects can be neglected.  

Surfaces can also affect carrier transport if one considers electrical fields 

present at surfaces. Such electrical fields appear when bulk carriers get trapped at 

defect states at the surfaces, charging them and leaving a SCR towards the bulk 

(similarly to the charging of a grain boundary). Normally, this charging leads to a 

band bending and a variable carrier concentration from surface to bulk. The 

reduction of the number of carriers near the surface, increases the measured 

resistivity. However, since the films studied are very thin, and undoped, no 

significant band bendings can build up, making this effect negligible. 
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5 Simulation and modeling of pin solar cells 

This chapter presents a numerical model for polycrystalline pin solar cells. 

The aim of the simulations is to understand how the excellent efficiencies obtained 

with fine-grained, pin solar cells of Table 3.1 could be reached. The principal 

elements incorporated by the model are three: grain boundaries with defect levels in 

the band gap, contacts where carriers are extracted but also recombine, and a 

spatially-dependent generation rate profile (in the previous chapter, we considered 

only a spatially homogeneous generation rate). The simulations allow me to 

compare the doping dependence of V0
OC obtained from the QFL splitting, with the 

actual VOC in solar cells, and to establish limits to η and VOC in cells with 

recombination at contacts. Secondly, I elaborate a new analytical model for the 

current/voltage equation of the pin-cell. The model is then utilized to fit 

experimental data of  fine-grained solar cells. 

5.1 Numerical model 

5.1.1 Geometry and boundary conditions 

Figure 5.1 shows the geometry of the pin-cell. The two contacts enclose the 

semiconducting layers. The top contact is transparent, while the bottom contact is a 

light-reflecting aluminum contact. Thus, we have two highly doped (p+, n+) layers 

next to the contacts, and an intrinsic (i), or low doped (p-layer) in the middle. The 

left edge constitutes the grain boundary, which is assumed to be a flat surface, and 

the right edge is the grain center.  

The boundary conditions for electrons and holes at all the four edges of the 

domain are the following: 

1. At the interface between the p+ or n+ layers to the contacts, carriers have 

a contact recombination velocity SC. The electrostatic potential at these 

surfaces is set according to the bias V at one contact, and to the reference 

potential at the other one. 
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2. The grain center, at x = g/2, is a symmetry surface, imposing that the 

spatial derivatives of the carrier concentrations and the potential must 

be zero along that edge. 

3. At the grain boundary (x = 0), the carrier concentrations and the 

electrostatic potential are given by the recombination rate RGB, and the 

charge QGB of the defect states. Previous simulations considered a 

spatially constant surface recombination velocity along the grain 

boundary line (See Refs. [72] and [73]). Edminston et al. criticized the 

lack of physical rigorousness in this assumption, and simulated np cells 

considering a spatially dependent surface recombination velocity [74]. 

The present model considers also a spatially dependent surface 

recombination rate and charge obeying Shockley-Read-Hall (SRH) 

statistics. The recombination centers are five acceptor and five donor-

type defect levels distributed symmetrically around the gap center with 

100 meV between each other, having an acceptor and donor-type defect 

at each energy value. The density Nt of each defect is assumed equal. 

Since we have 10 defects, the total GB defect density is NGB = 10Nt. 

 

Figure 5.1: Model of the pin solar cell assumed in the simulations, showing the grain 
boundary at x = 0, the grain size g, and the cell thickness W. 

For the recombination within the grains, I assume a SRH field enhanced 

recombination model [75] with a single trap located at the gap center, radiative- and 

Auger recombination. The field enhanced SRH recombination is a modified version 

of the SRH recombination. It allows minority carriers to tunnel quantum-

mechanically from the bands to the recombination center in the gap. This tunneling 
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can only take place in regions where the valence and conduction bands are spatially 

close to the recombination center, such as high electric field regions (i.e. space-

charge regions) [75]. The equation of this recombination rate is formally equal to 

RSRH given by Eq. (2.19), but considering field-dependent capture cross sections. At 

zero field, the capture cross sections assume their standard values (see below). The 

profile of the optical generation rate in the device is obtained with the optical 

simulator for solar cells SUNRAYS, as explained in Appendix A. I assume an 

illumination intensity of 100 mW/cm2 under an AM1.5 global spectrum. Light 

trapping is considered by an aluminum back-contact reflector. The carrier 

mobilities within the grains are modeled with the well-known doping- and electric 

field-dependent models for monocrystalline silicon [76]. The parameters for all 

simulations presented here are W = 1.14 µm, g = 3 µm, capture cross sections σn = σp 

= 10-15 cm2 (at zero-field) for the defect levels at the GB as well as in the bulk, and a 

thermal velocity of 107 cm/s. The doping density at the p+- and n+-layers is 1019 cm-3. 

To solve the semiconductor equations in the two-dimensional space, I 

developed a simulator that uses the finite difference method. The idea behind the 

technique is to replace the continuous material by a spatially discrete number of 

points, and to calculate all the required variables at these points. Figure 5.2 shows 

a typical finite difference mesh utilized to simulate the pin cell of Figure 5.1. To 

permit a refinement of the calculations in some regions of the cell where the 

variables vary strongly, such as the grain boundary or at the junctions, the spacings 

between mesh points are not constant. At each point (i,,j), we have a particular x-

spacing ai and y-spacing bi. This mesh has 20 divisions in the x-direction (index i), 

and 70 divisions in the y-direction (index j), giving a total of 1400 mesh points. The 

matrices involved in the solving process have 14002x14002 = 1.96 million elements. 

Since these matrices are sparse, i.e. they contain much more zeros than non-zero 

elements, the solving process is done by sparse-matrix solvers. The computer and 

programming language utilized to perform the simulations need about a second to 

solve each matrix. The total calculus time to calculate a complete J/V curve ranges 

between 1 and 2 hours.  
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Figure 5.2: Finite difference mesh utilized in this work to simulate pin cells in two 
dimensions. The mesh spacings refine at regions such as the grain boundary (GB) to allow a 
higher numerical accuracy in that region. 

The unknowns at each point (i,j) of the mesh are three: the electrostatic 

potential ψi,j, and both carrier concentrations ni,j and pi,j. To solve numerically the 

semiconductor equations, we must adopt a ‘discretized version’ of each equation, 

where the variables are expressed at each mesh node (i,j). The discretization of 

Poisson’s equation is based on a first-order Taylor-series expansion of the derivative 

of the electrostatic potential ψ at each mesh point. For example, the first derivative 

of the potential in x-direction at the mesh point (i,j) is given by ijiji a/)( ,,1 Ψ−Ψ + . The 

discretized Poisson equation is then given by [76]  
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The truncation error done by discretizing this equation is proportional to ai
2, bi

2 [76]. 
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The two-dimensional continuity equations for electrons and holes at the mesh 

node (i,j) are given by [76] 
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where the current densities Jn and Jp are two-dimensional vectors. The expansion of 

these equations expressing each component of Jn and Jp as a function of  ψ, n and p 

escape to the aim of this chapter. They may be consulted for example in Ref. [76]. 

Here, I show only a part of this expansion process. The discretization of the 

continuity equation for electrons, for example, is written as [76] 
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where, for example, the x-component at (i+1/2,j) is given by  
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being B(u) Bernoulli’s function, given by B(u) = x/[exp(x)-1]. The use of the 

Bernoulli function instead of a linear Taylor-series expansion to express the 

derivatives involved in Jn, is known as the Scharfetter-Gummel Approach. This 

approach avoids numerical instabilities that would take place if the electron 

concentrations were allowed to vary linearly between two mesh points [76]. The 

truncation error of Eq. (5.7) is proportional to ai, bj [76]. 

The solving process starts estimating values for ψi,j, ni,j and pi,j at all points, 

and replacing these estimates in the discretized Poisson and continuity equations. 

After replacing the estimates, the right-hand side of the semiconductor equations at 

a given point, give a different value as the left-hand side, providing the error of the 

estimations. The simulation program minimizes that error, using a Newton-

Raphson algorithm. Specific details concerning the simulation technique itself are 

explained, for example, on page 203 in Ref. [76].  
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5.1.2 Doping level of the i-layer 

In pin solar cells, it is common to refer to the i-layer as a low-doped layer, 

rather than rigorously to an intrinsic layer. The advantage of doped layers is not 

clear up to now. Beaucarne et al. showed that VOC increases by doping the base of 

their pn solar cells made from fine grained silicon of 12 µm thickness [71]. 

Researchers of fine-grained Si cells at Neuchatel obtained their best results taking 

a nearly intrinsic i-layer, avoiding any doping [68]. In contrast, the cells made at 

Kaneka Corp. have an i-layer doping between 1015 and 1016 cm-3, according to their 

measurements and simulations (See Refs. [69] and [70]). There are therefore 

contradictory statements in the literature about the benefits of doping for VOC or η. 

The model presented here solves this situation, by simulating cells with increasing 

i-layer doping.  

5.1.3 Simulation results 

Figure 5.3 shows that VOC increases with the doping of the i- (or p)-layer. The 

parameter of each simulation curve is the recombination velocity SC at contacts. 

These simulations were obtained with a thickness W = 1.14 µm, a grain size g = 3 

µm, and the defect densities and energies described above. The bulk defect density 

NBULK is set to NBULK = 1014 cm-3 in these simulations. The advantage of increasing 

the doping to reach high values of VOC is based on the shift of the QFL for holes to 

the valence band due to the doping, which implies a reduced SRH-recombination at 

the recombination centers around gap center. The smaller recombination rate leads 

to the high VOC.  

However, Figure 5.3 shows also that at high doping densities the cells are 

very sensitive to contact recombination SC: at high SC values of 106 cm/s, until an i 

(or p)-layer doping of about 5x1016  cm-3, the cells remain efficient; but with higher 

dopings, η decreases. How can we explain that decrease? Note that if one increases 

the doping of the i-layer to the value of either the p+ or n+ layers (i.e. to 1019 cm-3 in 

our case), a np junction at the front side of the cell is formed. In this case, the 

electric field is present only in the depletion region of the np junction. The thickness 

of the depletion region is much smaller than the depletion region of the pin cell, 

which was conformed by the i-layer. Thus, the carrier collection by the electric field 
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is weaker and is easily affected by SC. As a consequence, at large SC-values, the 

values of the short circuit current density JSC and VOC degrade, resulting the poor 

efficiencies shown in Figure 5.3. Although SC was taken equal for the back and front 

contacts, simulations7 performed using unequal front and back SC showed that the 

contact that actually harms VOC is the back contact. The explanation for this is that 

minority carriers generated deep in the cell must travel a longer distance to reach 

the junction than those generated in the thin n-type front layer, increasing the 

probabilities to recombine at the back contact. 

 

Figure 5.3: cAt low values of the recombination velocity at contacts SC, the best cells are 
found at a doping of the i- (or p)-layer of about 1018 cm-3, reaching an efficiency η = 14.8 %, 
and an open circuit voltage VOC = 0.75 V at SC = 100 cm/s. If such low values of SC cannot be 
reached, it is safer to stay at low doping densities (below 1016 cm-3), where η reaches η = 10 
%, as confirmed by the experiments (stars). The thick solid line comes from the analytical 
model for qV0

OC of chapter 4, showing a very good agreement with the simulations. 

                                            

7 performed also with the simulation program developed in this work. 
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Figure 5.3 shows that maximum cell efficiencies η = 14.8 % and open circuit 

voltages VOC = 0.75 V are obtained at SC = 102 cm/s and dopings around 1018 cm-3. At 

this doping level, the cell must already be understood as a np-type cell, because the 

electric field extends only over a narrow region at the front of the np junction 

formed. At the maximum efficiency point, the simulations give a short circuit 

current density JSC = 24.9 mA/cm2, a fill factor FF = 79.6 %, and an ideality factor 

nid = 1.21. The maximum efficiency is mainly limited by the short-circuit current 

density that can be extracted from this 1.14 µm thin cell. However, this small 

thickness enables the high VOC (this behavior was explained in Ref. [77]). Behind 

the maximum of η shown in Figure 5.3, VOC and η drop due to the increasing Auger 

and radiative recombination in the bulk. 

What output parameters would the record solar cell (with η = 14.8 %) have 

with no GB recombination? A simulation of the same cell with no GB recombination 

(Nt = 0 cm-2) yielded η0= 17.4 %, V0
OC = 0.80 V, J0

SC = 25.4 mA/cm2, and FF0 = 84.4 % 

(here, the superscript ‘0’ indicates the condition of zero GB recombination). As 

explained in Ref. [78], the limit value V0
OC is given by the Auger recombination 

process, being V0
OC = 0.80 V possible at 10 suns in this thin cell. Since the absence of 

the grain boundary turns the problem one-dimensional, it was possible to verify the 

value of η0 with the one-dimensional commercial simulation program PC1D [88]. A 

comparison of both simulations show an absolute deviation smaller than 0.22 % in 

efficiency. 

The thick, grey curve in Figure 5.3 shows the results obtained from the 

simple one-dimensional model for qV0
OC presented in chapter 4, which assumes 

isolated grains without any contacts or junctions, and only GB recombination. This 

curve was calculated assuming the same grain size and defect states at the grain 

boundary as used in the numerical simulations mentioned above. The generation 

rate (considered to be spatially constant within the model of chapter 4) was set to 

the spatial mean value of the actual generation rate profile needed in the 

simulations. Despite the strong simplifications involved in it, we observe an 

excellent agreement between the simulations with low SC, and the results of the 

simple model of chapter 4. 
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Turning to the behavior of the grain boundary, the simulations corresponding 

to Figure 5.3 revealed that the band bendings qVb at the GB remain very low, 

implying that the GB barriers are low. These low GB barriers are consequence of 

the high generation rate of the order of 10 suns, typical for such thin cells with light 

trapping; and the low defect density. The maximum value of the band bending 

under illumination is 95 meV, and 160 mV in the dark (at a p-layer doping of p = 

1016 cm-3). As shown by the stars in Figure 5.3, the experimental data from Ref. [69] 

(filled circles) agree with the simulations. The low defect density of 1011 cm-2 chosen 

for the simulations, implies low recombination velocities SGB at the GB (see Eq. 

(4.2)). Only such low values of SGB can explain the high open circuit voltage, and 

excellent efficiency of the experimental data. The simulations give a spatial mean of 

SGB that ranges with doping from 1100 to 300 cm/s, at i-layer dopings from 1015 and 

1016 cm-3, respectively. These values are in agreement with the theory presented in 

chapter 3, which predicted SGB to be around 1000 cm/s for these fine-grained pin-

cells. 

Figure 5.4 shows the dependence of VOC and η on the total GB trap density 

NGB (NGB = 10Nt). The simulations assume a thickness W = 1.14 µm, a grain size g = 

3 µm, and an i-layer doping of 5x1016 cm-3, with the same amount, type and 

energetic position of the GB defects utilized in the previous simulations. In order to 

analyze the effect of the recombination in the bulk and at the grain boundary alone, 

the contact recombination velocity SC was set to a low value SC = 100 cm/s. The 

parameter utilized here is the bulk trap density NBULK. As expected, we observe that 

an increase in NGB and NBULK reduces VOC, due to the higher recombination rate. 

Consequently, the efficiency η also decreases with NGB and NBULK, as shown in 

Figure 5.4. As shown in Figure 5.4, an absolute increase of 3 % in efficiency is 

achieved by reducing the defect density from NGB = 1011 to 1010 cm-2, at low values of 

NBULK. 

The grey continuous line in Figure 5.4 comes form the analytical model for 

qV0
OC of chapter 4, calculated assuming the same grain size and amount and 

position of defect states at the GB of the numerical simulations. The generation rate 

is equal to the spatial mean value of the actual generation rate profile needed in the 

simulations.  
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Figure 5.4: These simulations open circuit voltage VOC and cell efficiency η in a 1 µm thick 
cell with a grain size of 3 µm, show that VOC and η decrease with the grain boundary defect 
density NGB and with the bulk defect density NBULK. At high values of NGB, NBULK shows only 
a weak influence on VOC and η. At low values of NGB, NBULK dominates VOC and η. The grey 
continuous line comes form the analytical model for qV0

OC of chapter 4, establishing the 
limit of VOC at NBULK = 0.  

Figure 5.4 also shows that at the highest bulk defect density NBULK = 5x1015 

cm-3 and NGB < 5x1010 cm-2, VOC (and therefore η) is almost independent of NGB, 

indicating that bulk recombination dominates the output parameters of the cell. If 

NBULK is low, for example at NBULK = 1013 cm-3, we find a dependence of VOC on NGB. If 

NGB > 5x1010 cm-2, the influence of NBULK on VOC and η vanishes, and at NGB = 1011 cm-

2, almost no influence of NBULK is observed. At this GB defect density, the cell’s 

output parameters are ruled by the grain boundary alone (provided NBULK does not 

exceed too much the value NBULK = 5x1015 cm-3). The value of NGB at which this 

changeover from bulk to GB recombination occurs, must depend on the grain size, 

and the bulk trap density. This is the changeover explained in section 3.3 with the 

model for Leff,poly: at high values of the bulk diffusion length Leff,mono, i.e. low NBULK, 

Leff,poly (and therefore VOC and η) is only dominated by the GB recombination 
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parameters and the grain size. At low values of Leff,mono (high NBULK), Leff,poly ≈ Leff,mono, 

independently of the GB recombination parameters and the grain size. 

Now we analyze the ideality factors of the simulated cells. The following 

analysis of nid is made with ideality factors extracted from the J(V) curves 

corresponding to the simulations with SC =102 cm/s of Figure 5.3. The simulations 

reveal that the ideality factors nid (calculated at V = VOC) show a minimum that 

depends on the p-layer doping. Figure 5.5 shows a decrease of nid with the doping 

level from nid ≈ 1.8 to nid ≈ 1.2, and then a rapid increase reaching nid ≈ 2.0 at the 

highest doping level. Simulations with doping levels below 1015 cm-3 (not shown in 

Figure 5.5), also showed nid = 1.8. It is possible to explain the observed behavior of 

nid with doping using the double-diode model presented in chapter 3: at low doping 

levels, the cells are pin-type, i.e. the cells are mainly a space-charge region (SCR). 

In this case, the double-diode model predicts a value of the ideality factor nid = 2, 

which is close to the value provided by the simulations of nid = 1.8. The discrepancy 

between both values stems from the fact that the double-diode model describes pn 

junctions, and not pin junctions. The next section proves that nid = 1.8 is indeed a 

typical value for pin cells. Turning to Figure 5.5, we observe that as the doping 

increases, we obtain a np junction, and nid reaches a minimum value nid = 1.2 at a 

doping around 1018 cm-3. Since, according to the double-diode model, nid = 1.0 if the 

cell is dominated by bulk recombination, the value nid = 1.2 indicates that there is a 

slight influence of the SCR recombination on the J(V) curves of the modeled cells.  

Figure 5.5 also shows that nid increases at higher dopings than 1018 cm-3, 

reaching nid = 2.0 at 1019 cm-3. In this case, the double-diode model suggests that 

this value reflects a high recombination in the SCR. Why does the SCR play such an 

important role being the SCR so small at high doping levels? At high doping levels, 

the field-enhanced SRH recombination in the SCR becomes important because of 

the high electric field in the SCR. This recombination mechanism explains therefore 

the value nid = 2.0 given by the simulations. We may suspect that since Auger 

recombination does also play an important role at high doping levels, the value nid = 

2.0 could be caused by this recombination mechanism. However, this is not the case, 

since a np cell dominated by Auger recombination must show nid = 1.0 [79]. 

Therefore, we conclude that nid = 2.0 is fixed by the SCR recombination.  
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Figure 5.5: Ideality factors nid extracted from the current/voltage characteristics of the 
simulations shown in Figure 5.4, at a contact recombination velocity SC = 100 cm/s. The 
ideality factor nid has a minimum of nid = 1.2 at a doping of 1018 cm-3.  

As a closing (but important) remark to the present discussion, I show that nid 

is related to η. Observing Figure 5.5 and Figure 5.3, we note that the minimum of 

nid takes place at the same doping level of the maximum efficiency η! This finding 

strongly supports the results found in chapter 3 with the simple double-diode 

model, which show that the highest values of VOC, FF (and therefore η) are only 

obtained when nid approaches the value nid = 1.0. 

5.2 The analytical current/voltage equation of the pin-
cell 

Some models for the J(V) equation of the pin solar cell arose in the past (See 

Refs. [80] and [81]). However, these models were subjected to different limitations. 

Crandall derived a model for amorphous silicon (a-Si) solar cells and established 

simple relations between cell output parameters and material properties [80]. He 

pointed out that his solution for the cell’s current cannot be used to calculate the 

complete current/voltage characteristic because it neglects diffusion currents. 

Okamoto et al. formulated a more general model for a-Si cells that considered both, 

drift and diffusion currents [81]. However, their current/voltage characteristic has 

not a closed form, and the solutions must be found numerically, losing the physical 

insight achievable using closed-form expressions. 

This section provides a general expression for the current/voltage 

characteristics of a one-dimensional pin-cell. The J/V characteristics presented here 
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do not require numerical solution. I also find expressions for the saturation current 

density and collection efficiency of pin-cells, establishing analogies to the 

expressions commonly used to describe pn solar cells.  

5.2.1 Assumptions 

There are five simplifications of the present model: 

1. the diffusion lengths L and lifetimes τ are equal for electrons and holes, 

2. the ratio JW/µ is low, 

3. the electric field in the intrinsic layer is spatially constant, 

4. the generation rate G is spatially constant throughout the i-layer, and 

5. the i-layer has no doping. 

Figure 5.6 shows the assumed band diagram. Under thermal equilibrium, the 

electron (minority carrier) concentration np0 in the p-type layer, and the hole 

concentration pn0 in the n-type layer, are given by pn0 = np0 = ni
2/Nd, where ni is the 

intrinsic concentration of the given semiconductor and Nd the doping density of the 

n- and p-layers (considered to be equal for both layers).  

 

Figure 5.6: The pin diode with an intrinsic layer of thickness W under forward bias V. At 
the position xC it holds n = p, assuming the same effective density of states for electrons and 
holes. The applied voltage V reduces the energy difference between the n and p layers by an 
amount qV, which is also the amount the quasi-Fermi levels for holes EFp and for electrons 
EFn get separated. The dashed lines indicate the quasi-Fermi levels which are assumed to 
be flat. The dotted lines symbolize the parts of EFp and EFn, which have to be calculated. 
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The built-in voltage Vbi is given by Vbi = 2Vtln(Nd/ni) [82]. This potential 

difference causes an electric field F in the intrinsic layer. I assume that no charges 

are present in the i-layer, implying that F is constant through the i-layer and 

vanishes in the doped layers. Thus, the electrostatic potential energy varies linearly 

through the i-layer and remains constant outside of it. The band diagram shown in 

Fig. 1 reflects these considerations. In thermal equilibrium, the internal electric 

field F has the value F0 = -Vbi/W. 

Together with the assumption of an uniform electrical field and equal values 

of the effective density of states at the valence- and conduction-band edges, the 

condition n = p defines the coordinate xC, resulting xC = W/2. Figure 5.6 shows the 

position of xC. Considering the Boltzmann equations for n and p, the product np at 

xC is then np = n2 = ni
2exp(V/Vt), giving p(xC) = n(xC) = niexp(V/2Vt) [83]. 

If a forward bias voltage V is applied to the junction, the resulting potential 

difference within the i-layer is (V - Vbi). Hence, the applied voltage V lowers the 

electric field, and the QFL splitting is given by the amount qV, as shown in Figure 

5.6. 

An important simplification I make, is that the quasi-Fermi level EFn of 

electrons is approximately flat as long as the electron concentration n exceeds the 

concentration p of holes. This means that EFn = constant for n > p and, vice versa, 

EFp = constant if p > n. Following  the arguments published by Sah, Noyce and 

Shockley [84], and Rhoderick and Williams [85], we find that the majority carrier 

QFL is nearly flat, as long as the ratio JW/µ is not too high: for example, if we have 

a pin diode with W = 5 µm, and the injection current that results at the point V = 

600 mV, this requirement would imply µ >  0.1 cm2/Vs.8 

We are now able to derive the current/voltage characteristics. The current 

densities that will give us the current/voltage characteristics are, proportional to 

the slope of the quasi-Fermi levels [83]. Having this proportionality between 

currents and slopes of the QFLs in mind, we assume that the regions of space where 

their slope is negligible do not contribute to the cell’s current (dashed lines in 

                                            

8 This value was obtained with numerical simulations performed with the program PC1D [88].  
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Figure 5.6). The current is then determined by the quasi-Fermi levels of minority 

carriers, where the slopes of EFp and EFn are different from zero. Figure 5.6 shows 

with dotted lines the part of EFp and EFn with non-zero slope, denoting that they are 

yet unknown. Calculating the quasi-Fermi levels is equivalent to calculate the 

carrier concentrations. For electrons as minority carriers, i.e. when x < W/2, the 

steady-state continuity equation for electrons can be written as 

 0
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 (5.6) 

where the recombination rate R(x) has been replaced by [n(x)-n0(x)]/τ (see Eq. 

(2.22)). 

To obtain the total current, we need to solve also the majority carrier current, 

which is neglected in the present approach. To compensate for this error, the total 

current is approached as the sum of the two minority carrier currents at each side 

from the center of the cell. Thus, the assumption of equal diffusion lengths for 

electrons and holes, together with the homogeneous generation rate, enables to 

solve J for one carrier type and simply multiply the result by 2 to obtain the total 

current due to both carrier types. The comparisons between simulated and modeled 

J/V characteristics shown below, indicate that the total current predicted by the 

model has only a small error.  

The two boundary conditions for the solution n(x) have to be determined. The 

first boundary condition concerns the value of n(xC) = niexp(V/2Vt) that results from 

the assumption EFn = constant for x ≤ xC. The second boundary condition states that 

an extra-current due to interface recombination is present at the p/i interface, at x 

= 0. With a surface recombination velocity S, the recombination current density at 

this interface is qS(n(0)-np0) (see Eq. (2.21)). The generation rate G is zero at this 

interface because its thickness is zero. In real cells, this surface recombination 

takes place at the contacts instead of the p/i- (and also i/n) interfaces as supposed 

here. 

The solution of Eq. (5.6) for n(x) is given by 

  )/exp()/exp( WxCWxCAn(x) 2211 λ+λ+=  (5.7) 
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which contains the constants A, C1 and C2, determined by the boundary conditions, 

and the dimensionless Eigenvalues λ1 and λ2 
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We see that the Eigenvalues λ1 and λ2 contain the diffusion length, the 

physical dimensions of the cell and the potential difference through the i-layer. As 

can be seen from Eq. (3), the Eigenvalue λ1 is much larger than λ2 at voltages 

smaller than Vbi. Thus, we can already expect that λ1 dominates most of the 

current/voltage characteristics of the pin diode. 

With n(x), the recombination rate [n(x)-n0(x)]/τ is determined. The integral of 

the generation-recombination rate from x = 0 to x = W/2 added to the current due to 

recombination at contacts qS(n(0)-np0), gives the total electron current, satisfying 

continuity. In Appendix B, I describe the mathematical procedures to obtain the 

solution of the electron concentration and use it to get the current/voltage 

characteristics. Next I present simplified expressions for the current density J that 

hold provided the parameter ranges given in Table 1 of Appendix B are not violated. 

5.2.2 Current/voltage characteristics: dark case  

For the voltage range 0 < V < Vbi, the current density J is given by  
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This expression is dominated by the eigenvalue λ1, contained in an exponential 

term. It is not possible to define an unique diode ideality factor nid (like in pn-cells) 

since it is not possible, in general, to separate V from λ1. However, one can calculate 

the ideality factor from the slope of a semilogarithmic plot of the J(V) curve. 

Similarly to the double-diode equation in pn diodes given in chapter 3, these J(V) 

curves show that in general, nid depends on voltage and diffusion length (see Figure 

5.7). The ideality lies between 1.8 at low voltages, and 1.2 at high voltages. At small 

diffusion lengths, the value of nid is 1.8, independent of V. The plots of Figure 5.7 

use S = 106 cm/s, W = 2 µm, and Nd = 1018 cm-3.  
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Figure 5.7: The dark current/voltage characteristics show different diode ideality factors nid 
depending on voltage and diffusion length L. For high values of L and low voltages, nid 
takes the value 1.8, which becomes 1.2 at high voltages. With small diffusion lengths, we 
have nid = 1.8 independently of voltage. These plots assume ni = 1010 cm-3, S = 106 cm/s, W = 
2 µm, and Nd = 1018 cm-3. 

If we have the case V ≈ 0, the current density shows two components: a 

positive and a negative one. It makes sense to attribute the negative term to the 

saturation current density J0. In its most simplified version, which considers cells 

thicker than about 500 nm for the case of silicon, and a built-in voltage greater than 

0.7 V, J0 becomes 
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This equation says that the value of J0 is inversely proportional to the electric field 

F0 in equilibrium, evidencing the dominance on transport of the electric field at low 

forward biases. Interestingly, the saturation current density from the space charge 

region in a pn diode given by Eq. (3.32) shows an analogous expression to Eq. (5.10). 

This analogy reflects the drift origin of both currents, found in the pin- as well as in 

the SCR of the pn diode. 

5.2.3 Current/voltage characteristics: under illumination 

The full expression of J(V) in this case is given by Eq. (B.12), and a simplified 

version is Eq. (B.13). In this section I give a simple expression for the short-circuit 

current density JSC of the cell and relate VOC to J0 and JSC. The short-circuit current 

density JSC reduces to 
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where the eigenvalue λ2 must be evaluated using V = 0, according to short-circuit 

conditions. The short-circuit current depends on both, the absorption coefficient of 

the material and the light trapping of the cell (contained in G); and the electronic 

quantities L and F0, found in λ2. When L tends to zero, no photocurrent can be 

extracted. When L tends to infinity, the current reaches a maximum value Jmax. The 

value Jmax is qGW, being GW the total amount of carriers the light generated in the 

i-layer. Equation (5.11) is consistent with this physical observation, since λ2 tends to 

zero when L tends to infinity. Since L has finite values in practice, JSC reaches only 

a fraction of Jmax. This observation enables us to define the quotient containing λ2 in 

Eq. (5.11) as the collection efficiency fC, given by 
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λ

−λ
=  (5.12) 

To get more insight into the collection efficiency, Figure 5.8 shows plots of fC 

as a function of L/W. As seen from this plots, fC depends on the values of the built 

in potential Vbi. This feature accounts for a bias dependent collection of the pin-cell, 

a feature that is not present in pn-cells, because the collection is based on diffusion 

in pn-cells.  

 

Figure 5.8: The collection efficiency depends strongly on the scaled diffusion length, given 
by L/W. With these different values of Vbi we observe the bias-dependent collection 
efficiency of the pin-cell. (The values of Vbi indicated are obtained assuming a thermal 
voltage Vt = 25 mV).   
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From Figure 5.8 we can also say, for example, that values of JSC greater than 

90 % of Jmax are maintained if L/W > 0.1, avoiding greater losses in cell efficiency. 

This finding reflects the fact that pin cells are successful in delivering 

photocurrents even in low-quality materials, since the requirement L/W > 0.1 is a 

rather loose restriction. 

5.2.4 The µτ-product  

It is useful to continue the analysis of the light characteristics from another 

point of view, describing the influence of the product µτ on the output 

characteristics of the pin-cell. The µτ product is a commonly measured quantity 

using a variety of techniques, and it is considered as an important characterizing 

parameter in a-Si, and recently also in nanocrystalline Silicon thin film solar cells 

[87]. The relation of the µτ product to cell parameters such as JSC and VOC is direct 

since L = τD , which can be expressed as µτtV  using Einstein’s relation. 

Within the present model, there is no closed-form expression for VOC. 

Nevertheless, we can relate VOC to parameters that depend on µτ (or L) such as JSC, 

and on τ such as J0. Similarly to the pn-cell, VOC holds a proportionality to J0 of the 

form VOC ∝ Vtln(JSC/J0). However, in contrast to the pn-cell, Figure 5.9 shows that 

this relationship is somewhat more case-dependent in the pin-cell. The strict 

proportionality VOC ∝ Vtln(JSC/J0) holds mainly at low values of W and VOC. This 

observations allow us to say that J0, directly correlates with the open circuit voltage 

of pin solar cells. The low values of J0 required to obtain high VOC’s can be reached 

with high values of the built-in field F0. However, and in contrast to pn-cells, the 

improvement in VOC can only be reached if the cell is thin, since, as seen from 

Figure 5.9, thick cells show a saturation of the VOC curves, meaning that lowering J0 

does not improve VOC. 
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Figure 5.9: The relation between the quantity Vtln(JSC/J0) and VOC shows that J0, and thus 
τ (see text), is directly correlated with VOC, similarly to a pn-cell. However, if the thickness 
W of the cell increases, this proportionality vanishes. 

5.2.5 Comparison with experiments 

I measured dark current/voltage characteristics on pin-cells of µc-Si prepared 

at Kaneka Corporation at different temperatures and fitted them with Eq. (5.9).  

The cells were prepared by deposition of microcrystalline silicon on glass substrates 

with the CVD method, as described in Ref. [8]. Figure 5.10 shows that the model 

(solid lines) fits the data (symbols) very well, and using realistic parameters (see 

below).  

To minimize the number of fit-parameters to put in the J(V) equation, I 

measured some of the quantities of Eq. (5.9). The thickness W, measured with a 

surface profiler, is W = 1.3 µm, and the doping of the p- and n-layers using 

voltage/capacitance profiling9 at different frequencies and temperatures is Nd ≈ 

3.2x1016 cm-3. This low value can be attributed to the carrier density at the p/i and 

i/n interfaces rather than at the highest doping levels deep in the p- and n-layers. 

Indeed, fits of the J(V) characteristics that use higher doping densities became 

worse. 

                                            

9 The voltage/capacitance method is described on page 41 in Ref. [14]. 
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Figure 5.10: Plot of the measured dark current/voltage characteristics of microcrystalline 
silicon pin diodes prepared with the CVD method [8]. The current/voltage curves, measured 
at different temperatures (symbols), are fitted by Eq. (5) (solid lines). The dotted lines are 
PC1D simulations performed using exactly the same parameters as our fits and 70 nm 
thick p- and n-layers, showing a good agreement with the results obtained with our model. 

With the values of W, Nd and ni, only three parameters are necessary to fit 

the current/voltage curves:  the recombination velocity S, the carrier lifetime τ and 

the diffusion constant D. All the fits in Figure 5.10 use S = 105 cm/s, τ = 0.6 µs and 

D = 5 cm2/s (i.e. a diffusion length L ≈ 17 µm). The carrier lifetime of 0.6 µs, implies 

a high material quality, and high VOC. The high L/W ratio ensures a high JSC, 

analogously to the pn-theory of chapter 3. This explains the high efficiencies of up to 

η = 10 % reached by the pin cells prepared at Kaneka [11].  

In order to crosscheck the results of the fits, I simulate the current/voltage 

characteristics using the numerical simulator PC1D [88] using the same 

parameters as the fits. Despite the differences between the simple model presented 

here and the simulations, we find the good agreement shown in Figure 5.10 with 

dotted lines. The PC1D simulations use a p- and n-layer with a thickness of 70 nm, 

and consider SRH recombination at the intrinsic Fermi-level energy, with a lifetime 

of 0.6 µs. Observing the simulation results, I corroborated that the majority quasi-

Fermi levels remained flat, enabling a comparison between the J/V curves of the 

present model and the simulations. 
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Turning to the light characteristics, I investigate the dependence of cell 

output parameters under illumination on the µτ product. The symbols in Figure 

5.11 stem from a recent experimental work that shows how the efficiency of 

nanocrystalline silicon pin solar cells increases with µτ [89]. The solid lines in 

Figure 5.11, calculated with the model, explain the experimental data satisfactorily.  

 

Figure 5.11: The measurements of cell efficiency η of pin-cells of fine-grained silicon 
correlated to the µτ product (symbols) agree well with the analytical model (solid lines). 
These curves use Nd = 1018 cm-3, D = 10 cm2/s, S = 106 cm/s and two different thickness W as 
parameters. The circles are experimental values of cells with W = 3.5 µm and the triangles 
stem from cells with W between W = 2 and W = 2.5 µm. 

The evaluation of the current/voltage characteristics involved in Figure 5.11 

use Nd = 1018 cm-3, D = 10 cm2/s, S = 106 cm/s, and values of the homogeneously 

assumed generation rate G that account for about the same short-circuit current 

that have the cells of the experimental data. Two different values of the thickness W 

are assumed, W = 2 and 4 µm. The calculation procedure consists in varying the 

lifetime τ, and calculate at each value of τ the J/V characteristics, obtaining η. The 

µτ-product in each case, is calculated with the equation µτ = VtDτ. 
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5.3 Conclusions 

The numerical model explains that the high efficiency η reached by the 

microcrystalline silicon pin-cells can be reached only with low defect densities, in 

agreement with the conclusions extracted from the simple model presented in 

chapter 3: at small grain sizes, only a low grain boundary recombination activity 

permits good efficiencies. It also solves the question about the convenience of using 

a doped i-layer: at low doping densities, a moderate efficiency up to 10 % is ensured. 

Higher efficiencies η up to η = 15 % and open circuit voltages VOC = 0.75 V can only 

be achieved with low recombination contacts and doping levels of up to 1018 cm-3. 

These results agree with the predictions of the model for VOC as a function of the 

doping level chapter 4, which considers one dimensional, isolated grains. We should 

be aware of the fact that the geometry in Figure 5.1 assumes a grain boundary 

plane that is perpendicular to the surface of the solar cell. Only with a material that 

shows such grain boundaries could one achieve the values predicted. Nevertheless, 

the assumption of the perpendicular grain boundary goes hand-in-hand with the 

columnar grain structures achieved with modern preparation techniques. A possible 

reason for the absence of experimental data showing high efficiencies in thin, highly 

doped cells, could be that the low contact recombination velocities require special 

treatments of the contact/semiconductor interfaces, adding more steps to the solar 

cell processing. 

The analytical model of the pin-cell, which gives a closed-form of the whole 

current/voltage characteristics for the first time, shows to be a proper tool to 

understand the behavior of pin-cells. It shows that many trends observed in pn 

junctions, such as the increase of VOC with the saturation current densitiy, or the 

dependence of JSC on the ratio L/W, are also present in the pin-cell. This unifies the 

understanding of the operation of a solar cell, regardless of pin or pn-type structure. 

The final part of this chapter, uses the J/V equation to fit dark- as well as light-

measurements of pin solar cells J/V characteristics. The model explains with 

realistic parameters the increase of cell efficiency with µτ-product found 

experimentally by other research groups.  
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6 Laser-crystallized silicon 

Among the techniques to prepare thin-film silicon without using wafers, the 

crystallization is a widely spread technique. Crystallization is an indirect way to 

obtain polycrystalline silicon from amorphous (a-Si)- or nanocrystalline (nc-Si) 

layers, deposited for example onto glass by chemical vapor deposition. A simple 

crystallization approach is the solid-phase crystallization, which consists in 

annealing the films at temperatures well below the melting point for many hours, 

obtaining a polycrystalline film [90]. Other techniques use heating lamps to reach 

the melting point of the amorphous silicon, which implies the use of heat-resistant 

substrates [44]. Laser-crystallization makes use of laser-light pulses to melt the 

silicon locally, inducing crystallization. In general, the resulting films show high 

electronic quality, with excellent homogeneity over large areas, and even using 

ordinary glass substrates. An early work that demonstrated that this technique 

delivers high-quality films was published by Shah, Hollingsworth and Crosthwait in 

1982, showing that microresistors made with this technique had better quality and 

uniformity over large areas than some polysilicon films prepared with the low-

pressure chemical vapor deposition method [91]. From that time, laser crystallized 

silicon (lc-Si) is used by the electronic industry to obtain thin-film transistors 

(TFTs) for flat-panel displays. At present, the large progress in microelectronics 

demands even better electronic quality, which could also be reached by lc-Si films. 

Recently, TFTs with remarkably high channel mobilities of up to 510 cm2/Vs were 

reported [92]. 

The electronic quality of lc-Si has always been estimated by the channel 

mobility in TFTs, which depends not only on the material properties but also on 

other factors such as the dimensions of the channel. Despite its importance for 

microelectronics, there is almost no knowledge about the fundamental transport 

and recombination parameters of the material, such as the minority carrier lifetime 

and bulk mobility. Knowing the minority carrier lifetime would enable us to 

determine if minority carrier devices such as bipolar transistors, diodes and 

photodiodes can be prepared using lc-Si. Therefore, the question addressed in this 
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chapter is if lc-Si is also suitable for minority carrier devices, and it will be 

answered in this chapter by means of photoelectrical characterizations.   

Laser-crystallization of silicon is normally performed on transparent 

insulating substrates, which offer the following advantages: they are suited to the 

flat-panel display technology, they are bad heat conductors (avoiding losses of 

thermal energy), and they do not absorb the laser light we want to drive into the 

semiconducting layer. However, from the point of view of making an electron device, 

it could desirable to have conducting layers between the substrate and the 

crystallized film, which can serve as contacts. Here, I address the question if it is 

possible to realize such a crystallization, showing that one can obtain laser-

crystallized silicon on conducting layers as well. I prepared bare lc-Si films on 

conducting layers, as well as test diodes. 

6.1 Preparation 

6.1.1 Heating a semiconducting layer with laser pulses 

Heating of an amorphous silicon (a-Si) layer to its melting point of about 1100 

K is reached by irradiating the sample with visible light. The goal is to generate 

phonons (i.e. lattice vibration quanta), since, the higher the phonon energy, the 

higher the lattice temperature. How can one generate phonons using light? The 

laser light excites electrons to high energy values above the conduction band edge, 

which gain kinetic energy. The electrons dissipate that kinetic energy by interacting 

with the atoms of the lattice, relaxing to the edge of the conduction band. That 

interaction of electrons with atoms implies the emission of phonons. The processes 

associated to light absorption and phonon generation that arise upon light 

excitation are shown in Figure 6.1. The photon energy hν of the light is chosen to be 

well above the band gap of Si. The leftmost process shown is the band-to-band 

absorption, where light is absorbed by bound electrons (in the valence band), 

generating electron-hole pairs. Since the electron energy after the absorption 

process is higher than the equilibrium energy in the conduction band (nearly the 

energy of the band edge at room temperature), the electrons will seek equilibrium 

and fall to the edge of the conduction band. In that relaxation process, they emit 
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some phonons, heating the lattice. The free electrons in the conduction band also 

absorb light, as shown in Figure 6.1. They end up with high (kinetic) energies, 

producing electron-electron scattering that will make them loose energy, relaxing to 

lower energies. The relaxed electrons build up an electron plasma at some energy 

value. Following Figure 6.1, the electrons of this plasma can either recombine with 

holes or relax to the band edge, which is the main phonon source in the whole 

heating process. The recombination with holes takes place via different processes. 

Only one of these contributes to phonon emission, namely the Auger recombination. 

In the Auger recombination mechanism, an electron gains the energy freed in a 

recombination process, as shown in Figure 6.1. After excitation, the excited 

electrons emit phonons.   

 

Figure 6.1: This band diagram shows the processes that occur when a semiconductor is 
heated with light, having an energy hν greater than the band gap Eg. The leftmost process 
shown is the band-to-band absorption. The excited electron emits some phonons (with a 
relatively small lattice heating) when it relaxes to the conduction band edge. Secondly, we 
have an electron in the conduction band absorbing a photon, which gains kinetic energy 
and collides with other electrons, relaxing to an electron plasma at lower energies. From 
the plasma, it either recombines through an Auger process, freeing a valence band electron 
that emits phonons later, or it directly emits phonons when relaxing to the conduction 
band. Both processes increase the lattice temperature since phonon emission is present. 

The Auger processes, as well as the phonon emission cascades, have lifetimes 

of about 1 ps, much faster than the 10 to 500 ns long laser pulse. Therefore, if the 

light power is sufficient, these fast-heating processes will melt the material during 

a single laser pulse [93]. 

Once the material is melted and the laser pulse vanishes, a large amount of 

heat is transferred by conduction from the melted film to the substrate, which did 

not get heated by the pulse (either because it does not absorb the laser light or 
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because it is much thicker than the film). When the temperature of the liquid Si is 

lower than its melting point, nucleation seeds appear. These seeds are the only 

starting point for the crystallization, since the amorphous substrate (glass, for 

example) does not offer crystallization seeds. 

6.1.2 Sequential lateral solidification process 

Several different techniques are utilized to crystallize materials over large 

areas using laser beams. Most of them crystallize only a portion of the film, and 

then displace either the beam or the substrate to crystallize the contiguous areas. 

In the frame of the present work, the sequential lateral solidification (SLS) process 

has been adopted (See for example Refs. [92] and [94]). The idea behind this process 

is to generate grains that serve as seeds for further crystallizations applied 

spatially and temporarily displaced from the previous crystallization event. Figure 

6.2 sketches a layer being crystallized with the SLS-process. Part (a) shows a view 

on the crystallized film after a single pulse. With the laser used in this work, the 

crystallized area is 5 µm wide and 150 µm long ellipse, corresponding to the area of 

the laser beam focused onto the substrate. As explained by Dassow in Ref. [94], the 

marginal sector of the ellipse shows small grains, which are the ones that 

crystallize first because this area is the most undercooled. They serve as seeds for 

the large grains at the SLS-region indicated in the figure. The large grains grow 

only for sufficiently high light powers. In the center, we obtain small grains because 

it is the less undercooled region.  

(a) crystallization after one pulse  (b) multiple pulse scanning 

Figure 6.2: (a) shows the result of a single pulse crystallization, where small grains at the 
border crystallize first and serve as seed for the larger grains. The center of the crystallized 
area shows also small grains because it is the less undercooled part of the pulse. (b) shows a 
scan after five laser pulses that were displaced in the scanning direction, using the large 
grains of each earlier crystallized region as seeds for the new forming crystallites. 

SLS-region, large grains 

small grains first 
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last 
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Figure 6.2(b) shows the same film after applying five laser pulses shifted 

slightly between each other. The shift between every pulse is carefully chosen, in 

order to achieve that every melted area comes in touch with the region of large 

grains generated by the previous pulse, using those grains as growth seeds. Thus, 

the large grains continue growing downwards the scan direction. This process of 

displacing the pulses properly is the actual Sequential Lateral Solidification. The 

Nd:YVO4 laser utilized in the present work yields elongated grains that are 

1x(10…100) µm2 in size.10 After the sample is scanned in the vertical direction, the 

substrate is displaced laterally and a new scan begins, thus covering all the area of 

the sample. 

Dassow observed that when crystallizing with the SLS-process, the grain 

width depends directly on the a-Si thickness, the laser power and the pulse 

frequency [94]. Nerding et al. [95], explained this behavior by observing that the 

smaller the film thickness, the laser power or the pulse frequency, the higher the 

quenching rate is. A high quenching rate means fast crystallization and  small 

grains. From the technological point of view, such high quenching rates means that 

one is able to tailor the grain width, which is an important feature for research 

purposes. In this chapter, for example, I investigate the dependence of the electrical 

conductivity with grain size, which provides information on the physical transport 

parameters of the grain boundaries in lc-Si. 

The crystallization on insulators has the benefit of using glass substrates 

that isolate thermally the film during the crystallization, and permit also its use in 

the flat-panel display technology. The next section investigates the crystallization of 

silicon on conducting substrates, which is aimed at the preparation of vertical 

microelectronic devices, such as diodes or solar cells. 

6.1.3 Crystallization of silicon on conducting layers 

Intuitively, we note that in order to drive all the available heat into the a-Si, 

the underlying layers should be rather isolating, not conducting. In order to make 

the crystallization on conductors possible, we need to fulfill two conditions: 

                                            

10 The crystallization parameters are discussed below. 
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i. the heat loss from the melt to the substrate must be sufficiently low, 

permitting the lowest possible quenching rates.  

ii. the conducting film must preserve its electric properties after 

crystallization.  

These conditions are attained by selecting the right thickness and choosing 

an adequate conductor. We select the conductor by comparing several metals with 

regard to the following aspects:  

1. Melting point. The melting point of the conductor must be higher 

than the melting point of silicon at 1685 K [93]. 

2. Thermal conductivity. Low thermal conductivity is desired, to ensure 

that the heat transfer from the melt to the substrate is minimal. 

3. Thermal expansion coefficient. For an operating device that combines 

layers of different materials, the conductor must expand similarly to the 

substrate (glass) and to silicon. If they expand differently, the films will 

experience interface stresses that will generate structural damages 

(cracks). This criterion limits the selection to a few conductors. 

4. Solubility in silicon. Most metals dissolved in Si are unwanted 

impurities. They produce energy levels in the band gap that harm the 

electrical properties of Si. The lower the solubility of metals in silicon, the 

higher will remain the purity of the lc-Si. 

Table 6.1 lists the melting point, thermal conductivity, and thermal 

expansion coefficient of some metals and Si. The thermal expansion coefficient is 

given at room temperature. The most compatible to Si are vanadium and chromium. 

Due to its good adhesion to glass, chromium is a standard masking material in 

electronics. Molybdenum shows a much higher thermal conductivity than Cr and V. 

Chromium was selected because its solubility in silicon is much lower than that of 

many metals [96] (However, due to grain boundary diffusion, the solubility of 

metals in fine-grained silicon should be higher than the c-Si values indicated there).  

A final aspect to consider is the formation of silicides. Most silicides are 

semiconducting, and appear at semiconductor/metal contacts, affecting the 

electronic transport through those interfaces [98]. When using chromium, the most 
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common silicide formed is CrSi2. In our case, it should not be expected that CrSi2 

appears during the laser crystallization, since the time given is too short (about 50 

ns). Instead, silicides will form before crystallization, after the deposition of a-Si, 

when tempering the a-Si layers on Cr to extract hydrogen (which causes 

‘microexplosions’ during crystallization in air). Tempering was performed at about 

400°C for some hours, a temperature and time that permit some formation of CrSi2 

[99]. With the formation of CrSi2, the Cr thickness will decrease. The chromium 

thickness (measured with a surface profiler) decreases after tempering. The 

experiments performed in this work indicated that about 10 nm of chromium get 

consumed by tempering. After experimental observations on formation of thin-film 

CrSi2, the silicide formed should then be about 30 nm thick (see page 94 in Ref. 

[99]). 

Table 6.1 Thermal properties of silicon and selected candidate metals to serve as base 
layers for crystallization. The metals presented have a higher melting point than silicon, an 
expansion coefficient compatible with Si, and low thermal conductivities. Molybdenum was 
discarded because of its high thermal conductivity (compared to vanadium and chromium), 
and its too low expansion coefficient with compared to silicon. 

 melting point 
[K] 

expansion coefficient1 
[10-6 K-1] 

thermal conductivity2 
[Wm-1K-1] 

silicon 1685 7.6 430 

molybdenum 2888 5.1 87.7 

vanadium 2175 8.3 29.5 

chromium 2133 6.5 45.5 
1 valid for the range 273-373 K. 
2 values extrapolated to the melting point of silicon, from Ref. [97]. 

Among the non-metallic conductors, I also prepared some lc-Si samples on 

ZnO, a standard conducting material to make transparent contacts on solar cells. 

The thicknesses of ZnO can be larger than any metal’s thickness because it has a 

lower thermal conductivity than them [100]. 

6.1.4 Experimental crystallization setup 

Figure 6.3 shows the crystallization equipment used in this work [94]. The 

substrate is held by an x-y table. A cylindrical and a spherical lens focus the laser 

beam onto the substrate, making the beam’s cross-section elliptic. A stepping motor 

that uses the signal provided by an auto-focus control system moves the spherical 
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lens, keeping the focus if the table eventually vibrates. Using the x-y table, the 

scanning is performed by displacing vertically the substrate for every scan. After a 

vertical scan, it is displaced horizontally, thus covering all the area to be 

crystallized. 

 

Figure 6.3: Experimental arrangement utilized in this work for laser crystallization using 
an Nd:YVO4 laser. The sample is put onto an x-y table that moves it to make the scans. The 
auto-focusing system keeps the focus by moving the spherical lens. 

The power laser used is a commercial Nd:YVO4 laser, which works at up to 

100 KHz, and delivers 750 mW light power (at 20 KHz). Dassow showed that 

compared to an excimer laser, which works at higher powers but lower frequencies, 

the Nd:YVO4 laser yields much higher crystallization rates, making it particularly 

attractive for large area applications needed in electronics technology [94]. The 

Nd:YVO4 laser has a wavelength of 1064 nm, which is divided by two using a 

frequency doubler, resulting in 532 nm wavelength. The cross section of the laser 

beam used is about 5 µm wide, and the SLS-region is about 1 µm wide. The vertical 

displacement ∆x between two pulses is set to 0.5 µm to ensure overlapping of the 

melt with the SLS-region of the previous pulse. For a pulse frequency f = 20 KHz 

and ∆x = 0.5 µm, the required vertical scan velocity becomes 10 mm/s. This set of 

parameters is taken in the present work (if not indicated otherwise).  

Two types of films were crystallized:  a-Si on SiN or glass, and a-Si on 

chromium and ZnO. The substrate was always Corning glass. Figure 6.4 shows both 

types of films and typical values of their thicknesses. The SiN layer is utilized as 

diffusion barrier, to avoid diffusion of impurities from the glass to the substrate 

during the melting process.  

auto-focus
system

laser
light beam

spherical lens cylindrical lens

sample

x-y table
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Figure 6.4:  Part (a) shows a sample with a SiN  buffer layer (or directly on glass) and part 
(b) uses a chromium layer. The substrate is always Corning glass. Typical values of the 
layer thicknesses are given. 

6.2 Structural characterization 
This section briefly describes the structure of the crystallized layers, focusing 

on homogeneity (or uniformity). The uniformity is investigated by means of grain 

sizes and widths, and the statistical distribution of grain widths. For a description 

of other structural properties, such as texture, and grain boundary types, I would 

like to refer to the thesis of Dassow [94].   

Results of laser crystallization of silicon on conducting layers are also shown 

here, with special focus on chromium-based layers. As we will see, the grain sizes 

obtained using Cr are similar to the obtained with crystallizations on insulators, 

and the films on Cr show better uniformity. 

6.2.1 Grain sizes and shapes 

In order to permit a measurement of the grain sizes, we first need to make 

the grain boundaries visible. Secco etching is a method specifically designed to 

reveal defects in silicon, making grain boundaries visible under the microscope. 

Figure 6.5 shows a picture taken with an optical microscope after etching a lc-Si 

film. This 300 nm thick film uses a SiN buffer layer and is crystallized at 20 KHz, 

750 mW laser power and a shift of 0.5 µm between pulses. The dark, vertical lines, 

are the grain boundaries made visible after etching. The width of the grains is 

about 1 µm, while the length is several 10 µm. Figure 6.5 shows the grain widths to 

a-Si (~200 nm)

SiN (~200 nm)

Corning Glass

Cr (~50 nm)

(a) (b)
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be similar in the pictured area. This uniformity in grain width over large sample 

areas is a key advantage offered by SLS-grown layers.   

 

Figure 6.5:  This optical microscopy image of a Secco-etched film shows long, elongated 
grains obtained with laser crystallization of a-Si. The grain boundaries are represented by 
the darker lines. Typically, the grains are about 1 µm wide and several 10 µm long. 

A closer look at the films enables Transmission Electron Microscopy (TEM). 

Figure 6.6 shows a TEM11 image of a lc-Si film (with SiN layer), where we can 

identify grain boundaries, and an intersection where a new grain is born. The dark, 

curved lines are produced by the local mechanical stresses of the film. They arise 

spontaneously in the sample preparation process required for TEM microscopy. 

Point defects are not observed, which means that the defect density in the grains 

must be very low. 

 

Figure 6.6:  This TEM image of a laser-crystallized film shows the actual shape of the 
grains, the grain boundaries. We also identify an intersection of three grain boundaries 
where a new grain is born. The dark curves are stress contours originated from sample 
preparation. 

                                            

11 The TEM analysis presented here was performed by Melanie Nerding, from the Lehrstuhl für 
Mikrocharakterisierung at the Erlangen University.  I would like to gratefully thank her for our 
succesful cooperation and fruitful discussions. 
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Figure 6.7 shows TEM images of lc-Si films crystallized on conducting layers. 

Part (a) belongs to a film crystallized on a 30 nm thick chrome layer on glass, while 

the film depicted in part (b) uses a 200 nm thick ZnO layer on glass.12 We see that 

the shape and size of the grains is not altered with respect to the layer crystallized 

on a SiN buffer layer. Why do the grains grown on such different substrates look 

similar? Concerning the crystallization process, the growth is independent of the 

substrate chosen because it is lateral and based on the presence of crystallites of the 

previous scan, not relying on seeds from the substrate. 

(a) with chromium layer (b) with ZnO layer 

Figure 6.7: Transmission electron microscopy images of laser crystallized silicon on 
different conducting substrates, where film (a) has a 30 nm thick chromium layer, and film 
(b) uses a 200 nm thick ZnO film. Both crystallizations lead to grain sizes and shapes very 
similar to crystallized silicon on SiN. 

The crystallized films show preferential textures, which can be obtained from 

analysis of Electron Back-Scattering diffraction patterns. For films crystallized 

directly on glass, the texturing depends on film thickness [101]. However, films with 

a SiN layer show textures that are independent of film thickness, and the surface 

normal coincides with the crystallographic <111> direction, while the scanning 

direction coincides with the <110> direction. The same orientations are observed in 

layers crystallized on chromium.13 

 

                                            

12 The Zinc-Oxide was deposited by Kay Orgassa using a radio frequency sputtering system. I would 
like to thank him for his cooperation. 

13 M. Nerding, personal communication. 
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6.2.2 Grain size distributions 

The measurement of the width g of the grains over a large crystallized area, 

allows for a statistical analysis of grain sizes. Firstly, this statistics is necessary to 

obtain a median grain width gmed, which characterizes the crystallized film 

structurally. Secondly, the relative width σg of the grain width distribution is 

extracted, which gives us information about the uniformity and homogeneity of the 

films: the narrower the grain width distribution (small σg), the more homogeneous 

is g over the sample. In polycrystalline silicon, the grain width population f(g) 

follows a log-normal distribution, which is obtained regardless of the preparation 

method [102]. This distribution results from random nucleation produced on 

amorphous substrates. The log-normal distribution for the grain widths is given by 
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where gmed is the median of the distribution. The statistical analyses given in this 

section are based on 150 to 300 grains measured for each sample. The 

measurements were performed on pictures of Secco etched samples, which yield the 

same values as TEM pictures.14 Figure 6.8, part (a), shows a grain width population 

from a 150 nm thick film with SiN buffer layer, and its corresponding log-normal 

fit. The film has a gmed = 0.9 µm and σg = 0.5. If we crystallize silicon on a thin 

chromium layer, we get gmed = 1.21 µm and σg = 0.46 (see part (b) of Figure 6.8), 

showing us again that the nucleation process does not depend on the substrate, as a 

consequence of the SLS-growth.   

                                            

14 After a comparison with statistical data obtained from TEM images, of the same samples. 
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(a) on SiN (b) on chromium 

Figure 6.8:  Grain size populations f(g) observed in laser-crystallized Si films follow a log-
normal distribution (solid line). Part (a) corresponds to a lc-Si film on a SiN substrate, 
while part (b) uses a chromium layer. The similarity of the distributions relies on the SLS-
growth of both layers, which is independent of the substrate.  

Using the possibility to vary the grain size, I made samples with different 

grain sizes and analyzed them fitting the distributions with the log-normal 

function. The experiments show that a correlation between σg and gmed is obtained. 

Figure 6.9 shows that there is an increase of σg with gmed, and that this increase is 

valid regardless of the type of substrate (i.e. chromium, glass or SiN). The different 

grain sizes were obtained either by increasing the laser power, the film thickness, 

or the pulse frequency. The fact that large σg are linked to large values of gmed, 

means that when preparing large-grained films, one must pay the price of a lower 

grain width homogeneity. To quantify the relation between grain size and 

homogeneity, I define a quality factor Q as 

 
g

medg
Q

σ
= , (6.14) 

which gives credit to films that have large grains and small grain width variations. 

This factor has a profound significance not only from the structural point of view, 

but also from the electronic point of view: the higher the structural homogeneity is, 

the higher is the homogeneity of the electronic properties.  

In the gmed vs. σg plot, the value of Q is given by the slope. The best lc-Si films 

with SiN buffer or on glass I obtained, have a quality factor of about Q = 1.8 µm, 

while the films on chromium show Q = 2.6 µm. What is the explanation for the more 

uniform grain widths in Cr-films, knowing that the growth mechanism is not 
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affected by the type of substrate? I suspect that this property could be related to the 

higher thermal conductivity of chromium with respect to the insulators. On 

chromium, heat is conducted better and the silicon melt must have a more 

homogeneous temperature profile. When cooling down, the homogeneously heated 

film leads to more homogeneous conditions for crystallite growth, and therefore we 

obtain the lower values of σg found. 

 

Figure 6.9:  This data show that there is a correlation between gmed and σg. The black 
squares are data of lc-Si films with SiN buffers, the triangle is crystallized directly on glass, 
and the open circles belong to lc-Si on Cr. Surprisingly, lc-Si films on Cr show higher values 
of gmed at the same σg than films with SiN buffer or crystallized directly on glass! Therefore, 
we can say that films on chromium have higher structural (and therefore electronic) 
homogeneity. 

6.3 Optical characterisations 

6.3.1 Absorption coefficient and band gap 

This section describes the measurement of reflectance and transmittance, 

which allows the determination of the film thickness and the absorption coefficient 

of the films. In the next section, these quantities are needed to make a quantitative 

analysis of the photoelectric characterizations.  

The measurement of the film thickness is carried out only by optical means, 

because the lc-Si films are very thin. A white-light spectrophotometer is used to 

measure the film reflectance r and obtain the thickness d, using a software provided 

with the equipment. It measures the reflectance in a range of wavelengths from 400 
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to 1000 nm. The software models the film’s reflectance using estimated optical 

constants for substrate and film, and then fits the measured data using the 

thickness d as a parameter. Figure 6.1 shows an example of a measured reflectance 

spectra (open circles), and the fit to the data (line), which yields d = 345 nm. 

 

Figure 6.10:  Example of a reflectance measurement (circles) and the corresponding fit 
(solid line) to determine the film thickness d. The software of the spectrophotometer makes 
the fit considering single-crystalline silicon parameters. 

Knowing the film thickness and the reflectance, we can go further and 

measure the transmittance, which is needed to determine the absorption coefficient. 

Taking into account the reflection of light at the surface between air and lc-Si, and 

at the interface between lc-Si and the substrate, with reflectances r1 and r2 

respectively, the absorption coefficient α becomes (derived from Eq. A9.1 in Ref. 

[103]) 
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where d is the film thickness, and t is the measured transmittance. This expression 

neglects any other reflection events than the two reflections described above. Thus, 

Eq. (6.15) cannot be used for red and infra-red light, because that light is weakly 

absorbed by silicon, and therefore reflected several times before absorption (in thin 

layers in particular). Equation (6.15) also neglects light scattering in the bulk, and 

light scattering by surface roughness and grain boundaries. Light scattering in the 
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grains should be small because from the TEM pictures, we know that the density of 

structural defects, which serve as scattering centers, is very low.  

Light scattering at the surface can also be neglected in our films. If the mean 

roughness of the front surface is smaller than λ/(2η), being η the refraction index of 

the film, scattering of light at the surface can be neglected. As shown by Köhler et 

al. [104], our laser-crystallized films have roughnesses smaller than 5 nm. Taking a 

c-Si refraction index of η = 5.6 at λ = 400 nm, we obtain λ/(2η) = 36 nm. At higher 

values of λ, η decreases, and λ/(2η) is much greater than the mean roughness. The 

condition to neglect light scattering at the surface is thus fulfilled. Optically, the 

surfaces of these films can be considered flat. The only left process is light 

scattering at grain boundaries. To simplify the analysis, I neglect this scattering 

process, but knowing that it can be an error source. 

The measurements of the transmittance t were performed using a 

spectrophotometer. Figure 6.11 shows reflectance and transmittance spectra of a 

150 nm thick lc-Si film.15   

 

Figure 6.11:  Reflectance and transmittance spectra a of a laser crystallized film with 150 
nm thickness. The spectra are used to calculate the absorption coefficient of the film. 

                                            

15 A reliable measurement of r and t shows the maxima and minima of r and t taking place at the 
same wavelenghts, since for the maximum reflection at the front surface, the transmitted light has 
minimum intensity. 
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The reflectance r2 needed to evaluate α from Eq. (6.15), is not accessible via 

direct measurements. I estimated r2 considering an interface c-Si/substrate, instead 

of lc-Si/substrate,  using the equation 

 2
substrateSic

2
substrateSic

2r
η+η

η−η
=

−

− , (6.16) 

where the complex refraction index ηc-Si and ηsubstrate are taken from literature [105]. 

After Eq. (6.16), if we use a Corning glass substrate, we get r2 = 25 % at λ = 500 nm.  

Since we already obtained d, r1, r2 and t, we calculate the absorption 

coefficient using Eq. (6.15). Figure 6.12 shows the absorption coefficient α(hν), for 

two laser-crystallized films, together with monocrystalline silicon data (solid line) 

taken from the literature [105] for comparison. The open circles are data of a film 

with a SiN buffer layer, while the crosses belong to a film crystallized directly on 

glass. The oscillations observed in some regions of the circles data, arises from a 

measurement inaccuracy originated in a shift of about 10 nm between the maxima 

and minima of r and t. The figure also shows us that the laser-crystallized films 

have α-values about two times higher than c-Si. 

 

Figure 6.12: Absorption coefficient of laser crystallized silicon films that were deposited 
directly on glass (crosses) and on a SiN buffer layer (open circles), calculated from 
transmittance and reflectance data using Eq. (6.15). Light absorption appears to be about 
two times stronger than in monocrystalline silicon (solid line).  

Does lc-Si really absorb more light than monocrystalline silicon? The higher 

values of α obtained can come from different sources: instrumental errors, light 

scattering (and thus more absorption) at grain boundaries, absorption at amorphous 
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residuals within the films, or a larger number of inner reflections than considered 

in Eq. (6.15). Defect absorption contributes mainly for energies below the band gap, 

i.e. for hν < 1.1 eV, and not at the values of energy where we observe the increased 

absorption. Light scattering at GBs plays a role mainly at small grain sizes [36], 

and was not detected in thin films with grain sizes of the order of 1-10 µm [107]. 

Regarding the absorption by amorphous phases, if the films contain a-Si, the 

experimentally measured absorption coefficient αexp is determined by the volume 

fractions of each component, by 

 Sia1 −αβ−+βα=α )(exp , (6.17) 

where β is the crystalline volume fraction, α the absorption coefficient of 

microcrystalline silicon and αa-Si the absorption coefficient of a-Si. Taking the 

measured data for example at hν = 2 eV, and the corresponding measured value of 

αexp = 1.21x104 cm-1, Eq. (6.17) gives a value of β = 0.04 (with α = 3.52x103 cm-1 and 

αa-Si = 1.25x104 cm-1 taken from the literature). This value means that about 4 % of 

our films volume would be amorphous silicon. If we assume that the grain 

boundaries are amorphous, we can calculate the amorphous content. Estimating a 

grain boundary width of 1 nm and a grain area of about 1 x 100 µm2, the relative 

amorphous volume is less than 0.2 %, well below the 4 % needed to explain the high 

values of α. Thus, we have to find the suspected 4 % of amorphous content within 

the grains. The amorphous content of a film can be investigated with Raman 

spectroscopy. In the case of a-Si, the spectra reveal a broad peak at 480 cm-1, while a 

narrow peak at about 518 cm-1 is found in c-Si. This is also the case of the lc-Si 

films, as shown by the Raman spectrum of Figure 6.13. This measurement shows no 

contribution at 480 cm-1, proving that the amorphous content is negligible in our 

films.  
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Figure 6.13: This Raman spectra of an lc-Si film indicates that there is no amorphous 
content in the film. If there were amorphous content, we should see a contribution to the 
spectra at 480 cm-1, according to the maximum of the Raman peak found in amorphous 
silicon. 

With no a-Si absorption and light scattering at GBs, I suspect that the 

greater values of α compared to c-Si values could come the estimation of r2, since 

the values for ηsubstrate, taken from literature, may differ from the values of η of the 

substrates used in this work. These differences surely play a role because we are 

dealing with thin films, were r2 cannot be neglected. 

With the measured α, we determine the band gap Eg. Indirect semiconductors 

like silicon, show a quadratic dependence of the absorption coefficient from photon 

energy hν, following the relation [106] 

 ( )2
g hEh Ω±−ν∝α  (6.18) 

which is valid for values of hν smaller than the direct band transition (at hν = 3.4 

eV in silicon), and moderate light intensities. The quantity hΩ is the phonon energy, 

which is much smaller than Eg at room temperature. Therefore, the value of hΩ can 

be neglected. From equation (6.18), it follows that the band gap can be calculated if 

the curve α(hν) is known. Plotting α1/2 against hν should yield a straight line, with 

an hν-axis intercept given by E ≅ Eg. Figure 6.14 shows α1/2(hν) plots for two 

different films, the crosses come from a film crystallized directly on glass, and the 

circles from a film with a SiN buffer layer. Around energies higher than the 

expected band gap (hν > 1.1 eV), these plots become a straight line, which gives us 

the band gap energy Eg. The value of the band gap obtained with the linear fit is Eg 

= 1.25 ± 0.12 eV, somewhat higher than the c-Si value of 1.12 eV. Is the band gap 
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really higher than the band gap of c-Si? Jensen measured α using three different 

measurement methods on polycrystalline films with similar grain sizes as the lc-Si 

films. His measurements show that the absorption coefficient has the same values 

as c-Si [107], leading to the same band gap energy. With this information, I 

conclude that the somewhat higher Eg measured here, comes from the uncertainty 

introduced by the estimation of r2, involved in the α1/2 plot.  

 

Figure 6.14:  Plots of α1/2 for two different films, both showing a band gap Eg = 1.25 ± 0.12 
eV, obtained from the linear extrapolation of the data. The crosses belong to a film 
crystallized directly on glass, and the circles to a film with a SiN buffer layer. 

6.4 Photoelectrical characterisations 
From the previous sections, we know that lc-Si has long, elongated grains. 

This anisotropic structure influences carrier transport, since carriers flowing 

parallel to grains will encounter less grain boundaries than when flowing 

perpendicularly to them. The anisotropy results in an anisotropic resistivity: when 

transport is parallel to the grains, the resistivity is significantly lower than when it 

is perpendicular to them. Figure 6.15 shows the current flow parallel and 

perpendicular to grains. The curved arrows depict possible mean paths of a positive 

carrier. In the parallel conduction shown in part (a), the carrier flows rather 

unperturbed through the grain, eventually finding a GB in its path. When the 

transport is perpendicular, as in part (b), the carrier is forced to go through more 

grain boundaries than in the parallel case. The grain size relevant to such transport 
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Chromium
contacts

lc-Si

paths is the mean grain width gmed. From now on, I refer to the term grain size to 

the mean median grain width, for simplicity.  

 

(a) (b) 

Figure 6.15: Conduction parallel (part (a)) to grains, and perpendicular to them (part (b)). 
The electrons paths sketched with the thick, curved lines, show that when the transport is 
perpendicular to the grains, the electrons will encounter more grain boundaries, resulting a 
higher resistivity. 

I prefer to describe the conduction in the perpendicular direction, because in 

that case it is clear that every carrier will encounter a grain boundary after 

traveling a distance of about gmed. This scenario resembles the 1D-Model of chapter 

4. Therefore, I explain the data obtained with the lc-Si films with the 1D-conduction 

models.  

The electrical characterizations of the films are performed under steady-state 

and transient conditions. The steady-state characterization involves three methods: 

conduction type measurements, dark conductivity, and differential 

photoconductivity. For all these measurements, I used lc-Si films with “T”-shaped 

contacts, made by evaporation of chromium through a mask. Figure 6.16 shows this 

contact geometry. The separation between the contacts is 500 µm, and the width is 

1 cm.  

 

Figure 6.16:  Contact geometry used for all the electrical characterizations presented in this 
section. The electronic transport occurs in the same plane as the film. The contacts are 
separated by 500 µm, and are 1 cm wide. 
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Before we get involved with the specific measurements, we need to know the 

behavior of the Cr/Si contacts, and its influence on the measurement of resistivity. 

Figure 6.17 (a) shows schematically a band diagram for the Cr/Si contact. The 

scheme was made using Anderson’s rule, which says that the vacuum energy level 

EVAC must be continuous at the interface, as shown by the figure. This level is given 

(above the Fermi-level) by the work function qφm of the metal, and by the quantity 

q(χ + Eg - EF) on the semiconductor’s side, where χ is the electron affinity. The band 

diagram assumes literature values for qφCr = 4.6 eV and qχc-Si = 4.05 eV. It also 

assumes that the Fermi-level in silicon lies at midgap, as shown by the dashed line. 

The interface shown by the dotted lines is a native silicon-oxide, which always 

appears at room temperature in air.  

(a) (b) 

Figure 6.17: Part (a) is a schematic band diagram of a Cr/Si contact. In this case of intrinsic 
silicon, with the Fermi-level at midgap, the contact to Cr shows no band bending. The 
interface is a thin native silicon-oxide layer. Part (b) shows the same contact but with an 
applied electric field, and also adds the energy levels in the forbidden gap of silicon that 
arise from defects formed at the interface. Carriers tunnel the native oxide because it is 
very thin. Electrons with high thermal energies reach the conduction band of Si, while 
electrons with lower energies use the defect levels as conduction path. 

Part (b) of Figure 6.17, shows the same band diagram but after applying a 

potential between the two extremes, making up an electric field (which produces the 

slope of the bands). Some energy levels in the forbidden gap of silicon were included, 

representing the defect levels that arise from lattice mismatch with the oxide, and 

from so-called “metal induced gap-states” (as explained in Ref. [108]). Since the 
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native oxide is only few nanometers thin, the electrons shown in the picture can 

tunnel it and get into the semiconductor. Carriers with high thermal energy 

surpass the energy barrier and make it up to the conduction band in silicon. Low-

energy electrons cannot surmount the barrier, and find their way to the silicon 

using defect levels as conduction paths. Therefore, at low temperatures, the thermal 

energy of the carriers is so low, that they can enter the semiconductor only by 

tunneling and using the traps at the interface. 

6.4.1 Conductivity type 

The conductivity type was obtained with the “hot-probe” method (described in 

page 42 in [109]). It consists in heating shortly one of the contacts, with a soldering 

iron for example, and then measure the voltage rise (or drop) between both contacts. 

If the hot contact shows a positive potential with respect to the cold one, the 

semiconductor is n-type. A p-type semiconductor gives a negative potential. 

All the lc-Si layers made during this work show p-type conductivity, 

indicating an unintentional doping by incorporation of impurities during the 

preparation process. Since the crystallization takes place in air, the main source for 

impurity incorporation is the crystallization process, rather than the deposition of 

a-Si. An incorporation of impurities from the glass substrate can also be excluded 

because the samples analyzed here had a SiNx diffusion barrier. Thus, we are 

aware of the fact that oxygen and nitrogen incorporation is natural to the 

preparation process. In c-Si, both elements have been shown form acceptors or 

donors (see Ref. [109] for the doping character of oxygen, and Refs. [110] and [111] 

for nitrogen). The p-type character observed in the lc-Si films indicates that there is 

a larger number of activated acceptor atoms than donor atoms.  

6.4.2 Hall measurements 

Hall measurements at small magnetic fields are suitable to obtain the carrier 

type, the carrier concentration, and the carrier mobility of a semiconducting film. In 

polycrystalline films, the Hall experiment averages the carrier concentration 

between the grain center and the grain boundary. Bennet showed that in a 

polycrystalline material with grains having a dimension much larger than the 
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other, like lc-Si films, the Hall constant RH is related to the average carrier 

concentration p  by the equation [116] 

 
( )

pq
VgF

R b
H

,
= , (6.19) 

where F(g,Vb) is a function which depends on the grain size and the band bending. 

In low doped samples with a grain size of 1 µm, Bennet calculated F(g,Vb) = 1 at Vb 

= 25 mV, and F(g,Vb) = 10 at Vb = 150 mV. Here, since Vb is unknown a priori, I 

consider F(g,Vb) = 1, but bearing in mind that p  could be an order of magnitude 

larger. 

To measure RH in the lc-Si films, I utilized the Van der Pauw technique using 

a cloverleaf-shaped sample (see page 523 in Ref. [103]). The magnetic field strength 

was 0.5 Tesla, and the current was set to 0.1 µA. The results obtained for RH have a 

large error of about 150 % because it was technically difficult to measure the Hall 

voltage with a good precision. This difficulty comes from the problem that, since the 

lc-Si samples have a high resistivity, the voltage measured at the hall contacts 

without magnetic field, is much greater than the Hall voltage, making a 

determination of the Hall voltage difficult. Nevertheless, it is useful to know p  

within a range of an order of magnitude. The values of p  obtained considering a 

value of F(g,Vb) of 1 and 10, are respectively p  = 4x1012 and p  = 4x1013 cm-3. This 

indicates that the impurity dopants compensate each other strongly, yielding the 

low measured carrier concentration. Additionally, the band bendings at the GBs 

must be very low, and the space-charge regions around the GBs must reach the 

grain centers. The range of p  determines a range of the Hall mobility µH, given by 

µH = RH/ρ [103], by 12 < µH < 120 cm2/Vs. The latter value is of the same order of 

magnitude of the mobility measured by the photoconductivity measurements 

presented below.  

We can now estimate the position of the Fermi-level in the middle of the 

grains as follows. Considering small band bendings, the concentration of holes in 

the middle of the grains approaches p0 = p . Taking both values of p  respectively, 

the Fermi-level would lie between 0.41 and 0.35 eV above the valence band edge.   
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It is worth to note that the oxygen acceptor in c-Si shows an energy level at 

0.41 eV above the valence band [109]. In the present case, this would mean that the 

Fermi-level lies close to the acceptor level. The measurement of the temperature-

dependent dark conductivity provides more information about the position of the 

Fermi-level. 

6.4.3 Dark conductivity 

To obtain the temperature-dependent dark conductivity, I apply a constant 

voltage of 50 V between the T-contacts of the sample, and measure the current, in 

the temperature range from 150 to 450 K. The current density J and the electric 

field F, give the conductivity σ = J/F. At room temperature, the conductivities 

perpendicular to the grains show values of about 10-4 Ω-1cm-1. Parallel to the grains, 

σ is between one to two orders of magnitude greater than in the perpendicular case, 

namely between  10-3 and 10-2 Ω-1cm-1. This strong dependence from conductivity on 

conduction direction, drives us to the following conclusions: 

1. surface scattering effects on conductivity are negligible, as shown in 

chapter 4. If surface scattering would dominate transport, the actual conduction 

direction would have no influence on the conductivity σ, and 

2. conduction is strongly dominated by grain size, and hence by the grain 

boundaries. The difference of one to two orders of magnitude between σ in each 

direction, corresponds to the difference of one to two orders of magnitude between 

grain width (around 1 µm) and grain length (up to 100 µm).  

Since the measured conductivity reflects directly the conduction in the film 

(and not through its surface), the 1D model for conductivity of chapter 4 is suited to 

evaluate the data. Due to the p-type nature of the films, I neglect the electron 

conduction, assuming that the total resistivity is due to holes. The resistivity ρ of a 

single grain is given by 
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where δ is the width of the grain boundary. The subscript “GB” denotes grain 

boundary properties, while “0” indicates properties at the center of the grain. In Eq. 
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(6.20), I supposed completely depleted grains, assuming that the width W of the 

SCR is equal to gmed/2. This assumption makes sense, because the lc-Si films are 

undoped. Here, I am interested in the temperature dependence of ρ and of the 

conductivity σ = 1/ρ. Neglecting the temperature dependence of the mobilities, we 

find that the only temperature dependent terms in Eq. (6.20) are pGB, p0 and the 

term containing the error function. With the barrier height qΦ and the energy 

difference qζ between Fermi-level and valence band edge at the center of the grain, 

defined in Figure 6.18, and the corresponding expression for p (see chapter 2), the 

quantities pGB and p0 are expressed as a function of the temperature T by  
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where NGB is an effective density of states at the grain boundaries, and 
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Figure 6.18: Band diagram of a grain boundary in p-type Si, showing the barrier height qΦ. 

As explained in chapter 4, the term in Eq. (6.20) with the error function has a 

temperature dependence of the form exp(qVb/kT). Thus, considering Eqs. (6.20) and 

(6.22), the resistivity of the SCR is proportional to exp[q(ζ + Vb)/kT]. Inspecting the 

band diagram of Figure 6.18, we note that ζ + Vb = Φ. This means that both, the 

resistivity of the SCR and of the GB, show the same temperature dependence. 

Hence, the total resistivity of a single grain is proportional to exp(qΦ/kT) (and the 

conductivity is proportional to exp(- qΦ/kT)).  

At this point of the discussion, we can expect that the conductivity measured 

in a sample with many grains is expressed by the proportionality σ ∝ exp(-EA/kT), 
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where EA is defined as the activation energy of the conductivity. From an Arrhenius 

plot of σ(T), EA is calculated using  

 
( )
( )T1d

d
kEA /

ln σ
−= . (6.23) 

In the case of the isolated grain boundary of  Figure 6.18, the Arrhenius plot 

of σ(T) must yield a constant value EA = qΦ, independently of T. 

Figure 6.19 shows typical plots of σ(T) measured in lc-Si samples, which show 

a curved Arrhenius characteristic. After Eq. (6.23), this curvature means that EA 

varies with 1/T. Such curved Arrhenius plots appear also in other types of 

polycrystalline silicon [114]. The samples shown in Figure 6.19 have different grain 

sizes, Na23 has a grain width gmed = 0.66 µm, and sample Na46 has gmed = 0.91 µm. 

The σ(T) curves are plotted separately because they lie close to each other.  

  

Figure 6.19: These Arrhenius plots of the conductivity in two different samples are curved. 
The curvature implies that there is a distribution of activation energies, and is explained by 
the fits (solid lines) provided by the model of grain boundary barrier height inhomogeneities 
given in the text. 

The curved Arrhenius plots were successfully explained by a model that 

considers a distribution of activation energies given by J.H. Werner [114]. The 

model properly explained curved Arrhenius plots of σ(T) measured in many 

different polycrystalline semiconducting materials [114]. The idea behind a 

distribution of the activation energy relies in a physically realistic explanation: the 

trap and impurity densities, and hence the charge density at the grain boundaries, 

vary from grain to grain. These inhomogeneities of grain boundary charges give 

different band bendings, and hence different barrier heights. All these different 

barrier heights result in the value of EA extracted from the σ(T) measurement. Note 
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that it is more realistic to assume spatial inhomogeneities of the charge at the GBs 

than supposing the same charge density at all the GBs involved. Considering that 

the barrier heights are described by a gaussian distribution, Werner showed that 

measured activation energy EA must follow a linear dependence of 1/T  given by 

[114] 

 






 σ
−Φ= Φ

qkT
qTE

2

0A /
)( , (6.24) 

where 0qΦ  is the mean barrier height at the GBs at 1/T = 0 K-1, and σΦ the standard 

deviation of the distribution.  

Within this model, an Arrhenius plot of EA yields a straight line (if the 

distribution of barrier heights is gaussian). Figure 6.20 shows that the lc-Si samples 

have a a linear dependence of EA from 1/T. Fitting the data with (6.24), we find Φ 0 

= 530 mV and σΦ = 76 mV for sample Na46, while sample Na23 is fitted using Φ 0 = 

610 mV and σΦ = 85 mV. These values of Φ 0 and σΦ are typical in low-doped 

polycrystalline silicon [114]. Here, I assume that the values of Φ 0 are 

approximately independent of T. 

 

Figure 6.20: The activation energies shown in this plot give the barrier height at the grain 
boundaries. The model of barrier inhomogeneities explained in the text predicts the values 
of the mean barrier height Φ  at the grain boundary at 0 K, and its standard deviation σφ. 
The fits using the model yield Φ 0 = 0.53 eV, σΦ = 76 mV for sample Na46, and Φ 0 = 0.61 
eV, σΦ = 85 mV for sample Na23. 

With the values of Φ 0, we know the mean position of the Fermi-level at the 

grain boundary, but not the band bendings. However, we can estimate the band 
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bending Vb by assuming that the Fermi level in the grains lies just at the shallowest 

acceptor level produced by oxygen in c-Si, at 0.41 eV above the valence band, as 

suggested by the Hall measurements. Thus, the band bending is then given by qVb 

= Φq 0 — 0.41 eV. For example, sample Na46 has qVb = 0.53 eV — 0.41 eV = 0.12 eV.  

With the values of Vb, and the carrier concentrations obtained from the Hall 

measurements, it is possible to extract the defect density at the GBs using the 1D-

model of chapter 4. Here, I obtain a minimum defect density by assuming that all 

defect levels are filled. Since the actual carrier concentration in the center of the 

grain p0 must be greater than p , I assume that p0 is at least equal to the largest 

value of p  obtained with the Hall measurements. Thus, using p0 = 4x1013 and Vb = 

0.12 V, the minimum defect density 0
tN becomes  

 2
3

cmx.
V.cmx −

−

=
εε

= 10
13

S00
t 1061

q
1201048

N , (6.25) 

This value is rather low, compared to polycrystalline silicon films obtained by 

other methods, where Nt ranges between 1011
 to 1013 cm-2 [112]. But we have to bear 

in mind that this value is a minimum value.  

With 0
tN , we can go a step further and estimate the lifetime in the lc-Si films. 

If we distribute the total number of defects at the grain boundaries uniformly 

through the grain, we obtain an effective density Neff of defects per unit volume. The 

validity of this approach has been proved by Green [113]. In the case of lc-Si films, 

where the length L of the grain is much larger than gmed and than the film thickness 

d, Neff becomes 

 0
teff N

d
2

N =  = 1.6x1015 cm-3, (6.26) 

assuming a typical layer thickness of d = 200 nm. With Neff, which is a minimum 

value, we can define a maximum lifetime τ* by (see chapter 2), 

 
effnth Nv

1
σ

=τ* . (6.27) 

With vth = 107 cm/s, a capture cross section of minority carriers of 10-15 cm2, and Neff 

= 1.6x1015 cm-3, Eq. (6.27) gives τ* = 62.5 ns. This is a rough estimate, since the 

value of the capture cross section should be measured instead of estimated.  
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6.4.4 Photoconductivity  

The photoconductivity is the conductivity measured under optical 

illumination. The differential conductivity ∆σ is the difference between σ under 

illumination and its dark value. The measurement of ∆σ permits the evaluation of 

the product between carrier mobility and a minority carrier effective recombination 

lifetime τeff. This lifetime includes recombination of minority carriers at GBs, in the 

bulk, and at the film’s surfaces. It is worth to note that if the generation rate is so 

low that the increase of resistivity is much lower than the dark resistivity, i.e. ∆ρ << 

ρ, the change in conductivity is given by 

 2ρ
ρ∆

=σ∆ . (6.28) 

Next, I find an expression for ∆ρ considering the expression for the resistivity 

ρ of a polycrystalline sample given in chapter 4, and relating it to the generation 

rate. Under illumination, the hole and electron concentrations increase by ∆p and 

∆n (= ∆p). With a generation rate G, the change in the carrier concentration ∆n is 

given by 

 effGn τ=∆ , (6.29) 

After Beer’s law, if the reflectance at the surface of the film is r, and the 

incident photon flux is φphot, the generation rate is given by 

 
( )

d

e1r1
G

d
phot

α−−φ−
=

)(
, (6.30) 

where d is the film thickness and α the absorption coefficient at the wavelength 

chosen for the experiment. 

Now I obtain an equation for ∆σ using the equations of the resistivity. 

Expressing the hole resistivity ρp from Eq. (6.20) by  

 0ppGB
med

p g
2

ρ+ρ
δ

=ρ , (6.31) 

where ρpGB is the resistivity of the grain boundary, and ρp0 the resistivity of 

the SCR. If we consider an analogous expression to (6.31) for the electron 

resistivity, and assume that the carrier densities increase by ∆p and ∆n upon 

illumination, the change ∆ρ of the total resistivity can be expressed by the equation 
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 0GB
medg
2

ρ∆+ρ∆
δ

=ρ∆ , (6.32) 

where ∆ρGB and ∆ρ0 are the total changes in resistivity given by holes and electrons 

at the grain boundary and in the bulk, respectively. From this equation, we note 

that a plot of ∆ρ vs. 1/gmed gives a straight line, with a slope given by 2δ∆ρGB, and a 

∆ρ-axis intercept ∆ρ0. Using the measured value of 2δ∆ρGB, we can estimate the 

mobility-lifetime product µGBτeff as follows: the differential conductivity ∆σGB of the 

grain boundary is given by 

 ( ) ( ) nqnpq nGBpGBnGBpGBGB ∆µ+µ=∆µ+∆µ=σ∆ . (6.33) 

For simplicity, I define a mean grain boundary mobility µGB, given by µGB = 

(µpGB + µnGB)/2. Replacing this definition in Eq. (6.33) and using Eqs. (6.28) and 

(6.29), the product µGBτeff becomes 

 2
GB

effGB qG2
1

ρ
ρ∆

=τµ . (6.34) 

The measurements of photoconductivity were done using blue light with a 

wavelength of 400 nm, at which α = 105 cm-1, and r ≈ 0.5. The photon flux, measured 

with a calibrated solar cell, is φphot = 4.4x1012 photons/cm2s. Since the film thickness 

of the samples is d = 150 nm, Eq. (6.30) gives G = 1.1x1017 cm-3s-1. The variation in 

the current from the dark to the light state, is measured with a modulation method 

(described in Ref. [117]). 

Figure 6.21 shows the increase of photoresistivity with gmed found 

experimentally in the lc-Si films. The dispersion of the data at same values of 1/gmed 

arises from samples separated some centimeters on the substrates. However, it 

cannot be discriminated between an actual difference in resistivity, or if the 

contacts have slightly different resistances in each case.  

The solid line in Figure 6.21 is a linear fit to the data, showing the linear 

dependence predicted by Eq. (6.32). The linear fit yields a slope of 3.3x103 Ωcm2 

(with a 20 % error). This value corresponds to the product 2δ∆ρGB (see Eq. (6.32)). 

The independent term ∆ρ0 has an error larger than its magnitude and is therefore 

unreliable, but nevertheless sufficient to indicate that the intra-grain resistivity is 

much lower than the GB resistivity. 
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Figure 6.21 The differential photoresistivity ∆ρ shows approximately a linear relation with 
1/gmed. This linear dependence means that the electrical transport in the laser-crystallized 
films is dominated by the grain boundaries. The dispersion of the data comes from samples 
that were prepared from regions of the substrate separated by some centimeters. 

Now I utilize Eq. (6.34) to calculate the µτ-product of the lc-Si films. With a 

grain boundary width of 1 nm, the set of samples from Figure 6.21 show µGBτeff = 

2.3x10-5 cm2V. Assuming that τeff reaches the maximum value of 62.5 ns calculated 

in the previous section, the mobility is µGB = 368 cm2/Vs. This value seems 

reasonable, since it is of the same order of magnitude as the field effect mobility µFE 

reached by TFTs made from lc-Si. Indeed, TFTs having lc-Si layers of the same 

thickness and grain size, and the grain boundaries also perpendicular to current 

flow, reach µFE ≈ 210 cm2/Vs [115]. An exact match between µFE and µGB should not 

be expected, because µFE depends on the dimensions of the channel, and the oxide 

thickness (see page 441 in Ref. [13]).  

6.5 Test diodes 
The analysis of the current/voltage characteristics of diodes made with lc-Si 

gives us information about the transport parameters, which do not provide neither 

the resistivity nor the photoconductivity measurements. In a vertical diode, the 

current flow takes place perpendicularly to the film, not in the same plane of it. 

Since the film’s structure is columnar, with the grain boundaries going from front to 

back of the layer, most of the carriers flowing through the diode will not encounter 

grain boundaries. Thus, the electrical transport parameters provided by an analysis 
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of the current/voltage characteristics, correspond mainly to intra-grain properties. 

This statement is true provided the band bending induced by the grain boundaries 

is not large, i.e. for undoped films, and for thin films. The lc-Si films studied here 

fulfill both conditions. The only quantity still dominated by grain boundaries is the 

carrier lifetime, since carriers recombine mainly at the grain boundaries, were the 

defect concentration is much higher than in the grains. 

6.5.1 Diode structure 

The diodes are composed of five layers deposited onto a glass substrate in the 

following sequence: chromium (front contact), lc-Si (active layer), nanocrystalline-Si 

(p-type), and an aluminum layer as back contact. Figure 6.22 (a) shows the layers 

that constitute the diode. Figure 6.22 (b) presents the band diagram for this 

structure, which is sketched using Anderson’s rule taking literature values for the 

work functions of Cr and Al, and c-Si values for the electron affinity of nc-Si and lc-

Si. Since the lc-Si is undoped, and the thickness of the layer is about 300 nm, no 

appreciable SCR (and hence no band bending) builds up at the Cr/lc-Si interface. I 

assumed that the lc-Si has its bulk Fermi-level at 0.5 eV above the valence band 

edge, according to the values of the Fermi-level taken from the σ(T) measurements. 

This fixes the relative positions between the bands and the common Fermi-level at 

the Cr/lc-Si interface. 

With no significant SCR, the bands in the lc-Si become straight lines, as seen 

in part (b) of Figure 6.22. The Fermi-level in the nc-Si lies at about 100 meV above 

the valence band edge (corresponding to carrier density of about p = 1018 cm-3, 

measured with the Hall technique). The nc-Si layer is about 200 nm thick. At the 

interface to the aluminum contact, a very high and narrow barrier builds up in 

order to align the vacuum levels at the nc-Si/Al interface, satisfying Anderson’s 

rule. I will further assume, that due to the very narrow barrier, this contact is 

ohmic. The built-in potential Vbi of the diode is given by energy difference between 

the bands at the Cr/lc-Si interface and the lc-Si/nc-Si interface. Following the band 

diagram, a value for Vbi of around 500 mV arises for this structure. Indeed, the 

analysis of the current/voltage characteristics shown below, yields Vbi = 490 mV. 
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It is possible to understand the Cr/CrSi2/lc-Si contact of Figure 6.22 (b) as a 

Schottky contact with approximately equal barrier heights for electrons and holes. 

Here, I assume that under forward bias conditions, this contact injects electrons 

into the lc-Si, and that the electron current is equal to the hole current injected 

from the Al into the nc-Si. Additionally, I assume that the recombination velocity of 

minority carriers at each contact is infinity. Considering this assumptions, I model 

the test diodes as pin diodes with a narrow space-charge region, as explained below. 

(a) (b) 

Figure 6.22: Part (a) shows the different layers deposited to make the diode. Note that the 
lc-Si is crystallized on the chromium contact. With chemical vapor deposition, a nc-Si layer 
is deposited on the lc-Si film to make the front contact with the evaporated Al layer. Part 
(b) sketches a model for the band diagram of this structure. The bands are drawn using 
Anderson’s rule and respecting the positions of the Fermi-level corresponding to each layer. 
No appreciable SCR is found near the lc-Si/nc-Si interface, resulting the straight bands 
shown for the lc-Si layer.  

6.5.2 Preparation 

The diodes are prepared by evaporating about 40 nm Cr on a cleaned Corning 

glass, and depositing the a-Si to be crystallized on it using PECVD. The PECVD16 

involves first a hydrogen plasma etching to clean up the Cr surface, followed by the 

deposition of intrinsic a-Si at about 250 °C substrate temperature, and 30 W plasma 

power (at 13,56 MHz). The chamber pressure was 800 mTorr, using a SiH4 flow of 

30 sccm and an H2 flow of 10 sccm. These deposition conditions are employed 

specifically to incorporate the lowest possible amounts of hydrogen into de films, 

enabling their tempering after deposition17. After deposition, the layers are 

tempered in a quartz oven with a 30 sccm nitrogen flow, for 6 hours at a 

                                            

16 The a-Si depositions were performed by J. Glöckner at our institute, to whom I am very grateful 
for his time and cooperation. 

17 Films with high hydrogen content show bubbles or “blow ups” when tempered. 
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temperature of 450° C. The next step is laser crystallization, which I did using 20 

KHz pulse frequency, a scan velocity of 10 mm/s, and laser powers between 450 and 

500 mW (depending on film thickness). The crystallized layers are then dipped in a 

5 % concentrated HF-solution to remove native oxides formed at the surface of the 

films. After the dipping, highly doped p-type nc-Si layers are deposited on the lc-Si 

by the Hot Wire Chemical Vapour Deposition method18. Immediately after the nc-Si 

depositions, the films are brought to a metal evaporation chamber for the last 

processing step. I evaporated aluminium on top of the nc-Si, using a shadowing 

mask with round openings for the metal contacts, which have a diameter of 2 mm. 

The resulting diode’s area is then 0.031 cm2. 

6.5.3 Current/voltage characteristics 

 The current(I)/voltage(V) characteristics were measured under dark 

conditions. The analysis of the I/V-characteristics gives us the built-in potential, the 

µτ-product and the diffusion constant of the lc-Si layers.  

Before we can extract any information from the I(V) curves, we have to 

correct them with the series- and parallel resistance of the diodes (RS and RP, 

respectively), which are not included in the physical models for the I/V-

characteristics. We can expect a priori a high series resistance, because the Cr-

layers are very thin, and a low parallel resistance because the cells are very thin. 

Such combination of high RS and low RP will strongly modify the shape of the I(V) 

curves, being a correction mandatory. Here, I use the correction method described 

in Ref. [103], which yields accurate values of the series and parallel resistance, 

permitting a reliable correction of the I(V) curve. Figure 6.23 shows the measured 

and corrected I(V) curves of one of the diodes. I model the J/V-characteristics and 

extract physical parameters from the corrected curves.  

In order to extract the physical parameters of the diode’s material, we have to 

find a model for the I/V-characteristic. The band diagram of Figure 6.22 resembles 

the constant field region assumed for the pin diode described in chapter 5, where we 

had an intrinsic layer sandwiched between two contacts.  

                                            

18 I would like to thank Ch. Koch for his kind cooperation depositing the nc-Si layers at our institute. 
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Figure 6.23: Typical measured and corrected current/voltage curves shown by test diodes. 
This sample shows a series resistance RS = 390 Ω, and a parallel resistance RP = 0.4 MΩ. 

The model of the pin cell gives different simplified expressions for the I/V-

characteristics, depending on the distinguishing features in each case. The most 

significant difference between each expression is reflected by the value of the 

diode’s ideality factor nid. The corrected I/V-characteristics of the test diodes 

analyzed here, show values of n between 1.0 and 1.15. After the model of the pin 

diode presented in this work, an ideality near unity appears when the current is 

dominated by surface recombination. If we consider a very high recombination 

velocity and a narrow i-layer (below 0.5 µm), and considering a voltage V > 0, the 

current density can be written as (see Appendix B) 

 ( )t
t

bi0p VV
V

VV
W

Dqn2
J /exp

−
= , (6.35) 

which has an ideality of 1, as seen in the exponential term. The restriction of a 

narrow i-layer applies to the present case, because the lc-Si layer is only 300 nm 

thick. High recombination at the boundaries of the i-layer is also expected, since the 

contacts are not treated in any way to reduce the recombination. Under all these 

conditions, Eq. (6.35) is correct for the case under study.19 Putting all the measured 

quantities in Eq. (6.35) on the left hand side (l.h.s), we obtain 

 ( ) ( )VVDn
VVq2

WJV
bi0p

t

t −=
/exp

. (6.36) 

                                            

19 Eq. (6.35) assumes that electron and hole currents are equal, resulting the factor 2.  
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If we plot the l.h.s. of this equation against V, we get a straight line with 

negative slope. The intercept of the V-axis is given by Vbi, and its slope by np0D. 

Figure 6.24 shows this linear behavior on a test diode, where the intercept yields a 

built-in voltage of 0.49 V, and a slope np0D = 1.2x107 cm-1s-1.  

 

Figure 6.24: If we plot the left hand side of Eq. (6.36) against the applied voltage, we obtain 
a linear region, as shown in this example. The axis intercept reveals a built in voltage of 
0.49 V. The slope gives the product between the diffusion constant D, and the minority 
carrier concentration np0 at the interfaces between the i-layer and the contacts of the diode. 
In this example, n0D = 1.2x107 cm-1s-1. 

It is possible to estimate the diffusion constant from this slope, by estimating 

the value of the density of electrons np0 at the i/p interface. Assuming that the i-

layer has a majority carrier concentration p = 4x1013 cm-3,20 we obtain a minority 

carrier concentration in the i-layer of ni = 2.5x106 cm-3. Deep in the p-layer the 

majority carrier concentration of 1018 cm-3 imposes a minority carrier concentration 

np = 102 cm-3. Thus, the value of np0 is restricted to np0 < 2.5x106 cm-3. The diffusion 

constant D extracted from the slope np0D is then given by D > 4.8 cm2/s, i.e. a 

mobility µ > 187.5 cm2/s.  The order of magnitude of this mobility value is in 

agreement with the values extracted from photoconductivity measurements, where 

µGB = 368 cm2/Vs, and the upper Hall mobility µH < 120 cm2/Vs. With Vbi, n0D, and 

the thickness W of the i-layer, it is possible to estimate the product between lifetime 

                                            

20 This carrier concentration is the maximum value given by the Hall measurements of lc-Si samples 
crystallized on SiNx, as described in section 6.4.  
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and diffusion constant contained in the saturation current density J0, using the 

equation (explained in Appendix B)  

 
( )









+

µτ
−

=
t

0

0

tbi
0p0 V

F
F

V2V
Dqn2J

/exp
, (6.37) 

which is valid for high recombination velocities at contacts.21 The values of J0 

obtained from the corrected J(V) curves lie around 2x10-6 A/cm2 (with 30 % deviation 

among all diodes analyzed). In order to reach this value of J0, Eq. (6.37) imposes µτ 

≅ 4x10-6 cm2/V. Assuming µ = 187.5 cm2/s, we obtain τ = 21 ns. This value is of the 

same order of magnitude as the estimate of the maximum lifetime τ* = 62.5 ns 

obtained from the analysis of the band bendings at the GB (see Eq. (6.27)). 

6.6 Conclusions 
The analyses presented in this chapter describe the electronic properties of 

undoped lc-Si films by the following results: 

i) The type and resistivity measurements indicate that the films 

crystallized on a SiN buffer layer are slightly p-type, most probably due to 

the incorporation of oxygen during the crystallization in air. The Hall 

measurements give a hole density between 4x1012 and 4x1013 cm-3, and a 

mobility between 12 and 120 cm2/Vs. The temperature-dependent 

measurements of conductivity show a distribution of grain boundary band 

bendings, with a mean band bending around 120 mV. An estimation of the 

minimum areal defect density at the grain boundaries yields 1.6x1010 cm-2. 

Such a low density corresponds to a minority carrier lifetime of 62.5 ns, or 

to a recombination velocity SGB at grain boundaries in the range 100-1000 

cm/s  (see chapter 4).  

ii) The photoresistivity shows that, when the transport takes place in the 

plane of the film, the grain boundaries dominate the resistivity, with a 

negligible resistivity of the intra-grain regions, resulting resistivities 

                                            

21 This expression differs from Eq. (5.10), because (5.10) is only valid for a cell thicker than 500 nm, 
with a built-in voltage higher than 0.7 V. 
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around 104 Ωcm at 300 K. The grain size dependence of the 

photoresistivity is explained by the conductivity model of chapter 4, 

permitting a rough estimation of the µτ-product, yielding µτ = 2.3x10-5 

cm2/V. With a lifetime of 62.5 ns, the mobility of the films is 368 cm2/Vs, in 

agreement with the values of field-effect mobilities obtained in transistors 

prepared with this type of films. Such values of the mobility are close to 

monocrystalline silicon values. 

iii) The analysis of the J/V-characteristics of test diodes yield a mobility  

around 190 cm2/Vs, which is of the same order of magnitude as the 

mobilities obtained from the Hall and photoresistivity measurements. The 

J/V curves give also a µτ-product that must be of the order of 4x10-6 cm2/V 

(implying a lifetime around 21 ns). The value µτ = 4x10-6 cm2/V should not 

be compared to the value of µτ obtained in (ii), because the test diodes do 

not use a SiNx layer as diffusion barrier, implying a higher impurity 

concentration. The value µτ = 4x10-6 cm2/V is still high compared to typical 

nc-Si values of around µτ = 5x10-7 cm2/V (see chapter 5).  

Herewith, I characterized the lc-Si films optically as well as electrically. The 

photoelectrical characterizations give a complete picture of the basic transport 

parameters of lc-Si, which were unknown up to know. Figure 5.11 indicates that 

solar cell efficiencies of up to η = 6 % are possible at µτ = 5x10-7 cm2/V. At the value 

µτ = 4x10-6 cm2/V reached by the lc-Si films obtained in this chapter, a calculation 

with the model of chapter 5 yields η ≈ 8 %, at a cell thickness of 4 µm.22 The 

Nd:YVO4 laser utilized in this work does not sustain a SLS-growth at thicknesses 

greater than 0.3 µm. Probably, a more powerful laser is needed to prepare thicker 

films suited for solar cells. Nevertheless, the high values of the µτ-product obtained 

here suggest, at least, that the reliability of lc-Si for minority carrier devices such as 

solar cells or  bipolar junction transistors deserves further investigation. 

                                            

22 The remaining quantities involved in this calculation are the same as those utilized in Figure 5.11. 
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Appendix A 

In this appendix I show that Eq. (3.37) is valid. The short circuit current 

density JSC of a solar cell is determined by the generation rate G, and the collection 

probability fc. The generation rate is determined by the following factors: the 

absorption coefficient of the semiconductor, the intensity and spectrum of the light, 

and the position within the cell x. The collection probability is the probability that a 

carrier generated by the light contributes to JSC. To obtain JSC, we have to consider 

the contributions of all carriers evaluating the integral 

 dxxGxfJ
W

0
CSC )()(∫= , (A. 1) 

where x = 0 is placed at the np junction. If we consider an infinitely thick cell, the 

collection probability becomes [118] 
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This equation says that if a carrier is generated at the junction (x = 0), it will 

contribute to JSC with a probability of 1. For carriers generated at x > 0, the 

probability decreases exponentially with a decay constant given by the diffusion 

length Ln. Carriers generated at distances greater than Ln from the junction are 

unlikely to be collected by it, and will not contribute to JSC. Considering a cell of 

finite thickness, with a recombination velocity Sb in the back contact, fC(x) is given 

by [32] 
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where σ = SbLn/Dn. The aim of the following discussion is to show that Eq. ((A. 1) 

can be expressed by Eq. (3.37) using an effective diffusion length that considers the 

finite thickness. In that case, the collection probability of Eq. (A.3) is approximated 

by the expression  
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In monocrystalline cells, the effective diffusion length corresponds to the so-

called injection diffusion length described by Eq. (8) in Ref. [66]. This quantity is 

expressed as 
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Figure 6.25 shows the functions fc and fc,approx for two different values of Ln/W. 

Comparing the curves, we note that the differences between fc and fc,approx are larger 

when x approaches W, and for cells with diffusion lengths greater than the cell 

thickness. This differences also depend on σ, which in this case is σ = 10.  

 

Figure 6.25: The difference between the approximate function fc,approx and fc is negligible for 
low values of L/W, becoming larger when L/W > 1. Additionally, when x tends to x = 0, the 
differences disappear, regardless of the ratio L/W. 

What is the error we introduce when using fc,approx to evaluate JSC with Eq. 

(3.37)? In order to estimate it, I compare the integrals Fc and Fc,approx of fc and fc,approx 

integrated from x = 0 to x = W. Figure 6.26 shows the relative error (Fc,approx - Fc)/Fc 

for all the possible values of σ, and all practical values of the ratio Ln/W. The error 

that can be made using fc,approx is always smaller than 25 %, and in most practical 

cases, where 0.1 < σ < 10, the error does not exceed about 10 %.  

Note that the error calculated in this way is the maximum error that can be 

made in the evaluation of JSC, because when using Eq. (3.37), the function G(x) 

accentuates the values of fc,approx at small x, where the error is negligible, as shown in 

Figure 6.25. 
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Figure 6.26: This curves show that a maximum relative error of 25 % can be introduced in 
JSC, when using the approximate function fc,approx instead of the exact expression given by fc. 
For most practical cases, it holds 0.1 < σ < 10, and the error stays below 10 %. 

Herewith, I proved that using fc,approx with Leff is a valid approximation. This is 

useful from two points of view. On the one hand, we gain the simplicity of the 

simple exponential function given by fc,approx, allowing a rapid physical interpretation 

of the collection probability like in the case of an infinitely thick solar cell. On the 

other hand, fc,approx permits an uncomplicated adaptation of JSC for polycrystalline np 

cells:  we only have to replace Leff by the value Lpoly given in Eq. (3.38). 

The curves shown in Figure 3.3 are calculated with fc,approx, taking Leff and W 

as parameters, and integrating numerically with the generation rate G(x) that 

depends on the thickness W. To obtain G(x), I simulated numerically the absorption 

of the sun’s light in a silicon structure with an Aluminium back contact that acts as 

a light reflector, and a 100 nm thick SiO2 antireflective top layer facing the light. To 

simulate the diffusive reflectance of light produced by the roughness of surfaces, the 

simulation software introduces a Lambertian coefficient, which randomizes the 

direction of a light ray after reflection at a surface. Such light trapping layers are 

standards in solar cell technology. The ray tracing program utilized for the 

simulation is Sunrays, presented in [119]. 
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Appendix B 

To solve the continuity equation, I first write it in terms of scaled parameters. 

The scaling is done in order to obtain simplifications of the rather lengthy 

expressions that result after solving the continuity equation. These scaled 

parameters are functions of the physical parameters of the cell and its material. In 

the leftmost column of Table B.1, I introduce physical parameters such as the 

distance x, the electron concentration n, the diffusion length L, the recombination 

velocity S at the contacts, the potential drop in the i-layer V-Vbi, and the optical 

generation rate G. The central column of Table B.1 gives the definitions of the 

corresponding scaled counterparts, xs, ns, Ls, Ss, Vs, and Gs. 

Table B.1: The scaled quantities, derived from the physical parameters, and the allotted 
range for the simplified solutions of the J(V) equation given in Chapter 3. 

physical quantity scaled quantity range 

distance x  0 ≤ xs ≤ ½ 

electron concentration n  1 ≤ ns 

diffusion length L  Ls ≤
 10 

surface recombination velocity S  Ss ≤ 103 

potential drop V - Vbi  -Vbi/Vt ≤ Vs < 0 

generation rate G  105 ≤ Gs ≤ 1013 

The simplified expressions of J given in chapter 5 are limited to specific 

ranges of some of the scaled parameters, shown in the rightmost column of Table 

B.1. These ranges are very wide and account for many combinations of physical 

parameters. The range for xs is fixed by the geometry rather than by any 

simplification criteria. The range given for ns means that the minority carrier 
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concentration at the doped layers is higher than the equilibrium value under 

injection conditions, i.e. with an applied voltage in forward bias mode. 

General solution. When using the dimensionless quantities, the steady-state 

continuity equation for a region of space where the electrons are minority carriers 

reads 

 0
dx

nd
L

dx
dn

VLxnxVG 2
s

s
2

2
s

s

s
s

2
ssss0ss =++−−+ )()exp(  (B. 1) 

where Vs0 = -Vbi/Vt.  The general solution of this equation is given by 

 )exp()exp()exp()( *
s22s11s0sssss xCxCxVnGxn λ+λ+−+=  (B. 2) 

where ( ) 1

0s
2
s0sss VLVV1n

−
−+= )(* , and the Eigenvalues λ1 and λ2 are given in 

chapter 5.  

Boundary conditions. The surface recombination velocity at xs = 0, produces 

the recombination current Ss(ns(0)-1) and equals the drift and diffusion currents, 

giving 
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The second boundary condition uses the value of the electron concentration in 

the middle of the cell at xs = ½, assuming EFn = constant for x ≤ xC. The scaled 

expression of this boundary condition yields  

 0pCs nxn21n /)()/( =  (B. 4) 

replacing n(xC) and np0, this expression gives ns(1/2) =  (ni/np0)exp(V/2Vt). 

With Eq. (B2), and the boundary conditions given by Eq. (B. 3) and (B. 4), the 

constants C1 and C2 are determined, being 
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and 
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where the quantities A1, A2 and A3 are defined by 

 )/exp()/( * 2VnG21nA 0ssss1 −−−= , (B. 7) 
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 )()(*
ssss0ssss2 VSGSVVSnA −+−+−= , and (B. 8) 

 ( )2s1s23
21SSA λ−λ+λ+−λ−= exp)( . (B. 9) 

Using the solution for ns(xs), I calculate the scaled current density Js, 

integrating the generation-recombination term from x = 0 to x = W/2, adding the 

current density due to surface recombination, and multiplying by 2 in order to 

account for the hole current. The integration is done on the scaled coordinate xs, 

resulting the scaled total current density 
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Replacing ns from Eq. (B. 2) in Eq. (B. 10) and solving the integral, Js becomes 
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11) 

The current density J in A/cm2 is then given by 

 sJ
W

Dqn
J 0p= , (B. 12) 

where the factor that multiplies Js results from the scaling transformations. 

Simplifications. Firstly, I obtain simplifications of the dark current density, 

having Gs = 0. At forward bias conditions (i.e. Vs0 < Vs), it holds that ns(1/2) >> 

ns
*exp(-Vs0), which implies that A1 ≈ ns(1/2). Considering additionally the ranges of 

Table B.1, we find that A2 << A1, and A3 ≈ (λ1 + Ss)exp[(λ1-λ2)/2]. With these 

equations, C2 simplifies to C2 ≈ ns(1/2)exp(-λ1/2), and C1 ≈ - C2[(λ2 + Ss)/(λ1 + Ss)]. Now 

I simplify the current density of Eq. (B.11). At forward biases, all terms in Eq. 

(B.11) containing ns
* are negligible. Assuming also that the forward bias stays below 

Vbi (i.e. Vs < 0), it holds λ1 > λ2; which implies that in Eq. (B.11), the term with 

exp(λ2/2) is negligible. With these simplifications, and considering Eq. (B.12), I 

obtain Eq. (5.9) of chapter 5. Additionally, at very high values of the surface 

recombination velocity and V > 0, J simplifies to Eq. (6.36), while the saturation 

current density J0 is given by Eq. (6.37).  

Secondly, under illumination, we have Gs ≠ 0. The simplified values of  A1 and 

A2 yield A1 = ns(1/2) - Gs and A2 = Gs(Ss - Vs), while A3 is still given by the expression 
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given in the above paragraph. Unlike the dark case, the values of A1 and A2 can be 

comparable depending on the generation rate, which impedes strong simplifications 

of C1 and C2. Equation (B.11) is simplified by neglecting the 1’s and ns
*, which holds 

for the ranges shown in Table B.1. The current under illumination simplifies to 
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List of symbols and abbreviations 

ai  mesh spacing in the x-direction at the point i 

A  solar cell area, integration constant  

a-Si  amorphous silicon 

bj  mesh spacing in the y-direction at the point j 

B  radiative recombination coefficient 

c-Si  monocrystalline silicon 

C1 , C2  integration constants 

Cp , Cn  auger recombination coefficients of holes (p), and for electrons (p) 

d  thickness of a thin-film 

D, Dp, Dn  diffusion constant, general, of holes (p), and of electrons (n) 

E  energy 

EC , EV  energy level of the edge of the conduction band (C), and of the valence 
band (V) 

EF  Fermi energy  

EA  activation energy 

EFp , EFn  Fermi energies of holes (p) and electrons (n) 

ET   energy of a defect level, in de forbidden gap 

Eg  band gap energy 

f  frequency, mathematical function 

f , fSRH  Fermi-Dirac occupancy function, Shockley-Read-Hall occupancy function 

fC , fC,approx  carrier collection efficiency (C), approximated carrier collection efficiency 
(C,approx) 

F  electric field 

F0  electric field of a junction under equilibrium conditions 

Fmax  maximum electric field 
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FF  fill factor 

FF0  fill factor of a cell without resistances 

g  grain size, mathematical function 

gmed  median grain width 

GB  grain boundary 

G  generation rate of electron-hole pairs 

GS  scaled generation rate 

h  Planck’s constant 

I  electrical current 

ISC  short-circuit current  

Impp  current at the maximum power point  

J  current density 

JS  scaled current density 

JSC  short-circuit current density 

Jmpp  current density at the maximum power point 

Jp , Jn  hole current density (p), electron current density (n) 

Jrec , Jphot  recombination current density (rec), photonic current density (ph) 

J0, J01, J02  diode saturation current density, (01) base component, (02) space-charge 
region component 

k  Boltzmann’s constant 

l  mean free path of charge carriers 

lc-Si  laser-crystallized silicon 

L , Leff  diffusion length, effective diffusion length 

Lp , Ln  hole diffusion length (p), electron diffusion length (n) 

LS  scaled diffusion length 

Leff,mono   effective diffusion length of a monocrystalline silicon pn solar cell 
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L eff,poly  effective diffusion length of a polycrystalline silicon pn solar cell 

L0
eff,mono  minimum of Leff,mono 

n  ideality factor of a diode 

n , n0  electron concentration, electron concentration in equilibrium 

np0  electron concentration in a p-type material, in equilibrium  

ni  intrinsic carrier concentration 

nt  electron concentration at a trapping level 

n1  electron coefficient in Shockley-Read-Hall statistics 

nGB  electron concentration at a grain boundary 

nS , nS
*  scaled electron concentrations 

NA , NA
-  concentration of acceptor atoms (A), concentration of ionized acceptor 

atoms (A, -) 

NBULK  density of defects in bulk material 

NC ,NV   effective density of states of the conduction band (C), effective density of 
states of the valence band (V) 

Nd  density of dopant atoms 

NGB  total density of defects at the grain boundary, effective density of states 
at the grain boundary 

Nt , N0
t  density of defect states, minimum density of defect states 

ND , ND
+  concentration of donor atoms (D), concentration of ionized donor atoms 

(D, +) 

p , p0  hole concentration, equilibrium hole concentration 

p   mean hole concentration 

pn0  hole concentration in a n-type material, in equilibrium  

pt  hole concentration at a trapping level 

p1  hole coefficient in Shockley-Read-Hall statistics 

pGB  hole concentration at a grain boundary 

P , Plight  power, light power 
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q  elementary charge 

Q  quality factor of a laser-crystallized film 

QGB  charge at a grain boundary  

QFL  Quasi Fermi Level 

r  reflectance 

r1 , r2  reflectance at a front surface (1), and at a rear surface (2) 

rS  characteristic relative resistance 

RS ,RP   series resistance (S), parallel resistance (P) 

R  Recombination rate 

Rradiative, 
RAuger, Rdefects 

 radiative recombination rate, Auger-rate, and recombination rate 
through defects 

RSRH  Shockley-Read-Hall recombination rate 

S  recombination velocity 

Sb  recombination velocity at a back-contact of a solar cell 

Sp , Sn  recombination velocity of holes (p), and of electrons (n) 

Ss  scaled recombination velocity 

SC  recombination velocity at a metal/semiconductor contact 

SGB , S*GB  recombination velocity at a grain boundary, maximum recombination 
velocity at a grain boundary (max) 

t  optical transmittance 

T  absolute temperature 

TF  thin film 

TFT  thin film transistor 

V  voltage 

Vb , Vb,max  band bending (b), maximum band bending (b, max) 

VOC  open-circuit voltage 

Vmpp  voltage at the maximum power point 
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Vs  scaled potential drop 

Vs0  scaled potential drop voltage at zero voltage 

W  width of a solar cell 

x , y  spatial coordinates 

xC  coordinate x at a center 

xs  scaled coordinate x 

z  constant 

α  absorption coefficient 

αexp  experimentally measured absorption coefficient 

αa-Si , αc-Si  absorption coefficient of amorphous silicon (a-Si), absorption coefficient of 
crystalline silicon (c-Si) 

β  crystalline volume fraction 

χSi  electron affinity of silicon 

δ  width of a grain boundary 

∆x   vertical displacement between two laser pulses 

∆ρ   change in resistivity 

∆ρGB   change in resistivity of a grain boundary (GB) 

∆σGB   change in conductivity of a grain boundary 

ε0 , εS  absolute dielectric constant of vacuum (0), relative dielectric constant of a 
semiconductor (S) 

φm  work function of a metal 

φphot  photon flux 

Φ   barrier height at a grain boundary 

η  solar cell efficiency, refraction index 

ηc-Si , ηsubstrate  refraction index of crystalline silicon (c-Si), refraction index of a substrate 

λ  wavelength 
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λ1 , λ2  eigenvalues 

µ  carrier mobility 

µH  Hall mobility 

µp , µn  mobility of holes (p), mobility of electrons (n) 

µGB , µpGB   mean mobility of carriers at a grain boundary, hole mobility at a grain 
boundary 

ν  photon frequency 

ρ   resistivity 

ρ0 , ρGB   resistivity of crystalline silicon (0), resistivity of a grain boundary (GB) 

σ0 , σGB   conductivity of crystalline silicon (0), conductivity of a grain boundary 
(GB) 

σ  contact recombination parameter 

σg  relative width of a distribution of grain widths 

σΦ  standard deviation of a distribution of barrier heights 

τ, τ*, τeff  lifetime, maximum lifetime, effective lifetime 

τ0p, τ0n  capture-emission lifetimes for holes (0p), and electrons (0n) in the frame 
of the Shockley-Read-Hall statistics 

τp, τn  hole lifetime, electron lifetime 

ζ  difference between Fermi-level and valence band edge (in V) 

Λ  grain size distribution function 

Ω  phonon frequency 

Ψ  electrostatic potential 
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