
On Recognition of Group of Human Beings in

Images with Navigation Strategies

Using EÆcient Matching Algorithms
with Parallelization

Von der Fakultaet Informatik, Elektrotechnik und
Informationstechnik, der Universitaet Stuttgart
zur Erlangung der Wuerde eines Doktors der

Naturwissenschaften (Dr.rer.nat) genehmigte Abhandlung

Vorgelegt von

Douglas Antony Louis PIRIYAKUMAR

aus Paramakudi, Tamil Nadu, Indien

Hauptberichter : Prof.Dr.Paul Levi
Mitberichter : Prof.Dr.C.Siva Ram Murthy

Mitberichter : Dr. Kenji Hanakata

Tag der muendlichen Pruefung :
24.7.2003

Institut fuer Parallelle und Verteilte Systeme der
Universitaet Stuttgart

2003



This thesis is dedicated to my paternal aunt Panchavathy whose

discipline and sacri�ce improvised my life



ACKNOWLEDGEMENTS i

Acknowledgments
My doctoral work was pursued at the Institute of Parallel and Dis-

tributed Systems (formerly known as Parallel and High-performance Sys-
tems) in the department of Computer Science, Electrical Engineering and
Information Technology, University of Stuttgart, Stuttgart in Germany.
Without GAES (German Academic Exchange Service - in German DAAD,
Deutscher Akademischer Austauschdienst) this study would not be possible.
My gratitude will remain ever with DAAD for the fellowship from June 1996
to September 1999.

First of all, I must thank Prof.Paul Levi for his acceptance as the guide
for my doctoral study and for his critical comments without mincing with
words apart from his �nancial support from October 1999 till the last date.
The amount of academic freedom I enjoyed through him stands as a testi-
mony of german higher education system. His friendly suggestions to accli-
matize with german system outside the campus were really helpful in the
early days. I thank Prof.C.Siva Ram Murthy, my guide in IIT Madras for
his acceptance as joint referee. His valuable comments are useful from the
beginning. I also thank Dr.Kenji Hanakata for being as second joint ref-
eree. His continuing criticism with philosophical background improved my
thoughts at various stages.

For the innumerable assistance and suggestions, I am thankful to the for-
mer colleagues especially, Prof. Thomas Braeunl, Dr. Nobert Oswald, Niels
Mache, Frank Herrman, Dr. Matthias Muscholl, Michael Becht and Dietmar
Lippold, and the present colleagues Viktor Avrutin, Thorsten Buchheim,
Guenter Hetzel, Georg Kindermann, Olga Kornienko, Serguei Kornienko,
Reinhard Lafrenz, Dr. Michael Schanz, Frank Schreiber, Moritz Schule,
Monika Tepfenhart, Georg Wackenhut and Peter Burger. Special thanks to
Olga, Serguei and Monika for their help and participation in taking images
for the experiments. For the timely and tireless help, I thank our secretary
Ms. Ute Graeter.

The useful discussions which I held with Prof. Egbert Lehmann, Dr.
Rolf Rabenseifner, Prof. Walter Knoedel and Prof. Ulrich Hertrampf clar-
i�ed several of the fundamental issues associated with my doctoral study.
I thank also Prof. Klaus Lagally and Prof.Kurt Rothermal for their rele-
vant courses. For the friendly advices and assistances, I thank Dr. Kenji
Hanakata, Dr. Holger Petersen, Bernd Holzmueller and Hartmut keller. For
those who gave avour to student life in Allmandring 20c, I thank specially
Marcel, Juergen, Daniela, Jose Daniel, Demian and Selvin. My regards will
remain with families of Dr.Kenji Hanakata, Josef Spanniger, Otto Weiss,
Kurt Weizanegar and Stephan Machmer.



ii ACKNOWLEDGEMENTS

No words could adequately portray the joyful days I had with my DAAD
friends, Prof.S.V.Joga Rao, Dr. P. Jaisankar, Dr. R. Purvaja, Dr. A.M.
Sembian, Kamal Sharma, V. Ashok Kumar, Dr.S. Hazra, Dr. Balaram and
their families. For the cherishable reminiscences and their timely supports,
I thank my indian friends in stuttgart Fr. Francis Xavier, Fr. Jeyaraj
Boniface, Fr. Denis Ponniah, Prof. K.P. Karunakaran, Prof.Y.G.Srinivasa,
Shri.S. Raghunath, Mr.Miranda, Dr. Kripesh, Dr.V.S.Srinivasan,
N.Manickam, Dr. R. Jayaganthan, N. Sivakumar, R. Manohar, S. Bipin, Dr.
Niraimathi, R. Ramakrishnan, Dr. B. Koushik, J. Kartik, P. Prasannaku-
mar, Dr. S. Shashi, J. Surabin, N. Srihari, K.Sameer, Dr. Amin Iqbal, M.
Anand, C. Ramesh, Dr.R.Sarathi, R.Magesh, Dr.Tamil Selvan, A.P. Saha-
yaraj, Dr.N. Sivakumar, Dr. R.Subashri, and many others who still remain
in my tranquility with their families along with my classmates S. Pacha-
iammal, R.S. Ramesh and N. Ramesh.

Consistent and timely encouragements would not be available to
me without my former colleagues in Pondicherry University, Prof.
S.Kuppuswami, Prof. S. Gunasekaran, Prof. K.S.Mathew, Prof.
P.Jothilingam and the faculties in computer science and mathematics
departments especially M.S.Ashok, V. Prasanna, M. Sundaramohan, N.
Amoudha, Dr. K .M . Tamizhmani, Dr. Tamazharasi, Dr. M.Subbiah and
Dr. V.Muruganantham. To my friend and colleague Dr. R.Subramanian to
whom I owe which I may not able to repay, my sincere brotherly a�ection
will continue. For standing with me in the tempest time in Pondicherry
university, I profoundly thank M. Velayudham. I thank also Dr. Paul, M.
Shanmugasundram and K.R. Ramesh.

In my opinion, success starts with the family. I must thank God for
such a blessing. Uniquely most of my family members were my teachers.
From my father Late.J.Douglas Thangadurai and my mother Mary Alan-
garam, I learned my english and mathematics respectively which helped me
to top in every one of my academic achievements. I thank my paternal uncle
J.E.Chelladurai for excellence in english grammar which I follow. For the
love and a�ectionate care, I thank my paternal aunts Late.Jeyaseeli, Late.
Mara, Late. Margaret, Kamala Chelladurai and Sebastinal Florence and
my uncle R.Anthonisamy and aunt Maria Louis for their timely assistance.
With the love and a�ection of my brothers and sisters, Pascal Jeevaraj, Irene
Punitha, John Barnabas and Arul Mariapackiam, I am able to lead my life
contented. Finally, without the cooperation and love of my a�ectionate wife
Teresa and my sweetest daughter Ursula, I could have not accomplished the
strenuous tasks peacefully during the �nal stages of this study.



Contents

1 Introduction 1

1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Biological Vision Systems . . . . . . . . . . . . . . . . 4

1.3.2 Why is Object Recognition Complex? . . . . . . . . . 4

1.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Typical Assumptions . . . . . . . . . . . . . . . . . . . 6

1.4.2 Major Three Strategies for Looking at People . . . . . 8

1.5 Salient Features of My Approach . . . . . . . . . . . . . . . . 9

1.5.1 The investigated Problem . . . . . . . . . . . . . . . . 10

2 Matching based on Graph Theory 11

2.1 General Matching . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modi�ed A� strategy for Graph Matching . . . . . . . . . . . 12

2.2.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 The Matching Problem . . . . . . . . . . . . . . . . . 12

2.2.3 The New A� Based Algorithm for Graph Matching . . 13

2.2.4 New Techniques for Reducing Space and Time . . . . 15

2.2.5 The Algorithm for Optimal Graph Matching . . . . . 16

2.2.6 The Algorithms Developed with Variations . . . . . . 17

2.2.7 Result and Analysis . . . . . . . . . . . . . . . . . . . 17

2.2.8 Analysis of the Results . . . . . . . . . . . . . . . . . . 19

2.2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Symmetry based Graph Matching . . . . . . . . . . . . . . . . 21

2.3.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 The Symmetry Problem . . . . . . . . . . . . . . . . . 21

2.3.3 The Neighbour Isomorphism De�nition . . . . . . . . 22

2.3.4 Lemmas based on Neighbour Isomorphism . . . . . . . 23

iii



iv CONTENTS

2.3.5 Analysis of the result . . . . . . . . . . . . . . . . . . . 24

2.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 New Isomorphism based Matching . . . . . . . . . . . . . . . 28

2.4.1 Previous Works . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Graph Matching and Graph Isomorphism . . . . . . . 28

2.4.3 Graph Matching Algorithm using NI . . . . . . . . . . 30

2.4.4 Snapshots of the Algorithm . . . . . . . . . . . . . . . 30

2.4.5 Time Complexity . . . . . . . . . . . . . . . . . . . . . 31

2.4.6 Experimental results and Analysis . . . . . . . . . . . 32

2.4.7 Future Works . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Bharathanatyam Postures - Posture Matching . . . . . . . . . 37

2.5.1 Bharathanatyam Postures . . . . . . . . . . . . . . . . 37

2.5.2 The Combined Algorithm . . . . . . . . . . . . . . . . 38

2.5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . 38

3 Chamfering based Matching 45

3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Segmentation with Thresholding . . . . . . . . . . . . 45

3.1.2 Distance Functions . . . . . . . . . . . . . . . . . . . . 46

3.2 Distance Transformation . . . . . . . . . . . . . . . . . . . . . 46

3.3 Chamfering 3-4 . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Matching using Chamfering . . . . . . . . . . . . . . . . . . . 48

3.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 48

4 Hausdor� Method for Matching 57

4.1 De�nition of Hausdor� Method . . . . . . . . . . . . . . . . . 57

4.1.1 Image Matching . . . . . . . . . . . . . . . . . . . . . 58

4.1.2 Salient Features of Hausdor� Method . . . . . . . . . 59

4.2 The Conventional Hausdor� Measures . . . . . . . . . . . . . 59

4.3 EÆcient Implementation of Hausdor� Method . . . . . . . . . 60

4.3.1 EÆcient Computation of Distances . . . . . . . . . . . 60

4.4 Algorithmic Investigations on Hausdor� Method . . . . . . . 65

4.4.1 Image Matching 1-1 . . . . . . . . . . . . . . . . . . . 65

4.4.2 Image Matching 1-n . . . . . . . . . . . . . . . . . . . 66

4.4.3 Image Matching n-1 . . . . . . . . . . . . . . . . . . . 66

4.4.4 Image Matching n-n . . . . . . . . . . . . . . . . . . . 67

4.4.5 Critical Investigation of Hausdor� Distance . . . . . . 67

4.4.6 Parallel Algorithm for Image Matching . . . . . . . . . 76

4.4.7 Results and Analysis . . . . . . . . . . . . . . . . . . . 78



CONTENTS v

4.4.8 General Scheduling Aspects for Optimal Solutions in
Computer Vision . . . . . . . . . . . . . . . . . . . . . 79

4.5 Comparison of Hausdor� and Chamfering . . . . . . . . . . . 82

5 Human Being Recognition 83

5.1 Fundamental Complexities involved in HBR . . . . . . . . . . 83
5.1.1 Description of Human Being . . . . . . . . . . . . . . 83

5.1.2 Size of the Human Being . . . . . . . . . . . . . . . . 84
5.1.3 Segmenting the Region of Interest(Human Being) . . . 84

5.1.4 Occlusion . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.5 SuÆcient Models . . . . . . . . . . . . . . . . . . . . . 85

5.1.6 Threshold Value . . . . . . . . . . . . . . . . . . . . . 88

5.2 Recognition of Group of Human Beings . . . . . . . . . . . . 88
5.2.1 Problem due to Multiple Occurrences . . . . . . . . . 88

5.2.2 Problem due to Movements . . . . . . . . . . . . . . . 88
5.2.3 Problem in Segmentation . . . . . . . . . . . . . . . . 89

5.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.1 Ontological Description for Sequence 1 . . . . . . . . . 89

5.3.2 Ontological Description for Sequence 2 . . . . . . . . . 96
5.3.3 Ontological Description for Sequence 3 . . . . . . . . . 96

5.4 Fusion Architecture . . . . . . . . . . . . . . . . . . . . . . . . 97
5.4.1 Basic Concept . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 Fusion Architecture . . . . . . . . . . . . . . . . . . . 99
5.4.3 Results and Analysis of Parallel Implementations . . . 99

5.4.4 Salient Advantages in Fusion Architecture . . . . . . . 117
5.5 Industrial Applications . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Robot Traversal in Known Environments . . . . . . . . . . . 118
5.6.1 The Formulation of the Problem . . . . . . . . . . . . 119

5.6.2 The Parallel Algorithm . . . . . . . . . . . . . . . . . 119
5.6.3 The Salient Features of the Algorithm . . . . . . . . . 120

5.6.4 The Snap Shots of the Algorithm . . . . . . . . . . . . 121
5.6.5 The Proof of the Algorithm . . . . . . . . . . . . . . . 122

5.7 Robot Traversal in Unknown Environments . . . . . . . . . . 127
5.7.1 The Formulation of the Problem with Assumptions . . 127

5.7.2 Three New Techniques to Reduce the Search E�orts
in A� Algorithm . . . . . . . . . . . . . . . . . . . . . 128

5.7.3 The Improvised A� Algorithm . . . . . . . . . . . . . . 130

5.7.4 The Algorithm for Finding the Optimal Path . . . . . 132
5.7.5 Analysis of the Result and Future Work . . . . . . . . 133

5.8 Ants Colony Optimization . . . . . . . . . . . . . . . . . . . . 136



vi CONTENTS

5.8.1 General TSP and ACO Approach . . . . . . . . . . . . 137

5.8.2 The New Parallel Algorithm for ACO . . . . . . . . . 137

5.8.3 Outline of the ACO Parallel Program in MPI . . . . . 138

5.8.4 Parallel Implementation on Cray T3E . . . . . . . . . 139

5.8.5 Parallelism in ACO Algorithm . . . . . . . . . . . . . 139

5.8.6 Experimental Results and Analysis . . . . . . . . . . . 140

5.8.7 Future Extensions . . . . . . . . . . . . . . . . . . . . 143

6 Model, Matching and Indexing 145

6.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.1.1 Occlusion Models . . . . . . . . . . . . . . . . . . . . . 145

6.1.2 Generic Models . . . . . . . . . . . . . . . . . . . . . . 145

6.1.3 Basis Models . . . . . . . . . . . . . . . . . . . . . . . 146

6.2 Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Matching Problem with Scaling . . . . . . . . . . . . . 146

6.2.2 A New Matching Measure . . . . . . . . . . . . . . . . 147

6.3 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.1 Problems of Outdoor environment compared to Image
Databases . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.3.2 Segmenting Problems . . . . . . . . . . . . . . . . . . 148

6.3.3 Possible Indexing Strategies . . . . . . . . . . . . . . . 148

6.4 Backward Recognition of Human Groups . . . . . . . . . . . 149

7 Conclusion 153

A Cray T3E 155

B Message Passing Interface 157

C File Interoperability in MPI 159

C.1 Data Access Routines . . . . . . . . . . . . . . . . . . . . . . 160

C.2 Data Representations . . . . . . . . . . . . . . . . . . . . . . 160

C.3 Reading Integer Data from ASCII File with MPI I/O . . . . 160

C.4 Optimizing the Parallel I/O . . . . . . . . . . . . . . . . . . . 161

C.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 162

C.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D Indices of the Images and Models 165

D.1 Typical Image Indices . . . . . . . . . . . . . . . . . . . . . . 165

D.2 Typical Model Indices . . . . . . . . . . . . . . . . . . . . . . 166



CONTENTS vii

E Scheduling of Tasks 169

E.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 169
E.2 The New A� Based Algorithm . . . . . . . . . . . . . . . . . . 170

E.2.1 General A� Algorithm . . . . . . . . . . . . . . . . . . 170
E.2.2 New Techniques for Reducing Space and Time . . . . 171
E.2.3 The New Algorithm for Optimal Task Scheduling . . . 175

F Scheduling of Iterative DFG 177
F.1 The E�ects of IPC on Periodic Multiprocessor Schedule . . . 177
F.2 The New A� Algorithm for DFG . . . . . . . . . . . . . . . . 178

F.2.1 New Techniques for Reducing Space and Time . . . . 178
F.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 180

G List of Publications 181

H Biography 183



viii CONTENTS



List of Figures

1.1 A Generalized Image Processing System . . . . . . . . . . . . 3

1.2 A simple sensor and recognizer system . . . . . . . . . . . . . 3

2.1 The Search Tree of A� Algorithm for Fig.2.2 . . . . . . . . . . 14

2.2 Recognition of Objects. (a) a real life Objects (b) a corre-
sponding Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 One level regular Objects . . . . . . . . . . . . . . . . . . . . 25

2.4 Two level regular Objects with nailing . . . . . . . . . . . . . 25

2.5 Two level regular Objects with double nailing . . . . . . . . . 25

2.6 Three level regular Objects with nailing . . . . . . . . . . . . 26

2.7 Two level regular Objects with embedding . . . . . . . . . . . 26

2.8 Three Dimensional regular Objects . . . . . . . . . . . . . . 26

2.9 Nonregular Objects . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 The given two graphs representing Wrenches . . . . . . . . . 34

2.11 The isomorphic groups g1 and ga, g3 and gb, g2 and gc in
Wrenches with matching vertices . . . . . . . . . . . . . . . . 35

2.12 Examples for Graph Matching using Neighbour Isomorphism 36

2.13 The Combined Algorithm for Matching Bharathanatyam Pos-
tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.14 Bharathanatyam Postures Set 1 . . . . . . . . . . . . . . . . . 40

2.15 Bharathanatyam Postures Set 2 . . . . . . . . . . . . . . . . . 41

2.16 Bharathanatyam Postures Set 3 . . . . . . . . . . . . . . . . . 42

2.17 Bharathanatyam Postures Set 4 with respective Graph Rep-
resentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 (a) Diamond (b) Square Distances . . . . . . . . . . . . . . . 46

3.2 An image in a robotic �eld . . . . . . . . . . . . . . . . . . . 49

3.3 An image near city center in Rothenburg ob der Tauber . . . 50

3.4 An image of students cross the road before the institute . . . 50

3.5 An image of a dangerous crossing over the rails . . . . . . . . 51

ix



x LIST OF FIGURES

3.6 An image of a busy cash counter inside a shopping complex . 51

3.7 An image of a night shot near my house . . . . . . . . . . . . 52

3.8 Some of the Models with Corners . . . . . . . . . . . . . . . . 53

3.9 The edge image of Fig.3.4 . . . . . . . . . . . . . . . . . . . . 54

3.10 The Distance transformed image of Fig.3.9 . . . . . . . . . . 54

4.1 Two sets of points to be matched . . . . . . . . . . . . . . . . 58

4.2 The Recognized Human being in the robotic �eld . . . . . . . 61

4.3 The Recognized Human being near city center in Rothenburg
ob der Tauber . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 The Recognized Human being on the road before the institute 62

4.5 The Recognized Human being in the dangerous crossing over
the rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6 The Recognized Human being in the busy cash counter inside
a shopping complex . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 The Recognized Human being in the night shot near my house 64

4.8 Di�erent Postures 1p1-1p4 . . . . . . . . . . . . . . . . . . . . 69

4.9 Di�erent Postures 1p5-1p8 . . . . . . . . . . . . . . . . . . . . 70

4.10 Di�erent Postures 3p1-3p4 . . . . . . . . . . . . . . . . . . . . 71

4.11 Di�erent Postures 3p5-3p8 . . . . . . . . . . . . . . . . . . . . 72

4.12 Di�erent Postures of Di�erent Sizes . . . . . . . . . . . . . . . 74

4.13 Avathar Manifestations . . . . . . . . . . . . . . . . . . . . . 75

4.14 A sample Image . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.15 A sample Model . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.16 Data-Flow Graph with Linearly Connected Multiprocessor . . 81

5.1 Some examples of hand drawn Models of the Human Beings
- Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Some examples of hand drawn Models of the Human Beings
- Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Sequence 1 Frame Number 1,2,3 and 4 . . . . . . . . . . . . . 90

5.4 Sequence 2 Frame Number 1,2 and 3 . . . . . . . . . . . . . . 91

5.5 Sequence 3 Frame Number 1 and 2 . . . . . . . . . . . . . . . 92

5.6 Human beings in Sequence 1 frame Number 1,2,3 and 4 . . . 93

5.7 Human beings in Sequence 2 frame Number 1,2 and 3 . . . . 94

5.8 Human beings in Sequence 3 frame Number 1 and 2 . . . . . 95

5.9 Parallel Implementation of Hausdor� for Occlusion . . . . . . 98

5.10 Fusion Architecture for Recognizing Human beings . . . . . . 100



LIST OF FIGURES xi

5.11 Parallel Implementation of Fusion Architecture (a) No Com-
munication (b) With Communication (3) Di�erence for Set 1
(4) Di�erence for Set 2 . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Parallel Implementation of Fusion Architecture for 1 Image
with Multiple Models . . . . . . . . . . . . . . . . . . . . . . 102

5.13 Sequence of Images from Moehringen Tram station - Part1 . 103
5.14 Sequence of Images from Moehringen Tram station - Part2 . 104
5.15 Sequence of Images from Moehringen Tram station - Part3 . 105
5.16 Identi�ed Human beings in Images from Moehringen Tram

station - Part1 . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.17 Identi�ed Human beings in Images from Moehringen Tram

station - Part2 . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.18 Identi�ed Human beings in Images from Moehringen Tram

station - Part3 . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.19 Identi�ed Human beings in Images from Zebra Crossing in

Koenigstrasse - Part 1 . . . . . . . . . . . . . . . . . . . . . . 109
5.20 Identi�ed Human beings in Images from Zebra Crossing in

Koenigstrasse - Part 2 . . . . . . . . . . . . . . . . . . . . . . 110
5.21 Identi�ed Human beings in Images from Zebra Crossing in

Koenigstrasse - Part 3 . . . . . . . . . . . . . . . . . . . . . . 111
5.22 Identi�ed Human beings in Images from City Centre in

Stuttgart - Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.23 Identi�ed Human beings in Images from City Centre in

Stuttgart - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.24 Identi�ed Human beings in Images from City Centre in

Stuttgart - Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.25 Identi�ed Human beings in Images from City Centre in

Stuttgart - Part 4 . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.26 Identi�ed Human beings in Images from City Centre in

Stuttgart - Part 5 . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.27 Robot in given Environment . . . . . . . . . . . . . . . . . . . 123
5.28 With the narrow gaps closed . . . . . . . . . . . . . . . . . . 124
5.29 Lines between Initial and Final Positions . . . . . . . . . . . . 124
5.30 Lines not crossing Obstacles . . . . . . . . . . . . . . . . . . . 125
5.31 The Final Connectivity Graph . . . . . . . . . . . . . . . . . 125
5.32 The Visibility Graph . . . . . . . . . . . . . . . . . . . . . . . 126
5.33 The shortest Path between Initial and Final Positions . . . . 126
5.34 Robot in Unknown Environments Examples 1 - 6 . . . . . . . 135
5.35 Parallel, Single Pcr, Communication and Idle Time Analysis

with 6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 141



xii LIST OF FIGURES

6.1 Identi�ed Human Groups in Images from Image Understand-
ing Group 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.2 Identi�ed Human Groups in Images from Image Understand-
ing Group 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.3 Identi�ed Human Groups in Images from Image Understand-
ing Group 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

E.1 Task Graph and Processor Graph . . . . . . . . . . . . . . . . 170
E.2 The Optimal Schedule for Fig.E.1 . . . . . . . . . . . . . . . . 176



List of Tables

1.1 Comparison of Di�erent Recognition Systems in Field of
Looking at People. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Comparison of the variations of A� with permutation Algorithm 17

2.2 Comparison of the variations of A� and permutation Algo-
rithms for lesser number of nodes . . . . . . . . . . . . . . . 20

2.3 Results of the Graph Matching Algorithm for Cups . . . . . 20

2.4 The Function N of Neighbour Isomorphism for the vertex
numbered 1 in the �rst �gure of Fig.2.4 . . . . . . . . . . . . 23

2.5 Graph Matching with NI . . . . . . . . . . . . . . . . . . . . . 32

2.6 Graph Matching with NI for Random Graphs . . . . . . . . . 32

2.7 Graph Matching with NI for Wrenches . . . . . . . . . . . . . 32

2.8 Matched Vertices of DNA Molecules and Human faces with NI 33

2.9 Bharathanatyam Posture Matching (input from Database) . . 44

2.10 Bharathanatyam Posture Matching (input not from Database) 44

3.1 Image Matching with Chamfering for Human being Recognition 52

3.2 Parallel Time of Chamfering for Human Being Recognition . 52

4.1 Sequential Times of Hausdor� with and without Distance
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Sequential Times of Hausdor� Method for 1-1 exact position 65

4.3 Sequential Times of Hausdor� Method for 1-1 No Match Cases 66

4.4 Sequential Times of Hausdor� Method for 1-n exact position 66

4.5 Sequential Times of Hausdor� Method for n-1 exact position 67

4.6 Sequential Times of Hausdor� Method for n-n . . . . . . . . 67

4.7 Hausdor� Distance h(A,B) for Set1 . . . . . . . . . . . . . . 68

4.8 Hausdor� Distance h(A,B) for Set2 . . . . . . . . . . . . . . . 68

4.9 Hausdor� Distance h(A,B) for similar ones in Set1 and Set2 . 73

4.10 Hausdor� Distance h(A,B) for Di�erent Sizes . . . . . . . . . 73

xiii



xiv LIST OF TABLES

4.11 Parallel Time of Hausdor� without Distance Transform . . . 77

4.12 Parallel Time of Hausdor� with Distance Transform . . . . . 77

4.13 Image Matching Parallelization . . . . . . . . . . . . . . . . . 78

4.14 Comparison between Hausdor� and Chamfering . . . . . . . . 82

5.1 Computation Times of Di�erent Algorithms . . . . . . . . . . 96

5.2 Parallel Computation Times of Di�erent Algorithms . . . . . 96

5.3 Parallel Implementation of Fusion Architecture for m Images
with Multiple Models . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Parallel Complexity of the Algorithm . . . . . . . . . . . . . . 120

5.5 The general A� Algorithm . . . . . . . . . . . . . . . . . . . 133

5.6 The Improvised A� Algorithm . . . . . . . . . . . . . . . . . 134

5.7 Results based on varying Iterations . . . . . . . . . . . . . . . 142

5.8 Results based on varying Ants . . . . . . . . . . . . . . . . . 142

5.9 Results based on varying Interval . . . . . . . . . . . . . . . . 142

5.10 Results based on varying Rho . . . . . . . . . . . . . . . . . 142

5.11 Results based on varying Alpha and Beta . . . . . . . . . . . 142

C.1 Parallelization scheme of I/O and computation. . . . . . . . . 161

C.2 I/O time per process for 4 images and 4 models . . . . . . . . 164

C.3 images read + models read + models exchanged . . . . . . . . 164

E.1 Reduction Factor due to Isomorphic Groups . . . . . . . . . . 173

E.2 Comparison of Previous A� with New A� Algorithms . . . . . 176

F.1 Comparison of Previous A� with New A� Algorithms for DFG 180



NOTATION xv

Notations

G - Graph(V,E)
V - Set of Vertices
vi - i

th Vertex in V
E - Set of Edges
eij - Edge between vi and vj
< vi; vj > - Directed Edge from vi to vj
cij - Cost involved in matching vi to vj
f�(x) - Cost of Node x in A� Algorithm
g�(x) - Cost of getting Node x from the start node in A� Algorithm
h�(x) - The Lower Bound estimation of the cost at Node x in A� Algorithm
Pi - The regular polygon with i vertices (in images)
vji - j

th vertex in Pi
gi - Neighbour Isomorphic Group
Li - Line of Symmetry
hi - Set of vertices divided by Li
�i - Threshold grey value
� - Distance Function
aij - Binary valued Image
akij - aij at k

th iteration
A,B - Sets of points
H(A,B) - Hausdor� Distance between A and B
h(A,B) - Directed Hausdor� Distance of A from B
jj:::jj - Distance Norm(DN)
dB(a) - Minimum Distance value at a point a to the point set B
r - the number of Images
q - the number of Models
p - the number of processors
R(i,j) - Read ith Image and jth Model
c(i,j) - Find the matching positions of Model j in Image i
r(k) - Exchange Model k with the neighbouring processor
Ti - Task i
Pk - Processor k (in Scheduling of Tasks)
�Pk - Service rate or speed of the processor Pk
�i - The Static Level of Ti
�i - The set of Parent Tasks of Ti
�i - The set of Children Tasks of Ti
�
Nj

TkPk
- The Completion time of Task Tk on Pk in node Nj

�Ni
- Set of Tasks assigned in node Ni
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Zusammenfassung
Einleitung

Mit leistungsfaehiger Prozessoren und Bildsensoren wurde die Bildver-
arbeitung zu einem realisierbaren und nuetzlichen Verfahren. Starke Inter-
essen sind mit Bildverarbeitung fuer die hohen Anforderungen des neuen
Jahrtausends verbunden. Das zentrale Problem der kuenstlichen Intelligenz
(Nachahmung menschlicher Faehigkeiten oder Turing Tests) wird weit un-
tersucht. Das Sehvermoegen ist eine derjenigen menschlichen Faehigkeiten,
deren Nachahmung durch Kameras eine echte Herausforderung fuer die
Computerwissenschaftler darstellt.

Um das Computersystem intelligenter zu machen richten die Anstren-
gungen richten sich so dass es die von der Kamera erfassten Bilder "ver-
steht". Neben der Nachahmung der Sehfaehigkeit muessen solche Systeme
Bilder verarbeiten koennen, um die EÆzienz zu steigern. In Umgebungen
wo Menschen und Maschinen zusammenarbeiten, darf die Maschinen den
Menschen keinen Schaden zufuegen. In zahlreichen industriellen Umgebun-
gen bewegen sich Industrieroboter bei ihrer Arbeit in der Nachbarschaft
von Menschen. Eine bessere Aufbereitung der erfassten Bildinformationen
ist notwendig um die schwere Schaeden zu vermeiden bei der Steuerung von
Maschinen durch Menschen, wie z.B. durch Fahrer Assistenzsysteme in Au-
tomobilen. Das Erkennen von Menschen, um deren Gefaehrdung in solchen
Umgebungen zu verhindern, etablierte sich als neuer Fachbereich des com-
putergestuetzten Sehens (Computer Vision) und wird teilweise als "Looking
at People" (Ausschau nach Menschen) bezeichnet.

Das Erkennen von Menschen in Bildern von einaeugigen (monocular)
Kameras ohne die ueblichen Einschraenkungen ist das Ziel der vorliegenden
Arbeit. Das zuverlaessige Hausdor� Matching Verfahren wird erweitert,
so dass Menschen anhand von vielfaeltigen Modellen und mittels veraen-
derter Abstandsmessungen erkannt werden. Da die Strategie der Vereini-
gung mehrerer Algorithmen, um trotz Okklusionen bessere Ergebnisse zu
erzielen, im Grundsatz bereits parallel ist, lieferte die parallele Implemen-
tierung des Systems auf einem Cray 3TE richtige Ergebnisse in wesentlich
kuerzerer Rechenzeit.
Allgemeines Matching Verfahren

Ob zwei abstrakte Darstellungen (zumindest teilweisen) gleich sind, ist
das Grundproblem fuer die Entwicklung von Kuenstliche Intelligenz Sys-
temen mit menschlichen Faehigkeiten (computergestuetzten Sehen). Auf-
grund ihrer Leistungsfaehigkeit werden fuer die abstrakte Objekt Darstel-
lung oft Graphen benutzt. Parametrische oder syntaktische Vorge-
hensweisen in entsprechender Komplexitaet �ndet man in der Literatur.
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Bei der Mustererkennung und beim maschinellen Sehen werden Graphen als
Darstellungen der a priori bekannten Objekt-Modelle und der zu erkennen-
den, unbekannten Objekte benutzt. Bei dieser Darstellungsform der Ob-
jekte wird das Problem des Erkennens zu einem Problem der Graphen Ue-
bereinstimmung (Graph Matching). Fuer das Graph Matching werden die
beiden wichtigsten Verfahren, die Verzweigungs- und Abgrenzungsmethode
(Branch and Bound), sowie nichtlineare Optimierungsverfahren in grossem
Umfang eingesetzt, da die Komplexitaet NP ist. Obwohl auch andere Meth-
oden vorwiegen, werden das Matching mit Graphen Isomorphie oder mit
Raumzustands Verfahren (State Space), wie etwa die A� Strategie, fuer
rechnerintensive exakte oder optimale Loesungen vorgezogen. Auch fuer
das fehlertolerante bzw. das fehlerkorrigierende Graph Matching werden
diese Verfahren eingesetzt. Die vorliegende Arbeit schlaegt Verfahren vor,
um eÆzientes Graph Matching mit weniger Rechenzeit zu erreichen.
De�nition der Nachbar Isomorphie(Neighbour Isomorphism)

Die Nachbar Isomorphie zwischen zwei Knoten v1 und v2 in einem
Graphen G1 ist wie folgt de�niert:

v1 und v2 sind Nachbar Isomorph, wenn es eine Anzahl k von Nachbarn
im Abstand r fuer v1 inG1 gibt, so dass es exakt eine Anzahl k von Nachbarn
im Abstand r fuer v2 in G1 gibt. (Wenn der Graph gewichtet wurde, so
sollten die entsprechenden Knoten paarweise Nachbar isomorph sein).

Sei G der Graph mit der Menge V Knoten und der Menge E Kanten.
gi soll die Menge Knoten bezeichnen, die Nachbar isomorph sind. O�en-
sichtlich ist dann gi � V . Es sei Vi; Vj 2 V .

Vi; Vj 2 gk wenn N(Vi; l; gp) = r und N(Vj ; l; gp) = r;8l = 1, ...,
Durchmesser von G, wobei N(Vi; l; gp) = r bedeutet, dass es eine Anzahl
r von Nachbarn von gp mit dem Abstand l gibt.
Eigenschaften der Nachbar Isomorphie

1. Es seien gp und gq zwei NI Gruppen in Gi. Dann schliessen sie sich
gegenseitig aus. D.h. vi 2 gp, dann vi 62 gq und umgekehrt.

2. Wenn gp eine NI Gruppe in Gi ist und gq eine NI Gruppe in Gj

ist und i 6= j, dann sind gp und gq aehnlich, wenn vi 2 gp und vj 2 gq,
N(vi; l; gp) = r und N(vj ; l; gq) = r;8l = 1 , ..., Durchmesser von G im
entsprechenden Graphen.

3. NI ist invariant zu Translationen, Rotationen und Skalierungen (mit
einheitlichen Skalierungsfaktoren).
Bharathanatyam Tanzstellungen

Einer der aeltesten klassischen Taenze Indiens ist Bharathanatyam und
besteht aus genau festgelegten Bewegungen und Tanzstellungen. Die kom-
binierte Methode von der Nachbar Isomorphie und den verbesserten A� Al-
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gorithmus mit Bharathanatyam Tanzstellungen als Datenbank �ndet fuer
eine bestimmte Tanzstellung als Eingabe die richtige Uebereinstimmung.
Bei Eingabe einer anderen Stellung, die nicht in der Datenbank enthalten
ist, �ndet der Algorithmus den am aehnlichsten aussehenden Stellung(en).
Abstands Transformation - Chamfering

Die Eigenschaften des Bildes sind die wichtigste Elemente und muessen
eindeutig von den Nicht-Eigenschaften des Bildes unterschieden werden. Als
Eigenschaften koennen Ecken, Kanten, helle Punkte oder Bereiche mit einer
besonderen Textur in Frage kommen. Um die Ecken und Kanten im Bild
zu erkennen gibt es zahlreiche Algorithmen, wie etwa SUSAN Filter. In
unserem Verfahren werden Kanten als Eigenschaft gewertet. Das Ziel dabei
ist, jeden Bildpunkt (Pixel) einer Nicht-Kante (Nicht-Eigenschaft) als Ab-
standsmass zum naechsten Kanten-Pixel (einer Eigenschaft) zu erhalten.
O�ensichtlich erhalten Kanten-Pixel den Wert Null. Wenn die echte euk-
lidische Abstaenden berechent werden, ist das nicht nur sehr rechenintensiv,
sondern braucht auch grossen Speicherplatz. Die Berechnung der Abstaende
erfordert daher ein gutes Naeherungsverfahren. Die Abstands Transforma-
tion konvertiert ein binaeres Bild als ein Abstandsbild. Das binaeres Bild
hat den Grauwert als 0 an den Eigenschaftspunkten und Maximalwert an
den anderen Punkten. Danach kann jede der Abstandsfunktionen fuer die
Berechnung der Abstaende benutzt werden.

Durch Propagation von lokalen Abstaenden werden die globalen Ab-
staende im Bild, d.h. den Abstaenden zwischen benachbarten Pixeln des
Bildes, angenaehert. Bei diesem Verfahren der Abstands Transforma-
tion wird die lokale Operation wiederholt, um die naheliegenden globalen
Abstaende zu erhalten. Diese Propagation kann sequentiell oder paral-
lel ablaufen. Eine solche sequentielle Abstands Transformation wird als
"Chamfering" bezeichnet. Eine 3 * 3 Nachbarschaft fuer die lokalen Ab-
staende wird benutzt. Die Chamfering 3-4 Methode ergibt im Vergleich zum
euklidischen Abstand einen maximalen Unterschied von 8 Abstaenden aus-
gehend von durch Rauschen ungenau gewordenen Kanten in realen Bildern
ist reine Zeitverschwendung.
Matching mittels Chamfering

Nach Abschluss der Abstands Transformation und nach Erzeugung des
Abstandsbildes, kann das Modell verglichen werden. Beim Modell bilden alle
Punkte (Pixel), die eine Eigenschaft darstellen (Kanten-Punkte) eine Liste
von Koordinatenpaaren, wobei sich jedes Zahlenpaar aus der Spalten- bzw.
Zeilennummer des betre�enden Kanten-Pixels zusammensetzt. Das Modell
wird an jedem moeglichen Punkt dem Bild ueberlagert. In jedem einzel-
nen Fall wird dabei das Matching Mass aus der Liste der Koordinatenpaare
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(nach einer Translation entsprechend dem aktuellen Ueberlagerungspunkt)
berechnet. Handelt es sich um eine vollstaendige Uebereinstimmung (Per-
fect Match) muss das Matching Mass logischerweise Null betragen. Das
Matching Mass in Chamfering ist ein quadratischer Mittelwert (RMS).

Bei weniger komplizierten und auch bei hochkomplexen Faellen funktion-
ierte der Algorithmus gut. Der parallele Algorithmus funktionierte eben-
falls zufriedenstellend, erbrachte jedoch wenig Verbesserungen bezueglich
der Rechenzeit. Die Schwankungen bei der Rechenzeit haengen vor allem
von der Bildgroesse ab, sowie von der Groesse der Modelle und der Lage
im Bild, an der ein Bestandteil des Modells positiv vorliegt. Auch im Falle
des parallelen Algorithmus ergibt sich keine groessere Zeitersparnis, da die
Prozessoren jedes Mal, wenn sie einen Modell Bestandteil im Bild �nden,
Daten untereinander austauschen muessen, damit die anderen Prozessoren
solche Bereiche vermeiden koennen. Durch Hardware Zwaenge muessen
saemtliche Prozessoren fuer einen Datenaustausch zwischen ihnen synchro-
nisiert werden, so dass hierfuer fast mehr Leerlauf-Zeit (idle time) verbraucht
wird als fuer die eigentliche Rechenarbeit. In den genannten Faellen wird
ein Prozessor angewiesen, nur in dem ihm zugewiesenen Bereich zu rechnen,
ohne sich um die anderen Prozessoren zu kuemmern. Die Zuverlaessigkeit
geht bei schnellen Berechnungen verloren, daher wurde fuer eine tieferge-
hende Analyse das Hausdor� Verfahren gewaehlt.
De�nition des Hausdor� Verfahrens

Der Hausdor� Abstand ist wie folgt de�niert: A = a1; a2; :::; an und B =
b1; b2; :::; bm seien zwei �nite Punkte-Mengen. Hausdor� Abstand H(A,B) =
max(h(A,B),h(B,A)) wobei h(A;B) = maxa2Aminb2BDN(a� b) Dabei ist
DN ein bestimmter Norm-Abstand (nur der Abstand zwischen den beiden
Punkten).
Eigenschaften des Hausdor� Verfahrens

1. Der Hausdor� Abstand zwischen zwei Punktmengen H(A,B) ist in-
variant bezueglich Translation und Rotation wenn fuer beide Punktmengen
A und B, die Translation und Rotation mit dem gleichen Mass gemacht
werden.

2. Der Hausdor� Abstand zwischen zwei Punktmengen H(A,B) wird
fuer den euklidischen Abstand in allen Richtungen mit einem einheitlichen
Skalierungsfaktor skaliert. Wenn der Skalierungsfaktor unterschiedlich ist
oder wenn eine nichtlineare Abstandsfunktion benutzt wird, muss die
Skalierung von H(A,B) nicht statt�nden.

3. Ist im Bild ein Modell vorhanden, wird h(model, image) (NOT
H(model,image)) durch das Vorhandensein von Rauschen im Bild nicht bee-
inusst.
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4. Ist im Bild ein Modell exakt vorhanden, ist h(model, image) (NOT
H(model,image)) Null, was dasselbe ist wie der Chamfering Abstand wenn
ein Modell mit Eigenschaftspunkten im Bild vorliegt.

5. Das Hausdor� Verfahren kann Verdeckungen (Okklusionen)
wirkungsvoll behandeln.
EÆziente Berechnung von Abstaenden

Die Abstandsfunktion ist so gewaehlt, dass Rechenzeit eingespart wird.
Zum Beispiel kann die Berechnung der "City Block Distance" weniger
Zeit beanspruchen als diejenige des euklidischen Abstands, da hierbei
Quadratwurzeln berechnet werden muessen. In beiden Faellen koennen die
Abstaende auch nur einmal berechnet und in einer grossen Tabelle gespe-
ichert werden, so dass spaeter nur in der Tabelle nachgeschlagen und nicht
mehr neu berechnet werden muss.

Die Abstands Transformationen, wie etwa Chamfering 3-4, wird um
asymptotisch naehere Distanzen zu �nden benutzt. Da dieses Verfahren in
zwei Schritten ablaeuft, ist es sehr wirkungsvoll und benoetigt, im Gegensatz
zu den Nachschlage Verfahren (Lookup Method), weder eine Vorausberech-
nung der Abstaende und eine grosse Tabelle fuer Abstandswerte.

Fuer das Problem gibt es mindestens drei Moeglichkeiten der Paral-
lelisierung. Eine Moeglichkeit ist, jedes Bild in einen Prozessor aufzunehmen
und es mit allen Modellen zu vergleichen. Ein anderer Weg waere, alle Bilder
einzeln in alle Prozessoren aufzunehmen und die Menge der Modelle gleich-
maessig auf die Prozessoren zu verteilen. Die dritte Moeglichkeit besteht
darin, jedes Bild auf die Anzahl vorhandener Prozessoren aufzuteilen und
diesen Teil des Bildes dann mit allen Modellen zu vergleichen. Im letzten
Fall ist es unerlaesslich, fuer eine gewisse Bildueberlappung zu sorgen, um
richtige Loesungen zu erhalten. Die zweite Moeglichkeit ist besser um eine
Person zu verfolgen. In der vorliegenden Arbeit wurden die ersten beiden
Moeglichkeiten implementiert.
Beschreibung des Menschen

Bei jedem Erkennungssystem muss das in einer Umgebung (dem Bild)
zu erkennende Objekt (das Modell) entsprechend beschrieben oder de�niert
sein. Ein Kopf, ein Koerper, zwei Haende und zwei Beine bilden einen
Menschen, ohne dabei auf Einzelheiten, wie Nase oder Augen, die fuer die
Gesichtserkennung wichtig sind, einzugehen. Je nach Zweck der Anwendung
kann die detaillierte Einzelheiten in der Beschreibung stark variieren. Bei
einem Fahrer Assistenzsystem zum Beispiel reicht es aus, einen Menschen als
Fussgaenger zu erkennen. Bei einem Ueberwachungssystem ist das Erken-
nen der Anwesenheit von Menschen genug um eine Kette von Handlungen
auszuloesen. Eine detailreichere Beschreibung dieses Menschen ist spaeter
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erforderlich.
Groesse eines Menschen

Bei den meisten Erkennungssystemen ist die Groesse eines Menschen fest
vorgegeben oder muss innerhalb eines bestimmten Bereichs liegen. Wegen
dieser Groessen Vorgaben wird ein gehendes Kind nicht erkannt. Auf der
Grundlage einer vorgegebenen Groesse des Menschen koennen diese Sys-
teme ausserdem moegliche Regionen fuer den Kopf, den Koerper, eine Hand
oder ein Bein erkennen. Dennoch ist die Erkennung eines Menschen durch
solche Systeme schwierig und sie wuerde noch schwieriger, wenn wie im vor-
liegenden Fall, keine Beschraenkungen hinsichtlich der Groesse vorgegeben
sind. Die Aufhebung der Groessenbeschraenkung bedingt allerdings, dass
das System alle Bildbereiche durchsucht, was mehr Rechenzeit erfordert.
Segmentierung des interessierenden Bereichs (Mensch)

Einige Aenderung im Bild durch Subtraktion des Hindergrunds genugt
bei einigen Systemen um die Anwesenheit eines Menschen abzuschliessen.
In der Literatur gibt es Verfahren, um durch weitergehende Analyse dieses
Bereichs einen Menschen genauer zu erkennen. Interessanterweise spielen
die Farbkomponenten bei der Segmentierung des interessierenden Bereichs
(Mensch) immer noch eine grosse Rolle. Die Transformation einer solchen
Wavelet (Elementarwelle) oder eine Fourier Analyse koennen ebenfalls fuer
die Segmentierung des interessierenden Bereichs (Mensch) benutzt werden.
Die Subtraktion des Hintergrunds funktionert bei Bildern in o�enene Umge-
bung nicht.

Die Segmentierung eines interessierenden Bereichs (Mensch) auf der
Grundlage der Farbe kann nicht zuverlaessig funktionieren, wenn man nicht
alle moeglichen Farben von Menschen durchprobiert, da Menschen bekan-
ntlich verschiedene Hautfarben haben koennen. Eine Erkennung laesst sich
auch ohne Hintergrund Subtraktion durchfuehren, allerdings zu Lasten der
Rechenzeit. In solchen Faellen kann man fuer die Erkennung z.B. das Haus-
dor� Verfahren anwenden. Es gibt aber noch weitere Probleme wie etwa die
Verdeckung (Okklusion) durch andere Objekte, oder die Verdeckung durch
das Objekt selbst, wie sie bei bestimmten Sichtwinkeln vorkommen kann.
Verdeckung (Okklusion)

Die Verdeckung von Bildteilen ist eines der groessten Probleme fuer
Erkennungssysteme, da dadurch manche kritische oder Haupteigenschaften
eines Objekts verdeckt werden koennen und eine korrekte Erkennung un-
moeglich machen. In solchen Situationen muss eine De�nition der mini-
mal erforderlichen Eigenschaften, die fuer die Erkennung eines Menschen
notwendig sind, vorliegen, z.B. das Vorhandensein eines Kopfs. Wenn die
Person dabei nicht in die Kamera schaut, ist eine Moeglichkeit, nach einer
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annaehernd runden oder elliptischen Form zu suchen. Die Systemleistungen
haengen dabei sehr stark vom Sichtwinkel ab. Ebenso ist wohlbekannt, dass
Eigenschaften durch das Objekt selbst, je nach Stellung oder Pose, verdeckt
werden koennen.

Einige Verfahren, wie z.B. das Hausdor� Verfahren, ermoeglichen es den-
noch einige Parameter zu korrigieren und so trotz Verdeckung eine Erken-
nung durchzufuehren. In solchen Faellen lassen sich Fehl-Erkennungen nicht
voellig vermeiden. Interessanterweise laesst sich mit dem Hausdor� Ver-
fahren eine Verdeckung sehr einfach mit vielen Modellen modellieren.
Ausreichende Modelle

Mit Sicherheit lassen sich durch eine groessere Anzahl von Modellen
mehr Faelle des Auftretens eines Objekts sicherer erkennen. Die wichtig-
ste Frage ist allerdings wie viele Modelle ausreichend sind, um in jedem
Fall das Auftreten eines Objekts zu erkennen. Angesichts der Freiheitsgrade
bei der Bewegung von diversen Koerperteilen des Menschen duerfte diese
Anzahl Modelle allerdings sehr hoch sein. Viele Systeme, mit denen Be-
wegungen oder Taetigkeiten von Menschen erkannt werden sollen, sind in
hohem Mass auf die ihnen vorgegebenen Modelle beschraenkt. Bei der Er-
stellung dieser Modelle spielt die Groesse wiederum eine wichtige Rolle. Ein
Erwachsener ist keine groessenskalierte Version eines Kindes und umgekehrt.
Mit Sicherheit muessen daher unterschiedliche Skalierungsfaktoren fuer die
verschiedenen Koerperteile oder verschiedene Modelle fuer jede Groesse be-
nutzt werden.

Im ersteren Fall laesst sich damit zwar die Anzahl notwendiger Mod-
elle reduzieren, aber es muessen verschiedene Skalierungsfaktoren benutzt
werden, was wiederum die Rechenzeit enorm erhoeht. Beim zweiten Fall
ist es von entscheidender Bedeutung in welcher Reihenfolge die Modelle
abgearbeitet werden, denn ein rein sequentieller Vergleich mit jedem Modell
wird die notwendige Rechenzeit ebenfalls so stark erhoehen, dass sie fuer
bestimmte Anwendungen, wie z.B. Fahrer Assistenzsysteme, inakzeptabel
wird. Daher spielen bei diesem Verfahren die Vergleichs Reihenfolge und
eine entsprechende Indexierung der Modelle eine wichtige Rolle.
Probleme durch mehrfaches Auftreten

Obwohl die im vorigen Abschnitt de�nierte Beschreibung eines Menschen
akzeptabel ist, kommt es durch das Auftreten von m Beinen, n Haenden,
x Koepfen usw... im Bild zu einer neuen Situation. Die genaue Anzahl
der in einem Bild oder einer Szene vorkommenden Menschen zu �nden, ist
vergleichsweise schwierig. Das groesste Problem dabei sind Okklusionen
von Eigenschaften. Findet man z.B. eine ungerade Anzahl von Haenden
oder Beinen, so ist die paarweise Zuordnung dieser Haende oder Beine zu
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einer Person eine reine Frage der Wahrscheinlichkeit ganz zu schweigen von
der Moeglichkeit, dass eine behinderte Person tatsaechlich nur ein Bein oder
einen Arm haben kann.
Probleme durch Bewegungen

Unabhaengig voneinander auftretende Bewegungen von Personen verur-
sachen eine grosse Anzahl von Okklusionen. Wenn z.B. zwei Personen
in Blickrichtung der Kamera hintereinander gehen, besteht eine endliche
Wahrscheinlichkeit dafuer, dass eine Person, je nach den jeweiligen Koer-
pergroessen, die andere vollkommen verdeckt. Auch wenn sich zwei Per-
sonen begegnen und anschliessend in verschiedene Richtungen auseinander
gehen, ist die Feststellung, welche Person in welche Richtung geht, relativ
komplex. Wenn sich, wie etwa bei Militaerparaden, eine Reihe von Perso-
nen in derselben Richtung mit derselben Geschwindigkeit bewegen und die
Abtastfrequenz des Bildes zufaellig noch mit dem Abstand der Personen
uebereinstimmt, kann sich die Erkennung der Bewegung extrem schwierig
gestalten.
Grundkonzept der Fusionsarchitektur

Durch die mit dem Chamfering und dem Hausdor� Verfahren
gewonnenen Erfahrungen und deren Implementierung in einem System
wird klar, dass nur ein einziger Algorithmus nicht ausreicht. Um ausser-
dem Okklusionen und Groessenunterschiede zu verarbeiten, muessen unter-
schiedliche Verfahren angewendet werden. Es ist daher notwendig, alle diese
notwendigen Methoden in einer Architektur zu kombinieren, die als Fusion-
sarchitektur bezeichnet wird.
Hausdor� Verfahren bei Okklusionen

Es ist nur natuerlich, dass in realen Bildern gewisse Bildteile verdeckt
(okkludiert) sind. Die Anwendung des Hausdor� Verfahrens auf das Mod-
ell kann je nach verdecktem Bildteil zu verschiedenen Ergebnissen fuehren.
Um Okklusionen zu behandeln, kann man anstelle des bekannten Hausdor�
Verfahrens, bei dem die Abstaende zwischen Punkten berechnet werden,
ein neues Verfahren anwenden, indem man den Prozentsatz von Punkten
berechnet, die von einem vorher festgelegten Grenzwert (Threshold) abwe-
ichen. Liegt diese Prozentzahl unter einer bestimmten Grenze (die vorher
festgelegt wurde oder den maximal zulaessigen Verdeckungsgrad des Mod-
ells darstellt), so kann man davon ausgehen, dass das Modell an dieser Stelle
des Bildes vorliegt.
Hausdor� bei unterschiedlichen Groessen

Eines der klassischen Probleme beim Matching von Bildern ist das Prob-
lem mit der Groessenunterschied durch unterschiedliches Zoomen. Falls im
Folgenden nichts anders gesagt ist, wird fuer die Groessenanpassung grund-
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saetzlich in allen Richtungen mit demselben Faktor skaliert. Falls die er-
forderliche Skalierung so gering ist, dass der Gesamte�ekt kleiner ist als
der Grenzwert, dann wird sie zuverlaessig arbeiten. Wenn der Gesamtef-
fekt allerdings groesser ist - was den interessanteren Fall darstellt - wird die
Aenderung so vorgenommen, dass je nach Skalierung fuer einige angegebene
Skalierungspegel ein Abstandshistogramm erstellt wird. Dann wird der
Histogramm-Pegel (Abstand) mit der groessten Anzahl Punkte gewaehlt.
Die Maximalanzahl Punkte mit dem hoechsten Pegel im Histogramm ueber
der Gesamtzahl von Punkten oder Ecken im Modell liefert einen bestimmten
Prozentsatz. Wenn dieser Prozentsatz hoeher als ein vorgegebener Wert ist
(beispielweise 90
Herausragende Vorteile der Fusionsarchitektur

1. Die Fusionsarchitektur erlaubt es, Okklusionen und Groessenunter-
schiede zu behandeln.

2. Die Fusionsarchitektur ist grundsaetzlich parallel angelegt.
3. Die Fusionsarchitektur mit Datenkommunikation kann allgemein den

Parallel-Rechenaufwand kleiner halten.
4. Auch ohne Datenkommunikation funktioniert die Fusionsarchitektur

gut wenn weniger Kommunikation erwartet wird.
5. Die kombinierten E�ekte der Fusionsarchitektur ergeben bessere

Erkennungsleistungen.
6. Die Fusionsarchitektur ist so allgemein angelegt, dass sie sich auch

fuer allgemeine Erkennungsaufgaben einsetzen laesst.
7. Das Konzept der Kombination mehrerer Algorithmen in der Fusion-

sarchitektur kann auch fuer Suchverfahren in der kuenstlichen Intelligenz
und fuer Optimierungsstrategien genutzt werden.
Navigations-Strategien

Da industrielle Anwendungen der Bilderkennung auch fuer die Bewe-
gungssteuerung von Industrierobotern eingesetzt werden, um den Zielpunkt
ohne Kollisionen mit Menschen zu erreichen, wurden Algorithmen fuer
das Umfahren von Hindernissen entwickelt. In einer bekannten Umge-
bung liegt das Hauptgewicht auf der Suche nach dem optimalen Weg mit
parallelen Strategien. In unbekannten Umgebungen wird nach Verfahren
zur Verringerung der Bewegungsaufwands gesucht. Bei der Umfahrung
gemaess dem "Problem das Handlungsreisenden" ("Travelling Salesman
Problem" TSP) wurde eine parallele Implementierung auf dem Cray T3E
mit Datenkommunikation der Prozessoren untereinander eingesetzt, um die
Loesung schnell zu �nden.
Modelle

Bei Bilderkennungssystemen spielen die Modelle eine herausragende
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Rolle: nicht nur fuer die Zuverlaessigkeit der Erkennung, sondern auch bei
der Verringerung der Rechenzeit. Von reinen Stab-Modellen eines Menschen
zu 3-dimensionalen Koerper-Modellen (Blob model) nimmt die Komplexi-
taet zu, aber die spaetere Verfolgung wird vergleichsweise schneller. Um
Menschen trotz Okklusionen erkennen zu koennen, sind entweder explizite
Modelle mit Okklusionen erforderlich oder beim Hausdor� Verfahren die
richtige Auswahl gewisser Parameter. Naturgemaess ist es schwierig, Werte
fuer Parameter zu �nden, die moeglichst viele Faelle abdecken. Die spezielle
Erstellung von Modellen mit Okklusionen ist dabei hilfreich und erlaubt
eine bessere Behandlung von Okklusionen, vergroessert aber die Anzahl
notwendiger Modelle um ein Vielfaches.
Okklusionsmodelle

Bei Modellen mit Okklusionen wird das Modell eines Menschen genom-
men und der oder die durch Okklusion verdeckte(n) Teil(e) werden entfernt.
Jedes Modell mit einem oder mehreren entfernten Teilen ergibt ein Okklu-
sionsmodell. Wie die Experimente zeigen, erzielt man durch die explizite
Modellierung von Okklusionen eine hoehere Erkennungswahrscheinlichkeit.
Wie bereits angesprochen, erhoeht sich dadurch jedoch die Anzahl Modelle
erheblich. Um diese Zunahme der Modell-Anzahl zu umgehen, fuehrt man
ein generisches Modell ein.
Generische Modelle

Um die Anzahl Modelle zu reduzieren, wird die ausgewaehlte Menge
Modelle uebereinander gelegt. Ein solches Modell nennt man dann ein
generisches Modell. Das generische Modell ist die Vereinigung aller Punkt-
mengen jedes gewaehlten Modells. Bei Kanten-Modelle geht man aehnlich
vor. Obwohl sich mit generischen Modellen somit die Anzahl erforderlicher
Modelle verringern laesst, ergeben sich Probleme beim Hausdor� Verfahren,
da fuer das Matching viele Punkte fehlen koennen. Auch bei der Behand-
lung von Okklusionen erreicht man mit diesem Verfahren hoehere Erken-
nungswahrscheinlichkeiten. Um das Problem der fehlenden Punkte bei den
generischen Modellen zu umgehen, fuehrt man ein Basismodell ein.
Basismodelle

Diese Art der Modell-Erstellung ist praktisch eine gegenseitige Ergaen-
zung der generischen Modelle. Statt der Vereinigung der ausgewaehlten
Punktmengen - wie beim generischen Modell - nimmt man fuer ein Ba-
sismodell die Schnittmenge. Obwohl dieses Verfahren zunaechst vielver-
sprechend erscheint, verbleibt ein Haar in der Suppe. In vielen Faellen ist
die Schnittmenge der Punkte natuerlich viel geringer, so dass sie mit zu-
faelligen Punktmengen uebereinstimmen und zu Fehlerkennungen fuehren.
Wenn man allerdings die Modelle gut auswaehlt, so dass viele von ihnen
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untereinander weitgehend aehnlich sind, funktioniert dieses Verfahren recht
ordentlich.

Rueckwaertserkennung bei Menschengruppen

Die Idee bei diesem Verfahren ist, dass wenn eine Person in einem Bild
innerhalb einer Menschengruppe erkannt wurde, man auf das Vorhanden-
sein dieser Person in einem vorhergehenden Bild, auf dem sie nicht erkannt
wurde, schliessen kann. Da hierbei viele Probleme auftreten, wie etwa un-
terschiedliche Groesse, Bewegungen der Menschen, Bewegungen der Kam-
era usw... wurde zu Untersuchungszwecken eine eingeschraenkte Umgebung
gewaehlt. In dieser eingeschraenkten Umgebung wurden mit der Rueck-
waertserkennung gute Ergebnisse erzielt. Im vorliegenden Fall wird zuerst
die Anwesenheit einer Einzelperson erkannt und deren relative Position wird
dann in das zeitlich davor liegende Bild einer Menschengruppe "rueckpro-
jiziert". Moegliche Okklusionen spielen dabei eine wesentliche Rolle fuer das
Gelingen des Erkennungsprozesses. In solchen Situationen ist dieser Fall
besonders kritisch, da das Nichterkennen einer Einzelperson dazu fuehren
kann, dass die ganze Gruppe nicht erkannt wird.

Schlusswort

Obwohl das Ziel der vorliegenden Arbeit die Erkennung von Menschen in
von einaeugigen Kameras aufgenommenen Bildern ohne die ueblichen Ein-
schraenkungen war, wurden die urspruenglich auf Graphen basieren Match-
ing Verfahren mit neuen Nachbar Isomorphie Verfahren analysiert. Das
fuer das Matching sehr zuverlaessige Hausdor� Verfahren wurde erweit-
ert, um Menschen anhand von vielfaeltigen Modellen und veraenderten
Abstandsmessungen erkennen zu koennen. Da die Strategie der Vereini-
gung mehrerer Algorithmen, um trotz Okklusionen bessere Ergebnisse zu
erzielen, im Grundsatz bereits parallel ist, lieferte die parallele Implemen-
tierung des Systems auf einem Cray 3TE richtige Ergebnisse in wesentlich
kuerzerer Rechenzeit. Als moegliche Anwendung im Umfeld von Indus-
trierobotern wurden drei beispielartige Situationen durchgespielt: eine in
bekannter Umgebung, eine in unbekannter Umgebung und die dritte mit
herumgehenden Menschen. Dazu dienten einfache Modelle mit Menschen
als Hindernissen. Wenn es nicht gelingt, gute Modelle mit einer sinnvollen
Indizierung zu waehlen, bleibt die computergestuetzte Erkennung von Men-
schen eines der nur schwer zu loesenden Probleme.
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Abstract
In the realm of computer vision, the recognition of human beings in the

images is one of the challenging problems which has ample applications in
many �elds from industry environments to surveillance systems. Most of
the previous works on the problem were based on many strict assumptions
which paved way for reducing the computation time to recognize. In this
study, beginning with graphs to the real images, various strategies to rec-
ognize objects and human beings are developed which are based on graph
matching and distance transformation methods leaving many strict assump-
tions. To exploit the inherent parallelism in the methods, parallel algorithms
are developed and implemented on high-performance parallel systems viz.
supercomputer Cray T3E.

As graphs are the powerful representation of objects, graph matching is
considered primarily. Initially, A� Algorithm is used for optimal matching
of graphs. With lower bound and upper bound techniques, the computation
time of the A� Algorithm is reduced considerably. With various strategies
for modifying heuristic functions and expansion mechanisms, the eÆciency
of the A� Algorithm for optimal matching of graphs is analyzed. A new
isomorphism (Neighbour Isomorphism) is introduced to reduce the compu-
tation time of graph matching enormously. The same isomorphism is used to
�nd the symmetries in the regular polygons which are repeatedly attached
at various corners of the polygons. Combining both neighbour isomorphism
and A� strategy, to match the postures of human beings from the indian
classical dance, Bharathanatyam, a new algorithm is developed which pro-
duces accurate results.

Due to noises in real images, such graph based methods are not directly
applicable. At the low level image processing, only corners and edges are
used to recognize the human beings. The standard matching algorithms,
Chamfering and Hausdor� methods are used to match the human beings
in the images. New modi�ed Hausdor� based measures are introduced to
recognize human beings to the possible extent. The Fusion Architecture

combining various algorithms to produce better results is discussed in the
study. All the strategies including the Fusion architecture are implemented
on Cray T3E supercomputer as they exhibit ample parallelism.

For the robots to reach the destination point without colliding with hu-
man beings in industrial environment, algorithms for navigation through
obstacles are developed. In a known environment, the focus con�ned is to
�nd the optimal path eÆciently with parallel strategies. In unknown en-
vironments, the methods to minimize the cost of traversal are formulated.
In case of going around like TSP (Travelling Salesman Problem), parallel
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implementations on Cray T3E with communication among the processors
are carried out to e�ectively �nd the optimal solution.

The crucial problem of occlusion is handled in a better way using Oc-

clusion Models and Generic models. An attempt is made to describe the
positional relationships between human beings in the sequence of images
ontologically. The modelling of the group of human beings and their recog-
nition are experimented with examples. The industrial applications with
robots to optimize the distance covered and the scheduling of vision tasks
onto parallel systems are also discussed. In a sequence of images, with the
back propagation of relative positions of single human beings recognized
separately, recognizing groups of human beings is also possible in restricted
environments. The experimental results show that the recognition of hu-
man beings with strategies discussed, is possible and depends heavily on the
models. The inherent parallelism in the strategies can be exploited with the
eÆcient implementation on high-performance systems to reduce the compu-
tation time.

Succinctly, the aim of the study is to recognize the human beings in
the images from monocular camera without usual constraints. Initially, the
graph theory based methods for matching are analyzed with new neighbour
isomorphism. The robust Hausdor� method for matching is extended to rec-
ognize the human beings with ample models and modi�ed distance measures.
As the strategy to fuse di�erent algorithms to get better results despite oc-
clusions is inherently parallel, it is implemented on Cray T3E which also
produced correct results with appreciable reduction in computation time.
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Chapter 1

Introduction

1.1 General Overview

With the dawn of technological innovations particularly powerful processors
and variety of sensors, Image processing became viable and more useful.
Lot of interests are evinced on Image Processing owing to the compelling
demands prevailing in the new millennium. The quest of imitating a human
being, a cornerstone problem in Arti�cial Intelligence or the pompous Turing
Test, is widely investigated. Among other activities of human being, Vision
is considered to be really challenging for computer scientists to emulate the
functions of eyes with cameras.

Eventhough number crunching by computing systems was prevalent in
the beginning stages of computing, the state of art of the computing sys-
tems with ubiquitous sensors paved way for image processing widely. The
wide spectrum of the applications of image processing ranges from surveil-
lance to medical applications, automobile industry to defense applications,
robotics to helping physically handicapped persons, text analysis to image
understanding and so on. Albeit the notion of pixel was present in texts or
alphabets from natural languages, the images which are depicted by pixels
posed crucial problems.

First of all, where is the relevant information in an image? How can
the relevant information be extracted from the whole image? Which object
resembles the group of the extracted portions or segment of the image?.
These questions distinguished the images from characters which are well
de�ned, properly arranged and legible enough to categorize as a particular
character or alphabet of a natural language.

Visual input provides more information and only in recognizing the same

1
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as known object is a problem which is investigated extensively. The tactile
sensors or lasers or ultrasonic sensors may have some impact if the objects
are continuously or frequently exposed to these sensors. However, camera
is totally harmless and can be used continuously over a speci�ed time. The
related hardware viz.Frame Grabber enhanced the utility of camera with
the computing system in a naive way.

Given the computing system with camera, the e�orts are made to make
the computing system more intelligent by understanding the images cap-
tured through the camera. Apart from emulating human visual activity,
the applications of image processing require such facility to improvise the
eÆciency. For example, in environments where the machines and human
beings interact, the machines are also expected to cause no damage to hu-
man beings. In various industrial environments, robots move among the
workers to accomplish their tasks. Not only in such cases, better informa-
tion input to the human controller can avoid severe damages as in driver
assistance systems in automobiles. Thus, �nding human beings to avoid any
damage which is essential in such environments emerged as a new domain
in computer vision(sometimes called as "Looking at People").

1.2 Image Processing

The primary reason for interests in digital image processing stems from two
principal applications area: improvement of pictorial information for human
interpretation and processing of scene data for autonomous machine percep-
tion [1]. To start with, the image is de�ned to be a two-dimensional light
intensity function f(x,y), where x,y denote spatial coordinates and the value
of f at any point (x,y) is proportional to the brightness (or grey level) of the
image at that point. Such an image is usually referred as monochrome im-

age. A multispectural image f is a vector-valued function with components
(f1; f2; :::; fn) [2]. A colour image is referred as a vector-valued function
with the components which denote the brightness values of each of the three
basic colours, f (x; y) = ffred(x; y); fblue(x; y); fgreen(x; y)g. Time-varying im-
ages f(x,y,t) have an added temporal argument. In reality, an image is a two
dimensional distribution of light intensity on the focal plane of a camera
pointed at a natural scene. A generalized image processing system is por-
trayed in Fig.1.1 [3].
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1.3 Object Recognition

To answer the question, what is meant by object recognition, one may con-
clude naming an object in the scene. Sometimes in recognizing an object,
it may be required to identify an individual object or a speci�c token (such
as my wife). In some other cases, recognition means identifying the object
as a member of a certain class or a type, (a girl) [4]. Moreover, an object
may belong to a number of classes or categories simultaneously (e.g., my
wife, an indian lady, woman, human being). An image may contain mul-
tiple di�erent objects. Thus, the recognition of an object is an ability to
retrieve information associated with an object, or a class of objects, that is
not apparent in the image itself(for e.g., the name of an object). For any
recognition system, sensors and recognizer(analyzers) form the crucial parts
as in Fig. 1.2.
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As the sensor complexity increases from passive sensors (which do not
a�ect the surroundings or environment) to active sensors, the complexity
of the recognizer or analyzer decrease [5]. So, a discussion on sensors as
presented by the nature along with the proper use of the same follows next.

1.3.1 Biological Vision Systems

Intuitively a new born child can recognize the mother within few weeks after
the birth without explicit learning. E�ortlessly young children recognize the
objects and classify them as well. In one study [6], pigeons were trained to
sort 320 slides of natural scenes into two arbitrary categories, positive and
negative. The pigeons learned the task rapidly, performed it with a high level
of accuracy and repeated the same after two years without any additional
practice. It may be recalled pigeons have only pea-pod sized brain. Even
insects such as the bees use visual recognition for the purpose of navigation,
�nding the bee-hives and identifying the ower shapes [7]. It is universally
well known that dogs easily identify the owners and distinguish them from
other people.

Other Sensory Systems

Nature has provided a variety of sensors especially to animal kingdom. The
cats use their whiskers as tactile sensors to get the information whether
through the gap they can squeeze in. Snakes with their skins feel the vibra-
tions on the surface to identify the approach of other animals. Deers and
such other animals use their ears to detect the minute sound to escape from
falling into the prey for some other animals. Ants use their "smelling" sense
to get their food and follow the pheromonal trails despite being almost blind
according to ethologists [8]. Bats use some sort of ultrasonic waves to detect
objects while ying. Photophilic plants grow in the direction of region of
light to synthesize their food. However, for computing systems trying to
recognize objects, it is still a long distance goal.

1.3.2 Why is Object Recognition Complex?

To be more speci�c with object recognition, there is a large collection of
patterns (P = p1; p2; :::; pn) where each pi represents the object in a di�erent
viewing position. Given an input pattern q, the direct approach will retrieve
the pattern pi which is most similar to q. The �rst question is what is meant
by similar and secondly how large the patterns set should be so that it is
suÆcient to recognize every input pattern of the object. The similarity is
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de�ned in many ways as it is a measure between two patterns. A simple case
may be Hamming distance. But it can not be so eÆcient for its simplicity.
However, the L2 norm between the grey level images, is the sum of the
squared di�erences between image intensity values at corresponding points.

Coming to the issue of how large the set P should be to recognize any
input q as the object, beyond any iota of doubt it is prohibitively large. This
is a crucial source of problem in object recognition. Secondly, what are the
minimum number of features that must be present in the input so that it
can be correctly recognized? Often due to occlusions in real environments,
the input may not have all the required features. In such cases, how the
situation can be handled, still remains to be investigated.

At the same time more fundamentally, what are the sources which bring
the variability in the input pattern which is very diÆcult for recognition?
As explained vividly in [4], the major factors are the following,

➠ Viewing Positions

➠ Photometric E�ects

➠ Object Settings (or Occlusions)

➠ Changing Shape

In fact in real scenarios, an input pattern will have a combination of all
these problems. For e.g., one input pattern for recognizing human being
may be of the type from a view taken from the back (which means face,
eyes, mouth, nose and such other features will be absent). In the presence
of multiple coloured lighting sources, most of the colour based features be-
come unsuitable. The silhouette of the person may be disproportionate also.
Despite all these impediments, researchers are doing their best to cope up
with the demands for accurate image processing.

1.4 Related Works

In human motion analysis survey [9], three major categories were mentioned
namely, body structure analysis (both model based and non-model based),
tracking (single camera and multiple cameras) and recognition (by state
space method and Template matching methods). Another survey on the
visual analysis of Human movements [10] distinguishes based on dimension-
ality (2D or 3D) combined with or without explicit shape models. A survey
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on computer vision-based Human Motion Capture [11] discusses the gen-
eral structure for systems analyzing human body motion as combination of
Initialization, Tracking, Pose Estimation and Recognition.

In general the related works can be grouped based on the type of mod-
els used (stick �gure-based, volumetric, statistical), the dimensionality of
the tracking space (2D or 3D), sensor modality (visible light, infra-red,
range), sensor multiplicity (monocular or stereo), sensor placement (cen-
tralized or distributed) and sensor mobility (stationary or mobile). However
some more relevant issues are taken into consideration for forming Table
1.1. They are Initiation (Ini)(automatic (A) or prede�ned/manual), back-
ground (BG) (plain (P) or cluttered (C)), occlusion (Ocl) (permissible (Y) or
not (N) or partially), human beings present (HuBe) (single (S) or Multiple
(M)), motion (Mo) (prede�ned (P) or free (F)), motion detection (MoDec)
(background subtraction (B), motion models, others (O)), size restrictions
(Size)on human beings (Fixed (F) or not (N)), sensors (Sensor) (vision based
(Monocular(Mo) or Stereo(St) or multiple (Mu) cameras), others like range
(O)), and Segmentation (Segm)(colour (C), grey (G), others (O)). In the
Table 1.1 noted contributions in the �eld of Looking at People are men-
tioned.

1.4.1 Typical Assumptions

In general there are lot of assumptions made which paved way for easy
computation or recognition of the human being. A ranked list according to
the frequency of usage discussed in [11] is reproduced here for the sake of
continuity and further explanations.

Assumptions related to Movements

1. The object remains inside the workspace.

2. No or constant camera motion is allowed.

3. Only one person can be in the workspace at any time.

4. The object faces the camera at all times.

5. Movements must be parallel to the camera-plane.

6. No occlusion is allowed.

7. Slow and continuous movements are allowed.
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Paper Ini BG Ocl HuBe Mo MoDec Size Sensor Segm

[12] A C N S P? ? F Mo O
[13] A? C Y M F B F Mo O
[14] A C? Y M F O N Mo C
[15] A C N S P O F? Mo? O
[16] A C Y? M F B F Mo O
[17] A C N M? P O F Mo O
[18] A C Y M? P O F? Mo O
[19] A? C Y S? F? ? N Mo? O
[20] A? C Y? S F O N Mo? O
[21] A C N? S F B N Mo O
[22] A C N? S F B N Mo O
[23] A? C? N? M P O N? Mo O
[24] A? P N S P O F? Mo? O
[25] A C? Y? M F B F Mo? C,G
[26] A C? N? S F? B A? Mo O
[27] A P N S F? O F Mu O
[28] A? P N S F O F Mo O
[29] A? C N S F O F Mo O
[30] A? C Y S F O F Mu O
[31] A? P Y S P O F? Mu O
[32] A? C Y? M? P O F Mo? O
[33] A P Y? S P O F Mo O
[34] A C Y? M F O F Mo,O O
[35] A C Y? M F O F Mo O
[36] A? C? N S P B F? Mu O

Table 1.1: Comparison of Di�erent Recognition Systems in Field of Looking
at People.

(Refer to Section 1.4 for abbreviations)
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8. Only one or few limbs can move.

9. Fixed movements alone are allowed.

10. Object moves on a at ground plane.

Assumptions related to Environment

1. Constant lighting alone is allowed.

2. The background must be static.

3. The background ought to be uniform.

4. Camera parameters are known.

5. Special hardware units are necessary.

Assumptions related to Object

1. The starting pose must be known.

2. The object is known for recognition.

3. Markers are placed on the object.

4. Special coloured clothes must be worn.

5. Tight-�tting clothes must be worn.

1.4.2 Major Three Strategies for Looking at People

Most of the methods were based on statistical moments or Single Gaussian
or multiple Gaussian or Bimodal or Hidden Markov models to detect the
presence of a human being in the scene. Chamfering method is based on
distance transformations. Third method is to �nd a distance measure be-
tween the model and image based on the selected points. One such method
is Hausdor� method which is robust also. Detailed discussions about the
methods are presented in the following chapters.
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1.5 Salient Features of My Approach

As assumptions helped a lot in reducing the computation and recognizing
earlier, the principal deviation I made here is to leave many of the assump-
tions. This as expected increased the computation time. Yet the attempt
to solve such things was fascinating to me atleast. The objects (human be-
ings) need not to remain inside the workspace. Multiple persons are allowed.
They need not look at the camera at all times. They can move in any direc-
tion and no restriction is imposed. The inclusion of occlusion, eventhough
it is not new, really strengthens the use of the approach.

The relaxation of the assumptions related to environment is another vital
issue in my approach. Most of the images are outdoor images. So, constant
lighting is not possible, background can not be always static and uniform.
Indeed in some extreme cases it is totally cluttered. No requirement of
special hardware is recommended. However such things may reduce the
computation time.

The major advantage of my approach is that there is no need of start
positions of the objects. There is no need of wearing special markers as
the approach is just grey level based. No compulsion on wearing specially
coloured clothes or tight ones are made as normal dressing is allowed. But
the number of models has to be increased accordingly.

Eventhough the decrease in the sensor complexity of the passive sensors
increases the recognizer complexity, the passive sensor such as camera is
chosen without the help of active sensors, as disturbing the environment
will be viewed seriously by the social laws. As expected, the recognizer
complexity is high. However, all possible e�orts are taken to minimize the
recognizer complexity.

Initialization is one of the major problems in such human motion capture
or looking at people domain. At the start, normally a correct model of the
person involved in motion is chosen and then the person is tracked. In my
approach such initialization is not required. Of course if it is included, it
will enormously reduce the computation time and further tracking will also
be easier.

Generating models is one of the laborious problems. That too, they
must be more generalized. The hand drafted models or simulated models
are possible. However, the models are taken from the set of images and
silhouettes and/or corners are taken for consideration. For chamfering edges
are used. So, creating new models is not at all a tough task. The care must
be taken however to include many poses. Occlusion models can also be
included which is discussed in detail later.
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Most of the systems use Kalman �lter for tracking or particle based
systems. Eventhough both these approaches can be incorporated, motion
models are formed depicting various possible motions. Self-occlusion must
be handled properly. Thus the models themselves can be used if motion
models are included. As explained earlier, since the representation or model
is image based, the time to construct the models is no longer a severe prob-
lem.

The crucial part of the whole system is recognition. In my approach,
many possible systems can be integrated easily so that the combined sys-
tem in turn produces the output positively despite taking more time. The
methods such as Hausdor� and Chamfering are combined so that only those
which are missed by Chamfering are tried by the Hausdor� method. This
will reduce the unnecessary computation time.

The introduction of Fusion Architecture where di�erent algorithms are
combined so that di�erent problems viz. Occlusion and scaling can also be
handled to recognize human beings eÆciently. The inherent parallelism in
the Fusion Architecture paved way for parallel implementations.

As extension to make ontological descriptions or �nally recognizing the
actions after a period of time such as entering into the room or crossed each
other at the door and so on can be easily inferred as the locations matched
on the images can be used for that purpose despite having multiple persons.
However care must be taken to identify the individuals to track them cor-
rectly after both of them meeting at a point. In restricted environments,
recognizing groups of human beings is also possible with the back propaga-
tion of relative positions of single human beings recognized separately in a
sequence of images.

1.5.1 The investigated Problem

The aim of this study is to recognize the group of human beings in the images
from monocular camera without usual constraints. The graph theory based
methods for matching are analyzed with new neighbour isomorphism at the
beginning. The distance transformation based Chamfering is also applied
to recognize the human beings. The robust Hausdor� method of matching
is extended to recognize the human beings with ample models and modi�ed
distance measures. As the strategy to fuse di�erent algorithms to get better
results despite occlusions is inherently parallel, it is implemented on Cray
T3E which also produced correct results in appreciably lesser computation
time. At the outset, some navigation strategies to �nd the optimal path
with obstacles in known and unknown environments are also developed.



Chapter 2

Matching based on Graph
Theory

2.1 General Matching

Given two abstract representations, to �nd whether they match (atleast par-
tially) lies in the heart of the development of arti�cial intelligence systems
with human-like abilities such as computer vision. Due to the representa-
tional powers, graphs are often used for abstract representation. Parametric
and syntactic approaches at the suitable levels are also available in the lit-
erature [37]. In pattern recognition and machine vision, graphs are used
to represent the object models which are known a priori and the unknown
objects which are to be recognized. Using these representation formalism,
the recognition problem becomes a graph matching problem. Two main
approaches namely, branch and bound methods and nonlinear optimiza-
tion methods are widely used for graph matching as the complexity is NP.
Eventhough other methods are also prevalent, graph isomorphism based
matching and state space method such as A� strategy are preferred in case
of exact or optimal solutions which are computationally intensive. These
approaches are used in error-tolerant and error correcting graph matching
[38], [39]. Here, methods have been suggested to reduce the computation
time for eÆcient graph matching.

11
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2.2 Modi�ed A� strategy for Graph Matching

2.2.1 Previous Works

In most of the core application problems viz. arti�cial intelligence, code op-
timization in compilers, CAD and computer vision, manoeuvring the combi-
natorial search remains still to be solved eÆciently. Especially in computer
vision, the crux of the problem is to match two abstract representations
(Graphs) [40].

As early as in 1964 [41], a heuristic program for testing pairs of directed
line graphs for isomorphism was designed. Using representative graphs and
reordered graph, another eÆcient algorithm for graph isomorphism is pre-
sented in [42]. With backtrack procedure, directed graph isomorphism is
solved in [43]. A fast backtracking algorithm for the same not necessarily
running in polynomial time was developed [44]. An algorithm for subgraph
isomorphism using graph theoretical methods is presented in [45].

Mostly, two approaches viz. state-space method with branch and bound
techniques [46] and nonlinear optimization methods with heuristic approx-
imations [47] are employed to match graphs eÆciently. Recently, noise in-
cluded graph matching [48] and parallel algorithms [9] are also investigated.
Various strategies and applicability of graph matching to computer vision is
explained in [2].

However, the two approaches are combined to get the optimal matching
always eÆciently. The optimality is guaranteed by using A� algorithm [51]
with the proper h� function aptly suiting to the problem. This demands the
formulation of the problem in terms of A� approach and developing heuristics
for supplanting the upper bound for matching. The optimal results have
been veri�ed by the enumeration of permutations method.

2.2.2 The Matching Problem

The De�nition

Given two graphs, G1 and G2 with vertex sets V1 and V2 along with edge
sets E1 and E2, it is considered that the number of vertices in both the
graphs are equal(say n). A cost matrix C is de�ned with cij as the cost
involved in matching vi of G1 and vj of G2. Several issues are taken
into consideration for incorporating them in the process of matching viz.
degree of mismatch [9] and such others like di�erence between indegree and
outdegree. The problem is to �nd a matching vector M where mi is the
vertex in G2 matched with the vertex vi in G1 such that
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�ci;mi
is minimal 8 i, i= 1..n.

The Formulation

Each child node in the state-space of A� (explained in the next section)
denotes a partial assignment i.e., assigning a non-assigned vertex in G1 with
a non-assigned vertex G2 apart from the already available such assignments
made in the parent node. Here, f�(x) = g(x) + h�(x) where f� is the cost
of the node, g is the cost of getting the node from the start node and h� is
the lower bound on the cost of arriving at a solution node from the node
i.e., the sum of the static levels of the non-assigned vertices in G1. The rest
is the same as the general A� strategy [51].

2.2.3 The New A
� Based Algorithm for Graph Matching

General A� Algorithm

As the algorithm is based on the A� algorithm, for the sake of clarity and
explaining the algorithm, the general A� algorithm used in most of the ar-
ti�cial intelligence problems is explained here as in [52]. In A� algorithm,
the state space graph is a tree called search tree. Each node in the tree cor-
responds to the assignment of a particular vertex in a graph with a speci�c
vertex. All the internal nodes in the tree correspond to partial (or incom-
plete) matching and all external (leaf) nodes in the tree, correspond to either
pruned node or complete graph matching. The problem here is to �nd the
goal node, a leaf node corresponding to the optimal matching. Associated
with a node v in the search tree is a cost function f�(x) = g(x) + h�(x),
which is an underestimate for the minimum cost of an assignment, given
that it includes the partial matching. The function g(v) is the cost of the
path from the root to v and the function h�(v) is a lower bound estimation
of the minimum cost function h(v), from the node v to a leaf node which
corresponds to an optimal matching in the subtree rooted at node v. The
search tree of A� Algorithm with a random cost function for the graphs in
Fig.2.2 is given in Fig.2.1.

The Heuristics Solution

To set the upper bound so that any node with the cost of partial
matching or together with h� also can be pruned, an e�ective heuristic
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Figure 2.1: The Search Tree of A� Algorithm for Fig.2.2

is de�ned here. A priority list is de�ned based on the following partial order,

vi has more priority than vj provided �cik;8k is not less than �cjk;8k.

The heuristic chooses each time, a vertex vp from set of all non-assigned
vertices such that no other vertex is having a higher priority. And, the
vertex vp is assigned to a vertex vq in the set of all non-assigned vertices in
G2 such that cpq is minimal considering all such non-assigned vertices. It
can be also tried separately with N-Queen problems solutions as heuristics.

The Heuristics Function

The heuristic function is de�ned here as follows. At node x, let there be V
0

1

vertices which are already assigned. Then,

g(x) = �ci;mi
, 8 i 2 V

0

1 .

Now, to �nd the f(x) value, h(x) heuristic function is needed. To produce
always optimal solution, indeed h�(x) is required. The h�(x) is de�ned as,

h�(x) = �ci;i0 , 8 i 2 V1 � V
0

1 ,

where ci;i0 be the minimum in the row i. In fact, it is easy to verify that
h�(x) < h(x) to ascertain the optimality.
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2.2.4 New Techniques for Reducing Space and Time

Lower Bound

The lower bound is for the solution which is the minimum possible attainable
solution. In the A� algorithm, the algorithm has to continue even after
�nding a solution as it need not necessarily be optimal. Now the question
lies how can it be proved that the given solution is the optimal solution
so that the algorithm can be stopped at once. The only possible way is
when the given solution is equal to the lower bound solution. As there could
not be a better solution obviously, the algorithm can be terminated. Now,
the problem boils down to �nding the lower bound solution to the problem
which is normally diÆcult in the general case. But it is not so in graph
matching.

Let ci;i0 be the minimum in the row i. Then, the lower bound is de�ned
as the sum of all such row minima. i.e.,

LB = �ci;i0 ;8i = 1; n.

The major problem with lower bound is that the possibility of many
to many mapping is probable. However, in case of multiple similar objects,
denoted as several occurrences of the same subgraph, this will indeed be more
desirable. One should be always careful that all feasible optimal solutions
need not necessarily be lower bound solutions. The main advantage is that if
the given problem has the lower bound solution, the algorithm terminates at
once it �nds such solution, thereby reducing both the memory space required
for the further expansions and the time to compute the same.

Upper Bound

The upper bound is a solution which is the minimum solution among the
available solutions. In the A� algorithm, the algorithm has to evaluate
the function f(x) at every node. Supposing that f(x) is greater than upper
bound, that node need not to be expanded further. This will not a�ect the
optimality as anyhow by expanding the node, the solution obtained will be
more than that of the already available solution.

However to start with, one should have a heuristic solution. So, the
algorithm obviously needs a heuristic method to solve the problem. This
also helps in another way drastically. Supposing that the heuristic solution is
equal to the lower bound solution, then the algorithm stops without creating
even a single node. Even otherwise, the heuristic solution found initially
will serve as the upper bound. So, using upper bound, the number of nodes
generated are minimized thereby reducing the memory space and CPU time.
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2.2.5 The Algorithm for Optimal Graph Matching

1. Compute the lower bound solution, LB.

2. Find a heuristic solution, UB (using N-queen problem or so).

3. IF (UB! = LB) THEN

4. Construct the priority list of vertices.

5. c = 0 (* node count *).

6. Build the initial node N0 and insert it in the list with f(N0) = 0.

7. REPEAT

8. Select the node Nk with smallest f value.

9. IF (Nk is not a solution) THEN

(a) Generate the successors i.e., trying with all unassigned vertices.

(b) Do the following for each such vertices
compare the vertex with all other vertices and assign.

(c) FOR each such assignment Ni DO

� Check whether it is already there in the list to eliminate the
duplication

� IF (already available) THEN
Don't add the node
ELSE
Compute f(Ni) = g(Ni) + h(Ni) for this node Ni.
IF ( f(Ni) < UB)
c = c + 1
Insert it in the list
IF (Ni is a solution) THEN
IF ( f(Ni) == LB) THEN
Print the solution and quit.
IF ( f(Ni) < UB) THEN
UB = f(Ni).
ENDIF
ENDIF
ENDIF
ELSE
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Algorithm No. of nodes generated CPU time in sec

Variation A 285 0.183
Variation B 0 0.083
Variation C 45 0.083
Variation D 0 0.067
Permutation 362880 18.133

Table 2.1: Comparison of the variations of A� with permutation Algorithm

Prune the node Ni

ENDIF
ENDIF

ENDIF
ELSE
Print the solution and quit

10. UNTIL (Nk is solution OR list is empty). ELSE
Print the solution and quit

2.2.6 The Algorithms Developed with Variations

Four variations of the A� algorithm with the new techniques [51] of lower
bound and upper bound are developed here. Variation A is a simple A�

without employing any technique. Variation B is a simple A� with the
above techniques. Variation C is at each level of state-space tree only one
vertex is selected based on the priority list. Variation D is the same as
variation C together with these techniques.

2.2.7 Result and Analysis

Before analyzing the algorithm throughly, the snapshots of the algorithm
for the input as given in Fig.2.2 are presented here.

Variation D

Here, for the sake of explaining a very simple function is taken as a cost
matrix for the example. The cost function is taken to be the di�erence in
the degrees of the corresponding vertices. As per the algorithm, the lower
bound has to be calculated. For that, the static levels of the vertices have
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Figure 2.2: Recognition of Objects. (a) a real life Objects (b) a correspond-
ing Graphs
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to be computed from the cost matrix. From Fig.2.2, it is easy to compute
the static levels. Since, minimum one vertex with the same degree is there,
the static levels of each vertex is zero. Hence, the lower bound which is a
sum of all the static levels is also zero.

Now, the heuristic solution as described earlier has to be computed.
For a possible numbering of the vertices, given the cost function as the
degree of mismatch (taken only the absolute value), the vertices form two
groups with priority 4 and 5 depending upon the degree of the vertex 2 or
3 respectively. The heuristic algorithm chooses the vertex having no other
vertex with higher priority. In the process, it �nds a matching with the
matching cost zero.

At this point, important event happens. Had the lower bound technique
been not included in the algorithm, the algorithm would have proceed with
the A� algorithm. However, due to the inclusion of the new technique,
the algorithm stops here, con�rming the solution obtained as the optimal
solution as it is equal to the lower bound solution (both are zero). It is
valid because no solution can be better than a lower bound solution. So,
any lower bound solution is the optimal solution. It is very easy to verify
that the optimal solution need not necessarily be the lower bound solution.

Variation C

In this case, it is same as the general A� algorithm excepting for the fact that
only one node is expanded. The node selected for expansion is the node hav-
ing the minimum f(x) value. For example in the case, the vertex zero will be
matched with all other vertices making a node each time. However, instead
of expanding all these nodes, only one node is selected and expanded. That
is why there is a reduction from 285 nodes to mere 45 nodes. By expanding
all nodes, more duplicate nodes alone will be generated at the expense of
CPU time and memory space apart from eliminating such duplicate nodes
also.

2.2.8 Analysis of the Results

The Table 2.1 is for the example given in Fig.2.2. It is very evident that the
algorithms at any case outperform the general permutation method which
also assures the optimality. The exact matching of vertices are given in
Table 2.3.

The variation A is same as the A� algorithm. By adding these techniques
to the variation B, the reduction in both memory space and CPU time is
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Algorithm No. of nodes generated CPU time in sec

Variation A 140 0.1
Variation B 0 0.083
Variation C 28 0.083
Variation D 0 0.067
Permutation 5040 8.7

Table 2.2: Comparison of the variations of A� and permutation Algorithms
for lesser number of nodes

Vertices of Cup Matched Vertices of Cup1 Matched Vertices of Cup2

1 B a
2 C b
3 G f
4 H g
5 F e
6 E d
7 D c
8 A h
9 I i

Table 2.3: Results of the Graph Matching Algorithm for Cups

evident. The prime di�erence between the set A,B and C,D is that in step
9, only one vertex is selected each time considering all unassigned vertices
depending upon the priority. It may be also recalled by this, the optimality
of the algorithm is not sacri�ced. By allowing that only there will be lot
of duplications which are also properly handled. The variation D is always
better than Variation B, eventhough both produces the lower bound solution
due to the power of the e�ective heuristic de�ned whenever possible. These
variations are only for those who long for the optimality. The heuristic
de�ned here in the chapter as well as the N-Queen problem will also serve
the purpose of those who are not interested in optimal solution, but a quick
reasonable sub-optimal solution. These algorithms are highly parallelizable.
The permutation of the input cost matrix is carried out. However, the
results are almost the same for the cases tried. To check, the number of
nodes were reduced from 9 to 7 and the whole procedure is repeated. Table
2.2 portrays the same vividly.
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2.2.9 Conclusion

The problems in arti�cial intelligence including computer vision which de-
mand expensive and computationally intensive searches are tried for optimal
solution. Eventhough several strategies are applied to solve the matching of
abstract representation, mostly graphs, the A� algorithm is chosen to ascer-
tain optimality. The eÆcient A� based algorithm for optimal graph match-
ing with the incorporation of two techniques additionally is presented in the
chapter. The lower and upper bound techniques help to reduce the number
of nodes generated and the execution time to the appreciable amount. The
heuristic used in the algorithms provides further reductions asserting the
proper choice. The role of initial heuristic solution, in both upper and lower
bound techniques are also exemplary and well suited to the graph matching
problem. The variants of the algorithm presented here strengthen the claim
of optimality clearly.

2.3 Symmetry based Graph Matching

2.3.1 Previous Works

Recently, there has been lot of interests evinced on matching objects in the
images in the �elds of Robotics, Satellite Imagery and Pharmaceuticals [50].
The paramount factor especially in the �eld of computer vision continues
to be matching. The well-known algorithm such as A� algorithm [51] [53]
demands more memory and the computational time. The graph theory
based methods have been used to the large extent [49] [48]. So, in the
chapter also, a graph theory based isomorphism is introduced.

Most of the images have often regular repeated polygons, i.e., polygons
which are regular(the edges with same length) are repeatedly placed at var-
ious points in the image. Thus, it will be useful if the basic units which are
like building blocks are found.

The novel Neighbour Isomorphism de�ned in the chapter helps to cate-
gorize the vertices of the images into isomorphic groups and then the sym-
metric lines are formed to �nd the basic unit. Thereby, instead of matching
the whole image, it is suÆcient if the matching is done for the basic unit.

2.3.2 The Symmetry Problem

Given an image with lot of polygons connected in di�erent ways, the sym-
metry lines have to be found to form the basic unit. Mathematically, let R
be the set of all regular polygons. Let Pi denote the regular polygon with i
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vertices, each denoted as vji . Two vertices vji and vlk are nailed together to
connect the two polygons Pi and Pk. The remaining vertices are called hang-
ing vertices. The given image contains a connected graph which is nothing
but a regular repeated polygons. The Neighbour Isomorphism categorizes
the vertices into disjoint class of isomorphic groups, gi. Let there be n such
isomorphic groups in the image. Try to �nd a line which will divide equally
the number of vertices in each isomorphic group gi. This line Li is called the
symmetry line of the image. There may be more than one line. Let H1 be
the set of all such vertices divided by the line L1. Similarly, H2 by another
line L2. Then, H12 = H1\H2 is the basic unit provided no other symmetry
lines are available [54].

2.3.3 The Neighbour Isomorphism De�nition

The Neighbour isomorphism between two vertices v1 and v2 in a graph G1

is de�ned as follows [51],

v1 and v2 are Neighbour isomorphic i� there exists k numbers of r distant
neighbours for v1 in G1, then exactly there must exist k numbers of r distant
neighbours for v2 in G1. (If the graph is a weighted graph, pairwise the
corresponding vertices should be Neighbour isomorphic.)

Consider a graph with linear list of vertices v0 to v4. The Neighbour
isomorphic groups of vertices are (v0,v4), (v1,v3) and v2. The vertex v0 is
not Neighbour isomorphic with the vertex v1 because v0 has a neighbour at
the distance of 4, where as v1 has none at the distant of 4. Similarly, v2 is
not Neighbour isomorphic with v3 as v2 has two neighbours at the distant of
2 where as v3 has only one. It is very easy to verify that all the vertices of a
regular polygon are NI isomorphic, i.e., there is only one isomorphic group
containing all the vertices. It is also true for hypercubes of all dimensions
and complete graphs.

Mathematically, Let G be the graph with V as the set of vertices and
E as set of edges. Let gi denote the set of vertices which are neighbour
isomorphic. Obviously, gi � V . Let Vi; Vj 2 V .

Vi; Vj 2 gp i� N(Vi; l ; gp) = r and N(Vj ; l ; gp) = r;8l = 1, ..., diameter of
G, where N(Vi; l ; gp) = r denotes there are r number of l distant neighbours
of gp.

For a vertex numbered as 1 in the �rst �gure of Fig.2.4, the function N
with the following arguments forms the Table 2.4. In the Fig.2.4 and in all
�gures, if a vertex has a label i, then it belongs to gi.
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l (distance) gi (isomorphic groups) r (neighbours)

1 g1 2
1 g2 2
2 g1 1
2 g2 4
2 g3 1
3 g2 2
3 g3 2
4 g3 1

Table 2.4: The Function N of Neighbour Isomorphism for the vertex num-
bered 1 in the �rst �gure of Fig.2.4

2.3.4 Lemmas based on Neighbour Isomorphism

In the section, the lemmas are stated without proof as they can be easily
derived from de�nition of Neighbour Isomorphism.

Lemma 1. If Pi 2 R, then there exists only one neighbour isomorphic
group g1 containing all vertices. i.e., V = g1. Refer Fig.2.3. As all the
vertices are isomorphic to each other, they form only one group. It may also
be noted that the dotted lines show the symmetry in the �gures.

Lemma 2. If Pi; Pj 2 R and Pj is nailed at all the i vertices of Pi,
then also all the i vertices of Pi form only one neighbour isomorphic group,
g1. (However, the isomorphism in Pj is changed.) Refer also Fig.2.4. It
is important to note that the isomorphism in Pi is preserved where as the
isomorphism in Pj is changed. The vertices with same number belongs to
same group.

Lemma 3. If gi and gj are two neighbour isomorphic groups of Pk, then
gi\gj = �. i.e., neighbour isomorphic groups are disjoint. It is easy to verify
from the de�nition of Neighbour Isomorphism, if they are not disjoint, they
would have merged into one group instead of two groups.

Lemma 4. Let Pi; Pj ; Pk 2 R. Pj is nailed at all the i vertices of Pi and
Pk is nailed at all the remaining hanging vertices of Pjs at j points, then
also all the i vertices of Pi form only one neighbour isomorphic group. (But,
the isomorphism is changed for both Pj and Pk.) This process can be done
iteratively and then also the lemma holds good as shown in Fig.2.6. By
adding the polygon Pj on each vertices of Pi, the isomorphic property of the
vertices of Pi remains unaltered. Again, this is not true for the polygons Pj
and the subsequently added polygon Pk also.
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Lemma 5. Let Pi; Pj ; Pk 2 R. Pj and Pk are nailed at all the i vertices
of Pi, then also all the i vertices of Pi form only one neighbour isomorphic
group. (But, the isomorphism is changed for both Pj and Pk.) This process
can be done iteratively and then also the lemma holds good as depicted
in Fig.2.5. By adding any number of polygons on each vertices of Pi, the
isomorphic property of the vertices of Pi remains unaltered. Again, this is
not true for the polygons Pj and Pk.

Lemma 6. Let Pi; P
1
i 2 R, where Pi and P 1

i di�er only in size. If P 1
i

is smaller than Pi, P
1
i s are embedded in Pi at all the vertices with possible

edges (normally two) too coinciding, then also all the vertices in Pi form only
one neighbour isomorphic group. (However, the isomorphism is changed in
all P 1

i s.) This is obvious from Fig.2.7.

Lemma 7. Lemmas 1,2,3,4,5 and 6 hold good in 3D also as shown in
Fig.2.8.

Lemma 8. Neighbour isomorphism is invariant to translation, rotation
and scaling with same scaling factors in all directions. As none of the condi-
tions of neighbour isomorphism changes due to translation and rotation, it
is obviously invariant. However, the distances are changed in scaling. That
is why uniform scaling is required so that even if the distances changes,
overall change in all the vertices will nullify the net e�ect on neighbour
isomorphism.

Lemma 9. Nonregular polygons can also exhibit neighbour isomorphism.
Few examples are provided in Fig.2.9.

Lemma 10. There exists atleast one symmetry line for all repetitions
as per lemmas 1,2, 4, 5, and 6. As all regular polygons have atleast one
symmetric line, divide each neighbour isomorphic groups into two sets unless
they have odd number of vertices. In such case of odd number of vertices, the
symmetry line should pass through one of the vertex in such group making
the odd vertex common to both the divided sets.

2.3.5 Analysis of the result

If L1 and L2 are the two symmetry lines of the image(given as repeated
regular polygons), and H1 and H2 are the corresponding set of vertices
divided by L1 and L2 respectively, then probably H1 \H2 gives the basic
unit of the image. This may not always true. It has been observed in few
repetition. If the image exhibits neighbour isomorphism, then there is �nite
chance in most of the cases that there exists atleast one symmetry line.

The major aspect is to �nd the symmetry lines so that basic units can
be found easily. By constructing the neighbour isomorphic groups gi, it is
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Figure 2.9: Nonregular Objects

O(n) time to the symmetry line, where n is the total number of isomorphic
groups. Then, it is constant time to �nd H1 and H2 and the basic unit also.

Moreover, if there exists L1 and L2 for Pi, the basic unit will have only
i=4 vertices. Suppose there are k symmetry lines, the basic unit will have
only i=2k vertices. This shows that the order of reduction is very high for
matching. Because, no longer the whole image has to be matched, it is
suÆcient if the basic unit is matched. Thus, the method can reduce the
amount of time required to match considerably which solves the paramount
factor in many of the real-time applications.

2.3.6 Conclusion

In the chapter, a novel graph theory based isomorphism, namely, Neighbour
Isomorphism has been introduced. This isomorphism categorizes the vertices
into disjoint groups. From these groups, it is easy to form the symmetry lines
of the image. If more than one symmetry line exists, the intersection of the
vertices partitioned by the symmetry lines forms the basic unit of the image.
Many properties of the isomorphism are stated as lemmas here. The most
important is the invariance despite translation, rotation and scaling(with
equal factors). If the basic unit of image is found, no longer the whole
image has to be matched. But, it is suÆcient to match the basic unit only.
Thus, the method appreciably reduces the amount of matching which is the
major impediment in computer vision problems.
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2.4 New Isomorphism based Matching

2.4.1 Previous Works

In most of the core application problems in Robotics, Satellite Imagery and
Medical Imaging, recognizing the crucial parts or structures in the given
images continues to attract more attention. Thus, the paramount factor in
these computer vision related �elds is matching the objects in the images
[40], [48]. Even though the representational power of the graphs is high, the
graph matching problem is a classic NP-complete problem [48]. The problem
of graph matching in general is solved by various methods, viz. backtracking
[44], [43], branch and bound [46], heuristic approximations [47], state-space
method [53], [52] and isomorphisms [42].

Lot of interests are evinced recently following di�erent approaches, viz.,
Eigendecomposition [55], Graduated Assignment [48], Subgraph Isomor-
phism [38], Error Correcting [39], and Single Value Decomposition [56].
Some of these algorithms which are based on matrix inverse or decomposi-
tion and linear programming methods have problems with large values of n.
Some state-space based algorithms and branch and bound algorithms are of
exponential time worst-case complexity. Few error correcting and error tol-
erant methods concentrated on noise in the image instead of the complexity
of the matching algorithm primarily.

The classical algorithms for graph matching compute an incremental
vertex-to-vertex mapping consisting of a backtrack tree search, perhaps with
forward checking [45]. The complexity of such methods is NP. Here, the
Neighbour Isomorphism (NI) is used which eÆciently matches two graphs
in O(n4) where n is the number of vertices in both the graphs which can be
weighted and attributed. Using the NI (heuristics), the vertices of the graphs
are grouped mutually exclusively. Instead of matching all the vertices, only
the relevant NI vertices alone are matched paving way for ample eÆciency by
reducing the number of matching operations. The results are also compared
with the standard A� algorithm for exhaustive enumeration approach to
portray vividly the reduction in the execution time.

2.4.2 Graph Matching and Graph Isomorphism

Graph Matching

A weighted attributed graph G is a set of vertices V which are attributed
and edges E which are weighted with nonnegative real value. It may be
recalled vertices can also be weighted and edges can have attributes. Given
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two weighted Graphs, G1 and G2, matching is to �nd a match vector M
such that,

�ci;Mi
is minimal 8 i ranging from 1..n.

where cij is the cost involved in matching vi of G1 and vj of G2 and
Mi = vj .

Graph Isomorphism

Given two graphs, G1(V1,E1) and G2(V2,E2), for every edge, eij between the
vertices vi and vj in V1, there exists an isomorphism f such that there exists
also an edge epq in E2 such that f(vi) = vp and f(vj) = vq.

Further Properties of NI (Neighbour Isomorphism)

1. gp and gq are two NI groups in Gi. Then, they are mutually exclusive.
i.e., vi 2 gp, then vi 62 gq and vice versa 8vi 2 V .

2. If gp is a NI group in Gi and gq is a NI group in Gj and i 6= j, gp and gq
are similar i� vi 2 gp and vj 2 gq, N(vi; l; gp) = r and N(vj ; l; gq) = r;8l = 1
, ..., diameter of G of the respective graph.

3. NI is invariant to translation, rotation and scaling(with uniform scal-
ing factors).

Use of the Properties in Graph Matching Algorithm

The �rst property is about the equivalence classes grouped by NI. By group-
ing a vertex uniquely to a class(group), the same vertex need not be con-
sidered again any more. This results in ample reduction in computation.
Moreover, the feature paves way for designing parallel algorithm for the
graph matching.

The second property is the crucial one for graph matching. Since the
vertices in each graph are grouped into equivalence classes, it is obvious that
there exists only one matching between the respective groups(otherwise it
will violate the equivalence class principle). The crux of the reduction in
matching is derived from this property. Instead of matching each vertex in
one graph with every vertex in the other graph, here only the correspond-
ing groups are matched. Then the vertices in the groups are associated
depending upon their edge connectivity.

The third property is very important for image processing. Most of the
times, the images to be compared di�er in orientation and size apart from
translation. As NI is invariant to translation, rotation and scaling (with
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uniform scaling factors), using the method the images depicted as graphs
can be eÆciently matched. The examples chosen for demonstration explain
the salient features vividly. Indeed the linear combination of the operations
preserving NI invariance are permissible. So, given two graphs if one is a
linear combination of the operations of the other, they will be matched by
the algorithm given in the next subsection.

2.4.3 Graph Matching Algorithm using NI

1. For the graphs G1 and G2, individually NI is computed to form iso-
morphic groups (gp; gq).

2. For each gp in G1, following steps are executed for matching with each
gq in G2.

3. If the number of vertices in gp is equal to the number of vertices in gq,
continue the steps else match with another gs in G2 as gq from step 2.

4. Let vi 2 gp and vj 2 gq. If N(vi; l; gp) = r and N(vj ; l; gq) = r;8l = 1
, ..., diameter of G of the respective graph, then gp and gq are similar.
Goto step 2 with new pairs of gp and gq.

5. If all groups are matched, 8gp 2 G1;9gq 2 G2 such that gp and gq
are similar. (If it is onetoone, then the isomorphism itself is found as
well.) else print the available matching.

6. To match individual vi 2 gp, choose any vj 2 gq taking into consider-
ation of the edges to preserve the connectivity.

7. . Repeat Step 6 for each such similar groups gp and gq.

2.4.4 Snapshots of the Algorithm

In this section, the salient features of the NI based graph matching al-
gorithm are explained with the snapshots for the example in Fig.2.10, a
wrench. First individually NI is computed for each graph of (a) wrench-
1, (say G1 the graph on the left) and (b) wrench-2, (G2 the graph on the
right). The isomorphic groups in G1 are g1 with vertices (v0; v6), g2 with
vertices (v1; v2; v3; v4) and g3 with vertex (v5). It is evident that v0 in G1

has two neighbours at a distance 2 and one neighbour at a distance 3. All
the vertices except v5, are having similar neighbours. But all of them are
not having pairwise NI corresponding vertices. For example, for the vertex
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v0, there is a vertex v5 at a distance of 3, which has degree 2. Except the
vertices v6 and v0, no other vertex has a neighbour at the distance of 3
which is similar to v5. Vertex v5 has 2 neighbours at a distance of 3 which
no other vertex has. So, only v0 and v6 are grouped together by NI and v5
separately. In the same vein, all vertices in each group can be explained.
Similarly for G2, the isomorphic groups are ga with vertices (v0; v4), gb with
vertex (v1) and gc with vertices (v2; v3; v5; v6).

At the second step, g1 in G1 is considered for matching. First, ga in
G2 is considered for the match as it has equal number of vertices. At step
three, it is obvious from the graphs that N(v0; l; g1) = N(v4; l; ga);8l = 1,
..., diameter of G1 and G2 respectively(in this case l = 2,3,5 and 6). It
may be noted that gb and gc will not be considered at all as the number of
vertices in these groups di�er from g1. It is also easy to show that instead of
v4 in ga, for v0 in ga also the previous condition is valid. So, g1 in G1 and ga
in G2 are matched together. It must be noted that unlike exhaustive cases
where each and every pair of vertices are compared for matching, here very
less comparisons are made to match which results in reducing the execution
time of the algorithm.

The steps two and three are repeated for g2 and g3 matching correctly
with gc and gb respectively. As all groups are matched, the matching is over.
However, individually any vertex in the matched groups can be matched with
any other vertex in the corresponding matching group and it can be random
done also. For example, the vertex v0 in g1 in G1 can be matched with
either the vertex v0 in ga in G2 or v4 in ga in G2 so as the vertex v6 in g1 in
G1. Similarly matching is done only with the corresponding matched groups
and the overall matching is found. One possible matching with pairs �rst
fromG1 and second fromG2 as follows, (v0,v4),(v1,v5),(v2,v6),(v3,v2),(v4,v3),
(v5,v1) and (v6,v0). The same is elaborately explained in Fig.2.11.

2.4.5 Time Complexity

As the important step in the algorithm is NI computation of both the graphs,
the time complexity of NI plays the major role in the entire algorithm. For
each graph separately the distance between the vertices can be found by any
standard algorithm [57] in O(n3). Now to �nd NI in each graph, for each
vertex (n times) for each length (maximum n) for each other vertex (n times)
for every length (maximum n times), N(vi; l; gp) = r has to be compared.
This results in the time complexity of O(n4). Since rest of the steps take
lesser time complexities, the complexity of the algorithm is O(n4).
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Model Vertices Time by NI (in Sec) Time by A� (in Sec)

Wrench 7 0.01 0.05
Humanface 24 0.05 18.43

DNA 32 0.09 129.18

Table 2.5: Graph Matching with NI

Vertices Edges Time (in Sec)

5 5 0.01
10 9-14 0.01
16 30-32 0.02

Table 2.6: Graph Matching with NI for Random Graphs

2.4.6 Experimental results and Analysis

Here as shown in Fig.2.12, three crucial examples, (a,b). wrenches for in-
dustrial applications, (c,d). DNA molecules (Thymine base) for genetics
and (e,f). Human faces for image understanding are considered for graph
matching. The Vertices can be attributed as O for oxygen, C for Carbon
and so on as in DNA molecule. The edges have always weights speci�ed.
Otherwise, it is assumed to be the same unit for all. Time is given in sec-
onds in Table 2.5 Table 2.6. The algorithm is coded in C and executed on
Sun Ultra 10 Microsystems. The results are tabled in Table 2.5. The exact
matched vertices are presented in Table 2.7 and Table 2.8.

Indeed, the results clearly shows that it is a graph isomorphism in the
given cases even though it ought not to be so all the times. For checking the

Vertex in Wrench (a) Matched Vertex in Wrench (b)

0 4
1 5
2 6
3 2
4 3
5 1
6 0

Table 2.7: Graph Matching with NI for Wrenches
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DNA (c) DNA (d) Humanface(e) Humanface(f)

0 17 0 19
1 14 1 18
2 15 2 0
3 16 3 17
4 13 4 11
5 10 5 12
6 11 6 9
7 12 7 10
8 1 8 13
9 0 9 16
10 7 10 15
11 6 11 14
12 5 12 8
13 8 13 7
14 9 14 6
15 2 15 5
16 3 16 4
17 4 17 3
18 18 18 2
19 22 19 1
20 21 20 22
21 29 21 23
22 28 22 20
23 30 23 21
24 31
25 23
26 24
27 25
28 26
29 27
30 19
31 20

Table 2.8: Matched Vertices of DNA Molecules and Human faces with NI
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Figure 2.10: The given two graphs representing Wrenches

optimality here only the exact matching has the minimum cost and others
are set as very high cost. With the amount of time, getting optimality
with the stringent conditions to ensure isomorphism itself exempli�es the
power of NI and the performance of the matching algorithm. In all these
examples, the algorithm �nds the graph isomorphism itself. However, it is
not guaranteed for every case eventhough the optimal matching guaranteed.
The examples are chosen from di�erent �elds to ascertain that NI is possible
in many of the graphs from these �elds.

Comparing the time required between the NI algorithm and the standard
A� algorithm [52] which matches exhaustively from Table 2.5, the reduction
in the execution time is very impressive. It may be recalled as the number
of vertices increases, the reduction in execution time also increases in these
cases. This proves that as more and more vertices are grouped, the eÆciency
of the algorithm also improves.

For the three classical examples from various �elds, the eÆciency of
matching with linear programming and backtracking methods are also in-
vestigated. For the �rst example with 7 vertices alone, it is possible to
compare as other methods demand either enormous memory space or expo-
nential computing time. For the �rst example, linear programming method
took 17.75 seconds and backtracking methods found only sub-optimal solu-
tion also takes 0.05 seconds. There is no iota of doubt that NI outperforms
all these methods.

For the random graphs by varying the number of edges also, the algo-
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Wrenches with matching vertices
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Figure 2.12: Examples for Graph Matching using Neighbour Isomorphism
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rithm performs well as portrayed in Table 2.6. Time given in seconds in
Table 2.6 are the mean time for such random graphs. Here, the graphs may
exhibit NI or not. Despite the absence of NI, the algorithm matches the
graphs correctly within the reasonable time. This asserts that the overhead
involved in NI grouping is negligible compared to the total execution time.

2.4.7 Future Works

The order of the algorithm can be reduced to O(n2m), where m is the num-
ber of edges with suitable modi�cation in the algorithm. Currently, the
algorithm �nds similar to graph isomorphism rather as graph matching,
matching both ways. Incorporating subgraph isomorphism requires consid-
erable modi�cation in the algorithm. As the algorithm is inherently parallel,
developing a parallel algorithm may not be tough. The inclusion of error-
correcting and error-tolerant in the algorithm should also be investigated.

2.4.8 Conclusion

A novel method using Neighbour Isomorphism is introduced which eÆciently
matches two graphs in general and in many application speci�c areas. For
recognizing the crucial parts or structures of the objects in such applications
which are represented as graphs, the eÆcient matching of the objects with
the models is inevitable. A graph matching algorithm based on Neighbour
Isomorphism (NI) de�ned in the chapter is presented here. For the chosen
classical examples from various �elds, the algorithm found the optimal graph
matching which in the examples concerned are indeed graph isomorphism
itself. Instead of matching all the vertices, only the relevant NI vertices
alone are matched paving way for ample eÆciency by reducing the number
of matching operations. The performance of the algorithm is demonstrated
with crucial examples and random graphs. The algorithm outperforms many
of the standard algorithms which is also investigated in the chapter. The
order of the algorithm can be reduced and the algorithm can also be executed
in parallel.

2.5 Bharathanatyam Postures - Posture Matching

2.5.1 Bharathanatyam Postures

One of the oldest classical dances in India is Bharathanatyam which has very
well-de�ned movements and postures [58]. Here, combining both Neighbour
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Isomorphism and the improvedA� Algorithm, given a set of bharathanatyam
postures as database, if a particular posture is given as input, the combined
algorithm eÆciently �nds the correct match. In case of a di�erent input that
is not in the database, the algorithm tries to match to the nearest resembling
posture or postures also. It may be noted that the regions corresponding to
the features viz. head, hands, foot and so are given along with the input so
that they can form a graph. Since, the human structure is constant, edges
are not speci�ed as they are obvious. Once the graph corresponding the
input posture is formed as shown in Fig.2.17, from the database of postures
where the respective graphs for each posture is stored, according to A�

Algorithm the optimal matching is found eÆciently.

2.5.2 The Combined Algorithm

The combined algorithm of Neighbour Isomorphism and the improved A�

Algorithm, is depicted in the �gure Fig.2.13. A set of bharathanatyam
postures presented in [58], are chosen to form the database. Some of the
postures are presented in the following �gures, Fig.2.14, Fig.2.15, Fig.2.16
and Fig.2.17. As shown in Fig.2.17, each posture is represented as a graph.
When an unknown graph representing a posture is given, the algorithm tries
to match with optimally closest graph in the set of graphs.

2.5.3 Results and Analysis

The algorithm is implemented on Sun Microsystems Ultra 10. One set of
input is chosen from the database itself to check the veracity of the im-
plementation. For all the cases in the database, the algorithm correctly
identi�ed the posture. The results are summarized in Table 2.9. Yet an-
other set of input postures is tested with the available database so that the
optimal matching posture or postures can be found. For the tested cases
which are not in the database, the algorithm correctly identi�ed the posture
also. The timings are tabulated in Table 2.10. In all the cases, the timings
presented are the averages over repeated trials. From the tables, Tab. 2.9
and Tab.2.10, it is clear that irrespective of whether the input is from the
database or not, the computation time does not vary considerably. Because,
the Neighbour Isomorphism categories the parts (features such as head) in
the same time for similar size graphs, it becomes straight forward for the
A� algorithm to �nd the optimal match eÆciently. This has also proved
that for stick model of Human beings, Neighbour Isomorphism can be used
e�ectively.
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Figure 2.13: The Combined Algorithm for Matching Bharathanatyam Pos-
tures
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Figure 2.14: Bharathanatyam Postures Set 1
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Figure 2.15: Bharathanatyam Postures Set 2
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Figure 2.16: Bharathanatyam Postures Set 3
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Figure 2.17: Bharathanatyam Postures Set 4 with respective Graph Repre-
sentations
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Model Time in Sec Found Correctly?

15-m7 0.14 yes
16-m11 0.12 yes
17-m25 0.14 yes
18-m34 0.13 yes
19-m42 0.12 yes
20-m48 0.12 yes
21-m58 0.13 yes
22-m60 0.13 yes
23-m70 0.12 yes
24-m77 0.12 yes
25-m89 0.12 yes
26-m92 0.13 yes
27-m103 0.11 yes
28-m112 0.12 yes

Table 2.9: Bharathanatyam Posture Matching (input from Database)

Input Graph Time in Sec The Matched Model

1 0.13 16-m11
2 0.14 17-m25
3 0.14 15-m7
4 0.13 20-m48
5 0.12 22-m60
6 0.14 18-m34
7 0.13 19-m42
8 0.14 21-m58
9 0.15 23-m70
10 0.14 27-m103
11 0.15 26-m92
12 0.12 24-m77
13 0.14 28-112
14 0.15 25-m89

Table 2.10: Bharathanatyam Posture Matching (input not from Database)
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Chamfering based Matching

3.1 Basic Concepts

3.1.1 Segmentation with Thresholding

In many of the pattern recognition problems, description of what is in the
image or what are the possible descriptions of the various subsets of the
image (Segments or objects) and their properties is one of the major corner
stone problems. Pattern recognition systems must be capable of singling
out the appropriate image subsets (segmentation). Eventhough there is no
universal method for segmentation, from simple thresholding to colour cues,
from connectivity to distance based approaches, there are many methods for
segmentation.

Thresholding

Specifying a subset of a picture is equivalent to specifying its 'Characteristic
function' i.e., the function whose value is 1 at the points of the subset and 0
elsewhere [59]. To segment an image or single out the subsets of the image,
one way is to obtain the characteristic function of the subset by thresholding
the given image. If f is an image, f

0

is the transformed image by thresholding
such that f

0

(i,j) = 1 if f(i,j)> � (a threshold value) or zero otherwise. It
can be extended in many ways including f

0

(i,j) = 1 if �1 < f(i,j) < �2. By
thresholding, one can get isophote images, smooth the image by eliminating
noises both at the low and high levels, sharpen the image and match using
cross correlation also. However, one of the major problems is to choose
the value for threshold. But the distance based methods help to �nd the
distance/similarity measure between the given two images or image and a

45
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Figure 3.1: (a) Diamond (b) Square Distances

model to be matched.

3.1.2 Distance Functions

A function � is called a distance function, if it is positive de�nite (�(x,y)=0
i� x = y), symmetric (�(x,y)= �(y,x)) and satis�es triangle inequality (�(x,z)
<= �(x,y) + �(y,z), where x,y,z are points with coordinate positions.

The city block distance function is de�ned as �1((i,j),(h,k)) = ji-hj + jj-
kj. Another function �2 is de�ned as the maximum of ji-hj and jj-kj. Fig.3.1
portrays a visualization of these distance functions.

The main point to be remembered which is used in distance transforma-
tion is the following theorem [59].

Let � be a distance function, let (aij) be an n-by-n binary valued image,
let S be the set of (i,j) for which aij = 0, let the sequence of integer-valued

images (a
(k)
ij ) be de�ned by

a
(k)
ij = min�((u;v);(i;j))�1a

(k�1)
uv + a

(0)
ij

for k=1,2, ... , where a
(0)
ij = aij . Then for suÆciently large k (for �1, k

= 2n and for �2, k = n suÆces),

a
(k)
ij = �((i; j); S)8(i; j).

3.2 Distance Transformation

Given the image with model, the features are the most important and they
have to be distinguished from nonfeatures in the image. The features can be
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corners, edges, bright spots or areas of particular texture. There are many
algorithms for �nding edges and corners such as SUSAN [60] �lters. In the
approach, the edges are taken as features. The aim is to have a measure of
the distance from each non-edge (nonfeature) pixel to the nearest edge pixel
(feature) at each non-edge pixel. Obviously, edge pixels get the value zero.
If the true Euclidean distance has to be found, it is not only computationally
intensive, it also demands more memory [61]. So, a good approximation is
needed to get these distances. The operation converting a binary image to
an approximate distance image is called as a distance transform. Once an
image is converted into a binary image with features points 0 and others some
maximum value, any of the distance functions can be used for calculating
the distances.

Based on the theorem cited above in the previous section, the global dis-
tances in the images are approximated by propagating the local distances,
i.e., distances between neighbouring pixels over the image. In the approach
of distance transformation, the local operation of propagating the local dis-
tances is iterated to get the closest global distances. The propagation can be
done sequentially or in parallel. Such a sequential distance transformation
is called chamfering.

It may be recalled a 3 * 3 neighbourhood is used for local distances.
Chamfering 2-3 method has the maximum di�erence (compared to Euclidean
distance) of 13 percent. The city block distance has the maximum di�erence
of 59 percent. Chamfering 3-4 method used in the approach has only 8
percentage of di�erence [61]. It is essential to note that taking e�orts to
compute exact distances (Euclidean) from inexact edges due to noise in real
images is a waste.

3.3 Chamfering 3-4

Given the binary image (feature pixels at zero and others at maximum
value), here it is shown how chamfering 3-4 method can be programmed
both for sequential and parallel implementation.

for(k=1 to some �xed value n) do
f

for(each pair (i,j) ) do in parallel
akij = min(ak�1i�1;j�1 + 4; ak�1i�1;j + 3; ak�1i�1;j+1 + 4; ak�1i;j�1 + 3; ak�1i;j ; ak�1i;j+1 +

3; ak�1i+1;j�1 + 4; ak�1i+1;j + 3; ak�1i+1;j+1 + 4):
g
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Iterations can continue until no changes occur.

The sequential algorithm performs both forward and backward passes
from left to right, but from top to bottom and bottom to top respectively.

Forward step:

for i = 2, ... , row do
for j = 2, ... , columns do
aij = min(ai�1;j�1 + 4; ai�1;j + 3; ai�1;j+1 + 4; ai;j�1 + 3; ai;j):

Backward Step:

for i = row-1, ... , 1 do
for j = columns-1, ..., 1 do
aij = min(ai;j; ai;j+1 + 3; ai+1;j�1 + 4; ai+1;j + 3; ai+1;j+1 + 4):

3.4 Matching using Chamfering

Once the distance transformation is over and the distance image is produced,
the model can be matched. From the model, all the points (pixels) which
are feature points (which form the edges) form a list of coordinate pairs,
each pair being the row and column numbers of the corresponding edge
pixel. The model is superimposed on the image at every possible points. In
each case, using the list of coordinate pairs (translated depending upon the
point of superimposition) the matching measure is calculated. The matching
measure if it is a perfect match must be zero. In the approach, root mean
square average is taken as matching measure.

3.5 Results and Analysis

The matching using Chamfering is implemented both on the Sun Microsys-
tems and on Cray T3E. Obviously, for various examples the algorithm works
perfectly. However in some very diÆcult conditions especially for night shots
and highly cluttered environments notably inside shops, the algorithm failed
to identify the persons correctly. In such cases, Hausdor� method performed
well proving the robustness. Of course, it is not true that the algorithm does
not work in such highly cluttered environments. Atleast in one of the given
examples, the Chamfering perfectly recognized a person (eventhough left
many such incidents which might be due to lack of adequate models). At
the same time, it must be noted that the algorithm takes appreciably less
amount of time compared to the Hausdor� method.
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Figure 3.2: An image in a robotic �eld

For the image sets and models shown here, the computation times are
tabulated. The �gures in Fig.3.2, Fig.3.3, Fig.3.4, Fig.3.5, Fig.3.6 and
Fig.3.7 are taken as input images. The models are depicted in Fig.3.8.
A sample edge image of Fig.3.4 is shown in Fig.3.9 and the corresponding
distance transformed image is presented in Fig.3.10.

As mentioned earlier, the algorithm performed well for both less com-
plex cases and highly cluttered cases as presented in Table 3.1. The parallel
algorithm also performed in the same lines without much improvement as
far as the computation times are considered as tabulated in Table 3.2. The
variation in the computation time depends on the size of the image, the size
of the model and the position in the image where the instance of the model
is present positively. In case of parallel algorithm not much reduction is
visible as the processors have to exchange whenever they �nd an instance
of the model in the image. This will help the other processors to avoid such
areas. However, due to hardware constraints related to interprocessor com-
munications, all processors must be synchronized to communicate among
themselves which involves lot of idle time which is more than the computa-
tion time mostly. So, in these cases, irrespective of the other processors, a
processor will compute in the area speci�ed to it. The parallelization strat-
egy is extensively discussed in the following Chapter. The robustness is lost
in the fast computation and which is why Hausdor� method is chosen for
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Figure 3.3: An image near city center in Rothenburg ob der Tauber

Figure 3.4: An image of students cross the road before the institute
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Figure 3.5: An image of a dangerous crossing over the rails

Figure 3.6: An image of a busy cash counter inside a shopping complex
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Figure 3.7: An image of a night shot near my house

Image Model Posi Accu Found Time

1 1 0,0 100% Yes 0.71
2 2 No 1.49
3 3 390, 200 100% Yes 2.5
4 4 No 2.3
5 5 No 2.6
6 6 No 2.3

Table 3.1: Image Matching with Chamfering for Human being Recognition

Image Model Posi Accu Found 2 pcr Time 4 pcr 8 pcr

1 1 0,0 100% Yes 0.43 0.36 0.37
2 2 No 1.51 1.26 1.22
3 3 390, 200 100% yes 2.67 2.31 2.14
4 4 No 2.62 2.2 2.09
5 5 No 2.94 2.31 2.09
6 6 No 2.74 2.20 2.08

Table 3.2: Parallel Time of Chamfering for Human Being Recognition
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Figure 3.8: Some of the Models with Corners
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Figure 3.9: The edge image of Fig.3.4

Figure 3.10: The Distance transformed image of Fig.3.9



3.5. RESULTS AND ANALYSIS 55

further analysis in depth.
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Chapter 4

Hausdor� Method for
Matching

4.1 De�nition of Hausdor� Method

The Hausdor� distance [12] is de�ned as follows:

Let the two given �nite point sets be A = a1; a2; :::; an and B =
b1; b2; :::; bm.

Hausdor� Distance H(A,B) = max(h(A,B),h(B,A)) where
h(A;B) = maxa2Aminb2BDN(a� b)
where DN is a distance norm (the distance between the two

points a and b).

In Fig.4.1, sets of points are pictorially depicted to understand better.
In Hausdor� method, each point (denoted by circles) in the point set A (left
side stick �gure) ranks each point (denoted by hexagon) in the point set B.
That is each point in A tries to �nd which is the closest point in B and the
distance is DN(ai � bj). The maximum distance among such distances for
each point in A is h(A,B). In the Fig.4.1, a possible nearest points based on
some distance method is shown. This is as if one is superimposed on other
and nearest points are found.

It may be recalled h(A,B) need not be necessarily equal to h(B,A). A
simple example to check the veracity is with set A = f(0; 0); (0; 4)g and set
B = f(3; 0)g. Let DN be the Euclidean norm. Then, DN((0,0),(3,0)) = 3,
DN((0,4),(3,0)) = 5. Hence, h(A,B) = 5. Since B has only one point, there is
no need to �rst �nd the minimum unlike in the following case to �nd h(B,A).
DN((3,0),(0,0)) = 3. DN((3,0),(0,4)) = 5. The minimum of both is 3. Since

57
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Figure 4.1: Two sets of points to be matched

there is only one point in B unlike the previous case, there is no need to �nd
the maximum. Thus, h(B,A) = 3 which is not equal to h(A,B). However,
H(A,B) is symmetric, i.e., Hausdor� distance is symmetric eventhough the
directed Hausdor� distance need not be symmetric.

Starting from locating the objects using Hausdor� distance [62], Haus-
dor� distance has been applied for active tracking [63], tracking real scenes
[64], visual target detection [65] and video sequence matching [66]. Modi-
�ed measures of Hausdor� distances are used in plenty of applications, image
matching [67], [68], [69], [70], model-based object recognition [71] and object
matching [72]. In 3D segment matching [73], page similarities [74], human
face recognition [75],[76] and occlusion contour detection [77], Hausdor� dis-
tance is applied.

4.1.1 Image Matching

Here, images which have to be analyzed are matched with the models which
depict the pattern to be recognized, in the present case human beings. Using
the general corner detecting algorithm (here SUSAN �lter is used [60]), the
corners of the images are found which serve as the point set B. Similarly,
all the model images are �ltered with the same SUSAN �lter to �nd the
corners and are stored as point set A. For the application, it is suÆcient
to �nd h(A,B). The main Hausdor� distance H(A,B) being a metric has to
satisfy the symmetry property and that is why it is de�ned as maximum
of the directed h(A,B) and h(B,A). The model is placed over all possible
positions on the image and for each such position, h(A,B) is computed which
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is computationally intensive. The model is found to be present in the image
if h(model,image) is less than some prede�ned threshold. Against various
models, the image is matched using the method.

4.1.2 Salient Features of Hausdor� Method

1. The Hausdor� distance between the two point sets H(A,B) is invariant
to translation or rotation provided both A and B are translated or
rotated with same measures.

2. The Hausdor� distance between the two point sets H(A,B) is scaled
with the uniform scaling factor on all directions in case of Euclidean
distance. If either the scaling factor is di�erent or some nonlinear
distance function is used, this scaling of H(A,B) need not to be true.

3. If a model is present in the image, h(model, image) (NOT
H(model,image)) is una�ected by the presence of noise in image.

4. If a model is present in the image exactly, h(model, image) (NOT
H(model,image)) is zero which is also same as the chamfering distance
if feature points wise model is present in the image.

5. The Hausdor� method can handle occlusions e�ectively.

4.2 The Conventional Hausdor� Measures

Apart from varying the distance function used in Hausdor� method, various
modi�cations are made. In [12] the proposed partial HD (PHD) measure is
de�ned as directed distance of Kth rank,

hK(A;B) = Kth
a 2 AdB(a)

where dB(a) represents the minimum distance value at a point a to the
point set B and Kth

a 2 A denotes the Kth ranked value of dB(a). This
method need a parameter f = K=NA which has good matching when f =
0.6.

While comparing two binary images in [78] another directed distance
CHD is de�ned as

hP;Q(A;B) = P th
a 2 AQth

b 2 Bka� bk

where P th
a 2 A denotes the P th ranked value of Qth

b 2 Bka � bk, with
Qth
b 2 Bka � bk representing Qth ranked value of the Euclidean distance.

Some parameters p and q need to be �xed to get good matching.
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To compare the synthetic images contaminated by the four types on
noise [72] a directed distance MHD is de�ned as

hMHD(A;B) =
1
NA

P
a2A dB(a):

In order to eliminate outliers by replacing the Euclidean distance by the
cost function, another directed distance dM (A;B) is de�ned as follows,

hM (A;B) = 1
NA

P
a2A �(dB(a))

where the cost function � is convex and symmetric and has a unique
minimum at zero. Mostly � = jxj, if jxj � � or � = � if jxj > �: One more
HD measure based on hM (A;B) by taking the averages of the ith distance
values is also presented in [78].

There are number of ways by which the Hausdor� distance calcula-
tions can be eÆcient. Principally calculating the relative distances requires
more time. Lookup method storing the distance between the integer points
1..N,1..N is one such method. Using Distance transformations viz. chamfer-
ing also the distances can be computed. This can be also parallelized to get
the results in lesser time. A proper scheduling of the parallel program onto
parallel processors will further improvise to get the solution in lesser time.

4.3 EÆcient Implementation of Hausdor� Method

4.3.1 EÆcient Computation of Distances

Fundamentally, the distance function itself can be chosen such that the
computation time is lesser. For e.g., city block distance may require lesser
time than Euclidean distance as they involve �nding square roots. At the
same time for both cases, the distances can be computed once and stored in a
big array and later only look up is involved and not the actual computation.

Always the distance transformations such as chamfering 3-4 can be used
to �nd the asymptotically closer values instead of the direct calculations.
This being two phase method, it is very eÆcient and unlike the look up
methods, it requires neither precomputing the distances nor big array to
store the distance for look up operation later.

In general, all these methods can be parallelized. Indeed further schedul-
ing of the parallel program can still produce results in lesser time provided
such MIMD systems are available for access.

From the resultant images Fig.4.2, Fig.4.3, Fig.4.4, Fig.4.5, Fig.4.6 and
Fig.4.7, it is clear that the Hausdor� method is very robust compared to the
chamfering method. However the computation time is more in the direct
method i.e., without using distance transformation. The last column is for
the same with the distance transformation as presented in Table 4.1. There
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Image Model Position No DT Time With DT time

1 1 0,0 0.71 2.81
2 2 160,350 13.38 3.51
3 3 390, 200 24.08 4.31
4 4 127,235 31.51 4.3
5 5 330,200 8.7 4.15
6 6 240,120 2.3 4.14

Table 4.1: Sequential Times of Hausdor� with and without Distance Trans-
form

Figure 4.2: The Recognized Human being in the robotic �eld
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Figure 4.3: The Recognized Human being near city center in Rothenburg
ob der Tauber

Figure 4.4: The Recognized Human being on the road before the institute
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Figure 4.5: The Recognized Human being in the dangerous crossing over
the rails

is a slight occasional change of position by a pixel which is also accepted as
100 % accuracy as one pixel deviation does not matter much. But in the
case of lookup method, it is very strange to note that computation times
are 0.94, 16.65, 25.62, 16.97, 8,93 and 23.65 respectively. The main reason
for such a huge computation times is due to reading a very large lookup
array of size 1024 times of 1024. Referring each item also takes considerable
time. It must be noted because of this the parallel algorithm with lookup
method is not at all eÆcient as the �le reading (I/O time) o�sets the parallel
computation time.
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Figure 4.6: The Recognized Human being in the busy cash counter inside a
shopping complex

Figure 4.7: The Recognized Human being in the night shot near my house
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Image Model Position Accuracy C1 Time C2 Time C3 Time

1 0 50,2 100% 0.13 0.13 0.08
3 3 75,2 100% 0.14 0.17 0.14
10 20 205,60 100% 8.12 2.40 2.24
12 24 205,205 100% 9.10 7.05 7.08
15 31 160,160 100% 19.24 19.16 17.91
21 34 80,80 100% 2.62 1.94 1.99
23 52 240,110 100% 3.42 2.93 2.87
28 56 271,80 100% 6.56 6.41 6.18
34 45 365,195 100% 23.25 15.39 15.01
38 62 325,210 100% 26.52 15.59 15.43

Table 4.2: Sequential Times of Hausdor� Method for 1-1 exact position

4.4 Various Algorithmic Investigations on Haus-
dor� Method

As the Hausdor� method is very robust in recognizing human beings in
cluttered scenes, the ability of the algorithm is investigated with di�erent
aspects in mind. First of all, one to one, one to many, many to one and
many to many (Images Vs Models) variations are experimented with dif-
ferent sets (See Appendix D for image and model indices). The eÆciency
of the algorithms can be improved if the number of persons in the image
is known or atleast the maximum number can be speci�ed. Moreover, in-
stead of exact locations, if the approximate locations are suÆcient how the
algorithms perform are also investigated. Finally what is the amount of
false positives when the images do not have the respective models is also
discussed in detail. The unit of time is seconds always.

4.4.1 Image Matching 1-1

In the category of matching one image with one model, four cases are inves-
tigated. Firstly, to see whether atleast one person (C1) is there in the image
is implemented. Secondly, if the number of persons is known (C2) how ef-
�cient is the algorithm is tested. Thirdly, if exact position of the person is
not a paramount factor but a detection of a person (C3) in the image, the
impact of this aspect is analyzed comparing the eÆciency. The results are
tabulated in Table 4.2. Finally if the image does not have the model (C4),
how the algorithm functions is also presented in Table 4.3.
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Image Model C4 Time

0 0 0.57
4 1 0.52
17 20 19.95
20 33 0.63
16 15 16.32
21 40 1.85
25 53 2.73
41 55 0.01
33 43 18.06
37 47 19.46

Table 4.3: Sequential Times of Hausdor� Method for 1-1 No Match Cases

Model No of Images C1 Time C2 Time C3 Time C4 time

1 2 0.69 0.65 0.68 9.55
1 4 0.95 0.92 0.75 33.61
1 8 78.98 78.40 80.44 108.75
16 2 15.97 15.92 15.63 7.21
16 4 35.05 35.10 34.42 29.54
16 8 66.74 73.80 67.56 83.09
50 2 2.98 2.97 2.87 0.11
50 4 3.68 3.62 4.06 0.42
47 8 10.75 12.06 10.66 25.43

Table 4.4: Sequential Times of Hausdor� Method for 1-n exact position

4.4.2 Image Matching 1-n

In this case, whether a model is present in the given set of images is analyzed
with the same strategies as discussed in the previous subsection. Here, the
number of images are doubled from 2 to 4 and then to 8 to analyze the
performance as shown in Table 4.4.

4.4.3 Image Matching n-1

Given an image and a set of models, all the previous strategies are analyzed.
The models are increased from 2 to 4 and then to 8. In Table 4.5, the results
are presented.



4.4. ALGORITHMIC INVESTIGATIONSONHAUSDORFF METHOD67

Image No of Models C1 Time C2 Time C3 Time C4 time

2 2 0.60 0.63 1.08 1.07
2 4 0.63 0.97 0.86 1.41
2 8 0.60 1.05 1.37 2.61
9 2 13.65 14.41 15.35 41.64
9 4 13.70 20.45 31.65 81.08
9 8 43.65 20.48 34.26 98.50
28 2 17.24 18.29 19.03 6.86
28 4 17.07 27.00 30.71 15.42
28 8 17.65 35.04 49.00 27.21

Table 4.5: Sequential Times of Hausdor� Method for n-1 exact position

No.Images No.Models A1 Time A2 Time A3 Time A4 time

8 8 451.72 431.33 408.30 405.19
8 8 498.24 460.06 453.45 449.83

Table 4.6: Sequential Times of Hausdor� Method for n-n

4.4.4 Image Matching n-n

Given a set of images and models, the analysis is made for �nding the exact
positions if the number of persons are known (�rst case - A1), the approxi-
mate positions of the persons if the maximum number of persons are known
(second case - A2), all persons without the knowledge about the number of
persons with exact positions (third case - A3) and with approximate posi-
tions (fourth case - A4) as shown in Table 4.6.

4.4.5 Critical Investigation of Hausdor� Distance

The experiments are conducted to �nd how much similar �gures among
themselves vary as far as Hausdor� distance is concerned and how much
they di�er with di�erent environmental brightness. The investigation is
also carried out to �nd how much the �gures of di�erent sizes vary as far
as Hausdor� distance is concerned. The two sets of �gures with di�erent
postures are presented in Fig.4.8, Fig.4.9, Fig.4.10, Fig.4.11 and Fig.4.12
with l10 (10%more), l20 (20% more), s10 (10%less) and s20(20%less). Here,
Hausdor� distance is set as h(A,B) and not H(A,B) which is the maximum
of h(A,B) and h(B,A). In Fig.4.13, despite several hands, the matching is
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Posture 1P1 1P2 1P3 1P4 1P5 1P6 1P7 1P8

1P1 0 85 104 246 278 285 167 247
1P2 267 0 112 183 233 222 130 184
1P3 277 116 0 187 319 258 233 144
1P4 280 114 197 0 296 258 219 193
1P5 281 91 62 78 0 82 84 71
1P6 280 71 68 65 76 0 86 61
1P7 270 123 84 147 168 186 0 143
1P8 269 299 282 270 286 296 226 0

Table 4.7: Hausdor� Distance h(A,B) for Set1

Posture 3P1 3P2 3P3 3P4 3P5 3P6 3P7 3P8

3P1 0 99 101 104 186 202 177 168
3P2 238 0 216 277 216 218 211 205
3P3 299 177 0 267 324 302 171 147
3P4 241 260 260 0 422 376 298 334
3P5 156 106 108 142 0 221 121 92
3P6 163 123 145 162 213 0 119 100
3P7 222 182 210 205 247 198 0 125
3P8 230 241 242 241 243 260 183 0

Table 4.8: Hausdor� Distance h(A,B) for Set2

found because some combination of two hands matched with atleast one
model.

Important Conclusions about Hausdor� Distance

From the tables, Table 4.7, Table 4.8, Table 4.9 and Table 4.10, the following
important conclusions are obtained.

� h(A,B) = h(B,A) mostly if A = B.

� h(A;B) 6= h(B;A) mostly if A 6= B.

� Hausdor� distance h(model,image) is not a�ected by noise in image.

� Hausdor� distance h(image,model) may be a�ected by noise in image.
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Figure 4.8: Di�erent Postures 1p1-1p4
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Figure 4.9: Di�erent Postures 1p5-1p8
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Figure 4.10: Di�erent Postures 3p1-3p4
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Figure 4.11: Di�erent Postures 3p5-3p8
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Posture (A) Posture (B) h(A,B) h(B,A) Time in Sec

1P1 3P1 335 378 0.06
1P2 3P2 230 175 0.08
1P3 3P3 249 144 0.05
1P4 3P4 175 155 0.12
1P5 3P5 174 162 0.03
1P6 3P6 165 179 0.03
1P7 3P7 190 199 0.07
1P8 3P8 215 196 0.08

Table 4.9: Hausdor� Distance h(A,B) for similar ones in Set1 and Set2

Posture 3P2 s10 s20 l10 l20

3P2 0 107 221 90 124
s10 186 0 159 119 140
s20 133 87 0 149 176
l10 177 198 278 0 116
l20 236 284 355 170 0

Table 4.10: Hausdor� Distance h(A,B) for Di�erent Sizes
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Figure 4.12: Di�erent Postures of Di�erent Sizes
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Figure 4.13: Avathar Manifestations
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� Even for slight changes, h(A,B) varies.

� For di�erent sizes of the same image, H(image,di�erentsize-image) are
not necessarily to be proportional.

� As the environmental light intensity a�ects the image, feature extrac-
tion is a�ected, resulting in di�erent Hausdor� distance due to pres-
ence or absence of some corners.

4.4.6 Parallel Algorithm for Image Matching

Parallelization

For this particular problem, there can be at least three methods to paral-
lelize. One way is to take each image by a processor and match with all
models. The other way is to take one by one all images by all processors
and divide the set of models equally among the processors. The third way is
to divide each time one image by the number of processors and match that
portion of image with all models. In the last model, overlapping is essential
to get the proper solution. The second model is preferable in the situation
while tracking a person is the major factor. The �rst and second methods
are implemented here. A good insight to various strategies of parallelization
can be found in [79], [80] and [81].

Outline of Parallel Program for First Method

Let r be the number of images, q be the number of models and p be the
number of processors.

MPI Comm rank(MPI COMM WORLD,&i);
MPI Comm size(MPI COMM WORLD,&p);
each processor handles one image, image = i in parallel do
f fscanf(...);
for each model k = 1 .. q do
f fscanf(...); /*each processor i reads all models k one after the other */
h = Hausdor� distance of the image i matched with model k for all positions.
whenever the h(k,i) < threshold, the position is noti�ed.
/* if required the best matching model is also found depending upon
the minimum threshold. */

g
g
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Image Model Posi Accu Found 2 pcr Time 4 pcr 8 pcr

1 1 0,0 100% Yes 0.28 0.27 0.27
2 2 160,350 100% Yes 2.68 1.48 1.07
3 3 390, 200 100% yes 5.20 2.94 2.07
4 4 127,235 100% Yes 5.6 2.97 2.08
5 5 330,200 100% Yes 2.68 1.8 1.48
6 6 240,120 100% Yes 13.17 6.68 3.85

Table 4.11: Parallel Time of Hausdor� without Distance Transform

Image Model Posi Accu Found 2 pcr Time 4 pcr 8 pcr

1 1 0,0 100% Yes 0.51 0.52 0.53
2 2 160,350 100% Yes 1.52 1.42 1.39
3 3 390, 200 100% yes 2.57 2.36 2.26
4 4 127,235 100% Yes 2.64 2.4 2.29
5 5 330,200 100% Yes 2.4 2.26 2.2
6 6 240,120 100% Yes 2.47 2.29 2.23

Table 4.12: Parallel Time of Hausdor� with Distance Transform

Results and Analysis for First Method

As no communication is required unlike in the second method, the results
are highly appreciable as tabulated here in Table 4.11 and Table 4.12. The
unit of time is seconds. For the comparison purpose the same image and
model sets are taken.

Outline of Parallel Program for Second Method

Let r be the number of images, q be the number of models and p be the
number of processors.

MPI Comm rank(MPI COMM WORLD,&j);
MPI Comm size(MPI COMM WORLD,&p);
for each image i=1..r do
f MPI File open(...,MPI COMM WORLD,...);
MPI File read(...); /*all processors read i

th image */
MPI File close(...);
for each model k = j, j+p, j+2*p, .. q do
f MPI File open(...,MPI COMM SELF,...);
MPI File read(...); /*each processor j reads only the corresponding model k */
MPI File close(...);
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Figure 4.14: A sample Image Figure 4.15: A sample Model

System Processors Total time

Cray T3E 1 273.7
Cray T3E 2 198.5
Cray T3E 4 100.5
Sparc 10 1 374.8

Table 4.13: Image Matching Parallelization

h = Hausdor� distance of the image i matched with model k for all positions.
h partial min = min ( h, h partial min);
whenever the h(k,i) < threshold, the position is noti�ed.
/* if required the best matching model is also found depending upon
the minimum threshold. */

g
MPI Allreduce(h partial min,&h min,1,MPI FLOAT,MPI MIN,MPI COMM WORLD );

g

4.4.7 Results and Analysis

As the focus is more on parallelization, here 4 sample images (one is shown
in Fig.4.14) and 4 sample models are considered (one is shown in Fig.4.15).
Normally in image processing application, number of models are obviously
more. It may be recalled to suit to such real situation the proper strategy for
parallelization is chosen for implementation. The single processor case along
with Sparc Ultra 10 Sun Microsystems is also presented. The algorithm is
tested with 2 and 4 processors to suit to the sample application and results
are tabulated in Table 4.13 with the total time in seconds for 4 images.
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In all the images, the accurate positions (to one pixel resolution) of the
human beings have been found. The best model (or models) for each image
has been found correctly without fail. From the overall timing (given in
seconds), it is evident that parallelization produced good results without
any iota of doubt. This also paves way for improving the results with more
processor for increased number of model to suit to real application.

Computation and Communication Complexities

As the best model among the models suited to image is required in par-
ticular cases, the communication is required among the processors. As the
method is implemented, as mentioned above the communication is essential
to compute the minimum and to keep the minimum to compare across the
iterations. Here, the communication is kept at the minimum as compared to
the computation. The communication complexity per image is O(sy) where
y is the cost involved in �nding the minimum and broadcasting the value
among the processors and s = q=p.

Let the size of an image be v and the size of a model be u. Totally for each
image, s communications are required to �nd and broadcast the minimum
for h(model,image) among the models. The computation per processor per
image is svu. So, the complexity is O(suv) where the serial complexity is
O(quv). For r images, both these complexities are multiplied by r. It may
be noted, in the method of parallelization only the given complexities are
true as the other methods vary substantially.

4.4.8 General Scheduling Aspects for Optimal Solutions in
Computer Vision

Apart from computing the distances eÆciently, the computation time can be
further reduced in case of multiprocessing systems of type MIMD(Multiple
Instruction Multiple Data). Here, how the general scheduling can improve
the reduction in computation time for computer vision related tasks is dis-
cussed. The scheduling of tasks onto processors is an important step in
exploiting the capabilities of a multiprocessor system. The multiprocessor
scheduling problem can be stated as �nding a schedule for a task graph (that
represents a parallel program) to be executed on a multiprocessor system
so that the completion (or execution) time of the graph (program) can be
minimized. The motivation for the objective of minimal completion time is
that, in many cases, a poor schedule results in excessive interprocessor com-
munication and ineÆcient processor utilization. Since the problem is known
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to be NP-hard in the strong sense [116], in all but a few restricted cases [117]
[118], the main research e�orts in the area are focused on heuristic methods
for obtaining near-optimal solutions [119] [120] [121] [122] [123] [124] [125]
in a reasonable amount of computation time.

The multiprocessor scheduling problem at compile-time is considered
here. Compile-time scheduling has two bene�ts: (i) it is easier to realize
and (ii) it eliminates run-time overheads. A new A� based algorithm for
solving the problem is presented here. To alleviate the impediments of large
space and time requirements of the algorithm, three new e�ective techniques,
namely, processor isomorphism, task isomorphism and node isomorphism
have been developed and the concepts of upper bound and lower bound
theory are used e�ectively.

The algorithm developed here, unlike the heuristic approaches, always
produces optimal schedules (or solutions). There are two main reasons for
�nding optimal solutions. Firstly, when a particular problem, say a com-
puter vision task, has to be repeated virtually several times, it is more eÆ-
cient if an optimal solution is used as one can a�ord to �nd time to get the
optimal solution rather than wasting more time in each execution. Secondly,
an optimal solution is a yardstick for the non-optimal solutions for measur-
ing their closeness to the optimality. In case one may have to choose among
the available non-optimal solutions based on their relative closeness, and the
computational time and the memory space required to arrive at the corre-
sponding non-optimal solution, the yardstick provides a better perspective
of the choice of non-optimal solutions. Moreover, the decision of improving
the heuristics can be better evaluated only when an optimal solution is at
hand.

The main di�erence between general Data Flow Graphs (DFGs) and the
signal processing DFGs is the associated delay elements (registers) in the di-
rected edges [82]. An edge without a register represents precedence between
tasks within iteration. If an edge has n registers, it describes the precedence
between tasks of di�erent (i,n+i) iterations which di�er by n iterations. A
simple example of a nonterminating, iterative, data-ow program with feed-
back is given in program 1. The DFG in Fig.4.16 corresponds to program 1.
It may be recalled in image matching using di�erent strategies each iterating
independently, to avoid those areas where a model has been already matched
by one strategy, there need to be some communication during the iterations.
It must be also understood that since �nding the match with some model
occurs at runtime, it can not be directly modelled by the method. However,
iterations can wait after speci�ed number of iterations and then the commu-
nications can be made which is very easy to model using the delay register
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Figure 4.16: Data-Flow Graph with Linearly Connected Multiprocessor

approach. In the appendix the general case is simulated as the accessibility
to such machine is restricted.

A complete discussion with appropriate examples for explaining the data-
ow model is available in [82].

Program 1: Initial conditions : db(-1),db(0)

for (i=1 to infinity)
ab(i) = fab [x(i)]
bc(i) = fbc [ab(i) db(i-2)]
cd(i) = fcd [bc(i)]
db(i) = fdb [cd(i)]
y(i) = fy [cd(i)]
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Issue Hausdor� Chamfering

Features in Image Points/Corners Edges
Features in Model Points/Corners Points or Corners
Distance Measure Maximum di�erence Root mean square
Distance (D) Euclidean or others Distance function

Distance Calculation Direct or DT or Look up DT

Table 4.14: Comparison between Hausdor� and Chamfering

4.5 Comparison of Hausdor� and Chamfering
Methods

To start with the principal di�erence as given in Table 4.14, chamfering
methods use edges as features and Hausdor� method uses corners. The
distance measure in case of chamfering is the square root of the average of
the sum of the squared di�erence of the distances between the model and the
image at a particular position, where it is the maximum of the di�erences
of the distances in case of Hausdor� method. Distance transformation is
essential for Chamfering. Lookup or distance transformation can be used
for Hausdor� method.



Chapter 5

Human Being Recognition

As mentioned earlier, recognizing a human being has become a most inter-
esting �eld not only due to the applications, but also for the challenging
complexity. From Surveillance to Driver assistance in cars, recognizing a
human being is almost a compelling demand. At �rst, the problems with
single human being are discussed and then the problems with group of hu-
man beings are discussed.

5.1 Fundamental Complexities involved in HBR

5.1.1 Description of Human Being

In any recognition system, the object (model) to be recognized in an envi-
ronment (image) must be described or de�ned. In the present case, human
being must be de�ned or described in the best sense. A head, a torso, two
hands and two legs form a human being without going into internal details
such as nose and eyes as in the case of face recognition. It may be recalled the
biometric measures based on iris pattern or �nger print are required when a
particular person has to be identi�ed. Thus depending upon the need of the
application, the level of details of description varies considerably. For e.g.,
in case of driver assistant system it is suÆcient that a pedestrian (human
being) is recognized. However in surveillance mere detection of a human
being in the protected area can ignite further course of actions and more
particulars about the human being may be required later.

83
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5.1.2 Size of the Human Being

In most of the systems, size of the human being is �xed or approximated
to an interval i.e., a human recognition system may not recognize a walking
child due to the size restrictions. Moreover based on the size of the human
being (which is �xed), the systems are able to identify the possible regions
of head or torso or hand or leg. Eventhough recognizing the human being
in such systems is hard, even more when there is no restriction on the
sizes as in the study. However, proper modelling including for a child may
possibly help in recognition. Yet removing the size restriction will force the
system to check all regions in the image incurring more computation time.
Nonetheless, it is worth trying.

5.1.3 Segmenting the Region of Interest(Human Being)

Just a change in the region by background subtraction suÆce some sys-
tems to conclude the presence of human being. Further analyzing only such
regions to precisely recognize the human being is also found in the liter-
ature. Interestingly the colour components still play an important role in
segmenting the regions of interest (Human being). Such a systems will not
work where nonwhite people are present. Transformation such a wavelet or
Fourier can also be used to segment the region of interest (human being).

The background subtraction as such will not work awlessly in outdoor
environments. It is unreasonable to think that only one person alone will
drive a car in road. Systems which overcome small changes due to leaves
waving use a larger area or prede�ned area size to choose only those regions
for further processing (recognizing as human being).

Without background subtractions also recognition can be made at the
cost of computation time. Methods such as Hausdor� can be used to rec-
ognize in such cases. However, there are other problems like occlusion and
self-occlusion as other objects can occlude or due to the viewing angle also
occlusion is possible.

5.1.4 Occlusion

Occlusion is one of major problems in recognition systems as some of the
critical or main features may be occluded resulting in incorrect recognition.
In such situations, there must be a de�nition of minimal features required
to identify a human being such as head alone is suÆcient (for sake of argu-
ments). Then if the person is not looking at the camera, a possible way is
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to look for a circular or elliptical object approximately. This constraints the
system very much due to viewing angle.

Furthermore, due to viewing angle self-occlusion is also possible. If a
person stands erect with hands kept close to torso and legs one behind the
other and if the viewing direction is perpendicular to the facing direction,
possibly head and a leg may be recognizable. It is well known that depending
upon the pose, features can be occluded.

Yet the methods such as Hausdor� provide ample opportunity to �x
some parameters approximately and still recognize despite occlusion. In
such cases, false positives can not be avoided. Interestingly the occlusion
itself can be modelled in Hausdor� method very easily, of course increasing
the number of models many times.

5.1.5 SuÆcient Models

For sure with more models, more instances of the objects can always be
recognized. But the prime question is how many models are suÆcient to
positively recognize every instance of the object. This is likely to be ex-
tremely large considering the degree on freedom movements of various parts
of the human being. Many of systems which attempt to recognize the mo-
tion or action of the human being is highly restricted to the given models or
prede�ned models. While forming a model, obviously the size of the model
comes into play. It is very diÆcult to accept that an adult (human being) is
a scaled version of a child (human being). On the streets, people with dif-
ferent ages can walk together. Moreover, bending phenomenon is observed
with the very elderly people (leave alone the use of sticks).

Con�rmly, one must use di�erent scaling factors or di�erent models for
each scaling factor (in case of oating point what is next probable useful
number). In the �rst case, as it only reduces the number of models, there
is every possibility that di�erent scaling factors must be considered which
in turn will enormously increase the computation time. In the second case,
which model can be preferred over the others becomes crucial as sequentially
trying with each model will take unacceptable amount of time depending
upon the application such as driver assistance. Succinctly matching and
indexing of the models take predominant role. Some of the hand drawn
models of the human beings are shown in Fig.5.1 and Fig.5.2.
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Figure 5.1: Some examples of hand drawn Models of the Human Beings -
Set 1
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Figure 5.2: Some examples of hand drawn Models of the Human Beings -
Set 2
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5.1.6 Threshold Value

Matching is an integral part of complex recognition systems. To recognize
an object (model) in an environment (image), the respective features have to
be matched. This involves a matching measure. Unless it is a perfect match,
there is always some deviation due to occlusion and such other issues. So,
a threshold value is required to decide categorically whether the portion of
the image (region of interest) match with the model (human being).

To set a value for the threshold itself is a problem. If the value is set
to be large, the possibilities of false positives will be more, i.e., the objects
will do not necessarily match, may be matched. If the value is very less,
only it accepts exactly matching instances which are rather infrequent in
real scenarios due to noises. A through discussion on Models, Matching and
Indexing is presented in the following chapter.

5.2 Recognition of Group of Human Beings

On the streets or inside the shops, there are mostly groups of human beings.
Recognizing a group of human beings is more diÆcult than a single human
being. The main aspect is the motions involved which results in occlusion,
diÆculty in identi�cation or in arbitrary movements.

5.2.1 Problem due to Multiple Occurrences

Eventhough the de�nition of the human being as de�ned in the previous
section is acceptable, the new situation is encountered with m legs, n hands,
x heads and so on. It is comparatively diÆcult to �nd the exact number
of persons in the scene or image. The principle reason is occlusion. With
odd number of hands and legs (leave alone those people with one leg or
amputated limbs), considering which combination belongs to one person is
only a matter of probability.

5.2.2 Problem due to Movements

Independently joint movements cause lot of occlusion. When two people
walk together parallel to the focal plane of the camera, there is a �nite chance
of one person occluded entirely depending upon the sizes of the persons.
Similarly when two persons meet and disperse in di�erent directions, to
identify which person moved in which direction is relatively complex. If
sequence of persons move in the same directions with same velocity like
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in military parades and by chance the sampling frequency matches with
respective time interval, possibility of detecting the very motion may be
questionable. Or in an industry, when the parts to be picked or checked
arrive in regular intervals, with the camera above the conveyor belt may
not able to say whether there was a movement of the conveyor belt or not
without special marking or such other identi�cation markers.

5.2.3 Problem in Segmentation

Segmenting a region of interest (human being) based on colour will not work
until unless all possible colours of the human beings are tried as each human
being can be in di�erent colours.

5.3 Results and Analysis

Principally, three major cases are presented for discussion. One sequence
(Sequence 1) with almost plain background Fig.5.3, second sequence (Se-
quence 2) with one human being but in a cluttered environment Fig.5.4 and
third sequence (Sequence 3) Fig.5.5 with more human beings in a cluttered
environment are detailed here. The analysis is focussed on the computation
time and accuracy with all the four methods viz chamfering, Hausdor� direct
method, Hausdor� distance transform method and Hausdor� with lookup
method. The results of parallel versions of the same are also presented. A
prototype to demonstrate the possibility of ontological description is also
included. The resultant �gures are shown in Fig.5.6, Fig.5.7 and Fig.5.8.
The ontological descriptions produced by the program are reproduced here.

5.3.1 Ontological Description for Sequence 1

Person 0 possibly moving right from frames 0 to 1
Person 0 possibly moving right from frames 1 to 2
Person 0 possibly moving right from frames 2 to 3
Person 1 possibly moving left from frames 0 to 1
Person 1 possibly moving left from frames 1 to 2
Person 1 possibly moving left from frames 2 to 3
At frame 0 person 0 is left of person 1
At frame 1 person 0 is left of person 1
At frame 2 person 0 is right of person 1
Person 0 and person 1 crossed between frames 2 1
At frame 3 person 0 is right of person 1
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Figure 5.3: Sequence 1 Frame Number 1,2,3 and 4
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Figure 5.4: Sequence 2 Frame Number 1,2 and 3
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Figure 5.5: Sequence 3 Frame Number 1 and 2
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Figure 5.6: Human beings in Sequence 1 frame Number 1,2,3 and 4
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Figure 5.7: Human beings in Sequence 2 frame Number 1,2 and 3
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Figure 5.8: Human beings in Sequence 3 frame Number 1 and 2
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Set No Chamfering HD direct HD with DT HD with Lookup

Set1 10.37 53.13 40.43 45.17
Set2 10.24 208.18 20.98 186.18
Set3 121.04 14.23 135.20 4.87

Table 5.1: Computation Times of Di�erent Algorithms

Set No Chamfering HD direct HD with DT HD with Lookup

Set1 3.97 3.84 3.93 9.76
Set2 5.2 19.36 4.78 25.99
Set3 3.39 19.37 5.86 30.77

Table 5.2: Parallel Computation Times of Di�erent Algorithms

5.3.2 Ontological Description for Sequence 2

One person at 365 195 in frame 0 is NOT identi�ed
One person at 350 190 in frame 1 is NOT identi�ed
Person 0 possibly is stationary from frames 0 to 1
Person 0 possibly is stationary from frames 1 to 2

5.3.3 Ontological Description for Sequence 3

Person 0 possibly is stationary from frames 0 to 1
Person 1 possibly moving left from frames 0 to 1
At frame 0 person 0 is left of person 1
At frame 1 person 0 is left of person 1

The Table 5.1 shows the computation times involved in sequential case
with di�erent algorithms. It must be recalled that only the Hausdor� direct
method performed well and correctly in all the cases. The reduction in other
algorithms are due to their inability to recognize all the instances. Thus they
resulted in comparably lesser time. In case of parallel implementation, the
same is true as algorithmically there is no di�erence as it is only parallelized.
The undue increase in Lookup method is because of the large �le reading
resulting in heavy I/O which o�sets all the gains due to parallelization as
shown in Table 5.2.
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5.4 Fusion Architecture to recognize Human Be-
ings

5.4.1 Basic Concept

From the experience with Chamfering and Hausdor� methods and their
implementations, it is clear that one algorithm is not suÆcient. Moreover
to handle occlusions and size di�erences, di�erent approaches are required.
So, it is necessary to combine the required methods into one architecture,
which is named as Fusion Architecture.

Hausdor� Method for Occlusion

It is natural that some of the parts might be occluded in the image. So,
trying to apply Hausdor� as such for the model may give di�erent results
depending upon the occluded portions. In some cases, few corners may
be absent or so. In order to handle such occlusions, instead of calculating
distances between the points as in original Hausdor� method, in the new
approach to handle occlusions, one �nds the percentage of points which di�er
from the threshold prede�ned. If the percentage is less than a particular level
(to be �xed or the maximum permissible level of occlusion of the model),
then it is considered that the model is present at the position in the image.

It is very easy to verify that the modi�cation of Hausdor� distance for
occlusion is the same as the original Hausdor� method if the percentage
of points that is more than the threshold is zero. However, such strict
permissible levels of percentage will not match well with occlusion in the
images. Of course, one can verify the implementation of the modi�edmethod
setting the level of percentage as zero to check up with the original Hausdor�
method. The results of a parallel implementation of the method for a sample
image and model are presented in Fig.5.9.

Eventhough the scaling of the parallelism is evident, the idle time due
to synchronous communications shares around 47 percentage of the total
computation time. The less Input-Output time shows the eÆcient use of
parallel Input-Output mechanism implemented on CRAY T3E.

Hausdor� Method for Di�erent Sizes

One of the classical problems in matching is the problem with zooming or
di�erent sizes. Here, scaling is considered to be equal on all dimensions un-
less otherwise stated. For sure, if the scaling is so less that the overall e�ect
is less than the threshold, then it will work correctly. However, if the overall
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Figure 5.9: Parallel Implementation of Hausdor� for Occlusion
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e�ect is more, which is a more interesting case, the modi�cation is done
such that a histogram of distances for some speci�ed levels depending upon
the scaling is constructed. Select the histogram level (distance) which has
maximum number of points. If the percentage of points (maximum number
of points at the highest level in the histogram versus the total number of
points (or corners) in the model) is higher than some prede�ned (say 90
percentage), then the model is matched with the relevant portion of the
image.

The key idea is that if every point in the model is displaced with some
distance depending upon the zooming or scaling, then at the displayed dis-
tance in the histogram, it will be maximum. Since all the points (assuming
that there is no occlusion here) are in that level, the percentage will be 100
percentage which is more than the prede�ned percentage (90 percentage).
In such cases, the modi�cation is same as that of the original Hausdor�
method.

5.4.2 Fusion Architecture

As explained earlier, the required methods are combined together so that
the recognition can be e�ectively done. The entire recognition of human
beings is presented as the Fusion Architecture as in Fig.5.10.

5.4.3 Results and Analysis of Parallel Implementations

For various sets of image sequences, the results are obtained from the paral-
lel implementation of the fusion architecture for recognizing human beings
on CRAY T3E with MPI (Message Passing Interface). Di�erent algorith-
mic approaches such as with 1 image and 1 model category, 1 image with
n models category and �nally m images and n models category are imple-
mented. The sample results are presented in the Fig.5.11 and Fig.5.12. The
sequences of images from Moehringen Tram station are shown in Fig.5.13,
Fig.5.14 and Fig.5.15 with the results in Fig.5.16, Fig.5.17 and Fig.5.18. Fur-
ther results of the sequence of images from Zebra Crossing in Koenigstrasse,
Stuttgart are shown in Fig.5.19, Fig.5.20 and Fig.5.21. Yet another results
of the sequence of images from City Centre, Stuttgart are shown in Fig.5.22,
Fig.5.23, Fig.5.24, Fig.5.25 and Fig.5.26. From Table 5.3 for multiple images
and multiple models, eventhough the reduction is evident, it is not scaled
properly.

As the fusion architecture has ample parallelism to be exploited inher-
ently, the parallel implementations becomes an obvious choice. From the
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Figure 5.10: Fusion Architecture for Recognizing Human beings
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Figure 5.11: Parallel Implementation of Fusion Architecture (a) No Com-
munication (b) With Communication (3) Di�erence for Set 1 (4) Di�erence
for Set 2
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Figure 5.12: Parallel Implementation of Fusion Architecture for 1 Image
with Multiple Models

Number of Processors Time in Sec

4 850
16 500
48 270

Table 5.3: Parallel Implementation of Fusion Architecture for m Images with
Multiple Models
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Figure 5.13: Sequence of Images from Moehringen Tram station - Part1
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Figure 5.14: Sequence of Images from Moehringen Tram station - Part2
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Figure 5.15: Sequence of Images from Moehringen Tram station - Part3
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Figure 5.16: Identi�ed Human beings in Images from Moehringen Tram
station - Part1
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Figure 5.17: Identi�ed Human beings in Images from Moehringen Tram
station - Part2
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Figure 5.18: Identi�ed Human beings in Images from Moehringen Tram
station - Part3
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Figure 5.19: Identi�ed Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 1
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Figure 5.20: Identi�ed Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 2
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Figure 5.21: Identi�ed Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 3
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Figure 5.22: Identi�ed Human beings in Images from City Centre in
Stuttgart - Part 1
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Figure 5.23: Identi�ed Human beings in Images from City Centre in
Stuttgart - Part 2
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Figure 5.24: Identi�ed Human beings in Images from City Centre in
Stuttgart - Part 3
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Figure 5.25: Identi�ed Human beings in Images from City Centre in
Stuttgart - Part 4
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Figure 5.26: Identi�ed Human beings in Images from City Centre in
Stuttgart - Part 5
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results, it is desirable to have communications among the processors. How-
ever, it may be recalled that as the implementation is on CRAY T3E, the
synchronous communications demand all the processors to be synchronized
before the communication can start, lot of idle time is encountered during
the computation. In case to 1 image and 1 model category, it is evident
that the communication improves the parallel computation time. In case
of 1 image with multiple models, for 8 processors, due to communication it
is more than the no-communication case as with communication it is 300
and without communication it is 250. So also with 16 processors, with com-
munication it is 175 and without communications 160. This prohibited the
use of communication method as the number of processors increase with the
number of models and images.

5.4.4 Salient Advantages in Fusion Architecture

� Fusion Architecture handles cases of occlusion and size di�erences.

� Fusion Architecture is inherently parallel.

� Fusion Architecture with communication can reduce the parallel com-
putation time in general.

� Even without communication also, Fusion Architecture performs well
where less communication is expected.

� The combined e�ect in Fusion Architecture results in better recogni-
tion.

� The Fusion Architecture is so general, it can be used for general recog-
nition problems also.

� The concept of combining various algorithms in fusion Architecture
can be used in Arti�cial Intelligence search methods and in optimiza-
tion strategies also.
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5.5 Industrial Applications

One of the applications in the industries is that the robots have to be em-
ployed which need to move around in the presence of human beings. Here,
the human beings are considered as obstacles which are represented as line
segments. As the robot should not collide with the human being, this type
of representation is suÆcient. In some cases the area in which human beings
work are specially demarcated and the robots have to avoid going through
the area. The areas can be modelled as polygons with line segments. An ef-
�cient parallel algorithm to �nd the optimum path between any point in the
industry based scenario to any other point given arbitrarily oriented obsta-
cles is presented here. In an industry based scenario, a servicing mobile robot
has to make decisions to optimize the throughput and minimize the waiting
time by adopting an optimum path between the required points. Given the
obstacles with varied orientations in general, the problem is computation-
ally intensive. The work is based on the closely lower bound algorithm on
intersecting segments using computational geometric approach. An eÆcient
parallel algorithm for the problem with O(n2log(n)) time complexity is pre-
sented here. Two di�erent environments one where it is known a priori and
other case, the robot have to explore are considered. In the third case, a
multi agent system is used for an environment where the robots have to be
employed in a hotel or so where they must go around the speci�c servicing
points.

5.6 Robot Traversal in Known Environments

The interesting problem of optimum path �nding [87], [85] has been solved
through several approaches such as graph methods [89], [86], some enumer-
ation techniques [96], with maps [93], [94], [92] and possibly with re�nement
techniques by active vision also [98], [84]. An optimal and eÆcient path
�nding in partially known environments was formulated in [97]. Recently,
some more methods using computational geometry like Veronoi diagrams
are also investigated. A through analysis of Robot motion planning is given
in [91], [90]. Here, the principle of optimality in graph methods is combined
with eÆcient computational geometric techniques to get an eÆcient parallel
algorithm for the robot path planning.
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5.6.1 The Formulation of the Problem

It is assumed here as in general the enclosed environment is rectangle in
nature. The stationary obstacles are either assumed to be thin linear or
approximated to an enclosing rectangle box. The only moving object is
the mobile robot with the known dimensions. Here, it is assumed that n
processors of CREW (concurrent read and exclusive write - a PRAM model)
model are available. Given is a wheeled robot where the direction of motion
is not impeded like car-like robot mentioned in [87]. The positions of the
obstacles are known a priori and they are stationary. The initial position,
the �nal position and the dimension of the robot (say cylindrical) are also
provided. The aim is to �nd optimally the shortest path between the initial
and �nal positions, if it is reachable. Here it is not only discussed about
�nding the shortest path but also optimally solving the problem using graph
theoretical and computational geometrical methods.

5.6.2 The Parallel Algorithm

1. First sort the n obstacles lexicographically with x and y coordinates
using parallel merge sort.

2. Close all intervals smaller than the mobile robot using simple geometry
of circles, length of tangents, chord cutting lines for each obstacle in
parallel.

3. Create all possible connections with permitted vertices only in parallel
for each obstacle.

4. Given each such line segments from each obstacle, �nd the set of
all cutting lines using the computational geometric method(to be re-
moved).

5. Generate a graph from those line segments without cutting obstacles.

6. If the graph is a multistage graph, apply forward dynamic program-
ming technique to get the shortest path or apply generally all pair
shortest path algorithm in parallel through every vertex to get short-
est path between any pair of vertices.

The Complexities of the steps are tabulated in Table 5.4. The column
2 shows the parallel time complexity of each step as explained before. In
column 1, the entries, 6a and 6b denote when the graph is a multistage graph
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Step No. Parallel Compl. Workdone

1 O(log(n)loglog(n)) O(nlog(n))
2 O(n) O(n2)
3 O(n) O(n2)

4 O(n
0

K log(n
0

)) O(n
02
K log(n

0

))
5 O(N) O(N2)
6a O(N+E)
6b O(N2) O(N3)

Table 5.4: Parallel Complexity of the Algorithm

or general graph as both are solved di�erently. In column 3, the work done
totally by all processors (n processors here) is presented. This is also a close
measure of the serial implementation of the algorithm on a uniprocessor
system [80].

Here, n is the number of obstacles, n
0

is the sum of n and the number of
newly added segments in step 3, K is the number of cuttings at the worst
case O(n2), N is the number of vertices remaining and E is the number of
edges remaining.

5.6.3 The Salient Features of the Algorithm

To begin with after getting the input, the algorithm �rst sorts the obstacles
according to x and y co-ordinates. For the parallel merge sort is used which
demands CREW, i.e., processors will be concurrently reading the data and
at no circumstance, the processors will write on a datum or the data simul-
taneously. This algorithm as cited is given in [80]. Secondly, closing all the
intervals through which the robot can not pass are made. This is done by
drawing a circle of radius same as that of the robot and �nding whether
the end points of the obstacles lie within the circle or any of these obstacles
cut the circle [83]. In both the cases, the gaps are closed. In the former
case, it is easy to join the center of the circle and the corresponding end
point of the obstacle which is inside the circle. However in the latter case,
to which point on the line(obstacle here), the center of the circle should be
connected with, becomes a subtle problem. It is easily resolved to the point
on which the perpendicular line to the obstacle passing through the center
of the circle cuts. Any other point may be creating further problems in
becoming a member of the narrow gap for the robot. Now, all possible con-
nections between every endpoint of an obstacle with every other endpoint of
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the other obstacles are made and with the initial and �nal positions of the
robot. It may be remembered that the endpoints cutting the periphery of
the environment need not be considered. The crucial issue is �nding all the
cutting segments. Here, only when it cuts with an obstacle, then alone it is
considered to be the cutting and not otherwise as the only moving object
is the robot. This is found by the well-known computation geometric algo-
rithm given in [95] with slight modi�cations suiting to the need as explained
earlier. This is close to the lower bound on the algorithm �nding all cutting
segments. Then, the lines which do not cut with obstacles, remain to form
a connectivity graph. This has to be transformed into a visibility graph.
Normally the visibility graph is de�ned to the graph in which the vertices
are the endpoints of the graph which are visible to each other, i.e., the line
joining them does not cut any other edge and the line joining such endpoints
form the edges. Eventhough, theoretically it is true, in practice this is not
so as far as robots are concerned. For example, if A to B is visible and B
to C is visible, does not mean A to C is visible. So, special care is taken to
�nd the transitive visibility which is very crucial to the algorithm. This is
carried out by taking two close points on each of the line segments AB and
BC and joining them to check whether it cuts any obstacle. If so, then it is
not visible. Otherwise, check the degree of the vertex B, if it is more than
three and it is due to an obstacle, then it is obvious that it is not visible.
At once the visibility graph is formed with transitive visibilities, it is very
easy to �nd the shortest path using Dijkstra's algorithm or if the graph is
a multistage graph, then dynamic programming can be used to reduce the
complexity [88].

5.6.4 The Snap Shots of the Algorithm

Consider the example in Fig. 5.27. Here, the following is considered for
the simplicity of explaining the algorithm. Only linear obstacles are taken
into consideration. The robot is considered to be circular in shape with
the known radius and the ability to turn to any direction. The robot has
the facility to �nd obstacles. After getting the input data, the execution
proceeds in the following way.

As the obstacles are denoted by their endpoints, the corresponding xi
and yi points, viz. (2.0,5.0) < (3.0,4.0) and (2.0,3.0) < (2.0, 4.0) are sorted.
As shown in Fig.5.28, the narrow gaps through which the robot can not
pass are closed. They are highlighted with thick lines. The example is so
chosen to explain both the cases of closing as explained earlier. Now, lines
between the robot's initial position and the endpoints of the obstacles are
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drawn including the line between robot's initial position and �nal position as
shown in Fig.5.29. Then all lines cutting atleast one obstacle are removed.
Only the lines which does not cut the obstacles are alone retained as in
Fig.5.30. To di�erentiate the obstacles from the proposed paths for robot,
the proposed paths of robot are shown with dotted lines. Similar lines are
drawn from robot's �nal position to all endpoints of the obstacles. It is again
repeated for the endpoints among the obstacles. The �nal connectivity graph
having no cuts with the obstacles is given Fig.5.31. Now, all obstacles are
removed and only the line segments having transitive visibility are retained.
The visibility graph according to the algorithm is depicted in Fig.5.32. Then
the optimal solution of shortest path is found and presented in Fig.5.33.

5.6.5 The Proof of the Algorithm

Time Complexity

Step 1 is a well-known parallel merge sort algorithm as given in [80] along
with the proof of the complexity. In Step 2, each endpoint is taken and
checked with other endpoints to �nd out whether the gap is suÆciently
wide for the robot to pass through. This can be done in O(n) time as each
check demands only constant time. Hence, the complexity is O(n) and the
workdone is O(n2). It is obvious to conclude that connecting each permitted
vertex with other vertices requires O(n) in parallel with the workdone O(n2).
Step 4 is the algorithm given in [95] but the serial version. The parallelism
exploited here is by separately checking of each vertex individually with the
rest of the obstacles and the robot. So, each time one has to execute the
serial algorithm. Hence, the time complexity and workdone are as given
above. It is simple to arrive at the graphs having only the edges without
cutting obstacles. It can be easily checked to have the time complexity O(N)
in parallel and with n processors, the work done is O(N2). Finally step 6a
or 6b, both are well known dynamic programming algorithm and shortest
path algorithm as in [88] and the parallelism exploited is just a "for loop"
extension, reducing the complexity to O(N2) with workdone of O(N3).

Correctness

All that has to be proved is that if the �nal position is reachable, the algo-
rithm should �nd the shortest path. Let the shortest path be pk. Let the
set of all paths be P = p1, p2, ... , pm. The chance of eliminating that could
happen, seems to be in step 2. Let NP � P, be the set of paths eliminated
in step 2. However, the chance is not possible because even if that is the
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(  S -  Starting   Position,           F - Final Position  )

F

S

Figure 5.27: Robot in given Environment

shortest path, if the robot can not pass through, it is of no use. So, by step
2, no valid path is eliminated. Hence, if at all the shortest path exists, then
pk 2 P �NP . Secondly, one should be assured that all paths are tried for
�nding shortest paths. This is guaranteed in step 3. Let CP � P, be the
set of path hindered by the obstacles. Steps 4 eliminates only CP. Hence,
VP = P-NP-CP has pk if at all �nal point is reachable. Now, the algorithm
should �nd the shortest path given the set of paths VP. Now the graph G,
having the paths VP, is alone generated in step 5. The shortest path pk
is found by algorithm in step 6. Since these being standard algorithms, it
is guaranteed that if the �nal position is reachable, the algorithm �nds the
shortest path, pk. The sole incorporated modi�cation is the transitive vis-
ibility which eliminates only those paths which are not transitively visible.
So, the algorithm �nds correctly the shortest path, pk provided the �nal
position is reachable.
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Figure 5.28: With the narrow gaps closed
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Figure 5.29: Lines between Initial and Final Positions
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Figure 5.30: Lines not crossing Obstacles
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Figure 5.31: The Final Connectivity Graph
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Figure 5.32: The Visibility Graph
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Figure 5.33: The shortest Path between Initial and Final Positions
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5.7 Robot Traversal in Unknown Environments

To yield better products with higher eÆciency in the modern industry sce-
narios, the role of the mobile robots is vital. Most of the times, the mobile
robot has to reach the point of service requirement at the earliest possible
time. Sometimes, due to frequent modi�cation suiting to the current need,
the operation may have to be repeated many times coping with the new
environment taking into care about slight modi�cations. This compels to
�nd an optimal solution which perhaps may be repeatedly used to minimize
spending lot of time in traversing through some path each time rather than
reaching every time through the optimal path minimizing the search e�ort.
Recently, the researchers focussed their attention mainly on the sensor based
navigation [100], [97], [89]. A dynamic graph search algorithm for motion
planning in [99] describes a heuristically short motion in con�guration space.

However, little attention was evinced to the eÆciency of the search along
the path. If a mobile robot has the required information about the environ-
ment a priori, it can precompute the optimal path performing searches in the
computer memory itself using classical graph-search algorithms such as A�

[52], [103]. However, these algorithms are of less use as the mobile robot has
to move physically to �nd the path in an unknown environment. During the
course of �nding the optimal path, given the initial and �nal positions, the
robot has to make some "jumps" which are discontinuous in practical situa-
tions. Then, the robot has to spend more time in traversing the complicated
path physically. The algorithms to minimize the search e�orts are presented
already in [103], [100], [96]. The algorithms [103], [100], make lot of search
e�orts leading to unbounded search in worst case [96]. In [96], the algorithm
uses an A� like behaviour to impose a bound on the depth of the search ef-
fort, and consequently to impose a bound on the search e�ort. It also used
a DFS-like (Depth First Search) behaviour to minimize the search e�ort.
Unlike the complicated hybrid strategy and cost propagation for updating
the global costs of the nodes, three new techniques, namely, Petri expansion,
Markovian cost function, and Retaining shortest path nodes are developed.
These techniques automatically lead to minimizing the search e�orts within
the framework of the A� strategy itself with minor modi�cations.

5.7.1 The Formulation of the Problem with Assumptions

A sensor-based cylinder-shaped mobile robot is considered here with the
assumption that it has mechanism to distinguish the obstacle and locating
the furthest point of visibility in the required directions. The obstacles are
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assumed to be stationary at some unknown locations which can be detected
by the mobile robot using the sensors. The only moving object is the mobile
robot with the known dimensions. Given is a wheeled robot where the
direction of motion is not impeded like car-like robot mentioned in [87].
The initial and �nal positions of the robot are known a priori. Given the
initial and �nal position, the robot has to reach the �nal position by �nding
the optimal path without colliding with the obstacles and with the minimal
search e�orts. The focus is diverted to the minimal search e�orts without
sacri�cing the optimality.

5.7.2 Three New Techniques to Reduce the Search E�orts
in A� Algorithm

The general A� algorithm [52] is used here by the mobile robot to �nd
the optimal path between the given points in an unknown environment.
It may be recalled that the mobile robot standing at a point is required
to go to the point which is selected for expansion by the A� Algorithm.
This discontinuous change of position is described as "jumps". The whole
aim is to minimize the path traversed due to these jumps as the robot
has to physically move. Three new techniques which aim to reduce the
search e�orts during the process of �nding the optimal path always have
been developed namely, Petri Expansions, Markovian Cost Function and
Retaining Shortest Path Nodes. Each technique is explained in the following
subsections how the search e�ort could be minimized in each case.

Petri Expansions

The concept of Petri net is well known and widely discussed [102], [104].
Succinctly explaining that a node is �red provided there is already one token
in each of the incoming arc. This concept is transformed to suit to the
need of the problem. The main idea is as follows, the search e�ort could be
minimized if more information is available to the A� algorithm to choose the
next node to be expanded. There by unnecessary traversals can be easily
eliminated. Now, the question boils down to how to get more information
that too in an unknown environment. In fact, it is possible as most of the
times two points P1 and P2 will be visible and P1 will be expanded and P2

waiting for its own turn for expansion. When the turn comes, the point P2

being visible to the point P1, will have one node with the last visited node
being P1. But, as it is known, P1 has been already expanded. Now, without
wasting time, all points visible from P1 can be included as nodes provided
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they are not visited earlier in the currently expanded node with the point
P2. These additional nodes can provide more information perhaps directly
leading to the optimal path. Thereby, all intermediate nodes which were
supposed to be visited will be not be visited in this case as a better choice
is now available due to additional information.

The implementation is in a form of petri net. Whenever a point is ex-
panded, it is noted as marked. During the expansion of some node, when
the points which are marked are visible from the point of expansion, au-
tomatic petri expansion takes places, i.e., nodes are added with the nodes
having their last point visited being visible to the marked points. This type
of expansion happens as a �ring as whenever the last node visited is already
a marked node. This leads to lot of reduction in the search e�orts as better
node could be chosen for next viable expansion. The notable point is that
there is very less additional e�ort required to do that. In fact, all the mod-
i�cations are incorporated in the A� algorithm itself. Even though, there
seems to be increase in the number of nodes generated, it is in due course
lead to reduction in the total number of nodes generated due to the selection
of better node for expansion apart from minimizing the search e�orts.

Markovian Cost Function

The characteristics of a Markov process include "forgetfulness" property
[105], [101]. This forgetfulness property is used here while coining the cost
function especially g(x). In the general A� algorithm, g(x) denotes the cost
involved in coming to the node x from the initial node i.e., to this point
from the initial position of the mobile robot. However, due to the physical
movement of the mobile robot and because of jumps, the mobile robot may
have to retraverse the path to reach a point. Normally all distances traversed
starting from the initial position till the point will be included as the cost
incurred to reach the point. Because of the complicated paths and jumps,
the measure eventhough it is really the cost incurred to reach this point,
does not give much hopes to go further. Mathematically, the cost function
g(x) eventhough it represents the cost incurred to reach this point, does
not help in getting a better node selected as the path in which it previously
traversed becomes immaterial and only the distance counts. In this juncture,
the concept of Markovian forgetfulness property is introduced to the cost
function.

All that is needed is a good measure of g(x) which will help further to get
the optimal path with minimal search e�orts. So, instead of having g(x) as
the cost involved in getting the mobile robot come to the point now, which
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is usually the case, the deviation is made to introduce the property to forget
the past and determine the future from the point. Mathematically, g(x) need
not to be the total distance traversed to reach the point, but the minimal
distance required to reach the point from the initial point with the available
knowledge known so far. This gives better results and with ample examples
it is shown that it drives the mobile robot exactly in the optimal path as
required. Of course, these may be rare examples. Yet these examples show
concretely that such a possibilities are not remote. By the proper choice of
the next node to be expanded, the searching e�ort will be reduced to the
large extent. It may be also recalled, no extra e�ort is needed as it is the
modi�cation of the g(x) function in the A� algorithm itself.

Retaining Shortest Path Nodes

This is one of the techniques in conjunction with other techniques yields
highly appreciable results as far as the reduction of the search e�ort is con-
cerned. The main idea is that what is the need of having a node with the
last point Pl and another node with the same last point but a di�erent path
to reach Pl and it is shorter also. By expanding a node having the last point
visited as Pl, and the distance from the initial point to Pl is not shorter
compared to another node having the same last point visited as Pl and it
is the shortest as per the knowledge at that moment of time available, is
of no use as the path obtained as the solution can not be the optimal path
because the path from the initial point to Pl is not optimal. This demands
the node to be eliminated at the inception itself. This in turn will not only
bound the explosion of the creation of new nodes, but also will reduce the
search e�orts.

The primary concern is to use this in conjunction with other techniques,
eventhough individually it guarantees the optimal path also. The explosion
of the creation of nodes are minimized as many nodes which are not having
the shortest path to the last node Pl are summarily eliminated. Thereby
any possibility of jumping to these nodes are once far all eliminated from
the search space of the A� algorithm itself. As explained, this can be easily
incorporated into the A� algorithm, by just checking the f(x) value as the
g(x) value is already modi�ed to incorporate the Markovian cost function.

5.7.3 The Improvised A� Algorithm

Before the improvised A� algorithm is presented, few techniques introduced
in [53] which reduces the space requirement and the computational time are
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briefed here as they are used in the algorithm.

Lower Bound

The lower bound is for the solution which is the minimum possible attainable
solution. In the A� algorithm, the algorithm has to continue even after
�nding a solution as it need not necessarily be optimal. Now the question lies
how can it be proved that the given solution is the optimal solution so that
the algorithm can be terminated at once. The only possible way is that when
the given solution is equal to the lower bound solution, obviously there could
not be a better solution. Hence, the algorithm can be terminated. Here,
the lower bound is equal to Euclidean distance between the initial position
and �nal position of the mobile robot. One should be always careful that all
feasible optimal solutions need not necessarily be lower bound solutions. The
main advantage is that if the given problem has the lower bound solution,
the algorithm terminates at once it �nds such solution, thereby reducing
both the memory space required for the further expansions and the time to
compute the same.

Upper Bound

The upper bound is a solution which is the minimum solution already avail-
able. In the A� algorithm, the algorithm has to evaluate the function f(x) at
every node. Supposing that f(x) is greater than upper bound, that node need
not to be expanded further. This will not a�ect the optimality as anyhow
by expanding the node, the solution obtained will be more than that of the
already available solution. However to start with, it is assigned a very high
value for example say the product of the length and breath of the unknown
�eld if it is known. However, once a solution is found �rst, the upper bound
is set to be the solution. Further, whenever new solutions are found, it is
updated provided it is better than the already available upper bound. So,
using upper bound, the number of nodes generated are minimized thereby
reducing the memory space and CPU time.

The Heuristics Function

The A� strategy mainly depends on the e�ectiveness of the heuristic func-
tion. At node x, let there be P

0

1 points already visited. p0 is the initial
position of the mobile robot.Then,

g(x) = � Distance(pi; pi�1), 8pi 2 P
0

1, which are visited in the node x.
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Now, to �nd the f(x) value, h(x) heuristic function is required. To pro-
duce always optimal solution, indeed h�(x) is required. The h�(x) is de�ned
as, h�(x) = Distance(pl; pf ) where pl is the last point visited in the node
x and pf is the �nal position of the mobile robot, and Distance function
calculates the Euclidean distance between the given points. In fact, it is
easy to verify that h�(x) < h(x) to ascertain the optimality.

5.7.4 The Algorithm for Finding the Optimal Path

1. Compute the lower bound solution, LB.

2. Set the upper bound UB as high value.

3. IF (UB! = LB) THEN

4. c = 0 (* node count *).

5. Build the initial node N0 with the initial point as �rst visited and
insert it in the list with f(N0) = LB.

6. REPEAT

7. Select the node Nk with smallest f value.

8. IF (Nk is not a solution) THEN

(a) Generate the successors i.e., trying with all visible farthest points.

(b) Do the following for each such points
Include this point as the last point visited.

(c) FOR each such visiting of points as Ni DO

� Check for the duplication or shorter paths

� IF (already available or not shorter) THEN
Don't add the node
ELSE
Compute f(Ni) = g(Ni) + h(Ni) for this node Ni.
IF ( f(Ni) < UB)
c = c + 1
Insert it in the list
IF (Ni is a solution) THEN
IF ( f(Ni) = LB) THEN
Print the solution and quit.
IF ( f(Ni) < UB) THEN
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Ex OP Dist Nodes AP Dist Per Inc

Eg1 6.0 13
Eg2 7.23 16 10.54 45.68
Eg3 7.47 23
Eg4 9.54 21 19.54 104.86
Eg5 26.64 24
Eg6 17.25 3267 1211.69 6923

Table 5.5: The general A� Algorithm

UB = f(Ni).
ENDIF
ENDIF
ENDIF
Start Petri expansion
ELSE
Prune the node Ni

ENDIF
ENDIF

ENDIF
ELSE
Print the solution and quit

9. UNTIL (Nk is solution OR list is empty). ELSE
Print the solution and quit ENDIF

5.7.5 Analysis of the Result and Future Work

To explain the e�ectiveness of the techniques, the simulations are carried
out with various examples and few important cases are presented here in
Fig.5.34 to explain the salient features of the improvised algorithm. For
the sake of simplicity and explanation, linear obstacles are considered in
the �gures. At First, without these techniques the computations are made
and then with techniques. They are tabulated in Table 5.5 and Table 5.6
respectively.

It is very evident from the examples that improvised algorithm out-
performs well in the complicated situations and performs equally well in
simple situations and never worse than the general algorithm excepting for
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Ex OP Dist Nodes AP Dist Per Inc

Eg1 6.0 22
Eg2 7.23 19 10.54 45.68
Eg3 7.47 27
Eg4 9.54 38 19.54 104.86
Eg5 26.64 27
Eg6 17.25 280 73.21 324.35

Table 5.6: The Improvised A� Algorithm

a marginal increase in the computation time due to the additions few extra
nodes. Here, Ex denotes the example sets, OP Dist denotes the Optimal
Path Distance, Nodes denotes the number of nodes generated as a measure
of computational time and memory space, AP Dist denotes Actual Path Dis-
tance traversed, and Per Inc shows the percentage of increase between OP
Dist and AP Dist. Whenever AP Dist and Per Inc are not having values, it
indicates that the path traversed is the optimal path and no extra distance
is covered. It may be noted that it is same in Table 5.5 and Table 5.6 as
the same f(x) is used for the sake of comparison. The most interesting is
the last case, where there is commendable achievement obtained by the im-
provised algorithm as it is easy to check that the search e�ort is minimized
from 1211.69 to 73.21 and that too equally good reduction in Per Inc also.
This evidently shows that the three techniques in the complicated situations
reduce the search e�orts enormously. In the cases of Eg1, Eg3, and Eg5, the
exact path traversed is the optimal path and there is absolutely no extra
distance traversed. This shows that the search e�orts are even minimized
to zero in some cases as evident from the examples shown here. This clearly
demonstrates the e�ectiveness of the new techniques, especially Markovian
cost function. As an easy extension, the algorithm can be modi�ed either to
stop at the �rst solution or any � optimal solution taking into consideration
of the lower bounds as the optimal solution.
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Figure 5.34: Robot in Unknown Environments Examples 1 - 6
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5.8 Ants Colony Optimization Based Robot
Traversal

Here the robots are employed in a restaurants where they have to go around
some speci�c points like TSP (Travelling Salesman Problem) to serve the
people. Here the concentration is on the traversal assuming the positions of
the tables to be �xed where the human beings are expected to be seated.
The Ant Colony Optimization, since introduced [106] has attracted more at-
tention realizing the importance of Swarm Intelligence based on the natural
phenomenon of real ants with Pheromone (trails) to trace their food. The
strategy has been applied to many optimization problems including TSP. It
may be recalled that initially Ants System was introduced for optimization
by a colony of cooperating agents [107]. The Ant Colony System di�ers from
the Ants System in three ways namely, di�erent state transition rule, global
updating rule and a separate local updating rule [106].

The ACO can be applied to many optimization problems including some
multiobjective problems [108]. The standard TSP is chosen for experimen-
tation as benchmarks (TSPLIB [109]) are available and widely analyzed. As
TSP problem is NP-hard, obviously heuristic approaches are employed to
get optimal solution. Moreover, it exhibits ample parallelism also.

In [110], both synchronous and asynchronous parallel methods are pro-
posed and simulated. As no implementation was available, only discrete
event simulation results are presented with proper assumptions. In [111],
independent executions of the asynchronous method were implemented. In
each execution, di�erent or randomized initial positions are used. However,
there is absolutely no communication. There is no information from the
other processes which otherwise can improve the pheromone (trails). How-
ever, MMAS (Max-Min Ant System) improved the results [112]. In the
method, the best ant alone updates the trails.

A new approach to implement the same, but to learn from others is
introduced. As the processors in Cray T3E can communicate (unlike the in-
dependent executions), the communications with other processes (other Ant
Colonies) paved way for learning from the other processes (Ant Colonies).
Synchronous method with trail update after prede�ned iterations (to accu-
mulate pheromones) is implemented on Cray T3E. As in the MMAS case,
only the best ant in each colony is allowed to globally update the trails.
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5.8.1 General TSP and ACO Approach

General TSP

A TSP can be represented by a complete weighted graph G = (V,E,f) where
V is a set of cities to be visited V = f1,2,...,ng, E is a set of edges between
the vertices E = f(i,j) such that (i,j) 2 V x Vg and f is a function associated
with the distances between the vertices or the length of the edges. The goal
is to �nd a shortest cycle visiting each city once and returning back to the
start city. Here, symmetric TSP is considered (f(Eij) = f(Eji)) [109].

ACO Approach

Initially m ants are positioned among n cities according to some rule or
randomly also. Each ants �nds a solution using the state transition rule
(in the case of TSP, builds a tour). While constructing the solution, ants
modify the amount of pheromone (in the case on the edges). Once all ants
have computed the solutions, once more the amount of pheromone on edges
are modi�ed according to the global update rule. As in the Ants System,
ants construct the solution based on the heuristic information (nearest city)
and the pheromone information (chosen by the most of the ants). After
some �xed number of iterations, the best result among the ants is quali�ed
as the optimal solution.

5.8.2 The New Parallel Algorithm for ACO

The approach is based on ACO [106] and the MMAS (Max-Min Ants Sys-
tem) [112]. The principal change is that instead of globally updating after
every iteration (ants have constructed the solution), only after some pre-
de�ned number of iteration global update is carried out. This will not
only minimize the total communication time but also permits to accumu-
late more knowledge of the system through the accumulation of pheromone
on the edges as the frequently used edges will have more pheromone. The
need of MMAS is required as after some large number of iterations, there
seems to be some saturation. Like in such other systems, local search is also
included to improve the solution.

As the ants are independent, the algorithm is parallelized based on the
number of ants, indeed on the number of colonies each having the same
number of ants. Depending upon the number of parallel processors, the
parallelism is scaled. Further details about the parallel implementation are
provided in the following subsection. To match the number of parallel pro-
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cessors and the ants, the number of colonies is approximated to the number
of number of cities divided by the number of ants so that there can be at
the maximum one ant positioned in one city. Only during the global up-
date, the communication is involved and as in this case the communication
is synchronous, idle time is also included.

The sketch of the parallel algorithm is given below.
Input: Coordinate positions of cities in TSP, Number of maximum itera-
tions, Number of ants, Iteration interval, parameters rho, alpha and beta.

for each iteration do
for each colony do in parallel

for each ant do
Find a tour
Update locally pheromone (the trail matrix)

After each iteration interval
Only the best ant in each colony improves the solution with local

search
globally update trail matrix by best ant in each colony only

The best tour among the best ants from each colony becomes opti-
mal solution.

5.8.3 Outline of the ACO Parallel Program in MPI

Let n be the number of cities, m be the number of ants, r be the number of
iterations and all other required parameters including the distances between
the cities are read as input.

MPI Comm rank(WORLD,&j);
MPI Comm size(WORLD,&p);
MPI File open(WORLD,...);
MPI File read(...);
/*each processor j reads the input for TSP */
MPI File close(...);
q = n / m; /* q = the number of colonies */
Taumin and Taumax are calculated based on MMAS
for each iteration i=1..r do
f for each colony k = j, j+p, j+2*p, .. q do /* in parallel */
f for each ant w= 1 .. m do
�nd a tour
locally update g
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if (i % iteration interval == 0) /* pheromones accumulated */
for each colony k = j, j+p, j+2*p, .. q do /* in parallel */
f do local search for each best ant in the colony to improve the solution
globally update only with the best ants from each colony
g g
MPI Allreduce(...,MPI MIN,WORLD); /* Optimal solution */

5.8.4 Parallel Implementation of the Algorithm on Cray T3E
with MPI

Synchronous Communication

On the Supercomputer Cray T3E with MPI, the parallel algorithm is im-
plemented. Eventhough MPI supports both synchronous and asynchronous
communication, for the sake of simplicity of programming in parallel, syn-
chronous communication is chosen despite the involvement of idle time re-
quired for synchronization before communication among the processors. In
the implementation, only the best ant from each colony communicates with
other colonies.

Here care must be taken to group the processes as in all cases the number
of colonies need not to be integer multiples of the processors used. MPI has
ample routines [114] to easily manoeuvre the situation. Otherwise, there
might be in�nite waiting presuming nonexisting processes to participate in
the communication. This will wrongly increase the total idle time.

The wide variety of communication routines in MPI facilitates the global
update of pheromone in a simple way of course with the above mentioned
condition. It must be recalled that for local update no communication is
required as each colony is associated with each processor having separate
memory.

Communications are also required at the end of the algorithm to collect
the results and choose the best as the optimal solution. MPI has eÆcient
implementation of �nd maximum or minimum of a particular value among
the processes in the parallel processors.

5.8.5 Parallelism in ACO Algorithm

As explained in the previous section, it is natural to parallelize the algorithm
based on the number of ants (indeed the ant colonies )and the available par-
allel processors. In ACO algorithm developed in the work, each colony has
same number of ants. So, instead of parallelizing at the ant level which will
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increase the communication and idle times as global update requires all ants
to update the pheromone, at the colony level the algorithm is parallelized.
This will not only minimize the number of times communications ought to
be carried out but also the amount of data to be communicated.

Moreover, instead of updating after each cycle which will also increase
both the total communication and idle times, the algorithm permits only
after a speci�c prede�ned interval (can be modi�ed at the run time), the
pheromones are globally updated among the processors. It may be recalled
that local update as mentioned earlier does not demand any communication
as all the ants in each colony will be associated with the same processor. The
global update is also parallelized eÆciently. The set of processors participate
in global update are grouped to use eÆcient routines in MPI.

5.8.6 Experimental Results and Analysis

Here for the experimentation, a standard benchmark data for TSP
Berlin52.dat [109] is chosen. To compare with other algorithms, (1)ant sys-
tem(AS), (2)Min-Max AS (MMAS), (3)MMAS with local search (MMAS-
LS), (4)ant colony system(ACS), (5)ACS with local search (ACS-LS) and
(6) the algorithm developed in the work, the experiments were conducted
on 4 parallel processors without changing any other parameter viz. rho
for MMAS, alpha and beta for state transition rule. The �ve major issues
[80], 1)length of the tour(optimal solution - Tour len), 2) total computation
time (T imepar) 3)single processor time (T imepcr) 4) percentage of total
communication time with respect to total computation time (T imecomm%)
and 5) percentage of total idle time with respect to total computation time
(T imeidle%) are analyzed as shown in Fig.5.35 by varying the number of
iterations from 100, 500 and 1000.

From the graphs in Fig.5.35, it is clear that the algorithm developed in
the work performs competitively well and it may be recalled all experiments
were done with 4 processors. The only problem with the method was more
idle time. It is because less processors were used. It becomes very evident
when the number of processors are increased as shown in the tables. The
least communication time by the algorithm promises that it can be used for
larger size problems also.

For constructing the tables, only the algorithm developed in the work is
used, but all parameters are varied and the results are analyzed. From Table
5.7 the increase in the number of iteration obviously produces better results.
However, there is some sort of saturation or falling into local minimum is
observed. From Table 5.8, by increasing the number of ants, ultimately
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No.of Iter Tour len T imepar T imepcr T imecomm% T imeidle%

500 10027 111 11 0.18 0.36
1000 9857 205 21 0.20 0.38
2000 9857 395 39 0.21 0.41

Table 5.7: Results based on varying Iterations

No.of Ants Tour len T imepar T imepcr T imecomm% T imeidle%

2 9838 428 16 0.75 0.45
4 9857 231 17 0.69 0.41
5 9857 205 20 0.41 0.38

Table 5.8: Results based on varying Ants

Interval Tour len T imepar T imepcr T imecomm% T imeidle%

10 9838 601 23 0.82 0.48
5 8200 869 33 1.12 0.49

Table 5.9: Results based on varying Interval

Rho Tour len T imepar T imepcr T imecomm% T imeidle%

0.9 8200 607 23 1.02 0.48
0.5 8200 607 23 1.04 0.46
0.1 8200 607 23 1.07 0.44

Table 5.10: Results based on varying Rho

Alpha,Beta Tour len T imepar T imepcr T imecomm% T imeidle%

1,5 8200 607 23 1.08 0.47
2,5 8200 609 23 1.04 0.46
5,1 8200 604 23 1.05 0.39

Table 5.11: Results based on varying Alpha and Beta
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the number of colonies are reduced as (colonies = cities / ants). As the
colony size reduces with the increase of number ants in a colony, no better
results are produced. This defends idea of updating globally based on best
ant in each colonies than with all ants. From Table 5.9 it is clear that
by reducing the interval size, the number of communication increases. But
this gives more dividend by producing better results because more global
information is shared but in a restricted way. From Table 5.10 and Table
5.11, no marked change is observed by changing rho and alpha and beta.
However more experiments with di�erent data can prove the role of each
parameter explicitly. The parallelism perfectly works giving better results
and at the same time both communication and idle times are contained.
This leaves less aspirations for using asynchronous communications for the
algorithm. Eventhough the best result for the TSP problem is less than the
obtained results, the strategy derives strength from restricting the global
update not after every iteration but after some period of intervals. This
in e�ect not only reduced the communication time and idle time but also
shared the pheromone values which is the crucial aspect in any ants based
multi agent systems.

5.8.7 Future Extensions

Apart from varying all the parameters, the role of local search must be ad-
dressed. After some iterations, with out local search, pheromone saturation
seems to be evident. The change in state transition rule from AS to ACS
which balances such cases also must be exclusively studied. After a large
iterations by changing rho or alpha or beta does not always lead to better so-
lutions. Modifying these at runtime or as the iterations proceed, the ability
to get better results can also be investigated. The eÆciency of MPI routines
can also be found by varying the strategies. Finally, asynchronous mode of
communication must also be studied to improvise both the algorithm and
the implementation of MPI routines on Cray T3E also. Attempts can be
made to solve other optimization problems apart from TSP.
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Chapter 6

Model, Matching and
Indexing

6.1 Models

In the recognition systems, the role of the models is very important not only
in recognition but also in reducing the computation time. From stick models
of human being to 3D blob models complexity increases but the tracking
later becomes comparatively faster. To recognize a human being despite
occlusion requires either explicit occlusion modelling or in Hausdor� method,
proper selection of some parameters. It is always diÆcult to �nd values of the
parameters which will suit to many instances in general. However, specially
modelling for occlusion will help. But it will increase the number of models
several times. Yet it manoeuvres occlusion better.

6.1.1 Occlusion Models

In Occlusion models, the model of a human being is taken and some of
the parts are removed. Each model after such deletions of parts becomes
an occlusion model. By explicitly modelling occlusion, the probability of
recognition has been increased as evident from the experiments. As men-
tioned before, the method increases the number of models. To circumvent
the increase in the number of models, a generic model is introduced.

6.1.2 Generic Models

To reduce the number of models, the selected set of models are superimposed
together. Such a model is called a generic model. In case of points, a
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generic model is the union of all the sets of points from each selected model.
Similarly, for the edge models also it is de�ned like points.

However, generic models eventhough reduces the number of models, they
have problem with Hausdor� method for matching as many points may be
missing. Eventhough using the same technique for occlusion will increase
further probability of recognition, to alleviate the problem of missing points
in the generic models, basis models are introduced.

6.1.3 Basis Models

This modelling is almost complementary to the generic models. Instead of
taking union among the selected sets of points as in the case with generic
models, here intersection is taken. Eventhough the method looks rosy, there
is a y in the oil.

In many cases, the number of points in the intersection set is very less,
so that they match with arbitrary set of points often increasing the number
of false positives. However if the selection of the models is proper, in the
sense that most of them are similar to the large extent, the method will work
appreciably. It must be recalled that similar idea is used [10] in forming a
hierarchical way of grouping the models.

6.2 Matching

As in the study, Hausdor� and Chamfering matching are appreciably ef-
�cient matching methods. However general matching methods have some
inherent problems due to scaling which may be solvable by de�ning the
matching measure di�erently.

6.2.1 Matching Problem with Scaling

Both the Hausdor� and Chamfering methods for matching do not cope up
with scaling adequately. Albeit the problem can be solved by having models
of varied sizes, the ultimate problem of �xing proper threshold which can
still accept, continues. Moreover, theoretically there can be in�nite scaling
variations for a single model. Hence, it will only increase the number of
models and complexity.

Taking a closer look at an image of di�erent size, the matching is ob-
vious visually. However, unless the corresponding model of the size is not
there, the acceptance depends upon the value of the threshold. Instead of
putting the onus on the value of threshold, a di�erent outlook is taken which
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de�nes the matching measure di�erently which will enhance the matching
with di�erent sizes.

6.2.2 A New Matching Measure

De�ning a matching measure is as simple as de�ning a function over a
set of points and values at those points. However, if it should suÆce as
good matching measure, especially in the situation where the sizes are the
paramount problems, the following measure increases the con�dence in suc-
cessful matching. To recall the matching measure in Hausdor�, it is the
maximum distance value in those feature points. That is why when a seg-
ment of an image is a di�erent size of the same model, it is not able to accept
as the maximum distance value may be more than the threshold. Similarly,
in the case of Chamfering, the distance measure is the square root of the
average of the sum of squares of the distances at the feature points. It is
something like taking the average value only, but in a di�erent way to suit
to the distance transformation.

For the new measure, �rst the average of all the distance values at the
feature points is taken and it is subtracted from the distance values at the
feature points and the absolute value of the new di�erence is alone consid-
ered. Then, the maximum is found which is the value of the new measure.

The new measure combines both the chamfering and Hausdor� distance
measures. For simple objects like circles, circles of any radius can be easily
recognized with a single model with the new distance measure. When the
objects are cylinders and blobs depending upon the sizes the di�erences
also increase. For the models of human being, when the sizes are nearly
same, then obviously the correct matching is found. Then again as the sizes
increases, playing with the values of threshold, suitable match can be found
positively.

In any matching method, given a set of models and an image, which
model has to be chosen �rst and what is the order in which models can be
chosen so that at the earliest all correct matching can be found depends on
indexing.
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6.3 Indexing

6.3.1 Problems of Outdoor environment compared to Image
Databases

Image Indexing is one of the �elds which attracts many of the researchers
to focus the attention due to its wide applicability. From matching �nger
prints to �nding the culprit from the image databases, image indexing plays
an important role. But the problem with recognizing human beings in an
outdoor environment is more complicated than the image databases. Firstly,
image databases may have the entries of same size or atleast approximately
same. Since the chances of preprocessing can be done o�-line, most of the
noises can be reduced in the images stored in the databases. More impor-
tantly, all the features of the image are in the image itself (if the feature
exists).

In case of outdoor environments, neither the sizes can be same, nor there
is any guarantee for noise free images. Above all, in such images how seg-
menting can be done in such a way that relevant features are available within
the segment itself and the features will not be distorted due to segmentation
or dividing the image into equal smaller sizes?

6.3.2 Segmenting Problems

There are lot of segmenting methods based on colours or texture or same grey
values or connected components and so on. This will disturb the generality
of the problem considerably. There is not much interest at this advanced
stage to backtrack to use colour cues to segment the image.

At the same time, equally dividing the image into segments of smaller
sizes, as mentioned before has to handle the features falling exactly at the di-
viding lines. Moreover, there is no the guarantee that the segment satisfying
the conditions based on histogram must match with the model. Any arbi-
trary segment can have the same histogram like a model. So, after indexing
applying robust matching methods are also essential.

6.3.3 Possible Indexing Strategies

Histograms or measures based on either Hausdor� or Chamfering can be
used for indexing. But the primary problem is how to segment a given
image such that if a model exists, the indexing will choose such a model �rst.
Lot of work needs to done in the direction which will drastically reduce the
computation time.
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As histogram is the simplest and at the same time powerful one, indexing
can be done based on the histogram values. A combination of maximum,
minimum and median can be a combined indexing key.

6.4 Backward Recognition of Human Groups

The idea is if at a particular point of time a human being is recognized, from
the previous image where the human being would have been, the human
being can be recognized along with other human beings. As there are many
problems including sizes, movements of human beings, movement of the
camera and so on, a restricted environment is taken for study. For the
restricted environment, the backward recognition works well as shown in
Fig.6.1, Fig.6.2, Fig.6.3. Here, recognizing a single human being is done
�rst and later the relative position is back propagated to group the other
human beings. The occlusion plays a vital role in impeding the recognition
process. In such situations, it is more crucial as even one human being is
not recognized, may lead to the group not recognized.
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Figure 6.1: Identi�ed Human Groups in Images from Image Understanding
Group 1
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Figure 6.2: Identi�ed Human Groups in Images from Image Understanding
Group 2
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Figure 6.3: Identi�ed Human Groups in Images from Image Understanding
Group 3



Chapter 7

Conclusion

The growth of diversi�ed applications that demand the recognition of hu-
man beings in the images has increased considerably. In the study, an at-
tempt has been made to recognize human beings in images without many
strict constraints which are normally applied and it has been shown that
the possibility is high. To start with graph matching, the basic concept of
matching two graphs is investigated as the graphs are the most powerful
representation of objects mathematically. A new isomorphism (Neighbour
Isomorphism) has been introduced which reduces the computation time to
match the two graphs enormously. The same isomorphism is extended to
�nd the symmetries in the regular polygons which are repeatedly present
at various positions. The symmetry axis and the relationship with the new
isomorphism is deduced clearly. Initially, A� Algorithm is used for optimal
matching of graphs also. Combining both Neighbour Isomorphism and A�

strategy, a new algorithm to match the postures of human being especially
taken from the indian classical dance, Bharathanatyam, has been developed
which produced correct results eÆciently.

In the real images due to noises, such graph methods are not directly
applicable in low level image processing. Here, the concentration is focussed
on low level image processing to recognize a human being. The two standard
matching methods, Chamfering and Hausdor� method are investigated. It
has been found that the Chamfering method is faster than the Hausdor�
method as far as computation times are concerned. But the Hausdor�
method is more robust than the Chamfering method. The eÆcient com-
putation of distances in the images with respect to the features based on
distance transformations and lookup methods are discussed and it is found
that distance transformation method is computationally better.
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The crucial contribution of Fusion architecture in the study is basically
highly general and not restricted only to human being recognition. The
combination of various algorithms produced better recognition in the Fusion
Architecture. The modi�ed Hausdor� methods to handle occlusion and
scaling or zooming improvised the combination in the Fusion Architecture.
Being inherently parallel, the Fusion Architecture can be easily implemented
on parallel machines.

To do lot of experiments and for reducing the computation time, all the
strategies are parallelized. The parallel implementations are done on Cray
T3E supercomputer using MPI. The results show that the parallelization
can obviously reduce the computation time depending upon the amount of
parallelization and the number of processors available.

Apart from the general problems involved in recognition systems, the
aspects of model, matching and indexing strategy are analyzed with the dif-
ferent approaches of occlusion modelling with generic and basic models. To
describe the positional relationships between the human beings ontologically,
experiments are performed and the preliminary results are encouraging. As
industrial applications in robotics, three situations, one with known environ-
ment, another with unknown environment and the third with going around
have been discussed considering primitive models of human beings as ob-
stacles. In restricted environments, recognizing groups of human beings is
also possible by recognizing single human beings separately in a sequence of
images and back propagating the relative positions in the previous images
along with other human beings.

Albeit the aim of the study is to recognize the human beings in the images
from monocular camera without usual constraints, initially the graph theory
based methods for matching are analyzed with new neighbour isomorphism.
The robust Hausdor� method for matching is extended to recognize the
human beings with ample models and modi�ed distance measures. As the
strategy to fuse di�erent algorithms to get better results despite occlusions
is inherently parallel, it is implemented on Cray T3E Supercomputer which
produced correct results in appreciably lesser computation time. Unless the
method of choosing a proper model with the good indexing is available,
the recognition of human beings will continue to remain as one of the hard
problems to be solved in image processing.



Appendix A

Cray T3E

As the Supercomputer Cray T3E at HLRS [113] is accessible, the parallel
algorithm for image matching is implemented and tested on the platform.
It has 512 nodes, 64 GB DRAM memory, 128 MB DRAM memory per node
with the peak performance of 461 GFLOPS/s. It has high communication
and I/O Bandwidths and operates on Chorus based operating system.

The system is highly scalable with distributed memory. Message Passing
Interface (MPI) model is supported by Cray T3E. This MPI allows parallel
�le I/O upto 200 Mb/sec. Both interactive and batch mode of executions
are allowed on Cray T3E.

The MPI on Cray T3E has with standard MPI Send and MPI Recv
a latency of 6 microseconds, and with messages longer than 8 kbytes a
bandwidth of faster than 220 Mbytes/sec, with messages longer than 64
kbytes a bandwidth of faster than 300 Mbytes/sec, and with messages longer
than 256 kbytes a bandwidth of about 315 Mbytes/sec.

The automatic MPI pro�ling and totalview software to debug make
the programming and development really easier. Compilation can be done
with variable number of processors so that the number of processors can be
changed at runtime using the following commands.

cc -o <object �le name> <source �le name>
mpirun -np <number of processors> <object �le name>
To use the �le system in batchmode get input and save result shell scripts

are also available.
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Appendix B

Message Passing Interface

In the programming Language C, the message passing interface (MPI) is
included as a library [114] as MPI being not a language as such. However,
MPI can be included in many languages such as Fortran and C++. The
set of library routines enable to communicate among the processors. In
fact, MPI speci�cation is portable which takes advantage of the specialized
hardware and software o�ered by the individual vendors. MPI parallel �le
reading is used here as the individual �le reading. Just to �nd the minimum,
MPI-Allreduce is used. The same program is compiled and executed on
di�erent number of processors without any change in the program.

Here, a list of MPI standard routines is provided to understand and
program in parallel systems. For exact arguments and their types, the useful
references are [114] and [115].

1. MPI Init(); Every program must start with routine.

2. MPI Finalize(); It is the �nal routine called from MPI programs.

3. MPI Comm create(...) creates a new intercommunicator.

4. MPI type create subarray( ...) is to create subarrays from the main
array such that they can be processed in parallel.

5. MPI Send and MPI Recv are some of the routines for transferring data
between the processes.

6. MPI Allgather(...) and MPI Allreduce are collective operations where
all processes contribute to the result which is received by all.

7. MPI Gather(...) and MPI Reduce are collective operations where all
processes contribute to the result which is received by one.
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8. MPI Bcast(...) and MPI Scatter are collective operations where one
process contributes to the result which is received by all.

9. MPI Barrier(...) is used to synchronize the processes.

10. MPI File open(...); opens the �le identi�ed by the �lename on all pro-
cesses in the communicator group. Files can be opened in read or
write or read only and such other modes.

11. MPI File read(...) is to read a �le by a processor (noncollective oper-
ation) and MPI File read all(...) is to read a �le by all the processors
in the communicator group (collective operation).

12. MPI File write(...) is to write on a �le by a processor (noncollective
operation) and MPI File write all(...) is to write on a �le by all the
processors in the communicator group (collective operation) at speci�c
positions.

13. File operations can be done in blocking and nonblocking modes with
explicit o�sets or individual �le pointers or shared �le pointers such
as MPI File read/write at/at all/shared/ordered.



Appendix C

File Interoperability with
Parallel MPI File-I/O

The I/O operations especially �le related operations are investigated. The
signi�cant optimizations required for eÆciency can only be implemented
if the parallel I/O system provides a high-level interface supporting parti-
tioning of �le data among processes and a collective interface supporting
complete transfers of global data structures between process memories and
�les [115]. Parallel reading of the same image or model into the memory of
several MPI processes can be implemented with the MPI File read all. This
collective routine enables the MPI library to optimize reading and broad-
casting the �le information into the memories of all processes. In image
processing, there exists also a huge number of di�erent formats to store the
image data in �les. The standard image processing software gives the op-
tions of a proprietary format or a standard ASCII format. Because most
of the formats can be converted into ASCII �le format in many systems,
and to circumvent problems with the 64-bit internal integer format on the
Cray T3E, the ASCII format is decided as the image(model also) �le format.
Therefore, it is mandatory to implement the conversion of ASCII �le (mostly
representing integers being pixel coordinates and grey values) so that �le In-
teroperability in MPI can be used e�ectively for image processing. As the
sizes of the �les increase obviously the I/O overheads also increase. In im-
age processing, there will be always many �les required both for images and
models. Hence, it is not only the sizes of the images, but also the number
of them is a matter of concern for I/O overheads.
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C.1 Data Access Routines

The �le Interoperability means to read and write the information previously
written or read respectively to a �le not just as bits of data, but the ac-
tual information the bits represent. The data access routines provide the
data movement between �les and processes. There are three orthogonal
aspects to data access, 1. positioning (with o�set or implicit �le pointer),
2. synchronism (blocking or non-blocking) and 3. coordination (collec-
tive or non-collective) [115]. Like data access routines, File interoperability
has three aspects namely, 1. transferring the bits, 2. converting di�erent
�le structures and 3. converting between di�erent machine representations.
The third being the concern here, the multiple data representations and the
inability to read integer data stored in an ASCII �le which is needed for
image processing are explained in the following subsection.

C.2 Data Representations

MPI-2 de�nes the following three data representation, 1. native, 2. internal
and 3. external32 [115]. In native representation, the data is stored in a �le
exactly as it is in memory. In external32 format, also a binary data repre-
sentation is used. Obviously, it is impossible to use these formats directly to
read integer data from ASCII �les. The internal representation cannot be
used for data exchange between MPI programs and other non-MPI programs
that have provided the image data because the internal representation may
be chosen arbitrarily by the implementer of the MPI library. MPI-2 has
standardized also a method to use user-de�ned data representation. Here,
the user can combine the parallel I/O capabilities with the byte-to-data con-
version routines. The major constraint is that the representation of a given
data type must have a well-de�ned number of bytes. As the number of digits
of integers in an ASCII �le vary (and each integer may end either with a
blank or an end-of-line character), user-de�ned representation also cannot
help reading integers eÆciently from ASCII �les.

C.3 Reading Integer Data from ASCII File with
MPI I/O

The former constraints force the implementation of the following strategies:
Normal File Reading with fscanf In the �rst strategy, the �les are read
using normal �le reading command fscanf instead of MPI for the sake of
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ranks=0 1 2 3 4 5 6 7
R(0,0) R(1,1) R(2,2) R(3,3) R(0,4) R(1,5) R(2,6) R(3,7)
c(0,0) c(1,1) c(2,2) c(3,3) c(0,4) c(1,5) c(2,6) c(3,7)
r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(0)

c(0,1) c(1,2) c(2,3) c(3,4) c(0,5) c(1,6) c(2,7) c(3,0)
r(2) r(3) r(4) r(5) r(6) r(7) r(0) r(1)

c(0,2) c(1,3) c(2,4) c(3,5) c(0,6) c(1,7) c(2,0) c(3,1)
r(3) r(4) r(5) r(6) r(7) r(0) r(1) r(2)

c(0,3) c(1,4) c(2,5) c(3,6) c(0,7) c(1,0) c(2,1) c(3,2)
R(8) R(9) R10) R(11) R(12) R(13) R(14) R(15)
c(0,8) c(1,9) c(2,10) c(3,11) c(0,12) c(1,13) c(2,14) c(3,15)
r(9) r(10) r(11) r(12) r(13) r(14) r(15) r(8)

c(0,9) c(1,10) c(2,11) c(3,12) c(0,13) c(1,14) c(2,15) c(3,16)
... ... ... ... ... ... ... ...

R(4,q-1) R(5,q-2) R(6,q-3) R(7,q-4) R(4,q-5) R(5,q-6) R(6,q-7) R(7,q-8)
... ... ... ... ... ... ... ...

Table C.1: Parallelization scheme of I/O and computation.

comparison with MPI �le I/O operations. It may be recalled that there is
no need for conversion as fscanf can directly read the integers from the �les.
O�-line Conversion In the second strategy, the ASCII �le is converted
into a native �le by a separate program. This gives the facility to convert
the required ASCII �le o�-line which enables the image processing program
to read the native �le without any diÆculty. To achieve heterogeneity, MPI
external 32 data representation can be used instead of the native format.
Runtime Conversion In the third strategy, the entire ASCII �le is read
into a large bu�er of type CHAR, and then individually by reading every
character till it is terminated either by a blank or by an end-of-line character,
the same is converted into an integer at run-time. In fact, the original �le
remains as ASCII �le and is still used. The conversion can be stored as a
native �le for further use, if the need is so. It may be recalled the ASCII to
Integer conversion function is very easy to implement which is also system
independent.

C.4 Optimizing the Parallel I/O

The image data usage pattern has two chances for optimization: (a) all im-
age data must be reused (and probably reloaded) for comparing with several
models, and (b) all models must be reused (and probably reloaded) for com-
paring with several images. In the sequential version of the software, each
image is loaded once and all models are loaded again for comparing with
each image. By reversing the sequence of models for each even image num-
ber, at least the latest models can be cached in memory. In the �rst parallel
version loading of the images can be optimized with collective reading into
all processes.
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If more than one image can be analyzed in parallel, i.e., if one can accept
an additional delay for the analysis of an image because not all available
processors are used for analyzing and because the start of the analysis is
delayed until a set of images is available, then the parallelization can be
optimized according to the scheme in Table C.1. The scheme shows the
analysis of 4 images in parallel on 8 processors. R(i,k) denotes reading of
the image i and model k, R(k) is only reading of model k, r(k) is receiving of
model k with point-to-point communication from the right neighbor (sending
is omitted in the �gure), and c(i,k) denotes the computation of the Hausdor�
distance for image i and model k.

Looking at the scheme, note that reading the image into several pro-
cessors at the same time (e.g., image 0 into processes 0 and 4) can be still
optimized with collective reading (MPI File read all) that internally should
optimize this operation by reading once from disk and broadcasting the im-
age data to the processes. Reading several images and models at the same
time can be accelerated by the use of striped �le-systems. The scheme is
also optimized for a cluster of shared memory nodes (SMPs). The vertical
bar between rank 3 and 4 may donate such a boundary between SMPs. One
can see on each node, that only one model is received from another node
(and another model is sent) while exchanging all models.

C.5 Results and Analysis

For the purpose of illustration, four sample images (one shown in Fig. 4.14)
and four models (one shown in Fig. 4.15) are considered. The algorithm is
tested with 1, 2 and 4 processors on the Cray T3E-900 at HLRS. As the
interest is on I/O, the I/O timings per process are tabulated in Table C.2
for 4 images and 4 models. The timing is done with MPI Wtime(). The
wall clock time per process to handle the reading of 4 images and 4 models,
including repeated reading or message exchanges of the model is shown in
Table C.2. Before starting each I/O timing, a barrier is done to prohibit
that any synchronization time is assessed as I/O time. Although the I/O
requires only a small part of the total execution time in the current version
of the program, it is expected that on faster processing systems and with
better optimization of the Hausdor� algorithm, I/O will be a relevant factor
for execution speed. In the original parallelization, each image is read by all
processes (which may be optimized by the MPI library), and for each image,
each process reads only a subset of the models according to the numbers of
processors. In the optimized parallelization, each image is read by only one
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process, and for each set of images analyzed in parallel, each model is read
only once and then transferred with message passing to the other processes.
Table C.3 shows the accumulated number of reading an image or model �le
or transferring a model for the test case with 4 images and 4 models. Each
entry in Table C.3 shows the accumulated number of images read + models

read + models exchanged by all processes with the di�erent parallelization
schemes, e.g., 4*2+16+0 means, that 4 times 2 identical images, and 16
models are read, and 0 models are exchanged by message transfer.

The experiments are started with normal reading with fscanf. The orig-
inal parallelization incurred larger I/O time because each image had to be
read on each processor again. In the second experiment the reading is so
parallelized and each fscanf is substituted by MPI-2 �le reading. Because
reading of ASCII integers is not available in MPI-2, reading the same as
characters is chosen. Normally each integer is expressed only with a few
characters, therefore, the expected additional overhead was not expected
very high. But the measurements have shown that the solution was 46 times
slower than the original code. The MPI-2 I/O library on the Cray T3E could
not be used in a similar way as fscanf() or getc() can be used. To overcome
the high latency of the MPI I/O routines, reading the whole �le with one
(experiment No. 3) or only a few (No. 4) MPI operations were implemented.
But there is still no bene�t from parallelizing the I/O. The I/O time per
process grows with the number of processes and the accumulated I/O time
with 4 processors is therefore 4{6 times more than with one processor. In
the last two experiments, the parallelization was optimized to reduce the
number of reading of each image and model. This method achieves an opti-
mal speedup for the I/O. But also with the optimization, the fscanf solution
is about 10%faster than the MPI I/O solution on 4 processes.

These experiments have shown that (a) MPI I/O can be used for ASCII
�les, (b) but only large chunks should be accessed due to large latencies of
MPI I/O routines, and (c) optimizations that can be implemented by the
applications should be preferred than optimizations that may be done inside
the MPI library, (d) as long as many small or medium ASCII �les should
be accessed, it may be better to use standard I/O by many processes and
classical message passing or broadcasting the information to all processes
that need the same information, than using collective MPI I/O.
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No. Parallelization File Op Conversion I/O Entities 1 proc 2 proc 4 proc
1 Original fscanf On-line integers 0.126 s 0.130 s 0.142 s
2 Original MPI On-line characters 7.087 s 6.173 s 6.563 s
3 Original MPI On-line whole �le 0.157 s 0.196 s 0.234 s
4 Original MPI O�-line 3*int, 2*array 0.189 s 0.182 s 0.195 s
5 Optimized MPI On-line whole �le 0.163 s 0.071 s 0.040 s
6 Optimized fscanf On-line integers 0.129 s 0.068 s 0.036 s

Table C.2: I/O time per process for 4 images and 4 models

Parallelization accumulated number of images + models read with
1 process 2 processes 4 processes

Original 4*1 + 16 + 0 4*2 + 16 + 0 4*4 + 16 + 0
Optimized 4*1 + 16 + 0 4*1 + 8 + 8 4*1 + 4 + 12

Table C.3: images read + models read + models exchanged

C.6 Conclusion

One of the computationally intensive image processing problem, Image

matching which demands the solutions within real time constraints is in-
vestigated focusing the attention on MPI File Interoperability especially
with ASCII �les. Due to the domain speci�c nature of the problem, the
images usually stored in �les, di�er in formats considerably. This poses an
impediment to the eÆcient implementation of the parallel algorithm despite
parallel I/O implementations in MPI-2. As most of the formats can be con-
verted into ASCII �le format in many systems, the three strategies namely,
Normal File Reading, O�-line Conversion and Run-time Conversion for free
format integer �le reading and writing are implemented on Cray T3E with
MPI-2. The modi�ed parallelization presented here produced better results
comparing the I/O timings. The important conclusion of the section is that
the problem of �le format conversion in image processing applications can
be eÆciently solved with the proper parallelization and MPI parallel I/O
operations. In all the images, the accurate positions (to one pixel resolu-
tion) of the human beings with the corresponding best model are not only
found correctly but also eÆciently as the obtained results demonstrate.
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Indices of the Images and
Models

As presenting the large set of the image indices and model indices will be dif-
�cult, only some typical image indices and model indices are mentioned. It
may be recalled that for sake of eÆciency, mostly they will be preprocessed
into coordinate �les of relevant corners for Hausdor� methods. However, for
chamfering respective edge images must be provided as a part of preprocess-
ing or feature extraction.

D.1 Some typical Image Indices as coded in the
program for reading the �les

0 : ("/home/piriyaku/muserk/progs/pgm/img/rf6 c.pgm",);
1 : ("/home/piriyaku/muserk/progs/pgm/img/rf7 c.pgm",);
2 : ("/home/piriyaku/muserk/progs/pgm/img/rf8 c.pgm",);
3 : ("/home/piriyaku/muserk/progs/pgm/img/rf9 c.pgm",);
4 : ("/home/piriyaku/muserk/progs/pgm/img/rf0 c.pgm",);
5 : ("/home/piriyaku/muserk/progs/pgm/img/bv0 c.pgm",);
6 : ("/home/piriyaku/muserk/progs/pgm/img/bv1 c.pgm",);
7 : ("/home/piriyaku/muserk/progs/pgm/img/bv2 c.pgm",);
8 : ("/home/piriyaku/muserk/progs/pgm/img/bd1 c.pgm",);
9 : ("/home/piriyaku/muserk/progs/pgm/img/bd2 c.pgm",);
10 : ("/home/piriyaku/muserk/progs/pgm/img/bd3 c.pgm",);
11 : ("/home/piriyaku/muserk/progs/pgm/img/bd4 c.pgm",);
12 : ("/home/piriyaku/muserk/progs/pgm/img/bd5 c.pgm",);
13 : ("/home/piriyaku/muserk/progs/pgm/img/bd6 c.pgm",);
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14 : ("/home/piriyaku/muserk/progs/pgm/img/bd7 c.pgm",);
15 : ("/home/piriyaku/muserk/progs/pgm/img/bd8 c.pgm",);
16 : ("/home/piriyaku/muserk/progs/pgm/img/bd9 c.pgm",);
17 : ("/home/piriyaku/muserk/progs/pgm/img/bd10 c.pgm",);
18 : ("/home/piriyaku/muserk/progs/pgm/img/bd11 c.pgm",);
19 : ("/home/piriyaku/muserk/progs/pgm/img/bd12 c.pgm",);
20 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0035 c.pgm" ,);
21 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0036 c.pgm" ,);
22 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0037 c.pgm" ,);
23 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0038 c.pgm" ,);
24 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0039 c.pgm" ,);
25 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0040 c.pgm" ,);
26 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0041 c.pgm" ,);
27 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0042 c.pgm" ,);
28 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0043 c.pgm" ,);
29 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0044 c.pgm" ,);
30 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0045 c.pgm" ,);
31 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0046 c.pgm" ,);
32 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0047 c.pgm" ,);
33 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0048 c.pgm" ,);
34 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0050 c.pgm" ,);
35 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0051 c.pgm" ,);
36 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0052 c.pgm" ,);
37 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0053 c.pgm" ,);
38 : ("/home/piriyaku/muserk/progs/pgm/img/PICT0054 c.pgm" ,);
39 : ("/home/piriyaku/muserk/progs/pgm/img/ut3 c.pgm" ,);
40 : ("/home/piriyaku/muserk/progs/pgm/img/ut7 c.pgm" ,);
41 : ("/home/piriyaku/muserk/progs/pgm/img/ut13 c.pgm" ,);

D.2 Some typical Model Indices as coded in the
program for reading the �les

0 : ("/home/piriyaku/muserk/progs/pgm/mod/cut7 c.crd",);
1 : ("/home/piriyaku/muserk/progs/pgm/mod/cut8 c.crd",);
2 : ("/home/piriyaku/muserk/progs/pgm/mod/cut81 c.crd",);
3 : ("/home/piriyaku/muserk/progs/pgm/mod/cut9 c.crd",);
4 : ("/home/piriyaku/muserk/progs/pgm/mod/cut91 c.crd",);
5 : ("/home/piriyaku/muserk/progs/pgm/mod/cut7 hs c.crd",);
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6 : ("/home/piriyaku/muserk/progs/pgm/mod/cut8 hs c.crd",);
7 : ("/home/piriyaku/muserk/progs/pgm/mod/cut81 hs c.crd",);
8 : ("/home/piriyaku/muserk/progs/pgm/mod/cut9 hs c.crd",);
9 : ("/home/piriyaku/muserk/progs/pgm/mod/cut91 hs c.crd",);
10 : ("/home/piriyaku/muserk/progs/pgm/mod/cut7 ds c.crd",);
11 : ("/home/piriyaku/muserk/progs/pgm/mod/cut8 ds c.crd",);
12 : ("/home/piriyaku/muserk/progs/pgm/mod/cut81 ds c.crd",);
13 : ("/home/piriyaku/muserk/progs/pgm/mod/cut9 ds c.crd",);
14 : ("/home/piriyaku/muserk/progs/pgm/mod/cut91 ds c.crd",);
15 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd1 c.crd",);
16 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd2 1 c.crd",);
17 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd2 2 c.crd",);
18 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd2 3 c.crd",);
19 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd2 4 c.crd",);
20 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd3 1 c.crd",);
21 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd4 1 c.crd",);
22 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd4 2 c.crd",);
23 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd5 1 c.crd",);
24 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd5 2 c.crd",);
25 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd5 3 c.crd",);
26 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd5 4 c.crd",);
27 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd5 5 c.crd",);
28 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd6 1 c.crd",);
29 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd6 2 c.crd",);
30 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd7 1 c.crd",);
31 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd8 1 c.crd",);
32 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd9 1 c.crd",);
33 : ("/home/piriyaku/muserk/progs/pgm/mod/mbd9 2 c.crd",);
34 : ("/home/piriyaku/muserk/progs/pgm/mod/ants1 c.crd",);
35 : ("/home/piriyaku/muserk/progs/pgm/mod/ants2 c.crd",);
36 : ("/home/piriyaku/muserk/progs/pgm/mod/ants3 c.crd",);
37 : ("/home/piriyaku/muserk/progs/pgm/mod/ants4 c.crd",);
38 : ("/home/piriyaku/muserk/progs/pgm/mod/ants5 c.crd",);
39 : ("/home/piriyaku/muserk/progs/pgm/mod/ants6 c.crd",);
40 : ("/home/piriyaku/muserk/progs/pgm/mod/ants7 c.crd",);
41 : ("/home/piriyaku/muserk/progs/pgm/mod/ants8 c.crd",);
42 : ("/home/piriyaku/muserk/progs/pgm/mod/ants9 c.crd",);
43 : ("/home/piriyaku/muserk/progs/pgm/mod/ants10 c.crd",);
44 : ("/home/piriyaku/muserk/progs/pgm/mod/ants11 c.crd",);
45 : ("/home/piriyaku/muserk/progs/pgm/mod/ants12 c.crd",);
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46 : ("/home/piriyaku/muserk/progs/pgm/mod/ants13 c.crd",);
47 : ("/home/piriyaku/muserk/progs/pgm/mod/ants14 c.crd",);
48 : ("/home/piriyaku/muserk/progs/pgm/mod/ants15 c.crd",);
49 : ("/home/piriyaku/muserk/progs/pgm/mod/ants16 c.crd",);
50 : ("/home/piriyaku/muserk/progs/pgm/mod/olga1 c.crd",);
51 : ("/home/piriyaku/muserk/progs/pgm/mod/olga2 c.crd",);
52 : ("/home/piriyaku/muserk/progs/pgm/mod/olga3 c.crd",);
53 : ("/home/piriyaku/muserk/progs/pgm/mod/olga4 c.crd",);
54 : ("/home/piriyaku/muserk/progs/pgm/mod/olga5 c.crd",);
55 : ("/home/piriyaku/muserk/progs/pgm/mod/olga6 c.crd",);
56 : ("/home/piriyaku/muserk/progs/pgm/mod/olga7 c.crd",);
57 : ("/home/piriyaku/muserk/progs/pgm/mod/olga8 c.crd",);
58 : ("/home/piriyaku/muserk/progs/pgm/mod/olga9 c.crd",);
59 : ("/home/piriyaku/muserk/progs/pgm/mod/olga10 c.crd",);
60 : ("/home/piriyaku/muserk/progs/pgm/mod/olga11 c.crd",);
61 : ("/home/piriyaku/muserk/progs/pgm/mod/olga12 c.crd",);
62 : ("/home/piriyaku/muserk/progs/pgm/mod/olga13 c.crd",);
63 : ("/home/piriyaku/muserk/progs/pgm/mod/ut3 1 c.crd",);
64 : ("/home/piriyaku/muserk/progs/pgm/mod/ut7 1 c.crd",);
65 : ("/home/piriyaku/muserk/progs/pgm/mod/ut13 1 c.crd",);



Appendix E

Scheduling of Tasks onto
Multiprocessors for Optimal
Solutions

E.1 Problem Formulation

A parallel program (algorithm) is represented as a weighted, directed acyclic
graph, Gt = fVt; Etg, where Vt = f vi : i=1,2,...,n g the set of vertices (tasks)
with associated service demand si, and Et = f< vi; vj > : i,j = 1,2,...,n,
i 6= j g the set of directed edges with associated intertask communication
(data) from task Ti to task Tj , imposing the partial order that task Tj can be
executed only after the execution of task Ti. As an example, a task graph
with �ve tasks is given in Fig. E.1. Here, the numbers beside the nodes
represent the service demands (si) of the tasks in the corresponding nodes
and the numbers beside the edges represent the intertask communication
(cij) between the corresponding tasks in the direction of the edge concerned.
Here, task T0 is the start task as it does not have any predecessor. The end
task is task T4 as it does not have any successor.

The multiprocessor system onto which tasks are scheduled, is assumed to
be either homogeneous (all processors have the same service rate, memory
capacity, link capacities, etc) or heterogeneous (the processors may di�er in
service rates). A processor is assumed to perform both computation and
interprocessor communication at the same time like an INMOS transputer.
The multiprocessor system is represented as a weighted undirected graph,
Gp = fVp; Ep g, where Vp = f vq : q = 1,2,...,mg set of processors with
associated service rates �q and Ep =f(p,q) : p,q = 1,2,...,m, p 6= qg set of
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Figure E.1: Task Graph and Processor Graph

links with associated link capacities Lpq. The data communication between
a pair of processors follows the shortest path. The shortest path between
any two processors is the sequence of links (edges) in which the data reaches
the destination processor in the shortest time. Here, the distance between
the processors directly connected is the inverse of the link capacity of the
link between the processors. In other words, the shortest path between any
two processors is the sequence of links in which the total distance is minimal.
The execution of a task on a processor is nonpreemptive. As an example, a
processor graph with three linearly connected processors is given in Fig.E.1.
Here the numbers beside the processors represent the service rates of the
processors and the numbers beside the links represent the capacity of the
link concerned.

The problem of scheduling parallel (concurrent) tasks onto multiproces-
sors can be stated as to �nd an optimal schedule (minimum schedule length),
by allocating each task to one processor and executing them in such a way to
satisfy the precedence constraints among the tasks. As the computational
times of tasks are known a priori with their interdependence and no pre-
emption is allowed, the tasks can be scheduled eÆciently at compile-time,
and the overhead associated with dynamic scheduling can be eliminated.

E.2 The New A
� Based Algorithm

E.2.1 General A� Algorithm

The general A� algorithm used in most of the arti�cial intelligence problems
is given in [52]. In A� algorithm, the state space graph is a tree called search
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tree. Each node in the tree corresponds to the assignment of a particular
task to a speci�c processor. All the internal nodes in the tree correspond
to partial (or incomplete) schedule and all external (leaf) nodes in the tree,
correspond to either pruned node or complete task schedule. The problem
here is to �nd the goal node, a leaf node corresponding to the optimal
schedule. Associated with a node v in the search tree is a cost function
f(v) = g(v) + h�(v), which is an underestimate for the minimum cost of an
assignment, given that it includes the partial schedule. The function g(v)
is the cost of the path from the root to v and the function h�(v) is a lower
bound estimation of the minimum cost function h(v), from the node v to a
leaf node which corresponds to an optimal task assignment in the subtree
rooted at node v.

The algorithm begins by creating a root node representing a null state
(no task scheduled) and placing it in the unexpanded list, which is initially
empty. Let v be a node in the unexpanded list with the minimum value of
cost function f(v) i.e., f(v) � f(u) for all other nodes u in the unexpanded
list. Also, let Ti be the task scheduled at node v. If v is not a goal node,
then it is removed from the unexpanded list and expanded by generating all
possible assignment of ready tasks (tasks whose predecessors have already
been assigned) without violating the precedence constraints. The algorithm
computes the evaluation function f(u) for each node u and inserts u in the
unexpanded list in the order of increasing value of the node evaluation func-
tion. The algorithm terminates when the node to be expanded happens to
be the goal node.

E.2.2 New Techniques for Reducing Space and Time

The A� algorithm described above, can be used to solve the problem of
multiprocessor task scheduling. But the main impediment with the A� al-
gorithm is the requirement of large memory space and computational time.
So, to reduce the space and time requirements of A� algorithm, three new
techniques apart from two more e�ective techniques are developed namely,

1. Processor isomorphism

2. Task isomorphism

3. Node isomorphism

4. Upper bound

5. Lower bound theory.
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Before explaining the new A� algorithm completely, these �ve techniques
which reduce the execution time (computational time) and the memory re-
quirements to arrive at an optimal solution are explained.

Processor Isomorphism

First, the processor isomorphism is de�ned. Two processors P1 and P2 are
isomorphic i�

1. all their physical characteristics viz. processing speed, memory capac-
ity, etc are the same.

2. if there exists r number of k distant neighbor processors for P1, only
the same r number of k distant neighbor processors should be there for
P2. Moreover, pairwise those neighbor processors of P1 and P2 should
be isomorphic.

Take for example a linear chain of processors shown in Fig.E.1 The isomor-
phic groups of processors are (P0; P2), and P1. P0 is not isomorphic to P1

because P0 has a neighbor at a distance of 2, which P1 does not have. P2 is
not isomorphic to P1 because P1 has two neighbors at a distance of 1 whereas
P2 has only one neighbor at a distance of 1. As P1 has two neighbors at a
distance of 1, and no other processor has such two neighbors, it forms its
own group of isomorphic processors. Interestingly, in a homogeneous hy-
percube multiprocessor system of any dimension (n), all the processors are
isomorphic to each other forming only one group. Similarly, in a completely
connected homogeneous multiprocessor system, all the processors form only
one single isomorphic group. In the same vein, a ring of homogeneous mul-
tiprocessor system also forms only one isomorphic group comprising of all
the processors. So, when a start task is allocated to a processor, it will be
allocated to all possible processors in the A� algorithm. Now in the new A�

based algorithm, it is suÆcient if such allocation for the start task is made
with only one member in each of the isomorphic groups as this will not af-
fect optimal solution due to the properties of isomorphic processors. The
reduction this technique gives for various architectures for the best cases is
given in Table E.1.

Task Isomorphism

Two tasks Ti and Tj are said to be isomorphic i�

1. The completion times of Ti and Tj on a processor Pk where �Pk = 1
are the same, i.e., si = sj.
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Architecture No. of isomorphic groups Reduction

Linear array n/2 n/2
Ring 1 n
Completely connected 1 n
Hypercube (n-dim) 1 2n

Table E.1: Reduction Factor due to Isomorphic Groups

2. The static level �i of a task Ti in a task graph Gt is de�ned to be the
sum of the completion time of the task Ti on the fastest processor and
the maximum of the static levels of all its children. Then, the static
levels of Ti and Tj should be the same, i.e., �i = �j.

3. If �i is the set of parent tasks of Ti, i.e., 8Tk 2 �i; < Tk; Ti >2 Et and
if �j is the set of parent t asks of Tj , i.e., 8Tl 2 �j; < Tl; Tj >2 Et,
then �i = �j:

4. 8 Tk 2 �i, cki = ckj:

5. If �i is the set of child tasks of Ti, i.e.,8Tk 2 �i; < Ti; Tk >2 Et and
if �j is the set of child tasks of Tj , i.e.,8Tl 2 �j; < Tj ; Tl >2 Et, then
�i = �j:

6. 8Tk 2 �i, cik = cjk:

Consider the task graph given in Fig.E.1. The tasks T1 and T3 are
isomorphic tasks. The isomorphic groups of tasks here are T0, (T1 and T3),
T2 and T4. Whenever there are ready tasks, it is suÆcient if one task from
each of the task isomorphic groups is assigned, as assigning all the tasks
will only lead to a futile attempt in generating the same optimal solution.
The major meritorious point is that task isomorphism is calculated only
once and has a time complexity of O(n3). It is also easy to verify that task
isomorphism is transitive like processor isomorphism.

Node Isomorphism

Two nodes Ni and Nj in the state space are said to be isomorphic i�

1. Let Ti and Tj be the last tasks assigned in the nodes Ni and Nj,
respectively. Then Ti and Tj should be isomorphic tasks.
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2. Let the last tasks Ti and Tj in the respective nodes Ni and Nj be
assigned to processors Pi and Pj , respectively. Then Pi and Pj should
be isomorphic processors.

3. Let �Ni

kp be the completion time of task Tk on processor Pp in the node

Ni. Then, �
Ni

TiPi
should be equal to �

Nj

TjPj
.

4. Let �Ni be the set of tasks assigned in the node Ni. For each Tk 2
�Ni

6= Ti assigned to the processor Pk in the node Ni, then task Tk
should be assigned only to the respective Pk in the node Nj .

5. 8Tk 2 �Ni
, �Ni

TkPk
should be equal to �

Nj

TkPk
.

Considering the task graph and processor graph in Fig.E.1, assume that
task T0 is assigned to processor P1. Now tasks T1, T2 and T3 are ready.
Then, for example, any one of the following schedules will itself guarantee
an optimal solution, i.e., T1 on P1 or T1 on P3 or T3 on P1 or T3 on P3 as
�Ni

T1P1
= �

Ni+1

T1P3
= �

Ni+2

T3P1
= �

Ni+3

T3P3
= 25 units. So, when a node is isomorphic

to the already existing node, then there is no need for adding the node in
the unexpanded list as in the case of duplication of nodes.

Upper Bound

The logic behind the technique is how to reduce the number of nodes by
�nding them to be futile at the early stage itself. This will be possible
only when some better solution is at hand. Hence, the heuristic algorithm
produces a schedule which is taken as Upper Bound (UB). In the case,
the same heuristics is used as in [126] for the sake of comparison. For
the example in Fig.E.1, the heuristic algorithm produced a schedule with
schedule length of 45 units, which is set as UB. A node whose f(x) value is
greater than UB, need not to be included for expansion as a better solution
is already available . This in turn reduces number of nodes in the subsequent
levels. For the example, graphs given in Fig.E.1, at the node N15, the f(N15)
= 55 which is more than UB, hence the node N15 is not added in the list.

Lower Bound Theory

This is based on the static levels as de�ned earlier. It is well known and
obvious to prove that no optimal schedule can be lesser than the static level
of the start task. It means that one can not parallelize a serial execution.
Such serial execution only contributes to Lower Bound (LB). By the lower
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bound theory, whenever in a node all tasks have been assigned and the f(x)
= LB, the algorithm can be stopped at once. This is very much applicable
in the tracking problem discussed in [126]. When there are multiple start
tasks, the start task having the maximum static level is set to LB.

In the case (Fig.E.1), there is only one task T0 as the start task with
static level of 40 units which is set to LB. Fortunately, the algorithm �nds
the solution at the node N31 and then terminates producing the optimal
solution. The important point to note in the lower bound theory is that
no schedule better than LB can be found, irrespective of the number of
processors and their interconnection structure.

E.2.3 The New Algorithm for Optimal Task Scheduling

The new A� algorithm is explained succinctly as follows. First using a
heuristic algorithm, �nd a schedule and set the schedule length to UB. Find
the static level of each task and set LB as the static level of the start task.
The basic idea behind the algorithm is that given a node (initially empty),
�nd all the ready tasks. Assign one ready task from each task isomorphic
group in every processor excepting for the start task or for the node isomor-
phism. In case of the start task, assign it to only one member from all the
isomorphic groups of processors. With the above explanation, trying all iso-
morphic tasks which are ready is futile and one is suÆcient to guarantee an
optimal solution. In the same vein, isomorphic nodes are also deleted with-
out impeding an optimal solution as the property ensures optimal solution.
Compute the value of the heuristic evaluation function f(c) for each of these
nodes. If the node does not occur earlier and f(c) < UB, add the node in
the search tree as child of the recently expanded node. Check whether the
node is a goal node for reaching a solution and if f(c)=LB, then also stop by
producing the optimal solution. If the node to be expanded is a goal node,
output the schedule as optimal schedule and stop. Otherwise, repeat the
process until no more node could be expanded. Now the new A� algorithm
using the notations as speci�ed earlier is presented. The Optimal Schedule
for example given in Fig.E.1 is shown in Fig.E.2 with the timings in Table
E.2. It is very evident that the new techniques produced the results in lesser
time.
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Figure E.2: The Optimal Schedule for Fig.E.1

Algorithm No. of nodes generated CPU time in sec

A� with h(x)=0 609 0.4
Previous A� 408 0.9
The new A� 31 0.1

Table E.2: Comparison of Previous A� with New A� Algorithms
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Scheduling Iterative
Data-Flow Program Model

A nonterminating, iterative, data-ow program is represented as a weighted,
directed acyclic graph [51], Gt = fVt; Etg, where Vt = f vi : i=1,2,...,n g
the set of vertices (tasks) with associated service demand si, and Et =
f< vi; vj > : i,j = 1,2,...,n, i 6= j g the set of directed edges with associated
intertask communication (data) from task Ti to task Tj , imposing the partial
order that task Tj can be executed only after the execution of task Ti as
in Fig.4.16. The main di�erence between general DFGs(Data-Flow Graphs)
and the signal processing DFGs is the associated delay elements (registers)
in the directed edges [82]. An edge without a register represents precedence
between tasks within iteration. If an edge has n registers, it describes the
precedence between tasks of di�erent (i,n+i) iterations which di�er by n
iterations. Scheduling Precedence Graphs in Systems with Interprocessor
Communication times is discussed in [127].

F.1 The E�ects of IPC on Periodic Multiprocessor
Schedule

The data-ow programs can be scheduled onto multiprocessors in overlapped
or non-overlapped manner with two other methods viz. fully-static and
cyclo-static [82]. A multiprocessor schedule is said to be non-overlapped if
the execution of the (n+ 1)th iteration begins only after the completion of
all the tasks of the (n)th iteration, otherwise it is overlapped. A periodic
schedule is said to be fully-static, if all the iterations of some task are sched-
uled on the same processor. A periodic schedule is said to be cyclo-static, if
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the task Ti is scheduled in processor Vp at time t in the nth iteration, then
in the (n+1)th iteration the task Ti is scheduled in processor V(p+K)modulom

at the time (t+T), where T is the time displacement (iteration period) and
m is the total number of processors and K is the processor displacement.

Unlike in [82], the multiprocessor system onto which tasks are scheduled
is not assumed to be completely connected which in practice may not al-
ways hold. It is assumed to be either homogeneous (all processors have the
same service rate, memory capacity, link capacities, etc) or heterogeneous
(the processors may di�er in service rates). A processor is assumed to per-
form both computation and interprocessor communication at the same time
like an INMOS transputer. The multiprocessor system is represented as a
weighted undirected graph, Gp = fVp; Ep g, where Vp = f vq : q = 1,2,...,mg
set of processors with associated service rates �q and Ep =f (p,q) : p,q =
1,2,...,m, p 6= qg set of links with associated link capacities Lpq. The data
communication between a pair of processors follows the shortest path as
de�ned in [51]. The execution of a task on a processor is nonpreemptive.

Here, the iteration period is considered as the parameter as it plays a
vital role in the multiprocessor periodic schedules especially when IPC is in-
cluded. An important point to note is that if iteration period is considered
as de�ned earlier, it will not suÆce to account for inter-iteration precedences
more speci�cally when IPC is non-negligible. Hence, when IPC is included
in the multiprocessor scheduling, the average iteration period is taken into
consideration as it represents the steady state in the nonterminating pro-
grams. The DFG considered here is same as in Fig.4.16 with the processor
graph.

F.2 The New A
� Algorithm for Optimal Schedul-

ing of DFGs

F.2.1 New Techniques for Reducing Space and Time

The A� algorithm described [52], [51], can be used to solve the problem of
multiprocessor task scheduling. But the main impediment with the A� algo-
rithm is the requirement of large memory space and computational time. So,
to reduce the space and time requirements of A� algorithm, a new technique
Branch Join Path isomorphism is developed.
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Branch Join Path Isomorphism

This isomorphism is well pronounced in DFGs especially in digital signal
processing applications. However, the isomorphism is only for homogeneous
multiprocessor systems. The branch join path (BJP) isomorphism is de�ned
as follows,

1. In a DFG, consider a task having 2 children. say c1 and d1. There can
be more than 2 children but consider them in pairs.

2. Now, let c1 has only one child c2 and c2 has only one child c3 like this
till some cx for some positive x > 2.

3. Similarly, let d1 has only one child d2 and d2 has only one child d3 like
this till some dy for some positive y > 2.

4. Let the tasks cx and dy be same.

5. Let sum-c be the sum of the execution times of c tasks and sum-d be
for d tasks.

6. If sum-c = sum-d, then it is suÆcient that either the search is tried
with c tasks or with d tasks, preferable with c tasks when x < y or
vice versa.

In the case for Fig.4.16 with m = 2 after 2-unfolding, there are task
T0(A1) and task T4(A2) as the start tasks with static level of 4 units which
can be considered as children of a �ctitious node. It is logical to consider
only in the case when the tasks are start tasks. Similarly, the tasks T3(D1)
and T7(D2) are the end tasks which can be considered as the parents of
another �ctitious task. It is also logical to consider only in the case when
the tasks are end tasks.

Now, BJP isomorphism exists as sum-c = sum-d = 4 and all other con-
ditions also are ful�lled. Hence it is suÆcient to try with one branch itself
to get the optimal schedule. In fact, when x = y = 2, this reduces to node
isomorphism. Hence, the original DFG itself can be modi�ed so that there
will be less number of tasks to schedule at the same time optimality is main-
tained. The only modi�cation required is to merge all nodes c1, c2, ..., cx�1
into one node and similarly for d tasks. It is interesting to note that even
when there is only one branch, one can merge these type of tasks forming
a chain into a single task thereby not only reducing the number of tasks
to be scheduled but also some of the isomorphisms previously mentioned to
exhibit voluntarily. This portion of algorithm is of O(n2) complexity only.
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Arch Standard A� Isomorphisms BJP Isomorphism

Nodes CPU Time Nodes CPU Time Nodes CPU Time

l2 747 5.5 22 0.12 3 0.11
c3 2896 38.15 32 0.13 4 0.11
h2 11464 346.7 42 0.14 5 0.12
l4 11464 346.6 44 0.14 6 0.12

Table F.1: Comparison of Previous A� with New A� Algorithms for DFG

F.3 Performance Evaluation

For the DFG in Fig.4.16 with the schematic diagram of linearly connected ln

with n processors along with other sets of di�erent processor architectures
such as completely connected with n processors cn and hypercube hn of
dimension n, the number of nodes generated by A� Algorithms are compared
in Tab.F.1. It is very clear that BJP algorithm performs better than the
other examples.
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