On Recognition of Group of Human Beings in
Images with Navigation Strategies

Using Efficient Matching Algorithms
with Parallelization

Von der Fakultaet Informatik, Elektrotechnik und
Informationstechnik, der Universitaet Stuttgart
zur Erlangung der Wuerde eines Doktors der
Naturwissenschaften (Dr.rer.nat) genehmigte Abhandlung

Vorgelegt von

Douglas Antony Louis PIRIYAKUMAR

aus Paramakudi, Tamil Nadu, Indien

Hauptberichter : Prof.Dr.Paul Levi
Mitberichter : Prof.Dr.C.Siva Ram Murthy
Mitberichter : Dr. Kenji Hanakata

Tag der muendlichen Pruefung :
24.7.2003

Institut fuer Parallelle und Verteilte Systeme der
Universitaet Stuttgart

2003

This thesis is dedicated to my paternal aunt Panchavathy whose
discipline and sacrifice improvised my life

ACKNOWLEDGEMENTS i

Acknowledgments

My doctoral work was pursued at the Institute of Parallel and Dis-
tributed Systems (formerly known as Parallel and High-performance Sys-
tems) in the department of Computer Science, Electrical Engineering and
Information Technology, University of Stuttgart, Stuttgart in Germany.
Without GAES (German Academic Exchange Service - in German DAAD,
Deutscher Akademischer Austauschdienst) this study would not be possible.
My gratitude will remain ever with DAAD for the fellowship from June 1996
to September 1999.

First of all, I must thank Prof.Paul Levi for his acceptance as the guide
for my doctoral study and for his critical comments without mincing with
words apart from his financial support from October 1999 till the last date.
The amount of academic freedom I enjoyed through him stands as a testi-
mony of german higher education system. His friendly suggestions to accli-
matize with german system outside the campus were really helpful in the
early days. I thank Prof.C.Siva Ram Murthy, my guide in IIT Madras for
his acceptance as joint referee. His valuable comments are useful from the
beginning. I also thank Dr.Kenji Hanakata for being as second joint ref-
eree. His continuing criticism with philosophical background improved my
thoughts at various stages.

For the innumerable assistance and suggestions, I am thankful to the for-
mer colleagues especially, Prof. Thomas Braeunl, Dr. Nobert Oswald, Niels
Mache, Frank Herrman, Dr. Matthias Muscholl, Michael Becht and Dietmar
Lippold, and the present colleagues Viktor Avrutin, Thorsten Buchheim,
Guenter Hetzel, Georg Kindermann, Olga Kornienko, Serguei Kornienko,
Reinhard Lafrenz, Dr. Michael Schanz, Frank Schreiber, Moritz Schule,
Monika Tepfenhart, Georg Wackenhut and Peter Burger. Special thanks to
Olga, Serguei and Monika for their help and participation in taking images
for the experiments. For the timely and tireless help, I thank our secretary
Ms. Ute Graeter.

The useful discussions which I held with Prof. Egbert Lehmann, Dr.
Rolf Rabenseifner, Prof. Walter Knoedel and Prof. Ulrich Hertrampf clar-
ified several of the fundamental issues associated with my doctoral study.
I thank also Prof. Klaus Lagally and Prof.Kurt Rothermal for their rele-
vant courses. For the friendly advices and assistances, I thank Dr. Kenji
Hanakata, Dr. Holger Petersen, Bernd Holzmueller and Hartmut keller. For
those who gave flavour to student life in Allmandring 20c, T thank specially
Marcel, Juergen, Daniela, Jose Daniel, Demian and Selvin. My regards will
remain with families of Dr.Kenji Hanakata, Josef Spanniger, Otto Weiss,
Kurt Weizanegar and Stephan Machmer.

ii ACKNOWLEDGEMENTS

No words could adequately portray the joyful days I had with my DAAD
friends, Prof.S.V.Joga Rao, Dr. P. Jaisankar, Dr. R. Purvaja, Dr. A.M.
Sembian, Kamal Sharma, V. Ashok Kumar, Dr.S. Hazra, Dr. Balaram and
their families. For the cherishable reminiscences and their timely supports,
I thank my indian friends in stuttgart Fr. Francis Xavier, Fr. Jeyaraj
Boniface, Fr. Denis Ponniah, Prof. K.P. Karunakaran, Prof.Y.G.Srinivasa,
Shri.S. Raghunath, Mr.Miranda, Dr. Kripesh, Dr.V.S.Srinivasan,
N.Manickam, Dr. R. Jayaganthan, N. Sivakumar, R. Manohar, S. Bipin, Dr.
Niraimathi, R. Ramakrishnan, Dr. B. Koushik, J. Kartik, P. Prasannaku-
mar, Dr. S. Shashi, J. Surabin, N. Srihari, K.Sameer, Dr. Amin Igbal, M.
Anand, C. Ramesh, Dr.R.Sarathi, R.Magesh, Dr.Tamil Selvan, A.P. Saha-
yaraj, Dr.N. Sivakumar, Dr. R.Subashri, and many others who still remain
in my tranquility with their families along with my classmates S. Pacha-
iammal, R.S. Ramesh and N. Ramesh.

Consistent and timely encouragements would not be available to
me without my former colleagues in Pondicherry University, Prof.
S.Kuppuswami, Prof. S. Gunasekaran, Prof. K.S.Mathew, Prof.
P.Jothilingam and the faculties in computer science and mathematics
departments especially M.S.Ashok, V. Prasanna, M. Sundaramohan, N.
Amoudha, Dr. K .M . Tamizhmani, Dr. Tamazharasi, Dr. M.Subbiah and
Dr. V.Muruganantham. To my friend and colleague Dr. R.Subramanian to
whom I owe which I may not able to repay, my sincere brotherly affection
will continue. For standing with me in the tempest time in Pondicherry
university, I profoundly thank M. Velayudham. I thank also Dr. Paul, M.
Shanmugasundram and K.R. Ramesh.

In my opinion, success starts with the family. I must thank God for
such a blessing. Uniquely most of my family members were my teachers.
From my father Late.J.Douglas Thangadurai and my mother Mary Alan-
garam, [learned my english and mathematics respectively which helped me
to top in every one of my academic achievements. I thank my paternal uncle
J.E.Chelladurai for excellence in english grammar which I follow. For the
love and affectionate care, I thank my paternal aunts Late.Jeyaseeli, Late.
Mara, Late. Margaret, Kamala Chelladurai and Sebastinal Florence and
my uncle R.Anthonisamy and aunt Maria Louis for their timely assistance.
With the love and affection of my brothers and sisters, Pascal Jeevaraj, Irene
Punitha, John Barnabas and Arul Mariapackiam, I am able to lead my life
contented. Finally, without the cooperation and love of my affectionate wife
Teresa and my sweetest daughter Ursula, I could have not accomplished the
strenuous tasks peacefully during the final stages of this study.

Contents

1 Introduction

1.1
1.2
1.3

1.4

1.5

2.1

2.3

General Overview« o o e e e

Image Processing
Object Recognition

1.3.1
1.3.2

Biological Vision Systems
Why is Object Recognition Complex?

Related Works

1.4.1
1.4.2

Typical Assumptions
Major Three Strategies for Looking at People

Salient Features of My Approach

1.5.1

The investigated Problem

Matching based on Graph Theory

General Matching L oL
2.2 Modified A* strategy for Graph Matching

22.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9

Previous Works Lo oL
The Matching Problem
The New A* Based Algorithm for Graph Matching . .
New Techniques for Reducing Space and Time ..
The Algorithm for Optimal Graph Matching
The Algorithms Developed with Variations
Result and Analysis
Analysis of the Results
Conclusion L

Symmetry based Graph Matching

2.3.1
2.3.2
2.3.3
234

Previous Works L.
The Symmetry Problem
The Neighbour Isomorphism Definition
Lemmas based on Neighbour Isomorphism

iii

v

CONTENTS

2.3.5 Analysisof theresult. 24
2.3.6 Conclusion 27
2.4 New Isomorphism based Matching 28
24.1 PreviousWorks oL 28
2.4.2 Graph Matching and Graph Isomorphism 28
2.4.3 Graph Matching Algorithm using NI 30
2.4.4 Snapshots of the Algorithm 30
2.4.5 Time Complexity 31
2.4.6 Experimental results and Analysis 32
247 Future Works oo 37
2.4.8 Conclusion oo s 37
2.5 Bharathanatyam Postures - Posture Matching 37
2.5.1 Bharathanatyam Postures 37
2.5.2 The Combined Algorithm 38
2.5.3 Results and Analysis 38
Chamfering based Matching 45
3.1 Basic Concepts 45
3.1.1 Segmentation with Thresholding 45
3.1.2 Distance Functions 46
3.2 Distance Transformation 46
3.3 Chamfering3-4 47
3.4 Matching using Chamfering 48
3.5 Results and Analysis 48
Hausdorff Method for Matching 57
4.1 Definition of Hausdorff Method 57
4.1.1 Image Matching 58
4.1.2 Salient Features of Hausdorff Method 59
4.2 The Conventional Hausdorff Measures 59
4.3 Efficient Implementation of Hausdorff Method 60
4.3.1 Efficient Computation of Distances 60
4.4 Algorithmic Investigations on Hausdorff Method 65
4.4.1 Image Matching 1-1 65
4.4.2 Image Matching I-n 66
4.4.3 Image Matchingn-1 66
4.4.4 Image Matchingn-n 67
4.4.5 Critical Investigation of Hausdorff Distance 67
4.4.6 Parallel Algorithm for Image Matching 76

4.4.7 Results and Analysis 78

CONTENTS v

4.4.8 General Scheduling Aspects for Optimal Solutions in

Computer Vision 79

4.5 Comparison of Hausdorff and Chamfering 82
5 Human Being Recognition 83
5.1 Fundamental Complexities involved in HBR 83
5.1.1 Description of Human Being 83
5.1.2 Size of the Human Being 84
5.1.3 Segmenting the Region of Interest(Human Being) . . . 84
51.4 Occlusion o o 84
5.1.5 Sufficient Models 85
5.1.6 Threshold Value 88

5.2 Recognition of Group of Human Beings 88
5.2.1 Problem due to Multiple Occurrences 88
5.2.2 Problem due to Movements 88
5.2.3 Problem in Segmentation 89

5.3 Results and Analysis, 89
5.3.1 Ontological Description for Sequence 1 89
5.3.2 Ontological Description for Sequence 2 96
5.3.3 Ontological Description for Sequence 3 96

5.4 Fusion Architecture. oL 97
5.4.1 Basic Concept 97
5.4.2 Fusion Architecture 99
5.4.3 Results and Analysis of Parallel Implementations . . . 99
5.4.4 Salient Advantages in Fusion Architecture 117

5.5 Industrial Applications Lo 118
5.6 Robot Traversal in Known Environments 118
5.6.1 The Formulation of the Problem 119
5.6.2 The Parallel Algorithm 119
5.6.3 The Salient Features of the Algorithm 120
5.6.4 The Snap Shots of the Algorithm 121
5.6.5 The Proof of the Algorithm 122

5.7 Robot Traversal in Unknown Environments 127

5.7.1 The Formulation of the Problem with Assumptions . . 127
5.7.2 Three New Techniques to Reduce the Search Efforts

in A* Algorithm 128
5.7.3 The Improvised A* Algorithm 130
5.7.4 The Algorithm for Finding the Optimal Path 132
5.7.5 Analysis of the Result and Future Work 133

5.8 Ants Colony Optimization 136

vi

\]

Q =& »

CONTENTS

5.8.1 General TSP and ACO Approach 137
5.8.2 The New Parallel Algorithm for ACO 137
5.8.3 Outline of the ACO Parallel Program in MPT 138
5.8.4 Parallel Implementation on Cray T3E 139
5.8.5 Parallelism in ACO Algorithm 139
5.8.6 Experimental Results and Analysis 140
5.8.7 Future Extensions 143
Model, Matching and Indexing 145
6.1 Models. 145
6.1.1 Occlusion Models 145
6.1.2 Generic Models o000 145
6.1.3 BasisModels 0. 146
6.2 Matching 146
6.2.1 Matching Problem with Scaling 146
6.2.2 A New Matching Measure 147
6.3 Indexing 148
6.3.1 Problems of Outdoor environment compared to Image
Databases 148
6.3.2 Segmenting Problems, 148
6.3.3 Possible Indexing Strategies 148
6.4 Backward Recognition of Human Groups 149
Conclusion 153
Cray T3E 155
Message Passing Interface 157
File Interoperability in MPI 159
C.1 Data Access Routines 160
C.2 Data Representations 160
C.3 Reading Integer Data from ASCII File with MPTI/O 160
C.4 Optimizing the Parallel I/O 161
C.5 Results and Analysis, 162
C.6 Conclusion 164
Indices of the Images and Models 165
D.1 Typical Image Indices 165

D.2 Typical Model Indices 166

CONTENTS vii

E Scheduling of Tasks 169
E.1 Problem Formulation 169
E.2 The New A* Based Algorithm 170

E.2.1 General A* Algorithm 170
E.2.2 New Techniques for Reducing Space and Time 171
E.2.3 The New Algorithm for Optimal Task Scheduling . . . 175

F Scheduling of Iterative DFG 177
F.1 The Effects of IPC on Periodic Multiprocessor Schedule . . . 177
F.2 The New A* Algorithm for DFG 178

F.2.1 New Techniques for Reducing Space and Time 178
F.3 Performance Evaluation 180
G List of Publications 181

H Biography 183

viii CONTENTS

List of Figures

1.1
1.2

2.1
2.2

2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13

2.14
2.15
2.16
2.17

3.1
3.2
3.3
3.4
3.5

A Generalized Image Processing System
A simple sensor and recognizer system

The Search Tree of A* Algorithm for Fig.2.2.
Recognition of Objects. (a) a real life Objects (b) a corre-

sponding Graphs Lo oo
One level regular Objects
Two level regular Objects with nailing
Two level regular Objects with double nailing
Three level regular Objects with nailing
Two level regular Objects with embedding
Three Dimensional regular Objects
Nonregular Objects
The given two graphs representing Wrenches
The isomorphic groups ¢g; and g4, g3 and gy, g2 and g, in

Wrenches with matching vertices
Examples for Graph Matching using Neighbour Isomorphism
The Combined Algorithm for Matching Bharathanatyam Pos-

tures . . . L. oL
Bharathanatyam Postures Set 1
Bharathanatyam Postures Set 2
Bharathanatyam Postures Set 3
Bharathanatyam Postures Set 4 with respective Graph Rep-

resentations Lo Lo

(a) Diamond (b) Square Distances
An image in a robotic field oo
An image near city center in Rothenburg ob der Tauber . . .
An image of students cross the road before the institute . . .
An image of a dangerous crossing over the rails

X

3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3

4.4
4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1

5.2

5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10

LIST OF FIGURES

An image of a busy cash counter inside a shopping complex . 51
An image of a night shot near my house 52
Some of the Models with Corners 53
The edge image of Fig.3.4, 54
The Distance transformed image of Fig.3.9 54
Two sets of points to be matched 58
The Recognized Human being in the robotic field 61
The Recognized Human being near city center in Rothenburg

obder Tauber o o 62
The Recognized Human being on the road before the institute 62
The Recognized Human being in the dangerous crossing over

therails o 63
The Recognized Human being in the busy cash counter inside

a shopping complex oo 64
The Recognized Human being in the night shot near my house 64
Different Postures 1pl-1p4 69
Different Postures 1p5-1p8 70
Different Postures 3p1-3p4 71
Different Postures 3p5-3p8 72
Different Postures of Different Sizes. 74
Avathar Manifestations 75
A sampleImage. L. 78
A sample Model Lo 78
Data-Flow Graph with Linearly Connected Multiprocessor . . 81

Some examples of hand drawn Models of the Human Beings

S 11 86
Some examples of hand drawn Models of the Human Beings

-Set 2 L 87
Sequence 1 Frame Number 1,23 and 4 90
Sequence 2 Frame Number 1,2 and 3 91
Sequence 3 Frame Number land 2 92
Human beings in Sequence 1 frame Number 1,2,3 and 4 . .. 93
Human beings in Sequence 2 frame Number 1,2 and 3 94
Human beings in Sequence 3 frame Number 1 and 2 95
Parallel Implementation of Hausdorff for Occlusion 98

Fusion Architecture for Recognizing Human beings 100

LIST OF FIGURES

5.11 Parallel Implementation of Fusion Architecture (a) No Com-
munication (b) With Communication (3) Difference for Set 1
(4) Difference for Set 2 oL
5.12 Parallel ITmplementation of Fusion Architecture for 1 Image
with Multiple Models
5.13 Sequence of Images from Moehringen Tram station - Partl
5.14 Sequence of Images from Moehringen Tram station - Part2
5.15 Sequence of Images from Moehringen Tram station - Part3
5.16 Identified Human beings in Images from Moehringen Tram
station - Partl oo 0oL
5.17 Identified Human beings in Images from Moehringen Tram
station - Part2 oo oo
5.18 Identified Human beings in Images from Moehringen Tram
station - Part3 oo
5.19 Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 1
5.20 Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 2
5.21 Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 3
5.22 Identified Human beings in Images from City Centre in
Stuttgart - Part 1. oL
5.23 Identified Human beings in Images from City Centre in
Stuttgart - Part 2. L oo
5.24 Identified Human beings in Images from City Centre in
Stuttgart - Part 3. oo
5.25 Identified Human beings in Images from City Centre in
Stuttgart - Part 4. Lo oL
5.26 Identified Human beings in Images from City Centre in
Stuttgart - Part 5.o oo
5.27 Robot in given Environment
5.28 With the narrow gaps closed
5.29 Lines between Initial and Final Positions.
5.30 Lines not crossing Obstacles
5.31 The Final Connectivity Graph
5.32 The Visibility Graph
5.33 The shortest Path between Initial and Final Positions
5.34 Robot in Unknown Environments Examples 1 -6
5.35 Parallel, Single Pcr, Communication and Idle Time Analysis
with 6 Algorithms

X1

xil

6.1

6.2

6.3

E.1
E.2

LIST OF FIGURES

Identified Human Groups in Images from Image Understand-

ingGroup 1 150
Identified Human Groups in Images from Image Understand-
ing Group 2o 151
Identified Human Groups in Images from Image Understand-
ingGroup 3 152
Task Graph and Processor Graph 170

The Optimal Schedule for FigE.1. 176

List of Tables

1.1

2.1
2.2

2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Comparison of Different Recognition Systems in Field of
Looking at People. L. 7

Comparison of the variations of A* with permutation Algorithm 17
Comparison of the variations of A* and permutation Algo-

rithms for lesser number of nodes 20
Results of the Graph Matching Algorithm for Cups 20
The Function N of Neighbour Isomorphism for the vertex

numbered 1 in the first figure of Fig.24 23
Graph Matching with NI. 32
Graph Matching with NI for Random Graphs 32
Graph Matching with NI for Wrenches 32
Matched Vertices of DNA Molecules and Human faces with NI 33
Bharathanatyam Posture Matching (input from Database) . . 44

Bharathanatyam Posture Matching (input not from Database) 44

Image Matching with Chamfering for Human being Recognition 52
Parallel Time of Chamfering for Human Being Recognition . 52

Sequential Times of Hausdorff with and without Distance

Transform 61
Sequential Times of Hausdorff Method for 1-1 exact position 65
Sequential Times of Hausdorff Method for 1-1 No Match Cases 66
Sequential Times of Hausdorff Method for 1-n exact position 66
Sequential Times of Hausdorff Method for n-1 exact position 67

Sequential Times of Hausdorff Method forn-n 67
Hausdorff Distance h(A,B) for Setl 68
Hausdorff Distance h(A,B) for Set2 68
Hausdorff Distance h(A,B) for similar ones in Setl and Set2 . 73
Hausdorff Distance h(A,B) for Different Sizes 73

xiii

Xiv

4.11
4.12
4.13

4.14

5.1
5.2

9.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11

C.1
C.2
C.3

E.1

E.2

F.1

LIST OF TABLES

Parallel Time of Hausdorff without Distance Transform . .. 77
Parallel Time of Hausdorff with Distance Transform 7
Image Matching Parallelization 78
Comparison between Hausdorff and Chamfering 82
Computation Times of Different Algorithms 96
Parallel Computation Times of Different Algorithms 96
Parallel Implementation of Fusion Architecture for m Images

with Multiple Models 102
Parallel Complexity of the Algorithm 120
The general A* Algorithm 133
The Improvised A* Algorithm 134
Results based on varying Iterations 142
Results based on varying Ants 142
Results based on varying Interval 142
Results based on varying Rho 142
Results based on varying Alpha and Beta 142
Parallelization scheme of I/O and computation. 161
I/O time per process for 4 images and 4 models 164
images read + models read + models exchanged 164
Reduction Factor due to Isomorphic Groups 173
Comparison of Previous A* with New A* Algorithms 176

Comparison of Previous A* with New A* Algorithms for DFG 180

NOTATION XV

Notations

G - Graph(V,E)

V - Set of Vertices

v; - i Vertex in V

E - Set of Edges

ei; - Edge between v; and v;

< v;,vj > - Directed Edge from v; to v;

c;j - Cost involved in matching v; to v;

f*(z) - Cost of Node x in A* Algorithm

g*(z) - Cost of getting Node x from the start node in A* Algorithm
h*(x) - The Lower Bound estimation of the cost at Node x in A* Algorithm
P; - The regular polygon with i vertices (in images)

v! - jt vertex in P

gi - Neighbour Isomorphic Group

L; - Line of Symmetry

h; - Set of vertices divided by L;

0; - Threshold grey value

¢ - Distance Function

a;;j - Binary valued Image

ai-“j - a;; at Eth iteration

A B - Sets of points

H(A,B) - Hausdorff Distance between A and B

h(A,B) - Directed Hausdorff Distance of A from B

||...|| - Distance Norm(DN)

dp(a) - Minimum Distance value at a point a to the point set B
r - the number of Images

q - the number of Models

p - the number of processors

R(i,j) - Read i** Tmage and j** Model

¢(i,j) - Find the matching positions of Model j in Image i
r(k) - Exchange Model k with the neighbouring processor
T; - Task i

Py, - Processor k (in Scheduling of Tasks)

pp, - Service rate or speed of the processor P

A; - The Static Level of T;

7; - The set of Parent Tasks of T;

71; - The set of Children Tasks of T;

C%ijk - The Completion time of Task T} on P in node N;
'y, - Set of Tasks assigned in node NV;

xvi NOTATION

ZUSAMMENFASSUNG xvil

Zusammenfassung
Einleitung

Mit leistungsfaehiger Prozessoren und Bildsensoren wurde die Bildver-
arbeitung zu einem realisierbaren und nuetzlichen Verfahren. Starke Inter-
essen sind mit Bildverarbeitung fuer die hohen Anforderungen des neuen
Jahrtausends verbunden. Das zentrale Problem der kuenstlichen Intelligenz
(Nachahmung menschlicher Faehigkeiten oder Turing Tests) wird weit un-
tersucht. Das Sehvermoegen ist eine derjenigen menschlichen Faehigkeiten,
deren Nachahmung durch Kameras eine echte Herausforderung fuer die
Computerwissenschaftler darstellt.

Um das Computersystem intelligenter zu machen richten die Anstren-
gungen richten sich so dass es die von der Kamera erfassten Bilder ”ver-
steht”. Neben der Nachahmung der Sehfaechigkeit muessen solche Systeme
Bilder verarbeiten koennen, um die Effizienz zu steigern. In Umgebungen
wo Menschen und Maschinen zusammenarbeiten, darf die Maschinen den
Menschen keinen Schaden zufuegen. In zahlreichen industriellen Umgebun-
gen bewegen sich Industrieroboter bei ihrer Arbeit in der Nachbarschaft
von Menschen. Eine bessere Aufbereitung der erfassten Bildinformationen
ist notwendig um die schwere Schaeden zu vermeiden bei der Steuerung von
Maschinen durch Menschen, wie z.B. durch Fahrer Assistenzsysteme in Au-
tomobilen. Das Erkennen von Menschen, um deren Gefaehrdung in solchen
Umgebungen zu verhindern, etablierte sich als neuer Fachbereich des com-
putergestuetzten Sehens (Computer Vision) und wird teilweise als ” Looking
at People” (Ausschau nach Menschen) bezeichnet.

Das Erkennen von Menschen in Bildern von einaeugigen (monocular)
Kameras ohne die ueblichen Einschraenkungen ist das Ziel der vorliegenden
Arbeit. Das zuverlaessige Hausdorff Matching Verfahren wird erweitert,
so dass Menschen anhand von vielfaeltigen Modellen und mittels veraen-
derter Abstandsmessungen erkannt werden. Da die Strategie der Vereini-
gung mehrerer Algorithmen, um trotz Okklusionen bessere Ergebnisse zu
erzielen, im Grundsatz bereits parallel ist, lieferte die parallele Implemen-
tierung des Systems auf einem Cray 3TE richtige Ergebnisse in wesentlich
kuerzerer Rechenzeit.

Allgemeines Matching Verfahren

Ob zwei abstrakte Darstellungen (zumindest teilweisen) gleich sind, ist
das Grundproblem fuer die Entwicklung von Kuenstliche Intelligenz Sys-
temen mit menschlichen Faehigkeiten (computergestuetzten Sehen). Auf-
grund ihrer Leistungsfaehigkeit werden fuer die abstrakte Objekt Darstel-
lung oft Graphen benutzt. Parametrische oder syntaktische Vorge-
hensweisen in entsprechender Komplexitaet findet man in der Literatur.

xviil ZUSAMMENFASSUNG

Bei der Mustererkennung und beim maschinellen Sehen werden Graphen als
Darstellungen der a priori bekannten Objekt-Modelle und der zu erkennen-
den, unbekannten Objekte benutzt. Bei dieser Darstellungsform der Ob-
jekte wird das Problem des Erkennens zu einem Problem der Graphen Ue-
bereinstimmung (Graph Matching). Fuer das Graph Matching werden die
beiden wichtigsten Verfahren, die Verzweigungs- und Abgrenzungsmethode
(Branch and Bound), sowie nichtlineare Optimierungsverfahren in grossem
Umfang eingesetzt, da die Komplexitaet NP ist. Obwohl auch andere Meth-
oden vorwiegen, werden das Matching mit Graphen Isomorphie oder mit
Raumzustands Verfahren (State Space), wie etwa die A* Strategie, fuer
rechnerintensive exakte oder optimale Loesungen vorgezogen. Auch fuer
das fehlertolerante bzw. das fehlerkorrigierende Graph Matching werden
diese Verfahren eingesetzt. Die vorliegende Arbeit schlaegt Verfahren vor,
um effizientes Graph Matching mit weniger Rechenzeit zu erreichen.
Definition der Nachbar Isomorphie(Neighbour Isomorphism)

Die Nachbar Isomorphie zwischen zwei Knoten v; und vy in einem
Graphen G ist wie folgt definiert:

v1 und v sind Nachbar Isomorph, wenn es eine Anzahl k von Nachbarn
im Abstand r fuer v in G gibt, so dass es exakt eine Anzahl k von Nachbarn
im Abstand r fuer v9 in G; gibt. (Wenn der Graph gewichtet wurde, so
sollten die entsprechenden Knoten paarweise Nachbar isomorph sein).

Sei G der Graph mit der Menge V Knoten und der Menge E Kanten.
gi soll die Menge Knoten bezeichnen, die Nachbar isomorph sind. Offen-
sichtlich ist dann g; C V. Es sei V;,V; € V.

Vi,Vj € gr wenn N(Vj,l,g5) = r und N(Vj,l,9,) = VI = 1, ..,
Durchmesser von G, wobei N(V;,l,g,) = r bedeutet, dass es eine Anzahl
r von Nachbarn von g, mit dem Abstand 1 gibt.

Eigenschaften der Nachbar Isomorphie

1. Es seien g, und g, zwei NI Gruppen in G;. Dann schliessen sie sich
gegenseitig aus. D.h. v; € gp, dann v; € g, und umgekehrt.

2. Wenn g, eine NI Gruppe in G; ist und g, eine NI Gruppe in G;
ist und 7 # j, dann sind g, und g, aehnlich, wenn v; € g, und v; € gq,
N(vi,l,9p) = r und N(v;,l,94) = 7.Vl = 1, ..., Durchmesser von G im
entsprechenden Graphen.

3. NI ist invariant zu Translationen, Rotationen und Skalierungen (mit
einheitlichen Skalierungsfaktoren).

Bharathanatyam Tanzstellungen

Einer der aeltesten klassischen Taenze Indiens ist Bharathanatyam und
besteht aus genau festgelegten Bewegungen und Tanzstellungen. Die kom-
binierte Methode von der Nachbar Isomorphie und den verbesserten A* Al-

ZUSAMMENFASSUNG Xix

gorithmus mit Bharathanatyam Tanzstellungen als Datenbank findet fuer
eine bestimmte Tanzstellung als Eingabe die richtige Uebereinstimmung.
Bei Eingabe einer anderen Stellung, die nicht in der Datenbank enthalten
ist, findet der Algorithmus den am aehnlichsten aussehenden Stellung(en).
Abstands Transformation - Chamfering

Die Eigenschaften des Bildes sind die wichtigste Elemente und muessen
eindeutig von den Nicht-Eigenschaften des Bildes unterschieden werden. Als
Eigenschaften koennen Ecken, Kanten, helle Punkte oder Bereiche mit einer
besonderen Textur in Frage kommen. Um die Ecken und Kanten im Bild
zu erkennen gibt es zahlreiche Algorithmen, wie etwa SUSAN Filter. In
unserem Verfahren werden Kanten als FEigenschaft gewertet. Das Ziel dabei
ist, jeden Bildpunkt (Pixel) einer Nicht-Kante (Nicht-Eigenschaft) als Ab-
standsmass zum naechsten Kanten-Pixel (einer Eigenschaft) zu erhalten.
Offensichtlich erhalten Kanten-Pixel den Wert Null. Wenn die echte euk-
lidische Abstaenden berechent werden, ist das nicht nur sehr rechenintensiv,
sondern braucht auch grossen Speicherplatz. Die Berechnung der Abstaende
erfordert daher ein gutes Naeherungsverfahren. Die Abstands Transforma-
tion konvertiert ein binaeres Bild als ein Abstandsbild. Das binaeres Bild
hat den Grauwert als 0 an den Eigenschaftspunkten und Maximalwert an
den anderen Punkten. Danach kann jede der Abstandsfunktionen fuer die
Berechnung der Abstaende benutzt werden.

Durch Propagation von lokalen Abstaenden werden die globalen Ab-
staende im Bild, d.h. den Abstaenden zwischen benachbarten Pixeln des
Bildes, angenaehert. Bei diesem Verfahren der Abstands Transforma-
tion wird die lokale Operation wiederholt, um die naheliegenden globalen
Abstaende zu erhalten. Diese Propagation kann sequentiell oder paral-
lel ablaufen. Eine solche sequentielle Abstands Transformation wird als
”Chamfering” bezeichnet. Eine 3 * 3 Nachbarschaft fuer die lokalen Ab-
staende wird benutzt. Die Chamfering 3-4 Methode ergibt im Vergleich zum
euklidischen Abstand einen maximalen Unterschied von 8 Abstaenden aus-
gehend von durch Rauschen ungenau gewordenen Kanten in realen Bildern
ist reine Zeitverschwendung.

Matching mittels Chamfering

Nach Abschluss der Abstands Transformation und nach Erzeugung des
Abstandsbildes, kann das Modell verglichen werden. Beim Modell bilden alle
Punkte (Pixel), die eine Eigenschaft darstellen (Kanten-Punkte) eine Liste
von Koordinatenpaaren, wobei sich jedes Zahlenpaar aus der Spalten- bzw.
Zeilennummer des betreffenden Kanten-Pixels zusammensetzt. Das Modell
wird an jedem moeglichen Punkt dem Bild ueberlagert. In jedem einzel-
nen Fall wird dabei das Matching Mass aus der Liste der Koordinatenpaare

XX ZUSAMMENFASSUNG

(nach einer Translation entsprechend dem aktuellen Ueberlagerungspunkt)
berechnet. Handelt es sich um eine vollstaendige Uebereinstimmung (Per-
fect Match) muss das Matching Mass logischerweise Null betragen. Das
Matching Mass in Chamfering ist ein quadratischer Mittelwert (RMS).

Bei weniger komplizierten und auch bei hochkomplexen Faellen funktion-
ierte der Algorithmus gut. Der parallele Algorithmus funktionierte eben-
falls zufriedenstellend, erbrachte jedoch wenig Verbesserungen bezueglich
der Rechenzeit. Die Schwankungen bei der Rechenzeit haengen vor allem
von der Bildgroesse ab, sowie von der Groesse der Modelle und der Lage
im Bild, an der ein Bestandteil des Modells positiv vorliegt. Auch im Falle
des parallelen Algorithmus ergibt sich keine groessere Zeitersparnis, da die
Prozessoren jedes Mal, wenn sie einen Modell Bestandteil im Bild finden,
Daten untereinander austauschen muessen, damit die anderen Prozessoren
solche Bereiche vermeiden koennen. Durch Hardware Zwaenge muessen
saemtliche Prozessoren fuer einen Datenaustausch zwischen ihnen synchro-
nisiert werden, so dass hierfuer fast mehr Leerlauf-Zeit (idle time) verbraucht
wird als fuer die eigentliche Rechenarbeit. In den genannten Faellen wird
ein Prozessor angewiesen, nur in dem ihm zugewiesenen Bereich zu rechnen,
ohne sich um die anderen Prozessoren zu kuemmern. Die Zuverlaessigkeit
geht bei schnellen Berechnungen verloren, daher wurde fuer eine tieferge-
hende Analyse das Hausdorff Verfahren gewaehlt.

Definition des Hausdorff Verfahrens

Der Hausdorff Abstand ist wie folgt definiert: A = aq,as,...,a, und B =
b1,ba, ..., by, seien zwei finite Punkte-Mengen. Hausdorff Abstand H(A,B) =
max(h(A,B),h(B,A)) wobei h(A, B) = mazqac aminpeg DN (a — b) Dabei ist
DN ein bestimmter Norm-Abstand (nur der Abstand zwischen den beiden
Punkten).

Eigenschaften des Hausdorff Verfahrens

1. Der Hausdorff Abstand zwischen zwei Punktmengen H(A,B) ist in-
variant bezueglich Translation und Rotation wenn fuer beide Punktmengen
A und B, die Translation und Rotation mit dem gleichen Mass gemacht
werden.

2. Der Hausdorff Abstand zwischen zwei Punktmengen H(A,B) wird
fuer den euklidischen Abstand in allen Richtungen mit einem einheitlichen
Skalierungsfaktor skaliert. Wenn der Skalierungsfaktor unterschiedlich ist
oder wenn eine nichtlineare Abstandsfunktion benutzt wird, muss die
Skalierung von H(A,B) nicht stattfinden.

3. Ist im Bild ein Modell vorhanden, wird h(model, image) (NOT
H(model,image)) durch das Vorhandensein von Rauschen im Bild nicht bee-
influsst.

ZUSAMMENFASSUNG poel

4. Ist im Bild ein Modell exakt vorhanden, ist h(model, image) (NOT
H(model,image)) Null, was dasselbe ist wie der Chamfering Abstand wenn
ein Modell mit Eigenschaftspunkten im Bild vorliegt.

5. Das Hausdorff Verfahren kann Verdeckungen (Okklusionen)
wirkungsvoll behandeln.

Effiziente Berechnung von Abstaenden

Die Abstandsfunktion ist so gewaehlt, dass Rechenzeit eingespart wird.
Zum Beispiel kann die Berechnung der ”City Block Distance” weniger
Zeit beanspruchen als diejenige des euklidischen Abstands, da hierbei
Quadratwurzeln berechnet werden muessen. In beiden Faellen koennen die
Abstaende auch nur einmal berechnet und in einer grossen Tabelle gespe-
ichert werden, so dass spaeter nur in der Tabelle nachgeschlagen und nicht
mehr neu berechnet werden muss.

Die Abstands Transformationen, wie etwa Chamfering 3-4, wird um
asymptotisch naehere Distanzen zu finden benutzt. Da dieses Verfahren in
zwei Schritten ablaeuft, ist es sehr wirkungsvoll und benoetigt, im Gegensatz
zu den Nachschlage Verfahren (Lookup Method), weder eine Vorausberech-
nung der Abstaende und eine grosse Tabelle fuer Abstandswerte.

Fuer das Problem gibt es mindestens drei Moeglichkeiten der Paral-
lelisierung. Eine Moeglichkeit ist, jedes Bild in einen Prozessor aufzunehmen
und es mit allen Modellen zu vergleichen. Ein anderer Weg waere, alle Bilder
einzeln in alle Prozessoren aufzunehmen und die Menge der Modelle gleich-
maessig auf die Prozessoren zu verteilen. Die dritte Moeglichkeit besteht
darin, jedes Bild auf die Anzahl vorhandener Prozessoren aufzuteilen und
diesen Teil des Bildes dann mit allen Modellen zu vergleichen. Im letzten
Fall ist es unerlaesslich, fuer eine gewisse Bildueberlappung zu sorgen, um
richtige Loesungen zu erhalten. Die zweite Moeglichkeit ist besser um eine
Person zu verfolgen. In der vorliegenden Arbeit wurden die ersten beiden
Moeglichkeiten implementiert.

Beschreibung des Menschen

Bei jedem Erkennungssystem muss das in einer Umgebung (dem Bild)
zu erkennende Objekt (das Modell) entsprechend beschrieben oder definiert
sein. Kin Kopf, ein Koerper, zwei Haende und zwei Beine bilden einen
Menschen, ohne dabei auf Einzelheiten, wie Nase oder Augen, die fuer die
Gesichtserkennung wichtig sind, einzugehen. Je nach Zweck der Anwendung
kann die detaillierte Einzelheiten in der Beschreibung stark variieren. Bei
einem Fahrer Assistenzsystem zum Beispiel reicht es aus, einen Menschen als
Fussgaenger zu erkennen. Bei einem Ueberwachungssystem ist das Erken-
nen der Anwesenheit von Menschen genug um eine Kette von Handlungen
auszuloesen. Eine detailreichere Beschreibung dieses Menschen ist spaeter

xxil ZUSAMMENFASSUNG

erforderlich.
Groesse eines Menschen

Bei den meisten Erkennungssystemen ist die Groesse eines Menschen fest
vorgegeben oder muss innerhalb eines bestimmten Bereichs liegen. Wegen
dieser Groessen Vorgaben wird ein gehendes Kind nicht erkannt. Auf der
Grundlage einer vorgegebenen Groesse des Menschen koennen diese Sys-
teme ausserdem moegliche Regionen fuer den Kopf, den Koerper, eine Hand
oder ein Bein erkennen. Dennoch ist die Erkennung eines Menschen durch
solche Systeme schwierig und sie wuerde noch schwieriger, wenn wie im vor-
liegenden Fall, keine Beschraenkungen hinsichtlich der Groesse vorgegeben
sind. Die Aufhebung der Groessenbeschraenkung bedingt allerdings, dass
das System alle Bildbereiche durchsucht, was mehr Rechenzeit erfordert.
Segmentierung des interessierenden Bereichs (Mensch)

Einige Aenderung im Bild durch Subtraktion des Hindergrunds genugt
bei einigen Systemen um die Anwesenheit eines Menschen abzuschliessen.
In der Literatur gibt es Verfahren, um durch weitergehende Analyse dieses
Bereichs einen Menschen genauer zu erkennen. Interessanterweise spielen
die Farbkomponenten bei der Segmentierung des interessierenden Bereichs
(Mensch) immer noch eine grosse Rolle. Die Transformation einer solchen
Wavelet (Elementarwelle) oder eine Fourier Analyse koennen ebenfalls fuer
die Segmentierung des interessierenden Bereichs (Mensch) benutzt werden.
Die Subtraktion des Hintergrunds funktionert bei Bildern in offenene Umge-
bung nicht.

Die Segmentierung eines interessierenden Bereichs (Mensch) auf der
Grundlage der Farbe kann nicht zuverlaessig funktionieren, wenn man nicht
alle moeglichen Farben von Menschen durchprobiert, da Menschen bekan-
ntlich verschiedene Hautfarben haben koennen. Eine Erkennung laesst sich
auch ohne Hintergrund Subtraktion durchfuehren, allerdings zu Lasten der
Rechenzeit. In solchen Faellen kann man fuer die Erkennung z.B. das Haus-
dorff Verfahren anwenden. Es gibt aber noch weitere Probleme wie etwa die
Verdeckung (Okklusion) durch andere Objekte, oder die Verdeckung durch
das Objekt selbst, wie sie bei bestimmten Sichtwinkeln vorkommen kann.
Verdeckung (Okklusion)

Die Verdeckung von Bildteilen ist eines der groessten Probleme fuer
Erkennungssysteme, da dadurch manche kritische oder Haupteigenschaften
eines Objekts verdeckt werden koennen und eine korrekte Erkennung un-
moeglich machen. In solchen Situationen muss eine Definition der mini-
mal erforderlichen Eigenschaften, die fuer die Erkennung eines Menschen
notwendig sind, vorliegen, z.B. das Vorhandensein eines Kopfs. Wenn die
Person dabei nicht in die Kamera schaut, ist eine Moeglichkeit, nach einer

ZUSAMMENFASSUNG xxiil

annaehernd runden oder elliptischen Form zu suchen. Die Systemleistungen
haengen dabei sehr stark vom Sichtwinkel ab. Ebenso ist wohlbekannt, dass
Eigenschaften durch das Objekt selbst, je nach Stellung oder Pose, verdeckt
werden koennen.

Einige Verfahren, wie z.B. das Hausdorff Verfahren, ermoeglichen es den-
noch einige Parameter zu korrigieren und so trotz Verdeckung eine Erken-
nung durchzufuehren. In solchen Faellen lassen sich Fehl-Erkennungen nicht
voellig vermeiden. Interessanterweise laesst sich mit dem Hausdorff Ver-
fahren eine Verdeckung sehr einfach mit vielen Modellen modellieren.
Ausreichende Modelle

Mit Sicherheit lassen sich durch eine groessere Anzahl von Modellen
mehr Faelle des Auftretens eines Objekts sicherer erkennen. Die wichtig-
ste Frage ist allerdings wie viele Modelle ausreichend sind, um in jedem
Fall das Auftreten eines Objekts zu erkennen. Angesichts der Freiheitsgrade
bei der Bewegung von diversen Koerperteilen des Menschen duerfte diese
Anzahl Modelle allerdings sehr hoch sein. Viele Systeme, mit denen Be-
wegungen oder Taetigkeiten von Menschen erkannt werden sollen, sind in
hohem Mass auf die ihnen vorgegebenen Modelle beschraenkt. Bei der Er-
stellung dieser Modelle spielt die Groesse wiederum eine wichtige Rolle. Ein
Erwachsener ist keine groessenskalierte Version eines Kindes und umgekehrt.
Mit Sicherheit muessen daher unterschiedliche Skalierungsfaktoren fuer die
verschiedenen Koerperteile oder verschiedene Modelle fuer jede Groesse be-
nutzt werden.

Im ersteren Fall laesst sich damit zwar die Anzahl notwendiger Mod-
elle reduzieren, aber es muessen verschiedene Skalierungsfaktoren benutzt
werden, was wiederum die Rechenzeit enorm erhoeht. Beim zweiten Fall
ist es von entscheidender Bedeutung in welcher Reihenfolge die Modelle
abgearbeitet werden, denn ein rein sequentieller Vergleich mit jedem Modell
wird die notwendige Rechenzeit ebenfalls so stark erhoehen, dass sie fuer
bestimmte Anwendungen, wie z.B. Fahrer Assistenzsysteme, inakzeptabel
wird. Daher spielen bei diesem Verfahren die Vergleichs Reihenfolge und
eine entsprechende Indexierung der Modelle eine wichtige Rolle.
Probleme durch mehrfaches Auftreten

Obwohl die im vorigen Abschnitt definierte Beschreibung eines Menschen
akzeptabel ist, kommt es durch das Auftreten von m Beinen, n Haenden,
x Koepfen usw... im Bild zu einer neuen Situation. Die genaue Anzahl
der in einem Bild oder einer Szene vorkommenden Menschen zu finden, ist
vergleichsweise schwierig. Das groesste Problem dabei sind Okklusionen
von Eigenschaften. Findet man z.B. eine ungerade Anzahl von Haenden
oder Beinen, so ist die paarweise Zuordnung dieser Haende oder Beine zu

XXiv ZUSAMMENFASSUNG

einer Person eine reine Frage der Wahrscheinlichkeit ganz zu schweigen von
der Moeglichkeit, dass eine behinderte Person tatsaechlich nur ein Bein oder
einen Arm haben kann.
Probleme durch Bewegungen

Unabhaengig voneinander auftretende Bewegungen von Personen verur-
sachen eine grosse Anzahl von Okklusionen. Wenn z.B. zwei Personen
in Blickrichtung der Kamera hintereinander gehen, besteht eine endliche
Wahrscheinlichkeit dafuer, dass eine Person, je nach den jeweiligen Koer-
pergroessen, die andere vollkommen verdeckt. Auch wenn sich zwei Per-
sonen begegnen und anschliessend in verschiedene Richtungen auseinander
gehen, ist die Feststellung, welche Person in welche Richtung geht, relativ
komplex. Wenn sich, wie etwa bei Militaerparaden, eine Reihe von Perso-
nen in derselben Richtung mit derselben Geschwindigkeit bewegen und die
Abtastfrequenz des Bildes zufaellig noch mit dem Abstand der Personen
uebereinstimmt, kann sich die Erkennung der Bewegung extrem schwierig
gestalten.
Grundkonzept der Fusionsarchitektur

Durch die mit dem Chamfering und dem Hausdorff Verfahren
gewonnenen Erfahrungen und deren Implementierung in einem System
wird klar, dass nur ein einziger Algorithmus nicht ausreicht. Um ausser-
dem Okklusionen und Groessenunterschiede zu verarbeiten, muessen unter-
schiedliche Verfahren angewendet werden. Es ist daher notwendig, alle diese
notwendigen Methoden in einer Architektur zu kombinieren, die als Fusion-
sarchitektur bezeichnet wird.
Hausdorff Verfahren bei Okklusionen

Es ist nur natuerlich, dass in realen Bildern gewisse Bildteile verdeckt
(okkludiert) sind. Die Anwendung des Hausdorff Verfahrens auf das Mod-
ell kann je nach verdecktem Bildteil zu verschiedenen Ergebnissen fuehren.
Um Okklusionen zu behandeln, kann man anstelle des bekannten Hausdorff
Verfahrens, bei dem die Abstaende zwischen Punkten berechnet werden,
ein neues Verfahren anwenden, indem man den Prozentsatz von Punkten
berechnet, die von einem vorher festgelegten Grenzwert (Threshold) abwe-
ichen. Liegt diese Prozentzahl unter einer bestimmten Grenze (die vorher
festgelegt wurde oder den maximal zulaessigen Verdeckungsgrad des Mod-
ells darstellt), so kann man davon ausgehen, dass das Modell an dieser Stelle
des Bildes vorliegt.
Hausdorff bei unterschiedlichen Groessen

Eines der klassischen Probleme beim Matching von Bildern ist das Prob-
lem mit der Groessenunterschied durch unterschiedliches Zoomen. Falls im
Folgenden nichts anders gesagt ist, wird fuer die Groessenanpassung grund-

ZUSAMMENFASSUNG XXV

saetzlich in allen Richtungen mit demselben Faktor skaliert. Falls die er-
forderliche Skalierung so gering ist, dass der Gesamteffekt kleiner ist als
der Grenzwert, dann wird sie zuverlaessig arbeiten. Wenn der Gesamtef-
fekt allerdings groesser ist - was den interessanteren Fall darstellt - wird die
Aenderung so vorgenommen, dass je nach Skalierung fuer einige angegebene
Skalierungspegel ein Abstandshistogramm erstellt wird. Dann wird der
Histogramm-Pegel (Abstand) mit der groessten Anzahl Punkte gewaehlt.
Die Maximalanzahl Punkte mit dem hoechsten Pegel im Histogramm ueber
der Gesamtzahl von Punkten oder Ecken im Modell liefert einen bestimmten
Prozentsatz. Wenn dieser Prozentsatz hoeher als ein vorgegebener Wert ist
(beispielweise 90

Herausragende Vorteile der Fusionsarchitektur

1. Die Fusionsarchitektur erlaubt es, Okklusionen und Groessenunter-
schiede zu behandeln.

2. Die Fusionsarchitektur ist grundsaetzlich parallel angelegt.

3. Die Fusionsarchitektur mit Datenkommunikation kann allgemein den
Parallel-Rechenaufwand kleiner halten.

4. Auch ohne Datenkommunikation funktioniert die Fusionsarchitektur
gut wenn weniger Kommunikation erwartet wird.

5. Die kombinierten Effekte der Fusionsarchitektur ergeben bessere
Erkennungsleistungen.

6. Die Fusionsarchitektur ist so allgemein angelegt, dass sie sich auch
fuer allgemeine Erkennungsaufgaben einsetzen laesst.

7. Das Konzept der Kombination mehrerer Algorithmen in der Fusion-
sarchitektur kann auch fuer Suchverfahren in der kuenstlichen Intelligenz
und fuer Optimierungsstrategien genutzt werden.
Navigations-Strategien

Da industrielle Anwendungen der Bilderkennung auch fuer die Bewe-
gungssteuerung von Industrierobotern eingesetzt werden, um den Zielpunkt
ohne Kollisionen mit Menschen zu erreichen, wurden Algorithmen fuer
das Umfahren von Hindernissen entwickelt. In einer bekannten Umge-
bung liegt das Hauptgewicht auf der Suche nach dem optimalen Weg mit
parallelen Strategien. In unbekannten Umgebungen wird nach Verfahren
zur Verringerung der Bewegungsaufwands gesucht. Bei der Umfahrung
gemaess dem ”Problem das Handlungsreisenden” (”Travelling Salesman
Problem” TSP) wurde eine parallele Implementierung auf dem Cray T3E
mit Datenkommunikation der Prozessoren untereinander eingesetzt, um die
Loesung schnell zu finden.

Modelle
Bei Bilderkennungssystemen spielen die Modelle eine herausragende

XXVi ZUSAMMENFASSUNG

Rolle: nicht nur fuer die Zuverlaessigkeit der Erkennung, sondern auch bei
der Verringerung der Rechenzeit. Von reinen Stab-Modellen eines Menschen
zu 3-dimensionalen Koerper-Modellen (Blob model) nimmt die Komplexi-
taet zu, aber die spaetere Verfolgung wird vergleichsweise schneller. Um
Menschen trotz Okklusionen erkennen zu koennen, sind entweder explizite
Modelle mit Okklusionen erforderlich oder beim Hausdorff Verfahren die
richtige Auswahl gewisser Parameter. Naturgemaess ist es schwierig, Werte
fuer Parameter zu finden, die moeglichst viele Faelle abdecken. Die spezielle
Erstellung von Modellen mit Okklusionen ist dabei hilfreich und erlaubt
eine bessere Behandlung von Okklusionen, vergroessert aber die Anzahl
notwendiger Modelle um ein Vielfaches.
Okklusionsmodelle

Bei Modellen mit Okklusionen wird das Modell eines Menschen genom-
men und der oder die durch Okklusion verdeckte(n) Teil(e) werden entfernt.
Jedes Modell mit einem oder mehreren entfernten Teilen ergibt ein Okklu-
sionsmodell. Wie die Experimente zeigen, erzielt man durch die explizite
Modellierung von Okklusionen eine hoehere Erkennungswahrscheinlichkeit.
Wie bereits angesprochen, erhoeht sich dadurch jedoch die Anzahl Modelle
erheblich. Um diese Zunahme der Modell-Anzahl zu umgehen, fuehrt man
ein generisches Modell ein.
Generische Modelle

Um die Anzahl Modelle zu reduzieren, wird die ausgewaehlte Menge
Modelle uebereinander gelegt. Ein solches Modell nennt man dann ein
generisches Modell. Das generische Modell ist die Vereinigung aller Punkt-
mengen jedes gewaehlten Modells. Bei Kanten-Modelle geht man aehnlich
vor. Obwohl sich mit generischen Modellen somit die Anzahl erforderlicher
Modelle verringern laesst, ergeben sich Probleme beim Hausdorff Verfahren,
da fuer das Matching viele Punkte fehlen koennen. Auch bei der Behand-
lung von Okklusionen erreicht man mit diesem Verfahren hoehere Erken-
nungswahrscheinlichkeiten. Um das Problem der fehlenden Punkte bei den
generischen Modellen zu umgehen, fuehrt man ein Basismodell ein.
Basismodelle

Diese Art der Modell-Erstellung ist praktisch eine gegenseitige Ergaen-
zung der generischen Modelle. Statt der Vereinigung der ausgewaehlten
Punktmengen - wie beim generischen Modell - nimmt man fuer ein Ba-
sismodell die Schnittmenge. Obwohl dieses Verfahren zunaechst vielver-
sprechend erscheint, verbleibt ein Haar in der Suppe. In vielen Faellen ist
die Schnittmenge der Punkte natuerlich viel geringer, so dass sie mit zu-
faelligen Punktmengen uebereinstimmen und zu Fehlerkennungen fuehren.
Wenn man allerdings die Modelle gut auswaehlt, so dass viele von ihnen

ZUSAMMENFASSUNG xxvil

untereinander weitgehend aehnlich sind, funktioniert dieses Verfahren recht
ordentlich.

Rueckwaertserkennung bei Menschengruppen

Die Idee bei diesem Verfahren ist, dass wenn eine Person in einem Bild
innerhalb einer Menschengruppe erkannt wurde, man auf das Vorhanden-
sein dieser Person in einem vorhergehenden Bild, auf dem sie nicht erkannt
wurde, schliessen kann. Da hierbei viele Probleme auftreten, wie etwa un-
terschiedliche Groesse, Bewegungen der Menschen, Bewegungen der Kam-
era usw... wurde zu Untersuchungszwecken eine eingeschraenkte Umgebung
gewaehlt. In dieser eingeschraenkten Umgebung wurden mit der Rueck-
waertserkennung gute Ergebnisse erzielt. Im vorliegenden Fall wird zuerst
die Anwesenheit einer Einzelperson erkannt und deren relative Position wird
dann in das zeitlich davor liegende Bild einer Menschengruppe ”rueckpro-
jiziert”. Moegliche Okklusionen spielen dabei eine wesentliche Rolle fuer das
Gelingen des Erkennungsprozesses. In solchen Situationen ist dieser Fall
besonders kritisch, da das Nichterkennen einer Einzelperson dazu fuehren
kann, dass die ganze Gruppe nicht erkannt wird.

Schlusswort

Obwohl das Ziel der vorliegenden Arbeit die Erkennung von Menschen in
von einaeugigen Kameras aufgenommenen Bildern ohne die ueblichen Ein-
schraenkungen war, wurden die urspruenglich auf Graphen basieren Match-
ing Verfahren mit neuen Nachbar Isomorphie Verfahren analysiert. Das
fuer das Matching sehr zuverlaessige Hausdorff Verfahren wurde erweit-
ert, um Menschen anhand von vielfaeltigen Modellen und veraenderten
Abstandsmessungen erkennen zu koennen. Da die Strategie der Vereini-
gung mehrerer Algorithmen, um trotz Okklusionen bessere Ergebnisse zu
erzielen, im Grundsatz bereits parallel ist, lieferte die parallele Implemen-
tierung des Systems auf einem Cray 3TE richtige Ergebnisse in wesentlich
kuerzerer Rechenzeit. Als moegliche Anwendung im Umfeld von Indus-
trierobotern wurden drei beispielartige Situationen durchgespielt: eine in
bekannter Umgebung, eine in unbekannter Umgebung und die dritte mit
herumgehenden Menschen. Dazu dienten einfache Modelle mit Menschen
als Hindernissen. Wenn es nicht gelingt, gute Modelle mit einer sinnvollen
Indizierung zu waehlen, bleibt die computergestuetzte Erkennung von Men-
schen eines der nur schwer zu loesenden Probleme.

xxViil ABSTRACT

Abstract

In the realm of computer vision, the recognition of human beings in the
images is one of the challenging problems which has ample applications in
many fields from industry environments to surveillance systems. Most of
the previous works on the problem were based on many strict assumptions
which paved way for reducing the computation time to recognize. In this
study, beginning with graphs to the real images, various strategies to rec-
ognize objects and human beings are developed which are based on graph
matching and distance transformation methods leaving many strict assump-
tions. To exploit the inherent parallelism in the methods, parallel algorithms
are developed and implemented on high-performance parallel systems viz.
supercomputer Cray T3E.

As graphs are the powerful representation of objects, graph matching is
considered primarily. Initially, A* Algorithm is used for optimal matching
of graphs. With lower bound and upper bound techniques, the computation
time of the A* Algorithm is reduced considerably. With various strategies
for modifying heuristic functions and expansion mechanisms, the efficiency
of the A* Algorithm for optimal matching of graphs is analyzed. A new
isomorphism (Neighbour Isomorphism) is introduced to reduce the compu-
tation time of graph matching enormously. The same isomorphism is used to
find the symmetries in the regular polygons which are repeatedly attached
at various corners of the polygons. Combining both neighbour isomorphism
and A* strategy, to match the postures of human beings from the indian
classical dance, Bharathanatyam, a new algorithm is developed which pro-
duces accurate results.

Due to noises in real images, such graph based methods are not directly
applicable. At the low level image processing, only corners and edges are
used to recognize the human beings. The standard matching algorithms,
Chamfering and Hausdorff methods are used to match the human beings
in the images. New modified Hausdorff based measures are introduced to
recognize human beings to the possible extent. The Fusion Architecture
combining various algorithms to produce better results is discussed in the
study. All the strategies including the Fusion architecture are implemented
on Cray T3SE supercomputer as they exhibit ample parallelism.

For the robots to reach the destination point without colliding with hu-
man beings in industrial environment, algorithms for navigation through
obstacles are developed. In a known environment, the focus confined is to
find the optimal path efficiently with parallel strategies. In unknown en-
vironments, the methods to minimize the cost of traversal are formulated.
In case of going around like TSP (Travelling Salesman Problem), parallel

ABSTRACT XxXix

implementations on Cray T3E with communication among the processors
are carried out to effectively find the optimal solution.

The crucial problem of occlusion is handled in a better way using Oc-
clusion Models and Generic models. An attempt is made to describe the
positional relationships between human beings in the sequence of images
ontologically. The modelling of the group of human beings and their recog-
nition are experimented with examples. The industrial applications with
robots to optimize the distance covered and the scheduling of vision tasks
onto parallel systems are also discussed. In a sequence of images, with the
back propagation of relative positions of single human beings recognized
separately, recognizing groups of human beings is also possible in restricted
environments. The experimental results show that the recognition of hu-
man beings with strategies discussed, is possible and depends heavily on the
models. The inherent parallelism in the strategies can be exploited with the
efficient implementation on high-performance systems to reduce the compu-
tation time.

Succinctly, the aim of the study is to recognize the human beings in
the images from monocular camera without usual constraints. Initially, the
graph theory based methods for matching are analyzed with new neighbour
isomorphism. The robust Hausdorff method for matching is extended to rec-
ognize the human beings with ample models and modified distance measures.
As the strategy to fuse different algorithms to get better results despite oc-
clusions is inherently parallel, it is implemented on Cray T3E which also
produced correct results with appreciable reduction in computation time.

XXX ABSTRACT

Chapter 1

Introduction

1.1 General Overview

With the dawn of technological innovations particularly powerful processors
and variety of sensors, Image processing became viable and more useful.
Lot of interests are evinced on Image Processing owing to the compelling
demands prevailing in the new millennium. The quest of imitating a human
being, a cornerstone problem in Artificial Intelligence or the pompous Turing
Test, is widely investigated. Among other activities of human being, Vision
is considered to be really challenging for computer scientists to emulate the
functions of eyes with cameras.

Eventhough number crunching by computing systems was prevalent in
the beginning stages of computing, the state of art of the computing sys-
tems with ubiquitous sensors paved way for image processing widely. The
wide spectrum of the applications of image processing ranges from surveil-
lance to medical applications, automobile industry to defense applications,
robotics to helping physically handicapped persons, text analysis to image
understanding and so on. Albeit the notion of pixel was present in texts or
alphabets from natural languages, the images which are depicted by pixels
posed crucial problems.

First of all, where is the relevant information in an image? How can
the relevant information be extracted from the whole image? Which object
resembles the group of the extracted portions or segment of the image?.
These questions distinguished the images from characters which are well
defined, properly arranged and legible enough to categorize as a particular
character or alphabet of a natural language.

Visual input provides more information and only in recognizing the same

2 CHAPTER 1. INTRODUCTION

as known object is a problem which is investigated extensively. The tactile
sensors or lasers or ultrasonic sensors may have some impact if the objects
are continuously or frequently exposed to these sensors. However, camera
is totally harmless and can be used continuously over a specified time. The
related hardware viz.Frame Grabber enhanced the utility of camera with
the computing system in a naive way.

Given the computing system with camera, the efforts are made to make
the computing system more intelligent by understanding the images cap-
tured through the camera. Apart from emulating human visual activity,
the applications of image processing require such facility to improvise the
efficiency. For example, in environments where the machines and human
beings interact, the machines are also expected to cause no damage to hu-
man beings. In various industrial environments, robots move among the
workers to accomplish their tasks. Not only in such cases, better informa-
tion input to the human controller can avoid severe damages as in driver
assistance systems in automobiles. Thus, finding human beings to avoid any
damage which is essential in such environments emerged as a new domain
in computer vision(sometimes called as ”Looking at People”).

1.2 Image Processing

The primary reason for interests in digital image processing stems from two
principal applications area: improvement of pictorial information for human
interpretation and processing of scene data for autonomous machine percep-
tion [1]. To start with, the image is defined to be a two-dimensional light
intensity function f(x,y), where x,y denote spatial coordinates and the value
of fat any point (x,y) is proportional to the brightness (or grey level) of the
image at that point. Such an image is usually referred as monochrome im-
age. A multispectural image f is a vector-valued function with components
(f1, f2, - fn) [2]- A colour image is referred as a vector-valued function
with the components which denote the brightness values of each of the three
basic colours, f(z,y) = {fred(,y), foiue(, y)afgreen (z,y)}. Time-varying im-
ages f(x,y,t) have an added temporal argument. In reality, an image is a two
dimensional distribution of light intensity on the focal plane of a camera
pointed at a natural scene. A generalized image processing system is por-
trayed in Fig.1.1 [3].

1.3. OBJECT RECOGNITION 3

Radiation (Light) Video Signal Digital
: Data
electrical
Sogrce / 3| Optical - Camera/ { T) = Source/Sink Stream | Processor 1
Object - System ~€— Sensor / : Coder ' (Channel
Scanner , | coder)
| 1
Passive Fixed Resolution ! Sampling : Channel
K Variable Tone Scale : Filtering | Equalizer
Selflumious Luminance Sensitivity \ Statistical | Modulation
Fixed . Transfer Uniformity 1 Coding ! Error
Changing Storage / ! Visual : Correction
itelreo Nonstorage : coding \ -t
olour \ AID | |
Surface Texture \ 1 Channel 1
! : (Transmission | g Nojse :
_: -—-———— o or Storage) |
g | |
1 ! }
1 ! }
1 ! !
| ! X
Image | Display / v Source / Sink Processor 2 L -
output - Decoder 3 (Channel ‘ ‘
Devi ce (Recognition) Decoder)
Storage / Compensate Computer
Nonstorage for lobserver Optical System
Refresh or Display Electronic Hardware
Memory Error Conceal- Processor
ment

Error Correction

Figure 1.1: A Generalized Image Processing System

Recognizer Human
—=| Sensor —_— / Motion
Analyzer
Data

Figure 1.2: A simple sensor and recognizer system

1.3 Object Recognition

To answer the question, what is meant by object recognition, one may con-
clude naming an object in the scene. Sometimes in recognizing an object,
it may be required to identify an individual object or a specific token (such
as my wife). In some other cases, recognition means identifying the object
as a member of a certain class or a type, (a girl) [4]. Moreover, an object
may belong to a number of classes or categories simultaneously (e.g., my
wife, an indian lady, woman, human being). An image may contain mul-
tiple different objects. Thus, the recognition of an object is an ability to
retrieve information associated with an object, or a class of objects, that is
not apparent in the image itself(for e.g., the name of an object). For any
recognition system, sensors and recognizer(analyzers) form the crucial parts
as in Fig. 1.2.

4 CHAPTER 1. INTRODUCTION

As the sensor complexity increases from passive sensors (which do not
affect the surroundings or environment) to active sensors, the complexity
of the recognizer or analyzer decrease [5]. So, a discussion on sensors as
presented by the nature along with the proper use of the same follows next.

1.3.1 Biological Vision Systems

Intuitively a new born child can recognize the mother within few weeks after
the birth without explicit learning. Effortlessly young children recognize the
objects and classify them as well. In one study [6], pigeons were trained to
sort 320 slides of natural scenes into two arbitrary categories, positive and
negative. The pigeons learned the task rapidly, performed it with a high level
of accuracy and repeated the same after two years without any additional
practice. It may be recalled pigeons have only pea-pod sized brain. Even
insects such as the bees use visual recognition for the purpose of navigation,
finding the bee-hives and identifying the flower shapes [7]. It is universally
well known that dogs easily identify the owners and distinguish them from
other people.

Other Sensory Systems

Nature has provided a variety of sensors especially to animal kingdom. The
cats use their whiskers as tactile sensors to get the information whether
through the gap they can squeeze in. Snakes with their skins feel the vibra-
tions on the surface to identify the approach of other animals. Deers and
such other animals use their ears to detect the minute sound to escape from
falling into the prey for some other animals. Ants use their ”"smelling” sense
to get their food and follow the pheromonal trails despite being almost blind
according to ethologists [8]. Bats use some sort of ultrasonic waves to detect
objects while flying. Photophilic plants grow in the direction of region of
light to synthesize their food. However, for computing systems trying to
recognize objects, it is still a long distance goal.

1.3.2 Why is Object Recognition Complex?

To be more specific with object recognition, there is a large collection of
patterns (P = py,pa, ..., pn) where each p; represents the object in a different
viewing position. Given an input pattern ¢, the direct approach will retrieve
the pattern p; which is most similar to ¢. The first question is what is meant
by similar and secondly how large the patterns set should be so that it is
sufficient to recognize every input pattern of the object. The similarity is

1.4. RELATED WORKS Y

defined in many ways as it is a measure between two patterns. A simple case
may be Hamming distance. But it can not be so efficient for its simplicity.
However, the Lo norm between the grey level images, is the sum of the
squared differences between image intensity values at corresponding points.

Coming to the issue of how large the set P should be to recognize any
input ¢ as the object, beyond any iota of doubt it is prohibitively large. This
is a crucial source of problem in object recognition. Secondly, what are the
minimum number of features that must be present in the input so that it
can be correctly recognized? Often due to occlusions in real environments,
the input may not have all the required features. In such cases, how the
situation can be handled, still remains to be investigated.

At the same time more fundamentally, what are the sources which bring
the variability in the input pattern which is very difficult for recognition?
As explained vividly in [4], the major factors are the following,

U Viewing Positions

O Photometric Effects

O Object Settings (or Occlusions)
0 Changing Shape

In fact in real scenarios, an input pattern will have a combination of all
these problems. For e.g., one input pattern for recognizing human being
may be of the type from a view taken from the back (which means face,
eyes, mouth, nose and such other features will be absent). In the presence
of multiple coloured lighting sources, most of the colour based features be-
come unsuitable. The silhouette of the person may be disproportionate also.
Despite all these impediments, researchers are doing their best to cope up
with the demands for accurate image processing.

1.4 Related Works

In human motion analysis survey [9], three major categories were mentioned
namely, body structure analysis (both model based and non-model based),
tracking (single camera and multiple cameras) and recognition (by state
space method and Template matching methods). Another survey on the
visual analysis of Human movements [10] distinguishes based on dimension-
ality (2D or 3D) combined with or without explicit shape models. A survey

6 CHAPTER 1. INTRODUCTION

on computer vision-based Human Motion Capture [11] discusses the gen-
eral structure for systems analyzing human body motion as combination of
Initialization, Tracking, Pose Estimation and Recognition.

In general the related works can be grouped based on the type of mod-
els used (stick figure-based, volumetric, statistical), the dimensionality of
the tracking space (2D or 3D), sensor modality (visible light, infra-red,
range), sensor multiplicity (monocular or stereo), sensor placement (cen-
tralized or distributed) and sensor mobility (stationary or mobile). However
some more relevant issues are taken into consideration for forming Table
1.1. They are Initiation (Ini)(automatic (A) or predefined/manual), back-
ground (BG) (plain (P) or cluttered (C)), occlusion (Ocl) (permissible (Y) or
not (N) or partially), human beings present (HuBe) (single (S) or Multiple
M)), motion (Mo) (predefined (P) or free (F)), motion detection (MoDec)
background subtraction (B), motion models, others (O)), size restrictions
Size)on human beings (Fixed (F) or not (N)), sensors (Sensor) (vision based
Monocular(Mo) or Stereo(St) or multiple (Mu) cameras), others like range
(0)), and Segmentation (Segm)(colour (C), grey (G), others (O)). In the
Table 1.1 noted contributions in the field of Looking at People are men-
tioned.

(
(
(
(

1.4.1 Typical Assumptions

In general there are lot of assumptions made which paved way for easy
computation or recognition of the human being. A ranked list according to
the frequency of usage discussed in [11] is reproduced here for the sake of
continuity and further explanations.

Assumptions related to Movements

1. The object remains inside the workspace.

2. No or constant camera motion is allowed.

3. Only one person can be in the workspace at any time.
4. The object faces the camera at all times.

5. Movements must be parallel to the camera-plane.

6. No occlusion is allowed.

7. Slow and continuous movements are allowed.

1.4. RELATED WORKS

@)

g
nWOOCOOOOOOOOOOC,OOOOOOOOOOO
&~
w00oﬁMOOO?nw?aooonm?aouoouuﬁMOanu
&mMMMMMMMMMMMMMMMMMMMMMMWMM
mFFNWFFWNNNNWWFMFFFFWFFFFW
3
w? MOOMOO=-0O0MMOOMMOOOCOO0O0OO0OmM
=
) P IV T Ui S T T O T T T S T VT T 9
N8
MSMMSMWWWSSSMSMSSSSSSWSMMS
Slzrrzfzr =S zibzzar R8stz
MCCWCCCCCCCCWPWWPPCCPCPCCW
Seicdca<cSll il
=~
N T R e N e T AR IR e NS R R T DD
N IR N RN PP P R M St Wi o e M Ml ach

Table 1.1: Comparison of Different Recognition Systems in Field of Looking

at People.

(Refer to Section 1.4 for abbreviations)

8 CHAPTER 1. INTRODUCTION

8. Only one or few limbs can move.
9. Fixed movements alone are allowed.

10. Object moves on a flat ground plane.

Assumptions related to Environment

1. Constant lighting alone is allowed.

2. The background must be static.

3. The background ought to be uniform.
4. Camera parameters are known.

5. Special hardware units are necessary.

Assumptions related to Object

1. The starting pose must be known.

2. The object is known for recognition.

3. Markers are placed on the object.

4. Special coloured clothes must be worn.

5. Tight-fitting clothes must be worn.

1.4.2 Major Three Strategies for Looking at People

Most of the methods were based on statistical moments or Single Gaussian
or multiple Gaussian or Bimodal or Hidden Markov models to detect the
presence of a human being in the scene. Chamfering method is based on
distance transformations. Third method is to find a distance measure be-
tween the model and image based on the selected points. One such method
is Hausdorff method which is robust also. Detailed discussions about the
methods are presented in the following chapters.

1.5. SALIENT FEATURES OF MY APPROACH 9

1.5 Salient Features of My Approach

As assumptions helped a lot in reducing the computation and recognizing
earlier, the principal deviation I made here is to leave many of the assump-
tions. This as expected increased the computation time. Yet the attempt
to solve such things was fascinating to me atleast. The objects (human be-
ings) need not to remain inside the workspace. Multiple persons are allowed.
They need not look at the camera at all times. They can move in any direc-
tion and no restriction is imposed. The inclusion of occlusion, eventhough
it is not new, really strengthens the use of the approach.

The relaxation of the assumptions related to environment is another vital
issue in my approach. Most of the images are outdoor images. So, constant
lighting is not possible, background can not be always static and uniform.
Indeed in some extreme cases it is totally cluttered. No requirement of
special hardware is recommended. However such things may reduce the
computation time.

The major advantage of my approach is that there is no need of start
positions of the objects. There is no need of wearing special markers as
the approach is just grey level based. No compulsion on wearing specially
coloured clothes or tight ones are made as normal dressing is allowed. But
the number of models has to be increased accordingly.

Eventhough the decrease in the sensor complexity of the passive sensors
increases the recognizer complexity, the passive sensor such as camera is
chosen without the help of active sensors, as disturbing the environment
will be viewed seriously by the social laws. As expected, the recognizer
complexity is high. However, all possible efforts are taken to minimize the
recognizer complexity.

Initialization is one of the major problems in such human motion capture
or looking at people domain. At the start, normally a correct model of the
person involved in motion is chosen and then the person is tracked. In my
approach such initialization is not required. Of course if it is included, it
will enormously reduce the computation time and further tracking will also
be easier.

Generating models is one of the laborious problems. That too, they
must be more generalized. The hand drafted models or simulated models
are possible. However, the models are taken from the set of images and
silhouettes and/or corners are taken for consideration. For chamfering edges
are used. So, creating new models is not at all a tough task. The care must
be taken however to include many poses. Occlusion models can also be
included which is discussed in detail later.

10 CHAPTER 1. INTRODUCTION

Most of the systems use Kalman filter for tracking or particle based
systems. Eventhough both these approaches can be incorporated, motion
models are formed depicting various possible motions. Self-occlusion must
be handled properly. Thus the models themselves can be used if motion
models are included. As explained earlier, since the representation or model
is image based, the time to construct the models is no longer a severe prob-
lem.

The crucial part of the whole system is recognition. In my approach,
many possible systems can be integrated easily so that the combined sys-
tem in turn produces the output positively despite taking more time. The
methods such as Hausdorff and Chamfering are combined so that only those
which are missed by Chamfering are tried by the Hausdorff method. This
will reduce the unnecessary computation time.

The introduction of Fusion Architecture where different algorithms are
combined so that different problems viz. Occlusion and scaling can also be
handled to recognize human beings efficiently. The inherent parallelism in
the Fusion Architecture paved way for parallel implementations.

As extension to make ontological descriptions or finally recognizing the
actions after a period of time such as entering into the room or crossed each
other at the door and so on can be easily inferred as the locations matched
on the images can be used for that purpose despite having multiple persons.
However care must be taken to identify the individuals to track them cor-
rectly after both of them meeting at a point. In restricted environments,
recognizing groups of human beings is also possible with the back propaga-
tion of relative positions of single human beings recognized separately in a
sequence of images.

1.5.1 The investigated Problem

The aim of this study is to recognize the group of human beings in the images
from monocular camera without usual constraints. The graph theory based
methods for matching are analyzed with new neighbour isomorphism at the
beginning. The distance transformation based Chamfering is also applied
to recognize the human beings. The robust Hausdorff method of matching
is extended to recognize the human beings with ample models and modified
distance measures. As the strategy to fuse different algorithms to get better
results despite occlusions is inherently parallel, it is implemented on Cray
T3E which also produced correct results in appreciably lesser computation
time. At the outset, some navigation strategies to find the optimal path
with obstacles in known and unknown environments are also developed.

Chapter 2

Matching based on Graph
Theory

2.1 General Matching

Given two abstract representations, to find whether they match (atleast par-
tially) lies in the heart of the development of artificial intelligence systems
with human-like abilities such as computer vision. Due to the representa-
tional powers, graphs are often used for abstract representation. Parametric
and syntactic approaches at the suitable levels are also available in the lit-
erature [37]. In pattern recognition and machine vision, graphs are used
to represent the object models which are known a priori and the unknown
objects which are to be recognized. Using these representation formalism,
the recognition problem becomes a graph matching problem. Two main
approaches namely, branch and bound methods and nonlinear optimiza-
tion methods are widely used for graph matching as the complexity is NP.
Eventhough other methods are also prevalent, graph isomorphism based
matching and state space method such as A* strategy are preferred in case
of exact or optimal solutions which are computationally intensive. These
approaches are used in error-tolerant and error correcting graph matching
[38], [39]. Here, methods have been suggested to reduce the computation
time for efficient graph matching.

11

12 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

2.2 DModified A* strategy for Graph Matching

2.2.1 Previous Works

In most of the core application problems viz. artificial intelligence, code op-
timization in compilers, CAD and computer vision, manoeuvring the combi-
natorial search remains still to be solved efficiently. Especially in computer
vision, the crux of the problem is to match two abstract representations
(Graphs) [40].

As early as in 1964 [41], a heuristic program for testing pairs of directed
line graphs for isomorphism was designed. Using representative graphs and
reordered graph, another efficient algorithm for graph isomorphism is pre-
sented in [42]. With backtrack procedure, directed graph isomorphism is
solved in [43]. A fast backtracking algorithm for the same not necessarily
running in polynomial time was developed [44]. An algorithm for subgraph
isomorphism using graph theoretical methods is presented in [45].

Mostly, two approaches viz. state-space method with branch and bound
techniques [46] and nonlinear optimization methods with heuristic approx-
imations [47] are employed to match graphs efficiently. Recently, noise in-
cluded graph matching [48] and parallel algorithms [9] are also investigated.
Various strategies and applicability of graph matching to computer vision is
explained in [2].

However, the two approaches are combined to get the optimal matching
always efficiently. The optimality is guaranteed by using A* algorithm [51]
with the proper h* function aptly suiting to the problem. This demands the
formulation of the problem in terms of A* approach and developing heuristics
for supplanting the upper bound for matching. The optimal results have
been verified by the enumeration of permutations method.

2.2.2 The Matching Problem
The Definition

Given two graphs, Gi and G5 with vertex sets V; and V5 along with edge
sets B4 and FE5, it is considered that the number of vertices in both the
graphs are equal(say n). A cost matrix C is defined with ¢;; as the cost
involved in matching v; of G and v; of Ga. Several issues are taken
into consideration for incorporating them in the process of matching viz.
degree of mismatch [9] and such others like difference between indegree and
outdegree. The problem is to find a matching vector M where m; is the
vertex in (Go matched with the vertex v; in G such that

2.2. MODIFIED A* STRATEGY FOR GRAPH MATCHING 13

¥¢im,; is minimal V i, i= 1..n.

The Formulation

Each child node in the state-space of A* (explained in the next section)
denotes a partial assignment i.e., assigning a non-assigned vertex in G; with
a non-assigned vertex G9 apart from the already available such assignments
made in the parent node. Here, f*(z) = g(z) + h*(z) where f* is the cost
of the node, ¢ is the cost of getting the node from the start node and h* is
the lower bound on the cost of arriving at a solution node from the node
i.e., the sum of the static levels of the non-assigned vertices in G1. The rest
is the same as the general A* strategy [51].

2.2.3 The New A* Based Algorithm for Graph Matching
General A* Algorithm

As the algorithm is based on the A* algorithm, for the sake of clarity and
explaining the algorithm, the general A* algorithm used in most of the ar-
tificial intelligence problems is explained here as in [52]. In A* algorithm,
the state space graph is a tree called search tree. Each node in the tree cor-
responds to the assignment of a particular vertex in a graph with a specific
vertex. All the internal nodes in the tree correspond to partial (or incom-
plete) matching and all external (leaf) nodes in the tree, correspond to either
pruned node or complete graph matching. The problem here is to find the
goal node, a leaf node corresponding to the optimal matching. Associated
with a node v in the search tree is a cost function f*(z) = g(z) + h*(z),
which is an underestimate for the minimum cost of an assignment, given
that it includes the partial matching. The function g(v) is the cost of the
path from the root to v and the function h*(v) is a lower bound estimation
of the minimum cost function h(v), from the node v to a leaf node which
corresponds to an optimal matching in the subtree rooted at node v. The
search tree of A* Algorithm with a random cost function for the graphs in
Fig.2.2 is given in Fig.2.1.

The Heuristics Solution

To set the upper bound so that any node with the cost of partial
matching or together with A* also can be pruned, an effective heuristic

14 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Order of Selection
4

@

Figure 2.1: The Search Tree of A* Algorithm for Fig.2.2

is defined here. A priority list is defined based on the following partial order,
v; has more priority than v; provided ¥c;;, Vk is not less than Ycj, Vk.

The heuristic chooses each time, a vertex v, from set of all non-assigned
vertices such that no other vertex is having a higher priority. And, the
vertex v, is assigned to a vertex v, in the set of all non-assigned vertices in
G2 such that ¢y, is minimal considering all such non-assigned vertices. It
can be also tried separately with N-Queen problems solutions as heuristics.

The Heuristics Function

The heuristic function is defined here as follows. At node x, let there be V;
vertices which are already assigned. Then,

g(x) = Xeim, Vie V.

Now, to find the f(x) value, h(x) heuristic function is needed. To produce
always optimal solution, indeed h*(z) is required. The h*(z) is defined as,

h*(z) = Sei o, Vi€ Vi =V,

where ¢; ; be the minimum in the row i. In fact, it is easy to verify that
h*(z) < h(z) to ascertain the optimality.

2.2. MODIFIED A* STRATEGY FOR GRAPH MATCHING 15

2.2.4 New Techniques for Reducing Space and Time
Lower Bound

The lower bound is for the solution which is the minimum possible attainable
solution. In the A* algorithm, the algorithm has to continue even after
finding a solution as it need not necessarily be optimal. Now the question
lies how can it be proved that the given solution is the optimal solution
so that the algorithm can be stopped at once. The only possible way is
when the given solution is equal to the lower bound solution. As there could
not be a better solution obviously, the algorithm can be terminated. Now,
the problem boils down to finding the lower bound solution to the problem
which is normally difficult in the general case. But it is not so in graph
matching.

Let ¢; # be the minimum in the row i. Then, the lower bound is defined
as the sum of all such row minima. i.e.,

LB = Eciyi/,V’L. = 1,77,.

The major problem with lower bound is that the possibility of many
to many mapping is probable. However, in case of multiple similar objects,
denoted as several occurrences of the same subgraph, this will indeed be more
desirable. One should be always careful that all feasible optimal solutions
need not necessarily be lower bound solutions. The main advantage is that if
the given problem has the lower bound solution, the algorithm terminates at
once it finds such solution, thereby reducing both the memory space required
for the further expansions and the time to compute the same.

Upper Bound

The upper bound is a solution which is the minimum solution among the
available solutions. In the A* algorithm, the algorithm has to evaluate
the function f(x) at every node. Supposing that f(x) is greater than upper
bound, that node need not to be expanded further. This will not affect the
optimality as anyhow by expanding the node, the solution obtained will be
more than that of the already available solution.

However to start with, one should have a heuristic solution. So, the
algorithm obviously needs a heuristic method to solve the problem. This
also helps in another way drastically. Supposing that the heuristic solution is
equal to the lower bound solution, then the algorithm stops without creating
even a single node. Even otherwise, the heuristic solution found initially
will serve as the upper bound. So, using upper bound, the number of nodes
generated are minimized thereby reducing the memory space and CPU time.

16

CHAPTER 2. MATCHING BASED ON GRAPH THEORY

2.2.5 The Algorithm for Optimal Graph Matching

1

2.

. Compute the lower bound solution, LB.

Find a heuristic solution, UB (using N-queen problem or so).

IF (UB! = LB) THEN

Construct the priority list of vertices.

¢ = 0 (* node count *).

Build the initial node Ny and insert it in the list with f(Ny) = 0.
REPEAT

Select the node N;, with smallest f value.

IF (N is not a solution) THEN

(a) Generate the successors i.e., trying with all unassigned vertices.

(b) Do the following for each such vertices
compare the vertex with all other vertices and assign.

(c) FOR each such assignment N; DO

e Check whether it is already there in the list to eliminate the
duplication
e IF (already available) THEN
Don’t add the node
ELSE
Compute f(N;) = g(N;) + h(N;) for this node N;.
IF (f(V;) < UB)
c=c+1
Insert it in the list
IF (N; is a solution) THEN
IF (f(IV;) == LB) THEN
Print the solution and quit.
IF (f(IV;) < UB) THEN
UB = {(N;).
ENDIF
ENDIF
ENDIF
ELSE

2.2. MODIFIED A* STRATEGY FOR GRAPH MATCHING 17

Algorithm No. of nodes generated | CPU time in sec
Variation A 285 0.183
Variation B 0 0.083
Variation C 45 0.083
Variation D 0 0.067
Permutation 362880 18.133

Table 2.1: Comparison of the variations of A* with permutation Algorithm

Prune the node N;
ENDIF
ENDIF

ENDIF
ELSE
Print the solution and quit

10. UNTIL (N is solution OR list is empty). ELSE
Print the solution and quit

2.2.6 The Algorithms Developed with Variations

Four variations of the A* algorithm with the new techniques [51] of lower
bound and upper bound are developed here. Variation A is a simple A*
without employing any technique. Variation B is a simple A* with the
above techniques. Variation C is at each level of state-space tree only one
vertex is selected based on the priority list. Variation D is the same as
variation C together with these techniques.

2.2.7 Result and Analysis

Before analyzing the algorithm throughly, the snapshots of the algorithm
for the input as given in Fig.2.2 are presented here.

Variation D

Here, for the sake of explaining a very simple function is taken as a cost
matrix for the example. The cost function is taken to be the difference in
the degrees of the corresponding vertices. As per the algorithm, the lower
bound has to be calculated. For that, the static levels of the vertices have

18 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

w

N

1

‘ /O
- %\9
. g

4

@ (b)

Figure 2.2: Recognition of Objects. (a) a real life Objects (b) a correspond-
ing Graphs

2.2. MODIFIED A* STRATEGY FOR GRAPH MATCHING 19

to be computed from the cost matrix. From Fig.2.2, it is easy to compute
the static levels. Since, minimum one vertex with the same degree is there,
the static levels of each vertex is zero. Hence, the lower bound which is a
sum of all the static levels is also zero.

Now, the heuristic solution as described earlier has to be computed.
For a possible numbering of the vertices, given the cost function as the
degree of mismatch (taken only the absolute value), the vertices form two
groups with priority 4 and 5 depending upon the degree of the vertex 2 or
3 respectively. The heuristic algorithm chooses the vertex having no other
vertex with higher priority. In the process, it finds a matching with the
matching cost zero.

At this point, important event happens. Had the lower bound technique
been not included in the algorithm, the algorithm would have proceed with
the A* algorithm. However, due to the inclusion of the new technique,
the algorithm stops here, confirming the solution obtained as the optimal
solution as it is equal to the lower bound solution (both are zero). It is
valid because no solution can be better than a lower bound solution. So,
any lower bound solution is the optimal solution. It is very easy to verify
that the optimal solution need not necessarily be the lower bound solution.

Variation C

In this case, it is same as the general A* algorithm excepting for the fact that
only one node is expanded. The node selected for expansion is the node hav-
ing the minimum f(x) value. For example in the case, the vertex zero will be
matched with all other vertices making a node each time. However, instead
of expanding all these nodes, only one node is selected and expanded. That
is why there is a reduction from 285 nodes to mere 45 nodes. By expanding
all nodes, more duplicate nodes alone will be generated at the expense of
CPU time and memory space apart from eliminating such duplicate nodes
also.

2.2.8 Analysis of the Results

The Table 2.1 is for the example given in Fig.2.2. Tt is very evident that the
algorithms at any case outperform the general permutation method which
also assures the optimality. The exact matching of vertices are given in
Table 2.3.

The variation A is same as the A* algorithm. By adding these techniques
to the variation B, the reduction in both memory space and CPU time is

20 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Algorithm No. of nodes generated | CPU time in sec
Variation A 140 0.1
Variation B 0 0.083
Variation C 28 0.083
Variation D 0 0.067
Permutation 5040 8.7

Table 2.2: Comparison of the variations of A* and permutation Algorithms
for lesser number of nodes

Vertices of Cup | Matched Vertices of Cupl | Matched Vertices of Cup2

© 00~ O UL WN
~ >~ 0m-g@maaw
— 0o A DR T

Table 2.3: Results of the Graph Matching Algorithm for Cups

evident. The prime difference between the set A,B and C,D is that in step
9, only one vertex is selected each time considering all unassigned vertices
depending upon the priority. It may be also recalled by this, the optimality
of the algorithm is not sacrificed. By allowing that only there will be lot
of duplications which are also properly handled. The variation D is always
better than Variation B, eventhough both produces the lower bound solution
due to the power of the effective heuristic defined whenever possible. These
variations are only for those who long for the optimality. The heuristic
defined here in the chapter as well as the N-Queen problem will also serve
the purpose of those who are not interested in optimal solution, but a quick
reasonable sub-optimal solution. These algorithms are highly parallelizable.
The permutation of the input cost matrix is carried out. However, the
results are almost the same for the cases tried. To check, the number of
nodes were reduced from 9 to 7 and the whole procedure is repeated. Table
2.2 portrays the same vividly.

2.3. SYMMETRY BASED GRAPH MATCHING 21

2.2.9 Conclusion

The problems in artificial intelligence including computer vision which de-
mand expensive and computationally intensive searches are tried for optimal
solution. Eventhough several strategies are applied to solve the matching of
abstract representation, mostly graphs, the A* algorithm is chosen to ascer-
tain optimality. The efficient A* based algorithm for optimal graph match-
ing with the incorporation of two techniques additionally is presented in the
chapter. The lower and upper bound techniques help to reduce the number
of nodes generated and the execution time to the appreciable amount. The
heuristic used in the algorithms provides further reductions asserting the
proper choice. The role of initial heuristic solution, in both upper and lower
bound techniques are also exemplary and well suited to the graph matching
problem. The variants of the algorithm presented here strengthen the claim
of optimality clearly.

2.3 Symmetry based Graph Matching

2.3.1 Previous Works

Recently, there has been lot of interests evinced on matching objects in the
images in the fields of Robotics, Satellite Imagery and Pharmaceuticals [50].
The paramount factor especially in the field of computer vision continues
to be matching. The well-known algorithm such as A* algorithm [51] [53]
demands more memory and the computational time. The graph theory
based methods have been used to the large extent [49] [48]. So, in the
chapter also, a graph theory based isomorphism is introduced.

Most of the images have often regular repeated polygons, i.e., polygons
which are regular(the edges with same length) are repeatedly placed at var-
ious points in the image. Thus, it will be useful if the basic units which are
like building blocks are found.

The novel Neighbour Isomorphism defined in the chapter helps to cate-
gorize the vertices of the images into isomorphic groups and then the sym-
metric lines are formed to find the basic unit. Thereby, instead of matching
the whole image, it is sufficient if the matching is done for the basic unit.

2.3.2 The Symmetry Problem

Given an image with lot of polygons connected in different ways, the sym-
metry lines have to be found to form the basic unit. Mathematically, let R
be the set of all regular polygons. Let P; denote the regular polygon with ¢

22 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

vertices, each denoted as U{ . Two vertices vzj and vfc are nailed together to
connect the two polygons P; and P;. The remaining vertices are called hang-
ing vertices. The given image contains a connected graph which is nothing
but a regular repeated polygons. The Neighbour Isomorphism categorizes
the vertices into disjoint class of isomorphic groups, ¢;. Let there be n such
isomorphic groups in the image. Try to find a line which will divide equally
the number of vertices in each isomorphic group g;. This line L; is called the
symmetry line of the image. There may be more than one line. Let H; be
the set of all such vertices divided by the line L;. Similarly, Hy by another
line Ly. Then, Hio = Hy N H> is the basic unit provided no other symmetry
lines are available [54].

2.3.3 The Neighbour Isomorphism Definition

The Neighbour isomorphism between two vertices v1 and vo in a graph G
is defined as follows [51],

v1 and ve are Neighbour isomorphic iff there exists k numbers of r distant
neighbours for v; in G, then exactly there must exist k numbers of r distant
neighbours for vo in G;. (If the graph is a weighted graph, pairwise the
corresponding vertices should be Neighbour isomorphic.)

Consider a graph with linear list of vertices vy to v4. The Neighbour
isomorphic groups of vertices are (vg,v4), (v1,v3) and ve. The vertex vy is
not Neighbour isomorphic with the vertex v; because vg has a neighbour at
the distance of 4, where as v; has none at the distant of 4. Similarly, vy is
not Neighbour isomorphic with v3 as vo has two neighbours at the distant of
2 where as v has only one. It is very easy to verify that all the vertices of a
regular polygon are NI isomorphic, i.e., there is only one isomorphic group
containing all the vertices. It is also true for hypercubes of all dimensions
and complete graphs.

Mathematically, Let G be the graph with V as the set of vertices and
E as set of edges. Let g; denote the set of vertices which are neighbour
isomorphic. Obviously, g; C V. Let V;,V; € V.

Vi, Vj € gp it N(Vj, 1, 9,) = rand N(V},1,g,) =7, VI =1, ..., diameter of
G, where N(V;, 1, gp) = r denotes there are r number of [distant neighbours
of gp.

For a vertex numbered as I in the first figure of Fig.2.4, the function N
with the following arguments forms the Table 2.4. In the Fig.2.4 and in all
figures, if a vertex has a label i, then it belongs to g;.

2.3. SYMMETRY BASED GRAPH MATCHING 23

[(distance) | g; (isomorphic groups) | r (neighbours)
1 g1 2
1 gz 2
2 g1 1
2 gz 4
2 gs 1
3 gz 2
3 gs 2
4 g3 1

Table 2.4: The Function N of Neighbour Isomorphism for the vertex num-
bered 1 in the first figure of Fig.2.4

2.3.4 Lemmas based on Neighbour Isomorphism

In the section, the lemmas are stated without proof as they can be easily
derived from definition of Neighbour Isomorphism.

Lemma 1. If P; € R, then there exists only one neighbour isomorphic
group g; containing all vertices. i.e., V = ¢;. Refer Fig.2.3. As all the
vertices are isomorphic to each other, they form only one group. It may also
be noted that the dotted lines show the symmetry in the figures.

Lemma 2. If P;,P; € R and P; is nailed at all the i vertices of P;,
then also all the i vertices of P; form only one neighbour isomorphic group,
g1- (However, the isomorphism in P; is changed.) Refer also Fig.2.4. It
is important to note that the isomorphism in P; is preserved where as the
isomorphism in P; is changed. The vertices with same number belongs to
same group.

Lemma 3. If g; and g; are two neighbour isomorphic groups of Py, then
9iNg; = ¢. i.e., neighbour isomorphic groups are disjoint. It is easy to verify
from the definition of Neighbour Isomorphism, if they are not disjoint, they
would have merged into one group instead of two groups.

Lemma 4. Let P;, P;, P, € R. P; is nailed at all the i vertices of P; and
P, is nailed at all the remaining hanging vertices of Pjs at j points, then
also all the i vertices of P; form only one neighbour isomorphic group. (But,
the isomorphism is changed for both P; and P;.) This process can be done
iteratively and then also the lemma holds good as shown in Fig.2.6. By
adding the polygon P; on each vertices of P;, the isomorphic property of the
vertices of P; remains unaltered. Again, this is not true for the polygons P;
and the subsequently added polygon Pj also.

24 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Lemma 5. Let P;, P;, P, € R. P; and P are nailed at all the i vertices
of P;, then also all the i vertices of P; form only one neighbour isomorphic
group. (But, the isomorphism is changed for both P; and P;.) This process
can be done iteratively and then also the lemma holds good as depicted
in Fig.2.5. By adding any number of polygons on each vertices of P;, the
isomorphic property of the vertices of P; remains unaltered. Again, this is
not true for the polygons P; and Pj.

Lemma 6. Let Pi,Pi1 € R, where P; and Pi1 differ only in size. If Pi1
is smaller than P;, Pz-ls are embedded in P; at all the vertices with possible
edges (normally two) too coinciding, then also all the vertices in P; form only
one neighbour isomorphic group. (However, the isomorphism is changed in
all Pls.) This is obvious from Fig.2.7.

Lemma 7. Lemmas 1,2,3,4,5 and 6 hold good in 3D also as shown in
Fig.2.8.

Lemma 8. Neighbour isomorphism is invariant to translation, rotation
and scaling with same scaling factors in all directions. As none of the condi-
tions of neighbour isomorphism changes due to translation and rotation, it
is obviously invariant. However, the distances are changed in scaling. That
is why uniform scaling is required so that even if the distances changes,
overall change in all the vertices will nullify the net effect on neighbour
isomorphism.

Lemma 9. Nonregular polygons can also exhibit neighbour isomorphism.
Few examples are provided in Fig.2.9.

Lemma 10. There exists atleast one symmetry line for all repetitions
as per lemmas 1,2, 4, 5, and 6. As all regular polygons have atleast one
symmetric line, divide each neighbour isomorphic groups into two sets unless
they have odd number of vertices. In such case of odd number of vertices, the
symmetry line should pass through one of the vertex in such group making
the odd vertex common to both the divided sets.

2.3.5 Analysis of the result

If Ly and Lo are the two symmetry lines of the image(given as repeated
regular polygons), and H; and H, are the corresponding set of vertices
divided by L; and Ls respectively, then probably H; N H2 gives the basic
unit of the image. This may not always true. It has been observed in few
repetition. If the image exhibits neighbour isomorphism, then there is finite
chance in most of the cases that there exists atleast one symmetry line.
The major aspect is to find the symmetry lines so that basic units can
be found easily. By constructing the neighbour isomorphic groups g;, it is

2.3. SYMMETRY

BASED GRAPH MATCHING 25

Figure 2.3: One level regular Objects

Figure 2.5:

Two level regular Objects with double nailing

26 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Figure 2.7: Two level regular Objects with embedding

Figure 2.8: Three Dimensional regular Objects

2.3. SYMMETRY BASED GRAPH MATCHING 27

Figure 2.9: Nonregular Objects

O(n) time to the symmetry line, where n is the total number of isomorphic
groups. Then, it is constant time to find H; and Hs and the basic unit also.

Moreover, if there exists L1 and Ly for P;, the basic unit will have only
i/4 vertices. Suppose there are k symmetry lines, the basic unit will have
only /2% vertices. This shows that the order of reduction is very high for
matching. Because, no longer the whole image has to be matched, it is
sufficient if the basic unit is matched. Thus, the method can reduce the
amount of time required to match considerably which solves the paramount
factor in many of the real-time applications.

2.3.6 Conclusion

In the chapter, a novel graph theory based isomorphism, namely, Neighbour
Isomorphism has been introduced. This isomorphism categorizes the vertices
into disjoint groups. From these groups, it is easy to form the symmetry lines
of the image. If more than one symmetry line exists, the intersection of the
vertices partitioned by the symmetry lines forms the basic unit of the image.
Many properties of the isomorphism are stated as lemmas here. The most
important is the invariance despite translation, rotation and scaling(with
equal factors). If the basic unit of image is found, no longer the whole
image has to be matched. But, it is sufficient to match the basic unit only.
Thus, the method appreciably reduces the amount of matching which is the
major impediment in computer vision problems.

28 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

2.4 New Isomorphism based Matching

2.4.1 Previous Works

In most of the core application problems in Robotics, Satellite Imagery and
Medical Imaging, recognizing the crucial parts or structures in the given
images continues to attract more attention. Thus, the paramount factor in
these computer vision related fields is matching the objects in the images
[40], [48]. Even though the representational power of the graphs is high, the
graph matching problem is a classic NP-complete problem [48]. The problem
of graph matching in general is solved by various methods, viz. backtracking
[44], [43], branch and bound [46], heuristic approximations [47], state-space
method [53], [52] and isomorphisms [42].

Lot of interests are evinced recently following different approaches, viz.,
Eigendecomposition [55], Graduated Assignment [48], Subgraph Isomor-
phism [38], Error Correcting [39], and Single Value Decomposition [56].
Some of these algorithms which are based on matrix inverse or decomposi-
tion and linear programming methods have problems with large values of n.
Some state-space based algorithms and branch and bound algorithms are of
exponential time worst-case complexity. Few error correcting and error tol-
erant methods concentrated on noise in the image instead of the complexity
of the matching algorithm primarily.

The classical algorithms for graph matching compute an incremental
vertex-to-vertex mapping consisting of a backtrack tree search, perhaps with
forward checking [45]. The complexity of such methods is NP. Here, the
Neighbour Isomorphism (NI) is used which efficiently matches two graphs
in O(n*) where n is the number of vertices in both the graphs which can be
weighted and attributed. Using the NI (heuristics), the vertices of the graphs
are grouped mutually exclusively. Instead of matching all the vertices, only
the relevant NI vertices alone are matched paving way for ample efficiency by
reducing the number of matching operations. The results are also compared
with the standard A* algorithm for exhaustive enumeration approach to
portray vividly the reduction in the execution time.

2.4.2 Graph Matching and Graph Isomorphism
Graph Matching

A weighted attributed graph G is a set of vertices V which are attributed
and edges E which are weighted with nonnegative real value. It may be
recalled vertices can also be weighted and edges can have attributes. Given

2.4. NEW ISOMORPHISM BASED MATCHING 29

two weighted Graphs, G; and G, matching is to find a match vector M
such that,
Yci,m; 1s minimal V i ranging from 1..n.

where c¢;; is the cost involved in matching v; of G; and v; of G2 and
Mi = V.

Graph Isomorphism

Given two graphs, G1(V1,E1) and G2(Va,E»), for every edge, e;; between the
vertices v; and v; in Vi, there exists an isomorphism f such that there exists
also an edge ey, in Fs such that f(v;) = v, and f(v;) = v,.

Further Properties of NI (Neighbour Isomorphism)

1. g, and g4 are two NI groups in G;. Then, they are mutually exclusive.
i.e., v; € gp, then v; € g, and vice versa Vv; € V.

2. If g, is a NI group in G; and g is a NI group in Gj and 7 # j, g, and g,
are similar iff v; € g, and v; € g4, N(v;,1,9p) =7 and N(vj,l,94) =7,VI =1
, ..., diameter of G of the respective graph.

3. NI is invariant to translation, rotation and scaling(with uniform scal-
ing factors).

Use of the Properties in Graph Matching Algorithm

The first property is about the equivalence classes grouped by NI. By group-
ing a vertex uniquely to a class(group), the same vertex need not be con-
sidered again any more. This results in ample reduction in computation.
Moreover, the feature paves way for designing parallel algorithm for the
graph matching.

The second property is the crucial one for graph matching. Since the
vertices in each graph are grouped into equivalence classes, it is obvious that
there exists only one matching between the respective groups(otherwise it
will violate the equivalence class principle). The crux of the reduction in
matching is derived from this property. Instead of matching each vertex in
one graph with every vertex in the other graph, here only the correspond-
ing groups are matched. Then the vertices in the groups are associated
depending upon their edge connectivity.

The third property is very important for image processing. Most of the
times, the images to be compared differ in orientation and size apart from
translation. As NI is invariant to translation, rotation and scaling (with

30 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

uniform scaling factors), using the method the images depicted as graphs
can be efficiently matched. The examples chosen for demonstration explain
the salient features vividly. Indeed the linear combination of the operations
preserving NI invariance are permissible. So, given two graphs if one is a
linear combination of the operations of the other, they will be matched by
the algorithm given in the next subsection.

2.4.3 Graph Matching Algorithm using NI

1. For the graphs G and Go, individually NI is computed to form iso-
morphic groups (gp, gq)-

2. For each g, in G, following steps are executed for matching with each
gq in Ga.

3. If the number of vertices in g, is equal to the number of vertices in g,
continue the steps else match with another g, in G2 as g, from step 2.

4. Let v; € gp and v; € gq. If N(v;,1,9,) =7 and N(vj,l,94) =7,Vl =1
, ..., diameter of G of the respective graph, then g, and g, are similar.
Goto step 2 with new pairs of g, and gj.

5. If all groups are matched, Vg, € G1,3g, € G2 such that g, and g,
are similar. (If it is onetoone, then the isomorphism itself is found as
well.) else print the available matching.

6. To match individual v; € gp, choose any v; € g, taking into consider-
ation of the edges to preserve the connectivity.

7. . Repeat Step 6 for each such similar groups g, and g,.

2.4.4 Snapshots of the Algorithm

In this section, the salient features of the NI based graph matching al-
gorithm are explained with the snapshots for the example in Fig.2.10, a
wrench. First individually NI is computed for each graph of (a) wrench-
1, (say G; the graph on the left) and (b) wrench-2, (G5 the graph on the
right). The isomorphic groups in Gy are g; with vertices (vg,vg), g2 with
vertices (vi,v9,v3,v4) and g3 with vertex (vs). It is evident that vy in Gy
has two neighbours at a distance 2 and one neighbour at a distance 3. All
the vertices except vs, are having similar neighbours. But all of them are
not having pairwise NI corresponding vertices. For example, for the vertex

2.4. NEW ISOMORPHISM BASED MATCHING 31

vg, there is a vertex vs at a distance of 3, which has degree 2. Except the
vertices vg and vy, no other vertex has a neighbour at the distance of 3
which is similar to vs. Vertex vs has 2 neighbours at a distance of 3 which
no other vertex has. So, only vg and vg are grouped together by NI and vs
separately. In the same vein, all vertices in each group can be explained.
Similarly for G, the isomorphic groups are g, with vertices (vo,v4), gp with
vertex (v1) and g. with vertices (v, v3,vs5,vg).

At the second step, g1 in G is considered for matching. First, g, in
(G5 is considered for the match as it has equal number of vertices. At step
three, it is obvious from the graphs that N(vg,l,g1) = N(vg,l,94),Vl = 1,
..., diameter of G; and G respectively(in this case 1 = 2,3,5 and 6). It
may be noted that g, and g. will not be considered at all as the number of
vertices in these groups differ from g;. It is also easy to show that instead of
v4 1n g,, for vy in g, also the previous condition is valid. So, g1 in G; and g,
in Go are matched together. It must be noted that unlike exhaustive cases
where each and every pair of vertices are compared for matching, here very
less comparisons are made to match which results in reducing the execution
time of the algorithm.

The steps two and three are repeated for go and g3 matching correctly
with g. and gy respectively. As all groups are matched, the matching is over.
However, individually any vertex in the matched groups can be matched with
any other vertex in the corresponding matching group and it can be random
done also. For example, the vertex vy in ¢g; in G7 can be matched with
either the vertex vy in g, in G9 or v4 in g, in Go so as the vertex vg in g; in
(G;. Similarly matching is done only with the corresponding matched groups
and the overall matching is found. One possible matching with pairs first
from G and second from G5 as follows, (vg,v4),(v1,05),(v2,06),(v3,02),(v4,03),
(vs,v1) and (vg,v0). The same is elaborately explained in Fig.2.11.

2.4.5 Time Complexity

As the important step in the algorithm is NI computation of both the graphs,
the time complexity of NI plays the major role in the entire algorithm. For
each graph separately the distance between the vertices can be found by any
standard algorithm [57] in O(n3). Now to find NI in each graph, for each
vertex (n times) for each length (maximum n) for each other vertex (n times)
for every length (maximum n times), N(v;,[,gy) = r has to be compared.
This results in the time complexity of O(n*). Since rest of the steps take
lesser time complexities, the complexity of the algorithm is O(n?).

32 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Model Vertices | Time by NI (in Sec) | Time by A* (in Sec)
Wrench 7 0.01 0.05
Humanface 24 0.05 18.43
DNA 32 0.09 129.18

Table 2.5: Graph Matching with NI

Vertices | Edges | Time (in Sec)
)) 0.01
10 9-14 0.01
16 30-32 0.02

Table 2.6: Graph Matching with NI for Random Graphs

2.4.6 Experimental results and Analysis

Here as shown in Fig.2.12, three crucial examples, (a,b). wrenches for in-
dustrial applications, (c,d). DNA molecules (Thymine base) for genetics
and (e,f). Human faces for image understanding are considered for graph
matching. The Vertices can be attributed as O for oxygen, C for Carbon
and so on as in DNA molecule. The edges have always weights specified.
Otherwise, it is assumed to be the same unit for all. Time is given in sec-
onds in Table 2.5 Table 2.6. The algorithm is coded in C and executed on
Sun Ultra 10 Microsystems. The results are tabled in Table 2.5. The exact
matched vertices are presented in Table 2.7 and Table 2.8.

Indeed, the results clearly shows that it is a graph isomorphism in the
given cases even though it ought not to be so all the times. For checking the

Vertex in Wrench (a) | Matched Vertex in Wrench (b)
0 4
1 Y
2 6
3 2
4 3
5 1
6 0

Table 2.7: Graph Matching with NI for Wrenches

2.4. NEW ISOMORPHISM BASED MATCHING

DNA (c) | DNA (d) || Humanface(e) | Humanface(f)
0 17 0 19
1 14 1 18
2 15 2 0
3 16 3 17
4 13 4 11
5 10 5 12
6 11 6 9
7 12 7 10
8 1 8 13
9 0 9 16
10 7 10 15
11 6 11 14
12) 12 8
13 8 13 7
14 9 14 6
15 2 15)
16 3 16 4
17 4 17 3
18 18 18 2
19 22 19 1
20 21 20 22
21 29 21 23
22 28 22 20
23 30 23 21
24 31
25 23
26 24
27 25
28 26
29 27
30 19
31 20

33

Table 2.8: Matched Vertices of DNA Molecules and Human faces with NI

34 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Figure 2.10: The given two graphs representing Wrenches

optimality here only the exact matching has the minimum cost and others
are set as very high cost. With the amount of time, getting optimality
with the stringent conditions to ensure isomorphism itself exemplifies the
power of NI and the performance of the matching algorithm. In all these
examples, the algorithm finds the graph isomorphism itself. However, it is
not guaranteed for every case eventhough the optimal matching guaranteed.
The examples are chosen from different fields to ascertain that NI is possible
in many of the graphs from these fields.

Comparing the time required between the NI algorithm and the standard
A* algorithm [52] which matches exhaustively from Table 2.5, the reduction
in the execution time is very impressive. It may be recalled as the number
of vertices increases, the reduction in execution time also increases in these
cases. This proves that as more and more vertices are grouped, the efficiency
of the algorithm also improves.

For the three classical examples from various fields, the efficiency of
matching with linear programming and backtracking methods are also in-
vestigated. For the first example with 7 vertices alone, it is possible to
compare as other methods demand either enormous memory space or expo-
nential computing time. For the first example, linear programming method
took 17.75 seconds and backtracking methods found only sub-optimal solu-
tion also takes 0.05 seconds. There is no iota of doubt that NI outperforms
all these methods.

For the random graphs by varying the number of edges also, the algo-

2.4. NEW ISOMORPHISM BASED MATCHING 35

@ [T
=

S~

w

™~

D

FANIN |

2

4

Figure 2.11: The isomorphic groups ¢; and ¢,, g3 and ¢, g2 and g, in
Wrenches with matching vertices

36 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

b. Wrench

a Wrench 0

d. DNA

e. Human Face

18 N f. Human Face
O 2

Figure 2.12: Examples for Graph Matching using Neighbour Isomorphism

2.5. BHARATHANATYAM POSTURES - POSTURE MATCHING 37

rithm performs well as portrayed in Table 2.6. Time given in seconds in
Table 2.6 are the mean time for such random graphs. Here, the graphs may
exhibit NI or not. Despite the absence of NI, the algorithm matches the
graphs correctly within the reasonable time. This asserts that the overhead
involved in NI grouping is negligible compared to the total execution time.

2.4.7 Future Works

The order of the algorithm can be reduced to O(n?m), where m is the num-
ber of edges with suitable modification in the algorithm. Currently, the
algorithm finds similar to graph isomorphism rather as graph matching,
matching both ways. Incorporating subgraph isomorphism requires consid-
erable modification in the algorithm. As the algorithm is inherently parallel,
developing a parallel algorithm may not be tough. The inclusion of error-
correcting and error-tolerant in the algorithm should also be investigated.

2.4.8 Conclusion

A novel method using Neighbour Isomorphism is introduced which efficiently
matches two graphs in general and in many application specific areas. For
recognizing the crucial parts or structures of the objects in such applications
which are represented as graphs, the efficient matching of the objects with
the models is inevitable. A graph matching algorithm based on Neighbour
Isomorphism (NI) defined in the chapter is presented here. For the chosen
classical examples from various fields, the algorithm found the optimal graph
matching which in the examples concerned are indeed graph isomorphism
itself. Instead of matching all the vertices, only the relevant NI vertices
alone are matched paving way for ample efficiency by reducing the number
of matching operations. The performance of the algorithm is demonstrated
with crucial examples and random graphs. The algorithm outperforms many
of the standard algorithms which is also investigated in the chapter. The
order of the algorithm can be reduced and the algorithm can also be executed
in parallel.

2.5 Bharathanatyam Postures - Posture Matching

2.5.1 Bharathanatyam Postures

One of the oldest classical dances in India is Bharathanatyam which has very
well-defined movements and postures [58]. Here, combining both Neighbour

38 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Isomorphism and the improved A* Algorithm, given a set of bharathanatyam
postures as database, if a particular posture is given as input, the combined
algorithm efficiently finds the correct match. In case of a different input that
is not in the database, the algorithm tries to match to the nearest resembling
posture or postures also. It may be noted that the regions corresponding to
the features viz. head, hands, foot and so are given along with the input so
that they can form a graph. Since, the human structure is constant, edges
are not specified as they are obvious. Once the graph corresponding the
input posture is formed as shown in Fig.2.17, from the database of postures
where the respective graphs for each posture is stored, according to A*
Algorithm the optimal matching is found efficiently.

2.5.2 The Combined Algorithm

The combined algorithm of Neighbour Isomorphism and the improved A*
Algorithm, is depicted in the figure Fig.2.13. A set of bharathanatyam
postures presented in [58], are chosen to form the database. Some of the
postures are presented in the following figures, Fig.2.14, Fig.2.15, Fig.2.16
and Fig.2.17. As shown in Fig.2.17, each posture is represented as a graph.
When an unknown graph representing a posture is given, the algorithm tries
to match with optimally closest graph in the set of graphs.

2.5.3 Results and Analysis

The algorithm is implemented on Sun Microsystems Ultra 10. One set of
input is chosen from the database itself to check the veracity of the im-
plementation. For all the cases in the database, the algorithm correctly
identified the posture. The results are summarized in Table 2.9. Yet an-
other set of input postures is tested with the available database so that the
optimal matching posture or postures can be found. For the tested cases
which are not in the database, the algorithm correctly identified the posture
also. The timings are tabulated in Table 2.10. In all the cases, the timings
presented are the averages over repeated trials. From the tables, Tab. 2.9
and Tab.2.10, it is clear that irrespective of whether the input is from the
database or not, the computation time does not vary considerably. Because,
the Neighbour Isomorphism categories the parts (features such as head) in
the same time for similar size graphs, it becomes straight forward for the
A* algorithm to find the optimal match efficiently. This has also proved
that for stick model of Human beings, Neighbour Isomorphism can be used
effectively.

2.5. BHARATHANATYAM POSTURES - POSTURE MATCHING 39

Image of a Posture

I

Selection of Feature Points

Y

Graph Representation

Y

Neighbour Isomorphism

I

Identification of Location
of Individual Parts

v Database of
Postures

A* Algorithm

Y

Recognized Posture /
Matching Postures

Figure 2.13: The Combined Algorithm for Matching Bharathanatyam Pos-
tures

40

CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Figure 2.14: Bharathanatyam Postures Set 1

2.5. BHARATHANATYAM POSTURES - POSTURE MATCHING

Figure 2.15: Bharathanatyam Postures Set 2

41

42 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Figure 2.16: Bharathanatyam Postures Set 3

2.5. BHARATHANATYAM POSTURES - POSTURE MATCHING 43

Figure 2.17: Bharathanatyam Postures Set 4 with respective Graph Repre-
sentations

44 CHAPTER 2. MATCHING BASED ON GRAPH THEORY

Model | Time in Sec | Found Correctly?
15-m7 0.14 yes
16-m11 0.12 yes
17-m25 0.14 yes
18-m34 0.13 yes
19-m42 0.12 yes
20-m48 0.12 yes
21-mb8 0.13 yes
22-m60 0.13 yes
23-m70 0.12 yes
24-m77 0.12 yes
25-m89 0.12 yes
26-m92 0.13 yes
27-m103 0.11 yes
28-m112 0.12 yes

Table 2.9: Bharathanatyam Posture Matching (input from Database)

Input Graph | Time in Sec | The Matched Model
1 0.13 16-m11
2 0.14 17-m25
3 0.14 15-m7
4 0.13 20-m48
5 0.12 22-m60
6 0.14 18-m34
7 0.13 19-m42
8 0.14 21-mb8
9 0.15 23-m70
10 0.14 27-m103
11 0.15 26-m92
12 0.12 24-m77
13 0.14 28-112
14 0.15 25-m89

Table 2.10: Bharathanatyam Posture Matching (input not from Database)

Chapter 3

Chamfering based Matching

3.1 Basic Concepts

3.1.1 Segmentation with Thresholding

In many of the pattern recognition problems, description of what is in the
image or what are the possible descriptions of the various subsets of the
image (Segments or objects) and their properties is one of the major corner
stone problems. Pattern recognition systems must be capable of singling
out the appropriate image subsets (segmentation). Eventhough there is no
universal method for segmentation, from simple thresholding to colour cues,
from connectivity to distance based approaches, there are many methods for
segmentation.

Thresholding

Specifying a subset of a picture is equivalent to specifying its 'Characteristic
function’ i.e., the function whose value is 1 at the points of the subset and 0
elsewhere [59]. To segment an image or single out the subsets of the image,
one way is to obtain the characteristic function of the subset by thresholding
the given image. If fis an image, f "is the transformed image by thresholding
such that f'(i,j) = 1 if f(i,j)> 6 (a threshold value) or zero otherwise. It
can be extended in many ways including f (ij) = 1 if 8; < f(i,j) < 6. By
thresholding, one can get isophote images, smooth the image by eliminating
noises both at the low and high levels, sharpen the image and match using
cross correlation also. However, one of the major problems is to choose
the value for threshold. But the distance based methods help to find the
distance/similarity measure between the given two images or image and a

45

46 CHAPTER 3. CHAMFERING BASED MATCHING

3 3 3 33 3 3 3

3 2 3 3 2 2 2 2 23

3 2 1 2 3 3 2 1 1 1 2 3

3 2 1 0 1 2 3 32 1 0 1 2 3

3 2 1 2 3 3 2 1 1 1 2 3
3 2 3 3 2 2 2 2

3 3 3 3 3 3 33

Figure 3.1: (a) Diamond (b) Square Distances

model to be matched.

3.1.2 Distance Functions

A function ¢ is called a distance function, if it is positive definite ($(x,y)=0
iff x =y), symmetric (¢(x,y)= ¢(y,x)) and satisfies triangle inequality (¢ (x,z)
<= ¢(x,y) + &(v,2), where x,y,z are points with coordinate positions.

The city block distance function is defined as ¢1((i,j),(h,k)) = |i-h| + |j-
k|. Another function ¢ is defined as the maximum of |i-h| and |j-k|. Fig.3.1
portrays a visualization of these distance functions.

The main point to be remembered which is used in distance transforma-
tion is the following theorem [59].

Let ¢ be a distance function, let (a;;) be an n-by-n binary valued image,
let S be the set of (i,j) for which a;; = 0, let the sequence of integer-valued
images (az(-;-c)) be defined by
afy) = ming(Gap<iaw +agy

for k=1,2, ... , where az(?) = a;;. Then for sufficiently large k (for ¢y, k

= 2n and for ¢y, k = n suffices),
ol = 4((i,5), S)V(i, 5).
3.2 Distance Transformation

Given the image with model, the features are the most important and they
have to be distinguished from nonfeatures in the image. The features can be

3.3. CHAMFERING 3-4 47

corners, edges, bright spots or areas of particular texture. There are many
algorithms for finding edges and corners such as SUSAN [60] filters. In the
approach, the edges are taken as features. The aim is to have a measure of
the distance from each non-edge (nonfeature) pixel to the nearest edge pixel
(feature) at each non-edge pixel. Obviously, edge pixels get the value zero.
If the true Euclidean distance has to be found, it is not only computationally
intensive, it also demands more memory [61]. So, a good approximation is
needed to get these distances. The operation converting a binary image to
an approximate distance image is called as a distance transform. Once an
image is converted into a binary image with features points 0 and others some
maximum value, any of the distance functions can be used for calculating
the distances.

Based on the theorem cited above in the previous section, the global dis-
tances in the images are approximated by propagating the local distances,
i.e., distances between neighbouring pixels over the image. In the approach
of distance transformation, the local operation of propagating the local dis-
tances is iterated to get the closest global distances. The propagation can be
done sequentially or in parallel. Such a sequential distance transformation
is called chamfering.

It may be recalled a 3 * 3 neighbourhood is used for local distances.
Chamfering 2-3 method has the maximum difference (compared to Euclidean
distance) of 13 percent. The city block distance has the maximum difference
of 59 percent. Chamfering 3-4 method used in the approach has only 8
percentage of difference [61]. It is essential to note that taking efforts to
compute exact distances (Euclidean) from inexact edges due to noise in real
images is a waste.

3.3 Chamfering 3-4

Given the binary image (feature pixels at zero and others at maximum
value), here it is shown how chamfering 3-4 method can be programmed
both for sequential and parallel implementation.

for(k=1 to some fixed value n) do
{

for(each pair (i,j)) do in parallel
k—1

k _ k—1
aij mzn(aZ 1] 1—i—4,aZ 1]4-3,al 1]Jr1+4,a” L+ 3,0

37 a‘z—i—l ,Jj—1 + 4’ G’H—l NI + 3’ G’H—l ,J+1 + 4)

k=1 _k—1
i,J ’a’z]+1+

48 CHAPTER 3. CHAMFERING BASED MATCHING

Iterations can continue until no changes occur.

The sequential algorithm performs both forward and backward passes
from left to right, but from top to bottom and bottom to top respectively.

Forward step:

fori =2, ... , row do

for j = 2, ... , columns do

Qjj = min(ai_l,j_l + 4, ai—1,5 + 3, ai—1,5+1 + 4, a;j—1+ 3, am-).

Backward Step:

fori = row-1, ... , 1 do

for j = columns-1, ..., 1 do

Qjj = min(ai,j, a;j+1 + 3, Qit1,5—-1 + 4, Qit1,5 + 3, Gi+1,5+1 + 4).

3.4 Matching using Chamfering

Once the distance transformation is over and the distance image is produced,
the model can be matched. From the model, all the points (pixels) which
are feature points (which form the edges) form a list of coordinate pairs,
each pair being the row and column numbers of the corresponding edge
pixel. The model is superimposed on the image at every possible points. In
each case, using the list of coordinate pairs (translated depending upon the
point of superimposition) the matching measure is calculated. The matching
measure if it is a perfect match must be zero. In the approach, root mean
square average is taken as matching measure.

3.5 Results and Analysis

The matching using Chamfering is implemented both on the Sun Microsys-
tems and on Cray T3E. Obviously, for various examples the algorithm works
perfectly. However in some very difficult conditions especially for night shots
and highly cluttered environments notably inside shops, the algorithm failed
to identify the persons correctly. In such cases, Hausdorff method performed
well proving the robustness. Of course, it is not true that the algorithm does
not work in such highly cluttered environments. Atleast in one of the given
examples, the Chamfering perfectly recognized a person (eventhough left
many such incidents which might be due to lack of adequate models). At
the same time, it must be noted that the algorithm takes appreciably less
amount of time compared to the Hausdorff method.

3.5. RESULTS AND ANALYSIS 49

Figure 3.2: An image in a robotic field

For the image sets and models shown here, the computation times are
tabulated. The figures in Fig.3.2, Fig.3.3, Fig.3.4, Fig.3.5, Fig.3.6 and
Fig.3.7 are taken as input images. The models are depicted in Fig.3.8.
A sample edge image of Fig.3.4 is shown in Fig.3.9 and the corresponding
distance transformed image is presented in Fig.3.10.

As mentioned earlier, the algorithm performed well for both less com-
plex cases and highly cluttered cases as presented in Table 3.1. The parallel
algorithm also performed in the same lines without much improvement as
far as the computation times are considered as tabulated in Table 3.2. The
variation in the computation time depends on the size of the image, the size
of the model and the position in the image where the instance of the model
is present positively. In case of parallel algorithm not much reduction is
visible as the processors have to exchange whenever they find an instance
of the model in the image. This will help the other processors to avoid such
areas. However, due to hardware constraints related to interprocessor com-
munications, all processors must be synchronized to communicate among
themselves which involves lot of idle time which is more than the computa-
tion time mostly. So, in these cases, irrespective of the other processors, a
processor will compute in the area specified to it. The parallelization strat-
egy is extensively discussed in the following Chapter. The robustness is lost
in the fast computation and which is why Hausdorff method is chosen for

50 CHAPTER 3. CHAMFERING BASED MATCHING

Figure 3.4: An image of students cross the road before the institute

3.5. RESULTS AND ANALYSIS o1

Figure 3.6: An image of a busy cash counter inside a shopping complex

52 CHAPTER 3. CHAMFERING BASED MATCHING

Figure 3.7: An image of a night shot near my house

Image | Model Posi Accu | Found | Time
1 1 0,0 100% | Yes 0.71
2 2 No 1.49
3 3 390, 200 | 100% | Yes 2.5
4 4 No 2.3
5 5 No 2.6
6 6 No 2.3

Table 3.1: Image Matching with Chamfering for Human being Recognition

Image | Model Posi Accu | Found | 2 per Time | 4 per | 8 per
1 1 0,0 100% | Yes 0.43 0.36 | 0.37
2 2 No 1.51 1.26 | 1.22
3 3 390, 200 | 100% yes 2.67 231 | 2.14
4 4 No 2.62 2.2 2.09
5 5 No 2.94 2.31 | 2.09
6 6 No 2.74 2.20 | 2.08

Table 3.2: Parallel Time of Chamfering for Human Being Recognition

3.5. RESULTS AND ANALYSIS

Figure 3.8: Some of the Models with Corners

93

54 CHAPTER 3. CHAMFERING BASED MATCHING

Figure 3.9: The edge image of Fig.3.4

Figure 3.10: The Distance transformed image of Fig.3.9

3.5. RESULTS AND ANALYSIS

further analysis in depth.

95

56

CHAPTER 3. CHAMFERING BASED MATCHING

Chapter 4

Hausdorff Method for
Matching

4.1 Definition of Hausdorff Method

The Hausdorff distance [12] is defined as follows:

Let the two given finite point sets be A = ay,as,...,a, and B =
b1,b2, ey by

Hausdorff Distance H(A,B) = max(h(A,B),h(B,A)) where

h(A, B) = mazqc aominye gD N (a — b)

where DN is a distance norm (the distance between the two
points a and b).

In Fig.4.1, sets of points are pictorially depicted to understand better.
In Hausdorff method, each point (denoted by circles) in the point set A (left
side stick figure) ranks each point (denoted by hexagon) in the point set B.
That is each point in A tries to find which is the closest point in B and the
distance is DN(a; — bj). The maximum distance among such distances for
each point in A is h(A,B). In the Fig.4.1, a possible nearest points based on
some distance method is shown. This is as if one is superimposed on other
and nearest points are found.

It may be recalled h(A,B) need not be necessarily equal to h(B,A). A
simple example to check the veracity is with set A = {(0,0), (0,4)} and set
B ={(3,0)}. Let DN be the Euclidean norm. Then, DN((0,0),(3,0)) = 3,
DN((0,4),(3,0)) = 5. Hence, h(A,B) = 5. Since B has only one point, there is
no need to first find the minimum unlike in the following case to find h(B,A).
DN((3,0),(0,0)) = 3. DN((3,0),(0,4)) = 5. The minimum of both is 3. Since

o7

o8 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.1: Two sets of points to be matched

there is only one point in B unlike the previous case, there is no need to find
the maximum. Thus, h(B,A) = 3 which is not equal to h(A,B). However,
H(A,B) is symmetric, i.e., Hausdorff distance is symmetric eventhough the
directed Hausdorff distance need not be symmetric.

Starting from locating the objects using Hausdorff distance [62], Haus-
dorff distance has been applied for active tracking [63], tracking real scenes
[64], visual target detection [65] and video sequence matching [66]. Modi-
fied measures of Hausdorff distances are used in plenty of applications, image
matching [67], [68], [69], [70], model-based object recognition [71] and object
matching [72]. In 3D segment matching [73], page similarities [74], human
face recognition [75],[76] and occlusion contour detection [77], Hausdorff dis-
tance is applied.

4.1.1 Image Matching

Here, images which have to be analyzed are matched with the models which
depict the pattern to be recognized, in the present case human beings. Using
the general corner detecting algorithm (here SUSAN filter is used [60]), the
corners of the images are found which serve as the point set B. Similarly,
all the model images are filtered with the same SUSAN filter to find the
corners and are stored as point set A. For the application, it is sufficient
to find h(A,B). The main Hausdorff distance H(A,B) being a metric has to
satisfy the symmetry property and that is why it is defined as maximum
of the directed h(A,B) and h(B,A). The model is placed over all possible
positions on the image and for each such position, h(A,B) is computed which

4.2. THE CONVENTIONAL HAUSDORFF MEASURES 99

is computationally intensive. The model is found to be present in the image
if h(model,image) is less than some predefined threshold. Against various
models, the image is matched using the method.

4.1.2 Salient Features of Hausdorff Method

1. The Hausdorff distance between the two point sets H(A,B) is invariant
to translation or rotation provided both A and B are translated or
rotated with same measures.

2. The Hausdorff distance between the two point sets H(A,B) is scaled
with the uniform scaling factor on all directions in case of Euclidean
distance. If either the scaling factor is different or some nonlinear
distance function is used, this scaling of H(A,B) need not to be true.

3. If a model is present in the image, h(model, image) (NOT
H(model,image)) is unaffected by the presence of noise in image.

4. Tf a model is present in the image exactly, h(model, image) (NOT
H(model,image)) is zero which is also same as the chamfering distance
if feature points wise model is present in the image.

5. The Hausdorff method can handle occlusions effectively.

4.2 The Conventional Hausdorff Measures

Apart from varying the distance function used in Hausdorff method, various
modifications are made. In [12] the proposed partial HD (PHD) measure is
defined as directed distance of K rank,

hK(A,B) = K‘tlh € AdB(a)

where dp(a) represents the minimum distance value at a point a to the
point set B and K* € A denotes the K ranked value of dg(a). This
method need a parameter f = K/N,4 which has good matching when f =
0.6.

While comparing two binary images in [78] another directed distance
CHD is defined as

hrq(A,B) = Pl € AQ)" € Blla—b]

where P!" € A denotes the P ranked value of Q¥ € Blla — b||, with
Q" € Blla — b|| representing Q™ ranked value of the Euclidean distance.
Some parameters p and q need to be fixed to get good matching.

60 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

To compare the synthetic images contaminated by the four types on
noise [72] a directed distance MHD is defined as

haiirp (4, B) = 3= Y ,c 4 dB(a).

In order to eliminate outliers by replacing the Euclidean distance by the
cost function, another directed distance dys(A, B) is defined as follows,

har(A,B) = 1 T pld5(a))

where the cost function p is convex and symmetric and has a unique
minimum at zero. Mostly p = |z|, if |z| < 7 or p = 7 if |z| > 7. One more
HD measure based on hys(A, B) by taking the averages of the i** distance
values is also presented in [78].

There are number of ways by which the Hausdorff distance calcula-
tions can be efficient. Principally calculating the relative distances requires
more time. Lookup method storing the distance between the integer points
1..N,1..N is one such method. Using Distance transformations viz. chamfer-
ing also the distances can be computed. This can be also parallelized to get
the results in lesser time. A proper scheduling of the parallel program onto
parallel processors will further improvise to get the solution in lesser time.

4.3 Efficient Implementation of Hausdorff Method

4.3.1 Efficient Computation of Distances

Fundamentally, the distance function itself can be chosen such that the
computation time is lesser. For e.g., city block distance may require lesser
time than Euclidean distance as they involve finding square roots. At the
same time for both cases, the distances can be computed once and stored in a
big array and later only look up is involved and not the actual computation.

Always the distance transformations such as chamfering 3-4 can be used
to find the asymptotically closer values instead of the direct calculations.
This being two phase method, it is very efficient and unlike the look up
methods, it requires neither precomputing the distances nor big array to
store the distance for look up operation later.

In general, all these methods can be parallelized. Indeed further schedul-
ing of the parallel program can still produce results in lesser time provided
such MIMD systems are available for access.

From the resultant images Fig.4.2, Fig.4.3, Fig.4.4, Fig.4.5, Fig.4.6 and
Fig.4.7, it is clear that the Hausdorff method is very robust compared to the
chamfering method. However the computation time is more in the direct
method i.e., without using distance transformation. The last column is for
the same with the distance transformation as presented in Table 4.1. There

4.3. EFFICIENT IMPLEMENTATION OF HAUSDORFF METHOD 61

Image | Model | Position | No DT Time | With DT time
1 1 0,0 0.71 2.81
2 2 160,350 13.38 3.51
3 3 390, 200 24.08 4.31
4 4 127,235 31.51 4.3
) 5 330,200 8.7 4.15
6 6 240,120 2.3 4.14

Table 4.1: Sequential Times of Hausdorff with and without Distance Trans-
form

Figure 4.2: The Recognized Human being in the robotic field

62 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.3: The Recognized Human being near city center in Rothenburg
ob der Tauber

Figure 4.4: The Recognized Human being on the road before the institute

4.3. EFFICIENT IMPLEMENTATION OF HAUSDORFF METHOD 63

s Gadsmaen

Figure 4.5: The Recognized Human being in the dangerous crossing over
the rails

is a slight occasional change of position by a pixel which is also accepted as
100 % accuracy as one pixel deviation does not matter much. But in the
case of lookup method, it is very strange to note that computation times
are 0.94, 16.65, 25.62, 16.97, 8,93 and 23.65 respectively. The main reason
for such a huge computation times is due to reading a very large lookup
array of size 1024 times of 1024. Referring each item also takes considerable
time. It must be noted because of this the parallel algorithm with lookup
method is not at all efficient as the file reading (I/O time) offsets the parallel
computation time.

64 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.6: The Recognized Human being in the busy cash counter inside a
shopping complex

Figure 4.7: The Recognized Human being in the night shot near my house

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHOD65

Image | Model | Position | Accuracy | C1 Time | C2 Time | C3 Time
1 0 50,2 100% 0.13 0.13 0.08
3 3 75,2 100% 0.14 0.17 0.14
10 20 205,60 100% 8.12 2.40 2.24
12 24 205,205 100% 9.10 7.05 7.08
15 31 160,160 100% 19.24 19.16 17.91
21 34 80,80 100% 2.62 1.94 1.99
23 52 240,110 100% 3.42 2.93 2.87
28 56 271,80 100% 6.56 6.41 6.18
34 45 365,195 100% 23.25 15.39 15.01
38 62 325,210 100% 26.52 15.59 15.43

Table 4.2: Sequential Times of Hausdorff Method for 1-1 exact position

4.4 Various Algorithmic Investigations on Haus-
dorff Method

As the Hausdorff method is very robust in recognizing human beings in
cluttered scenes, the ability of the algorithm is investigated with different
aspects in mind. First of all, one to one, one to many, many to one and
many to many (Images Vs Models) variations are experimented with dif-
ferent sets (See Appendix D for image and model indices). The efficiency
of the algorithms can be improved if the number of persons in the image
is known or atleast the maximum number can be specified. Moreover, in-
stead of exact locations, if the approximate locations are sufficient how the
algorithms perform are also investigated. Finally what is the amount of
false positives when the images do not have the respective models is also
discussed in detail. The unit of time is seconds always.

4.4.1 Image Matching 1-1

In the category of matching one image with one model, four cases are inves-
tigated. Firstly, to see whether atleast one person (C1) is there in the image
is implemented. Secondly, if the number of persons is known (C2) how ef-
ficient is the algorithm is tested. Thirdly, if exact position of the person is
not a paramount factor but a detection of a person (C3) in the image, the
impact of this aspect is analyzed comparing the efficiency. The results are
tabulated in Table 4.2. Finally if the image does not have the model (C4),
how the algorithm functions is also presented in Table 4.3.

66 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING
Image | Model | C4 Time
0 0 0.57
4 1 0.52
17 20 19.95
20 33 0.63
16 15 16.32
21 40 1.85
25 53 2.73
41 55 0.01
33 43 18.06
37 47 19.46

Table 4.3: Sequential Times of Hausdorff Method for 1-1 No Match Cases

Model | No of Images | C1 Time | C2 Time | C3 Time | C4 time
1 2 0.69 0.65 0.68 9.55
1 4 0.95 0.92 0.75 33.61
1 8 78.98 78.40 80.44 108.75
16 2 15.97 15.92 15.63 7.21
16 4 35.05 35.10 34.42 29.54
16 8 66.74 73.80 67.56 83.09
50 2 2.98 2.97 2.87 0.11
50 4 3.68 3.62 4.06 0.42
47 8 10.75 12.06 10.66 25.43

Table 4.4: Sequential Times of Hausdorff Method for 1-n exact position

4.4.2 Image Matching 1-n

In this case, whether a model is present in the given set of images is analyzed
with the same strategies as discussed in the previous subsection. Here, the
number of images are doubled from 2 to 4 and then to 8 to analyze the
performance as shown in Table 4.4.

4.4.3 Image Matching n-1

Given an image and a set of models, all the previous strategies are analyzed.
The models are increased from 2 to 4 and then to 8. In Table 4.5, the results
are presented.

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHODG67

Image | No of Models | C1 Time | C2 Time | C3 Time | C4 time
2 2 0.60 0.63 1.08 1.07
2 4 0.63 0.97 0.86 1.41
2 8 0.60 1.05 1.37 2.61
9 2 13.65 14.41 15.35 41.64
9 4 13.70 20.45 31.65 81.08
9 8 43.65 20.48 34.26 98.50
28 2 17.24 18.29 19.03 6.86
28 4 17.07 27.00 30.71 15.42
28 8 17.65 35.04 49.00 27.21

Table 4.5: Sequential Times of Hausdorff Method for n-1 exact position

No.Images | No.Models | A1 Time | A2 Time | A3 Time | A4 time
8 8 451.72 431.33 408.30 405.19
8 8 498.24 460.06 453.45 449.83

Table 4.6: Sequential Times of Hausdorff Method for n-n

4.4.4 Image Matching n-n

Given a set of images and models, the analysis is made for finding the exact
positions if the number of persons are known (first case - A1), the approxi-
mate positions of the persons if the maximum number of persons are known
(second case - A2), all persons without the knowledge about the number of
persons with exact positions (third case - A3) and with approximate posi-
tions (fourth case - A4) as shown in Table 4.6.

4.4.5 Critical Investigation of Hausdorff Distance

The experiments are conducted to find how much similar figures among
themselves vary as far as Hausdorff distance is concerned and how much
they differ with different environmental brightness. The investigation is
also carried out to find how much the figures of different sizes vary as far
as Hausdorff distance is concerned. The two sets of figures with different
postures are presented in Fig.4.8, Fig.4.9, Fig.4.10, Fig.4.11 and Fig.4.12
with 110 (10%more), 120 (20% more), s10 (10%]less) and s20(20%less). Here,
Hausdorff distance is set as h(A,B) and not H(A,B) which is the maximum
of h(A,B) and h(B,A). In Fig.4.13, despite several hands, the matching is

68 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Posture | 1P1 | 1P2 | 1P3 | 1P4 | 1P5 | 1P6 | 1P7 | 1P8
1P1 0 85 | 104 | 246 | 278 | 285 | 167 | 247
1P2 267 | O 112 | 183 | 233 | 222 | 130 | 184
1P3 277 | 116 0 187 | 319 | 258 | 233 | 144
1P4 280 | 114 | 197 | O 296 | 258 | 219 | 193
1P5 281 | 91 62 78 0 82 84 71
1P6 280 | 71 68 65 76 0 86 61
1P7 270 | 123 | 84 | 147 | 168 | 186 0 143
1P8 269 | 299 | 282 | 270 | 286 | 296 | 226 0

Table 4.7: Hausdorff Distance h(A,B) for Setl

Posture | 3P1 | 3P2 | 3P3 | 3P4 | 3P5 | 3P6 | 3P7 | 3P8
3P1 0 99 | 101 | 104 | 186 | 202 | 177 | 168
3P2 238 0 216 | 277 | 216 | 218 | 211 | 205
3P3 299 | 177 0 267 | 324 | 302 | 171 | 147
3P4 241 | 260 | 260 0 422 | 376 | 298 | 334
3P5 156 | 106 | 108 | 142 0 221 | 121 | 92
3P6 163 | 123 | 145 | 162 | 213 0 119 | 100
3P7 222 | 182 | 210 | 205 | 247 | 198 0 125
3P8 230 | 241 | 242 | 241 | 243 | 260 | 183 0

Table 4.8: Hausdorff Distance h(A,B) for Set2

found because some combination of two hands matched with atleast one
model.

Important Conclusions about Hausdorff Distance

From the tables, Table 4.7, Table 4.8, Table 4.9 and Table 4.10, the following
important conclusions are obtained.

e h(A,B) = h(B,A) mostly if A = B.
e h(A,B) # h(B,A) mostly if A # B.
e Hausdorff distance h(model,image) is not affected by noise in image.

e Hausdorff distance h(image,model) may be affected by noise in image.

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHOD69

Figure 4.8: Different Postures 1pl-1p4

70

CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.9: Different Postures 1p5-1p8

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHOD71

Figure 4.10: Different Postures 3p1-3p4

72

CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.11: Different Postures 3p5-3p8

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHODT73

Posture (A) | Posture (B) | h(A,B) | h(B,A) | Time in Sec
1P1 3P1 335 378 0.06
1P2 3P2 230 175 0.08
1P3 3P3 249 144 0.05
1P4 3P4 175 155 0.12
1P5 3P5 174 162 0.03
1P6 3P6 165 179 0.03
1P7 3P7 190 199 0.07
1P8 3P8 215 196 0.08

Table 4.9: Hausdorff Distance h(A,B) for similar ones in Setl and Set2

Posture | 3P2 | s10 | s20 | 110 | 120
3P2 0 107 | 221 | 90 | 124
s10 186 0 | 159 | 119 | 140
s20 133 | 87 0 | 149 | 176
110 177 | 198 | 278 | O | 116
120 236 | 284 | 355 | 170 | O

Table 4.10: Hausdorff Distance h(A,B) for Different Sizes

74

CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.12: Different Postures of Different Sizes

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHODT75

Figure 4.13: Avathar Manifestations

76 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

e Even for slight changes, h(A,B) varies.

e For different sizes of the same image, H(image,differentsize-image) are
not necessarily to be proportional.

e As the environmental light intensity affects the image, feature extrac-
tion is affected, resulting in different Hausdorff distance due to pres-
ence or absence of some corners.

4.4.6 Parallel Algorithm for Image Matching
Parallelization

For this particular problem, there can be at least three methods to paral-
lelize. One way is to take each image by a processor and match with all
models. The other way is to take one by one all images by all processors
and divide the set of models equally among the processors. The third way is
to divide each time one image by the number of processors and match that
portion of image with all models. In the last model, overlapping is essential
to get the proper solution. The second model is preferable in the situation
while tracking a person is the major factor. The first and second methods
are implemented here. A good insight to various strategies of parallelization
can be found in [79], [80] and [81].

Outline of Parallel Program for First Method

Let r be the number of images, q be the number of models and p be the
number of processors.

MPI_Comm _rank(MPI_.COMM_WORLD,&i);
MPI_Comm_size(MPI_COMM_WORLD,&p);
each processor handles one image, image = i in parallel do

{ fscanf(...);
for each model k = 1 .. q do
{ fscanf(...); /*each processor i reads all models k one after the other */

h = Hausdorff distance of the image i matched with model k for all positions.
whenever the h(k,i) < threshold, the position is notified.

/* if required the best matching model is also found depending upon

the minimum threshold. */

}
}

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHOD77

Image | Model Posi Accu | Found | 2 pcr Time | 4 per | 8 per
1 1 0,0 100% | Yes 0.28 0.27 | 0.27
2 2 160,350 | 100% | Yes 2.68 1.48 | 1.07
3 3 390, 200 | 100% yes 5.20 2.94 | 2.07
4 4 127,235 | 100% | Yes 5.6 297 | 2.08
5 5 330,200 | 100% | Yes 2.68 1.8 1.48
6 6 240,120 | 100% | Yes 13.17 6.68 | 3.85

Table 4.11: Parallel Time of Hausdorfl without Distance Transform

Image | Model Posi Accu | Found | 2 pcr Time | 4 per | 8 per
1 1 0,0 100% | Yes 0.51 0.52 | 0.53
2 2 160,350 | 100% | Yes 1.52 1.42 | 1.39
3 3 390, 200 | 100% yes 2.57 2.36 | 2.26
4 4 127,235 | 100% | Yes 2.64 2.4 2.29
) 5 330,200 | 100% | Yes 2.4 2.26 2.2
6 6 240,120 | 100% | Yes 2.47 2.29 | 2.23

Table 4.12: Parallel Time of Hausdorfl with Distance Transform

Results and Analysis for First Method

As no communication is required unlike in the second method, the results
are highly appreciable as tabulated here in Table 4.11 and Table 4.12. The
unit of time is seconds. For the comparison purpose the same image and
model sets are taken.

Outline of Parallel Program for Second Method

Let r be the number of images, q be the number of models and p be the
number of processors.

MPI_Comm_rank(MPI.COMM_WORLD,&;j);
MPI_Comm_size(MPI_.COMM_WORLD &p);
for each image i=1..r do
{ MPL File_open(....MPL.COMM_WORLD,...);
MPI File_read(...); /*all processors read it* image */
MPI_File_close(...);
for each model k = j, j+p, j+2*p, .. q do
{ MPL_File_open(..,.MPI.COMM_SELF,...);
MPI_ File_read(...); /*each processor j reads only the corresponding model k */
MPI_File_close(...);

78 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Figure 4.14: A sample Image Figure 4.15: A sample Model
System Processors | Total time
Cray T3E 1 273.7
Cray T3E 2 198.5
Cray T3E 4 100.5
Sparc 10 1 374.8

Table 4.13: Image Matching Parallelization

h = Hausdorff distance of the image i matched with model k for all positions.
h_partial min = min (h, h_partial min);

whenever the h(k,i) < threshold, the position is notified.

/* if required the best matching model is also found depending upon

the minimum threshold. */

}
MPI_Allreduce(h_partial_min,&h_min,1, MPI.FLOAT ,MPI_MIN,MPI_.COMM_WORLD);
}

4.4.7 Results and Analysis

As the focus is more on parallelization, here 4 sample images (one is shown
in Fig.4.14) and 4 sample models are considered (one is shown in Fig.4.15).
Normally in image processing application, number of models are obviously
more. [t may be recalled to suit to such real situation the proper strategy for
parallelization is chosen for implementation. The single processor case along
with Sparc Ultra 10 Sun Microsystems is also presented. The algorithm is
tested with 2 and 4 processors to suit to the sample application and results
are tabulated in Table 4.13 with the total time in seconds for 4 images.

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHODT79

In all the images, the accurate positions (to one pixel resolution) of the
human beings have been found. The best model (or models) for each image
has been found correctly without fail. From the overall timing (given in
seconds), it is evident that parallelization produced good results without
any iota of doubt. This also paves way for improving the results with more
processor for increased number of model to suit to real application.

Computation and Communication Complexities

As the best model among the models suited to image is required in par-
ticular cases, the communication is required among the processors. As the
method is implemented, as mentioned above the communication is essential
to compute the minimum and to keep the minimum to compare across the
iterations. Here, the communication is kept at the minimum as compared to
the computation. The communication complexity per image is O(sy) where
y is the cost involved in finding the minimum and broadcasting the value
among the processors and s = ¢/p.

Let the size of an image be v and the size of a model be u. Totally for each
image, s communications are required to find and broadcast the minimum
for h(model,image) among the models. The computation per processor per
image is svu. So, the complexity is O(suv) where the serial complexity is
O(quv). For r images, both these complexities are multiplied by r. It may
be noted, in the method of parallelization only the given complexities are
true as the other methods vary substantially.

4.4.8 General Scheduling Aspects for Optimal Solutions in
Computer Vision

Apart from computing the distances efficiently, the computation time can be
further reduced in case of multiprocessing systems of type MIMD(Multiple
Instruction Multiple Data). Here, how the general scheduling can improve
the reduction in computation time for computer vision related tasks is dis-
cussed. The scheduling of tasks onto processors is an important step in
exploiting the capabilities of a multiprocessor system. The multiprocessor
scheduling problem can be stated as finding a schedule for a task graph (that
represents a parallel program) to be executed on a multiprocessor system
so that the completion (or execution) time of the graph (program) can be
minimized. The motivation for the objective of minimal completion time is
that, in many cases, a poor schedule results in excessive interprocessor com-
munication and inefficient processor utilization. Since the problem is known

80 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

to be NP-hard in the strong sense [116], in all but a few restricted cases [117]
[118], the main research efforts in the area are focused on heuristic methods
for obtaining near-optimal solutions [119] [120] [121] [122] [123] [124] [125]
in a reasonable amount of computation time.

The multiprocessor scheduling problem at compile-time is considered
here. Compile-time scheduling has two benefits: (i) it is easier to realize
and (ii) it eliminates run-time overheads. A new A* based algorithm for
solving the problem is presented here. To alleviate the impediments of large
space and time requirements of the algorithm, three new effective techniques,
namely, processor isomorphism, task isomorphism and node isomorphism
have been developed and the concepts of upper bound and lower bound
theory are used effectively.

The algorithm developed here, unlike the heuristic approaches, always
produces optimal schedules (or solutions). There are two main reasons for
finding optimal solutions. Firstly, when a particular problem, say a com-
puter vision task, has to be repeated virtually several times, it is more effi-
cient if an optimal solution is used as one can afford to find time to get the
optimal solution rather than wasting more time in each execution. Secondly,
an optimal solution is a yardstick for the non-optimal solutions for measur-
ing their closeness to the optimality. In case one may have to choose among
the available non-optimal solutions based on their relative closeness, and the
computational time and the memory space required to arrive at the corre-
sponding non-optimal solution, the yardstick provides a better perspective
of the choice of non-optimal solutions. Moreover, the decision of improving
the heuristics can be better evaluated only when an optimal solution is at
hand.

The main difference between general Data Flow Graphs (DFGs) and the
signal processing DFGs is the associated delay elements (registers) in the di-
rected edges [82]. An edge without a register represents precedence between
tasks within iteration. If an edge has n registers, it describes the precedence
between tasks of different (i,n+i) iterations which differ by n iterations. A
simple example of a nonterminating, iterative, data-flow program with feed-
back is given in program 1. The DFG in Fig.4.16 corresponds to program 1.
It may be recalled in image matching using different strategies each iterating
independently, to avoid those areas where a model has been already matched
by one strategy, there need to be some communication during the iterations.
It must be also understood that since finding the match with some model
occurs at runtime, it can not be directly modelled by the method. However,
iterations can wait after specified number of iterations and then the commu-
nications can be made which is very easy to model using the delay register

4.4. ALGORITHMIC INVESTIGATIONS ON HAUSDORFF METHODS81

1 1 1
1 1
(o)=o)

2D

l 1

Figure 4.16: Data-Flow Graph with Linearly Connected Multiprocessor

approach. In the appendix the general case is simulated as the accessibility
to such machine is restricted.

A complete discussion with appropriate examples for explaining the data-
flow model is available in [82].

Program 1: Initial conditions : db(-1),db(0)

for (i=1 to infinity)
ab(i) = fuy [x(0)]

82 CHAPTER 4. HAUSDORFF METHOD FOR MATCHING

Issue Hausdorff Chamfering
Features in Image Points/Corners Edges
Features in Model Points/Corners Points or Corners
Distance Measure Maximum difference Root mean square

Distance (D) Euclidean or others Distance function
Distance Calculation | Direct or DT or Look up DT

Table 4.14: Comparison between Hausdorff and Chamfering

4.5 Comparison of Hausdorff and Chamfering
Methods

To start with the principal difference as given in Table 4.14, chamfering
methods use edges as features and Hausdorff method uses corners. The
distance measure in case of chamfering is the square root of the average of
the sum of the squared difference of the distances between the model and the
image at a particular position, where it is the maximum of the differences
of the distances in case of Hausdorff method. Distance transformation is
essential for Chamfering. Lookup or distance transformation can be used
for Hausdorff method.

Chapter 5

Human Being Recognition

As mentioned earlier, recognizing a human being has become a most inter-
esting field not only due to the applications, but also for the challenging
complexity. From Surveillance to Driver assistance in cars, recognizing a
human being is almost a compelling demand. At first, the problems with
single human being are discussed and then the problems with group of hu-
man beings are discussed.

5.1 Fundamental Complexities involved in HBR

5.1.1 Description of Human Being

In any recognition system, the object (model) to be recognized in an envi-
ronment (image) must be described or defined. In the present case, human
being must be defined or described in the best sense. A head, a torso, two
hands and two legs form a human being without going into internal details
such as nose and eyes as in the case of face recognition. It may be recalled the
biometric measures based on iris pattern or finger print are required when a
particular person has to be identified. Thus depending upon the need of the
application, the level of details of description varies considerably. For e.g.,
in case of driver assistant system it is sufficient that a pedestrian (human
being) is recognized. However in surveillance mere detection of a human
being in the protected area can ignite further course of actions and more
particulars about the human being may be required later.

83

84 CHAPTER 5. HUMAN BEING RECOGNITION

5.1.2 Size of the Human Being

In most of the systems, size of the human being is fixed or approximated
to an interval i.e., a human recognition system may not recognize a walking
child due to the size restrictions. Moreover based on the size of the human
being (which is fixed), the systems are able to identify the possible regions
of head or torso or hand or leg. Eventhough recognizing the human being
in such systems is hard, even more when there is no restriction on the
sizes as in the study. However, proper modelling including for a child may
possibly help in recognition. Yet removing the size restriction will force the
system to check all regions in the image incurring more computation time.
Nonetheless, it is worth trying.

5.1.3 Segmenting the Region of Interest(Human Being)

Just a change in the region by background subtraction suffice some sys-
tems to conclude the presence of human being. Further analyzing only such
regions to precisely recognize the human being is also found in the liter-
ature. Interestingly the colour components still play an important role in
segmenting the regions of interest (Human being). Such a systems will not
work where nonwhite people are present. Transformation such a wavelet or
Fourier can also be used to segment the region of interest (human being).

The background subtraction as such will not work flawlessly in outdoor
environments. It is unreasonable to think that only one person alone will
drive a car in road. Systems which overcome small changes due to leaves
waving use a larger area or predefined area size to choose only those regions
for further processing (recognizing as human being).

Without background subtractions also recognition can be made at the
cost of computation time. Methods such as Hausdorff can be used to rec-
ognize in such cases. However, there are other problems like occlusion and
self-occlusion as other objects can occlude or due to the viewing angle also
occlusion is possible.

5.1.4 Occlusion

Occlusion is one of major problems in recognition systems as some of the
critical or main features may be occluded resulting in incorrect recognition.
In such situations, there must be a definition of minimal features required
to identify a human being such as head alone is sufficient (for sake of argu-
ments). Then if the person is not looking at the camera, a possible way is

5.1. FUNDAMENTAL COMPLEXITIES INVOLVED IN HBR 85

to look for a circular or elliptical object approximately. This constraints the
system very much due to viewing angle.

Furthermore, due to viewing angle self-occlusion is also possible. If a
person stands erect with hands kept close to torso and legs one behind the
other and if the viewing direction is perpendicular to the facing direction,
possibly head and a leg may be recognizable. It is well known that depending
upon the pose, features can be occluded.

Yet the methods such as Hausdorff provide ample opportunity to fix
some parameters approximately and still recognize despite occlusion. In
such cases, false positives can not be avoided. Interestingly the occlusion
itself can be modelled in Hausdorff method very easily, of course increasing
the number of models many times.

5.1.5 Sufficient Models

For sure with more models, more instances of the objects can always be
recognized. But the prime question is how many models are sufficient to
positively recognize every instance of the object. This is likely to be ex-
tremely large considering the degree on freedom movements of various parts
of the human being. Many of systems which attempt to recognize the mo-
tion or action of the human being is highly restricted to the given models or
predefined models. While forming a model, obviously the size of the model
comes into play. It is very difficult to accept that an adult (human being) is
a scaled version of a child (human being). On the streets, people with dif-
ferent ages can walk together. Moreover, bending phenomenon is observed
with the very elderly people (leave alone the use of sticks).

Confirmly, one must use different scaling factors or different models for
each scaling factor (in case of floating point what is next probable useful
number). In the first case, as it only reduces the number of models, there
is every possibility that different scaling factors must be considered which
in turn will enormously increase the computation time. In the second case,
which model can be preferred over the others becomes crucial as sequentially
trying with each model will take unacceptable amount of time depending
upon the application such as driver assistance. Succinctly matching and
indexing of the models take predominant role. Some of the hand drawn
models of the human beings are shown in Fig.5.1 and Fig.5.2.

86 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.1: Some examples of hand drawn Models of the Human Beings -
Set 1

5.1. FUNDAMENTAL COMPLEXITIES INVOLVED IN HBR 87

Figure 5.2: Some examples of hand drawn Models of the Human Beings -
Set 2

88 CHAPTER 5. HUMAN BEING RECOGNITION

5.1.6 Threshold Value

Matching is an integral part of complex recognition systems. To recognize
an object (model) in an environment (image), the respective features have to
be matched. This involves a matching measure. Unless it is a perfect match,
there is always some deviation due to occlusion and such other issues. So,
a threshold value is required to decide categorically whether the portion of
the image (region of interest) match with the model (human being).

To set a value for the threshold itself is a problem. If the value is set
to be large, the possibilities of false positives will be more, i.e., the objects
will do not necessarily match, may be matched. If the value is very less,
only it accepts exactly matching instances which are rather infrequent in
real scenarios due to noises. A through discussion on Models, Matching and
Indexing is presented in the following chapter.

5.2 Recognition of Group of Human Beings

On the streets or inside the shops, there are mostly groups of human beings.
Recognizing a group of human beings is more difficult than a single human
being. The main aspect is the motions involved which results in occlusion,
difficulty in identification or in arbitrary movements.

5.2.1 Problem due to Multiple Occurrences

Eventhough the definition of the human being as defined in the previous
section is acceptable, the new situation is encountered with m legs, n hands,
x heads and so on. It is comparatively difficult to find the exact number
of persons in the scene or image. The principle reason is occlusion. With
odd number of hands and legs (leave alone those people with one leg or
amputated limbs), considering which combination belongs to one person is
only a matter of probability.

5.2.2 Problem due to Movements

Independently joint movements cause lot of occlusion. When two people
walk together parallel to the focal plane of the camera, there is a finite chance
of one person occluded entirely depending upon the sizes of the persons.
Similarly when two persons meet and disperse in different directions, to
identify which person moved in which direction is relatively complex. If
sequence of persons move in the same directions with same velocity like

5.3. RESULTS AND ANALYSIS 89

in military parades and by chance the sampling frequency matches with
respective time interval, possibility of detecting the very motion may be
questionable. Or in an industry, when the parts to be picked or checked
arrive in regular intervals, with the camera above the conveyor belt may
not able to say whether there was a movement of the conveyor belt or not
without special marking or such other identification markers.

5.2.3 Problem in Segmentation

Segmenting a region of interest (human being) based on colour will not work
until unless all possible colours of the human beings are tried as each human
being can be in different colours.

5.3 Results and Analysis

Principally, three major cases are presented for discussion. One sequence
(Sequence 1) with almost plain background Fig.5.3, second sequence (Se-
quence 2) with one human being but in a cluttered environment Fig.5.4 and
third sequence (Sequence 3) Fig.5.5 with more human beings in a cluttered
environment are detailed here. The analysis is focussed on the computation
time and accuracy with all the four methods viz chamfering, Hausdorff direct
method, Hausdorff distance transform method and Hausdorff with lookup
method. The results of parallel versions of the same are also presented. A
prototype to demonstrate the possibility of ontological description is also
included. The resultant figures are shown in Fig.5.6, Fig.5.7 and Fig.5.8.
The ontological descriptions produced by the program are reproduced here.

5.3.1 Ontological Description for Sequence 1

Person 0 possibly moving right from frames 0 to 1
Person 0 possibly moving right from frames 1 to 2
Person 0 possibly moving right from frames 2 to 3
Person 1 possibly moving left from frames 0 to 1
Person 1 possibly moving left from frames 1 to 2
Person 1 possibly moving left from frames 2 to 3
At frame 0 person 0 is left of person 1

At frame 1 person 0 is left of person 1

At frame 2 person 0 is right of person 1

Person 0 and person 1 crossed between frames 2 1
At frame 3 person 0 is right of person 1

90 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.3: Sequence 1 Frame Number 1,2,3 and 4

5.3. RESULTS AND ANALYSIS 91

Figure 5.4: Sequence 2 Frame Number 1,2 and 3

92 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.5: Sequence 3 Frame Number 1 and 2

5.3. RESULTS AND ANALYSIS 93

Figure 5.6: Human beings in Sequence 1 frame Number 1,2,3 and 4

94 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.7: Human beings in Sequence 2 frame Number 1,2 and 3

5.3. RESULTS AND ANALYSIS 95

Figure 5.8: Human beings in Sequence 3 frame Number 1 and 2

96 CHAPTER 5. HUMAN BEING RECOGNITION

Set No | Chamfering | HD direct | HD with DT | HD with Lookup
Set1 10.37 53.13 40.43 45.17
Set2 10.24 208.18 20.98 186.18
Set3 121.04 14.23 135.20 4.87

Table 5.1: Computation Times of Different Algorithms

Set No | Chamfering | HD direct | HD with DT | HD with Lookup
Setl 3.97 3.84 3.93 9.76
Set2 5.2 19.36 4.78 25.99
Set3 3.39 19.37 5.86 30.77

Table 5.2: Parallel Computation Times of Different Algorithms

5.3.2 Ontological Description for Sequence 2

One person at 365 195 in frame 0 is NOT identified
One person at 350 190 in frame 1 is NOT identified
Person 0 possibly is stationary from frames 0 to 1
Person 0 possibly is stationary from frames 1 to 2

5.3.3 Ontological Description for Sequence 3

Person 0 possibly is stationary from frames 0 to 1
Person 1 possibly moving left from frames 0 to 1
At frame 0 person 0 is left of person 1

At frame 1 person 0 is left of person 1

The Table 5.1 shows the computation times involved in sequential case
with different algorithms. It must be recalled that only the Hausdorff direct
method performed well and correctly in all the cases. The reduction in other
algorithms are due to their inability to recognize all the instances. Thus they
resulted in comparably lesser time. In case of parallel implementation, the
same is true as algorithmically there is no difference as it is only parallelized.
The undue increase in Lookup method is because of the large file reading
resulting in heavy I/O which offsets all the gains due to parallelization as
shown in Table 5.2.

5.4. FUSION ARCHITECTURE 97

5.4 Fusion Architecture to recognize Human Be-
ings
5.4.1 Basic Concept

From the experience with Chamfering and Hausdorff methods and their
implementations, it is clear that one algorithm is not sufficient. Moreover
to handle occlusions and size differences, different approaches are required.
So, it is necessary to combine the required methods into one architecture,
which is named as Fusion Architecture.

Hausdorff Method for Occlusion

It is natural that some of the parts might be occluded in the image. So,
trying to apply Hausdorff as such for the model may give different results
depending upon the occluded portions. In some cases, few corners may
be absent or so. In order to handle such occlusions, instead of calculating
distances between the points as in original Hausdorff method, in the new
approach to handle occlusions, one finds the percentage of points which differ
from the threshold predefined. If the percentage is less than a particular level
(to be fixed or the maximum permissible level of occlusion of the model),
then it is considered that the model is present at the position in the image.

It is very easy to verify that the modification of Hausdorff distance for
occlusion is the same as the original Hausdorff method if the percentage
of points that is more than the threshold is zero. However, such strict
permissible levels of percentage will not match well with occlusion in the
images. Of course, one can verify the implementation of the modified method
setting the level of percentage as zero to check up with the original Hausdorff
method. The results of a parallel implementation of the method for a sample
image and model are presented in Fig.5.9.

Eventhough the scaling of the parallelism is evident, the idle time due
to synchronous communications shares around 47 percentage of the total
computation time. The less Input-Output time shows the efficient use of
parallel Input-Output mechanism implemented on CRAY T3E.

Hausdorff Method for Different Sizes

One of the classical problems in matching is the problem with zooming or
different sizes. Here, scaling is considered to be equal on all dimensions un-
less otherwise stated. For sure, if the scaling is so less that the overall effect
is less than the threshold, then it will work correctly. However, if the overall

98

Parallel Time
| — ~o (%3 o (S a) oD — | oo
L] L (1 [- L [{1

0

Idle Time Percentage

.
I~

T~
(%]

CHAPTER 5. HUMAN BEING RECOGNITION

| ’moi_pdnﬁ_pt.dét‘ ;

5}

o

0 10 20 30 4 % 60 70

Processors

ol pm e -

0 1020 3 4 5 6 70
Processors

Figure 5.9: Parallel Implementation of Hausdorff for Occlusion

360
355
0
£ 30
F 35

o

)
2Ll
§ st
W

suf !

| ’mol‘_pdm‘_ct.dét'

a5 L

0 10 20 30 4 5 60 10

Processors

17O Time Percentage
~o (&S] = (& u) [3] -

—

plast

Ed

| ’m61_pdrh_io.dét‘

0 1020 30 4 % 60 70

Processors

5.4. FUSION ARCHITECTURE 99

effect is more, which is a more interesting case, the modification is done
such that a histogram of distances for some specified levels depending upon
the scaling is constructed. Select the histogram level (distance) which has
maximum number of points. If the percentage of points (maximum number
of points at the highest level in the histogram versus the total number of
points (or corners) in the model) is higher than some predefined (say 90
percentage), then the model is matched with the relevant portion of the
image.

The key idea is that if every point in the model is displaced with some
distance depending upon the zooming or scaling, then at the displayed dis-
tance in the histogram, it will be maximum. Since all the points (assuming
that there is no occlusion here) are in that level, the percentage will be 100
percentage which is more than the predefined percentage (90 percentage).
In such cases, the modification is same as that of the original Hausdorff
method.

5.4.2 Fusion Architecture

As explained earlier, the required methods are combined together so that
the recognition can be effectively done. The entire recognition of human
beings is presented as the Fusion Architecture as in Fig.5.10.

5.4.3 Results and Analysis of Parallel Implementations

For various sets of image sequences, the results are obtained from the paral-
lel implementation of the fusion architecture for recognizing human beings
on CRAY T3E with MPI (Message Passing Interface). Different algorith-
mic approaches such as with 1 image and 1 model category, 1 image with
n models category and finally m images and n models category are imple-
mented. The sample results are presented in the Fig.5.11 and Fig.5.12. The
sequences of images from Moehringen Tram station are shown in Fig.5.13,
Fig.5.14 and Fig.5.15 with the results in Fig.5.16, Fig.5.17 and Fig.5.18. Fur-
ther results of the sequence of images from Zebra Crossing in Koenigstrasse,
Stuttgart are shown in Fig.5.19, Fig.5.20 and Fig.5.21. Yet another results
of the sequence of images from City Centre, Stuttgart are shown in Fig.5.22,
Fig.5.23, Fig.5.24, Fig.5.25 and Fig.5.26. From Table 5.3 for multiple images
and multiple models, eventhough the reduction is evident, it is not scaled
properly.

As the fusion architecture has ample parallelism to be exploited inher-
ently, the parallel implementations becomes an obvious choice. From the

100 CHAPTER 5. HUMAN BEING RECOGNITION

Sequence of Images

i

Feature Extraction
(corers, edges) Datahase of
Models
y
Fusion of Matching Algorithms
(Pardllelism)

Chamfering | Hausdorff | [Haudorff | [Hausdorff

(Occlusion)| | (Size)

Recognition of Humanbeingsin the Images

(positions, Sizes)

Figure 5.10: Fusion Architecture for Recognizing Human beings

5.4. FUSION ARCHITECTURE

10
100
%0

60
50
0
Rl
20

Parallel Time

10

%0
80
10
60
50
40
0
0

Parallel Time

i1,
0}

my.

fradm,_bimdat ——
fnz2ml_1bim.dat" ——

46 8 10 12 14 16
Processors

’leml_‘lblm.‘dat’ ——
fziml_bimdat =

46 8 10 2 14 1
Processors

100
%
80

50
40
Rl
20

Parallel Time

101

0y,
o

frimd_bimdat ——
22l 1bim.dat" ——

§ 10 12 14 16
Processors

(=2 T e BN - =3
o o o

Parallel Time
o <o
L] [-1

(%]
[

0

"fZZml‘_lblm.‘dat’ ——
fz2ml_bimdat =

46 8 10 2 U 16

Processors

Figure 5.11: Parallel Implementation of Fusion Architecture (a) No Com-
munication (b) With Communication (3) Difference for Set 1 (4) Difference
for Set 2

102 CHAPTER 5. HUMAN BEING RECOGNITION

=
[
[

’fn‘zlml_‘lbnm.‘dat‘ ——
fz2ml_lonm dat’ -+

Parallel Time
r~o (o %] [F%]
o o [S)
- L1 [—

S
[l
[

15
b6 8 1010 U

Processors

Figure 5.12: Parallel Implementation of Fusion Architecture for 1 Image
with Multiple Models

Number of Processors | Time in Sec
4 850
16 500
48 270

Table 5.3: Parallel Implementation of Fusion Architecture for m Images with
Multiple Models

5.4. FUSION ARCHITECTURE 103

Figure 5.13: Sequence of Images from Moehringen Tram station - Partl

104 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.14: Sequence of Images from Moehringen Tram station - Part2

5.4. FUSION ARCHITECTURE 105

Figure 5.15: Sequence of Images from Moehringen Tram station - Part3

106 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.16: Identified Human beings in Images from Moehringen Tram
station - Partl

5.4. FUSION ARCHITECTURE 107

L

"

Ea—— e
\ ~ ~—
\

Figure 5.17: Identified Human beings in Images from Moehringen Tram
station - Part2

108 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.18: Identified Human beings in Images from Moehringen Tram
station - Part3

5.4. FUSION ARCHITECTURE 109

Figure 5.19: Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 1

110 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.20: Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 2

5.4. FUSION ARCHITECTURE 111

Figure 5.21: Identified Human beings in Images from Zebra Crossing in
Koenigstrasse - Part 3

112 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.22: Identified Human beings in Images from City Centre in
Stuttgart - Part 1

5.4. FUSION ARCHITECTURE 113

Figure 5.23: Identified Human beings in Images from City Centre in
Stuttgart - Part 2

114 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.24: Identified Human beings in Images from City Centre in
Stuttgart - Part 3

5.4. FUSION ARCHITECTURE 115

Figure 5.25: Identified Human beings in Images from City Centre in
Stuttgart - Part 4

116 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.26: Identified Human beings in Images from City Centre in
Stuttgart - Part 5

5.4. FUSION ARCHITECTURE 117

results, it is desirable to have communications among the processors. How-
ever, it may be recalled that as the implementation is on CRAY T3E, the
synchronous communications demand all the processors to be synchronized
before the communication can start, lot of idle time is encountered during
the computation. In case to 1 image and 1 model category, it is evident
that the communication improves the parallel computation time. In case
of 1 image with multiple models, for 8 processors, due to communication it
is more than the no-communication case as with communication it is 300
and without communication it is 250. So also with 16 processors, with com-
munication it is 175 and without communications 160. This prohibited the
use of communication method as the number of processors increase with the
number of models and images.

5.4.4 Salient Advantages in Fusion Architecture
e Fusion Architecture handles cases of occlusion and size differences.
e Fusion Architecture is inherently parallel.

e Fusion Architecture with communication can reduce the parallel com-
putation time in general.

e Even without communication also, Fusion Architecture performs well
where less communication is expected.

e The combined effect in Fusion Architecture results in better recogni-
tion.

e The Fusion Architecture is so general, it can be used for general recog-
nition problems also.

e The concept of combining various algorithms in fusion Architecture
can be used in Artificial Intelligence search methods and in optimiza-
tion strategies also.

118 CHAPTER 5. HUMAN BEING RECOGNITION

5.5 Industrial Applications

One of the applications in the industries is that the robots have to be em-
ployed which need to move around in the presence of human beings. Here,
the human beings are considered as obstacles which are represented as line
segments. As the robot should not collide with the human being, this type
of representation is sufficient. In some cases the area in which human beings
work are specially demarcated and the robots have to avoid going through
the area. The areas can be modelled as polygons with line segments. An ef-
ficient parallel algorithm to find the optimum path between any point in the
industry based scenario to any other point given arbitrarily oriented obsta-
cles is presented here. In an industry based scenario, a servicing mobile robot
has to make decisions to optimize the throughput and minimize the waiting
time by adopting an optimum path between the required points. Given the
obstacles with varied orientations in general, the problem is computation-
ally intensive. The work is based on the closely lower bound algorithm on
intersecting segments using computational geometric approach. An efficient
parallel algorithm for the problem with O(n?log(n)) time complexity is pre-
sented here. Two different environments one where it is known a priori and
other case, the robot have to explore are considered. In the third case, a
multi agent system is used for an environment where the robots have to be
employed in a hotel or so where they must go around the specific servicing
points.

5.6 Robot Traversal in Known Environments

The interesting problem of optimum path finding [87], [85] has been solved
through several approaches such as graph methods [89], [86], some enumer-
ation techniques [96], with maps [93], [94], [92] and possibly with refinement
techniques by active vision also [98], [84]. An optimal and efficient path
finding in partially known environments was formulated in [97]. Recently,
some more methods using computational geometry like Veronoi diagrams
are also investigated. A through analysis of Robot motion planning is given
in [91], [90]. Here, the principle of optimality in graph methods is combined
with efficient computational geometric techniques to get an efficient parallel
algorithm for the robot path planning.

5.6. ROBOT TRAVERSAL IN KNOWN ENVIRONMENTS 119

5.6.1 The Formulation of the Problem

It is assumed here as in general the enclosed environment is rectangle in
nature. The stationary obstacles are either assumed to be thin linear or
approximated to an enclosing rectangle box. The only moving object is
the mobile robot with the known dimensions. Here, it is assumed that n
processors of CREW (concurrent read and exclusive write - a PRAM model)
model are available. Given is a wheeled robot where the direction of motion
is not impeded like car-like robot mentioned in [87]. The positions of the
obstacles are known a priori and they are stationary. The initial position,
the final position and the dimension of the robot (say cylindrical) are also
provided. The aim is to find optimally the shortest path between the initial
and final positions, if it is reachable. Here it is not only discussed about
finding the shortest path but also optimally solving the problem using graph
theoretical and computational geometrical methods.

5.6.2 The Parallel Algorithm

1. First sort the n obstacles lexicographically with x and y coordinates
using parallel merge sort.

2. Close all intervals smaller than the mobile robot using simple geometry
of circles, length of tangents, chord cutting lines for each obstacle in
parallel.

3. Create all possible connections with permitted vertices only in parallel
for each obstacle.

4. Given each such line segments from each obstacle, find the set of
all cutting lines using the computational geometric method(to be re-
moved).

5. Generate a graph from those line segments without cutting obstacles.

6. If the graph is a multistage graph, apply forward dynamic program-
ming technique to get the shortest path or apply generally all pair
shortest path algorithm in parallel through every vertex to get short-
est path between any pair of vertices.

The Complexities of the steps are tabulated in Table 5.4. The column
2 shows the parallel time complexity of each step as explained before. In
column 1, the entries, 6a and 6b denote when the graph is a multistage graph

120 CHAPTER 5. HUMAN BEING RECOGNITION

Step No. Parallel Compl. Workdone
1 O(log(n)loglog(n)) O(nlog(n))
2 O(n) O(n?)
3 O(n) O(n?)
4 O(n'K log(n')) | O(n"K log(n'))
5 O(N) O(N?)
6a. O(N+E)
6b O(N?) O(N3)

Table 5.4: Parallel Complexity of the Algorithm

or general graph as both are solved differently. In column 3, the work done
totally by all processors (n processors here) is presented. This is also a close
measure of the serial implementation of the algorithm on a uniprocessor
system [80)].

Here, n is the number of obstacles, n’ is the sum of n and the number of
newly added segments in step 3, K is the number of cuttings at the worst
case O(n?), N is the number of vertices remaining and E is the number of
edges remaining.

5.6.3 The Salient Features of the Algorithm

To begin with after getting the input, the algorithm first sorts the obstacles
according to x and y co-ordinates. For the parallel merge sort is used which
demands CREW, i.e., processors will be concurrently reading the data and
at no circumstance, the processors will write on a datum or the data simul-
taneously. This algorithm as cited is given in [80]. Secondly, closing all the
intervals through which the robot can not pass are made. This is done by
drawing a circle of radius same as that of the robot and finding whether
the end points of the obstacles lie within the circle or any of these obstacles
cut the circle [83]. In both the cases, the gaps are closed. In the former
case, it is easy to join the center of the circle and the corresponding end
point of the obstacle which is inside the circle. However in the latter case,
to which point on the line(obstacle here), the center of the circle should be
connected with, becomes a subtle problem. It is easily resolved to the point
on which the perpendicular line to the obstacle passing through the center
of the circle cuts. Any other point may be creating further problems in
becoming a member of the narrow gap for the robot. Now, all possible con-
nections between every endpoint of an obstacle with every other endpoint of

5.6. ROBOT TRAVERSAL IN KNOWN ENVIRONMENTS 121

the other obstacles are made and with the initial and final positions of the
robot. It may be remembered that the endpoints cutting the periphery of
the environment need not be considered. The crucial issue is finding all the
cutting segments. Here, only when it cuts with an obstacle, then alone it is
considered to be the cutting and not otherwise as the only moving object
is the robot. This is found by the well-known computation geometric algo-
rithm given in [95] with slight modifications suiting to the need as explained
earlier. This is close to the lower bound on the algorithm finding all cutting
segments. Then, the lines which do not cut with obstacles, remain to form
a connectivity graph. This has to be transformed into a visibility graph.
Normally the visibility graph is defined to the graph in which the vertices
are the endpoints of the graph which are visible to each other, i.e., the line
joining them does not cut any other edge and the line joining such endpoints
form the edges. Eventhough, theoretically it is true, in practice this is not
so as far as robots are concerned. For example, if A to B is visible and B
to C is visible, does not mean A to C is visible. So, special care is taken to
find the transitive visibility which is very crucial to the algorithm. This is
carried out by taking two close points on each of the line segments AB and
BC and joining them to check whether it cuts any obstacle. If so, then it is
not visible. Otherwise, check the degree of the vertex B, if it is more than
three and it is due to an obstacle, then it is obvious that it is not visible.
At once the visibility graph is formed with transitive visibilities, it is very
easy to find the shortest path using Dijkstra’s algorithm or if the graph is
a multistage graph, then dynamic programming can be used to reduce the
complexity [88].

5.6.4 The Snap Shots of the Algorithm

Consider the example in Fig. 5.27. Here, the following is considered for
the simplicity of explaining the algorithm. Only linear obstacles are taken
into consideration. The robot is considered to be circular in shape with
the known radius and the ability to turn to any direction. The robot has
the facility to find obstacles. After getting the input data, the execution
proceeds in the following way.

As the obstacles are denoted by their endpoints, the corresponding z;
and y; points, viz. (2.0,5.0) < (3.0,4.0) and (2.0,3.0) < (2.0, 4.0) are sorted.
As shown in Fig.5.28, the narrow gaps through which the robot can not
pass are closed. They are highlighted with thick lines. The example is so
chosen to explain both the cases of closing as explained earlier. Now, lines
between the robot’s initial position and the endpoints of the obstacles are

122 CHAPTER 5. HUMAN BEING RECOGNITION

drawn including the line between robot’s initial position and final position as
shown in Fig.5.29. Then all lines cutting atleast one obstacle are removed.
Only the lines which does not cut the obstacles are alone retained as in
Fig.5.30. To differentiate the obstacles from the proposed paths for robot,
the proposed paths of robot are shown with dotted lines. Similar lines are
drawn from robot’s final position to all endpoints of the obstacles. It is again
repeated for the endpoints among the obstacles. The final connectivity graph
having no cuts with the obstacles is given Fig.5.31. Now, all obstacles are
removed and only the line segments having transitive visibility are retained.
The visibility graph according to the algorithm is depicted in Fig.5.32. Then
the optimal solution of shortest path is found and presented in Fig.5.33.

5.6.5 The Proof of the Algorithm
Time Complexity

Step 1 is a well-known parallel merge sort algorithm as given in [80] along
with the proof of the complexity. In Step 2, each endpoint is taken and
checked with other endpoints to find out whether the gap is sufficiently
wide for the robot to pass through. This can be done in O(n) time as each
check demands only constant time. Hence, the complexity is O(n) and the
workdone is O(n?). It is obvious to conclude that connecting each permitted
vertex with other vertices requires O(n) in parallel with the workdone O(n?).
Step 4 is the algorithm given in [95] but the serial version. The parallelism
exploited here is by separately checking of each vertex individually with the
rest of the obstacles and the robot. So, each time one has to execute the
serial algorithm. Hence, the time complexity and workdone are as given
above. It is simple to arrive at the graphs having only the edges without
cutting obstacles. It can be easily checked to have the time complexity O(N)
in parallel and with n processors, the work done is O(N?). Finally step 6a
or 6b, both are well known dynamic programming algorithm and shortest
path algorithm as in [88] and the parallelism exploited is just a ”for loop”
extension, reducing the complexity to O(N?) with workdone of O(N3).

Correctness

All that has to be proved is that if the final position is reachable, the algo-
rithm should find the shortest path. Let the shortest path be p,. Let the
set of all paths be P = py, pa, ... , pm. The chance of eliminating that could
happen, seems to be in step 2. Let NP C P, be the set of paths eliminated
in step 2. However, the chance is not possible because even if that is the

5.6. ROBOT TRAVERSAL IN KNOWN ENVIRONMENTS 123
®

(S- Starting Position, F - Final Position)

Figure 5.27: Robot in given Environment

shortest path, if the robot can not pass through, it is of no use. So, by step
2, no valid path is eliminated. Hence, if at all the shortest path exists, then
pr € P — NP. Secondly, one should be assured that all paths are tried for
finding shortest paths. This is guaranteed in step 3. Let CP C P, be the
set of path hindered by the obstacles. Steps 4 eliminates only CP. Hence,
VP = P-NP-CP has py, if at all final point is reachable. Now, the algorithm
should find the shortest path given the set of paths VP. Now the graph G,
having the paths VP, is alone generated in step 5. The shortest path pg
is found by algorithm in step 6. Since these being standard algorithms, it
is guaranteed that if the final position is reachable, the algorithm finds the
shortest path, pg. The sole incorporated modification is the transitive vis-
ibility which eliminates only those paths which are not transitively visible.
So, the algorithm finds correctly the shortest path, py provided the final
position is reachable.

124 CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.28: With the narrow gaps closed

Figure 5.29: Lines between Initial and Final Positions

125

5.6. ROBOT TRAVERSAL IN KNOWN ENVIRONMENTS

Figure 5.30: Lines not crossing Obstacles

Figure 5.31: The Final Connectivity Graph

126

CHAPTER 5. HUMAN BEING RECOGNITION

Figure 5.32: The Visibility Graph

Figure 5.33: The shortest Path between Initial and Final Positions

5.7. ROBOT TRAVERSAL IN UNKNOWN ENVIRONMENTS 127

5.7 Robot Traversal in Unknown Environments

To yield better products with higher efficiency in the modern industry sce-
narios, the role of the mobile robots is vital. Most of the times, the mobile
robot has to reach the point of service requirement at the earliest possible
time. Sometimes, due to frequent modification suiting to the current need,
the operation may have to be repeated many times coping with the new
environment taking into care about slight modifications. This compels to
find an optimal solution which perhaps may be repeatedly used to minimize
spending lot of time in traversing through some path each time rather than
reaching every time through the optimal path minimizing the search effort.
Recently, the researchers focussed their attention mainly on the sensor based
navigation [100], [97], [89]. A dynamic graph search algorithm for motion
planning in [99] describes a heuristically short motion in configuration space.

However, little attention was evinced to the efficiency of the search along
the path. If a mobile robot has the required information about the environ-
ment a priori, it can precompute the optimal path performing searches in the
computer memory itself using classical graph-search algorithms such as A*
[52], [L03]. However, these algorithms are of less use as the mobile robot has
to move physically to find the path in an unknown environment. During the
course of finding the optimal path, given the initial and final positions, the
robot has to make some ”jumps” which are discontinuous in practical situa-
tions. Then, the robot has to spend more time in traversing the complicated
path physically. The algorithms to minimize the search efforts are presented
already in [103], [100], [96]. The algorithms [103], [100], make lot of search
efforts leading to unbounded search in worst case [96]. In [96], the algorithm
uses an A* like behaviour to impose a bound on the depth of the search ef-
fort, and consequently to impose a bound on the search effort. It also used
a DFS-like (Depth First Search) behaviour to minimize the search effort.
Unlike the complicated hybrid strategy and cost propagation for updating
the global costs of the nodes, three new techniques, namely, Petri expansion,
Markovian cost function, and Retaining shortest path nodes are developed.
These techniques automatically lead to minimizing the search efforts within
the framework of the A* strategy itself with minor modifications.

5.7.1 The Formulation of the Problem with Assumptions

A sensor-based cylinder-shaped mobile robot is considered here with the
assumption that it has mechanism to distinguish the obstacle and locating
the furthest point of visibility in the required directions. The obstacles are

128 CHAPTER 5. HUMAN BEING RECOGNITION

assumed to be stationary at some unknown locations which can be detected
by the mobile robot using the sensors. The only moving object is the mobile
robot with the known dimensions. Given is a wheeled robot where the
direction of motion is not impeded like car-like robot mentioned in [87].
The initial and final positions of the robot are known a priori. Given the
initial and final position, the robot has to reach the final position by finding
the optimal path without colliding with the obstacles and with the minimal
search efforts. The focus is diverted to the minimal search efforts without
sacrificing the optimality.

5.7.2 Three New Techniques to Reduce the Search Efforts
in A* Algorithm

The general A* algorithm [52] is used here by the mobile robot to find
the optimal path between the given points in an unknown environment.
It may be recalled that the mobile robot standing at a point is required
to go to the point which is selected for expansion by the A* Algorithm.
This discontinuous change of position is described as ”jumps”. The whole
aim is to minimize the path traversed due to these jumps as the robot
has to physically move. Three new techniques which aim to reduce the
search efforts during the process of finding the optimal path always have
been developed namely, Petri Expansions, Markovian Cost Function and
Retaining Shortest Path Nodes. Each technique is explained in the following
subsections how the search effort could be minimized in each case.

Petri Expansions

The concept of Petri net is well known and widely discussed [102], [104].
Succinctly explaining that a node is fired provided there is already one token
in each of the incoming arc. This concept is transformed to suit to the
need of the problem. The main idea is as follows, the search effort could be
minimized if more information is available to the A* algorithm to choose the
next node to be expanded. There by unnecessary traversals can be easily
eliminated. Now, the question boils down to how to get more information
that too in an unknown environment. In fact, it is possible as most of the
times two points P; and P, will be visible and P; will be expanded and P,
waiting for its own turn for expansion. When the turn comes, the point P,
being visible to the point P;, will have one node with the last visited node
being P;. But, as it is known, P; has been already expanded. Now, without
wasting time, all points visible from P; can be included as nodes provided

5.7. ROBOT TRAVERSAL IN UNKNOWN ENVIRONMENTS 129

they are not visited earlier in the currently expanded node with the point
P,. These additional nodes can provide more information perhaps directly
leading to the optimal path. Thereby, all intermediate nodes which were
supposed to be visited will be not be visited in this case as a better choice
is now available due to additional information.

The implementation is in a form of petri net. Whenever a point is ex-
panded, it is noted as marked. During the expansion of some node, when
the points which are marked are visible from the point of expansion, au-
tomatic petri expansion takes places, i.e., nodes are added with the nodes
having their last point visited being visible to the marked points. This type
of expansion happens as a firing as whenever the last node visited is already
a marked node. This leads to lot of reduction in the search efforts as better
node could be chosen for next viable expansion. The notable point is that
there is very less additional effort required to do that. In fact, all the mod-
ifications are incorporated in the A* algorithm itself. Even though, there
seems to be increase in the number of nodes generated, it is in due course
lead to reduction in the total number of nodes generated due to the selection
of better node for expansion apart from minimizing the search efforts.

Markovian Cost Function

The characteristics of a Markov process include ”forgetfulness” property
[105], [101]. This forgetfulness property is used here while coining the cost
function especially g(x). In the general A* algorithm, g(x) denotes the cost
involved in coming to the node x from the initial node i.e., to this point
from the initial position of the mobile robot. However, due to the physical
movement of the mobile robot and because of jumps, the mobile robot may
have to retraverse the path to reach a point. Normally all distances traversed
starting from the initial position till the point will be included as the cost
incurred to reach the point. Because of the complicated paths and jumps,
the measure eventhough it is really the cost incurred to reach this point,
does not give much hopes to go further. Mathematically, the cost function
g(x) eventhough it represents the cost incurred to reach this point, does
not help in getting a better node selected as the path in which it previously
traversed becomes immaterial and only the distance counts. In this juncture,
the concept of Markovian forgetfulness property is introduced to the cost
function.

All that is needed is a good measure of g(x) which will help further to get
the optimal path with minimal search efforts. So, instead of having g(x) as
the cost involved in getting the mobile robot come to the point now, which

130 CHAPTER 5. HUMAN BEING RECOGNITION

is usually the case, the deviation is made to introduce the property to forget
the past and determine the future from the point. Mathematically, g(x) need
not to be the total distance traversed to reach the point, but the minimal
distance required to reach the point from the initial point with the available
knowledge known so far. This gives better results and with ample examples
it is shown that it drives the mobile robot exactly in the optimal path as
required. Of course, these may be rare examples. Yet these examples show
concretely that such a possibilities are not remote. By the proper choice of
the next node to be expanded, the searching effort will be reduced to the
large extent. It may be also recalled, no extra effort is needed as it is the
modification of the g(x) function in the A* algorithm itself.

Retaining Shortest Path Nodes

This is one of the techniques in conjunction with other techniques yields
highly appreciable results as far as the reduction of the search effort is con-
cerned. The main idea is that what is the need of having a node with the
last point P, and another node with the same last point but a different path
to reach P, and it is shorter also. By expanding a node having the last point
visited as P, and the distance from the initial point to P, is not shorter
compared to another node having the same last point visited as P, and it
is the shortest as per the knowledge at that moment of time available, is
of no use as the path obtained as the solution can not be the optimal path
because the path from the initial point to P, is not optimal. This demands
the node to be eliminated at the inception itself. This in turn will not only
bound the explosion of the creation of new nodes, but also will reduce the
search efforts.

The primary concern is to use this in conjunction with other techniques,
eventhough individually it guarantees the optimal path also. The explosion
of the creation of nodes are minimized as many nodes which are not having
the shortest path to the last node P, are summarily eliminated. Thereby
any possibility of jumping to these nodes are once far all eliminated from
the search space of the A* algorithm itself. As explained, this can be easily
incorporated into the Ax algorithm, by just checking the f(x) value as the
g(x) value is already modified to incorporate the Markovian cost function.

5.7.3 The Improvised A* Algorithm

Before the improvised A* algorithm is presented, few techniques introduced
in [53] which reduces the space requirement and the computational time are

5.7. ROBOT TRAVERSAL IN UNKNOWN ENVIRONMENTS 131

briefed here as they are used in the algorithm.

Lower Bound

The lower bound is for the solution which is the minimum possible attainable
solution. In the A* algorithm, the algorithm has to continue even after
finding a solution as it need not necessarily be optimal. Now the question lies
how can it be proved that the given solution is the optimal solution so that
the algorithm can be terminated at once. The only possible way is that when
the given solution is equal to the lower bound solution, obviously there could
not be a better solution. Hence, the algorithm can be terminated. Here,
the lower bound is equal to Euclidean distance between the initial position
and final position of the mobile robot. One should be always careful that all
feasible optimal solutions need not necessarily be lower bound solutions. The
main advantage is that if the given problem has the lower bound solution,
the algorithm terminates at once it finds such solution, thereby reducing
both the memory space required for the further expansions and the time to
compute the same.

Upper Bound

The upper bound is a solution which is the minimum solution already avail-
able. In the A* algorithm, the algorithm has to evaluate the function f(x) at
every node. Supposing that f(x) is greater than upper bound, that node need
not to be expanded further. This will not affect the optimality as anyhow
by expanding the node, the solution obtained will be more than that of the
already available solution. However to start with, it is assigned a very high
value for example say the product of the length and breath of the unknown
field if it is known. However, once a solution is found first, the upper bound
is set to be the solution. Further, whenever new solutions are found, it is
updated provided it is better than the already available upper bound. So,
using upper bound, the number of nodes generated are minimized thereby
reducing the memory space and CPU time.

The Heuristics Function

The A* strategy mainly depends on the effectiveness of the heuristic func-
tion. At node x, let there be P{ points already visited. pp is the initial
position of the mobile robot.Then,

g(z) = X Distance(p;, pi—1), Vp; € Pll, which are visited in the node x.

132 CHAPTER 5. HUMAN BEING RECOGNITION

Now, to find the f(x) value, h(x) heuristic function is required. To pro-
duce always optimal solution, indeed h*(z) is required. The h*(x) is defined
as, h*(xz) = Distance(p;,ps) where p; is the last point visited in the node
x and py is the final position of the mobile robot, and Distance function
calculates the Euclidean distance between the given points. In fact, it is
easy to verify that h*(z) < h(z) to ascertain the optimality.

5.7.4 The Algorithm for Finding the Optimal Path

1. Compute the lower bound solution, LB.
2. Set the upper bound UB as high value.
3. IF (UB! = LB) THEN
4. ¢ = 0 (* node count *).

5. Build the initial node Ny with the initial point as first visited and
insert it in the list with f(Ny) = LB.

6. REPEAT
7. Select the node N, with smallest f value.
8. IF (Nj is not a solution) THEN

(a) Generate the successors i.e., trying with all visible farthest points.

(b) Do the following for each such points
Include this point as the last point visited.

(¢c) FOR each such visiting of points as N; DO

e Check for the duplication or shorter paths

e IF (already available or not shorter) THEN
Don’t add the node
ELSE
Compute f(N;) = g(N;) + h(N;) for this node N;.
IF (f(N;) < UB)
c=c+1
Insert it in the list
IF (N; is a solution) THEN
IF (f(N;) = LB) THEN
Print the solution and quit.
IF (f(N;) < UB) THEN

5.7. ROBOT TRAVERSAL IN UNKNOWN ENVIRONMENTS 133

Exz | OP Dist | Nodes | AP Dist | Per Inc
Egl 6.0 13
Eg2 7.23 16 10.54 45.68
Eg3 7.47 23
Eg4 9.54 21 19.54 | 104.86
Egb 26.64 24
Eg6 17.25 3267 | 1211.69 6923

Table 5.5: The general A* Algorithm

UB = {(N;).

ENDIF

ENDIF

ENDIF

Start Petri expansion
ELSE

Prune the node N;
ENDIF

ENDIF

ENDIF
ELSE
Print the solution and quit

9. UNTIL (Ny is solution OR list is empty). ELSE
Print the solution and quit ENDIF

5.7.5 Analysis of the Result and Future Work

To explain the effectiveness of the techniques, the simulations are carried
out with various examples and few important cases are presented here in
Fig.5.34 to explain the salient features of the improvised algorithm. For
the sake of simplicity and explanation, linear obstacles are considered in
the figures. At First, without these techniques the computations are made
and then with techniques. They are tabulated in Table 5.5 and Table 5.6
respectively.

It is very evident from the examples that improvised algorithm out-
performs well in the complicated situations and performs equally well in
simple situations and never worse than the general algorithm excepting for

134 CHAPTER 5. HUMAN BEING RECOGNITION

Exz | OP Dist | Nodes | AP Dist | Per Inc
Egl 6.0 22
Eg2 7.23 19 10.54 45.68
Eg3 7.47 27
Eg4 9.54 38 19.54 104.86
Egb 26.64 27
Eg6 17.25 280 73.21 324.35

Table 5.6: The Improvised A* Algorithm

a marginal increase in the computation time due to the additions few extra
nodes. Here, Ex denotes the example sets, OP Dist denotes the Optimal
Path Distance, Nodes denotes the number of nodes generated as a measure
of computational time and memory space, AP Dist denotes Actual Path Dis-
tance traversed, and Per Inc shows the percentage of increase between OP
Dist and AP Dist. Whenever AP Dist and Per Inc are not having values, it
indicates that the path traversed is the optimal path and no extra distance
is covered. It may be noted that it is same in Table 5.5 and Table 5.6 as
the same f(x) is used for the sake of comparison. The most interesting is
the last case, where there is commendable achievement obtained by the im-
provised algorithm as it is easy to check that the search effort is minimized
from 1211.69 to 73.21 and that too equally good reduction in Per Inc also.
This evidently shows that the three techniques in the complicated situations
reduce the search efforts enormously. In the cases of Egl, Eg3, and Egb, the
exact path traversed is the optimal path and there is absolutely no extra
distance traversed. This shows that the search efforts are even minimized
to zero in some cases as evident from the examples shown here. This clearly
demonstrates the effectiveness of the new techniques, especially Markovian
cost function. As an easy extension, the algorithm can be modified either to
stop at the first solution or any e optimal solution taking into consideration
of the lower bounds as the optimal solution.

5.7. ROBOT TRAVERSAL IN UNKNOWN ENVIRONMENTS 135

Figure 5.34: Robot in Unknown Environments Examples 1 - 6

136 CHAPTER 5. HUMAN BEING RECOGNITION

5.8 Ants Colony Optimization Based Robot
Traversal

Here the robots are employed in a restaurants where they have to go around
some specific points like TSP (Travelling Salesman Problem) to serve the
people. Here the concentration is on the traversal assuming the positions of
the tables to be fixed where the human beings are expected to be seated.
The Ant Colony Optimization, since introduced [106] has attracted more at-
tention realizing the importance of Swarm Intelligence based on the natural
phenomenon of real ants with Pheromone (trails) to trace their food. The
strategy has been applied to many optimization problems including TSP. Tt
may be recalled that initially Ants System was introduced for optimization
by a colony of cooperating agents [107]. The Ant Colony System differs from
the Ants System in three ways namely, different state transition rule, global
updating rule and a separate local updating rule [106].

The ACO can be applied to many optimization problems including some
multiobjective problems [108]. The standard TSP is chosen for experimen-
tation as benchmarks (TSPLIB [109]) are available and widely analyzed. As
TSP problem is NP-hard, obviously heuristic approaches are employed to
get optimal solution. Moreover, it exhibits ample parallelism also.

In [110], both synchronous and asynchronous parallel methods are pro-
posed and simulated. As no implementation was available, only discrete
event simulation results are presented with proper assumptions. In [111],
independent executions of the asynchronous method were implemented. In
each execution, different or randomized initial positions are used. However,
there is absolutely no communication. There is no information from the
other processes which otherwise can improve the pheromone (trails). How-
ever, MMAS (Max-Min Ant System) improved the results [112]. In the
method, the best ant alone updates the trails.

A new approach to implement the same, but to learn from others is
introduced. As the processors in Cray T3E can communicate (unlike the in-
dependent executions), the communications with other processes (other Ant
Colonies) paved way for learning from the other processes (Ant Colonies).
Synchronous method with trail update after predefined iterations (to accu-
mulate pheromones) is implemented on Cray T3E. As in the MMAS case,
only the best ant in each colony is allowed to globally update the trails.

5.8. ANTS COLONY OPTIMIZATION 137

5.8.1 General TSP and ACO Approach
General TSP

A TSP can be represented by a complete weighted graph G = (V,E,f) where
V is a set of cities to be visited V = {1,2,...,n}, E is a set of edges between
the vertices E = {(i,j) such that (i,j) € V x V} and f is a function associated
with the distances between the vertices or the length of the edges. The goal
is to find a shortest cycle visiting each city once and returning back to the
start city. Here, symmetric TSP is considered (f(E;;) = f(£;)) [109].

ACO Approach

Initially m ants are positioned among n cities according to some rule or
randomly also. Each ants finds a solution using the state transition rule
(in the case of TSP, builds a tour). While constructing the solution, ants
modify the amount of pheromone (in the case on the edges). Once all ants
have computed the solutions, once more the amount of pheromone on edges
are modified according to the global update rule. As in the Ants System,
ants construct the solution based on the heuristic information (nearest city)
and the pheromone information (chosen by the most of the ants). After
some fixed number of iterations, the best result among the ants is qualified
as the optimal solution.

5.8.2 The New Parallel Algorithm for ACO

The approach is based on ACO [106] and the MMAS (Max-Min Ants Sys-
tem) [112]. The principal change is that instead of globally updating after
every iteration (ants have constructed the solution), only after some pre-
defined number of iteration global update is carried out. This will not
only minimize the total communication time but also permits to accumu-
late more knowledge of the system through the accumulation of pheromone
on the edges as the frequently used edges will have more pheromone. The
need of MMAS is required as after some large number of iterations, there
seems to be some saturation. Like in such other systems, local search is also
included to improve the solution.

As the ants are independent, the algorithm is parallelized based on the
number of ants, indeed on the number of colonies each having the same
number of ants. Depending upon the number of parallel processors, the
parallelism is scaled. Further details about the parallel implementation are
provided in the following subsection. To match the number of parallel pro-

138 CHAPTER 5. HUMAN BEING RECOGNITION

cessors and the ants, the number of colonies is approximated to the number
of number of cities divided by the number of ants so that there can be at
the maximum one ant positioned in one city. Only during the global up-
date, the communication is involved and as in this case the communication
is synchronous, idle time is also included.
The sketch of the parallel algorithm is given below.
Input: Coordinate positions of cities in TSP, Number of maximum itera-
tions, Number of ants, Iteration interval, parameters rho, alpha and beta.
for each iteration do
for each colony do in parallel
for each ant do
Find a tour
Update locally pheromone (the trail matrix)
After each iteration interval
Only the best ant in each colony improves the solution with local
search
globally update trail matrix by best ant in each colony only

The best tour among the best ants from each colony becomes opti-
mal solution.

5.8.3 Outline of the ACO Parallel Program in MPI

Let n be the number of cities, m be the number of ants, r be the number of
iterations and all other required parameters including the distances between
the cities are read as input.

MPI_Comm_rank(WORLD,&;j);

MPI_Comm_size(WORLD,&p);

MPI_File_open(WORLD,...);

MPI_File_read(...);

/*each processor j reads the input for TSP */

MPI_File_close(...);

q =n / m; /* q¢ = the number of colonies */

T aUmin and Taumg, are calculated based on MMAS

for each iteration i=1..r do

{ for each colony k = j, j+p, j+2*p, .. q do /* in parallel */

{ for each ant w=1 .. m do

find a tour

locally update }

5.8. ANTS COLONY OPTIMIZATION 139

if (i % iteration_interval == 0) /* pheromones accumulated */

for each colony k = j, j+p, j+2*p, .. q do /* in parallel */

{ do local search for each best ant in the colony to improve the solution
globally update only with the best ants from each colony

FY
MPI_Allreduce(..., MPI_-MIN,WORLD); /* Optimal solution */

5.8.4 Parallel Implementation of the Algorithm on Cray T3E
with MPI

Synchronous Communication

On the Supercomputer Cray T3E with MPI, the parallel algorithm is im-
plemented. Eventhough MPI supports both synchronous and asynchronous
communication, for the sake of simplicity of programming in parallel, syn-
chronous communication is chosen despite the involvement of idle time re-
quired for synchronization before communication among the processors. In
the implementation, only the best ant from each colony communicates with
other colonies.

Here care must be taken to group the processes as in all cases the number
of colonies need not to be integer multiples of the processors used. MPI has
ample routines [114] to easily manoeuvre the situation. Otherwise, there
might be infinite waiting presuming nonexisting processes to participate in
the communication. This will wrongly increase the total idle time.

The wide variety of communication routines in MPI facilitates the global
update of pheromone in a simple way of course with the above mentioned
condition. It must be recalled that for local update no communication is
required as each colony is associated with each processor having separate
memory.

Communications are also required at the end of the algorithm to collect
the results and choose the best as the optimal solution. MPI has efficient
implementation of find maximum or minimum of a particular value among
the processes in the parallel processors.

5.8.5 Parallelism in ACO Algorithm

As explained in the previous section, it is natural to parallelize the algorithm
based on the number of ants (indeed the ant colonies)and the available par-
allel processors. In ACO algorithm developed in the work, each colony has
same number of ants. So, instead of parallelizing at the ant level which will

140 CHAPTER 5. HUMAN BEING RECOGNITION

increase the communication and idle times as global update requires all ants
to update the pheromone, at the colony level the algorithm is parallelized.
This will not only minimize the number of times communications ought to
be carried out but also the amount of data to be communicated.

Moreover, instead of updating after each cycle which will also increase
both the total communication and idle times, the algorithm permits only
after a specific predefined interval (can be modified at the run time), the
pheromones are globally updated among the processors. It may be recalled
that local update as mentioned earlier does not demand any communication
as all the ants in each colony will be associated with the same processor. The
global update is also parallelized efficiently. The set of processors participate
in global update are grouped to use efficient routines in MPI.

5.8.6 Experimental Results and Analysis

Here for the experimentation, a standard benchmark data for TSP
Berlin52.dat [109] is chosen. To compare with other algorithms, (1)ant sys-
tem(AS), (2)Min-Max AS (MMAS), (3)MMAS with local search (MMAS-
LS), (4)ant colony system(ACS), (5)ACS with local search (ACS-LS) and
(6) the algorithm developed in the work, the experiments were conducted
on 4 parallel processors without changing any other parameter viz. rho
for MMAS, alpha and beta for state transition rule. The five major issues
[80], 1)length of the tour(optimal solution - Tour len), 2) total computation
time (T'imepq,) 3)single processor time (Timep.) 4) percentage of total
communication time with respect to total computation time (Timecomm %)
and 5) percentage of total idle time with respect to total computation time
(Time;qe%) are analyzed as shown in Fig.5.35 by varying the number of
iterations from 100, 500 and 1000.

From the graphs in Fig.5.35, it is clear that the algorithm developed in
the work performs competitively well and it may be recalled all experiments
were done with 4 processors. The only problem with the method was more
idle time. It is because less processors were used. It becomes very evident
when the number of processors are increased as shown in the tables. The
least communication time by the algorithm promises that it can be used for
larger size problems also.

For constructing the tables, only the algorithm developed in the work is
used, but all parameters are varied and the results are analyzed. From Table
5.7 the increase in the number of iteration obviously produces better results.
However, there is some sort of saturation or falling into local minimum is
observed. From Table 5.8, by increasing the number of ants, ultimately

5.8. ANTS COLONY OPTIMIZATION 141

800 : ;
"100iter_pt" ——
700 "500iter_pt" —=—
"l H "
- 600 | 000iter_pt" ——
- 500
)
= 400 ¢
= 300
o
E 200 f
@
100 | /
0
1 2 3 4 5 6
200 : ;
"100iter_spt" ——
180 "500iter_spt" —=—
- 160 "1000iter_spt" ——
~ 140
w2
=2 120
%= 100
Q"U 80
e, 60
= 40 p
@
20 /
0
1 2 3 4 5 6
1.4
1.2 UUIe
"1000iter_ct" *
= 1
Q 0.8 |
=
B 0.6
H
g 0.4
@
0.2
0 L L L L
1 2 3 4 5 6
4 ‘ ‘
0 "100iter_idt" ——
35+ "500iter_idt" —=—
30 | "1000iter_idt" ——
& 25 |
&
= 20 +
H 15 r
T 10!
1 2 3 4 5 6

Figure 5.35: Parallel, Single Pcr, Communication and Idle Time Analysis
with 6 Algorithms

142

CHAPTER 5. HUMAN BEING RECOGNITION

No.of Iter | Tour len | Timepq, | Timepey | Timecomm % | Timeiqe %
500 10027 111 11 0.18 0.36
1000 9857 205 21 0.20 0.38
2000 9857 395 39 0.21 0.41
Table 5.7: Results based on varying Iterations
No.of Ants | Tour len | Timepq, | Timepe, | Timecomm % | Timeiqe %
2 9838 428 16 0.75 0.45
4 9857 231 17 0.69 0.41
5 9857 205 20 0.41 0.38
Table 5.8: Results based on varying Ants
Interval | Tour len | Timepq, | Timeper | Timecomm % | Timeiqe %
10 9838 601 23 0.82 0.48
5 8200 869 33 1.12 0.49
Table 5.9: Results based on varying Interval
Rho | Tour len | Timepqr | Timepe, | Timecomm % | Timeiqe %
0.9 | 8200 607 23 1.02 0.48
0.5 | 8200 607 23 1.04 0.46
0.1 | 8200 607 23 1.07 0.44
Table 5.10: Results based on varying Rho
Alpha,Beta | Tour len | Timepq, | Timepe, | Timecomm % | Timeiqe %
1,5 8200 607 23 1.08 0.47
2,5 8200 609 23 1.04 0.46
5,1 8200 604 23 1.05 0.39

Table 5.11: Results based on varying Alpha and Beta

5.8. ANTS COLONY OPTIMIZATION 143

the number of colonies are reduced as (colonies = cities / ants). As the
colony size reduces with the increase of number ants in a colony, no better
results are produced. This defends idea of updating globally based on best
ant in each colonies than with all ants. From Table 5.9 it is clear that
by reducing the interval size, the number of communication increases. But
this gives more dividend by producing better results because more global
information is shared but in a restricted way. From Table 5.10 and Table
5.11, no marked change is observed by changing rho and alpha and beta.
However more experiments with different data can prove the role of each
parameter explicitly. The parallelism perfectly works giving better results
and at the same time both communication and idle times are contained.
This leaves less aspirations for using asynchronous communications for the
algorithm. Eventhough the best result for the TSP problem is less than the
obtained results, the strategy derives strength from restricting the global
update not after every iteration but after some period of intervals. This
in effect not only reduced the communication time and idle time but also
shared the pheromone values which is the crucial aspect in any ants based
multi agent systems.

5.8.7 Future Extensions

Apart from varying all the parameters, the role of local search must be ad-
dressed. After some iterations, with out local search, pheromone saturation
seems to be evident. The change in state transition rule from AS to ACS
which balances such cases also must be exclusively studied. After a large
iterations by changing rho or alpha or beta does not always lead to better so-
lutions. Modifying these at runtime or as the iterations proceed, the ability
to get better results can also be investigated. The efficiency of MPI routines
can also be found by varying the strategies. Finally, asynchronous mode of
communication must also be studied to improvise both the algorithm and
the implementation of MPI routines on Cray T3E also. Attempts can be
made to solve other optimization problems apart from TSP.

144 CHAPTER 5. HUMAN BEING RECOGNITION

Chapter 6

Model, Matching and
Indexing

6.1 Models

In the recognition systems, the role of the models is very important not only
in recognition but also in reducing the computation time. From stick models
of human being to 3D blob models complexity increases but the tracking
later becomes comparatively faster. To recognize a human being despite
occlusion requires either explicit occlusion modelling or in Hausdorff method,
proper selection of some parameters. It is always difficult to find values of the
parameters which will suit to many instances in general. However, specially
modelling for occlusion will help. But it will increase the number of models
several times. Yet it manoeuvres occlusion better.

6.1.1 Occlusion Models

In Occlusion models, the model of a human being is taken and some of
the parts are removed. Each model after such deletions of parts becomes
an occlusion model. By explicitly modelling occlusion, the probability of
recognition has been increased as evident from the experiments. As men-
tioned before, the method increases the number of models. To circumvent
the increase in the number of models, a generic model is introduced.

6.1.2 Generic Models

To reduce the number of models, the selected set of models are superimposed
together. Such a model is called a generic model. In case of points, a

145

146 CHAPTER 6. MODEL, MATCHING AND INDEXING

generic model is the union of all the sets of points from each selected model.
Similarly, for the edge models also it is defined like points.

However, generic models eventhough reduces the number of models, they
have problem with Hausdorff method for matching as many points may be
missing. Eventhough using the same technique for occlusion will increase
further probability of recognition, to alleviate the problem of missing points
in the generic models, basis models are introduced.

6.1.3 Basis Models

This modelling is almost complementary to the generic models. Instead of
taking union among the selected sets of points as in the case with generic
models, here intersection is taken. Eventhough the method looks rosy, there
is a fly in the oil.

In many cases, the number of points in the intersection set is very less,
so that they match with arbitrary set of points often increasing the number
of false positives. However if the selection of the models is proper, in the
sense that most of them are similar to the large extent, the method will work
appreciably. It must be recalled that similar idea is used [10] in forming a
hierarchical way of grouping the models.

6.2 Matching

As in the study, Hausdorff and Chamfering matching are appreciably ef-
ficient matching methods. However general matching methods have some
inherent problems due to scaling which may be solvable by defining the
matching measure differently.

6.2.1 Matching Problem with Scaling

Both the Hausdorff and Chamfering methods for matching do not cope up
with scaling adequately. Albeit the problem can be solved by having models
of varied sizes, the ultimate problem of fixing proper threshold which can
still accept, continues. Moreover, theoretically there can be infinite scaling
variations for a single model. Hence, it will only increase the number of
models and complexity.

Taking a closer look at an image of different size, the matching is ob-
vious visually. However, unless the corresponding model of the size is not
there, the acceptance depends upon the value of the threshold. Instead of
putting the onus on the value of threshold, a different outlook is taken which

6.2. MATCHING 147

defines the matching measure differently which will enhance the matching
with different sizes.

6.2.2 A New Matching Measure

Defining a matching measure is as simple as defining a function over a
set of points and values at those points. However, if it should suffice as
good matching measure, especially in the situation where the sizes are the
paramount problems, the following measure increases the confidence in suc-
cessful matching. To recall the matching measure in Hausdorff, it is the
maximum distance value in those feature points. That is why when a seg-
ment of an image is a different size of the same model, it is not able to accept
as the maximum distance value may be more than the threshold. Similarly,
in the case of Chamfering, the distance measure is the square root of the
average of the sum of squares of the distances at the feature points. It is
something like taking the average value only, but in a different way to suit
to the distance transformation.

For the new measure, first the average of all the distance values at the
feature points is taken and it is subtracted from the distance values at the
feature points and the absolute value of the new difference is alone consid-
ered. Then, the maximum is found which is the value of the new measure.

The new measure combines both the chamfering and Hausdorff distance
measures. For simple objects like circles, circles of any radius can be easily
recognized with a single model with the new distance measure. When the
objects are cylinders and blobs depending upon the sizes the differences
also increase. For the models of human being, when the sizes are nearly
same, then obviously the correct matching is found. Then again as the sizes
increases, playing with the values of threshold, suitable match can be found
positively.

In any matching method, given a set of models and an image, which
model has to be chosen first and what is the order in which models can be
chosen so that at the earliest all correct matching can be found depends on
indexing.

148 CHAPTER 6. MODEL, MATCHING AND INDEXING

6.3 Indexing

6.3.1 Problems of Outdoor environment compared to Image
Databases

Image Indexing is one of the fields which attracts many of the researchers
to focus the attention due to its wide applicability. From matching finger
prints to finding the culprit from the image databases, image indexing plays
an important role. But the problem with recognizing human beings in an
outdoor environment is more complicated than the image databases. Firstly,
image databases may have the entries of same size or atleast approximately
same. Since the chances of preprocessing can be done off-line, most of the
noises can be reduced in the images stored in the databases. More impor-
tantly, all the features of the image are in the image itself (if the feature
exists).

In case of outdoor environments, neither the sizes can be same, nor there
is any guarantee for noise free images. Above all, in such images how seg-
menting can be done in such a way that relevant features are available within
the segment itself and the features will not be distorted due to segmentation
or dividing the image into equal smaller sizes?

6.3.2 Segmenting Problems

There are lot of segmenting methods based on colours or texture or same grey
values or connected components and so on. This will disturb the generality
of the problem considerably. There is not much interest at this advanced
stage to backtrack to use colour cues to segment the image.

At the same time, equally dividing the image into segments of smaller
sizes, as mentioned before has to handle the features falling exactly at the di-
viding lines. Moreover, there is no the guarantee that the segment satisfying
the conditions based on histogram must match with the model. Any arbi-
trary segment can have the same histogram like a model. So, after indexing
applying robust matching methods are also essential.

6.3.3 Possible Indexing Strategies

Histograms or measures based on either Hausdorff or Chamfering can be
used for indexing. But the primary problem is how to segment a given
image such that if a model exists, the indexing will choose such a model first.
Lot of work needs to done in the direction which will drastically reduce the
computation time.

6.4. BACKWARD RECOGNITION OF HUMAN GROUPS 149

As histogram is the simplest and at the same time powerful one, indexing
can be done based on the histogram values. A combination of maximum,
minimum and median can be a combined indexing key.

6.4 Backward Recognition of Human Groups

The idea is if at a particular point of time a human being is recognized, from
the previous image where the human being would have been, the human
being can be recognized along with other human beings. As there are many
problems including sizes, movements of human beings, movement of the
camera and so on, a restricted environment is taken for study. For the
restricted environment, the backward recognition works well as shown in
Fig.6.1, Fig.6.2, Fig.6.3. Here, recognizing a single human being is done
first and later the relative position is back propagated to group the other
human beings. The occlusion plays a vital role in impeding the recognition
process. In such situations, it is more crucial as even one human being is
not recognized, may lead to the group not recognized.

150 CHAPTER 6. MODEL, MATCHING AND INDEXING

Figure 6.1: Identified Human Groups in Images from Image Understanding
Group 1

6.4. BACKWARD RECOGNITION OF HUMAN GROUPS 151

Figure 6.2: Identified Human Groups in Images from Image Understanding
Group 2

152 CHAPTER 6. MODEL, MATCHING AND INDEXING

Figure 6.3: Identified Human Groups in Images from Image Understanding
Group 3

Chapter 7

Conclusion

The growth of diversified applications that demand the recognition of hu-
man beings in the images has increased considerably. In the study, an at-
tempt has been made to recognize human beings in images without many
strict constraints which are normally applied and it has been shown that
the possibility is high. To start with graph matching, the basic concept of
matching two graphs is investigated as the graphs are the most powerful
representation of objects mathematically. A new isomorphism (Neighbour
Isomorphism) has been introduced which reduces the computation time to
match the two graphs enormously. The same isomorphism is extended to
find the symmetries in the regular polygons which are repeatedly present
at various positions. The symmetry axis and the relationship with the new
isomorphism is deduced clearly. Initially, A* Algorithm is used for optimal
matching of graphs also. Combining both Neighbour Isomorphism and A*
strategy, a new algorithm to match the postures of human being especially
taken from the indian classical dance, Bharathanatyam, has been developed
which produced correct results efficiently.

In the real images due to noises, such graph methods are not directly
applicable in low level image processing. Here, the concentration is focussed
on low level image processing to recognize a human being. The two standard
matching methods, Chamfering and Hausdorff method are investigated. It
has been found that the Chamfering method is faster than the Hausdorff
method as far as computation times are concerned. But the Hausdorff
method is more robust than the Chamfering method. The efficient com-
putation of distances in the images with respect to the features based on
distance transformations and lookup methods are discussed and it is found
that distance transformation method is computationally better.

153

154 CHAPTER 7. CONCLUSION

The crucial contribution of Fusion architecture in the study is basically
highly general and not restricted only to human being recognition. The
combination of various algorithms produced better recognition in the Fusion
Architecture. The modified Hausdorff methods to handle occlusion and
scaling or zooming improvised the combination in the Fusion Architecture.
Being inherently parallel, the Fusion Architecture can be easily implemented
on parallel machines.

To do lot of experiments and for reducing the computation time, all the
strategies are parallelized. The parallel implementations are done on Cray
T3E supercomputer using MPI. The results show that the parallelization
can obviously reduce the computation time depending upon the amount of
parallelization and the number of processors available.

Apart from the general problems involved in recognition systems, the
aspects of model, matching and indexing strategy are analyzed with the dif-
ferent approaches of occlusion modelling with generic and basic models. To
describe the positional relationships between the human beings ontologically,
experiments are performed and the preliminary results are encouraging. As
industrial applications in robotics, three situations, one with known environ-
ment, another with unknown environment and the third with going around
have been discussed considering primitive models of human beings as ob-
stacles. In restricted environments, recognizing groups of human beings is
also possible by recognizing single human beings separately in a sequence of
images and back propagating the relative positions in the previous images
along with other human beings.

Albeit the aim of the study is to recognize the human beings in the images
from monocular camera without usual constraints, initially the graph theory
based methods for matching are analyzed with new neighbour isomorphism.
The robust Hausdorff method for matching is extended to recognize the
human beings with ample models and modified distance measures. As the
strategy to fuse different algorithms to get better results despite occlusions
is inherently parallel, it is implemented on Cray T3E Supercomputer which
produced correct results in appreciably lesser computation time. Unless the
method of choosing a proper model with the good indexing is available,
the recognition of human beings will continue to remain as one of the hard
problems to be solved in image processing.

Appendix A

Cray T3E

As the Supercomputer Cray T3E at HLRS [113] is accessible, the parallel
algorithm for image matching is implemented and tested on the platform.
It has 512 nodes, 64 GB DRAM memory, 128 MB DRAM memory per node
with the peak performance of 461 GFLOPS/s. It has high communication
and I/O Bandwidths and operates on Chorus based operating system.

The system is highly scalable with distributed memory. Message Passing
Interface (MPI) model is supported by Cray T3E. This MPI allows parallel
file I/O upto 200 Mb/sec. Both interactive and batch mode of executions
are allowed on Cray T3E.

The MPI on Cray T3E has with standard MPI_Send and MPI_Recv
a latency of 6 microseconds, and with messages longer than 8 kbytes a
bandwidth of faster than 220 Mbytes/sec, with messages longer than 64
kbytes a bandwidth of faster than 300 Mbytes/sec, and with messages longer
than 256 kbytes a bandwidth of about 315 Mbytes/sec.

The automatic MPI profiling and totalview software to debug make
the programming and development really easier. Compilation can be done
with variable number of processors so that the number of processors can be
changed at runtime using the following commands.

cc -0 <object file name> <source file name>

mpirun -np <number of processors> <object file name>

To use the file system in batchmode get_input and save_result shell scripts
are also available.

155

156 APPENDIX A. CRAY T3E

Appendix B

Message Passing Interface

In the programming Language C, the message passing interface (MPI) is
included as a library [114] as MPI being not a language as such. However,
MPI can be included in many languages such as Fortran and C++. The
set of library routines enable to communicate among the processors. In
fact, MPI specification is portable which takes advantage of the specialized
hardware and software offered by the individual vendors. MPI parallel file
reading is used here as the individual file reading. Just to find the minimum,
MPI-Allreduce is used. The same program is compiled and executed on
different number of processors without any change in the program.

Here, a list of MPI standard routines is provided to understand and
program in parallel systems. For exact arguments and their types, the useful
references are [114] and [115].

1. MPIL Init(); Every program must start with routine.
MPI_Finalize(); It is the final routine called from MPI programs.

MPI_Comm_create(...) creates a new intercommunicator.

o~ W

MPI_type_create_subarray(...) is to create subarrays from the main
array such that they can be processed in parallel.

5. MPI_Send and MPI_Recv are some of the routines for transferring data
between the processes.

6. MPI_Allgather(...) and MPI_Allreduce are collective operations where
all processes contribute to the result which is received by all.

7. MPI_Gather(...) and MPI_Reduce are collective operations where all
processes contribute to the result which is received by one.

157

158

10.

11.

12.

13.

APPENDIX B. MESSAGE PASSING INTERFACE

MPI Bcast(...) and MPI_Scatter are collective operations where one
process contributes to the result which is received by all.

MPI_Barrier(...) is used to synchronize the processes.

MPI_File_open(...); opens the file identified by the filename on all pro-
cesses in the communicator group. Files can be opened in read or
write or read only and such other modes.

MPI_File_read(...) is to read a file by a processor (noncollective oper-
ation) and MPI_File_read_all(...) is to read a file by all the processors
in the communicator group (collective operation).

MPI_File_write(...) is to write on a file by a processor (noncollective
operation) and MPI_File_write_all(...) is to write on a file by all the
processors in the communicator group (collective operation) at specific
positions.

File operations can be done in blocking and nonblocking modes with
explicit offsets or individual file pointers or shared file pointers such
as MPI_File_read/write_at/at_all/shared /ordered.

Appendix C

File Interoperability with
Parallel MPI File-1/0

The I/O operations especially file related operations are investigated. The
significant optimizations required for efficiency can only be implemented
if the parallel I/O system provides a high-level interface supporting parti-
tioning of file data among processes and a collective interface supporting
complete transfers of global data structures between process memories and
files [115]. Parallel reading of the same image or model into the memory of
several MPI processes can be implemented with the MPI_File_read_all. This
collective routine enables the MPI library to optimize reading and broad-
casting the file information into the memories of all processes. In image
processing, there exists also a huge number of different formats to store the
image data in files. The standard image processing software gives the op-
tions of a proprietary format or a standard ASCII format. Because most
of the formats can be converted into ASCII file format in many systems,
and to circumvent problems with the 64-bit internal integer format on the
Cray T3E, the ASCII format is decided as the image(model also) file format.
Therefore, it is mandatory to implement the conversion of ASCII file (mostly
representing integers being pixel coordinates and grey values) so that file In-
teroperability in MPI can be used effectively for image processing. As the
sizes of the files increase obviously the I/O overheads also increase. In im-
age processing, there will be always many files required both for images and
models. Hence, it is not only the sizes of the images, but also the number
of them is a matter of concern for I/O overheads.

159

160 APPENDIX C. FILE INTEROPERABILITY IN MPI

C.1 Data Access Routines

The file Interoperability means to read and write the information previously
written or read respectively to a file not just as bits of data, but the ac-
tual information the bits represent. The data access routines provide the
data movement between files and processes. There are three orthogonal
aspects to data access, 1. positioning (with offset or implicit file pointer),
2. synchronism (blocking or non-blocking) and 3. coordination (collec-
tive or non-collective) [115]. Like data access routines, File interoperability
has three aspects namely, 1. transferring the bits, 2. converting different
file structures and 3. converting between different machine representations.
The third being the concern here, the multiple data representations and the
inability to read integer data stored in an ASCII file which is needed for
image processing are explained in the following subsection.

C.2 Data Representations

MPI-2 defines the following three data representation, 1. native, 2. internal
and 3. external32 [115]. In native representation, the data is stored in a file
exactly as it is in memory. In external32 format, also a binary data repre-
sentation is used. Obviously, it is impossible to use these formats directly to
read integer data from ASCII files. The internal representation cannot be
used for data exchange between MPI programs and other non-MPI programs
that have provided the image data because the internal representation may
be chosen arbitrarily by the implementer of the MPI library. MPI-2 has
standardized also a method to use user-defined data representation. Here,
the user can combine the parallel I/O capabilities with the byte-to-data con-
version routines. The major constraint is that the representation of a given
data type must have a well-defined number of bytes. As the number of digits
of integers in an ASCII file vary (and each integer may end either with a
blank or an end-of-line character), user-defined representation also cannot
help reading integers efficiently from ASCII files.

C.3 Reading Integer Data from ASCII File with
MPII/O

The former constraints force the implementation of the following strategies:
Normal File Reading with fscanf In the first strategy, the files are read
using normal file reading command fscanf instead of MPI for the sake of

C.4. OPTIMIZING THE PARALLEL 1/0 161

ranks=0 1 2 3 4 5 6 7
R(0,0) R(1,1) R(2,2) R(3,3) R(0,4) R(1,5) R(2,6) R(3,7)
¢(0,0) c(1,1) c(2,2) c(3,3) c(0,4) c(1,5) c(2,6) c(3,7)
r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(0)
c(0,1) c(1,2) c(2,3) c(3,4) c(0,5) c(1,6) c(2,7) c(3,0)
r(2) r(3) r(4) r(5) r(6) r(7) r(0) r(1)
c(0,2) c(1,3) c(2,4) c(3,5) c(0,6) c(1,7) c(2,0) c(3,1)
r(3) r(4) r(5) r(6) r(7) r(0) r(1) r(2)
c(0,3) c(1,4) c(2,5) c(3,6) c(0,7) c(1,0) c(2,1) c(3,2)
R(8) R(9) R10) R(11) R(12) R(13) R(14) R(15)
c(0,8) c(1,9) c(2,10) c(3,11) c(0,12) c(1,13) c(2,14) c(3,15)
r(9) r(10) r(11) r(12) r(13) r(14) r(15) r(8)
c(0,9) c(1,10) c(2,11) c(3,12) c(0,13) c(1,14) c(2,15) c(3,16)

R(4a1) R(G,a2) R(6,a3) R(Tad) | R(4a5) R(G,a6) R6a7) R(7,a8)

Table C.1: Parallelization scheme of I/O and computation.

comparison with MPI file I/O operations. It may be recalled that there is
no need for conversion as fscanf can directly read the integers from the files.
Off-line Conversion In the second strategy, the ASCII file is converted
into a native file by a separate program. This gives the facility to convert
the required ASCII file off-line which enables the image processing program
to read the native file without any difficulty. To achieve heterogeneity, MPI
external 32 data representation can be used instead of the native format.
Runtime Conversion In the third strategy, the entire ASCII file is read
into a large buffer of type CHAR, and then individually by reading every
character till it is terminated either by a blank or by an end-of-line character,
the same is converted into an integer at run-time. In fact, the original file
remains as ASCII file and is still used. The conversion can be stored as a
native file for further use, if the need is so. It may be recalled the ASCII to
Integer conversion function is very easy to implement which is also system
independent.

C.4 Optimizing the Parallel I/O

The image data usage pattern has two chances for optimization: (a) all im-
age data must be reused (and probably reloaded) for comparing with several
models, and (b) all models must be reused (and probably reloaded) for com-
paring with several images. In the sequential version of the software, each
image is loaded once and all models are loaded again for comparing with
each image. By reversing the sequence of models for each even image num-
ber, at least the latest models can be cached in memory. In the first parallel
version loading of the images can be optimized with collective reading into
all processes.

162 APPENDIX C. FILE INTEROPERABILITY IN MPI

If more than one image can be analyzed in parallel, i.e., if one can accept
an additional delay for the analysis of an image because not all available
processors are used for analyzing and because the start of the analysis is
delayed until a set of images is available, then the parallelization can be
optimized according to the scheme in Table C.1. The scheme shows the
analysis of 4 images in parallel on 8 processors. R(i,k) denotes reading of
the image i and model k, R(k) is only reading of model k, r(k) is receiving of
model k with point-to-point communication from the right neighbor (sending
is omitted in the figure), and c¢(i,k) denotes the computation of the Hausdorff
distance for image i and model k.

Looking at the scheme, note that reading the image into several pro-
cessors at the same time (e.g., image 0 into processes 0 and 4) can be still
optimized with collective reading (MPI_File_read_all) that internally should
optimize this operation by reading once from disk and broadcasting the im-
age data to the processes. Reading several images and models at the same
time can be accelerated by the use of striped file-systems. The scheme is
also optimized for a cluster of shared memory nodes (SMPs). The vertical
bar between rank 3 and 4 may donate such a boundary between SMPs. One
can see on each node, that only one model is received from another node
(and another model is sent) while exchanging all models.

C.5 Results and Analysis

For the purpose of illustration, four sample images (one shown in Fig. 4.14)
and four models (one shown in Fig.4.15) are considered. The algorithm is
tested with 1, 2 and 4 processors on the Cray T3E-900 at HLRS. As the
interest is on I/0O, the I/O timings per process are tabulated in Table C.2
for 4 images and 4 models. The timing is done with MPI_Wtime(). The
wall clock time per process to handle the reading of 4 images and 4 models,
including repeated reading or message exchanges of the model is shown in
Table C.2. Before starting each I/O timing, a barrier is done to prohibit
that any synchronization time is assessed as I/O time. Although the I/O
requires only a small part of the total execution time in the current version
of the program, it is expected that on faster processing systems and with
better optimization of the Hausdorff algorithm, I/O will be a relevant factor
for execution speed. In the original parallelization, each image is read by all
processes (which may be optimized by the MPI library), and for each image,
each process reads only a subset of the models according to the numbers of
processors. In the optimized parallelization, each image is read by only one

C.5. RESULTS AND ANALYSIS 163

process, and for each set of images analyzed in parallel, each model is read
only once and then transferred with message passing to the other processes.
Table C.3 shows the accumulated number of reading an image or model file
or transferring a model for the test case with 4 images and 4 models. Each
entry in Table C.3 shows the accumulated number of images read + models
read + models exchanged by all processes with the different parallelization
schemes, e.g., 4%2+16+0 means, that 4 times 2 identical images, and 16
models are read, and 0 models are exchanged by message transfer.

The experiments are started with normal reading with fscanf. The orig-
inal parallelization incurred larger I/O time because each image had to be
read on each processor again. In the second experiment the reading is so
parallelized and each fscanf is substituted by MPI-2 file reading. Because
reading of ASCII integers is not available in MPI-2, reading the same as
characters is chosen. Normally each integer is expressed only with a few
characters, therefore, the expected additional overhead was not expected
very high. But the measurements have shown that the solution was 46 times
slower than the original code. The MPI-2 I/O library on the Cray T3E could
not be used in a similar way as fscanf() or getc() can be used. To overcome
the high latency of the MPI I/O routines, reading the whole file with one
(experiment No. 3) or only a few (No.4) MPI operations were implemented.
But there is still no benefit from parallelizing the I/O. The I/O time per
process grows with the number of processes and the accumulated I/O time
with 4 processors is therefore 4-6 times more than with one processor. In
the last two experiments, the parallelization was optimized to reduce the
number of reading of each image and model. This method achieves an opti-
mal speedup for the I/O. But also with the optimization, the fscanf solution
is about 10 %faster than the MPI I/O solution on 4 processes.

These experiments have shown that (a) MPI I/O can be used for ASCII
files, (b) but only large chunks should be accessed due to large latencies of
MPI I/O routines, and (c) optimizations that can be implemented by the
applications should be preferred than optimizations that may be done inside
the MPT library, (d) as long as many small or medium ASCII files should
be accessed, it may be better to use standard I/O by many processes and
classical message passing or broadcasting the information to all processes
that need the same information, than using collective MPI I/0O.

164 APPENDIX C. FILE INTEROPERABILITY IN MPI

No. Parallelization File Op Conversion I/0 Entities 1 proc 2 proc 4 proc
1 Original fscanf On-line integers 0.126 s 0.130 s 0.142 s
2 Original MPI On-line characters 7.087 s 6.173 s 6.563 s
3 Original MPI On-line whole file 0.157 s 0.196 s 0.234 s
4 Original MPI Off-line 3*int, 2*array 0.189 s 0.182 s 0.195 s
5 Optimized MPI On-line whole file 0.163 s 0.071 s 0.040 s
6 Optimized fscanf On-line integers 0.129 s 0.068 s 0.036 s

Table C.2: I/O time per process for 4 images and 4 models

Parallelization | accumulated number of images + models read with
1 process 2 processes 4 processes
Original 41 +16 +0 | 42 + 16 + 0 4%4 +16 + 0
Optimized 4*1 +16 +0 | 4*1 + 8+ 8 4*1 +4 + 12

Table C.3: images read + models read + models exchanged

C.6 Conclusion

One of the computationally intensive image processing problem, Image
matching which demands the solutions within real time constraints is in-
vestigated focusing the attention on MPI File Interoperability especially
with ASCII files. Due to the domain specific nature of the problem, the
images usually stored in files, differ in formats considerably. This poses an
impediment to the efficient implementation of the parallel algorithm despite
parallel I/O implementations in MPI-2. As most of the formats can be con-
verted into ASCII file format in many systems, the three strategies namely,
Normal File Reading, Off-line Conversion and Run-time Conversion for free
format integer file reading and writing are implemented on Cray T3E with
MPI-2. The modified parallelization presented here produced better results
comparing the I/O timings. The important conclusion of the section is that
the problem of file format conversion in image processing applications can
be efficiently solved with the proper parallelization and MPI parallel I/O
operations. In all the images, the accurate positions (to one pixel resolu-
tion) of the human beings with the corresponding best model are not only
found correctly but also efficiently as the obtained results demonstrate.

Appendix D

Indices of the Images and
Models

As presenting the large set of the image indices and model indices will be dif-
ficult, only some typical image indices and model indices are mentioned. It
may be recalled that for sake of efficiency, mostly they will be preprocessed
into coordinate files of relevant corners for Hausdorff methods. However, for
chamfering respective edge images must be provided as a part of preprocess-
ing or feature extraction.

D.1 Some typical Image Indices as coded in the
program for reading the files

” /home/piriyaku/muserk/progs/pgm/img/rf6_c.pgm”,);
home/piriyaku/muserk/progs/pgm/img/rf7_c.pgm”,);
home/piriyaku/muserk/progs/pgm/img/rf8_c.pgm”,);
home/piriyaku/muserk/progs/pgm/img/rf9_c.pgm”,);

home/piriyaku/muserk/progs/pgm/img/rf0_c.pgm”,);

home/piriyaku/muserk/progs/pgm/img/bv0_c.pgm”,)
home/piriyaku/muserk/progs/pgm/img/bvl_c.pgm”,)
home/piriyaku/muserk/progs/pgm/img/bv2_c.pgm”,);
/home/piriyaku/muserk/progs/pgm/img/bdl_c.pgm”,);
9 : (7 /home/piriyaku/muserk/progs/pgm/img/bd2_c.pgm”,)
10 : (” /home/piriyaku/muserk/progs/pgm/img/bd3_c.pgm”,)
11 : (? /home/piriyaku/muserk/progs/pgm/img/bd4_c.pgm”,);
12 : (” /home/piriyaku/muserk/progs/pgm/img/bd5_c.pgm”,)
13 : (” /home/piriyaku/muserk/progs/pgm/img/bd6_c.pgm”,)

7
k)

7

)
9 .
)

/
/
/
/
"/
/
/
/

k)

7

O~ O Tt Wi — O

(
(
(
(
(
. (77
(
(
(
(

)

9

9

7

165

166 APPENDIX D. INDICES OF THE IMAGES AND MODELS

”

41 :

14 : (” /home/piriyaku/muserk/progs/pgm/img/bd7_c.pgm”,);
15 : (7 /home/piriyaku/muserk/progs/pgm/img/bd8_c.pgm”,);
16 : (” /home/piriyaku/muserk/progs/pgm/img/bd9_c.pgm”,);
17 : (7 /home/piriyaku/muserk /progs/pgm/img/bd10_c.pgm”,);
18 : (” /home/piriyaku/muserk/progs/pgm/img/bd11_c.pgm”,);
19 : (”/home/piriyaku/muserk /progs/pgm/img/bd12_c.pgm”,);
20 : (7 /home/piriyaku/muserk/progs/pgm/img/PICT0035_c.pgm” ,);
21 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0036_c.pgm” ,);
22 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0037_c.pgm” ,);
23 : (7 /home/piriyaku/muserk /progs/pgm/img/PICT0038_c.pgm” ,);
24 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0039_c.pgm” ,);
25 : (7 /home/piriyaku/muserk /progs/pgm/img/PICT0040_c.pgm” ,);
26 : (” /home/piriyaku/muserk/progs/pgm/img/PICT0041_c.pgm” ,);
27 : (7 /home/piriyaku/muserk /progs/pgm/img/PICT0042_c.pgm” ,);
28 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0043_c.pgm” ,);
29 : (7 /home/piriyaku/muserk /progs/pgm/img/PICT0044_c.pgm” ,);
30 : (” /home/piriyaku/muserk/progs/pgm/img/PICT0045_c.pgm” ,);
31 : (”/home/piriyaku/muserk/progs/pgm/img/PICT0046_c.pgm” ,);
32 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0047_c.pgm” ,);
33 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0048_c.pgm” ,);
34 : (7 /home/piriyaku/muserk /progs/pgm/img/PICT0050_c.pgm” ,);
35 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0051 _c.pgm” ,);
36 : (”/home/piriyaku/muserk/progs/pgm/img/PICT0052_c.pgm” ,);
37 : (? /home/piriyaku/muserk/progs/pgm/img/PICT0053_c.pgm” ,);
38 : (”/home/piriyaku/muserk /progs/pgm/img/PICT0054_c.pgm” ,);
39 : (” /home/piriyaku/muserk/progs/pgm/img/ut3_c.pgm” ,);
40 : (” /home/piriyaku/muserk/progs/pgm/img/ut7_c.pgm” ,);
"/

home/piriyaku/muserk/progs/pgm/img/ut13_c.pgm” ,);

D.2 Some typical Model Indices as coded in the
program for reading the files

(” /home/piriyaku/muserk /progs/pgm/mod/cut7_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut8_c.crd”,);
: (” /home/piriyaku/muserk/progs/pgm/mod/cut81_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut9_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut91_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut7_hs_c.crd”,);

U W N~ O

D.2. TYPICAL MODEL INDICES

6
7
8
9
10

(
(
(
(

11 :
12 :
13 :
14 :
15 :
16 :
17 :
18 :
19 :
20 :
21 :
22 :
23 :
24 :
25 :
26 :
27 :
28 :
29 :
30 :
31 :
32 :
33 :
34
35 :
36 :
37 :
38 :
39 :
40 :
41 :
42 :
43 :
44 -
45 :

9

/home/piriyaku/muserk/progs/pgm/mod/cut8_hs_c.crd”,);
/home/piriyaku/muserk/progs/pgm/mod/cut81_hs_c.crd”,);
/home/piriyaku/muserk/progs/pgm/mod/cut9_hs_c.crd”,);
/home/piriyaku/muserk/progs/pgm/mod/cut91_hs_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut7_ds_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut8_ds_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut81_ds_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut9_ds_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/cut91_ds_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/mbd1_c.crd”,);
(7 /home/piriyaku/muserk/progs/pgm/mod/mbd2_1_c.crd”,);
(” /home/piriyaku/muserk /progs/pgm/mod/mbd2_2_c.crd”
(” /home/piriyaku/muserk /progs/pgm/mod/mbd2_3_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd2_4_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd3_1_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd4_1_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd4_2_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd5_1_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd5_2_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd5_3_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd5_4_c.crd’
(” /home/piriyaku/muserk /progs/pgm/mod/mbd5_5_c.crd’
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()
()

b

il
il
k)
il

b

b
9
b
b
9

” .
” .
’

b i

9

9 i

7

b i

9

9 i

7

b i

9

9 i

7

b i

’)
7)
’)
7)
’)
7)
’)
7)
)3
’ "))
7)
’)
7)
’)
7)
’)
7)
’)

9

9 i

7
i

9
i

7

” /home/piriyaku/muserk/progs/pgm/mod/mbd6_1_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/mbd6_2_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/mbd7_1_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/mbd8_1_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/mbd9_1_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/mbd9_2_c.crd”
/home /piriyaku/muserk/progs/pgm/mod/antsl_c.crd”,);
/home/piriyaku/muserk/progs/pgm/mod/ants2_c.crd”,);

9

b i

9

9 i

7

b i

9

9 i

7
b .

9
9

b

” /home/piriyaku/muserk/progs/pgm/mod/ants3_c.crd”,);

9

9 i

2/

/home/piriyaku/muserk/progs/pgm/mod/ants4_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/ants5_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/ants6_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/ants7_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/ants8_c.crd’
/home/piriyaku/muserk/progs/pgm/mod/ants9_c.crd”,);

9

b i

9

9 i

2/

b i

9

9 i

2/

~ ' — — — ~— — ~—

b

9

/home /piriyaku/muserk/progs/pgm/mod/ants10_c.crd”,);
/home/piriyaku/muserk/progs/pgm/mod/ants11_c.crd”,);
/home /piriyaku/muserk/progs/pgm/mod/ants12_c.crd”,);

b

9

167

168 APPENDIX D. INDICES OF THE IMAGES AND MODELS

46 : (” /home/piriyaku/muserk/progs/pgm/mod/ants13_c.crd”,);
47 : (” /home/piriyaku/muserk/progs/pgm/mod/ants14_c.crd”,);
48 : (” /home/piriyaku/muserk /progs/pgm/mod/ants15_c.crd”,);
49 : (” /home/piriyaku/muserk/progs/pgm/mod/ants16_c.crd”,);
50 : (”/home/piriyaku/muserk /progs/pgm/mod/olgal_c.crd”,);
51 : (? /home/piriyaku/muserk/progs/pgm/mod/olga2_c.crd”,);
52 : (” /home/piriyaku/muserk /progs/pgm/mod/olga3_c.crd”,);
53 : (” /home/piriyaku/muserk/progs/pgm/mod/olgad_c.crd”,);
54 : (” /home/piriyaku/muserk/progs/pgm/mod/olga5_c.crd”,);
55 : (” /home/piriyaku/muserk /progs/pgm/mod/olga6_c.crd”,);
56 : (” /home/piriyaku/muserk/progs/pgm/mod/olga7_c.crd”,);
57 : (7 /home/piriyaku/muserk /progs/pgm/mod/olga8_c.crd”,);
58 : (” /home/piriyaku/muserk/progs/pgm/mod/olga9_c.crd”,);
59 : (”/home/piriyaku/muserk/progs/pgm/mod/olgal0O_c.crd”,);
60 : (” /home/piriyaku/muserk/progs/pgm/mod/olgall_c.crd”,);
61 : (”/home/piriyaku/muserk/progs/pgm/mod/olgal2_c.crd”,);
62 : (” /home/piriyaku/muserk/progs/pgm/mod/olgal3_c.crd”,);
63 : (”/home/piriyaku/muserk/progs/pgm/mod/ut3_1_c.crd”,);
64 : (” /home/piriyaku/muserk/progs/pgm/mod/ut7_1_c.crd”,);
65 : (”/home/piriyaku/muserk/progs/pgm/mod/ut13_1_c.crd”,);

Appendix E

Scheduling of Tasks onto
Multiprocessors for Optimal
Solutions

E.1 Problem Formulation

A parallel program (algorithm) is represented as a weighted, directed acyclic
graph, Gy = {V,, E;}, where V, = { v; : i=1,2,...,n } the set of vertices (tasks)
with associated service demand s;, and E; = {< v;,v; > : i,j = 1,2,...,n,
i # j } the set of directed edges with associated intertask communication
(data) from task T; to task T}, imposing the partial order that task Tj can be
executed only after the execution of task T;. As an example, a task graph
with five tasks is given in Fig. E.1l. Here, the numbers beside the nodes
represent the service demands (s;) of the tasks in the corresponding nodes
and the numbers beside the edges represent the intertask communication
(¢ij) between the corresponding tasks in the direction of the edge concerned.
Here, task T} is the start task as it does not have any predecessor. The end
task is task Ty as it does not have any successor.

The multiprocessor system onto which tasks are scheduled, is assumed to
be either homogeneous (all processors have the same service rate, memory
capacity, link capacities, etc) or heterogeneous (the processors may differ in
service rates). A processor is assumed to perform both computation and
interprocessor communication at the same time like an INMOS transputer.
The multiprocessor system is represented as a weighted undirected graph,
Gp = {Vp, Ep }, where V,, = { vy : q = 1,2,....m} set of processors with
associated service rates p, and E, ={(p,q) : p,qa = 1,2,....m, p # q} set of

169

170 APPENDIX E. SCHEDULING OF TASKS

Figure E.1: Task Graph and Processor Graph

links with associated link capacities L,,. The data communication between
a pair of processors follows the shortest path. The shortest path between
any two processors is the sequence of links (edges) in which the data reaches
the destination processor in the shortest time. Here, the distance between
the processors directly connected is the inverse of the link capacity of the
link between the processors. In other words, the shortest path between any
two processors is the sequence of links in which the total distance is minimal.
The execution of a task on a processor is nonpreemptive. As an example, a
processor graph with three linearly connected processors is given in Fig.E.1.
Here the numbers beside the processors represent the service rates of the
processors and the numbers beside the links represent the capacity of the
link concerned.

The problem of scheduling parallel (concurrent) tasks onto multiproces-
sors can be stated as to find an optimal schedule (minimum schedule length),
by allocating each task to one processor and executing them in such a way to
satisfy the precedence constraints among the tasks. As the computational
times of tasks are known a priori with their interdependence and no pre-
emption is allowed, the tasks can be scheduled efficiently at compile-time,
and the overhead associated with dynamic scheduling can be eliminated.

E.2 The New A* Based Algorithm

E.2.1 General A* Algorithm

The general A* algorithm used in most of the artificial intelligence problems
is given in [52]. In A* algorithm, the state space graph is a tree called search

E.2. THE NEW A* BASED ALGORITHM 171

tree. Each node in the tree corresponds to the assignment of a particular
task to a specific processor. All the internal nodes in the tree correspond
to partial (or incomplete) schedule and all external (leaf) nodes in the tree,
correspond to either pruned node or complete task schedule. The problem
here is to find the goal node, a leaf node corresponding to the optimal
schedule. Associated with a node v in the search tree is a cost function
f(v) = g(v) + h*(v), which is an underestimate for the minimum cost of an
assignment, given that it includes the partial schedule. The function g(v)
is the cost of the path from the root to v and the function h*(v) is a lower
bound estimation of the minimum cost function h(v), from the node v to a
leaf node which corresponds to an optimal task assignment in the subtree
rooted at node v.

The algorithm begins by creating a root node representing a null state
(no task scheduled) and placing it in the unexpanded list, which is initially
empty. Let v be a node in the unexpanded list with the minimum value of
cost function f(v) i.e., f(v) < f(u) for all other nodes u in the unexpanded
list. Also, let T; be the task scheduled at node v. If v is not a goal node,
then it is removed from the unexpanded list and expanded by generating all
possible assignment of ready tasks (tasks whose predecessors have already
been assigned) without violating the precedence constraints. The algorithm
computes the evaluation function f(u) for each node u and inserts u in the
unexpanded list in the order of increasing value of the node evaluation func-
tion. The algorithm terminates when the node to be expanded happens to
be the goal node.

E.2.2 New Techniques for Reducing Space and Time

The A* algorithm described above, can be used to solve the problem of
multiprocessor task scheduling. But the main impediment with the A* al-
gorithm is the requirement of large memory space and computational time.
So, to reduce the space and time requirements of A* algorithm, three new
techniques apart from two more effective techniques are developed namely,

1. Processor isomorphism
2. Task isomorphism

3. Node isomorphism

4. Upper bound

5. Lower bound theory.

172 APPENDIX E. SCHEDULING OF TASKS

Before explaining the new A* algorithm completely, these five techniques
which reduce the execution time (computational time) and the memory re-
quirements to arrive at an optimal solution are explained.

Processor Isomorphism

First, the processor isomorphism is defined. Two processors P; and P, are
isomorphic iff

1. all their physical characteristics viz. processing speed, memory capac-
ity, etc are the same.

2. if there exists r number of k distant neighbor processors for P;, only
the same r number of k distant neighbor processors should be there for
P,. Moreover, pairwise those neighbor processors of P; and P> should
be isomorphic.

Take for example a linear chain of processors shown in Fig.E.1 The isomor-
phic groups of processors are (Py, P»), and P;. Py is not isomorphic to P
because P has a neighbor at a distance of 2, which P; does not have. P, is
not isomorphic to P; because P; has two neighbors at a distance of 1 whereas
P, has only one neighbor at a distance of 1. As P; has two neighbors at a
distance of 1, and no other processor has such two neighbors, it forms its
own group of isomorphic processors. Interestingly, in a homogeneous hy-
percube multiprocessor system of any dimension (n), all the processors are
isomorphic to each other forming only one group. Similarly, in a completely
connected homogeneous multiprocessor system, all the processors form only
one single isomorphic group. In the same vein, a ring of homogeneous mul-
tiprocessor system also forms only one isomorphic group comprising of all
the processors. So, when a start task is allocated to a processor, it will be
allocated to all possible processors in the A* algorithm. Now in the new A*
based algorithm, it is sufficient if such allocation for the start task is made
with only one member in each of the isomorphic groups as this will not af-
fect optimal solution due to the properties of isomorphic processors. The
reduction this technique gives for various architectures for the best cases is
given in Table E.1.

Task Isomorphism

Two tasks T; and T} are said to be isomorphic iff

1. The completion times of T; and T} on a processor P, where up, = 1
are the same, i.e., s; = sj.

E.2.

6.

THE NEW A* BASED ALGORITHM 173

Architecture No. of isomorphic groups | Reduction
Linear array n/2 n/2
Ring 1 n
Completely connected 1 n
Hypercube (n-dim) 1 2"

Table E.1: Reduction Factor due to Isomorphic Groups

. The static level \; of a task T; in a task graph G} is defined to be the

sum of the completion time of the task 7; on the fastest processor and
the maximum of the static levels of all its children. Then, the static
levels of T; and T} should be the same, i.e., \; = ;.

. If 7; is the set of parent tasks of T;, i.e., VI} € 7;, < T}, T; >€ E; and

if 7; is the set of parent t asks of T}, i.e., VI; € 75, < T;,T; >€ E,
then 7; = 7.

YT €1y s = Ckj-

. If n; is the set of child tasks of T;, i.e.,VT} € n;, < T;,T), >€ E; and

if n; is the set of child tasks of T}, i.e.,VI; € n;, < T};,T) >€ FEy, then
N =1j-

VT € mi, Cik, = Cjg-

Consider the task graph given in Fig.K.1. The tasks T} and T3 are
isomorphic tasks. The isomorphic groups of tasks here are Tp, (T} and T3),
Ty and T4. Whenever there are ready tasks, it is sufficient if one task from
each of the task isomorphic groups is assigned, as assigning all the tasks
will only lead to a futile attempt in generating the same optimal solution.
The major meritorious point is that task isomorphism is calculated only
once and has a time complexity of O(n3). It is also easy to verify that task
isomorphism is transitive like processor isomorphism.

Node Isomorphism

Two nodes N; and Nj in the state space are said to be isomorphic iff

1.

Let T; and T} be the last tasks assigned in the nodes N; and Nj,
respectively. Then T; and T} should be isomorphic tasks.

174 APPENDIX E. SCHEDULING OF TASKS

2. Let the last tasks 7; and T} in the respective nodes N; and N; be
assigned to processors P; and Pj, respectively. Then P; and P; should
be isomorphic processors.

3. Let C,i\;j be the completion time of task 7} on processor P, in the node

N;. Then, ¢}V, should be equal to ggfpj.

4. Let T'n; be the set of tasks assigned in the node N;. For each T}y €
'y, # T, assigned to the processor Pj in the node N;, then task T}
should be assigned only to the respective P} in the node N;.

5. VTi € T,, (2'p, should be equal to (p/p .

Considering the task graph and processor graph in Fig.E.1, assume that
task Tp is assigned to processor P;. Now tasks 77, T5 and T3 are ready.
Then, for example, any one of the following schedules will itself guarantee
an optimal solutio% i.e., Ty on Py or T1 on P3 or T3 on P or T3 on P5 as
Cgipl = C%}‘.ﬁ; =lpp = Cgilﬁ;’ = 25 units. So, when a node is isomorphic
to the already existing node, then there is no need for adding the node in
the unexpanded list as in the case of duplication of nodes.

Upper Bound

The logic behind the technique is how to reduce the number of nodes by
finding them to be futile at the early stage itself. This will be possible
only when some better solution is at hand. Hence, the heuristic algorithm
produces a schedule which is taken as Upper Bound (UB). In the case,
the same heuristics is used as in [126] for the sake of comparison. For
the example in Fig.E.1, the heuristic algorithm produced a schedule with
schedule length of 45 units, which is set as UB. A node whose f(x) value is
greater than UB, need not to be included for expansion as a better solution
is already available . This in turn reduces number of nodes in the subsequent
levels. For the example, graphs given in Fig.E.1, at the node Ny5, the f(INy5)
= 55 which is more than UB, hence the node N5 is not added in the list.

Lower Bound Theory

This is based on the static levels as defined earlier. It is well known and
obvious to prove that no optimal schedule can be lesser than the static level
of the start task. It means that one can not parallelize a serial execution.
Such serial execution only contributes to Lower Bound (LB). By the lower

E.2. THE NEW A* BASED ALGORITHM 175

bound theory, whenever in a node all tasks have been assigned and the f(x)
= LB, the algorithm can be stopped at once. This is very much applicable
in the tracking problem discussed in [126]. When there are multiple start
tasks, the start task having the maximum static level is set to LB.

In the case (Fig.E.1), there is only one task Tj as the start task with
static level of 40 units which is set to LB. Fortunately, the algorithm finds
the solution at the node N3; and then terminates producing the optimal
solution. The important point to note in the lower bound theory is that
no schedule better than LB can be found, irrespective of the number of
processors and their interconnection structure.

E.2.3 The New Algorithm for Optimal Task Scheduling

The new A* algorithm is explained succinctly as follows. First using a
heuristic algorithm, find a schedule and set the schedule length to UB. Find
the static level of each task and set LB as the static level of the start task.
The basic idea behind the algorithm is that given a node (initially empty),
find all the ready tasks. Assign one ready task from each task isomorphic
group in every processor excepting for the start task or for the node isomor-
phism. In case of the start task, assign it to only one member from all the
isomorphic groups of processors. With the above explanation, trying all iso-
morphic tasks which are ready is futile and one is sufficient to guarantee an
optimal solution. In the same vein, isomorphic nodes are also deleted with-
out impeding an optimal solution as the property ensures optimal solution.
Compute the value of the heuristic evaluation function f(c) for each of these
nodes. If the node does not occur earlier and f(c) < UB, add the node in
the search tree as child of the recently expanded node. Check whether the
node is a goal node for reaching a solution and if f(c)=LB, then also stop by
producing the optimal solution. If the node to be expanded is a goal node,
output the schedule as optimal schedule and stop. Otherwise, repeat the
process until no more node could be expanded. Now the new A* algorithm
using the notations as specified earlier is presented. The Optimal Schedule
for example given in Fig.E.1 is shown in Fig.E.2 with the timings in Table
E.2. It is very evident that the new techniques produced the results in lesser
time.

176

P1

APPENDIX E. SCHEDULING OF TASKS

13

10

12

T4

Tl

4

0

o 101

N0 5 0 H time

Figure E.2: The Optimal Schedule for Fig.E.1

Algorithm

No. of nodes generated

CPU time in sec

A* with h(x)=0
Previous A*
The new A*

609
408
31

0.4
0.9
0.1

Table E.2: Comparison of Previous A* with New A* Algorithms

Appendix F

Scheduling Iterative
Data-Flow Program Model

A nonterminating, iterative, data-flow program is represented as a weighted,
directed acyclic graph [51], Gy = {V, E;}, where V; = { v; : i=1,2,....n }
the set of vertices (tasks) with associated service demand s;, and E; =
{<wvi,v; >:1,j =12,...n,i#j} the set of directed edges with associated
intertask communication (data) from task 7; to task T}, imposing the partial
order that task T can be executed only after the execution of task T; as
in Fig.4.16. The main difference between general DFGs(Data-Flow Graphs)
and the signal processing DFGs is the associated delay elements (registers)
in the directed edges [82]. An edge without a register represents precedence
between tasks within iteration. If an edge has n registers, it describes the
precedence between tasks of different (i,n+i) iterations which differ by n
iterations. Scheduling Precedence Graphs in Systems with Interprocessor
Communication times is discussed in [127].

F.1 The Effects of IPC on Periodic Multiprocessor
Schedule

The data-flow programs can be scheduled onto multiprocessors in overlapped
or non-overlapped manner with two other methods viz. fully-static and
cyclo-static [82]. A multiprocessor schedule is said to be non-overlapped if
the execution of the (n + 1) iteration begins only after the completion of
all the tasks of the (n)! iteration, otherwise it is overlapped. A periodic
schedule is said to be fully-static, if all the iterations of some task are sched-
uled on the same processor. A periodic schedule is said to be cyclo-static, if

177

178 APPENDIX F. SCHEDULING OF ITERATIVE DFG

the task T; is scheduled in processor V), at time t in the n'* iteration, then
in the (n+1)" iteration the task 7T} is scheduled in processor Vip+K)modulom
at the time (t+7T), where T is the time displacement (iteration period) and
m is the total number of processors and K is the processor displacement.

Unlike in [82], the multiprocessor system onto which tasks are scheduled
is not assumed to be completely connected which in practice may not al-
ways hold. Tt is assumed to be either homogeneous (all processors have the
same service rate, memory capacity, link capacities, etc) or heterogeneous
(the processors may differ in service rates). A processor is assumed to per-
form both computation and interprocessor communication at the same time
like an INMOS transputer. The multiprocessor system is represented as a
weighted undirected graph, G, = {V,, E}, }, where V, = { v, : ¢ =1,2,....m}
set of processors with associated service rates p, and E, ={ (p,q) : p,q =
1,2,...,m, p # q} set of links with associated link capacities L,,. The data
communication between a pair of processors follows the shortest path as
defined in [51]. The execution of a task on a processor is nonpreemptive.

Here, the iteration period is considered as the parameter as it plays a
vital role in the multiprocessor periodic schedules especially when IPC is in-
cluded. An important point to note is that if iteration period is considered
as defined earlier, it will not suffice to account for inter-iteration precedences
more specifically when IPC is non-negligible. Hence, when IPC is included
in the multiprocessor scheduling, the average iteration period is taken into
consideration as it represents the steady state in the nonterminating pro-
grams. The DFG considered here is same as in Fig.4.16 with the processor
graph.

F.2 The New A* Algorithm for Optimal Schedul-
ing of DFGs

F.2.1 New Techniques for Reducing Space and Time

The A* algorithm described [52], [51], can be used to solve the problem of
multiprocessor task scheduling. But the main impediment with the A* algo-
rithm is the requirement of large memory space and computational time. So,
to reduce the space and time requirements of A* algorithm, a new technique
Branch Join Path isomorphism is developed.

F.2. THE NEW A* ALGORITHM FOR DFG 179

Branch Join Path Isomorphism

This isomorphism is well pronounced in DFGs especially in digital signal
processing applications. However, the isomorphism is only for homogeneous
multiprocessor systems. The branch join path (BJP) isomorphism is defined
as follows,

1. In a DFG, consider a task having 2 children. say ¢; and d;. There can
be more than 2 children but consider them in pairs.

2. Now, let ¢; has only one child ¢y and ¢y has only one child c3 like this
till some ¢, for some positive z > 2.

3. Similarly, let d; has only one child ds and dy has only one child d3 like
this till some d, for some positive y > 2.

4. Let the tasks c; and d, be same.

5. Let sum-c be the sum of the execution times of ¢ tasks and sum-d be
for d tasks.

6. If sum-c = sum-d, then it is sufficient that either the search is tried
with ¢ tasks or with d tasks, preferable with ¢ tasks when z < y or
vice versa.

In the case for Fig.4.16 with m = 2 after 2-unfolding, there are task
To(A1) and task Ty(Asg) as the start tasks with static level of 4 units which
can be considered as children of a fictitious node. It is logical to consider
only in the case when the tasks are start tasks. Similarly, the tasks T5(D1)
and T7(D3) are the end tasks which can be considered as the parents of
another fictitious task. It is also logical to consider only in the case when
the tasks are end tasks.

Now, BJP isomorphism exists as sum-¢ = sum-d = 4 and all other con-
ditions also are fulfilled. Hence it is sufficient to try with one branch itself
to get the optimal schedule. In fact, when x = y = 2, this reduces to node
isomorphism. Hence, the original DFG itself can be modified so that there
will be less number of tasks to schedule at the same time optimality is main-
tained. The only modification required is to merge all nodes c¢1, ¢, ..., Cz—1
into one node and similarly for d tasks. It is interesting to note that even
when there is only one branch, one can merge these type of tasks forming
a chain into a single task thereby not only reducing the number of tasks
to be scheduled but also some of the isomorphisms previously mentioned to
exhibit voluntarily. This portion of algorithm is of O(n?) complexity only.

180 APPENDIX F. SCHEDULING OF ITERATIVE DFG

Arch Standard A* Isomorphisms BJP Isomorphism
Nodes ‘ CPU Time || Nodes ‘ CPU Time || Nodes ‘ CPU Time

12 747 5.5 22 0.12 3 0.11

c3 2896 38.15 32 0.13 4 0.11

h2 11464 346.7 42 0.14 5 0.12

14 11464 346.6 44 0.14 6 0.12

Table F.1: Comparison of Previous A* with New A* Algorithms for DFG

F.3 Performance Evaluation

For the DFG in Fig.4.16 with the schematic diagram of linearly connected In
with n processors along with other sets of different processor architectures
such as completely connected with n processors ¢n and hypercube hn of
dimension n, the number of nodes generated by A* Algorithms are compared
in Tab.F.1. It is very clear that BJP algorithm performs better than the
other examples.

Appendix G

List of Publications

1. With Paul Levi, ” A Novel Isomorphism Based on Nearest Neighbours
for Efficient Graph Matching Algorithm”, The Seventh International
Conference on Control, Automation, Robotic and Vision, ICARCV
2002, December, 2002, Singapore.

2. With Paul Levi, ”A New Approach to Exploiting Parallelism in
Ant Colony Optimization”, IEEE International Symposium on Mi-
cromechatronics and Human Science(MHS), October, 2002, Nagoya,
Japan.

3. With Paul Levi and Rolf Rabenseifner, " Enhanced File Interoperabil-
ity with Parallel MPI File I/O in Image Processing”,Proceedings of
9th EuroPVMMPI-2002, Linz, Austria.

4. With Paul Levi, ”On the symmetries of regular repeated objects us-
ing graph theory based novel isomorphism”, The 5th International
Conference on PATTERN RECOGNITION and IMAGE ANALY-
SIS: NEW INFORMATION TECHNOLOGIES PRIA-5-2000, Octo-
ber, 2000, Samara, The Russian Federation.

5. With Paul Levi, N.Manickam, R.Jayaganthan, ” A Domain Knowledge
Based Mutagenetic Algorithm for Multiprocessor Scheduling”, The
2000 International Conference on Artificial Intelligence (IC-AI2000),
June, 2000, Las Vegas,USA.

6. With Paul Levi, ” An Efficient A* based Algorithm for Optimal Graph
Matching applied to Computer Vision”, Pattern Recognition and Im-
age Analysis, pp. 708-712, Vol.9, No. 4, Oct-Dec 1999.

181

182

10.

11.

APPENDIX G. LIST OF PUBLICATIONS

With Paul Levi, ” An Improvised A* Algorithm for Mobile Robots to
Find the Optimal Path in an Unknown Environment with Minimized
Search efforts”, IEA/ATE-99, 1999, Cairo, Egypt.

With Paul Levi, R.Jayaganthan, ” A Novel Algorithm for Task Map-
ping of Computer Vision Tasks using Thermodynamical Free Energy
Approach 7, Eleventh TASTED International Conference on Paral-
lel and Distributed Computing and Systems, November, 1999, MIT,
Boston, USA.

With Paul Levi, C. Siva Ram Murthy, ”Optimal Schduling of Tter-
ative Data-Flow Programs onto Multiprocessors with Non-negligible
Interprocessor Communication”, HPCN’99 , 1999, Amsterdam, The
Netherlands.

With Paul Levi, ”An Efficient Parallel Algorithm for Optimum Path
Finding in Fixed Industry Oriented Scenarios by Mobile Robots”,
AMS’98, Karlsruhe, Germany.

With Paul Levi, C. Siva Ram Murthy, ”A New A* Based Optimal
Task Scheduling in Heterogeneous Multiprocessor Systems Applied to
Computer Vision”, HPCN’98 , 1998, Amsterdam, The Netherlands.

Appendix H
Biography

Born on 20th May 1966 in Paramakudi, Tamil Nadu, India. Graduated
in Physics from American College, Madurai in 1986 with the best student
award. Received Goldmedal in M.Sc Computer Science from Madurai Kam-
raj University in 1988. Set a record in M.S Computer Science and Engineer-
ing in Indian Institute of Technology Madras in Chennai in 1994.

Taught in the department of Computer Science, Madurai Kamaraj Uni-
versity, India from October 1988 to September 1989 and from October 1989
to June 2001 in the department of Computer Science, Pondicherry Univer-
sity, India. Served as Teaching Assistent cum research scholar in Institute of
Parallel and Distributed Systems (IPVS), department of Computer Science,
University of Stuttgart, Germany from October 1999 till the submission of
the thesis.

Received the prestigious DAAD Scholarship, Germany from June 1996
to September 1999.

183

184 APPENDIX H. BIOGRAPHY

Bibliography

[1] R.C.Gonzalez and P.Wintz, Digital Image Processing, Addison-
Wesley, 1987.

[2] D.H.Ballard and C.M.Brown, Computer Vision, Englewood Cliffs,
NJ, Prentice-Hall, 1982.

[3] W.F.Schreiber, Fundamentals of Electronic Imaging Systems :
Some Aspects of Image Processing, Springer-Verlag, 1993.

[4] S.Ullman, High-level Vision : Object Recognition and Visual Cog-
nition, MIT Press, 1996.

[5] T.B.Moeslund, ”Computer Vision-based Human Motion Capture:
A Survey,” Technical Report LIA 99-02, University of Aalborg,
1999.

[6] W.Vaughan Jr. and S.L.Greene, "Pigeon visual memory capac-
ity,” Journal of Experimental Psychology: Animal Behaviour Pro-
cesses, vol. 10, pp. 256-271, 1984.

[7] J.Gould, "How Bees remember Flower Shapes,” Science, vol. 227,
pp. 1492-1494, 1985.

[8] J.L. Denebourg and S. Goss, ”Collective patterns and decision-
making,” Ethology, Ecology and Evolution, vol. 1, pp. 295-311,
1989.

9] J.K.Aggarwal and Q.Cai, "Human Motion Analysis: A review,”
Workshop on Motion of Non-Rigid and Articulated Objects,
Puerto Rico, USA, 1997.

[10] D.M.Gavrila, ”The Visual Analysis of Human Movement: A Sur-
vey”, Computer Vision and Image Processing, vol. 73, no. 1, pp.
82-98, 1999.

185

186

[11]

[12]

[16]

[17]

[20]

BIBLIOGRAPHY

T.B.Moeslund and E.Granum, ”A Survey of Computer Vision-
based Human Motion Capture,” Computer Vision and Image Un-
derstanding, vol. 81, no. 3, pp. 231-268, March, 2001.

D. Huttenlocher, G. Klanderman and W. Rucklidge., ”Comparing
images using Hausdorff distance”, Transaction on Pattern Analysis
and Machine Intelligence, vol. 15, no. 9, pp. 850-863, September,
1993.

M.Isard, J.MacCormick, "BraMBLe: A Bayesian Multiple-Blob
Tracker”, pp. 34-41, ICCV 2001, Vancouver, Canada.

J. Sherrah, S. Gong, ” Continuous Global Evidence-Based Bayesian
Modality Fusion for Simultaneous Tracking of Multiple Objects,”
pp- 42-49, ICCV 2001, Vancouver, Canada.

D.M.Gavrila and J.Giebel, ”Virtual Sample Generation For
Template-Based Shape Matching,” IKEE Conference on Computer
Vision And Pattern Recognition, pp.676-681, Kauai, USA, 2001.

N. T. Siebel and S. J. Maybank, ”Real-time tracking of Pedestrians
and vehicles”, IEEE International workshop PETS’2001.

D.M Gavrila and V.Philomin, ”Real-Time Object Detection For
"SMART” Vehicles,” IEEE International Conference on Computer
Vision, pp.87-93, Kerkyra, 1999.

U.Franke, D.Gavrila, S.Gorzig and F.Lindner, ” Autonomous Driv-
ing approaches Downtown,” ITEEE Intelligent Systems, vol.13,
no.6, 1999.

Dong-Gyu Sim and Rae-Hong Park, ”"Two-Dimensional Object
Alignment Based on the Robust Oriented Hausdorff Similarity
Measure,” IEEE Transactions on Image Processing, vol.10, no.3,
March, 2001.

G.Rigoll, B.Winterstein and S.Mueller, ”Robust Person Tracking
in Real Scenarios with Non-Stationary Background Using A Statis-
tical Computer Vision Approach,” IEEE International Workshop
on Visual Surveillance, pp.41-47, Fort collins, USA, 1999.

A.M.Baumberg and D.C. Hogg, ”Learning Flexible Models from
Image Sequences”, Technical Report 93.36, University of Leed,
October, 1993.

BIBLIOGRAPHY 187

22]

[26]

[27]

A.M.Baumberg and D.C.Hogg, ” An Efficient Method for Contour
Tracking using Active Shape Models”, Technical Report 94.11,
University of Leed, April, 1994.

A.M.Baumberg and D.C.Hogg, ”Learning Spatiotemporal Models
From Training Examples”, Technical Report 95.9, University of
Leed, March, 1995.

Jessica K.Hodgins, James F.O’Brien and Jack Tumblin, ”Percep-
tion of Human Motion With Different Geometric Models,” IEEE
Transactions on Visualization and Computer Graphics, pp.307-
316, vol.4, no.4, October-December, 1998.

Ismail Haritaoglu and Myron Flickner, ”Detection and Tracking
of Shopping Groups in Stores,” pp.431-438, IEEE Conference on
Computer Vision and Pattern Recognition, 2001.

Aaron F.Bobick and Amos Y.Johnson, ”Gait Recognition Using
Static, Activity-Specific Parameters,” pp.423-430, IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2001.

G.Shakhnarovich, L.Lee and T.Darell, "Integrated Face and Gait
Recognition from Multiple Views,” pp.439-446, IEEE Conference
on Computer Vision and Pattern Recognition, 2001.

Kentaro Toyama and Andrew Blake, ”Probabilistic Tracking in a
metric Space,” Proceedings of International Conference on Com-
puter Vision (ICCV), pp. 50-57(IT), 2001.

Pedro.F .Felzenszwalb, ” Learning Models for Object Recognition,”
pp-1056-1063, IEEE Conference on Computer Vision and Pattern
Recognition, 2001.

Q.Cai and J.K.Aggarwal, " Tracking Human Motion in Structured
Environments Using a Distributed-Camera System,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol.21, no.
11, pp. 1241-1247, November, 1999.

[.Kakadiaris and D.Metaxas, ”Model-based estimation of 3D Hu-
man Motion,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 22, no. 12, pp. 1453-1459, December, 2000.

188

32]

[36]

[37]

BIBLIOGRAPHY

Y.Ricquebourg and P. Bouthemy, ”Real-Time Tracking of Moving
Persons by exploiting Spatio-temporal Image slices,” TEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 22, no.
8, pp- 797-808, August, 2000.

M.K.Leung and Y-H.Yang, "First Sight: A Human Body Outline
Labeling System,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 17, no. 4, pp. 359-377, April, 2000.

I.Hariaoglu, D.Harwood and L.S.Davis, ”W*: Real-time Surveil-
lance of People and their Activities,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 809-830,
August, 2000.

N.M.Oliver, B.Rosario and A.P.Pentland, ” A Bayesian Computer
Vision System for Modelling Human Interactions,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 22, no.
8, pp- 830-843, August, 2000.

Aaron F.Bobick and James W.Davis., ” The Recognition of Hu-
man Movement using Temporal Templates”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol.23, no.3, pp.257-
267, March, 2001.

M.A.Eshera and K-S.Fu, ”An Image Understanding system Us-
ing Attributed Symbolic Representation and Inexact Graph-
Matching,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 8, no. 5, pp. 604-617, August, 2000.

B.T.Messmer and H.Bunke, ” A New Algorithm for Error-Tolerant
Subgraph Isomorphism Detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 5, pp. 493-503, May,
1998.

H.Bunke, "Error Correcting Graph Matching: On the Influence
of the Underlying Cost Function,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 9, pp. 917-922,
September, 1999.

L.G. Shapiro and R.M. Haralick, ” Structural Descriptions and In-
exact matching,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol 3, pp. 504-519, September, 1981.

BIBLIOGRAPHY 189

[41]

S.H.Unger, "GIT - A Heuristic Program for Testing Pairs of Di-
rected Line Graphs for Isomorphism,” Communications of Associ-

ation for Computing Machinery, vol. 7, no. 1, pp. 26-34, January,
1964.

D.G.Corneil and C.C.Gotleib, ” An Efficient Algorithm for Graph
Isomorphism,” Journal of Association for Computing Machinery,
vol. 17, no. 1, pp. 51-64, January, 1970.

A.T Berztiss, ”A Backtrack Procedure for Isomorphism of Di-
rected Graphs,” Journal of Association of Computing Machinery,
vol. 20, no. 3, pp. 365-377, July, 1973.

D.C.Schmidt, ”A Fast Backtracking Algorithm to Test Directed
Graphs for Isomorphism Using Distance Matrices,” Journal of As-

sociation of Computing Machinery, vol. 23, no. 3, pp. 433-445,
July, 1976.

J.R.Ullmann, ” An Algorithm for Subgraph Isomorphism,” Journal
of Association for Computing Machinery, vol. 23, no. 1, pp. 31-42,
Jan. 1976.

E.Lawler and D.Wood, ”Branch and Bound Methods: A Survey,”
Operations Research, vol. 14, pp. 699-719, July-August, 1966.

W.J.Christmas, J.Kittler and M.Petrou, ”Structural Matching in
Computer Vision using Probabilistic Relaxations,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8,
pp- 749-764, August, 1995.

S.Gold and A.Rangarajan, ”A Graduated Assignment Algorithm
for Graph Matching,” TEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no 4, pp.377-388, April, 1996.

R.Allen, L.Cinque, S.Tanimoto, L.Shapiro and D.Yasuda, ” A Par-
allel Algorithm for Graph Matching and its Maspar Implemen-
tation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 8, no. 5, pp. 490-500, May, 1997.

X.Y.Jiang and H.Bunke, ” Exploration of Object Symmetries in
Computer Vision and Robotics”, Modelling and Planning for sen-
sor based Intelligent Robot System, Dagstuhl, October, 1994.

190

[51]

BIBLIOGRAPHY

D.A.L.Piriyakumar, C.S.R. Murthy and P.Levi, ” A new A* Based
Optimal Task Scheduling in Heterogeneous Multiprocessor Sys-
tems Applied to Computer Vision,” Proceedings of International
Conference on High-Performance Computing and Networking,

HPCN’98, Amsterdam, April, 1998.

N.J.Nilson, Principles of Artificial Intelligence, Palo Alto, Calif,
Tiaga Publications, 1980.

D.A.L.Piriyakumar and P.Levi, ” An Efficient A* based Algorithm
for Optimal Graph Matching applied to Computer Vision”, Pat-
tern Recognition and Image Analysis, pp. 708-712, Vol.9, No. 4,
Oct-Dec 1999.

D.A.L.Piriyakumar, and Paul Levi, ”On the Symmetries of Reg-
ular Repeated Objects Using Graph Theory Based Novel Iso-
morphism,” The 5 th International Conference on PATTERN
RECOGNITION and IMAGE ANALYSIS: NEW INFORMA-
TION TECHNOLOGIES (PRIA-5-2000), Samara, The Russian
Federation, 2000.

S.Umeyama, ” An Eigendecomposition approach to weighted graph
matching problems,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 10, no. 5, pp.695-703, September, 1988.

B.Luo and E.R.Hancock, ”Structural graph matching using EM
algorithm and single value decomposition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp.
1120-1136, October, 2001.

A.V.Aho, J.E.Hopcroft and J.D.Ullman, The Design and Analysis
of Computer Algorithms, Addison-wesley, 1975.

Padma Subramaniam, Bharathakkalai Kotpadu, Vanathi Publish-
ers, Fourth Edition, 2000.

A .Rosenfeld, Picture Processing by Computer Academic Press,
1969.

S.Smith and J.Brady, "SUSAN - a new approach to low level image
processing”, International Journal of Computer Vision, vol. 23, no.
1, pp. 45-78, 1997.

BIBLIOGRAPHY 191

[61]

[62]

[63]

[64]

[67]

[68]

[69]

G. Borgefors, ”"Hierarchical Chamfer Matching: A Parametric
Edge Matching Algorithm,” TEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 10, no. 6, pp.849-865, November,
1988.

W.J.Rucklidge, ”Locating Objects using the Hausdorff Distance,”
Proceedings of 5th International Conference on Computer Vision,
pp- 457-464, June, 1995.

V.Ayala-Ramirez, C. Parra and M.Devy, ”Active tracking based
on Hausdorff Matching,” Proceedings of International Conference
on Pattern Recognition, vol. 4, pp.706-709, 2000.

E.S. Nielsen, J.L.Navarro and M.H. Tejera, ”Increasing Efficiency
of Hausdorff Approach for Tracking Real Scences with Complex
Environments,” Proceedings of 11th International Conference on
Image Analysis and Processing, pp. 131-136, September, 2001.

P. Gastaldo and R.Zunino, "Hausdorff Distance for robust and
Adaptive Template Selection in Visual Target Detection,” Elec-
tronics Letters, vol. 38, no.5, pp.1651-1653, December, 2002.

S.H.Kim and R.H.Park, ”An Efficient Algorithm for Video Se-
quence Matching Using the Modified Hausdorff Distance and the
Directed Divergence,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 12, no. 7, pp. 592-596, July, 2002.

J.You, E.Pissaloux, J-L.Hellec and P.Bonnin, "A Guided Im-
age Matching approach using Hausdorff Distance with Interest-
ing Points Detection,” Proceedings of International Conference on
Image Processing, vol. 1, pp. 968-972, November, 1994.

J.You, E.Pissaloux and H.A.Cohen, ” A Hierarchical Image Match-
ing scheme based on the dynamic Detection of Interesting Points,”
International Conference on Acoustics, Speech and Signal Process-
ing, vol.4, pp.2467-2470, May, 1995.

D.P. Huttenlocher and W.J.Rucklidge, ” A Multi-Resolution Tech-
nique for Comparing Images using the Hausdorff Distance,” Pro-
ceedings of Computer Vision and Pattern Recognition, pp.705-706,
June, 1993.

192

[70]

[73]

[74]

[75]

[76]

[77]

[79]

BIBLIOGRAPHY

0.K.Kwon, D.G.Sim and R.H. Park, ”New Hausdorff Distances
based on robust Statistics for Comparing Images,” International
Conference on Image Processing, vol.3, pp.21-24, September, 1996.

[.LHan, I.D.Yun and S.U.Lee, "Model-based Object Recognition
using the Hausdorff Distance with Explicit pairing,” International
Conference on Image Processing, vol.4, pp.83-87, 1999.

M-P.Dubuisson and A.K.Jain, ” A Modified Hausdorff Distance for
Object Matching,” Proceedings of 12th International Conference

on Pattern Recognition, pp. 566-568, Jerusalem, Israel, October,
1994.

C. Guerra and V. Pascucci, 73D Segment Matching using the
Hausdorff Distance,” Proceedings of 7th International Conference
on Image Processing and its Applications, vol.1, pp.18-22, 1999.

C.Robertson and J.A.Robinson, ”Page Similarity and the Haus-
dorff Distance,” Proceedings of 7th International Conference on
Image Processing and its Applications, vol.2, pp.755-759, 1999.

K.H.Lin, B.Guo, K.M.Lam and W.C.Siu, "Human Face Recog-
nition using a spatially weighted modified Hausdorff Distance,”
Proceedings of International Symposium on Intelligent Multime-
dia, Video and Speech Processing, pp.477-480, Hong Kong, May,
2001.

B.Achermann and H.Bunke, ” Classifying Range Images of Human
Faces with Hausdorff Distance,” Proceedings of International Con-
ference on Pattern Recognition, vol.2, pp.809-813, 2000.

X.Yi and O.I.Camps, ”Robust Occluding Contour Detection using
the Hausdorff Distance,” Proceedings of International Conference
on Computer Vision and Pattern Recognition, pp.962-968, June,
1997.

D-G.Sim, O-k.Kwon and R-H.Park, ”Object Matching Algorithms
Using Robust Hausdorff Distance Measures,” TEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 8, no. 3, pp.
425-429, March, 1999.

A. Baeumker and W. Dittrich., ”Parallel algorithms for Image
processing: Practical Algorithms with experiments”, Technical re-

BIBLIOGRAPHY 193

[82]

port, Department of Mathematics and Computer Science, Univer-
sity of Paderborn, Germany, 1996.

J.F.JaJa, Introduction to Parallel Algorithms, Addison-Wesley,
1992.

Rolf Rabenseifner, Parallel Programming Workshop Course Ma-
terial, Internal report 166, Computer Center, University of
Stuttgart, 2001.
http://www.hlrs.de/organization/par/par_prog ws/

K.K. Parhi and D.G. Messerschmitt, ” Static rate-optimal schedul-
ing of iterative data-flow programs via optimum unfolding”, IEEE
Transactions on Computers, vol. 40, no. 2, pp. 178-194, Febuary,
1991.

H.Anton, Calculus with analytical geometry Wiley, Newyork, 1980.

J.T.Camillo and J.K.David, ”Vision-based motion planning and
exploration algorithms for mobile robots”, IEEE Transaction on
Robotics and Automation, pp. 417-426, June, 1998.

7.C.Danny, J.S. Robert and J.U.John, "A framed-quadtree ap-
proach for determining euclidean shortest paths in a 2D environ-

ment”, IEEE Transactions on Robotics and Automation, pp. 668-
681, October, 1997.

J.A .Fernandes and J.Gonzalez, ”Hierarchical graph search for mo-
bile robot path planning”, IEEE ICRA’98 pp. 656-661 April, 1998.

D.Guy and S.Francois, ”An efficient algorithm to find a shortest
path for a car-like robot”, IEEE Transaction on Robotics and Au-
tomation, pp. 819-828, December, 1995.

”

E.Horowitz and S.Sartaj, ” Fundamentals of Computer Algo-
rithms”, Computer Software Engineering Series, London Pitman,
1978.

J.Y.J.Hsu and L.S.Hwang, ”A graph based exploration strategy
of indoor environments by a autonomous mobile robot”, IEEE
ICRA’98, pp. 1262-1268, April, 1998.

Y.K.Hwang and N.Ahuja, ”Gross motion planning - A survey”,
ACM Computing Surveys, vol. 24, no.3, pp. 219-291, September,
1992.

194

[91]

[92]

[95]

[96]

[97]

[98]

[99]

100

[101]

[102]

BIBLIOGRAPHY

J.-C.Latombe, Robot Motion Planning, Boston, M.A : Kluwer,
1991.

L.E.Kavraki, Petr. S., J-C. Latombe and H.O.Mark, ” Probabilistic
Road maps for path planning in High-dimensional configuration
spaces”, IEEE Transactions on Robotics and Automation, pp. 566-
580, August, 1996.

D.Maio and S.Rizzi, ”Map learning and clustering in autonomous
systems”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol 15, no 12, pp. 1286-1297, December, 1993.

D.Pagac, E.M.Nebot and H.D.Whyte, ” An evidential approach to
probabilistic map building”, IEEE ICRA’96 pp. 745-750, April,
1996.

F.P.Preparata and M.I.Shamos, Computational Geometry : an in-
troduction, Springer Verlag, 1985.

L.Shmoulian and E.Rimon, ” A7 DFS - an algorithm for minimiz-
ing search effort in sensor based mobile robot navigation”, IEEE
ICRA’98, pp. 356-362, April, 1998.

A.Stentz, ”Optimal and efficient path finding for partially known
environments”, IEEE ICRA’94, pp. 3310-3317, May, 1994.

F.Wallner, R.Graf and R.Dillman, ”Realtime map refinement by
fusing sonar and active stereo vision”, IEEE ICRA’95, pp. 2968-
2973, 1995.

P.C.Chen and Y.K.Hwang, ”SANDROS: A dynamic graph search
algorithm for motion planning”, IEEE Transactions on Robotics
and Automation, pp. 390-403, vol. 14, no. 3, June, 1998.

G.Foux, M.Heymann and A.Bruckstein, ” Two dimensional robot
navigation among unknown stationary polygonal obstacles”, IEEE
Transactions on Robotics and Automation, vol. 9, no. 1, pp. 96-
102, 1993.

R.A.Howard, Dynamic programming and Markov processes, MIT
Press, Cambridge Mass. 1960.

J.L.Peterson, Petri net theory and the modelling of systems,
Prentice-Hall, Engelwood Cliffs, 1981.

BIBLIOGRAPHY 195

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

J.Pearl, Heuristics: Intelligent Search Strategies for Computer
Problem Solving, Addison-Wesley, 1984.

G.Rozenburg, Advances in Petri nets, Lecture Notes in Computer
Science, Springer Verlag, Berlin, 1985.

M.Sharpe, General theory of Markov processes, Academic Press,
Boston, 1988.

M.Dorigo and L.M.Gambardella, ” Ant Colony System: A Coop-
erative Learning Approach to the Traveling Salesman Problem”,
IEEE. Transactions on Evolutionary Computation, vol.1, no.1, pp.
53-66, April, 1997.

M.Dorigo, V. Maniezzo and A. Colorni, The Ant System: Opti-
mization by a Colony of Cooperating Agents. IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 26, no.1, pp.29-41,
February, 1996.

K.Doerner, W.J.Gutjahr, R.F.Hartl, C.Strauss and C.Stummer,
”Ant Colony Optimization in Multiobjective Portfolio Selec-
tion”, Proceedings of 4th Metaheuristics International Conference,
pp-243-248, Porto, Portugal, July, 2001.

Gerhard Reinelt, ?”TSPLIB” |, www.iwr.uni-heidelberg.de/groups/
comopt/software/ TSPLIB95/

C.Strauss, G. Kotsis and B. Bullnheimer, ”Parallelization Strate-
gies for the Ant System”, High Performance Algorithms and Soft-
ware in Nonlinear Optimization, Applied Optimization, vol. 24,
pp. 87-100, Dordrecht, 1998.

Thomas Stuetzle, ”Parallelization Strategies for Ant Colony Op-
timization”, Proceedings of Parallel Problem Solving from Nature
PPSN-V, vol. 1498 of LNCS, pp. 722-731, Springer Verlag, Ams-
terdam, 1998.

Thomas Stuetzle and Holger H. Hoos, "MAX-MIN Ant Sys-
tem”, Future Generation Computer Systems Journal, vol. 16, no.8,
pp-889-914, 2000.

High Performance Computing Center Stuttgart (HLRS)
www. hlrs. de.

196

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

BIBLIOGRAPHY

William Gropp, Ewing Lusk and Anthony Skejellum., Using MPI,
MIT press, 1995.

MPI-2, Special Issue, The International Journal of High Perfor-
mance Computing Applications, vol. 12, no. 1/2, 1998.

M.R.Gary and D.S.Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H.Freeman and Co.,
1979.

E.G.Coffman and R.L.Graham, ”Optimal Scheduling for Two-
processor Systems”, Acta Informatica, vol.1, pp.200-213,1972.

R.Sethi, ”Scheduling Graphs on Two Processors”, STAM Journal
of Computing, vol.5, no.1, pp.73-82, 1976.

H.El-Rewini and T.G.Lewis, ”Scheduling Parallel Program Tasks
onto Arbitrary Target Machines”, Journal of Parallel and Dis-
tributed Computing, vol.9, no.2,pp.138-153, 1990.

B.Shirazi, M.Wang, and G.Pathak, ” Analysis and Evaluation of
Heuristic Methods for Static Scheduling”, Journal of Parallel and
Distributed Computing, vol.10, pp.222-232, 1990.

G.C.Sih and E.A.Lee, ”A Compile-time Scheduling Heuristic
for Interconnection-constrained Heterogeneous Processor Archi-
tectures”, IEEE Transactions on Parallel and Distributed Systems,
vol.4, no.2, pp.75-87, 1993.

V.Chaudhary and J.K.Aggarwal, ” A Generalized Scheme for Map-
ping Parallel Algorithms”, IEEE Transactions on Parallel and Dis-
tributed Systems, vol.4, no.3, pp.328-346, 1993.

S.Selvakumar and C.S.R. Murthy, ”Scheduling Precedence-
constrained Task Graphs with Non-negligible Intertask Communi-

cation onto Multiprocessors”, IEEE Transactions on Parallel and
Distributed Systems, vol.5, no.3, pp.328-336, 1994.

G.L.Djordjevic and M.B.Tosic, "A Compile-time Scheduling
Heuristic for Multiprocessor Architectures”, The Computer Jour-
nal, vol.39, no.8, pp.664-667, 1996.

Y. Kopidakis, M. Lamari, and V. Zissimopoulos, ”On the Task
Assignment Problem: Two New Efficient Heuristic Algorithms”,

BIBLIOGRAPHY 197

[126]

[127]

Journal of Parallel and Distributed Computing, vol. 42, no.l1,
pp-21-29, 1997.

K.R.Pattipati, T.Kurien, R.T. Lee, and P.B. Luh, ”On Mapping a
Tracking Algorithm onto Parallel Processors”, IEEE Transactions
on Aerospace and Electronic Systems, vol.26, no.5, pp.774-791,
1990.

J.J. Hwang, Y.C. Cow, F.D. Anger, and C.Y. Lee, ”Scheduling
Precedence Graphs in Systems with Interprocessor Communica-
tion times”, STAM Journal of Computing, pp. 244-257, 1989.

