
The Statistics of Word Cooccurrences
Word Pairs and Collocations

Von der Philosophisch-Historischen Fakultät der Universität Stuttgart
zur Erlangung der Würde eines Doktors der

Philosophie (Dr. phil.) genehmigte Abhandlung

Vorgelegt von

Stefan Evert
aus Ludwigsburg

Hauptberichter: Prof. Dr. C. Rohrer
Mitberichter: Apl. Prof. Dr. D. Kahnert
Mitberichter: HD Dr. U. Heid

Tag der mündlichen Prüfung: 30. August 2004

Institut für maschinelle Sprachverarbeitung
Universität Stuttgart

2005

Heartfelt thanks

. . . to my supervisors Christian Rohrer and Ulrich Heid for giving me the
opportunity to develop my own ideas and the time to write them down.

. . . to my supervisor Dietmar Kahnert for many of my favourite mathematics
lectures, and for charting the linguistic unknown with me so willingly.

. . . to Brigitte Krenn and Ulrich Heid for introducing me to the world of
collocations. A considerable part of the research presented here was inspired
by or developed in joint projects with them.

. . . to Anke Lüdeling for being my linguistic conscience and a good friend at the
same time; and for insisting that I must see the words behind the numbers.

. . . to Harald Baayen for introducing me to R and to word frequency distributions.

. . . to the R development team and the Perl community for first-class software
that has become a cornerstone of my research.

. . . to everyone at the IMS for an environment that was fun and inspiring,
and for great coffee breaks.

. . . to my parents for their support and patience on the many days when I was
fighting writer’s block. Without them, none of this would have been possible.

. . . and to Elke for making it all worth-while.

Contents

1 Introduction 15
1.1 About cooccurrences . 15

1.1.1 Cooccurrences and collocations 15
1.1.2 Types of cooccurrences . 18
1.1.3 Association measures . 20
1.1.4 A first example . 21

1.2 Applications of cooccurrence data . 22
1.2.1 Applications of cooccurrences and collocations 22
1.2.2 Extracting collocations from text 25

1.3 Motivation and goals . 28
1.3.1 The state of the art . 28
1.3.2 Goals and Objectives . 30
1.3.3 Limitations . 31

2 Foundations 33
2.1 Corpus data . 33

2.1.1 Frequency counts . 33
2.1.2 Contingency tables and frequency signatures 35
2.1.3 Examples . 37
2.1.4 Filtering cooccurrence data . 40

2.2 A statistical model of cooccurrences . 42
2.2.1 Cooccurrence data as a random sample 44
2.2.2 Independent Poisson sampling 47
2.2.3 The null hypothesis . 49
2.2.4 Conditioning on fixed marginal frequencies 51
2.2.5 Measuring statistical association 54

2.3 Adequacy of the statistical models . 57
2.3.1 Assumptions of the random sample model 57
2.3.2 Clustering and dispersion . 60
2.3.3 Extraction noise . 63

2.4 Positional cooccurrences . 65
2.4.1 Segment-based cooccurrences 66
2.4.2 Distance-based cooccurrences 68
2.4.3 Examples . 71
2.4.4 Discussion . 71

5

6 CONTENTS

3 Association Measures 75
3.1 An inventory of association measures 75

3.1.1 General remarks . 75
3.1.2 Likelihood measures . 77
3.1.3 Exact hypothesis tests . 79
3.1.4 Asymptotic hypothesis tests . 80
3.1.5 Point estimates of association strength 84
3.1.6 Conservative estimates of association strength 86
3.1.7 Measures from information theory 88
3.1.8 Heuristic, parametric and combined measures 89

3.2 Implementation . 91
3.2.1 Know your numbers . 91
3.2.2 The UCS toolkit . 94

3.3 A geometric model of association measures 94
3.3.1 The coordinate space . 94
3.3.2 Generalised association measures 96
3.3.3 Iso-surfaces and iso-lines . 101

3.4 Comparing association measures . 107
3.4.1 Goals and methods . 107
3.4.2 The major groups . 110

4 Quantisation Effects 119
4.1 Frequency distributions . 119

4.1.1 A thought experiment . 119
4.1.2 Introduction to lexical statistics 121
4.1.3 The conditional parameter distribution 123

4.2 The Zipf-Mandelbrot population model 124
4.2.1 Zipf’s law . 124
4.2.2 The Zipf-Mandelbrot model . 125
4.2.3 The finite Zipf-Mandelbrot model 128
4.2.4 Evaluation of the models . 129

4.3 Interpretation of the theoretical results 130
4.3.1 Sample-size independent results (ZM model) 130
4.3.2 Sample-size dependent results (fZM model) 132
4.3.3 Discussion . 132

5 Evaluation 137
5.1 Evaluation of association measures . 137

5.1.1 Evaluation methods and reference data 138
5.1.2 Precision and recall graphs . 140
5.1.3 Fine-grained comparative evaluation 145

5.2 The significance of result differences 150
5.2.1 Evaluation as a random experiment 150
5.2.2 Confidence intervals and significance tests 153
5.2.3 Empirical validation . 156

5.3 Evaluation based on random samples 159

CONTENTS 7

6 Conclusion and Future Work 165

A Proofs and Mathematical Background 169
A.1 Proofs from Chapter 2 . 169
A.2 Proofs from Chapter 3 . 176
A.3 Proofs from Chapter 4 . 179
A.4 Some mathematical background . 181

B UCS Software Documentation 185
B.1 UCS/Perl . 185

B.1.1 General Documentation . 186
B.1.2 UCS/Perl Programs . 202
B.1.3 UCS/Perl Modules . 220

B.2 UCS/R . 268

Zusammenfassung 333

Summary 337

8 CONTENTS

List of Tables

1.1 Highly associated verb + noun (direct object) pairs from the British
National Corpus (BNC), ranked according to the log-likelihood measure. 22

2.1 List of special situations for the comparison of different coefficients of
association strength. The symbol ε in Equations B and E indicates a
first-order approximation for ε → 0. 57

2.2 Values of various coefficients of association strength for the special
cases of independence (A), minimal association (B), total negative as-
sociation (C), total positive association (D), nearly total association
(E), and total determination (F and F’) 58

2.3 Results of dispersion test for the an-fr data set with K = 200 and
S = 8 975. The expected number of underdispersed types is rounded
to the nearest integer. All observed results are significant at a level of
α = .001. 62

2.4 Results of dispersion test for the an-fr data set with K = 17 950 and
S = 100. The expected number of underdispersed types is rounded
to the nearest integer. All observed results are significant at a level of
α = .001. 62

2.5 Evaluation results for the extraction of German adjective-noun cooc-
currences (from Evert and Kermes 2003). 64

4.1 Estimated shape parameter α, population size S, and goodness-of-fit
statistic χ2 for the ZM and fZM models applied to the an-bnc and an-
hgc data sets. 130

5.1 Table of n-best precision values for various n-best lists and 5 differ-
ent association measures on the pnv-fr-30 data set. The n-best lists
marked J are indicated by vertical lines in Figure 5.1. 141

9

10 LIST OF TABLES

List of Figures

2.1 Example of adjective-noun cooccurrences. The arrows indicate struc-
tural relations between a prenominal adjective and the noun that it
modifies, corresponding to pair tokens in the formal model. 35

2.2 Contingency table of observed frequencies 36
2.3 Contingency table for the adjective-noun pair type (black, box) in the

British National Corpus. 37
2.4 Contingency table with row and column sums. 37
2.5 Contingency table for (black, box) with row and column sums. 38
2.6 Example for the extraction of PP-verb cooccurrences from a partial

syntactic analysis produced by the YAC chunk parser. 41
2.7 Random variables representing the contingency table of a sample. . . . 46
2.8 The variability of the sample size: Histogram for the number of adjective-

noun pair tokens extracted from subsets of the Frankfurter Rundschau
corpus, containing 100,000 running words each. The solid curve shows
the distribution expected by the independent Poisson sampling model. 48

2.9 Comparison of population probabilities with observed frequencies. . . 49
2.10 Number of sentence repetitions in the Frankfurter Rundschau corpus,

broken down by sentence length. 63
2.11 Contingency table for segment-based cooccurrences. 66
2.12 Contingency table for distance-based cooccurrences. 69
2.13 Alternative contingency table for distance-based cooccurrences. 70
2.14 Distribution of the lengths of articles and sentences in the Frankfurter

Rundschau corpus. 72

3.1 Expected vs. observed frequencies. 76
3.2 Yates’ continuity correction. 82
3.3 The three-dimensional parameter space P with a point cloud repre-

senting the pnv-slices-01 data set (stereograph for cross-eyed viewing). 95
3.4 The top row shows a rotated view of the parameter space P with

a point cloud representing the pnv-slices-01 data set. The e-axis is
nearly horizontal in this view, while the b-axis is oriented from back-
ground to foreground. The bottom right panel shows a projection of
the point cloud into the (e, o) plane, and the bottom left panel shows
the same data without jittering. 97

11

12 LIST OF FIGURES

3.5 Parameter space with point cloud representing the pnv-slices-01 data
set and iso-surfaces of the log-likelihood and Dice measures. The top
row shows the iso-surface

{
glog-likelihood = 22.6

}
, corresponding to pv =

10−6. The bottom row shows a 200-best iso-surface for Dice. 103

3.6 The top row shows a rotated view of the parameter space P with a
point cloud representing the pnv-slices-01 data set and the iso-surface
{g = 6} of the Poisson measure (corresponding to coordinates with
pv = 10−6). The bottom row shows the orthogonal projection of
both the point cloud and the iso-surface into the (e, o) plane. In the
bottom left panel, the projection of the corresponding acceptance re-
gion Ag(6) is shaded in the plane (corresponding to coordinates with
pv ≥ 10−6). 105

3.7 Families of iso-lines representing the generalised association measures
Poisson (left panel) and z-score (right panel). The threshold values for
the iso-lines were chosen to correspond to specific p-values, including
the common significance levels pv = .01 and pv = .001. 106

3.8 Rotated view of 200-best iso-surfaces for the Dice (fine grid) and Pois-
son (coarse grid) measures, with the b-axis running from background
to foreground. 107

3.9 Comparison of p-values for measures from the significance of associa-
tion group, using Fisher as a reference point (labels on the axes refer
to − log10 pv). 111

3.10 The roots of overestimation: comparison of the Fisher and chi-squared
p-values according to observed (left) and expected (right) frequency. . 112

3.11 Comparison between likelihood measures (− log10 lv, y-axis) and the
corresponding exact hypothesis tests (− log10 pv, x-axis). 113

3.12 Comparison of p-values between central and non-central variants of
measures from the significance of association group. 114

3.13 Iso-surfaces of the log-likelihood measure g (fine grid) and its cen-
tralised version gc (coarse grid) for the same threshold value (cor-
responding to pv = 10−6. 115

3.14 Iso-lines for t-score, Poisson, the centralised version of log-likelihood
and z-score with Yates’ correction applied (all corresponding to pv =
10−6. 115

3.15 Iso-lines for the MI measure as a point estimate (MLE) of log10 µ and
conservative estimates for different confidence levels α (MIconf,α mea-
sure). 116

4.1 Development of relative frequency spectrum and relative error of Her-
dan law (Heaps’ law) with α = 0.87 for the an-hgc data set. 129

4.2 Expected frequency spectrum of ZM (left panel) and fZM (right panel)
models compared to observed spectrum for the an-hgc data set (loga-
rithmic scale). 131

LIST OF FIGURES 13

4.3 Comparison of the p-value computed by the Poisson association mea-
sure against the expected proportion of low-probability types in fre-
quency classes m = 1, 2, 3 and 5, for a population described by a ZM
model with shape parameter α. The graphs in the bottom row cover a
wider range of expected frequencies for m = 1,2. 134

4.4 Comparison of the p-value computed by the Poisson association mea-
sure against the expected proportion of low-probability types in fre-
quency classes m = 1, 2, 3, and 5. These graphs show the predictions
of a fZM model estimated from the an-hgc data set for three different
sample sizes. 135

5.1 Graphs of n-best precision for five association measures evaluated on
the pnv-fr-30 data set. The vertical lines mark n-best lists for n = 800
and n = 2 300. 142

5.2 Precision graphs for n-best lists with n ≤ 2 300 on the pnv-fr-30 data
set. 143

5.3 Recall graphs for the pnv-fr-30 data set. The vertical lines mark n-best
lists for n = 800 and n = 2 300. 144

5.4 Assessing the practical usefulness of association measures with precision-
by-recall graphs (on the pnv-fr-30 data set). The diagonal lines indi-
cate n-best lists for n = 800 and n = 2 300. 144

5.5 Comparison of the performance of association measures for figurative
expressions (top panel) vs. support-verb-constructions (bottom panel).
It is pure coincidence that the baseline precision is the same for both
types of collocations. 146

5.6 Estimates of the local precision in different parts of the ranked candi-
date lists for the extraction of support-verb-constructions. 147

5.7 Comparison of precision of n-best lists (n ≤ 1 450) for pair types ac-
cepted by the kwic filter (Krenn 2000, 120) in the left column vs. the
rejected pair types in the right column. The top row shows overall
precision, the middle row precision for figurative expressions, and the
bottom row precision for support-verb constructions. 148

5.8 Comparison of the precision of n-best lists (n ≤ 2 000) extracted with
a combination of the kwic filter (Krenn 2000, 120) and a frequency
threshold of f ≥ 10 (left column) vs. a frequency threshold of f ≥ 30
but no filter (right column). The top row shows overall precision, the
middle row precision for figurative expressions, and the bottom row
precision for support-verb constructions. 149

5.9 Illustration of evaluation experiment as the random selection of true
and false positives from a hypothetical population. 152

5.10 Precision graphs for G2 and X2 with 95% confidence intervals. 154
5.11 Illustration of the significance of precision differences between two

association measures (here, G2 and X2 are compared (left panel: over-
lapping acceptance regions A and B; right panel: difference regions
D1 and D2). 155

5.12 Significant differences between G2 and X2 at a confidence level of 95%. 156

14 LIST OF FIGURES

5.13 Distribution of the observed precision PA for γ -acceptance regions of
the association measures G2 (left panel) and t (right panel). The solid
curves indicate the expected distribution according to Eq. (5.2). 157

5.14 Empirical confidence intervals for the n-best precision pg,n of the asso-
ciation measures G2 (top right panel), X2 (bottom right panel) and t
(bottom left panel). 158

5.15 An illustration of the use of random samples for evaluation: precision
graphs for the pnv-krenn data set (left) and the corresponding esti-
mates obtained from a 10% sample (right). 159

5.16 Sample estimates for the true precision with confidence intervals based
on a 10% random sample. The dashed lines show the true precision
computed from the full candidate set. 160

5.17 Chart of binomial confidence intervals for selected sample sizes. 161
5.18 Random sample evaluation of German adjective-noun combinations. . 163

Chapter 1

Introduction

1.1 About cooccurrences

1.1.1 Cooccurrences and collocations

You shall know a word by the company it keeps! With this slogan, Firth (1957) drew
attention to a fact that language scholars had intuitively known for a long time: In
natural language, words are not combined randomly into phrases and sentences, con-
strained only by the rules of syntax. The particular ways in which they go together
are a rich and important source of information both about language and about the
world we live in. In the 1930s, J. R. Firth coined the term collocations for such char-
acteristic, or “habitual” word combinations (as he called them). While Firth used to
be lamentably vague about his precise understanding of this concept (cf. Lehr 1996,
21), the term itself and the general idea behind it – that collocations “correspond to
some conventional way of saying things” (Manning and Schütze 1999, 151) – were
eagerly taken up by researchers in various fields, leading to the serious terminolog-
ical confusion that surrounds the concept of collocations today. As Choueka puts it:
“even though any two lexicographers would agree that ‘once upon a time’, ‘hit the
road’ and similar idioms are collocations, they would most certainly disagree on al-
most anything else” (Choueka 1988, 4). Feel free to replace “lexicographers” with
any profession that is concerned with language data.1

The diverse notions of collocations that have evolved over the past fifty years
can generally be divided into two groups: a distributional and an intensional ap-
proach. The distributional approach is mainly due to Firth’s successors and disciples
in the United Kingdom, most notably M. A. K. Halliday. Often referred to as the
Neo-Firthian school, they lapsed on to the empirical side of Firth’s notion of collo-
cations as recurrent word combinations in a particular text, gradually developing a
formal and operational definition of this concept. The Neo-Firthians understood col-
locations as a directly observable quantity that serves a purely descriptive purpose.
Some proponents of this point of view go so far as to rule out any automatic process-
ing or linguistic interpretation of the source text. Lehr (1996) – who speaks of the
deliberate renunciation of additional information, “bewußter Informationsverzicht”
(Lehr 1996, 50f) – provides an example of the most extreme kind, allowing only fully

1Hausmann (1989), a German lexicographer, might even disagree about the status of Choueka’s
examples as collocations.

15

16 CHAPTER 1. INTRODUCTION

deterministic operations such as the identification of graphemic words (sequences of
alphabetic characters delimited by whitespace or punctuation) in her unimplemented
design of an extraction system. The distributional notion of collocations has also be-
come one of the fundaments of a recent corpus-oriented lexicographic tradition in
the United Kingdom (see Sinclair 1991). Williams (2003) gives a concise and well-
written overview of the Neo-Firthian concept of collocations. See Lehr (1996) for a
more detailed account and Monaghan (1979) for an in-depth discussion.

Outside the Neo-Firthian tradition, the term collocation has been applied to a wide
range of lexicalisation phenomena, giving rise to a variety of intensional definitions.
Collocations are usually placed somewhere in the grey area between fixed idioms and
free combinations, often in a phraseological framework (e.g. Burger et al. 1982). In
a narrower sense, they are understood as semi-compositional word pairs, with one
“free” element (the base) and the other element lexically determined (the collocate).
Well-known examples of collocations in this sense are a pride of lions, a school of
fish, reckless abandon, heavy smoker, as well as support verb constructions such as
give a speech and set an alarm. While the free element retains its independent mean-
ing in the combination, the collocate often contributes a meaning component that it
cannot have on its own. This concept has come to play an important role in com-
putational lexicography (Hausmann 1989; Grossmann and Tutin 2003) and can be
formalised in terms of lexical functions (see Mel’čuk (2003) for a concise summary).
Until recently, the mainstream of theoretical linguistics has shown little interest in
collocations. Under the influence of Chomsky, the lexicon was reduced to a mere list
of fully interchangeable words. When syntax was inadequate to account for the com-
binatorics of words, they were explained as selectional restrictions (or preferences) at
a conceptual level. Bartsch (2004, 27–64) gives an excellent overview of the diverse
theoretical approaches to the concept of collocations.

In the field of natural-language processing (NLP), the combinatorics of words
have always played an important role, even in the very early days when researchers
still referred to their work as “mechanized documentation” (Stevens et al. 1965).
While the first publications spoke of associations between words (Giuliano 1965a),
the term collocations was soon adopted (Berry-Rogghe 1973; Choueka et al. 1983).
Since much of the research in NLP is driven by the requirements of applications, it is
hardly surprising that the term is used in a much broader and more practical sense
than in linguistics. Word combinations that are considered as collocations range
from compound nouns (black box), over semantically opaque idiomatic expressions
(kick the bucket), to fully compositional combinations that are only lexically restricted
(handsome man vs. beautiful woman). This variability in definition is mirrored by
a large number of alternative terms that are used almost interchangeably, such as
multi-word expressions (MWE), multi-word units (MWU), bigrams and idioms.

Three characteristic properties emerge as a common theme in the linguistic treat-
ment of collocations: semantic non-compositionality, syntactic non-modifiability, and
the non-substitutability of components by semantically similar words (Manning and
Schütze 1999, 184).2 Collocation definitions in the field of natural-language process-
ing are usually based on the same three criteria, which are used in various combina-
tions and interpreted in a more or less strict sense. However, for most researchers,
any definition according to linguistic criteria has to be complemented – and is some-

2See also Krenn (2000, 14–18) and Bartsch (2004, 58f).

1.1. ABOUT COOCCURRENCES 17

times overridden – by the relevance of the respective word combination for an in-
tended application. For instance, Choueka (1988) gives a relatively precise definition
of a “collocational expression” as a “syntactic and semantic unit whose exact and un-
ambiguous meaning or connotation cannot be derived directly from the meaning or
connotation of its components”. However, realising the multitude of borderline cases
that such definitions are bound to create, he proposes some guidelines for the dis-
tinctions between collocations and non-collocations. These guidelines can be boiled
down to the central question: “Does it deserve a special entry in a dictionary or lexical
database of the language?” – which is the intended application of Choueka’s work.
A similar example is provided by Schone and Jurafsky (2001), who are interested in
MWUs to be used as headwords in machine-readable dictionaries. Again, the practi-
cal relevance is an essential ingredient of their definition, which is otherwise based
on the criteria listed above (citing Manning and Schütze 1999; Choueka 1988). Note
that the distinction between collocations and non-collocations is ultimately based on
the intuition of a lexicographer, for instance, in contrast to the formal and unambigu-
ous definitions that linguistic research aims for.

In order to make a clear distinction between the two approaches to collocations, I
refer to the distributional notion as cooccurrences, which encompasses both the ob-
servable (cooccurrence) frequency information and its interpretation as an indicator
of statistical association.3 This description seems fully adequate for the Neo-Firthian
understanding of a collocation as a recurrent word combination, cf. the definition
“collocation is the occurrence of two or more words within a short space of each
other in a text” (Sinclair 1991, 170). By contrast, I reserve the term collocation for an
intensionally defined concept that does not depend on corpus frequency information.
Not wanting to embrace any particular theory of collocations, I propose the following
partial definition that encompasses both the criteria of Manning and Schütze (1999)
and the criterion of application relevance:

A collocation is a word combination whose semantic and/or syntactic
properties cannot be fully predicted from those of its components, and
which therefore has to be listed in a lexicon.

I use collocation thus as a generic term whose specific meaning can be narrowed down
according to the requirements of a particular research question or application. The
precise interpretation of the definition depends on the properties that are considered
(e.g. semantic compositionality vs. syntactic modifiability), on the processes involved
in “predicting” the properties of the combination (e.g. composition of literal meanings
vs. metaphoric interpretation), and on the form and intended usage of the lexicon
(which may range from the word list of a syntactic parser to the human mental
lexicon in psycholinguistic research). Bartsch (2004, 58f) makes a similar distinction
between cooccurrences and collocations, although she gives a much narrower and
more concrete definition for the latter.

My thesis is primarily concerned with cooccurrences and their statistical asso-
ciation. Since the generic definition of collocations above implies some degree of
lexicalisation (because their unpredictable properties have to be learned and stored),
they must be recurrent combinations (so that they can be learned, and in order to

3I will explain what it means for words to “cooccur” in more detail in Section 1.1.2.

18 CHAPTER 1. INTRODUCTION

warrant the effort of storing them). Therefore, measures of statistical association
abstracted from the cooccurrence frequency data should provide evidence for collo-
cational word combinations. Such collocation extraction tasks, which are addressed
in Chapter 5, link my work to the research on collocations and their applications.
The evaluation methods presented there apply equally well to any specialisation of
the generic collocation definition: only the evaluation results will differ.

1.1.2 Types of cooccurrences

In this section, I give a more precise definition for the concept of word cooccurrences.
As a first problem, it is not at all obvious how to define a “word”. A considerable
amount of work – especially in English-speaking countries and by the proponents of
so-called “knowledge-free” approaches – has been based on graphemic words that
are delimited by whitespace and punctuation. However, variants such as whitespace
vs. white-space vs. white space4 show the inconsistency of such an approach. More-
over, relevant lexical items may be substrings of graphemic words (e.g. in German
compounds5) or comprise multiple graphemic words (as in the white space example).
Cooccurrences can provide useful information at all these levels, and they will ex-
hibit similar properties. Therefore, I use word as an entirely generic term which may
refer to any kind of lexical item, depending on the underlying theory or intended
application.

Similarly, the cooccurrence of words can be defined at different levels: as mere
(graphemic) adjacency or proximity, as occurrences within the same linguistic unit
(sentence, paragraph, article, etc.), or as a specific structural (usually syntactic) re-
lationship between the words. Especially in the latter case, cooccurrences may be
relations between more than two words (the expression to keep a straight face is
clearly a systematic combination of verb, adjective, and noun). In my thesis, I will
only consider cooccurrences of two words, though, which I refer to as word pairs.6

A motivation for this restriction can be found at the end of Section 1.3.2. There
is a broad distinction between two types of cooccurrences, which I call relational
and positional cooccurrences. This distinction is not merely conceptual: the different
types of cooccurrences also require different counting methods and statistical models
(cf. Chapter 2).

Positional cooccurrences represent the historically older approach, where words
are said to cooccur when they appear within a certain distance from each other. This
distance is typically measured by the number of intervening words (usually in the
sense of graphemic words) and referred to as the (collocational) span (Sinclair
1991, 175). Alternatively, linguistically motivated windows (clauses, sentences, para-
graphs, documents, etc.) may be used. The positional approach has been widely

4Evidence for all three spellings can easily be found with an Internet search engine, e.g. http:
//www.google.com/. A similar example is fulltime vs. full-time vs. full time, all of which are attested
in the British National Corpus (Aston and Burnard 1998).

5In analogy to multi-word nouns such as hard disk in English, German compounds (e.g. Festplatte,
the German translation of hard disk) can be interpreted as cooccurrences of (free) morphemes.

6Some authors use the term bigram, and more generally n-gram for the combination of n words.
However, I try to avoid this term as it is often understood to imply adjacency (n-grams being uninter-
rupted sequences of n words).

1.1. ABOUT COOCCURRENCES 19

adopted by the Neo-Firthian school (e.g. Lehr 1996) and by early work in computa-
tional linguistics (e.g. Stevens et al. 1965) before automatic syntactic analysis became
feasible. An advantage of positional cooccurrences is that they are directly observable
in corpus data. Especially when based on a graphemic definition of words, positional
cooccurrence frequencies can be determined reliably with fully automatic means.7

Relational cooccurrences, on the other hand, are based on a linguistic interpre-
tation of the observable corpus data. Each cooccurrence corresponds to an instance
of a specific structural relation. Typical examples of such relations are graphemic
adjacency (but not a collocational span or window), dependency relations and (un-
derspecified) subtrees in a phrase-structure analysis. In the latter case, relations
between words are usually mediated by larger syntactic units. For instance, consider
a prenominal adjective A and the modified noun N: a direct syntactic relation holds
between the AP of which A is the head and the NP headed by N (although the pre-
cise relation between the AP and the NP depends on the particular flavour of syntax
being used). Syntactic relations that are often considered by work on English (and
German) collocations include the following: (i) verb + noun (direct object), e.g.
commit suicide; (ii) adjective + noun, e.g. reckless abandon; (iii) adverb + verb, e.g.
tacitly agree; (iv) verb + predicative adjective, e.g. keep sth handy; (v) verb-particle
constructions, e.g. bring sth up; and (vi) verb + prepositional phrase, e.g. set in mo-
tion. When cooccurrence data are intended for knowledge extraction, there is usually
a strong emphasis on verb + noun relations.

The identification of relational cooccurrences in any substantial amount of text
requires automatic linguistic pre-processing (typically including a partial or full syn-
tactic analysis), which will invariably introduce errors into the results. Critics also
point out that the relational approach precludes an unbiased analysis of the observ-
able facts by imposing the preconceived notions of a particular linguistic theory on
the data. Nonetheless, I believe that the following three arguments outweigh any
disadvantages:

1. On a theoretical level, it is quite obvious that the results of a quantitative anal-
ysis will be much more clear-cut and meaningful when they are based on lin-
guistic understanding rather than just mindless computation. As Greenbaum
(1970, 13) puts it: “A more valuable, if more modest, contribution might be
made to the study of collocations if a relatively homogeneous class of items
were selected and an investigation undertaken of the collocation of each item
in the class with other items that are related syntactically in a given way.”

2. On a practical level, positional cooccurrences represent a mixture of many dif-
ferent kinds of structural relations, at least as many as there are different rea-
sons for words to cooccur within a given span or a sentence. It should be ob-
vious that the various types of relations follow substantially different frequency
distributions. Statistical methods that are based on simple frequency counts will
produce much better results when they are applied to a single “homogeneous”
frequency distribution rather than to such a mixture. Support for this claim
comes from many studies (e.g. Daille 1994; Justeson and Katz 1995a; Breidt

7Lehr (1996) argues in some detail that this is a desirable property, although she refers to colloca-
tions rather than cooccurrences, of course.

20 CHAPTER 1. INTRODUCTION

1993; Smadja 1991, 1993; Lezius 1999), who obtain substantial improvements
from part-of-speech tagging and the use of (simple) syntactic patterns.8

3. On a mathematical level, the statistical model for relational cooccurrences (Sec-
tion 2.2) is simpler and more elegant than the models required for the analysis
of positional cooccurrences (Section 2.4). It is the same random-sample model
that is used in biometrics (for a famous example, see Good 1953) and lexical
statistics (see Baayen 2001), so that important results from these fields can
be applied to the analysis of cooccurrence data (especially in Section 2.3 and
Chapter 4).

For these reasons, the present thesis concentrates on relational cooccurrences. Con-
sidering that tools for linguistic pre-processing and automatic syntactic analysis are
widely available nowadays,9 I believe that applications in computational linguistics
that involve the extraction of cooccurrence data should always be based on a rela-
tional model. Possible exceptions are purposely “knowledge-free” approaches (whose
aim is to avoid pre-conceived linguistic notions) as well as some cases where the de-
sired relation cannot be identified reliably with the current technology. Positional
cooccurrences are briefly considered in Section 2.4, where I distinguish between
two subtypes (segment-based vs. distance-based cooccurrences), describe appropri-
ate counting methods, and introduce the corresponding statistical models. These are
found to be similar to the model for relational cooccurrences (Section 2.2), so that
most of the methods and results in the present thesis apply equally well to positional
data.

1.1.3 Association measures

Raw cooccurrence data – in the form of frequency counts for word pairs – have two
serious shortcomings. First, the plain frequencies are often not meaningful as a mea-
sure for the amount of “glue” between two words. Provided that both words are
sufficiently frequent, their cooccurrences might be pure coincidence. Therefore, a
statistical interpretation of the frequency data is necessary, which determines the
degree of statistical association between the words. Second, the observed cooccur-
rences only provide information about the one particular corpus they were extracted
from. It is usually desirable to make generalisations about the language as a whole
(or, more realistically, about a well-defined sub-language). This is achieved by meth-
ods of statistical inference that interpret the source corpus – and hence the cooccur-
rence data – as a random sample from the language or sub-language of interest. A

8Cf. Goldman et al. (2001, 61): “There is no doubt that syntactic dependencies, such as the ones
expressed by grammatical functions or by modification relations between two terms constitute a more
appropriate criterion of relatedness then simple linear proximity, such as 2 or 3 words away.” The
authors support this claim with some examples of verb-object combinations such as éprouver difficultés
‘to experience problems’, arguing that a verb and its object can be more than 30 words apart in French
(Goldman et al. 2001, 62).

9Compare this with the situation in 1988, as perceived by (Choueka 1988, 3): “morphological,
syntactical or semantical modules, . . . , even when available, certainly cannot be applied to large
corpora in any reasonably efficient way”. Only three years later, however, Frank Smadja strikes a more
optimistic note: “the advent of robust parsers such as Cass [Abney, 1990], Fidditch [Hindle, 1983]
has made it possible to process large amounts of text with good performance” (Smadja 1991, 280).

1.1. ABOUT COOCCURRENCES 21

statistical model can then be formulated that allows us to predict to what extent the
observed cooccurrences may be merely due to chance (i.e. the particular choice of
source corpus), or whether they provide sufficient evidence for a “true” association
between the words (that holds for the entire language or sub-language).

The most widely used method for distinguishing between random cooccurrences
and true statistical association is the application of so-called association measures.
Such measures compute an association score for each word pair, which can then be
used for ranking (putting pairs with high scores at the top) or selection (by setting
a cutoff threshold). It should be obvious now that both tasks, statistical interpre-
tation and generalisation, are closely related, being based on the same notions of
coincidence and chance. It is an advantage of association measures that they can
address both problems simultaneously, but it is also a great challenge that they have
to address both problems: an association score is a single real number that serves
as a compound measure both for the degree of association and for the amount of
evidence supporting it. As we will see in Chapter 3, some measures focus on either
of the two while others attempt to strike a good balance.

The earliest reports of the application of association measures to language data
go back to Stevens et al. (1965). Even at that time, an enormous range of different
measures was available, borrowed from mathematical statistics and related fields.
During the past 40 years, various new association measures have been suggested,
while others were forgotten and later re-discoverd (sometimes tagged with a differ-
ent name). However, only a few have achieved sustained popularity. Among the
best-known measures are MI (Mututal Information, an information-theoretic notion
suggested by Church and Hanks (1990)), the t-score measure t (Church et al. 1991),
the log-likelihood ratio G2 (Dunning 1993), and to a lesser extent also the chi-squared
statistic X2, which is the standard method to distinguish between chance cooccur-
rence and true association in mathematical statistics (Agresti 1990, 47f).10 These
measures, as well as many less well-known alternatives, are described in detail in
Section 3.1.

1.1.4 A first example

As a first example, let us consider English verb + noun (direct object) cooccurrences
extracted from the British National Corpus (BNC) with the help of simple part-of-
speech patterns. This resulted in 5 365 different word pairs with at least 25 occur-
rences in the BNC (see the description of the vn-bnc data set in Section 2.1.3 for
details). In order to identify strongly associated word pairs, the log-likelihood mea-
sure11 was applied, and the word pairs were ranked according to the association
scores. The forty strongest associations found in this way are listed in Table 1.1,
together with their cooccurrence frequency and association score.

Among the list of word highly associated word pairs, many different linguistic
phenomena can be found: fixed idiomatic expression (take place and give rise (to)),
support verb constructions and other lexically determined combinations (make sense,
play (a) role, solve (a) problem, and shut (the) door), stereotypes and formulaic ex-

10The names of association measures are printed in a sans-serif face in this thesis.
11The log-likelihood measure is widely used for this purpose in the field of computational linguistics.

From the discussion in Chapter 3, it emerges as a meaningful, sound and robust association measure.

22 CHAPTER 1. INTRODUCTION

word pair freq. association

take place 7606 41942.15
play role 1488 11710.46
open door 1438 11299.73
see chapter 1461 9795.36
give rise 1499 9521.99
make sense 1888 7996.27
take advantage 1557 7529.19
see page 1294 7374.60
play part 1331 7359.75
draw attention 836 6610.98
answer question 743 6558.03
take part 2358 6424.23
ask question 898 6373.39
take care 1295 6196.21
ask secretary 621 5932.39
solve problem 645 5706.53
wait minute 428 5422.05
make use 1441 4954.34
take account 1164 4626.66
form part 886 4335.17

word pair freq. association

meet needs 520 4183.22
make mistake 763 4114.63
make decision 1172 3943.51
keep eye 577 3671.20
tell storey 527 3616.61
show sign 533 3577.90
pay tribute 336 3390.79
thank goodness 224 3338.03
take action 1023 3302.98
shake hand 342 3289.48
take step 759 3271.63
get hold 614 3265.61
form basis 448 3191.22
ring bell 235 3093.21
closed door 346 3091.96
shut door 322 3039.70
write letter 445 3023.47
give impression 638 2948.46
make contribution 682 2890.16
raise question 555 2882.07

Table 1.1: Highly associated verb + noun (direct object) pairs from the British Na-
tional Corpus (BNC), ranked according to the log-likelihood measure.

pressions (see chapter . . . , wait (a) minute), but also free and compositional combina-
tions that reflect facts of life, typical behaviour, or just happen to be frequent in the
corpus (ask (the) Secretary (of State) and write (a) letter). Some of the entries point
to potential problems of the automatic processing and data extraction: ask secretary
is a misleading reduction and normalisation of ask the Secretary of State. Similarly,
ring (a) bell can have both a literal and a figurative meaning, both of which are likely
to occur in the corpus. It is impossible to find out from the cooccurrence data alone
which of the two meanings is more frequent and hence contributes more to the asso-
ciation of the word pair. What all forty entries have in common, though, is that they
sound very familiar to anyone with a good command of English.

A quick look at the numbers shows that statistical association (at least according
to log-likelihood) is closely linked to cooccurrence frequency. However, this cannot be
the only determining factor: the relatively frequent word pair make think (f = 512)
obtains a low association score and is ranked at the 1722nd position.

1.2 Applications of cooccurrence data

1.2.1 Applications of cooccurrences and collocations

For applications in the field of natural-language processing, both cooccurrences and
collocations play an important role. Cooccurrences represent the observable evi-
dence that can be distilled from a corpus by fully automatic means. After statistical

1.2. APPLICATIONS OF COOCCURRENCE DATA 23

generalisation, this information can be used to predict which word combinations are
most likely to appear in another corpus. In such a way, cooccurrence data have been
applied to the following tasks:

• resolving ambiguities in PP-attachment (Hindle and Rooth 1993; Volk 2002),
syntactic parse trees (Alshawi and Carter 1994) and the internal structure of
compound nouns (Yoon et al. 2001);

• the identification of sentence boundaries (Kiss and Strunk 2002b,a) and con-
stituent boundaries (Magerman and Marcus 1990);

• lexical choice in natural language generation and gap-filling tasks (Edmonds
1997; Terra and Clarke 2004);12

• the adaptation of n-gram language models, using known associations as triggers
to adjust occurrence probabilities (Rosenfeld 1996; Beeferman et al. 1997), as
well as improvements on language models based on probabilistic context-free
grammars (Eisele 1999, 109-125);

• the prediction of human word association norms from psycholinguistic experi-
ments (Rapp 2002);13

• contrastive cooccurrence data (obtained from different corpora or subcorpora)
have been used for a variety of classification tasks, ranging from word sense
disambiguation (Biber 1993; Justeson and Katz 1995b; Pedersen 2001; Resnik
1997; Rapp 2004) to the detection of topic shifts (Ferret 2002) and subjectivity
(Wiebe et al. 2001).

In addition to these direct uses, cooccurrence data often serve as a basis for distribu-
tional methods, which compare the “cooccurrence profile” of a given word, a vector
of association scores for its cooccurrences, with the profiles of other words. The dis-
tance between two such vectors (which can be defined in various ways) is interpreted
as an indicator of their semantic similarity. Clustering and dimensionality reduction
methods (such as factor analysis or singular-value decomposition) can then be used
to identify classes of semantically related words. Some applications of such distribu-
tional techniques are:

• detecting semantic similarities between words (Landauer and Dumais 1997;
Läuter and Quasthoff 1999; Heyer et al. 2001; Biemann et al. 2004), especially
for the identification of synonyms (Turney 2001; Rapp 2002; Terra and Clarke
2003);14

12Gap-filling tasks are often used in language tests, where students are presented with a choice of
four near-synonyms and have to select the word which fits most naturally into a given sentence. Terra
and Clarke (2004) evaluated their methods on such a gap-filling exercise from the verbal section of the
GRE test (see http://www.gre.org/). The problem of lexical choice in natural language generation
involves a similar task, where an appropriate lexical item has to be chosen to express a given concept.

13Rapp (2002) compares his cooccurrence data with the responses of human subjects to stimulus
words, collected in the Edinburgh Associative Thesaurus (Kiss et al. 1973).

14Such algorithms are often evaluated on the synonym task from the TOEFL language test, where
students are presented with a choice of four or more words and have to select the one that is closest in
meaning to a given keyword. Since the alternatives usually represent quite distinct semantic concepts

24 CHAPTER 1. INTRODUCTION

• the unsupervised induction of word senses, usually combined with disambigua-
tion of the automatically identified senses (Pantel and Lin 2002; Rapp 2003;
Tamir and Rapp 2003; Dorow and Widdows 2003);

• the identification of translation equivalents (which are semantically related, of
course) from non-parallel corpora, i.e. unrelated texts in two or more languages
(Rapp 1999);

• distinguishing between compositional and lexicalised compound nouns, based
on the assumption that the former are more similar to their head noun (Zins-
meister and Heid 2004);

• the selection of informative clauses for the compilation of biographical sum-
maries (Schiffman et al. 2001).

Several authors use association scores directly for such tasks, relying on the tendency
of semantically related words to cooccur within sentences or within specific syntactic
patterns:

• cooccurrences within sentence windows provide evidence for the identification
of synonyms (Terra and Clarke 2003) as well as antonyms (Justeson and Katz
1991);

• translation equivalents can be obtained from the cooccurrences of words in
aligned sentence pairs (Church and Gale 1991; Smadja et al. 1996);

• Hisamitsu and Niwa (2001) extract (fully interchangeable) term variants and
expansions of acronyms from parenthetical expressions of the form A (B);

• Baroni et al. (2002) use semantic similarities found in such a way as one crite-
rion for the identifcation of morphologically related words.

In contrast to the distributional character of cooccurrences and statistical association,
collocations represent intrinsic properties of word combinations. Depending on the
specific collocation definition used, these properties can be relevant for various ap-
plications. The field of lexicography, which has always been a driving force behind
theoretical and practical work on collocations, provides also their most immediate
application. However, collocations will not only be found in traditional paper dic-
tionaries, but also in “mechanized dictionaries” (Choueka 1988), machine-readable
lexical resources that range from simple lists of collocations to databases containing
rich amounts of information at various levels. In this way, collocational knowledge
becomes an essential part of many language processing applications:

• Collocations are an essential part of the microstructure both of monolingual
dictionaries (cf. Heid 2004) and bilingual dictionaries (see e.g. Heid et al. 2000;
Smadja 1993, 171–174), where they are particularly important because of their

(but may be similar in form, so they are easily confused by language learnes), this is a fairly easy
task for a computer program that has access to a sufficient amount of corpus data. Unsurprisingly,
the automatic methods are almost on par with human native speakers and perform better than most
non-native speakers (e.g. Rapp 2002; Terra and Clarke 2003).

1.2. APPLICATIONS OF COOCCURRENCE DATA 25

contrastive relevance (i.e. because their component words cannot be translated
individually). Monolingual learner dictionaries need to provide a wide range
of collocations (even those that are not semantically opaque) to aid non-native
speakers in text production (Hausmann 1989, 2004).

• Similar to the learner dictionaries, collocational knowledge is essential for natu-
ral language generation in order to ensure that the generated text reads smoothly
(e.g. Stone and Doran 1996).

• Information about the semantic and syntactic irregularities of word combina-
tions is important for symbolic approaches to deep syntactic analysis, espe-
cially with lexicalised grammars such as HPSG and LFG (e.g. Erbach and Krenn
1993).

• Machine-readable dictionaries of collocations and their translation equivalents
are indispensable for high-quality machine translation (Smadja et al. 1996, 5–
6), especially when using symbolic methods with hand-crafted rules.

• Other applications of such dictionaries include machine-assisted translation,
multilingual information retrieval and multilingual summarisation (Smadja et al.
1996, 30–31).

Applications of collocations in natural language generation, computational lexicog-
raphy and information retrieval are also described by Manning and Schütze (1999,
152, 187–189).

One of the most important applications of cooccurrence data is the semi-automatic
identification of collocations, which is described in more detail in the following sec-
tion. Based on the intuition that statistical association should correlate with col-
locativity up to a certain degree,15 cooccurrences with high association scores are
interpreted as collocation candidates. The correspondence is far from perfect, of
course. For this reason, the candidates are usually validated by human annotators,
who identify true collocations among them manually. Sometimes automatically ex-
tracted cooccurrence data are used directly as a “noisy” substitute for a list of manu-
ally validated collocations, but Lemnitzer (1998) argues for the necessity of a semi-
automatic procedure.

1.2.2 Extracting collocations from text

The standard design of a collocation extraction tool has the form of an extraction
pipeline as described by Evert and Kermes (2003). First, the corpus is pre-processed
and often also syntactically annotated. Then cooccurrences are extracted and may be
filtered to improve accuracy. Typical filters set a minimal threshold for the cooccur-
rence frequency, remove stopwords or discard certain patterns (cf. Section 2.1.4). An

15This assumption is reasonable at least for collocation definitions that are compatible with the
generic definition given in Section 1.1.1. A word combination with unpredictable properties has to
be stored as a unit in the lexicon (whether mental or computational), which should make it more
easily accessible in language production, increasing its probability of occurrence. On the other hand,
collocations must be sufficiently frequent in the language so that their idiosyncratic properties can be
learned.

26 CHAPTER 1. INTRODUCTION

association measure is chosen and applied to the frequency data. Finally, the collo-
cation candidates are either classified into accepted and rejected candidates or they
are ranked according to the association scores. In the first case, the classification is
somtimes based on a pre-defined threshold for the association scores, but it is more
common to accept the n highest ranking candidates, which are also referred to as an
n-best list. Only the accepted candidates are passed on to the human annotators, and
they will often be sorted alphabetically or grouped by one of the component words.
In the second case, the full ranked lists are given to the annotators, who work their
way down from the top of the list until the true collocations become too few and
far between. Most approaches assume that there is a binary distinction between
collocational and non-collocational pairs. Therefore, the candidates accepted by the
extraction pipeline are classified as true positives (if they are in fact collocations)
or false positives (otherwise) by the human annotators. When there are more than
two categories (for instance, Krenn (2000) distinguishes between figurative expres-
sions, support-verb constructions and free combinations), they can often be seen as
more fine-grained subdivisions of the sets of true and false positives (cf. Krenn et al.
2004). Graded judgements of the degree of collocativity may be more informative,
but they require ratings by multiple human subjects obtained in a carefully designed
psycholinguistic experiment (e.g. Lapata et al. 1999).

The literature abounds with descriptions of collocation extraction tools, most of
which are intended for applications in computational lexicography, terminology or
the compilation of machine-readable dictionaries:

• Prototypical examples of the semi-automatic extraction pipeline design are Lin
(1998) for English, Nerima et al. (2003) for French, Lemnitzer (1998) for Ger-
man, as well as Kaalep and Muischnek (2003) for Estonian multi-word verbs.
The first two examples extract head-modifier pairs from deep syntactic analy-
ses, i.e. relational cooccurrences par excellence.

• Kermes and Heid (2003) extract adjective-verb cooccurrences as base data for
the identification of collocations, but do not apply association measures. The
same holds for one of the earliest publications on collocation extraction tools
(Choueka 1988), which mentions preliminary experiments with filtering and
ranking by association scores.

• Xtract (Smadja 1993), perhaps the most well-documented collocation extrac-
tion system so far, combines association scores with various heuristics, syntactic
patterns, and other filters.16 In addition, the word pairs extracted in a first step
are combined into longer sequences, which may include optional or unspecified
elements.

• Systems for the extraction of compound terms and terminologically relevant
collocations are described by Daille (1994, 1996) and Justeson and Katz (1995a).
A recent more advanced system combines association measures with other ex-
traction techniques using a range of voting schemes (Vivaldi and Rodríguez

16In particular, Smadja applies statistical filters that are based on the frequency distribution of the
collocates of a given keyword as well as the distance between the cooccurring words. Such empirical
methods can only be applied to high-frequency keywords. In this case, a threshold of f > 100 was
used (Smadja 1993, 168).

1.2. APPLICATIONS OF COOCCURRENCE DATA 27

2001). See Kageura and Umino (1996) for an overview of standard term ex-
traction methods.

• Dias (2003) extracts relational cooccurrences with local syntactic patterns that
are automatically learned from the source corpus.

• Bannard et al. (2003) identify phrasal verbs in English, i.e. non-compositional
verb-particle pairs.

• The unsupervised learning of the subcategorisation frames of verbs can be in-
terpreted as the identification of collocations between verbs and (surface hints
for) argument structures (Brent 1993).

The collocation extraction task also has theoretical interest because it can help to
throw light on the relation between cooccurrences and collocations. Extraction pipe-
lines as described above are particularly suitable for the empirical evaluation and
comparison of association measures, which are a pivotal element in the extraction
process. Thus, an evaluation of the collocation candidates allows us to assess how
well the scores assigned by an association measure correspond to the collocativity
of the respective word pairs. The application background defines an evaluation goal
and thus helps to interpret the results. The relevant evaluation criterion is the use-
fulness of each association measure for the extraction of collocations. A quantitative
measure (the precision) is given by the proportion of true positives in an n-best list
of pre-defined size (see Section 5). Of course, the evaluation results are also highly
relevant for applications, where they help select the most appropriate association
measure for a given task (mainly the evaluated collocation extraction task itself, but
also for other applications that use automatically extracted collocation candidates as
a knowledge source).

In this thesis, I adhere to the “symmetric” view of collocations as opaque units
that are largely independent from their component words. The goal of this approach,
which is prevalent in computational linguistics, is to obtain a high proportion of true
positives in n-best lists selected from all candidate pairs. An alternative is the “di-
rectional” view, which starts from a given keyword (also called the base, usually a
high-frequency noun or verb) and aims to identify its collocates. This approach is
natural when collocations are formalised in terms of lexical functions (Mel’čuk 2003;
Kahane and Polguère 2001), and it is widely used in British computational lexicog-
raphy (Sinclair 1991). The goal is usually to identify those collocates which are the
most characteristic for the keyword (the collocation definition has to be chosen ac-
cordingly, but is often left implicit). Since the search space is reduced to candidates
that contain the keyword as one of their components, the extraction task is simplified
considerably. On the other hand, the evaluation of “directional” methods is more
complicated and not as clear-cut. So far, published experiments have been limited to
impressionistic case studies for a small number of keywords (e.g. Church et al. 1991;
Sinclair 1991; Stubbs 1995).

28 CHAPTER 1. INTRODUCTION

1.3 Motivation and goals

1.3.1 The state of the art

Section 1.2 has demonstrated the importance of cooccurrence data and statistical
associations for various applications in natural-language processing, and for colloca-
tion extraction in particular. The cornerstone of all these applications is the statistical
analysis with association measures, and the quality of the results depends crucially on
the felicitous choice of a measure. As early as 1964, Vincent Giuliano reflected after
the Symposium on Statistical Association Methods For Mechanized Documentation:

[First,] it soon becomes evident [to the reader] that at least a dozen some-
what different procedures and formulae for association are suggested [in
the book]. One suspects that each has its own possible merits and disad-
vantages, but the line between the profound and the trivial often appears
blurred. One thing which is badly needed is a better understanding of
the boundary conditions under which the various techniques are applica-
ble and the expected gains to be achieved through using one or the other
of them. This advance would primarily be one in theory, not in abstract
statistical theory but in a problem-oriented branch of statistical theory.
(Giuliano 1965b, 259)

Giuliano also emphasises the need for empirical evaluation:

[Secondly,] it is clear that carefully controlled experiments to evaluate the
efficacy and usefulness of the statistical association techniques have not
yet been undertaken except in a few isolated instances. . . . Nonetheless,
it is my feeling that the time is now ripe to conduct carefully controlled
experiments of an evaluative nature, . . . (Giuliano 1965b, 259)

Let us have a look at the current state of the art, almost exactly forty years after the
Symposium was held in Washington, DC in March 1964. There are five major strands
of research that might lead to a better understanding of association measures and
their usefulness for collocation extraction tasks:

1. In mathematical statistics, there is a large body of work on measuring associa-
tion in 2 × 2 contingency tables (see Yates (1984) for an overview), as well as
the underlying random sample model, which is perhaps the most fundamental
and widely used statistical model (Agresti 1990; Lehmann 1991). Problems of
the randomness assumption on which this model rests have been discussed in
the fields of lexical statistics, corpus linguistics, and natural-language process-
ing (Baayen 1996; Katz 1996; Church 2000; Kilgarriff 2001).

2. In computational linguistics, various association measures were suggested, usu-
ally for the task of extracting collocation candidates (e.g. Stevens et al. 1965;
Church and Hanks 1990; Dunning 1993; Pedersen 1996). Some papers describe
complete extraction systems that employ various kinds of filtering in addition to
the statistical analysis (e.g. Choueka 1988; Smadja 1993; Daille 1996). There
is no reasonably comprehensive listing of the large number of available associ-
ation measures. Manning and Schütze (1999, Ch. 5) describe the three most

1.3. MOTIVATION AND GOALS 29

widely-used measures, although the mathematical presentation is a little vague.
More explicit equations with example calculations are given by Pearce (2002)
and Weeber et al. (2000), while Schone and Jurafsky (2001) present concise
equations for nine different measures.

3. A few attempts were made to evaluate different association measures (or entire
collocation extraction systems) and compare their performance in a specific
task (e.g. Breidt 1993; Daille 1994; Lezius 1999; Evert et al. 2000; Krenn 2000;
Evert and Krenn 2001; Pearce 2002; Schone and Jurafsky 2001). In particular:

• Breidt (1993) evaluates a combination of the MI and t-score measures for
the extraction of German noun-verb collocations. This preliminary study
is based on small corpus and a list of 16 verbs that are typically found
in support-verb constructions (Breidt states that they are also commonly
found with other types of noun-verb collocations). Rather than comparing
different association measures, she varies conditions such as the corpus
size and the strategies used for the extraction of cooccurrences.

• Daille (1994) compares a total of 18 statistical measures for the extraction
of French multi-word compound nouns, terminology in the telecommuni-
cations domain (see also Daille 1996).

• Krenn (2000) compares four association measures (Dice, MI, log-likelihood,
and average-MI) as well as cooccurrence frequency (as a non-statistical
“baseline”) for the extraction of German PP-verb collocations (she also
considers two other approaches that are not based on association scores
and the corresponding rankings, so it is difficult to compare them directly
with the association measures). In later publications, the comparison is
extended to t-score and eventually to a wide range of measures (Evert and
Krenn 2001).

• Schone and Jurafsky (2001) compare 9 measures (plus several strategies
for filtering and enriching the extraction results), with the goal of extract-
ing multi-word headwords for dictionaries (such as compact disk).

4. Some articles concentrate on a small case study rather than a full-scale evalua-
tion, often trying to gain an intuitive understanding of the differences between
association measures rather than evaluate their performance on large amounts
of data. For instance, Lapata et al. (1999) correlate the association scores
of different measures with native-speaker judgements of plausibility. Stubbs
(1995) essentially performs a lexicographic analysis of cooccurrences involving
the lemma cause (both as noun and verb), with a perfunctory look at six other
“semantically related” lemmata. A complementary approach is interested in the
mathematical characteristics of association measures. Stubbs (1995) compares
and manipulates equations to get a feel for their mathematical properties, while
Tan et al. (2002) study the behaviour of a large number of measures under var-
ious “extreme” conditions. Some authors focus on the properties of a single
association measure, e.g. Smadja et al. (1996, 9–12) with an intuitive descrip-
tion of the Dice measure and Dunning (1998) with a more mathematical look
at log-likelihood.

30 CHAPTER 1. INTRODUCTION

5. Finally, there is an enormous volume of literature on lexical statistics (for an
overview, see Baayen 2001) and especially on Zipf’s law (Zipf 1949).17 This
research provides a different angle on the random sample model behind associ-
ation measures, but the results have hardly ever been applied to cooccurrence
data so far (except for Ha et al. 2002).

In addition, a large amount of research on the linguistic properties of collocations
and on their formal definition has been carried out in various areas of linguistics,
lexicography, etc. (cf. the references in Section 1.1.1). Since I am primarily concerned
with cooccurrences and their statistical association, such linguistic issues are not
directly relevant for my thesis. In Chapter 5, which explores the connection between
cooccurrences and collocations, the evaluation results may depend on the precise
definition of collocations and their properties, but the evaluation methods do not.

1.3.2 Goals and Objectives

It is amazing to see how little progress has been made in the understanding of word
cooccurrences, association measures and their relation to collocations in the forty
years that have passed since the Washington Symposium. The reference work that
Giuliano felt was so urgently needed – a compendium that lists, explains and com-
pares the multitude of available association measures – has never seen the light of
day. The closest approximation, Chapter 5 of Manning and Schütze (1999), is rou-
tinely cited in this context nowadays. However, the authors only find room18 to
discuss three widely-used association measures (plus one that has seldom been em-
ployed, Pearson’s X2), and the evaluation and comparison of these measures is re-
stricted to lists of twenty-odd “interesting bigrams”, as it is so often the case. Tellingly,
they cannot point to a more comprehensive listing and discussion of association mea-
sures recommended for further reading (Manning and Schütze 1999, 187–189). My
thesis aims to fill this gap and provide a reference for future research on the statistics
of word cooccurrences. This includes the following goals:

1. An explicit description of the statistical model underlying association measures
and the appropriate counting methods, both for relational and positional cooc-
currences. This task includes a discussion of the adequacy of the model as-
sumptions and some remarks on the problem of extraction noise (Chapter 2).

2. A comprehensive inventory of association measures, collecting the wide variety
of available suggestions into groups of measures that have a similar theoretical
background. For each measure, an explicit and readable equation is given (ex-
pressed in terms of expected and observed frequencies), and its mathematical
derivation is discussed with key references (Chapter 3).19

17See http://linkage.rockefeller.edu/wli/zipf/ for a collection of references on Zipf’s law.
18They even afford some of their scant space to a superficial treatment of frequency comparisons

between different corpora, which has little to do with cooccurrences or collocations save for the fact
that some statistical measures can be applied to both tasks.

19For instance, the equation commonly used for the t-score measure involves some approximations
which neither Church and Hanks (1990) nor Manning and Schütze (1999) explain clearly.

1.3. MOTIVATION AND GOALS 31

3. Reference implementations of all association measures in this inventory, with
attention to details, robustness under boundary conditions and numerical ac-
curacy. With these implementations being available, it should no longer be
necessary to resort to a piece of code “sent to me by a friend” or “grabbed off
the net” (see the software documentation in Appendix B.1).

4. A geometric model of association measures, which provides a framework for a
better intuitive understanding and comparison of their properties. As a result
of this analysis (and the theoretical background of the measures), two major
groups of association measures emerge. The measures in each group have sim-
ilar properties and are based on the same reasoning, so most of them can be
represented by one or two “group prototypes” (Sections 3.3 and 3.4).

5. Lowest-frequency word pairs have always been a challenge for the statistical
analysis of cooccurrences. I apply the tools of lexical statistics and Zipf’s law
in order to show that such problems are caused by a fundamental quantisation
effect for the skewed distributions that are characteristic of lexical frequency
data. Therefore, it is impossible in principle to compute meaningful associa-
tion scores for the lowest-frequency data, providing theoretical support for the
application of frequency cutoff thresholds (Chapter 4).

6. Finally, I aim to provide tools and methods for the empirical evaluation of as-
sociation measures in collocation extraction tasks. After describing the general
precision/recall-based evaluation methodology and the graphical presentation,
I address the significance of result differences. This issue is surrounded by much
confusion about the choice of an appropriate significance test. Furthermore,
evaluation based on random samples opens up new possibilities to perform ex-
periments under a wider range of conditions. Such experiments are necessary
both in order to find suitable association measures for specific applications and
in order to improve our understanding of their properties. Implementations of
all evaluation methods described in the thesis are freely available (Chapter 5
and the software documentation in Appendix B.2).

Some preliminary results from the research presented here have previously been pub-
lished in the following papers: the discussion of extraction noise in Section 2.3.3 (Ev-
ert and Kermes 2003), the Zipf-Mandelbrot population model in Section 4.2 (Evert
2004b), the evaluation procedure and graphical presentation in Section 5.1 (Evert
et al. 2000; Evert and Krenn 2001; Krenn and Evert 2001), the significance of result
differences in Section 5.2 (Evert 2004a), and the random sample evaluation method
in Section 5.3 (Evert and Krenn 2005).

1.3.3 Limitations

There are several aspects of word cooccurrences and methods for their statistical
analysis that I do not consider in the present thesis, namely: cooccurrences of more
than two words (often referred to as n-grams, for n > 2), possibly also including
categorial elements (such as function words); variable-length sequences (where
the number of cooccurring elements is not fixed in advance); distributional methods

32 CHAPTER 1. INTRODUCTION

(which consider e.g. the frequency distribution over all cooccurrents of a given word
or phrase); and higher-order statistics (which compare and cluster similar frequency
distributions).

My reasons for limiting my work in this way – apart from plain time and space
complexity – are the following: (i) Association measures for word pairs are easy to
compute and can be applied to large numbers of pairs without too much overhead,
which can be relevant when they are used as one module in a complex collocation
extraction system. (ii) Association scores often form the basis of further statistical
analyses, especially higher-order statistics and clustering techniques on cooccurrence
vectors, as well as methods that operate on cooccurrence graphs. It is therefore im-
portant to have meaningful association score with well-understood properties from
which to proceed. (iii) Association measures can be applied to individual word pairs
without knowledge of the full range of cooccurring pairs (called a data set in Chap-
ter 2). They are thus applicable in situations where it is practically impossible to
obtain accurate frequency data for all the cooccurrences of a given word, e.g. when
cooccurrence frequencies are obtained from internet search engines (cf. Keller and
Lapata 2003).

In addition to all the gaps and open questions that need to be filled in (as listed
in Section 1.3.2), I see a thorough understanding of the properties of association
measures for word pairs as a necessary prerequisite for an extension to more complex
kinds of cooccurrences, for which the mathematical theory offers considerably less
help and guidance. Or, as D. R. Cox put it: “Nevertheless points remain for discussion,
in particular so as to understand what to do in more complicated cases for which the
single 2 × 2 table is a prototype” (Yates 1984, 451).

Chapter 2

Foundations

2.1 Corpus data

2.1.1 Frequency counts

This section explains how cooccurrence data are obtained from a source corpus.1

The following discussion assumes a relational model of cooccurrences, whose advan-
tages have been explained in Section 1.1.2. Some remarks on positional cooccurrence
data (which are either based on a segmentation of the corpus into non-overlapping
regions or some measure of the distance between words) can be found in Section 2.4,
showing how the counting methods have to be modified so that the interpretation in
terms of a random sample model (as defined in Section 2.2) is still possible.

The term word is used both for certain syntactic units in a text (“running words”)
and for lexical items as listed in a dictionary (“headwords”). For the purpose of
obtaining frequency counts, it is essential to make a clear distinction between these
two aspects: lexical items are called types, while their instances in a text are referred
to as tokens. The same distinction between types and tokens has to be made when
counting other entities such as cooccurrences or syntactic constructions.

The general formal model for frequency counts is based on a pre-determined set
C of types, which is often defined in a very general manner (e.g. as the set C = Σ∗

of all strings over some alphabet Σ). Variables for types are written as lowercase
letters u, v ∈ C. By some means, a set T of tokens is identified in the source corpus.
In order to simplify notation, I assume that T is well-ordered, so that we can write
T = {t1, t2, . . . , tN}. The precise arrangement is not important, though, and need not
correspond to a sequential ordering of the tokens in the source corpus. N is referred
to as the sample size (for reasons that will become clear in Section 2.2). Each token
t is labelled with a type φ(t) = u ∈ C. The function φ : T → C is called a label
mapping. I use the notation Ui := φ(ti) for the label of the i-th token, so that the
data extracted from the corpus can be represented by the sequence (U1, U2, . . . , UN).
Normally, φ is not surjective and only the observed types φ(T) ⊆ C are considered
in the statistical analysis. The corpus frequency f(u) of a type u ∈ C is given by the

1I use the term corpus in the sense it often has in natural-language processing, i.e. as any collection
of machine-readable texts, not as a clean and representative sample from a well-defined frame of
reference (cf. McEnery and Wilson 2001, 78f).

33

34 CHAPTER 2. FOUNDATIONS

number of tokens labelled with u (called the instances of u). Formally,

f(u) := |φ−1(u)| = |{i |Ui = u}|. (2.1)

When this general model is applied to word frequency counts, a token t usually corre-
sponds to a contiguous sequence of characters, which may or may not contain blanks.
In some cases, however, a token may also represent a non-contiguous sequence (e.g.
a German particle verb with separated particle) or a linguistic interpretation of the
text without reference to surface forms (e.g. a non-terminal node in a syntax tree
that is not overtly realised). Of course, the way in which tokens are identified in
the source corpus depends on the precise definition of what constitutes a word as a
syntactic unit.

As an example, consider the approach to corpus frequency data described by
McEnery and Wilson (2001, 82), which is widely used in the field of corpus lin-
guistics. In this approach, tokens are contiguous, non-overlapping sequences of char-
acters in a text corpus, and types are defined as equivalence classes of tokens. An
equivalence class may collect all tokens that represent exactly the same sequence of
characters (also called a word form type), or collect all word forms that belong to an
inflectional paradigm (called a lemma type). My formalisation of the counting process
is more general than this process, and compatible with it. A translation can be made
in two ways: (i) Let C be the infinite set of all possible character sequences (C = Σ∗)
and construct the type mapping φ according to the definition of equivalence; or (ii)
identify C with the set of equivalence classes a posteriori. Then the type mapping is
given by the membership relation between tokens and equivalence classes.

When applied to cooccurrence data, each token t represents a pair of cooccur-
ring word tokens r and s, i.e. t = (r, s). Hence, t is called a pair token, and
Tp = {t1, . . . , tN} is the set of all pair tokens in the source corpus. Formally, r and s
may belong to different sets of word tokens, r ∈ T1 and s ∈ T2. In practice, r and s
usually belong to the same set T of word tokens, but they will often be restricted to
different subsets T1, T2 ⊆ T (e.g. the adjectives T1 and nouns T2 in the corpus). Tp is a
subset of all possible pairs of word tokens: Tp ⊆ T1×T2. In the relational model, each
pair token t corresponds to an instance of a particular structural relation in the source
corpus, represented by the two word tokens that are its arguments. Consider the ex-
ample sentence in Figure 2.1,2 showing cooccurrences between nouns and modifying
adjectives. This sample contains two pair tokens, Tp = {(r6, r10), (r9, r10)}. All word
tokens are taken from the same set T = {r1, . . . , r11}, but the first components of the
pairs are restricted to adjective tokens (T1 = {r6, r9}) and the second components to
noun tokens (T2 = {r2, r10}).

Each pair token t = (r, s) is labelled with the types of its two components r and s.
Therefore, the set Cp of possible pair types is the Cartesian product of the two sets of
word types, Cp = C1 × C2, and each pair type w = (u, v) consists of the components
u ∈ C1 and v ∈ C2. The label mapping φ : Tp → Cp is given by the Cartesian product
of the corresponding word label mappings φ1 : T1 → C1 and φ2 : T2 → C2, so that
φ(t) = (φ1(r), φ2(s)) ∈ Cp. As above, I use the notation Wi = (Ui, Vi) := φ(ti) for
the labels of the i-th pair token and its components. In the example of Figure 2.1, we

2This example has been adapted from the novel Dombey and Son by Charles Dickens, Chap-
ter 62. Parts of speech are indicated by tags from the Penn Treebank tagset. See http://www.ims.
uni-stuttgart.de/projekte/CQPDemos/cqpdemo.html for more information.

2.1. CORPUS DATA 35

dt

This

r1

nn

bottle

r2

vbz

is

r3

dt

a

r4

rb

very

r5

jj

rare

r6

cc

and

r7

rbs

most

r8

jj

delicious

r9

nn

wine

r10

sent

.

r11

Figure 2.1: Example of adjective-noun cooccurrences. The arrows indicate structural
relations between a prenominal adjective and the noun that it modifies, correspond-
ing to pair tokens in the formal model.

have N = 2, W1 = (rare,wine) and W2 = (delicious,wine).3 Note how a word token
(r10) may belong to more than one pair token, or to none at all (r2). In the following
section we will see that, although there is only one instance of the type wine in this
corpus, it has a frequency of 2 as a component of adjective-noun pairs (with instances
t1 and t2).4 The sequence (W1, . . . ,WN) of pair labels forms the base data (or base
cooccurrence data) extracted from the source corpus. It provides the basis for the
statistical model in Section 2.2, while the actual set Tp of pair tokens plays no role
in the analysis. The pair frequency or cooccurrence frequency f(w) = f(u, v) of
a pair type w = (u, v) is the number of tokens labelled w (i.e. the instances of w).
Formally, we have

f(w) := |φ−1(w)| = |{i |Wi = w}| = |{i |Ui = u∧ Vi = v}|, (2.2)

with φ−1(w) =
{
t ∈ Tp

∣∣φ(Tp) = w
}

. Recall that only the observed types φ(Tp) ⊆ Cp

are usually considered, i.e. all pair types with zero frequency are discarded.

2.1.2 Contingency tables and frequency signatures

For each pair type w = (u, v) ∈ Cp, not only the cooccurrence frequency f(w) is
of interest, but also the cooccurrences of u and v with other words. This frequency
information is usually collected in a contingency table, representing a four-way clas-
sification of the base data according to the components of the labels (i.e. whether
Ui = u or not, and whether Vi = v or not). This classification yields the four cell
counts

O11 := |{i |Ui = u∧ Vi = v}| O12 := |{i |Ui = u∧ Vi 6= v}|

O21 := |{i |Ui 6= u∧ Vi = v}| O22 := |{i |Ui 6= u∧ Vi 6= v}|
(2.3)

3In this example, there is no difference between word form types and lemma types. Most appli-
cations will use lemma types (because the larger cooccurrence frequencies obtained by pooling mor-
phological variants of the same lemma pair translate into more significant statistical results), provided
that the necessary technology is available.

4It may seem counter-intuitive to assign a frequency count greater than one to a single word token,
but keep in mind that the relational model of cooccurrences is based on instances of structural rela-
tions, not on instances of words. This strategy may lead to inflated frequency counts for examples such
as a beautiful, beautiful, beautiful speech (found in the British National Corpus). For optimal results,
the repetition of the adjective should be identified as a rhetoric device during cooccurrence extraction
(or syntactic pre-processing) and be replaced by a single adjective-noun relation (perhaps with an
annotation indicating the rhetoric effect).

36 CHAPTER 2. FOUNDATIONS

V = v V 6= v

U = u O11 O12

U 6= u O21 O22

O11 + O12 + O21 + O22 = N

Figure 2.2: Contingency table of observed frequencies

which are usually presented in the form of a 2 × 2 table as shown in Figure 2.2. A
more compact notation is the quadruple (O11, O12, O21, O22) =: ~O. The cooccurrence
frequency information can also be represented by the pair frequency f(w) = f(u, v)
and the component frequencies f1(u) := |{i |Ui = u}| and f2(v) := |{i |Vi = v}|
(also called the joint and marginal frequencies). Note that the marginal frequencies
are not based on the total number of instances of u or v in the corpus, but rather on
the number of pair tokens with u as first label or v as second label, respectively. This
method for obtaining contingency tables may be easier to implement in a computer
program. I refer to the quadruple(

f(u, v), f1(u), f2(v), N
)

=: (f, f1, f2, N)(u,v),

as the frequency signature of a pair type (u, v). The subscript (u, v) is usually omit-
ted, writing (f, f1, f2, N) unless there is a need to distinguish between the signatures
of different pair types. The information contained in the contingency table ~O is fully
equivalent to that in the frequency signature. Conversion rules are given by (2.4).

f = O11

f1 = O11 + O12

f2 = O11 + O21

N =
∑

ijOij

O11 = f

O12 = f1 − f

O21 = f2 − f

O22 = N − f1 − f2 + f

(2.4)

Here and in the following,
∑

ij is used as a shorthand notation for the summation∑2
i=1

∑2
j=1 over the rows and columns of a contingency table. As an example, con-

sider adjacent English adjectives and nouns extracted from the British National Cor-
pus (BNC) and labelled with lemma types (see Section 2.1.3 for a more detailed
description of the extraction process). For the pair type w = (black, box), we obtain
the contingency table shown in Figure 2.3. There are 123 instances of w (corre-
sponding to the surface strings black box and black boxes), 13 168 cooccurrences of
black with a different noun than box, and 1 810 cooccurrences of box with a differ-
ent adjective than black. The corresponding frequency signature is (f, f1, f2, N) =
(123,13 291,1 933,4 966 984). Note that the marginal frequency of box, f2(v) =
1 933, is much smaller than the total number of instances of the noun box in the BNC
(which may be written as f(v) = 7 970).

2.1. CORPUS DATA 37

V = box V 6= box

U = black 123 13 168

U 6= black 1 810 4 951 883

Figure 2.3: Contingency table for the adjective-noun pair type (black, box) in the
British National Corpus.

V = v V 6= v

U = u O11 + O12 = R1

+ +

U 6= u O21 + O22 = R2

= C1 = C2

Figure 2.4: Contingency table with row and column sums.

When cooccurrence frequencies are given in the form of a contingency table, the
row sums R1 = O11+O12 and R2 = O21+O22 as well as the column sums C1 = O11+O21

and C2 = O12 + O22 are often included since they play an important role in the
statistical analysis (cf. Figure 2.4).

From the transformation rules above it is obvious that f1 = R1 and f2 = C1. The
row and column sums, and hence also the component frequencies f1 and f2, are
often referred to as marginal frequencies, being written in the margins of the table.
A concrete example for the pair (black, box) is shown in Figure 2.5. I use the term
data set for the set of pair types extracted from a source corpus together with their
frequency signatures or contingency tables. A data set is the result of performing
frequency counts on the base data.

2.1.3 Examples

As concrete examples, consider the following English and German data sets which
are referred to in various places throughout the thesis. The data sets are based on
three different source corpora:

1. For English, the British National Corpus (BNC) was used, a balanced sample of
written and (transcribed) spoken English running up to a total of ca. 100 million
words of text (Aston and Burnard 1998). The version of the corpus used here

38 CHAPTER 2. FOUNDATIONS

V = v V 6= v

U = u 123 + 13 168 = 13 291

+ +

U 6= u 1 810 + 4 951 883 = 4 953 693

= 1 933 = 4 956 051 N = 4 966 984

Figure 2.5: Contingency table for (black, box) with row and column sums.

is annotated with part-of-speech tags and lemma types.

2. Most German examples are based on the Frankfurter Rundschau (FR) corpus, a
newspaper corpus comprising ca. 40 million words of text from the years 1992
and 1993.5 The corpus was part-of-speech tagged with the TreeTagger (Schmid
1994) and annotated with lemma types as well as morpho-syntactic information
from the IMSLex morphology (Lezius et al. 2000).

3. In order to study very large amounts of data, an extension of the FR corpus with
material from various other newspapers (all from the 1990s) was used. With a
total size of ca. 225 million words of text, this corpus is referred to as the Huge
German Corpus (HGC).

an-bnc: One of the simplest examples of relational cooccurrences are prenominal
adjectives in English, seen as a cooccurrence of the adjective and the modified
noun. It is fairly easy to identify these cooccurrences in a part-of-speech tagged
corpus when the adjective and the noun are directly adjacent. The targeted
structural relation can be defined as a combination of (syntactic) modification
and (graphemic) adjacency, which does make sense e.g. when the cooccurrence
data are used to extract multi-word compound nouns or dictionary headwords
(such as the example black box from the previous section). When the relation
of interest is adjective-noun modification (without the additional constraint),
the extraction will miss a considerable number of cooccurrences, trading recall
for a high degree of precision. Some inaccuracies in the base data (referred
to as noise) always have to be expected when automatic methods are used for
extraction (see Section 2.3.3 for a brief discussion).

In this way, N = 4 250 139 adjective-noun pair tokens were found in the British
National Corpus as base data. The frequency analysis, based on lemma types,
resulted in a data set of V = 1 205 637 pair types with cooccurrence frequen-
cies ranging from f = 1 (for 813 498 types) to f = 8 847 (for the pair prime
minister).

5The FR corpus is part of the ECI Multilingual Corpus 1 distributed by ELSNET. ECI stands for
European Corpus Initiative, and ELSNET for European Network in Language And Speech. See http:
//www.elsnet.org/resources/ecicorpus.html for details.

2.1. CORPUS DATA 39

an-fr: In a similar way, German adjective-noun pairs were extracted from the Frank-
furter Rundschau corpus. Since most compound nouns are written as single
graphemic words in German, the adjacency requirement did not seem justified.
Instead, simple part-of-speech patterns were applied that allow a number of
intervening words between the adjective and the noun, excluding certain parts
of speech (see Evert and Kermes 2003). In the English example of Figure 2.1,
a pattern that excludes nouns and verbs between the cooccurring adjective (jj)
and noun (nn), but allows conjunctions (cc), adverbs (rb) and other adjectives,
would correctly identify both pair tokens.

The an-fr base data consist of N = 1 618 799 pair tokens, resulting in a data
set of V = 605 030 pair types. Here, frequencies range from f = 1 (for 427 946
pair types) to f = 7 430 (for the pair vergangenes Jahr, ‘last year’).

an-hgc: This data set uses the same method to extract adjective-noun cooccurrences
from the full HGC corpus. For technical reasons, exactly 12 million pair tokens
were used, resulting in a data set of V = 3 621 708 pair types.

vn-bnc: For this data set, verb-noun pairs (where the noun is the direct object of
the verb) were extracted from the British National Corpus (BNC). In contrast to
the adjective-noun data, simple adjacency would identify only a limited subset
of the cooccurrences (and would not even find well-known idioms such as kick
the bucket). Therefore, a more complex part-of-speech pattern was used for the
extraction, which can be described informally as

[verb particle?] det? adjective* [noun],

i.e. a verb, optionally followed by a particle, then followed by a simple noun
phrase that may contain an optional determiner and an arbitrary number of ad-
jectives in addition to the head noun. The square brackets indicate which parts
of the pattern were extracted as the components of the pair tokens (namely,
verb(+particle) as first component and noun as second component).

In this way, N = 1 345 935 pair tokens were extracted from the BNC, result-
ing in a data set of V = 496 249 lemma types. Of these, 5 365 satisfied the
frequency threshold condition f ≥ 25 that was applied.

pnv-fr: A more complex example is the extraction of preposition-noun-verb (PNV)
combinations from the Frankfurter Rundschau corpus, as used by Krenn (2000)
for the identification of PP-verb collocations. In order to fit the PNV triples into
the framework used here, they are interpreted as (PN,V) pairs, where a combi-
nation of preposition (functional head) and noun (lexical head) represents the
PP (this combination is thus treated as a “complex word”). The structural rela-
tion between PP and verb can be defined in terms of a phrase structure analysis,
where the PP must be attached to some projection of the verb. The relation may
be refined to allow only PPs that function as P-object rather than adjunct, when
such a distinction is made in the theory.

Ideally, a full syntactic analysis of the source corpus would allow us to extract
the cooccurrences directly from parse trees. Since a parser with the required

40 CHAPTER 2. FOUNDATIONS

coverage was not available, a partial syntactic analysis was performed with
the YAC chunk parser (Kermes 2003). In addition to noun phrases (NP) and
prepositional phrases (PP), YAC identifies verbal complexes (VC) and subordi-
nate clauses in the text. All chunks are annotated with the corresponding head
lemma. PPs are annotated both with the preposition and the nominal head. The
head lemma annotations of VCs are particularly useful because they recombine
separated particle verbs. Based on these annotations, all possible combinations
of a VC and a PP (labelled with their respective head lemma annotations) within
the same main or subordinate clause were extracted as cooccurrences.

Figure 2.6 shows the partial syntactic analysis of the sentence Ein mit Kaf-
fee beladenes Schiff sticht bei gutem Wetter in See. ‘A ship loaded with cof-
fee beans puts to sea in fine weather.’ From this tree structure, the pair to-
kens (bei Wetter, stechen) and (in See, stechen) are extracted (because the corre-
sponding PP nodes are attached to the same S node as the VC). The embedded
PP mit Kaffee is ignored because it is not directly attached to the S node.

This extraction strategy resulted in N = 5 082 148 pair tokens and a data set
of V = 3 346 843 pair types. Because the structural relation – and especially
the extraction technique – is much less constrained than in the adjective-noun
examples, the proportion of types with f = 1 is particularly high (2 711 356
types).

pnv-slices: For an empirical validation experiment in Section 5.2.3, the Frank-
furter Rundschau corpus was divided into 80 contiguous, non-overlapping parts
(called “slices”), each one containing approx. 500 000 running words. PP-verb
cooccurrences were extracted from each slice as described above for the pnv-fr
data set, with a frequency threshold of f ≥ 3. This procedure resulted in 80
data sets containing between 536 and 867 pair types (with an average of 658).

pnv-hgc: An extension of pnv-fr to the HGC corpus yielded more than 32 mil-
lion pair tokens. For technical reasons, exactly 32 million tokens were used,
resulting in a data set of 18 529 301 pair types.

2.1.4 Filtering cooccurrence data

Cooccurrence data are often filtered, removing certain “undesirable” pair tokens or
types. Some filters are outlined shortly for the examples in Section 2.1.3, and pre-
sented in more detailed at the end of the section. For instance, adjective-noun pairs
may be suppressed if the adjective is deverbal and subcategorises a PP (which is then
interpreted as a noun-verb relation “in disguise”, possibly also including the PP as
an argument). Note how the application of such a filter requires additional informa-
tion to be annotated with the base data (regarding the presence of a PP). Filtering
is particularly common in NLP applications (tools for collocation extraction, cf. Sec-
tion 1.2.2).

There are two different kinds of filtering: token filtering, where pair tokens are
removed before obtaining frequency counts; and type filtering, where pair types are
removed after obtaining the frequency counts.

2.1. CORPUS DATA 41

Ein
ART
ein

mit
APPR

mit

Kaffee
NN

Kaffee

beladenes
ADJA

beladen

Schiff
NN

Schiff

sticht
VVFIN

stechen

bei
APPR

bei

gutem
ADJA

gut

Wetter
NN

Wetter

in
APPR

in

See
NN
See

.

$.
.

s

np

ap

pp

np

nc ac nc

vc

v

pp

np

ap

ac nc

pp

np

nc

Figure 2.6: Example for the extraction of PP-verb cooccurrences from a partial syn-
tactic analysis produced by the YAC chunk parser.

Token filtering affects the sample size and (more importantly) the frequency
signatures of pair types. Token filtering can be understood as a set of additional rules
for the identification of pair tokens and has no further implications for the model.
However, there should be some (theoretical) justification of why the deleted pair
tokens are not considered instances of the targeted structural relation, which may
involve narrowing down that relation. It is not sufficient to note that e.g. certain
general adjectives in adjective-noun pairs “usually produce uninteresting results”:
they are still instances of adjectival modification of nouns and have to be counted as
such. (It is perfectly valid, though, to remove such “uninteresting” pairs by means of
type filtering.)

Type filtering deletes certain pair types from a data set without affecting the
frequency signatures of the remaining pair types, or divides a data set into two or
more subsets, which are then processed separately. Type filtering is often done in
an attempt to improve the statistical analysis of cooccurrences by teasing apart dif-
ferent frequency distributions that are overlaid in the original data set. Sichel (1975,
547) uses the same argument for word frequency distributions. It can also be under-
stood as a pragmatic means of improving the performance of a collocation extraction
tool (an example are the above-mentioned general adjectives in adjective-noun pairs,
which are seldom of interest to lexicographers).

Example 1: In the case of prenominal adjectives, it might make sense to ignore noun
phrases whose head is a proper noun, the underlying structural relation being
defined as “adjectival modification of common nouns”. Technically, filters of
this type are usually implicit in the syntactic analysis and the identification of
cooccurrences rather than being explicitly applied to a the base data. The part-
of-speech patterns used for the construction of the an-fr data set include such
a constraint.

Example 2: As mentioned above, for German prenominal adjectives it can be useful

42 CHAPTER 2. FOUNDATIONS

to eliminate deverbal adjectives (i.e. present or past participles used as adjec-
tives, which often take NP or PP complements), in order to avoid the prob-
lematic distinction between lexicalised adjectives and verb participles. It is not
immediately clear whether such a filter should be applied to pair tokens or to
types. Possible arguments are: (i) In favour of the token filter, that deverbal
adjectives often express verb-subject (present participles) and verb-object (past
participles) relations rather than adjectival modification. It may be even more
appropriate to filter out only those pair tokens where the adjective is in fact
accompanied by a PP or NP. (ii) In favour of the type filter, that the syntac-
tic construction is identical for both types of adjectives, but that deverbal ones
combine with a different set of nouns (those which can be subjects or objects
of the corresponding verbs), so that we have two different, overlaid frequency
distributions. Alternatively, deverbal adjectives may simply be seen as useless
or problematic in a lexicographic application, and hence be deleted.

Example 3: An excellent example of type filtering is provided by PP-verb pairs. In
her German data, Krenn (2000) distinguishes between figurative expressions
and support-verb constructions (SVC, as Bußmann (1990)’s translation of the
German term Funktionsverbgefüge). Breidt (1993) gives a list of 16 verbs that
are often used as support verbs, namely: bleiben, bringen, erfahren, finden,
geben, gehen, gelangen, geraten, halten, kommen, nehmen, setzen, stehen, stellen,
treten, ziehen (Krenn 2000, 120). One may well expect these SVC verbs to have
special distributional properties in PP+verb pairs, so it makes sense to split the
data set into two parts that are analysed separately.

2.2 A statistical model of cooccurrences

Raw cooccurrence data (i.e. the observed frequency signatures or contingency ta-
bles) provide some evidence for recurrent word combinations (mainly in the form
of cooccurrence frequencies). However, the plain numbers are difficult to interpret,6

and any conclusions drawn from them are only valid for the one particular corpus
from which the data were extracted. When extraction involves automatic linguistic
pre-processing or analysis, the observed frequencies will also be affected by the errors
that these programs make (typical error rates range from some 2% for a well-trained
part-of-speech tagger to almost 50% for broad-coverage syntactic analysis).

Statistical analysis is applied in order to overcome these problems. This analysis
has three main goals (or tasks): (i) to interpret the observed frequency data as an
indicator of statistical association between words and quantify the strength of this
association; (ii) to generalise results beyond the particular source corpus from which
the cooccurrence data were obtained; and (iii) to filter out noise introduced by au-
tomatic pre-processing and extraction. All three tasks are related in their underlying
logic, which assumes that the object of interest – statistical association between the
components of a pair type – is a hidden quantity that is reflected in the contingency

6Should one just look at the cooccurrence frequency f of a pair type? Or is the ratio between joint
frequency and marginal frequency more meaningful? If so, which of the two ratios, f/f1 or f/f2?
Or should they be combined in some way, be it arithmetic mean, geometric mean, harmonic mean,
minimum, or maximum?

2.2. A STATISTICAL MODEL OF COOCCURRENCES 43

table of observed frequencies. However, those frequencies are also subject to other
uncontrollable influences. Task (i) above consists in the identification and precise
definition of the hidden quantity, while tasks (ii) and (iii) adress the relation be-
tween this quantity and the observed data.

In the terminology of a statistical model, the hidden quantity is a parameter of
the model (for a given pair type) and the contingency table extracted from the source
corpus for this pair type is an observation; the link between parameters and obser-
vations is provided by the sampling distribution, which specifies the probability of
a particular observation or group of observations (an outcome of the sample) given
some hypothesis about the parameter values. The goal of the statistical analysis is to
make inferences about the model parameters from the observed data, based on the
assumed sampling distribution.

The core of any statistical model lies in the definition (or rather postulation) of
a sampling distribution. This choice determines which external influences are taken
into account by the model (cf. tasks (ii) and (iii) above) and how accurately they
are represented. By the nature of statistical reasoning, the sampling distribution
must always involve some element of randomness. For the purpose of task (ii),
the sampling distribution should predict to what extent the contingency table of a
given pair type varies from one source corpus to another. Randomness here lies in
the arbitrary choice of a particular source corpus from a set of alternatives (often
hypothetical ones). Task (iii) can also be accommodated in this framework, when the
set of alternatives includes versions of the same corpus with different pre-processing
and extraction errors (among them, presumably, a “perfect” error-free version). As
Sinclair (1965) puts it: “Any stretch of language has meaning only as a sample of
an enormously large body of text; it represents the results of a complicated selection
process, and each selection has meaning by virtue of all the other selections which
might have been made, but have been rejected” (cited from Stubbs (1995)).

Obviously, the shape and variability of the sampling distribution depends on the
range of modalities, text types, genres, subject matters, etc. represented in the set
of alternatives from which the source corpus has been selected, as well as the type
and amount of noise that is taken into account. Just as obviously, the influence of
such linguistic factors cannot be predicted by purely statistical means.7 Instead, it
would be necessary to formulate an explicit model of linguistic variation. Therefore,
we need to choose a more regular (imaginary) set of alternatives, for which the sam-
pling distribution can be predicted. This approach will almost always provide a lower
boundary on the true sampling variation (because the “regular” alternatives are less
diverse than the “real” set, except when this real set is very restricted). Consequently,
it represents the minimum amount of uncertainty that will be present in any infer-
ences about the parameters of the “real” model. The regular set of alternatives is
constructed in such a way that we can interpret (the pair tokens extracted from) a
corpus as a random sample of (the pair tokens extracted from) a large hypothetical
body of language data (the population). The model parameters describe properties
of the full body of language data, and the random sample model allows us to make
inferences about these properties from the observed data.

The random sample model can now be seen in two ways. (i) As a baseline for

7The same is true for systematic pre-processing and extraction errors, e.g. the proper name New York
may be consistently identified as an adjective-noun sequence by a stochastic part-of-speech tagger.

44 CHAPTER 2. FOUNDATIONS

the sampling variation that has to be expected and that needs to be corrected for.
Any results that can be explained by this sampling variation alone may just be flukes.
(ii) As a generalisation from the observed data to the properties of a (hypothetical)
sublanguage. This sublanguage must be defined in such a way that the source corpus
that was actually used can realistically be seen as a random sample from it. Taking
the example of a newspaper corpus such as the Frankfurter Rundschau (containing
one volume of a single newspaper), the hypothetical collection would contain more
articles written by the same journalists during the same time on the same subjects. It
might also be understood to comprise multiple volumes from the same newspaper,
although the assumption of a random sample already becomes questionable in this
case (because entirely different topics may be covered in different volumes – just
think of the differences between articles written before and after September 2001).

2.2.1 Cooccurrence data as a random sample

The base data extracted from the corpus are interpreted as a random sample from
an infinite population (so that sampling with replacement can be assumed). This
population is characterised by a set of pair types w with cooccurrence probabilities
πw.8 The set of population pair types is usually equated with Cp. An “impossible” pair
type w (i.e. a pair type that can never appear in the base data because it is ruled out
by syntactic or semantic constraints, or because the morphology component used for
lemmatisation rejects any word that is not listed in its lexicon) will have πw = 0. It
is important to make a clear distinction between such impossible pairs (πw = 0) and
unseen pairs that are not found in the sample (fw = 0). Consequently, the population
cannot be restricted to the set of observed types φ(T).

The random selection of a pair type from the population, according to the cooc-
currence probabilities, is described by random variables U and V , which stand for
the components of the selected type. For any pair type w = (u, v) we have

Pr
(
U = u ∧ V = v

)
= πw .

The probabilities Pr
(
U = u

)
=: π1,u and Pr

(
V = v

)
=: π2,v are called the marginal

probabilites of the component types u and v, and can be obtained by summation
over pair types with the same first or second component:

π1,u =
∑
v′∈C2

π(u,v′) and π2,v =
∑
u′∈C1

π(u′,v).

The population is fully determined by the probability parameters πw. However,
since the marginal probabilities are also important for the statistical analysis, the

8This random sample model can also be interpreted as a model of text production, where for each
instance of a particular relation that is generated, the heads of its arguments are chosen randomly from
the population (represented by the labels assigned to the corresponding pair token). In this view, pair
tokens are randomly (and independently) generated: whenever a speaker produces an instance of the
targeted relation, he or she randomly selects a pair type from the population. The chance of selecting
type w is given by its population probability πw. This model leads to the same distributions etc. as
random sampling. It fits quite well into the framework of generative syntax and probabilistic context-
free grammars (where πw can be interpreted as a measure of selectional preference). It can also be
understood as a (very simple) model of a speaker in psycholinguistic studies.

2.2. A STATISTICAL MODEL OF COOCCURRENCES 45

population probabilities (or population parameters) of a given pair w = (u, v) ∈
Cp are usually taken to be the triple

(πw, π1,u, π2,v) =: (π, π1, π2)w

and the subscript is omitted unless there is danger of confusion. The population
probabilites can also be expressed in the form of a contingency table:

τ11 := Pr
(
U = u ∧ V = v

)
τ12 := Pr

(
U = u ∧ V 6= v

)
= π(u,v) =

∑
v′ 6=v

π(u,v′)

τ21 := Pr
(
U 6= u ∧ V = v

)
τ22 := Pr

(
U 6= u ∧ V 6= v

)
=
∑
u′ 6=u

π(u′,v) =
∑
u′ 6=u

∑
v′ 6=v

π(u′,v′)

with τ11 + τ12 + τ21 + τ22 = 1. The transformation rules are similar to those for
frequency signatures:

π = τ11 τ11 = π

π1 = τ11 + τ12 τ12 = π1 − π

π2 = τ11 + τ21 τ21 = π2 − π

τ22 = 1 − π1 − π2 + π

A random sample of size N is described by independent pairs of random variables Ui

and Vi (i = 1, . . . , N),9 where the distribution of Ui is identical to that of U and the
distribution of Vi is identical to that of V . U and V can be seen as prototypes for the
sample variables Ui and Vi. When we interpret the base data as a random sample
from the population, the pair (Ui, Vi) of random variables describes the label of the
i-th token in the sample (i.e. we assume that each pair of labels is chosen randomly
from the population). I use the notation Wi = (Ui, Vi) for the pair describing the i-th
token, and W = (U, V) for the pair of prototypes.

The sample frequencies of a pair type w can be computed from the random vari-
ables Wi, based on a classification of the pair tokens into four bins. As functions of
random variables, they are themselves random variables Xij , corresponding to the
cells Oij of the observed contingency table. For notational convenience, I define ad-
ditional random variables for the row and column sums. Figure 2.7 shows the full
contingency table of random variables.

Since the pair tokens extracted from the source corpus are assumed to be one
particular random sample from the population, the observed contingency table ~O =
(O11, O12, O21, O22) is interpreted as a particular realisation of the random variables
~X = (X11, X12, X21, X22). Statistical analyses of the observed data are based on the
probability of this realisation and similar ones (i.e. the sampling distribution of the
random variables (X11, X12, X21, X22)) under certain assumptions about the popula-
tion parameters. Formally, the random variables Xij can be defined with the help of
indicator variables for a given pair type w = (u, v) ∈ Cp:

Yk := I[Uk=u] =

{
1 Uk = u

0 Uk 6= u
and Zk := I[Vk=v] =

{
1 Vk = v

0 Vk 6= v

9i.e. Ui is independent from any Uj or Vj with j 6= i, but Ui and Vi are (usually) not independent

46 CHAPTER 2. FOUNDATIONS

V = v V 6= v

U = u X11 X12 = XR1

U 6= u X21 X22 = XR2

= XC1 = XC2

Figure 2.7: Random variables representing the contingency table of a sample.

as well as

I(k)
11 =

{
1 if Uk = u and Vk = v

0 otherwise
= Yk · Zk

I(k)
12 =

{
1 if Uk = u and Vk 6= v

0 otherwise
= Yk · (1 − Zk)

I(k)
21 =

{
1 if Uk 6= u and Vk = v

0 otherwise
= (1 − Yk) · Zk

I(k)
22 =

{
1 if Uk 6= u and Vk 6= v

0 otherwise
= (1 − Yk) · (1 − Zk)

for k ∈ {1, . . . , N}. With these indicator variables,

Xij =
N∑

k=1

I(k)
ij

for i, j ∈ {1,2}. The random variables Xij are not independent because they must
sum to the sample size:

∑
ij Xij = N. Their joint distribution is a multinomial

distribution with parameters (τ11, τ12, τ21, τ22). For any numbers k11, k12, k21, k22 ∈
N0 with

∑
ij kij = N, we have

Pr
(
~X = ~k | N

)
=

N!
k11!k12!k21!k22!

· (τ11)k11 · (τ12)k12 · (τ21)k21 · (τ22)k22 . (2.5)

Here and in the following, I use the shorthand notation ~X = (X11, X12, X21, X22), and
similarly for ~k, ~O, etc. In particular, the vector equality

~X = ~k :⇐⇒ (X11, X12, X21, X22) = (k11, k12, k21, k22)

stands for the condition

X11 = k11, X12 = k12, X21 = k21, X22 = k22.

2.2. A STATISTICAL MODEL OF COOCCURRENCES 47

Furthermore, I use the notation ~k|N for a set of values kij that are compatible with the
condition

∑
ij Xij = N when inserted into the equality ~X = ~k (i.e., they must satisfy∑

ij kij = N). A similar notation will later be used for other conditioning equations.
Pr
(
~X = ~k | N

)
is written as a conditional probability in order to indicate that we are

considering a sample of fixed size N (Section 2.2.2 motivates this notation). Each
random variable Xij has a binomial distribution by itself, i.e.

Pr
(
Xij = k | N

)
=
(
N

k

)
(τij)k(1 − τij)N−k (2.6)

with E
[
Xij

]
= Nτij (but remember that these distributions are not independent). For

the row and column sums XR1 = X11 + X12, XR2 = X21 + X22, XC1 = X11 + X21, and
XC2 = X12 + X22, we obtain similar binomial distributions with

E
[
XR1

]
= N(τ11 + τ12) = Nπ1, E

[
XC1

]
= N(τ11 + τ21) = Nπ2,

E
[
XR2

]
= N(τ21 + τ22) = N(1 − π1), E

[
XC2

]
= N(τ12 + τ22) = N(1 − π2).

2.2.2 Independent Poisson sampling

In the previous section, we have considered random samples of a fixed size N. Speak-
ing in the terms of the introductory explanation at the beginning of Section 2.2, the
set of alternatives is restricted to corpora containing exactly N pair tokens. This is
quite unrealistic: it would be unusual to sample a pre-determined number of pair
tokens. If anything is fixed in advance, a source corpus of pre-determined size (mea-
sured by the number of running words) might be used. However, two different cor-
pora of the same size will usually contain a different number of pair tokens. In a
more realistic model, the sample size itself becomes a random variable N∗. Fig-
ure 2.8 illustrates the distribution of N∗ for 100 000-word subsets of the Frankfurter
Rundschau corpus. On average, about 4 300 pair tokens were extracted from each
slice, but the individual sample sizes N∗ range from 3 741 to 4 770 tokens. Since the
unconstrained sampling distribution now depends on the unknown distribution of
N∗, Eq. (2.5) is conditioned on the observed sample size N (i.e. on the constraint
N∗ = N). The resulting conditional probabilities depend only on the population
parameters, regardless of the distribution of N∗.

The unconstrained model is only manageable when we assume a specific distribu-
tion for the sample size N∗. In the field of biometrics, where types often correspond
to different animal species and tokens to specimens caught in a trap during a fixed a
mount of time, it is reasonable to assume a Poisson distribution for N∗, which stipu-
lates that specimens are caught on average at a constant rate. The mean E

[
N∗
]

= ν,
which is also the single parameter that determines the shape of a Poisson distribu-
tion, is given by this rate multiplied by the time the trap is open. When translated
to cooccurrence data, ν is the average “sampling rate” at which cooccurrences are
encountered in text multiplied by the (pre-determined) size of the source corpus. In
this model, which I call independent Poisson sampling,10 the random variables Xij

10Agresti (1990, 37) also makes a distinction between multinomial and Poisson sampling.

48 CHAPTER 2. FOUNDATIONS

Number of Tokens

N
um

be
r o

f S
lic

es

3500 4000 4500 5000

0
20

40
60

80
10

0
12

0

Figure 2.8: The variability of the sample size: Histogram for the number of adjective-
noun pair tokens extracted from subsets of the Frankfurter Rundschau corpus, con-
taining 100,000 running words each. The solid curve shows the distribution expected
by the independent Poisson sampling model.

have independent Poisson distributions with mean E
[
Xij

]
= ντij and

Pr
(
Xij = kij

)
= e−ντij ·

(ντij)kij

kij!
.

Their joint distribution is given by

Pr
(
~X = ~k

)
= e−ν · νn · (τ11)k11

k11!
· (τ12)k12

k12!
· (τ21)k21

k21!
· (τ22)k22

k22!
(2.7)

with n =
∑

ij kij unconstrained. The importance of this model lies in the fact that
both the cell counts Xij for a given pair type w and the cooccurrence frequencies
fw1, fw2 of different pair types (here interpreted as random variables) are indepen-
dent. This simplifies complex statistical analyses, especially for modelling the distri-
bution of word frequencies in Chapter 4. Fig. 2.8 shows that the Poisson distribution
(indicated by the solid curve) underestimates the true variation of N∗: its sample
standard deviation (≈ 185) is almost three times the standard deviation predicted
by the Poisson model (65.5). Especially when N is very large, though, the relative
variation of N∗ (both the true variation and that predicted under the Poisson model)
is comparatively small, and (2.7) can also be understood as a mathematically conve-
nient approximation of the multinomial probabilities (2.5).

Even when we do not want to make any assumptions about the distribution of
N∗, the independent Poisson model can be a useful analytical device, which was
discovered by R.A. Fisher (Fisher 1922, 89). Note that (2.7) includes the additional
unknown parameter ν, which is referred to as a nuisance parameter because it does
not provide any information about the associations that are of interest to us. We can

2.2. A STATISTICAL MODEL OF COOCCURRENCES 49

Population V = v V 6= v Sample V = v V 6= v

U = u τ11 τ12 U = u O11 O12

U 6= u τ21 τ22 U 6= u O21 O22

τ11 + τ12 + τ21 + τ22 = 1 O11 + O12 + O21 + O22 = N

Figure 2.9: Comparison of population probabilities with observed frequencies.

get rid of this nuisance parameter by conditioning on the observed sample size N,
i.e. on the condition {N∗ = N}, and obtain the multinomial probabilities (2.5):

Pr
(
~X = ~k | N

)
= Pr

(
~X = ~k | N∗ = N

)
=


Pr
(
~X = ~k

)
Pr
(
N∗ = N

) if ~k|N, i.e.
∑

ij kij = N

0 otherwise

For any ~k|N, this fraction evaluates to

Pr
(
~X = ~k | N

)
=

e−ν · νN · (τ11)k11

k11!
· (τ12)k12

k12!
· (τ21)k21

k21!
· (τ22)k22

k22!

e−ν · ν
N

N!

=
N!

k11!k12!k21!k22!
· (τ11)k11 · (τ12)k12 · (τ21)k21 · (τ22)k22.

It is sometimes possible to obtain results for the independent Poisson model more
easily than in the multinomial model, and then translate them to the conditional
probabilities. For instance, the maximum-likelihood estimates in the following sec-
tion are derived in this way.

2.2.3 The null hypothesis

In the remainder of this chapter and in Chapter 3, we will use the observed fre-
quencies in the corpus sample to make inferences about the unknown population
parameters. The comparison of probability parameters with sample frequencies is
schematised in Figure 2.9.

The maximum-likelihood estimates (MLEs) for the population parameters are
those values which maximise the probability of the observed contingency table ~O.
Lemma A.1 derives the following MLE equations for the multinomial sampling distri-

50 CHAPTER 2. FOUNDATIONS

bution (2.5):

τij ≈
Oij

N
(for i, j ∈ {1,2}) π1 ≈ R1

N
=

f1

N
=: p1

π ≈ O11

N
=

f

N
=: p π2 ≈ C1

N
=

f2

N
=: p2

(2.8)

We are particularly interested in the statistical association between the components
of a pair type. It is clear that this association is a property of the population, and
our goal is to make inferences about it using information from the observed sample.
However, it is not at all obvious how to measure the strength of the association within
a pair type. I will first turn to an easier question: When is there no association at
all between the components of a pair type? The answer lies in the concept of sta-
tistical independence. The components of a pair are completely unassociated when
their occurrences (as the labels of pair tokens) have no influence on each other, i.e.
when the indicator variables Yk and Zk (marking these occurrences) are statistically
independent. Since Yk and Zk are binary variables, this reduces to the condition that

Pr
(
I(k)
11 = 1

)
= Pr

(
Yk = 1, Zk = 1

)
= Pr

(
Yk = 1

)
· Pr
(
Zk = 1

)
(2.9)

or, equivalently,
H0 : π = π1 · π2 (2.10)

for a given pair type w ∈ Cp.11 In the terminology of statistical hypothesis tests, H0

is the null hypothesis of independence, and we are interested in pair types where
the sample provides clear evidence against H0. Under H0, the probability parameters
~τ have a simple “regular” form

τ11 = π1π2 τ12 = π1(1 − π2)
τ21 = (1 − π1)π2 τ22 = (1 − π1)(1 − π2)

(2.11)

and the multinomial sampling distribution (2.5) becomes

Pr
(
~X = ~k | N,H0

)
=

N!
k11!k12!k21!k22!

· (π1)k11+k12 · (1 − π1)k21+k22 · (π2)k11+k21 · (1 − π2)k12+k22

where the exponents are the row and column sums of the contingency table ~k. In
particular, for the probability of the observed table (~k = ~O) we have

Pr
(
~X = ~O | N,H0

)
=

N!
O11!O12!O21!O22!

·
[
(π1)R1 · (1 − π1)N−R1

]
·
[
(π2)C1 · (1 − π2)N−C1

]
. (2.12)

This version of the null hypothesis is somewhat inconvenient because the values of
π1 and π2 (on which the sampling distribution under H0 depends) are not deter-
mined. H0 can be reduced to a point hypothesis H ′

0 by adding maximum-likelihood
estimates for π1 and π2:

H ′
0 : π = π1 · π2 ∧ π1 = p1 ∧ π2 = p2 (2.13)

11Note that (2.9) automatically holds for all k ∈ {1, . . . , N} as soon as it holds for some k, because
all the pairs (Yk, Zk) have identical distributions.

2.2. A STATISTICAL MODEL OF COOCCURRENCES 51

The parameters of the multinominal sampling distribution are now fully determined
by H ′

0: τ11 = p1p2, τ12 = p1(1 − p2), τ21 = (1 − p1)p2, and τ22 = (1 − p1)(1 − p2).
Inserting these values into (2.6), with p1 = R1/N and p2 = C1/N, we obtain the
expected values of the variables Xij under the null hypothesis H ′

0:

E0

[
X11

]
=

R1C1

N
=: E11

E0

[
X21

]
=

R2C1

N
=: E21

E0

[
X12

]
=

R1C2

N
=: E12

E0

[
X22

]
=

R2C2

N
=: E22

(2.14)

as well as

E0

[
XR1

]
= R1 E0

[
XC1

]
= C1

E0

[
XR2

]
= R2 E0

[
XC2

]
= C2

for the marginals. I will refer to the expectations Eij under the null hypothesis H ′
0

simply as expected frequencies, but it is important not to confuse them with the
expected values E

[
Xij

]
= Nτij of the general sampling distribution (without H ′

0).
Under H ′

0, each Xij has a binomial distribution with success probability τij = Eij/N,

Pr
(
Xij = k | N, H ′

0

)
=
(
N

k

)
·
(
Eij

N

)k

·
(

1 −
Eij

N

)N−k

,

and the same holds for the row and column sums:

Pr
(
XRi = k | N, H ′

0

)
=
(
N

k

)
·
(
Ri

N

)k

·
(

1 − Ri

N

)N−k

Pr
(
XCi = k | N, H ′

0

)
=
(
N

k

)
·
(
Ci

N

)k

·
(

1 − Ci

N

)N−k

The multionmial sampling distribution under H ′
0 can be written as

Pr
(
~X = ~k | N, H ′

0

)
=

N!
k11!k12!k21!k22!

·
(
E11

N

)k11

·
(
E12

N

)k12

·
(
E21

N

)k21

·
(
E22

N

)k22

. (2.15)

2.2.4 Conditioning on fixed marginal frequencies

The use of maximum-likelihood estimates in the point hypothesis H ′
0 is somewhat

problematic. Especially for small marginal frequencies R1 and C1, they will introduce
a considerable amount of uncontrolled error into the null distribution, and are likely
to distort the results of hypothesis tests. (For instance, think of a situation where H0

holds, but p1 · p2 � π1 · π2, so that H ′
0 is rejected by a statistical hypothesis test.)

A different approach to resolving the uncertainty of the sampling distribution
under H0 is to condition on the observed row and/or column sums. In other words,
we consider only those random samples where the marginal frequencies for a given
pair type are identical to the ones observed in the corpus data, rather than all possible
samples of size N. The advantage of such conditional distributions is that some of

52 CHAPTER 2. FOUNDATIONS

the population parameters become irrelevant and hence do not have to be estimated.
Conditioning the sampling distribution on the observed column sums leads to

Pr
(
~X = ~k | C1, C2

)
=(
C1

k11

)
(ρ1)k11(1 − ρ1)C1−k11 ·

(
C2

k12

)
(ρ2)k12(1 − ρ2)C2−k12 , (2.16)

for any ~k|C1, C2 , where

ρ1 =
τ11

τ11 + τ21
and ρ2 =

τ12

τ12 + τ22

are the column ratios of the population parameters. Note that Pr
(
~X = ~k | C1, C2

)
= 0

when ~k does not satisfy the conditioning equations k11 +k21 = C1 and k12 +k22 = C2.
Also note that the conditional sampling distribution does no longer depend on the
individual values of the parameters τij , but only on the column ratios ρ1 and ρ2. I
have again used the shorthand notation

Pr
(
~X = ~k | C1, C2

)
:= Pr

(
~X = ~k | XC1 = C1, XC2 = C2

)
.

The conditional probability (2.16) is the product of two independent binomial distri-
butions for the columns of a contingency table, with k1i successful trials out of Ci and
success probability ρi. The mathematical derivation is based on independent Poisson
sampling, making use of the equivalence

Pr
(
~X = ~k | N, C1, C2

)
= Pr

(
~X = ~k | C1, C2

)
,

which follows from the fact that XC1 = C1 and XC2 = C2 implies
∑

ij Xij = XC1 +
XC2 = C1 + C2 = N. Note that (2.7) implies that XC1 and XC2 are independent
Poisson-distributed random variables with E

[
XC1

]
= N(τ11 + τ21) and E

[
XC2

]
=

N(τ12 + τ22). The null hypothesis H0: π = π1 · π2 implies

H0, hom : ρ1 = ρ2 (2.17)

for the conditional distribution (2.16). H0, hom is also called the null hypothesis of
homogeneity (because it stipulates that the columns of the contingency table are
homogeneous). Here, only a single parameter, the common column ratio ρ1 = ρ2,
has to be estimated from the observed data to obtain a point null hypothesis:

H ′
0, hom : ρ1 = ρ2 =

R1

N
=: r . (2.18)

The sampling distribution under H ′
0, hom is

Pr
(
~X = ~k | C1, C2, H

′
0, hom

)
=
(
C1

k11

)
·
(
C2

k12

)
· rk11+k12(1 − r)k21+k22

=
(
C1

k11

)
·
(
C2

k12

)
·
(
R1

N

)k11+k12 (R2

N

)k21+k22

,

(2.19)

2.2. A STATISTICAL MODEL OF COOCCURRENCES 53

and each Xij has a binomial distribution with E0

[
Xij

]
= Eij (the same expected

frequencies as for the multinomial sampling distribution under H ′
0). Conditioning on

the row sums instead of the column sums leads to similar equations.
Going one step further, we will now condition on all observed marginal frequen-

cies. Note that conditioning on R1, R2, C1, and C2 is redundant because R1 + R2 =
N = C1 +C2 (and likewise XR1 +XR2 =

∑
ij Xij = XC1 +XC2). I have therefore chosen

to condition on N, R1, and C1:

Pr
(
~X = ~k |

∑
ij

Xij = N, XC1 = C1, XR1 = R1

)
=

Pr
(
~X = ~k | XC1 = C1, XC2 = C2, XR1 = R1, XR2 = R2

)
.

This leads to an unwieldy expression for the conditional probability, the non-central
hypergeometric distribution (Agresti 1992, 134):

Pr
(
~X = ~k | N, C1, R1

)
=

(
C1

k11

)
·
(

C2

R1 − k11

)
θk11

min{R1,C1}∑
l=max{0,R1+C1−N}

(
C1

l

)
·
(

C2

R1 − l

)
θl

(2.20)

for any ~k|N,R1, C1 , with the parameter

θ =
τ11τ22

τ12τ21

(θ is the odds ratio defined in Section 2.2.5). Note that Pr
(
~X = ~k | N, C1, R1

)
= 0 if

~k does not satisfy the constraints on the marginal frequencies. In particular,

max{0, R1 + C1 −N} ≤ k11 ≤ min{R1, C1} (2.21)

(most contingency tables will have R1 + C1 < N so that the lower bound is 0). Equa-
tion (2.20) can be simplified to the hypergeometric distribution underlying Fisher’s
exact test when we also condition on the null hypothesis H0, which is equivalent to
θ = 1 (Agresti 1992, 134):

Pr
(
~X = ~k | N, C1, R1, H0

)
=

(
C1

k11

)
·
(

C2

R1 − k11

)
(
N

R1

) . (2.22)

As the unknown population parameters no longer appear in (2.22) above, it is not
necessary to reduce H0 to a point hypothesis by adding maximum-likelihood esti-
mates. Note that with all marginal frequencies fixed, the sampling distribution only
depends on the single value k11, which is again constrained to the range (2.21).

This last distribution can also be derived directly from the column-conditioned
null distribution (2.16), which assumes the form shown in the middle line of (2.19)
under H0, hom (not H ′

0, hom). The derivation conditions the probability on R1, C1, C2

instead of N,R1, C1 and makes use of the fact that

Pr
(
~X = ~k | R1, C1, C2, H0

)
=

Pr
(
~X = ~k | C1, C2, H0

)
Pr
(
XR1 = R1 | C1, C2, H0

)

54 CHAPTER 2. FOUNDATIONS

for any table ~k|R1, C1, C2 that satisfies all conditioning equations. Moreover, XR1 fol-
lows a binomial distribution with success probability r = ρ1 = ρ2 under H0. Starting
from a row-conditioned sampling distribution, we obtain

Pr
(
~X = ~k | N, C1, R1, H0

)
=

(
R1

k11

)
·
(

R2

C1 − k11

)
(
N

C1

) ,

which yields the same probabilities as the first form of the hypergeometric distri-
bution (as can be shown by direct computation). For the derivation of the general
hypergeometric sampling distribution (2.20), see (Lehmann 1991, 151–162).

2.2.5 Measuring statistical association

In Section 2.2.3 I have argued that complete absence of association is adequately
described by the concept of statistical independence. However, when there is some
association, we still have to find a way to quantify the size of the effect, which I call
the association strength. In the following, I present several alternative formulae that
compute a coefficient of association strength from the probability parameters of a
pair type. (Recall that association strength is a property of pairs in the population.)

The null hypothesis H0: π = π1 · π2 suggests the ratio

µ :=
π

π1 · π2
(2.23)

as a measure for the association strength of a pair type w ∈ Cp, which I call the µ-
value.12 A value of µ = 1 corresponds to statistical independence. For µ > 1 we speak
of positive association (where the components are more likely to occur together than
if they were independent), and for µ < 1 we speak of negative association (where
the components are less likely to occur together than if they were independent).

In mathematical statistics, 2×2 contingency tables are most commonly interpreted
as the result of two independent binomial samples with success probabilites ρ1 and
ρ2, which is sometimes referred to as a 2×2 comparative trial (Upton 1982, 87). This
model is equivalent to the multinomial sampling distribution with one fixed margin
(2.16) and the null hypothesis of equal success probabilities H0, hom : ρ1 = ρ2. For
this reason, coefficients of association strength are often based on a comparison of ρ1

with ρ2. Such coefficients are not necessarily meaningful in the multinomial sampling
model of Section 2.2.1 with its parameters π, π1, and π2. Here, the µ-value will often
be found to be a more intuitive choice.

The simplest coefficient of association strength for the 2 × 2 comparative trial is
the difference of proportions κu, i.e. the difference between the two success proba-
bilities:

κu := ρ1 − ρ2 =
π − π1π2

π2(1 − π2)
=

τ11τ22 − τ12τ21

π2(1 − π2)
.

12The letter µ is intended to be reminiscent of mutual information, since the quantity logµ can be
interpreted as point-wise mutual information. I have avoided using this term for µ, though, so as not
to confuse information theory with population parameters.

2.2. A STATISTICAL MODEL OF COOCCURRENCES 55

This coefficient was used by Liddell (1976), for instance. A more useful coefficient is
the ratio % of the success probabilities:

% :=
ρ1

ρ2
=

π − ππ2

π1π2 − ππ2
,

which is known as relative risk. Although µ = % = 1 in the case of independence,
the two measures judge strength of association differently. In particular,

% =
1 − π2
1
µ
− π2

=
µ− µπ2

1 − µπ2
,

so the relation between % and µ depends on the value of π2.
The most widely used coefficient of association strength is the odds ratio θ. The

odds associated with a success probability ρi is the expected ratio of successes to
failures ρi/(1 − ρi) = τ1i/τ2i, and θ is the quotient of these odds:

θ :=
ρ1

1 − ρ1
:

ρ2

1 − ρ2
=

τ11τ22

τ12τ21
.

The odds ratio has a meaningful interpretation in the 2 × 2 comparative trial (if one
is willing to accept the odds as a measure of success probability), but it is difficult to
express (and interpret) in terms of the probability parameters π, π1, and π2:

θ =
π − π(π1 + π2 − π)

π1π2 − π(π1 + π2 − π)
=

τ22
1
µ
− (1 − τ22)

.

The relation between µ and θ depends on τ22 = 1−π1 −π2 +π and is thus influenced
by all three parameters. The popularity of the odds ratio even for multinomial sam-
pling (especially in the context of log-linear models) is due to its convenient formal
properties rather than to its intuitive appeal. In particular, θ is the only parameter
of the sampling distribution (2.20), conditioned on both the row and column sums
but not on the null hypothesis H0. The coefficients κu, % and θ are also described by
Agresti (1990, Ch. 2).

The following coefficients are based on the conditional probabilities

Pr
(
V = v | U = u

)
=

π

π1
and Pr

(
U = u | V = v

)
=

π

π2
.

In the literature, they are usually formulated for observed proportions rather than
conditional probabilities. However, such equations involving the observed frequen-
cies (as well as their row and column sums) can be translated to population proba-
bilities and interpreted as coefficients of association strength. The original equations
then become maximum-likelihood estimates for these coefficients (cf. Section 3.1.5).
With an emphasis on cases of strong association rather than independence, the coef-
ficients below are popular in application settings, especially in information retrieval
and related fields. None of them is commonly used in mathematical statistics.

The Dice coefficient κDice is the harmonic mean (Weisstein 1999, s.v. Harmonic
Mean) of the two probabilities:

κDice := 2 ·
(

1
Pr
(
V = v | U = u

) +
1

Pr
(
U = u | V = v

))−1

= 2 ·
(π1

π
+

π2

π

)−1
=

2π
π1 + π2

.

56 CHAPTER 2. FOUNDATIONS

The average κmean (or arithmetic mean) of the two probabilities is a possible alter-
native mentioned by Daille (1994, 137). Their geometric mean (Weisstein 1999, s.v.
Geometric Mean) is

κgmean :=
√

Pr
(
V = v | U = u

)
· Pr
(
U = u | V = v

)
=

√
π2

π1π2
=

π√
π1π2

,

which I call the gmean coefficient κgmean. It is also possible to take the minimum
or maximum of the two probabilites (cf. the MS measure in Section 3.1.5), yielding
the min and max coefficients κmin and κmax.13 To my knowledge, κmax has never
been used, while κmin was suggested by Pedersen and Bruce (1996) but has not been
taken up by other researchers. Finally, the Jaccard coefficient κJaccard is a similar
conditional probability with a particularly intuitive interpretation:

κJaccard := Pr
(
U = u∧ V = v | U = u∨ V = v

)
=

π

π1 + π2 − π
=

τ11

τ11 + τ12 + τ21
=

τ11

1 − τ22
,

i.e. the probability of a cooccurrence given that either u or v occurs in a pair.
I will now attempt to compare the coefficients of association strength, i.e. describe

the circumstances under which they disagree about how far a given pair type devi-
ates from independence. Note that two coefficients are equivalent iff there exists a
monotonic transformation between their values. For instance, the Jaccard coefficient
is fully equivalent to the Dice coefficient, as the following calculation shows:

κDice

κJaccard
=

2π
π1 + π2

· π1 + π2 − π

π

= 2 ·
(

1 − π

π1 + π2

)
= 2 − κDice

implies
κJaccard =

κDice

2 − κDice
. (2.24)

Since f(x) = x/(2 − x) is a strictly increasing function of x on the interval [0,1],
there is a monotonic bijective transformation between the values of κJaccard and κDice.
There are no other equivalences between the coefficients, and their interrelations are
usually complex and depend on various parameters.

Table 2.2 shows a comparison of the coefficient values for the special cases listed
in Table 2.1. The values shown in columns B and E are first-order approximations
for ε → 0. They converge to the values in columns A and D, respectively. Note
that κJaccard has been omitted because of its equivalence with κDice, and the “unused”
coefficients κmean and κmax are not shown either. Proofs for these results can be found
in Appendix A.1, Lemma A.2.

There are two major groups of coefficients: (i) µ, κu, %, and θ are equal to 1
(or 0 for κu) in the case of independence (A), and they lead to the same distinction

13Interestingly, κmax is obtained by scaling µ to the range [0,1] for given values of π1 and π2 (π ≤
min{π1, π2} implies µ ≤ min{π−1

1 , π−1
2 }).

2.3. ADEQUACY OF THE STATISTICAL MODELS 57

A: π = π1π2 (independence)
B: π = (1 + ε)π1π2 (minimal association)
C: π = 0 (total negative association)
D: π = π1 = π2 (total positive association)
E: π1 = π2 = (1 + ε)π =: δπ (nearly total association)
F: π = π1 � π2 (total determination)
F’: π = π2 � π1

Table 2.1: List of special situations for the comparison of different coefficients of
association strength. The symbol ε in Equations B and E indicates a first-order ap-
proximation for ε → 0.

between positive and negative association. However, they vary greatly in the case of
strong positive association (D,E), and their values are difficult to interpret then. The
most consistent results are obtained by the odds ratio θ, although it does not allow for
a distinction between total association (D) and total determination (F). The µ-value
is well-suited for measuring small degrees of association (B) and is often used for this
purpose in mathematical statistics. Relative risk % and the difference of proportions
κu in particular are not symmetric between rows and columns and seem less useful
in this context. (ii) κDice, κgmean and κmin are good indicators of total (positive or
negative) association (C,D), where they are all equal to 1 and 0, respectively. Their
values are also easy to interpret in the case of strong positive association (E), but are
less clear for total determination (F,F’). Differences between the coefficients are most
conspicuous in this case, where κDice and especially κgmean assign higher values to
totally determined pairs with a strong imbalance between the marginal probabilities.
The major disadvantage of the coefficients in this group is that none of them assumes
a specific value in the case of independence (A), so that they cannot be used to
measure small degrees of association or to distinguish between positive and negative
association.

An ideal coefficient of association strength would combine the well-defined be-
haviour of µ for a small degree of association (A,B) with the equally well-defined
behaviour of κDice, κgmean and κmin for nearly total association (D,E). Unfortunately, it
is not clear at the moment how a statistically sound and mathematically convenient
coefficient with these properties could be derived. Another point of uncertainty is
the desirable behaviour for the edge case of total determination (F,F’).

2.3 Adequacy of the statistical models

2.3.1 Assumptions of the random sample model

In mathematical terms, the random sample model of Section 2.2 makes two assump-
tions about the data: (i) the pairs of random variables (Uk, Vk) are statistically in-
dependent (independence) and (ii) their distributions are identical to the prototype
(U, V) (homogeneity).

These assumptions can be violated by real-world data in various ways and for
various reasons. Among the major causes of non-randomness in cooccurrence data

58 CHAPTER 2. FOUNDATIONS

coeffi
cient

A
B

C
D

E
F

F’

µ
1

1
+
ε

0
1π

1π
−
ε

2π

1π
2

1π
1

%
1

1
+

ε

1
−
π

2
0

+
∞

1ε (
π

1
−
π)

−
1

+
∞

1
−
π

2

π
1 −

π
2

θ
1

1
+

ε

(1
−
π

1)(1
−
π

2)
0

+
∞

1ε
2 (

π

1
−
π)

−
1

+
∞

+
∞

κ
u

0
ε

π
1

1
−
π

2
−

π
1

1
−
π

2
1

1
−

ε

1
−
π

π
1

π
2

1
−
π

1

1
−
π

2

κ
D

ice
2
π

1 π
2

π
1

+
π

2
(1

+
ε)

2
π

1 π
2

π
1

+
π

2
0

1
1
−
ε

2
1

+
π

2 /
π

1

2
1

+
π

1 /
π

2

κ
gm

ean
√
π

1 π
2

(1
+
ε) √

π
1 π

2
0

1
1
−
ε

√
π

1

π
2

√
π

2

π
1

κ
m

in
m

in
{
π

1 ,π
2 }

(1
+
ε)m

in
{
π

1 ,π
2 }

0
1

1
−
ε

π
1

π
2

π
2

π
1

Table
2.2:

Values
of

various
coeffi

cients
of

association
strength

for
the

specialcases
of

independence
(A

),m
inim

alassociation
(B

),
totalnegative

association
(C

),totalpositive
association

(D
),nearly

totalassociation
(E),and

totaldeterm
ination

(F
and

F’)

2.3. ADEQUACY OF THE STATISTICAL MODELS 59

are the following:

Ordering dependencies impose constraints on the order in which tokens appear
in the sample. One reason for such dependencies is the syntactic structure of
sentences. To give a famous example, the token sequence the the is impossible in
English, but a word-level random sample model assigns a non-zero probability
of p ≈ 0.0036 to it (Baayen 2001, 163), indicating an occurrence about every
300 words.14

Inhomogeneity of the sample causes the population parameters to change between
different parts of the sample. The source corpus is made up from documents
with different properties (e.g. different text types, different authors, the sections
of a newspaper, a collection of novels or technical documents), so that the
population parameters may be different for each of the documents. Baayen
(2001) refers to this problem as lexical specialisation.

Clustering or repetition effects, where the probability of repeated occurrences is
much higher than predicted by a random sample model. Repetitions typically
occur within text-structural units such as newspaper articles or technical doc-
uments, and they are often linked to the topic of the respective unit (cf. Katz
1996; Church 2000).

Of course, the null hypothesis H0 introduced in Section 2.2.3 is also highly unrealistic
for natural language data. However, this does not affect the validity of the random
sample model (but it will affect the interpretation of association scores in Chapter 3).
For the same reason, only those violations of the random sample assumption which
have a substantial influence on the multinomial sampling distribution (2.5) are prob-
lematic for our statistical model. In particular, ordering dependencies will usually not
have a major effect on the joint and marginal frequencies. Inhomogeneity can be ac-
counted for to a certain degree by interpreting the full sample of size N as a composite
consisting of r smaller samples of sizes N1, . . . , Nr (with N1 + · · · + Nr = N), taken
from different populations. As long as the number of samples r is relatively small,
such a composite is highly similar to a sample of size N from a mixture population
(this approximation can be motivated in terms of independent Poisson sampling).
Therefore, the random sample assumptions are not violated, but strong associations
in one of the component populations may be obscured in the mixture population.

The most serious problems for the statistical model of Section 2.2 are therefore
created by the clustering of pair types (as well as their component types) within small
text segments. Such clustering effects inflate both the joint and marginal frequencies.
In particular, low-probability types are quite likely to appear twice or more rather
than just once.15 In the following section, I present a method for estimating the extent
to which clustering effects violate the randomness assumption for a given sample.

14As a matter of fact, the sequence the the was found twice in the final draft of this thesis, corrre-
sponding to a relative frequency of p ≈ 3.510−5. Chapter 4 explains why the relative frequency is not
a valid estimate for the occurrence probability in this case.

15It is theoretically possible to explain clustering effects as a kind of inhomogeneity, where the
corpus sample is a composite taken from a different population for each text segment. Pair types
that are relevant to the topic of a segment and therefore likely to be repeated will have a highly
increased cooccurrence probability in the corresponding population. However, this composite cannot
be interpreted as a random sample from a mixture population because it consists of a large number of

60 CHAPTER 2. FOUNDATIONS

2.3.2 Clustering and dispersion

It is usually not feasible to test the randomness assumption directly by comparing the
empirical sampling distribution based on observed data from different source corpora
to the theoretical sampling distribution predicted by the random sample model. Apart
from the practical difficulty of finding and processing a sufficient number of compa-
rable corpora (so that it is realistic to assume that they are random samples from the
same population), we would need to know the exact population probabilities: even
for high-frequency types we cannot simply use the maximum-likelihood estimates,
which may have been affected by the consequences of non-randomness.

What we can do, though, is to check whether the observed instances of a given
pair type are distributed evenly across the sample. The relevant kinds of non-ran-
domness as discussed in the previous section, in particular clustering effects, will
also cause an uneven distribution in large samples. These effects are most clearly
visible – and have the most disastrous consequences – for the lowest-frequency pair
types, and my evaluation will concentrate on those.

The standard randomness test used in statistics is the runs test, which is mainly
intended for testing the non-independence of consecutive events (e.g. Siegel 1956).
This test is not applicable here because cooccurrence probabilities are (almost al-
ways) very low so that runs of length greater than one are extremely rare. It is
also highly sensitive to ordering dependencies that are not relevant for cooccurrence
statistics. Baayen (2001) computes the dispersion of the instances of types across a
corpus to test the randomness and independence assumptions of his statistical model
for word frequency distributions (which is equivalent to independent Poisson sam-
pling, cf. Section 2.2.2). This dispersion test can be applied to relational cooccur-
rence data in a straightforward way by splitting the base data (i.e. the sequence of
N pair tokens) into K parts of equal size. If there is a natural segmentation of the
source corpus, e.g. into newspaper articles or technical documents, the division could
be based on this segmentation (and it should be, since we expect clustering effects
within such text-structural units). However, due to the often wildly different sizes
of these segments (see Figure 2.14 for the lengths of individual articles in the Frank-
furter Rundschau corpus), the mathematical analysis becomes more involved (see
e.g. Katz 1996) and may require computationally expensive methods or Monte Carlo
sampling. Therefore, I use fixed-size parts, which have the further advantage that the
dispersion test can be applied to the base data without additional information from
the source corpus.

The dispersion test can detect both clustering and inhomogeneity effects, depend-
ing on the size S = N/K of the individual parts. Baayen (2001, 165–167) divides his
sample from Alice in Wonderland into K = 40 parts of equal size, with the express in-
tention of measuring lexical specialisation. A division into smaller parts, on the other
hand, allows the selective identification of clustering effects. The precise choice of
S is a matter of experience. In general, it should be close to the average size of the
smallest text segments within which clustering effects are expected.

The dispersion D of a given pair type w is the number of parts that contain at least
one instance of w. The dispersion test is based on the comparison of the observed dis-

small samples (one for each text segment). Thus, clustering effects constitute a true violation of the
randomness assumption.

2.3. ADEQUACY OF THE STATISTICAL MODELS 61

persion with the sampling distribution Pr
(
D = d

)
under the randomness assumption.

Since we do not know the true probability parameter π and its maximum-likelihood
estimate is unreliable for low frequency ranks, the standard procedure, once again,
is to condition on the sufficient statistic f for π, resulting in conditional probabilities
Pr
(
D = d | f = m

)
for a pair type with observed cooccurrence frequency m. A pair

type with observed dispersion d is called underdispersed if the cumulative probabil-
ity pd,m := Pr

(
D ≤ d | f = m

)
is sufficiently small. At first sight, one may be tempted

to interpret all underdispersed types as evidence for clustering effects. However, due
to the very large number of rare types that is characteristic for word frequency distri-
butions (and those of word cooccurrences in particular, cf. Chapter 4), a substantial
number of types may be underdispersed purely by chance, even if pd,m is small. Writ-
ing Vm for the number of types with f = m in the sample, the expected number of
types with dispersion D ≤ d in this frequency class is Vm · pd,m. There is evidence for
clustering effects only when the observed number of such types is significantly larger
(measured by a binomial test).

Baayen (2001) uses a Monte Carlo simulation to obtain approximate probabilities
for the dispersion test. The exact values are derived in Lemma A.3:

Pr
(
D = d | f = m

)
=
(
N

m

)−1(
K

d

) d∑
j=1

(−1)d−j
(
d

j

)(
S · j
m

)
(2.25)

for K parts of size S each, so that N = K · S. These probabilities can easily be
computed with the help of a recurrence formula. For given K, S and N = K · S we
find

Pr
(
D = d | f = m

)
=
(
N

m

)−1(
K

d

)
A(d,m) (2.26)

with

A(d,m) =
(
S · d
m

)
−

d−1∑
j=1

(
d

j

)
A(j,m) (2.27)

(see Lemma A.4). Note that this formula still requires high-precision arithmetic to
avoid catastrophic cancellation (the computed probabilities are only reliable for m ≤
10 otherwise). An accurate implementation of the dispersion test is provided within
the UCS toolkit (cf. Sections 3.2.2 and B.1).16

As a case study, dispersion tests were performed for the an-fr data set, with
K = 200 (S = 8 975, corresponding approximately to one day’s worth of text) and
S = 100 (K = 17 950, so that each part covers two or three articles). The results are
shown in Tables 2.3 and 2.4. In both cases, highly significant underdispersion was
found for frequency ranks m = 2, . . . ,5 and all values 1 ≤ d < m. The difference
m − d can be interpreted as the amount by which the cooccurrence frequency of an
underdispersed pair type is inflated. Totalling up the number of observed types with
d ≤ m− 1 in Table 2.3 and subtracting the corresponding expected numbers, we see
that there are some 24 000 types whose cooccurrence frequency is inflated by non-
randomness effects. Table 2.4 shows that at least 12 000 of those cases are almost
certainly caused by clustering. Similar and even more drastic results were obtained
for the same frequency ranks in the an-hgc data set (see Evert 2004b).

16The ucs-make-tables command-line tool can be used to compute dispersion statistics, which are
then evaluated and compared to the theoretical distribution with the dispersion-test script.

62 CHAPTER 2. FOUNDATIONS

of types with D ≤ d

m d Vm Pr
(
D ≤ d | f = m

)
expected observed

2 1 102 256 0.0049995 511 12 591

3 1 31 949 2.499 · 10−5 1 830
2 31 949 0.0149484 478 5 726

4 1 17 538 1.249 · 10−7 0 178
2 17 538 0.0001742 3 1 313
3 17 538 0.0297225 521 4 479

5 1 9 956 6.243 · 10−10 0 49
2 9 956 1.866 · 10−6 0 211
3 9 956 0.0006173 6 887
4 9 956 0.0491259 489 3 044

Table 2.3: Results of dispersion test for the an-fr data set with K = 200 and
S = 8 975. The expected number of underdispersed types is rounded to the near-
est integer. All observed results are significant at a level of α = .001.

of types with D ≤ d

m d Vm Pr
(
D ≤ d | f = m

)
expected observed

2 1 102 256 5.515 · 10−5 6 5 578

3 1 31 949 3.011 · 10−9 0 358
2 31 949 0.0001655 5 2 863

4 1 17 538 1.627 · 10−13 0 56
2 17 538 2.117 · 10−8 0 630
3 17 538 0.0003309 6 2 281

5 1 9 956 8.703 · 10−18 0 15
2 9 956 2.474 · 10−12 0 87
3 9 956 7.573 · 10−8 0 420
4 9 956 0.0005514 5 1 524

Table 2.4: Results of dispersion test for the an-fr data set with K = 17 950 and
S = 100. The expected number of underdispersed types is rounded to the nearest
integer. All observed results are significant at a level of α = .001.

2.3. ADEQUACY OF THE STATISTICAL MODELS 63

2−9 10−19 20−29 30−39 40−49 50+

Frankfurter Rundschau

sentence length

nu
m

be
r o

f r
ep

ea
te

d
se

nt
en

ce
s

0
50

00
0

15
00

00
25

00
00

35
00

00

323323 sentences with l ≥ 10

Figure 2.10: Number of sentence repetitions in the Frankfurter Rundschau corpus,
broken down by sentence length.

The observed underdispersion for the larger segments shown in Table 2.3, may in
part be due to an artefact of the corpus. The Frankfurter Rundschau contains many
duplicates and, worse, near-duplicates of entire articles. The size of this problem can
be estimated by counting the number of (exact) sentence duplicates. Of the 2 076 541
sentences in the corpus, 388 379 are identical repetitions of a previous sentence. Al-
though many of those are one- or two-word “pseudo sentences” (such as a location
or the name of a press agency), Figure 2.10 shows a substantial number of duplicates
even for long sentences: 323 323 of them have length 10 or greater. In total, the
sentence repetitions add up to more than 5 million runnning words, or 12.64% of
the entire corpus. Article duplicates, most of which are published on different days,
cannot account for the underdispersion shown in Table 2.4, though.

2.3.3 Extraction noise

Automatic pre-processing and extraction of cooccurrences invariably introduces noise
into the base data because: (i) word tokens are not identified correctly; (ii) tokens
are labelled with the wrong types; or (iii) there are errors in the detection of the
targeted structural relation (i.e. wrong pair tokens are generated). All these errors
produce false negatives (FN, missing pair tokens) and false positives (FP, spurious
cooccurrences) in the base data.17 In the resulting data set, both the actual set of ob-
served pair types and the frequency signatures are affected. The goals of this section
are two-fold: (i) quantify the amount of noise in automatically extracted cooccur-
rence data (depending on the extraction methods used) and (ii) show how random
extraction noise can be accounted for in the statistical model of Section 2.2.

17Note that in this view, a correctly identified pair token with wrong labels (e.g. because of a lem-
matisation error) counts both as a false positive and as a false negative!

64 CHAPTER 2. FOUNDATIONS

extraction
method

perfect tagging TreeTagger tagging

precision recall precision recall

adjacent pairs 98.47% 90.58% 94.81% 84.85%
window-based 97.14% 96.74% 93.85% 90.44%

YAC chunks 98.16% 97.94% 95.51% 91.67%

Table 2.5: Evaluation results for the extraction of German adjective-noun cooccur-
rences (from Evert and Kermes 2003).

An evaluation of the extraction methods is carried out by counting false nega-
tives and false positives in the base data (i.e. at the level of labelled pair tokens).
The amount of noise is measured in terms of precision (proportion of true positives
among all extracted pair tokens) and recall (proportion of the correct pair tokens in
the source corpus that were found by the automatic extraction). An estimate for the
precision value can be determined fairly easily by checking a sample of the base data
manually. However, precise guidelines (on what counts as a true positive) have to be
worked out for the manual annotation. In order to obtain an estimate for the recall
value, all instances of the desired relation have to be identified in the source corpus.
This labour-intensive task can be avoided – so that the evaluation becomes feasible –
when a treebank corpus is available as a gold standard.

Evert and Kermes (2003) used the German Negra treebank (Skut et al. 1998) as a
gold standard to evaluate the extraction of adjective-noun cooccurrences. The results
of this evaluation are reproduced here in Table 2.5. Although adjective-noun cooccur-
rences are comparatively easy to extract, the excellent results achieved with simple
part-of-speech patterns (referred to as “window-based” extraction in Table 2.5) are
astonishing and motivated the use of the same patterns for the an-fr and an-hgc
data sets.

In the following, I will show how random noise can be accounted for in our
statistical model. Systematic noise, on the other hand, is always problematic and
one just has to hope that there is only a limited amount of it. Evert and Kermes
(2003) found only a small number of clearly systematic errors in their evaluation.
Typical causes of such errors are: (i) extraction from a partial syntactic analysis,
yielding systematic combinations of word tokens within certain segments or windows
(leading to inflated marginal frequencies, cf. Section 2.4.1); and (ii) systematic errors
in the part-of-speech tagging or morphological analysis (examples of such errors are
given by Evert and Kermes (2003)).

Concerning random noise, false negatives simply reduce the sample size N. Al-
though some information is lost, the results of the statistical analysis are not distorted
(because the random deletion of pair tokens leads to an equally random sample of
smaller size). Non-systematic False positives can themselves be interpreted as a ran-
dom sample, but from a different population (which I call the noise population).
Thus, the observed data is a composite of random samples from two populations.
Following the argument in Section 2.3.1, we can interpret this composite as a ran-
dom sample from a single mixture population, whose population probabilities are
weighted mixtures of the true population parameters and the noise population pa-
rameters. Thus the random sample model is still valid, but the population proba-

2.4. POSITIONAL COOCCURRENCES 65

bilities are distorted. Unfortunately, it is difficult to make any predictions about the
parameters of the noise population. If we allow ourselves to assume that the false
positives are entirely random combinations (i.e. all pair types in the noise population
satisfy H0), the noise population has essentially the effect of weakening the associ-
ation strength of pair types in the true population. It will thus make it harder to
detect highly associated pairs, but should not introduce spurious associations into
the results. Unfortunately, available reference corpora are too small for a meaningful
empirical study of the the shape of the noise population and the influence that false
positives have on the statistical analysis.

2.4 Positional cooccurrences

Positional cooccurrences were commonly used in the early days of NLP before so-
phisticated linguistic pre-processing and syntactic analysis was possible (see Stevens
et al. 1965; Choueka 1988; Breidt 1993). Nowadays, the main proponents of posi-
tional cooccurrences either advocate a radically different approach to syntax based
on patterns and priming (cf. Barlow and Kemmer 2000), or they are interested in
knowledge-free statistical processing (where “knowledge” refers mostly to linguis-
tic knowledge and theories).18 A good example is the extreme standpoint of Lehr
(1996) and others, rejecting any automatic processing that might introduce noise
into the cooccurrence data. Her arguments are largely invalidated, though, by the
evaluation of extraction methods in Section 2.3.3 and the unproblematic statistical
interpretation of noise.

Positional notions of cooccurrences require different counting methods than rela-
tional cooccurrences in order to ensure that the data can be interpreted with random
sample models. These methods are also based on a four-way classification, result-
ing in a contingency table for each pair type found in the corpus. It is not always
possible to obtain marginal frequencies directly from the corpus, but the contingency
tables can be translated into frequency signatures with the transformation rules from
Section 2.1.2. Note, however, that neither the marginal frequencies nor the full con-
tingency tables can be obtained by summation over the cooccurrence frequencies of
different pair types (as was the case for relational cooccurrences).

Although the contingency tables of positional cooccurrences have a different in-
terpretation from those of relational ones, most association measures can be applied
to both types alike. In the following sections, I will formulate statistical models for
the two subtypes of positional cooccurrences, namely segment-based and distance-
based cooccurrences. I will then show that these models are (almost) equivalent to
the model for relational data presented in Section 2.2.1.

Unlike relational cooccurrences, where labelled pair tokens can be extracted from
the corpus directly, both kinds of positional cooccurrences require the explicit iden-
tification of word tokens as a first step. Except for the knowledge-free approaches
that allow no a priori classification of words, cooccurrences will often be constructed
from two different sets of word tokens, T1 and T2, for the first and second compo-

18An exception are some applications that attempt to identify synonyms and antonyms from their
cooccurrences in sentences (cf. Section 1.2.1). In this case, there may not be a direct syntactic relation
between the cooccurring words, so that the relational model would fail.

66 CHAPTER 2. FOUNDATIONS

v ∈ S v /∈ S

u ∈ S O11 O12

u /∈ S O21 O22

Figure 2.11: Contingency table for segment-based cooccurrences.

nents of the pairs. For instance, when looking for noun-verb combinations, T1 would
contain only nouns and T2 would contain only verbs (so they are disjoint subsets of
the set T of all word tokens). The token sets T1 and T2, as well as the corresponding
sets of types C1 and C2 and the type mappings φ1 : T1 → C1 and φ2 : T2 → C2, are
assumed as prerequisites in the following sections, where the counting methods and
statistical models are formulated. The set Cp of pair types is defined as the Cartesian
product of the component types, Cp = C1×C2, and can later be restricted to the types
that are actually observed in the corpus. In many cases, both the token sets and the
type sets will be disjoint, i.e. T1 ∩ T2 = ∅ and C1 ∩ C2 = ∅. However, unless stated
otherwise, the counting methods presented here can also be applied to non-disjoint
sets of tokens and even to the case where they are identical (T1 = T2, C1 = C2 and
φ1 = φ2) without modification.

2.4.1 Segment-based cooccurrences

Corpus data

For segment-based cooccurrence data, the source corpus is divided into a sequence
of non-overlapping segments S1, . . . , SN, such that every word token (from T1 and
T2) can be assigned to exactly one segment. Here, the sample size N corresponds to
the number of segments rather than the number of extracted pair tokens. Segements
are typically sentences (perhaps also smaller clauses), paragraphs, articles, or other
text-structural units (see also the work on collections of technical documents such as
Katz (1996) and Church (2000)).

For a given pair type (u, v) ∈ Cp, the N segments are classified into four bins
according to whether they contain at least one instance of u and/or v. Thus, O11

is the number of segments containing instances of both u and v, O12 is the number
of segments containing at least one instance of u, but no instances of v, O21 vice
versa, and O22 is the number of segments containing neither instances of u nor of
v. This four-way classification is schematised in the form of a contingency table in
Figure 2.11. Since every segment is assigned to exactly one bin in the contingency
table, we obviously have O11 + O12 + O21 + O22 = N.

It is important to remember that segments containing more than one instance of
u or v are still counted just once. Hence, the marginal frequencies correspond to the
number of segments containing an instance of u (= R1) and the number of segments

2.4. POSITIONAL COOCCURRENCES 67

containing an instance of v (= C1), rather than the word frequencies fu and fv.19

(Although this situation is the same for relational cooccurrences, where component
frequencies rather than word frequencies must be used, I emphasise the distinction
here because I have the impression that researchers who use a segment-based model
are prone to substitute the individual word frequencies fu and fv for the correct
marginal frequencies R1 and C1). For the same reason, the marginal frequencies
cannot be obtained by summation over different pair types.20

The statistical model

With segment-based cooccurrences, we cannot simply extract all combinations of
word tokens within segments and interpret them as a random sample of pair tokens
in the sense of Section 2.2.1. This approach would inflate the component frequencies
and violate the randomness assumption: for each instance of a pair type in the sam-
ple, both component types will also occur in many other pair tokens extracted from
the same segment. Thus, pair tokens are not independent within each segment, and
component frequencies are quantified in steps larger than 1.

For this reason we have to resort to another statistical model, which is based
on a separate random sample for each pair type w = (u, v).21 Each such sample
corresponds to a different classification of the N segments into four bins, according
to whether or not they contain at least one instance of u and/or v. It can be described
by indicator variables

Yk :=

{
1 if the k-th segment contains at least one instance of u
0 otherwise

and

Zk :=

{
1 if the k-th segment contains at least one instance of v
0 otherwise

Note that due to the use of indicator variables we cannot distinguish between single
and multiple occurrences of u and v within a segment. Yk and Zk correspond to the
indicator variables defined in Section 2.2.1. E

[
Yk

]
= Pr

(
Yk = 1

)
is the probability

that the k-th segment contains at least one instance of u, and E
[
Zk

]
= Pr

(
Zk = 1

)
is the probability that the k-th segment contains at least one instance of v. The
second part of Section 2.2.1 (beginning with the introduction of Yk and Zk) and the
following sections are thus equally valid for segment-based cooccurrences (note that
all relevant probabilities can be defined in terms of the indicator variables I(k)

ij , which
are derived from Yk and Zk).

19The word frequencies can be computed from the individual type mappings, though: fu =
|{t ∈ T1 |φ1(t) = u}| = |φ−1

1 (u)| and fv = |{t ∈ T2 |φ2(t) = v}| = |φ−1
2 (v)|.

20In particular, in all but the most trivial cases we find that
∑

u∈C1

∑
v∈C2

f(u,v) 6= N.
21Of course, the samples for different pair types are not independent because they are derived

from the same distribution of word tokens across the segments. In the model of Section 2.2.1, this
dependence is embodied by the multinomial distribution of the random variables Wi. However, the
dependencies are not taken into account by the statistical analysis and the association measures of
Chapter 3.1, which are applied to each pair type on its own. For the same reason, the statistical model
for segment-based cooccurrences does not have to consider the statistical dependencies between the
samples for different pair types.

68 CHAPTER 2. FOUNDATIONS

The population parameters π1 = E
[
Yk

]
and π2 = E

[
Zk

]
are the probabilities that

any given segment contains at least one instance of u and v, respectively. Likewise,
π = E

[
I(k)
11

]
ist the probability that a segment contains instances of both u and v.22

The alternative set of parameters τij = E
[
I(k)
ij

]
has a similar interpretation (e.g. τ12 is

the probability that a segment contains an instance of u but not of v).
A distinct advantage of segment-based cooccurrences is that they are not sensitive

to the repetition of words and pairs within segments. Katz (1996) and Church (2000)
demonstrate that the likelihood of multiple occurrences of a topical word within a
document, given that there is at least one occurrence, is much higher than the total
likelihood of one or more occurrences (which is incompatible with a simple random-
sample model of language). Katz formulates an empirical model for the probabilities
of multiple occurrences, but we do not need such a model: π, π1, and π2 measure the
total probability of one or more (co-)occurrences in a segment.

2.4.2 Distance-based cooccurrences

Corpus data

Distance-based cooccurrences are directional: one has to choose one word type as
a base and then determine its cooccurrents (cf. the discussion at the end of Sec-
tion 1.2.2). In the following presentation of the counting methods, I assume the base
to be the second component v of each pair (without loss of generality, of course). In
order to simplify notation, I also assume that T1 and T2 are disjoint sets.23 For each
token t ∈ T2, a local window W(t) ⊆ T1 is determined which contains all possible
cooccurrents of t, i.e. all tokens s ∈ T1 within a maximal allowed distance. When
the local windows are obtained from a distance measure d, we can use the following
definition:

W(t) := {s ∈ T1 |d(s, t) ≤ L}

(where d(s, t) is the distance between two tokens in the corpus). Note that additional
constraints may be involved in the definition of W(t), e.g. that base and cooccurrent
must belong to the same sentence (which is reasonable for most applications) or that
s must precede t (resulting in one-sided windows). For a given word type v ∈ C2, the
window W(v) of v is the union of the local windows around its instances:

W(v) =
⋃

t∈φ−1
2 (v)

W(t)

The window size is given by the number of tokens in W(v), i.e. |W(v)|. When some
of the local windows overlap, the total window size is not equal to the sum of the
local window sizes:

|W(v)| 6=
∑

t∈φ−1
2 (v)

|W(t)|

22Recall that the “marginal” parameters π1 and π2 cannot be computed by summation over the
cooccurrence probabilities π in this case.

23If this is not the case, the instances of a given base v ∈ C2 have to be removed both from the
window W(v) and its complement CW(v). When T1 = T2 = T , this can be achieved by setting
T1 := T \ φ−1

2 (v) for each choice of v.

2.4. POSITIONAL COOCCURRENCES 69

W = W(v) W = CW(v)

u ∈ W O11 O12 R1 = f(u)

u /∈ W O21 O22 R2 = N − f(u)

C1 = |W(v)| C2 = |CW(v)| N = |T1|

Figure 2.12: Contingency table for distance-based cooccurrences.

In order to compute the contingency table for a pair type (u, v) ∈ Cp, the word
tokens in the set T1 are cross-classified in two steps. First, T1 is divided into the
window W(v) of v and the remaining set CW(v) = T1 \ W(v) (the window’s com-
plement). Then, each of these sets is split into instances of u and the remaining
tokens. This two-by-two layout of bins is schematised in the form of a contingency
table in Figure 2.12, with the columns corresponding to the top-level bins W(v) and
CW(v), the first row corresponding to instances of u, and the second row corre-
sponding to the remaining tokens. The sample size is defined as N = |T1|, so that
O11 + O12 + O21 + O22 = N holds. Note the row and column sums shown in the mar-
gins of the contingency table, where f(u) = |φ−1

1 (u)| stands for the word frequency
of u. The frequency signature of (u, v), which is obtained from the contingency table,
can also be computed directly: f is the number of instances of u within the window
W(v), f1 is the total number of instances of u (f1 = f(u)), f2 is the total size of the
window W(v) (f2 = |W(v)|), and N is the number of tokens in T1 (N = |T1|).

Both relational and segment-based positional cooccurrences are symmetric in the
sense that exchanging T1 and T2 simply transposes the contingency table (which will
usually not affect the statistical analysis). For distance-based cooccurrences, on the
other hand, swapping the roles of u and v, so that the instances of v are cross-classifed
against the window W(u), produces an entirely different result (see Figure 2.13). In
the general case (T1 6= T2), the sample size N will be different. Even for T1 = T2 = T
(where N does not change), the second contingency table is the transpose of the first
only for f(u) = f(v) and |W(u)| = |W(v)| (which would be pure coincidence).

It is not easy to implement frequency counts for distance-based cooccurrences in
an efficient manner. Terra and Clarke (2004) describe a fast algorithm based on a
word index of the corpus, which they apply to a huge corpus of 53 billion running
words harvested from the Internet.

The statistical model

The statistical model required for the interpretation of distance-based cooccurrences
is quite different from the previous models. The random sample interpretation of
Section 2.2.1 is ruled out for the same reasons as in the case of segment-based cooc-
currences. On the other hand, there is no segmentation of the source corpus so the
model of Section 2.4.1 is not applicable either.

70 CHAPTER 2. FOUNDATIONS

v ∈ W v /∈ W

W = W(u) O11 O12 R1 = |W(u)|

W = CW(u) O21 O22 R2 = |CW(u)|

C1 = f(v) C2 = N − f(v) N = |T |

Figure 2.13: Alternative contingency table for distance-based cooccurrences.

The model suggested here divides the token set T1 into the window W(v) and its
complement CW(v) for a given pair type w = (u, v). The number f(v) of instances
of v is interpreted as a pre-determined parameter (similar to the sample size) that
is irrelevant for inferences in the model (formally, the sampling distribution is con-
ditioned on the word frequency f(v) and the corresponding window size |W(v)|).
The model assumes that the tokens of W(v) and CW(v) are randomly generated,
but possibly with different probability parameters: ρ1 is the probability that a token
in W(v) is assigned the label u (so that it becomes an instance of u), and ρ2 is the
probability that a token in CW(v) is assigned the label u. Again, we have a separate
random sample for each pair type.

Under these assumption, the sampling probability of a given contingency table
~k|C1, C2 (i.e. with the pre-determined column sums C1 and C2) is the product of two
independent binomial distributions (the first with |W(v)| trials and success probabil-
ity ρ1, the second with |CW(v)| trials and success probability ρ2):

Pr
(
~X = ~k

)
=
(
C1

k11

)
(ρ1)k11(1 − ρ1)C1−k11 ·

(
C2

k12

)
(ρ2)k12(1 − ρ2)C2−k12 . (2.28)

This probability is identical to the conditional sampling distribution (2.16) for fixed
column sums that was described in Section 2.2.4. Therefore, any results and associa-
tion measures that assume fixed column sums (such as the log-likelihood measure, see
Section 3) are applicable to contingency tables for distance-based cooccurrences. The
hypergeometric sampling distribution (where all marginals are fixed) can be derived
from the column-conditioned distribution, hence it is also valid for distance-based
cooccurrences, and so is the Fisher measure (which is based on this distribution).
Strictly speaking, association measures that are directly based on the random sam-
ple model of Section 2.2.1 are not valid for distance-based cooccurrences. However,
differences between the unconstrained and the column-conditioned distribution will
often be minor, so that most association measures are applicable in practice. Note
that exchanging the roles of u and v in the model leads to the conditional sampling
distribution for fixed row sums.

2.4. POSITIONAL COOCCURRENCES 71

2.4.3 Examples

Many examples both of segment-based and distance-based cooccurrences are pre-
sented in the reports of early work in the field of natural language processing (e.g.
Stevens et al. 1965; Choueka 1988) as well as in more recent research in the Neo-
Firthian tradition (e.g. Lehr 1996; Sinclair 1991). Most of these examples consider
cooccurrences of arbitrary graphemic words (perhaps using stop word lists to exclude
some closed-classed items) within segments (typically sentences) or within a collo-
cational span (Sinclair 1991, 115f). Formally, we have T1 = T2 = T , corresponding
to all graphemic tokens in the corpus, and for segment-based cooccurrences the data
set will contain “reflexive” pair types (u, u) with O12 = O21 = 0. Of course, these
“trivial” cooccurrences should be excluded from the statistical analysis.

Examples for the general case (where T1 and T2 are different token sets) are (i)
cooccurrences of a noun and a verb in a sentence and (ii) a PP and a full verb in an
automatically identified clause (inviting a re-interpretation of the pnv-fr data set as
segment-based cooccurrences). A particularly interesting example of segment-based
cooccurrences is provided by attempts to identify translation equivalents from their
cooccurrences in aligned sentence pairs (Church and Gale 1991; Smadja et al. 1996).
In this case, T1 corresponds to the word tokens of the source language text, and T2

to those of the target language text. The segments are given by the alignment pairs,
and two tokens s ∈ T1, t ∈ T2 cooccur iff they appear in the same alignment pair.

Research in the Neo-Firthian tradition often concentrates on a certain number
of tokens to the left and right of a given keyword (the base of the cooccurrences),
which is referred to as a collocational span (Sinclair 1991, 175). In this situation, we
have T1 = T2 = T and the distance d(s, t) of two tokens s, t ∈ T can be defined as
the number of intervening tokens plus one. Given a collocational span L, the local
window W(t) around a token t contains L tokens to either side of t, but not t itself.
Thus, |W(t)| = 2L. The window for a type v is the union of its local windows. If
these do not overlap, i.e. all instances of v are at least 2L tokens apart, the window
size can directly be computed: |W(v)| = 2L · f(v), and the size of the complement
is |CW(v)| = N − (2L + 1)f(v) (recall that the instances of v have to be excluded
from the complement as well). However, when this cannot be guaranteed, there is
no choice but to determine the window W(v) explicitly and count the number of
tokens, exlcuding all instances of v from the count. Berry-Rogghe (1973) effectively
uses such a model in her definition of a z-score like measure.

Some researchers add a lower distance threshold, thus hoping to find semantic
relations rather than syntactic or lexically determined ones (e.g. Baroni et al. 2002).
Terra and Clarke (2003) state that the optimal span size for the identification of
synonyms is a distance between 10 and 30 words.

2.4.4 Discussion

Testing the model assumptions

This section gives a brief summary of the assumptions behind the statistical models
for positional cooccurrence data in contrast to the model of Section 2.2.

An important advantage of the segment-based model is its insensitivity to clus-
tering effects within the segments, which may correspond to sentences, paragraphs,

72 CHAPTER 2. FOUNDATIONS

Articles from Frankfurter Rundschau

Article Length

N
um

be
r o

f A
rti

cl
es

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00
Sentences from Frankfurter Rundschau

Sentence Length

N
um

be
r o

f S
en

te
nc

es

0 20 40 60 80 100

0
20

00
0

60
00

0
10

00
00

Figure 2.14: Distribution of the lengths of articles and sentences in the Frankfurter
Rundschau corpus.

or entire documents. However, its homogeneity assumption (that the occurrence
probabilities are the same for all segments) can be problematic when there is great
variation in the size of individual segments. Figure 2.14 shows such variation for the
lengths of articles and sentences in the Frankfurter Rundschau corpus. The dispersion
test described in Section 2.3.2 can also be applied to segment-based cooccurrences
(with each part containing exactly S segments), but it cannot detect inhomogene-
ity that is due to segment size (because segments of different sizes will usually be
distributed randomly across the corpus).

The statistical model used for distance-based cooccurrences calls for more elabo-
rate tests of randomness. For a given pair type (u, v), the instances of u within the
window W(v) and those in the complement CW(v) have to be tested separately, since
the statistical model does not assume that the two distributions are identical. W(v) is
typically much smaller than its complement and the local windows may not be spread
homogeneously across the source corpus. This suggests the following tests for non-
randomness: (i) test the dispersion of the instances of u across the local windows that
make up W(v), using a dispersion test; (ii) test independence of the instances within
each local window, e.g. with a runs test (although this kind of non-randomness usu-
ally has no influence on the contingency tables); (iii) test the distribution of instances
of u across the complement of W(v) with a standard dispersion test (using K equally
sized chunks and ignoring the “holes” left by local windows). It is possible to pool
the dispersion data for all pair types (u′, v) that are based on the same window W(v).

Extraction noise for segment-based cooccurrences can be discussed in terms of
precision and recall for each pair type (u, v). An additional source of errors here
is the detection of segment boundaries, especially when segments are linguistically
motivated units (such as sentences or clauses). It is more difficult to evaluate ex-
traction quality for distance-based cooccurrences. However, most proponents of a
distance-based approach use fully deterministic operational definitions of word to-
kens and windows in order to exclude noise altogether (again, Lehr (1996) provides
the most striking example). Consequently, there is little point in an empirical study

2.4. POSITIONAL COOCCURRENCES 73

of extraction errors.

Relational vs. positional cooccurrences

In general, the differences between relational and positional cooccurrences are so
profound that the choice is largely determined by theoretical (linguistic) considera-
tions. In some cases, however, the data extracted from a corpus can be interpreted
either as relational or as positional cooccurrences. Consider the pnv-fr data set of
PP-verb combinations, which were defined as relational cooccurrences. However, the
extraction method described in Section 2.1.3 produces all possible combinations of
PPs and full verbs that occur within the same segment (corresponding to a main
or subordinate clause), which fits in better with the segment-based model. The re-
sulting data set can thus be interpreted as relational cooccurrence data with a high
proportion of noise (mostly false positives), taking the extraction method that was
used as a fairly unsophisticated tool for identifying PP-verb relations. It can also be
interpreted as segment-based data, extracting cooccurrences of PP-chunk tokens and
verb tokens within clause segments. In the latter case, the marginal frequencies,
which were computed from the cooccurrence frequencies by the procedure described
in Section 2.1.2, have to be adjusted according to Section 2.4.1.

74 CHAPTER 2. FOUNDATIONS

Chapter 3

Association Measures

3.1 An inventory of association measures

3.1.1 General remarks

An association measure is a formula that computes an association score from the
frequency information in a pair type’s contingency table. This score is intended as
an indicator of how strong the association between the pair’s components is, correct-
ing for random effects (as predicted by the statistical model of Section 2.2). I use
the convention that high association scores indicate strong association. Some of the
published (and implemented) measures may be different, but their scores can easily
be transformed to my convention (for instance, when the p-value computed by a sta-
tistical hypothesis test is used as an association score, its negative logarithm conforms
with the convention, cf. Section 3.1.3).

The scores computed by an association measure can be interpreted in different
ways: (i) They can be used directly to estimate the magnitude of the association be-
tween the components of a pair type. (ii) They can be used to obtain a ranking of the
pair types in a data set. In this case, the absolute magnitude of the scores is irrele-
vant. (iii) They can also be used to rank pair types with a particular first or second
component. Here, a comparison is made between contingency tables with fixed row
(or column) sums only, and the relative scores of entirely different frequency signa-
tures are irrelevant. Sections 1.2.1 and 1.2.2 give examples for all three applications.
The interpretation of association scores has some influence on whether the logic be-
hind a particular association measure seems appropriate, and on the relevant criteria
for a comparison as in Section 3.4. In this chapter, I often make the tacit assumption
that association scores are used for ranking a data set (ii). For some measures, the
absolute magnitude of the scores can be given a meaningful interpretation (especially
those listed in Sections 3.1.3 and 3.1.4). I do not go further into (iii), which is closely
tied to a “directional” view of cooccurrences and casts an entirely different light on
the properties of association measures.

There is a general division into one-sided and two-sided measures, depending on
whether they distinguish between positive and negative association (one-sided mea-
sures) or not (two-sided measures).1 Recall that positive association indicates that

1The terms one-sided and two-sided are taken from the theory of statistical hypothesis tests. In
Sections 3.1.3 and 3.1.4, one-sided hypothesis tests result in one-sided association measures, and vice

75

76 CHAPTER 3. ASSOCIATION MEASURES

the components of a pair type cooccur more often than if they were independent, and
negative association that they cooccur less often. Also recall that there is no “stan-
dard” way of measuring association strength, and Section 2.2.5 lists several possibil-
ities that give different results. All the statistically reasonable ones among them (i.e.
those that assume a well-defined value in the case of independence) should lead to
the same distinction between positive and negative association, though.

For one-sided association measures, high scores indicate strong positive associa-
tion. Low scores (including negative scores) indicate that there is no evidence for a
positive association (which could mean either that the components are independent
or that there is negative association). For two-sided association measures, on the
other hand, high scores indicate any kind of strong association (positive or negative),
whereas low scores indicate near-independence, regardless of their sign. A two-sided
measure whose scores are always non-negative can easily be converted into a one-
sided measure: for any pair type with negative association (as indicated e.g. by the
maximum-likelihood estimate for the µ-value), multiply the association score by −1.
Thus, positive scores indicate positive association and negative scores indicate nega-
tive association. The absolute value of the score depends on the association strength,
with values close to 0 indicating near-independence.2

The following sections present a wide range of association measures that have
been suggested and used by various researchers. Wherever possible, a measure’s
theoretical background and the derivation of its equation are explained, and key ref-
erences are given. Most association measures compare the observed frequencies Oij

against the frequencies Eij expected under the null hypothesis H ′
0 (cf. Section 2.2.3)

in some way. I formulate the equations of all measures in terms of Oij and Eij . The
complete frequency information needed for their implementation is thus summarised
in the two tables shown in Figure 3.1.

V = v V 6= v V = v V 6= v

U = u E11 =
R1C1

N
E12 =

R1C2

N
U = u O11 O12 = R1

U 6= u E21 =
R2C1

N
E22 =

R2C2

N
U 6= u O21 O22 = R2

= C1 = C2 = N

Figure 3.1: Expected vs. observed frequencies.

There are four major approaches to measuring association:

1. The first approach aims to quantify the amount of evidence that the observed
sample provides against the non-association of a given pair type (i.e. against

versa.
2For small absolute values, the distinction between positive and negative association is unreliable

because of random effects. Such pair types should be interpreted as “roughly independent”, with no
clear evidence for either positive or negative association.

3.1. AN INVENTORY OF ASSOCIATION MEASURES 77

either one of the null hypotheses introduced in Section 2.2.3 or the homogene-
ity variants from Section 2.2.4). Since most of these association measures are
derived from statistical hypothesis tests, I refer to them as the significance of
association group. Measures of the significance of association can be further
subdivided into likelihood measures (which compute the probability of the
observed contingency table, Section 3.1.2), exact statistical hypothesis tests
(which compute the significance or p-value of the observed data, Section 3.1.3),
and asymptotic statistical hypothesis tests (which compute a test statistic that
can be translated into an approximate p-value, Section 3.1.4).

2. The second approach estimates one of the coefficients of association strength
introduced in Section 2.2.5 from the observed data. I refer to such measures
as the degree of association group. Note that the computed association score
is an estimate for the effect size, while the significance of association group is
more concerned with the amount of evidence provided by the sample. Mea-
sures of association strength are divided into point estimates (usually maxi-
mum-likelihood estimates, Section 3.1.5) and conservative estimates (based
on confidence intervals obtained from a hypothesis test, Section 3.1.6).

3. The third approach is based on the information-theoretic concepts of entropy,
cross-entropy, and mutual information. It is therefore referred to as the infor-
mation theory group (Section 3.1.7). Intuitively, association measures from
this group quantify the non-homogeneity of the observed contingency table,
compared to the contingency table of expected frequencies. Alternatively, mu-
tual information can be understood as a coefficient of association strength
(which is 0 iff a pair’s components are independent), and the corresponding
association measures are point estimates of this coefficient.

4. The final approach encompasses a considerable number of heuristic formu-
lae (Section 3.1.8). Such association measures combine sample values that are
considered to be good indicators of (positive) association in various ways. They
can also be modified versions of measures from other groups or combinations
of such measures. It is sometimes not entirely clear whether a particular associ-
ation measure should be classified as a heuristic or belongs to one of the other
three groups. The most prominent example is t-score (Section 3.1.4): although
derived from an asymptotic hypothesis test (Student’s t test), its applicability to
cooccurrence frequencies is highly questionable.

A comprehensive and regularly updated list of association measures is available on-
line at the URL

http://www.collocations.de/AM/

3.1.2 Likelihood measures

Likelihood measures compute the probability of the observed contingency table (or
part of it) under a null hypothesis of non-association (usually the point independence
hypothesis H ′

0: π = p1 · p2, where pi is a maximum-likelihood estimate for the un-
known parameter πi). The equations below compute a probability lv ∈ (0,1] (lv

78 CHAPTER 3. ASSOCIATION MEASURES

stands for likelihood value). A small value of lv means that the observed data are un-
likely given the null hyothesis, indicating strong evidence for association of the pair
type in question. It is usually more convenient to report the negative decadic loga-
rithm − log10 lv ∈ (0,∞), which adheres to the convention that high scores should
indicate strong association. All likelihood measures are two-sided. Their scores can
be multiplied with −1 for negatively associated pairs to obtain a one-sided measure.

The most obvious likelihood measure is multinomial likelihood, which computes
the probability of the observed contingency table under H ′

0 (using the sampling dis-
tribution under H ′

0 from Section 2.2.3).

multinomial-likelihood =
N!
NN

· (E11)O11 · (E12)O12 · (E21)O21 · (E22)O22

O11! · O12! · O21! · O22!

It is also possible to use the general null hypothesis H0 and avoid maximum-likelihood
estimates for π1 and π2 by conditioning on the observed marginal frequencies (cf.
Section 2.2.4), which leads to the hypergeometric likelihood measure.

hypergeometric-likelihood =

(
C1

O11

)
·
(

C2

R1 − O11

)
(
N

R1

)
These two association measures compute the likelihood of obtaining exactly the ob-
served contingency table, provided that H ′

0 (or H0 is true). However, the top left
cell (O11) provides the most immediate evidence for an association between a pair’s
components. Therefore, it makes sense to compute the total probability of all con-
tingency tables with X11 = O11 under H ′

0, regardless of their row and column sums
(which only plays a role in estimating E11). This reasoning leads to the binomial
likelihood measure, corresponding to the sampling distribution of X11.

binomial-likelihood =
(

N

O11

)(
E11

N

)O11 (
1 − E11

N

)N−O11

For computational efficiency, it is advantageous to replace the binomial probabilities
with a Poisson distribution. The approximation of the Poisson likelihood to binomial
likelihood is excellent for small values of E11/N and O11, which is usually the case
with cooccurrence data. Note that Poisson-likelihood is the exact distribution of X11

when independent Poisson sampling is assumed (cf. Section 2.2.2).

Poisson-likelihood = e−E11
(E11)O11

O11!

Extending the approach of (Quasthoff 1998, 9), Quasthoff and Wolff (2002) take the
negative logarithm of Poisson-likelihood (corresponding to the − log10 lv convention)
and approximate the factorial with Stirling’s formula (Weisstein 1999, s.v. Stirling’s
Approximation) to obtain the Poisson-Stirling measure.

Poisson-Stirlinglog = O11 ·
(
logO11 − logE11 − 1

)

3.1. AN INVENTORY OF ASSOCIATION MEASURES 79

3.1.3 Exact hypothesis tests

A problem of the likelihood approach is that the computed probabilities may be-
come quite small under certain circumstances, even when the null hypothesis H0

is satisfied. Taking Poisson-likelihood as an example, the likelihood of O11 = 1
for an expected cooccurrence frequency of E11 = 1 is 0.3678794. However, for
O11 = E11 = 1 000, the likelihood is only 0.01261461 (which is similar to the likeli-
hood of O11 = 4 for E11 = 1). Thus, a contingency table table with O11 = E11 = 1 000
seems to provide more evidence against H0 than one with O11 = 4 and E11 = 1, even
though its observed and expected frequency are equal.

(Exact) statistical hypothesis tests solve this problem by controlling the proba-
bility of a so-called type I error, which is an unjustified rejection of the null hypoth-
esis H0. They do so by summing over all contingency tables that provide as much
evidence against H0 as the observed table, or even more. The resulting p-value (pv
for short) can be interpreted as the amount of evidence provided by the observed data
against the null hypothesis: the smaller it is, the less likely it is that a given pair type
satisifying H0 would lead to a similar or more “extreme” contingency table purely by
chance. The p-value is a probability in the range pv ∈ (0,1], with smaller values
indicating more evidence for a (usually positive) association. It is often convenient
to use the negative decadic logarithm − log10 pv ∈ (0,∞) instead, which adheres to
the convention that high scores should indicate strong association.

A crucial problem in the design of exact hypothesis tests is the question how to
compare different contingency tables and identify the ones that are more “extreme”
than the observed table (and whose probabilities should be added up to obtain the
p-value). A general solution exists only in simple cases with a single free parameter
(which includes all likelihood measures described in Section 3.1.2 except for multi-
nomial-likelihood). For the same reason, exact hypothesis tests are usually one-sided,
summing over contingency tables that provide more evidence for positive association.

The only free parameter of the binomial and Poisson likelihood functions is the
upper left corner of the contingency table, i.e. X11 in the sampling distribution. The
greater its value, the more evidence there is for a positive association (because the
observed cooccurrence frequency is higher than expected). Summation over the like-
lihood values for all possible values of X11 ≥ O11 leads to the binomial and Poisson
tests and the corresponding association measures below.

binomial =
N∑

k=O11

(
N

k

)(
E11

N

)k(
1 − E11

N

)N−k

Poisson =
∞∑

k=O11

e−E11
(E11)k

k!

The Poisson measure was suggested in 1970 by Robert Daley (published in Sinclair
et al. 2004, 39). Neiter the Poisson nor the binomial test are completely exact tests,
because they depend on H ′

0 and hence on the sample estimate for E11.
A truly exact test can be obtained by the same procedure from the hypergeometric

likelihood function, which depends on H0 only. It is known as Fisher’s exact test (see

80 CHAPTER 3. ASSOCIATION MEASURES

Agresti 1990, 60–66),3 and is even more computationally expensive than the other
two tests.

Fisher =
min{R1,C1}∑

k=O11

(
C1

k

)
·
(

C2

R1 − k

)
(
N

R1

)
The first application of the Fisher measure to cooccurrence data was reported by
Justeson and Katz (1991), but without reference to Fisher’s test. It was later pop-
ularised by Pedersen (1996) as an alternative to the log-likelihood measure (cf. Sec-
tion 3.1.4) that does not have to rely on approximations.

3.1.4 Asymptotic hypothesis tests

Asymptotic hypothesis tests are usually based on normal distributions and avoid the
numerical difficulties of exact tests.4 An elementary example is the z-score, which
simplifies the computation of (the p-value of) the binomial measure by approximat-
ing the discrete binomial distribution with a continuous normal distribution. When
H ′

0 holds and E11 is sufficiently large, the binomial distribution of X11 is approxi-
mately normal with mean E11 and standard deviation close to

√
E11. Hence, the

value (X11 − E11)/
√
E11 follows a standard normal distribution (Weisstein 1999, s.v.

Normal Distribution). Setting X11 = O11, we obtain

z-score =
O11 − E11√

E11

The higher the z-score value, the more evidence there is for positive association.
Using the theoretical distribution function of the normal distribution, it can be con-
verted into a p-value (as an approximation of the p-value computed by the binomial
measure). The z-score measure was used by Dennis (1965, 69) to identify “significant
word-pair combinations” and later by Berry-Rogghe (1973, 104).

More generally, asymptotic hypothesis tests compute a test statistic, which in-
dicates how far the observed contingency table table deviates from what would be
expected under the null hypothesis. The definition of the test statistic plays a crucial
role in the design of such a test because it determines an ordering of all possible con-
tingency tables, according to how much evidence they provide against H0. A p-value
is then obtained by summation over all contingency tables that are more “extreme”
than the observed one in this ordering. The expensive computation of this exact p-
value is greatly simplified when the limiting distribution of the test statistic under
H0 is known for large samples. Its distribution function can then be used to transform
the test statistic into the corresponding p-value. Since this transformation is mono-
tonic, the test statistic itself can also be used as an association measure, and this is
done in most cases.5

3This test was first described by Fisher (1934). In a later publication, a derivation of the test
procedure is given for a concrete numerical example (Fisher 1935, 48–50).

4Historically, the asymptotic tests pre-date exact tests, having been developed at a time when the
normal distribtuion was at the heart of all branches of statistics.

5It is still interesting to compute the p-values, though, in order to allow a comparison with the
association scores computed by exact hypothesis tests (see Section 3.4).

3.1. AN INVENTORY OF ASSOCIATION MEASURES 81

The standard test for independence of the rows and columns in a contingency
table, at least in the field of mathematical statistics, is Pearson’s chi-squared test,
based on H ′

0 (DeGroot and Schervish 2002, 552). Its test statistic is often denoted
by the symbol X2 (cf. Pedersen 1996), and is a two-sided association measure. The
limiting distribution of X2 is a χ2-distribution with one degree of freedom (df = 1),
which can be used to translate association scores into p-values. A one-sided measure
can be obtained by the general method described in Section 3.1.1. However, the p-
values according to the χ2 distribution then have to be divided by 2 in order to allow
direct comparison with one-sided tests.6

chi-squaredi =
∑
i,j

(Oij − Eij)2

Eij

Another version of the test is based on the sampling distribution for fixed column
sums and the corresponding null hypothesis H ′

0, hom (cf. Section 2.2.4), known as
Pearson’s chi-squared test of homogeneity (DeGroot and Schervish 2002, 557f). For
a 2 × 2 table, this version of the test is often written in the form

chi-squaredh =
N
(
O11O22 − O12O21

)2

R1R2C1C2

For the comparison with other association measures in Section 3.4, the following
“normal” form is particularly useful:

chi-squared =
N
(
O11 − E11

)2

E11E22

Although this is not at all obvious, all three formulae are equivalent (Lemma A.5).
Surprisingly, chi-squared has not very often been used for cooccurrence analysis

so far, although it is mentioned by Manning and Schütze (1999). Edmundson (1965)
suggested a “correlation coefficient for events” R(A,B) that is identical to chi-squared
when these events are interpreted as occurrences of the pair type components u and
v, i.e. A = {U = u} and B = {V = v} (Edmundson 1965, 44). Dennis (1965, 69) also
considered the use of chi-squared, but finally chose z-score. Many years later, Church
and Gale (1991) applied chi-squared to the extraction of translation equivalents from
parallel text.

It is well known that many asymptotic hypothesis tests give a poor approximation
of their limiting distribution when one or more of the entries in the contingency table
are small numbers. The main reason for this effect lies in the approximation of the
discrete binomial distribution by a continuous normal distribution, as exemplified in
Figure 3.2. The graphs show a binomial distribution X with parameters N = 15 and
p = 1/3 and its approximation by a normal distribution Y with the same expectation
and variance (corresponding to parameters µ = 5 and σ2 = 10/3). The area of the
coloured bars corresponds to the exact binomial probability Pr

(
X ≥ 7

)
of 7 or more

successes out of N = 15 trials, and the shaded area under the normal curve to its
normal approximation. The left panel shows the normal probability for Pr

(
X ≥ 7

)
.

6The same strategy is used in mathematical statistics to perform one-sided tests based on Pearson’s
X2 statistic (or similar two-sided test statistics).

82 CHAPTER 3. ASSOCIATION MEASURES

Normal approximation Y to binomial distribution X

j

P
(X

=
j)

/ d
en

si
ty

 o
f Y

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20 P(X ≥ k)

P(Y ≥ k)

Normal approximation with Yates’ correction

j

P
(X

=
j)

/ d
en

si
ty

 o
f Y

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20 P(X ≥ k)

P(Y ≥ k − 1 2)

Figure 3.2: Yates’ continuity correction.

It is obvious that the probability for Pr
(
X ≥ 6.5

)
in the right panel is a much better

approximation of the correct binomial probability (see Cox (1970) for an analytical
derivation of this property and the offset of 1/2).

Thus, Yates’ continuity correction (Yates 1934) adjusts observed frequencies by
1/2 towards the expected values. It is applied to asymptotic hypothesis tests that
involve a normal approximation. When used for association measures, the following
correction rules are applied to the observed frequencies Oij in the contingency table
after the expected frequencies Eij have been determined.

O′
ij := Oij − 1/2 if Oij > Eij

O′
ij := Oij + 1/2 if Oij < Eij

(3.1)

The application of Yates’ continuity correction to the chi-squared test is not univer-
sally accepted. Statisticians differ as to when it should be applied and whether it is
valid at all (e.g. Motulsky 1995, Ch. 37). The reason for this dispute seems to be that
the chi-squared test with Yates’ correction often gives a good approximation to the
p-values computed by Fisher’s test (Yates 1934), which some researchers consider to
be too conservative.

The homogeneity version chi-squaredh has a special form that incorporates Yates’
correction so that the observed frequencies do not have to be modified (Lemma A.6).
This form is often used in applications.

chi-squaredh,corr =
N
(
|O11O22 − O12O21| −N/2

)2

R1R2C1C2

Another asymptotic test is Student’s t-test, whose test statistic has become known
as the t-score measure (Church et al. 1991, Sec. 2.2). It is a one-sided test and has
Student’s t distribution with df ≈ ∞ as its limiting distribution.

t-score =
O11 − E11√

O11

From a theoretical perspective, Student’s test is not applicable to cooccurrence fre-
quency data. It is designed for a sample of n independent and identically distributed

3.1. AN INVENTORY OF ASSOCIATION MEASURES 83

normal variates. The null hypothesis is a condition on the mean of the normal dis-
tribution, while its variance is estimated from the sample. Under a null hypothesis
that stipulates a specific value for the mean of the distribution, the test statistic has
a t-distribution with n − 1 degrees of freedom. There are two ways in which such
a test might be applied to the comparison of O11 and E11: (a) the “sample” consists
of a single item X11 (i.e. n = 1), which has an approximately normal distribution;
or (b) the “sample” consists of N indicator variables, one for each pair token (i.e.
n = N). In case (a), it is impossible to estimate the variance from a sample of size
one. In case (b), which Manning and Schütze (1999, 164) refer to as the “standard
way” of extending the t-test for use with frequency data, the sample variance can
be estimated and corresponds to the value used by (Church et al. 1991) (O11 in the
denominator of the t-score equation is a good approximation of the correct sample
variance). However, the individual random variates of this “sample” are indicator
variables with only two possible values 0 and 1 (and they are usually highly skewed
towards 0). The normal approximation required by the t-test is highly questionable
for such binary variables. In particular, the test assumes that the mean and variance
of the distribution are independent, which is note the case for indicator variables.
It may thus be more appropriate to interpret t-score as a heuristic variant of z-score
that avoids the characteristic overestimation bias of the latter.

An entirely different class of test statistics are likelihood ratio tests, which are
based on the ratio between the maximum likelihood of the observed data under H0

and its unconstrained maximum likelihood (without making any assumptions about
the population parameters).7 When this method is applied to the multinomial dis-
tribution (2.5) of contingency tables, we obtain the general form of the log-likelihood
measure (see also Agresti 1990, 48).

log-likelihoodratio = −2 log
max Pr

(
~X = ~O | N ∧ π = π1 · π2

)
max Pr

(
~X = ~O | N

)
Use of the natural logarithm and the factor −2 ensure that the limiting distribution
of the likelihood ratio statistic, which is often denoted with the symbol G2, is a χ2-
distribution with one degree of freedom (Wilks 1935). A closed expression for this
ratio can be derived from the multinomial sampling distribution (Lemma A.7).

log-likelihood = 2
∑
ij

Oij log
Oij

Eij

The use of log-likelihood as an association measure was originally suggested by Dun-
ning (1993). He derived it from the sampling distribution for fixed column sums and
the corresponding null hypothesis H0, hom, resulting in the following rather unwieldy,
but fully equivalent formula (Dunning 1993, 67):

log-likelihoodDunning = −2 log
L(O11, C1, r) · L(O12, C2, r)
L(O11, C1, r1) · L(O12, C2, r2)

L(k, n, r) = rk(1 − r)n−k

r =
R1

N
, r1 =

O11

C1
, r2 =

O12

C2

7Note the use of H0 rather than H ′
0. Likelihood ratio tests do not depend on a point null hypothesis

because they compute the maximal likelihood value consistent with H0.

84 CHAPTER 3. ASSOCIATION MEASURES

Like chi-squared, the log-likelihood measure is two-sided. Dunning argues at length
that G2 approximates the limiting χ2 distribution much better than X2 for the highly
skewed contingency tables (with N large and O11 small) that are typical of cooccur-
rence data (Dunning 1993, 1998).

3.1.5 Point estimates of association strength

Although measures of the significance of association have been widely and success-
fully applied, they have one important drawback: a high association score, corre-
sponding to a large amount of evidence against independence, can result either from
a high degree of association between the components of a pair type or from a large
amount of evidence being available (i.e. a high cooccurrence frequency O11). The as-
sociation measures presented in preceding sections cannot distinguish between these
two effects, and are thus often biased in favour of high-frequency pairs.8 The mea-
sures of association strength introduced in this section provide a different approach
that focuses on the degree of association. They are point estimates (maximum-likeli-
hood estimates) of the coefficients of association strength described in Section 2.2.5
(see Table 2.2 for an overview). In Section 3.1.6 they will be refined in order to take
the amount of evidence supporting the estimated association strength into account
and avoid overestimation for low-frequency pairs.

A problem with the maximum-likelihood estimates for coefficients of association
strength is that the value of any such coefficient does not fully determine the sam-
pling distribution. Therefore, any hypothesised value is consistent with an entire
likelihood range for the observed data. The most sensible approach is to use the
highest likelihood value within the range (which usually has a lower bound close to
zero) as a criterion. Thus, the estimate for a coefficient of association strength is
computed from the direct estimates of the population parameters τij , for which the
total likelihood of the observed contingency table assumes its global maximum.9 The
maximum-likelihood estimates below simply replace the population parameters with
the corresponding sample estimates (see Eq. (2.8)):

π ≈ p =
O11

N

π1 ≈ p1 =
R1

N
=

O11 + O12

N

π2 ≈ p2 =
C1

N
=

O11 + O21

N

and likewise

τij ≈
Oij

N
.

Note that this approach yields unconditional maximum-likelihood estimates. The ar-
guments that are often presented in favour of Fisher’s exact test (e.g. Yates 1984)

8This is not the case for the chi-squared measure. However, Dunning (1993) found the reason to
be a poor approximation of the limiting distribution, which causes chi-squared to overestimate the
significance of low-frequency pairs.

9Note that a Bayesian approach, assuming a prior distribution for the probability parameters, would
arrive at different estimates.

3.1. AN INVENTORY OF ASSOCIATION MEASURES 85

suggest that a conditional estimate – where the marginal frequencies are fixed to the
observed values – may be more useful. However, it is very difficult and expensive
to compute such conditional estimates, which are in fact different from the uncondi-
tional maximum-likelihood estimates (Agresti 1992, 135).

The MI measure is an estimate for the logarithm of the µ-value, which can be
interpreted as (a maximum-likelihood estimate for) point-wise mutual information
(Church and Hanks 1990):

MI = log
O11

E11

The relative risk measure is an estimate for the logarithm of the % coefficient (but to
my knowledge has never been used as an association measure):

relative-risk = log
O11C2

O12C1

The maximum-likelihood estimate for the difference of proportions κu was used as
a test statistic by Liddell (1976), but has not been applied to language data so far:

Liddell =
N(O11 − E11)

C1C2
=

O11O22 − O12O21

C1C2

The Dice coefficient, a point estimate of κDice, is interesting because, as Smadja et al.
(1996) point out, it identifies pairs with a particularly high degree of lexical cohesion
(i.e. those with nearly total association). The same holds for the equivalent κJaccard

measure as well as the estimates of κgmean and κmin, and κJaccard below (cf. Table 2.2).
Dias et al. (1999) introduced an n-gram generalisation of the Dice coefficient under
the name mutual expectation.

Dice =
2O11

R1 + C1

The Jaccard coefficient is mentioned by Dunning (1998, 53), but is merely a mono-
tonic transformation of Dice (see Section 2.2.5).

Jaccard =
O11

O11 + O12 + O21

The geometric mean measure is a point estimate of the κgmean coefficient. Interest-
ingly, gmean is the square root of the heuristic MI2 measure from Section 3.1.8 (scaled
with a constant factor).

gmean =
O11√
R1C1

=
O11√
NE11

Another association measure in this group that has not found widespread use is min-
imum sensitivity (MS), a point estimate for the κmin coefficient (Pedersen and Bruce
1996). In a recent experiment, however, it has unexpectedly performed better than
all the established measures in a collocation extraction task (cf. Section 5.3).

MS = min
{
O11

R1
,
O11

C1

}

86 CHAPTER 3. ASSOCIATION MEASURES

The (logarithmic) odds ratio, an estimate of log θ, is particularly interesting: Blaheta
and Johnson (2001) suggest the use of log-linear models (see Agresti 1990) as a
generalisation of traditional association measures to n-grams. Their general measure
of association is based on the n-way interaction term λ and its asymptotic standard
error σ (Blaheta and Johnson 2001, 56). The authors note that in the case of bigrams
(i.e. n = 2), λ is the logarithmic odds ratio and σ its asymptotic standard error
(Hollander and Wolfe 1999).

odds-ratio = log
O11O22

O12O21

A problem of the odds-ratio measure is that it assumes an infinite value whenever any
of the observed frequencies is zero (−∞ for O11 = 0 or O22 = 0, +∞ for O12 = 0 or
O21 = 0). Many applications use a “discounted” version of the log odds ratio, where
1
2 is added to each Oij in order to avoid such infinite values. This adjusted estimator
was shown to be “well-behaved” in various studies (see Agresti 1990, 54).

odds-ratiodisc = log
(O11 + 1

2)(O22 + 1
2)

(O12 + 1
2)(O21 + 1

2)

In addition to its computational advantages, odds-ratiodisc allows a distinction be-
tween total determination (where either O12 = 0 or O21 = 0) and total association
(where O12 = O21 = 0), assuming a larger value in the latter case. However, the
interpretation of the adjusted values is not as clear as in the case of the unmodified
odds ratio (cf. Table 2.2).

Most of the coefficients listed in this group are already mentioned by Kuhns
(1965). However, his equations replace O11 by the difference O11 − E11, arguing that
“the excess of x over its independence value is what will interest us” (Kuhns 1965,
34). In most cases, this heuristic modification is problematic for the interpretation
of the coefficients as maximum-likelihood estimates for theoretical probabilities and
coefficients of association strength (Section 2.2.5). In particular, Kuhns presents a
variant of the MS measure under the name “rectangular distance” (Kuhns 1965, 35).

3.1.6 Conservative estimates of association strength

A serious problem of point estimates is that they are subject to the full random vari-
ation of the sample frequencies, and are therefore unreliable for low frequency data.
In particular, O11/N will often overestimate π drastically, which is responsible for the
poor evaluation results of MI in Evert and Krenn (2001) and similar studies.10 The
exact hypothesis tests in Section 3.1.3 (and some well-behaved asymptotic tests such
as log-likelihood) are much less prone to overestimating low-frequency data because
they explicitly take the random variation of the observed frequencies into account.

In an unpublished report, Johnson (2001) suggested the use of interval estimates
from exact hypothesis tests to avoid inflated values for the coefficients of association
strength. The underlying idea is that such conservative measures should correct for
random variation and avoid overestimation in the same way as the exact hypothesis

10In fact, the highest MI scores are always assigned to pair types with O11 = R1 = C1 = 1, similar to
what Dunning (1993) found for the chi-squared measure.

3.1. AN INVENTORY OF ASSOCIATION MEASURES 87

tests do this for H0. A simplified version of Johnson’s method, using the logarithmic
odds ratio and its asymptotic standard error (in a log-linear model), was presented
by Blaheta and Johnson (2001).

Generally speaking, interval estimates replace the single point estimate for a pop-
ulation characteristic with the set of all possible values of the characteristic that are
consistent with the observed data (according to an appropriate statistical hypothesis
test). In many cases, this set of values will take the form of a connected interval,
the confidence interval for the population characteristic. Any values outside this
interval can be rejected with the confidence level chosen for the hypothesis test, so
that the true value of the population characteristic should be somewhere within the
confidence interval. In Johnson’s application to association measures, the estimated
population characteristic is some coefficient of association strength κ, and the lower
bound of the confidence interval is used as a conservative estimate for κ.11

In principle, any one of the hypothesis tests introduced in Sections 3.1.3 and 3.1.4
can be used to obtain confidence intervals and conservative estimates for a coeffi-
cient of association strength. One-sided and two-sided tests are equally applicable,
and corrections may only become necessary when we want to compare conservative
estimates from different tests (for the same coefficient). When the hypothesis test is
applied, the null hypothesis of independence (or homogeneity) is replaced by a null
hypothesis Hκ=x that stipulates a particular value x for the coefficient κ. Depending
on the test used, it may be necessary to reduce Hκ=x to a point null hypothesis H ′

κ=x.
The confidence interval Iκ, α is the set of all values x for which the hypothesis test
does not reject Hκ=x at the chosen confidence level α.

Iκ, α := {x |Hκ=x is not rejected at confidence level α}
The conservative estimate is then given by κ− := min Iκ, α.12

The choice of hypothesis test depends largely on whether the sampling distribu-
tion under Hκ=x can be easily obtained, and whether Iκ, α can be computed efficiently.
As long as Iκ, α is guaranteed to be an uninterrupted interval, κ− can be determined
fairly quickly by a binary search algorithm.13 Another important choice concerns
the confidence level α. In general statistics, commonly used levels of confidence are
95%, 99% and sometimes 99.9%, corresponding to significance levels α = .05, .01
and .001, respectively. However, empirical results show that the significance of as-
sociation computed by the measures from Sections 3.1.3 and 3.1.4 is typically much
lower for most of the pair types in a data set (with a median ≤ 10−6, cf. Chapter 3.4).
This suggests that a much higher confidence level, i.e. α � .05, might be called for.

In his unpublished report, Johnson targeted the µ-value, referring to his new
measure as a conservative version of MI. Applying a binomial test (corresponding to
the binomial measure) with the point null hypothesis

H ′
µ=x := µ = x ∧ π1 = p1 ∧ π2 = p2,

11I assume here that high coefficient values indicate strong positive association, and that low (or
negative) values indicate either non-association or negative association. Since we are only interested
in positive association here, the lowest value consistent with the observed data is always the most
conservative choice.

12In order to be mathematically precise, the infimum inf Iκ, α should be used instead of the minimum
min Iκ, α, since the set Iκ, α may not include its lower bound.

13The time complexity of the binary search should not exceed 100 times the complexity of a single
application of the hypothesis test.

88 CHAPTER 3. ASSOCIATION MEASURES

he obtained the conservative estimate µ−. A numerically and analytically more
tractable version of this conservative estimate substitutes a Poisson approximation
for the binomial test. This leads to the following definition of the MIconf, α measure
(with a free parameter α that has to be chosen manually):

MIconf, α = log min
{
µ > 0

∣∣∣ e−µE11

∞∑
k=O11

(µE11)k

k!
≥ α

}
This definition has two drawbacks that may cause inaccuracies: (i) only information
from a single cell in the contingency table is used by the hypothesis test; (ii) the
maximum-likelihood estimates for π1 and π2 needed to compute the point null hy-
pothesis H ′

µ=x. A variant of Fisher’s exact test would provide an elegant solution for
both problems. Unfortunately, as has been pointed out in Section 2.2.4, the under-
lying non-central hypergeometric distribution (2.20) for fixed row and column sums
can be simplified to a manageable form only under the null hypothesis H0 : µ = 1.
Johnson (2001) mentions in passing that he has computed exact confidence intervals
for the logarithmic odds-ratio (log θ), but does not explain his implementation.

A two-step procedure can be used to compute approximate confidence intervals
for any one of the coefficients described in Section 2.2.5. The first step applies the
binomial or Poisson test (as above) to determine exact confidence intervals for the
probability parameters π (from O11), π1 (from R1) and π2 (from C1), as well as the
ratios π/π1 (from O11 and R1) and π/π2 (from O11 and C1). In the second step, a
likely range of values for a coefficient of association strength κ is computed by in-
serting the interval estimates into the equation of κ and taking the most “extreme”
results.14 The resulting approximate confidence interval is usually larger than an ex-
act interval would be (because it is determined from a “worst-case scenario”), leading
to highly conservative estimates and association measures.

3.1.7 Measures from information theory

For an introduction to the key concepts of information theory, see e.g. Fano (1961).
Generally speaking, the concept of mutual information expresses the “overlap” be-
tween two events or distributions.

Pointwise MI is used to compare two events A and B, and is simply the (logarith-
mic) ratio of their actual joint probability to the “expected” joint probability if A and
B were independent: Pr

(
A ∩ B

)
/Pr

(
A
)

Pr
(
B
)
. When applied to the occurrences of

types u and v, i.e. to the events {U = u} and {V = v}, this definition leads to the
µ-value µ = π/π1π2. Consequently, the maximum-likelihood estimate for pointwise
MI is the MI measure from Section 3.1.5:

MI = log
O11

E11

The overlap between two (binary) random variables is measured by average MI.
Applied to the indicator variables I[U=u] and I[V=v], it results in the average-MI mea-

14Here, either the lower or the upper bound of the confidence intervals for π, π1 and π2 (or π/π1

and π/π2) may be used, depending on where in the equation they appear (e.g., in the numerator or
denominator of a fraction). Note that confidence levels should be adjusted when more than one of the
estimates is used (e.g., to 3

√
.99 for 99% confidence when three parameters are needed to compute κ).

3.1. AN INVENTORY OF ASSOCIATION MEASURES 89

sure, which is again a maximum-likelihood estimate for the true mutual information
between the indicator variables.15

average-MI =
∑
ij

Oij · log
Oij

Eij

Fascinatingly, this equation is essentially identical to the log-likelihood measure, save
for a factor of 2 (see also Dunning 1998, 75f). The average-MI value can also be
interpreted as the cross-entropy between the observed and expected frequency tables,
i.e. how accurately the expected frequencies predict the sample data. Dunning (1998)
discusses MDL (minimum description length) approaches in this context.

Finally, the concept of mutual information can also be applied to the random
variables U and V , in which case its value indicates how much information the com-
ponents of word pairs provide about each other in general, i.e. averaged over all pair
types in the population. The contribution of a given pair type w = (u, v) to this
“grand total” MI corresponds to the local-MI measure below.

local-MI = O11 · log
O11

E11

Note that local-MI is nearly identical to the Poisson-Stirling measure (Section 3.1.2).

3.1.8 Heuristic, parametric and combined measures

The simplest possible association measure is the plain cooccurrence frequency of a
pair type. Its use is motivated by the assumption that associated word pairs will in
general occur more frequently than arbitrary combinations, i.e. as an operationalisa-
tion of Firth’s recurrence criterion (cf. Lehr 1996).

frequency = O11

MI2 is a heuristic variant of the MI measure that aims to increase the influence of the
cooccurrence frequency in the numerator and avoid the characteristic overestimation
effect for low-frequency pairs. This measure has some theoretical support because it
is the square of the gmean measure.16

MI2 = log
(O11)2

E11

Another variant, MI3, which uses a higher exponent in the numerator to boost the
association scores of high-frequency pairs even further, represents a purely heuristic
approach. Daille (1994) tested versions MIk for k = 2, . . . ,10 and found k = 3 to

15Note how drastically the mutual information of the indicator variables I[U=u] and I[V=v] differs from
that of the corresponding events {U = u} and {V = v}. Likewise, the MI and average-MI measures
have fundamentally different properties.

16More precisely, let g be the gmean association score for a given pair type (u, v). Then the score h
of the MI2 measure is given by h = log(g2) + logN, which is a monotonic transformation (for a fixed
sample of size N).

90 CHAPTER 3. ASSOCIATION MEASURES

give the best results in her application, noting that it is “un bon compromis entre ne
retenir que les événements rares et trop les négliger” (Daille 1994, 139).

MI3 = log
(O11)3

E11

Daille’s MIk is a simple example of a parametric association measure. The value
of the parameter k can be chosen freely (in principle, any k > 0 is possible) in
order to modify the properties of the measure. In this way, it may be possible to
“tune” such parametric measures to the needs of specific applications. It should
be obvious now that MIconf, α and other conservative estimates are also parametric
measures, because a significance level α for the confidence interval has to be chosen
more or less arbitrarily. Larger values of α will lead to a more conservative measure,
especially for low-frequency data.

One motivation for using estimates of association strength is that the null hy-
pothesis of independence is linguistically implausible: hardly any pair of words will
cooccur in a completely random fashion. This means that hypothesis tests will al-
ways reject H0 when enough data are available, i.e. for the higher-frequency pair
types. It also leads to extremely small p-values far below customary significance lev-
els. Another way around these problems is to use a more realistic null hypothesis,
e.g. H0 : µ ≤ 10 rather than H0 : µ = 1. This modified null hypothesis specifies
an upper bound on the amount of “glue” between word types u and v that can be at-
tributed to the general patterns of language (e.g., semantic compatibility of u and v),
allowing cooccurrences to be up to ten times more frequent than expected by chance.
The number 10 is entirely arbitrary here and may be replaced by any other value x,
depending on the intuitions of the researcher.

For a one-sided hypothesis test, the modified hypothesis H0 : µ ≤ x is equivalent
to Hµ=x : µ = x, because the highest p-value is obtained for µ = x. Inserting this
null hypothesis and the corresponding expected cooccurrence frequency E

[
X11

]
=

xE11 into the Poisson equation yields the modified Poisson measure with one free
parameter x:

Poissonµ=x = e−xE11

∞∑
k=O11

(xE11)k

k!

Sometimes, it is desirable to combine the different properties of two or more associ-
ation measures. Church et al. (1991) apply such a strategy for the purpose of collo-
cation identification. They rank collocation candidates according to their association
strength, measured by MI, but retain them only when there is also significant evi-
dence for the association according to a t test (or, equivalently, the t-score measure).
This procedure can be emulated by a combined association measure constructed
from the MI and t-score formulae after suitable scaling. The general form of this
measure is

MI/t-score = min
{
h1

(
log

O11

E11

)
, h2

(
O11 − E11√

O11

)}
where h1, h2 : R → R are monotonic scaling functions. When h1 and h2 are identity
functions, the MI/t-score value is just the minimum of the two scores. This ensures
that high-ranking pair types show strong association according to both measures.
Linear functions can be used to transform the measures to a common scale when

3.2. IMPLEMENTATION 91

necessary. In order to implement a significance filter in the sense of Church et al.
(1991), h1 is set to the identity h1(x) := x and h2 to a threshold function:

h2(x) :=

{
0 x ≥ γ

−∞ x < γ

where γ is the t-score value that corresponds to the desired significance level α.
With this definition, any pair types that do not pass the significance threshold are
assigned the score −∞ (in practice, −∞ will be replaced by a large negative value).
For all other pair types, the MI/t-score value is identical to the MI score. The same
method can be used to “integrate” a frequency threshold into an association measure,
replacing t-score by O11 in the equations above.

Many other combinations of association measures are possible, e.g. taking the
maximum of the two scores or adding them up. Section 3.3 describes a general
framework for the formal specification of parametric and combined measures.

3.2 Implementation

3.2.1 Know your numbers

With the enormous size of the source corpora that are available nowadays, numerical
accuracy can become a serious problem for the implementation of association mea-
sures. A naive implementation will be based on standard (IEEE) double-precision
floating-point arithmetic, which has an accuracy of about ε ≈ 2 · 10−16 and cannot
represent numbers whose magnitude is less than 5 · 10−324 (this is referred to as un-
derflow). See Goldberg (1991) for an introduction to IEEE floating-point arithmetic.

For the measures listed in Sections 3.1.2 and 3.1.3, p-values easily become so
small that they can only be represented in logarithmic form (e.g. following the
− log10 pv convention). In order to avoid underflow problems, however, it is nec-
essary to carry out all computations with logarithmic values (otherwise, the p-value
might underflow to 0, causing transformation into − log10 pv to fail). A similar situa-
tion arises for asymptotic hypothesis tests (Section 3.1.4). Here, the test statistic (i.e.
the association score) can safely be computed with standard arithmetic, but transla-
tion into a p-value requires an implementation of the theoretical distribution function
that can directly return logarithmic values.

The most serious problem, however, is catastrophic cancellation (see Goldberg
1991) for measures based on exact hypothesis tests (including the conservative es-
timates from Section 3.1.6). As an example, consider the Poisson measure, whose
definition involves an infinite sum for the probability Pr

(
X11 ≥ O11

)
. It is tempting to

compute the complementary probability Pr
(
X11 < O11

)
instead and thus reduce the

summation to a finite number of terms (especially since O11 will be quite small for
most pair types):

Pr
(
X11 ≥ O11

)
= 1 − Pr

(
X11 < O11

)
= 1 −

O11−1∑
k=0

e−E11
(E11)k

k!
. (3.2)

92 CHAPTER 3. ASSOCIATION MEASURES

For instance, Heyer et al. (2001) suggest an equation that is equivalent to (3.2).
However, for highly associated pair types (especially high-frequency ones) the p-
values become so small that this trick will lead to catastrophic cancellation. The
summation yields the value 1 − pv, close to 1. When it is subtracted from 1, many
significant digits are lost. In particular, no p-values below the machine accuracy ε
can be computed (and a naive implementation may even report the mathematical
joke of a negative probability).17

Thus, the infinite summation is unavoidable (until the partial sum converges).
Fortunately, the series converges geometrically once k ≥ E11. This can be seen by
writing it in the form

Poisson = e−E11

∞∑
k=O11

tk

with tk := (E11)k/k!. Because of

tk+1

tk
=

E11

k + 1
, (3.3)

the summation is then dominated by a geometric series
∑∞

j=0 q
j with q < 1. More

precisely, we have
tk ≤ tL · qk−L

with q := E11/(L + 1) < 1 for any L > E11. Since the expected cooccurrence fre-
quency E11 is typically a comparatively small value, convergence is reached quickly.18

Eq. (3.3) can also be used to compute the terms tk efficiently once tO11 has been de-
termined. When direct computation of − log10 pv is necessary to avoid underflow,
the recurrence relation becomes

log tk+1 = log tk + logE11 − log(k + 1) .

Another approach is to express the probability Pr
(
X11 ≥ O11

)
as an incomplete

Gamma function (see Section A.4). Eq. (A.33) leads to this “closed form” of the
Poisson measure:

Poisson =
γ(O11, E11)

Γ(O11)
. (3.4)

The incomplete Gamma function is provided by many numerical software libraries,
and can be used for the implementation of the Poisson measure. (Internally, a power
series similar to the infinite sum is computed until convergence.) In a similar way,
the binomial measure can be computed accurately even for very small p-values as

binomial =
N∑

k=O11

tk

with

tk :=
(
N

k

)(
E11

N

)k(
1 − E11

N

)N−k

.

17Note that catastrophic cancellation already takes place at a magnitude of approx. 10−15, long
before underflow problems appear (approx. 10−320).

18For instance, expected cooccurrence frequencies for high-frequency (f ≥ 30) pair types in the
pnv-fr data set range from 6 · 10−4 to 483.5. More than half of the pair types have E11 < 14.

3.2. IMPLEMENTATION 93

The ratio of consecutive terms

tk+1

tk
=

N − k

k + 1
· E11

N − E11
(3.5)

is also dominated by a geometric series for k ≥ E11. A “closed form” of the binomial
measure can be derived from the incomplete Beta function, using Eq. (A.38):

binomial =
B
(
E11
N

; O11, N − O11 + 1
)

B
(
O11, N − O11 + 1

) = I
(E11

N
; O11, N − O11 + 1

)
. (3.6)

Implementations of the incomplete Beta function in standard software libraries are
not always reliable and the explicit summation above should be used to ensure accu-
rate results.

The numerically most demanding association measure is Fisher. Although the
summation is finite in this case, some implementations use complementary probabil-
ities to speed up the calculation when O11 is comparatively small. One example is
the otherwise excellent statistical environment R (R Development Core Team 2003).
The Fisher probability for a contingency table with O11 = 100, R1 = C1 = 1 000 and
N = 1 000 000 (which is quite typical for cooccurrence data) can be computed with
the R command

phyper(99, 1000, 999000, 1000, lower=FALSE) .

At least for versions up to R-1.9.0 running under the Linux operating system, this
will yield a negative p-value (the algorithm has been rewritten for R-2.0). Lemnitzer
(1998, 87) is discouraged from using the Fisher measure by such difficulties, although
he expects it to yield optimal results on theoretical grounds. The UCS toolkit (cf.
Section 3.2.2), which relies heavily on R, adds a custom implementation of the direct
summation to ensure that correct p-values are computed in such cases. As in the case
of the Poisson measure, the series converges geometrically when k > E11:

Fisher =
(
N

R1

)−1

·
min{R1,C1}∑

k=O11

tk

with

tk :=
(
C1

k

)
·
(

C2

R1 − k

)
,

yielding the ratio
tk+1

tk
=

(C1 − k)(R1 − k)
(k + 1)(C2 − R1 + k + 1)

. (3.7)

Apart from the fundamental problems posed by the limited precision of floating-point
arithmetic, it is important to be aware of corner cases that may lead to division by
zero or other invalid operations. A particular example is the log-likelihood measure.
When any one of the observed frequencies Oij is zero, the corresponding term log O11

E11

becomes undefined. However, this term can safely be dropped from the summation
because 0 · log 0 = 0 by continuous extension.

94 CHAPTER 3. ASSOCIATION MEASURES

3.2.2 The UCS toolkit

This book is accompanied by a software, called the UCS toolkit,19 which provides
implementations of all the association measures from Section 3.1, as well as most of
the other mathematical procedures (including the dispersion test of Section 2.3.2, the
frequency distribution models introduced in Chapter 4, and the evaluation methods
described in Chapter 5). The toolkit is implemented in the Perl (Wall et al. 1996)
and R (R Development Core Team 2003) languages, using the latter for most of the
statistical functionality and for the graphical representation of data. Care was taken
to ensure high accuracy of calculations, both for association measures (as detailed
in Section 3.2.1) and for the implementation of the dispersion test (which requires
high-precision integer arithmetic).

The UCS toolkit includes all the libraries, scripts and data sets that were used for
the experiments and graphs in this book (with a small number of exceptions). The
scripts are arranged by section and documented, allowing readers to replicate the
main results of the thesis and encouraging them to continue the research with their
own data. UCS is free software and can be downloaded from:

http://www.collocations.de/phd.html

Appendix B contains the complete software documentation of the UCS toolkit.

3.3 A geometric model of association measures

3.3.1 The coordinate space

For the statistical analysis and computation of association scores, each pair type w
in a data set can be represented by its frequency signature (f, f1, f2, N). Since N
has the same value for all pair types in a data set, only the joint and marginal
frequencies are relevant. I refer to the triple (f, f1, f2) as the coordinates of w.
These coordinates describe a point x in the three-dimensional coordinate space
P = (0,∞)3 = {(x1, x2, x3) |0 < x1, y2, x3 < ∞} (more precisely, x ∈ N3 ⊆ P).
In this geometric view, a data set corresponds to a point cloud C in P. There will
usually be several pair types with identical frequency signatures, which are mapped
to the same point in P (for instance, there are 971 pair types with f = f1 = f2 = 1
in the an-fr data set). For visualisation and similar purposes, such duplicates can
be avoided by adding a small amount of random jitter to the coordinates (which
are thus no longer integer values). Provided that the jitter is small enough, this will
not affect the association scores in any substantial way. This device also allows a
more elegant mathematical treatment, as we can now interpret the point cloud C as
a subset of the coordinate space, i.e. C ⊆ P (otherwise, C would be a multi-set). In
the following, I will always make the assumption that each pair type w has a unique
frequency signature in the data set.

The coordinate space P can be visualised as a three-dimensional cube (whose full
size is determined by the sample size N). Since cooccurrence data often cover a wide
range of frequencies, logarithmic coordinates are more appropriate for visualisation

19According to the ucsintro manpage, UCS stands for Utilities for Cooccurrence Statistics.

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 95

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

Figure 3.3: The three-dimensional parameter space P with a point cloud representing
the pnv-slices-01 data set (stereograph for cross-eyed viewing).

(i.e. log10 f , log10 f1 and log10 f2). Figure 3.3 shows a stereographic image of the
subset of P corresponding to f1, f2 ≤ 1 000 and f ≤ 100 on a logarithmic scale. The
point cloud represents the 617 pair types from the first data set (pnv-slices-01) in
the pnv-slices collection, with jittered coordinates (Figure 3.4 shows a comparison
of the point cloud with and without jittering). The stereograph has been designed for
cross-eyed viewing. Look at the image from a normal reading distance, making sure
that the paper is flat and evenly lit. Then cross your eyes slowly until you see the left
image with your right eye, and the right image with your left eye. It often helps to
tilt your head slightly in order to bring the two cubes into perfect alignment. A single
point visible in the top right corner of the image represents the PP-verb combination
um . . . Uhr beginnen ‘start at . . . o’clock’ with the coordinates f = 76, f1 = 458 and
f2 = 450. The sample size of the pnv-slices-01 data set is N = 61 617.

Various coordinate transformations can be applied to make the visualisation and
the mathematical discussion more intuitive. The most useful of these transformations
is the ebo-system defined as:

e :=
f1f2

N
= E11 “expectation” (3.8a)

b :=
f1

f2
=

R1

C1
“balance” (3.8b)

o := f = O11 “observed” (3.8c)

The ebo-system is based on the observed cooccurrence frequency o = O11 and the
expected frequency e = E11, which play a key role for most association measures.
In addition to these two values, the balance b between the marginal frequencies is
needed to determine the coordinates of a pair type uniquely. The ebo-coordinates
also range across the space P (the exact limits depending on the sample size N),
but they are not constrained to integer values. On a logarithmic scale, the ebo-
transformation rotates the coordinate system by 45 degrees around the f = o axis.

96 CHAPTER 3. ASSOCIATION MEASURES

The e-axis corresponds to the main diagonal in the (f1, f2) plane, and the b-axis to
the main counterdiagonal. The top row of Figure 3.4 shows a rotated view of the
parameter space P where the e-axis is nearly horizontal and the b-axis runs from
background to foreground.

Since the o and e coordinates provide the most relevant information, the visu-
alisation and analysis of data sets (and later association measures) can be greatly
simplified by ignoring the balance b. When logarithmic coordinates are used, this
corresponds to an orthogonal projection onto the two-dimensional (e, o) plane, as
shown in the bottom right panel of Figure 3.4 (note that the perspective of the three-
dimensional view in the top row is nearly the same). As we will see in the following
sections, many association measures do not depend on b at all or only to a very small
degree, providing support for the use of (e, o) graphs.

In the bottom row of Figure 3.4, the data points corresponding to the pair types
auf (dem) Programm stehen ‘be on the programme’ and mit (dem) Bus fahren ‘take
a bus’ are marked with circles. The right panel uses jittered coordinates like the
three-dimensional views, while the left panel uses the original integer values of f ,
f1 and f2 without adding jitter. The quantisation of the observed frequency o = f
becomes clearly visible as a band structure in the plot. The lowest band consists of
all pair types with f = 3 (including mit (dem) Bus fahren), the next band of the pair
types with f = 4, and so forth. Note that the distances between the bands decrease
because of the logarithmic scale.

Formally, the ebo-system is not a fixed coordinate transformation because it de-
pends on the sample size: the e-coordinate is scaled according to the value of N
(which is not explicitly represented in the original coordinate space). This causes
a “shift” along the e-axis in logarithmic coordinates. Since this shift is counter-
balanced by a similar dependency of many association measures on sample size,
these measures can be expressed by a fixed equation in terms of e, b and o, while
their equations in the standard coordinate system also depend on N. Coordinates
in the ebo-system are not size-invariant: when the complete frequency signature of
a pair type w is multiplied with a constant factor k (corresponding to a larger cor-
pus with the same relative joint and marginal frequencies for w), both the e and o
coordinates are shifted by an amount of log10 k on a logarithmic scale (but b is not
affected). This shift, which usually corresponds to higher association scores for the
pair types, represents the greater amount of evidence provided by the larger sample.

3.3.2 Generalised association measures

An association measure assigns an association score to every possible frequency sig-
nature (f, f1, f2, N), i.e. it assigns a score to every point in the coordinate space P
that corresponds to integer frequencies (these points form the integer lattice in P).
The precise values of the scores will usually depend on the sample size N. Every as-
sociation measure has a continuous extension to the full coordinate space. For most
measures, this extension is simply given by inserting non-integer frequencies into the
equations. An exception are measures based on exact likelihood or exact hypothesis
tests, which involve explicit summation or binomial coefficients.20 However, since the

20Note that the Poisson and binomial measures can easily be extended using Eq. (3.4) and (3.6),
which accept non-integer frequency values. Binomial coefficients in other formulae (such as binomial-

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 97

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

E

O

1e−04 0.001 0.01 0.1 1 10

1
10

10
0

auf [dem] Programm stehen
mit [dem] Bus fahren

E

O

1e−04 0.001 0.01 0.1 1 10

1
10

10
0

auf [dem] Programm stehen
mit [dem] Bus fahren

Figure 3.4: The top row shows a rotated view of the parameter space P with a point
cloud representing the pnv-slices-01 data set. The e-axis is nearly horizontal in this
view, while the b-axis is oriented from background to foreground. The bottom right
panel shows a projection of the point cloud into the (e, o) plane, and the bottom left
panel shows the same data without jittering.

98 CHAPTER 3. ASSOCIATION MEASURES

integer lattice in P is discrete, a continuous extension to the full space P is always
possible. In the following I will assume that the continuous extension of an associ-
ation measure is smooth (i.e. all required derivatives exist and are continuous). It
is always possible to find a smooth function that computes the correct scores on the
integer lattice by a suitable interpolation procedure.

These considerations motivate the definition of a generalised association mea-
sure (GAM) as an arbitrary smooth function g : P → R. A generalised association
measure g is sound when it satisfies the following conditions:

∂g

∂f
> 0,

∂g

∂f1
≤ 0,

∂g

∂f2
≤ 0 . (3.9)

These conditions capture reasonable intuitive assumptions about association scores:
increasing the cooccurrence frequency while keeping the two marginal frequencies
fixed should lead to a higher score; increasing one of the marginal frequencies with
the other two frequencies fixed should lead to a lower score. A GAM g is called
semi-sound when only the first condition holds. Most measures will not be size-
invariant, i.e. their scores depend on the sample size N. Intuitively, a larger sample
provides more evidence for positive or negative association, and this is reflected by
the association scores. Formally, we should therefore write gN instead of g, yielding a
different score function for each sample size N (i.e. a family of functions). Sometimes
the dependence on sample size can be “factored out”, i.e.

gN(f, f1, f2) = c(N) · g(f, f1, f2) .

In these cases, the size factor c(N) is only relevant when association scores com-
puted on samples of different sizes have to be compared. Generalised association
measures can also be defined over transformed coordinate systems, especially the
ebo-coordinates. I do not make a formal distinction between the transformed mea-
sure and the original version, but simply write the transformed score function as
g(e, b, o) instead of g(f, f1, f2). Many GAMs have a size-invariant equation in the
(e, b, o) coordinate system: The shift of the data points along the logarithmic e and o
axes compensates for changes in the score function g due to the larger sample size.

A generalised association measure g is symmetric iff g(f, f1, f2) = g(f, f2, f1)
(or, equivalently, g(e, b, o) = g(e, b−1, o)). Such symmetric measures, which include
virtually all the measures described in Section 3.1, make the implicit assumption that
cooccurrences are “symmetric” rather than “directional”, i.e. exchanging the com-
ponent types should yield the same association score for (v, u) as for (u, v) (cf. the
remarks at the end of Section 1.2.2). A more important concept is centrality: a gener-
alised association measure g is called central iff its scores do not depend on the bal-
ance b in ebo-coordinates, i.e. g(e, b, o) = g(e,1, o) for all b > 0. The score function
of a central measure is completely determined by its values in the two-dimensional
(e, o) plane.21 Section 3.3.3 explains how this property can be exploited for visuali-
sation purposes. The centralised version gc of a non-central measure g is obtained
by setting b = 1, i.e. gc(e, b, o) := g(e,1, o). A central measure is characterised by
gc = g according to this definition.

likelihood and Fisher) can always be generalised with the help of the Beta function, cf. Eq. (A.36).
21In the standard coordinate system, the condition for centrality is much less intuitive, stating that

g(f, f1, f2) = g(f, γf1, γ
−1f2) must hold for all γ > 0.

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 99

Two generalised association measures g1 and g2 are called equivalent iff there
exists a strictly monotonic function h that transforms the scores assigned by g1 into
those of g2, i.e. g2(f, f1, f2) = h(g1(f, f1, f2)). Since both g1 and g2 are smooth, the
link function h must necessarily be smooth as well. Equivalent GAMs lead to identical
rankings of data sets. Examples of equivalence are: (i) the Dice and Jaccard mea-
sures, whose equivalence is established in the same way as that of the corresponding
κDice and κJaccard coefficients (cf. Section 2.2.5); (ii) the test statistic of an asymptotic
hypothesis test such as chi-squared and the corresponding p-value (in this case, h is
the distribution function of the limiting distribution of the test statistic).

For a given data set C ⊆ P and generalised association measure g, the n-best
threshold γg (n) is defined as the largest value for which C contains at least n pair
types with scores g(x) ≥ γg (n). When random jitter has been added to the co-
ordinates of pair types and ∇g 6= 0 throughout the coordinate space, it is almost
impossible that two pair types are assigned exactly the same association score (i.e.
the probability of such an event is zero).22 Therefore, it is almost certain that there
are exactly n candidates with g(x) ≥ γg (n) and hence that γg (n) is the association
score of the n-th highest-ranking pair type.23 Any GAM g can be transformed into
an equivalent measure g ′ such that γg′ (n) = −n with respect to a given data set C
(g ′ is called a rank-transformed measure). The negative sign is necessary to sat-
isfy the soundness condition (3.9), i.e. the convention that higher association scores
correspond to stronger association.

The following equations describe generalised versions of some important associ-
ation measures presented in Section 3.1, formulated in ebo-coordinates. All these
measures are size-invariant in the ebo-system (with the exception of gmean) and
central (because b does not appear in the equations).

gfrequency(e, b, o) = o (3.10a)

gMI(e, b, o) = log
o

e
(3.10b)

gMIk(e, b, o) = log
ok

e
(3.10c)

ggmean(e, b, o) =
1√
N

· o√
e

(3.10d)

gz-score(e, b, o) =
o− e√

e
(3.10e)

gt-score(e, b, o) =
o− e√

o
(3.10f)

gPoisson(e, b, o) = − log10
γ(o, e)
Γ(o)

(3.10g)

22This is usually not the case without random jitter, even if there are no data points with identical
coordinates. For instance, the frequency measure assigns the same score to all candidates with the
same cooccurrence frequency f .

23Note that γg (n) is not uniquely defined by the condition that there are exactly n pair types with
g(x) ≥ γg (n). Since the set C is discrete, any value γg (n) between the n-th and the (n+ 1)-th highest
score will satisfy the condition. The additional requirement that γg (n) must be the largest such value
ensures uniqueness and implies that γg (n) equals the score of the n-th highest-ranking pair type.

100 CHAPTER 3. ASSOCIATION MEASURES

gMIconf, α(e, b, o) = log min
{
µ > 0

∣∣∣ γ(o, eµ)
Γ(o)

≥ α

}
(3.10h)

Poisson-Stirlinglog cannot be extended to a sound GAM because the function o 7→
o·(log o−log e−1) has a minimum for o = e and does not satisfy the monotonicity con-
dition ∂g/∂o > 0. The same problem is found for the local-MI measure. Eq. (3.10g)
computes − log10 pv (according to the convention suggested in Section 3.1.3) instead
of raw p-values, for which we would have ∂g/∂o < 0.

The equations of non-central measures are typically much less elegant, especially
when they are expressed in ebo-coordinates. It is convenient to use the following
abbreviations for frequently needed quantities:

b∗ :=
b + 1√

b
=

√
b +

1√
b

(3.11a)

ē := N −
√
Ne · b∗ + e (3.11b)

‖b‖ :=

{√
b b ≥ 1√
b−1 b < 1

(3.11c)

The symbol b∗ represents a balance factor, which does not distinguish between f1 >
f2 and f1 < f2 and appears in many symmetric measures because of the identity
f1 + f2 =

√
Ne · b∗. The conjugate expectation ē corresponds to the term E22 in the

contingency table of expected frequencies, while the absolute balance ‖b‖ is only used
for the MS measure. Using these abbreviations, the following non-central measures
have relatively elegant equations:

gDice(e, b, o) =
o√
e
· 1√

N
· 2
b∗

(3.12a)

gJaccard(e, b, o) =
gDice(e, b, o)

2 − gDice(e, b, o)
(3.12b)

gMS(e, b, o) =
o√
e
· 1√

N
· 1
‖b‖ (3.12c)

gchi-squared(e, b, o) = ±N · (o− e)2

e · ē (3.12d)

The ± in Eq. (3.12d) indicates that the GAM has to be converted into a one-sided
measures in order to be sound. This can be achieved by writing the numerator as
(o − e) · |o− e| instead of (o − e)2. Looking at Eq. (3.12a), it is obvious how gDice

differs from the central measure o/
√
e by a size factor and a balance factor. We can

also see that association scores are reduced for b 6= 1 (because b∗ > 1 in this case).
Interestingly, the centralised version of Dice, which is obtained by setting b∗ = 1,
is identical to gmean, i.e. gc

Dice = ggmean. When applying Yates’ continuity correction
to the z-score and chi-squared measures, care has to be taken because the standard
procedure (3.1) leads to an unsound GAM.24 Therefore, an interpolation function

24With Yates’ correction applied, the score for o = e + 1
4 is lower than the score for o = e − 1

4 , since
o′ = o− 1

2 in the first case and o′ = o + 1
2 in the second.

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 101

such as

dY(x) :=


x − 1/2 x ≥ 1
x/2 −1 < x < 1
x + 1/2 x ≤ −1

(3.13)

has to be used.25 The continuity-corrected measures are then defined by:

gz-scorecorr(e, b, o) =
dY(o− e)√

e
(3.14a)

gchi-squaredcorr(e, b, o) = ±
N
(
dY(o− e)

)2

e · ē (3.14b)

Some other measures, such as odds-ratio, log-likelihood and Fisher, still lead to un-
wieldy equations. However, even without an explicit equation in ebo-coordinates,
the score function g(e, b, o) of such a measure can be evaluated numerically by trans-
forming the ebo-coordinates (e, b, o) back into the corresponding frequency signa-
ture or contingency table, and then applying the standard equation of the measure
as listed in Section 3.1.

In the general formal model presented here, combined measures as described
at the end of Section 3.1.8 correspond to a combination of GAM functions g1 and
g2 by some link operator. Well-known examples are the minimum min{g1, g2} or a
linear combination αg1 +βg2. A cutoff filter can be added to a generalised association
measure with the help of a cutoff function

hγ(x) :=

{
1 x ≥ γ + ε

0 x ≤ γ − ε

for small ε > 0, with a smooth extension to the interval [γ − ε, γ + ε]. The combined
measure hγ(g1) · g2 equals 0 for g1 ≤ γ − ε and g2 for g1 ≥ γ + ε.26 Parametric
measures correspond to families {gα} of sound GAMs, where α stands for the free
parameter of the measure (cf. Eq. 3.10h).

3.3.3 Iso-surfaces and iso-lines

For any number γ ∈ R, the threshold condition g(x) ≥ γ defines a subset

Ag

(
γ
)

:= {g ≥ γ} = {(f, f1, f2) | g(f, f1, f2) ≥ γ} (3.15)

of the coordinate space, which is called the γ-acceptance region of g. All pair types
whose coordinates x fall into Ag

(
γ
)

have an association score g(x) ≥ γ . Hence,
the intersection Ag

(
γ
)
∩ C is the set of pair types in C that are “accepted” (e.g. as

25Note that dY is continuous, but not differentiable at the contact points x = −1 and x = 1.
Although generalised association measures are formally required to be smooth functions, the two
kinks introduced by dY usually cause no problems in practice.

26Note that this implementation of a cutoff filter as a combined association measure is slightly
different from the one presented in Section 3.1.8. The formulation given here makes it easier for the
new measure to satisfy the general conditions on GAMs.

102 CHAPTER 3. ASSOCIATION MEASURES

collocation candidates) at a threshold of γ . By setting γ = γg (n) with respect to the
data set C, we obtain the n-acceptance region

Ag,n := Ag

(
γg (n)

)
=
{
g ≥ γg (n)

}
, (3.16)

and
Cg,n := Ag,n ∩ C =

{
x ∈ C

∣∣ g(x) ≥ γg (n)
}

(3.17)

is the n-best list for the measure g, i.e. the set of n highest-ranked pair types. Such
n-best lists play a key role for collocation extraction tasks (Section 1.2.2) and for
the empirical evaluation of association measures in Chapter 5. Under the assump-
tions made in the previous section, every n-best list contains exactly n pair types,
i.e. |Cg,n| = n. For a rank-transformed measure g ′, the n-acceptance region is simply
given by Ag,n = {g ′ ≥ −n}.

For any semi-sound measure, the γ -acceptance region Ag

(
γ
)

is a connected three-
dimensional region whose “lower” boundary is given by the iso-surface {g = γ}.
This iso-surface can be parametrised over f1 and f2, i.e.

{g = γ} = {
(
h(f1, f2), f1, f2

)
| f1, f2 ∈ (0,∞)} (3.18)

with a smooth function h : (0,∞)2 → (0,∞). The acceptance region {g ≥ γ} con-
tains all points x ∈ P for which f ≥ h(f1, f2), since the condition ∂g/∂f > 0 im-
plies g(f, f1, f2) ≥ g

(
h(f1, f2), f1, f2

)
= γ whenever f ≥ h(f1, f2). If g is sound, the

“height” function h must be monotonic in f1 and f2, i.e. ∂h/∂f1 ≥ 0 and ∂h/∂f2 ≥ 0.
The top row of Figure 3.5 shows the iso-surface

{
glog-likelihood = 22.6

}
, which is the

(one-sided) log-likelihood threshold corresponding to a p-value of 10−6, together with
the pnv-slices-01 data set. The region of P above the surface is the acceptance region
Ag(22.6). All points in this region represent pair types that show significant evidence
for a positive association, at a confidence level of α = 10−6. In ebo-coordinates, the
height function can be parametrised over e and b and we have

{g ≥ γ} = {(e, b, o) | o ≥ h(e, b)} . (3.19)

For a sound measure, h satisfies the condition ∂h/∂e ≥ 0, but there is no correspond-
ing constraint along the b-coordinate. This fact is illustrated by the U-shaped form of
the Dice iso-surface along the b-axis (i.e. the counter-diagonal in the (f1, f2) plane),
as shown in the bottom row of Figure 3.5.

The properties of an association measure are fully determined by the correspond-
ing acceptance regions and the iso-surfaces that form their boundaries. Formally,
a generalised association measure g is equivalent to a monotonic family of iso-
surfaces, γ 7→ {g = γ}. With respect to a particular data set C, only the surfaces{
g = γg (n)

}
are relevant, though. For most generalised association measures, ex-

plicit equations for the height functions of iso-surfaces {g = γ} can be derived by
“solving” Eq. (3.10), (3.12) and (3.14) for the variable o:27

gfrequency : o = γ (3.20a)

gMI : o = 10γ · e (3.20b)
27Note the use of base-10 logarithms for MI and similar measures, corresponding to the convention

followed by the UCS toolkit. This leads to a factor of 10γ in the equations for iso-surfaces.

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 103

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

1 10 100 1000
1

10

100

1000
1

2

5

10

20

50

100

f1

f2

f

Figure 3.5: Parameter space with point cloud representing the pnv-slices-01 data
set and iso-surfaces of the log-likelihood and Dice measures. The top row shows the
iso-surface

{
glog-likelihood = 22.6

}
, corresponding to pv = 10−6. The bottom row shows

a 200-best iso-surface for Dice.

104 CHAPTER 3. ASSOCIATION MEASURES

ggmean : o =
√
N · γ ·

√
e (3.20c)

gz-score : o = γ ·
√
e + e (3.20d)

gt-score : o =
γ2

2
+ γ ·

√
e +

γ2

4
+ e (3.20e)

gMIk : o = 10γ/k · k
√
e (3.20f)

gDice : o =
√
N · γ · b

∗

2
·
√
e (3.20g)

gJaccard : o =
√
N ·

γ

1 + γ
· b∗ ·

√
e (3.20h)

gMS : o =
√
N · ‖b‖ · γ ·

√
e (3.20i)

gLiddell : o =
√
N ·

γ
√
b
·
√
e +

(
1 −

γ

b

)
· e (3.20j)

gchi-squared : o = ±√γ ·
√

ē

N
·
√
e + e (3.20k)

gz-scorecorr : o = d−1
Y

(
γ
√
e
)

+ e (3.20l)

gchi-squatedcorr : o = d−1
Y

(
±√γ ·

√
ē

N
·
√
e

)
+ e (3.20m)

In Eq. (3.20k) and (3.20m), ±√γ denotes the signed square root function, with
±√γ = −

√
|γ | for γ < 0. Note that the factor

√
ē/N is usually close to 1. In

Eq. (3.20l) and (3.20m), d−1
Y is the inverse of the generalised Yates’ correction.

Eq. (3.20j) can be written more concisely in the form o = γ

N
f2(N − f2) + e. For the

other generalised association measures, there is no (obvious) closed-form solution
to the iso-surface equation. However, the soundness condition ∂g/∂o > 0 ensures
that iso-surfaces for these measures can be computed efficiently with a binary search
algorithm.

The association scores of a central measure g do not depend on the “balance” co-
ordinate b in the ebo-system. Therefore, it is sufficient to know the values of g in the
(e, o) plane in order to compute the score of any point x = (e, b, o), by orthogonal
projection Pbx = (e, o) into the (e, o)-plane: g(x) = g(e, o). A data set C can thus
be replaced by its projection PbC, and g is reduced to a function g : (0,+∞)2 → R
in the two-dimensional (e, o)-plane. This transformation simplifies the mathemati-
cal discussion, visualisation and empirical study of generalised association measures
and data sets considerably. Assuming that random jitter has been added to C, the
projections Pbx of points x ∈ C will almost certainly have unique coordinates in the
(e, o) plane as well. Figure 3.6 illustrates this situation, showing the pnv-slices-01
data set together with the iso-surface {gPoisson = 6} of the central Poisson measure in
the top row (this corresponds to a p-value of 10−6, as in Figure 3.5). The view has
been rotated in order to align the b-axis with the position of the observer. It is now
clearly visible that the height of the iso-surface is constant along this axis, i.e. the
score of the Poisson measure does not change as long as e and o are held constant.
If the view were rotated a little further until the b-axis is exactly perpendicular to

3.3. A GEOMETRIC MODEL OF ASSOCIATION MEASURES 105

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

E

O

1e−04 0.001 0.01 0.1 1 10

1
10

10
0

pv ≥ 10−6

E

O

1e−04 0.001 0.01 0.1 1 10

1
10

10
0

pv = 10−6

Figure 3.6: The top row shows a rotated view of the parameter space P with a point
cloud representing the pnv-slices-01 data set and the iso-surface {g = 6} of the
Poisson measure (corresponding to coordinates with pv = 10−6). The bottom row
shows the orthogonal projection of both the point cloud and the iso-surface into the
(e, o) plane. In the bottom left panel, the projection of the corresponding acceptance
region Ag(6) is shaded in the plane (corresponding to coordinates with pv ≥ 10−6).

106 CHAPTER 3. ASSOCIATION MEASURES

E

O

0.001 0.01 0.1 1 10 100

1
10

10
0

pv = 0.01
pv = 0.001
pv = 10−5

pv = 10−10

pv = 10−20

E

O

0.001 0.01 0.1 1 10 100

1
10

10
0

pv = 0.01
pv = 0.001
pv = 10−5

pv = 10−10

pv = 10−20

Figure 3.7: Families of iso-lines representing the generalised association measures
Poisson (left panel) and z-score (right panel). The threshold values for the iso-lines
were chosen to correspond to specific p-values, including the common significance
levels pv = .01 and pv = .001.

the paper plane, the iso-surface would appear as simple curve, corresponding to its
orthogonal projection into the (e, o) plane. This projection Pb {g = γ} is referred to
as an iso-line of the GAM g.

The bottom right panel of Figure 3.6 shows the iso-line for {gPoisson = 6}. Since
the height function h(e, b) of the iso-surface of a central measure does not depend on
b, the corresponding iso-line is defined by the equation o = h(e) := h(e,1). A point
x ∈ C belongs to the acceptance region Ag

(
γ
)

iff its projection Pbx satisfies o ≥ h(e).
In other words, the iso-line o = h(e) is the lower boundary of the projection PbAg

(
γ
)

of the acceptance region into the (e, o)-plane, as illustrated by the bottom left panel
of Figure 3.6. Thus, any central GAM g is equivalent to a monotonic family of iso-
lines in the (e, o) plane, and the properties of g are determined by the shapes of
these lines. Figure 3.7 uses this technique to visualise the Poisson (left panel) and
z-score (right panel), drawing iso-lines corresponding to selected p-values (note that
the visible range on the e-axis has been shifted compared to previous plots).

It has to be kept in mind that two-dimensional visualisation techniques are usually
not suitable for measures that are not central per se (an exception being those with
only a weak dependency on b). This includes, in particular, many of the measures
that estimate coefficients of association strength (see Section 3.1.5). As an example,
Figure 3.8 compares the 200-best iso-surface of the Poisson measure (coarse grid)
with the 200-best iso-surface of Dice (fine grid), showing the strong dependency of
the latter on the b coordinate. It is obvious from this graph that Dice cannot simply
be reduced to a two-dimensional function.

3.4. COMPARING ASSOCIATION MEASURES 107

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

Figure 3.8: Rotated view of 200-best iso-surfaces for the Dice (fine grid) and Poisson
(coarse grid) measures, with the b-axis running from background to foreground.

3.4 Comparing association measures

3.4.1 Goals and methods

As has already been pointed out at the beginning of this chapter, association measures
are expected to perform two tasks: (i) estimate the “true” association strength of pair
types in the population from the observed frequencies; (ii) correct this estimate for
sampling variation in the observed data. Optimally, a comparison of association
measures and a mathematical discussion of their properties should take both aspects
into account. Given a (hypothetical) pair type with parameters (π, π1, π2), such a
discussion would proceed in two steps:

1. Identify the “ideal” association score which the measure would assign if there
were no sampling variation. This score can be computed from the popula-
tion parameters and is usually related to one of the coefficients of association
strength presented in Section 2.2.5. The value of the ideal score should be
meaningful and interpretable. Whether this is indeed the case depends on the
intended application and the intuitions of the researcher, so it cannot be es-
tablished on purely mathematical grounds. A possible approach is to list and
compare the ideal scores for special (boundary) values of the population pa-
rameters as has been done in Table 2.2. It has to be kept in mind, though, that
there is also no general agreement on a “best” measure of association strength
in the field of mathematical statistics.

2. Study the sampling error of the real association scores computed by a measure,
i.e. how close they are to the ideal value and how great their variation is. In
principle, the exact distribution of the association scores can be determined
from the multinomial sampling distribution for the given probability parame-
ters (π, π1, π2) (though in practice this involves unwieldy mathematical expres-

108 CHAPTER 3. ASSOCIATION MEASURES

sions or time-intensive numerical computations). Such an experiment has been
performed by Dunning (1998, 73f).

The procedure outlined above faces several practical problems: (i) For many as-
sociation measures, especially those connected to statistical hypothesis tests (Sec-
tions 3.1.2, 3.1.3, and 3.1.4), it is entirely unclear how the “ideal” association score
should be defined (since Table 2.2 does not apply in this case). (ii) It is very difficult
to compute the exact distribution of association scores. Analytical results have only
been obtained for certain special cases (e.g. Good et al. 1970), and a numerical ap-
proach presents problems of accuracy and performance, especially for large sample
size N; even the less satisfactory Monte Carlo sampling is computationally expensive.
(iii) The results obtained in the second step are valid for one particular set of param-
eters (π, π1, π2) only. The analysis or simulation would have to be repeated for many
different parameter values throughout the population parameter space, and then the
systematic effects of changes in the joint and marginal probabilities would have to be
studied. Therefore, I advocate a much simpler and quite intuitive empirical approach:
namely, to study generalised association measures as arbitrary real-valued functions,
without reference to “ideal” scores or to the population parameters.

One possibility is a direct comparison of the scores computed by two or more
association measures for a either real or an invented data set. The use of a real data
set highlights practically relevant differences between measures. On the other hand,
invented data sets (called dummies), where the joint and marginal frequencies vary
in a systematic way across a wide range of values, can throw light on the behaviour
of the measures under boundary conditions. The results of such a comparison can
be visualised in the form of a scatter plots, using the scores assigned by one measure
as x coordinates and those assigned by another one as y coordinates. This approach
is especially useful for association measures that are intended to compute the same
quantity, or whose scores can at least be interpreted in the same way. The best ex-
ample are the p-values computed by likelihood measures and exact hypothesis tests,
which measure the amount of evidence against the null hypothesis of independence.
The scores of asymptotic tests are also comparable when they are translated into the
corresponding p-values according to the theoretical limiting distribution of the test
statistic. Examples of direct comparison plots (used for this purpose) can be found
in Section 3.4.2 and in Dunning (1998, 74f). Plots of completely unrelated measures
(say, log-likelihood and Dice) at best have artistic value.

Another possibility is an intellectual comparison of the equations that define
the association measures. For instance, Stubbs (1995) performs an intuitive analysis
of MI and t-score, where he manipulates and approximates the formulae in order
to understand their behaviour under different conditions and to identify the “main
factors” of each measure. One of his conclusions is that t-score is closely linked to the
observed cooccurrence frequency: t ≈

√
O11. However, it is sensitive to an increase

in the expected frequency E11, which he interprets as a bias against combinations
of high-frequency words. In a similar way, Smadja et al. (1996, 9–12) embark on
a lengthy intuitive discussion of the properties of Dice and its supposed advantages
for the identification of translation equivalents. Generalised equations in the ebo-
system, as given in Eq. (3.10), (3.12) and (3.14) in Section 3.3.2, are an excellent
starting point for such analyses because they already make the influence of expected
frequency e, observed frequency o and balance b explicit. While this approach can

3.4. COMPARING ASSOCIATION MEASURES 109

be very successful for simple measures (those considered by Stubbs are arguably
among the most easily interpretable ones), many other measures resist such direct
interpretation.

The coordinate space and generalised association measures introduced in Sec-
tion 3.3 provide a natural framework for the geometric interpretation and compar-
ison of association measures, viewing them as families of iso-surfaces in the three-
dimensional space P, or families of iso-lines in the (e, o) plane for central measures
(cf. Section 3.3.3). A visual analysis of the iso-surfaces or iso-lines can help us to
reach an intuitive understanding of the properties of individual association measures
and the differences between them. For instance, from Figure 3.7 we get a good
idea what level of significance the Poisson and z-score measures assign to differ-
ent combinations of expected and observed frequency. In this case, iso-lines for the
same p-values are directly comparable between the two measures. We can thus see
that Poisson and z-score agree about the level of significance for higher-frequency
data (e ≥ 10), but Poisson has much less faith in small amounts of evidence (for
e � 10).28 In particular, z-score considers any pair type with e < .01 highly signif-
icant, regardless of its observed frequencies. For Poisson, on the other hand, a pair
type that occurs just once in a sample of this size could never achieve a significance
of pv = 10−5 (indicated by the grey iso-line).

In contrast to the direct comparison of association scores described above, the
geometric approach also allows comparisons between unrelated measures. It is often
possible to describe the properties of iso-lines by looking at the formal mathematical
properties of their height functions o = h(e) (as listed in Section 3.3.3), paying
special attention to the behaviour of h for high (e � 1) and low (e → 0) frequencies.
From Eq. (3.20), we see that the height functions of all association measures listed
there are linear combinations of the identity function e and the square root function√
e, with an additional balance factor for non-central measures. Only t-score adds a

constant term, which is otherwise a unique characteristic of the frequency measure.
The practical relevance of the properties of association measures and the differ-

ences between them is highlighted when the iso-surfaces or iso-lines are compared to
the point cloud C representing a real-life data set, or to its projection into the (e, o)
plane. Ideally, such studies should be combined with an empirical evaluation of the
measures as described in Chapter 5, as well as a linguistic appraisal of the word pairs
hidden behind all the points in the graphs.

In order to come to terms with the multitude of known association measures (or
at least the ones presented in Section 3.1), a good strategy is to divide them into
groups of measures that (purport to) measure similar quantities. From each such
group, a measure with particularly desirable or typical properties should be chosen
as a prototype. Whenever possible, it is advantageous to choose a central measure
as a prototype so that its analysis and visualisation are reduced to a two-dimensional
problem. The measures within a group can then be described by comparison with
the prototype, e.g. with respect to their behaviour for high- and low-frequency data
(e), for different sample sizes (N), and for unbalanced data (b 6= 1). In order to
understand the differences between groups, it is only necessary to compare the group
prototypes, either by geometric interpretation or through an empiricial evaluation of

28For e < 10, the iso-lines of Poisson are higher than those of z-score because the observed fre-
quency o must be larger to provide the same amount of evidence again H0, i.e. the same significance.

110 CHAPTER 3. ASSOCIATION MEASURES

real-life data sets.

3.4.2 The major groups

There are two large and important groups of association measures. The first group
collects measures based on statistical hypothesis tests (from Sections 3.1.3 and 3.1.4)
or sample probabilities (the likelihood measures from Section 3.1.2). Together, these
association measures form the significance of association group.29 They estimate
the amount of evidence provided by the observed data against the null hypothesis
of independence. This estimate can be expressed in the form of a p-value, so that a
direct comparison of the association scores is possible.

The second group of measures is concerned more with the degree of associa-
tion (quantified by any one of the coefficients of association strength introduced in
Section 2.2.5) than with the amount of evidence supporting it. Most association mea-
sures in this group are maximum-likelihood estimates of the respective coefficients
(Section 3.1.5). In addition, conservative estimates (confidence intervals) for some
coefficients of association strength were obtained in Section 3.1.6.

There are several association measures that do not fit in either group (at least
according to their theoretical derivation, or lack thereof). Surprisingly, some of these
measures are found to be equivalent (or nearly equivalent) to other measures that
belong to one of the major groups. The remaining “outliers” have to be studied
individually, provided that they show promise of any practical relevance.

Significance of association

This group includes all exact and asymptotic hypothesis tests from Sections 3.1.3 and
3.1.4. In view of its questionable theoretical foundation, the t-score measure may
not fit into the group. However, it is used as a hypothesis test by many authors (e.g.
Church et al. 1991) and has therefore been included.

In principle, all these tests should compute (more or less) the same p-values,
although there are certain differences between asymptotic tests and exact tests (es-
pecially Fisher’s test, which is based on the conditional distribution for fixed row
and column sums). These differences have been discussed at length in mathematical
statistics. After decades of controversy, most experts seem to agree now that Fisher’s
test produces the most meaningful p-values (cf. Yates 1984). We can thus take the
Fisher association measure as a reference point for the significance of association
group.

From the mathematical literature, we can predict how well the various asymptotic
tests approximate the exact value of Fisher’s test, and which circumstances (such as
sample size or the application of Yates’ continuity correction) have an influence on the
quality of the approximations (e.g. Yates 1934; Barnard 1947; Yates 1984; Haberman
1988; Agresti 1990; Lehmann 1991). These predictions are not always borne out for
word cooccurrences, though, as was shown by Dunning (1993, 1998). The reason
is that mathematical discussions often assume roughly uniform distributions and are
more concerned with small samples, while we have to deal with large sample sizes

29The terms significance of association and degree of association are also used by Hollander and Wolfe
(1999, 467).

3.4. COMPARING ASSOCIATION MEASURES 111

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Fisher

X
co

rr
2

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Fisher

t

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Fisher

G
2

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Fisher

P
oi

ss
on

Figure 3.9: Comparison of p-values for measures from the significance of association
group, using Fisher as a reference point (labels on the axes refer to − log10 pv).

but highly skewed contingency tables (where O11 is very small and O22 is extremely
large, cf. the examples in Section 2.1).

In order to find out how good the approximations of different measures to the
Fisher p-values really are, we can directly compare their scores as described in Sec-
tion 3.4.1. Here, a dummy data set was used with N = 100 000 and f, f1, f2 ranging
systematically beetween 1 and 1 000.30 When looking at such invented data sets, it is
important to keep in mind that they serve to explore the full range of possible situa-
tions rather than to have a realistic distribution. Therefore, the distribution of scores
(which tend to cluster in a particular region of the graph, with only few outliers)
must not be taken too seriously and may be entirely different for real-life data sets
(which contain a higher proportion low-frequency pair types, for instance).

Figure 3.9 shows a comparison between Fisher and the measures chi-squared (X2),
t-score (t), log-likelihood (G2) and Poisson. The association scores computed by the
asymptotic tests have been converted to − log10 pv for this purpose, according to the
respective limiting distributions. The thin diagonal line indicates the desired result of
equal p-values. From the panels in the top row, we see that chi-squared overestimates
significance dramatically, even when Yates’ continuity correction is applied. This is

30Results for larger sample sizes are qualitatively similar, although they show greater variation and
differences between the measures become more pronounced.

112 CHAPTER 3. ASSOCIATION MEASURES

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

Fisher

X
co

rr
2

f < 5
f < 10
f < 50
f < 100
f ≥ 100

1 10 100 1000 10000

1
10

10
0

10
00

10
00

0

Fisher

X
co

rr
2

E11 < 0.001
E11 < 0.01
E11 < 0.1
E11 < 1
E11 ≥ 1

Figure 3.10: The roots of overestimation: comparison of the Fisher and chi-squared
p-values according to observed (left) and expected (right) frequency.

not just a matter of scaling: a closer look reveals that even pair types with the same
small Fisher scores (down to − log10 pv ≈ 10) may be assigned widely different scores
by chi-squared (up to a significance of − log10 pv ≥ 1 000). The t-score measure, on
the other hand, turns out to be a highly conservative measure, underestimating sig-
nificance substantially. The results of Dunning (1993, 1998) are corroborated by the
bottom left panel, where log-likelihood gives an excellent approximation to the Fisher
p-values across the entire range of frequency signatures. The best approximation by a
central measure is given by Poisson in the bottom right panel, which underestimates
significance only by a moderate amount (the binomial measure gives almost identical
results).

Figure 3.10 explores the causes of the chi-squared overestimation, using a logarith-
mic scale to make the graphs more readable.31 The dummy data set was divided into
frequency bands according to observed frequency (o = f , left panel) and expected
frequency (e = E11, right panel). The right panel shows clearly that the expected
cooccurrence frequency is at the heart of the problem: the smaller E11, the more
inflated the chi-squared values are. The observed cooccurrence frequency is closely
linked to the magnitude of the association scores (with respect to either measure)
and is responsible for the band-like structure of the scatterplot (the leftmost “band”
of points corresponds to f = 1, the next one to f = 2, etc.). A similar plot with a sub-
division according to b shows that the balance between f1 and f2 does not contribute
to the overestimation in any substantial way.

The field of mathematical statistics provides convincing arguments against likeli-
hood measures (see the example at the beginning of Section 3.1.3), which are prone
to overestimating the significance of high-frequency data in large samples. However,
a direct comparison of the scores computed by Poisson-likelihood, binomial-likelihood
and hypergeometric-likelihood with the corresponding exact tests (Poisson, binomial
and Fisher) reveals that for the very high association scores which are mainly of in-

31Note that the values on both axes are already logarithms of p-values (− log10 pv), but an addi-
tional logarithmic scale is needed to cover the enormous range of significance values produced by the
measures. Also note that the scores of both measures would lead to floating-point underflow if they
were computed as raw p-values (cf. Section 3.2.1).

3.4. COMPARING ASSOCIATION MEASURES 113

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Poisson

L.
P

oi
ss

on

0 1 2 3 4 5

0
1

2
3

4
5

Poisson

L.
P

oi
ss

on

0 1 2 3 4 5

0
1

2
3

4
5

binomial

L.
bi

no
m

ia
l

0 1 2 3 4 5

0
1

2
3

4
5

Fisher

L.
hy

pe
r

Figure 3.11: Comparison between likelihood measures (− log10 lv, y-axis) and the
corresponding exact hypothesis tests (− log10 pv, x-axis).

terest in the analysis of cooccurrence data, they give a very good approximation to
the exact tests (shown for Poisson in the left top panel of Figure 3.11). Substantial
differences are only found for pair types that do not show significant evidence against
H0 even at the traditional significance level of α = .01 (Figure 3.11).

A last queston is motivated by the observation that log-likelihood scores are virtu-
ally identical to the reference values given by Fisher, while the best central measure
(Poisson) deviates considerably even though as an exact test it is mathematically
much more similar to Fisher’s test than the asymptotic likelihood ratio test. This sug-
gests that differences between these measures may be due to non-centrality, i.e. the
influence of the balance b. In order to test this hypothesis, we have to compare a
non-central measure with a similar central one, e.g. chi-squared and z-score. From
Eq. (3.12d), we see that

gchi-squared(e, b, o) = ±
(
gz-score(e, o)

)2 · N
ē

.

Therefore, chi-squared differs from a central measure only by a factor of ē/N = (1 −
f1/N)(1−f2/N) ≈ 1 (because the marginal frequencies are usually small compared
to the sample size). This conclusion is supported by the left panel of Figure 3.12,
which shows a direct comparison of these measures on the dummy data set. The
log-likelihood measure (abbreviated here as g) does not have a central equivalent, but

114 CHAPTER 3. ASSOCIATION MEASURES

0 1000 2000 3000 4000 5000

0
10

00
20

00
30

00
40

00
50

00

Xcorr
2

z c
or

r

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

G2

G
ce

nt
ra

lis
ed

2

Figure 3.12: Comparison of p-values between central and non-central variants of
measures from the significance of association group.

it can be compared to its centralised version gc(e, b, o) = g(e,1, o). Since neither g
nor gc has a simple generalised equation in ebo-coordinates, we have to rely on the
empirical comparison in the right panel of Figure 3.12. It is obvious that the deviation
of gc from log-likelihood is much smaller than that of the Poisson measure. Further
evidence is provided by Figure 3.13, which comparse iso-surfaces of g (fine grid) and
gc (coarse grid) for the same p-value 10−6. Thus, balance can finally be ruled out as
a major factor for measures of the significance of association group.

These findings also allow us to visualise the association measures in the form
of iso-lines in the (e, o) plane, replacing each non-central measure with a central
approximation. Figure 3.14 shows iso-lines of t-score (t), Poisson, the centralised
version of log-likelihood ((G2)c) and z-score with Yates’ correction applied (zcorr) for
pv = 10−6. For high expected frequencies (e ≥ 10), all measures agree (t reaches
good agreement only for e ≥ 100). The overestimation of zcorr and the underestima-
tion of t are clearly visible, while the Poisson iso-curve is very close to that of (G2)c.
It is astonishing that the small gap between these two curves accounts for the consid-
erable differences seen in the bottom right panel of Figure 3.9. The most interesting
aspect of the graph is certainly the t-score measure, whose curve flattens out to a
horizontal line for e → 0. Unlike all other measures in this group, t-score sets an
implicit frequency threshold: no pair type with o ≤ 22 can achieve a significance of
pv = 10−6, regardless of its expected frequency. Even for the customary significance
level of pv = .01, there is an implied frequency cutoff at o = 5. This unique property
of t-score might explain its success for filtering out unwanted candidates in colloca-
tion extraction tasks (Church et al. 1991), where it has possibly worked more as a
frequency filter than as a test of significance.

To sum up, the measures in the significance of association group are represented
by a theoretically motivated prototype, namely the Fisher measure. For practical
applications, log-likelihood is a convenient and numerically unproblematic alternative
that gives very good approximations to the exact p-values. Its centralised version can
be used for visualisation in the (e, o) plane and for empirical studies, with only minor
score differences for unbalanced data points. The Poisson measure achieves the best
approximation among the inherently central measures and its elegant form is useful

3.4. COMPARING ASSOCIATION MEASURES 115

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1 f2

f

1
10

100
1000 1

10
100

10001

2

5

10

20

50

100

f1
f2

f

Figure 3.13: Iso-surfaces of the log-likelihood measure g (fine grid) and its centralised
version gc (coarse grid) for the same threshold value (corresponding to pv = 10−6.

E

O

1e−04 0.01 0.1 1 10 100

1
10

10
0

10
00

t
Poisson
(G2)c

zcorr

Figure 3.14: Iso-lines for t-score, Poisson, the centralised version of log-likelihood and
z-score with Yates’ correction applied (all corresponding to pv = 10−6.

116 CHAPTER 3. ASSOCIATION MEASURES

E

O

1e−04 0.01 0.1 1 10 100

1
10

10
0

10
00

MLE
α = 0.01
α = 0.001
α = 10−5

α = 10−10

Figure 3.15: Iso-lines for the MI measure as a point estimate (MLE) of log10 µ and
conservative estimates for different confidence levels α (MIconf,α measure).

for mathematical discussions.

Degree of association

This group, which includes all the maximum-likelihood estimates for coefficients of
association strength from Section 3.1.5, is much more diverse than the significance
of association group. Since the various coefficients have quite different properties,
there is no obvious group prototype.

Some measures or coefficients form subgroups that can be represented by a single
prototype, or that are even fully equivalent. One example are the measures from the
MI family, including the heuristic MIk variants as well as gmean. Another example
are Dice (with the equivalent Jaccard measure) and MS, which differ only in how the
balance b affects the scores as can be seen from Eq. (3.12a) and (3.12c). In either
case, the scores decrease for b 6= 1. Interestingly, the centralised versions of all three
measures are equivalent to gmean, but the balance-dependency is so strong that the
latter cannot be used as a prototype.

Conservative estimates for some coefficients of association strength were pre-
sented in Section 3.1.6. These association measures are parametric because they
depend on the chosen confidence level (cf. Section 3.1.8), so they cannot be repre-
sented by a single prototype. However, each parametric family of measures can be
compared to, and grouped with, the corresponding maximum-likelihood estimate.
Figure 3.15 compares the maximum-likelihood estimate for log10 µ (given by the MI
measure) with conservative estimates (given by MIconf,α) at different confidence lev-
els α. The iso-lines in this graph represent an estimated value of log10 µ = 1. The
differences between the MLE and the conservative estimates quickly become huge
for e < 1, while they are practically indistinguishable for e ≥ 10. This suggests that
conservative estimates may indeed be able to overcome the overestimation bias of MI

3.4. COMPARING ASSOCIATION MEASURES 117

for low-frequency data.
It is more difficult to visualise the properties of other measures in this group, such

as Dice, MS and odds-ratio, because of their non-centrality. In these cases, three-
dimensional graphs of iso-surfaces as in Figure 3.8 would be required.

Other measures

Of the remaining association measures, all three information-theoretic measures are
fully or nearly equivalent to one from either of the two main groups: MI can be in-
terpreted as a maximum-likelihood estimate of log10 µ (and has been introduced as
such in Section 3.1.5), average-MI is fully equivalent to log-likelihood, and local-MI can
be seen as an approximation of the Poisson-Stirling measure.32 Therefore, these mea-
sures need not be treated separately, despite their different theoretical background.

The t-score measure, on the other hand, has unique properties that suggest that
it may not belong into the significance of association group (although it agrees with
the other measures for high expected frequencies).

The frequency measure ranks a data set by cooccurrence frequencies and is the
intuitive non-mathematical choice for collocation extraction, based on the intuition
that collocations are recurrent combinations. It is thus used as a non-statistical base-
line for the evaluation experiments in Chapter 5. Again, the measure is most clearly
characterised by its iso-lines in the (e, o) plane, which are parallel to the e-axis (com-
pare this to the iso-lines of t-score for e → 0).

There is an almost infinite range of possibilites for defining combined and para-
metric measures (cf. Section 3.1.8, and these will naturally be difficult to classify. The
t-score measure provides an interesting example with is implied frequency threshold:
it can be seen as a combination of the frequency measure (for e < 1) with a conser-
vative significance of association measure (for e ≥ 10).

32Poisson-Stirling and local-MI are excluded from further discussion on the grounds that they cannot
be extended to sound generalised association measures.

118 CHAPTER 3. ASSOCIATION MEASURES

Chapter 4

Quantisation Effects

4.1 Frequency distributions

4.1.1 A thought experiment

Imagine a population consisting of 500 high-frequency pair types, each one of which
occurs once every two thousand tokens (π = 5·10−4), and 750 000 low-frequency pair
types, each one of which occurs once in a million pair tokens (π = 10−6). Note that
this is indeed a valid probability distribution because 500 · 5 · 10−4 + 750 000 · 10−6 =
0.25 + 0.75 = 1. Assume further that all component types occur once in a thousand
tokens (π1 = π2 = 10−3), so that the null probability of any pair type under the
independence hypothesis H0 is π1 · π2 = 10−6. Thus, the low-frequency types are
random combinations of their components (since they satisfy the null hypothesis π =
π1π2), while the high-frequency types show strong positive association (π � π1π2).1

If we take a sample of size N = 2 000 from this population, most of the high-
frequency pair types will occur exactly once (O11 = f = 1, which is the expected
value given the true cooccurrence probability π = 5 ·10−4) or not at all in the sample.
The expected marginal frequencies are f1 = f2 = 2, both for high-frequency and
for low-frequency pair types. For the sake of the argument, I will ignore sampling
variation of the marginal frequencies in the following discussion, so that we have f1 =
f2 = 2 and the expected cooccurrence frequency (under the point null hypothesis of
independence H ′

0) is E11 = f1f2/N = 0.002 for all pair types in the sample.2 Note

1It is in fact possible to construct such a population. Each component set C1 and C2 consists of
1 000 types with equal marginal probabilities π1 = 10−3 and π2 = 10−3. Both sets are divided into two
subsets of equal size: C1 =

{
u1, . . . , u500, u

′
1, . . . , u

′
500

}
and C2 =

{
v1, . . . , v500, v

′
1, . . . , v

′
500

}
. Each type

u′
i combines randomly with all vj ∈ C2, each v′i combines randomly with all uj ∈ C1, and all u′

i ∈ C1

and v′j ∈ C2 also combine randomly, yielding 750 000 pair types with π = 10−6. In addition, each
ui combines with vi but no other of the vj (j 6= i), yielding another 500 pair types whose probability
parameters must be equal to π = 5 · 10−4 in order to satisfy the summation conditions for marginal
probabilities.

2This simplification allows us to ignore the differences between the general null hypothesis H0

(where the expected number of random cooccurrences, given the true marginal probabilities π1 and
π2, equals Nπ1π2) and the point null hypothesis H ′

0 (where the marginal probabilities are estimated
from the sample frequencies, π1 ≈ p1 and π2 ≈ p2). Even when sampling variation is taken into
account, the value E11 = Np1p2 = f1f2/N estimated from the observed frequencies is unlikely to
be much larger than Nπ1π2, so that the conclusions of the thought experiment remain fully valid. In
particular, the computed association scores will not be much lower than the idealised scores used here.

119

120 CHAPTER 4. QUANTISATION EFFECTS

that E11 is identical to the expected number of random cooccurrences given the true
marginal probabilities: E11 = Nπ1π2.

Under these circumstances, even a single instance of a pair type in the sample
is considered significant evidence for a positive association. With O11 = 1 and
E11 = 0.002, the Poisson measure (as a representative of the significance of asso-
ciation group, cf. Section 3.4.2) computes a p-value of pv ≈ 0.002 for these single
occurrences, which are called hapax legomena (see Baayen 2001, 8). The degree of
association is estimated by MI = log 500, corresponding to a µ-value of µ = 500
(cf. Section 2.2.5), and the other measures from this group compute similarly high
scores. Even the 95% confidence interval for the µ-value (corresponding to the MIconf

measure introduced in Section 3.1.6) gives evidence for some degree of association
(µ > 12.6). For the strongly associated high-frequency pair types, this is the desired
behaviour.

However, with only 500 high-frequency pairs in the population the remaining ap-
prox. 1 500 hapax legomena in the sample must belong to the low-frequency class.3

Although these cooccurrences are indeed pure coincidence (because the low-fre-
quency pair types are random combinations), they obtain the same association scores
as the high-frequency types. Thus, the degree of association is greatly overestimated
compared to its true value of µ = 1. What is even more disturbing is the apparent
failure of statistical hypothesis tests to correct for the effects of chance. The p-value
of pv ≈ 0.002 computed by the significance-of-association measures indicates a risk
of one in 500 for a non-associated pair type (satisfying H0) to appear once or more in
the sample. How can it be, then, that more than three quarters of all hapax legomena
are such chance cooccurrences?

The answer to this question lies in a combination of three effects: (i) the very
large number of low-frequency pair types in the population, (ii) the different sta-
tistical properties of single events vs. classes of events, and (iii) the quantisation of
frequency counts. A statistical hypothesis test as used above predicts how likely it
is for one particular low-frequency pair type, chosen a priori, to occur in the sam-
ple, namely Pr

(
X11 ≥ 1

)
≈ 0.002. (This is the p-value computed by Poisson and

similar measures, and it is also the basis for conservative estimates such as MIconf.)
Although the occurrence probability is fairly small for each individual type, the large
number of low-frequency types causes some of them to “leak through” into the sam-
ple. (The decisive factor is the total probability mass of such pair types, which is 0.75
in our thought experiment. Consequently, about three quarters of all pair tokens in
the sample will be random cooccurrences.) Therefore, when we look at a class of
types chosen a posteriori, namely the class of hapax legomena in the sample, the
proportion of low-frequency pair types is determined as much by the shape of the
population as by the individual occurrence probabilities. Quantisation effects allow
the influence of the shape of the population to become dominant for lowest-frequency

Monte Carlo simulation shows that E11 tends to be larger for the high-frequency pair types than for the
low-frequency ones, so that the random combinations will on average obtain even higher association
scores than the associated pairs!

3On average, each of the 500 high-frequency pair types occurs once in a sample of size N = 2000.
Therefore, the high-frequency types account for a total of approximately 500 tokens in the sample.
The remaining ≈ 1 500 tokens must belong to the low-frequency class. Since low-frequency pair types
are highly unlikely to occur more than once (in a sample of this size), almost all of these tokens will
be hapax legomena.

4.1. FREQUENCY DISTRIBUTIONS 121

data, especially the hapax legomena. In the thought experiment, this influence all
but vanishes for higher frequency ranks. The expected number of high-frequency pair
types among the dis legomena (double occurrences, i.e. O11 = 2) is 184, with hardly
any low-frequency types present (less than five such types with 98% certainty). Here,
the statistical tests have successfully filtered out random cooccurrences.

4.1.2 Introduction to lexical statistics

The thought experiment in Section 4.1.1 has demonstrated the important role that
the distribution of probability parameters in the population plays for word cooccur-
rences. This is the domain of lexical statistics and word frequency distributions – see
Baayen (2001, Ch. 2) for an introduction, notation, and detailed proofs. Here, I will
just review the key concepts and some fundamental results.

The theory of lexical statistics provides a different perspective on the random
sample model introduced in Section 2.2. While the statistical methods considered
in previous chapters (on which most association measures are based) are applied to
individual pair types, we will now study the behaviour of classes of types (without
respect to the particular types making up the class) and the distribution of probability
parameters in the population. For the purposes of lexical statistics, we only consider
the pair types w and their cooccurrence probabilities π, ignoring the components and
marginal probabilities. The population types are enumerated w1, . . . , wS such as to
arrange their probability parameters in descending order: π1 ≥ π2 ≥ · · · ≥ πS (in this
chapter, π1 refers to the cooccurrence probability of the pair type w1 rather than a
marginal probability). Likewise, the random variable fi represents the cooccurrence
frequency of the i-th pair type wi in a sample. The population size S is the number
of different types in the population. S may be finite (S ∈ N) or infinite (S = ∞),
with {1, . . . , S} standing for the full set N in the latter case. Work in lexical statistics
usually assumes independent Poisson sampling (and so does related work, e.g. Good
(1953)), so that the fi are independent Poisson-distributed random variables:

Pr
(
fi = k

)
= e−Nπi

(Nπi)k

k!
. (4.1)

Since we are not interested in individual type frequencies, but rather in their distri-
bution across the entire population, all types wi with the same frequency fi = m are
collected into the frequency class m. The class size Vm, i.e. the number of different
types in frequency class m, can easily be determined from the observed sample. In
the statistical model, it can be defined as a sum over indicator variables:

Vm :=
∑

I[fi=m] . (4.2)

The sequence of all class sizes (V1, V2, . . .) is called the frequency spectrum. Note
that all but finitely many of the Vm equal zero (in particular, the largest non-empty
frequency class is Vf∗

1
). Using the same definition, V0 is the number of unseen types

and cannot be determined from the sample. The vocabulary size V is the total number
of types observed in the sample:

V :=
S∑

i=1

I[fi>0].

122 CHAPTER 4. QUANTISATION EFFECTS

The frequency spectrum is related to V and N through the identities V =
∑∞

m=1 Vm

and N =
∑∞

m=1 mVm. The expectations of V and Vm can easily be computed from
(4.1) and (4.2):

E
[
Vm

]
=

S∑
i=1

e−Nπi
(Nπi)m

m!
and E

[
V
]

=
S∑

i=1

(
1 − e−Nπi

)
, (4.3)

but it is more difficult to obtain variances and the full distributions. The variances
are related to the expected values for a sample of twice the size:

Var
[
Vm(N)

]
= E

[
Vm(N)

]
−
(

2m
m

)
2−2mE

[
V2m(2N)

]
(4.4a)

Var
[
V (N)

]
= E

[
V (2N)

]
− E

[
V (N)

]
(4.4b)

(Baayen 2001, 120–121).4 A population model describes the distribution of type
probabilities in the population, based on a small set of parameters (usually two or
three).5 While it is in principle possible to formulate a population model directly for
the type probability parameters (e.g. Holgate 1969), it is usually more convenient to
refer to the structural type distribution, which is a step function given by

G(ρ) := |{i ∈ {1, . . . , S} |πi ≥ ρ}| . (4.5)

G(ρ) specifies the number of types whose occurrence probability is ≥ ρ. E
[
Vm

]
and

E
[
V
]

can then be expressed in terms of Stieltjes integrals

E
[
Vm

]
=
∫ ∞

0

(Nπ)m

m!
e−Nπ dG(π), E

[
V
]

=
∫ ∞

0
(1 − e−Nπ)dG(π) (4.6)

(Baayen 2001, 47f). Most population models approximate G(ρ) by a continuous
function with the type density g(π), i.e.

G(ρ) =
∫ ∞

ρ

g(π)dπ . (4.7)

Note the use of +∞ as an upper integration limit although all type probabilities must
fall into the range 0 ≤ π ≤ 1. This device allows for more elegant mathematical
formulations, but care has to be taken that G(1) � 1 (otherwise the model would
predict the existence of types with π > 1). For a population model based on a type
density function g(π), the expectations of Vm and V become

E
[
Vm

]
=
∫ ∞

0

(Nπ)m

m!
e−Nπg(π)dπ, E

[
V
]

=
∫ ∞

0
(1 − e−Nπ)g(π)dπ, (4.8)

and the variances can again be computed from (4.4). The normalisation condition
for type density functions is ∫ ∞

0
π · g(π)dπ = 1 , (4.9)

and the population size is given by S =
∫∞

0 g(π)dπ.
4These equations, which Baayen describes as approximations, are exact when independent Poisson

sampling is assumed.
5Baayen (2001) uses the term LNRE model for such a population model, where LNRE stands for

Large Number of Rare Events, a term introduced by Khmaladze (1987). It refers to the very large num-
ber of types with low occurrence probabilities that are characteristic of word frequency distributions
and the associated population models.

4.1. FREQUENCY DISTRIBUTIONS 123

4.1.3 The conditional parameter distribution

As we have seen from the thought experiment in Section 4.1.1, the critical problem of
low-frequency data is that the observed frequency O11 may be much higher than the
expected value E

[
X11

]
(given the true cooccurrence probabilities), leading to inflated

estimates for coefficients of association strength such as the MI measure. This effect is
much greater than predicted by the sampling distribution, and thus statistical hypoth-
esis tests cannot correct for it. As a consequence, both the significance-of-association
measures and conservative estimates for coefficients of association strength are sub-
ject to the same overestimation. In Section 4.1.1, the problem was brought down to
a comparison of (a) the probability Pr

(
X ≥ m

)
that a type w is observed at least

m times in the sample, under the hypothesis that its probability parameter satisfies
π ≤ ρ for some value ρ; and (b) the proportion of types in frequency class m whose
probability parameter does indeed satisfy π ≤ ρ. The latter is strongly influenced by
the population distribution. If it is much larger than the probability (a), statistical
tests (and all inferences and association measures based on them) will fail to con-
trol the risk of type I errors properly. The extent of this failure is given by the ratio
between (b) and (a).

Our goal in this section is to compute the proportion (b) – or rather its sampling
distribution, since it is a random variable – from a population model. This will allow
us to estimate the consequences of quantisation effects given assumptions about the
population (in the form of the population model). Let Vm,ρ stand for the number
of types in frequency class m with probability parameter π ≤ ρ, and Vm,>ρ for the
number of types with parameter π > ρ:

Vm,ρ :=
∑
πi≤ρ

I[fi=m] and Vm,>ρ :=
∑
πi>ρ

I[fi=m] . (4.10)

Since Vm,ρ and Vm,>ρ are obtained by summation over disjoint sets of types, they are
independent (for the same value ρ). We can easily compute the expectation of Vm,ρ

and Vm,>ρ from a population model in the form of a type density function, using
Eq. (4.8):

E
[
Vm,ρ

]
=
∫ ρ

0

(Nπ)m

m!
e−Nπg(π)dπ (4.11a)

and

E
[
Vm,>ρ

]
=
∫ ∞

ρ

(Nπ)m

m!
e−Nπg(π)dπ. (4.11b)

The corresponding variances can then be obtained from Eq. (4.4). The proportion of
low-probability types in frequency class m is given by the ratio Rm,ρ := Vm,ρ/Vm. Un-
fortunately, the computation of E

[
Vm,ρ/Vm

]
leads to a mathematical problem that I

have not solved (Good 1953, 242). However, given that the sample size N is large, the
value of ρ is not too extreme and we are only interested in small m, the distributions
of Vm, Vm,ρ and Vm,>ρ are approximately normal by the central limit theorem (since
each is the sum of a large number of independent indicator variables, cf. (4.10)).
Writing

Rm,ρ =
Vm,ρ

Vm

=
Vm,ρ

Vm,ρ + Vm,>ρ

, (4.12)

124 CHAPTER 4. QUANTISATION EFFECTS

we can express the proportion Rm,ρ as a function of two independent, approximately
normal random variables Vm,ρ and Vm,>ρ. Lemma A.8 derives the distribution of Rm,ρ

and shows that – except for some extreme cases – it is approximately normal and the
expectation is given by

E
[
Rm,ρ

]
≈

E
[
Vm,ρ

]
E
[
Vm

] . (4.13)

In Section 4.3, we will use (4.13) as an estimate for the average value of Rm,ρ to study
the relation between the proportion of low-probability types and the p-values com-
puted by statistical hypothesis tests. Some example calculations for the population
models of Section 4.2 fitted to the data sets described in 4.2.4 have shown that the
standard deviations of Vm,ρ and Vm,>ρ are much smaller than their expected values,
so that the approximations of Lemma A.8 are indeed valid. Moreover, the relative
standard error of Rm,ρ is almost always below 1%, which implies that E

[
Rm,ρ

]
is a

good estimate for the proportion of low-probability types in any given sample.

4.2 The Zipf-Mandelbrot population model

4.2.1 Zipf’s law

Zipf’s law (Zipf 1949), which states that the frequency of the r-th most frequent type
is proportional to 1/r, was originally formulated for the Zipf ranking of observed
frequencies (f∗

r ≈ Cr−1) and (more or less equivalently) for the observed frequency
spectrum (Vm ≈ C/m(m + 1)). In its first form, Zipf’s law describes a fascinating
property of the higher-frequency words in a language, for which explanations related
to Zipf’s principle of least effort have been put forward (e.g. Mandelbrot 1962; Powers
1998). In its second form, it is a statement about the enormous abundance of lowest-
frequency types, which has many consequences for the statistical analysis of word
frequency data and for applications in natural-language processing.

It has long been known that the word frequency distributions obtained from ran-
dom text are strikingly similar to Zipf’s law (Miller 1957; Li 1992). Formally, random
text is understood as a character sequence generated by a Markov process, with word
boundaries indicated by a special “space” character. Rouault (1978) shows that, un-
der very general conditions, this segmented character sequence is equivalent to a
random sample of words (with replacement, corresponding to the model introduced
in Section 4.1.2) and that the population probabilities of low-frequency types asymp-
totically satisfy the Zipf-Mandelbrot law

πi =
C

(i + b)a
(4.14)

with parameters a > 1 and b > 0 (Baayen 2001, 101ff). In Sections 4.2.2 and 4.2.3,
I will formulate population models for random character sequences based on the
Zipf-Mandelbrot law. Although Baayen remarks that “for Zipf’s harmonic spectrum
law and related models, no complete expression for the structural type distribution
is available” (Baayen 2001, 94), this need not discourage us: (4.14) refers to the
population parameters rather than to the observed Zipf ranking. The Zipf-Mandelbrot

4.2. THE ZIPF-MANDELBROT POPULATION MODEL 125

law for random text is a population model, while the original formulation of Zipf’s
law and its variants (Baayen 2001, 94f) have a purely descriptive nature.

These considerations open up an entirely new perspective on Zipf’s law: If a popu-
lation model based on (4.14) can be shown to agree with the observed data, we must
conclude that – as far as statistical analysis is concerned – such language data are not
substantially different from random text. As a consequence, the statistical analysis
faces all the problems of making sense from random noise, and these problems can
be predicted with the population models of Sections 4.2.2 and 4.2.3.

One of the characteristics of random text is an infinite population size, since there
can be words of arbitrary length, leading to an extremely skewed population distri-
bution. It has often been noted that this does not accord well with real-world data,
especially when there are narrow restrictions and the data have been cleaned up
manually. Examples are studies of (morphological) productivity (e.g. Baayen and
Renouf 1996) or the word frequency distributions of small literary texts (see Baayen
2001). However, the situation is different when one considers “raw” data obtained
from a large corpus of hundreds of millions of words, which is the input that statisti-
cal methods in natural-language processing typically have to deal with. The similarity
to random text becomes even more striking for combinations of two or more words
(cf. Baayen 2001, 221). Most techniques for the extraction of collocations from text
corpora apply statistical independence tests to such base material (e.g. Evert and
Krenn 2001), and are thus also affected by the consequences of the Zipf-Mandelbrot
law. Ha et al. (2002) demonstrate this effect for Mandarin Chinese ideographs: while
the number of different graphs is comparatively small and does not exhibit a highly
skewed LNRE distribution, the situation changes when sequences of two or more such
graphs are examined. The longer the sequences, the more closely their frequency dis-
tribution agrees with the Zipf-Mandelbrot law.

4.2.2 The Zipf-Mandelbrot model

In order to derive a useful population model from the Zipf-Mandelbrot law, it is nec-
essary to reformulate (4.14) in terms of a type density function g(π). The structural
type distribution corresponding to the Zipf-Mandelbrot law is a step function with
G(πi) = i (since there are exactly i types with π ≥ πi, namely w1, . . . , wi). Solving
(4.14) for i, we obtain

G(π) =
C1/a

π1/a − b (4.15)

for π = πi, and G(π) is constant between these steps. Differentiation of (4.15) sug-
gests a type density of the form

g(π) :=

{
C · π−α−1 0 ≤ π ≤ B

0 otherwise
(4.16)

126 CHAPTER 4. QUANTISATION EFFECTS

with two free parameters 0 < α < 1 and B > 0.6 The normalising constant C can be
determined from (4.9):

1 =
∫ B

0
πg(π)dπ =

∫ B

0
Cπ−α dπ = C ·

[
π1−α

1 − α

]B
0

= C · B1−α

1 − α
,

which evaluates to

C =
1 − α

B1−α .

The ZM model describes an infinite population, since S =
∫ B

0 g(π)dπ = ∞, and its
structural type distribution

G(ρ) =
∫ B

ρ

g(π)dπ = C ·
∫ B

ρ

π−α−1 dπ = C ·
[
π−α

−α

]B
ρ

=
C · ρ−α

α
− C · B−α

α
=

C/α

ρα
− 1 − α

B · α

is identical to (4.15) with a = α−1 and b = (1 − α)B−1α−1 for any values of ρ where
G(ρ) ∈ N. Thus, (4.16) can indeed be understood as a continuous extension of the
Zipf-Mandelbrot law.

E
[
Vm

]
=
∫ ∞

0

(Nπ)m

m!
e−Nπg(π)dπ =

C

m!

∫ B

0
(Nπ)me−Nππ−α−1 dπ

=
C

m!

∫ NB

0
tme−t

(t

N

)−α−1 1
N

dt =
C

m!
Nα

∫ NB

0
tm−α−1e−t dt

≈ C

m!
Nα

∫ ∞

0
tm−α−1e−t dt

In the second line, the substitution t := Nπ has been made. The approximation in
the last line is justified for NB � m (which should always be the case for the large
samples that are of interest here) where the integral

∫∞
NB t

m−α−1e−t dt is vanishingly
small. Thus, E

[
Vm

]
is reduced to the Gamma integral (A.26) and we obtain the

concise expression

E
[
Vm

]
=

C

m!
·Nα · Γ(m− α). (4.17)

6The constraints on the parameter α follow from 0 < 1/a < 1. C is a normalising constant and
will be determined from (4.9). The upper cutoff point B is necessary since the model would predict
types with probability π > 1 otherwise. B should roughly correspond to the probability π1 of the most
frequent type.

4.2. THE ZIPF-MANDELBROT POPULATION MODEL 127

The computation of E
[
V
]

involves an improper integral solved by partial integration:

E
[
V
]

=
∫ ∞

0
(1 − e−Nπ)g(π)dπ ≈ CNα

∫ ∞

0
(1 − e−t)t−α−1 dt

= CNα · lim
A↓0

(∫ ∞

A

t−α−1 dt−
∫ ∞

A

e−tt−α−1 dt

)
= CNα · lim

A↓0

([
t−α

−α

]∞
A

−
[
e−t

t−α

−α

]∞
A

−
∫ ∞

A

e−t
t−α

−α dt

)
= CNα · lim

A↓0

((
1 − e−A

)
· A

−α

α︸ ︷︷ ︸
= O(A1−α)→0

+
Γ(1 − α,A)

α︸ ︷︷ ︸
→Γ(1−α)/α

)

where Γ(1 − α,A) is the upper incomplete Gamma function (see A.4, Eq. (A.29)).

E
[
V
]

= C ·Nα · Γ(1 − α)
α

. (4.18)

Consequences of (4.17) and (4.18) are the recurrence relation

E
[
Vm+1

]
E
[
Vm

] =
Γ(m + 1 − α)

(m + 1)!
· m!

Γ(m− α)
=

m− α

m + 1
, (4.19)

a relative frequency spectrum

E
[
Vm

]
E
[
V
] =

α · Γ(m− α)
Γ(m + 1) · Γ(1 − α)

(4.20)

which is independent of the sample size N (cf. Baayen 2001, 118), and a power law

E
[
V (N)

]
= C′ ·Nα with 0 < α < 1 (4.21)

for the vocabulary growth curve. Equation (4.21) is known as Herdan’s law (Her-
dan 1964) in quantitative linguistics and as Heaps’ law (Heaps 1978) in information
retrieval.

The appeal of the ZM model lies in its mathematical elegance and numerical
efficiency. Computation of the expected frequency spectrum and similar statistics is
fast and accurate, using the complete and incomplete Gamma function. Moreover,
due to the simple form of g(π), we obtain a closed-form expression for the expected
number of low-probability types

E
[
Vm,ρ

]
=
∫ ρ

0

(Nπ)m

m!
e−Nπg(π)dπ

=
C

m!
·Nα · γ(m− α,Nρ)

(4.22)

and the corresponding proportion

E
[
Rm,ρ

]
≈

E
[
Vm,ρ

]
E
[
Vm

] =
γ(m− α,Nρ)

Γ(m− α)
(4.23)

for 0 < ρ < B.

128 CHAPTER 4. QUANTISATION EFFECTS

4.2.3 The finite Zipf-Mandelbrot model

Although the ZM model is theoretically well-founded as a model for random char-
acter sequences, its assumption of an infinite vocabulary is unrealistic for natural-
language data. In order to achieve a better approximation of such frequency distri-
butions, the finite ZM model introduces an additional lower cutoff point A > 0 for
the type density:

g(π) :=

{
C · π−α−1 A ≤ π ≤ B

0 otherwise
, (4.24)

which implies that there are no types with probability π < A in the population. The
normalising constant C is determined from (4.9):

1 =
∫ B

A

πg(π)dπ =
∫ B

A

Cπ−α dπ = C ·
[
π1−α

1 − α

]B
A

= C · B
1−α −A1−α

1 − α
,

which evaluates to
C =

1 − α

B1−α −A1−α . (4.25)

The population size is

S = C ·
∫ B

A

π−α−1 dπ =
C

α
· (A−α − B−α) =

1 − α

α
· A−α − B−α

B1−α −A1−α . (4.26)

Again, the structural type density G(ρ) is identical to (4.15), with G(ρ) = S for ρ ≤ A.
The expectations of Vm and V are calculated in analogy to those for the ZM model:

E
[
Vm

]
=
∫ ∞

0

(Nπ)m

m!
e−Nπg(π)dπ =

C

m!

∫ B

A

(Nπ)me−Nππ−α−1 dπ

=
C

m!
Nα

∫ NB

NA

tm−α−1e−t dt ≈ C

m!
Nα

∫ ∞

NA

tm−α−1e−t dt

reduces by (A.29) to

E
[
Vm

]
=

C

m!
·Nα · Γ(m− α,NA) . (4.27)

For the calculation of

E
[
V
]

=
∫ ∞

0
(1 − e−Nπ)g(π)dπ ≈ CNα

∫ ∞

NA

(1 − e−t)t−α−1 dt ,

we use partial integration∫ ∞

NA

(1 − e−t)t−α−1 dt =
∫ ∞

NA

t−α−1 dt−
∫ ∞

NA

e−tt−α−1 dt

=
[
t−α

−α

]∞
NA

−
[
e−t

t−α

−α

]∞
NA

−
∫ ∞

NA

e−t
t−α

−α dt

=
(NA)−α

α
− e−NA (NA)−α

α
+

1
α

∫ ∞

NA

e−tt−α dt

=
(
1 − e−NA

) N−αA−α

α
+

Γ(1 − α,NA)
α

4.2. THE ZIPF-MANDELBROT POPULATION MODEL 129

0 2 4 6 8 10 12

0.
01

0.
05

0.
20

0.
50

HGC−AN

N (million tokens)

re
la

tiv
e

sp
ec

tru
m

 V
m

V

m = 1
m = 2
m = 3
m = 4
m = 5

0 2 4 6 8 10 12

−1
0

−5
0

5
10

HGC−AN

N (million tokens)

re
la

tiv
e

di
ffe

re
nc

e
(%

)

V(N) − E[V(N)]
E[V(N)]

Figure 4.1: Development of relative frequency spectrum and relative error of Herdan
law (Heaps’ law) with α = 0.87 for the an-hgc data set.

to obtain

E
[
V
]

= C ·Nα · Γ(1 − α,NA)
α

+
C

α ·Aα

(
1 − e−NA

)
. (4.28)

There are no simple expressions for the recurrence relation (4.19) and the relative
frequency spectrum (4.20). Although much of the mathematical elegance of the ZM
model has been lost, the fZM model is still numerically efficient and both E

[
Vm,ρ

]
and E

[
Rm,ρ

]
have closed-form solutions. For A ≤ ρ ≤ B, replacing the upper bound

in the integral for E
[
Vm

]
with ρ yields

E
[
Vm,ρ

]
=

C

m!
·Nα ·

(
Γ(m− α,NA) − Γ(m− α,Nρ)

)
, (4.29)

and in combination with (4.27)

E
[
Rm,ρ

]
≈

E
[
Vm,ρ

]
E
[
Vm

] = 1 −
Γ(m− α,Nρ)
Γ(m− α,NA)

. (4.30)

4.2.4 Evaluation of the models

In order to see how well the ZM and fZM models describe real-world data, they
have been applied to the an-bnc and an-hgc data sets. The Herdan law and the
size-invariant relative frequency spectrum, which are characteristic properties of the
ZM model, have repeatedly been critcised as unrealistic (e.g. Baayen 2001, 118).
Figure 4.1 shows the development of the relative frequency spectrum up to m = 5 for
the an-hgc data set (left panel). After approximately 2 million tokens, the relative
spectrum has converged and is nearly constant afterwards. Likewise, the relative
error of the Herdan law E

[
V (N)

]
= C · Nα with α = 0.87 (determined by linear

regression) remains below 1% after the first 4 million tokens (right panel). This is a
strong indication that the ZM and fZM models may indeed be well suited for the type
of frequency distribution represented by these data sets.

Using an implementation provided as part of the UCS toolkit (see Appendix B.2),
the ZM and fZM model were fitted to the two data sets. For the infinite ZM model,

130 CHAPTER 4. QUANTISATION EFFECTS

ZM model fZM model

data set α χ2
14 α S χ2

13

an-bnc 0.7145849 313472.66 0.9168508 9 048 002 9364.46
an-hgc 0.7441247 441448.77 0.9134667 37 983 975 1855.59

Table 4.1: Estimated shape parameter α, population size S, and goodness-of-fit statis-
tic χ2 for the ZM and fZM models applied to the an-bnc and an-hgc data sets.

the parameter α can be estimated directly from (4.20) for m = 1:

α =
E
[
V1

]
E
[
V
] ≈ V1

V
(4.31)

(see also Rouault 1978, 172). However, Equation (4.31) turned out to give unsatis-
factory results, so the parameters for both models were estimated through non-linear
minimisation of a multinomial goodness-of-fit chi-squared statistic for the first 15
spectrum elements, with the additional constraint E

[
V
]

= V . Goodness-of-fit was
then evaluated with a multivariate chi-squared test, following Baayen (2001, Sec.
3.3). The results are shown in Table 4.1.7

The fZM model achieves a considerably better approximation to the observed fre-
quency spectrum than the ZM model on all data sets. Evert (2004b) shows that
the fZM model also compares favourably with several other population models de-
scribed in (Baayen 2001). A graphic representation of the accordance between the
expected and observed frequency spectrum for the an-hgc data set is shown in Fig-
ure 4.2. Surprisingly, the estimated lower cutoff points (A = 9.267× 10−9 for an-bnc
and A = 1.576 × 10−9 for an-hgc) are already quite close to the observed relative
frequency of the hapax legomena (p = 1/N). According to the predicitions of the
fZM model, increasing the sample 100-fold (N ≈ 109) would already leave the LNRE
zone, with all expected frequencies greater than 1 (cf. Baayen 2001, Sec. 2.4). A
possible explanation for this counter-intuitive result lies in the term clustering effects
discussed in Section 2.3.2.

4.3 Interpretation of the theoretical results

4.3.1 Sample-size independent results (ZM model)

Figure 4.3 compares the p-values computed by a Poisson test for the types in a given
frequency class m with the expected proportion E

[
Rm,ρ

]
of low-probability types in

this frequency class. Given a value 0 < ρ < 1, the x-axis shows the expected fre-
quency Nρ of a pair type with π = ρ. The solid vertical line indicates the maximum-
likelihood estimate for the unknown probability parameter π (again scaled to the cor-

7The multivariate chi-squared test for the ZM and fZM models is also implemented in the UCS
toolkit. Note that the χ2 statistic for the ZM model has df = 14 because 2 parameters were estimated
from the observed spectrum. Likewise, the statistic for the fZM model with 3 estimated parameters
has df = 13.

4.3. INTERPRETATION OF THE THEORETICAL RESULTS 131

0 10 20 30 40 50

1e
+0

2
1e

+0
4

1e
+0

6

ZM fit for HGC−AN

m

V
m

E
[V

m
]

observed
ZM model

0 10 20 30 40 50

1e
+0

2
1e

+0
4

1e
+0

6

fZM fit for HGC−AN

m

V
m

E
[V

m
]

observed
fZM model

Figure 4.2: Expected frequency spectrum of ZM (left panel) and fZM (right panel)
models compared to observed spectrum for the an-hgc data set (logarithmic scale).

responding expected frequency Nπ), which is the same for all types in a frequency
class. The solid curve gives the Poisson probability that a type with probability pa-
rameter π = ρ will occur at least m times in the sample, Pr

(
O11 ≥ m | π = ρ

)
, which

provides an estimate for the risk of an individual low-probability type with π ≤ ρ to
appear in frequency class m purely by chance. The other curves show the expected
proportion E

[
Rm,ρ

]
of such low-probability types in frequency class m, for different

values of the model parameter α. The model with α = 0.9 represents a population
with a particularly large number of low-probability types, corresponding to an ex-
ponent of a ≈ 1.11 in the Zipf-Mandelbrot law. It is close to the shape parameter
estimated for the fZM model on the an-bnc and an-hgc data sets. The population
with α = 0.5, on the other hand, is only moderately skewed, corresponding to a Zipf
exponent of a = 2.

The top rows in Figure 4.3 show such graphs for frequency classes m = 1, 2, 3 and
5, while the bottom row gives a wider range of expected frequencies for m = 1,2.
Especially for the hapax and dis legomena, it is obvious that the proportion Rm,ρ of
low-probability types is considerably larger than the p-value computed by the Poisson
test for individual types. This observation has two important consequences for the
behaviour of association measures:

1. When ρ is interpreted as the cooccurrence probability under H ′
0, i.e. ρ = p1p2,

the solid curve indicates the p-value assigned by one of the significance-of-as-
sociation measure to a pair type with O11 = m and E11 = Nρ. For instance,
a hapax legomenon (O11 = 1) with E11 = 10−6 obtains a relatively high as-
sociation score of − log10 pv = − log10 10−6 = 6. When sampling from a ZM
population with shape parameter α = 0.9, however, as many as 25% of all ha-
pax legomena may be such low-probability types that satisfy H ′

0. In other words,
the evidence for positive association attested by Poisson and similar measures
is entirely spurious.

2. When coefficients of association strength are estimated from the observed data
(either point estimates or conservative estimates), the maximum-likelihood es-
timate for the cooccurrence probability, π ≈ m/N, usually plays a central role.

132 CHAPTER 4. QUANTISATION EFFECTS

This estimate is indicated by a vertical line in Figure 4.3. The curves for E
[
Rm,ρ

]
show the expected proportion of types in frequency class m for which this es-
timate is substantially too high. Again, for a ZM population with α = 0.9,
some 25% of the hapax legomena will have a true cooccurrence probability
of π ≤ 10−6/N, and as many as 10% will even have π ≤ 10−10/N, so that
the maximum-likelihood estimate is wrong by ten orders of magnitude. When
conservative estimates are used, the Poisson test (or a similar statistical test) is
meant to correct for this sampling error, but it will only reduce the estimate to
π ≈ 10−2/N (99% confidence) or π ≈ 10−3/N (99.9% confidence), which is
still off by several orders of magnitude for many of the pair types.

These problems are particularly serious because of the large number of lowest-fre-
quency types that will be found in a sample from a Zipfian population. A proportion
of 10% of the hapax legomena translates into a substantial number of pair types
whose association is severly overestimated. Naturally, these effects are most pro-
nounced for a highly skewed distribution (α = 0.9 in the graphs) and for the lowest
frequency classes m = 1,2. While a moderately skewed distribution (α = 0.5 in the
graphs) still exhibits a considerable overestimation bias, the effect all but vanishes
for m = 5 and higher frequency classes, irrespective of the shape parameter α.

4.3.2 Sample-size dependent results (fZM model)

Since the fZM model depends on two parameters (α and A) and its expected fre-
quency spectrum and conditional parameter distribution are not size-independent,
it is impossible to draw conclusions from it that are valid as generally as those in
Section 4.3.1. However, we can plot the expected proportion of low-probability types
for a specific population (estimated from a given data set) and for different sample
sizes. Figure 4.4 shows the predicitions of a fZM model fitted to the an-hgc data
set, for three different sample sizes. The four panels correspond to the top rows of
Figure 4.3.

The overestimation exhibited by these graphs is much less severe than for the
ZM model, except when the sample is very small (this effect is caused by the lower
threshold A for population probabilities). Intriguingly, there is now a converse un-
derestimation effect, due to the high value of A estimated from the an-hgc data set.
The conservative estimate for the cooccurrence probability of a hapax legomenon is
π ≈ 10−2/N (99% confidence). However, the dotted line in the top left panel of
Figure 4.4 shows that there will be no pair types in the sample whose cooccurrence
probability is this small (because 10−2/N < A). Again, the effect is reduced for
m = 3 and all but vanishes for m = 5.

4.3.3 Discussion

The results presented in Sections 4.3.1 and 4.3.2 demonstrate that the distribution of
type probability parameters among the hapax and dis legomena is entirely dominated
by the shape of the population distribution. Depending on this distribution, statisti-
cal tests may drastically under- or over-correct for the effects of chance. Neither the
ZM nor the fZM model is fully consistent with the observed data (which would be

4.3. INTERPRETATION OF THE THEORETICAL RESULTS 133

surprising in view of the simplicity of these models), but both achieve a satisfactory
goodness of fit that compares favourably with other widely-used population models
(cf. Section 4.2.4). However, their predictions for quantisation effects in the low-
est frequency classes (overestimation and underestimation of the true cooccurrence
probabilities, respectively) are contradictory, and depend crucially on the sample size
for the fZM model.

Since we must assume that neither of the models gives a fully accurate picture of
the distribution of probability parameters in the population, it is impossible to correct
for quantisation errors unless better population models become available. One point
that is particularly disturbing is the high value of the cutoff threshold A estimated for
the fZM model. This may well be the result of a distortion of the frequency spectrum
by the clustering effects described in Section 2.3.2. If it is possible to correct for
these effects, the threshold A may be lowered sufficiently to achieve better agreement
between the predicitions of the ZM and fZM models.

For the time being, however, we must assume that probability estimates and p-
values for the lowest-frequency types are distorted in unpredictable ways. Fortu-
nately, the influence of quantisation effects and the specific shape of the population
is minimal for frequency classes m ≥ 5, so that statistical inference is accurate. Taken
together, these conclusions provide theoretical support for frequency cutoff thresh-
olds. Data with cooccurrence frequency f < 3, i.e. the hapax and dis legomena,
should always be excluded from the statistical analysis. On the other hand, the shape
of the population has little effect for f ≥ 5 and the data can safely be used.

134 CHAPTER 4. QUANTISATION EFFECTS

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

1,
 ρ
]

m
 = 1

Poisson test
α = 0.5
α = 0.75
α = 0.9

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

2,
 ρ
]

m
 = 2

Poisson test
α = 0.5
α = 0.75
α = 0.9

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

3,
 ρ
]

m
 = 3

Poisson test
α = 0.5
α = 0.75
α = 0.9

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

5,
 ρ
]

m
 = 5

Poisson test
α = 0.5
α = 0.75
α = 0.9

1e−12 1e−09 1e−06 1e−03 1e+00

1e
−1

2
1e

−0
9

1e
−0

6
1e

−0
3

1e
+0

0

expected frequency

p−
va

lu
e

/ E
[R

1,
 ρ
]

m
 = 1

Poisson test
α = 0.5
α = 0.75
α = 0.9

1e−12 1e−09 1e−06 1e−03 1e+00

1e
−1

2
1e

−0
9

1e
−0

6
1e

−0
3

1e
+0

0

expected frequency

p−
va

lu
e

/ E
[R

2,
 ρ
]

m
 = 2

Poisson test
α = 0.5
α = 0.75
α = 0.9

Figure 4.3: Comparison of the p-value computed by the Poisson association measure
against the expected proportion of low-probability types in frequency classes m = 1,
2, 3 and 5, for a population described by a ZM model with shape parameter α. The
graphs in the bottom row cover a wider range of expected frequencies for m = 1,2.

4.3. INTERPRETATION OF THE THEORETICAL RESULTS 135

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

1,
 ρ
]

m
 = 1

Poisson test
fZM, N=100k
fZM, N=1M
fZM, N=12M

1e−06 1e−04 1e−02 1e−00 1e+02
1e

−0
6

1e
−0

4
1e

−0
2

1e
−0

0

expected frequency

p−
va

lu
e

/ E
[R

2,
 ρ
]

m
 = 2

Poisson test
fZM, N=100k
fZM, N=1M
fZM, N=12M

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

3,
 ρ
]

m
 = 3

Poisson test
fZM, N=100k
fZM, N=1M
fZM, N=12M

1e−06 1e−04 1e−02 1e−00 1e+02

1e
−0

6
1e

−0
4

1e
−0

2
1e

−0
0

expected frequency

p−
va

lu
e

/ E
[R

5,
 ρ
]

m
 = 5

Poisson test
fZM, N=100k
fZM, N=1M
fZM, N=12M

Figure 4.4: Comparison of the p-value computed by the Poisson association measure
against the expected proportion of low-probability types in frequency classes m = 1,
2, 3, and 5. These graphs show the predictions of a fZM model estimated from the
an-hgc data set for three different sample sizes.

136 CHAPTER 4. QUANTISATION EFFECTS

Chapter 5

Evaluation

5.1 Evaluation of association measures

With the wide range of association measures available, some guidance is needed for
choosing an appropriate measure to be used in an application of cooccurrence data.
While the theoretical discussion of Chapter 3 has helped to narrow down the num-
ber of options by grouping similar measures together, it cannot provide a definitive
answer. The significance of association is a meaningful and well-defined concept,
and Fisher’s exact test is now widely accepted in mathematical statistics as the most
appropriate quantitative measurement of this significance. The log-likelihood associ-
ation measure gives an excellent approximation to the p-values of Fisher’s test and
has convenient mathematical and numerical properties. Consequently, it has recently
become a de facto standard in the field of computational linguistics for the purpose
of measuring the statistical association between words or similar entities.

However, there are many alternatives with entirely different characteristics, espe-
cially measures from the degree of association group as well as various heuristics and
the new parametric measures. The statistical soundness of log-likelihood does not al-
ways translate into better performance. A conclusive answer can therefore only come
from a comparative empirical evaluation of association measures, which plugs differ-
ent measures into the intended application. In this way it is possible to determine
what influence the choice of an association measure has on the performance and
quality of the application, and to identify the measure that is best suited for the task.
The general usefulness of cooccurrence data for the application can be assessed by
comparison with random association scores as a baseline, and the frequency measure
is sometimes used as a non-statistical baseline.

The range of possible settings for evaluation experiments is as broad as the range
of applications for cooccurrence data (cf. Section 1.2.1). For instance, Dunning
(1998) uses cooccurrence data scored with the log-likelihood measure in an informa-
tion retrieval system and tests whether the performance of the system is improved.
The clearest results can be expected from a collocation extraction task, however, es-
pecially when it is based on the standard pipeline design presented in Section 1.2.2.
The computed association scores, which form the central component of the extrac-
tion pipeline, have an immediate influence on the quality of the results. Besides
the practical importance of collocation extraction, such evaluation studies can also
contribute to our understanding of the relation between the statistical association

137

138 CHAPTER 5. EVALUATION

of cooccurrences and any given notion of collocations. The stronger an association
measure is correlated with collocativity, the better it should be suited for extracting
the respective type of collocations from a text corpus.

In this chapter, I will only consider quantitative evaluation methods that should
also be objective to the extent possible. All too often, especially when authors suggest
a new association measure and want to substantiate its usefulness, the “evaluation”
consists of looking at a small number of cooccurrences with high association scores
and declaring them to be of good quality: “Table 1 shows some interesting Japanese
collocations extracted using respectively mutual information and cost criteria. Ta-
ble 2 shows some English ones” (Kita et al. 1994, 26). Case studies like the examples
discussed by Church et al. (1991) or the much more detailed lexicographic analysis
of Stubbs (1995) can make an important contribution to our understading of the
empirical properties of association measures and their relation to collocations, but
impressionistic conclusions alone are not sufficient for an objective comparison of
different measures.

5.1.1 Evaluation methods and reference data

An objective quantitative evaluation of association measures can be carried out in
various ways, such as the following:

1. Determine the statstical correlation of association scores with a gradient notion
of collocativity that is measured on an interval scale (e.g. plausibility ratings
from psycholinguistic experiments), an ordinal scale (several levels of collocativ-
ity, e.g. the number of annotators accepting a candidate), or a nominal scale (a
binary distinction between collocational and non-collocational pairs). A well-
known experiment of this type was carried out by Lapata et al. (1999) with
data on an interval scale. They correlated the association scores of different
measures with native-speaker judgements of plausibility obtained by a magni-
tude estimation technique, evaluating a total of 90 adjective-noun combinations
(plus 30 filler pairs) rated by 24 subjects. Drawbacks of such methods are the
difficulty of obtaining gradient reference data and the limited relevance that
even a significant correlation may have for practical applications.

2. Use a pre-determined threshold γ for association scores to extract collocation
candidates from a text corpus, then determine the precision (and perhaps also
recall) of the resulting γ-acceptance set. The threshold may be derived from
a theoretical argument (e.g. pv < .001 for measures from the significance of
association group), selected by manual experimentation or determined auto-
matically by the system. Evaluation in terms of precision and recall requires a
binary distinction between collocations and non-collocations (possible sources
of reference data are listed below). Smadja (1993, 166–170) is an excellent
example of an evaluation experiment of this type, although he does not com-
pare different association measures. The collocation candidates were manually
evaluated by a professional lexicographer in this case.

3. Use association scores to rank the collocation candidates extracted from a text
corpus. Precision and recall can then be computed for sets of n highest-ranking

5.1. EVALUATION OF ASSOCIATION MEASURES 139

candidates, called n-best lists. This procedure is analogous to the evaluation of
γ -acceptance sets and uses the same types of reference data. The ranking-based
evaluation has two important advantages: (i) it allows for a “fair” comparison
of different measures because exactly the same number of candidates are eval-
uated from each ranking; (ii) when all possible values of n are considered, the
method gives a much more complete picture of a measure’s performance than
the fleeting glimpse provided by a single candidate set. In addition, it provides
the most realistic evaluation framework for semi-automatic collocation extrac-
tion as described in Section 1.2.2: the human annotators will only have time
to look at a limited number of candidates, so it is more likely that the number
of candidates n will be pre-defined rather than the cutoff threshold γ . I will
henceforth refer to this evaluation method as n-best precision.

In this chapter, I present methods for the third approach, i.e. evaluation in terms of n-
best precision (and n-best recall, if possible). In order to compute precision and recall,
the candidate set has to be compared with a gold standard that identifies candidates
as true positives (TP, collocations) or false positives (FP, non-collocations). Possible
sources of such reference data are:

Manual annotation: Ideally performed by two or more annotators who should be
experts in a field relevant to the collocation definition and intended applica-
tion (linguistics, terminology, lexicography, etc.). For such annotations to be
meaningful, a precise definition of collocations is needed and should be ac-
companied by detailed guidelines.1 Even then, annotations are not always re-
producible and it is important to test the degree of intercoder agreement (e.g.
Carletta 1996). See Krenn et al. (2004) for a study of intercoder agreement on
an annotation database of German PP-verb combinations (Krenn 2000), which
was used for most of the evaluation examples in this chapter. In other stud-
ies, manual evaluation was performed by the author herself (Breidt 1993), by
a professional lexicographer (Smadja 1993), by domain experts for terminol-
ogy extraction (Daille 1994) or by averaging over native speaker judgements
(Blaheta and Johnson 2001).

Machine-readable dictionaries: Some authors use existing lexical resources in or-
der to avoid the often unmanageable task of manual annotation. Of course one
cannot expect that all true positives extracted from a corpus are covered by the
database. A much more critical assumption, though, is that those TPs which
are in the database form a random sample of the set of all true positives, so
that the methods for random sample evaluation described in Section 5.3 can be
applied (with the additional complication that the sampling rate is not known).
Otherwise, the evaluation results may be completely distorted.

Considering the increasing number of corpus-based dictionaries – many of which
are influenced by Church et al. (1991) and use the MI measure suggested there

1Such a precise definition of true positives is not necessarily based on formal, testable criteria.
Especially when the main goal of a study is relevance for a particular application, the intuitions of
experts may play an essential role. For instance, the definition of true positives in a lexicographic
setting might encompass “all candidates that provide useful information for the compilation of a large
bilingual dictionary”.

140 CHAPTER 5. EVALUATION

to extract raw material for lexicographers – this assumption is becoming more
and more doubtful. Nonetheless, Pearce (2002) uses 17 485 word pairs that
were automatically extracted from a machine-readable version of the New Ox-
ford Dictionary of English (Pearsall and Hanks 1998) as his gold standard. It
is hardly surprising that he reports very low precision values (below 3%) and
that the best results are obtained by MI combined with a frequency threshold.

Schone and Jurafsky (2001), whose goal is to extract MWU headwords for dic-
tionaries, use multi-word units from the WordNet database (Miller 1990) for
their evaluation. In order to achieve better coverage, they repeat the evalu-
ation with various online resources (including http://www.onelook.com/, a
website that “interfaces with over 600 electronic dictionaries” of untraceable
provenance). The term “gold standard” seems almost cynical in this context.

Paper dictionaries: Breidt (1993) and Daille (1994) considered the use of a paper
dictionary as a gold standard but found the overlap with the automatically ex-
tracted collocations too low to be useful (in the case of Daille, the collocation
candidates were verified by domain experts).

Terminological resources: When the evaluation goal is the extraction of technical
terminology, an existing terminological resource can be used as a gold standard.
Daille (1994) used a telecommunications term bank provided by the European
Commission in the form of a flat list of ca. 6000 multi-word terms. Similar to
the problems with paper dictionaries she found the coverage of the term bank
wanting and had to complement it with a manual evaluation by three domain
experts that found as many as 900 true collocations among 1 900 putative false
positives (Daille 1994, 143–145).

A small number of serious comparative evaluation experiments have been carried
out so far (listed in Section 1.3.1). Most of them consider only a small number of
popular association measures (and sometimes a few obscure ones, too). Exceptions
are Daille (1994), who compares 18 different measures, and Evert and Krenn (2001),
who make results for some additional measures available online. On the whole, these
experiments have found that the log-likelihood measure achieves the highest n-best
precision (Daille 1994; Lemnitzer 1998; Lezius 1999; Evert and Krenn 2001). Plain
cooccurrence frequency also turned out to be a reliable indicator of collocativity. On
the other hand, t-score and frequency seem to be better suited for the extraction of
German PP-verb collocations than log-likelihood (Krenn 2000; Krenn and Evert 2001).

5.1.2 Precision and recall graphs

The formal definition of evaluation in terms of n-best precision and recall is based
on the geometric interpretation of cooccurrence data and association measures intro-
duced in Section 3.3. The point cloud C ⊆ P now represents a data set of collocation
candidates. By manual evaluation (or comparison with some other gold standard),
this data set is divided into disjoint sets of true positives C+ and false positives C−
(i.e. C = C+ ∪C− and C+ ∩C− = ∅). We know from Eq. (3.17) that the n-best list for

5.1. EVALUATION OF ASSOCIATION MEASURES 141

n G2 t X2 MI f

100 42.00% 38.00% 24.00% 19.00% 27.00%
200 37.50% 35.00% 23.50% 16.50% 26.50%
500 30.40% 30.20% 24.60% 18.00% 23.00%
800 29.00% 30.38% 23.75% 19.50% 19.88% J

1500 25.33% 24.80% 25.00% 24.27% 18.00%
2000 23.35% 21.95% 23.35% 23.10% 16.30%
2300 21.61% 21.00% 21.61% 21.35% 15.30% J
3000 17.90% 17.90% 17.87% 17.83% 13.60%

Table 5.1: Table of n-best precision values for various n-best lists and 5 different as-
sociation measures on the pnv-fr-30 data set. The n-best lists marked J are indicated
by vertical lines in Figure 5.1.

an association measure g is given by Cg,n = Ag,n ∩ C with
∣∣Cg,n

∣∣ = n.2 Likewise, the
number of true positives in the n-best list is

Tg,n := Ag,n ∩ C+,

and the number of false positives is

Fg,n := Ag,n ∩ C− = n− Tg,n.

Then, n-best precision Pg,n and recall Rg,n are given by

Pg,n :=

∣∣Tg,n∣∣
n

and Rg,n :=

∣∣Tg,n∣∣
|C+|

. (5.1)

In this way, precision and recall can be computed for a variety of arbitrarily selected
n-best lists, leading to large evaluation tables such as the one shown in Table 5.1. The
results in this table were obtained for high-frequency candidates from the pnv-fr data
set, which were manually annotated as TPs and FPs according to the criteria of Krenn
(2000). With a frequency threshold of f ≥ 30, the resulting data set contains 5 102
candidates and is referred to as pnv-fr-30 in the following. I will use this data set for
all examples in the present section. For illustrative purposes, the evaluation is only
carried out for five widely-used association measures, which are referred to by their
customary symbols: log-likelihood (G2), t-score (t), chi-squaredcorr (X2), MI (MI) and
frequency (f).

Evaluation tables are often confusing and difficult to read, especially when a
large number of association measures and n-best lists are considered. Interesting
effects may be hidden beneath an endless procession of figures. Evaluation graphs
as shown in Figure 5.1 present the same information in a more intuitive and readable
way. In this plot, all n-best precision values of a given association measure g (corre-
sponding to one of the columns in Table 5.1) are combined into a single graph. For

2Recall that the existence of “exact” n-best lists was enforced by adding random jitter to the coor-
dinates of pair types. In a practical evaluation experiment it is usually more convenient to retain the
original frequency signatures and break ties in the rankings in a random (but reproducible) fashion.
The two approaches are (almost) equivalent.

142 CHAPTER 5. EVALUATION

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
f
optimal

Figure 5.1: Graphs of n-best precision for five association measures evaluated on the
pnv-fr-30 data set. The vertical lines mark n-best lists for n = 800 and n = 2 300.

each n-best list indicated by the x-coordinate of the graph, the y-coordinate gives
the corresponding n-best precision Pg,n. Precision graphs for up to five association
measures can easily be combined into a single plot, which then provides a complete
picture of differences between the measures at a single glance.

The vertical lines in Figure 5.1 indicate n-best lists for n = 800 and n = 2 300,
corresponding to the rows marked J in Table 5.1. The corresponding n-best precision
for the five evaluated measures can be determined from the intersection of each
vertical line with the respective precision graphs, allowing the reader to reconstruct
the detailed information provided in the evaluation table. The baseline, shown as a
dotted horizontal line, corresponds to a random selection of n candidates from the
data set. This provides a point of reference for the evaluation: the application of
association measures to the data is useful only when they achieve an n-best precision
that is substantially higher than the baseline. While there are considerable differences
between the measures for small n, the graphs are almost identical for n ≥ 2 300
(except for the frequency measure) and slowly converge to the baseline precision.
The reason is quite simple: once recall is close to 100%, even the best-performing
measure cannot find any new TPs and keeps adding FPs to the n-best list when n is
increased. The dashed grey line in Figure 5.1 represents the precision achieved by an
“ideal” measure that ranks all TPs at the top of the list. This optimal measure provides
an upper limit for the performance of association measures in the evaluation. In this
case, we see that while there is considerable room for improvement in the range
n ≤ 1 500, the association measures obtain nearly optimal results for n ≥ 2 300.

Figure 5.2 shows a “zoomed” version of the precision plot, where only the inter-
esting range n ≤ 2 300 is displayed. The evaluation results largely agree with our
expectations from previous studies. G2 achieves the best performance and is on par

5.1. EVALUATION OF ASSOCIATION MEASURES 143

0 500 1000 1500 2000

0
10

20
30

40
50

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
f

Figure 5.2: Precision graphs for n-best lists with n ≤ 2 300 on the pnv-fr-30 data set.

with t, which is known to be well suited for extracting German PP-verb collocations
(cf. Evert and Krenn 2001). X2 and MI give considerably worse results. The only
surprise is the frequency measure f , whose precision remains well below the graphs
of G2 and t, contrary to most previous findings. This effect seems to be caused by the
unusually high frequency threshold (f ≥ 30) that was applied to the data set.

While n-best precision is of paramount importance for most applications, it is
just one side of the coin. In real life, the goal of an extraction tool is to identify a
substantial proportion of the collocations hidden in the data set. It is not enough to
achieve excellent precision for the 100 highest-ranking candidates, as e.g. the mini-
evaluation of Dunning (1993) would make us believe. Recall graphs, which simply
substitute Rg,n for Pg,n, give a different angle on the evaluation results. Figure 5.3
shows that the 2 000 highest-ranking candidates according to the G2 measure include
more than 80% of the true positives in the data set. Such a high coverage is especially
important when collocations are extracted from small, domain-specific corpora. On
the other hand, a 100-best list will miss more than 90% of the true positives.

A third type of plot combines both aspects into a single precision-by-recall graph
(Figure 5.4). The x-coordinate of such a graph represents the n-best recall Rg,n and
its y-coordinate represents the n-best precision Pg,n. Note that n-best lists correspond
to diagonal lines in this view, since Pg,n = Tg,n/n = Rg,n · |C+|/n. This plot, which is
in fact just a transformation of Figure 5.1, is the most intuitive form of presentation.
Differences between the measures are amplified visually, and the question that is
most relevant for applications can directly be answered: Which n-best list gives the
best trade-off between precision and recall?

144 CHAPTER 5. EVALUATION

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

n−best list

re
ca

ll
(%

)

G2

t
X2

MI
f

Figure 5.3: Recall graphs for the pnv-fr-30 data set. The vertical lines mark n-best
lists for n = 800 and n = 2 300.

0 20 40 60 80 100

0
10

20
30

40

recall (%)

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
f

Figure 5.4: Assessing the practical usefulness of association measures with precision-
by-recall graphs (on the pnv-fr-30 data set). The diagonal lines indicate n-best lists
for n = 800 and n = 2 300.

5.1. EVALUATION OF ASSOCIATION MEASURES 145

5.1.3 Fine-grained comparative evaluation

This section presents a small case study to demonstrate how the overall evaluation
results (Section 5.1.2) can be refined to give a more detailed and accurate picture.
Such a fine-grained evaluation is usually achieved by splitting the data set e.g. into
different frequency layers (see Evert and Krenn (2001) for an example), which is
formally equivalent to the application of a type filter (cf. Section 2.1.4). In this case
study, I begin with a separate look at two types of PP-verb collocations that were both
treated as true positives in Section 5.1.2.

In her annotations, Krenn (2000) divides collocations into figurative expressions
(figur) and support-verb constructions (FVG, from German Funktionsverbgefüge). These
two types of collocations have different syntactic and semantic properties, which are
reflected in their cooccurrence frequency profiles. Figure 5.5 compares the perfor-
mance of association measures for the extraction of figur and FVG, showing entirely
different strengths and patterns. Both G2 and X2 are reasonably useful for extract-
ing figurative expressions, with t somewhat below the two. This result agrees well
with earlier studies on other types of data (e.g. Daille 1994; Evert et al. 2000).3 For
support-verb constructions, on the other hand, t is clearly the best-performing mea-
sure. The evaluation results of Section 5.1.2 average over the two situations, hiding
some of the characteristic strengths and weaknesses of the measures. For instance,
a comparison of the two best-performing measures, whose overall results are nearly
identical, reveals that G2 achieves roughly the same precision in both tasks while t is
much better suited for the extraction of support-verb constructions.

A puzzling observation is the shape of the FVG precision graph for MI, whose per-
formance is even below the baseline for small n-best lists, but becomes much better
when larger lists are considered. For n ≥ 1 500, it is on par with the best-performing
measures. Krenn and Evert (2001) refer to this as the “mutual information mys-
tery”. What makes this plot so difficult to interpret is the fact that precision graphs
display the cumulative precision for n-best lists. This mode of presentation makes
sense because the “concentration” of true positives is normally greatest at the top
of the ranking and gradually decreases as one moves down the list. However, when
an association measure achieves the highest concentration of TPs somewhere in the
middle of its ranking, the cumulative precision will start off low and then increase.

For this reason, Daille (1994, 145ff) divides the ranked lists into non-overlapping
segments of 50 candidates each and computes precision individually for each seg-
ment. While this mode of presentation shows clearly where the concentration of
TPs is highest in the ranked list, the graphs are very jagged (since precision values
computed from 50 candidates can vary only in increments of 2 percentage points)
and difficult to compare between measures. It is therefore advisable to use a more
sophisticated method that computes the precision on a moving window. Figure 5.6
uses kernel density estimates with a Gaussian kernel (Venables and Ripley 1999,
132–139) to estimate the local precision in different parts of the ranked candidate
list, averaging over some 500 candidates at each point. While t shows the expected
pattern, with the highest density of TPs at the top of the ranking, X2 and MI reach

3The overestimation bias of X2, which often causes it to be distinctly inferior to G2, is reduced by
the high frequency threshold of f ≥ 30. Therefore, it is hardly surprising that X2 reaches a similar
performance.

146 CHAPTER 5. EVALUATION

0 500 1000 1500 2000

0
5

10
15

20
25

30

n−best list

pr
ec

is
io

n
(%

)

baseline = 5.55%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
5

10
15

20
25

30

n−best list

pr
ec

is
io

n
(%

)

baseline = 5.55%

G2

t
X2

MI
f

Figure 5.5: Comparison of the performance of association measures for figurative
expressions (top panel) vs. support-verb-constructions (bottom panel). It is pure
coincidence that the baseline precision is the same for both types of collocations.

5.1. EVALUATION OF ASSOCIATION MEASURES 147

0 500 1000 1500 2000

0
5

10
15

20
25

30

n−best list

lo
ca

l p
re

ci
si

on
 (%

) [
W

=5
00

]

baseline = 5.55%

t
X2

MI

Figure 5.6: Estimates of the local precision in different parts of the ranked candidate
lists for the extraction of support-verb-constructions.

optimal precision for ranks between n = 1 000 and n = 1 500, corresponding to av-
erage rather than particularly high association scores. In fact, the precision achieved
by MI in this range is comparable to the highest precision of t (at the top of the
ranking).

A second refinement of the evaluation reveals that the mutual information mys-
tery is an artefact, introduced by the fact that most PP-verb collocations involve
a small number of high-frequency verbs that Breidt (1993) identified as “typical”
support-verbs.4 Based on this intuition, Krenn (2000) used what she called a kwic
filter to improve extraction results. With this type filter, we can divide the pnv-fr-30
data set into two subsets, depending on whether the second component of a pair type
belongs to the list of support-verbs or not. The first set contains 1 450 pair types in-
volving one of the support-verbs, while the second set contains the remaining 3 652
pair types. The results of a separate evaluation of the two subsets are shown in Fig-
ure 5.7, which displays n-best precision up to n = 1 450 for both sets. It is obvious
that the kwic filter improves the precision for both types of collocations substantially.
Moreover, the differences between the association measures (except for frequency)
all but vanish after application of the filter. Thus, the poor performance of MI on the
full data set was just due to its inability to single out typical support-verbs.

Fine-grained evaluation does not only have a high explanatory potential, which
allowed it to solve the MI mystery, but it can also lead to improvements in extraction
quality that are relevant for applications. The graphs in Figure 5.7 show that the kwic
filter is highly discriminative between collocations and non-collocations. However, n-
best precision decreases rapidly for n ≥ 800, when most of the true positives in the

4The verbs are bleiben, bringen, erfahren, finden, geben, gehen, gelangen, geraten, halten, kommen,
nehmen, setzen, stehen, stellen, treten and ziehen.

148 CHAPTER 5. EVALUATION

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list

pr
ec

is
io

n
(%

)

baseline = 26.69%

G2

t
X2

MI
f

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list
pr

ec
is

io
n

(%
)

baseline = 4.9%

G2

t
X2

MI
f

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list

pr
ec

is
io

n
(%

)

baseline = 10.48%

G2

t
X2

MI
f

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list

pr
ec

is
io

n
(%

)

baseline = 3.59%

G2

t
X2

MI
f

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list

pr
ec

is
io

n
(%

)

baseline = 16.21%

G2

t
X2

MI
f

0 200 400 600 800 1000 1200 1400

0
20

40
60

80

n−best list

pr
ec

is
io

n
(%

)

baseline = 1.31%

G2

t
X2

MI
f

Figure 5.7: Comparison of precision of n-best lists (n ≤ 1 450) for pair types accepted
by the kwic filter (Krenn 2000, 120) in the left column vs. the rejected pair types in
the right column. The top row shows overall precision, the middle row precision for
figurative expressions, and the bottom row precision for support-verb constructions.

5.1. EVALUATION OF ASSOCIATION MEASURES 149

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.66%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 4.42%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 5.55%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 7.24%

G2

t
X2

MI
f

0 500 1000 1500 2000

0
20

40
60

80
10

0

n−best list

pr
ec

is
io

n
(%

)

baseline = 5.55%

G2

t
X2

MI
f

Figure 5.8: Comparison of the precision of n-best lists (n ≤ 2 000) extracted with a
combination of the kwic filter (Krenn 2000, 120) and a frequency threshold of f ≥ 10
(left column) vs. a frequency threshold of f ≥ 30 but no filter (right column). The
top row shows overall precision, the middle row precision for figurative expressions,
and the bottom row precision for support-verb constructions.

150 CHAPTER 5. EVALUATION

small filtered data set (of only 1 450 candidates) have already been identified. This
suggests that further improvements may be possible by combining the successful kwic
filter with a lower frequency threshold (here f ≥ 10). For n ≤ 2000, this combination
(shown in the left column of Figure 5.8) achieves higher precision than the best
results for the pnv-fr-30 data set (shown in the right column for comparison). At the
same time, the influence of individual association measures on the extraction results
is greatly diminished. For n ≤ 1000, the improvement in performance is striking.

An implementation of the various types of evaluation graphs is available in the
UCS toolkit as a UCS/R module (see Section B.2). All plots in this section were
created with the UCS/R implementation.

5.2 The significance of result differences

In Section 5.1 we have seen that a fine-grained comparative evaluation of association
measures can reveal a wealth of detail about the empirical properties of the mea-
sures and their respective differences. Sometimes, the observed effects are minus-
cule, though, and the question arises whether they reflect a true difference between
the measures or whether they may simply be due to chance. A major source of such
random variation is the choice of a particular source corpus for the evaluation exper-
iment, but extraction noise and the uncertainty of human annotators will also play a
role. The necessity for testing whether evaluation results are statistically significant
is widely accepted, but there is much uncertainty about the appropriate choice of a
significance test. For instance, Krenn (2000) applies Pearson’s chi-squared test, but
she is aware that this test assumes independent samples and is hardly suitable for the
comparison of different rankings of the same candidate set. Later, Krenn and Evert
(2001) suggest several alternative tests for related samples. A wide range of exact
and asymptotic tests as well as computationally expensive randomisation tests (Yeh
2000) are available and add to the confusion.

The following discussion concentrates on the uncertainty of precision values (and
the significance of differences between them), which are of greater importance to
most evaluation studies than recall values. Moreover, for n-best lists precision and
recall are fully equivalent: Pg,n = Rg,n · |C+|/n, where |C+|/n is the “proportionality
factor” between precision and recall.

5.2.1 Evaluation as a random experiment

The aim of this section is to formulate a statistical model that interprets the evalu-
ation of ranking methods as a random experiment. This model defines the degree
to which evaluation results are affected by random variation, allowing us to derive
appropriate significance tests. Although evaluation is usually based on n-best lists,
this model concentrates on the precision achieved by an arbitrary fixed acceptance
region A ⊆ P. The resulting estimates and significance tests can then be translated
to n-best precision by setting A = Ag,n.

When an evaluation experiment is repeated, the results will not be exactly the
same. There are many causes for such variation, including different source material
used by the second experiment, changes in the pre-processing or extraction tools,

5.2. THE SIGNIFICANCE OF RESULT DIFFERENCES 151

changes in the evaluation criteria, or the different intuitions of human annotators.
Statistical significance tests are designed to account for a small fraction of this vari-
ation that is entirely due to random effects, assuming that all parameters that may
have a systematic influence on the evaluation results are kept constant. Thus, they
provide a lower limit for the variation that has to be expected in an actual repeti-
tion of the experiment. Only when results are significant can we expect them to be
reproducible, but even then a second experiment may draw a different picture.

In particular, the influence of qualitatively different source material or different
evaluation criteria can never be predicted by statistical means alone. Randomness
is mainly introduced into the evaluation results by the selection of the source cor-
pus, e.g. the choice of one particular newspaper volume rather than another. Dis-
agreement between human annotators and uncertainty about the interpretation of
annotation guidelines may also lead to an element of randomness in the evaluation.
However, even significant results cannot be generalised to a different type of collo-
cation (such as adjective-noun instead of PP-verb), different evaluation criteria, a
different domain or text type, or even a source corpus of different size (cf. Evert and
Krenn 2001; Krenn and Evert 2001).

A first step in the search for an appropriate significance test is to formulate a
(plausible) model for random variation in the evaluation results. Because of the
inherent randomness, every repetition of an evaluation experiment – even when it is
performed under similar conditions – will lead to a different candidate set C, and to
different sets of true positives C+ and false positives C−. Some elements will represent
entirely new pair types, sometimes the same pair type will appear at a different point
in the coordinate space, and sometimes a candidate that was annotated as a TP in
one experiment may be annotated as a FP in the next. In order to encapsulate all
three kinds of variation, let us assume that C+ and C− are randomly selected from a
large hypothetical set of possible candidates. Every pair type (u, v) is represented by
many different incarnations with different coordinates in this hypothetical set, some
of which may be TPs and some FPs. Of course, only one incarnation of (u, v) may
be selected for a given experiment, and it cannot belong both to C+ and to C− at
the same time. Provided that the number of different pair types is sufficiently large,
though, we can ignore the risk of such an event.

For any acceptance region A ⊆ P, both the number of TPs in A, TA := |C+ ∩A|,
and the number of FPs in A, FA := |C− ∩A|, are thus random variables. Figure 5.9
illustrates this model with four similar data sets, showing true positives as solid points
and false positives as empty circles. The shaded acceptance region A belongs to the
log-likelihood measure with a cutoff threshold of γ = 32.5. TA is the number of solid
points in the region A, and FA is the number of empty circles in A. Obviously, both
numbers vary from panel to panel. We do not know the precise distributions of
these random variables, but it is reasonable to assume that (i) TA and FA are always
independent and (ii) TA and TB (as well as FA and FB) are independent for any two
disjoint regions A∩B = ∅. Note that TA and TB cannot be independent for A∩B 6= ∅
because they always include the same number of TPs from the region A ∩ B. The
total number of candidates in the region A is also a random variable NA := TA + FA,
and the same follows for the precision PA of A, which is defined by PA := TA/NA.5

5In the definition of the n-best precision Pg,n, i.e. for A = Ag,n, the number of candidates in A is
constant: NA = n, cf. (5.1). At first sight, this may seem to be inconsistent with the interpretation of

152 CHAPTER 5. EVALUATION

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

G2 ≥ 32.5

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

G2 ≥ 32.5

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

G2 ≥ 32.5

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

G2 ≥ 32.5

Figure 5.9: Illustration of evaluation experiment as the random selection of true and
false positives from a hypothetical population.

Following the standard approach, we may now assume that PA approximately fol-
lows a normal distribution with mean pA and variance σ2

A, i.e. PA ∼ N(pA, σ
2
A). The

mean pA can then be interpreted as the average precision of the acceptance region A
(obtained by averaging over many repetitions of the evaluation experiment). How-
ever, there are two problems with this assumption. First, while PA is an unbiased
estimator for pa, the variance σ2

A cannot be estimated from a single experiment.6

Second, PA is a discrete variable because both TA and NA are non-negative integers.
When the number of candidates NA is small (as it will be when we take a closer look
at the differences between two measures), a continuous normal approximation for
the distribution of PA will not be valid.

It is reasonable to assume that the distribution of NA does not depend on the
average precision pA. In this case, NA is called an ancillary statistic and can be

NA as a random variable. However, one has to keep in mind that γg (n), which is determined from the
candidate set C, is itself a random variable. Consequently, A is not a fixed acceptance region in this
case and its variation counter-balances that of NA.

6Sometimes, cross-validation is used to estimate the variability of evaluation results. While this
method is appropriate e.g. for machine learning and classification tasks, it is not useful for the evalu-
ation of ranking methods such as association measures. Since the cross-validation would have to be
based on random samples from a single candidate set, it would not be able to tell us anything about
random variation between different candidate sets.

5.2. THE SIGNIFICANCE OF RESULT DIFFERENCES 153

eliminated without loss of information by conditioning on its observed value (see
Lehmann (1991, 542ff) for a formal definition of ancillary statistics and the merits
of conditional inference). Instead of probabilities of the form Pr

(
PA = p

)
, we will

now consider the conditional probabilities Pr
(
PA = p | NA

)
. Because NA is fixed to

the observed value, PA is directly proportional to TA and the conditional probabilities
are equivalent to Pr

(
TA = k | NA

)
with p = k/Na. When we select one of the NA

candidates in A at random, the probability that it is a TP (averaged over many repeti-
tions of the experiment) should be equal to the average precision pA. Consequently,
Pr
(
TA = k | NA

)
should follow a binomial distribution with success probability pA,

i.e.

Pr
(
TA = k | NA

)
=
(
NA

k

)
· (pA)k · (1 − pA)NA−k (5.2)

for k = 0, . . . , NA. We can now make inferences about the average precision pA based
on this binomial distribution.7

5.2.2 Confidence intervals and significance tests

As a second step in the search for an appropriate significance test, it is essential to
understand exactly what question this test should address: What does it mean for an
evaluation result (or the difference between evaluation results) to be significant? In
fact, two different questions can be asked:

A: If we repeat an evaluation experiment under the same conditions, to what extent
will the observed precision values vary?

B: If we repeat an evaluation experiment under the same conditions, will association
measure g1 again perform better than association measure g2?

I will now address these two questions in turn.
Question A can be rephrased in the following way: How much does the observed

precision value for an acceptance region A differ from the true average precision pA? In
other words, our goal here is to make inferences about pA, with A = Ag

(
γ
)

for a
given measure g and threshold γ . From Eq. (5.2), we obtain a binomial confidence
interval for the true value pA, given the observed values of TA and NA (Lehmann
1991, 89ff). At the customary 95% confidence level, pA should be contained in the
estimated interval in all but one out of twenty repetitions of the experiment. Binomial
confidence intervals can easily be computed with standard software packages such
as R. As an example, assume that an observed precision of PA = 40% is based on
TA = 200 TPs out of NA = 500 accepted candidates. Precision graphs as those in
Figure 5.1 display PA as a maximum-likelihood estimate for pA, but its true value
may range from 35.7% to 44.4% (with 95% confidence).8

7Note that some of the assumptions leading to Eq. (5.2) are far from self-evident. As an example,
the equation tacitly assumes that the success probability is equal to pA regardless of the particular
value of NA on which the distribution is conditioned, which need not be the case when the total
number of collocational pair types (not the number of their incarnations) is finite and NA happens
to be particularly large. Therefore, an empirical validation of this statistical model is necessary (see
Section 5.2.3).

8This confidence interval was computed with the R command binom.test(200,500). A utility
function in the UCS/R system allows direct computation of the confidence interval boundaries.

154 CHAPTER 5. EVALUATION

0 500 1000 1500 2000

0
10

20
30

40
50

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

X2

Figure 5.10: Precision graphs for G2 and X2 with 95% confidence intervals.

Figure 5.10 shows binomial confidence intervals for the association measures G2

and X2 as shaded regions around the precision graphs. It is obvious that a repetition
of the evaluation experiment may lead to quite different precision values, especially
for n < 1 000. In other words, there is a considerable amount of uncertainty in the
evaluation results for each individual measure. However, we can be confident that
both ranking methods offer a substantial improvement over the baseline.

For an evaluation based on n-best lists, it has to be noted that the confidence
intervals are estimates for the average precision pA of a fixed γ -acceptance region
A = Ag

(
γ
)
, with γ = γg (n) computed from the observed candidate set. While

this region contains exactly NA = n candidates in the current evaluation, NA may be
different from n when the experiment is repeated. Consequently, pA is not necessarily
identical to the average n-best precision across a large number of experiments.

Question B can be rephrased in the following way: Does an association measure
g1 on average achieve higher precision than another measure g2? (This question is
normally asked when g1 performed better than g2 in the evaluation.) In other words,
our goal is to test whether pA > pB for given acceptance regions A = Ag1

(
γ1

)
of the

measure g1 and B = Ag2

(
γ2

)
of the measure g2.

The confidence intervals around the precision graphs of two association measures
g1 and g2 will often overlap (cf. Figure 5.10, where the confidence intervals of G2

and X2 overlap for all list sizes n), suggesting that there is no significant difference
between the two ranking methods. Both observed precision values are consistent
with an average precision pA = pB in the region of overlap, so that the observed
differences may be due to random variation in opposite directions. However, this
conclusion is premature because the two rankings underlying the precision graphs
are not independent. Therefore, the observed precision values of g1 and g2 will tend
to vary in the same direction, the degree of correlation being determined by the

5.2. THE SIGNIFICANCE OF RESULT DIFFERENCES 155

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

G2 ≥ 32.5
X2 ≥ 239

E

O

0.001 0.01 0.1 1 10

1
10

10
0

TP
FP

D1: G
2+ / X2−

D2: G
2− / X2+

Figure 5.11: Illustration of the significance of precision differences between two asso-
ciation measures (here, G2 and X2 are compared (left panel: overlapping acceptance
regions A and B; right panel: difference regions D1 and D2).

amount of overlap between the two rankings. Given acceptance regions A and B
as defined above, both measures make the same decision for any candidates in the
intersection A∩ B (both accept the candidate) and in the “complement” P \ (A∪ B)
(both reject the candidate). Therefore, the performance of g1 and g2 can only differ
in the regions D1 := A \ B (g1 accepts, but g2 rejects) and B \ A (g2 accepts, but g1

rejects). Correspondingly, the counts TA and TB are correlated because they include
the same number of TPs from the region A∩B (namely, the set C+∩A∩B). Figure 5.11
illustrates this situation with the measures g1 = G2 and g2 = X2 as an example.
The left panel shows the overlapping acceptance regions A and B of g1 and g2. All
candidates in the cross-shaded region A∩B are accepted by both measures, while all
candidates in the unshaded region P \ (A∪ B) are rejected by both. The right panel
highlights the remaining difference regions D1 and D2.

It is indisputable that g1 is a better ranking method than g2 iff pD1 > pD2, and vice
versa.9 Our goal is thus to test the null hypothesis H0 : pD1 = pD2 on the basis of the
binomial distributions Pr

(
TD1 | ND1

)
and Pr

(
TD2 | ND2

)
. Under the assumptions of

Section 5.2.1, these distributions are independent because D1 ∩D2 = ∅. The number
of candidates in the difference regions, ND1 and ND2, may be small, especially for ac-
ceptance regions with large overlap (this was one of the reasons for using conditional
inference rather than a normal approximation in Section 5.2.1). Therefore, it is ad-
visable to use Fisher’s exact test (Agresti 1990, 60–66) instead of an asymptotic test
that relies on large-sample approximations. The data for the application of Fisher’s
test consist of a 2 × 2 contingency table with columns (TD1, FD1) and (TD2, FD2). Note

9Note that pD1 > pD2 does not necessarily entail pA > pB if NA and NB are vastly different and
pA∩B � pDi

. In this case, the “winner” will always be the measure that accepts the smaller number of
candidates (because the additional candidates only serve to lower the precision achieved on A ∩ B).
This example shows that it is “unfair” to compare acceptance sets of (substantially) different sizes just
in terms of their overall precision. Therefore, evaluation either has to be based on n-best lists or needs
to take recall into account.

156 CHAPTER 5. EVALUATION

0 500 1000 1500 2000

0
10

20
30

40
50

n−best list

pr
ec

is
io

n
(%

)

baseline = 11.09%

G2

X2

Figure 5.12: Significant differences between G2 and X2 at a confidence level of 95%.

that a two-sided test is called for because there is no a priori reason to assume that g1

is better than g2 (or vice versa). Although the implementation of a two-sided Fisher’s
test is far from trivial, it is readily available in software packages such as R.

Figure 5.12 shows the same precision graphs as Figure 5.10. Significant differ-
ences between the G2 and X2 measures according to Fisher’s test (at 95% confidence,
i.e. a significance level of α = 0.05) are marked by grey triangles. Contrary to what
the confidence intervals in Figure 5.10 suggested, the observed differences turn out
to be significant for all n-best lists up to n = 1 250 (marked by a thin vertical line).

Confidence intervals and significance tests for result differences are implemented
in the UCS/R evaluation plot functions, which were used to create the graphs in this
section.

5.2.3 Empirical validation

In order to validate the statistical model and the significance tests proposed in the
previous sections, it is necessary to simulate the repetition of an evaluation experi-
ment. Following the arguments of Section 5.2.1, the conditions should be as similar
as possible for all repetitions so that the amount of purely random variation can
be measured. For this purpose, I used the 80 pnv-slices data sets extracted from
non-overlapping 500 000-word segments of the Frankfurter Rundschau corpus (cf.
Section 2.1.3). All pair types with cooccurrence frequency f ≥ 4 (between 223 and
369 pair types, with an average of 285) were ranked by the association measures
G2, X2 and t, and true positives were manually identified according to the criteria of
Krenn (2000). The true average precision pA of an acceptance set A was estimated
by averaging over all 80 samples.

Both the confidence intervals and the significance tests introduced in Section 5.2.2

5.2. THE SIGNIFICANCE OF RESULT DIFFERENCES 157

Histogram for G2

precision

nu
m

be
r o

f s
am

pl
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

10
15

20 observed
expected

Histogram for t

precision

nu
m

be
r o

f s
am

pl
es

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

10
15

20

observed
expected

Figure 5.13: Distribution of the observed precision PA for γ -acceptance regions of the
association measures G2 (left panel) and t (right panel). The solid curves indicate
the expected distribution according to Eq. (5.2).

are based on the assumption that Pr
(
TA | NA

)
follows a binomial distribution as

given by Eq. (5.2). Unfortunately, it is impossible to test the conditional distribution
directly, which would require NA to be the same for all samples. Therefore, I use
the following approach based on the unconditional distribution Pr

(
PA

)
. If NA is

sufficiently large and (5.2) is valid, Pr
(
PA | NA

)
can be approximated by a normal

distribution with mean µ = pA and variance σ2 = pA(1 − pA)/NA. Since µ does not
depend on NA and the standard deviation σ is proportional to (NA)−1/2, it is valid to
make the approximation

Pr
(
PA | NA

)
≈ Pr

(
PA

)
(5.3)

as long as NA is relatively stable. In other words, we assume that the observed
precision PA is independent from the number of candidates NA in the acceptance
region. Eq. (5.3) allows us to pool the data from all samples, predicting that

Pr
(
PA

)
∼ N(µ, σ2) (5.4)

with µ = pA and σ2 = pA(1 − pA)/N. Here, N stands for the average number of
candidates in A, i.e. N = E

[
NA

]
.

These predictions were tested for the measures g1 = G2 and g2 = t, with cutoff
thresholds γ1 = 32.5 and γ2 = 2.09 (chosen so that N = 100 candidates are accepted
on average). Figure 5.13 compares the empirical distribution of PA with the expected
distribution according to Eq. (5.2). These histograms show that the theoretical model
agrees quite well with the empirical results, although there is a little more variation
than expected.10 The empirical standard deviation is between 20% and 40% larger
than expected, with s = 0.057 vs. σ = 0.044 for G2 and s = 0.066 vs. σ = 0.047
for t. These findings suggest that the model proposed in Section 5.2.1 may indeed
represent a lower bound on the true amount of random variation. Further evidence

10The agreement is confirmed by the Kolmogorov test of goodness-of-fit (Lehmann 1991, 336),
which does not reject the theoretical model in either case.

158 CHAPTER 5. EVALUATION

0 20 40 60 80 100

0
10

20
30

40
50

60

log−likelihood

number of candidates

pr
ec

is
io

n

average precision
theoretical 95% confidence interval

0 20 40 60 80 100

0
10

20
30

40
50

60
70

t−score

number of candidates

pr
ec

is
io

n

average precision
theoretical 95% confidence interval

0 20 40 60 80 100

0
10

20
30

40
chi−squared

number of candidates

pr
ec

is
io

n

average precision
theoretical 95% confidence interval

Figure 5.14: Empirical confidence intervals for the n-best precision pg,n of the asso-
ciation measures G2 (top right panel), X2 (bottom right panel) and t (bottom left
panel).

for this conclusion comes from a direct validation of the confidence interval for pA

on a γ -acceptance region A = Ag

(
γ
)
. At 95% confidence, the true proportion pA

should fall within the confidence interval for all but 4 of the 80 samples. For G2

(with γ = 32.5) and X2 (with γ = 239.0), pA was outside the confidence interval
in 9 cases each (three of them very close to the boundary), while the confidence
interval for t (with γ = 2.09) failed in 12 cases, which is significantly more than can
be explained by chance.

I have already pointed out that the application of the confidence intervals devel-
oped in Section 5.2.2 to n-best precision may be problematic, since these estimates
are based on the predicted sampling distribution of PA for a fixed γ -acceptance region
A (which happens to contain exactly n candidates in the observed sample) rather
than on the sampling distribution of Pg,n. In order to test the validity of the confi-
dence intervals, the sampling distribution of Pg,n was estimated for n = 20 . . . 100 and
for the association measures G2, X2 and t. The shaded areas in Figure 5.14 represent

5.3. EVALUATION BASED ON RANDOM SAMPLES 159

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

n−best list

pr
ec

is
io

n
(%

)

baseline = 6.41%

t.score
log.likelihood
frequency
chi.squared.corr

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

n−best list

pr
ec

is
io

n
(%

)

baseline = 6.79%

t.score
log.likelihood
frequency
chi.squared.corr

Figure 5.15: An illustration of the use of random samples for evaluation: precision
graphs for the pnv-krenn data set (left) and the corresponding estimates obtained
from a 10% sample (right).

empirical 95% confidence intervals for the observed n-best precision Pg,n, given by
the smallest range that contains all but the four most extreme values of Pg,n from
the 80 samples. The solid curves show the true n-best precision pg,n, obtained by
averaging over all 80 samples. The dashed lines delimit theoretical 95% confidence
intervals around pg,n resulting from a “naive” application of the methods described
in Section 5.2.2 to n-best lists. If the observed n-best precision Pg,n falls within these
intervals, it is deemed compatible with the true value pg,n. Obviously, the theoretical
and empirical values agree very well (the slight discrepancy for G2 can be explained
by random fluctuations due to the small size of the n-best lists), so that the methods
of Section 5.2.2 are indeed applicable to an evaluation that is based on n-best lists.

5.3 Evaluation based on random samples

In order to reduce the amount of manual work, evaluation experiments can be based
on random samples from a data set. Figure 5.15 compares evaluation results for the
full data set pnv-krenn (Krenn 2000) in the left panel, with those obtained from a
10% random sample (of the candidate types) in the right panel. Note that the values
on the x-axis refer to n-best lists of the original data set. For instance, the preci-
sion values for n = 1 000 in the right panel have been estimated from a sample of
approx. 100 candidates. The overall impression given by the random sample eval-
uation is qualitatively correct: t-score emerges as the best measure, mere frequency
sorting outperforms log-likelihood (at least for n ≥ 4 000), and chi-squared is much
worse than the other measures but still clearly better than the baseline. However,
the findings are much less clear-cut than for the full evaluation. The precision graphs
become unstable and unreliable for n ≤ 1 000 where log-likelihood seems to be better
than frequency and chi-squared comes close to the baseline. This is hardly surpris-
ing, considering the fact that these estimates are based on fewer than one hundred

160 CHAPTER 5. EVALUATION

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

n−best list

pr
ec

is
io

n
(%

)

baseline = 6.79%

t.score

0 1000 2000 3000 4000 5000

0
10

20
30

40
50

60

n−best list

pr
ec

is
io

n
(%

)

baseline = 6.79%

chi.squared.corr

Figure 5.16: Sample estimates for the true precision with confidence intervals based
on a 10% random sample. The dashed lines show the true precision computed from
the full candidate set.

annotated candidates.
It is therefore particularly important to apply the significance tests of Section 5.2,

in order to rule out the possibility that evaluation results are merely flukes introduced
by the sampling process. Since these significance tests cast evaluation as random
sampling (from a hypothetical population), no special treatement is necessary for the
additional explicit sampling step (which samples from a concrete data set of colloca-
tion candidates). Its effect is simply to reduce the resulting sample size (by a factor
of 10 in the current example). As a consequence, the uncertainty of the precision
estimates is increased and confidence intervals become larger. In this approach, the
random sample is used to generalise beyond the data set from which it was taken
and draw inferences about average precision in the underlying (hypothetical) pop-
ulation. Evert and Krenn (2005) give a slightly different account with an explicit
description of the procedures for a random sample evaluation. Their goal is to draw
inferences about a specific data set based on a random sample of candidates from this
set. However, after some approximations they arrive at the same statistical methods
as described in Section 5.2.

Figure 5.16 shows confidence intervals for the true n-best precision estimated
from the 10% sample described above, and compares them directly with precision
graphs obtained from the full data set. The baseline shown in these plots has been
estimated from the sample, and a confidence interval for the true baseline precision is
indicated by thin dotted lines above and below the estimate. From the right panel, we
can see that there is considerable uncertainty in the precision graph of chi-squared.
For most of the n-best lists, the true precision might be close to the baseline or even
below it. On the other hand, it might be as high as 20% for n ≤ 1 000 (where the
direct estimate comes close to the baseline). The left panel, on the other hand, shows
that the true n-best precision of t-score is at least 20% for n ≤ 2 000. The precision
graphs obtained from the full data set have been inserted as dashed lines in both
panels. For t-score the sampling variation is much smaller than predicted by the

5.3. EVALUATION BASED ON RANDOM SAMPLES 161

0 20 40 60 80 100

0
20

40
60

80
10

0

Estimated Precision P* (%)

T
ru

e
P

re
ci

si
on

 P
 (

%
)

MLE
K = 500
K = 100
K = 50
K = 20

Figure 5.17: Chart of binomial confidence intervals for selected sample sizes.

significance tests. The right panel shows that our confidence intervals are not overly
conservative, though: for n ≥ 2000 the chi-squared n-best precision calculated from
the full data set is close to the boundary of the confidence interval.

Obviously, it is essential to choose an appropriate sampling rate. On the one
hand, the manual work should be reduced as far as possible so that more evaluation
studies can be carried out under different conditions (enabling us to achieve a more
complete understanding of the empirical properties of association measures). On
the other hand, the confidence intervals have to be narrow enough so that we can
draw meaningful conclusions from them. The width of confidence intervals depends
both on the size of the sample and on the estimated precisions. Charts of binomial
confidence intervals such as the one in Figure 5.17 help with this decision. For any
value of estimated precision on the x-axis, 95% confidence intervals for the true
precision at different sample sizes K can be read from the y-axis. For instance, when
the observed precision in a sample of size K = 100 is 40%, the true precision can be
narrowed down to the range between 30% and 50% with 95% confidence. Note that
K is the absolute number of candidates used for the estimation: a 1 000-best list at a
sampling rate of 10% and a 500-best list at a sampling rate of 20% lead to the same
sample size K = 100. In other words, the lower the sampling rate, the larger n-best
lists have to be so that meaningful estimates are possible.

Figure 5.18 shows another example of a random sample evaluation. Here, a 15%

162 CHAPTER 5. EVALUATION

sample was taken from 8 546 high-frequency adjective-noun pairs in the an-fr data
set (with f ≥ 20) and manually annotated by professional lexicographers. The an-
notators accepted both collocations and typical (but less rigid) combinations as true
positives, the main criterion being whether the candidates would be useful for the
compilation of a large German-English dictionary.11 The results of this evaluation are
quite surprising in view of previous findings. Frequency-based ranking is not signifi-
cantly better than the baseline, while both t-score and log-likelihood are clearly outper-
formed by the chi-squared measure, contradicting the arguments of Dunning (1993).
For 1 000 ≤ n ≤ 3 000, the precision of chi-squared is significantly better than that
of log-likelihood, and its overestimation of the significance of association seems to
have a beneficial effect. The bottom panel has an even greater surprise in store: the
MS measure (Pedersen and Bruce 1996), which has never found widespread use,
achieves the best results in this evaluation. It is closely followed by Dice (not shown
in the graph), and both are significantly better than chi-squared. This is particularly
interesting because it is one of the rare situations where the best-performing asso-
ciation measures are not central (or nearly central) measures. A close look at the
evaluated data set and the iso-surfaces of these measures (using three-dimensional
visualisation techniques from Section 3.3.3) will be necessary in order to throw light
on the reasons that lie behind such unexpected results.

11I would like to thank the Wörterbuchredaktion of the publishing house Langenscheidt KG, Munich
for annotating this sample. The evaluation reported here emerged from a collaboration within the
project TFB-32, funded at the University of Stuttgart by the DFG.

5.3. EVALUATION BASED ON RANDOM SAMPLES 163

0 2000 4000 6000 8000

30
40

50
60

70

n−best list

pr
ec

is
io

n
(%

)

baseline = 41.53%

t.score
log.likelihood
frequency
chi.squared.corr

0 2000 4000 6000 8000

30
40

50
60

70

n−best list

pr
ec

is
io

n
(%

)

baseline = 41.53%

chi.squared.corr
MS

Figure 5.18: Random sample evaluation of German adjective-noun combinations.

164 CHAPTER 5. EVALUATION

Chapter 6

Conclusion and Future Work

Returning to the quote from Giuliano (1965b, 259) cited in Section 1.3.1, let us ask
how much progress we have made towards a better understanding of the statistical
association of word combinations. One thing is clear: collocation extraction is not
a solved problem. More research will be needed, empirical research in particular,
before we can explain puzzling results such as the evaluation experiment reported at
the end of Section 5.3 (which seems to defy all established wisdom about association
measures and the statistical properties of collocations). My aim in writing this book
has been to provide the necessary background, research methodology and tools for
such research, collected in a single volume as a handy reference.

Each of these three aspects of my work accounts for a substantial part of the text.
The first, encyclopedic part extends from the beginning of Chapter 2 to Section 3.2.
At first, the formal and mathematical foundations of association measures are pre-
sented: procedures for obtaining cooccurrence frequency data and statistical models
for their interpretation. I make a clear distinction between relational and positional
cooccurrences, which require different counting methods in order to allow for a valid
statistical analysis. In Sections 2.1 and 2.4 these counting methods are formalised
to the degree necessary to make them unambiguous, and they are accompanied by
explicit instructions, schemata and examples that should facilitate their implemen-
tation. Section 2.2 describes the statistical model underlying the analysis of the ex-
tracted frequency data. Although this is a well-known random sample model, and it
is always implicitly assumed when authors discuss or suggest association measures,
its application to cooccurrence frequency data has never been given an explicit and
precise definition.1 In this section, I also address the diffiult issue of how statistical
association can be quantified. In Section 2.3 I discuss some problematic aspects of
the random sample model, in particular the randomness assumption (which every-
one knows to be untenable, but which is nonetheless rarely tested) and the issue of
noise introduced by automatic processing (which everyone hopes will be filtered out
by the statistical analysis, without making clear why the association measures should
be able to achieve this).

Chapter 3 is the centrepiece of my thesis. In its first section, which still belongs
to the encyclopedic part, it provides a comprehensive inventory of all association
measures that I have come across during my research. The numerous measures are

1Cooccurrence data as a random sample from what population? And what are the relevant param-
eters, random variables and test statistics?

165

166 CHAPTER 6. CONCLUSION AND FUTURE WORK

organised in major and minor groups which share a common goal or theoretical
background. In addition to this broad categorisation and the standard references,
I take care to explain details that are usually either ignored or taken for granted.
Examples are the differences between one-tailed and two-tailed measures, the ap-
plication of Yates’ continuity correction, and the equivalence of different versions
of the chi-squared and log-likelihood measures (see Section 3.1.4 for all three exam-
ples). For each association measure, an explicit equation is given. All these equations
use the same notation based on observed and expected frequencies for the cells of
a contingency table. In addition, carefully designed reference implementations of
the measures are available in the UCS toolkit (Section 3.2.2). There is also an on-
line version of the repository at http://www.collocations.de/AM/ with the most
up-to-date information.

The second part of the book, which is concerned with research methodology,
begins in Section 3.3. There, generalised association measures are introduced as
arbitrary real-valued functions on contingency tables that conform to our intuitions
about the fundamental properties of an association measure. This formal model
leads to an intuitive geometric interpretation of cooccurrence data and association
measures in a three-dimensional “parameter space”, which will hopefully pave the
way towards a better understanding of the characteristics of existing measures and
towards the discovery of genuinely new ones. The frequency data extracted from a
corpus are visualised as a point cloud in the parameter space, each point representing
a single word pair. Generalised association measures can be visualised as surfaces
in this space, and their properties are determined by the geometric shapes of the
respective surfaces. In many cases, the parameter space can be projected to a two-
dimensional plane (occasionally involving minor approximations), which simplifies
visualisation and analysis considerably. As a first application, the geometric approach
is used in combination with other techniques for a more detailed analysis of the major
groups of association measures in Section 3.4.

Chapter 4 addresses the well-known problem of low-frequency data. Most re-
searchers know that statistical inference from small amounts of data is problematic
(to say the least).2 Although Dunning (1993) suggests that the applicability of his
newly introduced log-likelihood measure extends even down to the hapax legomena
(word combinations that occur just once in a corpus) – and although Weeber et al.
(2000) see opportunities to extract useful knowledge from such lowest-frequency
data – most researchers silently discard rare events by setting a frequency thresh-
old (Krenn (2000) is just one example among many). Using methods from lexical
statistics, I show that reliable statistical inference is impossible in principle for the
hapax and dis legomena (f = 1,2). In this frequency range, quantisation effects and
the characteristic highly skewed distribution of the cooccurrence probabilities of pair
types (roughly following Zipf’s law) dominate over the random variation that sta-
tistical inference normally takes into account. As a result, probability estimates are
entirely unreliable unless the precise shape of the population is known. This rather
negative result provides theoretical support for the application of a frequency thresh-
old, which should at least exclude the hapax and dis legomena (f ≥ 3). Quantisation
and the shape of the population no longer play a role for f ≥ 5, so that higher cutoff

2“Only naughty brewers deal in small samples”, as Karl Pearson once put it.

167

thresholds are not necessary in order to ensure a reliable statistical analysis.3 A fall-
out from this work is a new population model for the distribution of cooccurrence
probabilities, which is analytically simple and numerically efficient. Despite its sim-
plicity, the model compares favourably with established population models (Baayen
2001), combining better goodness-of-fit with higher robustness.

Finally, Chapter 5 addresses the relation between cooccurrences and collocations,
using cooccurrence data extracted from a text corpus as candidate data for a col-
location identification task. This application setting provides a framework – and
a well-defined goal – for the comparative evaluation of association measures. The
graphical presentation of the evaluation results, first used by Evert et al. (2000) and
Evert and Krenn (2001), is developed further and a case study exemplifies the pos-
sibilities opened up by a fine-grained evaluation. Section 5.2 addresses the problem
of testing the significance of evaluation results. An attempt is made to clear up the
confusion about the choice of an appropriate significance test by introducing an ex-
plicit model for the random variation of evaluation results (which is formulated in
terms of the geometric interpretation from Section 3.3). Based on this model, two
procedures are suggested: (i) confidence intervals estimate the uncertainty in the
evaluation results of a single association measure; and (ii) significance tests predict
whether the observed differences between measures can reliably be reproduced in
other experiments (under similar conditions). The model is validated on empirical
data, showing that it provides a relatively tight lower bound for the true variation.
Finally, the newly developed methods are applied to an evaluation procedure that re-
duces the amount of manual annotation work drastically by taking a random sample
from the candidate set. With this new procedure, it will be possible to perform evalu-
ation experiments under a much broader range of conditions. A first example of such
an experiment, presented at the very end of Chapter 5, is already full of surprises (as
has been mentioned at the beginning of this chapter).

The third, computational aspect of my research does not really belong into the
text, but is an open-source software package, called the UCS toolkit, that accom-
panies the thesis. It provides reference implementations of all association measures
listed in Chapter 3, as well as all the libraries, utilities and data sets that are needed
to replicate the experiments and analyses described in the text (and even reproduce
most of the graphs). This includes an R library for evaluation graphs with support
for significance tests and random sample evaluation (Chapter 5), Perl utilities for
carrying out the dispersion test that is used to verify the randomness assumption
(Section 2.3.2), and an implementation of the new population models for the distri-
bution of cooccurrence probabilities (Section 4.2). There is also an implementation
of a number of generalised association measures and the two-dimensional visualisa-
tion procedure in the newest version of the package. With this software, which can
be downloaded from http://www.collocations.de/phd.html, the tools needed for
the study of association measures and the underlying statistical models are finally at
everyone’s fingertips. Appendix B contains the complete documentation of the UCS
toolkit.

Although most of the discussions and examples in this thesis assume cooccur-

3There may be other reasons to apply a higher frequency threshold, of course, such as working
around the problems that some association measures have with low-frequency data, or the inflation
of observed frequencies through non-randomness effects.

168 CHAPTER 6. CONCLUSION AND FUTURE WORK

rences of words in a text corpus, the methods that are presented and the conclusions
drawn are applicable to a much broader range of phenomena, as long as they can
be made to fit within the formal definitions of Chapter 2. The source of the cooccur-
rences need not be a text corpus, provided that it is possible to identify sets of tokens
and combine them into pairs. The cooccurring items need not be words, provided
that they have the characteristic skewed probability distribution of lexical data.4 The
definition of cooccurrence may range from pairs of aligned sentences in a bilingual
corpus (e.g. Church and Gale 1991) to the adjacency of nodes in a graph (Biemann
et al. 2004).

What is it, then, that still needs to be done? The mathematical theory behind
association measures and the underlying statistical models has been studied exten-
sively, but the theoretical conclusions are all too often not borne out in practice. As
an example, consider the evaluation of adjective-noun combinations in Section 5.3.
The superiority of G2 (log-likelihood) compared to X2 (chi-squared) seemed to have
been established beyond doubt, yet in this experiment X2 achieved significantly bet-
ter results. This goes to show that more empirical data needs to be collected in order
to improve our understanding of cooccurrence data, statistical association and its re-
lation to collocativity. My thesis provides the background, methods and tools for such
studies: now evaluation experiments have to be carried out and old as well as new
hypotheses and assumptions have to be tested under a wide range of conditions.

4For instance, the items might be conceptual classes in a semantic taxonomy such as Wordnet
(Miller 1990). Alshawi and Carter (1994) refer to such associations as semantic lexical collocations,
and Resnik (1997) uses cooccurrences between a predicate and the classes of its arguments for word
sense disambiguation.

Appendix A

Proofs and Mathematical Background

A.1 Proofs from Chapter 2

Lemma A.1. The maximum-likelihood estimates for the population parameters ~τ under
the multinomial sampling distribution (2.5) are given by τ̂ij = Oij/N. The MLEs for the
alternative parameters (π, π1, π2) are π̂ = O11/N, π̂1 = R1/N and π̂2 = C1/N.

Proof. The proof uses Fisher’s device of representing the multinomial distribution
as a conditional probability of the independent Poisson distribution (2.7). For any
parameter values ~τ that satisfy the multinomial condition

∑
ij τij = 1, we have

Pr
(
~X = ~O | N, ~τ

)
=

Pr
(
~X = ~O | ν~τ

)
Pr
(∑

ij Xij = N | ν~τ
) (A.1)

regardess of the value chosen for ν (note that
∑

ij Xij =
∑

ij Oij = N, hence this
condition does not have to be stated explicitly in the numerator). Because ν can be
chosen in an arbitrary way and

∑
ij Xij has a Poisson distribution with the single

parameter ν under (2.7), the denominator in (A.1) is constant and it follows that

arg max
~τ

Pr
(
~X = ~O | N, ~τ

)
= arg max

~τ
Pr
(
~X = ~O | ν~τ

)
, (A.2)

again regardless of the value ν. The unconstrained probability Pr
(
~X = ~O | ν~τ

)
is the

product of four independent Poisson distributions with parameters ντij ,

Pr
(
~X = ~O | ν~τ

)
=
∏
ij

Pr
(
Xij = Oij | ντij

)
. (A.3)

Therefore, it assumes a global maximum for the Poisson MLEs ντij = Oij . Choosing
ν = N, the right-hand side of (A.2) reaches this global maximum for τij = Oij/N.
Since these values satisfy the summation condition

∑
ij τij = 1 for multinomial pa-

rameters, they also maximise the left-hand side of (A.2). Hence, they are the desired
multinomial MLEs τ̂ij = Oij/N. The MLEs for (π, π1, π2) are obtained by direct sum-
mation: π̂ = τ̂11 = O11/N, π̂1 = τ̂11 + τ̂12 = R1/N, and π̂2 = τ̂11 + τ̂21 = C1/N.

169

170 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

Lemma A.2. The coefficients of association strength µ, ρ, θ, κu, κDice, κgmean and κmin

assume the values shown in Table 2.2 for the special situations listed in Table 2.1. Cases
B and E are first-order approximations for ε → 0

Proof. In the proofs for cases B and E, Landau notation O (ε) is used and first-order
approximations are denoted by writing

.
= instead of =. Only non-trivial calculations

are shown (except for κJaccard). For relative risk ρ and the odds ratio θ, the following
definitions are normally used:

ρ =
π(1 − π2)
π2(π1 − π)

θ =
π(1 − π1 − π2 + π)
(π1 − π)(π2 − π)

Some proofs make use of the geometric series:

1
1 − ε

= 1 + ε + O
(
ε2
)

and
1

a− εb
= a−1

(
1 + ε

b

a
+ O

(
ε2
))

Case A: π = π1π2 (independence)

ρ =
π1π2(1 − π2)
π2(π1 − π1π2)

= 1

θ =
π1π2(1 − π1)(1 − π2)

(π1 − π1π2)(π2 − π1π2)
= 1

κmin = min
{
π1π2

π1
,
π1π2

π2

}
= min{π2, π1}

Case B: π = (1 + ε)π1π2 (minimal association)

ρ =
(1 + ε)(1 − π2)

1 − π2 − επ2
= (1 + ε)

(
1 − επ2

1 − π2

)−1

= (1 + ε)
(

1 +
επ2

1 − π2
+ O

(
ε2
))

= 1 + ε + ε
π2

1 − π2
+ O

(
ε2
)

.
= 1 +

ε

1 − π2

The calculation for θ makes use of the abbreviation δ := 1 + ε and the identities

(1 − δπk)−1 =
(
(1 − πk) − επk

)−1
= (1 − πk)−1

(
1 + ε

πk

1 − πk

+ O
(
ε2
))

A.1. PROOFS FROM CHAPTER 2 171

for k = 1,2. Inserting π = δπ1π2 into the definition of θ yields

θ =
δ(1 − π1 − π2 + δπ1π2)

(1 − δπ1)(1 − δπ2)

= (1 + ε) · (1 − π1)(1 − π2) + επ1π2

(1 − π1)(1 − π2)

·
(

1 + ε
π1

1 − π1
+ O

(
ε2
))

·
(

1 + ε
π2

1 − π2
+ O

(
ε2
))

= (1 + ε)
(

1 + ε
π1

1 − π1

π2

1 − π2

)(
1 + ε

π1

1 − π1

)(
1 + ε

π2

1 − π2

)
+ O

(
ε2
)

= 1 + ε

(
1 +

π1

1 − π1

)(
1 +

π2

1 − π2

)
+ O

(
ε2
)

.
= 1 +

ε

(1 − π1)(1 − π1)

κu =
επ1π2

π2(1 − π2)
= ε

π1

1 − π2

κmin = min
{

(1 + ε)π1π2

π1
,
(1 + ε)π1π2

π2

}
= (1 + ε) min{π2, π1}

Case C: π = 0 (total negative association)

κu =
0 − π1π2

π2(1 − π2)
= − π1

1 − π2

All other results for case C are trivial.

Case D: π = π1 = π2 (total positive association)

ρ =
π(1 − π)
π(π − π)

=
1 − π

0
= ∞

θ =
π(1 − π − π + π)
(π − π)(π − π)

=
π(1 − π)

0
= ∞

κu =
π − ππ

π(1 − π)
= 1

κmin = min
{π
π
,
π

π

}
= 1

Case E: π1 = π2 = (1 + e)π (nearly total association)

µ =
π

π2(1 + ε)2 =
1
π

(
1 − 2ε + O

(
ε2
)) .

=
1
π
− ε

2
π

ρ =
π(1 − π − επ)
(1 + ε)π · επ =

1
ε
· 1
π
· 1

1 + ε
(1 − π − επ)

=
1
ε
· 1
π
·
(
1 + O (ε)

)
·
(
1 − π + O (ε)

)
=

1
ε
· 1 − π

π
+ O (1)

172 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

θ =
π(1 − π − 2επ)

ε2π2 =
1
ε2 · 1

π
·
(
1 − π + O (ε)

)
=

1
ε2 · 1 − π

π
+ O

(
1
ε

)

κu =
1 − (1 + ε)2π

(1 + ε)(1 − π − επ)

=
[
1 − π − 2επ + O

(
ε2
)]

·
[
1 − π + ε(1 − 2π) + O

(
ε2
)]−1

=
[
1 − π − 2επ + O

(
ε2
)]

· 1
1 − π

·
[

1 − ε
1 − 2π
1 − π

+ O
(
ε2
)]

=
[

1 − ε
2π

1 − π
+ O

(
ε2
)]

·
[

1 − ε
1 − 2π
1 − π

+ O
(
ε2
)]

= 1 − ε
1

1 − π
+ O

(
ε2
) .

= 1 − ε

1 − π

κDice =
2π

2 · (1 + ε)π
=

1
1 + ε

.
= 1 − ε

The κgmean and κmin coefficients also lead to (1 + ε)−1 .
= 1 − ε.

Case F: π = π1 � π2 (total determination, u → v)

ρ =
π1(1 − π2)
π2(π1 − π1)

=
π1(1 − π2)

0
= ∞

θ =
π1(1 − π1 − π2 + π1)
(π1 − π1)(π2 − π1)

=
π1(1 − π2)

0
= ∞

κu =
π1 − π1π2

π2(1 − π2)
=

π1

π2

κDice =
2π1

π1 + π2
=

2
1 + π2/π1

< 1

κmin = min
{
π1

π1
,
π1

π2

}
= min

{
1,

π1

π2

}
=

π1

π2

Case F’: π = π2 � π1 (total determination, v → u)

ρ =
π2(1 − π2)
π2(π1 − π2)

=
1 − π2

π1 − π2

θ =
π2(1 − π1 − π2 + π2)
(π1 − π2)(π2 − π2)

=
π2(1 − π1)

0
= ∞

κu =
π2 − π1π2

π2(1 − π2)
=

1 − π1

1 − π2

A.1. PROOFS FROM CHAPTER 2 173

Lemma A.3. Divide a random sample of size N into K parts of S tokens each (i.e.
N = K · S). For a given type w ∈ C, let Xi stand for the local frequency of w in the
i-th part, and write ~X = (X1, . . . , XK) for the vector of local frequencies. Then the total
frequency of X is f =

∑K
i=1 Xi and the dispersion of w in the sample is D =

∑K
i=1 I[Xi>0].

For any integers d,m ∈ N with d ≤ m ≤ S and d ≤ K, the conditional probability of
observing a dispersion of d given a total frequency of m is given by

Pr
(
D = d | f = m

)
=
(
N

m

)−1(
K

d

) d∑
j=1

(−1)d−j
(
d

j

)(
S · j
m

)
. (A.4)

Proof. Let ~m = (m1, . . . ,mK) ∈ {0, . . . , S}K stand for a possible distribution of the
instances of w across the K parts of the sample (i.e. a vector of local frequencies),
S(~m) :=

∑K
i=1 mi for the corresponding total frequency, and D(~m) :=

∑K
i=1 I[mi>0] for

the corresponding dispersion. Writing ~X = ~m for the condition ∀i : Xi = mi, the
conditional probability Pr

(
D = d | f = m

)
expands to

Pr
(
D = d | f = m

)
=
∑

D(~m)=d
S(~m)=m

Pr
(
~X = ~m | f = m

)
, (A.5)

where Pr
(
~X = ~m | f = m

)
is the probability of a specific distribution ~m given the

total frequency m. By applying Eq. (2.6) to each (independent) part of the sample,
we find

Pr
(
~X = ~m

)
=

K∏
i=1

(
S

mi

)
πmi(1 − π)S−mi

= πS(~m)(1 − π)N−S(~m) ·
K∏
i=1

(
S

mi

)
,

where π is the occurrence probability of the type w. Since

Pr
(
f = m

)
=
(
N

m

)
πm(1 − π)N−m ,

we obtain

Pr
(
~X = ~m | f = m

)
=


∏K

i=1

(
S
mi

)(
N
m

) S(~m) = m

0 otherwise

. (A.6)

A pair of integers d,m ∈ N0 is called admissible iff 1 ≤ d ≤ m ≤ N and Pr
(
D =

d | f = m
)
> 0, i.e. there exists at least one local frequency vector ~m with D(~m) = d

and S(~m) = m.1 We will now determine a generating function for the probabilities
in (A.4) from (A.5) and (A.6). More precisely, we are interested in the formal power
series

f(x, y) :=
∞∑
d=0

∞∑
m=0

pd,m ydxm (A.7)

1For instance, d = 1, m > S is not admissible since the m > S instances of w cannot lie in a single
part, which consists of S tokens only.

174 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

with

pd,m :=


Pr
(
D = d | f = m

)
·
(
N
m

)
d,m are admissible

1 d = m = 0
0 otherwise

. (A.8)

Note that only a finite number of the terms in (A.7) are non-zero. Consider the
function

g(x, y) := 1 + y
(
(1 + x)S − 1

)
= 1 + y ·

S∑
k=1

(
S

k

)
xk ,

which is suggested by (A.6). We will now show that f(x, y) =
(
g(x, y)

)K
. In fact,

each term in the expansion of this product can be represented by a distribution vector
~m, picking the term yxmi

(
S
mi

)
from the i-th factor, or the constant term 1 for mi = 0:

(
g(x, y)

)K
=
∑
~m

K∏
i=1

y(I[mi>0]) xmi

(
S

mi

)

=
∑
~m

yD(~m)xS(~m)
K∏
i=1

(
S

mi

)
.

(A.9)

The coefficient of ydxm in the power series (A.9) is therefore∑
D(~m)=d
S(~m)=m

K∏
i=1

(
S

mi

)
(A.6)
=

∑
D(~m)=d
S(~m)=m

Pr
(
~X = ~m | f = m

)
·
(
N

m

)
(A.5)
= Pr

(
D = d | f = m

)
·
(
N

m

)
when d,m are admissible. Otherwise, the summation is empty, except for d = m = 0
where we obtain the constant term 1. Comparison with (A.8) shows that

f(x, y) =
(
g(x, y)

)K
.

We can now compute pd,m by direct expansion of f(x, y):

f(x, y) =
[
1 + y

(
(1 + x)S − 1

)]K
= 1 +

K∑
d=1

(
K

d

)
yd
[
(1 + x)S − 1

]d
= 1 +

K∑
d=1

(
K

d

)
yd

d∑
j=0

(
d

j

)
(1 + x)S·j(−1)d−j

= 1 +
K∑

d=1

(
K

d

)
yd

d∑
j=0

(
d

j

)
(−1)d−j

S·j∑
m=0

(
S · j
m

)
xm

= 1 +
K∑

d=1

(
K

d

)
yd

∑
0≤j≤d

0≤m≤S·d
m≤S·j

xm(−1)d−j
(
d

j

)(
S · j
m

)

= 1 +
K∑

d=1

(
K

d

)
yd

S·d∑
m=0

xm
d∑

j=dm/Se
(−1)d−j

(
d

j

)(
S · j
m

)

A.1. PROOFS FROM CHAPTER 2 175

For d,m admissible with m ≤ S, we have dm/Se = 0 and the coefficient of ydxm is

pd,m =
(
K

d

) d∑
j=1

(−1)d−j
(
d

j

)(
S · j
m

)
,

which concludes the proof together with (A.8).

Lemma A.4. Under the conditions of Lemma A.3, the sum in Eq. (A.4) can be computed
recursively. In particular,

Pr
(
D = d | f = m

)
=
(
N

m

)−1(
K

d

)
A(d,m) (A.10)

where A(d,m) is defined recursively by

A(1,m) :=
(
S

m

)
(A.11a)

A(d,m) :=
(
S · d
m

)
−

d−1∑
j=1

(
d

j

)
A(j,m) (A.11b)

Proof. The equality

A(k,m) =
k∑

j=1

(−1)k−j
(
k

j

)(
S · j
m

)
(A.12)

can be shown by straightforward induction over d. For d = 1,

A(1,m) =
(
S

m

)
= (−1)1−1

(
1
1

)(
S · 1
m

)
.

Let us now assume that (A.12) has been established for k = 1, . . . , d − 1. Inserting
these terms into (A.11b), we obtain

A(d,m) =
(
S · d
m

)
−

d−1∑
j=1

(
d

j

)
A(j,m)

=
(
S · d
m

)
−

d−1∑
j=1

(
d

j

) j∑
r=1

(−1)j−r
(
j

r

)(
S · r
m

)

=
(
S · d
m

)
−

d−1∑
r=1

(
S · r
m

) d−1∑
j=r

(−1)j−r
(
d

j

)(
j

r

)

=
(
S · d
m

)
−

d−1∑
r=1

(
S · r
m

)
(−1)d−r

d−1∑
j=r

(−1)d−j
(
d

j

)(
j

r

)
︸ ︷︷ ︸

(∗)
= −

(
d
r

)
=
(
S · d
m

)
+

d−1∑
r=1

(
S · r
m

)
(−1)d−r

(
d

r

)

=
d∑

r=1

(−1)d−r
(
d

r

)(
S · r
m

)
,

176 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

proving (A.12) for k = d. Note that (−1)d−r ·(−1)j−r = (−1)d−r ·(−1)−(j−r) = (−1)d−j .
The equality (∗) can be derived in the following way:

d∑
j=r

(−1)d−j
(
d

j

)(
j

r

)
=

d∑
j=r

(−1)d−j
(
d

r

)(
d − r

j − r

)
k:=j−r

=
(
d

r

) d−r∑
k=0

(−1)(d−r)−k
(
d − r

k

)
=
(
d

r

)(
1 + (−1)

)d−r
= 0 .

A.2 Proofs from Chapter 3

Lemma A.5. The association measures chi-squaredi, chi-squared, and chi-squaredh

compute the same association scores:

X2 =
∑
ij

(Oij − Eij)2

Eij

=
N
(
O11 − E11

)2

E11E22
=

N
(
O11O22 − O12O21

)2

R1R2C1C2
.

Proof. The proof is based on the fact that the row and column sums of the expected
frequencies equal those of the observed frequencies.

Oi1 + Oi2 = Ri = Ei1 + Ei2 (A.13a)
O1j + O2j = Cj = E1j + E2j (A.13b)

O11 + O12 + O21 + O22 = N = E11 + E12 + E21 + E22 (A.13c)

For i = 1, (A.13a) implies O11−E11 = E12−O12 and hence (O11−E11)2 = (O12−E12)2.
Together with (A.13b) for j = 1 and j = 2 we obtain

(O11 − E11)2 = (O12 − E12)2 = (O21 − E21)2 = (O22 − E22)2. (A.14)

Inserting (A.14) into the equation of chi-squaredi, we obtain

X2 :=
∑
ij

(Oij − Eij)2

Eij

= (O11 − E11)2
∑
ij

1
Eij

.

Using the identity

E11E22 =
R1R2C1C2

N2 = E12E21, (A.15)

we find that ∑
ij

1
Eij

=
E11 + E22

E11E22
+

E12 + E21

E12E21

(A.15)
=

∑
ij Eij

E11E22

(A.13c)
=

N

E11E22

and hence

X2 =
N
(
O11 − E11

)2

E11E22

A.2. PROOFS FROM CHAPTER 3 177

Finally,

O11 − E11 =
NO11 − R1C1

N

=
(O11 + O12 + O21 + O22)O11 − (O11 + O12)(O11 + O21)

N

=
O11O22 − O12O21

N

implies together with (A.15) that

X2 =
N
(
O11O22 − O12O21

)2

R1R2C1C2
.

Lemma A.6. The identities of Lemma A.5 also hold when Yates’ continuity correction is
applied, i.e. when the observed frequencies Oij are replaced by adjusted frequencies O′

ij .
The continuity-corrected chi-squared statistic can be written as

(X′)2 =
N
(
|O11O22 − O12O21| −N/2

)2

R1R2C1C2
.

Proof. We start by noting that the continuity corrections applied to the four observed
frequencies Oij are not independent. If O11 > E11, the equalities (A.13) imply that
O12 < E12, O21 < E21, and O22 > E22 (and vice versa for O11 < E11). Therefore, the
continuity correction takes the general form

O′
11 := O11 + δ

O′
21 := O21 − δ

O′
12 := O12 − δ

O′
22 := O22 + δ

(A.16)

with δ = −1/2 for O11 > E11 and δ = 1/2 for O11 < E11. Inserting (A.16) into
(A.13), we see that these equalities also hold for O′

ij instead of Oij . Since the proof
of Lemma A.5 is exclusively based on (A.13), it remains valid for the continuity-
corrected versions of the chi-squared measures.

We can therefore compute the continuity-corrected statistic (X′)2 by inserting the
adjusted frequencies O′

ij into any one of the three equivalent formulae. Starting from
chi-squaredh, we find

O′
11O

′
22 − O′

12O
′
21 = (O11 + δ)(O22 + δ) − (O12 − δ)(O21 − δ)

= O11O22 − O12O21 + δ(O11 + O12 + O21 + O22)
= (O11O22 − O12O21) + δN

Since (A.15) implies O11O22 − O12O21 > 0 ⇐⇒ O11 > E11, the sign of δ is opposite
to that of O11O22 − O12O21. Consequently,

(O′
11O

′
22 − O′

12O
′
21)2 =

(
|O11O22 − O12O21| −N/2

)2
,

which completes the proof.

178 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

Lemma A.7. For the likelihood ratio defined by

λ :=
max Pr

(
~X = ~O | N,H0

)
max Pr

(
~X = ~O | N

)
with respect to the null hypothesis of independence H0, the following equality holds:

−2 logλ = 2
∑
ij

Oij log
Oij

Eij

Proof. The denominator of λ is maximised by the MLE τij = Oij/N according to
Eq. (2.8). Inserting these values into the multinomial distribution (2.5) for ~k = ~O,
we obtain

max Pr
(
~X = ~O | N

)
=

N!
NN

·
∏
ij

(Oij)Oij

Oij!
(A.17)

The conditional probability under H0 in the numerator is given by Eq. (2.12), which
corresponds to the product of two independent binomial probability values: for R1

successes out of N trials with success probability π1, and for C1 successes out of N
trials with success probability π2 (except for a factor that does not depend on π1 and
π2 and can therefore be ignored). This probability is maximised for the binomial MLE
π1 = R1/N and π2 = C1/N. Under H0, the parameters τij are fully determined by π1

and π2, according to Eq. (2.11):

τij =
RiCj

N2 =
Eij

N

Inserting these values into the multinomial distribution (2.5) for ~k = ~O, the numer-
ator of λ becomes

max Pr
(
~X = ~O | N,H0

)
=

N!
NN

·
∏
ij

(Eij)Oij

Oij!
(A.18)

When we insert (A.17) and (A.18) into λ, the factorials and the factor NN cancel out
leaving

λ =
∏
ij

(
Eij

Oij

)Oij

and hence

−2 logλ = −2
∑
ij

Oij · (logEij − logOij)

= 2
∑
ij

Oij · (logOij − logEij)

= 2
∑
ij

Oij log
Oij

Eij

A.3. PROOFS FROM CHAPTER 4 179

A.3 Proofs from Chapter 4

Lemma A.8. Let X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) be two independent, normally

distributed random variables with µ1, µ2 > 0, σ1 � µ1, and σ2 � µ2. Then the ratio

R :=
X

X + Y

approximately follows a normal distribution R ∼ N(µ∗, σ
2
∗) whose mean µ∗ and stan-

dard deviation σ∗ are given by

µ∗ :=
µ1

µ1 + µ2
, σ∗ :=

σ

µ

√
s(1 − s) + (r − s)2 ;

µ := µ1 + µ2 and σ2 := σ2
1 + σ2

2 are the mean and variance of X + Y ∼ N(µ, σ2), while
r and s stand for the ratios r := µ1/µ and s := σ2

1/σ
2.

The exact median of R is always µ∗, i.e. Pr
(
R ≤ µ∗

)
= 1/2. If the condition r = s

holds, its exact mean is E
[
R
]

= µ∗ (this is the case, in particular, when X and Y
approximate Poisson distributions so that µ1 = σ2

1 and µ2 = σ2
2).

Proof. The following proof is based on the distribution function of R. Since σ1 � µ1

and σ2 � µ2, the probability that X or Y assumes a negative value is negligible,
Pr
(
X ≤ 0

)
≈ 0 and Pr

(
Y ≤ 0

)
≈ 0. Therefore, the distribution of R is essentially

determined by the probabilities Pr
(
R ≤ a

)
for a ∈ [0,1]. For a given value a, we

have the equality

R ≤ a ⇐⇒ X

X + Y
≤ a ⇐⇒ X ≤ aX + aY

⇐⇒ (1 − a)X − aY ≤ 0 ⇐⇒ Za ≤ 0
(A.19)

where Za := (1 − a)X − aY . Since X and Y are independent, Za ∼ N(µa, σ
2
a) with

µa := (1 − a)µ1 − aµ2 and σ2
a := (1 − a)2σ2

1 + a2σ2
2 . The corresponding standardised

variable is Z∗
a := (Za − µa)/σa ∼ N(0,1). Using the common symbol Φ for the

distribution function of the standard normal distribution,

Φ(a) :=
∫ a

−∞

1√
2π

e−
1
2x

2
dx ,

Eq. (A.19) now implies that

Pr
(
R ≤ a

)
= Pr

(
Za ≤ 0

)
= Pr

(
σaZ

∗
a + µa ≤ 0

)
= Pr

(
Z∗

a ≤ −µa/σa
)

= Φ(−µa/σa)

= Φ

 aµ2 − (1 − a)µ1√
(1 − a)2σ2

1 + a2σ2
2

 .

With µ1 = rµ, σ2
1 = sσ2 and σ2

2 = (1−s)σ2 the numerator above becomes a(µ1 +µ2)−
rµ = µ(a − r) and the square of the denominator can be rewritten as (1 − a)2sσ2 +
a2(1 − s)σ2. Inserting these equalities into the expression for Pr

(
R ≤ a

)
yields

Pr
(
R ≤ a

)
= Φ

(µ
σ

(a− r) ·
[
(1 − a)2s + a2(1 − s)

]−1/2
)

(A.20)

180 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

and thus Pr
(
R ≤ µ∗

)
= Pr

(
R ≤ r

)
= Φ(0) = 1/2, showing that µ∗ is indeed

the median of R. Obviously, (A.20) describes a normal distribution except for the
“distortion” factor in square brackets. We will now try to estimate the amount of
distortion by comparing the quantiles of R with those of a normal distribution. Let ac

be the quantile of R corresponding to C standard deviations of a normally distributed
random variable, i.e. to a z-score of C. This quantile is defined by the condition
Pr
(
R ≤ ac

)
= Φ(C). If R were normally distributed, R ∼ N(µ∗, σ

2
∗), ac would simply

be given by
ac = µ∗ + σ∗C . (A.21)

We will now compute the true quantile aC and compare the resulting expression with
(A.21). Eq. (A.20) implies that

µ

σ
(ac − r) ·

[
(1 − ac)2s + a2

c (1 − s)
]−1/2

= C . (A.22)

Taking the square of (A.22), we obtain:

Pr
(
R ≤ ac

)
= Φ(±C)

⇐⇒
µ2

σ2 (ac − r)2 = C2
(
(1 − ac)2s + a2

c (1 − s)
)

⇐⇒ µ2a2
c − 2µ2rac + µ2r2 = σ2C2

(
a2
c − 2sac + s

)
⇐⇒

(
µ2 − σ2C2

)
a2
c + 2

(
sσ2C2 − µ2r

)
ac +

(
µ2r2 − sσ2C2

)
= 0

⇐⇒ (1 − κ2
c)a

2
c + 2(κ2

cs− r)ac + (r2 − κ2
cs) = 0 .

with the abbreviation κc := C · σ/µ, so that κ2
c = σ2C2/µ2. Solving this quadratic

equation for ac leads to

ac =
r − sκ2

c ±
√

(κ2
cs− r)2 − (1 − κ2

c)(r2 − κ2
cs)

1 − κ2
c

= r +
κ2
c (r − s)

1 − κ2
c

±
√
κ2
c

√
(1 − κ2

c)s(1 − s) + (r − s)2

1 − κ2
c

= r + κc

√
(1 − κ2

c)s(1 − s) + (r − s)2

1 − κ2
c

+ κ2
c

r − s

1 − κ2
c

,

(A.23)

making use of the fact that the ±-term has the same sign as C and κc. Assuming that
|κc| = |C · σ/µ| is small,2 we have 1−κ2

c ≈ 1 and (1−κ2
c)

−1 = 1 +O
(
|κc|2

)
≈ 1. This

implies that√
(1 − κ2

c)s(1 − s) + (r − s)2

1 − κ2
c

=
(
1 − κ2

c

)−1 ·
(
s(1 − s) + (r − s)2 − κ2

cs(1 − s)
)−1/2

=
(

1 + O
(
|κc|2

))
·
(√

s(1 − s) + (r − s)2 + O
(
|κc|2

))
=
√
s(1 − s) + (r − s)2 + O

(
|κc|2

)
2Since σ � µ and the range C ∈ [−5,5] covers practically the entire probability mass of the

distribution with Φ(−5) < 5 · 10−7, this assumption is valid.

A.4. SOME MATHEMATICAL BACKGROUND 181

and hence

ac = r + κc

√
s(1 − s) + (r − s)2 + κ2

c (r − s) + O
(
|κc|3

)
. (A.24)

Inserting the definition of κc into (A.24), we finally obtain

ac = r +
σ

µ

√
s(1 − s) + (r − s)2 · C︸ ︷︷ ︸

normal approximation

+
σ2

µ2 (r − s) · C2︸ ︷︷ ︸
asymmetry

+O
(
|C · σ/µ|3

)
. (A.25)

When we ignore the asymmetry term, which is O
(
|κc|2

)
and the remaining terms

of higher order, a comparison of (A.25) with (A.21) shows that the quantiles of R
correspond to those of a normal distribution with mean

µ∗ := r

and standard deviation

σ∗ :=
σ

µ

√
s(1 − s) + (r − s)2 .

In the special case r = s, (A.23) becomes

ac = r + κc

√
s(1 − s)√
(1 − κ2

c)
,

which is a symmetric function of C in the sense that (a−c−r) = −(ac−r).3 Hence the
distribution of R is symmetric around r and we have E

[
R
]

= r = µ∗ by the standard
symmetry argument. In addition, Eq. (A.25) becomes

ac = r +
σ

µ

√
s(1 − s) · C + O

(
|C · σ/µ|3

)
,

so that the normal approximation to R is highly accurate.

A.4 Some mathematical background

The Gamma function Γ(a) is a generalisation of the factorial. It can be defined by
the Gamma integral

Γ(a) :=
∫ ∞

0
ta−1e−t dt (A.26)

for a > 0. Its most important properties are the recurrence relation

Γ(a + 1) = a · Γ(a) (A.27)

and its relation to the factorial
n! = Γ(n + 1) (A.28)

3Note that κc is a symmetric function of C, i.e. κ−c = −κc.

182 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

for n ∈ N0 (Weisstein 1999, s.v. Gamma Function).
The upper incomplete Gamma function Γ(a, x) is given by the partial Gamma

integral

Γ(a, x) :=
∫ ∞

x

ta−1e−t dt (A.29)

for a > 0 and x ≥ 0. The complementary integral leads to the lower incomple
Gamma function

γ(a, x) :=
∫ x

0
ta−1e−t dt (A.30)

for a > 0 and x ≥ 0. Apart from the obvious identities

Γ(a) = Γ(a,0) = lim
x→∞

γ(a, x) = γ(a, x) + Γ(a, x) , (A.31)

the incomplete Gamma functions can be used to represent the distribution function
of a Poisson distribution. For a random variable X ∼ P(λ) (i.e. X follows a Poisson
distribution with parameter λ), we have

Pr
(
X ≤ n

)
= e−λ

n∑
k=0

λk

k!
=

Γ(n + 1, λ)
Γ(n + 1)

(A.32)

and

Pr
(
X ≥ n

)
= e−λ

∞∑
k=n

λk

k!
=

γ(n, λ)
Γ(n)

(A.33)

(Weisstein 1999, s.v. Incomplete Gamma Function). The ratios on the right-hand side
are also known as the regularised Gamma functions P(a, x) := γ(a, x)/Γ(a) and
Q(a, x) := Γ(a, x)/Γ(a). For fixed a, the function x 7→ P(a, x) is the distribution
function of a Gamma distribution (Weisstein 1999, s.v. Gamma Distribution). The
incomplete and regularised Gamma functions can be computed efficiently using a
power series expansion similar to (A.32) and (A.33). They are provided by many
statistical software libraries through the Gamma distribution, e.g. in R:

Γ(a, x) = gamma(a) * pgamma(x, shape=a, scale=1, lower=F)
γ(a, x) = gamma(a) * pgamma(x, shape=a, scale=1)

The Beta function B(a, b) is a generalisation of the binomial coefficient. It can
be defined in terms of the Gamma function by

B(a, b) :=
Γ(a)Γ(b)
Γ(a + b)

(A.34)

or by the Beta integral

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1 dt (A.35)

for a, b > 0. Its relation to the binomial coefficient is given by(
n

k

)
=
(
(n + 1) · B(n− k + 1, k + 1)

)−1
(A.36)

A.4. SOME MATHEMATICAL BACKGROUND 183

for n, k ∈ N0 with n ≥ k (Weisstein 1999, s.v. Beta Function). The incomplete Beta
function B(x;a, b) is defined by the partial Beta integral

B(x;a, b) =
∫ x

0
ta−1(1 − t)b−1 dt (A.37)

for a, b > 0 and x ∈ [0,1], and satisfies B(1;a, b) = B(a, b) (Weisstein 1999,
s.v. Incomplete Beta Function). Again, the regularised Beta function is defined as
I(x;a, b) := B(x;a, b)/B(a, b). For fixed a and b, the function x 7→ I(x;a, b) is the
distribution function of a Beta distribution (Weisstein 1999, s.v. Beta Distribution). In
this way, it can easily be computed in R (and other statistical software libraries):

I(x;a, b) = pbeta(x, shape1=a, shape2=b)
B(x;a, b) = pbeta(a, b) * pbeta(x, shape1=a, shape2=b)

An important property of the regularised Beta function is its relation to the binomial
distribution. For a random variable X ∼ B(n, p) (i.e. X follows a binomial distribu-
tion with n trials and success probability p), we have

Pr
(
X ≥ k

)
=

n∑
j=k

(
n

j

)
pj(1 − p)n−j = I(p;k, n− k + 1) (A.38)

for k ∈ {0, . . . , n} (Weisstein 1999, s.v. Binomial Distribution). Binomial confidence
intervals can thus be obtained from the inverse of I(x;a, b) with respect to x, which
is denoted I−1. For instance, the upper one-sided confidence interval for the unknown
success probability p at significance level α, given an observed value X = k, is the
set

C =
{
p ∈ [0,1]

∣∣Pr
(
X ≥ k

)
≥ α

}
= {p ∈ [0,1] | I(p;k, n− k + 1) ≥ α}
= [p∗,1]

with p∗ = I−1(α;k, n−k+1). Lower and two-sided confidence intervals are obtained
in a similar way.

The sfunc module of the UCS/R library provides implementations of the com-
plete, incomplete and regularised Gamma and Beta functions, together with their log-
arithms, the inverse functions, and binomial confidence intervals (see Section B.2).
All functions are also available to UCS/Perl scripts through the UCS::SFunc module
(see Section B.1).

184 APPENDIX A. PROOFS AND MATHEMATICAL BACKGROUND

Appendix B

UCS Software Documentation

B.1 UCS/Perl

This section contains the full UCS/Perl documentation, automatically converted from
POD to LATEX format. The formatting has been improved with some automatic trans-
formations (based on Perl scripts). The version documented here is UCS v0.5, the
official version that accompanies the thesis.

UCS/Perl documentation contents

General Documentation . 186

ucsintro . 186

ucsfile . 188

ucsexp . 193

ucsam . 198

UCS/Perl Programs . 202

ucsdoc . 202

ucs-config . 202

ucs-tool . 204

ucs-list-am . 205

ucs-make-tables . 207

ucs-summarize . 210

ucs-select . 211

ucs-add . 212

ucs-join . 214

ucs-sort . 216

ucs-info . 217

ucs-print . 218

185

186 APPENDIX B. UCS SOFTWARE DOCUMENTATION

UCS/Perl Modules . 220

UCS . 220

UCS::File . 224

UCS::R . 228

UCS::R::Expect . 230

UCS::R::RSPerl . 230

UCS::SFunc . 231

UCS::Expression . 237

UCS::Expression::Func . 240

UCS::AM . 241

UCS::AM::HTest . 245

UCS::AM::Parametric . 248

UCS::DS . 250

UCS::DS::Stream . 252

UCS::DS::Memory . 256

UCS::DS::Format . 265

B.1.1 General Documentation

� ucsintro

A first introduction to UCS/Perl

INTRODUCTION

UCS is a set of libraries and tools intended for the empirical study of cooccurrence statistics.
Its major uses are to apply such statistics, called association measures, to cooccurrence data
obtained from a corpus, and to evaluate the resulting association scores and rankings against
(manually annotated) reference data.

The frequency data extracted from a given corpus for a given type of cooccurrences consists
of a list of pair types with their frequency signatures (i.e. joint and marginal frequencies),
and is referred to as a data set. See (Evert 2004) for a detailed explanation of these concepts,
different types of cooccurrences, and correct methods for obtaining frequency data. Data sets,
stored in a special .ds file format, are the fundamental objects of the UCS toolkit. Most UCS
programs manipulate or display such data set files.

The UCS implementation relies heavily on the programming language Perl
(http://www.perl.com/) and the free statistical environment R (http://www.r-project.org/) as
a library of mathematical and statistical functions. The core of UCS is written in Perl (the
UCS/Perl part), but there is also a small library of R functions for interactive work within
R (the UCS/R part). UCS/Perl uses R as a back-end, making the most important statistical
functions available through a Perl module.

UCS/Perl is mainly a collection of Perl modules that perform the following tasks:

B.1. UCS/PERL 187

• read and write data set files (.ds, .ds.gz)

• manage in-memory representations of data sets

• compile UCS expressions for easy access to data set variables

• filter, annotate, sort, and analyse data sets

• provide a repository of built-in association measures

• display data sets and evaluation graphs (Perl/Tk and R) [not implemented yet]

Most UCS programs will be custom-built scripts, using the library of support functions pro-
vided by the UCS/Perl modules. Loading a data set, annotating it with association scores
from one or more measures, and sorting it in various ways can be done with a few lines of
Perl code. There are also some ready-made programs in UCS/Perl that perform such stan-
dard tasks, operating on data set files. A substantial part of the UCS/Perl functionality is thus
accessible from the command-line, at the cost of some additional overhead compared to a
custom script (which operates on in-memory representations).

Below, you will find a list of the general documentation files, Perl modules, and programs
that are included in the UCS/Perl distribution. Manpages for all modules and programs (as
well as the general documentation) are easily accessible with the ucsdoc program, and can
also be formatted for printing.

General Documents

ucsdoc ucsintro # this introduction
ucsdoc ucsfile # description of the UCS data set file format (.ds)
ucsdoc ucsexp # UCS expressions and wildcards
ucsdoc ucsam # overview of built-in association measures

UCS/Perl MODULES

use UCS; # core library
use UCS::File; # file access utilities
use UCS::R; # interface to UCS/R
use UCS::SFunc; # special functions and statistical distributions

use UCS::Expression; # Perl code interspersed with UCS variables
use UCS::Expression::Func; # utility functions available in UCS expressions

use UCS::AM; # implementations of various association measures
use UCS::AM::HTest; # add-on package: variants of hypothesis tests
use UCS::AM::Parametric; # add-on package: parametric association measures

use UCS::DS; # data sets ...
use UCS::DS::Stream; # i/o streams for data set files
use UCS::DS::Memory; # in-memory representation of data sets
use UCS::DS::Format; # ASCII formatter (+ other formats)

See the respective manpages (ucsdoc ModuleName) for more information.

188 APPENDIX B. UCS SOFTWARE DOCUMENTATION

UCS/Perl PROGRAMS

ucsdoc # front-end to perldoc
ucs-config # automatic configuration of UCS/Perl scripts
ucs-tool # find and run user-contributed UCS/Perl scripts
ucs-list-am # list built-in association measures & add-on packages

ucs-make-tables # compute frequency signatures from list of pair tokens
ucs-summarize # print (statistical) summaries for selected variables

ucs-select # select rows and/or columns from a data set file
ucs-add # add variables to a data set file
ucs-join # combine rows and/or columns from two data sets
ucs-sort # sort data set file by specified attribute(s)

ucs-info # display information from header of data set file
ucs-print # format data set as ASCII table (for viewing and printing)

See the respective manpages (ucsdoc ProgramName) for more information.

TRIVIA

UCS stands for Utilities for Cooccurrence Statistics.

REFERENCES

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, University of Stuttgart, Germany.

On-line repository of association measures: http://www.collocations.de/

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucsfile

The UCS data set file format

INTRODUCTION

UCS data sets are stored in a simple tabular format, similar to that of a statistical table.
Each row in the table corresponds to a pair type, and its individual fields (columns) provide
various kinds of information about the pair type:

B.1. UCS/PERL 189

• a unique ID number (unique within the data set)

• the component lexemes

• the pair type’s frequency signature

• [optional] contingency tables of observed and expected frequencies computed from
the frequency signature

• [optional] coordinates computed from the frequency signature

• association scores and rankings for various association measures

• arbitrary user-defined attributes, especially for the manual annotation of true positives
in an evaluation study

Following statistical terminology, the table columns are referred to as the variables of a data
set (each of which assumes a specific value for each pair type). Columns are separated by a
TAB character ("\t"), and the first row lists the variable names as table headings (see the
section on VARIABLES below for naming conventions).

The actual data table may be preceded by an optional header of Perl-style comment lines
(beginning with a # character). Lines with the special format

##:: <variable> = <value>

define global variables, which may be interpreted by some of the UCS/Perl programs (see
the section on GLOBAL VARIABLES below). The variable name (variable) may only contain
alphanumeric characters (A-Z a-z 0-9) and the period (.). The value may contain arbi-
trary characters, including whitespace (but leading and trailing whitespace will be ignored).
Variable definitions must not span multiple lines.

UCS data set files must have the filename extension .ds. They may be compressed with gzip
(and they usually are), in which case they carry the extension .ds.gz. UCS library functions
will automatically recognise and uncompress data set files with this extension.

A special subtype of data sets are the annotation database files with extension .adb (un-
compressed) or .adb.gz (compressed). Annotation databases omit all frequency information
and association scores, listing only component lexemes and user-defined attributes. They are
used as repositories of lexical information (such as manually annotated true positives for eval-
uation purposes) that applies to data sets extracted from different corpora (or with different
methods).

GLOBAL VARIABLES

size number of pair types in a data set

The only global variable that is currently supported is size, an integer specifying the number
of pair types in a data set. Availability of the data set size in the header may give a slight
performance improvement when loading data set files into memory. If size is set to an
incorrect value, the behaviour of UCS/Perl programs and modules is undefined.

A global variable whose name is identical to that of a variable defined in the data set (i.e. a
table column) is interpreted as an explanatory note. Such notes should typically be given
for all user-defined variables, and also for user-defined association measures.

Unsupported variables will simply be ignored and will not raise errors or warnings when a
data set file is parsed.

190 APPENDIX B. UCS SOFTWARE DOCUMENTATION

DATA TYPES

The UCS system supports four different data types:

BOOL a logical (Boolean) value
INT a signed integer value (>= 32 bits)
DOUBLE a floating-point value (IEEE double precision)
STRING an arbitrary string (ISO-8859-1 or UTF-8)

Boolean values are represented by 1 (true) and 0 (false). String values may contain blanks
(but no TAB characters) and are neither quoted nor escaped. Full support for Unicode strings
(UTF-8) is only available within the UCS/Perl subsystem.

The UCS/R subsystem will interpret Boolean values as logical variables, and strings (except
for the component lexemes) as factor variables with a fixed set of levels (which are automat-
ically determined from the data).

User-defined attributes may assume the special value NA for missing values. (Note that the
string NA will always be interpreted as a missing value rather than a literal character string!)
UCS/R has built-in support for missing values, whereas UCS/Perl represents them by undef
entries. Programs that do not support missing values may replace them by 0 (BOOL and
INT), 0.0 (DOUBLE), or the empty string "" (STRING).

The data type of a variable is uniquely determined by the variable name, as detailed in the
section on VARIABLES below.

VARIABLES

In order to be compatible with the R language, variable names may only contain alphanu-
meric characters (A-Z a-z 0-9) and periods (.), and they must begin with a letter. The main
function of periods is to delimit words in complex variable names, replacing blanks, hyphens,
and underscores. UCS variable names are case-sensitive.

Periods are not allowed in Perl variable names, but UCS expressions provide a special syntax
for direct access to data set variables (see the ucsexp and UCS::Expression manpages). In the
rare case where plain Perl variables are used to store information from a data set, periods
should be replaced by underscores (_) in the variable names.

There are strict naming conventions for data set variables, which are detailed in the follow-
ing subsections. Apart from a fixed list of core variables (whose names do not contain the .
character), all variable names begin with a period-separated prefix that determines the data
type of the variable.

Core Variables Core variables represent the minimal amount of information that must be
present in a data set file (i.e. evidence for cooccurrences extracted from a corpus). All core
variables are mandatory, except in the case of annotation database files (.adb), which omit
frequency signatures (f f1 f2 N). For relational cooccurrences, frequency signatures can be
computed with the ucs-make-tables utility from a stream of pair tokens (cf. the ucs-make-
tables manpage).

B.1. UCS/PERL 191

INT id a numerical ID value (unique within the data set)
STRING l1 first component type of the pair
STRING l2 second component type of the pair

INT f cooccurrence frequency of pair type
INT f1 marginal frequency of first component
INT f2 marginal frequency of second component
INT N sample size (identical for all pair types)

id is a numerical ID value, which must be unique within a data set. Its intended uses are
to identify pair types in subsets selected from a given data set, and to validate line numbers
when attributes or association scores are computed by an external program and re-integrated
into the data set file.

The lexemes l1 and l2 are the component (word) types that uniquely identify a pair type.
Consequently, a data set file must not contain multiple rows with identical l1 and l2 values.
UCS/Perl should provide reasonably good support for Unicode strings as lexemes (in UTF-8
encoding), at least when running on Perl version 5.8.0 or newer.

The quadruple f f1 f2 N is called the frequency signature of a pair type. It contains all
the frequency information used by association measures and is equivalent to a contingency
table. Note that the sample size N is identical for all pair types in a data set and is included
here mainly for convenience’ sake (so that association scores can be computed from the row
data without reference to a global variable). See (Evert 2004) for more information on
lexemes and frequency signatures.

Derived Variables Derived variables can be computed from the frequency signatures of
pair types, providing different "views" of the frequency information. Normally, they are not
annotated explicitly but are accessible through UCS expressions, which compute the re-
quired values automatically (see the ucsexp and UCS::Expression manpages).

INT O11 contingency table of observed frequencies
INT O12 (computed from frequency signature)
INT O21
INT O22

INT R1 row sums in observed contingency table
INT R2
INT C1 column sums in observed contingency table
INT C2

The variables O11 O12 O21 O22 represent the observed contingency table of a pair type.
Note that their frequency information is equivalent to the frequency signature of the pair
type. In addition, the row sums (R1 R2) and column sums (C1 C2) of the contingency table
are also made available.

DOUBLE E11 contingency table of expected frequencies
DOUBLE E12 under point null hypothesis
DOUBLE E21 (computed from row and column sums)
DOUBLE E22

192 APPENDIX B. UCS SOFTWARE DOCUMENTATION

The variables E11 E12 E21 E22 represent the contingency table of expected frequencies,
i.e. the expectations of the multinomial sampling distribution under the point null hypoth-
esis of independence. Most association measures compare observed frequencies to expected
frequencies in some way.

In a geometric interpretation of a data set, each pair type can be interpreted as a point x
in a three-dimensional coordinate space P. Since the sample size N is a constant parameter
within the data set, the coordinates of x are given by the joint and marginal frequencies f f1
f2.

DOUBLE lf logarithmic coordinates
DOUBLE lf1 (base 10 logarithm)
DOUBLE lf2

Since the coordinates usually have a skewed distribution across several orders of magnitude,
it is often more convenient to visualise them on a logarithmic scale. The variables lf lf1
lf2 give the base ten logarithms of the coordinate triple f f1 f2.

DOUBLE e ebo-coordinates
DOUBLE b (expected, balance, observed)
DOUBLE o

DOUBLE le logarithmic ebo-coordinates
DOUBLE lb (base 10 logarithm)
DOUBLE lo

Theoretical and empirical studies of the properties of association measures will often be based
on transformed coordinate systems in the coordinate space. The most useful system are the
ebo-coordinates e b o (for expected, balance, observed). All three coordinates range from 0
to infinity (constrained by the sample size parameter N). The base 10 logarithms le lb lo of
the ebo-coordinates are convenient for visualisation purposes. le and lb range from -infinity
to +infinity, while lo ranges from 0 to infinity (all constrained by N).

For backward compatibility, a transformation of the coordinate system to relative frequen-
cies, which were used in earlier versions of this software, is also supported. The relative
cooccurence (p) and marginal (p1 p2) frequencies are computed from the frequency signa-
ture according to the equations p = f/N, p1 = f1/N, and p2 = f2/N. Note that the logarith-
mic versions lp lp1 lp2 are negative base 10 logarithms, ranging from 0 to infinity.

Association Scores and Rankings These variables store association scores and rankings
for an arbitrary number of association measures. Each association measure is identified by a
key, which is appended to the respective variable name prefix (resulting in the names am.key
and r.key). See the UCS::AM manpage (and the manpages of the add-on packages listed
there) for a wide range of built-in association measures.

DOUBLE am.* association scores from measure identified by *
INT r.* ranking for this measure (ties are allowed)

Rankings are often computed on the fly, but they may also be annotated in data set files.
Note that the r.* variables should not break ties but report identical ranks (and skip an
appropriate number of subsequent ranks). The ucs-sort program (cf. the ucs-sort manpage)
can be used to resolve ties in various ways (using other association scores, lexical sort order,
or randomisation).

B.1. UCS/PERL 193

User-Defined Variables User-defined variables may contain arbitrary information, which
is typically used for filtering data sets and to determine true positives in evaluation tasks.
However, some special-purpose association measures may also base their association scores
on their values. In order to allow a minimal amount of automatic processing (such as sorting
by user-defined attributes), the variable name prefix of a user-defined variable is used to
determine its data type, according to the following list.

BOOL b.* user-defined Boolean variable
INT n.* user-defined integer variable (n=number)
DOUBLE x.* user-defined floating-point variable
STRING f.* user-defined string variable (f=factor)

User-defined variables with the additional prefix ucs (corresponding to variable names
b.ucs.*, n.ucs.*, x.ucs.*, and f.ucs.*) are reserved for internal use by UCS modules
and programs.

REFERENCES

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, University of Stuttgart, Germany.

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucsexp

Introduction to UCS expressions and wildcard patterns

INTRODUCTION

UCS expressions and wildcard patterns are two central features of the UCS/Perl system,
which are to a large part responsible for its convenience and flexibility.

UCS wildcard patterns are used by most command-line tools to select data set variables with
the help of shell-like wildcard characters (?, *, and %). A programmer interface is provided
by the UCS::Match function from the UCS module (see the UCS manpage).

UCS expressions give easy access to data set variables from Perl code. With only a basic
knowledge of Perl syntax, users can compute association scores and select rows from a data
set (using the ucs-add and ucs-select utilities). The programmer interface is provided by the
UCS::Expression module (see the UCS::Expression manpage for details). Before reading the
section on UCS EXPRESSIONS, you should become familiar with the UCS data set format and
variable naming conventions as described in the ucsfile manpage.

194 APPENDIX B. UCS SOFTWARE DOCUMENTATION

When used on the command line, wildcard patterns usually have to be quoted to keep the
shell from expanding wildcards (the GNU Bash shell knows better, though, unless there hap-
pen to be matching files in the current directory). Note that when a list of variable names
and patterns is passed to one of the UCS/Perl utilities, each name or wildcard pattern has to
be quoted individually. UCS expressions (almost) always have to be quoted on the command-
line. Single quotes (’...’) are highly recommended to avoid interpolation of variables and
other meta-characters. The UCS/Perl utilities expect a UCS expression to be passed as a sin-
gle argument, so the expression must be written as one string. In particular, any expression
containing whitespace must be quoted.

UCS WILDCARD PATTERNS

As described in the ucsfile manpage, UCS variable names may only contain the alphanumeric
characters (A-Z a-z 0-9) and the period (.), which serves as a general-purpose word de-
limiter. There is a fixed set of core variables, whose names do not contain a period. All
other variable names must begin with a prefix (one of am. r. b. n. x. f.) that de-
termines the data type of the variable. The three wildcard characters take the special role of
the period into account. Their meanings are

? ... a single character, except "."
* ... a string that does NOT contain a "."
% ... an arbitrary string of characters

The % wildcard is typically used to select variable names with a specific prefix or suffix, while
* matches the individual words (or parts of words) in a complex variable name.

Examples

• a pattern without wildcard characters corresponds to a literal variable name : id, O11,
am.log.likelihood

• the pattern * matches all core variables (and nothing else); % matches all variable
names

• O* matches the derived variables O11, O12, O21, and O22; *11 matches O11 and E11,
but no complex variable names

• prefix patterns allow us to select variables by their type, e.g. am.% for all association
scores, or f.% for all user-defined string variables (factors); the * wildcard is inappro-
priate here because the variable names may contain additional period after the prefix

• when variable names are chosen systematically, prefix patterns can also be used to
select meaningful groups of variables: am.chi.squared%matches all association scores
that are derived from a chi-squared test, and am.%.pv matches all association scores
that can be interpreted as probability values (see the UCS::AM and UCS::AM::HTest
manpages for more information)

B.1. UCS/PERL 195

UCS EXPRESSIONS

An UCS expression consists of ordinary Perl code extended with a special syntax to access
data set variables. This code is compiled on the fly and applied to the rows of a data set one
at a time. The return value of a UCS expression is the value of the last statement executed,
unless there is an explicit return statement. When the expression is used as a condition to
select rows from a data set, it evaluates to true or false according to the usual Perl rules (the
empty string ” and the number 0 are false, everything else is true).

Data set variables are accessed by their variable name enclosed in % characters. They evaluate
to the respective value for the current row in the data set and can be used like ordinary scalar
variables in Perl. Thus, %f% corresponds to the cooccurrence frequency f of a pair type, %l1%
and %l2% to its component lexemes, and %am.log.likelihood% to an association score from
the log-likelihood measure. Derived variables (see the ucsfile manpage) do not have to be
annotated explicitly in a data set. When necessary, they are computed on the fly from a
pair type’s frequency signature. Variable references should be treated as read-only (they are
automatically localised so that assigning a new value to a UCS variable reference does not
modify the original data set).

Any temporary variables needed by the Perl code should be made lexical by declaring them
with the my keyword. Variable names beginning with an underscore (such as $_f or $_n_-
total) are reserved for internal use. Please don’t use global variables, which pollute the
namespaces and might interfere with other parts of the program. If you feel that you abso-
lutely need a variable to carry information from one row to the next, use a fully qualified
variable name in your own namespace.

Since a UCS expression is compiled by the Perl interpreter, it offers the full power and flexi-
bility of Perl, but it also shares its idiosyncrasies and traps for the unwary. You should have
a good working knowledge of Perl in order to write UCS expressions. If you don’t know the
difference between == and eq, now is the time to type perldoc perl and start reading the
Perl documentation.

Just as in Perl, data types are automatically converted as necessary. Missing values (which
appear as NA in data set files) are represented by undef in Perl. When there may be miss-
ing values in a data set, test for definedness (e.g. with defined(%b.colloc%)) to avoid
warning messages. UCS expression can use all standard Perl functions (described on the
perlfunc manpage). In addition, the utility functions from UCS::Expression::Func (see the
UCS::Expression::Func manpage for a detailed description) and a range of special mathemati-
cal and statistical functions defined in the UCS::SFunc module (see the UCS::SFunc manpage
for a complete listing and details) are imported automatically and can be used without quali-
fication.

UCS Expressions for Programmers The programmer interface to UCS expressions is
provided by the UCS::Expression module (see the UCS::Expression manpage), with functions
for compiling and evaluating UCS expressions. The UCS::DS::Memory module includes sev-
eral methods that apply a UCS expression to the in-memory representation of a UCS data set.
Note that all built-in association measures are implemented as UCS expressions (see the UCS
and UCS::AM manpages for more information, or have a look at the source files).

When you want to use external functions (either defined by your own module or im-
ported from a separate module), they must be fully qualified. For instance, you must write
Math::Trig::atan(1) instead of just atan(1). Make sure that the module is loaded (with
use Math::Trig;) before the expression is evaluated for the first time. You can just put

196 APPENDIX B. UCS SOFTWARE DOCUMENTATION

the use statement in the Perl script or module where the UCS expression is defined, and it
is probably also safe to include it in the expression itself (which allows you to use external
libraries even in UCS expression typed on the command line).

An advanced feature of UCS expressions that is only available through the programmer in-
terface are parameters. Parameters play the role of constants in UCS expressions: they
can be accessed like data set variables, but their values are fixed and stored within the
UCS::Expression object. Parameter names must be valid UCS identifiers and should be all
uppercase in order to avoid conflicts with variable names. Parameters must be declared and
intialised when the UCS expression is compiled. Their values can be changed with the set_-
param method. See the UCS::Expression manpage for more information.

Examples

• The simplest UCS expressions compare the values of a data set variable to a constant.
Recall that == is used for numerical comparison and eq for string comparison in Perl.
Both operands will automatically be converted into an appropriate data type.

%f% == 1 # hapax legomena (single occurrences)

%f% >= 5 # pair types with cooccurrence freq. >= 5

%l1% eq "black" # first component type is "black"

Since UCS expressions are essentially short Perl scripts, the # character can be used
to introduce line comments. String variables can also be matched against Perl regular
expressions:

%l2% =~ /ness$/ # second component ends in ...ness

• Such simple comparisons can be combined into complex Boolean expressions. Use of
the lexical operators and, or, and not is recommended for readability (and to avoid
confusion with bit operators). Parentheses can also improve readability and help to
avoid ambiguities.

%f% >= 5 and %f% < 10 # pair types in frequency range 5 .. 9

pair types that are ranked high by t-score, but not by log-likelihood
(%r.t.score% <= 100) and not (%r.log.likelihood% <= 100)

• Missing values (NA) in a data set can be detected with Perl’s defined operator. It may be
useful to test data set variables before using them in order to avoid warning messages.
The following examples assume a user-defined integer variable n.accept, which lists
the number of annotators who have accepted a particular pair type as a collocation.

not defined(%n.accept%) # selects rows where n.accept has the value NA

%n.accept% >= 1 # will print warnings for all NA values

defined(%n.accept%) and (%n.accept% >= 1) # this is safe

B.1. UCS/PERL 197

• UCS expressions may contain multiple Perl statements, which must be separated by
semicolon (;) characters. In this way, a complex formula can be broken down into
smaller parts. The value of the expression is determined by the last statement (or
by an explicit return command). Temporary variables that hold intermediate values
should always be declared with lexical scope (using my). The first example computes
the minimum of two frequency ratios, using the pre-declared min() function from
UCS::Expression::Func.

UCS expression may also extend over multiple lines
my $ratio1 = %f% / %f1%;
my $ratio2 = %f% / %f2%;
min($ratio1, $ratio2); # min() is pre-declared

The second example shows how temporary variables can be used to replace missing
values with defaults. Here the integer variable n.accept (for the number of annotators
that accepted the given pair type as a collocation) defaults to 0.

my $n = (defined %n.accept%) ? %n.accept% : 0;
$n >= 1;

The third example identifies prime numbers used as ID values.

foreach my $x (2 .. int(sqrt(%id%))) {
return 0 if (%id% % $x) == 0;

}
return 1;

Dirty Tricks Things not to do ...

• Global variables can be used to carry information from one row to the next (while
lexicals will be re-instantiated and possibly initialised for each row they are applied
to). In order to avoid namespace pollution, put the global variable in a namespace of
your own. The example below uses a global variable in a made-up namespace (scrap)
to compute partial sums for the numerical variable x.weight.

$scrap::partial_sum += %x.weight%;

Of course, this expression will only work once. After that, the variable
$scrap::partial_sum must be reset to zero. As long as the first row in the data
set has an id value of 1, we can use the following trick (be careful when using the
UCS::DS::Memory module, where index activation might change the order of the
rows).

$scrap::partial_sum = 0 if %id% == 1;
$scrap::partial_sum += %x.weight%;

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

198 APPENDIX B. UCS SOFTWARE DOCUMENTATION

� ucsam

Association measures in UCS/Perl

INTRODUCTION

The statistical analysis of cooccurrence data is usually based on association measures, math-
ematical formulae that compute an association score from the joint and marginal frequen-
cies of a pair type (which are called a frequency signature in UCS. This score is a single
floating-point number indicating the amount of statistical association between the compo-
nents of the pair type. Association measures can often be written conveniently in terms of
a contingency table of observed frequencies the corresponding expected frequencies under
the null hypothesis that there is no association.

For instance, the word pair black box occurs 123 times in the British National Corpus (BNC),
so its joint frequency is f = 123. The adjective black has a total of 13,168 occurrences, and
the noun box has 1,810 occurrences, giving marginal frequencies of f1 = 13,168 and f2 =
1,810. From these data, the MI measure computes an association score of 1.4, while the
log.likelihood measure computes a score of 567.72. Both scores indicate a clear positive
association, but they cannot be compared directly: each measure has its own scale.

A more detailed explanation of contingency tables and association scores as well as a com-
prehensive inventory of association measures with equations given in terms of observed and
expected frequencies can be found on-line at http://www.collocations.de/AM/. Also see the
ucsfile manpage to find out how frequency signatures, contingency tables and association
scores are represented in UCS data set files.

UCS/Perl supports more than 40 different association measures and variants. In order to keep
them managable, the measures are organised in several packages: a core set of widely-used
"standard" measures is complemented by add-on packages for advanced users. Each package
is implemented by a separate Perl module. Consult the module’s manpage for a full listing of
measures in the package and detailed descriptions. Listings of add-on packages, association
measures, and some additional information can also be printed with the ucs-list-am program
(see the ucs-list-am manpage).

Currently, there are two add-on packages in addition to the standard measures.

UCS::AM (the "standard" measures)

This core set contains all well-known association measures such as MI, t-score, and
log-likelihood (see the listing in the Section SOME ASSOCIATION MEASURES be-
low). These measures are also made available by various other tools (e.g. the NSP
toolkit, see http://www.d.umn.edu/~tpederse/nsp.html) and they have often been used
in applications as well as for scientific research. The UCS::AM package also includes
several other "simple" measures that are inexpensive to compute and numerically un-
problematic.

Association measures in the core set can be thought of as the "built-in" measures of
UCS/Perl (although the add-on packages are also part of the distribution). They are
automatically supported by tools such as ucs-add, while the other packages have to be
loaded explicitly (see below).

See the UCS::AM manpage for details.

B.1. UCS/PERL 199

UCS::AM::HTest (measures based on hypothesis tests)

Many association measures are based on asymptotic statistical hypothesis tests. The test
statistic is used as an association score and can be interpreted (i.e. translated into a p-
value) with the help of its known limiting distribution. The UCS::AM::HTest package
provides p-values for all such association measures as well as the "original" two-tailed
versions of some tests (the core set includes only one-tailed versions).

See the UCS::AM::HTest manpage for details.

UCS::AM::Parametric (parametric measures)

A new approach where the equation of a parametric association measure is not com-
pletely fixed in advance. One or more parameters can be adjusted to obtain a version
of the measure that is optimised for a particular task or data set. Control over the pa-
rameters is only available through the programming interface. For command-line use,
special versions of these measures are provided with a pre-set parameter value, which
is indicated by the name of the measure.

See the UCS::AM::Parametric manpage for details.

In UCS/Perl scripts both the standard measures and the add-on packages have to be loaded
with use statements (e.g. use UCS::AM; for the core set). Association measures are imple-
mented as UCS::Expression objects (see the UCS::Expression manpage). The UCS module
maintains a registry of loaded measures with additional information and an evaluation func-
tion (see Section "ASSOCIATION MEASURE REGISTRY" in the UCS manpage). When one of
the packages above is loaded, its measures are automatically added to this registry. Associa-
tion scores can be computed more efficiently for in-memory data sets, using the add method
in the UCS::DS::Memory module (see the UCS::DS::Memory manpage).

In the ucs-add program, the standard measures are pre-defined, and extension packages can
be loaded with the -x option. Only the last part of the package name has to be specified here
(e.g. HTest for the UCS::AM::HTest package). It is case-insensitive and may be abbreviated
to a unique prefix (so both -x htest and -x ht work as well). See the ucs-add manpage for
more information on how to compute association scores with the ucs-add program.

SOME ASSOCIATION MEASURES

This section briefly lists the most well-known association measures available in UCS/Perl,
all of which are defined in the "standard" package UCS::AM. See the on-line resource at
http://www.collocations.de/AM/ for fully equations and the UCS::AM manpage for details.

MI (Mutual Information)

The mutual information (MI) measure is a maximum-likelihood for the (logarithmic)
strength of the statistical association between the components of a pair type. It was
introduced into the field of computational lexicography by Church & Hanks (1990),
who derived it from the information-theoretic notion of point-wise mutual information.
Positive values indicate positive association while negative values indicate dissociation
(where the components have a tendency not to occur together).

Note that unlike the original version of Church & Hanks (1990), the UCS implementa-
tion computes a base 10 logarithm.

200 APPENDIX B. UCS SOFTWARE DOCUMENTATION

t.score (t-score)

The MI measure is prone to overestimate association strength, especially for low-
frequency cooccurrences. Church et al. (1991) use a version of Student’s t test (whose
test statistics is called a t-score) to ensure that the association detected by MI is sup-
ported by a significant amount of evidence. Although their application of Student’s
test is highly questionable, the combination of MI and t.score has become a de facto
standard in British computational lexicography.

chi.squared, chi.squared.corr (chi-squared test)

Pearson’s chi-squared test is the standard test for statistical independence in a 2 x 2
contingency table, and is much more appropriate as a measure of the significance of
association than t.score. Despite its central role in mathematical statistics, it has not
been very widely used on cooccurrence data. In particular, t.score was found to be
much more useful for the extraction of collocations from text corpora (cf. Evert &
Krenn, 2001).

The "textbook" form of Pearson’s chi-squared test is a two-tailed version that does not
distinguish between positive and negative association. The chi.squared measure imple-
mented in UCS/Perl has been converted to a one-sided test with the help of a heuristic
decision rule. Since contingency tables often contain cells with small values, Yates’
continuity correction should be applied to the test statistic (chi.squared.corr).

log.likelihood (likelihood ratio test)

Dunning (1993) showed that the disappointing performance of chi.squared in collo-
cation extraction tasks is due to a drastic overestimation of the significance of low-
frequency cooccurrences (because of a approximation to its limiting distribution). He
suggested to use a likelihood ratio test instead, whose natural logarithm has the same
limiting distribution as chi.squared. Under the name log-likelihood, this association
measure has become a generally accepted standard in the field of computational lin-
guistics.

Like the chi-squared test, the likelihood ratio test is two-sided, and the log.likelihood
measure has been converted to a one-sided test with the same heuristic decision rule.
Both chi.squared and log.likelihood return the value of their test statistic, which has to
be interpreted in terms of the known limiting distribution. More meaningful p-values
for both measures are available in the UCS::AM::HTest package.

Fisher.pv (Fisher’s exact test)

Although log.likelihood achieves a much better approximation to its limiting distribu-
tion than chi.squared (or chi.squared.corr), it is still an asymptotic and provides only
an approximate p-value. Pedersen (1996) argued in favour of Fisher’s exact test for
the independence of rows and columns in a contingency table, in order to remove the
remaining inaccuracy of the log-likelihood ratio. A drawback of Fisher’s test is that it is
numerically expensive and that naive implementations can easily become unstable.

The Fisher.pv measure implements a one-sided test. It returns an exact p-value, which
can be compared directly with the p-values of chi.squared and log.likelihood.

Dice (Dice coefficient)

The Dice coefficient is a measure from the field of information retrieval, which has been
used by Smadja (1993) and others for collocation extraction. Like MI, it is a maximum-
likelihood estimate of association strength, but its definition of "strength" differs greatly

B.1. UCS/PERL 201

from point-wise mutual information. It suffers from the same overestimation problem
as MI, which is mitigated by its different approach to association strength, though.

References Church, K. W. and Hanks, P. (1990). Word association norms, mutual infor-
mation, and lexicography. Computational Linguistics 16(1), 22-29.

Church, K. W.; Gale, W.; Hanks, P.; Hindle, D. (1991). Using statistics in lexical analysis.
In: Lexical Acquisition: Using On-line Resources to Build a Lexicon, Lawrence Erlbaum, pages
115-164.

Dunning, T. (1993). Accurate methods for the statistics of surprise and coincidence. Compu-
tational Linguistics 19(1), 61-74.

Evert, S. and Krenn, B. (2001). Methods for the qualitative evaluation of lexical association
measures. In: Proceedings of the 39th Annual Meeting of the Association for Computational
Linguistics, Toulouse, France, pages 188-195.

Pedersen, T. (1996). Fishing for exactness. In: Proceedings of the South-Central SAS Users
Group Conference, Austin, TX.

Smadja, F. (1993). Retrieving collocations from text: Xtract. Computational Linguistics 19(1),
143-177.

UCS CONVENTIONS

UCS/Perl uses some conventions for the names of association measures and the computed
association scores, which are described in this section. It is important to be aware of such
conventions, especially when they deviate from those used by other software packages.

The names of association measures are taken from the on-line inventory at
http://www.collocations.de/AM/. Hyphen characters (-) are replaced by periods (.) to con-
form with the UCS standards (see the ucsfile manpage). Capitalisation is preserved (MI and
Fisher.pv, but log.likelihood) and subscripts are included in the name, separated by a
period (chi.squared.corr, where corr is a subscript in the original name).

Association scores are always arranged so that higher scores indicate stronger (positive)
association, applying a transformation to the original values if necessary. In the one-sided
versions of two-sided tests (e.g. chi.squared and log.likelihood), negative scores indi-
cate negative association (while positive scores indicate positive association). Scores close to
zero are a sign of statistical independence. Some other measures such as MI also have this
property, but many do not (e.g. Fisher.pv or Dice).

"Explicit" logarithms in the equation of an association measure are usually taken to the base
10 (e.g. in the MI measure). This is not the case when the association score is not interpreted
as a logarithm (e.g. the log.likelihoood, which is a test statistic approximating a known
limiting distribution) and the natural logarithm is required for correct interpretation. The
use of base 10 logarithms is always pointed out in the documentation (see the UCS::AM
manpage). The logarithm of infinity if represented by a large floating-point value returned
by the inf function (from the UCS::Expression::Func module). Comparison with +inf() and
-inf() can be used to detect a positive or negative infinite value.

The scores of association measures with the extension .pv represent a p-value (from an exact
test or the approximate p-value of an asymptotic test). Unlike most other scores, p-values can
be compared directly between different measures. They are represented as negative base 10
logarithms, so the association score 3.0 corresponds to a p-value of 0.001 = 1e-3 (+inf()
stands for zero probability, usually the result of an underflow error).

202 APPENDIX B. UCS SOFTWARE DOCUMENTATION

COPYRIGHT

Copyright (C) 2004 by Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

B.1.2 UCS/Perl Programs

� ucsdoc

UCS front-end to perldoc

SYNOPSIS

ucsdoc [-tk|-ps|-t] [options] PageName | ModuleName | ProgramName

DESCRIPTION

ucsdoc is a front-end to the perldoc program, which sets the required library paths for the
UCS/Perl manpages. Standard Perl documentation is available through ucsdoc as well.

With the -t option, the manpage is formatted in plain ASCII, without highlighting.

With the -ps option, the manpage is formatted in PostScript for printing. The PostScript code
is displayed on stdout so that it can be re-directed into a file or piped into a print command.

With the -tk option, the manpage is displayed in a Perl/Tk window, provided that the Tk
and Tk::Pod modules are installed.

Only one of the three formatting options may be specified.

All other command-line arguments are passed to the perldoc program. Type perldoc -h and
perldoc perldoc for more information on the available options.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-config

Automatic configuration of UCS/Perl scripts

B.1. UCS/PERL 203

SYNOPSIS

ucs-config

ucs-config [--version | --base-dir | --perl-dir | --bin-dir | --lib-dir | --R-bin]
ucs-config [-v | --base | --perl | --bin | --lib | -R]

ucs-config ucs-script.pl ucs-script.R ...

ucs-config --run [options] one-liner.perl
ucs-config --run [options] -e ’...’
ucs-config -e ’...’

DESCRIPTION

The ucs-config program is used to print information about the installed UCS/Perl version
and directories, as well as for the automatic configuration of UCS/Perl scripts. The program
can be run in four different modes.

Invoking ucs-config without any arguments prints the UCS splash screen and a configuration
summary.

In the second mode, the program prints one item of configuration information selected with
one of the following flags. This mode is most suitable for use in shell scripts and makefiles.
Note that you are not allowed to specify more than one flag at a time.

--version UCS version
--base-dir root directory of the UCS system
--perl-dir root directory of the UCS/Perl subsystem
--bin-dir bin/ directory of UCS/Perl (contains UCS programs)
--lib-dir lib/ directory of UCS/Perl (contains UCS modules)
--R-bin fully qualified filename of the R interpreter

The third mode is used to in-place edit Perl and R scripts so that they can load the UCS
modules and libraries. For Perl scripts, ucs-config inserts a suitable shebang (#!) line,
invoking the Perl interpreter for which UCS is configured together with the necessary include
paths. For R scripts (which are recognised by their extension .R or .S), ucs-config looks for
a line containing the command source(".../ucs.R") in the script, and inserts the correct
path there. Please make sure that this line does not contain any other commands.

The final mode, introduced by the command-line switch �run, invokes the Perl interpreter
with the correct UCS library path and (almost) all UCS modules pre-loaded (including the
standard association measures from UCS::AM, but none of the add-on packages). The re-
maining command-line arguments are passed through to the Perl interpreter, which is really
cool for writing one-liners in UCS/Perl. The flag -e is an abbreviation of �run -e, but does
not allow any options to be passed to the interpreter.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

204 APPENDIX B. UCS SOFTWARE DOCUMENTATION

� ucs-tool

Execute UCS/Perl scripts from contrib/ tree

SYNOPSIS

ucs-tool --list [--category | --category=<cat>]
ucs-tool --doc <tool> [<ucsdoc options>]
ucs-tool [--category=<cat>] <tool> ...

DESCRIPTION

In addition to the UCS/Perl programs, which perform general tasks and will be of interest
to most users, the UCS distribution includes a number of UCS/Perl scripts for more specific
applications. These scripts are not directly accessible as command-line programs. They are
organised into a hierarchical set of categories in the contrib/ directory tree, and can be in-
voked through the ucs-tool program. If you want to add your own scripts to this tree, read
the section on WRITING CONTRIBUTED SCRIPTS below.

LISTING CONTRIBUTED SCRIPTS When the �list (or -l) option is specified, ucs-
tool lists all available UCS/Perl scripts from the contrib/ tree, grouped by category. Add the
option �category (or �cat or -c) for a listing of category names and descriptions (without
the individual tools). You can also use the special short form ucs-tool -lc for this purpose.
When an argument is given for �category, only scripts from the specified category are listed
(the category name is case-insensitive).

Some scripts may provide manual pages in the form of embedded POD documentation. Such
manual pages can be displayed with the �doc (or -d) flag, followed by the name of the script.
See the section on SCRIPT INVOCATION below for details on how script names are matched.
ucs-tool uses the ucsdoc program to format manual pages and accepts ucsdoc options (such
as -ps and -tk) after the tool name.

SCRIPT INVOCATION In order to invoke one of the contributed UCS/Perl scripts, simply
specify its name (as shown by the �list option), followed by command-line arguments for
the selected script, e.g.

ucs-tool dispersion-test -m 3 -N 100000 -k 100 -V 2500

All contributed scripts should include a short help page that can be displayed with the �help
(or -h) option. Note that this is a script option and therefore must be specified after the script
name:

ucs-tool dispersion-test --help

Recall that full manual pages, when available, can be displayed with the �doc option specified
before the script name (as described above).

Script names are case-insensitive, and it is sufficient to specify a unique prefix of the name.
For instance, you can invoke the print-documentation script with the short name ucs-tool
print or ucs-tool print-doc. It may be easier to find a unique prefix when the search
space is reduced to a specific category with the �category (or -c) option.

B.1. UCS/PERL 205

WRITING CONTRIBUTED SCRIPTS

Contributed UCS/Perl scripts are collected in a directory tree rooted in System/Perl/contrib/.
Each subdirectory corresponds to a script category. These categories are organised hierar-
chically according to the directory structure (for instance, �list �category=Import lists
all scripts found in the directory Import/ and its subdirectories, such as Import/NSP/ and
Import/CWB/). The file CATEGORIES contains a listing of all known categories with short
descriptions (category names and descriptions must be separated by a single TAB character).

If you want to add your own UCS/Perl scripts to the repository, you should put them in the
Local/ directory (which is reserved for scripts that are not part of the UCS distribution). This
is often the easiest way to make a UCS/Perl script available to all users of a UCS installa-
tion. Note that script files must have the extension .perl or .pl, which is not part of the
script name (e.g., the script nsp2ucs in the category Import/NSP corresponds to the disk
file Import/NSP/nsp2ucs.perl in the contrib/ tree). You can also put your script in a different
category or define your own categories (which you must add to the CATEGORIES file), but
this will interfere with upgrading to a new UCS release. You are encouraged to share scripts
with other users. To do so, please send them to the author (or maintainer) of the UCS system,
indicating which category they should be included in.

Unlike ordinary UCS/Perl scripts, scripts placed in the contrib/ tree do not have to be con-
figured with ucs-config. They also do not have to be executable and start with a shebang
(#!) line. When invoked with the ucs-tool program, the necessary settings are made au-
tomatically. Contributed scripts that require "private" modules (which are not installed in a
public directory) can place them in a subdirectory named lib/ (relative to the location of the
script file), or in further subdirectories as required by the module’s name. The lib/ directory
tree is automatically added to Perl’s search path. Necessary data files should be wrapped
in Perl modules and stored in the lib/ subtree as well. For instance, assume that a script
named my-script in the Local category (corresponding to the script file Local/my-script.perl)
uses the private module My::Functions. This module can automatically be loaded (with use
My::Functions;) from the file Local/lib/My/Functions.pm in the contrib/ directory tree.

All contributed UCS/Perl scripts should include a short help page describing the script’s func-
tion and command-line arguments, which is displayed when the script is invoked with �help
or -h. Script authors are also encouraged to write full manual pages as embedded POD docu-
mentation (which can then be displayed with ucs-tool �doc), but these are not mandatory.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-list-am

List built-in association measures and add-on packages

206 APPENDIX B. UCS SOFTWARE DOCUMENTATION

SYNOPSIS

ucs-list-am [-v | -c | -t | -f <f,f1,f2,N>]
[-x <package> | -p <package>] [<am1> <am2> ...]

ucs-list-am --list

DESCRIPTION

This program is a convenient front-end to the registry of association measures maintained
by the UCS module. It can be used to print a list of built-in association measures, add-on
packages, and display additional information about the measures (where available). De-
tailed information about the measures can be found in the UCS::AM manpage and the re-
spective manpages of the extension packages. See the ucsam manpage for an introduction
and overview.

ucs-list-am --list

With the �list (or -l) option, ucs-list-am lists all available add-on packages.

ucs-list-am [<options>] [<am1>, <am2>, ...]

When ucs-am-list is called without arguments, it prints the names of all built-in association
measures on stdout, each one followed by a short one-line description of the measure. Spe-
cific association measures can be selected by giving their names as command-line arguments.
UCS wildcard patterns (see the ucsexp manpage) will list all matching measures.

The �extra (or -x) option can be used to load one or more add-on packages so that
the association measures from these packages will be included in the listing (in addi-
tion to the built-in measures). Its argument is a comma-separated list of package names,
which are case-insensitive and may be abbreviated to unique prefixes. For instance,
both �extra=HTest,Parameteric an -x htest,param will load the UCS::AM::HTest and
UCS::AM::Parametric packages. The special keyword ALL loads all available AM packages.

The �package (or -p) option is used to list the association measures from a single package
(without the built-in measures). Again, the package name is case-insensitive and may be
abbreviated to a unique prefix. Note that the �package option cannot be used to load multiple
packages.

The amount of information provided can be controlled with the �verbose (or -v), �code (or
-c), and �terse (or -t) options. In �tersemode, only the names of packages are printed, so
that the output can be easily processed by other programs. In �verbose mode, the name of
each association measure is immediately followed by a one-line description (in parentheses).
When available, one or more lines of additional comments will also be shown. In �code
mode, the output consists of the name of each measure, followed by its implementation (as a
UCS expression), followed by a blank line. For parameteric measures, a list of parameters and
their default values is shown on a separate line between the name and the implementation.

Alternatively, a frequency signature can be specified as an argument to the �frequencies
(or -f) option. The expected format is a comma-separated list of four integers, representing
the variables f, f1, f2 and N. In this case, association scores for all selected measures are
computed on the specified frequency signature. Note that it is not possible to compute scores
for different frequency signatures with a single invocation of the ucs-list-am tool.

B.1. UCS/PERL 207

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-make-tables

Compute contingency tables from a sequence of pair tokens

SYNOPSIS

... | ucs-make-tables [-v] [--sort | -s] [--sample-size=<n> | -N <n>]
[--threshold=<n> | -f <n>] data.ds.gz

... | ucs-make-tables [-v] [-s] [-N <n>] [-f <n>]
[--dispersion [--chunk-size=<n>]] data.ds.gz

... | ucs-make-tables [-v] [-s] [-N <n>] [-f <n>] --segments data.ds.gz

DESCRIPTION

This utility computes frequency signatures and constructs a UCS data set for a stream of pair
tokens (or segment-based cooccurrence data) read from STDIN. It is usually applied to the
output of a cooccurrence extraction tool in a command-line pipe. The input can also be read
from a file (with a < redirection), or decompressed on the fly with (gzip -cd or bzip2 -cd).
The resulting data set is written to the file specified as the single mandatory argument on the
command-line.

ucs-make-tables operates in two different modes for relational and positional (segment-
based) cooccurrences. These two modes are described separately in the following subsec-
tions. They take the same command-line options and arguments, as described in the section
COMMAND LINE below. Distance-based positional cooccurrences are not supported, as they
usually require direct access to the source corpus in order to determine the precise window
size.

Relational Cooccurrences By default, ucs-make-tables operates in a mode for rela-
tional cooccurrences. In this mode, the input line format is

<l1> TAB <l2>

Each such line represents a pair token with labels <l1> and <l2> (i.e. a pair token that
belongs to the pair type (l1,l2)). For dispersion counts (see below), the input lines should
preserve the order in which the corresponding pair tokens appear in the corpus. When disper-
sion is measured with respect to pre-annotated parts (e.g. paragraphs or documents) rather
than equally-sized parts, the input must contain an extra column with unique part identifiers:

208 APPENDIX B. UCS SOFTWARE DOCUMENTATION

<l1> TAB <l2> TAB <part_id>

Note that all pair tokens from a given part must form an uninterrupted sequence in the input,
otherwise the dispersion counts will not be correct.

Segment-based Cooccurrences The mode for segment-based cooccurrences is activated
with the �segments (or -S) option. In this mode, each segment is represented by a sequence
of four lines in the input stream, called a record:

1. <segment_id> [TAB <part_id>]

2. The labels of all tokens in the segment that can become first components of pairs,
separated by TABs.

3. The labels of all tokens in the segment that can become second components of pairs,
separated by TABs.

4. A blank separator line.

Duplicate strings on the second or third line will automatically be ignored. The <segement_-
id> on the first line is currently ignored. The optional <part_id> can be used to compute
dispersion counts for pre-annotated parts. All segments that belong to a given part must
appear in consecutive records, otherwise the dispersion counts will not be correct.

A prototypical example of the segment-based approach are lemmatised noun-verb cooccur-
rences within sentences. In this case, each record in the input stream corresponds to a sen-
tence. The first line contains an unimportant sentence identifier. The second line contains the
lemma forms of all nouns in the sentence (note that duplicates are automatically removed),
and the third line contains the lemma forms of all verbs in the sentence. In order to compute
the dispersion of cooccurrences across documents (i.e. document frequencies in the termi-
nology of information retrieval), unique document identifiers have to be added to the first
line.

COMMAND LINE

The general form of the ucs-make-tables command is

... | ucs-make-tables [--verbose | -v] [--sort | -s]
[--threshold=<t> | -f <t>]
[--sample-size=<n> | -N <n>]
[--dispersion [--chunk-size=<s>]]
[--segments]
data.ds.gz

With the �verbose (or -v) option, some progress information (including the number of pair
tokens or segments, as well as the number of pair types encountered so far) is displayed while
the program is running. When �sort (or -s) is specified, the resulting data set is sorted in
ascending alphabetical order (on l1 first, then l2). Of course, the data set file can always
be re-sorted with the ucs-sort utility. When a frequency threshold <t> is specified with the
�threshold (or -f) option, only pair types with cooccurrence frequency f >= <t> will be

B.1. UCS/PERL 209

saved to the data set file (but they are still included in the marginal frequency counts of
relational cooccurrences, of course). This option helps keep the size of data sets extracted
from large corpora manageable.

When �sample-size (or -N) is specified, only the first <n> pair tokens (or segment records)
read from STDIN will be used, so that the sample size N of the resulting data set is equal to
<n>. This option is mainly useful when computing dispersion counts on equally-sized parts
(see below), but it has some other applications as well.

With the �dispersion (or -d) option, dispersion counts are added to the data set and can
then be used to test the random sample assumption with a dispersion test (see Baayen 2001,
Sec. 5.1.1). In order to do so, the token stream is divided into equally-sized parts, each one
containing the number <s> of pair tokens specified with the �chunk-size (or -c) option.
For segment-based cooccurrences, each part will contain cooccurrences from <s> segments.
When the total number of pair tokens (or segments) is not an integer multiple of <s>, a
warning message will be issued. In this case, it is recommended to adjust the number of
tokens with the �sample-size option described above.

The dispersion count for each pair type, i.e. the number of parts in which it occurs, is stored
in a variable named n.disp in the resulting data set file. In addition, the number of parts
and the part size are recorded in the global variables chunks and chunk.size. When the part
size is not specified, dispersion counts can be computed for pre-annotated parts, which must
be identified in the input stream (see above). In this case, chunk.size is not defined as the
individual parts may have different sizes. NB: The use of pre-annotated parts is discouraged,
since the mathematics of the dispersion test assume equally-sized parts.

Examples If you have installed the IMS Corpus Workbench (CWB) as well as the CWB/Perl
interface, you can easily extract relational adjective+noun cooccurrences from part-of-speech
tagged CWB corpora. The ucs-adj-n-from-cwb.perl script supplied with the UCS system
supports several tagsets for German and English corpora. It can easily be extended to other
tagsets, languages, and types of cooccurrences (as long as they can be identified with the
help of part-of-speech patterns).

The following example extracts adjective+noun pairs with cooccurrence frequency f >= 3
from the CWB demonstration corpus DICKENS (ca. 3.4 million words), and saves them into
the data set file dickens.adj-n.ds.gz. The shell variable $UCS refers to the System/ direc-
tory of the UCS installation (as in the UCS/Perl tutorial).

$UCS/Perl/tools/ucs-adj-n-from-cwb.perl penn DICKENS
| ucs-make-tables --verbose --sort --threshold=3 dickens.adj-n.ds.gz

(Note that the command must be entered as a single line in the shell.)

Extraction from the DICKENS corpus produces approximately 122990 pair tokens. In order
to apply a dispersion test with a chunk size of 1000 tokens each, the sample size has to be
limited to an integer multiple of 1000:

$UCS/Perl/tools/ucs-adj-n-from-cwb.perl penn DICKENS
| ucs-make-tables --verbose --sort --threshold=3 --sample-size=122000

--dispersion --chunk-size=1000 dickens.disp.ds.gz

A dispersion test for pair types with f <= 5 can then be performed with the following com-
mand, showing a significant amount of underdispersion at all levels.

210 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$UCS/Perl/tools/ucs-dispersion-test.perl -v -m 5 dickens.disp.ds.gz

Segment-based data can be obtained from a CWB corpus with the ucs-segment-from-
cwb.perl script. The following example extracts nouns and verbs cooccurring within sen-
tences. A frequency threshold of 5 is applied in order to keep the amount of data (and hence
the memory consumption of the ucs-make-tables program) manageable.

$UCS/Perl/tools/ucs-segment-from-cwb.perl -f 5 -t1 "VB.*" -t2 "NN.*" DICKENS s
| ucs-make-tables --verbose --segments --threshold=5 dickens.n-v.ds.gz

REFERENCES

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

IMS Corpus Workbench (CWB): http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-summarize

Compute statistical summaries for variables in UCS data set

SYNOPSIS

ucs-summarize [-v] [-m] f f1 f2 FROM data.ds.gz

ucs-summarize [-v] [-m] am.%.pv FROM data.ds.gz

ucs-summarize [-v] [-m] data.ds.gz

DESCRIPTION

This program computes short statistical summaries of numerical variables in a UCS data set.
The general form of the ucs-summarize command is

ucs-summarize [-v] [-m] <variables> FROM <input.ds>

where <variables> is a whitespace-separated list of variable names or wildcard expression,
and the data set is read from the file specified as <input.ds>. Wildcard expressions may
need to be quoted to avoid interpretation by the shell. When the list of variables is omitted
(including the keyword FROM), summaries are generated for all variables in the data set. In

B.1. UCS/PERL 211

verbose mode (�verbose or -v option), some progress information is shown while computing
the summary.

So far, the statistical summary includes the minimum (min.), maximum (max.), mean
(mean), empirical variance (var.), and the empirical standard deviation (s.d.). In addi-
tion, the number of missing values (NA’s) is reported.

When �memory (or -m) is specified, the data set will be read into memory first. In addition
to the ordinary statistical summary, the absolute minimum (abs.min., the smallest non-
zero absolute value), absolute maximum (abs.max.), and granularity (gran., smallest
difference between any two unequal values) are computed in this mode.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-select

Select rows and/or columns from UCS data set

SYNOPSIS

ucs-select --count FROM data.ds.gz WHERE ’%O11% < %E11%’

ucs-select ’*’ ’am.%.pv’ FROM data.ds.gz INTO new.ds.gz

ucs-select ’%’ FROM data.ds.gz WHERE ’not defined %b.accept%’

DESCRIPTION

This program is used to select rows and/or columns from a UCS data set file, very much like
a SELECT statement in SQL. The general form of the ucs-select command is

ucs-select [--verbose | -v] (<variables> | --count)
[FROM <input.ds>] [WHERE <condition>] [INTO <output.ds>]

<variables> is a whitespace-separated list of variable names or wildcard patterns (see the
ucsexp manpage), which are matched against the columns of the data set file <input.ds>.
The list of variables may not be omitted: use ’%’ to select all columns, and �count to display
the number of matching rows only. Note that wildcard patterns may need to be quoted
individually (because they contain shell metacharacters).

<condition> is a UCS expression (see the ucsexp manpage) used to select rows from the
data set for which it evaluates to a true value. When the WHERE clause is omitted, all rows
are selected. Note that <condition> must be a single argument and will usually have to be
quoted (single quotes are highly recommended).

212 APPENDIX B. UCS SOFTWARE DOCUMENTATION

The input data set file <input.ds> defaults to STDIN (when omitted). The resulting table is
printed on STDOUT in UCS data set file format (see the ucsfile manpage), and can be written
to a data set file <output.ds> with the optional INTO clause.

With the �verbose (or -v) option, some progress information is displayed while the program
is running.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-add

Add variables (association scores) to UCS data set

SYNOPSIS

ucs-add [-v] [-m] am.t.score am.Fisher.pv TO data.ds.gz INTO new.ds.gz

ucs-add [-v] [-m] -x HTest am.%.pv TO data.ds.gz INTO new.ds.gz

ucs-add [-r] r.% TO data.ds.gz INTO new.ds.gz

DESCRIPTION

This program is used to add variables (association scores, rankings, derived variables, or
arbitrary UCS expressions entered on the command line) to a UCS data set. If a variable is
already defined in the data set, its values will be overwritten.

The general form of the ucs-add command is

ucs-add [--verbose | -v] [--memory | -m] [--extra=<list> | -x <list>]
<variables> [TO <input.ds>] [INTO <output.ds>]

where <variables> is a whitespace-separated list of variable specifications (see the section
on VARIABLE SPECIFICATIONS below for details). An additional �randomize option is only
useful when adding rankings:

ucs-add [--verbose | -v] [--extra=<list> | -x <list>] [--randomize | -r]
<variables> [TO <input.ds>] [INTO <output.ds>]

The data are read from the file <input.ds>, and the resulting data set with the new annota-
tions is written to the file <output.ds>. When they are not specified, the input and output
files default to STDIN and STDOUT, respectively.

B.1. UCS/PERL 213

Variable specifications and file names may need to be quoted individually (when they contain
shell metacharacters or whitespace).

Normally, the ucs-add program processes the data set one row at a time, so that <input.ds>
and <output.ds> must not refer to the same file. When �memory (or -m) is specified, the
entire data set is read into memory, annotated, and then written back to the output file.
In this case, <input.ds> and <output.ds> may be identical. This mode is automatically
activated when any rankings are added to the data set.

In both modes of operation, variables are added in the order in which they are given on the
command-line, so variable specifications (rankings and user-defined expressions) may refer
to any of the previously introduced variables.

With the �verbose (or -v) option, some debugging and progress information is displayed
while the program is running. The �extra (or -x) option loads additional built-in association
measures (see the section on adding Association Scores below for details).

VARIABLE SPECIFICATIONS

Association Scores Variables representing association scores are selected by specifying
their variable names (which start with the prefix am.). The names may be given as UCS
wildcard patterns (see the ucsexp manpage), which will be matched against the list of all sup-
ported association measures. Examples of useful wildcard patterns are am.% (all measures),
am.%.pv (all measures that compute probability values), and am.chi.squared.% (all variants
of Pearson’s chi-squared test).

By default, only the basic association measures defined in UCS::AM are supported. Other
AM packages (see the UCS::AM manpage for a list of add-on packages) can be loaded with
the �extra (or -x) option. The argument is a comma-separated list of package names (e.g.
�extra=HTest,Parametric to load UCS::AM::HTest and UCS::AM::Parametric), which are
case-insensitive and may be abbreviated to unique prefixes (so -x htest,par works just as
well). Use -x ALL to load all available AM packages.

Rankings Variables representing association score rankings are selected by specifying
their variable names (which start with the prefix r.). In order to compute a ranking, say
r.something, the corresponding association scores (am.something) must be annotated in
the data set. UCS wildcard patterns are matched against all association scores in the data
set (but not against other built-in association measures). Rankings can also be computed
for user-defined measures, provided that their association scores are annotated. In order to
compute a ranking for a built-in association measure that is not available in the data set, both
the association score and the ranking variable must be specified. The example

ucs-add -m am.% r.% TO data.ds.gz INTO data.ds.gz

adds associations scores and rankings for the basic built-in association measures to the data
set data.ds.gz.

Ties are not resolved in the rankings, so pair types with identical association scores share the
same rank. The rank assigned to such a group of pair types is the lowest free rank (as in
the Olympic Games) rather than the average of all ranks in the group (as is often done in
statistics). With the �random (or -r) option, ties are resolved in a random fashion. When

214 APPENDIX B. UCS SOFTWARE DOCUMENTATION

association scores for the random measure are pre-annotated (i.e. the am.random variable is
present in the data set), these are used for the randomization so that the ranking is repro-
ducible.

Derived Variables Any variable names or wildcard patterns that do not match one of
the built-in association measures are matched against the list of derived variables, which
can be computed automatically from the frequency signatures of pair types. See the ucsfile
manpage for a complete list of derived variables. Examples of useful patterns are E* (expected
frequencies), lp* (logarithmic coordinates), and e b m ((e,b,m)-coordinates).

User-Defined Expressions A user-defined variable specification is a UCS expression (see
the ucsexp manpage) of the form

<var> := <expression>

where <var> is the name of a user-defined variable, association score, or ranking (without
surrounding % characters). This variable is added to the input data set if necessary and set
to the values computed by the UCS expression <expression>. The example below computes
association scores for a compound measure mixed from the rankings according to two other
measures (which must both be annotated in the data set).

am.mixed := -max(%r.t.score%, %r.dice%)

Note that it isn’t possible to compute the corresponding ranking r.mixed directly.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-join

Join rows and variables from two UCS data sets

SYNOPSIS

ucs-join data1.ds.gz data2.ds.gz

ucs-join [--add] [--no-overwrite] data1.ds.gz data2.ds.gz INTO new.ds.gz

ucs-join [--add] [--no-overwrite] data1.ds.gz WITH am.% FROM data2.ds.gz INTO new.ds.gz

B.1. UCS/PERL 215

DESCRIPTION

This program can be invoked in three different ways. The short form

ucs-join [-v] <ds1> <ds2>

compares two data sets <ds1> and <ds2>. In particular, the number of rows common to both
data sets and the numbers of rows unique to either one of the data sets are reported. Rows
are matched on the pair types they represent, i.e. the variables l1 and l2. Differences in the
id value or any other annotations are ignored. The coverage is the proportion of pair types
in <ds1> that are also contained in <ds2>. With the �verbose or -v switch, some progress
information is displayed while the program is running.

The second form

ucs-join [-v] [--add] [--no-overwrite]
<ds1> <ds2> INTO <ds3>

adds variables and/or rows from the data set <ds2> to <ds1>. Rows from the two data sets
are matched on the l1 and l2 variables as above. For these rows, all variables from <ds2>
are added to the annotations in <ds1>. Variables that are common to both data sets are
overwritten with the values from <ds2>. With the �no-overwrite or -n switch, only missing
values (NA) are overwritten. If �add or -a is specified, rows unique to <ds2> are added to
<ds1> (with all variables that are not defined in <ds2> set to NA). The resulting data set is
written to the file <ds3>.

The most general form

ucs-join [-v] [--add] [--no-overwrite]
<ds1> WITH <variables> FROM <ds2> INTO <ds3>

adds selected variables from <ds2> only. <variables> is a whitespace-separated list of vari-
ables names and wildcard patterns, which are matched against the variables of <ds2>. Vari-
ables can be renamed with specifiers of the form new.name=old.name (of course, wildcard
patterns cannot be used here). The �add switch is rarely useful with this form of the ucs-join
command.

ANNOTATION DATABASES

The ucs-join program is often used to add (manual) annotations from an annotation
database file (.adb) to a data set, and to update annotation databases. For instance, the
UCS distribution includes German PP+verb pairs extracted from the Frankfurter Rundschau
corpus (fr-pnv.ds.gz) and an annotation database created by Brigitte Krenn (pnv.adb.gz). In
order to check the coverage of the annotation database (i.e., how many of the pair types are
already contained in the database), type

ucs-join -v fr-pnv.ds.gz pnv.adb.gz

This will show a coverage of 100%. Annotations from the database can now be added to the
fr-pnv.ds.gz) data set:

216 APPENDIX B. UCS SOFTWARE DOCUMENTATION

ucs-join -v fr-pnv.ds.gz WITH ’b.*’ FROM pnv.adb.gz INTO fr-pnv.annot.ds.gz

When an annotation database contains entries that have not been manually examined so far,
these should be annotated with missing values (NA). The database can then be updated from
a new file (in the same .adb format, say new-pnv.adb) with the following commands

mv pnv.adb.gz pnv.adb.BAK.gz
ucs-join -v --no-overwrite pnv.adb.BAK.gz new-pnv.adb INTO pnv.adb.gz

The �no-overwrite flag ensures that existing annotations aren’t overwritten in the process.
If the file new-pnv.adb contains additional pair types (that haven’t already been entered into
the database), you should also specify the �add flag.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-sort

Sort UCS data set by one or more variables

SYNOPSIS

ucs-sort [-v] [-r] [data.ds.gz] BY am.t.score [INTO new.ds.gz]

ucs-sort [-v] [-r] [data.ds.gz] BY l2+ l1- ... [INTO new.ds.gz]

DESCRIPTION

This program sorts the rows of UCS data by one or more variables. The general form of the
ucs-sort command is

ucs-sort [--verbose | -v] [--randomize | -r]
[<input.ds>] BY <variables> [INTO <output.ds>]

where <variables> is a whitespace-separated list of variable names. A + or - character
appended to a variable name selects ascending or descending order, respectively. The default
order depends on the variable type (association scores are sorted in descending order).

The data set is read from STDIN by default, or from the file <input.ds> when it is specified.
The sorted data set is printed on STDOUT, and can be saved into the file <output.ds> with
the optional INTO clause.

When �randomize (or -r) is specified, ties are broken randomly, using the am.random mea-
sure if it is annotated in the data set. The �verbose (or -v) option displays some (minimal)
progress information.

B.1. UCS/PERL 217

EXAMPLES

The ucs-sort utility is often used in command-line pipes to sort data sets before viewing.
Assuming that a data set file candidates.ds.gz is annotated with the necessary association
scores, ranked candidate lists for the log-likelihood and t-score measures can be displayed
with the following commands:

ucs-sort -r candidates.ds.gz BY am.log.likelihood | ucs-print -i
ucs-sort -r candidates.ds.gz BY am.t.score | ucs-print -i

ucs-sort can also be applied to the output of another UCS tool, e.g. ucs-select. The following
command selects the 100 highest-ranked pair types from the data set file candidates.ds.gz,
according to the log-likelihood measure, and displays them in alphabetical order, sorted by
l2 first. (Note that the command must be entered as a single line in the shell.)

ucs-add -v r.log.likelihood TO candidates.ds.gz
| ucs-select -v ’%’ WHERE ’%r.log.likelihood% <= 100’
| ucs-sort BY l2 l1 | ucs-print -i

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-info

Display information from header of UCS data set file

SYNOPSIS

ucs-info [-s [-v]] [-l] data.ds.gz

DESCRIPTION

This small utility displays information from the header of a data set file (comment lines and
global variables).

With the �size (or -s) option, the actual size of the data set (i.e. the number of pair types)
is also determined, which may be different from the size reported in the header. Note that
this operation has to read the entire data set file and may take some time for larger data sets
(use �verbose or -v to show progress information).

With the �list (or -l) option, the data set variables are listed together with their data types
and optional comments.

218 APPENDIX B. UCS SOFTWARE DOCUMENTATION

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� ucs-print

ASCII-format UCS data set for viewing and printing

SYNOPSIS

ucs-print [-i] [-p <lines>] [-d <digits>] data.ds.gz

ucs-print [-o <file>] [-ps [-2] [-l]] [-p <lines>] [-d <digits>] data.ds.gz

ucs-print [<options>] ’*’ ’am.%.pv’ FROM data.ds.gz

DESCRIPTION

Format data set as ASCII table for inclusion in text files, on-line viewing (in a terminal win-
dow, with �interactive option), and printing (in PostScript format, with �postscript op-
tion). The ucs-print utility automatically adjusts column widths and chooses an appropriate
format for floating-point numbers. Boolean attributes are displayed as yes and no, while
missing values are shown as NA.

In the first forms of the command (used in the first two examples above), all variables are
displayed (which usually results in a very wide table). The name of the data set may be
omitted, in which case data is read from STDIN.

In the second form, variables can be selected with a whitespace-separated list of UCS wildcard
patterns (see the ucsexp manpage) or by explicitly specifying the variable names. This feature
can also be used to re-order the columns or display a variable in multiple columns. The FROM
clause is mandatory in this mode, but data can be read from STDIN by using - as the name of
the data set.

Note that there may be some delay while the data set is read into memory and analysed,
especially without the �pagesize option.

OPTIONS

• �help, -h

Prints short usage reminder.

• �verbose, -v

Prints some (minimal) progress information on STDERR.

B.1. UCS/PERL 219

• �output file, -o file

Write output to file, rather than printing it on STDOUT.

• �postscript, -ps

Uses the a2ps program (see the a2ps(1) manpage) to create a PostScript version of the
formatted table for printing. By default, the PostScript code will be shown on STDOUT
(and not be sent to a printer). It can be saved into a file with the �output option. If
the �pagesize option is used, each page will contain the specified number of rows and
the table will be truncated if it is too wide. If this happens, try increasing the number
of rows on the page or use �landscape. If the table still fails to fit, split the variables
into two or more groups that are printed separately.

• �landscape, -l

[In �postscriptmode only.] Print pages in landscape orientation rather than portrait.
Especially useful for wide tables.

• �two-up, -2

[In �postscript mode only.] Print two pages on a single sheet, same as the -2 option
in a2ps. This option may give a more satisfactory result for very narrow tables (e.g.
when showing only the pair types).

• �interactive, -i

Send output to terminal pager (less) for interactive viewing. This option may not
be used together with �output. The data will automatically be displayed in paged
mode, with the page size adjusted to the height of the terminal window. If the screen
size cannot be automatically determined, use the �pagesize option to activate paging
explicitly. The page size should be set to the screen height (number of text lines) minus
4 for optimal results. Use -p 0 to deactivate paging in interactive mode.

• �pagesize n, -p n

Split data set into smaller tables of (up to) n rows each, which are separated by blank
lines. Use of this option may improve the formatting quality, helps to avoid excessive
columns widths, and reduces the delay before (partial) results can be displayed (espe-
cially for large data sets). By default, the entire data set is formatted as a single large
table (unless �interactive was specified).

• �digits n, -d n

Display floating-point numbers with a precision of approximately n significant digits.
The actual number of digits shown may differ slightly when a fixed-point format is
chosen by the formatter. The default is n = 8.

BUGS

The code used to determine the screen height in �interactive mode may not work on some
platforms. It has only been tested under Linux so far. If you are using the bash shell, you
might try export LINES before running the ucs-print tool.

220 APPENDIX B. UCS SOFTWARE DOCUMENTATION

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

B.1.3 UCS/Perl Modules

� UCS

Core library

SYNOPSIS

use UCS;

$UCS::Version; # UCS version
$UCS::Copyright; # UCS copyright string
$UCS::BaseDir; # base directory of UCS system
$UCS::PerlDir; # base directory of UCS/Perl

UCS::Die("Msg line 1", "Msg line 2", ...); # really die (even in Tk loop)
UCS::Warn("Msg line 1", "Msg line 2", ...); # warning message (may be caught by Tk)
UCS::Status("Message"); # display status message in Tk window
UCS::Splash(); # splash screen (may be shown during start-up)
$UCS::Verbose = 0; # suppress warnings
@unique_values = UCS::Unique(@list); # remove duplicates from list

@vars = (@UCS::CoreVars, @UCS::DerivedVars); # standard variable names (core and derived)
@matches = UCS::Match($pattern, @names); # match variable names
$ok = UCS::ValidKey($key); # valid identifier, e.g as AM key
$ok = UCS::ValidName($name); # whether variable name is valid
$type = UCS::VarType($name); # "BOOL", "INT", "DOUBLE", "STRING"
($spec, $key) = UCS::SplitName($name); # split am.*, r.*, or user-defined variable name

@registered_AMs = UCS::AM_Keys(); # keys for built-in AMs (when loaded)
if (UCS::AM($key)) {
$full_name = UCS::AM_Name($key); # long descriptive name
$description = UCS::AM_Description($key); # optional multi-line text
$exp = UCS::AM_Expression($key); # AM equation as compiled UCS expression
$score = $exp->eval({f=>$f, f1=>$f1, ...}); # use UCS::Expression methods to evaluate AM

}
$score = UCS::Eval_AM($key, $arghash); # convenient but slow

UCS::Load_AM_Package("HTest", ...); # load built-in AM packages

$ok = UCS::Register_AM # register new association measure
"tscore", # AM key (-> variables am.tscore and r.tscore)
"t-score measure (Church et. al. 1991)", # long descriptive name
’(%O11% - %E11%) / sqrt(%O11%)’, # UCS expression (will be compiled into UCS::Expression)
$multiline_text; # optional multi-line description of AM

DESCRIPTION

This UCS core library maintains a list of bulit-in AMs and Perl subroutines for computing
their scores from a candidate’s signatures. Utility functions perform syntax checks for field
names, determine field types from the naming conventions, and match patterns containing
UCS wildcards against field names.

B.1. UCS/PERL 221

CONFIGURATION VARIABLES

$UCS::Version;

The currently installed UCS version.

$UCS::Copyright;

A copyright string for the UCS system. Will be displayed by some UCS/Perl scripts.

$UCS::BaseDir;

The base directory of the UCS System installation. Compiled UCS programs and links
to Perl scripts are installed in $UCS::BaseDir/bin/, while the components of UCS/R can
be found in $UCS::BaseDir/R/.

$UCS::PerlDir;

The base directory of the UCS/Perl installation. The UCS Perl modules are installed in
$UCS::PerlDir/lib/ and its subdirectories, Perl scripts in $UCS::PerlDir/bin/.

GENERAL FUNCTIONS

UCS::Die($message, ...);

"Safe" replacement for Perl’s built-in die function, which will even exit properly from a
Perl/Tk loop. One or more lines of error messages are printed on STDERR (or shown
in some other suitable manner).

UCS::Warn($message, ...);

By default, prints one or more lines of warning/error messages on STDERR like
UCS::Die, but does not exit the script. The purpose of this replacement for the built-
in warn function is to allow warnings to be caught and displayed in a Perl/Tk user
interface. Warnings might also be redirected to a log file.

UCS::Status($message);

Displays a status message in a Perl/Tk interface. By default, $message is appended to
any previous messages. When $message ends in a newline character (\n), the next call
to UCS::Status will replace the current message; when it ends in a carriage return (\r),
the next call will overwrite the current message from the start. (This is the usual effect
of printing such control characters, and will be simulated in Perl/Tk interfaces).

UCS::Splash();

Displays a UCS splash screen with UCS version information and copyright, e.g. during
the start-up phase of a larger UCS/Perl script.

$UCS::Verbose = 0;

The variable $UCS::Verbose controls whether status messages and warnings are printed
on STDOUT and STDERR, respectively. Verbose output is enabled by default, and can
be suppressed by setting $UCS::Verbose to 0.

@unique_values = UCS::Unique(@list);

Removes duplicate values from @list and returns the remaining elements in the original
order. Useful to avoid repretitions of variable names etc.

222 APPENDIX B. UCS SOFTWARE DOCUMENTATION

MANIPULATING VARIABLE NAMES

$std_vars = (@UCS::CoreVars, @UCS::DerivedVars);

Names of core and derived variables.

$ok = UCS::ValidKey($key);

Returns true iff $key is a valid UCS identifier, which may be used as an AM key or in
the name of a user-defined variable.

$ok = UCS::ValidName($name);

Returns true iff $name is a valid UCS variable name, i.e. either a standard variable
(core or derived) , an association score or ranking, or a user-defined variable. See
ucsfile for details on the UCS naming conventions.

$type = UCS::VarType($name);

Determines the data type of a variable from its name $name, according to the UCS
naming conventions. Possible data types are BOOL (Boolean, 0/1), INT (signed integer),
DOUBLE (double-precision floating-point), and STRING (string value).

($spec, $key) = UCS::SplitName($name);

Splits the variable name $name of an association score, ranking, or user-defined vari-
able into the specifier $spec and the key $key. $spec will be one of am, r, b, f, n, or x. If
$name is invalid or the name of a standard variable, (undef, $name) is returned.

@matches = UCS::Match($pattern, @names);

Extract strings from @names that match the UCS wildcard pattern $pattern. The
pattern may contain literal characters A-Z a-z 0-9 . and the wildcards ?, *, and %.

? ... arbitrary character
* ... arbitrary substring without "."
% ... arbitrary string

Thus, the pattern % selects all field names, * selects the names of core and derived
fields, am.% all AM scores, etc. See ucsexp for more examples.

ASSOCIATION MEASURE REGISTRY

This registry maintains a list of association measures, which are automatically available to
all UCS/Perl scripts. Association measures are identified by their key, which must be a valid
UCS identifier. Association scores for a measure with the key fisher, for instance, will be
stored in the variable am.fisher, and the corresponding rankings in the variable r.fisher.
A wide range of predefined association measures can be imported from the UCS::AM module
and several add-on packages (see the UCS::AM manpage).

@registered_AMs = UCS::AM_Keys();

The UCS::AM_Keys function returns the keys of all currently registered association
measures as an unordered list. (Note that no association measures are defined unless
UCS::AM and/or the add-on packages have been imported.)

B.1. UCS/PERL 223

$ok = UCS::AM($key);

Returns true if an association measure is registered under $key.

$full_name = UCS::AM_Name($key);

Returns a long and descriptive name for the association measure identified by $key.
This name should be suitable for presentation to the user in a selection dialogue.

$description = UCS::AM_Description($key);

An optional lengthy description of the association measure identified by $key. $descrip-
tion is a single string but will usually contain linebreaks (\n), which may need to be
removed for automatic justification (e.g. in a Perl/Tk interface).

$exp = UCS::AM_Expression($key);

Returns the equation of the association measure $key, compiled into a
UCS::Expression object. Call the eval or evalloop method of $exp to compute associ-
ation scores (see UCS::Expression). The sourcecode of this expression can be retrieved
with the string method (which is especially useful for built-in association measures).

$score = UCS::Eval_AM($key, $arghash);

The UCS::Eval_AM function is a convenient and shorter alternative, and is equivalent
to:

$exp = UCS::AM_Expression($key);
$score = $exp->eval($arghash);

It incurs considerable overhead when association scores are calculated for multiple
pair types (because of the repeated lookup of $key in the AM registry), and should be
avoided in tight loops. (See UCS::Expression for some comments on efficiency.)

@packages = UCS::Load_AM_Package($name, ...);

Load one or more of the built-in AM packages as specified by the function arguments.
$name must match the last part of the corresponding module name, e.g. ’HTest’ to
load the UCS::AM::HTest package. $name is case-insensitive and may be abbreviated
to a unique prefix. The special name ’ALL’ (or ’all’) loads all available add-on pack-
ages, while the empty string ” loads the basic measures from UCS::AM. UCS::Load_-
AM_Package returns a list containing the full names of all loaded packages (with du-
plicates removed). If there is no match for $name, an empty list is returned.

$ok = UCS::Register_AM($key, $name, $equation [, $description]);

The UCS::Register_AM function is used to register a new association measure, or over-
write an existing one with a new definition. $key is the identification key of the new
measure, $name a descriptive name, $equation the measure’s equation in the form of
an (uncompiled) UCS expression, and $description an optional multi-line description.
$equation may also be an object of class UCS::Expression (which is cloned rather than
re-compiled), enabling the use of advanced features such as parametric expressions.

The function call returns true if the new measure has been successfully registered. A
false return value indicates that compilation of $equation into an UCS::Expression ob-
ject failed. The UCS::Register_AM function will die if $key is not a valid UCS identifier.

The example below shows the code used to register the t-score measure (Church et. al.
1991) which has been widely used in English lexicography.

224 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$ok = UCS::Register_AM "tscore",
"t-score measure (Church et. al. 1991)",
’(%O11% - %E11%) / sqrt(%O11%)’,
"The t-score measure applies Student’s t-test to ...";

die "Syntax error in UCS expression for t-score measure"
unless $ok;

SEE ALSO

Type ucsdoc ucsintro for an introduction to UCS/Perl and an overview of its components
(in the MODULES and PROGRAMS sections).

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::File

File access utilities

SYNOPSIS

use UCS::File;

open filehandle for reading or writing
automagically compresses/decompresses files and dies on error
$fh = UCS::File::Open("> my_file.gz");
the same without error checks (may return undefined value)
$fh = UCS::File::TryOpen("> my_file.bz2");

temporary file objects (disk files are automatically removed)
$t1 = new UCS::File::Temp; # picks a unique filename
$t2 = new UCS::File::Temp "mytemp"; # extends prefix to unique name
$t3 = new UCS::File::Temp "mytemp.gz"; # compressed temporary file
$filename = $t1->name; # full pathname of temporary file
$t1->write(...); # works like $fh->print() ;
$t1->finish; # stop writing file
print $t1->status, "\n"; # WRITING/FINISHED/READING/DELETED
main program can read or overwrite file <$filename> now
$line = $t1->read; # read one line (like $fh->getline())
$t1->rewind; # re-read from beginning of file
$line = $t1->read; # (reads first line again)
$t1->close; # stop reading and remove temporary file
other files will be removed when objects $t2 and $t3 are destroyed

execute shell command with error detection
$cmd = "ls -l";

B.1. UCS/PERL 225

$errlevel = UCS::File::ShellCmd($cmd); # dies with error message if not ok
$UCS::File::Paranoid = 1; # more paranoid checks (-1 for less paranoid)
$errlevel == 0 (ok), 1 (minor problems), ..., 6 (fatal error)

UCS::File::ShellCmd($cmd, \@lines); # capture standard output in array
UCS::File::ShellCmd($cmd, "file.txt"); # ... or in file (for large amounts of data)
UCS::File::ShellCmd(["ls", "-l", @files], \@lines); # bypass shell expansion

DESCRIPTION

This module provides some useful routines for handling files and external programs. This
includes opening files with error checks and automagical compression/decompression, tem-
porary file objects that are automatically created and deleted, and the execution of shell
commands with extensive error checks.

OPENING FILES

$fh = UCS::File::Open($name);

Open file $name for reading, writing, or appending. Returns FileHandle object if suc-
cessful, otherwise it dies with an error message. It is thus never necessary to check
whether $fh is defined.

If $name starts with >, the file is opened for writing (an existing file will be overwrit-
ten). If $name starts with >>, the file is opened for appending.

Files with the extensions .Z, .gz, and .bz2 are automagically compressed and decom-
pressed, provided that the necessary tools are installed. It is also possible to append to
.gz and .bz2 files.

Note that $name may also be a read or write pipe ("... |" or "| ...", respectively),
which is passed directly to the built-in open command. It is thus subject to shell ex-
pansion and does not support automagic compression and decompression.

$fh = UCS::File::TryOpen($name);

Same as UCS::File::Open, but without the error checks. Returns undef if the open()
call fails.

TEMPORARY FILES

Temporary files (implemented by UCS::File::Temp objects) are assigned a unique name and
are automatically deleted when the script exits. The life cycle of a temporary file consists of
four stages: create, write, read (possibly re-read), delete. This cycle corresponds to the
following method calls:

$tf = new UCS::File::Temp; # create new temporary file in /tmp dir
$tf->write(...); # write cycle (buffered output, like print function)
$tf->finish; # complete write cycle (flushes buffer)
$line = $tf->read; # read cycle (like getline method for FileHandle)
[$tf->rewind; # optional: start re-reading temporary file]
[$line = $tf->read;]
$tf->close; # delete temporary file

226 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Once the temporary file has been read from, it cannot be re-written; a new UCS::File::Temp
object has to be created for the next cycle. When the write stage is completed (but before
reading has started, i.e. after calling the finish method), the temporary file can be accessed
and/or overwritten by external programs. Use the name method to obtain its full pathname.
If no direct access to the temporary file is required, the finish method is optional. The write
cycle will automatically be completed before the first read method call.

$tf = new UCS::File::Temp [$prefix ;]

Creates temporary file in /tmp directory. If the optional argument $prefix is specified,
the filename will begin with $prefix and be extended to a unique name. If $prefix con-
tains a / character, it is interpreted as an absolute or relative path, and the temporary
file will not be created in the /tmp directory. To create a temporary file in the current
working directory, use ./MyPrefix.

You can add the extension .Z, .gz, or .bz2 to $prefix in order to create a compressed
temporary file. The actual filename (as returned by the name method) will have the
same extension in this case.

The temporary file is immediately created and opened for writing.

$filename = $tf->name;

Returns the real filename of the temporary file. NB: direct access to this file (e.g. by
external programs) is only allowed after calling finish, and before the first read.

$tf->write(...);

Write data to the temporary file. All arguments are passed to Perl’s built-in print func-
tion. Like print, this method does not automatically add newlines to its arguments.

$tf->finish;

Stop writing to the temporary file, flush the output buffer, and close the associated
file handle. Afer finish has been called, the temporary file can be accessed directly by
the script or external programs, and may also be overwritten. In order to delete a file
created by an external program automatically, finish the temporary file immediately
after its creation and then allow the external tool to overwrite it:

$tf = new UCS::File::Temp;
$tf->finish; # temporary file has size of 0 bytes now
$filename = $tf->name;
system "$my_shell_command > $filename";

$line = $tf->read;

Read one line from temporary file (same as calling getline on a FileHandle object).
Automatically invokes finish if called during write cycle.

$tf->rewind;

Allows re-reading of the temporary file. The next read call will return the first line of
the temporary file. Internally this is achieved by closing and re-opening the associated
file handle.

$tf->close;

Closes any open file handles and deletes the temporary file. This will be done auto-
matically when the UCS::File::Temp object is destroyed. Use close to free disk space
immediately.

B.1. UCS/PERL 227

SHELL COMMANDS

The UCS::File::ShellCmd function provides a convenient replacement for the built-in sys-
tem command. Standard output and error messages produced by the invoked shell com-
mand are captured to avoid screen clutter. The collected standard ouput of the command
can optionally be returned to the caller (similar to the backtick operator ‘$shell_cmd‘).
UCS::File::ShellCmd also checks for a variety of error conditions and returns an error level
ranging from 0 (successful) to 6 (fatal error):

Error Level Description
6 command execution failed (system error)
5 non-zero exit value or error message on STDERR
4 -- reserved for future use --
3 warning message on STDERR
2 any output on STDERR
1 error message on STDOUT

Depending on the value of $UCS::File::Paranoid and the error level, a warning message may
be issued or the function may die with an error message.

$UCS::File::Paranoid = 0;

With the default setting of 0, UCS::File::ShellCmd will die if the error level is 5 or
greater. In the extra paranoid setting (+1), it will almost always die (error level 2
or greater). In the less paranoid setting (-1) only an error level of 6 (i.e. failure to
execute the shell command) will cause the script to abort.

$errlvl = UCS::File::ShellCmd($cmd);

$errlvl = UCS::File::ShellCmd($cmd, $filename);

$errlvl = UCS::File::ShellCmd($cmd, \@lines);

The first form executes $cmd as a shell command (through the built-in system function)
and returns an error level. With the default setting of $UCS::File::Paranoid, serious
errors are usually detected and cause the script to die, so it is not necessary to check
the value of $errlvl.

The second form stores the standard output of the shell command in a file named
$filename, where it can then be processed with external programs or read in by the
Perl script. NB: Compressed files are not supported! It is recommended to use an
uncompressed temporary file (UCS::File::Temp object).

The third form takes an array reference as its second argument, splits the standard
output of $cmd into chomped lines and stores them in the array @lines. If there is a
large amount of standard ouput, it is more efficient to use the second form.

Note that $cmd is passed to the shell for metacharacter expansion. In order to avoid
this (e.g. when filename arguments may contain blanks), specify an array reference of
the form [$program, @args] instead:

$errlvl = UCS::File::ShellCmd(["ls", "-l", @files], \@lines);

228 APPENDIX B. UCS SOFTWARE DOCUMENTATION

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::R

UCS/Perl interface to R

SYNOPSIS

use UCS::R;

UCS::R::Start(); # start R backend explicitly
UCS::R::Stop(); # terminate R backend (if possible)

@x = UCS::R::Exec($cmd); # execute R cmd (must return numeric vector)

UCS::R::LoadVector("my.x", \@data); # load numeric vector efficiently into R
$data = UCS::R::DumpVector("my.x"); # returns arrayref

access to special functions and statistical distributions
through the UCS::SFunc module

DESCRIPTION

The UCS::R module provides an interface to the R statistical environment and the UCS/R
libraries on an R interpreter running in the background. When available (as determined by
the installation script), the RSPerl interface is used for efficient communication with the R
interpreter. Otherwise, the system falls back on a slower but more portable solution that
simulates an interactive R session through use of the Expect module. See the UCS::R::RSPerl
and UCS::R::Expect manpages for some details about the strengths and limitations of the two
backends.

The UCS::R interface is mainly used by the UCS::SFunc module to make the R implementa-
tions of special functions (binomial coefficients, Gamma function, Beta function) and sta-
tistical distributions (binomial, Poisson, normal, chi-squared, hypergeometric) available to
UCS/Perl, without relying on an external maths library and/or compiled C code.

FUNCTIONS

UCS::R::Start();

Starts the R interpreter. Normally, this function does not have to be called explicitly,
as the backend is automatically launched when an R command is executed for the first
time. Since this will block program execution for a few seconds, some scripts may
prefer to call UCS::R::Start at start-up time before the R process is actually needed.

B.1. UCS/PERL 229

UCS::R::Stop();

Terminate the R interpreter. Normally, this function does not have to be called explic-
itly, but it may be used to shut down an R process that is no longer needed and free
memory resources. Note that this function is not supported by the UCS::R::RSPerl
backend and will be silently ignored.

@x = UCS::R::Exec($cmd);

Executes the R command $cmd in the server process. The command must return a vec-
tor, which is passed back to the calling script in the form of a list @x. When command
execution fails or its return value cannot be parsed, the UCS::R::Exec function will die
with an error message.

At the moment, only numeric vectors are guaranteed to work (although the
UCS::R::RSPerl backend should support all types of vectors). It is safe to exe-
cute any command when UCS::R::Exec is called in void context. When using the
UCS::R::Expect backend, complex return values should be made invisible for reasons
of speed and robustness.

NB: This interface is not efficient for exchanging large amounts of data with R and
may hang if the input/output buffers overflow. Use the LoadVector and DumpVector
functions for this purpose (see below). Moreover, $cmd must be a single-line command
(separate multiple commands with ;), so that it leaves a single command prompt at
the beginning of a line after execution. Avoid cat() and any functions that prompt for
user input, otherwise UCS::R::Exec will become confused and may hang.

UCS::R::LoadVector($varname, \@data);

Efficiently loads a numeric vector into R (making use of a temporary file and the scan
function in R). The data @data are passed in as an array reference and will be stored
in the R variable $varname.

$data = UCS::R::DumpVector($varname);

Efficiently reads a numeric vector from R (making use of a temporary file and the
write() function). The data stored in the R variable $varname (which must be a
numeric vector) are returned as an anonymous array reference $data.

SPECIAL FUNCTIONS AND STATISTICAL DISTRIBUTIONS

The special functions and statistical distributions provided through the R interface are not
exported by this module. Use UCS::SFunc instead. All available functions are documented in
the UCS::SFunc manpage. They are available under the same names in the UCS::R package.
For instance, the R implementation of the lgamma function can be accessed explicitly as
UCS::R::lgamma.

COPYRIGHT

Copyright 2004-2005 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

230 APPENDIX B. UCS SOFTWARE DOCUMENTATION

� UCS::R::Expect

Expect-based implementation of R backend

SYNOPSIS

use UCS::R::Expect;
exports Start(), Stop() and Exec() functions into current namespace
as well as LoadVector() and DumpVector()

DESCRIPTION

This module should only be used implicitly through UCS::R, which loads the more efficient
UCS::R::RSPerl implementation if available, and falls back on UCS::R::Expect otherwise.

LIMITATIONS

This module starts an R process in the background and communicates with it interactively
through the Expect module. This approach has several disadvantages:

• Invoking R commands, waiting for output from the R backend, and parsing that out-
put causes substantial overhead for R function invocations, allowing less than 1000
invocations per second even on a fast machine.

• The return value of a function call has to be printed by R, then the resulting output has
to be parsed by Perl. This interfacing method is rather frail and currently supports only
numeric vectors as return values.

• The interface is extremely inefficient for exchanging large amounts of data between
Perl and R. It may hang if the input/output buffers used by Expect overflow. Use the
LoadVector and DumpVector functions to pass large numeric vectors to R and back.

Because of these limitations, it is highly recommended that you install and use the RSPerl
interface (available from http://www.omegahat.org/) on Unix platforms. When RSPerl has been
installed with support for calling R from Perl, it will automatically be detected and configured
for use by the UCS installation script. See doc/install.txt for more information and installation
tips.

COPYRIGHT

Copyright (C) 2004-2005 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::R::RSPerl

RSPerl-based implementation of R backend

B.1. UCS/PERL 231

SYNOPSIS

use UCS::R::RSPerl;
exports Start(), Stop() and Exec() functions into current namespace
as well as LoadVector() and DumpVector()

DESCRIPTION

This module should only be used implicitly through UCS::R, which loads the UCS::R::RSPerl
implementation if available, and falls back on the inefficient UCS::R::Expect implementation
otherwise.

Note that use UCS::R::RSPerl will fail if RSPerl support is not available, causing the com-
pilation of the Perl script to abort.

COPYRIGHT

Copyright (C) 2004-2005 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::SFunc

Special functions and statistical distributions

SYNOPSIS

use UCS::SFunc;

special functions (all logarithms are base 10)
$c = choose($n, $k); # binomial coefficient
$log_c = lchoose($n, $k);

$y = gamma($a); # Gamma function
$log_y = lgamma($a);
$y = igamma($a, $x [, $upper]); # incomplete Gamma functions
$log_y = ligamma($a, $x [, $upper]);
$y = rgamma($a, $x [, $upper]); # regularised Gamma functions
$log_y = lrgamma($a, $x [, $upper]);
$x = igamma_inv($a, $y [, $upper]); # inverse Gamma functions
$x = ligamma_inv($a, $log_y [, $upper]);
$x = rgamma_inv($a, $y [, $upper]);
$x = lrgamma_inv($a, $log_y [, $upper]);

$y = beta($a, $b); # Beta function
$log_y = lbeta($a, $b);
$y = ibeta($x, $a, $b); # incomplete Beta function
$log_y = libeta($x, $a, $b);
$y = rbeta($x, $a, $b); # regularised Beta function

232 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$log_y = lrbeta($x, $a, $b);
$x = ibeta_inv($y, $a, $b); # inverse Beta functions
$x = libeta_inv($log_y, $a, $b);
$x = rbeta_inv($y, $a, $b);
$x = lrbeta_inv($log_y, $a, $b);

binomial distribution (density, tail probabilities, quantiles)
$d = dbinom($k, $size, $prob);
$ld = ldbinom($k, $size, $prob);
$p = pbinom($k, $size, $prob [, $upper]);
$lp = lpbinom($k, $size, $prob [, $upper]);
$k = qbinom($p, $size, $prob [, $upper]);
$k = lqbinom($lp, $size, $prob [, $upper]);

Poisson distribution (density, tail probabilities, quantiles)
$d = dpois($k, $lambda);
$ld = ldpois($k, $lambda);
$p = ppois($k, $lambda [, $upper]);
$lp = lppois($k, $lambda [, $upper]);
$k = qpois($p, $lambda [, $upper]);
$k = lqpois($lp, $lambda [, $upper]);

normal distribution (density, tail probabilities, quantiles)
$d = dnorm($x, $mu, $sigma);
$ld = ldnorm($x, $mu, $sigma);
$p = pnorm($x, $mu, $sigma [, $upper]);
$lp = lpnorm($x, $mu, $sigma [, $upper]);
$x = qnorm($p, $mu, $sigma [, $upper]);
$x = lqnorm($lp, $mu, $sigma [, $upper]);

chi-squared distribution (density, tail probabilities, quantiles)
$d = dchisq($x, $df);
$ld = ldchisq($x, $df);
$p = pchisq($x, $df [, $upper]);
$lp = lpchisq($x, $df [, $upper]);
$x = qchisq($p, $df [, $upper]);
$x = lqchisq($lp, $df [, $upper]);

hypergeometric distribution (density and tail probabilities)
$d = dhyper($k, $R1, $R2, $C1, $C2);
$ld = ldhyper($k, $R1, $R2, $C1, $C2);
$p = phyper($k, $R1, $R2, $C1, $C2 [, $upper]);
$lp = lphyper($k, $R1, $R2, $C1, $C2 [, $upper]);

DESCRIPTION

This module provides special functions and common statistical distributions. Currently,
all functions are imported from the UCS/R system (using the UCS::R interface).

SPECIAL FUNCTIONS

UCS::SFunc currently provides the following special mathematical functions: binomial co-
efficients, the Gamma function, the incomplete Gamma functions and their inverses, the
regularised Gamma functions and their inverses, the Beta function, the incomplete Beta

B.1. UCS/PERL 233

function and its inverse, and the regularised Beta function and its inverse. Note that all
logarithmic versions return base 10 logarithms!

$coef = choose($n, $k);

$log_coef = lchoose($n, $k);

The binomial coefficient "$n over $k", and its logarithm.

$y = gamma($a);

$log_y = lgamma($a);

The (complete) Gamma function with argument $a, and its logarithm. Note that the
factorial n! is equal to gamma(n+1).

$y = igamma($a, $x [, $upper);]

$log_y = ligamma($a, $x [, $upper);]

The incomplete Gamma function with arguments $a and $x, and its logarithm. If
$upper is specified and true, the upper incomplete Gamma function is computed, oth-
erwise the lower incomplete Gamma function. It is recommended to set $upper to the
string constant ’upper’ as a reminder of its function.

$x = igamma_inv($a, $y [, $upper);]

$x = ligamma_inv($a, $log_y [, $upper);]

The inverse of the incomplete Gamma function, as well as the inverse of its logarithm.

$y = rgamma($a, $x [, $upper);]

$log_y = lrgamma($a, $x [, $upper);]

The regularised Gamma function with arguments $a and $x, and its logarithm. If
$upper is specified and true, the upper regularised Gamma function is computed, oth-
erwise the lower regularised Gamma function. It is recommended to set $upper to the
string constant ’upper’ as a reminder of its function.

$x = rgamma_inv($a, $y [, $upper);]

$x = lrgamma_inv($a, $log_y [, $upper);]

The inverse of the regularised Gamma function, as well as the inverse of its loga-
rithm.

$beta = beta($a, $b);

$log_beta = lbeta($a, $b);

The (complete) Beta function with arguments $a and $b, and its logarithm.

$y = ibeta($x, $a, $b);

$log_y = libeta($x, $a, $b);

The incomplete Beta function with arguments $x, $a, and $b, and its logarithm.

$x = ibeta_inv($y, $a, $b);

234 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$x = libeta_inv($log_y, $a, $b);

The inverse of the incomplete Beta function, as well as the inverse of its logarithm.

$y = rbeta($x, $a, $b);

$log_y = lrbeta($x, $a, $b);

The regularised Beta function with arguments $x, $a, and $b, and its logarithm.

$x = rbeta_inv($y, $a, $b);

$x = lrbeta_inv($log_y, $a, $b);

The inverse of the regularised Beta function, as well as the inverse of its logarithm.

STATISTICAL DISTRIBUTIONS

UCS::SFunc computes densities, tail probabilities (= distribution function), and quan-
tiles for the following statistical distributions: binomial distribution, Poisson distribution,
normal distribution, chi-squared distribution, hypergeometric distribution. The function
names are the common abbreviations as used e.g. in the R language, with additional logarith-
mic versions (that start with the letter l) (these correspond to the log=TRUE and log.p=TRUE
parameters in R).

Note that logarithmic probabilities are always given as negative base 10 logarithms. The
logarithmic density and tail probability functions return such logarithmic p-values, and the
quantile functions expect them in their first argument.

The Binomial Distribution Binomial distribution with parameters $size (= number of
trials) and $prob (= success probability in single trial). E[X] = $size * $prob, V[X] = $size *
$prob * (1 - $prob).

$d = dbinom($k, $size, $prob);

$ld = ldbinom($k, $size, $prob);

Density P(X = $k) and its negative base 10 logarithm.

$p = pbinom($k, $size, $prob [, $upper);]

$lp = lpbinom($k, $size, $prob [, $upper);]

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as
a reminder of its meaning.

The R implementation of binomial tail probabilities underflows for very small probabil-
ities (even in the logarithmic version), as of R version 2.1. Therefore, these functions
use a mixture of R and Perl code to compute upper tail probabilities for large samples
(which are most likely to lead to undeflow problems for cooccurrence data).

$k = qbinom($p, $size, $prob [, $upper);]

B.1. UCS/PERL 235

$k = lqbinom($lp, $size, $prob [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $k with P(X <=
$k) >= $p. The upper quantile (which is computed when $upper is specified and true)
is the largest value $k with P(X > $k) >= $p. In the logarithmic version, $lp must be
the negative base 10 logarithm of the desired p-value.

Note that these functions use the R implementation directly without a workaround for
undeflow problems. The quantiles returned for very small p-values (especially when
using lqbinom) are therefore unreliable and should be used with caution.

The Poisson Distribution Poisson distribution with parameter $lambda (= expectation);
E[X] = V[X] = $lambda.

$d = dpois($k, $lambda);

$ld = ldpois($k, $lambda);

Density P(X = $k) and its negative base 10 logarithm.

$p = ppois($k, $lambda [, $upper);]

$lp = lppois($k, $lambda [, $upper);]

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as
a reminder of its meaning.

$k = qpois($p, $lambda [, $upper);]

$k = lqpois($lp, $lambda [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $k with P(X <=
$k) >= $p. The upper quantile (which is computed when $upper is specified and true)
is the largest value $k with P(X > $k) >= $p. In the logarithmic version, $lp must be
the negative base 10 logarithm of the desired p-value.

The Normal Distribution Normal distribution with parameters $mu (= expectation) and
$sigma (= standard deviation). Unspecified parameters default to $mu = 0 and $sigma = 1.
E[X] = $mu, V[X] = $sigma ** 2.

$d = dnorm($x, $mu, $sigma);

$ld = ldnorm($x, $mu, $sigma);

Density P(X = $x) and its negative base 10 logarithm.

$p = pnorm($x, $mu, $sigma [, $upper);]

$lp = lpnorm($x, $mu, $sigma [, $upper);]

Tail probabilities P(X <= $x) and P(X >= $x) (if $upper is specified and true), and
their negative base 10 logarithms. It is recommended to set $upper to the string
’upper’ as a reminder of its meaning.

$x = qnorm($p, $mu, $sigma [, $upper);]

236 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$x = lqnorm($lp, $mu, $sigma [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $x with P(X <=
$x) >= $p. The upper quantile (which is computed when $upper is specified and true)
is the largest value $x with P(X >= $x) >= $p. In the logarithmic version, $lp must
be the negative base 10 logarithm of the desired p-value.

The Chi-Squared Distribution Chi-squared distribution with parameter $df (= degrees
of freedom); E[X] = $df, V[X] = 2 * $df.

$d = dchisq($x, $df);

$ld = ldchisq($x, $df);

Density function f(x) and its negative base 10 logarithm.

$p = pchisq($x, $df [, $upper);]

$lp = lpchisq($x, $df [, $upper);]

Tail probabilities P(X <= $x) and P(X >= $x) (if $upper is specified and true), and
their negative base 10 logarithms. It is recommended to set $upper to the string
’upper’ as a reminder of its meaning.

$x = qchisq($p, $df [, $upper);]

$x = lqchisq($lp, $df [, $upper);]

Lower and upper quantiles. The lower quantile is the smallest value $x with P(X <=
$x) >= $p. The upper quantile (which is computed when $upper is specified and true)
is the largest value $x with P(X >= $x) >= $p. In the logarithmic version, $lp must
be the negative base 10 logarithm of the desired p-value.

The Hypergeometric Distribution Hypergeometric distribution of the upper left-hand
corner X in a 2x2 contingency table with fixed marginals $R1, $R2, $C1, and $C2, where both
$R1 + $R2 and $C1 + $C2 must sum to the sample size N. $k represents the observed value
of X and must be in the admissible range max(0, $R1 - $C2) <= $k <= min($R1, $C1),
otherwise the density will be given as 0 and tail probabilities as 1 or 0, respectively. E[X] =
$R1 * $C1 / $N, V[X] = $R1 * $R2 * $C1 * $C2 / (N^2 * (N-1)).

For R versions before 2.0, the upper tail probabilities are computed with a mixture of R and
Perl code to circumvent a cancellation problem in the R implementation and achieve better
precision. For this reason, the functions for quantiles are currently not supported (but may
be when R version 2.0 is required for the UCS toolkit).

$d = dhyper($k, $R1, $R2, $C1, $C2);

$ld = ldhyper($k, $R1, $R2, $C1, $C2);

Density P(X = $k) and its negative base 10 logarithm.

$p = phyper($k, $R1, $R2, $C1, $C2 [, $upper]);

$lp = lphyper($k, $R1, $R2, $C1, $C2 [, $upper]);

Tail probabilities P(X <= $k) and P(X > $k) (if $upper is specified and true), and their
negative base 10 logarithms. It is recommended to set $upper to the string ’upper’ as
a reminder of its meaning.

B.1. UCS/PERL 237

COPYRIGHT

Copyright 2004-2005 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::Expression

Compile and execute UCS expressions

SYNOPSIS

use UCS::Expression;

$exp = new UCS::Expression $code; # compile UCS expression
@vars = $exp->needed; # variables needed to evaluate expression
$code = $exp->string; # retrieve sourcecode of UCS expression
$result = $exp->eval(@args); # evaluate UCS expression (argument list)
$result = $exp->eval($arghash); # named arguments (UCS variable names)

$exp = new UCS::Expression $code, "MU" => 10, ...; # expression with parameters
@params = $exp->params; # sorted list of parameter names
$value = $exp->param("MU"); # current value of parameter
$exp->set_param("MU", 1); # set parameter value
$exp2 = $exp->copy; # clone expression (e.g. when changing parameters)

$sub = $exp->code; # reference to compiled Perl expression
$result = $sub->(@args); # argument list is same as for eval()

$listref = $exp->evalloop($size, $arghash); # evaluate expression on full data set
$exp->evalloop(\@result, $size, $arghash); # directly writes to array @result

DESCRIPTION

UCS expressions provide a convenient way to evaluate functions and conditions on the pair
types in a data set. They consist of arbitrary Perl code with a syntax extension for direct
access to data set variables: the character sequence %varname% (where varname is a legal
UCS variable name) is replaced by the value of this variable (for the current pair type). See
ucsexp for a more detailed description of UCS expressions and some cautionary remarks.

A UCS::Expression object represents a compiled UCS expression. The needed method re-
turns a list of UCS variables that are required for evaluation of the expression. When derived
variables are used in a UCS expression, they are automatically computed from the frequency
signature.

The eval method is normally invoked with a (reference to a) hash of arguments, using UCS
variable names as keys. It selects the variables needed to evaluate the UCS expression au-
tomatically from the hash, and ensures that all of them are present. Better performance
is achieved by passing the required variables as an argument list in the correct order (as
returned by needed).

238 APPENDIX B. UCS SOFTWARE DOCUMENTATION

The evalloop method greatly reduces overhead when a UCS expression is applied to a list of
pair types (i.e. a full data set). It expects array references instead of simple variable values,
and returns a reference to an array of the specified length. Optionally, evalloop can write
directly to an existing array.

METHODS

$exp = new UCS::Expression $code;

Compiles the UCS expression $code into a UCS::Expression object. If compilation fails
for some reason, an undefined value is returned. Compiling a UCS expression involves
the follwing steps:

• All UCS variable references in $code are identified and validated.

• A list of required variables is constructed. Derived variables are implicitly com-
puted from the frequency signature, and the necessary core variables are auto-
matically added to the list of required variables.

• The UCS variable references are substituted with lexical Perl variables, which are
initialised from the parameter list @_.

• The resulting Perl code is compiled into an anonymous subroutine, which is stored
in the UCS::Expression object and can be executed through the eval method.

Since UCS::Expressions are comparatively small structures, it is usually not necessary
to destroy them explicitly.

$exp = new UCS::Expression $code, $param => $value, ...;

This form of the constructor defines a UCS expression with parameters, given as pairs
of parameter name $param and default value $value. Parameters can be used like
variables in the UCS expression. Their names are simple UCS identifiers, but must
not be valid UCS variable names. The recommended convention is to write parameter
names all in upper case.

@names = $exp->params;

Returns the names of all parameters in alphabetical order.

$value = $exp->param($name);

Returns the current value of parameter $name;

$exp->set_param($name, $value);

Set the parameter $name to the value $value. The new value will be used by all subse-
quent calls to the eval and evalloop methods.

$new_exp = $exp->copy;

Makes a clone of the UCS::Expression object $exp. Cloning is a fast operation and
should always be used when changing the parameters of an expression shared between
different modules (e.g. a registered association measure).

@vars = $exp->needed;

The needed methods returns a list of UCS variable names, corresponding to the data
set variables needed to evaluate $exp.

B.1. UCS/PERL 239

$code = $exp->string;

Returns the original UCS expression represented by $exp as a string, and can be used
to modify and recompile UCS expressions (especially those of built-in association mea-
sures). Note that $code is chomped, but may contain internal linebreaks (\n).

$result = $exp->eval($arghash);

The eval method evaluates a compiled UCS expression on the data passed in $arghash,
which must be a reference to a hash of variable names and the corresponding variable
values. The necessary variables are extracted from $arghash by name, and the method
dies with an error message unless all required variables are present. Unused variables
are silently ignored.

$result = $exp->eval(@args);

The second form of the eval method avoids the overhead of variable name lookup and
error checking. Here, the argument list @arg consists of the values of all required
variables in the order defined by the needed method. The list @args is passed directly
to the compiled Perl code, so that errors will usually go undetected.

$sub = $exp->code;

The code method returns a code reference to the anonymous subroutine that resulted
from compilation of the UCS expression. For an expression without parameters, the
subroutine call

$result = $sub->(@args);

is equivalent to

$exp->eval(@args);

and further reduces overhead (by a small amount). It may be useful when the UCS
expression is repeatedly applied, looping over a list of pair types. In most such cases,
the evalloop method provides a better solution, though.

$listref = $exp->evalloop($size, $arghash);

$exp->evalloop(\@result, $size, $arghash);

The evalloop method is used to apply $exp to an entire list of pair types (i.e. a data
set) with a single call. Its invocation is similar to the firs form of the eval method. The
additional parameter $size specifies the number of pair types to be processed. Each
value in $arghash must be a reference to an array of length $size. The return value is a
reference to an array of the same length.

The three-parameter form allows evalloop to write the results directly into an existing
array, which may save a considerable amount of overhead when $size is large.

SEE ALSO

See the ucsexp manpage for an introduction to UCS expressions, as well as the UCS::SFunc
and UCS::Expression::Func manpages for pre-defined functions that may be used in UCS ex-
pressions.

240 APPENDIX B. UCS SOFTWARE DOCUMENTATION

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::Expression::Func

Utility functions for UCS expressions

SYNOPSIS

use UCS::Expression::Func;

$min_x = min($x1, $x2, ...); # minimum of two or more values
$max_y = max(@y); # maximum of two or more values

$log_prob = -log10($prob); # base 10 logarithm

$log_prob = inf() # replace log(Infinity) = -log(0)
if $prob == 0; # by a very large value

DESCRIPTION

This module provides a collection of simple but useful functions, which are automatically
imported into the UCS::Expression namespace so that they can be used in UCS expressions
without full qualification.

FUNCTIONS

$min_x = min($x1, $x2, ...);

Minimum of two or more numbers. The argument could also be an array @x.

$max_x = max($x1, $x2, ...);

Maximum of two or more numbers. The argument could also be an array @x.

$log_prob = -log10($prob);

Base 10 logarithm, which is used for all logarithmic scales in UCS (especially logarith-
mic p-values). Returns -inf() if $prob is zero or negative.

$log_infinity = inf();

The inf function returns a large positive floating-point value that represents the log-
arithm of Infinity in UCS/Perl. Note that the logarithm of 0 should consequently be
represented by -inf(), as does the log10 function. In order to find out the exact value
on your system, you can use the command line

ucs-config -e ’print inf(),"\n"’

B.1. UCS/PERL 241

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::AM

Built-in association measures

SYNOPSIS

use UCS;
use UCS::AM;

@builtin_AMs = UCS::AM_Keys();

random
frequency
z.score
z.score.corr
t.score
chi.squared
chi.squared.corr
log.likelihood
Poisson.Stirling
Poisson.pv
Fisher.pv
MI
MI2
MI3
relative.risk
odds.ratio
odds.ratio.disc
Dice
gmean
MS
Jaccard
average.MI
local.MI

DESCRIPTION

This module contains definitions for a wide range of association measures. When the
UCS::AM module is imported, the built-in measures are registered with the UCS core library
(see UCS for details on how to access registered association measures).

The following section gives a full listing of the built-in association measures from the
UCS::AM module with short explanations. Please refer to http://www.collocations.de/AM/
for the full equations and references. Further association measures can be imported from
add-on packages (see the section on ADD-ON PACKAGES below).

242 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Note that some association measures produce infinite values (+inf or -inf). The loga-
rithm of infinity is represented by the return value of the built-in inf function (see the
UCS::Expression::Func manpage). The association scores of measures with the suffix .pv can
be interpreted as probabilities (the likelihood of the observed data or the p-value of a statis-
tical hypothesis test). Such probabilities are given as negative base 10 logarithms, ranging
from 0 to +inf. Measures with the suffix .tt (for two-tailed) are derived from two-sided sta-
tistical hypothesis tests. One-sided versions of these tests are provided under the same name,
but without the suffix.

BUILT-IN ASSOCIATION MEASURES

random

Random numbers between 0 and 1 as association scores simulate random selection of
pair types and are used to break ties when sorting a data set.

frequency

Cooccurrence frequency of the pair type. This association measure is used to sort data
sets by frequency, but requires some systematic method for breaking ties.

z.score

A z-score for the observed cooccurrence frequency O11 compared to the expected fre-
quency E11. The value represents a standardised normal approximation of the binomial
sampling distribution of O11 under the point null hypothesis of independence.

z.score.corr

A z-score for O11 compared to E11 with Yates’ continuity correction applied.

t.score

Church et al (1991) use Student’s t-test to compare the observed cooccurrence fre-
quency O11 to the null expectation E11 estimated from the sample (which is a random
variate as well), applying several approximations to simplify the t.score equation. The
computed value is a t-score with degrees of freedom roughly equal to the sample size
N. This application of the t-test is highly questionable, though, and produces extremely
conservative results.

chi.squared

One-sided version of Pearson’s chi-squared test for the independence of rows and
columns in a 2x2 contingency table. Positive scores indicate positive association (O11
> E11), and negative scores indicate negative association (O11 < E11). The distinction
between positive and negative association is unreliable for small absolute values of the
test statistic. Under the null hypothesis, the one-sided chi.squared statistic approxi-
mates a normal distribution (as the signed root of a chi-squared distribution with one
degree of freedom).

chi.squared.corr

One-sided version of Pearson’s chi-squared test for the independence of rows and
columns in a 2x2 contingency table, with Yates’ continuity correction applied.

B.1. UCS/PERL 243

log.likelihood

One-sided version of the log-likelihood statistic suggested by Dunning (1993), a like-
lihood ratio test for independence of rows and columns in a 2x2 contingency table
(Dunning introduced the measure as a test for homogeneity of the table columns, i.e.
equal success probabilites of two independent binomial distributions). Positive scores
indicate positive association (O11 > E11), and negative scores indicate negative as-
sociation (O11 < E11). The distinction between positive and negative association is
unreliable for small absolute values of the test statistic. Under the null hypothesis, the
one-sided log.likelihood statistic approximates a normal distribution (as the signed
root of a chi-squared distribution with one degree of freedom).

Poisson.Stirling

Approximation of the likelihood of the observed cooccurrence frequency O11 under
the point null hypothesis of independence (so that the expected frequency is E11). The
measure is derived from Poisson.likelihood (in the UCS::AM::HTest module) using
Stirling’s formula, resulting in a simple expression that can easily be evaluated. This
measure was proposed by Quasthoff and Wolff (2002) and has been re-scaled to base
10 logarithms to allow a direct comparison with Poisson.likelihood.

Poisson.pv

Significance (one-sided p-value) of an exact Poisson test for the observed cooccurrence
frequency O11 compared to the expected frequency E11 under the point null hypothesis
of independence. This test is based on a Poisson approximation of the correct binomial
sampling distribution of O11. It is numerically and analytically much easier to handle
than the binomial test.

Fisher.pv

Significance (one-sided p-value) of Fisher’s exact test for independence of rows and
columns in a 2x2 contingency table with fixed marginals. This test is widely accepted
as the most appropriate independence test for contingency tables (cf. Yates 1984). Its
use as an association measure was suggested by Pedersen (1996).

MI

Maximum-likelihood estimate of the base 10 logarithm of the mu-value, which is iden-
tical to pointwise mutual information between the events describing occurrences of a
pair’s components. Note that mutual information is measured in decimal units rather
than the customary bits. The theoretical range is from -inf to +inf, but the actural
range for a given data set is restricted depending on the sample size N.

MI2

A heuristic variant of MI where the numerator is squared in order to discount low-
frequency pairs. This measure also has some theoretical justification, being the square
of the gmean measure.

MI3

Another heuristic variant of MI where the numerator is cubed, which boosts the dis-
counting effect considerably.

relative.risk

Maximum-likelihood estimate of the logarithmic relative risk coefficient of association
strength (base 10 logarithm). Ranges from -inf to +inf.

244 APPENDIX B. UCS SOFTWARE DOCUMENTATION

odds.ratio

Maximum-likelihood estimate of the logarithmic odds ratio as a coefficient of associa-
tion strength (base 10 logarithm). Ranges from -inf to +inf.

odds.ratio.disc

A "discounted" version of odds.ratio, adding 0.5 to each factor in the equation. This
modification of the odds ratio is commonly used to avoid infinite values, but does not
seem to have a theoretical foundation.

Dice

Maximum-likelihood estimate of the Dice coefficient of association strength. Ranges
from 0 to 1.

Jaccard

Maximum-likelihood estimate of the Jaccard coefficient of association strength, which
is equivalent to Dice (i.e., there is a strictly monotonic mapping between the two asso-
ciation scores). Ranges from 0 to 1.

MS

Maximum-likelihood estimate of the minimum sensitivity coefficient suggested by Ped-
ersen and Bruce (1996). Ranges from 0 to 1.

gmean

Maximum-likelihood estimate of the geometric mean coefficient of association strength.
Ranges from 0 to 1.

average.MI

Maximum-likelihood estimate of the average mutual information between the indicator
variables X and Y marking instances of a pair type’s components. This implementation
uses base 10 logarithms and multiplies the mutual information value with the sample
size N in order to obtain readable values. Interestingly, average.MI is identical to
Dunning’s log-likelihood measure (log.likelihood and its variants) except for a scaling
factor.

local.MI

Contribution of a given pair type to the (maximum-likelihood estimate of the) average
mutual information of all cooccurrences. Formally, this is the mutual information be-
tween the random variables U and V, which represent the component types of a pair
token in the random sample.

ADD-ON PACKAGES

The UCS::AM module provides a basic set of useful and well-known association measures.
Except for the Poisson.pv and Fisher.pv, all measures have simple equations that can be
computed efficiently. Further and more specialised association measures can be imported
from add-on packages. Currently, the following packages are available:

UCS::AM::HTest variants of hypothesis tests, likelihood measures
UCS::AM::Parametric parametric association measures

B.1. UCS/PERL 245

These packages are implemented as Perl modules and can simply be loaded with the use op-
erator. Alternatively, the UCS::Load_AM_Package function provides a convenient interface,
where only the last part of the package name has to be specified, is case-insensitive, and
may be abbreviated to a unique prefix. For instance, the UCS::AM::HTest package can be
loaded with the specification ’ht’. The empty string ” loads UCS::AM, and ’ALL’ imports
all available AM packages. (See the UCS manpage for details.)

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::AM::HTest

More association measures based on hypothesis tests

SYNOPSIS

use UCS;
use UCS::AM::HTest;

@htest_AMs = UCS::AM_Keys();

z.score.pv
z.score.corr.pv
t.score.pv
chi.squared.tt
chi.squared.tt.pv
chi.squared.corr.tt
chi.squared.corr.tt.pv
chi.squared.pv
chi.squared.corr.pv
log.likelihood.tt
log.likelihood.tt.pv
log.likelihood.pv
binomial.pv
multinomial.likelihood.pv
hypergeometric.likelihood.pv
binomial.likelihood.pv
Poisson.likelihood.pv
Poisson.likelihood.Perl.pv

DESCRIPTION

This module contains some further association measures based on statistical hypothesis
tests, most of which are variants of measures defined in the UCS::AM module. There are also
several likelihood measures, which compute the probability of the observed contingency table

246 APPENDIX B. UCS SOFTWARE DOCUMENTATION

rather than applying a full hypothesis test. The association measures defined in this module
are intended mainly for a detailed comparative study of the properties of the significance-of-
association class of AMs. Casual users should stick with the variants found in the UCS::AM
module.

The following section gives a full listing of the association measures de-
fined in the UCS::AM::HTest module with short explanations. Please refer to
http://www.collocations.de/AM/ for the full equations and references. When the mod-
ule is imported, the additional measures are registered with the UCS core library (see the
UCS manpage for details on how to access registered association measures).

The association scores of measures with the suffix .pv can be interpreted as probabilities
(i.e. the likelihood of the observed data or the p-value of a statistical hypothesis test). Such
probabilities are given as negative base 10 logarithms, ranging from 0 to +inf (+inf is
represented by the return value of the built-in inf function (see the UCS::Expression::Func
manpage). Measures with the suffix .tt (for two-tailed) are derived from two-sided statistical
hypothesis tests. One-sided versions of these tests are provided under the same name without
the suffix.

ASSOCIATION MEASURES

z.score.pv

The significance (one-sided p-value) corresponding to z.score, obtained from the dis-
tribution function of the standard normal distribution. (The z.score measure computes
a z-score for the observed cooccurrence frequency O11 compared to the expected fre-
quency E11; see the UCS::AM manpage for details.)

z.score.corr.pv

The significance (one-sided p-value) corresponding to z.score.corr, a z-score for O11
against E11 with Yates’ continuity correction applied.

t.score.pv

The significance (one-sided p-value) corresponding to t.score, obtained from the dis-
tribution function of the standard normal distribution. Since the number of degrees of
freedom is very large, the t-distribution of the test statistic is practically identical to the
standard normal distribution (t-distribution with df=inf). (The t.score measure is an
application of Student’s t-test to the comparison of O11 against E11; see the UCS::AM
manpage for details.)

chi.squared.tt

Pearson’s chi-squared test for independence of rows and columns in a 2x2 contingency
table. The equation used in this implementation is derived from the homogeneity ver-
sion of the chi-squared test (for equality of the success probabilities of two independent
binomial distributions), and is fully equivalent to that of the independence test. Note
that Pearson’s chi-squared test is two-sided.

chi.squared.tt.pv

The significance (two-sided p-value) corresponding to chi.squared.tt, obtained from
the chi-squared distribution with one degree of freedom.

B.1. UCS/PERL 247

chi.squared.corr.tt

Pearson’s chi-squared test for independence of rows and columns in a 2x2 contingency
table, with Yates’ continuity correction applied (two-sided test).

chi.squared.corr.tt.pv

The significance (two-sided p-value) corresponding to chi.squared.corr.tt.

chi.squared.pv

The significance (one-sided p-value) corresponding to chi.squared, the one-sided ver-
sion of Pearson’s test for the independence of rows and columns (see the UCS::AM
manpage for details). The p-value is obtained from the standard normal distribution
(since the signed square root of the chi-squared test statistic has a standard normal
distribution).

chi.squared.corr.pv

The significance (one-sided p-value) corresponding to chi.squared.corr, the one-sided
version of Pearson’s chi-squared test with Yates’ continuity correction applied. Again,
the p-value is obtained from the standard normal distribution.

log.likelihood.tt

The log-likelihood statistic suggested by Dunning (1993), a likelihood ratio test for in-
dependence of rows and columns in a 2x2 contingency table. (Dunning introduced
the statistic as a test for homogeneity of the table columns, i.e. equal success proba-
bilites of two independent binomial distributions). Note that all likelihood ratio tests
are two-sided tests.

log.likelihood.tt.pv

The significance (two-sided p-value) corresponding to log.likelihood.tt, obtained from
the chi-squared distribution with one degree of freedom.

log.likelihood.pv

The significance (one-sided p-value) corresponding to log.likelihood, the one-sided
version of Dunning’s likelihood ratio test (see the UCS::AM manpage for details). The
p-value is obtained from the standard normal distribution (since the signed square root
of the log-likelihood statistic has a standard normal distribution.)

binomial.pv

Significance (one-sided p-value) of an exact binomial test for the observed cooccur-
rence frequency O11 compared to the expected frequency E11 under the point null
hypothesis of independence. This test is computationally expensive and may be numer-
ically unstable, so use with caution. (This is also the reason why it is not included in
the UCS::AM module.)

multinomial.likelihood.pv

Likelihood of the observed contingency table under the point null hypothesis of inde-
pendence (i.e. with expected frequencies E11, E12, E21, and E22 estimated from the
observed table).

hypergeometric.likelihood.pv

Likelihood of the observed contingency table under the null hypothesis of indepen-
dence of rows and columns, with all marginal frequencies fixed to the observed values.

248 APPENDIX B. UCS SOFTWARE DOCUMENTATION

binomial.likelihood.pv

Binomial likelihood of the observed cooccurrence frequency O11 under the point null
hypothesis (with expected frequency E11 estimated from the observed table). This
function is relatively slow and may be numerically unstable, so use with caution.

Poisson.likelihood.pv

Poisson approximation of the binomial likelihood binomial.likelihood.pv, which is
numerically and analytically more manageable.

Poisson.likelihood.Perl.pv

Alternative version of binomial.likelihood.pv, based on a direct Perl implementation
of the naive multiplicative algorithm.

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::AM::Parametric

Parametric association measures

SYNOPSIS

use UCS;
use UCS::AM::Parametric;

@parametric_AMs = UCS::AM_Keys();

MI.conf
MI.conf.<n> [<n> = 2, 3, 5, 10, 50, 100, 1000]
Poisson.mu.pv
Poisson.mu.<n>.pv [<n> = 2, 3, 5, 10, 50, 100, 1000, 10000]

DESCRIPTION

This module contains some parametric association measures, which are parametrised ex-
tensions of measures defined in the basic UCS::AM module. Parametric measures are a recent
development in cooccurrence statistics, and the choice of appropriate parameter values is still
very much a research question. Parametric measures will often be computationally expensive
and may be numerically unstable, so novice users are advised to use the basic measures from
the UCS::AM module instead.

The following section gives a full listing of the parametric association measures de-
fined in the UCS::AM::Parametric module with short explanations. Please refer to
http://www.collocations.de/AM/ for the full equations and references. When the module is

B.1. UCS/PERL 249

imported, the additional measures are registered with the UCS core library (see the UCS
manpage for details on how to access registered association measures).

The association scores of measures with the suffix .pv can be interpreted as probabilities
(i.e. the likelihood of the observed data or the p-value of a statistical hypothesis test). Such
probabilities are given as negative base 10 logarithms, ranging from 0 to +inf (+inf is
represented by the return value of the built-in inf function (see the UCS::Expression::Func
manpage).

ASSOCIATION MEASURES

MI.conf

Conservative estimate for the base 10 logarithm of the mu-value (whose maximum-
likelihood estimate is given by the MI measure). The association score computed by
MI.conf is the lower endpoint of a two-sided confidence interval for mu at signifi-
cance level alpha, which is specified by the ALPHA parameter (as a negative base 10
logarithm). The "usual" significance levels .01 and .001 correspond to ALPHA=2 and
ALPHA=3, respectively.

Please duplicate the UCS::Expression object returned by UCS::AM_-
Expression("MI.conf") before modifying the ALPHA parameter.

MI.conf.ALPHA

Versions of MI.conf with the ALPHA parameter pre-set to the value specified as part of
the name. Available ALPHA values are 2, 3, 5, 10, 50, 100, and 1000. For instance,
MI.conf.10 computes a two-sided confidence interval at significance level 1E-10.

Do not modify the ALPHA parameter of these association measures (in the
UCS::Expression object returned by the UCS::AM_Expression function).

Poisson.mu.pv

Poisson test for O11 under the modified point null hypothesis pi = p1 * p2 * mu (rather
than the independence hypothesis pi = p1 * p2 used by the Poisson.pv measure). The
(non-logarithmic) value of mu is given by the MU parameter. For MU=1, the association
scores computed by Poisson.mu.pv are identical to those of Poisson.pv.

Please duplicate the UCS::Expression object returned by UCS::AM_-
Expression("Poisson.mu.pv") before modifying the MU parameter.

Poisson.mu.MU.pv

Versions of Poisson.mu.pv with the MU parameter pre-set to the value specified as part
of the name. Available MU values are 2, 3, 5, 10, 50, 100, 1000, and 10000.

Do not modify the MU parameter of these association measures (in the UCS::Expression
object returned by the UCS::AM_Expression function).

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

250 APPENDIX B. UCS SOFTWARE DOCUMENTATION

� UCS::DS

Base class for data set implementations

SYNOPSIS

use UCS::DS;

$ds = new UCS::DS; # "virtual" data set
$ds->add_vars($name1, $name2, ...); # append variables (= columns) in this order
$ds->delete_vars($name1, ...); # delete variables (column ’gaps’ are closed)

$type = $ds->var($name); # check whether variable exists, returns data type
$index = $ds->var_index($name); # column index of variable
@names = $ds->vars; # list all variables in column order

$ds->temporary($name, 1); # mark variable as temporary (will not be saved)

@lines = $ds->comments; # ordered list of comment lines
$ds->add_comments($line1, ...); # append comment lines
$ds->delete_comments; # delete all comments
$ds->copy_comments($ds2); # copy all comments from $ds2

@global_vars = $ds->globals; # unordered list of global variable names
$value = $ds->global($var); # return value of global variable $var
$ds->set_global($var, $value); # set value of global variable (may be new variable)
$ds->delete_global($var); # delete global variable
$ds->copy_globals($ds2); # copy global variables from $ds2

DESCRIPTION

UCS::DS acts as a base class for data set managers (either file streams or in-memory repre-
sentations). A UCS::DS object manages a list of variables (with names according to the UCS
naming conventions detailed in ucsfile), and maps them to the column indices of a data set
file.

It is always ensured that the column indices of a data set span a contiguous range starting at
0. New variables will be appended to the existing columns in the order of declaration. When
a variables is deleted, all columns to its right are shifted to fill the gap.

When it is available, UCS::DS objects also store information from the header of a data set
file. This information includes comment lines and global variables (see ucsfile for details).

METHODS

$ds = new UCS::DS;

Create a new UCS::DS object, with an empty list of variables. Normally, this constructor
is only invoked implicitly by derived classes.

$ds = new UCS::DS $name1, $name2, ...;

Creates a UCS::DS object with the specified variables. Same as

B.1. UCS/PERL 251

$ds = new UCS::DS;
$ds->add_vars($name1, $name2, ...);

$ds->add_vars($name1, $name2, ...);

Add one or more variables $name1, $name2, ... to the data set. Variables that are
already defined will be silently ignored. New variables are appended to the existing
columns in the specfied order. $name1, $name2, ... must be valid UCS variable names.

$ds->delete_vars($name1, $name2, ...);

Delete the variables $name1, $name2, ... from the data set. Variables that are not
defined in the data set will be silently ignored. When a variable has been deleted, all
columns to its right are shifted to fill the gap. All arguments must be valid UCS variable
names.

$type = $ds->var($name);

Check whether the variable $name is defined in the data set $ds. Returns the data type
of the variable (BOOL, INT, DOUBLE, or STRING, see ucsfile), or undef if it does not exist.

$is_temp = $ds->temporary($name);

$ds->temporary($name, $val);

Mark variable $name as temporary (if $val is true) or permanent (if $val is false).
The single-argument version returns true if the variable $name is temporary. Tempo-
rary variables are interpreted by in-memory representations of data sets. They may be
deleted automatically and will not be written to data set files.

$index = $ds->var_index($name);

Get column index of variable $name. $index ranges from 0 to one less than the number
of variables in the data set. Returns undef if the variable $name does not exist in the
data set. It is recommended to test this condition with the var method first.

@names = $ds->vars;

Returns the names of all variables in this data set, sorted by their column indices. When
saved to a data set file, the columns will appear in this order.

@lines = $ds->comments;

Returns all comment lines as an ordered list (i.e. as they would appear in a data set
file). Comment lines are chomped and the initial # character (followed by an optional
blank) is removed.

$ds->add_comments($line1, ...);

Add comment lines (which will be appended to existing comments). Like the data
returned by the comments method, $line1 etc. should not begin with a # character or
end in a newline.

$ds->delete_comments;

Deletes all comment lines.

$ds->copy_comments($ds2);

Copies all comment lines from $ds2, which must be an object derived from UCS::DS.
Existing comments of $ds are overwritten. This command is equivalent to

252 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$ds->delete_comments;
$ds->add_comments($ds2->comments);

@global_vars = $ds->globals;

Returns the names of all global variables in alphabetical order. NB: global variable
names must be valid UCS identifiers.

$value = $ds->global($var);

Returns the value of a global variable $var as a character string. If the global variable
$var does not exist, returns undef.

$ds->set_global($var, $value);

Set global variable $var to the string $value. If $var does not exist, it is automatically
added to the data set.

$ds->delete_global($var);

Delete a global variable. If $var does not exist, the method call will be silently ignored.

$ds->copy_globals($ds2);

Copies all global variables and their values from $ds2, which must be an object derived
from UCS::DS. Any existing global variables off the data set $ds will be erased.

COPYRIGHT

Copyright 2003 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::DS::Stream

I/O streams for data set files

SYNOPSIS

use UCS::DS::Stream;

$ds = new UCS::DS::Stream::Read $filename;
die "format error" unless defined $ds;
access variables, comments, and globals with UCS::DS methods
while ($ds->read) {
die "read/format error"
unless $ds->valid; # valid row data available?

$n = $ds->row; # row number
$idx = $ds->var_index("am.logl"); # see ’ucsdoc UCS::DS’
$logl = $ds->columns->[$idx]; # $ds->columns returns arrayref
$logl = $ds->value("am.logl"); # short and safe, but slower
$rowdata = $ds->data; # returns hashref (varname => value)
$logl = $rowdata->{"am.logl"}; # == $ds->value("am.logl")

B.1. UCS/PERL 253

}
ds->close;

$ds = new UCS::DS::Stream::Write $filename;
set up variables, comments, and globals with UCS::DS methods
$ds->open; # write data set header
foreach $i (1 .. $N) {
$ds->data("id"=>$i, "l1"=>$l1, ...);# takes hashref or list of pairs
$ds->data("am.logl"=>$logl, ...); # may be called repeatedly to add data
$ds->columns($i, $l1, $l2, ...); # complete list of column data
$ds->write; # write row and clear data cache

}
$ds->close;

DESCRIPTION

UCS data set streams are used to read and write data set files one row at a time. When an
input stream is created, the corresponding data set file is opened immediately and its header
is read in. The header information can then be accessed through UCS::DS methods. Each
read method call loads a single row from the data set file into an internal representation,
from which it is available to the main program.

An output stream creates / overwrites its associated data set file only when the open method
is called. This allows the main program to set up variables and header data with UCS::DS
method calls. After opening the file, the data for each row is first stored in an internal
representation, and then written to disk with the write method.

Note that there are no objects of class UCS::DS::Stream. Both input and output streams
inherit directly from the UCS::DS class.

INPUT STREAMS

Input streams are implemented as UCS::DS::Stream::Read objects. When an input stream
is created, the header of the associated data set file is read in. Header data and information
about the variables in the data set can then be accessed using UCS::DS methods.

The actual data set table is then loaded one row (= pair type) at a time by calling the
read method. The row data are extracted into an internal representation where they can be
accessed with various methods (some of them being safe, others more efficient).

The na method controls whether missing values (represented by the string NA in the data set
file) are recognised and stored internally as undefs, or whether they are silently translated
into 0 (BOOL, INT, and DOUBLE variables) and the empty string (STRING variables), respec-
tively.

$ds = new UCS::DS::Stream::Read $filename;

Open data set file $filename and read header information. Header variables and com-
ments, as well as information about the variables in the data set can then be accessed
with UCS::DS methods. If $filename is a plain filename or a partial path (i.e., neither
a full relative or absolute path starting with / or ./ nor a command pipe) and the file
is not found in the current working directory, the standard UCS libary is automatically
searched for a data set with this name.

254 APPENDIX B. UCS SOFTWARE DOCUMENTATION

If there is a syntax error in the data set header, undef is returned. Note that the object
constructor will die if the file $filename does not exist or cannot be opened for reading.

$ds->na(1);

Enables recognition of missing values represented by the string NA (as used by R). When
enabled, missing values are represented by undefs. Otherwise, they will be silently
translated into 0 (BOOL, INT, and DOUBLE variables) and the empty string (STRING vari-
ables), respectively. Use $ds->na(0); to disable missing value support, which is by
default activated.

$ok = $ds->read;

Read one line of data from the data set file and extract the field values into an internal
representation. Returns false when the entire data set has already been processed.
Typically used in a while loop similar to the diamond operator: while ($ds->read)
{...}.

$at_end = $ds->eof;

Returns true when the entire data set has been read, i.e. the logical complement of the
value returned by the last read call.

$ok = $ds->valid;

Returns true if the internal representation contains valid row data. Currently, this only
compares the number of columns in the file against the number of variables in the data
set. Later on, values may also be syntax-checked and coerced into the correct data type.

$n = $ds->row;

Returns the current row number (of the row read in by the last read call, which is now
stored in the internal representation).

$value = $ds->value($name);

Get value by variables name. Returns the value of variable $name currently stored in
the internal representation. This method is convenient and safe (because it checks that
the variable $name exists in the given data set), but incurs considerable overhead.

$cols = $ds->columns;

Return entire row data as an array reference. Individual variables have to be identified
by their index, which can be obtained with the var_index method ($cols->[$idx].
Since index lookup can be moved out of the row processing loop, this access method
is much more efficient than its alternatives. NB: the array @$rowdata is not reused for
the next line of input and can safely be integrated into user-defined data structures.

$rowdata = $ds->data;

Returns hash reference containing entire row data indexed by variable names.
Thus, the values of individual variables can be accessed with the expression
$rowdata->{$varname}, similar to using the value method. Access with the data
method is convenient for copying row data to an output stream. It is relatively slow,
though, and should not be used in tight loops.

$ds->close;

Close the data set file. This method is automatically invoked when the object $ds is
destroyed.

B.1. UCS/PERL 255

OUTPUT STREAMS

Output streams are implemented as UCS::DS::Stream::Write objects. After creating an
output stream object, variables and header data are set up with the UCS::DS methods. The
data set header is written to disk when the open method is called.

After that, the actual data set table is generated one row at a time. Row data is first stored in
the internal presentation (using the data or the columns method), and then written to disk
when the write method is called.

$ds = new UCS::DS::Stream::Write $filename;

Create output stream for data set file $filename. Note that this file will only be created
or overwritten when the open method is called (in contrast to input streams, which
open the data set file immediately).

$ds->open;

After setting up variables and header data (comment lines and global variables) with
the respective UCS::DS methods, the open method opens the data set file and writes
the data set header. If the file cannot be opened for writing, the open method will die
with an error message.

$ds->data($v1 => $val1, $v2 => $val2, ...);

$ds->data($hashref);

Store data for the next row to be written in an internal representation. When using
the data method, variables are identified by name ($v1, $v2, ...) and can be specified
in any order. The variable-value pairs can also be passed with a single hash reference.
Variables that do not exist in the data set will be silently ignored. The data method can
be called repeatedly for a single row.

$ds->columns($val1, $val2, ...);

The columns method provides a more efficient way to specify row data. Here, all
column values are passed in a single method call, and care has to be taken to list them
in the correct order (namely, the order in which the variables were set up with the
add_vars method). NB: the data and columns methods cannot be mixed. It is also
not possible to set up the row data incrementally with repeated columns calls.

$ds->write;

Writes the row data currently stored in the internal buffer to the data set file, and resets
the buffer (to undef values). Any undef values in the buffer (including the case where
some variables were not specified with the data method) are interpreted as missing
values and substituted by the string NA.

$ds->close;

Completes and closes the data set file.

EXAMPLES

The recommended way of copying rows from one data set file to another is to use the data
methods of both streams, so that variables are copied by name rather than column position.

256 APPENDIX B. UCS SOFTWARE DOCUMENTATION

It would be more efficient to pass row data directly (using the columns methods), but this
approach is prone to lead to errors when the order of the columns is different between the
input and output data sets.

The following example makes a copy of a data set file, adding an (enumerative) id variable
if it is not present in the source file.

$in = new UCS::DS::Stream::Read $input_file;
die "$input_file: format error"
unless defined $in;

@vars = $in->vars;
$add_id = not $in->var("id");

$out = new UCS::DS::Stream::Write $output_file;
$out->copy_comments($in); # copy comments and
$out->copy_globals($in); # global variables from input file
$out->add_vars("id") # conventionally, the "id" variables
if $add_id; # is in the first column

$out->add_vars(@vars);
$out->open; # writes header to $output_file

while ($in->read) {
die "read/format error"
unless $in->valid;

$out->data($in->data); # copy row data by field name
$out->data("id" => $in->row) # use row number as ID value
if $add_id;

$out->write;
}

$in->close;
$out->close;

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::DS::Memory

In-memory representation of data sets

SYNOPSIS

use UCS::DS::Memory;

$ds = new UCS::DS::Memory; # empty data set
$ds = new UCS::DS::Memory $filename; # read from file (using UCS::DS::Stream)

access & edit variables, comments, and globals with UCS::DS methods

B.1. UCS/PERL 257

$pairs = $ds->size; # number of pair types
$ds->set_size($pairs); # truncate or extend data set

$value = $ds->cell($var, $n); # read entry from data set table
$ds->set_cell($var, $n, $value); # set entry in data set table

$rowdata = $ds->row($n); # returns hashref (varname => value)
$ds->set_row($n, $rowdata); # set row data (ignores missing vars)
$ds->set_row($n, "f1"=>$f1, "f2"=>$f2, ...);
$ds->append_row($n, $rowdata); # append row to data set
$ds->delete_rows($from, $to); # delete a range of rows from the data set

$vector = $ds->column($var); # reference to data vector of $var
$vector->[$n] = $value; # fast direct access to cells

$ds->eval($var, $exp) # evaluate expression on data set & store in $var
unless $ds->missing($exp); # check first whether all reqd. variables are available

$ds->add($var); # auto-compute variable (derived variable or registered AM)

$stats = $ds->summary($var); # statistical summary of numerical variable

$ds->where($idx, $exp); # define index: rows matching UCS expression
$n = $ds->count($exp); # number of rows matching expression
$vector = $ds->index($idx); # returns reference to array of row numbers
$ds->make_index($idx, $row1, $row2, ...); # define index: explicit list of row numbers
$ds->make_index($idx, $vector); # or array reference (will be duplicated)
$ds->activate_index($idx); # activate index (will be used by most access methods)
$ds->activate_index(); # de-activate index
$ds->delete_index($idx); # delete index

$ds2 = $ds->copy; # make physical copy of data set (using index if activated)
$ds2 = $ds->copy("*", "am.%"); # copy selected variables only (in specified order)

$ds->renumber; # renumber/add ID values as increasing sequence 1 .. size

$ds->sort($idx, $var1, $var2, ...); # sort data set on $var1, breaking ties by $var2 etc.
$ds->sort($idx, "-$var1", "+$var2"); # - = descending, + = ascending (default depends on variable type)
$ds->rank($ranking, $key1, ...); # compute ranking (with ties) and store in data set variable $ranking

$ds->save($filename); # save data set to file (using index if activated)

$dict = $ds->dict($var1, $var2, ...); # lookup hash for variable(s) (UCS::DS::Memory::Dict object)
($max, $average) = $dict->multiplicity; # maximum / average number of rows for each key
if ($dict->unique) { ... } # whether every key identifies a unique row
@rows = $dict->lookup($x1, $x2, ...); # look up key in dictionary, returns all matching rows
$row = $dict->lookup($x1, $x2, ...); # in scalar context, returns first matching row
@rows = $dict->lookup($other_ds, $n); # look up row $n from other data set
$n_rows = $dict->multiplicity($x1, $x2, ...); # takes same arguments as lookup()
@keys = $dict->keys; # return unsorted list of keys entered in dictionary

DESCRIPTION

This module implements an in-memory representation of UCS data sets. When a data set
file has been loaded into a UCS::DS::Memory object (or a new empty data set has been
created), then variable names, comments, and globals can be accessed and modified with
the respective UCS::DS methods (see the UCS::DS manpage).

Additional methods in the UCS::DS::Memory class allow the user to:

• read and write individual cells as well as entire rows or columns

• change the size of a data set

• annotate derived variables, association scores, or arbitrary UCS expressions in the
data set

258 APPENDIX B. UCS SOFTWARE DOCUMENTATION

• compute statistical summaries of numerical variables

• select rows matching given UCS expression from a data set

• sort data sets by one or more variables and compute rankings

• save the data set into a data set file

The individual methods are detailed in the following sections. In all methods, columns are
identified by the respective variable names, whereas rows (corresponding to pair types) are
identified by row numbers. NB: Row numbers start with 1 (like R vectors, but unlike Perl
arrays)!

GENERAL METHODS

$ds = new UCS::DS::Memory;

Create empty data set. The new data set has zero rows and no variables. Returns object
of class UCS::DS::Memory;

$ds = new UCS::DS::Memory $file [, ’-na’ ;]

Reads data set file into memory and returns UCS::DS::Memory object. The argument
$file is either a string giving the name of the data set file or a UCS::DS::Stream::Read
object (see the UCS::DS::Stream manpage), which has been opened but not read from.
When the specified file does not exist and in the case of a read error, the constructor
dies with an appropriate error message.

The option ’-na’ disables missing value support (which is enabled by default), so that
NA values in the data set file will be replaced by 0 or the empty string, depending on
the data type. Use ’+na’ to enable missing value support explicitly.

$V = $ds->size;

Returns the size of the data set, i.e. the number of rows (or pair types).

$ds->set_size($V);

Change the size of the data set to $V rows. This method can both truncate and extend
a data set. NB: Unlike the size method, set_size always applies to the real size of the
data set and ignores the active row index. However, all row indices are preserved and
adjusted in case of a truncation. If there is an active row index, it remains active. (See
the section ROW INDEX METHODS below for more information on row indices.)

$value = $ds->cell($var, $n);

Retrieve the value of variable $var for row $n (i.e. the $n-th pair type). This method
is convenient and performs various error checks, but it involves a considerable amount
of overhead. Consider the column method when performance is an issue.

$ds->set_cell($var, $n, $value);

Set the value of variable $var for row $n to $value. Like cell, this method is convenient,
but comparatively slow. Consider the column method when is an issue.

B.1. UCS/PERL 259

$rowdata = $ds->row($n);

Returns hash reference containing the entire data from row $n indexed by variable
names. This method is inefficient and mainly for convenience, e.g. when applying
a UCS expression to individual rows (cf. the description of the eval method in the
UCS::Expression manpage).

$ds->set_row($n, $rowdata);

$ds->set_row($n, $var1 => $val1, $var2 => $val2, ...);

Set the values of some or all variables for row $n. The values can either be passed
in a single hash reference indexed by variable names, or as $var => $value pairs. Any
variables that do not exist in the data set $ds are silently ignored. This method is faster
than calling set_cell repeatedly, especially when a new row is added to the data set.

$ds->append_row($rowdata);

$ds->append_row($var1 => $val1, $var2 => $val2, ...);

Append new row to the data set and fill it with the specified values. This method is
a combination of set_size and set_row. Variable values that are not specified in the
argument list are set to undef. When there is an active row index, the new row is
appended to this index, while all other indices remain unchanged (see the section on
ROW INDEX METHODS below for more information on row indices).

$ds->delete_rows($from, $to);

Delete rows $from through $to from the data set. NB: This method always applies to
the real row numbers and ignores the active row index. All existing indices are adjusted
(which is an expensive operation) and an active row index remains activated. (See the
section on ROW INDEX METHODS below for more information on row indices.)

$vector = $ds->column($var);

Returns an array reference to the data vector of variable $var. $vector can be used both
for read and write access, so care has to be taken that the data set isn’t accidentally
modified (e.g. through side effects of a map or grep operation on @$vector). Of course,
activating a row index has no effect, since the column method gives direct access to the
internal data structures. (See the section on ROW INDEX METHODS below for more
information on row indices.)

@missing_vars = $ds->missing($exp);

Determines whether all variables required to evaluate the UCS expression $exp (an
object of class UCS::Expression) are defined in the data set $ds. Returns an empty list
if $exp can be evaluated, and the names of missing variables otherwise.

$ds->eval($var, $exp);

Evaluate the UCS expression $exp (an object of class UCS::Expression) on the data
set $ds, and store its values in the variable $var. When $var is a new variable, it is
automatically added to the data set; Otherwise, the previous values are overwritten.
This operation is much faster than repeatedly evaluating $exp for each row. For conve-
nience, $exp can also be specified as a source string, which will be compiled on the fly.
NB: The eval method always operates on the entire data set, even when a row index is
activated. (See the section on ROW INDEX METHODS below for more information on
row indices.)

260 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$ds->add($var);

Add a new variable to the data set and auto-compute its values, or overwrite an existing
variable. $var must be the name of a derived variable such as E11 or an association
score such as am.t.score (see the ucsfile manpage for details).

$stats = $ds->summary($var);

Computes a statistical summary of the numerical variable $var (a numerical variable
is a variable of data type INT or DOUBLE). $stats is a hash reference representing a data
structure with the following fields:

MIN ... minimum value
MAX ... maximum value
ABSMIN ... smallest non-zero absolute value
ABSMAX ... largest absolute value
SUM ... sum of all value
MEAN ... mean (= average)
MEDIAN ... median (= 50% quantile)
VAR ... empirical variance
SD ... empirical standard deviation (sq. root of variance)
STEP ... smallest non-zero difference between any two values
NA ... number of missing values (undef’s)

Note that some of these fields may be undef if they have no meaningful value for the
given data set.

$ds2 = $ds->copy;

$ds2 = $ds->copy(@variables);

Duplicates a data set, so that $ds2 is completely independent from $ds (whereas $ds2
= $ds; would just give another handle on the same data set). Comments and globals
are copied to $ds2 as well. Optionally, a list of variable names and/or wildcard patterns
(see the ucsexp manpage) can be specified. In this case, only the selected columns will
be copied. NB: If there is an active row index, the copy will only include the rows
selected by the index, and they will be arranged in the corresponding order. However,
no row indices are copied to $ds2. (See the section on ROW INDEX METHODS below
for more information on row indices.)

$ds->renumber;

When rows have been deleted from a data set, or a copy has been made with an active
row index, the values of the id variable are preserved (and can be used to match
rows against the correspond entries in the original data set). When an independent
numbering is desired, the renumber method can be used to re-compute the id values
so that they form an uninterrupted sequence starting from 1. NB: The renumbering
ignores an activated row index.

$ds->save($filename);

$ds->save($filename, @variables);

This method saves the contents of $ds to a UCS data set file $filename. When an
optional list of variable names and/or wildcard patterns (see the ucsexp manpage) is
specified, only the selected columns will be saved. NB: If there is an active row index,
only the rows selected by the index will be written to $filename, and they will be

B.1. UCS/PERL 261

arranged in the corresponding order. The row indices themselves cannot be stored in a
data set file. (See the section on ROW INDEX METHODS below for more information
on row indices.) Also note that temporary variables will not be saved (see the UCS::DS
manpage).

ROW INDEX METHODS

A row index is an array reference containing a list of row numbers (starting from 1, unlike
Perl arrays). Row indices are used to select rows from an in-memory data set, or to represent a
re-ordering of the rows (or both). They are usually created by the where and sort methods,
but can also be constructed explicitly. An arbitrary number of named row indices can be
stored in a UCS::DS::Memory object.

A row index can be activated, creating a "virtual" data set containing only the rows selected
by the index, arranged in the corresponding order. Most UCS::DS::Memory methods will
then operate on this virtual data set. All exceptions are marked clearly in this manpage. In
particular, the where method selects a subset of the activated index, and sort can be used to
reorder it. There can only be one active row index at a time. There is no way of localising the
activation (so that a previously active index is restored at the end of a block), so it is highly
recommended to use active indices only locally and de-activate them afterwards.

Index names must be valid UCS identifiers, i.e. they may only contain alphanumeric char-
acters (A-Z a-z 0-9) and periods (.) (cf. VARIABLES in ucsfile). Note that index names
beginning with a period are reserved for internal use.

$ds->make_index($idx, $row1, $row2, ...);

$ds->make_index($idx, $vector);

Construct row index from a list of row numbers or an array reference $vector, and store
it under the name $idx in the data set $ds. In the second form, the anonymous array
is duplicated, so the contents of $vector can be modified or destroyed without affecting
the stored row index.

$vector = $ds->index($idx);

Retrieve row index by name. Returns an array reference to the internal data, so be
careful not to modify the contents of $vector accidentally. In most cases, it is easier to
activate $idx and use the normal access methods.

$ds->delete_index($idx);

Delete the row index named $idx. If it happens to be activated, it will automatically
de-activated.

$ds->activate_index($idx);

Activate row index $idx. This will clear any previous activations. Note that this op-
eration may change the effective size of the data set as returned by the size method
(unless $idx is just a sort index).

$ds->activate_index();

Deactivate the currently active index, re-enabling direct access to the full data set in its
original order.

262 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$ds->where($idx, $exp);

Construct $idx selecting all rows for which the UCS expression $exp (given as a
UCS::Expression object) evaluates to true (see the ucsexp manpage for an introduction
to UCS expression, and the UCS::Expression manpage for compilation instructions). It
is often convenient to compile $exp on the fly, especially when it is a simple condition,
e.g.

$ds->where("high.freq", new UCS::Expression ’%f% >= 10’);

which can be shortened to

$ds->where("high.freq", ’%f% >= 10’);

The where method will automatically compile the source string passed as $exp into
a UCS::Expression object. On-the-fly compilation involves only moderate overhead.
When there is an active row index, where will select a subset of this index, preserving
its ordering.

$n = $ds->count($exp);

Similar to where, this method only counts the number of rows matching the UCS
expression $exp, without creating a named index. The condition $exp may be given
either as a UCS::Expression object or as a source string, which is compiled on the fly.
(Internally, the rows are collected in a temporary index, which is automatically deleted
when the method call returns.)

$ds->sort($idx, $key1, $key2, ...);

Sort data set $ds by the specified sort keys. The data set is first sorted, by $key1. Ties
are then broken by $key2, any remaining ties by $key3, etc. If there are any ties left
when all sort keys have been used, their ordering is undefined (and depends on the
implementation of the sort function in Perl). The resulting ordering is stored in a row
index with the name $idx. When there is an active row index, sort will re-order the
rows selected by this index.

Each sort key consists of a variable name, optionally preceded or followed by a + or -
character to select ascending or descending sort order, respectively. The default order
is descending for Boolean variables and association scores, and ascending for all other
variables. The sort keys ’l1’ and ’l2’ sort in alphabetical order, while ’f-’ puts the
most frequent pair types first.

In order to break remaining ties randomly, an appropriate additional sort key has to be
specified. The usual choice are the association scores of the random measure (see the
UCS::AM manpage). It may be necessary to compute this measure first, which can be
conveniently done with the add method, as shown in the example below.

order pair types by frequency (descending), breaking ties randomly
if (not $ds->var("am.random")) {
$ds->add("am.random");
$ds->temporary("am.random", 1); # temporary, don’t save to disk

}
$ds->sort("by.freq", "f-", "am.random");

B.1. UCS/PERL 263

$ds->rank($ranking, $key1, $key2, ...);

The rank method is similar to sort, but creates a ranking instead of a sort index. The
ranking is stored in the integer variable $ranking. Note that tied rows are assigned the
same rank, which is the lowest available rank (as in the Olympic Games) rather than the
average of all ranks in the group (as is often done in statistics). All other remarks about
the sort method apply equally well to the rank method, especially those concerning
randomisation.

DICTIONARIES (LOOKUP HASHES)

A data set dictionary is a hash structure listing all the different values that a given variable
assumes in the data set (or all the different value combinations of several variables). For each
value (or value combination), which is called a key of the dictionary, the corresponding row
numbers in the data set can be retrieved (called a lookup of the key). In the terminology of
relational databases, such a dictionary is referred to as an index. Be careful not to confuse this
notion with the row index described above, which is used for subsetting and/or reordering
the rows of a data set.

A dictionary can be created for any variable (or combination of variables) with the dict
method, and is returned in the form of a UCS::DS::Memory::Dict object. NB: This dictio-
nary is only valid as long as the data set itself is not modified (which includes activation or
deactivation of a row index). Unlike a database index, the dictionary is not updated automat-
ically. It is therefore important to keep operations on the data set under strict control while
a dictionary is in use. It is always possible to add, modify, and delete variables that are not
included in the dictionary, though. For the same reason (as well as to save working memory),
dictionaries should be deleted when they are no longer needed.

The main purpose of a dictionary is to look up keys and find the matching rows in the data set
efficiently (the ucs-join program is an example of a typical application). It is often desirable
to choose variables in such a way that every key identifies a unique row in the data set (for
instance, the values of l1 and l2 identify a pair type, which should have only one entry in a
data set). A dictionary with this property is called unique. Both unique and non-unique dic-
tionaries are supported (unique dictionaries are represented in a memory-efficient fashion).
Lookup and similar operations are implemented as methods of the UCS::DS::Memory::Dict
object.

Although mainly intended for string values, dictionaries support all data types. Boolean
variables will usually be of interest only in combination with other variables (possibly also
Boolean ones), and dictionaries are rarely useful for floating-point values.

$dict = $ds->dict($var1, ..., $varN);

Create a dictionary for the variables $var1, ..., $varN in the data set $ds. Each key
of this dictionary is a combination of N values, which must be specified in the same
order as the variable names. When a row index is in effect, keys and row numbers in
the dictionary are taken from the virtual data set defined by the activated index. The
returned object of class UCS::DS::Memory::Dict is a read-only dictionary: in order to
take changes in the data set $ds into account (including the activation or deactivation
of a row index), a new object has to be created with the dict method.

if ($dict->unique) { ... }

This method returns a true value iff $dict is a unique dictionary.

264 APPENDIX B. UCS SOFTWARE DOCUMENTATION

($max, $avg) = $dict->multiplicity;

$max = $dict->multiplicity;

Returns the maximum ($max) and average ($avg) number of rows matching a key in
$dict. The dictionary is unique iff $max equals 1.

@rows = $dict->lookup($x1, ..., $xN);

$row = $dict->lookup($x1, ..., $xN);

Look up a key, specified as an N-tuple of variable values ($x1, ..., $xN), in the dictionary
$dict and return the matching row numbers. The values $x1, ..., $xN must be given
in the same order as the variables $var1, ..., $varN in the dict method call when the
dictionary was created. When the key is not found in $dict, an empty list is returned.

In scalar context, the (number of the) first matching row is returned, or undef if the
key is not found in the dictionary.

@rows = $dict->lookup($ds2, $n);

$row = $dict->lookup($ds2, $n);

The lookup method can also be used to look up rows from a second data set $ds2, i.e.
to find rows in the dictionary’s data set $ds where the values of $var1, ..., $varN match
the $n-th row of $ds2. For this form of invocation, the dictionary variables must be
defined in $ds2 (otherwise, a fatal error is raised).

$n_rows = $dict->multiplicity($x1, ..., $xN);

$n_rows = $dict->multiplicity($ds2, $n);

When called with arguments, the multiplicity method returns the number of rows
matching a specific key in $dict. The key can be given in the same two ways as for the
lookup method. (Note that calling lookup in scalar context returns the first matching
row, not the total number of rows.)

@keys = $dict->keys;

$n_keys = $dict->keys;

Returns an unsorted list of all dictionary keys in the internal representation (where
each key is a single string value). Such internal representations can be passed to the
lookup and multiplicity methods instead of an N-tuple ($x1, ..., $xN). In scalar con-
text, the keys method efficiently computes the number of keys in $dict.

Examples The keys method and the ability to use the returned internal representations in
the lookup method provide an easy way to compute the (empirical) distribution of a data
set variable, i.e. a list of different values and their multiplicities. (Note that calling lookup
in scalar context cannot be used to determine the multiplicity of a key because it returns the
first matching row in this case.)

frequency table for variable $v on data set $ds
$dict = $ds->dict($v);
@distribution =
sort values by multiplicity
sort { $b->[1] <=> $a->[1] or $a->[0] cmp $b->[0] }

B.1. UCS/PERL 265

compute multiplicity for each value
map { [$_, $dict->multiplicity($_)] }
for a single variable $v, internal keys are simply the values
$dict->keys;

undef $dict; # always erase dictionary after use

The following example is a bare-bones version of the ucs-join command, annotating the pair
types of a data set $ds1 with a variable $var from another data set $ds2 (matching rows
according to the pair types they represent, i.e. using the variables l1 and l2). Typically, $ds2
will be an annotation database.

$ds1->add_variables($var); # assuming $var hasn’t previously exist in $ds1
$dict = $ds2->dict($var);
$dict->unique
or die "Not unique -- can’t look up pair types.";

foreach $n (1 .. $ds1->size) {
$row = $dict->lookup($ds1, $n);
$ds1->set_cell($var, $n, $ds2->cell($var, $row))
if defined $row;

}
undef $dict;

SEE ALSO

The ucsfile manpage for general information about UCS data sets and the data set file format,
the ucsexp manpage for an introduction to UCS expressions (which are used extensively in
the UCS::DS::Memory module) and wildcard patterns, the UCS::Expression manpage for
information on how to compile UCS expressions, and the UCS::DS manpage for methods that
manipulate the layout of a data set and its header information.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

� UCS::DS::Format

ASCII-format data set or subset

SYNOPSIS

use UCS::DS::Memory;
use UCS::DS::Format;

$ds = new UCS::DS::Memory $filename; # needs in-memory representation

266 APPENDIX B. UCS SOFTWARE DOCUMENTATION

$formatter = new UCS::DS::Format $ds; # formatter object for data set $ds

$formatter->digits(6); # number of significant digits

$formatter->mode("table"); # only mode so far

$formatter->pagelength(50); # print in pages of 50 rows each
$formatter->pagelength(undef); # print as single table

$formatter->vars($pattern, ...); # select variables that will be shown

$formatter->print; # print formatted table on STDOUT
$formatter->print($filename); # write to file or pipe

DESCRIPTION

This module provides a convenient method to format data sets as ASCII tables, which can
then be used for viewing and printing. The formatter has to be applied to the in-memory rep-
resentation implemented by the UCS::DS::Memory module. Its output is printed on STDOUT
by default, but it can also be redirected to a file or pipe.

METHODS

$formatter = new UCS::DS::Format $ds;

Creates new formatter object for the data set $ds, which must be a UCS::DS::Memory
object. The formatter object should be used immediately after its creation and de-
stroyed afterwards. When any changes are made in the data set $ds, a new formatter
has to be created.

$formatter->digits($n);

Configure $formatter to display approximately $n significant digits for floating-point
variables (data type DOUBLE). $n must be at least 2.

$formatter->mode("table");

The default mode table prints the data set in the form of a simple ASCII table with
column headers. It is the only supported mode so far.

$formatter->pagelength($rows);

Configure $formatter to format data set in separate pages of $n rows each. The in-
dividual pages are separated by a single blank line. Use of this option may improve
the formatting quality, helps to avoid excessive columns widths, and reduces the delay
before partial results can be displayed.

When $rows is set to 0 or omitted, the entire data set is printed as a single table. This
is also the default behaviour.

$formatter->vars($pattern, ...);

Display only variables matching the specified wildcard patterns, in the specified order.
This configuration option can also be used to change the ordering of the columns or
display a variable in more than one column. Repeated calls to the vars method will
overwrite, rather than add to, the previous selection.

B.1. UCS/PERL 267

$formatter->print;

$formatter->print($filename);

Format the data set with the specified options, and print the result on STDOUT. When
the optional argument $filename is specified, the output is redirected to this file or pipe.

SEE ALSO

See also the manpage of the PRINT utility, which is based on the UCS::DS::Format module.

COPYRIGHT

Copyright 2004 Stefan Evert.

This software is provided AS IS and the author makes no warranty as to its use and perfor-
mance. You may use the software, redistribute and modify it under the same terms as Perl
itself.

268 APPENDIX B. UCS SOFTWARE DOCUMENTATION

B.2 UCS/R

This section contains the full UCS/R documentation. The LATEX pages available within
the R help system are slightly reformatted to match the layout of the thesis.

UCS/R documentation contents

Cbeta . 269
Cgamma . 270
EV . 270
EVm . 271
Ibeta . 272
Igamma . 273
Rbeta . 274
Rgamma . 275
UCS . 277
VV . 279
VVm . 280
add.gams . 281
add.jitter . 282
add.ranks . 283
am.key2var . 284
binom.conf.interval . 285
builtin.ams . 286
builtin.gams . 287
ds.find.am . 289
eo.iso . 290
eo.iso.diff . 292
eo.legend . 294
eo.mark . 296
eo.par . 297
eo.points . 299
eo.setup . 301
evaluation.file . 303
evaluation.plot . 304
evaluation.table . 309
fzm . 310
gam.helpers . 312
gam.iso . 313
gam.score . 314
gamma.nbest . 316
iaa.kappa . 317
iaa.pta . 318
lnre.goodness.of.fit . 319
order.by.am . 321
precision.recall . 321
read.ds.gz . 323
read.spectrum . 324
spectrum.plot . 325

B.2. UCS/R 269

ucs.library . 326
ucs.par . 327
write.lexstats . 329
zm . 330

Cbeta The Beta Function (sfunc)

Description

Computes the (complete) Beta function and its base 10 logarithm.

Usage

Cbeta(a, b, log=FALSE)

Arguments

a, b numeric vectors

log if TRUE, returns the base 10 logarithm of the Beta function (default:
FALSE)

Details

This is just a front-end to the built-in beta and lbeta functions, provided mainly for
consistent naming. Note that the logarithmic version is scaled to base 10 logarithms,
according to the UCS conventions.

Value

The Beta function with arguments (a, b), or its base 10 logarithm (if log=TRUE).

See Also

beta, Ibeta, Rbeta, Cgamma, Igamma, Rgamma

Examples

x <- 5
y <- 3
((x+y+1) * beta(x+1,y+1))^-1 # == choose(x+y, x)

270 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Cgamma The Gamma Function (sfunc)

Description

Computes the (complete) Gamma function and its base 10 logarithm.

Usage

Cgamma(a, log=FALSE)

Arguments

a a numeric vector

log if TRUE, returns the base 10 logarithm of the Gamma function (default:
FALSE)

Details

This is just a front-end to the built-in gamma and lgamma functions, provided mainly for
consistent naming. Note that the logarithmic version is scaled to base 10 logarithms,
according to the UCS conventions.

Value

The Gamma function evaluated at a, or its base 10 logarithm (if log=TRUE).

See Also

gamma, Igamma, Rgamma, Cbeta, Ibeta, Rbeta

Examples

Cgamma(5 + 1) # = factorial(5)

EV Expected Vocabulary Size of a LNRE Model (zm, fzm)

Description

Computes the expected vocabulary size of a LNRE model (Baayen, 2001) at sample size
N.

Usage

EV(model, N)

B.2. UCS/R 271

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

N a vector of positive integers, representing sample sizes

Details

The expected vocabulary size E[V (N)] is the expected number of types at sample size N,
according to the LNRE model model (see Baayen, 2001).

Value

a numeric vector of the same length as N

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EVm, VV, VVm

EVm Expected Frequency Spectrum of a LNRE Model (zm, fzm)

Description

Computes the expected frequency spectrum, relative frequency spectrum, and conditional
parameter distribution of a LNRE model (Baayen, 2001) at sample size N.

Usage

EVm(model, m, N, rho=1, relative=FALSE, ratio=FALSE, lower=TRUE)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

m a vector of positive integers, representing frequency ranks

N a vector of positive integers, representing sample sizes; either m or N
should be a single number

rho a vector of numbers in the range [0,1]. If length(rho) > 1, both m and
N should be single numbers. See below for details.

relative if TRUE, computes the relative frequency spectrum (see below for details)

ratio if TRUE, computes the ratio between consecutive elements in the expected
frequency spectrum

lower if rho is specified, controls whether the lower or upper conditional pa-
rameter distribution is computed

272 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Details

The expected frequency spectrum consists of the numbers E[Vm(N)], which stand for the
expected number of types in frequency class m at sample size N, according to the LNRE
model model (see Baayen, 2001).

If relative=TRUE, the relative frequency spectrum E[Vm(N)]/E[V (N)] is re-
turned. If ratio=TRUE, the ratios between consecutive expected class sizes,
E[Vm+1(N)]/E[Vm(N)], are returned.

When rho is specified, the conditional parameter distribution E[Vm,ρ(N)] is returned,
i.e. the expected number of types in frequency class m at sample size N with prob-
ability parameter π ≤ ρ. If relative=TRUE, the expected proportion E[Rm,ρ] ≈
E[Vm,ρ(N)]/E[V (N)] is returned instead. With lower=FALSE, computes the upper condi-
tional parameter distribution E[Vm,>ρ(N)] or proportion E[Rm,>ρ(N)]. See Evert (2004,
Ch. 4) for details.

Value

a numeric vector of appropriate length (determined either by m, N, or rho)

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

zm, fzm, EVm, VV, VVm

Ibeta The Incomplete Beta Function (sfunc)

Description

Computes the incomplete Beta function and its inverse. The Beta value can be scaled to a
base 10 logarithm.

Usage

Ibeta(x, a, b, log=FALSE)

Ibeta.inv(y, a, b, log=FALSE)

B.2. UCS/R 273

Arguments

a, b non-negative numeric vectors, the parameters of the incomplete Beta
function

x a numeric vector with values in the range [0,1], the point at which the
incomplete Beta function is evaluated

y a numeric vector, the values of the incomplete Beta function (or their
base 10 logarithms if log=TRUE)

log if TRUE, the Beta values are base 10 logarithms (default: FALSE)

Details

The incomplete Beta function is defined by the Beta integral

B(x;a, b) =
∫ x

0
ta−1(1 − t)b−1 dt

Value

Ibeta returns the incomplete Beta function with parameters (a,b) evaluated at point x.

Ibeta.inv returns the point x at which the incomplete Beta function with parameters
(a,b) evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Rbeta

Igamma The Incomplete Gamma Function (sfunc)

Description

Computes the incomplete Gamma function and its inverse. Both the lower and the upper
incomplete Gamma function are supported, and the Gamma value can be scaled to a base
10 logarithm.

Usage

Igamma(a, x, lower=TRUE, log=FALSE)

Igamma.inv(a, y, lower=TRUE, log=FALSE)

274 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

a a non-negative numeric vector, the parameter of the incomplete Gamma
function

x a non-negative numeric vector, the point at which the incomplete Gamma
function is evaluated

y a numeric vector, the values of the incomplete Gamma function (or their
base 10 logarithms if log=TRUE)

lower if TRUE, computes the lower incomplete Gamma function (default). Oth-
erwise, computes the upper incomplete Gamma function.

log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)

Details

The upper incomplete Gamma function is defined by the Gamma integral

Γ(a, x) =
∫ ∞

x
ta−1e−t dt

The lower incomplete Gamma function is defined by the complementary Gamma integral

γ(a, x) =
∫ x

0
ta−1e−t dt

Value

Igamma returns the (lower or upper) incomplete Gamma function with parameter a eval-
uated at point x.

Igamma.inv returns the point x at which the (lower or upper) incomplete Gamma func-
tion with parameter a evaluates to y.

See Also

Cgamma, Rgamma, Cbeta, Ibeta, Rbeta

Rbeta The Regularized Beta Function (sfunc)

Description

Computes the regularized Beta function and its inverse. The Beta value can be scaled to
a base 10 logarithm.

Usage

Rbeta(x, a, b, log=FALSE)

Rbeta.inv(y, a, b, log=FALSE)

B.2. UCS/R 275

Arguments

a, b non-negative numeric vectors, the parameters of the regularized Beta
function

x a numeric vector with values in the range [0,1], the point at which the
regularized Beta function is evaluated

y a numeric vector, the values of the regularized Beta function (or their
base 10 logarithms if log=TRUE)

log if TRUE, the Beta values are base 10 logarithms (default: FALSE)

Details

The regularized Beta function scales the incomplete Beta function to the interval [0,1],
by dividing through B(a, b), i.e.

I(x;a, b) =
B(x;a, b)
B(a, b)

Value

Rbeta returns the regularized Beta function with parameters (a,b) evaluated at point x.

Rbeta.inv returns the point x at which the regularized Beta function with parameters
(a,b) evaluates to y.

See Also

Cgamma, Igamma, Rgamma, Cbeta, Ibeta

Rgamma The Regularized Gamma Function (sfunc)

Description

Computes the regularized Gamma function and its inverse. Both the lower and the upper
regularized Gamma function are supported, and the Gamma value can be scaled to a base
10 logarithm.

Usage

Rgamma(a, x, lower=TRUE, log=FALSE)

Rgamma.inv(a, y, lower=TRUE, log=FALSE)

276 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

a a non-negative numeric vector, the parameter of the incomplete Gamma
function

x a non-negative numeric vector, the point at which the incomplete Gamma
function is evaluated

y a numeric vector, the values of the regularized Gamma function (or their
base 10 logarithms if log=TRUE)

lower if TRUE, computes the lower regularized Gamma function (default). Oth-
erwise, computes the upper regularized Gamma function.

log if TRUE, the Gamma values are base 10 logarithms (default: FALSE)

Details

The regularized Gamma functions scale the corresponding incomplete Gamma functions
to the interval [0,1], by dividing through Γ(a). Thus, the lower regularized Gamma
function is given by

P(a, x) =
γ(a, x)
Γ(a)

and the upper regularized Gamma function is given by

Q(a, x) =
Γ(a, x)
Γ(a)

Value

Rgamma returns the (lower or upper) regularized Gamma function with parameter a eval-
uated at point x.

Rgamma.inv returns the point x at which the (lower or upper) regularized Gamma func-
tion with parameter a evaluates to y.

See Also

Cgamma, Igamma, Cbeta, Ibeta, Rbeta

Examples

P(X >= k) for Poisson distribution with mean alpha
alpha <- 5
k <- 10
Rgamma(k, alpha) # == ppois(k-1, alpha, lower=FALSE)

B.2. UCS/R 277

UCS Introduction to UCS/R

Description

UCS/R consists of a set of R libraries related to the visualisation of cooccurrence data and
the evaluation of association measures. The current functionaliy includes: evaluation
graphs for association measures (in terms of precision and recall), measures for inter-
annotator agreement, and two population models for word frequency distributions.

Usage

source("/path/to/UCS/System/R/lib/ucs.R")
ucs.library()

Details

UCS/R is initialised by sourceing the file ‘ucs.R’ in the ‘lib/’ subdirectory of the UCS/R
directory tree. This will make the UCS/R documentation available in the R process and
provide the ucs.library command, which is used to load individual UCS/R modules.
Enter ucs.library() now to display a list of available modules (see the ucs.library
manpage for details).

Currently, the following modules are available. The listing below also indicates the most
important manpages for each module. Throughout the documentation, it is assumed that
you are familiar with the UCS/Perl naming conventions and data set file format.

• sfunc: Special Mathematical Functions
Convenience interfaces to the Gamma function (Cgamma), the incomplete (and reg-
ularized) Gamma function and its inverse (Igamma, Rgamma), the Beta function
(Cbeta), the incomplete (and regularized) Beta function and its inverse (Ibeta,
Rbeta), and binomial confidence intervals (binom.conf.interval).
All these functions are computed from the pgamma and pbeta distributions (and the
corresponding quantile functions) in the standard library of R.

• base: Basic Functions for Loading and Managing UCS data sets
This module provides functions for loading UCS data set files (read.ds.gz), listing
annotated association measures (ds.find.am, am.key2var), ranking by association
scores (order.by.am, add.ranks), and computing precision/recall tables for the
evaluation of association measures (precision.recall).
The module also includes a listing of all built-in association measures in the
UCS/Perl system, including add-on packages (builtin.ams).

• plots: Evaluation Graphs for Association Measures
This module plots precision-, recall-, and precision-by-recall graphs for the em-
pirical evaluation of association measures (all combined in a single function,
evaluation.plot). The graphs are highly configurable, either locally in each func-
tion call or by setting global defaults (ucs.par). The evaluation.plot function

278 APPENDIX B. UCS SOFTWARE DOCUMENTATION

supports confidence intervals, significance tests for result differences, and evalua-
tion based on random samples (see Evert, 2004, Ch. 5). A simple text-mode version
of the precision/recall-based evaluation is provided by the evaluation.table func-
tion in the base module.

• iaa: Measures of Inter-Annotator Agreement
Computes Cohen’s kappa statistic with standard deviation (Fleiss, Cohen & Everitt,
1969) or confidence interval for proportion of true agreement (Krenn, Evert & Zins-
meister, 2004) from a 2 × 2 contingency table (see iaa.kappa and iaa.pta)

• gam: Generalised association measures (GAMs)
This module implements extensions of several association measures to contin-
uous functions on a real-valued coordinate space (generalised association mea-
sures, GAMs). For details and terminology, please refer to Evert (2004, Sec.
3.3). The functions in this module compute GAM scores and iso-surfaces in stan-
dard or ebo-coordinates, and can add jitter to a given data set. New GAMs
can easily be added with the register.gam function. Relevant help pages
are builtin.gams, gam.score, gam.iso, gamma.nbest, add.jitter, add.gams,
add.ebo, and gam.helpers.

• eo: Visualise GAMs in the (e,o) plane
This module implements 2-D visualisation of data sets and GAMs by plotting point
clouds and iso-lines in the (e,o) plane (see Evert 2004, Sec. 3.3). The recommended
starting point is the documentation of the eo.setup function, which intialises a new
(e,o) plot. Other relevant help pages are eo.par, eo.points, eo.iso, eo.iso.diff,
eo.legend and eo.mark.

• lexstats: Utilities for lexical statistics
This module contains miscellaneous utility functions for word frequency distribu-
tions, including: an interface to file formats used by the lexstats software (Baayen
2001); a range of common plots; goodness-of-fit evaluation for LNRE populations
models (cf. the zm and fzm modules below). Currently, the most useful functions in
this module are read.spectrum, spectrum.plot, and lnre.goodness.of.fit.

• zm: The Zipf-Mandelbrot (ZM) Population Model
This module implements a simple population model for word frequency distri-
butions (Baayen, 2001) based on the Zipf-Mandelbrot law. See (Evert, 2004a)
for details. Relevant help pages are zm, EV, EVm, VV, VVm, write.lexstats, and
lnre.goodness.of.fit.

• fzm: The Finite Zipf-Mandelbrot (fZM) Population Model
This module implements the finite Zipf-Mandelbrot model, an extension of the
ZM model (Evert, 2004a). Relevant help pages are fzm, EV, EVm, VV, VVm,
write.lexstats, and lnre.goodness.of.fit.

The command help(package=UCS) will give you a full index of available UCS/R help
pages. Use help.search() for full-text search.

Note

The correct source path for the file ‘ucs.R’ can be set automatically with the UCS/Perl
tool ucs-config. Simply insert the statement

source("ucs.R")

B.2. UCS/R 279

on a separate line in your R script file (say, ‘my-script.R’) and run the shell command

ucs-config my-script.R

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of
kappa and weighted kappa. Psychological Bulletin, 72(5), 323–327.

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agree-
ment for a collocation identification task. In preparation.

See Also

ucs.library, the UCS/R tutorial (‘tutorial.R’ in the ‘script/’ subdirectory) and the
UCS/Perl documentation.

VV Variance of the Vocabulary Size of a LNRE Model (zm, fzm)

Description

Computes the variance of the vocabulary size of a LNRE model (Baayen, 2001) at sample
size N.

Usage

VV(model, N)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

N a vector of positive integers, representing sample sizes

Details

The variance V [V (N)] is computed according to Baayen (2001, 120f). See the EV help
page for some more information on the vocabulary size V (N).

Value

a numeric vector of the same length as N

280 APPENDIX B. UCS SOFTWARE DOCUMENTATION

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, VVm, EV, EVm

VVm Variances of the Frequency Spectrum of a LNRE Model (zm, fzm)

Description

Computes the variances of the frequency spectrum and conditional parameter distribution
of a LNRE model (Baayen, 2001) at sample size N.

Usage

VVm(model, m, N, rho=1, relative=FALSE, lower=TRUE)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM) or
finite Zipf-Mandelbrot (fZM) LNRE model

m a vector of positive integers, representing frequency ranks

N a vector of positive integers, representing sample sizes; either m or N
should be a single number

rho a vector of numbers in the range [0,1]. If length(rho) > 1, both m and
N should be single numbers. See below for details.

relative if TRUE, computes variances for the relative conditional parameter distri-
bution (see below for details). May only be used when rho is specified.

lower if rho is specified, controls whether variances are computed for the lower
or for the upper conditional parameter distribution

Details

The variance V [Vm(N)] is computed according to Baayen (2001, 120f).

When rho is specified, the variances of the conditional parameter distribution V [Vm,ρ(N)]
or the corresponding proportions V [Rm,ρ(N)] are returned, depending on the value of
relative. With lower=FALSE, computes variances for the upper conditional parameter
distribution V [Vm,>ρ(N)] or proportion V [Rm,>ρ(N)]. See Evert (2004, Ch. 4) for details.

The EVm help page provides more information about Vm(N), Vm,ρ(N), Rm,ρ(N), Vm,>ρ(N)
and Rm,>ρ(N).

Note that this function does not compute variances for the relative frequency
spectrum (V [Vm(N)/V (N)]) or the ratio between consecutive spectrum elements
(V [Vm+1(N)/Vm(N)]).

B.2. UCS/R 281

Value

a numeric vector of appropriate length (determined either by m, N, or rho)

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

zm, fzm, VVm, EV, EVm

add.gams Annotate Data Set with GAM Scores (gam)

Description

Annotates data set with GAM scores, possibly overwriting existing scores of a standard
AM. Optionally, jitter annotated in the data set can be taken into account when computing
the scores.

Usage

add.gams(ds, names, jitter=FALSE)

Arguments

ds a UCS data set object

name a character vector specifying the names of generalised association mea-
sures to be annotated in the data set

add.jitter if TRUE, random jitter (which must be annotated in the data set) is added
to the frequency signatures before computing GAM scores (see details
below)

Details

The add.gams function uses the standard variable names for AM scores (e.g. am.t.score
for the t.score measure), so that existing scores for the respective standard AMs in the
data set will be overwritten. Rankings for the GAM scores can then be computed in the
normal way using the add.ranks function.

With jitter=TRUE, a small amount of random jitter is added to the frequency signatures
in order to avoid ties in the rankings and facilitate visualisation of the data set. The
necessary jitter vectors have to be stored in special variables in the data set first, which is
most easily achieved with the add.jitter function.

282 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Value

a copy of the data set ds annotated with GAM scores for the specified measures

See Also

gam.score, gam.iso, builtin.gams, add.ranks, add.jitter

Examples

ds <- add.ranks(add.gams(ds, c("t.score", "chi.squared.corr")))

ds <- add.jitter(ds)
gam.names <- ds.find.am(ds)
gam.names <- gam.names[is.builtin.gam(gam.names)]
ds <- add.gams(ds, gam.names, jitter=TRUE)
ds <- add.ranks(ds, gam.names, randomise=FALSE, overwrite=TRUE)

add.jitter Random Jitter for Frequency Signatures in Data Set (gam)

Description

Add random jitter to the frequency signatures in a data set, in order to avoid ties in
rankings according to GAM scores and to facilitate visualisation of the data set with eo
and ebo plots. The add.ebo function is used to re-compute ebo-coordinates from the
jittered frequency signatures.

Usage

add.jitter(ds, amount=0.5, overwrite=FALSE)

has.jitter(ds, fail=FALSE)

add.ebo(ds, jitter=FALSE)

Arguments

ds a UCS data set object

amount amount of jitter to be added; the jitter vector for each coordinate (f, f1,
f2) has a uniform distribution over the range [-amount, +amount]

overwrite if TRUE, overwrite existing jitter vectors in the data set

fail if TRUE, abort with an error message unless the data set contains jitter
vectors

jitter if TRUE, use the jittered frequency signatures to compute ebo-coordinates
(default: unjittered integer frequencies)

B.2. UCS/R 283

Details

The add.jitter function adds jitter vectors for the joint and marginal frequencies (f,
f1, f2) to a data set, i.e. uniformly distributed random numbers in the range [-
amount, +amount]. These vectors are stored in variables x.jitter.f, x.jitter.f1
and x.jitter.f2, where they can be used by add.ebo, add.gams and other functions.
has.jitter tests for the presence of these variables.

add.ebo computes ebo-coordinates from the frequency signatures and stores them in the
standard variables e, b, o. Unlike the values computed with UCS/Perl tools, add.ebo
uses jitter vectors in this computation when the option jitter=TRUE is passed.

Value

add.jitter and add.ebo return a copy of the data set ds with the request variables
added. has.jitter returns TRUE if the jitter variables are present in ds, and FALSE
otherwise.

See Also

add.gams, gamma.nbest

Examples

ds <- add.jitter(ds, amount=0.2)

ds <- add.ebo(ds, jitter=TRUE) # recompute ebo coordinates with jitter

add.ranks Compute Rankings for Annotated Association Measures (base)

Description

Add rankings (with or without ties) for specified association measures to a data set object.

Usage

add.ranks(ds, keys=ds.find.am(ds), randomise=TRUE, overwrite=TRUE)

Arguments

ds a UCS data set object

keys a character vector giving the names of one or more association measures.
When it is omitted, rankings are computed for all annotated measures.

randomise if TRUE, ties are broken randomly (default). Otherwise, tied rows are
assigned the same rank, which is the first free one (as in the Olympic
Games). See below for prerequisites.

overwrite if TRUE, existing rankings are overwritten (default). Otherwise, associa-
tion measures for which ranks are already annotated are silently skipped.
If you modify association scores within R, be sure to call add.ranks with
overwrite=TRUE.

284 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Details

Since add.ranks is based on the order.by.am function, the prerequisites are the same:
the data set must contain association scores for the random measure if randomise=TRUE
and an id variable if randomise=FALSE. See the order.by.am manpage for further infor-
mation.

Value

Invisibly returns a copy of ds annotated with the requested rankings. The rankings are
stored in variables r.*, where * stands for the name of an association measure (according
to the UCS naming conventions, cf. the am.key2var manpage).

See Also

order.by.am, am.key2var, ds.find.am, read.ds.gz

Examples

from the UCS/R tutorial
GLAW <- read.ds.gz("glaw.scores.ds.gz")
GLAW <- add.ranks(GLAW)

combine into single command
GLAW <- add.ranks(read.ds.gz("glaw.scores.ds.gz"))

am.key2var UCS Variable Names for Association Scores and Rankings (base)

Description

These functions implement the UCS naming conventions for variables storing association
scores and the corresponding ranking. is.valid.key checks whether a given string is
valid as a name for an association measure. am.key2var translates a valid AM name
into the corresponding variables (for scores or ranking), and am.var2key extracts the AM
name from such a variable.

Usage

is.valid.key(key, warn=FALSE)

am.key2var(key, rank=FALSE)

am.var2key(var)

B.2. UCS/R 285

Arguments

key a character vector, giving the names of one or more association measures

var a character vector of variable names, which must be either association
scores or rankings (but both types can be mixed in the vector)

warn if TRUE, issues a warning if the vector key contains invalid AM names.
All invalid entries are listed in the warning message.

rank if TRUE, return names of the ranking variables corresponding to the spec-
ified association measures. otherwise, return names of variables for as-
sociation scores.

Value

is.valid.key returns a logical vector, am.var2key returns a list of AM names (“keys”),
and am.key2var returns a list of variable names (either for association scores or rankings,
depending on the rank parameter).

See Also

builtin.ams for information about built-in association measures, and the ucsfile man-
page in UCS/Perl for a description of the UCS naming conventions (enter the shell com-
mand ucsdoc ucsfile).

Examples

am.key2var(c("t.score", "MI"), rank=TRUE)
am.var2key(c("am.t.score", "r.MI"))

binom.conf.interval

Binomial Confidence Intervals

Description

Computes confidence intervals for the success probability of a binomial distribution effi-
ciently. Unlike binom.test, this function can be applied to vectors.

Usage

binom.conf.interval(k, size, limit=c("lower","upper"),
conf.level=0.05, one.sided=FALSE)

286 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

k a vector of non-negative integers. Each element represents the number of
successes out of size trials, i.e. the observed value of a random variable
with binomial distribution.

size a vector of positive integers. Each element represents the number of trials
of a binomial distribution.

limit if "upper", the upper boundaries of the confidence intervals are re-
turned. If "lower", the lower boundaries are returned. Note that this
works both for one-sided and for two-sided confidence intervals.

conf.level the required confidence level, or rather the significance level of the corre-
sponding binomial test (note that this behaviour differs from the built-in
binom.test function). The default conf.level=0.05 stands for 95%
confidence.

one.sided if TRUE, computes one-sided confidence interval (either lower or upper,
depending on the value of limit). If FALSE, a two-sided confidence
interval is computed (default).

Details

If one.sided=TRUE, the underlying test is one-sided (with alternative "less" or
"greater", depending on the limit parameter), and the non-trivial boundary of the
confidence interval is returned.

If one.sided=FALSE, the underlying test is two-sided and the requested bound-
ary of the two-sided confidence interval is returned. For efficiency reasons, the
binom.conf.interval function cheats a little and computes one-sided confidence inter-
vals with significance level conf.level / 2.

Value

A numeric vector with the requested boundary of confidence intervals for the unknown
success probabilities of binomial variables.

See Also

binom.test

builtin.ams UCS/Perl Built-in Association Measures (base)

Description

builtin.ams returns a character vector listing the built-in association measures of the
UCS/Perl system (including the standard add-on packages), is.builtin.am checks
whether a specified measure belongs to this set, and am.key2desc returns a short de-
scription of the specified measure.

B.2. UCS/R 287

Usage

builtin.ams()

is.builtin.am(key)

am.key2desc(key)

Arguments

key a character vector specifying the names of one or more association mea-
sures

Value

builtin.ams returns a character vector containing the names of all built-in association
measures, is.builtin.am returns a logical vector, and am.key2desc returns a character
vector with a short description of each of the measures in key.

See Also

The information provided by these functions is obtained from the UCS/Perl tool ucs-
list-am. See the ucsam manpage in UCS/Perl for further information about built-in
association measures (using the shell command ucsdoc ucsam).

Examples

print(builtin.ams())
am.key2desc("chi.squared.corr")

builtin.gams Built-in Generalised Association Measures (gam)

Description

List available GAMs (generalised association measures) that can be computed with func-
tions such as gam.score, add.gams and gam.iso, or test whether a specific GAM is avail-
able. Additional GAMs can be defined with the register.gam function.

Usage

builtin.gams()

is.builtin.gam(names)

register.gam(name, equation, iso.equation=NULL)

288 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

names a character vector specifying the names of GAMs whose availability is
tested

name a single character string specifying the name of a GAM that is defined or
re-defined

equation a function that computes GAM scores from standard or ebo-coordinates
(see below for details)

iso.equation an optional function that computes iso-surfaces in standard or ebo-
coordinates (see below for details)

Details

The names of built-in GAMs are identical to those of the corresponding standard AMs
(e.g. t.score and chi.squared.corr).

The equation argument of register.gam, i.e. the equation defining a new GAM), must
be a function with the signature (o, e, b, f, f1, f2, N). This function can computes
GAM scores either from the ebo-coordinates e, b, o or from the standard coordinates
f, f1, f2, N. It is always invoked with all seven arguments, which are guaranteed to be
vectors of the same length, and must return a vector of corresponding GAM scores.

When an explicit equation for iso-surfaces {g = γ} exists, it can be made available
through the optional argument iso.equation, which expects a function with the signa-
ture (gamma, e, b, f1, f2, N). Again, all six arguments are guaranteed to be vectors
of the same length, and the function must return the corresponding o (or f) coordinates
that satisfy the condition g(o, e, b) = γ (or g(f, f1, f2, N) = γ). When the iso.equation
function is available for a GAM, it will be used by gam.iso for greater speed and accu-
racy. Otherwise, the iso surface is determined by a binary search algorithm (which has a
unique solution for any semi-sound GAM).

The signatures of the equation and iso.equation functions are checked by
register.gam, which will abort with an error message if they are not correct.

Value

builtin.gams returns a character vector listing the names of available GAMs.
is.builtin.gam returns a logical vector indicating which of the GAMs in the vector names
are available.

See Also

builtin.ams, gam.score, add.gams, gam.iso, gam.helpers

Examples

print(builtin.gams())

all(is.builtin.gam(c("MI", "t.score", "chi.squared")))

register.gam("MI5",
eq = function (o, e, b, f, f1, f2, N) { log10(o^5 / e) },
iso = function (gamma, e, b, f1, f2, N) { 10^(gamma/5) * e^(1/5) })

B.2. UCS/R 289

ds.find.am List Association Scores and Rankings in Data Set (base)

Description

am.in.ds tests whether a specified association measure is annotated in a data set,
ds.find.am lists all annotated association measures, and ds.match.am searches the data
set for AMs whose names may be abbreviated to a unique prefix. All three functions look
either for association scores or for rankings.

Usage

am.in.ds(ds, keys, rank=FALSE, fail=FALSE)

ds.find.am(ds, rank=FALSE)

ds.match.am(ds, abbrevs, rank=FALSE)

Arguments

ds a UCS data set, read from a data set file with the read.ds.gz function

keys a character vector of AM names

abbrevs a character vector of AM names, each of which may be abbreviated to a
unique prefix (within the data set)

rank if TRUE, the functions look for annotated rankings; otherwise, they look
for annotated association scores (default)

fail if TRUE, the function aborts with an error message unless all specified
AMs are annotated in the data set

Details

If any of the abbrevs do not have a unique match in the data set, ds.match.am aborts
with an error message (listing all strings that failed to match uniquely).

Value

am.in.ds returns a logical vector of the same length as keys. ds.find.am and
ds.match.am return a character vector containing the names of the annotated associa-
tion measures.

See Also

read.ds.gz, am.var2key

Examples

GLAW <- read.ds.gz("glaw.scores.ds.gz")
print(ds.find.am(GLAW))

290 APPENDIX B. UCS SOFTWARE DOCUMENTATION

eo.iso Draw Iso-Line of a GAM in the (e,o) Plane (eo)

Description

Draw an iso-line of a generalised association measure (GAM) in the (e,o) plane, either
for a specified cutoff threshold γ or an n-best iso-line for a given data set ds. Optionally,
the corresponding acceptance region can be shaded or filled with solid colour.

Usage

eo.iso(gam, gamma=0, b=1, N=1e6, n.best=NULL, ds=NULL,
style=1, fill=solid, solid=FALSE,
steps=eo.par("steps"), jitter=eo.par("jitter"), bw=bw,
col=eo.par("col"), lty=eo.par("lty"), lwd=eo.par("lwd"),
angle=eo.par("angle"), density=eo.par("density"),
solid.col=eo.par("solid"))

Arguments

gam a character string giving the name of a generalised association measure
(GAM). Use the function builtin.gams from the gam module to obtain a
list of available GAMs.

gamma a cutoff threshold that determines the iso-line to be drawn (by the im-
plicit equation {g = γ}). Use the n.best and ds parameters instead of
gamma in order to obtain an n-best iso-line for the data set ds.

b, N optional balance (b) and sample size (N) parameters for GAMs that are
not central or size-invariant, respectively. The default b=1 yields the cen-
tralised version of a non-central GAM (for details, see Evert 2004, Sec.
3.3)

n.best, ds When these parameters are specified, the cutoff threshold gamma will au-
tomatically be determined so as to yield an n-best acceptance region for
the data set ds.

jitter If TRUE, use jittered coordinates for computing the n-best cutoff threshold
(see above). In this case, the data set has to be annotated with the
add.jitter function first.

style an integer specifying the style (colour, line type and width) in which iso-
lines will be drawn. The number of styles available depends on the global
parameter settings (eo.par). The "factory settings" define 5 different
styles for iso-lines.

fill If TRUE, fill in the acceptance region bounded by the given iso-line with
shading lines, according to the chosen style and bw mode. See eo.par
for details on shading styles.

B.2. UCS/R 291

solid If TRUE, fill the acceptance region with solid colour rather than shad-
ing lines, also according to the chosen style and bw mode. Setting
solid=TRUE implies fill=TRUE.

steps an integer specifying how many equidistant steps are used for drawing
iso-lines. The default value is set with eo.par.

bw If TRUE, the iso-lines are drawn in B/W mode, otherwise in colour mode.
This parameter defaults to the state specified with the initial eo.setup
call, but can be overridden manually.

col, lty, lwd

can be used to override the default style parameters for iso-lines, which
are determined automatically from the global settings (eo.par) accord-
ing to the selected style and bw mode.

angle, density

can be used to override the default style parameters for shaded accep-
tance region, which are determined automatically from the global set-
tings (eo.par) according to the selected style and bw mode.

solid.col can be used to override the default colour for solid filled acceptance
regions, which is determined automatically from the global settings
(eo.par) according to the selected style and bw mode.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o)
plots. This help page also has links to other (e,o) plotting functions. The "factory setting"
styles are described on the eo.par help page.

The cutoff threshold γ can either be specified explicitly (with the gamma parameter) or
implicitly as an n-best threshold (with n.best, ds, and optional jitter). The latter
method produces the same result as

gam.iso(gam, gamma=gamma.nbest(ds, gam, n.best, jitter), ...)

Visualisation by (e,o) iso-lines is most suitable for GAMs that are both central and size-
invariant (see Evert 2004, Sec. 3.3). For non-central measures, the eo.iso function uses
a balance value of b = 1, yielding a centralised version of the GAM. Note that many
non-central GAMs (especially those based on statistical tests, such as log.likelihood
and chi.squared) have only a weak dependency on the balance b, so that their cen-
tralised iso-surfaces (i.e. extrusions of the iso-lines along the b-axis) are very similar
to the original iso-surfaces. Other GAMs (most notably Dice and similar measures) are
highly dependent on b, though. For measures that are not size-invariant, the sample size
is arbitrarily set to N = 106, which is in a realistic range for real-life data sets. You may
wish to modify the default value in order to match a data set shown in the plot (this
is not done automatically when the ds parameter is specified), or to demonstrate the
dependency of iso-lines on N.

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

292 APPENDIX B. UCS SOFTWARE DOCUMENTATION

See Also

eo.par, eo.setup, eo.iso.diff

Examples

an example can be found on the "eo.setup" help page

eo.iso.diff Highlight Differences between Two Acceptance Regions in the (e,o)
Plane (eo)

Description

Compare the acceptance regions of two GAMs by shading the two difference sets (cf. Evert
2004, Sec. 5.2.2) in different fill styles. This function should be followed by two eo.iso
calls to draw the iso-lines bounding the difference regions.

Usage

eo.iso.diff(gam1, gam2, gamma1=0, gamma2=0, b=1, N=1e6,
n.best1=NULL, n.best2=NULL, ds=NULL,
style1=4, style2=5, solid=FALSE, bw=bw,
steps=eo.par("steps"), jitter=eo.par("jitter"),
col1=eo.par("col"), angle1=eo.par("angle"),
density1=eo.par("density"), solid.col1=eo.par("solid"),
col2=eo.par("col"), angle2=eo.par("angle"),
density2=eo.par("density"), solid.col2=eo.par("solid"))

Arguments

gam1, gam2 character strings giving the names of two generalised association mea-
sures (GAMs). Use the function builtin.gams from the gam module to
obtain a list of available GAMs.

gamma2, gamma2

cutoff thresholds that determines the two acceptance regions ({g1 = γ1}
and {g1 = γ1}) to be compared. You can use n.best and ds parameters
(see below) to compute n-best thresholds automatically.

b, N optional balance (b) and sample size (N) parameters for GAMs that are
not central or size-invariant, respectively. The default b=1 yields the cen-
tralised version of a non-central GAM (for details, see Evert 2004, Sec.
3.3). Note that the same values are used for both GAMs.

B.2. UCS/R 293

n.best1, n.best2, ds

When n.best1 is specified, the cutoff threshold gamma1 will automati-
cally be determined so as to yield an n-best acceptance region for the
data set ds. In the same way, n.best2 computes gamma2 as an n-best
acceptance threshold. Note that the data set ds is used for both n-best
thresholds.

jitter If TRUE, use jittered coordinates for computing n-best cutoff thresholds
(see above). In this case, the data set has to be annotated with the
add.jitter function first.

style1, style2

integer values specifying fill styles for the two difference regions. style1
is used for the region D1 of the (e,o) plane accepted by gam1 but not
gam2, and style2 for the region D2 accepted by gam2 but not gam1. Style
parameters include the colour, angle and density of shading lines, or
the solid fill colour if solid=TRUE. See the eo.par help page for more
information about available fill styles.

solid If TRUE, fill the difference regions with solid colour rather than shading
lines, also according to the chosen styles and bw mode.

bw If TRUE, the regions are drawn in B/W mode, otherwise in colour mode.
This parameter defaults to the state specified with the initial eo.setup
call, but can be overridden manually.

steps an integer specifying how many equidistant steps are used for the (com-
bined) boundaries of the difference regions. The default value is set with
eo.par.

col1, col2 can be used to override the default colours for shading lines, which are
determined automatically from the global settings (eo.par) according to
the selected styles and bw mode.

angle1, angle2

can be used to override the default angles of shading lines, which are
determined automatically from the global settings (eo.par) according to
the selected styles and bw mode.

density1, density2

can be used to override the default densities of shading lines, which are
determined automatically from the global settings (eo.par) according to
the selected styles and bw mode.

solid.col1, solid.col2

can be used to override the default solid fill colours (with solid=TRUE),
which are determined automatically from the global settings (eo.par)
according to the selected styles and bw mode.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o)
plots. This help page also has links to other (e,o) plotting functions. The "factory setting"
styles are described on the eo.par help page.

See the eo.iso help page for details about iso-lines, acceptance regions and n-best cutoff
thresholds.

294 APPENDIX B. UCS SOFTWARE DOCUMENTATION

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

eo.par, eo.setup, eo.iso

Examples

setup code (see "eo.setup" example for a detailed explanation)
ucs.library("eo")
ds <- add.jitter(read.ds.gz("dickens.ds.gz"))
select <- rbinom(nrow(ds), 1, .1) == 1
ds <- ds[select,]

comparison of 300-best acceptance regions for Poisson and MI measures
eo.setup(xlim=c(-3,2), ylim=c(0,2), aspect=FALSE)
eo.iso.diff("Poisson.pv", "MI", n.best1=300, n.best2=300, ds=ds,

solid=TRUE, jitter=TRUE)
eo.points(ds, style=1, jitter=TRUE)
eo.iso("Poisson.pv", n.best=300, ds=ds, style=4)
eo.iso("MI", n.best=300, ds=ds, style=5)
eo.legend.diff(3, c("Poisson+ / MI-","Poisson- / MI+"), solid=TRUE)
eo.close()

eo.legend Draw Legend Box for Point Cloud or Iso-Lines (eo)

Description

Draw a legend box in one of the corners of the active (e,o) plot, showing labels for one
or more styles of data set points, iso-lines or shaded/filled acceptance regions.

Usage

eo.legend.points(corner, legend, styles, bw=bw, cex.mul=2.5, ...)

eo.legend.iso(corner, legend, styles, bw=bw, fill=solid, solid=FALSE,
lw.add=0, density.mul=2, ...)

eo.legend.diff(corner, legend, style1=4, style2=5,
bw=bw, solid=FALSE, density.mul=2, ...)

B.2. UCS/R 295

Arguments

corner an integer specifying the corner of the plot where the legend box will be
drawn (1 = top left, 2 = top right, 3 = bottom right, 4 = bottom left)

legend a character vector specifying labels for the legend box. For the
eo.legend.diff function, it must have length 2 (labels for the differ-
ence regions D1 and D2).

styles an integer vector specifying display styles for the items in the legend box
(see the eo.par help page for more information about display styles).
Note that styles must have exactly the same length as legend

style1, style2

display styles for the first and second difference region (D1 and D2). The
defaults are set to match those of eo.iso.diff.

bw If TRUE, the points, lines or shading/colour boxes in the legend are drawn
in B/W mode; otherwise, they are drawn in colour mode. This parameter
defaults to the state specified with the initial eo.setup call, but can be
overridden manually.

fill If TRUE, show the shadings of acceptance regions instead of iso-line styles
in the legend.

solid If TRUE, show solid colours instead of shadings for acceptance regions in
the legend. Setting solid=TRUE implies fill=TRUE.

cex.mul numeric factor by which plot symbols are scaled in the legend box (with
respect to their size in the plot)

lw.add numeric value added to line widths in the legend box. Only needed when
widths of iso-lines are too thin to be clearly visible in the legend box.

density.mul numeric factor by which the density of shading lines is multiplied in the
legend box in order to improve visibility of the shading style

... Any additional parameters are passed through to the legend function
used to draw the legend box.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o)
plots. This help page also has links to other (e,o) plotting functions. The "factory setting"
styles are described on the eo.par help page.

eo.legend.points displays a legend box for point clouds plotted with eo.points;
eo.legend.iso a legend box for iso-lines or acceptance regions drawn with eo.iso;
and eo.legend.diff a legend box for differences between two acceptance regions that
have been highlighted with eo.iso.diff (this is just a convenience wrapper around
eo.legend.iso).

Note that legend boxes can only be created for the default styles set with eo.par since it
is not possible to override the style parameters manually.

See Also

eo.par, eo.setup, eo.points, eo.iso, eo.iso.diff

296 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Examples

an example can be found on the "eo.setup" help page

eo.mark Mark Individual Pair Typess in Point Cloud (eo)

Description

Mark individual pair types from a data set in a point cloud plotted with the eo.points
function.

Usage

eo.mark(ds, select, style=1, bw=bw, cex=1.5, lwd=3,
jitter=eo.par("jitter"))

Arguments

ds a data set containing pair types that have been plotted as a point cloud,
some or all of which will be marked

select an expression that will be evaluated on the data set ds to determine the
pair types that will be marked. In order to mark the point representing
the word pair black box, e.g., specify select=(l1 == "black" & l2 ==
"box").

style an integer specifying the style from which the colour of the markers is
taken. Note that the symbol (a thick ring) and its size are hard-coded in
the function and cannot be changed globally.

bw If TRUE, the markers are drawn in B/W mode, otherwise in colour mode.
This parameter only affects the colour of the marker rings. It defaults to
the state specified with the initial eo.setup call, but can be overridden
manually.

cex, lwd size and thickness of the marker rings. The default values are suitable
for the "factory setting" styles used for data set points (see eo.points).

jitter If TRUE, the coordinates of pair types are jittered for the plot. This pa-
rameter must have the same value as in the eo.points call that was
used to plot the point cloud, otherwise marker placement will be in-
correct. When jitter=TRUE, the data set has to be annotated with the
add.jitter function first. The default value is set with eo.par.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o)
plots. This help page also has links to other (e,o) plotting functions. The "factory setting"
styles are described on the eo.par help page.

B.2. UCS/R 297

See Also

eo.par, eo.setup, eo.points

eo.par Graphics Parameters for (e,o) Plots (eo)

Description

Set default graphics parameters for (e,o) plots, similar to ucs.par in the plots module
and par for general graphics parameters. Parameter values can be set by specifying them
as arguments in name=value form, or by passing a single list of named values. The current
values can be queried by giving their names as character strings.

Usage

eo.par(...)

.eo.PAR

Arguments

... either character strings (or vectors) specifying the names of parameters
to be queried, or parameters to be set in name=value form, or a single list
of named values. Valid parameter names are described below.

Details

The current default parameters are stored in the global variable .eo.PAR. They can be
queried by giving their names as one or more character vectors to eo.par. eo.par() (no
arguments) returns all eo graphics parameters.

Parameters are set by specifying their names and the new values as name=value pairs.
Such a list can also be passed as a single argument to eo.par, which is typically used to
restore previous parameter values (that have been saved in a list variable).

In order to restore the "factory settings", reload the module with the command
ucs.library("eo", reload=TRUE).

Value

When parameters are set, their former values are returned in an invisible named list.
Such a list can be passed as a single argument to eo.par to restore the previous settings.

When a single parameter is queried, its value is returned directly. When two or more
parameters are queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list,
but querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

298 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Graphics Parameters for (e,o) Plots

bw If TRUE, (e,o) plots are created in B/W mode by default.

xlim, ylim Integer vectors of length 2, specifying default ranges for the e-axis (xlim)
and o-axis (ylim) in orders of magnitude (i.e., base 10 logarithms: -2 corresponds
to .01, 0 corresponds to 1, and 3 corresponds to 1000). When the default values
are not set, every call to the eo.setup function must either specify xlim and ylim
values or a data set, from which suitable ranges are computed.

aspect If TRUE, an aspect ratio of 1:1 is enforced for every (e,o) plot, i.e. the axis ranges
are extended as necessary (assuming a square plotting region). The factory setting
is TRUE.

log.marks If TRUE, tick marks on the axes are labelled in logarithmic units, i.e. orders
of magnitude. Otherwise, absolute numbers are used. The factory setting is FALSE.
(Note that (e,o) plots are always drawn in logarithmic scale.)

steps An integer specifying the number of equidistant steps used for drawing iso-lines.
The factory setting is 100.

jitter If TRUE, always uses jittered coordinates for plotting data sets and computing
n-best thresholds. Note that all data sets must be annotated with the add.jitter
function first. The factory setting is FALSE.

cex Overall character expansion factor (for tick marks, axis labels and legends). The
factory setting is 1.3.

col A character of integer vector specifying line colours for the different styles of iso-lines
in colour mode (see the parmanpage for details on colour specification). Values are
recycled to match the length of the lty and lwd parameters when necessary. The
factory setting defines 5 styles in black, blue, red, magenta and cyan.

lty A character or integer vector specifying line types for the different styles of iso-lines
in colour mode (see the par manpage for details). Values are recycled to match the
length of the col and lwd parameters when necessary.

lwd A numeric vector specifying line widths for the different styles of iso-lines in colour
mode. Values are recycled to match the length of the col and lty parameters when
necessary.

angle, density Numeric vectors specifying the angle and density of shading lines when
the acceptance region bounded by a given iso-line is filled. These vectors should
supportas many styles as col, lty and lwd above. Details on shading lines can be
found on the polygon help page.

solid A character or integer vector specifying background colours for the different styles
of iso-lines when the acceptance region is filled with solid colour (rather than shad-
ing lines).

bw.col, bw.lty, bw.lwd Colour, line type and line width for iso-lines in B/W mode (cor-
responding to col, lty and lwd in colour mode). The factory setting defines 5 styles
with solid, dashed, grey, dotted and dark grey dot-dash lines.

bw.angle, bw.density, bw.solid Angle and density of shading lines, as well as solid
colour, for filled acceptance regions in B/W mode (corresponding to angle, density
and solid in colour mode)

pt.pch A character or integer vector specifying plot symbols for the different styles of
data set points in colour mode (see the points help page for a full list of available

B.2. UCS/R 299

plot symbols). Values are recycled to match the length of the pt.cex and pt.col
parameters when necessary. The factory setting defines 5 styles with black, green,
red, yellow and orange dots.

pt.cex A numeric vector specifying character expansion factors for the different styles
of data set points in colour mode. Values are recycled to match the length of the
pt.pch and pt.col parameters when necessary.

pt.col A character or integer vector specifying colours for the different styles of data set
points in colour mode (see the par help page for details on colour specification).
Values are recycled to match the length of the pt.pch and pt.cex parameters when
necessary.

bw.pt.pch, bw.pt.cex, bw.pt.col Plot symbol, character expansion and colour for data
set points in B/W mode (corresponding to pt.pch, pt.cex and pt.col in colour
mode). The factory setting defines 5 styles with black dots, circles, + crosses, trian-
gles and x crosses.

See Also

eo.setup, eo.iso, eo.iso.diff, eo.points, eo.legend, ucs.par, par

Examples

print(names(ucs.eo())) # list available parameters

eo.par("col", "lty", "lwd") # the default styles for iso-lines
eo.par(c("col", "lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- eo.par(bw=TRUE, steps=200)
(e,o) plots use the modified parameters here
eo.par(par.save) # restore previous values

ucs.library("eo", reload=TRUE) # reload module for factory defaults

eo.points Draw Data Set as Point Cloud in (e,o) Plane (eo)

Description

Plot (selected) pair types from a data set as a point cloud in the (e,o) plane. Points can
be drawn in any of the styles defined in the global defaults (eo.par), as determined by
the style parameter.

Usage

eo.points(ds, style=1, select=NULL, bw=bw, jitter=eo.par("jitter"),
pch=par("pt.pch"), cex=par("pt.cex"), col=par("pt.col"), ...)

300 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

ds a data set containing the pair types to be plotted as a point cloud

style an integer specifying the style (shape, size and colour) in which points
will be drawn. The number of styles available depends on the global
parameter settings (eo.par). The "factory settings" define 5 different
styles for points.

select an optional expression, which is evaluated on the data set ds to select a
subset of the pair types for plotting (e.g. select=(f <= 10 & b.TP) to
display pair types with joint frequency f ≤ 10 that are marked as true
positives).

bw If TRUE, the points are drawn in B/W mode, otherwise in colour mode.
This parameter defaults to the state specified with the initial eo.setup
call, but can be overridden manually.

jitter If TRUE, the coordinates of pair types are jittered for the plot, i.e. a small
random displacement is added to each point so that the point cloud has
a more homogeneous appearance. In order to use this option, the data
set has to be annotated with the add.jitter function first. The default
value is set with eo.par.

pch, cex, col

The style parameters for points are determined automatically from the
global settings (eo.par), according to the selected style and bw mode.
They can be overridden by specifying explicit values in the function call.

... Any additional parameters are passed through to the points function
that draws the point cloud.

Details

See the eo.setup help page for a description of the general procedure used to create (e,o)
plots. This help page also has links to other (e,o) plotting functions. The "factory setting"
styles are described on the eo.par help page.

See Also

eo.par, eo.setup

Examples

an example can be found on the "eo.setup" help page

B.2. UCS/R 301

eo.setup Initialise and Finalise an (e,o) Plot (eo)

Description

eo.setup initialises a new (e,o) plot window, which can then be drawn into with calls
to eo.iso, eo.points and similar functions. The plot has to be finalised with eo.close
before a new plot can be generated.

A detailed explanation of (e,o) plots and their interpretation can be found in Section 3.3
of Evert (2004).

Usage

eo.setup(xlim=eo.par("xlim"), ylim=eo.par("ylim"), ds=NULL,
bw=eo.par("bw"), file=NULL,
aspect=eo.par("aspect"), log.marks=eo.par("log.marks"),
cex=eo.par("cex"), ...)

eo.close()

Arguments

xlim, ylim integer vectors of length 2, specifying ranges for the e-axis (xlim) and
o-axis (ylim) in orders of magnitude (i.e., base 10 logarithms: -2 corre-
sponds to .01, 0 corresponds to 1, and 3 corresponds to 1000). If xlim
and ylim are not given and no default values have been set with eo.par,
the ds parameter has to be specified. Note that (e,o) plots are always
drawn in logarithmic scale.

ds A data set from which suitable ranges for the e-axis and o-axis are com-
puted. The automatically determined values are overridden by explicit
xlim and ylim parameters.

bw If TRUE, the (e,o) plot is drawn in B/W mode, otherwise in colour mode.
The default value is set with eo.par.

file a character string giving the name of a PostScript file. If specified, the
(e,o) plot is saved to file in EPS format rather than displayed on screen.
Note that this file will only be written after eo.close has been called.

aspect If TRUE, an aspect ratio of 1:1 is enforced by extending the axis ranges
as necessary (assuming that the plotting region is square). The default
value is set with eo.par.

log.marks If TRUE, tick marks on the axes are labelled in logarithmic units, i.e. or-
ders of magnitude. Otherwise, absolute numbers are used. The default
value is set with eo.par. (Recall that (e,o) plots are always drawn in
logarithmic scale.)

302 APPENDIX B. UCS SOFTWARE DOCUMENTATION

cex overall character expansion factor (for tick marks, axis labels and leg-
ends). The default value is set with eo.par.

... Any additional parameters are passed through to the plot function used
to set up the plot region and axes.

Details

An (e,o) plot is typically created in four stages:

• Set up the plot with eo.setup, defining suitable ranges for the e-axis. These ranges
and some other state information (e.g. whether the plot is drawn in colour or B/W
mode) are recorded in the global variable .eo.STATE.

• Draw data sets as point clouds with eo.points and iso-lines for GAMs with eo.iso.
Differences between two acceptance regions can be highlighted with eo.iso.diff.
The eo.mark function can be used to mark individual points with circles.

• Draw legend boxes in the corners of the plot with eo.legend.points,
eo.legend.iso and eo.legend.diff.

• Finalise the plot with eo.close. When a file argument has been specified in the
eo.setup call, the plot will be saved to a PostScript file at this stage.

Default values for xlim, ylim, bw, aspect, log.marks and cex can be set with the eo.par
function. See the eo.par help page for "factory settings" of these parameters, as well as
default line and point styles in colour and B/W mode.

Note that (e,o) plots are always drawn in logarithmic scale and tick marks are shown
for orders of magnitude (full powers of ten). The log.marks parameter only determines
whether the labels on these tick marks show linear (.1, 1, 10, 100, . . .) or logarithmic (-1,
0, 1, 2, . . .) values.

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

eo.par, eo.points, eo.iso, eo.iso.diff, eo.mark, eo.legend

Examples

ucs.library("eo")

load data set file, add jitter, and reduce to random 10
ds <- add.jitter(read.ds.gz("dickens.ds.gz"))
select <- rbinom(nrow(ds), 1, .1) == 1
ds <- ds[select,]

1) set up new (e,o) plot with suitable axis ranges
eo.setup(ds=ds) # note that y axis is extend to enforce 1:1 aspect

B.2. UCS/R 303

2) add data set as point cloud and three iso-lines
eo.points(ds, style=5, jitter=TRUE)
eo.iso("Poisson.pv", 3, style=1) # p-value = 1e-3
eo.iso("z.score", 3.09, style=2) # corresponding one-sided z-score
eo.iso("t.score", 3.09, style=3) # same as t-score with df=Inf

3) add legend boxes in top right (2) and bottom right (3) corner
eo.legend.points(2, "pair type", 5)
eo.legend.iso(3, c("Poisson", "z-score", "t-score"), 1:3)

4) finalise the (e,o) plot
eo.close()

evaluation.file Evaluation Graphs for Association Measures (plots)

Description

The evaluation.plot function is often invoked twice with the same parameter set-
tings, once for on-screen display, and once for saving the plot to a PostScript file.
evaluation.file automates this process, automatically switching between colour mode
for the screen version and B/W mode for the PostScript version.

Usage

evaluation.file(ds, keys, file, bw=NULL, ...)

Arguments

ds a UCS data set object (passed to evaluation.plot)

keys a character vector specifying the names of association measures to be
evaluated (passed to evaluation.plot)

file a character string giving the name of a file to which the PostScript version
of the plot will be saved

bw if TRUE, both versions will be in B/W; if FALSE, both versions will be
in colour. If unspecified, evaluation.file switches automatically from
colour mode (for the screen version) to B/W mode (for the PostScript
file), which is the most common use.

Details

PostScript versions can be suppressed by setting

ucs.par(do.file=FALSE)

In this case, evaluation.file will only draw the screen versions of the graphs, which is
convenient when experimenting and while fine-tuning the plots.

304 APPENDIX B. UCS SOFTWARE DOCUMENTATION

See Also

evaluation.plot, ucs.par, and the tutorial script ‘tutorial.R’ in the ‘script/’ directory.

evaluation.plot Evaluation Graphs for Association Measures (plots)

Description

An implementation of evaluation graphs for the empirical evaluation of association mea-
sures in terms of precision and recall, as described in (Evert, 2004, Ch. 5). Graphs of
precision, recall and local precision for n-best lists, as well as precision-by-recall graphs
are all provided by a single function evaluation.plot.

Usage

evaluation.plot(ds, keys, tp=ds$b.TP,
x.min=0, x.max=100, y.min=0, y.max=100,
x.axis=c("n.best", "proportion", "recall"),
y.axis=c("precision", "local.precision", "recall"),
n.first=ucs.par("n.first"), n.step=ucs.par("n.step"),
cut=NULL, window=400,
show.baseline=TRUE, show.nbest=NULL, show.npair=NULL,
conf=FALSE, conf.am=NULL, conf.am2=NULL,
test=FALSE, test.am1=NULL, test.am2=NULL,
test.step=ucs.par("test.step"), test.relevant=0,
usercode=NULL,
file=NULL, aspect=1, plot.width=6, plot.height=6,
cex=ucs.par("cex"), lex=ucs.par("lex"), bw=FALSE,
legend=NULL, bottom.legend=FALSE,
title=NULL, ...)

Arguments

ds a UCS data set object, read in from a data set file with the read.ds.gz
function. ds must contain rankings for the association measures listed in
the keys parameter (use add.ranks to add such rankings to a data set
object).

keys a character vector naming up to 10 association measures to be evaluated.
Each name may be abbreviated to prefix that must be unique within the
measures annotated in ds. Use the ds.find.am function to obtain a list
of measures annotated in the data set, and see the ucsam manpage in
UCS/Perl for detailed information about the association measures sup-
ported by the UCS system (with the shell command ucsdoc ucsam).

tp a logical vector indicating true positives, parallel to the rows of the data
set ds. If tp is not specified, the data set must contain a variable named
b.TP which is used instead.

B.2. UCS/R 305

x.min, x.max the limits of the x-axis in the plot, used to “zoom in” to an interesting
region. The interpretation of the values depends on the x.axis param-
eter below. For x.axis="n.best" (the default case), x.min and x.max
refer to n-best lists. Otherwise, they refer to percentages ranging from 0
to 100. By default, the full data set is shown.

y.min, y.max the limits of the y-axis in the plot, used to “zoom in” to an interesting
region. The values are always interpreted as percentages, ranging from
0 to 100. By default, y.max is fitted to the evaluation graphs (unless
y.axis="recall", where y.max is always set to 100).

x.axis select variable shown on x-axis. Available choices are the n-best list size
n ("n.best", the default), the same as a proportion of the full data set
("proportion"), and the recall as a percentage ("recall"). The lat-
ter produces precision-by-recall graphs. Unless you are silly enough to
specify y.axis="recall" at the same time, that is.

y.axis select variable shown on x-axis. Available choices are the pre-
cision ("precision", the default), an estimate for local precision
("local.precision", see details below), and the recall ("recall"). All
three variables are shown as percentages ranging from 0 to 100.

n.first the smallest n-best list to be evaluated. Shorter n-best lists typically lead
to highly unstable evaluation graphs. The standard setting is 100, but a
higher value may be necessary for random sample evaluation (see details
below). If n.first is not specified, the default supplied by ucs.par is
used.

n.step the step width for n-best lists in the evaluation graphs. Initially, precision
and recall are computed for all n-best lists, but only every n.step-th one
is plotted, yielding graphs that look less jagged and reducing the size of
generated PostScript files (see the file parameter below). If n.step is
not specified, the default supplied by ucs.par is used.

cut for each association measure, pretend that the data set consists only of
the cut highest-ranked candidates according to this measure. This trick
can be used to perform an evaluation of n-best lists without having to
annotate the full data set. The candidates from all relevant n-best lists
are combined into a single data set file and cut is set to n.

window number of candidates to consider when estimating local precision (de-
fault: 400), i.e. with the option y.axis="local". Values below 400 or
above 1000 are rarely useful. See below for details.

show.baseline

if TRUE, show baseline precision as dotted horizontal line with label (this
is the default). Not available when y.axis="recall".

show.nbest integer vector of n-best lists that will be indicated as thin vertical lines in
the plot. When x.axis="recall", the n-best lists are shown as diagonal
lines.

show.npair when x.axis="proportion", the total number of candidates in ds is
shown in the x-axis label. Set show.npair=NULL to suppress this, or set it
to an integer value in order to lie about the number of candidates (rarely
useful).

306 APPENDIX B. UCS SOFTWARE DOCUMENTATION

conf if TRUE, confidence intervals are shown as coloured or shaded regions
around one or two precision graphs. In this case, the parameter conf.am
must also be specified. Alternatively, conf can be set to a number indicat-
ing the significance level to be used for the confidence intervals (default:
0.05, corresponding to 95% confidence). See below for details. Note that
conf is only available when y.axis="precision".

conf.am name of the association measure for which confidence intervals are dis-
played (may be abbreviated to a prefix that is unique within keys)

conf.am2 optional second association measure, for which confidence intervals will
also be shown

test if TRUE, significance tests are carried out for the differences between the
evaluation results of two association measures, given as test.am1 and
test.am2 below. Alternatively, test can be set to a number indicating
the significance level to be used for the tests (default: 0.05). n-best
lists where the result difference is significant are indicated by arrows
between the respective evaluation graphs (when x.axis="recall") or
by coloured triangles (otherwise). See details below. Note that test is
not available when y.axsis="local".

test.am1 the first association measure for significance tests (may be abbreviated
to a prefix that is unique within keys). Usually, this is the measure that
achieves better performance (but tests are always two-sided).

test.am2 the second association measure for significance tests (may be abbreviated
to a prefix that is unique within keys)

test.step the step width for n-best lists where significance tests are carried out, as
a multiple of n.step. The standard setting is 10 since the significance
tests are based on the computationally expensive fisher.test functio
and since the triangles or arrows shown in the plot are fairly large. If
test.step is not specified, the default supplied by ucs.par is used.

test.relevant

a positive number, indicating the estimated precision differences that are
considered “relevant” and that are marked by dark triangles or arrows in
the plot. See below for details.

usercode a callback function that is invoked when the plot has been completed, but
before the legend box is drawn. This feature is mainly used to add some-
thing to a plot that is written to a PostScript file. The usercode function
is invoked with parameters region=c(x.min,x.max,y.min,y.max) and
pr, a list of precision/recall tables (as returned by precision.recall)
for each of the measures in keys.

file a character string giving the name of a PostScript file. If specified, the
evaluation plot will be saved to file rather than displayed on screen.
See evaluation.file for a function that combines both operations.

aspect a positive number specifying the desired aspect of the plot region (only
available for PostScript files). In the default case x.axis="n.best",
aspect refers to the absolute size of the plot region. Otherwise, it speci-
fies the size ratio between percentage points on the x-axis and the y-axis.
Setting aspect modifies the height of the plot (plot.height).

B.2. UCS/R 307

plot.width, plot.height

the width and height of a plot that is written to a PostScript file, mea-
sured in inches. plot.height may be overridden by the aspect param-
eter, even if it is set explicitly.

cex character expansion factor for labels, annotations, and symbols in the
plot (see par for details). If cex is not specified, the default supplied by
ucs.par is used.

lex added to the line widths of evaluation graphs and some decorations (note
that this is not an expansion factor). If lex is not specified, the default
supplied by ucs.par is used.

bw if TRUE, the evaluation plot is drawn in black and white, which is mostly
used in conjunction with file to produce figures for articles (defaults to
FALSE). See below for details.

legend a vector of character strings or expressions, used as labels in the legend
of the plot (e.g. to show mathematical symbols instead of the names
of association measures). Use legend=NULL to suppress the display of a
legend box.

bottom.legend

if TRUE, draw legend box in bottom right corner of plot (default is top
right corner).

title a character vector or expression to be used as the main title of the plot
(optional)

... any other arguments are set as local graphics parameters (using par)
before the evaluation plot is drawn

Details

When y.axis="local.precision", the evaluation graphs show local precision, i.e. an
estimate for the density of true positives around the n-th rank according to the respective
association measure. Local precision is smoothed using a kernel density estimate with
a Gaussian kernel (from the density function), based on a symmetric window covering
approximately window candidates (default: 400). Consequently, the resulting values do
not have a clear-cut interpretation and should not be used to evaluate the performance
of association measures. They are rather a means of exploratory data analysis, helping to
visualise the relation between association scores and the true positives in a data set (see
Evert, 2004, Sec. 5.2 for an example).

In order to generalise evaluation results beyond the specific data set on which they were
obtained, it is necessary to compute confidence intervals for the observed precision values
and to test whether the observed result differences are significant. See (Evert, 2004, Sec.
5.3) for the methods used and the interpretation of their results.

Confidence intervals are computed by setting conf=TRUE and selecting an association
measure with the conf.am parameter. The confidence intervals are displayed as a
coloured or shaded region around the precision graph of this measure (confidence in-
tervals are not available for graphs of recall or local precision). The default confidence
level of 95% will rarely need to be changed. Optionally, a second confidence region can
be displayed for a measure selected with the conf.am2 parameter.

Significance tests for the result differences are activated by setting test=TRUE (not avail-
able for graphs of local precision). The evaluation results of two association measures

308 APPENDIX B. UCS SOFTWARE DOCUMENTATION

(specified with test.am1 and test.am2) are compared for selected n-best lists, and sig-
nificant differences are marked by coloured triangles or arrows (when x.axis="recall").
The default significance level of 0.05 will rarely need to be changed. Use the test.step
parameter to control the spacing of the triangles or arrows.

A significant difference indicates that measure A is truly better than measure B, rather
than just as a coincidence in a single evaluation experiment. Formally, this “true per-
formance” can be defined as the average precision of a measure, obtained by averaging
over many similar evaluation experiments. Thus, a significant difference means that the
average precision of A is higher than that of B, but it does not indicate how great the
difference is. A tiny difference (say, of half a percent point) is hardly relevant for an
application, even if there is significant evidence for it. If the test.relevant parameter
is set, the evaluation.plot function attempts to estimate whether there is significant
evidence for a relevant difference (of at least a many percent points as given by the value
of test.relevant), and marks such cases by darker triangles or arrows. This feature
should be considered experimental and used with caution, as the computation involves
many approximations and guesses (exact statistical inference for the difference in true
precision not being available).

It goes without saying that confidence regions and significance tests do not allow evalua-
tion results to be generalised to a different extraction task (i.e. another type of cooccur-
rences or another definition of true positives), or even to the same task under different
conditions (such as a source corpus from a different domain, register, time, or a corpus
of different size). The unpredictability of the performance of association measures for
different extraction tasks or under different conditions has been confirmed by various
evaluation studies.

Generally, evaluation plots can be drawn in two modes: colour (bw=FALSE, the default)
or black and white (bw=TRUE). The styles of evaluation graphs are controlled by the
respective settings in ucs.par, while the appearance of various other elements is hard-
coded in the evaluation.plot function. In particular, confidence regions are either filled
with a light background colour (colour mode) or shaded with diagonal lines (B/W mode).
The triangles or arrows used to mark significant differences are yellow or red (indicating
relevance) in colour mode, and light grey or dark grey (indicating relevance) in B/W
mode. B/W mode is mainly used to produce PostScript files to be included as figures in
articles, but can also be displayed on-screen for testing purposes.

The evaluation.plot function supports evaluation based on random samples, or RSE
for short (Evert, 2004, Sec. 5.4). Missing values (NA) in the tp vector (or the b.TP vari-
able in ds) are interpreted as unannotated candidates. In this case, precision, recall and
local precision are computed as maxmium-likelihood estimates based on the annotated
candidates. Confidence intervals and significance tests, which should not be absent from
any RSE, are adjusted accordingly. A confidence interval for the baseline precision is au-
tomatically shown (by thin dotted lines) when RSE is detected. Note that n-best lists (as
shown on the x-axis) still refer to the full data set, not just to the number of annotated
candidates.

Note

The following functions are provided for compatibility with earlier versions of UCS/R:
precision.plot, recall.plot, and recall.precision.plot. They are simple front-
ends to evaluation.plot with the implicit parameter settings y.axis="recall" and
y.axis="precision", x.axis="recall" for the latter two.

B.2. UCS/R 309

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

ucs.par, evaluation.file, read.ds.gz, and precision.recall. The R script
‘tutorial.R’ in the ‘script/’ directory provides a gentle introduction to the wide range of
possibilities offered by the evaluation.plot function.

evaluation.table Precision/Recall Tables for the Evaluation of Association Measures
(base)

Description

A simple text-mode version of the precision/recall-based evaluation provided by the
plots module. Returns a table of precision or recall values for a selected range of associ-
ation measures on selected n-best lists. This is a preliminary version of the function -
both interface and functionality may change in future releases.

Usage

evaluation.table(ds, keys, n, tp=ds$b.TP, recall=FALSE)

Arguments

ds a UCS data set object, read in from a data set file with the read.ds.gz
function. ds must contain rankings for the association measures listed in
the keys parameter (use add.ranks to add such rankings to a data set
object).

keys a character vector specifying the names of association measures to be
evaluated. Each name may be abbreviated to prefix that must be unique
within the measures annotated in ds. Use the ds.find.am function to ob-
tain a list of measures annotated in the data set, and see the ucsam man-
page in UCS/Perl for detailed information about the association measures
supported by the UCS system (with the shell command ucsdoc ucsam).

n a vector of n-best sizes for which precision or recall values are computed

tp a logical vector indicating true positives, parallel to the rows of the data
set ds. If tp is not specified, the data set must contain a variable named
b.TP which is used instead.

recall if TRUE, returns table of recall values, otherwise table of precision values
(default)

310 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Value

A data frame whose rows correspond to n-best lists. In addition to the column labelled
n, which gives the n-best lists for which the evaluation was carried out, there is one
column for each selected association measure. The column is labelled with the name
of the measure and lists the corresponding precision or recall values, depending on the
recall parameter.

See Also

evaluation.plot, precision.recall

fzm The Finite Zipf-Mandelbrot LNRE Model (fzm)

Description

Object constructor for a finite Zipf-Mandelbrot (fZM) LNRE model with parameters α, A
and B (Evert, 2004a). Either the parameters are specified explicitly, or one or more of
them can be estimated from an observed frequency spectrum.

Usage

fzm(alpha, A, B)

fzm(alpha, A, N, V)

fzm(alpha, N, V, spc, m.max=15, stepmax=10, debug=FALSE)

fzm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

Arguments

alpha a number in the range (0,1), the shape parameter α of the fZM model.
alpha can automatically be estimated from N, V, and spc.

A a small positive number A � 1, the parameter A of the fZM model. A
can automatically be estimated from N, V, and spc.

B a large positive number B � 1, the parameter B of the fZM model. B can
automatically be estimated from N and V.

N the sample size, i.e. number of observed tokens

V the vocabulary size, i.e. the number of observed types

spc a vector of non-negative integers representing the class sizes Vm of the
observed frequency spectrum. The vector is usually read from a file in
lexstats format with the read.spectrum function.

m.max the number of ranks from spc that will be used to estimate the α param-
eter

B.2. UCS/R 311

stepmax maximal step size of the nlm function used for parameter estimation. It
should not be necessary to change the default value.

debug if TRUE, print debugging information during the parameter estimation
process. This feature can be useful to find out why parameter estimation
fails.

Details

The fZM model with parameters α ∈ (0,1) and C > 0 is defined by the type density
function

g(π) := C · π−α−1

for A ≤ π ≤ B. The normalisation constant C is determined from the other parameters
by the condition ∫ B

A
π · g(π)dπ = 1

The parameters α and A are estimated simultaneously by nonlinear minimisation (nlm) of
a multinomial chi-squared statistic for the observed against the expected frequency spec-
trum. Note that this is different from the multivariate chi-squared test used to measure
the goodness-of-fit of the final model (Baayen, 2001, Sec. 3.3).

See Evert (2004, Ch. 4) for further mathematical details, especially concerning the ex-
pected vocabulary size, frequency spectrum and conditional parameter distribution, as
well as their variances.

Value

An object of class "fzm" with the following components:

alpha value of the α parameter

A value of the A parameter

B value of the B parameter

C value of the normalisation constant C

C population size S predicted by the model

N number of observed tokens (if specified)

V number of observed types (if specified)

spc observed frequency spectrum (if specified)

This object prints a short summary, including the population size S and a comparison of
the first ranks of the observed and expected frequency spectrum (if available).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

312 APPENDIX B. UCS SOFTWARE DOCUMENTATION

See Also

zm, EV, EVm, VV, VVm, write.lexstats, lnre.goodness.of.fit, read.spectrum, and
spectrum.plot

gam.helpers Helper Functions for GAM Equations (gam)

Description

gam.yates and gam.yates.inv implement an invertible version of the discounting func-
tion used by Yates’ correction. signed.sqrt, b.star, b.norm and e.bar are standard
abbreviations used in the definition of generalised association measures in terms of ebo-
coordinates.

Usage

gam.yates(d)
gam.yates.inv(d.corr)

signed.sqrt(x)

b.star(b)
b.norm(b)
e.bar(e, b, N)

Arguments

d difference between observed and expected frequency, to which the gen-
eralised Yates’ correction is applied

d.corr difference between observed and expected frequency with generalised
Yates’ correction applied, from which the original difference can uniquely
be reconstructed

x a vector of positive or negative real numbers

b a vector of balance (b) values in the ebo coordinate system

e a vector of expectation (e) values in the ebo coordinate system

N sample size N

Details

The standard discounting function for Yates’ correction is d∗ := d − 1/2 for d ≥ 0 and
d∗ := d + 1/2 for d < 0, where d is the difference between observed and expected fre-
quency. This definition does not lead to a continuous and invertible function of d, so a
GAM with Yates’ correction applied does not satisfy the soundness conditions. The gen-
eralised Yates’ correction implemented by gam.yates and gam.yates.inv is a monotonic
(and hence invertible) function that is identical to the standard discounting function for
|d| ≥ 1 and uses linear interpolation for −1 < d < 1.

B.2. UCS/R 313

The functions signed.sqrt, b.star, b.norm and e.bar compute the standard abbrevi-
ation ±

√
x, b∗, ‖b‖ and ē (“e bar”) used by Evert (2004) for the definition of GAMs in

terms of ebo-coordinates.

Value

all functions return a vector of real numbers

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

Examples

d <- runif(20, -2, 2)
d.corr <- gam.yates(d)
all(d == gam.yates.inv(d.corr))

signed.sqrt(-4:4)

gam.iso Compute Iso-Surfaces for GAMs (gam)

Description

Computes iso-surfaces for a generalised association measure (GAM) in standard or ebo-
coordinates.

Usage

gam.iso(name, gamma, f1, f2, N, bsearch.min=NULL, bsearch.max=NULL)
gam.iso(name, gamme, e, b=1, N=1e6, bsearch.min=NULL, bsearch.max=NULL)

Arguments

name name of a generalised association measure (GAM)

gamma a numerical constant that determines the desired iso-surface {g = γ}
f1, f2, N numerical vectors specifying the f1 and f2 coordinates of points in the

standard coordinate space, as well as the sample size N

e, b numerical vectors specifying the e and b coordinates of points in the ebo-
coordinate space (if the balance b is not specified, it defaults to 1)

N optional numerical vector specifying the sample size N when comput-
ing iso-surfaces for a GAM that is not size-invariant in ebo-coordinates
(defaults to 1e6)

bsearch.min initial lower boundary for binary search algorithm, when no explicit
equation for the iso-surface is available

bsearch.max initial upper boundary for the binary search algorithm

314 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Details

Note that all function arguments except for name must be passed explicitly by name in
order to distinguish the two operating modes of gam.iso (standard vs. ebo-coordinates).

When ebo-coordinates are used, the argument N (sample size) can safely be omitted for
any size-invariant GAM (in ebo-coordinates). For other GAMs, a default value of 1e6 will
be used, corresponding to the typical size of a co-occurrence data set. The argument b
(balance) can be omitted for any central GAMs. Otherwise, it defaults to a value of 1,
corresponding to the centralized version of the respective GAM.

Use gamma.nbest to compute a suitable γ values for n-best surfaces.

When no explicit equation for the iso-surface of a GAM is available, the gam.iso function
uses a binary search algorithm to solve the implicit equation {g = γ}. Since some GAMs
are only defined for valid frequency signatures (where all four cells of the contingency
table are non-negative), the binary search for the o coordinate is confined to the range
from 0 to min{f1, f2}. When no solution can be found in this range, gam.iso returns NA
for the corresponding points. For GAMs where it is safe to search a larger range (notably
Poisson.pv and log.likelihood), the boundaries of the search interval can be adjusted
with the bsearch.min and bsearch.max parameters. Note that most other GAMs have
explicit iso-equations, so these parameters are rarely needed.

Value

a vector of real numbers representing the f or o coordinates of the respective iso-surface;
these are the values of f or o that solve the implicit equation {g = γ} for the specified
values of f1, f2, N or e, b (and N); this vector may contain missing values (NA) for
points where no solution is found (see "Details" for more information)

See Also

gam.score, builtin.gams, gamma.nbest

Examples

e <- 10^seq(-2, 1, .1) # compute iso-line on logarithmic scale
o <- gam.iso("t.score", 2, e=e)

x <- 10^seq(0, 2, .1) # compute iso-surface over rectangular grid
g <- expand.grid(f1=x, f2=x)
g$f <- gam.iso("t.score", 2, f1=g$f1, f2=g$f2, N=1000)
library(lattice)
wireframe(f ~ f1 * f2, log(g))

gam.score Compute GAM Scores in Standard or EBO-Coordinates (gam)

Description

Computes scores of a generalised association measure (GAM) in standard or ebo-
coordinates.

B.2. UCS/R 315

Usage

gam.score(name, f, f1, f2, N)
gam.score(name, o, e, b=1, N=1e6)

Arguments

name name of a generalised association measure (GAM)

f, f1, f2, N numerical vectors specifying the (generalised) frequency signatures of
candidates

o, e, b numerical vectors specifying the ebo-coordinates of candidates (if the
balance b is not specified, it defaults to 1)

N optional numerical vector specifying the sample size N when computing
scores of a GAM that is not size-invariant in ebo-coordinates (defaults to
1e6)

Details

Note that all function arguments except for name must be passed explicitly by name in or-
der to distinguish the two operating modes of gam.score (standard vs. ebo-coordinates).

The components of the generalised frequency signature (f, f1, f2, N) can be arbitrary
positive real numbers.

When ebo-coordinates are used, the argument N (sample size) can safely be omitted for
any size-invariant GAM (in ebo-coordinates). For other GAMs, a default value of 1e6 will
be used, corresponding to the typical size of a co-occurrence data set. The argument b
(balance) can be omitted for any central GAMs. Otherwise, it defaults to a value of 1,
corresponding to the centralized version of the respective GAM.

The gam.score function automatically converts between standard and ebo-coordinates,
depending on the requirements of the GAM implementation.

Value

a vector of real numbers representing generalised association scores

See Also

add.gams, gam.iso, builtin.gams

Examples

gam.score("t.score", f=1:10, f1=(1:10)*5, f2=100, N=1000)

gam.score("t.score", o=1:10, e=(1:10)/2)

316 APPENDIX B. UCS SOFTWARE DOCUMENTATION

gamma.nbest Compute Gamma Threshold for N-Best Acceptance Region (gam)

Description

Computes a suitable value of γ such that the acceptance region {g ≥ γ} contains exactly
n candidates from a given data set.

Usage

gamma.nbest(ds, name, n, jitter=FALSE)

Arguments

ds a UCS data set object

name name of a generalised association measure (GAM)

n an integer, specifying the number of candidates to be included in the
acceptance region

jitter if TRUE, random jitter is added to the coordinates of candidates for com-
putation of the n-best threshold

Details

When jitter=TRUE, the data set ds must contain jitter vectors stored in special variables.
Such jitter variables can easily be added with the add.jitter function.

Value

a real number specifying a suitable threshold γ , i.e. the data set ds contains exactly n
candidates with a GAM score g ≥ γ (for the specified measure name)

See Also

add.jitter, gam.score, add.gams, gam.iso, builtin.gams

Examples

e <- 10^seq(-2, 1, .1) # 100-best iso-line for UCS data set ds
gamma <- gamma.nbest(ds, "t.score", 100)
o <- gam.iso("t.score", gamma, e=e)

B.2. UCS/R 317

iaa.kappa Inter-Annotator Agreement: Cohen’s Kappa (iaa)

Description

Compute the kappa statistic (Cohen, 1960) as a measure of intercoder agreement on a
binary variable between two annotators, as well as a confidence interval according to
Fleiss, Cohen & Everitt (1969). The data can either be given in the form of a 2 × 2
contingency table or as two parallel annotation vectors.

Usage

iaa.kappa(x, y=NULL, conf.level=0.95)

Arguments

x either a 2 × 2 contingency table in matrix form, or a vector of logicals

y a vector of logicals; ignored if x is a matrix

conf.level confidence level of the returned confidence interval (default: 0.95, cor-
responding to 95% confidence)

Value

A data frame with a single row and the following variables:

kappa sample estimate for the kappa statistic

sd sample estimate for the standard deviation of the kappa statistic

kappa.min, kappa.max

two-sided asymptotic confidence interval for the “true” kappa, based on
normal approximation with estimated variance

The single-row data frame was chosen as a return structure because it prints nicely, and
results from different comparisons can easily be combined with rbind.

References

Cohen, Jacob (1960). A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20, 37–46.

Fleiss, Joseph L.; Cohen, Jacob; Everitt, B. S. (1969). Large sample standard errors of
kappa and weighted kappa. Psychological Bulletin, 72(5), 323–327.

See Also

iaa.pta

318 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Examples

kappa should be close to zero for random codings
p <- 0.1 # proportion of true positives
x <- runif(1000) < p # 1000 candidates annotated randomly
y <- runif(1000) < p
iaa.kappa(x, y)

iaa.pta Inter-Annotator Agreement: Estimates for the Proportion of True
Agreement (iaa)

Description

Compute confidence interval estimates for the proportion of true agreement between
two annotators on a binary variable, as described by Krenn, Evert & Zinsmeister (2004).
iaa.pta.conservative computes a conservative estimate that is rarely useful, while
iaa.pta.homogeneous relies on additional assumptions. The data can either be given
in the form of a 2 × 2 contingency table or as two parallel annotation vectors.

Usage

iaa.pta.conservative(x, y=NULL, conf.level=0.95, debug=FALSE)

iaa.pta.homogeneous(x, y=NULL, conf.level=0.95, debug=FALSE)

Arguments

x either a 2 × 2 contingency table in matrix form, or a vector of logicals

y a vector of logicals; ignored if x is a matrix

conf.level confidence level of the returned confidence interval (default: 0.95, cor-
responding to 95% confidence)

debug if TRUE, show which divisions of the data are considered when computing
the confidence interval (see Krenn, Evert & Zinsmeister, 2004)

Details

This approach to measuring intercoder agreement is based on the assumption that the
observed surface agreement in the data can be divided into true agreement (i.e. can-
didates where both annotators make the same choice for the same reasons) and chance
agreement (i.e. candidates on which the annotators agree purely by coincidence). The
goal is to estimate the proportion of candidates for which there is true agreement between
the annotators, referred to as PTA.

The two functions differ in how they compute this estimate. iaa.pta.conservative
considers all possible divisions of the observed data into true and chance agreement,
leading to a conservative confidence interval. This interval is almost always too large to
be of any practical value.

B.2. UCS/R 319

iaa.pta.homogeneous makes the additional assumption that the average proportion of
true positives is the same for the part of the data where the annotators reach true agree-
ment and for the part where they agree only by chance. Note that there is no a priori
reason why this should be the case. Interestingly, the confidence intervals obtained in
this way for the PTA correspond closely to those for Cohen’s kappa statistic (iaa.kappa).

Value

A numeric vector giving the lower and upper bound of a confidence interval for the pro-
portion of true agreement (both in the range [0,1]).

Note

iaa.pta.conservative is a computationally expensive operation based on Fisher’s exact
test. (It doesn’t use fisher.test, though. If it did, it would be even slower than it is
now.) In most circumstances, you will want to use iaa.pta.homogeneous instead.

References

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder agree-
ment for a collocation identification task. In preparation.

See Also

iaa.kappa

Examples

how well do the confidence intervals match the true PTA?
true.agreement <- 700 # 700 cases of true agreement
chance <- 300 # 300 cases where annotations are independent
p <- 0.1 # average proportion of true positives
z <- runif(true.agreement) < p # candidates with true agreement
x.r <- runif(chance) < p # randomly annotated candidates
y.r <- runif(chance) < p
x <- c(z, x.r)
y <- c(z, y.r)
cat("True PTA =", true.agreement / (true.agreement + chance), "\n")
iaa.pta.conservative(x, y) # conservative estimate
iaa.pta.homogeneous(x, y) # estimate with homogeneity assumption

lnre.goodness.of.fit

Perform Goodness-of-Fit Evaluation of LNRE Model

Description

Evaluate the goodness-of-fit of a LNRE model with a multivariate chi-squared test
(Baayen, 2001, Sec. 3.3).

320 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Usage

lnre.goodness.of.fit(model, m.max=15)

Arguments

model an object representing a LNRE model whose parameters have been
estimated from observed word frequency data. Currently, the Zipf-
Mandelbrot (ZM, class "zm") and the finite Zipf-Mandelbrot (fZM, class
"fzm") models are supported.

m.max highest frequency rank to be included in the evaluation (limited by the
number of ranks stored in the model object).

Details

This function performs a multivariate chi-squared test to evaluate the goodness-of-fit of
an LNRE model (Baayen 2001, p. 119-122).

All LNRE models that follow the UCS/R conventions are supported. In particular, they
must specify the number of parameters estimated from the observed data (in the n.param
component), and they must provide appropriate implementations of the EV, EVm, and
VV methods. Currently available LNRE models are objects of class "zm" or "fzm". The
model object must include observed frequency data (in components N, V, and spc), which
is usually achieved by estimating the model parameters from the observed frequency
spectrum.

Value

A data frame with one row and three columns:

X2 the value of the multi-variate χ2 test statistic

df the degrees of freedom of the approximate χ2 distribution of the test
statistic under the null hypothesis

p the p-value for the test

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm

B.2. UCS/R 321

order.by.am Sort Rows of a Data Set by Association Scores (base)

Description

Sort the rows of a data set according to the annotated scores of an association measure
(in descending order). Ties in the ordering are broken randomly by default, using the
random association measure to yield a reproducible ordering.

Usage

order.by.am(ds, am, randomise=TRUE)

Details

With randomise=TRUE, the data set must contain a variable named am.random, which is
used to break ties in the ordering. Otherwise, tied rows are arranged according to their
ID values, and the corresponding id variable must be annotated in the data set.

The random association measure is used for breaking ties (rather than random numbers
generated on the fly) in order to ensure that the ordering is reproducible. If this measure
has not been annotated in a data set file, you can easily add the required variable to a
data set ds with the command

ds$am.random <- runif(nrow(ds))

You should probably use set.seed to ensure a reproducible ordering.

Value

an integer vector of row numbers, which can be used as a row index for the data set object

See Also

read.ds.gz, add.ranks

precision.recall Compute Precision and Recall for N-Best Lists (base)

Description

Computes precision and recall of n-best lists for a UCS data set annotated with true pos-
itives and rankings (based on association scores). This function forms the basis for the
evaluation graphs in the plots packages.

Usage

precision.recall(ds, am, tp=ds$b.TP, step=1, first=1, cut=0, window=0)

322 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Arguments

ds a UCS data set object

am a character string giving the name of an association measure. The cor-
responding ranking must be annotated in the data set (usually with the
add.ranks function).

tp a logical vector, which must be parallel to the rows of the data set. TRUE
values indicate true positives (see details below for the use of missing
values). If tp is omitted, the data set must contain a Boolean variable
b.TP which is used instead.

step step width for n-best lists considered, i.e. precision and recall are com-
puted for every step-th value of n only (default: 1)

first smallest n-best list for which precision and recall are computed (default:
1)

cut pretend that data set consists only of the first cut rows in the ranking,
i.e. treat cut-best list as full data set (for percentage and recall).

window if specified, local precision is estimated, considering a window of approx-
imately the given size around each value of n (uses the density function
for smoothing). Useful window sizes range from 400 to 1000.

Details

The precision.recall function supports evaluation based on random samples (cf. Ev-
ert, 2004, Sec. 5.4). Any NA values in the tp parameter (or the b.TP variable) are
interpreted as unannotated candidates. Precision and recall values are computed from
the annotated candidates only (as are the tp, fp, and lp variables in the returned data
frame). For a random sample evaluation, confidence intervals should always be supplied
with the raw precision values, and result differences should be tested for significance.
Such tests are implemented by the evaluation.plot function, for instance.

Value

An invisible data frame with rows corresponding to n-best lists and the following vari-
ables:

n the number of candidates in the n-best list

perc the same as a percentage of the full data set (or the cut highest-ranking
candidates if specified)

tp the number of true positives in the n-best list

fp the number of false positives in the n-best list

precision the precision of the n-best list, i.e. the number of TPs divided by n

recall the recall of the n-best list, i.e. the number of TPs divided by the total
number of TPs in the data set

lp if window is specified, an estimate for the local precision, i.e. the density
of TPs in the vicinity of the n-th rank. Averages over a symmetric window
of approximately the specified total size by convolution with a Gaussian
kernel (using the density function).

B.2. UCS/R 323

References

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

See Also

add.ranks, read.ds.gz, evaluation.plot

read.ds.gz Load UCS data set file (base)

Description

Load a UCS data set file, which is uncompressed on the fly if necessary.

Usage

read.ds.gz(filename)

Arguments

filename name, partial or full path of the data set file to be loaded.

Details

When the specified file is not found in the current directory, it is automatically
searched in the standard UCS data library (the ‘DataSet/’ directory and its subdirecto-
ries). Should there be multiple matches, a warning is issued and the first match is
used. You may specify partial paths to identify the desired file unambiguously (e.g.
"Distrib/dickens.ds.gz"). The automatic search facility is suppressed when filename
is an explicit absolute or relative path (starting with / or ./).

gzip-compressed data set files, whose name must end in .gz, are automagically decom-
pressed.

Value

A data frame with column names (i.e. variables) corresponding to those in the data set
file. l1 and l2 are read as character vectors, all other string variables (f.*) are converted
into factors, and Boolean variables (b.*) are converted into logicals.

Any comments and global variables in the file header are discarded.

Examples

load GLAW data set from UCS distribution
GLAW <- read.ds.gz("glaw.ds.gz")

324 APPENDIX B. UCS SOFTWARE DOCUMENTATION

read.spectrum Read Frequency Spectrum File (lexstats)

Description

Read a word frequency spectrum from a .spc file in lexstats format (see Baayen, 2001).
Returns spectrum as integer vector, possibly including zeroes, whose m-th element gives
the number of types Vm with frequency rank m. Also computes sample size N and vocab-
ulary size V .

Usage

read.spectrum(file, m.max=Inf, expected=FALSE)

Arguments

file a character string giving the name of a frequency spectrum file in
lexstats format (usually with the extension .spc)

m.max maximum length of frequency spectrum, i.e. frequency ranks m > mmax
are discarded. Setting m.max is a good idea if there are high-frequency
types, so that the spectrum is sparse. For most applications, only the first
10 to 100 ranks are of interest.

expected if TRUE, reads expected class sizes (in the EVm column) rather than the
observed ones (in the Vm column). This is only possible when the .spc
file was generated by a LNRE model, of course.

Value

A list with the following components:

spc an integer vector containing the class sizes Vm

N the sample size computed from the spectrum

V the vocabulary size computed from the spectrum

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

spectrum.plot, zm, fzm

B.2. UCS/R 325

spectrum.plot Comparative Plot of Word Frequency Spectra (lexstats)

Description

Comparative plot of up to five word frequency spectra (see Baayen, 2001), either as a
side-by-side barplot or as points and lines on a logarithmic scale.

Usage

spectrum.plot(spc, m.max=Inf, log=FALSE, y.min=100, y.max=0,
xlab="m", ylab="V_m / E[V_m]",
legend=NULL,
pch=c(1, 3, 15, 2, 20),
lwd=1,
lty=c("solid", "dashed", "dotdash", "dotted", "twodash"),
col=if (log) c("black") else c("black", "grey50", ...))

Arguments

spc a list containing up to five frequency spectrum vectors. Such spec-
trum vectors can be read in from a file in lexstats format with
read.spectrum or generated by a ZM or fZM model with the EVm
method.

m.max number of frequency ranks to be shown in plot. If unspecified, it is deter-
mined by the shortest spectrum vector in spc.

log if TRUE, display frequency spectra as points and lines on a logarithmic
scale. If FALSE, display spectra as side-by-side barplot on a linear scale
(default). The latter is only useful when m.max is comparatively small.

y.min, y.max range of y-axis. y.max is automatically computed to fit the data in spc.
y.min is only used when log=TRUE and defaults to 100.

legend a vector of character strings or expressions specifying the labels to be
shown in a legend box. If legend is missing, no legend box will be dis-
played.

xlab, ylab character strings giving labels for the x-axis and y-axis
pch, lwd, lty

vectors of plot symbols, line widths, and line types (only used if
log=TRUE. Values are recycled if necessary. See the par manpage for
possible ways of specifying these attributes.

col a vector of colours for the lines (log=TRUE) or bars (log=FALSE) in the
plot. Values are recycled if necessary. Colours are specified as described
in the par manpage.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

326 APPENDIX B. UCS SOFTWARE DOCUMENTATION

See Also

read.spectrum, zm, fzm, EVm

ucs.library Load UCS/R Modules

Description

Since the UCS/R functions are imported into the global namespace, they are collected in
various modules that can be loaded separately on demand. ucs.library loads a specified
module. When called without arguments, it prints a listing of available modules.

Usage

ucs.library(name, all=FALSE, reload=FALSE)

Arguments

name a character string giving the name of a single UCS/R module to be loaded.
If omitted, a list of all available modules is displayed (see below).

all if TRUE, all available modules are loaded

reload if TRUE, force module to be loaded even if it has already been imported
(useful when developing UCS/R modules)

Details

Like the library and package functions, ucs.library(module) checks whether the
requested module has already been loaded by a previous ucs.library call. Set
reload=TRUE in order to skip this test and force re-loading a module (especially while
developing or debugging module code).

Value

Calling the ucs.library function without arguments returns a list of all available UCS/R
modules as an object of class "UCSLibList", which prints as a nicely formatted listing
including one-line descriptions. Use names(ucs.library()) to obtain a plain vector of
module names.

See Also

UCS for an overview of the UCS/R modules

Examples

print(ucs.library()) # list of available modules

ucs.library("base") # load and manage UCS data sets
ucs.library("plots") # evaluation graphs

ucs.library(all=TRUE) # load all modules

B.2. UCS/R 327

ucs.par Graphics Parameters for Evaluation Graphs (plots)

Description

Set default graphics parameters for the evaluation.plot function, similar to par for
general graphics parameters. The current parameter values are queried by giving their
names as character strings. The values can be set by specifying them as arguments in
name=value form, or by passing a single list of named values.

Usage

ucs.par(...)

.ucs.PAR

Arguments

... either character strings (or vectors) specifying the names of parameters
to be queried, or parameters to be set in name=value form, or a single list
of named values. Valid parameter names are described below.

Details

The current default parameters are stored in the global variable .ucs.PAR. They can be
queried by giving their names as one or more character vectors to ucs.par. ucs.par()
(no arguments) returns all UCS graphics parameters.

Parameters are set by specifying their names and the new values as name=value pairs.
Such a list can also be passed as a single argument to ucs.par, which is typically used to
restore previous parameter values (that have been saved in a list variable).

In order to restore the "factory settings", reload the module with the command
ucs.library("plots", reload=TRUE).

Value

When parameters are set, their former values are returned in an invisible named list. Such
a list can be passed as a single argument to ucs.par to restore the parameter values.

When a single parameter is queried, its value is returned directly. When two or more
parameters are queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list,
but querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

328 APPENDIX B. UCS SOFTWARE DOCUMENTATION

UCS Graphics Parameters

col A character or integer vector specifying line colours for up to 10 evaluation graphs
(see the par manpage for details). Values are recycled if necessary.

lty A character or integer vector specifying line styles for up to 10 evaluation graphs (see
the par manpage for details). Values are recycled if necessary.

lwd A numeric vector specifying line widths for up to 10 evaluation graphs (see the par
manpage for details). Values are recycled if necessary.

bw.col The line colours used in B/W mode (see the evaluation.plot manpage for de-
tails).

bw.lty The line styles used in B/W mode.

bw.lwd The line widths in B/W mode.

n.first The smallest n-best list to be evaluated (default: 100). Shorter n-best lists typi-
cally lead to highly unstable evaluation graphs. It may be necessary to set n.first
to a higher value for evaluation based on random samples (cf. evaluation.plot).

n.step The step width for n-best lists in evaluation graphs (default: 1). The default
setting evaluates all possible n-best lists. Higher values speed up computation, make
graphs look less jagged, and reduce the size of PostScript files. A useful range is
5 . . . 20, depending on the size of the data set file.

test.step Step width for n-best lists where significance tests for result differences are
applied, as a multiple of n.step (default: 10). Since these tests are time-consuming
and significant differences are indicated by fairly large symbols in the plot, values
below 5 are rarely useful.

cex A character expansion factor for labels, annotations, and symbols in evaluation plots
(see par for details).

lex This parameter can be used to increase the line widths of evaluation graphs and
some decorations. Not that lex is not an expansion factor, but is simply added to all
line widths in the plot.

do.file If FALSE, evaluation.file will not generate PostScript files, which is useful
while testing and fine-tuning plots (default: TRUE).

See Also

evaluation.plot, evaluation.file, par

Examples

print(names(ucs.par())) # list available parameters

ucs.par("col", "lty", "lwd") # the default line styles
ucs.par(c("col", "lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- ucs.par(n.first=200, n.step=5)
plots use the modified parameters here
ucs.par(par.save) # restore previous values

ucs.library("plots", reload=TRUE) # reload module for factory defaults

B.2. UCS/R 329

write.lexstats Write Data Files for Goodness-of-Fit Evaluation of LNRE Model
(zm, fzm)

Description

Creates three data files in lexstats format, which can be used to compare and LNRE
model with other models from the lexstats package and evaluate its goodness-of-fit by
a multivariate chi-squared test (Baayen, 2001, Sec. 3.3), using the lnreChi2 program
(Baayen, 2001).

Usage

write.lexstats(model, file)

Arguments

model an object of class "zm" or "fzm", representing a Zipf-Mandelbrot (ZM)
or finite Zipf-Mandelbrot (fZM) LNRE model. The object must include
observed word frequency data (in components N, V, and spc), usually
because the model parameters have been estimated from the observed
frequency spectrum.

file a character string giving the basename of the files that will be created

Details

This functions creates files in lexstats format with the extensions .spc, .sp2, and .ev2,
which are required by the lnreChi2 tool (Baayen, 2001, 270).

In addition, the basename file is extended with the string "_bZM" (for a ZM model) or
"_bfZM" (for a fZM model), so that the lnreChi2 tool can correctly identify the number
of degrees of freedom (reduced by two estimated parameters for the ZM model, and three
estimated parameters for the fZM model).

Value

The full basename of the created files (obtained by adding a model-specific suffix to the
file parameter).

Note

The combination of write.lexstats and the external lnreChi2 program to eval-
uate the goodness-of-fit of a LNRE model has been superseded by the built-in
lnre.goodness.of.fit function (in the lexstats module). This function implements
the multivariate chi-squared test as described by Baayen (2001, Sec. 3.3) in R without
relying on external software.

330 APPENDIX B. UCS SOFTWARE DOCUMENTATION

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

zm, fzm, EV, EVm, lnre.goodness.of.fit

zm The Zipf-Mandelbrot LNRE Model (zm)

Description

Object constructor for a Zipf-Mandelbrot (ZM) LNRE model with parameters α and C

(Evert, 2004a). Either the parameters are specified explicitly, or one or both of them can
be estimated from an observed frequency spectrum.

Usage

zm(alpha, C)

zm(alpha, N, V)

zm(N, V, spc, m.max=15, stepmax=10, debug=FALSE)

Arguments

alpha a number in the range (0,1), the shape parameter α of the ZM model.
alpha can automatically be estimated from N, V, and spc.

C a positive number, the parameter C of the ZM model. C can automatically
be estimated from N and V.

N the sample size, i.e. number of observed tokens

V the vocabulary size, i.e. the number of observed types

spc a vector of non-negative integers representing the class sizes Vm of the
observed frequency spectrum. The vector is usually read from a file in
lexstats format with the read.spectrum function.

m.max the number of ranks from spc that will be used to estimate the α param-
eter

stepmax maximal step size of the nlm function used for parameter estimation. It
should not be necessary to change the default value.

debug if TRUE, print debugging information during the parameter estimation
process. This feature can be useful to find out why parameter estimation
fails.

B.2. UCS/R 331

Details

The ZM model with parameters α ∈ (0,1) and C > 0 is defined by the type density
function

g(π) := C · π−α−1

for 0 ≤ π ≤ B, where the upper bound B is determined from C by the normalisation
condition ∫ ∞

0
π · g(π)dπ = 1

The parameter α is estimated by nonlinear minimisation (nlm) of a multinomial chi-
squared statistic for the observed against the expected frequency spectrum. Note that
this is different from the multivariate chi-squared test used to measure the goodness-of-
fit of the final model (Baayen, 2001, Sec. 3.3).

See Evert (2004, Ch. 4) for further mathematical details, especially concerning the ex-
pected vocabulary size, frequency spectrum and conditional parameter distribution, as
well as their variances.

Value

An object of class "zm" with the following components:

alpha value of the α parameter

B value of the upper bound B (a normalisation device)

C value of the C parameter

N number of observed tokens (if specified)

V number of observed types (if specified)

spc observed frequency spectrum (if specified)

This object prints a short summary, including a comparison of the first ranks of the
observed and expected frequency spectrum (if available).

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). The Statistics of Word Cooccurrences: Word Pairs and Collocations.
PhD Thesis, IMS, University of Stuttgart.

Evert, Stefan (2004a). A simple LNRE model for random character sequences. In Proceed-
ings of JADT 2004, Louvain-la-Neuve, Belgium, pages 411–422.

See Also

fzm, EV, EVm, VV, VVm, write.lexstats, lnre.goodness.of.fit, read.spectrum, and
spectrum.plot

332 APPENDIX B. UCS SOFTWARE DOCUMENTATION

Zusammenfassung

Das gemeinsame Vorkommen von Wörtern in natürlicher Sprache – sei es in unmit-
telbarer Nachbarschaft, innerhalb desselben Satzes oder in einer bestimmten syntak-
tischen Relation – stellt eine zentrale Wissensquelle für die maschinelle Sprachver-
arbeitung dar. Frequenzdaten für derartige Kookkurrenzen (cooccurrences) können
leicht aus Textkorpora gewonnen werden, wobei in den meisten Fällen zunächst eine
linguistische Vorverarbeitung erfolgt (diese besteht traditionell aus Wortartenannota-
tion und Lemmatisierung, und wird heutzutage oft durch eine partielle syntaktische
Analyse ergänzt). Eine mathematische Auswertung erlaubt dann, diese Ergebnisse
über das spezifische Extraktionskorpus hinaus zu verallgemeinern und auf statisti-
sche Assoziationen zwischen den Vorkommen der beteiligten Wörter in der Sprache
insgesamt (oder zumindest in einer Teilsprache) zu schließen.1 Das gebräuchlich-
ste Verfahren hierfür sind sogenannte Assoziationsmaße (association measures), die
ausgehend von der im Korpus ermittelten Frequenzinformation eine Bewertungszahl
(association score) errechnen: je höher dieser Wert, desto stärker ist die mutmaßli-
che Assoziation. Dabei stützt sich das Maß lediglich auf die Kookkurrenzhäufigkeit
(cooccurrence frequency) und auf die Häufigkeiten der einzelnen Wörter (marginal
frequencies).

Die so gewonnene Information läßt sich in vielfältiger Weise anwenden, unter an-
derem zur Desambiguierung von syntaktischen Analysen, zur Identifikation von Satz-
und Phrasengrenzen, zur Verbesserung von stochastischen Sprachmodellen, zur Les-
artendesambiguierung und anderen Klassifikationsaufgaben, sowie zur Bestimmung
von semantischen Ähnlichkeiten zwischen Wörtern wie Synonymie und Hyponymie
(siehe Abschnitt 1.2.1). Andererseits bieten statistische Assoziationen einen wichti-
gen Anhaltspunkt für die Identifikation lexikalisierter Wortverbindungen, sogenann-
ter Kollokationen (collocations).2 Das gebräuchlichste Verfahren zur Extraktion von
Kollokationen aus Textkorpora wird in Abschnitt 1.2.2 dargestellt und dient später
auch als Grundlage für wissenschaftliche Untersuchungen.

Bereits zur Zeit der ersten computerlinguistischen Arbeiten mit Kookkurrenzda-
ten und Kollokationen stand eine nahezu unüberschaubare Vielfalt von Assoziati-
onsmaßen zur Verfügung: man bediente sich bei diversen Fachgebieten, allen voran

1Der Begriff Assoziation wird in der vorliegenden Arbeit stets in seiner statistischen Bedeutung
gebraucht: “the tendency of two events to occur together” (Porkess 1991, s.v. association) und ist nicht
mit dem gleichlautenden psycholinguistischen Begriff zu verwechseln.

2Ich schließe mich damit einer in der Computerlinguistik gebräuchlichen Verwendung von „Kol-
lokation“ als Sammelbegriff für verschiedene Arten lexikalisierter Wortverbindungen an. In anderen
Fachrichtungen werden Kollokationen speziell als semikompositionelle Kombinationen aufgefaßt oder
sogar mit statistischer Assoziation gleichgesetzt. Eine ausführliche und ansprechende Diskussion ver-
schiedener Kollokationsbegriffe findet sich bei Bartsch (2004, 27–64). Darüberhinaus werden lingui-
stische Definitionsansätze beschrieben (Bartsch 2004, Ch. 3, 65–78).

333

334 ZUSAMMENFASSUNG

natürlich der mathematischen Statistik. Schon im Jahr 1964 zog Vincent Giuliano
nach dem Washington Symposium on Statistical Association Methods for Mechanized
Documentation das Fazit:

It soon becomes evident that at least a dozen somewhat different proce-
dures and formulae for associations are suggested. . . . One thing which
is badly needed is a better understanding of the boundary conditions un-
der which the various techniques are applicable and the expected gains
to be achieved through using one or the other of them. This advance
would primarily be one in theory, not in abstract statistical theory but in
a problem-oriented branch of statistical theory. (Giuliano 1965b, 259)

Giuliano wünscht sich hier eine Art Enzyklopädie der Assoziationsmaße, die neben ei-
ner Zusammenstellung der mathematischen Grundlagen und einer reinen Auflistung
von Formeln Beziehungen zwischen den Maßen knüpfen und Unterschiede deutlich
machen soll, sowohl auf einer theoretischen Ebene als auch im Hinblick auf Anwen-
dungen.

Seit Giulianos Fazit sind nunmehr vierzig Jahre vergangen, doch die Situation
ist im wesentlichen die gleiche geblieben – wenn nicht sogar noch verwirrender
geworden, da ständig neue Assoziationsmaße hinzukommen (und manchmal auch
alte wiederentdeckt werden). Jeder neue Vorschlag wird mit wahrscheinlichkeits-
theoretisch, philosophischen oder einfach pragmatischen Argumenten untermauert;
Kookkurrenzdaten und Assoziationsmaße werden mit wechselndem Erfolg in zahl-
reichen Anwendungen eingesetzt; hin und wieder werden Fallstudien durchgeführt,
die über die Eigenschaften verschiedener Maße Aufschluß geben sollen; und es gibt
eine Handvoll ernstzunehmender Evaluationen, die eine größere Anzahl von Asso-
ziationsmaßen hinsichtlich ihres Nutzens für die Kollokationsextraktion vergleichen.
Giulianos Wunsch nach einer Enzyklopädie kommt wohl das 5. Kapitel von Manning
and Schütze (1999) am nächsten. Dort werden vier weitverbreitete Assoziationsmaße
beschrieben, und die ihnen üblicherweise nachgesagten Eigenschaften werden durch
kurze Listen „interessanter Bigramme“ illustriert. Was jedoch nach wie vor fehlt, ist
eine umfassende Zusammenstellung des bekannten Wissens, die theoretische und
empirische Aspekte berücksichtigt und miteinander verknüpft. Meine Dissertation
soll einen Beitrag dazu leisten, diese Lücke endlich zu schließen.

In Kapitel 2 werden zunächst die wichtigsten theoretischen Grundlagen zusam-
mengestellt, beginnend mit geeigneten Zählverfahren für Kookkurrenzhäufigkeiten.
Dabei lege ich Wert auf eine klare Trennung zwischen einem auf syntaktischen Re-
lationen basierenden Kookkurrenzbegriff (relational cooccurrences) einerseits und ei-
nem auf dem Abstand zwischen Wörtern bzw. dem gemeinsamen Vorkommen in
einer textstrukturellen Einheit basierenden Begriff (positional cooccurrences) anderer-
seits. Die beiden Arten von Kookkurrenzen erfordern unterschiedliche Zählmethoden
und angepaßte statistische Modelle. Letztlich können sie dann jedoch mit denselben
Assoziationsmaßen bewertet werden. Ein großer Teil des Kapitels widmet sich den
statistischen Modellen für die Analyse solcher Frequenzdaten, wobei alle relevanten
Formeln explizit und in einem einheitlichen Formalismus dargestellt werden. Dazu
gehört auch eine Diskussion der verschiedenen mathematischen Ansätze, Assoziati-
on zu quantifizieren. Schließlich wird auch die oft vernachlässigte Frage nach der
Anwendbarkeit der statistischen Methoden auf korpuslinguistische Daten angespro-

335

chen, und die Auswirkungen von Vorverarbeitungs- bzw. Extraktionsfehlern wird dis-
kutiert.

Kapitel 3 setzt den enzyklopädischen Teil mit einer umfassenden Sammlung be-
kannter Assoziationsmaße fort, die anhand ihres theoretischen Hintergrundes in
Gruppen eingeteilt werden. Dabei stellt sich heraus, daß es zahlreiche Ähnlichkeiten
und Verwandtschaftsbeziehungen auch zwischen Maßen aus verschiedenen Gruppen
gibt. Auf diese Weise wird die zunächst unüberschaubare Vielfalt von Maßen redu-
ziert und weiter strukturiert. Besonderer Wert wird auf eine explizite Darstellung
aller Formeln und einheitliche Notation gelegt, so daß sämtliche Assoziationsmaße
leicht auf dem Computer umgesetzt werden können. Wo nötig wird auf potentiel-
le Probleme und leicht zu übersehende Details hingewiesen. Darüber hinaus ist ei-
ne Referenzimplementierung aller Maße verfügbar, die numerische Genauigkeit und
korrektes Verhalten unter Randbedingungen sicherstellen soll.

Der zweite Teil des Kapitels schlägt einen neuen Weg zur Erforschung von Asso-
ziationsmaßen ein, der sich von rein theoretischen Diskussionen abwendet und statt-
dessen empirische Untersuchungen und ein intuitives Verständnis der Eigenschaften
verschiedener Maße in den Mittelpunkt stellt. Schlüssel hierzu ist ein allgemeines
Modell für Assoziationsmaße (sogenannte generalised association measures), das eine
geometrische Interpretation der Formeln ermöglicht. Dabei werden die aus einem
Korpus gewonnenen Frequenzdaten mit Punkten in einem dreidimensionalen Raum
gleichgesetzt – jeder Punkt entspricht einem Wortpaar. Assoziationsmaße lassen sich
dann als Flächen in diesem “Frequenzraum” veranschaulichen. Die Eigenschaften ei-
nes Maßes werden durch die Form der zugehörigen Flächen bestimmt, und durch
durch ihren Vergleich werden die Unterschiede bzw. Gemeinsamkeiten verschiede-
ner Maße deutlich. Mit Hilfe der neu gewonnenen Methoden wird schließlich die
Untersuchung und Klassifikation der eingeführten Assoziationsmaße fortgesetzt.

Kapitel 4 wendet sich wieder dem statistischen Modell für Frequenzdaten zu und
beschäftigt sich mit der Genauigkeit und Zuverlässigkeit von statistischen Tests und
Schätzwerten. Im Gegensatz zur gängigen mathematischen Theorie wird dabei die
typische ungleichmäßige Verteilung von Worthäufigkeiten berücksichtigt, bei der ei-
ner kleinen Menge häufiger Wörter eine riesige Anzahl von extrem seltenen Wörtern
gegenübersteht (als „Zipfsches Gesetz“ bekannt). Mit Hilfe von Methoden aus dem
Gebiet der Lexikostatistik kann nachgewiesen werden, daß herkömmliche statisti-
sche Schlußfolgerungen und Schätzwerte aufgrund der großen Zahl seltener Wörter
grundsätzlich unzuverlässig sind, besonders wenn sie sich auf lediglich ein oder zwei
Vorkommen eines Wortes stützen. Erst bei fünf oder mehr Vorkommen spielt die Ver-
teilung der Worthäufigkeiten keine wesentliche Rolle mehr. Dieses Resultat liefert
eine theoretische Begründung für die weitverbreitete Praxis, nur diejenigen Ereignis-
se zu berücksichtigen, deren Häufigkeit einen gewissen Schwellwert überschreitet.
Als Nebenprodukt dieser Untersuchungen ist ein einfaches und effizientes Modell für
Wortfrequenzverteilungen entstanden, das dennoch zumindest für die Beschreibung
großer Korpora gleichwertig zu anderen bekannten Modellen (siehe Baayen 2001)
ist oder diese sogar übertrifft.

In Kapitel 5 wird schließlich eine Verbindung zwischen Kookkurrenzen und Kollo-
kationen hergestellt, indem Assoziationsmaße als Werkzeug zur Extraktion von Kol-
lokationen aus Textkorpora eingesetzt und im Rahmen dieser Anwendung evaluiert
werden. Ich argumentiere dabei für eine manuelle Evaluation, bei der alle aus ei-

336 ZUSAMMENFASSUNG

nem Korpus gewonnenen Kollokationskandidaten von Experten geprüft und anno-
tiert werden. Durch den Vergleich mit nach Assoziationswerten sortierten Listen läßt
sich dann jedem Maß eine Güte zuordnen und z.B. durch die precision (d.h. den
Anteil “echter” Kollokationen unter einer gewissen Anzahl von Kandidaten mit den
höchsten Assoziationswerten) quantitativ messen. Verschiedene graphische Darstel-
lungen ermöglichen einen anschaulichen und aussagekräftigen Vergleich der Assozia-
tionsmaße. Anhand einer Fallstudie wird gezeigt, wie die Kombination verschiedener
Methoden zu neuen Erkenntnissen führt. Der erhebliche Arbeitsaufwand für die ma-
nuelle Prüfung der Kollokationskandidaten läßt sich deutlich reduzieren, indem nur
zufällig ausgewählte Stichproben annotiert werden. Durch Anwendung geeigneter
statistischer Signifikanztests ist sichergestellt, daß keine irrtümlichen Schlußfolge-
rungen aus rein zufälligen Vorkommnissen gezogen werden. Bei der Formulierung
dieser Signifikanztests spielt das geometrische Modell aus Kapitel 3 wieder eine we-
sentliche Rolle.

Sowohl die Gültigkeit der statistischen Modelle als auch die Ergebnisse einer Eva-
luation von Assoziationsmaßen hängen von zahlreichen Faktoren ab: neben Textsorte
und Größe des Extraktionskorpus spielen die Qualität der linguistischen Vorverarbei-
tung, die betrachtete Art von Kookkurrenzen und besonders die genaue Ausprägung
des Kollokationsbegriffs eine entscheidende Rolle. Dies hat zur Folge, daß sich Ergeb-
nisse empirischer Untersuchungen nur in sehr beschränktem Maße auf andere Situa-
tionen übertragen lassen. Um ein besseres Verständnis der statistischen Eigenschaf-
ten von Kollokationen zu erreichen ist es daher erforderlich, zahlreiche Experimen-
te unter den verschiedensten Bedingungen durchzuführen. Die vorliegende Arbeit
stellt das notwendige Handwerkszeug bereit, was durchaus nicht nur im übertrage-
nen Sinn gemeint ist: wesentlicher Bestandteil der Dissertation ist ein umfangreiches
und vollständig dokumentiertes Softwarepaket (das UCS-Toolkit), mit dem sich al-
le beschriebenen Experimente leicht nachvollziehen lassen (die dazu notwendigen
Daten, Programme und Beschreibungen sind in dem Softwarepaket enthalten). Die
vollständige Dokumentation des UCS-Toolkit ist in Anhang B abgedruckt.

Summary

In natural language, words are not combined randomly into phrases and sentences,
constrained only by the rules of syntax. They have a tendency to appear in certain
recurrent combinations, prompting Firth (1957) to coin his famous slogan: You shall
know a word by the company it keeps!. Indeed, such cooccurrences – whether they
are immediately adjacent words, stand in a particular syntactic relation or just tend
to be used in the same sentence – are a goldmine of information for linguistics and
natural language processing. They include compound nouns (black box), fixed idioms
(kick the bucket), lexically determined combinations (heavy smoker) and formulaic
expressions (have a nice day). They can often tell us something about the meaning
of a word (think of combinations like dark night and bright day), an idea that has
inspired latent semantic analysis and similar vector space models of word meaning.

With modern computers it is easy to extract evidence for recurrent word pairs
from huge text corpora, often aided by linguistic pre-processing and annotation (so
that specific combinations, e.g. noun+verb can be targeted). However, the raw data
– in the form of frequency counts for word pairs – are often not very meaningful as
a measure for the amount of “glue” between two words. Provided that both words
are sufficiently frequent, their cooccurrences might be pure coincidence. Therefore, a
statistical interpretation of the frequency data is necessary, which determines the de-
gree of statistical association between the words and attempts to factor out the effects
of chance. The most widely used method is the application of so-called association
measures, which assign a score to each word pair based on the observed frequency
data. The higher this score is, the stronger and more certain the association between
the two words.

The earliest reports of the application of association measures to language data
go back to Stevens et al. (1965). Even at that time, an enormous range of different
measures was available, borrowed from mathematical statistics and related fields.
With so many options, but little guidance as to which measure to choose, Giuliano
(1965b, 259) reflected: “One suspects that each has its own possible merits and dis-
advantages, but the line between the profound and the trivial often appears blurred.
One thing which is badly needed is a better understanding of the boundary condi-
tions under which the various techniques are applicable and the expected gains to be
achieved through using one or the other of them. . . . it is my feeling that the time is
now ripe to conduct carefully controlled experiments of an evaluative nature, . . . ”

It is amazing to see how little progress has been made in the understanding of
word cooccurrences and association measures in the forty years that have passed
since these words were written. The reference work that Giuliano felt was so urgently
needed – a compendium that lists, explains and compares the multitude of available
association measures – has never seen the light of day. My thesis aims to fill this

337

338 SUMMARY

gap, providing both a comprehensive reference and a methodology for the kind of
research Giuliano envisaged.

Chapter 2 collects the foundations of association measures: procedures for ob-
taining cooccurrence frequency data and statistical models for their interpretation. I
make a clear distinction between relational cooccurrences (which are usually head-
modifier combinations) and positional cooccurrences (which are words that occur
close to each other but need not be in a direct relation). The two types of cooc-
currences require different counting methods in order to allow for a sound statistical
analysis. In Sections 2.1 and 2.4 these counting methods are formalised to the degree
necessary to give an unambiguous account, and they are accompanied by explicit in-
structions, schemata and examples to facilitate their implementation. Section 2.2
describes the statistical model underlying the analysis of the extracted frequency
data. Although this is a well-known random sample model, and it is always implic-
itly assumed when authors discuss or suggest association measures, its application
to cooccurrence frequency data has never been given an explicit and precise defi-
nition.3 In Section 2.3 I discuss some problematic aspects of the random sample
model, in particular the randomness assumption and the issue of noise introduced by
automatic processing.

Chapter 3 is the centrepiece of my thesis. Continuing the encyclopaedic part,
it provides a comprehensive inventory of all association measures that I have come
across during my research. The numerous measures are organised in major and mi-
nor groups which share a common goal or theoretical background. In addition to
this broad categorisation and the standard references, I take care to explain details
that are often ignored or taken for granted. Examples are the application of Yates’
continuity correction, the difference between one-sided and two-sided measures, and
the existence of several equivalent versions of the chi-squared and log-likelihood mea-
sures (see Section 3.1.4 for all three examples). For each association measure, an
explicit equation is given, using the same notation with observed and expected fre-
quencies to facilitate implementation. Carefully designed reference implementations
are available in the UCS toolkit (Section 3.2.2). There is also an online version of the
collection at http://www.collocations.de/AM/ with the most up-to-date informa-
tion.

In the second part of this chapter, Section 3.3 introduces generalised association
measures as arbitrary real-valued functions on contingency tables that conform to
our intuitions about fundamental properties of association measures. This formal
model allows an intuitive geometric interpretation of cooccurrence data and associ-
ation measures in a three-dimensional “parameter space”. The frequency data are
represented as a set of points int this space, each point corresponding to a word pair.
Generalised association measures can then be understood as surfaces, their proper-
ties being determined by the specific shape of each surface. This visual approach
will hopefully pave the way towards a better understanding of the characteristics of
existing measures and towards the discovery of genuinely new ones. In Section 3.4 it
is used to learn more about the different groups of association measures, and about
differences between the measures in each group.

Chapter 4 addresses the well-known problem of low-frequency data. Most re-

3Cooccurrence data as a random sample from what population? And what are the relevant param-
eters, random variables and test statistics?

339

searchers know that statistical inference from small amounts of data is problematic
(to say the least). Although Dunning (1993) suggests that the applicability of his
newly introduced log-likelihood measure extends even down to the hapax legomena
(word combinations that occur just once in a corpus) – and although Weeber et al.
(2000) see opportunities to extract useful knowledge from such lowest-frequency
data – most researchers silently discard rare events by setting a frequency thresh-
old (Krenn (2000) is just one example among many). Using methods from lexical
statistics, I show that reliable statistical inference is impossible in principle for the
hapax and dis legomena (f = 1,2). In this frequency range, quantisation effects and
the characteristic highly skewed distribution of the cooccurrence probabilities of pair
types (roughly following Zipf’s law) dominate over the random variation that sta-
tistical inference normally takes into account. As a result, probability estimates are
entirely unreliable unless the precise shape of the population is known. This rather
negative result provides theoretical support for the application of a frequency thresh-
old, which should at least exclude the hapax and dis legomena (f ≥ 3). Quantisation
and the shape of the population no longer play a role for f ≥ 5, so that higher cutoff
thresholds are not necessary in order to ensure a reliable statistical analysis.4 A fall-
out from this work is a new population model for the distribution of cooccurrence
probabilities, which is analytically simple and numerically efficient. Despite its sim-
plicity, the model compares favourably with established population models (Baayen
2001), combining better goodness-of-fit with higher robustness.

Finally, Chapter 5 addresses the relation between statistical association and lin-
guistic phenomena, using cooccurrence data extracted from a text corpus as candi-
date data for a collocation identification task. This application setting provides a
framework – and a well-defined goal – for the comparative evaluation of association
measures. The graphical presentation of the evaluation results, first used by Evert
et al. (2000) and Evert and Krenn (2001), is developed further and a case study
exemplifies the possibilities opened up by a fine-grained evaluation. Section 5.2 ad-
dresses the problem of testing the significance of evaluation results. An attempt is
made to clear up the confusion about the choice of an appropriate significance test
by introducing an explicit model for the random variation of evaluation results, which
also makes use of the geometric interpretation introduced in Section 3.3. Based on
this model, two procedures are suggested: (i) confidence intervals estimate the uncer-
tainty in the evaluation results of a single association measure; and (ii) significance
tests predict whether the observed differences between measures can reliably be re-
produced in other experiments (under similar conditions). The model is validated on
empirical data, showing that it provides a relatively tight lower bound for the true
variation. Finally, the newly developed methods are applied to an evaluation pro-
cedure that reduces the amount of manual annotation work drastically by taking a
random sample from the candidate set. With this new procedure, it will be possible
to perform evaluation experiments under a much broader range of conditions.

4There may be other reasons to apply a higher frequency threshold, of course, such as working
around the problems that certain association measures have with low-frequency data or inflated fre-
quencies caused by violations of the randomness assumption.

340 SUMMARY

Bibliography

Agresti, Alan (1990). Categorical Data Analysis. John Wiley & Sons, New York.

Agresti, Alan (1992). A survey of exact inference for contingency tables. Statistical
Science, 7(1), 131–153.

Alshawi, Hiyan and Carter, David (1994). Training and scaling preference functions
for disambiguation. Computational Linguistics, 20(4), 635–648.

Aston, Guy and Burnard, Lou (1998). The BNC Handbook. Edinburgh University
Press, Edinburgh. See also the BNC homepage at http://www.natcorp.ox.ac.
uk/.

Baayen, R. Harald (1996). The randomness assumption in word frequency statistics.
In G. Perissinotto (ed.), Research in Humanities Computing 5, pages 17–31. Oxford
University Press, Oxford.

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer Academic Publish-
ers, Dordrecht.

Baayen, R. Harald and Renouf, Antoinette (1996). Chronicling the Times: Productive
lexical innovations in an English newspaper. Language, 72(1), 69–96.

Bannard, Colin; Baldwin, Timothy; Lascarides, Alex (2003). A statistical approach to
the semantics of verb-particles. In Proceedings of the ACL Workshop on Multiword
Expressions, pages 65–72, Sapporo, Japan.

Barlow, Michael and Kemmer, Suzanne (eds.) (2000). Usage-based Models of Lan-
guage. CSLI Publications, Stanford.

Barnard, G. A. (1947). Significance tests for 2 × 2 tables. Biometrika, 34(1/2), 123–
138.

Baroni, Marco; Matiasek, Johannes; Trost, Harald (2002). Unsupervised discovery
of morphologically related words based orthographic and semantic similarity. In
Proceedings of the ACL Workshop on Morphological and Phonological Learning, pages
48–57.

Bartsch, Sabine (2004). Structural and Functional Properties of Collocations in English.
Narr, Tübingen.

Beeferman, Doug; Berger, Adam; Lafferty, John (1997). A model of lexical attraction
and repulsion. In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics (ACL 1997), pages 373–380.

341

342 BIBLIOGRAPHY

Berry-Rogghe, Godelieve L. M. (1973). The computation of collocations and their
relevance to lexical studies. In A. J. Aitken, R. W. Bailey, and N. Hamilton-Smith
(eds.), The Computer and Literary Studies, pages 103–112. Edinburgh.

Biber, Douglas (1993). Co-occurrence patterns among collocations: A tool for corpus-
based lexical knowledge acquisition. Computational Linguistics, 19(3), 549–556.

Biemann, Christian; Bordag, Stefan; Quasthoff, Uwe (2004). Automatic acquisition
of paradigmatic relations using iterated co-occurrences. In Proceedings of the 4th
International Conference on Language Resources and Evaluation (LREC 2004), pages
967–970, Lisbon, Portugal.

Blaheta, Don and Johnson, Mark (2001). Unsupervised learning of multi-word verbs.
In Proceedings of the ACL Workshop on Collocations, pages 54–60, Toulouse, France.

Breidt, Elisabeth (1993). Extraction of N-V-collocations from text corpora: A fea-
sibility study for German. In Proceedings of the 1st ACL Workshop on Very Large
Corpora, Columbus, Ohio. (a revised version is available from http://arxiv.org/
abs/cmp-lg/9603006).

Brent, Michael R. (1993). From grammar to lexicon: Unsupervised learning of lexical
syntax. Computational Linguistics, 19(2), 243–262.

Burger, Harald; Buhofer, Annelies; Sialm, Ambros (1982). Handbuch der Phraseologie.
de Gruyter, Berlin, New York.

Bußmann, Hadumod (1990). Lexikon der Sprachwissenschaft. Kröner, Stuttgart, 2nd
edition.

Carletta, Jean (1996). Assessing agreement on classification tasks: the kappa statis-
tic. Computational Linguistics, 22(2), 249–254.

Choueka, Yaacov (1988). Looking for needles in a haystack. In Proceedings of RIAO
’88, pages 609–623.

Choueka, Yaacov; Klein, Shmuel T.; Neuwitz, E. (1983). Automatic retrieval of fre-
quent idiomatic and collocational expressions in a large corpus. Journal of the
Association for Literary and Linguistic Computing (ALLC), 4.

Church, Kenneth; Gale, William A.; Hanks, Patrick; Hindle, Donald (1991). Using
statistics in lexical analysis. In Lexical Acquisition: Using On-line Resources to Build
a Lexicon, pages 115–164. Lawrence Erlbaum.

Church, Kenneth W. (2000). Empirical estimates of adaptation: The chance of two
Noriegas is closer to p/2 than p2. In Proceedings of COLING 2000, pages 173–179,
Saarbrücken, Germany.

Church, Kenneth W. and Gale, William A. (1991). Concordances for parallel text. In
Proceedings of the 7th Annual Conference of the UW Center for the New OED and Text
Research, Oxford, UK.

BIBLIOGRAPHY 343

Church, Kenneth W. and Hanks, Patrick (1990). Word association norms, mutual
information, and lexicography. Computational Linguistics, 16(1), 22–29.

Cox, D. R. (1970). The continuity correction. Biometrika, 57(1), 217–219.

Daille, Béatrice (1994). Approche mixte pour l’extraction automatique de terminologie
: statistiques lexicales et filtres linguistiques. Ph.D. thesis, Université Paris 7.

Daille, Béatrice (1996). Study and implementation of combined techniques for auto-
matic extraction of terminology. In J. L. Klavans and P. Resnik (eds.), The Balancing
Act, chapter 3, pages 49–66. MIT Press, Cambridge, MA.

DeGroot, Morris H. and Schervish, Mark J. (2002). Probability and Statistics. Addison
Wesley, Boston, 3 edition.

Dennis, Sally F. (1965). The construction of a thesaurus automatically from a sample
of text. In M. E. Stevens, V. E. Giuliano, and L. B. Heilprin (eds.), Proceedings of
the Symposium on Statistical Association Methods For Mechanized Documentation,
volume 269 of National Bureau of Standards Miscellaneous Publication, pages 61–
148, Washington, DC.

Dias, Gaël (2003). Multiword unit hybrid extraction. In Proceedings of the ACL Work-
shop on Multiword Expressions, Sapporo, Japan.

Dias, Gaël; Guilloré, Sylvie; Lopes, José G. P. (1999). Language independent auto-
matic acquisition of rigid multiword units from unrestricted text corpora. In Pro-
ceedings of Traitement Automatique des Langues Naturelles (TALN), Cargèse, France.

Dorow, Beate and Widdows, Dominic (2003). Discovering corpus-specific word
senses. In Companion Volume to the Proceedings of the 10th Conference of The Euro-
pean Chapter of the Association for Computational Linguistics, pages 79–82.

Dunning, Ted E. (1993). Accurate methods for the statistics of surprise and coinci-
dence. Computational Linguistics, 19(1), 61–74.

Dunning, Ted E. (1998). Finding Structure in Text, Genome and Other Symbolic Se-
quences. Ph.D. thesis, Department of Computer Science, University of Sheffield.

Edmonds, Philip (1997). Choosing the word most typical in context using a lexical co-
occurrence network. In Proceedings of the 8th Conference of the European Chapter of
the Association for Computational Linguistics (EACL 1997), pages 507–509, Madrid,
Spain.

Edmundson, H. P. (1965). A correlation coefficient for attributes or events. In M. E.
Stevens, V. E. Giuliano, and L. B. Heilprin (eds.), Proceedings of the Symposium
on Statistical Association Methods For Mechanized Documentation, volume 269 of
National Bureau of Standards Miscellaneous Publication, pages 41–44, Washington,
DC.

Eisele, Andreas (1999). Representation and stochastic resolution of ambiguity in
constraint-based parsing. Ph.D. thesis, IMS, University of Stuttgart.

344 BIBLIOGRAPHY

Erbach, Gregor and Krenn, Brigitte (1993). Idioms and support verb constructions in
HPSG. CLAUS-Report 28, Universität des Saarlandes, Saarbrücken.

Evert, Stefan (2004a). Significance tests for the evaluation of ranking methods. In
Proceedings of the 20th International Conference on Computational Linguistics (Col-
ing 2004), Geneva, Switzerland.

Evert, Stefan (2004b). A simple LNRE model for random character sequences. In
Proceedings of the 7èmes Journées Internationales d’Analyse Statistique des Données
Textuelles, pages 411–422, Louvain-la-Neuve, Belgium.

Evert, Stefan and Kermes, Hannah (2003). Experiments on candidate data for collo-
cation extraction. In Companion Volume to the Proceedings of the 10th Conference of
The European Chapter of the Association for Computational Linguistics, pages 83–86.

Evert, Stefan and Krenn, Brigitte (2001). Methods for the qualitative evaluation
of lexical association measures. In Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, pages 188–195, Toulouse, France.

Evert, Stefan and Krenn, Brigitte (2005). Using small random samples for the man-
ual evaluation of statistical association measures. Computer Speech and Language,
19(4), 450–466.

Evert, Stefan; Heid, Ulrich; Lezius, Wolfgang (2000). Methoden zum Vergleich von
Signifikanzmaßen zur Kollokationsidentifikation. In W. Zühlke and E. G. Schukat-
Talamazzini (eds.), KONVENS-2000 Sprachkommunikation, pages 215 – 220. VDE-
Verlag.

Fano, Robert M. (1961). Transmission of information; a statistical theory of communi-
cations. MIT Press, New York.

Ferret, Olivier (2002). Using collocations for topic segmentation and link detection.
In Procedings of COLING 2002, Taipei, Taiwan.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–55. In Studies in linguistic
analysis, pages 1–32. The Philological Society, Oxford.

Fisher, R. A. (1922). On the interpretation of χ2 from contingency tables and the
calculation of P . Journal of the Royal Statistical Society, 85(1), 87–94.

Fisher, R. A. (1934). Statistical Methods for Research Workers. Oliver & Boyd, Edin-
burgh, 2nd edition.

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical
Society Series A, 98, 39–54.

Giuliano, Vincent E. (1965a). The interpretation of word associations. In M. E.
Stevens, V. E. Giuliano, and L. B. Heilprin (eds.), Proceedings of the Symposium
on Statistical Association Methods For Mechanized Documentation, volume 269 of
National Bureau of Standards Miscellaneous Publication, pages 25–32, Washington,
DC.

BIBLIOGRAPHY 345

Giuliano, Vincent E. (1965b). Postscript: A personal reaction to reading the con-
ference manuscripts. In M. E. Stevens, V. E. Giuliano, and L. B. Heilprin (eds.),
Proceedings of the Symposium on Statistical Association Methods For Mechanized Doc-
umentation, volume 269 of National Bureau of Standards Miscellaneous Publication,
pages 259–260, Washington, DC.

Goldberg, David (1991). What every computer scientist should know about floating
point arithmetic. ACM Computing Surveys, 23(1), 5–48.

Goldman, Jean-Philippe; Nerima, Luka; Wehrli, Eric (2001). Collocation extraction
using a syntactic parser. In Proceedings of the ACL Workshop on Collocations, pages
61–66, Toulouse, France.

Good, I. J. (1953). The population frequencies of species and the estimation of pop-
ulation parameters. Biometrika, 40(3/4), 237–264.

Good, I. J.; Gover, T. N.; Mitchell, G. J. (1970). Exact distributions for X2 and for the
likelihood-ratio statistic for the equiprobable multinomial distribution. Journal of
the American Statistical Association, 65, 267–283.

Greenbaum, Sidney (1970). Verb-Intensifier Collocations in English. An experimental
approach, volume 86 of Janua linguarum. Series minor. Den Haag, Paris.

Grossmann, Francis and Tutin, Agnès (2003). Quelques pistes pour le traitement
des collocations. In F. Grossmann and A. Tutin (eds.), Les Collocations: analyse et
traitement, pages 5–21. De Werelt, Amsterdam.

Ha, Le Quan; Sicilia-Garcia, E. I.; Ming, Ji; Smith, F. J. (2002). Extension of Zipf’s
law to words and phrases. In Proceedings of COLING 2002, Taipei, Taiwan.

Haberman, Shelby J. (1988). A warning on the use of chi-squared statistics with
frequency tables with small expected cell counts. Journal of the American Statistical
Association, 83, 555–560.

Hausmann, Franz Josef (1989). Le dictionnaire de collocations. In Wörterbücher,
Dictionaries, Dictionnaires. Ein internationales Handbuch, pages 1010–1019. de
Gruyter, Berlin.

Hausmann, Franz Josef (2004). Was sind eigentlich Kollokationen? In K. Steyer
(ed.), Wortverbindungen – mehr oder weniger fest, Jahrbuch des Instituts für
Deutsche Sprache 2003, pages 309–334. de Gruyter, Berlin.

Heaps, H. S. (1978). Information Retrieval – Computational and Theoretical Aspects.
Academic Press.

Heid, Ulrich (2004). On the presentation of collocations in monolingual dictionaries.
In Proceedings of the 11th Euralex International Congress, pages 729–738, Lorient,
France.

346 BIBLIOGRAPHY

Heid, Ulrich; Evert, Stefan; Docherty, Vincent; Worsch, Wolfgang; Wermke, Matthias
(2000). A data collection for semi-automatic corpus-based updating of dictionaries.
In U. Heid, S. Evert, E. Lehmann, and C. Rohrer (eds.), Proceedings of the 9th
EURALEX International Congress, pages 183 – 195.

Herdan, Gustav (1964). Quantitative Linguistics. Buttersworths, London.

Heyer, Gerhard; Läuter, Martin; Quasthoff, Uwe; Wittig, Thomas; Wolff, Christian
(2001). Learning relations using collocations. In Proceedings of the IJCAI Workshop
on Ontology Learning, pages 19–24, Seattle, WA.

Hindle, Donald and Rooth, Mats (1993). Structural ambiguity and lexical relations.
Computational Linguistics, 19(1), 103–120.

Hisamitsu, Toru and Niwa, Yoshiki (2001). Extracting useful terms from parenthet-
ical expressions by combining simple rules and statistical measures. In D. Bouri-
gault, C. Jacquemin, and M.-C. L’Homme (eds.), Recent Advances in Computational
Terminology, chapter 10, pages 209–224. John Benjamins, Amsterdam.

Holgate, P. (1969). Species frequency distributions. Biometrika, 56(3), 651–660.

Hollander, Myles and Wolfe, Douglas A. (1999). Nonparametric Statistical Methods.
Wiley, New York, 2nd edition.

Johnson, Mark (2001). Trading recall for precision with confidence sets. Unpublished
technical report.

Justeson, John S. and Katz, Slava (1995a). Technical terminology: Some linguistic
properties and an algorithm for identification in text. Natural Language Engineer-
ing, 1, 9–27.

Justeson, John S. and Katz, Slava M. (1991). Co-occurrences of antonymous adjec-
tives and their contexts. Computational Linguistics, 17(1), 1–19.

Justeson, John S. and Katz, Slava M. (1995b). Principled disambiguation: Discrim-
inating adjective senses with modified nouns. Computational Linguistics, 21(1),
1–27.

Kaalep, Heiki-Jaan and Muischnek, Kadri (2003). Inconsistent selectional criteria
in semi-automatic multi-word unit extraction. In Proceedings of the 7th Conference
on Computational Lexicography and Text Research (COMPLEX 2003), pages 27–36,
Budapest, Hungary.

Kageura, Kyo and Umino, Bin (1996). Methods of automatic term recognition. Ter-
minology, 3(2), 259–289.

Kahane, Sylvain and Polguère, Alain (2001). Formal foundation of lexical functions.
In Proceedings of the ACL Workshop on Collocations, pages 8–15, Toulouse, France.

Katz, Slava M. (1996). Distribution of content words and phrases in text and language
modelling. Natural Language Engineering, 2(2), 15–59.

BIBLIOGRAPHY 347

Keller, Frank and Lapata, Mirella (2003). Using the web to obtain frequencies for
unseen bigrams. Computational Linguistics, 29(3), 459–484.

Kermes, Hannah (2003). Off-line (and On-line) Text Analysis for Computational Lex-
icography. Ph.D. thesis, IMS, University of Stuttgart. Arbeitspapiere des Instituts
für Maschinelle Sprachverarbeitung (AIMS), volume 9, number 3.

Kermes, Hannah and Heid, Ulrich (2003). Using chunked corpora for the acquisi-
tion of collocations and idiomatic expressions. In Proceedings of the 7th Conference
on Computational Lexicography and Text Research (COMPLEX 2003), pages 37–46,
Budapest, Hungary.

Khmaladze, E. V. (1987). The statistical analysis of large number of rare events. Tech-
nical Report MS-R8804, Department of Mathematical Statistics, CWI, Amsterdam,
Netherlands.

Kilgarriff, Adam (2001). Comparing corpora. International Journal of Corpus Linguis-
tics, 6(1), 1–37.

Kiss, G. R.; Armstrong, C.; Milroy, R.; Piper, J. (1973). An associative thesaurus of
English and its computer analysis. In A. Aitken, R. Beiley, and N. Hamilton-Smith
(eds.), The Computer and Literary Studies. Edinburgh University Press, Edinburgh.

Kiss, Tibor and Strunk, Jan (2002a). Scaled log likelihood ratios for the detection of
abbreviations in text corpora. In T. Shu-Chuan (ed.), Proceedings of COLING 2002,
pages 1228–1232, Taipeh, Taiwan.

Kiss, Tibor and Strunk, Jan (2002b). Viewing sentence boundary detection as collo-
cation identification. In S. Busemann (ed.), Tagungsband der 6. Konferenz zur Ve-
rarbeitung natürlicher Sprache (KONVENS 2002), pages 75–82, Saarbrücken, Ger-
many. DFKI.

Kita, Kenji; Kato, Yasuhiko; Omoto, Takashi; Yano, Yoneo (1994). A comparative
study of automatic extraction of collocations from corpora: Mutual information vs.
cost criteria. Journal of Natural Language Processing, 1(1), 21–33.

Krenn, Brigitte (2000). The Usual Suspects: Data-Oriented Models for the Identification
and Representation of Lexical Collocations., volume 7 of Saarbrücken Dissertations in
Computational Linguistics and Language Technology. DFKI & Universität des Saar-
landes, Saarbrücken, Germany.

Krenn, Brigitte and Evert, Stefan (2001). Can we do better than frequency? A case
study on extracting PP-verb collocations. In Proceedings of the ACL Workshop on
Collocations, pages 39–46, Toulouse, France.

Krenn, Brigitte; Evert, Stefan; Zinsmeister, Heike (2004). Determining intercoder
agreement for a collocation identification task. In Proceedings of KONVENS 2004,
Vienna, Austria.

348 BIBLIOGRAPHY

Kuhns, J. L. (1965). The continuum of coefficients of association. In M. E. Stevens,
V. E. Giuliano, and L. B. Heilprin (eds.), Proceedings of the Symposium on Statistical
Association Methods For Mechanized Documentation, volume 269 of National Bureau
of Standards Miscellaneous Publication, pages 33–39, Washington, DC.

Landauer, Thomas K. and Dumais, Susan T. (1997). A solution to Plato’s problem:
The latent semantic analysis theory of acquisition, induction and representation of
knowledge. Psychological Review, 104(2), 211–240.

Lapata, Maria; McDonald, Scott; Keller, Frank (1999). Determinants of adjective-
noun plausibility. In Proceedings of the 9th Conference of the European Chapter of
the Association for Computational Linguistics (EACL 1999), pages 30–36, Bergen,
Norway.

Läuter, Martin and Quasthoff, Uwe (1999). Kollokationen und semantisches Cluster-
ing. In 11. Jahrestagung der GLDV.

Lehmann, Erich Leo (1991). Testing Statistical Hypotheses. Wadsworth, 2nd edition.

Lehr, Andrea (1996). Kollokationen und maschinenlesbare Korpora, volume 168 of
Germanistische Linguistik. Niemeyer, Tübingen.

Lemnitzer, Lothar (1998). Komplexe lexikalische Einheiten in Text und Lexikon.
In G. Heyer and C. Wolff (eds.), Linguistik und neue Medien, pages 85–92. DUV,
Wiesbaden.

Lezius, Wolfgang (1999). Automatische Extrahierung idiomatischer Bigramme aus
Textkorpora. In Tagungsband des 34. Linguistischen Kolloquiums, Germersheim,
Germany.

Lezius, Wolfgang; Dipper, Stefanie; Fitschen, Arne (2000). IMSLex – representing
morphological and syntactical information in a relational database. In U. Heid,
S. Evert, E. Lehmann, and C. Rohrer (eds.), Proceedings of the 9th EURALEX Inter-
national Congress, pages 133–139, Stuttgart, Germany.

Li, Wentian (1992). Random texts exhibit zipf’s-law-like word frequency distribution.
IEEE Transactions on Information Theory, 38(6), 1842–1845.

Liddell, Douglas (1976). Practical tests of 2 × 2 contingency tables. The Statistician,
25(4), 295–304.

Lin, Dekang (1998). Extracting collocations from text corpora. In Proceedings of the
First Workshop on Computational Terminology, pages 57–63, Montreal, Canada.

Magerman, David M. and Marcus, Mitchell P. (1990). Parsing a natural language
using mutual information statistics. In 8th National Conference on Artificial Intelli-
gence (AAAI 90), pages 984–989, Boston, MA.

Mandelbrot, Benoit (1962). On the theory of word frequencies and on related Marko-
vian models of discourse. In R. Jakobson (ed.), Structure of Language and its Math-
ematical Aspects, pages 190–219. American Mathematical Society, Providence, RI.

BIBLIOGRAPHY 349

Manning, Christopher D. and Schütze, Hinrich (1999). Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge, MA.

McEnery, Tony and Wilson, Andrew (2001). Corpus Linguistics. Edinburgh University
Press, 2nd edition.

Mel’čuk, Igor A. (2003). Collocations: définition, rôle et utilité. In F. Grossmann
and A. Tutin (eds.), Les Collocations: analyse et traitement, pages 23–31. De Werelt,
Amsterdam.

Miller, George A. (1957). Some effects of intermittent silence. The American Journal
of Psychology, 52, 311–314.

Miller, George A. (1990). WordNet: An on-line lexical database. International Journal
of Lexicography, 3(4).

Monaghan, James (1979). The Neo-Firthian Tradition and its Contribution to General
Linguistics, volume 73 of Linguistische Arbeiten. Niemeyer, Tübingen.

Motulsky, Harvey (1995). Intuitive Biostatistics. Oxford University Press, New York.

Nerima, Luka; Seretan, Violeta; Wehrli, Eric (2003). Creating a multilingual collo-
cation dictionary from large text corpora. In Companion Volume to the Proceedings
of the 10th Conference of The European Chapter of the Association for Computational
Linguistics, pages 131–134.

Pantel, Patrick and Lin, Dekang (2002). Discovering word senses from text. In Pro-
ceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 613–619, Edmonton, Canada.

Pearce, Darren (2002). A comparative evaluation of collocation extraction tech-
niques. In Third International Conference on Language Resources and Evaluation
(LREC), pages 1530–1536, Las Palmas, Spain.

Pearsall, Judy and Hanks, Patrick (eds.) (1998). The New Oxford Dictionary of English.
Oxford University Press, Oxford.

Pedersen, Ted (1996). Fishing for exactness. In Proceedings of the South-Central SAS
Users Group Conference, Austin, TX.

Pedersen, Ted (2001). A decision tree of bigrams is an accurate predictor of word
sense. In Proceedings of the 2nd Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics (NAACL-01), Pittsburgh, PA.

Pedersen, Ted and Bruce, Rebecca (1996). What to infer from a description. Technical
Report 96-CSE-04, Southern Methodist University, Dallas, TX.

Porkess, Roger (1991). The HarperCollins Dictionary of Statistics. HarperCollins, New
York.

Powers, David M. W. (1998). Applications and explanations of Zipf’s law. In D. M. W.
Powers (ed.), Proceedings of New Methods in Language Processing and Computational
Natural Language Learning, pages 151–160. ACL.

350 BIBLIOGRAPHY

Quasthoff, Uwe (1998). Deutscher Wortschatz im Internet. LDV-Forum, 15(2), 4–23.

Quasthoff, Uwe and Wolff, Christian (2002). The Poisson collocation measure and
its application. In Workshop on Computational Approaches to Collocations, Vienna,
Austria.

R Development Core Team (2003). R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-
00-3. See also http://www.r-project.org/.

Rapp, Reinhard (1999). Automatic identification of word translations from unrelated
English and German corpora. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, Maryland.

Rapp, Reinhard (2002). The computation of word associations: Comparing syn-
tagmatic and paradigmatic approaches. In Proceedings of COLING 2002, Taipeh,
Taiwan.

Rapp, Reinhard (2003). Discovering the meanings of an ambiguous word by search-
ing for sense descriptors with complementary context patterns. In Proceedings of
the 5èmes Rencontres Terminologie et Intelligence Artificielle (TIA-2003), Strasbourg,
France.

Rapp, Reinhard (2004). Utilizing the one-sense-per-discourse constraint for fully
unsupervised word sense induction and disambiguation. In Proceedings of the 4th
International Conference on Language Resources and Evaluation (LREC 2004), pages
951–954, Lisbon, Portugal.

Resnik, Philip (1997). Selectional preferences and sense disambiguation. In Proceed-
ings of the ACL SIGLEX Workshop on Tagging Text with Lexical Semantics, Washing-
ton, D.C.

Rosenfeld, Ronald (1996). A maximum entropy approach to adaptive statistical lan-
guage modelling. Computer Speech and Language, 10, 187–228.

Rouault, Alain (1978). Lois de Zipf et sources markoviennes. Annales de l’Institut H.
Poincaré (B), 14, 169–188.

Schiffman, Barry; Mani, Inderjeet; Concepcion, Kristian J. (2001). Producing bio-
graphical summaries: Combining linguistic knowledge with corpus statistics. In
Proceedings of the 39th Annual Meeting of the Association for Computational Linguis-
tics.

Schmid, Helmut (1994). Probabilistic part-of-speech tagging using decision trees. In
Proceedings of the International Conference on New Methods in Language Processing
(NeMLaP), pages 44–49.

Schone, Patrick and Jurafsky, Daniel (2001). Is knowledge-free induction of mul-
tiword unit dictionary headwords a solved problem? In Proceedings of the 2001
Conference on Empirical Methods in Natural Language Processing, pages 100–108,
Pittsburgh, PA.

BIBLIOGRAPHY 351

Sichel, H. S. (1975). On a distribution law for word frequencies. Journal of the
American Statistical Association, 70, 542–547.

Siegel, Sidney (1956). Nonparametric Statistics for the Behavioral Sciences. McGraw-
Hill Kogakusha, Tokyo.

Sinclair, John (1965). When is a poem like a sunset? A Review of English Literature,
6(2), 76–91.

Sinclair, John (1991). Corpus, Concordance, Collocation. Oxford University Press,
Oxford.

Sinclair, John; Jones, Susan; Daley, Robert; Krishnamurthy, Ramesh (2004). English
Collocation Studies: The OSTI Report. Continuum Books, London and New York.
Originally written in 1970 (unpublished).

Skut, Wojciech; Brants, Thorsten; Krenn, Brigitte; Uszkoreit, Hans (1998). A linguis-
tically interpreted corpus of German newspaper texts. In Proceedings of the ESSLLI
Workshop on Recent Advances in Corpus Annotation, Saarbrücken, Germany. See
also http://www.coli.uni-sb.de/sfb378/negra-corpus/.

Smadja, Frank (1991). From n-grams to collocations: An evaluation of Xtract. In Pro-
ceedings of the 29th Annual Meeting of the Association for Computational Linguistics,
pages 279–284, Berkeley, CA.

Smadja, Frank (1993). Retrieving collocations from text: Xtract. Computational
Linguistics, 19(1), 143–177.

Smadja, Frank; McKeown, Kathleen R.; Hatzivassiloglou, Vasileios (1996). Trans-
lating collocations for bilingual lexicons: A statistical approach. Computational
Linguistics, 22(1), 1–38.

Stevens, Mary Elizabeth; Giuliano, Vincent E.; Heilprin, Laurence B. (eds.) (1965).
Proceedings of the Symposium on Statistical Association Methods For Mechanized Doc-
umentation, Washington 1964, volume 269 of National Bureau of Standards Miscel-
laneous Publication.

Stone, Matthew and Doran, Christine (1996). Paying heed to collocations. In Proceed-
ings of the International Language Generation Workshop (INLG ’96), pages 91–100,
Herstmonceux Castle, Sussex, UK.

Stubbs, Michael (1995). Collocations and semantic profiles: On the cause of the
trouble with quantitative studies. Functions of Language, 1, 23–55.

Tamir, Raz and Rapp, Reinhard (2003). Mining the web to discover the meanings of
an ambiguous word. In Proceedings of the Third IEEE International Conference on
Data Mining, pages 645–648, Melbourne, FL.

Tan, Pang-Ning; Kumar, Vipin; Srivastava, Jaideep (2002). Selecting the right inter-
estingness measure for association patterns. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 32–41,
Edmonton, Canada.

352 BIBLIOGRAPHY

Terra, Egidio and Clarke, Charles L. A. (2003). Frequency estimates for statistical
word similarity measures. In Proceedings of HLT-NAACL 2003, pages 244–251, Ed-
monton, Alberta.

Terra, Egidio and Clarke, Charles L. A. (2004). Fast computation of lexical affinity
models. In Proceedings of COLING 2004, Geneva, Switzerland.

Turney, Peter D. (2001). Mining the web for synonyms: PMI-IR versus LSA on TOEFL.
In L. De Raedt and P. Flach (eds.), Proceedings of the 12th European Conference on
Machine Learning (ECML-2001), pages 491–502, Freiburg, Germany.

Upton, G. J. G. (1982). A comparison of alternative tests for the 2 × 2 comparative
trial. Journal of the Royal Statistical Society, Series A, 145, 86–105.

Venables, W. N. and Ripley, B. D. (1999). Modern Applied Statistics with S-PLUS.
Springer, New York, 3rd edition.

Vivaldi, Jorge and Rodríguez, Horacio (2001). Improving term extraction by combin-
ing different techniques. Terminology, 7(1), 31–48.

Volk, Martin (2002). Combining unsupervised and supervised methods for pp at-
tachment disambiguation. In Procedings of COLING 2002, Taipei, Taiwan.

Wall, Larry; Christiansen, Tom; Schwartz, Randal L. (1996). Programming Perl.
O’Reilly, 2nd edition.

Weeber, Marc; Vos, Rein; Baayen, R. Harald (2000). Extracting the lowest-frequency
words: Pitfalls and possibilities. Computational Linguistics, 26(3), 301–317.

Weisstein, Eric W. (1999). Eric Weisstein’s World of Mathematics. Wolfram Inc. An
on-line encyclopedia. http://mathworld.wolfram.com/.

Wiebe, Janyce; Wilson, Theresa; Bell, Matthew (2001). Identifying collocations for
recognizing opinions. In Proceedings of the ACL Workshop on Collocations, pages
24–31, Toulouse, France.

Wilks, S. S. (1935). The likelihood test of independence in contingency tables. The
Annals of Mathematical Statistics, 6(4), 190–196.

Williams, Geoffrey (2003). Les collocations et l’école contextualiste britannique. In
F. Grossmann and A. Tutin (eds.), Les Collocations: analyse et traitement, pages
33–44. De Werelt, Amsterdam.

Yates, F. (1934). Contingency tables involving small numbers and the χ2 test. Sup-
plement to the Journal of the Royal Statistical Society, 1, 217–235.

Yates, F. (1984). Tests of significance for 2 × 2 contingency tables. Journal of the
Royal Statistical Society, Series A, 147(3), 426–463.

Yeh, Alexander (2000). More accurate tests for the statistical significance of result
differences. In Proceedings of the 18th International Conference on Computational
Linguistics (COLING 2000), Saarbrücken, Germany.

BIBLIOGRAPHY 353

Yoon, Juntae; Choi, Key-Sun; Song, Mansuk (2001). A corpus-based approach for
korean nominal compound analysis based on linguistic and statistical information.
Natural Language Engineering, 7(3), 251–270.

Zinsmeister, Heike and Heid, Ulrich (2004). Collocations of complex nouns: Evidence
for lexicalisation. In Proceedings of the 11th Euralex International Congress, Lorient,
France.

Zipf, George Kingsley (1949). Human Behavior and the Principle of Least Effort.
Addison-Wesley, Cambridge, MA.

