
Counterexample-guided Abstraction Refinement

for the Analysis of Graph Transformation

Systems?

Barbara König and Vitali Kozioura

Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany

{koenigba,koziouvi}@fmi.uni-stuttgart.de

Abstract. Graph transformation systems are a general specification
language for systems with dynamically changing topologies, such as mo-
bile and distributed systems. Although in the last few years several anal-
ysis and verification methods have been proposed for graph transforma-
tion systems, counterexample-guided abstraction refinement has not yet
been studied in this setting.
We propose a counterexample-guided abstraction refinement technique
which is based on the over-approximation of graph transformation sys-
tems (gts) by Petri nets. We show that a spurious counterexample is
caused by merging nodes during the approximation. We present a tech-
nique for identifying these merged nodes and splitting them using ab-
straction refinement, which removes the spurious run. The technique has
been implemented in the Augur tool and experimental results are dis-
cussed.

1 Introduction

In the last years verification techniques based on counterexample-guided abstrac-
tion refinement [10] have been very successful. The idea behind this approach is
to start with a coarse initial abstraction or over-approximation of a system and
to check whether a certain property can be verified using this abstraction. If it
can not be verified, one obtains a run in the approximation that violates this
property, also called counterexample. Now either this counterexample is real or
it is spurious, i.e., it has been introduced by the approximation. In the latter case
the approximation is refined in such a way that the counterexample disappears.
This process is repeated, however in the case of infinite-state systems there is in
general no guarantee that it will terminate, since the properties to be verified are
usually undecidable. The technique has been used successfully in several tools
such as slam [8], blast [16] or magic [9].

Abstraction is also important for graph structures that can arise in several
applications, for instance as evolving pointer structures on the heap, as object
graphs or as networks with mobile processes. So far, little work has been done in

? Research supported by DFG project SANDS and SFB 627 (NEXUS).

this area concerning abstraction refinement. We are only aware of [21, 20] where
models of a 3-valued logics representing pointer structures are refined in the
framework of shape analysis [27] by generating new instrumentation relations.

Here we are working in a different framework where we are using graph
transformation systems (gts)—instead of 3-valued logics—in order to repre-
sent and transform graph structures. Graph transformation systems (gtss) are
an expressive and useful specification formalism, allowing to describe dynamic
properties of concurrent and distributed systems [26, 14]. They can be used to
model systems such as pointer structures [25], object-oriented languages [11, 29]
and mobile processes [22, 15].

In this paper the technique of counterexample-guided abstraction refinement
is applied to the verification of graph transformation systems. Our approach is
based on a (partial order) technique that approximates gtss by Petri nets via
an unfolding construction [3, 6]. More specifically, in this approach a finite over-
approximation called Petri graph is constructed, which consists of a graph and a
Petri net having the edges of the graph as places. The important property of the
approximation obtained in this way is that each graph reachable from the start
graph in the gts can be mapped, by merging some of its nodes, to a reachable
marking of the over-approximating Petri net. On the other hand there may be
some markings reachable in the obtained Petri graph, which have no counterpart
in the original gts. The sequence of events in the approximation leading to such
a graph is called a spurious run.

In our case spurious runs are caused by the merging of graph nodes in the
construction of the over-approximation. This is similar to the concept of sum-
mary nodes in shape analysis [27]. This paper describes how to construct a more
exact over-approximation by separating merged nodes for which these spurious
runs disappear. This procedure can be performed repeatedly for any number of
spurious runs.

We believe that the technique of identifying the reason for the spurious run
is independent of the abstraction mechanism used in this paper and could also
be used in other frameworks dealing with approximations of graph structures.

The techniques presented here are implemented as an extension of the tool
Augur1. The experimental part of the paper compares this approach with an
already existing abstraction refinement technique which reduces the number of
spurious examples by constructing an over-approximation which is exact up to
some pre-defined depth [5]. It is shown experimentally that counterexample-
guided abstraction refinement is faster and produces smaller Petri graphs.

2 Basic Notions

In this section we describe the notions of hypergraph, gts, Petri net and Petri
graph and also show in an informal way how to construct over-approximating
Petri graphs.

1 Available from http://www.fmi.uni-stuttgart.de/szs/tools/augur/

2

For a set A we denote by A∗ the set of strings over A and for a function
f : A→ B we denote by f∗ : A∗ → B∗ its extension to strings.

We will in the following work with hypergraphs (also called graphs), a gen-
eralization of directed graphs, which are often more convenient for modelling.

Definition 1 (hypergraphs and hypergraph morphisms). Let Λ be a set
of labels where each label l ∈ Λ has an arity ar(l) ∈ N. A labelled hypergraph
G is a tuple (VG, EG, cG, lG), where VG is a finite set of nodes, EG is a finite
set of edges, cG : EG → V ∗

G is a connection function and lG : EG → Λ is the
labeling function satisfying ar(lG(e)) = |cG(e)| for every e ∈ EG. The nodes are
not labelled.

Let G and G′ be two labelled hypergraphs. A hypergraph morphism (or simply
morphism) ϕ : G1 → G2 consists of a pair of total functions ϕV : VG1

→ VG2

and ϕE : EG1
→ EG2

such that for every e ∈ EG1
it holds that lG1

(e) =
lG2

(ϕE(e)) and ϕ∗
V (cG1

(e)) = cG2
(ϕE(e)). A morphism is called edge-bijective

(edge-injective) whenever it is bijective (injective) on edges. It is an isomorphism
whenever it is bijective on nodes and edges.

Usually we are interested only in the structure of graphs, i.e., in graphs up
to isomorphism. Furthermore we will in the following also abstract from isolated
nodes, i.e., nodes not connected to any edge.

Hypergraphs can be rewritten using rules of the following kind.2

Definition 2 (rewriting rule). A rewriting rule r is a triple (L,R, α), where
L and R are hypergraphs, called left-hand side and right-hand side respectively
and α : VL → VR is an injective mapping, indicating how nodes are preserved.

We demand that there are no isolated nodes in the left-hand side L and no
isolated nodes in VR − α(VL). Additionally EL must not be empty.

The first condition says that we abstract from isolated nodes, whereas the
second is a standard requirement for unfolding-based techniques, where every
rule must be consuming. Note furthermore that we do not consider rules that
preserve edges of the left-hand side.

For convenience we will in the following often assume that α is an inclusion
denoted by id, which can be enforced by renaming the nodes of the left or right-
hand side appropriately, and that the node and edge sets of L and R are disjoint
otherwise. That is, we demand that VL ⊆ VR and EL ∩ ER = ∅ which implies
that the union L ∪R is well-defined.

Given a hypergraph, a rewriting rule and a match of the left-hand side, we
can apply this rule and replace the left-hand side by the right-hand side in the
following way. Additionally we define a partial morphism ν from the original
graph to the rewritten graph, keeping track of preserved nodes and edges.

2 Although our rewriting rules can be seen within the framework of the DPO approach
[12], we are using simpler rules with only discrete interfaces, where additionally the
deletion of nodes is forbidden.

3

Definition 3 (rewriting step). Let r = (L,R, id) be a rewriting rule. A match
of r in a hypergraph G is any morphism ϕ : L → G injective on edges. We
can apply r to G according to the match ϕ and obtain a new graph H, written
G⇒r H, which is defined as follows:

VH = VG] (VR − VL) EH = (EG − ϕ(EL))] ER

and, defining ϕ:VR → VH by ϕ(v) = ϕ(v) if v ∈ VL and ϕ(v) = v otherwise, the
connection and labelling functions are given by

e ∈ EG − ϕ(EL) ⇒ cH(e) = cG(e), lH(e) = lG(e)

e ∈ ER ⇒ cH(e) = ϕ∗(cR(e)), lH(e) = lR(e)

We also define an injective partial morphism ν : G→ H where νV : VG → VH
and νE : (EG − ϕ(EL)) → EH with ν(x) = x for every node or edge x.

We are now ready to define the notion of graph transformation system.

Definition 4 (graph transformation system). A graph transformation sys-
tem (gts) G = (R, G0) is a finite set of rules together with a start hypergraph
(also called initial graph).

Example: We illustrate the definitions of this chapter with an example describing
a firewall system similar to the one introduced in [4]. This system contains an
(arbitrarily large) set of processes running behind a firewall (safe processes) and
one process in a public area (unsafe process). Any number of safe processes (SP)
and connected locations (L) can be generated during runtime. The property to
verify is that the unsafe process from the public area does not penetrate the
firewall. If this situation is detected, rule “Error” will be applied and an edge
labelled Error is created.

Fig. 1 and Table 1 depict the initial graph3 and the rules of the firewall
system. A double-headed arrow in a rule means that the rule can be applied
in both directions. Numbers close to the nodes indicate the mapping α. The
private and public areas are connected by the firewall (F), and initially there
is one unsafe processes (UP) in the public area. Only safe processes will be
generated and the firewall can be crossed in one direction only. Our aim is to
show that no reachable graph contains the 0-ary edge Error .

L F L

UP

v1 w1 w2 v2

Fig. 1. Initial graph of the firewall system.

3 The nodes of the graph are supplied with identities v1, v2, w1, w2. They will be
needed later in order to refer to these nodes.

4

Create Process Cross Location

1 2 1 2
L

SP

L
1 2 1 2

L L

SP/UPSP/UP

Cross Connection Cross Firewall

1 2 1 2
C

SP/UP

C

SP/UP

1 2 1 2

SP/UP

F F

SP/UP

Create Connected Location Error

1 2

1 2

L C

L

L

1 2

1 2

UP

UP
F

F

Error

Table 1. Rules of the firewall system.

In order to approximate gtss we will employ Petri nets, which, as multi-
set rewriting systems, can be seen as a special case of graph rewriting. Petri
nets are an easier model than gts and hence more amenable to analysis, sev-
eral algorithms and tools are available for their verification. Furthermore, by
approximating with Petri nets we will be able to preserve nice properties of
the gts model, such as locality (state changes are only described locally) and
concurrency (no unnecessary interleaving of events) in the approximation.

In order to introduce Petri nets, we need the following notation: By A⊕

we denote a multiset over A and for a function f : A → B we denote by
f⊕ : A⊕ → B⊕ its extension to multisets. Furthermore for m ∈ A⊕ and a ∈ A
we denote by m(a) the multiplicity of a in m.

Definition 5 (Petri net). Let ∆ be a finite set of labels. A ∆-labelled Petri
net is a tuple N = (S, T, •(), ()•, p), where S is the set of places, T is a set of
transitions, •(), ()• : T → S⊕ assign to each transition its pre-set and post-set
and p : T → ∆ assigns a label to each transition. A marked Petri net is a pair
(N,mN), where N is a Petri net and mN ∈ S⊕ is the initial marking.

3 Approximated Unfolding

In this section we will give a short overview of a technique that approximates
a graph transformation system by a structure that is both a Petri net and a
hypergraph [3–6].

First we define the notion of Petri graph which will be used to represent an
over-approximation for a given gts. Note that the edges of the graph are at the
same time the places of the net and that the transitions are labelled with rules
of the gts.

5

Definition 6 (Petri graph). Let G = (R, G0) be a gts. A Petri graph (over
R) is a tuple P = (G,N, µ), where G is a hypergraph, N = (EG, TN ,

•(), ()•, pN)
is an R-labelled Petri net where the places are the edges of G and µ associates
to each transition t ∈ TN , with pN (t) = (L,R, id), a hypergraph morphism
µ(t) : L ∪R→ G such that •t = µ(t)⊕(EL) and t• = µ(t)⊕(ER).

A Petri graph for the gts G is a pair (P, ι), where P = (G,N, µ) is a Petri
graph over R and ι : G0 → G is a graph morphism. A marking is reachable
(coverable) in Petri graph if it is reachable (coverable) in the underlying Petri
net with the multiset ι⊕(EG0

) as the initial marking.

We view Petri graphs as symbolic representations of transition systems with
graphs as states. Specifically each marking m of a Petri graph can be seen as
representation of a graph, denoted by graph(m), according to the following defi-
nition. We take the marked subgraph of G and duplicate each edge as indicated
by the marking.

Definition 7 (graph generated by a marking). Let P = (G,N,m0) be a
Petri graph and let m ∈ E⊕

G be a marking of N . The graph generated by m,
denoted by graphG(m) or graph(m), is the graph H defined as follows: VH =
{v ∈ VG | ∃e ∈ m∃ i : (cG)i(e) = v}, EH = {(e, i) | e ∈ m ∧ 1 ≤ i ≤ m(e)},
sH((e, i)) = sG(e), tH((e, i)) = tG(e) and lH((e, i)) = lG(e). (Note that by
(cG)i(e) we denote the i-the node in the sequence cG(e).)

Alternatively one can define graph(m) as the unique graph H, up to isomor-
phism, such thatH has no isolated nodes and there exists a morphism ψ : H → G
injective on nodes with ψ⊕(EH) = m. Furthermore, whenever there exists a mor-
phism ϕ : G′ → G such that ϕ⊕(EG′) ≤ m, then there exists an edge-injective
morphism em,ϕ:G′ → graph(m) such that ψ ◦ em,ϕ = ϕ. This morphism em,ϕ
will be used later in the paper.

This morphism em,ϕ is not unique, since we may have several parallel edges
from which an image can be chosen, but the resulting diagram consisting of
em,ϕ, ϕ, ψ is unique up to isomorphism.

In order to obtain a Petri graph approximating a gts, we first need—as
building blocks—Petri graphs that describe the effect of a single rule.

Definition 8 (Petri graph for a rewriting rule). Let r = (L,R, id) be a
rewriting rule. By P (t, r) = (G,N, µ) we denote a Petri graph with G = L∪R and
N is a net with places SN = EL ∪ER and one transition t such that pN (t) = r,
•t = EL and t• = ER. Furthermore the morphism µ(t):L∪R→ G is the identity.

Given a gts G = (R, G0) one can construct an over-approximating Petri
graph CG (also called the covering of G), using the following algorithm (see
[3]). It starts with a Petri graph P0 that consists only of the start graph and
computes CG iteratively. It is based on an unfolding technique which is combined
with over-approximating folding steps which guarantee a finite approximation.

6

Algorithm 9 (approximated unfolding) We set P0 = (G0, N0,m0), where
N0 contains no transitions, m0 = EG0

and let ι0:G0 → G0 be the identity. As
long as one of the following steps is applicable, transform Pi into Pi+1 accord-
ing to the possibilities given below (where folding steps take precedence over
unfolding steps).

Unfolding: Find a rule r = (L,R, id) ∈ R and a match ϕ : L→ Gi that has not
yet been unfolded. Then choose a new transition t and extend Pi by attaching
P (t, r), i.e., take the disjoint union of both Petri graphs and factor through the
equivalence ≡ generated by e ≡ ϕ(e) for every e ∈ EL.

Folding: Find a rule r = (L,R, id) ∈ R and two matches ϕ,ϕ′ : L → Gi
such that ϕ⊕(EL) and ϕ′⊕(EL) are coverable in Ni and the second match is
causally dependent on the transition unfolding the first match. Then merge the
two matches by setting ϕ(e) ≡ ϕ′(e) for each e ∈ EL and factoring through the
resulting equivalence relation ≡.

If neither possibility applies the Petri graph Pi obtained in the last step is
returned. The result is denoted by CG . In [3] it has been shown that the algorithm
always terminates with a result unique up to isomorphism.

Example: We illustrate the algorithm using the rules of the firewall example
(see Table 1) by starting with an initial graph consisting of a single binary edge
labelled L. Table 2 shows the Petri graphs obtained after the first two steps of
Algorithm 9. In the first step the edge labelled L is unfolded using rule “Create
Process” and in the second step the two L-labelled edges are merged since they
are causally dependent on each other and are both matches of rule “Create
Process”. Note that transitions modelling the consumption and production of
tokens can be seen as specifying the deletion and creation of edges.

initial graph (1) unfolding step (2) folding step

L

Create
Process

SP L

L

Create
Process

L

SP

Table 2. The first two steps of the unfolding algorithm for the firewall example (with
a modified initial graph).

In our running example, the constructed over-approximation consists of the
hypergraph in Fig. 2 and the Petri net in Fig. 3. (Ignore the two highlighted
transitions for the moment.) Note that the set of edges of the graph corresponds
exactly to the set of places of the net (the correspondence is indicated by giving

7

indices to the labels). Furthermore the graph generated by the initial marking
is given on the left-hand side of Fig. 4.

C

F

Error

L

SP2

UP2

SP1

UP1

w1,2
v1,2

Fig. 2. Hypergraph component of the approximating Petri graph (firewall example).

Error

Location
Create

Cross
Location

Create
Process

Connection

Cross
Location

Cross Location

Cross Firewall

Cross
Firewall

Cross
Location

Cross
Location

Create

Error
L

SP1

UP2

C UP1

F SP2

Fig. 3. Petri net component of the approximating Petri graph (firewall example).

Before we can show in what way Petri graphs can be considered as abstrac-
tions of gtss and before we discuss how they can be analyzed, we first need the
definition of an abstract run of a gts and a notion of correspondence of two
abstract runs. Then we can define how Petri graphs can be seen as abstractions
of gtss.

Definition 10 (Abstract run). An abstract run of a gts (R, G0) is a se-
quence of hypergraphs J = (J0 Vr1 J1 Vr2 . . . Vrn

Jn), where ri is a rule
name, together with morphisms ϕi : Li+1 → Ji for each i = 1, . . . , n−1, where
Li is the left-hand side of rule ri ∈ R.

Note that we do not demand that Ji can be derived from Ji−1 by applying
rule ri at match ϕi. If this is the case J will be called a real run and we will
also use the symbol ⇒ instead of V.

8

F

UP2

w1,2 v1,2

UP2

FF

v1,2w1,2v1,2 w1,2

Error

L

L

L

L

L

L

UP1

Fig. 4. Left: Graph graph(m0) generated by the initial marking. Middle: graph(m1),
where m0[“Cross Location”〉m1. Right: graph(m2), where m1[“Error”〉m2. (See also
the highlighted transitions in Fig. 3)

Let J ′ = (J ′
0 Vr1 J

′
1 Vr2 . . . Vrn

J ′
n) be another abstract run with mor-

phisms ϕ′
i:Li+1 → J ′

i for each i = 1, . . . , n−1. We say that J ′ weakly cor-
responds to J (in symbols J ′ � J) if there exist edge-bijective morphisms
ξi : J ′

i → Ji for i = 0, . . . , n. If furthermore the following diagram commutes for
i = 0, . . . , n− 1 we say that J ′ corresponds to J and write J ′

≪ J .

Li+1
ϕ′

i
//

ϕi

77J ′
i

ξi
// Ji

Petri graphs can, as mentioned above, be seen as symbolic representations of
graph transition systems and also as representations of sets of abstract runs.

Definition 11 (Abstract runs of a Petri graph). Let (P, ι) with P =
(G,N, µ) be a Petri graph for a gts (R, G0). Furthermore let m0[t1〉 . . . [tn〉mn

be a firing sequence of the net N and let ri = pN (ti) be the rules corresponding to
the transitions. We define morphisms ϕi = emi,µ(ti+1)|Li+1

: Li+1 → graph(mi),

where Li+1 is the left-hand side of rule ri+1. The sequence graph(m0) Vr1

graph(m1) Vr2 . . . Vrn
graph(mn) together with the morphisms ϕi is an ab-

stract run. We denote by RunA(P, ι) the set of all abstract runs of the Petri
graph (P, ι).

Each real run Jr = (G0 ⇒r1 G1 ⇒r2 . . .⇒rn
Gn) of the gts (R, G0) can be

considered as an abstract run where the ϕi : Li+1 → Gi represent the matches
of the left-hand sides of the rules ri.

Proposition 1. Let CG be an over-approximation for a gts G computed by
Algorithm 9. Then, for every real run Jr of the graph transformation system
there exists an abstract run J ∈ RunA(CG) such that Jr corresponds to J , i.e.,
Jr ≪ J .

An abstract run J for which there does not exist a real run corresponding
to J is called spurious. If, at the same time, it violates the property we attempt
to verify, it is called a counterexample or error trace.

We can now verify the gts by analyzing the Petri graph underlying the Petri
net. For instance, in order to show that no reachable graph contains a subgraph

9

Gs we add a new rule to the gts with Gs as left-hand side and an edge with a
new label Error in the right-hand side (see rule “Error” in Table 1). If we can
show that either no place labelled Error exists in the net or every such place
is not coverable (this can be done using coverability graphs [17] or backward
reachability algorithms [1]), then we can deduce that this property holds.

However, if the approximation is too coarse, we might not be able to verify
the property. The approximated unfolding can then be refined by forbidding
certain folding steps. In the extension described in [5] we forbid to merge items
in the unfolding the depth of which is smaller than some fixed constant k. This
eliminates all spurious runs of length smaller than k and gives us a sequence
of better and better approximations (called k-coverings) which, in the limit,
converge to the full unfolding which is obtained by unfolding without folding
and which is in general infinite. However this kind of refinement of the approx-
imation does not take into account the property which should be checked and
the subsequently better approximations grow in size fairly rapidly. Therefore we
will now show how to successfully apply the technique of counterexample-guided
abstraction refinement in our framework.

4 Abstraction Refinement

In order to eliminate spurious runs, we will show that they are always caused
by the fact that certain nodes were merged. We will identify these nodes and
show how to avoid their being merged in the next iteration, thereby avoiding
this particular spurious run and all other abstract runs corresponding to it in
a sense made precise later. Merging of nodes is harmful since it might produce
new left-hand sides, thereby leading to additional rewriting steps. On the other
hand, merging of edges is harmless as long as it does not cause the merging of
nodes, since we count multiplicities of edges using tokens and so no information
can be lost in this way.

4.1 Spurious Runs

For a given abstract run J = (graph(m0) Vr1 graph(m1) Vr2 . . . Vrn

graph(mn)) of the Petri graph with morphisms ϕi : Li+1 → graph(mi) we define
H to be the set of real runs corresponding to the prefixes of J . Furthermore let
Hi be the set of hypergraphs reachable after i steps in a real run Jr ∈ H. It
holds that H0 = {G0}.

An abstract run J is spurious if Hn = ∅. If the run is spurious, there exists
a k such that Hk 6= ∅, but Hk+1 = ∅ (and therefore also Hl = ∅ for l > k). It will
be shown in the following how to construct a new refined over-approximation
C′
G , which does not contain J and some other spurious runs corresponding to J .

Example: We illustrate the idea of a spurious abstract run with the run cor-
responding to the firing of the highlighted transitions “Cross Location” and
“Error” in Fig. 3. We obtain markings m1, m2 and two graphs graph(m1),

10

graph(m2) generated by these markings (see Fig. 4). One can see that—due
to over-approximation and the presence of the “looping firewall”—the unsafe
process is now located in front of and behind the firewall at the same time in
graph graph(m1). This is the reason why the second transition “Error” can be
applied in the over-approximation while this is not possible in the gts. Hence
the run is spurious and no real run corresponds to it.

4.2 Relations on Nodes for Refining Abstract Runs

According to Algorithm 9 and Definitions 7 and 10 it holds that Hk 6= ∅ and
Hk+1 = ∅ if and only if for each G ∈ Hk there exists no edge-injective morphism
η : Lk+1 → G such that the following diagram commutes, where ξk is an edge-
bijective morphism derived from the correspondence property (see Definition 10).
In other words: there is no way to find a match of the left-hand side in G that
agrees with the abstract run.

Lk+1
η

//

ϕk

33
G

ξk
// graph(mk)

For if there were such a match morphism η, we could rewrite G to G′ with
rule rk+1 corresponding to the transition transforming mk to mk+1. Because of
the construction of the Petri graph, where the right-hand side of ri+1 has been
attached during an unfolding step, we would then be able to find an edge-bijective
morphism ξk+1:G

′ → graph(mk+1) thus continuing the correspondence.
Such a situation is only possible if ξk is non-injective on some nodes of G,

i.e., these nodes were merged during construction of the over-approximation CG ,
which is the reason for the spurious run.

Example: In our running example the nodes v1 and v2 as well as w1 and w2 of
the initial hypergraph have been merged by the over-approximation, becoming
v1,2 and w1,2 (see Fig. 1 and 2). This led to the spurious abstract run depicted
in Figure 4, which was obtained by firing the transitions “Cross Location” and
“Error” of the Petri net in Fig. 3.

Fig. 5 shows this abstract run, together with the left-hand sides of the rules,
the real graphs contained in H and the corresponding morphisms. Note that
H2 = ∅, which corresponds to the fact that the run is spurious. Specifically
there exists no morphism L2 → G1 that makes the diagram commute.

We will now show how to determine the node merges which caused the spuri-
ous run. Consider, for a fixed graph G and a morphism ξk, the set Θ of possible
equivalence relations ∼ on nodes of a graph G ∈ Hk such that, after merging
the nodes in each equivalence class, we can find an appropriate match of the
left-hand side Lk+1 in the graph G/∼. More formally, we demand the existence
of an edge-injective morphism η′ : Lk+1 → G/∼ such that the following diagram
commutes, where ξ′k : G/∼ → graph(mk) is obtained by quotienting ξk according
to ∼.

11

L

UP

L

L

UP

L L

UP

F

F

F

F

UP

UP

L

L

L L

UP

F

initial graph G0
”real graph” G1

”Error”, L2

graph(m1)

ϕ2ϕ1

”Cross Location”

”Cross Location” ”Error”

”Error”

”Cross Location”, L1

graph(m0)

ξ1
ξ2

η1

Fig. 5. Abstract run J = graph(m0) Vr1
graph(m1) Vr2

graph(m2), real run G0 ⇒r1

G1 and the corresponding morphisms.

Lk+1
η′

//

ϕk

33
G/∼

ξ′k
// graph(mk)

In order to characterize the smallest equivalence in Θ consider a node v of the
left-hand side and determine a set Qv of nodes in G which have to be fused into
one node which is the image of v under η′. Let v ∈ VLk+1

and let e be an edge
of Lk+1 with ci(e) = v for some i. For every edge e′ in G with ξk(e

′) = ϕk(e) we
require that ci(e

′) ∈ Qv.

Consider the relation Q, where for each v ∈ VLk+1
all nodes in Qv are related

and the relation Q̂ which is the smallest equivalence containing Q.

Proposition 2. The equivalence Q̂ constructed above is the smallest equivalence
contained in Θ.

Proof. First note that the set Qv can also be defined as follows:

Qv = {ci(ξ
−1
k (ϕk(e))) | e ∈ ELk+1

, v = ci(e)}.

Let Q̂v be the equivalence class in Q̂ containing Qv. Note that for each
v1, v2 ∈ L: Q̂v1 ∩ Q̂v2 = ∅ or Q̂v1 = Q̂v2 .

12

We assume that there is a morphism µ:G → G/Q̂ mapping every edge to

itself and every node w ∈ G to the equivalence class Q̂v, where w ∈ Q̂v. Fur-
thermore there is a morphism ξ′k:G/Q̂ → graph(mk) mapping every edge e to

ξk(µ
−1(e)) and every node Q̂v to ξk(w) where w ∈ Qv. This is well-defined since

w1 Qw2 implies ξk(w1) = ξk(w2) and Q̂ is a transitive closure of Q. Therefore

w1 Q̂w2 implies ξk(w1) = ξk(w2).

Now let us define a morphism η′:Lk+1 → G/Q̂ and show that it is a hyper-

graph morphism. Set η′(v) = Q̂v for each v ∈ VL and η′(e) = ξ−1
k (ϕk(e)) for

each e ∈ EL. Since ϕk is injective on edges and ξk is bijective on edges, η′ is also
injective on edges. In order to show that η′ is a morphism we have to prove that
η′(ci(e)) = ci(η

′(e)). Let v = ci(e). We have η′(ci(e)) = η′(v) = Q̂v. On the other

hand ci(η
′(e)) = ci(ξ

′−1
k (ϕk(e))) = ci(µ(ξ−1

k (ϕk(e)))) = µ(ci(ξ
−1
k (ϕk(e)))) = Q̂v,

since ci(ξ
−1
k (ϕk(e))) ∈ Qv.

We now have the following situation:

Lk+1
η′

//

ϕk

++

G/Q̂
ξ′k

// graph(mk)

G

µ

OO

ξk

99
s

s
s

s
s

s
s

s
s

s
s

Next we show that the diagram above commutes, i.e., ξ ′k ◦η
′ = ϕk. By definition

it commutes on edges. For nodes we show that ξ′k(Q̂v) = ϕk(v) for each v ∈
VL. Let w ∈ Qv. According to the definition w = ci(ξ

−1
k (ϕk(e))) for an edge

e and an index i where ci(e) = v. We have ξ′k(η
′(v)) = ξ′k(Q̂v) = ξk(w) =

ξk(ci(ξ
−1
k (ϕk(e)))) = ϕk(ci(e)) = ϕk(v)

We have proved that Q̂ ∈ Θ. Now we show that Q̂ is the smallest equivalence
relation in Θ. Let Q̃ be another equivalence relation from Θ where η̃:Lk+1 →

G/Q̃, µ̃:G → G/Q̃ and ξ̃k:G/Q̃ → graph(mk) such that ξ̃k ◦ η̃ = ϕk and
ξ̃k ◦ µ̃ = ξk.

Let w1 Qw2 where w1, w2 ∈ VG and w1 6= w2. That means that there are
edges e1, e2 ∈ EL and indexes j1, j2 such that wi = cji(ξ

−1
k (ϕk(ei))) and there

exists a node v ∈ VL such that cji(ei) = v for i = 1, 2. It holds that

µ̃(wi) = µ̃(cji(ξ
−1
k (ϕk(ei)))) = cji(µ̃(ξ−1

k (ϕk(ei)))) = cji(ξ̃
−1
k (ϕk(ei)))

= cji(η̃(ei)) = η̃(cji(ei)) = η̃(v)

Note that ξ̂−1
k (ϕk(ei)) = η̂(ei) only holds since η̂, ϕk are injective on edges and

ξ̂−1
k is bijective on edges.

Hence we have µ̃(w1) = µ̃(w2) and w1, w2 must be in the same equivalence

class according to Q̃. This means Q ⊆ Q̃. As we know Q̂ is the the smallest
equivalence relation containing Q. Therefore Q̂ ⊆ Q̃. ut

Example: We consider again the abstract error trace J which can be obtained
by firing transitions “Cross Location” and “Error”. However, this error trace has

13

no real runs that correspond to it, which can be seen by computing the set H
of runs corresponding to prefixes of J . Here, the set H0 consists of the initial
hypergraph and the set H1 contains one graph G1. The next rule “Error” cannot
be applied to G1 in such a way that the corresponding diagram commutes and
therefore the set H2 is empty.

Fig. 6 shows the left-hand side of rule “Error”, G1 ∈ H1 and graph(m1),
the graph corresponding to the marking reached after one step (see also Fig.4
and Fig. 5). One notices that no appropriate morphism η can be found unless
the nodes w1 and w2 in G1 are merged. Therefore we have Qw′

1
= {w1, w2},

Qw′

2
= {w2} and the smallest equivalence relation Q̂ relates the nodes w1 and

w2 and no other nodes. Note for instance that w2 must be contained in Qw′

1

since both are attached to the unary edge labelled UP .

L L

UP

F
v1 w1 w2 v2

UP

F
w′

1 w′
2

L

L

UP

F

v1,2w1,2

η

ϕ

ξ

graph(m1) (graph generated by m1)
L2

left-hand side of rule “Error” “real graph” G1

Fig. 6. Hypergraphs G1 ∈ H1, L2 and graph(m1) from the firewall example.

4.3 Elimination of Spurious Runs

The general idea for destroying spurious runs is to avoid the merging of nodes
from the same equivalence class of Q̂. For this reason we assign colours to the
nodes of the graphs contained in H and disallow the merging of nodes cor-
responding to nodes with the same colour. For reasons that will become clear
below a node may have several colours, i.e., a node v is associated to a set cols(v)
of colours.

For each G ∈ Hk and each morphism ξk : G → graph(mk) we consider
the corresponding relation QG,ξk

. Then we assign colours to nodes in such a
way that there exists at least one pair v1, v2 of nodes such that v1 QG,ξk

v2 and
cols(v1) ∩ cols(v2) 6= ∅. There are several ways to do this and all of them will
help to eliminate the counterexample. In our implementation we choose a color
for each set of nodes Qv and assign it to all nodes contained in Qv.

In order to catch “bad” mergings as early as possible, these colours have to
be distributed to the remaining graphs contained in H. Let us recall here that
according to Definition 3 for each real run Jr = (G0 ⇒r1 G1 . . . ⇒rk

Gk) from
H we have injective partial morphisms νi : Gi → Gi+1 for i = 0, . . . , k−1. Using
these partial morphisms we assign the colours of Gk to the remaining graphs Gi
contained in H. We start from Gk and proceed as follows: if a node v ∈ Gi+1 has

14

a colour then we also assign this colour to the node ν−1(v) if such a node exists.
In this way a node may obtain several colours, due to the branching structure
of the runs contained in H. We denote by cols(v) the set of colours of the node
v ∈ VGj

where Gj ∈ Hj .
We are now ready to present the algorithm for computing the refined over-

approximation.

Algorithm 12 (Refined approximated unfolding)

Input: A gts G, a set H of runs corresponding to prefixes of the counterexample
and a function cols assigning sets of colours to the nodes of the graphs in H.

Output: The refined over-approximation C ′
G .

We start constructing the new over-approximation C ′
G with the initial graph

G0. Unfolding steps will be performed as described in Algorithm 9.
For a folding step we disallow the merging of nodes corresponding to nodes in

H having the same colour. More specifically, consider the over-approximation C ′
G ,

which is currently being constructed. Now for each run Jr = G0 Vr1 . . . Vr`
G`

in H where ` < k check the following:

We consider all abstract runs J = graph(m0) Vr1 . . . Vr`
graph(m`) of the

current Petri graph C′
G for which Jr � J and all edge-bijective morphisms

ξ:Gi → graph(mi) for i = 0, . . . , `. Whenever there are two nodes v1, v2 in Gi
with cols(v1) ∩ cols(v2) 6= ∅ and ξ(v1) = ξ(v2), we have erroneously merged two
nodes in the approximation which should not have been merged. Consequently
this folding step is undone.

Previously rejected folding steps are recorded and are not any more consid-
ered by the algorithm.

In this way we will eliminate not only the spurious run but several more runs
which are characterized below (see Proposition 5).

Before continuing with the running example, the following two remarks are
in order: First note that the check in Algorithm 12 which is performed for each
folding step can be done in an efficient way by following the branching structure
of the runs instead of enumerating all runs. Second, refining the abstraction
directly without constructing it again from scratch as we have done, is a non-
trivial undertaking since Petri graphs are very compact descriptions of the state
space in which states can not be easily separated. Doing this in an efficient way
is a direction of future work.

Example: Fig. 7 depicts the hypergraph obtained for the firewall example after
the abstraction refinement procedure. As one can see, the “critical nodes” of the
hypergraph, namely the nodes w1 and w2, are now separated.

4.4 Correctness

In the following we will show that Algorithm 12 terminates and that the refined
over-approximation is correct and more exact than the previous one.

15

L

C
SP

SP
UP

UP SP

L

SP

C

F
w1 w2

v1 v2

Fig. 7. Hypergraph obtained after abstraction refinement.

Let CG be an over-approximation with a spurious run J and let C ′
G be the

corresponding refined over-approximation. In [3] it is shown that the algorithm
constructing the over-approximating Petri graph terminates. We modified the
algorithm by forbidding some of the folding steps and hence we have to reprove
termination for the new version of the algorithm.

Proposition 3. The algorithm computing the refined over-approximation C ′
G for

a given gts G and a (spurious) abstract run J of CG terminates.

Proof (Sketch). By a slight modification of the termination proof for the approx-
imated unfolding algorithm in [5]. ut

Furthermore the new over-approximation is still a valid over-approximation
as before.

Proposition 4. Let C ′
G be the refined over-approximation of the gts. Then, for

every real run Jr of the graph transformation system there exists an abstract run
J ∈ RunA(C′

G) such that Jr corresponds to J , i.e., Jr ≪ J .

Proof. This follows directly from the construction of the over-approximation,
since the construction starts with the initial graph and every coverable left-hand
side is unfolded at some point. ut

In the following two propositions we will show that we have eliminated the
given spurious counterexample and have not added any new ones. First we should
answer the following question: what kind of runs have we eliminated by abstrac-
tion refinement? It is easy to see that in the refined over-approximation we have
lost the initial spurious counter-example J . In fact we have not only eliminated
J , but some more runs as described below.

Definition 13 (Correspondence with respect to runs). Let (P, ι) and
(P ′, ι′) be two Petri graphs for a gts (R, G0). Furthermore let J ∈ RunA(P, ι)
and J ′ ∈ RunA(P ′, ι′) be two abstract runs of these Petri graphs and let H be
the set of real runs considered earlier. We say that J ′ corresponds to J with re-
spect to H if J ′ corresponds to J and a run J ′′ ∈ H of maximal length weakly
corresponds to a prefix of J ′, i.e., J ′

≪ J and J ′′ � pr |J ′′|(J
′) for some

J ′′ ∈ H. (By pr `(J) we denote the prefix of length ` of a run J .)

Using this definition we can now state and prove the following propositions.

16

Proposition 5. The refined over-approximation C ′
G, constructed above does not

contain any run J ′ corresponding to the spurious run J of CG with respect to
H.

Proof. Let us consider a respect to H and let k be the maximal index such that
Hk is not empty.

We consider the following diagram where Lk+1 is the left-hand side of the
rule rk+1 and Gk ∈ Hk is a reachable hypergraph from a maximal run J ′′ weakly
corresponding to a prefix of J ′ (J ′′ � pr |J ′′|(J

′)).

Lk+1
ϕ′

k

//

ϕk

,,

graph(m′
k) ξ

// graph(mk)

Gk

ψ′

OO

ψ

77
p

p
p

p
p

p
p

p
p

p
p

p

The existence of ψ′
k is implied by the weak correspondence J ′′ � pr |J ′′|(J

′).
The sub-diagram {Lk+1, graph(m′

k), graph(mk)} is taken from the condition
J ′

≪ J . We define ψ = ξ ◦ ψ′. This means that the sub-diagram {Gk,
graph(m′

k), graph(mk)} commutes.
The morphism ψ′ is edge-bijective. This implies that graph(mk) is isomorphic

to the graph Gk factorized through an equivalence ∼ on nodes. This equivalence
∼ must be an element of the set of equivalences Θ defined in Section 4.2 of
which Q̂Gk,ψ is the smallest element according to Proposition 2. This implies
∼⊇ QGk,ψ and we can conclude that ψ′ maps at least two nodes having the
same colour to the same node.

Hence we have a situation where J ′′ � pr |J ′′|(J
′) and there is a morphism

ψ′ : Gk → graph(m′
k) with ψ′(v1) = ψ′(v2), where v1 6= v2 and cols(v1) ∩

cols(v2) 6= ∅. This is a contradiction, since this situation should have been de-
tected by the abstraction refinement algorithm.

ut

We can also show that no new spurious runs have appeared, which means
that the new approximation is strictly better than the old one.

Proposition 6. If the refined over-approximation C ′
G contains a spurious run

J ′, then it corresponds to some spurious run J in CG.

Proof. This follows from the fact, that from the Petri graph P ′ of the refined
approximation there exists a morphism β : P ′ → P to the original Petri graph
P , which can be shown by induction on the number of steps of the algorithm.
ut

We remark that the considered abstraction refinement approach can also be
implemented in the case of any number of spurious counterexamples as follows:
We store the set H with the internal structure and check the obtained over-
approximation. If again a counterexample is found and it is spurious, then we

17

apply the algorithm above to the new set H′ and the set H, obtained in the
previous step. This procedure can be repeated. Naturally, due to undecidability
and the fact that gtss are in general Turing-complete, there is no guarantee
that it will ever terminate.

In the future we plan to show that whenever a property can be proved by
forbidding folding steps up to a certain depth, then it can also be shown using
counterexample-guided abstraction refinement. However, some care has to be
taken concerning the order in which counterexamples are destroyed and also
concerning the colours which are assigned to nodes. In this way we plan to get
a result which is remotely similar to one presented in [7].

5 Implementation and Experimental Results

In this section we consider examples of gtss and compare the experimental
results obtained by refining the approximation by forbidding folding steps up to
a certain depth (see [5]) and counterexample-guided abstraction refinement as
presented in this paper. It is shown that for practical purposes the new technique
is usually more efficient.

The algorithm was implemented in C++ under Linux and the computer
parameters are 2*Xeon 2.4 GHz, 2 GB RAM. The implementation [18] is still in a
prototype stage with a lot of room for improvement, for instance the detection of
the matches of left-hand sides is currently implemented in a very straightforward
and inefficient way. We are currently working on a new version [19].

Case study 1: The first case study treats the firewall example that we used
as a running example in this paper. The property we want to verify is “an unsafe
process does not penetrate the firewall”.

In order to verify this property we computed the over-approximation CG using
the tool Augur. Counterexamples in the underlying Petri net, i.e., runs which
finally cover the place Error , can be found with an adaptation of the backward
reachability algorithm described in [1]. The experimental results for the two
forms of abstraction refinement that we consider are given in Tables 3 and 4
which show the size (number of nodes, edges and transitions) of the constructed
over-approximation, the runtime and truth values indicating whether the prop-
erties under consideration can be verified. Times for successful verifications are
highlighted by using boldface.

The 0-covering (where all folding steps are allowed) contains a spurious error
trace and the same is true for the 1-covering (where folding of items of depth 0 is
forbidden). In fact one can show that the property cannot be verified with any k-
covering. The reason for this is that new locations of arbitrary depth are created
that are being merged by the approximation, which also holds for locations in
front of and behind the firewalls. In this way processes running at locations
will—in the approximation—“move around” firewalls without actually crossing
them. In the case of counterexample-guided abstraction refinement newly created
locations will be merged with existing locations and this effect does not appear,
which means that the property can be verified.

18

The second version of the firewall example has a different initial graph and
the same rules as the first version. The choice of taking an alternative initial
graph was made in order to show how slight variations can affect the previous
abstraction refinement technique (exact unfolding up to depth k), an effect that
disappears with the method presented here. The initial graph is depicted in Fig. 8
in Appendix A, where the image is automatically generated using the Graphviz
package.

Case study 2: The second case study is called “public/private servers”, the
rules are given in Appendix A. Again the rules are automatically generated by
Augur. In this system any number of public servers and one private server can be
generated. The servers can produce processes (internal processes by the private
and external by the public servers) and arbitrary connections can be created
between them along which processes may move. Furthermore the private server
may at some point decide to transform itself into a public server. We consider
two variants of this system by using two different initial graphs.

The properties we want to verify are:

(NC) No connection will ever be created from a public to a private server (only
connections going in the other direction and connections between public
servers are allowed).

(EP) External processes will never access private servers.

Again we compute the over-approximation CG using Augur and we attempt
to verify both properties at once using two rules (one for each property) gener-
ating the Error -edge (see also the rules in Appendix A, Fig. 9).

The 0-covering contains spurious error runs for both properties (NC) and (EP).
Hence, these properties cannot be verified using this approximation, but they
can be verified using the 1-covering. For the second variant of the “public/private
servers” system the 1-depth approximation is still insufficient. In this case the
properties can only be verified using the 2-covering.

If we compare the results in Tables 3 and 4 it can be seen that in the
case of counterexample-guided abstraction refinement we have an advantage
both in runtime for computing the approximation and in the size of the over-
approximations, which are consequently easier to analyze. The difference is es-
pecially pronounced for versions II, which use larger start graphs.

The efficiency of the abstraction refinement approach can be explained by the
fact that we forbid to merge only those parts of the unfolding which are respon-
sible for the spurious counterexample. This means that the over-approximation
remains rather compact compared to the depth-based (or k-covering) approach,
where we are not allowed to merge all items having depth smaller than k.

Furthermore note that not only the runtime of approximated unfolding is
better in the case of counterexample-guided abstraction refinement, but also
the Petri net tools checking coverability on the net are substantially faster. For
instance in the case study Firewall II our coverability checker (based on backward
reachability) runs for more than one day in the case of the 2-covering.

19

example k (depth) nodes edges transitions time (sec) verified

Public/private servers I 0 1 9 13 0.05 no

Public/private servers I 1 2 19 34 0.72 yes

Public/private servers II 0 1 10 14 0.05 no

Public/private servers II 1 1 11 16 0.07 no

Public/private servers II 2 3 31 63 7.16 yes

Firewall I 0 2 8 13 0.05 no

Firewall I 1 6 25 50 2.4 no

Firewall I 2 10 51 148 138.18 no

Firewall II 0 2 8 13 0.14 no

Firewall II 1 8 39 82 13.7 no

Firewall II 2 14 79 242 858.4 no

Table 3. Verification results (abstraction refinement by forbidding folding steps up to
a certain depth k, i.e., by computing k-coverings).

example nodes edges transitions time (sec) verified

Public/private servers I 2 16 25 0.67 yes

Public/private servers II 2 17 26 0.68 yes

Firewall I 4 11 17 0.16 yes

Firewall II 4 12 18 0.33 yes

Table 4. Verification results (counterexample-guided abstraction refinement).

20

6 Conclusion

In this paper we have shown how counterexample-guided abstraction refinement
can be applied to the analysis of dynamically evolving graphical structures in
a fully automatic way. In this case we are not concerned with the abstraction
of data values, but rather with graphs that are abstracted by merging nodes
and edges, using the concept of graph morphisms. Hence, abstraction refine-
ment can in this case be described by exploiting commutativity or rather non-
commutativity of morphisms as described in Section 4. Also, since we are dealing
with the approximation of graph structures rather than data values, no theorem
prover is needed in order to determine the initial abstraction, instead we use
techniques for approximated unfolding developed in [3].

Apart from smaller case studies we have used our approximated unfolding
technique to verify a mutual exclusion protocol [13] and to verify insertion of
elements into red-black trees [2]. We are currently working on an encoding of
simple pointer programs into graph rewriting which will enable us to directly
verify operations on pointer structures.

Research concerned with the verification of dynamically evolving graph struc-
tures which can be used to model distribution and mobility is fairly recent.
There are contributions coming from the area of dataflow analysis such as shape
analysis [27] as well as work directed more specifically towards the analysis
of graph transformation systems [24, 23, 28, 13, 25]. We believe that introduc-
ing counterexample-based abstraction refinement is an important step in order
to make such verification techniques usable in practice. We also think that some
of the techniques presented here can be employed in fairly general settings.

Compared to shape analysis [27, 21] which is also concerned with over-approx-
imation techniques for graphical structures and which represents these structures
as models of a 3-valued logic, we follow a different approach where graphs are
represented directly and graph morphisms are used as a convenient abstraction
mechanism. Furthermore we approximate with Petri nets, which enable us to talk
about multiplicities of edges and can be conveniently analyzed using a variety
of existing Petri net tool.

Acknowledgments: We would like to thank Tobias Heindel, Paolo Baldan and
Andrea Corradini for many interesting discussions on the topics of this paper.

References

1. P.A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to partial
order reductions in symbolic verification. In Proc. of CAV ’98, pages 379–390.
Springer, 1998. LNCS 1427.

2. P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura. Veri-
fying red-black trees. In Proc. of COSMICAH ’05, 2005. Proceedings available as
report RR-05-04 (Queen Mary, University of London).

3. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In Proc. of CONCUR ’01, pages 381–395. Springer, 2001.
LNCS 2154.

21

4. P. Baldan, A. Corradini, and B. König. Static analysis of distributed systems with
mobility specified by graph grammars - a case study. In Proc. of IDPT ’02. Society
for Design and Process Science, 2002.

5. P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In Proc. of ICGT ’02, pages 14–29. Springer, 2002. LNCS 2505.

6. P. Baldan, B. König, and B. König. A logic for analyzing abstractions of graph
transformation systems. In Proc. of SAS ’03, pages 255–272. Springer, 2003. LNCS
2694.

7. T. Ball, A. Podelski, and S.K. Rajamani. Relative completeness of abstraction
refinement for software model checking. In Proc. of TACAS ’02, pages 158–172.
Springer, 2002. LNCS 2280.

8. T. Ball and S.K. Rajamani. Automatically validating temporal safety properties
of interfaces. In Proc. of SPIN ’01, pages 103–122. Springer, 2001. LNCS 2057.

9. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of
software components in C. In Proc. of ICSE ’03, pages 385–395. IEEE Computer
Society, 2003.

10. E. Clarke, S. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement. In Proc. of CAV ’00, pages 154–169. Springer, 2000. LNCS
1855.

11. A. Corradini, F.L. Dotti, L. Foss, and L. Ribeiro. Translating Java code to
graph transformation systems. In Proc. of ICGT ’04, LNCS 3256, pages 383–398.
Springer, 2004.

12. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation—part I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, Vol.1: Foundations, chapter 3. World Scientific, 1997.

13. F.L. Dotti, L. Foss, L. Ribeiro, and O. Marchi Santos. Verification of distributed
object-based systems. In Proc. of FMOODS ’03, pages 261–275. Springer, 2003.
LNCS 2884.

14. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 3: Concurrency,
Parallelism and Distribution. World Scientific, 1999.

15. F. Gadducci and U. Montanari. A concurrent graph semantics for mobile ambients.
In S. Brookes. and M. Mislove, editors, Proceedings of the 17th MFPS, volume 45
of ENTCS. Elsevier Science, 2001.

16. T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc.
of POPL ’02, pages 58–70. ACM, 2002.

17. R.M. Karp and R.E. Miller. Parallel program schemata. Journal of Computer and
System Sciences, 3(2):147–195, 1969.

18. Barbara König and Vitali Kozioura. Augur—a tool for the analysis of graph
transformation systems. EATCS Bulletin, 87:125–137, November 2005. Appeared
in The Formal Specification Column.

19. Barbara König and Vitali Kozioura. Augur 2—a new version of a tool for the
analysis of graph transformation systems. In Proc. of GT-VMT ’06 (Workshop on
Graph Transformation and Visual Modeling Techniques), 2006. ENTCS. to appear.

20. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement for 3-valued-logic
analysis. Technical Report 1504, Comp. Sci. Dept., Univ. of Wisconsin, 2004.

21. A. Loginov, T. Reps, and M. Sagiv. Abstraction refinement via inductive learning.
In Proc. of CAV ’05, pages 519–533. Springer, 2005. LNCS 3576.

22. U. Montanari and M. Pistore. Concurrent semantics for the π-calculus. Electronic
Notes in Theoretical Computer Science, 1, 1995.

22

23. A. Rensink. Canonical graph shapes. In Proc. of ESOP ’04, pages 401–415.
Springer, 2004. LNCS 2986.

24. A. Rensink. State space abstraction using shape graphs. In Proc. of AVIS ’04,
ENTCS, 2004. to appear.

25. A. Rensink and D. Varró. Model checking graph transformations: A comparison
of two approaches. In Proc. of ICGT ’04, pages 226–241. Springer, 2004. LNCS
3256.

26. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, 1997.

27. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
TOPLAS, 24(3):217–298, 2002.

28. D. Varró. Towards symbolic analysis of visual modeling languages. In Proc. of
GT-VMT ’02, volume 72 of ENTCS. Elsevier, 2002.

29. A. Wagner and M. Gogolla. Defining operational behaviour of object specifications
by attributed graph transformation. Fundamenta Informaticae, 26:407–431, 1996.

A Additional Material for the Case Studies

Here we give some additional material that is needed to fully understand the
case studies treated in Section 5. The figures were generated automatically by
our tool Augur with the help of the Graphviz package.

Figure 8 shows the alternative start graph for the firewall example.

1
3

2

4

5

6

Location
01

Connection

0

1

Location

1

0

Firewall

1

0

Firewall

1

0

Location

1

0

unsafe Process

0

unsafe Process

0

Fig. 8. Initial graph of the Firewall II example

In Fig. 9 we present two versions of the system “Public/Private Servers”,
which are being used as a case study in Section 5 of the paper. Note that the

23

versions I and II have only two differences. First, the second version has a differ-
ent initial graph. Furthermore, the second version has an additional rule (“Create
Private Server”). All other rules are identical for both versions.

24

Initial graph I Initial graph II

Gpub

Sprv

0
Gpub

Gprv

Create Public Server Delete Public Generator

Gpub =⇒ Gpub

Spub

0 Gpub =⇒

Change State Public Server Change State Private Server

1
Spub

0

=⇒
1

Spubc
0 1

Sprv
0

=⇒
1

Sprvc
0

Create Connection Public / Public Create Connection Private / Private

1

2

Spub

0

Spubc

0

=⇒
1

2

Spub

0

Spub0

C

0

1

1

2

Sprv

0

Sprvc

0

=⇒
1

2

Sprv

0

Sprv0

C

0

1

Create Connection Private / Public Create Internal Process

1

2

Sprv

0

Spub

0

=⇒
1

2

Sprv

0

Spub0

C

0

1

1
Sprv

0

=⇒ 1

Sprv

0

Pint

0

Create Internal Process Internal Process Crosses Connection

1
Spub

0

=⇒ 1

Spub

0

Pext

0

1

2

Pint

0

C

0

1

=⇒

1

2

Pint

0

C

0

1

External Process Crosses Connection Private Server to Public Server

1

2

Pext

0

C

0

1

=⇒

1

2

Pext

0

C

0

1 1
Sprv

0

=⇒
1

Spub
0

Error NC Error EP

1

2

Spub

0

Sprv0

C

0

1

=⇒

1

2

Spub 0

Sprv

0

C

0

1

Error

1

Sprv

0

Pext

0

=⇒
1

Sprv

0

Pext

0

Error

Additional Rule II (Create Private Server)

Gprv =⇒ Sprv
0

Fig. 9. Public/Private Servers I and II

25

