Berechnungsverfahren und auf Abtastung basierende Messverfahren zur Bestimmung elektrischer HF-Störfelder und der damit verbundenen Störeinkopplungen in Leitersysteme

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Abhandlung

Vorgelegt von
Lothar Geisbusch
geboren in Sindelfingen

Hauptberichter: Prof. Dr.-Ing. habil. F. M. Landstorfer
Mitberichter: Prof. Dr.-Ing. S. Tenbohlen
Tag der Einreichung: 9. Juni 2005
Tag der mündlichen Prüfung: 20. Dezember 2005

Institut für Hochfrequenztechnik der Universität Stuttgart
2006
Danksagung

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit am Institut für Hochfrequenztechnik der Universität Stuttgart.

Herrn Prof. Dr.-Ing. habil. Friedrich M. Landstorfer
donke ich für die Aufnahme an sein Institut, die Betreuung meiner Arbeit und das sehr gute Institutsklima.

Herrn Prof. Dr.-Ing. Stefan Tenbohlen
donke ich für das Verfassen des Mitberichts.


Herrn Dr. Pascal Leuchtmann danke ich für die Unterstützung bei der Implementierung seiner Linienmultipole.

Mein besonderer Dank gilt den Studenten, die im Rahmen ihrer Studien- und Diplomarbeiten durch ihr Engagement zum Gelingen dieser Arbeit beigetragen haben.

Der Forschungsgemeinschaft Funk e.V. (FGF), der Forschungsvereinigung Automobiltechnik e.V. (FAT) und der Deutschen Forschungsgemeinschaft (DFG) danke ich für die Förderung dieser Arbeit.

Aber nicht zuletzt möchte ich meinen Eltern Irmgard und Hermann Geisbusch danken, die mir das Studium der Elektrotechnik ermöglicht und mich darüber hinaus auch bei der Promotion unterstützt haben.
Inhaltsverzeichnis

Legende xi
Abkürzungen xvi
Zusammenfassung xviii
Abstract xxiv

1 Einleitung 1
1.1 Verbreitung von Funkanwendungen 1
1.2 Störbeeinflussung durch Funkdienste 1
1.3 Störungen und ihre Kopplungswege 2
1.4 Notwendigkeit zur Untersuchung des Störpotentials 3
1.5 Untersuchung von elektromagnetischen Feldverteilungen und Untersuchung ihrer
Einkopplungen in Leitersysteme 4
1.5.1 Herzschrittmacher 4
1.5.2 Kraftfahrzeuge 5

2 Herkömmliche Messverfahren 9
2.1 Messverfahren zur Bestimmung der Feldstärke 9
2.1.1 Antenne mit HF-Leitung als Ableitung 9
2.1.2 Antenne mit hochohmiger Ableitung 9
2.1.3 Feldsensoren mit optischer Ableitung 10
2.2 Messverfahren zur Bestimmung der Störeinkopplung 11
2.2.1 Stromzange 11
2.2.2 Prüf spitze 11
<table>
<thead>
<tr>
<th>3</th>
<th>Neuartiges Messverfahren nach dem Abtast-Prinzip für optisch gekoppelte Spannungs- und Feldsensoren</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Einleitung</td>
<td>13</td>
</tr>
<tr>
<td>3.2</td>
<td>Grundprinzip</td>
<td>15</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Innerer Aufbau des Feldsensors und des Mess-Herzschrittmachers</td>
<td>15</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Gesamtauflauf</td>
<td>16</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Bestimmung von Betrag und Phase anhand der Abtastwerte</td>
<td>17</td>
</tr>
<tr>
<td>3.3</td>
<td>Theoretische Betrachtungen und Konzeptionierung</td>
<td>18</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Spezifikation</td>
<td>18</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Vorbeachtungen zu Abtast-Halteschaltungen</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Anwendungsgebiete von Abtastern</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>Arbeitsprinzip von Abtastern</td>
<td>20</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Abtasteffizienz</td>
<td>20</td>
</tr>
<tr>
<td>3.3.2.4</td>
<td>Abtastung einer kapazitiven Spannungsquelle</td>
<td>21</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Abtastimpulserzeugung</td>
<td>21</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Abtastimpulsbreite</td>
<td>21</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Spannungsrampe zur Erzeugung des Abtastimpulses</td>
<td>22</td>
</tr>
<tr>
<td>3.3.3.3</td>
<td>Erzeugung schneller Impulsflanken mit Transistoren</td>
<td>23</td>
</tr>
<tr>
<td>3.3.3.4</td>
<td>Erzeugung schneller Impulsflanken mit Tunneldioden</td>
<td>24</td>
</tr>
<tr>
<td>3.3.3.5</td>
<td>Erzeugung schneller Impulsflanken mit Speicherschaltdioden</td>
<td>25</td>
</tr>
<tr>
<td>3.3.3.6</td>
<td>Erzeugung schneller Impulsflanken mit nichtlinearen Wellenleitern (non-linear transmission-line, NLTL)</td>
<td>27</td>
</tr>
<tr>
<td>3.3.3.7</td>
<td>Erzeugung kurzer Impulse mit Titan-Saphir-Lasern</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Schnelle Schalter</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4.1</td>
<td>Feldeffekttransistoren als Schalter</td>
<td>29</td>
</tr>
<tr>
<td>3.3.4.2</td>
<td>Bipolartransistoren als Schalter</td>
<td>30</td>
</tr>
<tr>
<td>3.3.4.3</td>
<td>Zweidiodentor als Schalter</td>
<td>30</td>
</tr>
</tbody>
</table>
3.3.4.4 Abtastung einer kapazitiven Quelle mit einem Zweitodiontor . . . 31
3.3.4.5 Abtastung einer kapazitiven Quelle mit einem Vierdiodentor . . 32
3.3.4.6 Optische Schalter .................................................................. 34
3.3.5 Messwertübertragung .................................................................. 34
3.3.5.1 Vergleich der digitalen mit der analogen Messwertübertragung . 34
3.3.5.2 Analoges Verfahren zur Messwertübertragung . . . . . . . . . . . 35
3.3.6 Datenrückgewinnung und Bestimmung von Amplitude und Phasenwinkel 36
3.3.6.1 Verfahren für Abtastzeitpunkt-Verzögerung $\Delta t_i$ als Vielfache eines Periodenviertels .......................................................... 36
3.3.6.2 Verfahren für von Vielfachen eines Periodenviertels abweichenden Abtastzeitpunkt-Verzögerungen $\Delta t_i$ .............................. 37
3.3.7 Abtastalgorithmus .................................................................... 40
3.3.8 Apertur-Jitter und sein Einfluss auf die Bandbreite der Messeinrichtung . 41
3.3.9 Definition des Apertur-Jitters ...................................................... 41
3.3.9.1 Ursachen des Apertur-Jitters .................................................. 41
3.3.9.2 Wahrscheinlichkeitsdichte der Abtastwerte .............................. 41
3.3.9.3 Zusammenhang von Apertur-Jitter und Frequenzgang ............... 43
3.3.9.4 Einbeziehung der Abtastimpulsbreite ................................. 45
3.3.9.5 Möglichkeiten zur Messung des Jitters ................................. 46

4 Aufbau des Messsystems nach Kapitel 3 49
4.1 Übersicht über die Schaltungsgruppen des Sensors ................. 49
4.2 Abtaster .................................................................................... 50
4.2.1 Wahl des Verfahrens und dessen Funktionsweise .................. 50
4.2.2 Grundsätzliche Topologie des Abtasters ................................. 51
4.2.2.1 Betrieb mit bipolarer Ansteueroimpuls .............................. 51
4.2.2.2 Umkehrung der Speicherschaltstelle durch Indukтивität 52
4.3 Gesamtschaltung des Sensors .................................................... 54
4.3.1 Schaltplan .................................. 54
4.3.2 Trigger-Empfänger .............................. 55
4.3.3 Stand-by-Detektion .............................. 55
4.3.4 Impulsaufbereitung .............................. 55
4.3.5 Impulsverstärker .............................. 55
4.3.6 Balancierung .................................. 56
4.3.7 Abtastimpulserzeugung ......................... 56
4.3.8 Abtaster ...................................... 56
  4.3.8.1 Funktionsweise ............................... 56
  4.3.8.2 Übersteuerung des Abtasters ................. 57
  4.3.8.3 Realisierung ................................ 57
4.3.9 Anschluss der Antenne bzw. des Tastkopfs ........ 57
4.3.10 Auskopplung der Abtastspannung ............ 58
4.3.11 Optischer Sender .............................. 58
4.3.12 Realisierung .................................. 59
4.4 Elektrische Feldsonde ............................. 59
  4.4.1 Antenne ..................................... 59
  4.4.2 Frequenzgangkorrektur durch Kompensationsadmittanz 61
  4.4.3 Frequenzgangkorrektur durch Skineffekt ........ 62
    4.4.3.1 Modifikation des Batteriefachs ............ 62
    4.4.3.2 Ausführung des dielektrischen Rings .......... 63
    4.4.3.3 Frequenzgang des Sensors .................. 63
  4.4.4 Batterielebensdauer ........................... 63
4.5 Vektorvoltmeter zur Messung der Herzsrittmacher-Elektrodeneinkopplung 65
  4.5.1 Eingangsschaltung mit Haltekapazität ........... 65
  4.5.2 Herzsrittmachergehäuse ....................... 65
  4.5.3 Frequenzgang des Mess-Herzsrittmachers .......... 66
4.6 Steuergerät .................................... 66
  4.6.1 Bestimmung des Apertur-Jitters ............... 68
    4.6.1.1 Messung des Phasenrauschens ................ 68
    4.6.1.2 Abschätzung des Apertur-Jitters durch Grenzfrequenzmessung 69
5 Berechnungsverfahren

5.1 Übersicht .......................................................... 73

5.2 Das hybride Verfahren MoM-MMP ....................................... 75
  5.2.1 MMP-Methode .................................................. 75
    5.2.1.1 Wellengleichungen ..................................... 75
    5.2.1.2 Multipolentwicklung .................................... 76
    5.2.1.3 Weitere Entwicklungsfunktionen ....................... 77
    5.2.1.4 Zusammensetzung der Felder ............................. 77
    5.2.1.5 Randbedingungen ........................................ 79
    5.2.1.6 Multipolkonfiguration ................................... 80
    5.2.1.7 Überbestimmtes Gleichungssystem ...................... 80
    5.2.1.8 Fehlervektoren ......................................... 81
  5.2.2 Objektorientierte Implementierung der Multipolmethode ........... 82
    5.2.2.1 Philosophie der objektorientierten Programmierung .... 82
    5.2.2.2 Gleichungssystem ........................................ 83
    5.2.2.3 Umsetzung ............................................... 84
  5.2.3 Momentenmethode ............................................... 84
  5.2.4 Iterative Verkopplung MoM-MMP .................................. 86
    5.2.4.1 Iterative Verkopplung innerhalb der Mehrfach-Multipol-Methode 86
    5.2.4.2 Iterative Verkopplung mit der Methode der Momente (MoM) . 86
    5.2.4.3 Iterativer Lösungsansatz ................................. 87
    5.2.4.4 Vergleichsrechnung ...................................... 88
    5.2.4.5 Relaxationsfaktor ....................................... 89
  5.3 Methode zur Erzeugung von Multipolkonfigurationen .................. 90
    5.3.1 Schwierigkeiten mit bisherigen Verfahren .................... 90
    5.3.2 Neues Verfahren zur Erstellung von Multipolkonfigurationen .... 92
    5.3.3 Interaktive Benutzeroberfläche zum Erstellen von Multipolkonfigurationen 93
6 Berechnung der Störeinkopplung in Herzschrittmacherelektroden

6.1 Einführung ......................................................... 97
6.2 Kopplungsmodell .................................................. 98
6.3 Definitionen ...................................................... 99
  6.3.1 Körpermodelle ................................................. 99
  6.3.2 Dielektrische Eigenschaften des Körpermodells .......... 100
  6.3.3 Herzschrittmacherelement .................................. 100
  6.3.4 Implantationsarten .......................................... 101
6.4 Fernfeldberechnungen ........................................... 102
  6.4.1 Definition der Einfallsrichtung .............................. 102
  6.4.2 Berechnungsmethode und Reziprozitätstheorem ........... 103
  6.4.3 Einfluss der Frequenz auf die Worst-Case-Einfallsrichtung
                      ......................................................... 103
  6.4.4 Fernfeldberechnungsergebnisse ............................. 103
6.5 Untersuchung der Resonanzeffekte ............................. 105
6.6 Nahfeldberechnungen ........................................... 106
  6.6.1 Positionierung der Antennen ................................ 106
  6.6.2 Berechnungsverfahren und Körpermodell .................. 106
  6.6.3 Antennen .................................................... 107
  6.6.4 Nahfeldberechnungsergebnisse ............................. 108
6.7 Abstandsgesetz ................................................ 109
6.8 Diskussion der Ergebnisse ..................................... 110
7 Messung der Herzschriftmacher-Einkopelspannung 113
   7.1 Einleitung ................................................. 113
   7.2 Aufbau ..................................................... 113
      7.2.1 Körperphantom ...................................... 113
      7.2.2 Anordnung der Sendeantenne ..................... 114
      7.2.3 Implantationsarten ................................... 115
   7.3 Messung der Elektrodenimpedanzen ..................... 116
      7.3.1 Vorgehensweise ...................................... 116
      7.3.2 Ergebnisse der Impedanzmessungen ............... 117
   7.4 Ergebnisse der Einkopelspannungsmessungen .......... 119
   7.5 Worst-Case ................................................. 119
   7.6 Anwendungsbeispiel ....................................... 119

8 Messung der elektrischen Feldverteilung im Kraftfahrzeug bei Mobilfunkbetrieb 123
   8.1 Versuchsaufbau ........................................... 123
   8.2 Ergebnisse ................................................. 125

9 Ausblick 129
   9.1 Messverfahren ............................................. 129
   9.2 EMV-Untersuchungen ..................................... 130

Anhang 142

A Messverfahren 143
   A.1 Simulationsmodell für eine Speicherschaltdiode ....... 143
   A.2 Gleichungen zur Korrektur des Phasenfehlers ........ 145

B Berechnungsverfahren 147
   B.1 Objektorientierte Implementierung der Mehrfach-Multipol-Methode ......... 147

C Einkopplung in Herzschriftmacherelektroden 153
   C.1 Definition der Elektroden im Körpermodell 1 ........... 153
   C.2 Definition der Elektroden im Körpermodell 2 ........... 155
## Legende

### Symbole und Schreibweisen

<table>
<thead>
<tr>
<th>Formelzeichen</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a$</td>
<td>komplexe Größe</td>
</tr>
<tr>
<td>$\text{Im}{a}$</td>
<td>Imaginärteil von $a$</td>
</tr>
<tr>
<td>$\text{Re}{a}$</td>
<td>Realteil von $a$</td>
</tr>
<tr>
<td>$\vec{a}$</td>
<td>Vektor, $(a_x, a_y, a_z)^T$</td>
</tr>
<tr>
<td>$\hat{a}$</td>
<td>Einheitsvektor</td>
</tr>
<tr>
<td>$\vec{\Delta a}$</td>
<td>vektorieller Laplace-Operator</td>
</tr>
<tr>
<td>$\text{div} ; \vec{a}$</td>
<td>Divergenz, $\frac{\partial a_x}{\partial x} + \frac{\partial a_y}{\partial y} + \frac{\partial a_z}{\partial z}$</td>
</tr>
<tr>
<td>$\text{grad} ; a$</td>
<td>Gradient, $\left(\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y}, \frac{\partial a}{\partial z}\right)^T$</td>
</tr>
<tr>
<td>$\text{rot} ; \vec{a}$</td>
<td>Rotation, $\left(\frac{\partial a_y}{\partial z} - \frac{\partial a_z}{\partial y}, \frac{\partial a_z}{\partial x} - \frac{\partial a_x}{\partial z}, \frac{\partial a_x}{\partial y} - \frac{\partial a_y}{\partial x}\right)^T$</td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

### Verwendete Formelzeichen

<table>
<thead>
<tr>
<th>Formelzeichen</th>
<th>Einheit</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b$</td>
<td>Hz</td>
<td>Bandbreite</td>
</tr>
<tr>
<td>$b(t)$</td>
<td>S</td>
<td>zeitabhängiger Leitwert</td>
</tr>
<tr>
<td>$C$</td>
<td>F</td>
<td>Kapazität</td>
</tr>
<tr>
<td>$C'$</td>
<td>F/m</td>
<td>Kapazitätsbelag</td>
</tr>
<tr>
<td>$C_H$</td>
<td>F</td>
<td>Haltekapazität</td>
</tr>
<tr>
<td>$c_0$</td>
<td>m/s</td>
<td>Lichtgeschwindigkeit im Vakuum</td>
</tr>
<tr>
<td>$D_a$</td>
<td>1</td>
<td>Richtfaktor einer Antenne</td>
</tr>
<tr>
<td>$D_d$</td>
<td>1</td>
<td>Richtfaktor eines $\lambda/2$-Dipols</td>
</tr>
<tr>
<td>$\delta(t)$</td>
<td></td>
<td>Dirac-Impuls</td>
</tr>
<tr>
<td>Formelzeichen</td>
<td>Einheit</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>$E$</td>
<td>V/m</td>
<td>elektrische Ersatzfeldstärke</td>
</tr>
<tr>
<td>$\tilde{E}$</td>
<td>V/m</td>
<td>Amplitude der elektrischen Feldstärke</td>
</tr>
<tr>
<td>$\tilde{E}$</td>
<td>V/m</td>
<td>komplexes elektrisches Feld in Vektorform</td>
</tr>
<tr>
<td>$ERP$</td>
<td>W</td>
<td>auf $\lambda/2$-Dipol bezogene Strahlungsleistung</td>
</tr>
<tr>
<td>$\tilde{E}_{\text{inc}}$</td>
<td>V/m</td>
<td>Amplitude der anregenden Feldstärke</td>
</tr>
<tr>
<td>$\tilde{E}_{\text{inc}}$</td>
<td>V/m</td>
<td>einfallendes elektrisches Feld</td>
</tr>
<tr>
<td>$\tilde{E}_{\text{scat}}$</td>
<td>V/m</td>
<td>gestreutes elektrisches Feld</td>
</tr>
<tr>
<td>$\tilde{E}_{\text{tan}}$</td>
<td>V/m</td>
<td>tangentes elektrisches Feld</td>
</tr>
<tr>
<td>$\text{entw}$</td>
<td></td>
<td>Entwicklungsnummer</td>
</tr>
<tr>
<td>$\tilde{E}$</td>
<td></td>
<td>Operator, der den Strom $\tilde{I}$ auf das Feld $\tilde{E}$ abbildet</td>
</tr>
<tr>
<td>$\varepsilon$</td>
<td>As/Vm</td>
<td>Realteil der Permittivität</td>
</tr>
<tr>
<td>$\varepsilon$</td>
<td>As/Vm</td>
<td>komplexe Permittivität</td>
</tr>
<tr>
<td>$\varepsilon_r$</td>
<td>As/Vm</td>
<td>relative Permittivität</td>
</tr>
<tr>
<td>$f$</td>
<td>Hz</td>
<td>Frequenz</td>
</tr>
<tr>
<td>$f_{3dB}$</td>
<td>Hz</td>
<td>3 dB-Grenzfrequenz</td>
</tr>
<tr>
<td>$\text{geb}$</td>
<td></td>
<td>Gebietsindex</td>
</tr>
<tr>
<td>$\tilde{H}$</td>
<td>A/m</td>
<td>komplexes magnetisches Feld in Vektorform</td>
</tr>
<tr>
<td>$\eta$</td>
<td>1</td>
<td>Abtasteffizienz</td>
</tr>
<tr>
<td>$j$</td>
<td></td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>$\Phi$</td>
<td>W</td>
<td>Lichtstrom</td>
</tr>
<tr>
<td>$\varphi$</td>
<td>rad</td>
<td>Phasenwinkel</td>
</tr>
<tr>
<td>$\varphi$</td>
<td>rad</td>
<td>Koordinate im Kugelkoordinatensystem</td>
</tr>
<tr>
<td>$k$</td>
<td></td>
<td>Index</td>
</tr>
<tr>
<td>$k$</td>
<td>1/m</td>
<td>Wellenzahl</td>
</tr>
<tr>
<td>$L$</td>
<td>H</td>
<td>Induktivität</td>
</tr>
<tr>
<td>$L'$</td>
<td>H/m</td>
<td>Induktivitätsbelag</td>
</tr>
<tr>
<td>$l$</td>
<td>m</td>
<td>Länge</td>
</tr>
<tr>
<td>$\lambda_0$</td>
<td>m</td>
<td>Freiraumwellenlänge</td>
</tr>
<tr>
<td>$\lambda_{\text{max}}$</td>
<td>m</td>
<td>Wellenlänge bei minimaler Frequenz</td>
</tr>
<tr>
<td>$\lambda_{\text{min}}$</td>
<td>m</td>
<td>Wellenlänge bei maximaler Frequenz</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Vs/Am</td>
<td>Permeabilität</td>
</tr>
<tr>
<td>$\mu$</td>
<td></td>
<td>Index</td>
</tr>
<tr>
<td>$\mu$</td>
<td>Vs/Am</td>
<td>komplexe Permeabilität</td>
</tr>
<tr>
<td>$\mu_r$</td>
<td>1</td>
<td>relative Permeabilität</td>
</tr>
<tr>
<td>$\mu$</td>
<td></td>
<td>Index</td>
</tr>
<tr>
<td>$\nu$</td>
<td>1</td>
<td>Iterationsschritt</td>
</tr>
<tr>
<td>$P_t$</td>
<td>W</td>
<td>abgestrahlte Leistung</td>
</tr>
<tr>
<td>$Q$</td>
<td>As</td>
<td>Ladung</td>
</tr>
<tr>
<td>$q$</td>
<td>1</td>
<td>Relaxationsfaktor</td>
</tr>
<tr>
<td>$R$</td>
<td>$\Omega$</td>
<td>Widerstand</td>
</tr>
<tr>
<td>Formelzeichen</td>
<td>Einheit</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>( r )</td>
<td>m</td>
<td>Koordinate im Polarkoordinatensystem</td>
</tr>
<tr>
<td>( \mathcal{\mathcal{R}} )</td>
<td></td>
<td>Operator, der das elektrische Feld auf die tangentielle Feldstärke abbildet</td>
</tr>
<tr>
<td>( \rho_t(t_c) )</td>
<td>1/s</td>
<td>Wahrscheinlichkeitsdichte der Abtastzeitpunkte</td>
</tr>
<tr>
<td>( \rho_a(u_a) )</td>
<td>1/V</td>
<td>Wahrscheinlichkeitsdichte der Abtasteraustangsspannung ( u_{a,i} )</td>
</tr>
<tr>
<td>( \sigma )</td>
<td>S/m</td>
<td>spezifische Leitfähigkeit</td>
</tr>
<tr>
<td>( T_{Abtast} )</td>
<td>s</td>
<td>Zeitintervall zwischen zwei Abtastereignissen</td>
</tr>
<tr>
<td>( T_S )</td>
<td>s</td>
<td>Abtastimpulsbreite</td>
</tr>
<tr>
<td>( t )</td>
<td>s</td>
<td>Zeit</td>
</tr>
<tr>
<td>( \Delta t )</td>
<td>s</td>
<td>Zeitverzögerung</td>
</tr>
<tr>
<td>( t_i )</td>
<td>s</td>
<td>Abtastzeitpunkt ( i )</td>
</tr>
<tr>
<td>( \Delta t_i )</td>
<td>s</td>
<td>Zeitverzögerung ( i )</td>
</tr>
<tr>
<td>( t_{e,RMS} )</td>
<td>s</td>
<td>Standardabweichung der Abtastzeitpunkte, Apertur-Jitter</td>
</tr>
<tr>
<td>( t_{e,RMS,N} )</td>
<td>s</td>
<td>Jitter über ( N ) Perioden</td>
</tr>
<tr>
<td>( t_{e,RMS,max} )</td>
<td>s</td>
<td>maximal zulässiger Apertur-Jitter</td>
</tr>
<tr>
<td>( U )</td>
<td>V</td>
<td>elektrische Spannung</td>
</tr>
<tr>
<td>( \hat{U} )</td>
<td>V</td>
<td>Spannungsamplitude</td>
</tr>
<tr>
<td>( U_{Zp,pp} )</td>
<td>V</td>
<td>am Eingangstor des Herzschrittmachers anliegende Störspannung</td>
</tr>
<tr>
<td>( U_{pp} )</td>
<td>V</td>
<td>Spitze-Spitze-Leerlaufspannung der als Antenne wirkenden Herzschrittmacherelektrode</td>
</tr>
<tr>
<td>( U_{pp,max} )</td>
<td>V</td>
<td>Worst-Case der Spitze-Spitze-Leerlaufspannung der als Antenne wirkenden Herzschrittmacherelektrode</td>
</tr>
<tr>
<td>( U_{pp,max,f} )</td>
<td>V</td>
<td>Worst-Case-Einkoppelspannung für die Frequenz ( f )</td>
</tr>
<tr>
<td>( U_{pp,max,ff} )</td>
<td>V</td>
<td>Worst-Case der Spitze-Spitze-Leerlaufspannung der als Antenne wirkenden Herzschrittmacherelektrode für den Fernfeldfall</td>
</tr>
<tr>
<td>( u(t) )</td>
<td>V</td>
<td>zeitveränderliche Spannung</td>
</tr>
<tr>
<td>( u_\mu )</td>
<td>V</td>
<td>Momentanwert zum ( \mu )-ten Abtastzeitpunkt</td>
</tr>
<tr>
<td>( \omega )</td>
<td>1/s</td>
<td>Kreisfrequenz</td>
</tr>
<tr>
<td>( \bar{x}_i )</td>
<td>V</td>
<td>( i )-ter Schätzwert</td>
</tr>
<tr>
<td>(</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>( Y_K )</td>
<td>S</td>
<td>Kompensationsadmittanz</td>
</tr>
<tr>
<td>(</td>
<td></td>
<td>Y_e</td>
</tr>
<tr>
<td>(</td>
<td></td>
<td>Y_p</td>
</tr>
<tr>
<td>( Z )</td>
<td>( \Omega )</td>
<td>Impedanz</td>
</tr>
<tr>
<td>( Z_{F0} )</td>
<td>( \Omega )</td>
<td>Wellenwiderstand im Vakuum</td>
</tr>
</tbody>
</table>
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Anti-Blockier-System</td>
</tr>
<tr>
<td>AM</td>
<td>Amplitudenmodulation</td>
</tr>
<tr>
<td>BALUN</td>
<td>balanced-unbalanced, Symmetrierübertrager</td>
</tr>
<tr>
<td>BOS</td>
<td>Behörden und Organisationen mit Sicherheitsaufgaben</td>
</tr>
<tr>
<td>CAN</td>
<td>controller area network</td>
</tr>
<tr>
<td>CW</td>
<td>continous wave</td>
</tr>
<tr>
<td>ECL</td>
<td>emitter coupled logic</td>
</tr>
<tr>
<td>EMC</td>
<td>electromagnetic compatibility</td>
</tr>
<tr>
<td>EMV</td>
<td>elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>ESP</td>
<td>elektronisches Stabilitätsprogramm</td>
</tr>
<tr>
<td>FDTD</td>
<td>finite difference time domain</td>
</tr>
<tr>
<td>FEM</td>
<td>finite element method</td>
</tr>
<tr>
<td>FFT</td>
<td>fast Fourier transformation</td>
</tr>
<tr>
<td>FEKO</td>
<td>Feldberechnung bei Körpern mit beliebiger Oberfläche</td>
</tr>
<tr>
<td>FM</td>
<td>frequency modulated, frequenzmoduliert</td>
</tr>
<tr>
<td>GMT</td>
<td>generalized multipole technique</td>
</tr>
<tr>
<td>GSM</td>
<td>global system for mobile communication</td>
</tr>
<tr>
<td>GVIF</td>
<td>gigabit video interface</td>
</tr>
<tr>
<td>HF</td>
<td>Hochfrequenz</td>
</tr>
<tr>
<td>ISM</td>
<td>industrial scientific medical</td>
</tr>
<tr>
<td>KFZ</td>
<td>Kraftfahrzeug</td>
</tr>
<tr>
<td>LASER</td>
<td>light amplification by stimulated emission of radiation</td>
</tr>
<tr>
<td>LED</td>
<td>light emitting diode</td>
</tr>
<tr>
<td>LVDS</td>
<td>low voltage differential signalling</td>
</tr>
<tr>
<td>MESFET</td>
<td>metal semiconductor field effect transistor</td>
</tr>
<tr>
<td>MMP</td>
<td>Mehrfach-Multipol</td>
</tr>
<tr>
<td>MoM</td>
<td>method of moments, Momentenmethode</td>
</tr>
<tr>
<td>MOS</td>
<td>metal oxide semiconductor</td>
</tr>
<tr>
<td>MOSFET</td>
<td>metal oxide semiconductor field effect transistor</td>
</tr>
<tr>
<td>MSM</td>
<td>metal semiconductor</td>
</tr>
<tr>
<td>PC</td>
<td>personal computer</td>
</tr>
<tr>
<td>PLL</td>
<td>phase locked loop, Phasenregelschleife</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Beschreibung</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>SBOR</td>
<td>successive block over relaxation</td>
</tr>
<tr>
<td>SBUR</td>
<td>successive block under relaxation</td>
</tr>
<tr>
<td>SMB</td>
<td>sub miniatur B</td>
</tr>
<tr>
<td>SRD</td>
<td>step recovery diode, Speicherschaltdiode</td>
</tr>
<tr>
<td>TDR</td>
<td>time domain reflectometer, Impulsreflektometer</td>
</tr>
<tr>
<td>TE</td>
<td>transversal elektrisch</td>
</tr>
<tr>
<td>TETRA</td>
<td>terrestrial trunked radio</td>
</tr>
<tr>
<td>TM</td>
<td>transversal magnetisch</td>
</tr>
<tr>
<td>TV</td>
<td>television, Fernsehen</td>
</tr>
<tr>
<td>UKW</td>
<td>Ultra-Kurz-Welle</td>
</tr>
<tr>
<td>WLAN</td>
<td>wireless local area network</td>
</tr>
<tr>
<td>VCSEL</td>
<td>vertical cavity surface emitting laser</td>
</tr>
</tbody>
</table>
Zusammenfassung


Ein weiteres Beispiel ist der Betrieb eines Mobiltelefons in einem Kraftfahrzeug. Der umfangreiche und stark verzweigte Kabelbaum des Fahrzeugs, der eine Vielzahl von Steuergeräten miteinander verbindet, kann einen nennenswerten Teil der Strahlungsleistung empfangen, so dass es in der Folge zu einer Störung des ordnungsgemäßen Betriebs der elektronischen Baugruppen kommt.

Die beiden vorgestellten Szenarien haben gemeinsam, dass jeweils sicherheitsrelevante Teile betroffen sind. Zur Abschätzung des erhöhten Gefährdungspotentials, welches sich aus dem Betrieb von Funksystemen in dem entsprechenden Umfeld ergibt, sind Untersuchungen der auftretenden Felder und der daraus resultierenden Störspannungen notwendig. Hierzu soll die vorliegende Arbeit einen Beitrag leisten, der sich wie folgt zusammensetzt:
• Aufbau neuartiger, auf Abtastung basierende Messsysteme, die zum einen für die Mes-
sung von Hochfrequenzfeldern und zum anderen für die Messung von HF-Spannungen auf
Leitungen bestimmt sind
• Verbesserung eines hybriden Feldberechnungsverfahrens, welches sich für die Untersu-
chung von Einkoppelspannungen in medizinischen Implantaten eignet
• Berechnung und Messung der Einkopplung von Hochfrequenzfeldern in Herzschrittmacher
• Messung der Feldverteilung im Kraftfahrzeug bei Mobilfunkbetrieb

Die Funktionsbeeinträchtigung eines Geräts hängt nicht nur von der Intensität der Störfelder
und den damit einhergehenden Einkoppelspannungen ab (Kopplungsmodell), sondern auch von
der Beeinflussbarkeit seiner elektronischen Baugruppen (Beeinflussungsmodell). Letzteres ist
zwar nicht Gegenstand der vorliegenden Arbeit, dennoch wird in Kapitel 1 zunächst eine Einfüh-
ung anhand eines Schaltungsbeispiels gegeben und gezeigt, wie sich HF-Spannungen auf
integrierte Schaltungen auswirken.

Darauf folgend wird der Themenkomplex *Einkopplung in Herzschrittmacher* vorgestellt. Feld-
berechnungsprogramme bieten eine flexible Möglichkeit für die Untersuchung der Störeinkoppl-
ung. Allerdings steigen mit der Frequenz der Speicherplatzverbrauch und die Rechenuzeit, so
dass sich daraus Grenzen ergeben. Durch Auswahl eines entsprechenden Berechnungsverfah-
rens kann der Rechenaufwand jedoch minimiert werden, und es finden sich für verschiedene
Strukturen jeweils geeignete Methoden. Jedoch steigt der Aufwand bei Szenarien, die sehr un-
terchiedliche Materialien enthalten, wie beispielsweise der biologischer Körper auf der einen
Seite und der metallische Herzschrittmacher auf der anderen. Durch den Einsatz von Hybrid-
methoden können die unterschiedlichen Teilprobleme durch ein jeweils geeignetes Verfahren
berechnet werden.

Ist eine Problemstellung aufgrund ihrer Komplexität und ihres Frequenzbereichs numerisch
nicht mehr sinnvoll behandelbar, kann die Durchführung von Messungen einen Ausweg darstel-
len. Dabei ist zu beachten, dass durch den Sensor selbst das Ergebnis nicht verfälscht werden
soll. Zur Bestimmung der Einkoppelspannung wird daher ein Mess-Herzschrittmacher benötigt,
der, um Feldverzerrungen zu vermeiden, ohne elektrische Leitungen zur Stromversorgung und
Messwertableitung auskommt. In der vorliegenden Arbeit wird hierzu ein neuartiges, auf Ab-
tastung basierendes Messgerät beschrieben, welches optisch angesteuert, Spannungs messungen
über einen großen Frequenzbereich erlaubt, eine hohe Dynamik aufweist und dabei über eine
lange Batterielebensdauer verfügt.

Während in der vorliegenden Arbeit der Themenkomplex *Einkopplung in Herzschrittmacher*
sowohl numerisch als auch messtechnisch behandelt wird, findet die Untersuchung der *Feld-
verteilung im Kraftfahrzeug bei Mobilfunkbetrieb* ausschließlich durch Messungen statt. In der
hohlräumförmigen Fahrgastzelle sind Resonanzen mit vergleichsweise hohen Feldstärken mög-
lich. Diese können auf die zahlreichen elektrischen Leitungen und Komponenten einwirken.


die Kenndaten des Messkopfs zu einem wesentlichen Teil, so dass eine ausführliche Behandlung dieser Schaltungsgruppe erfolgt, welche aufgrund der eingeschränkten Energieversorgung stromsparend ausgeführt sein muss. Beim Feldsensor sind sowohl die Knopfzellenbatterien als auch die elektronische Schaltung platzsparend in einer Dipolantenne unterzubringen. Es erfolgt daher eine Beschreibung des besonderen Aufbaus der Antenne, aber auch ihrer elektrischen Eigenschaften, wie beispielsweise ihres Frequenzgangs, der mit entsprechenden Methoden korrigiert werden konnte.

Die Anforderungen bezüglich Platz und elektrischer Eigenschaften des elektrischen Feldsensors sind beim Mess-Herzschrittmacher zwar niedriger, jedoch ist hier die Eingangsschaltung derart zu modifizieren dass sie mit dem Wellenwiderstand der Eingangsbuchse abschließt. Der Frequenzgang dieses Messsystems liegt dann im Bereich von 5 MHz bis 3 GHz innerhalb von ±0,5 dB. Die Dynamik ist > 70 dB und mit einem Satz Batterien können ungefähr 280 000 Einzelmessungen nach Betrag und Phase durchgeführt werden.

Messungen bieten zwar den Vorteil, auch bei sehr komplizierten Szenarien Ergebnisse zu liefern, jedoch ist sowohl der materielle als auch der zeitliche Aufwand sehr hoch, wohingegeben numerische Berechnungen diese Nachteile nicht aufweisen. Daher werden im unteren Frequenzbereich die Herzschrittmacher-Einkoppelspannungen mit Hilfe eines Berechnungsverfahrens bestimmt, welches in Kapitel 5 beschrieben wird.

Der metallische Herzschrittmacher und die Elektrode lassen sich mit geringem numerischen Aufwand mit der Momentenmethode (MoM) berechnen. Allerdings steigt der Speicherplatzverbrauch erheblich an, sobald der Körper des Herzschrittmacherträgers berücksichtigt wird. Einer der Gründe liegt darin, dass die Permittivität des menschlichen Gewebes sehr hoch ist, wodurch die Wellenlänge im Körper stark verkürzt wird und somit sehr fein segmentiert werden muss. Diese feine Segmentierung würde zwar eine sehr detaillierte Modellierung erlauben, sie ist jedoch für ein Körpermodell mit einfachen Formen nicht erforderlich. Es bietet sich daher an, den Körper mit einem anderen numerischen Verfahren zu berechnen, welches zwar nicht die Detailierungsmöglichkeiten der Momentenmethode besitzt, jedoch mit weniger Ansatzfunktionen in der Lage ist, das Streuproblem korrekt zu beschreiben. Im Rahmen der vorliegenden Arbeit wurde hierzu die Mehrfach-Multipol-Methode (MMP) verwendet, welche sich für Streukörper mit runden Formen gut eignet.

Beide Methoden werden in Kapitel 5 zunächst beschrieben und es wird die im Rahmen der vorliegenden Arbeit entstandene objektorientierte Implementierung der MMP-Methode vorgestellt. Für die Berechnung der Einkoppelspannung wird der Herzschrittmacher mit der Momentenmethode und der menschliche Körper mit der Mehrfach-Multipol-Methode behandelt. Das hierbei eingesetzte iterative Kopplungsverfahren wird beschrieben, und es wird auf Möglichkeiten zur Verbesserung der Konvergenz eingegangen. Allerdings ist die Mehrfach-Multipol-Methode, insbesondere für unerfahrenen Benutzer, nicht leicht anzuwenden, was sich durch die iterative Verkopplung mit der Momentenmethode noch verschärft. Deshalb wird im Rahmen der vorliegenden Arbeit eine Möglichkeit vorgestellt, wie sich Berechnungsmodelle schnell und effizient erstellen und optimieren lassen.
Eingesetzt wird das iterative Berechnungsverfahren in Kapitel 6, um die Herzschrittmacher-Einkoppelspannung für den Frequenzbereich von 50 MHz bis 500 MHz zu untersuchen. Das tatsächliche Gefährdungspotential hängt hier jedoch nicht nur von dem elektromagnetischen Streuproblem, sondern auch von der inneren Schaltung des Schrittmachers ab. Durch die Einteilung in ein Kopplungsmodell und in ein Verträglichkeitsmodell können die geschilderten Einflüsse sauber getrennt werden. Das Verträglichkeitsmodell ist nicht Gegenstand dieser Arbeit. Hierfür wird auf die angegebene weiterführende Literatur verwiesen.

Die Einkoppelspannung, welche durch das Kopplungsmodell beschrieben wird, kann entweder durch eine einfallende ebene Welle verursacht werden oder aber durch ein Funkgerät in unmittelbarer Nähe des Patienten. Dabei unterscheiden sich die Vorgehensweisen zur Berechnung der beiden Szenarien wesentlich voneinander, so dass eine Einteilung in die Fernfeld- und die Nahfelduntersuchung erfolgt.

Die Fernfelduntersuchung konnte unter Zuhilfenahme des Reziprozitätssprinzips effizient mit Hilfe der Momentenmethode durchgeführt werden. Dabei wurden die Einkoppelspannungen für verschiedene Implantationsarten, Einfallsrichtungen, Polarisationen und Frequenzen bestimmt. Es zeigen sich insbesondere im UKW-Bereich signifikante Resonanzeffekte, welche, wie weitere Untersuchungen ergaben, durch die Herzschrittmacher-Elektrode verursacht werden.


Mit den Untersuchungen in den Kapiteln 6 und 7 wurden die Störspannung am Eingang des Herzschrittmachers in Abhängigkeit von verschiedenen Einflussfaktoren ermittelt. Im Gegen- satz dazu werden in Kapitel 8 am Kraftfahrzeug nicht die Einkoppelspannungen gemessen,
sondern die Feldverteilungen, die in der Fahrgastzelle bei Mobilfunkbetrieb auftreten. Hierzu wird die auf Abtastung basierende Feldsonde eingesetzt, um entlang von definierten Pfaden die elektromagnetischen Felder zu bestimmen. Es erfolgt eine Untersuchung der verschiedenen Einflussfaktoren wie Frequenz, Platzierung der Antenne und Art der Fahrzeugverglasung. Abschließend werden die Ergebnisse für die untersuchten Parameter-Kombinationen tabellarisch gegenübergestellt.
Abstract

A fundamental property of radio systems is the emission of electromagnetic waves. These may interfere with other electronic systems, which can be separate devices or assemblies of several modules connected to each other by power supply lines, bus-systems or signal lines. Electric conductors receive electromagnetic energy and guide them to the electronic modules they are connected to. Inside the device the susceptibility signal may disturb the electronic circuits. This can result in a malfunction of the system. Coupling effects arise if the lengths of the conductors are related to or exceed the wave lengths.

For example a disturbance scenario is a pacemaker patient using a radio set. Electromagnetic waves are emitted by the device and couple into to human body and reach the electrode acting like an antenna. The received signal is fed to the cardiac pacemaker devices which may be susceptible to the RF signal.

A further example is the usage of a cell phone inside an automobile. A cavity resonator is formed by the car chassis permitting high-intensity-fields, which may couple into the complex cable harness. Modules connected may be influenced.

Both scenarios have in common, that safety relevant systems are involved. For the estimation of security hazards which may originate from the use of radio systems investigations of the electromagnetic fields and their coupling effects are helpful. In that area this thesis contributes the following methods as well as investigations which are listed below:

- development of new measurement systems for the quantification of electromagnetic RF fields as well as for the determination of induced voltages
- optimization of a hybrid field calculation software capable of computing the voltages induced into cardiac pacemakers
- computation and measurement of the coupling of RF fields into cardiac pacemakers
- measurement of field distributions inside an automobile during the operation of a mobile phone
In chapter 1 problems in the area of RF coupling effects are identified by means of a simple example and different interference mechanisms are discussed. In the following an introduction into the problem of cardiac pacemakers is given and suitable field calculation methods are introduced. The necessity of measurements and adequate measurement systems is pointed out. The instrument for quantification of disturbance voltages which has been developed within this work is discussed in brief.

The chapter continues with a short introduction into EMC problems of automotive technology. The car body is similar to a cavity resonator hence considerably high field intensities during the operation of mobile phones may occur. In order to allow car manufacturers to perform reasonable EMC shielding activities, the knowledge of field intensities which occur inside the car body is necessary. As part of this work, a measurement system has been developed which allows measurements with high accuracy and measurement speed. An overview of the state of the art of field sensors and measurement systems for measuring coupling effects is given in chapter 2. Passive and active field sensors are discussed and systems based on fiber optic technology are also treated. Finally the two most common methods for measuring coupling effects are discussed.

Chapter 3 gives an introduction to the basic idea of the measurement method. Sampling systems with short switching times can be built up with low effort. If the coherent undersampling principle is used additionally, a broadband measurement system with low current consumption can be realized. Furthermore this method provides good linearity with respect to amplitude and frequency response and offers advantageous input impedances, so it can be used for electric field probes. Additionally this method is well suited for vector voltage measurements on electric conductors.

Following the outline of this idea the basic circuits which are applicable to capacitive sources like electric short dipol antennas are figured out. Samplers usually consist of a pulse generator and a fast switch. Consequently different options for the generation of short sampling pulses are discussed, fast switches treated and different error correction methods are investigated.

The most important aspect of the measurement method is aperture jitter, which is defined as the random variation of the occurrence of the sampling event. Beside the sampling pulse width it limits the bandwidth of the system. Hence a detailed derivation of the correlation of bandwidth with jitter is given, taking the sampling pulse width into account. Finally aspects of phase noise and means for its measurement are mentioned.

In chapter 4 the realization of the sensor system is discussed. First an overview is given and then a special design of the system is proposed which allows operation by a small number of coin cell batteries. The major part of the chapter is devoted to the sampler and its driver circuits. The
development of the antenna structure and methods for its frequency response correction are also pointed out. The chapter closes with an introduction to the measuring pacemaker variant which allows the quantification of the disturbing voltage on the cardiac pacemaker electrode. Its frequency response is within ±0.5 dB between 5 MHz and 3 GHz with a dynamic range larger than 70 dB. One set of batteries is sufficient for 280 000 single voltage vector measurements.

Chapter 5 is focused on the hybrid field calculation method MoM-MMP. First the multiple multipole method (MMP) is introduced and its object oriented implementation as developed within this work is presented. The method of moments (MoM) is briefly discussed followed by a description of the iterative coupling of both methods. As the multiple multipole method is slightly difficult to apply for inexperienced users, a method how calculation models can be created in a convenient way, is presented.

Chapter 6 deals with coupling effects affecting cardiac pacemaker electrodes within the frequency range from 50 MHz to 500 MHz. After describing the coupling model the calculation models used are presented. Then the study separates in a far-field and in a near-field investigation. The far-field part uses the reciprocity theorem resulting in quite short computation times. The investigations show strong resonance effects within the VHF frequency range. Further calculations reveal that for this effect the pacemaker electrode is responsible, which is embedded inside the human body tissue. Owing to this surrounding medium it acts like a coaxial resonator. The near-field part is treated with the hybrid method MoM-MMP. Effects generated from different transmitting antennas in the close vicinity of the human body are investigated. To this end parameters such as angle of incidence, distance and frequency are varied. Finally a "distance law" is derived which merges the results of the far-field and the near-field investigations. This law quantifies the coupling voltage as a function of frequency and distance to the TX-antenna.

With frequencies up to 500 MHz the computation of the coupling voltage is feasible on a small PC-cluster, while calculations for signals of the GSM 900- and GSM 1800-cellular network prove tedious. Hence experimental investigations are performed in chapter 7 using the measurement system developed within this work.

In chapter 8, field distributions inside a car body generated by a transmitting mobile phone are measured. The measurement setup is introduced and the parameter variations are presented. A comparison of the different interacting parameters like car window type, antenna placement and frequency band is given. For different parameter combinations the mean field intensity is presented.
Kapitel 1

Einleitung

1.1 Verbreitung von Funkanwendungen


1.2 Störbeeinflussung durch Funkdienste


Bei der Beeinflussung eines Geräts spielt der Frequenzbereich eine entscheidende Rolle. Liegt die Frequenz des Störsignals im Bereich des Nutzsignals, so ist am Beispiel einer durch Netzbrummen gestörten Audioanlage der Zusammenhang leicht zu verstehen. Kompliziertere Mechanismen wirken jedoch, wenn die Störfrequenz um Größenordnungen über der eigentlichen Nutzfrequenz des gestörten Systems liegt. Ein Beispiel hierfür ist ein stabilisiertes Netzgerät,

![Bild 1.1: Ein HF-Störsignal wird in eine Inverterschaltung gespeist.](image1.png)

![Bild 1.2: Gemessener Frequenzgang und Gleichspannungsanteil am Ausgang der Verstärkerschaltung.](image2.png)

Das vorangegangene Beispiel lässt vermuten, welche Effekte bei AM-modulierten oder gar gepulsten HF-Signalen auftreten. Ohne Vorkehrungen können insbesondere Herzschrinnermacher, welche sehr schwache elektrische Signale des Herzens auswerten, leicht gestört werden.

### 1.3 Störungen und ihre Kopplungswege

Störungen können auf verschiedene Arten entstehen und ihre Übertragung kann gemäß Tabelle 1.1 eingeteilt werden [18]. Im Rahmen dieser Arbeit erfolgt die nähere Betrachtung der Strahlungseinkopplung. Diese tritt vornehmlich bei der Verwendung von Funkdiensten wie z.B. BOS, TETRA oder GSM 900/1800 auf. Empfindliche elektronische Systeme, wie Herzschrittmacher oder KFZ-Komponenten, können durch die hohen Sendeleistungen im Watt-Bereich gestört werden. Prinzipiell kann die Strahlungseinkopplung direkt in die Schaltung erfolgen,
Kopplungsart | Kopplungsmechanismus
---|---
galvanische Kopplung | Verbindung von Störquelle und Störsenke über elektrischen Leiter
kapazitive Kopplung | Kopplung durch reaktives elektrisches Feld
induktive Kopplung | Kopplung durch reaktives Magnetfeld
Strahlungseinkopplung | elektromagnetische Wellen koppeln in Leiterstrukturen ein

Tabelle 1.1: Verschiedene Kopplungsarten

was jedoch durch eine entsprechende Kapselung der Baugruppen unterbunden werden kann. Wesentlich problematischer sind hingegen die Zuleitungen, welche oftmals die Größenordnung der Wellenlänge des störenden Signals überschreiten und daher als Antenne wirken können. Um hier eine Einkopplung wirksam zu vermeiden, sind aufwändige Schirmungen und Steckersysteme notwendig, die im Fall von KFZ-Kabelbäumen aus Kostengründen jedoch selten in Frage kommen. In anderen Fällen lässt sich eine Schirmung grundsätzlich nicht realisieren, wie im Fall der Herzschriftmacherelektroden.

1.4 Notwendigkeit zur Untersuchung des Störpotentials

Die Beispiele zeigen, dass in einigen Fällen eine HF-Einkopplung hingenommen werden muss. Um dennoch Beeinflussungen zu vermeiden, sind an den entsprechenden Baugruppen Härungsmaßnahmen vorzunehmen. Dies setzt jedoch die Kenntnis der zu erwartenden Störgrößen voraus. Diese sind:

**Elektromagnetische Störfelder:** Sie können sich direkt auf die Baugruppe auswirken, sind aber auch *Ursache* für die eingekoppelten Ströme auf den Zuleitungen.

**Störströme:** Durch die elektromagnetischen Felder werden in den Zuleitungen Störströme eingekoppelt, welche schließlich in die Baugruppen eindringen.

Dabei müssen die elektromagnetischen Felder als Ursache für die Störströme betrachtet werden, so dass sich eine umfassendere Betrachtung anbietet. Im Rahmen dieser Arbeit werden daher sowohl elektromagnetische Felder als auch Einkoppelspannungen auf Leitersystemen bestimmt. Dies beinhaltet insbesondere die Entwicklung eines geeigneten Messverfahrens sowie die Weiterentwicklung einer bereits bestehenden Feldberechnungsmethode.
1.5 Untersuchung von elektromagnetischen Feldverteilungen und Untersuchung ihrer Einkopplungen in Leitersysteme

In dieser Arbeit werden zwei Gattungen sicherheitsrelevanter Systeme untersucht. Das sind zum einen Herzschrittmacher und zum anderen Kraftfahrzeuge, deren verkabelte Module starken elektromagnetischen Feldern ausgesetzt sein können. In beiden Fällen ist es möglich, dass Funkdienste zu sehr starken Einkopplungen in die daran angeschlossenen Leitungssysteme führen.

1.5.1 Herzschrittmacher


![Bild 1.3: Realer Herzschrittmacher mit Elektrode.](image)


Die zu berechnende Problemstellung beinhaltet zum einen den dielektrischen menschlichen Körper und zum anderen die metallischen Objekte wie das Herzschrittmachersystem innerhalb und die Sendeantenne außerhalb des Körpers. Es gibt zwar für jedes Teilproblem geeignete Feldberechnungsmethoden, jedoch keine monolithische Methode, die beide Teilprobleme gleichermaßen gut behandelt. Es bieten sich daher Hybridmethoden an, welche die Vorteile zweier Methoden zusammenführen. Im Rahmen dieser Arbeit wird das iterative Hybridverfahren MoM-MMP weiterentwickelt und zur Lösung der Gesamtproblemstellung eingesetzt. Dabei wird die Momentenmethode (MoM) auf die metallischen Objekte und die Mehrfach-Multipol-Methode (MMP) für den menschlichen Körper angewendet.

Die Anwendung der separaten MMP-Methode erfordert ein gewisses Maß an Erfahrung, was sich im Zusammenhang mit der Hybridisierung zusätzlich verschärft. Im Rahmen der Arbeit wird daher eine einfache Möglichkeit vorgestellt, wie sich Berechnungsmodelle schnell und effizient erstellen lassen, so dass auch weniger erfahrene Benutzer schnell zum Ziel kommen.


### 1.5.2 Kraftfahrzeuge

Ursprünglich wurde in Kraftfahrzeugen die Elektrotechnik allenfalls für das Erzeugen eines Zündfunken und zur Beleuchtung benötigt. Im Laufe der Zeit wurden die Möglichkeiten zur
Bild 1.4: Körperphantom mit implantierten Mess-Herzschrittmachersystem zur Bestimmung der Einkoppelspannung bei Funkbetrieb.


Mit der Komplexität der Systeme steigt jedoch auch deren Anfälligkeit gegenüber Störungen, was nicht zuletzt daher rührt, dass sich Fehler aufgrund der Vernetzung fort pflanzen können. Erschwerend kommt die starke Verbreitung von Funkdiensten hinzu, deren Einkopplungen ein zusätzliches Störpotential darstellen.

Bei Betrieb eines Mobiltelefons im Kraftfahrzeug treten besonders hohe Feldstärken auf, da die metallische Fahrgastzelle als Resonator wirkt. Bild 1.5 zeigt hierzu eine mit dem Programm FEKO [19] berechnete Feldverteilung, für den Fall, dass der Fahrer im E-Netz telefoniert [51].

Allerdings werden die Fahrzeugkabelbäume bei Betrieb eines Mobiltelefons hohen Feldstärken ausgesetzt, wodurch nennenswerte HF-Spannungen in die Steuergeräte eingekoppelt werden können. Bild 1.6 zeigt das Simulationsmodell eines Kabelbaums [51].

Die Hersteller von Kraftfahrzeugkomponenten unterliegen einem enormen Kostendruck. Gleichzeitig müssen sie eine einwandfreie Funktionsweise ihrer Systeme gewährleisten. Es ist daher
Bild 1.5: Elektrische Feldverteilung in einem Kraftfahrzeug senkrecht zur Fahrtrichtung und auf Höhe des Fahrers bei Nutzung eines Mobiltelefons im E-Netz.

Bild 1.6: Berechnungsmodell für einen Kabelbaum im Kraftfahrzeug.

wichtig, den Aufwand für die Störimmunität auf der einen Seite so gering wie möglich, aber auf der anderen Seite nur so hoch, wie es erforderlich ist, zu halten.

Dieses setzt jedoch die genaue Kenntnis der Störinflüsse voraus. Für den Fall der elektromagnetischen Wellen interessiert dabei die Höhe der Feldstärke an verschiedenen Orten im Fahrzeug. Von diesen kann dann auf die Störspannungen auf den Kabelbäumen geschlossen werden.


Prinzipiell lassen sich mit Hilfe von Feldberechnungsprogrammen Kopplungsmechanismen gut


Bild 1.7: Aufbau zur Messung der elektrischen Feldstärke bei Mobilfunkbetrieb in einem Autobus.

Für die Messung der elektrischen Feldverteilungen sind schnelle Verfahren notwendig, die gleichzeitig positionsgenau arbeiten. Hier bietet sich das im vorherigen Abschnitt bereits genannte Abtastverfahren an. Durch die zeitliche Steuerung der Abtastimpulse können die Feldstärken aus einer sich schnell bewegenden Feldsonde ausgelesen werden. Zusätzlich bieten Abtaster Vorteile im Zusammenhang mit elektrisch kurzen Antennen, so dass ein sehr linearer Frequenzgang erreicht werden kann.

Im Rahmen der Arbeit wird daher eine geeignete Antennenstruktur entwickelt, in welche die Abtastschaltung integriert werden kann. Mit der neu entstandenen Feldsonde werden abschließend Messungen an einer Fahrzeugkarosserie durchgeführt. Dabei werden verschiedene Einflussmöglichkeiten wie Verglasung, Antennenposition und Frequenz variiert und schließlich gegenübergestellt.
Kapitel 2

Herkömmliche Messverfahren

Für die Verifizierung von Berechnungsergebnissen wie auch für die experimentelle Quantisierung der EMV-relevanten Größen sind zum einen Messgeräte zur Bestimmung der elektromagnetischen Feldstärken und zum anderen Messgeräte zur Bestimmung der Einkopplungen erforderlich. Für die Messung der Felder werden Feldsonden eingesetzt, hingegen kommen für die Messung der Störeinkopplung die galvanische Ableitung und die Stromzange in Frage.

2.1 Messverfahren zur Bestimmung der Feldstärke

2.1.1 Antenne mit HF-Leitung als Ableitung


2.1.2 Antenne mit hochohmiger Ableitung

Der vorangehende Abschnitt zeigt die Schwierigkeiten der metallischen Ableitung. Feldverzerrungen können hingegen enorm reduziert werden, indem die Ableitung stark verlustbehaftet ausgeführt wird. Allerdings eignet sich diese Leitung wegen ihrer starken Dämpfung dann nicht mehr als Wellenleiter. Wird hingegen das HF-Signal mit Hilfe einer Detektordiode direkt an
der Antenne gleichgerichtet, so kann das Gleichspannungssignal über eine hochohmige Ableitung zu einem Voltmeter oder Analog-Digital-Umsetzer geleitet werden (siehe Bild 2.1). Eine detaillierte Diskussion des Verfahrens findet sich in [5].

Bild 2.1: Feldsonde mit hochohmiger Ableitung.

Mit Hilfe der beschriebenen Technik lassen sich auch Sondenmatritzen realisieren, welche die Bestimmung der Feldstärkeverteilung entlang einer Oberfläche erlauben. Durch gezieltes Aufsteuern der Matrixzeilen lassen sich die Sonden reihenweise auslesen. In [60, 96] wird die Entwicklung des Verfahrens für die Feldstärkemessung auf Kopfphantomoberflächen beschrieben.

2.1.3 Feldsensoren mit optischer Ableitung


In [67] wurde ein Messsystem vorgestellt, welches zum einen eine feldverzerrungsarme optische Verbindung hat und zum anderen die Messung des elektrischen Feldes nach Betrag und Phase ermöglicht. Durch geeignete Frequenzumsetzung konnte eine geringe Bandbreite des optisch zu übertragenden Signals eingehalten werden, so dass auf preiswerte optische Komponenten zurückgegriffen werden konnte.

Spielt der Kostenfaktor eine untergeordnete Rolle, so können optische Strecken eingesetzt werden, die mindestens die Messbandbreite des Sensors aufweisen, so dass ein optisches Signal im Sensor direkt mit dem HF-Signal moduliert werden kann. In der Datenerfassungseinheit kann es schließlich demoduliert und ausgewertet werden.

Optische Modulatoren können z. B. auf der Basis von LiNbO₃ realisiert werden. Allerdings zeigen diese Elemente nur geringe elektrooptische Effekte, so dass diese Sensoren sehr groß ausgeführt werden müssen, um eine zufriedenstellende Empfindlichkeit zu erreichen [40]. Wesentlich besser geeignet sind hingegen Wanderfeld-Modulatoren. Sie stellen eine Art Mikrostreifenleitung dar, in deren Dielektrikum längs der elektrischen Ausbreitungsrichtung ein Lichtstrahl


2.2 Messverfahren zur Bestimmung der Störeinkopplung

2.2.1 Stromzange

Ein verbreitetes Verfahren zur nichtinvasiven Messung von Störströmen ist die Stromzange. Sie stellt einen Ringkerntrafo dar, der die zu prüfende Leitung umklammert, so dass diese die Aufgabe einer Primärwicklung erfüllt. In der aufgewickelten Sekundärwicklung wird ein Strom induziert, der gemessen werden kann (Rogowski-Spule). Es ist somit möglich auf den Störstrom zu schließen. Der Frequenzbereich für dieses Verfahren ist jedoch beschränkt, so dass ab ca. 1 GHz keine genauen Ergebnisse mehr zu erwarten sind. Die Ableitungen erfolgen mit HF-Wellenleitern, die den Nachteil besitzen, dass sie das elektromagnetische Feld, welches die eigentliche Störung verursacht, beeinflussen.

2.2.2 Prüfspitze

Kapitel 3

Neuartiges Messverfahren nach dem Abtast-Prinzip für optisch gekoppelte Spannungs- und Feldsensoren

3.1 Einleitung

Für die Untersuchung von Kopplungsmechanismen in EMV-Versuchsszenarien sind elektrische Größen, wie z.B. induzierte Störströme oder Störsignale, an elektrischen Leitungen zu messen. Des Weiteren besteht ein Interesse an der Messung der elektromagnetischen Felder, von denen die Störeinkopplung ausgeht.

Wie bereits in Kapitel 2 aufgezeigt, werden für die genaue Messung elektromagnetischer Größen nahezu rückwirkungsfreie Messsonden benötigt. Feldsonden sollten daher möglichst klein sein, um das Feld nicht zu verzerren, aber auch um eine gute Ortsauflösung zu erreichen. Des Weiteren ist der Einsatz elektrischer Kabel, die zur Sonde hinführen, zu umgehen.

Wie in Abschnitt 2.1.2 und 2.1.3 bereits gezeigt wurde, werden zur Vermeidung von Feldverzerrungen zwischen der Sonde und der Datenerfassungseinheit besonders geeignete Verbindungen eingesetzt. Die hochohmige Ableitung ist für ein schnelles automatisches Messsystem wegen ihres trägen Verhaltens wenig geeignet. Daher haben sich bei modernen Messverfahren optische Übertragungsmethoden etabliert.


Dennoch stellen die Kosten der notwendigerweise breitbandigen Komponenten, wie optische Sender- und Empfängermodule, einen erheblichen Faktor dar. Die Ausrüstung zur Steuerung
von Messabläufen und zur Speicherung der Messdaten schlägt bei diesen Verfahren zusätzlich zu Buche.


Sampling-Oszillographen, nutzen den Stroboskop-Effekt aus, so dass, zwar periodische, aber sehr schnelle Vorgänge, trotz einer niedrigen Abtastrate, sichtbar gemacht werden können. Einen Überblick zur Entwicklung der Sampling-Oszillographen findet sich in [55].

Zur Realisierung dieses auf Unterabtastung basierenden Verfahrens, bedarf es, neben eines schnellen Abtasters, nur einer relativ langsamen Abtasteransteuerung. Die im Rahmen dieser Arbeit aufgebauten Sonden machen sich diesen Sachverhalt zunutze. Sie enthalten einen schnellen Abtaster, welcher mit langsamen Trigger-Impulsen angesteuert wird. Hieraus ergibt sich eine Reihe von Vorteilen:

- Eine derartige Sonde benötigt nur während eines Abtastvorgangs Strom. Der im Mittel aufgenommene Strom ist somit gering, so dass auch kleine platzsparende Batterien für eine hohe Anzahl von Messungen verwendet werden können.


- Die Bandbreite des Sensors liegt ein Vielfaches über derjenigen der optischen Übertragungssysteme zur Triggerung und Steuerung.

- Die kapazitive Eingangs impedance der Abtastschaltung, welche nur vernachlässigbare Ohm'sche Anteile besitzt, eignet sich in Verbindung mit einer elektrisch kurzen Antenne für eine Feldsonde mit vergleichswise linearem Frequenzgang. Sowohl Abtastschaltung als auch Stromversorgung können in die Antenne integriert werden.
3.2 Grundprinzip

3.2.1 Innerer Aufbau des Feldsensors und des Mess-Herzschrittmachers


![Blockschaltbild eines als Feldsonde verwendeten Sensors.](image)


### 3.2.2 Gesamtaufbau


![Blockschaltbild des Gesamtaufbaus zur Messung einer Feldverteilung.](image)

**Bild 3.2:** Blockschaltbild des Gesamtaufbaus zur Messung einer Feldverteilung.

Die Messung einer Feldverteilung erfordert eine synchrone Ansteuerung von Positioniermotor und Feldsonde. Das Steuergerät enthält daher eine gesonderte Baugruppe zur Ansteuerung des Motors. Das interne Mikroprozessorsystem hat auf diese Weise Zugriff auf alle Komponenten, so dass auch bei hohen Messgeschwindigkeiten Mechanik und Messdatenerfassung synchron zueinander sind.

### 3.2.3 Bestimmung von Betrag und Phase anhand der Abtastwerte

Neben den beschriebenen Schaltungsgruppen sind die eingesetzten Algorithmen zur Ansteuerung der Sonde und zur Berechnung des Betrags und der Phase der zu messenden Größe ein weiterer wichtiger Bestandteil. Der Zusammenhang zwischen Abtastwert, Zeitverzögerung $\Delta t$ und der interessierenden komplexen Spannung $U = \hat{U} \cdot \exp(j\varphi)$ wird im Folgenden kurz vorgestellt.

Die mit dem Sensor zu messende Spannung sei

$$ u(t) = \hat{U} \cdot \cos(\omega t + \varphi). \quad (3.1) $$

Dabei sind $\hat{U}$ und $\varphi$ die gesuchten Unbekannten. Das Referenzsignal, von welchem die Trigger-Impulse abgeleitet werden, kann wie folgt angegeben werden:

$$ u_{\text{ref}}(t) = \hat{U}_{\text{ref}} \cdot \sin(\omega t). \quad (3.2) $$

Nach der Frequenzteilung von $u_{\text{ref}}(t)$ durch $n$ ergibt sich ein Taktsignal mit steigenden Flanken zu den Zeitpunkten

$$ t_{\text{ref},i} = i \cdot T_{\text{Abtast}} \quad , \quad i \in \{0, 1, 2, \ldots\} \quad (3.3) $$

mit

$$ T_{\text{Abtast}} = n \cdot \frac{2\pi}{\omega}. \quad (3.4) $$

Die Verzögerungsschaltung addiert die Verzögerung $\Delta t$ zu $t_{\text{ref},i}$. Somit ergibt sich der Trigger-Zeitpunkt

$$ t_{\text{trigger},i} = t_{\text{ref},i} + \Delta t. \quad (3.5) $$
Werden jetzt (3.3)–(3.5) in (3.1) eingesetzt, ergeben sich die Abtastwerte des Sensors:

\[ \tilde{u}(\Delta t) = \tilde{U} \cdot \cos(\Delta t \cdot \omega + \varphi). \]  

(3.6)

Anhand der zwei Abtastwerte \( \tilde{u}(\Delta t = 0) \) und \( \tilde{u}(\Delta t = \frac{\pi}{2} \cdot \frac{1}{\omega}) \) kann die Amplitude und die Phase der zeitharmonischen Spannung \( u(t) \) berechnet werden:

\[ \tilde{U} = \sqrt{\tilde{u}(\Delta t = 0)^2 + \tilde{u}(\Delta t = \frac{\pi}{2} \cdot \frac{1}{\omega})^2} \]  

(3.7)

\[ \varphi = -\arctan \frac{\tilde{u}(\Delta t = \frac{\pi}{2} \cdot \frac{1}{\omega})}{\tilde{u}(\Delta t = 0)} \]  

(3.8)

Aus den Gleichungen (3.7) und (3.8) wird schließlich die Bedeutung des in Bild 3.2 dargestellten Verzögerungsglieds klar. Durch zwei Abtastwerte, welche zum einen mit der Verzögerungszeit \( \Delta t = 0 \) und zum anderen mit \( \Delta t = \frac{\pi}{2} \cdot \frac{1}{\omega} \) gewonnen werden, lässt sich schließlich das zeitharmonische Signal \( u(t) \) bestimmen.


3.3 Theoretische Betrachtungen und Konzeptionierung

3.3.1 Spezifikation

Für die Konstruktion und Dimensionierung des Messsystems sind einige Vorgaben zu definieren, welche sich aus den Einsatzgebieten der Messverfahren ergeben. Dabei wird, wie bereits in Kapitel 1 besprochen, das Sensorsystem zum einen als Mess-Herzschrittmacher zur Messung von Einkopplungsamplituden und zum anderen als elektrische Feldsonde ausgeführt. Die Variante als Feldsonde stellt wegen der notwendigerweise kleinen Abmessungen und der besonderen Impedanzverhältnisse der Antenne dabei die höheren Anforderungen an das Sensorsystem. Die Definition der Vorgaben geschickt daher anhand der Feldsondenvariante.

Frequenzbereich: Die mit den Messverfahren zu untersuchenden Szenarien umschließen folgende Frequenzbänder: 20 m-Amateurfunkband, 27 MHz (Pager im Krankenhaus), UKW-Rundfunk, 2 m-Amateurfunkband, TETRA (Terrestrial Trunk Radio), 70 cm-Amateurfunkband, GSM 900 und GSM 1800. Der angestrebte Frequenzbereich wird auf \( f_{\text{min}} = 10 \text{ MHz} \) bis \( f_{\text{max}} = 1,9 \text{ GHz} \) festgelegt.
Abmessungen: Die maximale Länge der Feldsonde ergibt sich aus der Resonanzfrequenz ihrer Dipolantenne: \( l < c_0/(2 \cdot f_{\text{max}}) = 79\, \text{mm} \). Größere Abmessungen sollten wegen der Antennencharakteristik vermieden werden.

Messbereich: Zur Anregung einer Messanordnung werden Sendequellen mit einer maximalen Leistung von \( P_{\text{max}} = 1\, \text{W} \) eingesetzt. Wird ein minimaler Abstand von \( r = 10\, \text{cm} \) zwischen Sendequelle und Feldsonde angenommen, so kann unter Vernachlässigung der Nahfeldverhältnisse, die maximale Feldstärke abgeschätzt werden: \( \hat{E} = \sqrt{(P_{\text{c}} \cdot Z_{\text{F0}})/(2 \pi r^2)} = 77.4\, \text{V/m} \). An diesem Ergebnis orientierend wird die für die Feldsonde größte zu messende Feldstärke auf \( \hat{E}_{\text{max}} = 100\, \text{V/m} \) definiert.

Stromversorgung: Die Feldsonde soll insbesondere für die Messung von Feldverteilungen eingesetzt werden. Dabei werden entlang eines Pfades mit hoher Messpunktdichte die Feldstärken gemessen. Für eine ausreichende Ortsauflösung soll der Punktabstand dabei \( d_{\text{Messpunkt}} < \lambda_{\text{min}}/10 = \frac{c_0}{f_{\text{max}}\cdot10} = 15.8\, \text{mm} \) sein. Es wird ein Punktabstand von \( d_{\text{Messpunkt}} = 10\, \text{mm} \) gewählt. Die im Rahmen dieser Arbeit eingesetzten Messpfade haben 1,8 m Länge und setzen sich mit aus 181 Messpunkten zusammen. Um Wartungszeiten der Feldsonde kurz zu halten, wird festgelegt, dass ein Batteriesatz mindestens für 1000 Messfaddurchläufe ausreichend sein soll, also für 181 000 Messpunkte.

Für die Erfüllung dieser Anforderungen müssen geeignete Verfahren und technische Komponenten gefunden werden. Dabei müssen die einzelnen Funktionsgruppen, wie z. B. Stromversorgung, optischer Empfänger und Abtastschaltung kombinierbar sein. In den folgenden Unterabschnitten werden die einzelnen Funktionsgruppen vorgestellt und verschiedene Lösungsmöglichkeiten diskutiert.

### 3.3.2 Vorbetrachtungen zu Abtast-Halteschaltungen

#### 3.3.2.1 Anwendungsgebiete von Abtastern

3.3.2.2 Arbeitsprinzip von Abtastern

Abtaster werden benötigt, um von einer zeitveränderlichen Größe $u(t)$ die Momentanwerte $u(t_i) = u_i$ zu gewinnen. Im idealisierten Fall\(^1\) geschieht dies durch einen Schalter, welcher zu den Zeitpunkten $t_i$ für die sehr kurze Dauer $T_s \to 0$ schließt (siehe Bild 3.3). Nach Abschluss des Schaltvorgangs steht die Abtastspannung $u_i$ über der Haltekapazität $C$.

![Bild 3.3: Idealisierte Darstellung eines Abtast-Halte-Gliedes mit Schalter und Kapazität.](image)

3.3.2.3 Abtasteffizienz


Bild 3.4 zeigt hierzu eine Abtast-Halteschaltung, bestehend aus der abzutastenden Spannung $u(t)$, dem Widerstand $R$, dem Schalter und der Haltekapazität $C$. Der Spannungsfollower stellt nachfolgenden Schaltungen die Abtastwerte zur Verfügung, ohne dass die Spannung von $C$ belastet wird. $u_{C,\mu}$ ist die Abtastspannung nach dem $\mu$-ten Abtastvorgang. Allerdings ist dieser

![Bild 3.4: Abtaster mit Kapazität als Energiespeicher.](image)

\(^1\)Der Innenwiderstand der Quelle und die Verluste des Schalters und der Kapazität werden außer Acht gelassen.
Abtastwert stets mit einem Fehler behaftet, da wegen der endlichen Zeitkonstante $RC$ ein vollständiges Aufladen nicht möglich ist. Hierzu wird die Abtasteffizienz nach [31] angegeben:

$$\eta = \frac{u_{C,\mu}}{u_\mu}.$$  \hfill (3.9)

Sie setzt die Haltespannung $u_{C,\mu}$ ins Verhältnis zu dem tatsächlichen Momentanwert $u_\mu = u(\mu T_{\text{Abtast}})$.

### 3.3.2.4 Abtastung einer kapazitiven Spannungsquelle


Eine Lösung ergibt sich, wenn die Quellenkapazität selbst als Haltekapazität verwendet wird. Bild 3.5 zeigt hierzu die Schaltung. Zu den Abtastzeitpunkten wird die Antennenfusspunktsspannung $u_q$ kurzgeschlossen, so dass $u_{C,\mu} = -u(\mu T_{\text{Abtast}})$ wird. Bild 3.6 zeigt den Spannungsverlauf vor und nach einem Abtastvorgang. $u_{C,\mu}$ ist nach dem $\mu$-ten Abtastvorgang der Gleichspannungsanteil, der mit Hilfe eines Tiefpassfilters vom HF-Anteil getrennt werden kann. Nach dem Filter liegt die Spannung $u_{TP,\mu}$ an, welche anschließend von einer Spannungsfolgerschaltung impedanzgewandelt wird und dann zur Weiterverarbeitung zur Verfügung steht.

---

**Bild 3.5:** Abtaster mit kapazitiver Signalquelle.

---

### 3.3.3 Abtastimpulserzeugung

#### 3.3.3.1 Abtastimpulsbreite

Die Abtasteffizienz $\eta$ sagt etwas darüber aus, wie weit der Energiespeicher des Haltegliedes bei einem Abtastvorgang aufgeladen wird. Werte $\eta < 1$ kennzeichnen somit eine unvollständi-
ge Ladung des Haltegliedes, mit der Folge, dass die Abtastwerte nicht richtig wiedergegeben werden.

Als Abhilfe liegt die Verlängerung der Abtastimpulsdauer $T_S$ nahe, so dass der Abtaster mehr Zeit zum Einschwingen hat. Dieses muss jedoch mit einer Reduzierung der Bandbreite erkauf werden. So führt eine Verlängerung von $T_S$ zu einem „Verschmieren“ des genauen Abtastzeitpunktes, so dass insbesondere sehr schnelle Signale „verschwinden“. Der Zusammenhang zwischen der Abtastimpulsdauer $T_S$ und der Bandbreite $b$ ist nach [31]

$$b \approx \frac{0.35}{T_S}.$$  \hspace{1cm} (3.10)

Für das aufzubauende Sensorsystem bedeutet dies, dass zum erreichen einer Bandbreite von $f_{\text{max}} = b = 1.9\, \text{GHz}$, die Abtastdauer $T_S < 184\, \text{ps}$ sein muss.

\subsection*{3.3.3.2 Spannungsrampe zur Erzeugung des Abtastimpulses}

Für die Erzeugung kurzer Abtastimpulse gibt es verschiedene Möglichkeiten. Die zunächst nahe liegendste Schaltungsvariante ist die monostabile Kippstufe. Für die Erzeugung langsamer Signale sind diese Baugruppen durchaus verbreitet und sind auch als integrierte Schaltungen verfügbar. Der Nachteil besteht jedoch darin, dass hierbei für einen Impuls grundsätzlich zwei aufeinanderfolgende Schaltvorgänge notwendig sind, was einer kurzen Impulsdauer nachteilig entgegenwirkt.

Für die Erzeugung sehr kurzer Abtastimpulse eignen sich Verfahren besser, bei denen aus einer schnellen Spannungsrampe ein Impuls generiert wird [31, 119]. Bild 3.7 zeigt hierzu zwei Möglichkeiten. Dieses ist zum einen die Differenzierung einer Spannungsrampe durch eine Kapazität und zum anderen die Impulsbreitenbegrenzung durch eine am Ende kurzgeschlossene Leitung. Für die Erzeugung kurzer Impulse sind daher sehr steile Spannungsrampen notwendig.
3.3.3.3 Erzeugung schneller Impulsflanken mit Transistoren


Ein wesentlicher Nachteil dieser Schaltungen ist ihr Stromverbrauch, weshalb sie sich für ein batteriebetriebenes Sensorsystem weniger eignen.
3.3.3.4 Erzeugung schneller Impulsflanken mit Tunnel-Dioden


![Bild 3.9: Kennlinie einer Tunnel-Diode.](image1)

![Bild 3.10: Spannung $u_D(t)$ einer Tunnel-Diode bei eingeprägtem und linear steigenden Strom $i_D(t) \sim t$.](image2)

Für die Erzeugung sehr schneller Transienten findet die Tunneldiode z. B. in Impulsreflektometern (engl. time-domain-reflectometer, TDR) Verwendung. Aber sie kann auch für die Erzeugung kurzer Impulse eingesetzt werden, indem die Flanke, wie bereits oben beschrieben, differenziert oder in eine am Ende kurzgeschlossene Leitung geführt wird. Der erzeugte Spannungssprung liegt bei diesem Bauelement bei ca. 0,5 V und entsprechend klein ist die resultierende Impulsamplitude. Für viele Abtastschalter ist diese bereits nicht mehr ausreichend, so dass letztendlich der Tunneldiode bei der Erzeugung von Abtastimpulsen eine eher untergeordnete Rolle zukommt.

3.3.3.5 Erzeugung schneller Impulsflanken mit Speicherschaltioden


![Bild 3.11: Strom- und Spannungsverlauf bei einer Speicherschaltiode.](image)
Nach dieser kurzen Einführung werden im Folgenden die theoretischen Grundlagen dargelegt und es wird auf die genaue Wirkungsweise eingegangen. In sämtlichen Anwendungen wird die Diode als ladungsgesteuerter Schalter verwendet, bei der die Impedanz in besonderer Weise von dem Vorhandensein von Ladungsträgern im PN-Übergang abhängt. Dabei kommt, neben der eigentlichen Ladung $Q$, der Minoritätsladungsträgerlebensdauer $\tau$ eine besondere Bedeutung zu. Damit die Diode nach dem Umpolen möglichst lange rückwärtsleitend bleibt, sollte $\tau$ sehr groß sein. Übliche Werte liegen größenordnungsmäßig bei $\tau \approx 10 \, \text{ns}$. Erreicht wird dieses dadurch, dass die Speicherschalttdiode eigentlich eine PIN-Diode ist, in deren intrinsischer Zone die Minoritätsladungsträger nur langsam rekombinieren. Für die gespeicherte Ladung $Q(t)$ kann die Differenzialgleichung

$$i_D(t) = \frac{dQ(t)}{dt} + \frac{Q(t)}{\tau} \quad \text{mit} \quad Q > 0$$  \hspace{1cm} (3.11)$$

aufgestellt werden [42]. Dabei ist $i_D(t)$ der zeitabhängige Diodenstrom und $\tau$ die bereits genannte Minoritätsladungsträgerlebensdauer. Wird die Differenzialgleichung für den konstanten Vorwärtsstrom $i_D(t) = I_F$ gelöst, so ergibt sich mit der Anfangsbedingung $Q(t_F) = 0$ die Lösung

$$Q(t) = \tau \cdot I_F \cdot \left[ 1 - \exp \left( -\frac{t - t_F}{\tau} \right) \right].$$  \hspace{1cm} (3.12)$$

Wie der Gleichung zu entnehmen ist, stellt sich mit dem eingeprägten Strom $I_F$ nach der Zeit $t \rightarrow \infty$ die Ladung

$$Q_F = \tau \cdot I_F$$  \hspace{1cm} (3.13)$$

ein. Nachdem der stationäre Zustand $Q(t) = Q_F$ eingetreten ist, wird die Diode zum Zeitpunkt $t = t_R$ umgepolt und der konstante Rückwärtsstrom $i_D(t) = -I_R$ eingeprägt. Dabei kann Gleichung (3.11) erneut angewendet werden. Mit der Randbedingung $Q(t_R) = Q_F$ ergibt sich die Lösung

$$Q(t) = \tau \cdot (I_F + I_R) \cdot \exp \left( -\frac{t - t_R}{\tau} \right) - \tau \cdot I_R.$$  \hspace{1cm} (3.14)$$

Der Abschaltzeitpunkt $t_S$ tritt ein, sobald alle Ladungsträger ausgeräumt sind, also $Q(t_S) = 0$ wird. Mit Hilfe der hergeleiteten Gleichungen kann schließlich die Dauer der Rückwärtsleitung berechnet werden. Hierzu wird Gleichung (3.14) zu null gesetzt und nach $t_S - t_R$ aufgelöst:

$$t_S - t_R = \tau \cdot \ln \left( 1 + \frac{I_F}{I_R} \right).$$  \hspace{1cm} (3.15)$$

Wie der Gleichung zu entnehmen ist, hängt die Dauer der Rückwärtsleitung $t_S - t_R$ nur von der Lebensdauer $\tau$ und dem Verhältnis $I_F/I_R$ ab. Dieser Zusammenhang kann schließlich genutzt werden, um die Minoritätsladungsträgerlebensdauer $\tau$ auf einfache Weise zu messen. Hierzu wird das Verhältnis der Ströme $I_F/I_R = e - 1 = 1,718$ gesetzt, so dass der Term $\ln(1 + I_F/I_R) = 1$ wird. Eingesetzt in Gleichung (3.15) wird $t_S - t_R = \tau$ und kann direkt vom Oszillogramm abgelesen werden.

Wird die Diode in komplizierteren Schaltungen eingesetzt, so sind genaue Messungen des sehr schnellen Umschaltvorgangs kaum mehr möglich. Für die Schaltungsdimensionierung sind daher
Simulationen von Vorteil, wozu jedoch geeignete Modelle erforderlich sind. Im Anhang A.1 wird auf die Modellierung eingegangen. Weitere Betrachtungen, sowohl theoretischer wie auch messtechnischer Art, finden sich in [42, 54].

Speicherschaltioden können Durchbruchspannungen von einigen zehn Volt aufweisen, so dass, gegenüber der Tunneliode, Spannungssprünge wie auch Stromspitzen von sehr hoher Amplitude erzeugt werden können [1]. Dadurch wird dieses Bauelement für Abtastschalter, welche mitunter sehr hohe Ansteuerströme benötigen, interessant.

3.3.3.6 Erzeugung schneller Impulsflanken mit nichtlinearen Wellenleitern (non-linear transmission-line, NLTL)


![Bild 3.12](image)

*Bild 3.12:* Eine Welle läuft auf ein Ufer zu und stürmt sich dabei auf.

erklären ist dieses Phänomen mit der von der Wassertiefe abhängigen Ausbreitungsgeschwindigkeit der Welle. Dabei ist es hilfreich, eine Welle als Superposition von Einzelwellen aufzufassen\(^2\). Betrachtet man hierzu eine kurze Welle, die auf einer längeren Welle aufsitzt, so „sieht“ die kurze Welle einen höheren Wasserstand und pflanzt sich mit einer anderen Geschwindigkeit als die der darunter liegenden Welle fort. In der Folge verändert sich die Form der Gesamtwelle.

Nichtlineare Wellenleiter können aus einer Leitung hergestellt werden, welche in äquidistanten Abständen mit Varaktordioden belegt ist (siehe Bild 3.13). Dabei werden die Dioden mit Hilfe

\(^{2}\)Zur Veranschaulichung wird eine Superposition angenommen, obwohl dies wegen der Nichtlinearität eigentlich nicht zulässig ist.
der Spannung $U_{\text{vor}} < 0 \text{ V}$ in Sperrrichtung vorgespannt. Hierdurch stellt sich ein bestimmter Kapazitätsbelag $C'(u)$ ein, der zusammen mit dem Induktivitätsbelag $L'$, die Phasengeschwindigkeit bestimmt. Der Kapazitätsbelag und damit die Phasengeschwindigkeit wird dabei aber

![Diagramm](image)

**Bild 3.13:** Nichtlineare Leitung aus Varaktor-Dioden.

nicht allein von der Vorspannung $U_{\text{vor}}$ bestimmt, sondern zusätzlich auch vom übertragenen Impuls. Je negativer die Spannung an einem Ort auf der Leitung ist, desto kleiner ist $C'(u)$ und desto höher ist die Phasengeschwindigkeit. Daraus ergibt sich die Impulsverformung, wie sie in Bild 3.14 stark vereinfacht dargestellt ist. Zunächst wird ein trapezförmiger Impuls links

![Diagramm](image)

**Bild 3.14:** Trapezwelle, welche aus Teilwellen $TW_i$ besteht, und sich in eine Schockwelle umwandelt.

in die Leitung gespeist. Zur Veranschaulichung wird das Signal durch vier überlagerte rechteckförmige Teilwellen $TW_1 \ldots TW_4$ approximiert. Das Spannungsniveau, auf dem sich $TW_1$ bewegt, ist $u_1$. Damit bewegt sich $TW_1$ mit der Phasengeschwindigkeit $1/\sqrt{L' \cdot C'(u_1)}$ fort. Das Spannungsniveau $u_2$ der nächsten Teilwelle ist etwas negativer, so dass ihre Phasengeschwindigkeit $1/\sqrt{L' \cdot C'(u_2)}$ etwas höher ist. Das setzt sich für die weiteren Teilwellen $TW_3$ und $TW_4$ fort. Die unterschiedlichen Phasengeschwindigkeiten führen dazu, dass sich die Teilwellen $TW_i$ derart gegeneinander verschieben, dass sie auf einer Seite bündig werden (siehe den Impulsverlauf rechts in Bild 3.14). Eine Schockwelle mit sehr kurzer Abfallszeit ist entstanden.

Diese stark vereinfachte Darstellung ist mathematisch zwar nicht zulässig, versucht aber, das Prinzip des nichtlinearen Wellenleiters zur Impulsschärfung plausibel darzulegen. Weiterführende Literatur findet sich in [56, 98, 48, 92, 70]. In diesem Zusammenhang sind auch Solitonwellen zu erwähnen, welche als dispersionslose Wellen sehr weite Distanzen überbrücken können, ohne
dabei ihre Form zu verändern [91, 64]. Interessant wurden Solitonen für optische Weitverkehrsverbindungen.

Mit nichtlinearen Wellenleitern lassen sich bei geeigneter Dimensionierung, sowohl des Leitungslayouts als auch der Varaktordioden, extrem kurze Transienten erzeugen. So wurden in [70] 6,7 ps erreicht, in [119] 2 ps mit daraus resultierender Messbandbreite von 275 GHz und in [92] wird von einer Abfallzeit von 0,68 ps berichtet, welche die Oszillographie von Signalen bis 725 GHz ermöglicht. Die hierzu nötigen Schaltungen sind allerdings nur noch integriert zu realisieren. Dabei werden besondere Anforderungen an die Halbleiterprozesse gestellt, um geeignete Dioden herstellen zu können.

3.3.3.7 Erzeugung kurzer Impulse mit Titan-Saphir-Lasern


3.3.4 Schnelle Schalter

3.3.4.1 Feldeffekttransistoren als Schalter

Mit Hilfe von MOS-Feldeffekttransistoren lassen sich mit wenig Aufwand Abtast-Halteschaltungen, wie die in Bild 3.15 dargestellte, realisieren. Sowohl die Sperreigenschaften als auch die Leitfähigkeit im eingeschalteten Zustand sind bei diesem Bauelement gut. Zum Abtasten von Spannungen bei niedrigen Frequenzen ergibt sich daher ein günstiges Verhalten. Für höhere Frequenzen und damit kürzeren Schaltzeiten muss die Haltekapazität C jedoch klein sein, wodurch dann aber die Gate-Source-Kapazität stärker ins Gewicht fällt. In der Folge koppelt das Schaltsignal s(t) in den Signalfad stärker ein, so dass um zu stark verfälscht wird. Zur Kompensation dieses Effekts sind daher etwas aufwändigere Schaltungen notwendig (siehe z. B. [118]).

Ein etwas anderer Ansatz zur Realisierung von Abtastern durch Feldeffekttransistoren wird in [1] vorgestellt. Verwendet wird hier ein Dual-Gate-MESFET (Metal Semiconductor Field Effekt Transistor, siehe z. B. [79]). Bei dieser Art von Bauelementen ist das Gate als Schottky-Kontakt ausgeführt. Dual-Gate-Transistoren, welche auch zur Mischung in Empfängerstufen
eingesetzt werden, können stark vereinfacht durch zwei unabhängig in Serie geschaltete Transistoren dargestellt werden. Dabei wird das eine Gate mit dem abzutastenden Signal gespeist und das andere mit den Abtastimpulsen. Somit kann der eine Transistor als Signalverstärker von \( u(t) \) und der andere als Abtastschalter aufgefasst werden. Durch die Wahl der Arbeitspunkte können verschiedene Betriebsmodi herbeigeführt werden [1].

![Bild 3.15: MOSFET als Schalter.](image1.png)

![Bild 3.16: NPN-Transistor als Schalter.](image2.png)

### 3.3.4.2 Bipolartransistoren als Schalter

In [13] werden verschiedene Möglichkeiten zur Realisierung von Abtast-Haltegliedern mit Bipolartransistoren untersucht. Im Gegensatz zum Feldeffektransistor kann der Bipolartransistor jedoch nicht direkt als Schalter verwendet werden, da er sonst in die Sättigung gerät und ein schnelles Wiederabschalten nicht mehr möglich ist. Ein anderer Ansatz ist in Bild 3.16 dargestellt [13]. Der Abtastvorgang besteht darin, dass der Transistor kurzfristig in seinen Arbeitspunkt gebracht wird und danach wieder stromlos geschaltet wird. Hierzu sind zwei Quellen zu schalten, zum einen den Emitterstrom \( I_V \cdot s(t) \) und zum anderen eine Offset-Spannung in Serie zur Basis. Wird der Transistor zum Abtasten in seinen Arbeitspunkt gebracht, fungiert er als Emitterfolger und lädt die Haltekapazität \( C \) auf den Wert \( u_{a,\mu} = u(\mu \cdot T_{Abtast}) - U_d + U_V \) auf. Dabei ist \( U_d \) die Schleusenspannung der Basis-Emitter-Strecke und \( U_V \) ist die zum Abtasten hinzugefügte Basis-Vorspannung. Die synchrone Steuerung der Basis-Vorspannung und des Emitterstroms \( I_V \cdot s(t) \) muss präzise erfolgen und ist daher aufwändig.

### 3.3.4.3 Zweidiodentor als Schalter

Mit Zweidiodentoren kann ein sehr schnelles Schaltverhalten erreicht werden, welches für speziell gezieltete Schottky-Dioden bereits im THz-Bereich zu finden ist. Somit ist es ersichtlich, dass der in [31] vorgestellte Diodenabtaster, dem Prinzip nach, selbst in modernsten Abtastsystemen noch zur Anwendung kommt [92].

Das einfachste Diodentor kann aus zwei in Serie geschalteten Dioden aufgebaut werden. Links in Bild 3.17 ist eine derartige Anordnung dargestellt. Dabei wird die Schaltung mit dem abzutastenden Signal \( u(t) \) gespeist. Die dreieckförmigen und komplementären Abtastimpulse \( u_{a+}(t) \) und \( u_{a-}(t) \) werden zum einen am oberen und zum anderen am unteren Anschluss angelegt.
Bild 3.17: Schaltung eines Zweidiodentores und Impulsfahrplan.

Dabei wird über die Kapazitäten der Abtastimpuls auf die Dioden weitergegeben, so dass diese leitend werden.

Der Impulsfahrplan rechts in Bild 3.17 zeigt den mit einem Schaltungssimulationsprogramm berechneten Abtastvorgang. Die leitende Phase der Dioden findet während der positiven Flanke des Abtastimpulses statt (siehe \( i_{D1}(t) \) und \( i_{D2}(t) \)). Zum Zeitpunkt des Impulsseitels hat \( u_a(t) \) bereits den Abtastwert erreicht.


Ein Nachteil dieser Schaltung ist jedoch, dass sich die Haltekapazitäten auf die Gleichtaktspannung der beiden Abtastimpulse \( u_{a+}(t) \) und \( u_{a-}(t) \) beziehen und somit die Ausgangsspannung \( u_a(t) \) beeinflusst werden kann. Mit Hilfe einer geschlitzten Masseleitung, in welcher der Abtastimpuls erzeugt wird, kann dieser Nachteil behoben werden [31, 1, 100].

3.3.4.4 Abtastung einer kapazitiven Quelle mit einem Zweidiodentor

Schwieriger wird es, wenn die Schaltung aus bestimmten Gründen anders realisiert werden muss und es für den Gleichtaktanteil der komplementären Abtastimpulse \( u_{a+}(t) \) und \( u_{a-}(t) \) keinen Massebezug gibt, wie es z.B. bei einem HF-Balance-Transformator der Fall sein kann. Bild 3.18 zeigt eine derartige Anordnung. Diese Schaltung wird u.a. als Phasedetektor für PLL-Oszillatoren im GHz-Bereich eingesetzt. Das niederfrequente Referenzsignal wird links in den HF-Balance-Transformator eingespeist. Die in Abschnitt 3.3.3.5 behandelte Speicherschaltdiode erzeugt daraus schnelle Transienten, welche als kurze Stromimpulse über die Kapazitäten \( C \) an die Dioden weitergegeben werden. Durch den in der Folge leitenden Zustand der Dioden kann der Knoten zwischen den Dioden für die Dauer des Abtastens als Widerstand mit dem Wert
$R/2$ gegen Masse aufgesetzt werden. Bei genauem Betrachten fällt auf, dass es sich hier um die Schaltung nach Bild 3.5 handelt, bei der eine kapazitive Quelle beim kohärenten Unterabtasten in regelmäßigen Zeitabständen kurzfristig über einen Widerstand $R/2$ gegen Masse geschaltet wird und sich dadurch nach einigen Abstastvorgängen ein Gleichanteil über der Kapazität $C_H$ einstellt, welcher mit umgekehrten Vorzeichen dem Abstastwert entspricht. $C_H$ fungiert somit gleichzeitig als Koppel- und als Haltekapazität. Ein Nachteil dieser Schaltung ist, dass keine Gleichanteile von $u(t)$ gemessen werden können, was jedoch für den eigentlichen Zweck, der Phasendetektion, bedeutungslos ist.

Neben dem Einsatz in Phasendetektoren, eignet sich dieser Schaltungsaufbau besonders zur Messung der Fußpunktspannung einer Dipolantenne, da es sich hierbei um eine kapazitive Quelle handelt. Allerdings besitzt die Schaltung den Nachteil, dass hier nicht direkt sondern über den Widerstand $R/2$ gegen Masse geschaltet wird, wodurch die Abtasteffizienz empfindlich beeinträchtigt wird.

3.3.4.5 Abtastung einer kapazitiven Quelle mit einem Vierdiodentor

Zur Verbesserung der Abtasteffizienz kann die Schaltung nach Bild 3.18 etwas modifiziert werden, indem die beiden Dioden durch eine Diodenbrücke ersetzt werden (siehe Bild 3.19). Bei dieser Schaltung ist einer der Brückenwiderstand direkt gegen Masse geschaltet, so dass für den Ladevorgang größere Ladeströme erreicht werden, was die Abtasteffizienz deutlich erhöht. Im Folgenden soll die Diodenbrücke etwas genauer erläutert werden. Sie ist daher links in Bild 3.20 noch einmal gesondert dargestellt. Betrachtet werden die Strom- und Spannungsverhältnisse, die während des Abstastvorgangs herrschen. Hierbei wird am Anschluss der gemeinsamen Anoden der konstante Schaltstrom $I$ eingespeist und am Anschluss der gemeinsamen Kathoden exakt der gleiche Strom wieder abgeführt. Die Brücke ist somit leitend, so dass der Strom $I_q$ fließt, sobald $U_{Brücke}$ von null abweicht. Unter Annahme der bekannten Diodenkennlinie
Bild 3.19: Abtaster mit Diodenbrücke für eine elektrische Dipolantenne.

\[ I_D = I_S \cdot (\exp\left(\frac{U_D}{U_T}\right) - 1) \]

kann der Zusammenhang zwischen \( I_q \) und \( U_{\text{Brücke}} \) angegeben werden:

\[ I_q = (I + 2I_S) \frac{\sinh \left( \frac{U_{\text{Brücke}}}{U_T} \right)}{1 + \cosh \left( \frac{U_{\text{Brücke}}}{U_T} \right)} \]  

(3.16)

Dabei ist \( U_T \) die Temperaturspannung und \( I_S \) die Diodensättigungsstrom. Rechts in Bild 3.20 ist das Diagramm für \( I_S = 1 \mu A \) und \( U_T = 25 \text{ mV} \) dargestellt. Hier ist auch zu erkennen, dass der geschaltete Strom \( I_q \) nicht größer werden kann als der eingeprägte Schaltstrom \( I = 10 \text{ mA} \). Des Weiteren ist bemerkenswert, dass sich für den gegebenen Strom \( I \) bereits ein verhältnismäßig kleiner differenzieller Widerstand für \( U_{\text{Brücke}} \approx 0 \) ergibt. Dieser kann unter Vernachlässigung des sehr kleinen Stroms \( I_S \) als

\[ R_S = \frac{2U_T}{I} \]  

(3.17)

angegeben werden. So ergibt sich z. B. für einen Schaltstrom von \( I = 25 \text{ mA} \) ein Widerstand von

\[ R_S = 2 \Omega \]

 Bild 3.20: Diodenbrücke mit Kennlinie für \( I_S = 1 \mu A \) und \( U_T = 25 \text{ mV} \).

\[ R_S = 2 \Omega, \] was bereits im Bereich der Diodenbahnwiderstände liegt, welche in dieser Betrachtung jedoch nicht berücksichtigt wurden. Eine eingehendere Betrachtung der Arbeitsweise und des Verhaltens von Vierdiodentoren findet sich in [87].
3.3.4.6 Optische Schalter


Ebenfalls zur Anwendung kommt ein elektrooptischer Modulator in [44]. In dieser Arbeit wird ein Abtastsystem für die Messung an integrierten Schaltungen weiterentwickelt. Dabei wird der Pockels-Effekt ausgenutzt, bei dem sich das Licht in Abhängigkeit vom anliegenden elektrischen Feld unterschiedlich stark bricht. Dieses Verfahren ermöglicht eine sehr feine Ortsauflösung.

All diesen direkten optischen Abtastverfahren ist jedoch zu Eigen, dass die sehr kurzen Abtastimpulse, welche sich im Bereich von 100 fs bewegen, über die optische Strecke hin zum Sensor übertragen werden müssen. Dieses widerspricht jedoch der Grundidee des angedachten Verfahrens, bewusst preiswerte und damit langsame optische Verbindungen zu verwenden und trotzdem ein sehr schnelles Signal messen zu können.

3.3.5 Messwertübertragung

3.3.5.1 Vergleich der digitalen mit der analogen Messwertübertragung

Die Ausgangsspannung des Abtasters kann nicht mit Hilfe von elektrischen Leitern von der Sonde weg hin zur Datenerfassungseinheit abgeleitet werden, da der Leiter das elektrische Feld in der Messumgebung stören würde. Statt dessen bieten sich hier optische Strecken zur Ableitung an. Optische Ableitungsverfahren besitzen jedoch zwei grundlegende Einschränkungen:

- Die Übertragungsdämpfung hängt vom Biegeradius der optischen Faser und von deren Steckverbindungen ab und ist damit Schwankungen unterworfen.
• Die Übertragungsgröße ist grundsätzlich vorzeichenlos.

Diese Eigenschaften lassen eine direkte Übertragung des abgetasteten Signals $u_{a,n}$ zunächst nicht zu, so dass ein geeignetes Verfahren herangezogen werden muss. Dieses kann zum einen analog und zum anderen digital sein.

Im digitalen Fall werden nur Nullen und Einsen übertragen, so dass die oben genannten Einschränkungen bedeutungslos werden. Die Signalaufbereitung ist jedoch wesentlich aufwändiger. Hierzu gibt es z. B. die folgenden Möglichkeiten:

• Analog-Digital-Umsetzung
• Spannungs-Frequenz-Umsetzung

Dabei ist die Analog-Digital-Umsetzung mit Hilfe von integrierten Schaltungen auch mit sehr hohen Auflösungen prinzipiell möglich. Allerdings ist zum einen die Umsetzungsrate begrenzt, so dass die Messgeschwindigkeit des Sensors herab gesetzt wird, und zum anderen reduziert der zusätzliche Stromverbrauch des Umsetzers die Batterielebensdauer.


3.3.5.2 Analoges Verfahren zur Messwertübertragung

Der Gleichanteil der zu messenden Spannung bzw. des zu messenden Feldes ist für die vorgesehenen EMV-Anwendungen des Sensorsystems nicht von Bedeutung und kann daher als Informationsträger herangezogen werden. Wird dieses genutzt, indem die zu übertragende Größe mit dem definierten Gleichanteil $U_{ref}$ belegt wird, kann dieser nach der Übertragung ausgewertet werden, um die Kabeldämpfung kompensieren zu können. Bild 3.21 zeigt die Vorgehensweise. Im linken Diagramm ist das vom Abtaster gelieferte Signal dargestellt, welches keinen Gleichanteil besitzt. Das mittlere Diagramm zeigt das Signal, nachdem sensorintern der von einer Referenzspannungsquelle erzeugte Gleichanteil $U_{ref}$ hinzugegeben wurde. Dieses Signal kann auf einfache Weise optisch übertragen werden. Dabei erhält es die Dämpfung $a_{L}$. Das gedämpfte Signal ist
im rechten Diagramm dargestellt. Der Gleichanteil dieses durch die optische Übertragung gedämpften Signals ist $a_L \cdot U_{\text{ref}}$ und kann durch Tiefpassfilterung leicht bestimmt werden. Da der ursprüngliche Gleichanteil $U_{\text{ref}}$ bekannt ist, kann der Dämpfungs faktor $a_L$ berechnet und zur Rekonstruktion der ursprünglichen Signalamplitude herangezogen werden.

Die einzigen Einschränkungen dieses Verfahrens sind, dass die Amplitude der zu übertragenden Abtastwerte den Referenzwert $U_{\text{ref}}$ nicht überschreiten darf und dass sich die Übertragungsstrecke annähernd linear verhalten muss.

### 3.3.6 Datenrückgewinnung und Bestimmung von Amplitude und Phasenwinkel

#### 3.3.6.1 Verfahren für Abtastzeitpunkt-Verzögerung $\Delta t_i$ als Vielfache eines Periodenviertels

Im Abschnitt 3.2.3 wurde bereits die grundlegende Vorgehensweise zur Bestimmung der Amplitude und des Phasenwinkels dargestellt. Dabei lautete das zu messende Signal

$$ u(t) = \hat{U} \cdot \cos (\omega t + \varphi). \tag{3.18} $$

Damit ergeben sich die von $\Delta t_i$ abhängigen Abtastwerte

$$ u_{a,i} = \hat{U} \cdot \cos (\omega \cdot \Delta t_i + \varphi). \tag{3.19} $$

Im Sensor wird zu der Abtastspannung $u_{a,i}$ die Referenzspannung $U_{\text{ref}}$ aufaddiert und dann mit Hilfe der optischen Übertragungsstrecke der Datenerfassungseinheit zugeführt. Dort wird vom optischen Empfänger das Signal empfangen und als Wert $m_i$ erkannt. $m_i$ setzt sich somit aus der Dämpfung der optischen Strecke $a_L$, dem Abtastwert $u_{a,i}$, der Referenzspannung $U_{\text{ref}}$ und einem Fehler $\epsilon_i$ wie folgt zusammen:

$$ m_i = a_L \cdot (u_{a,i} + U_{\text{ref}}) + \epsilon_i. \tag{3.20} $$
Für die Bestimmung des Signals sind lediglich drei Abtastwerte \( u_{a,i} \) notwendig. Werden jedoch vier Abtastwerte, und zwar jeweils bei \( \Delta t_i = \frac{2\pi}{\omega} \cdot \frac{i-1}{4} \) mit \( i \in \{1, 2, 3, 4\} \), genommen, lässt sich die Messwertübertragung und Auswertung auf sehr einfache Weise durchführen. Die dadurch entstandene Redundanz stellt keinen Nachteil dar, da diese wegen der Mittelwertbildung das Rauschen reduziert und damit die Dynamik des Messsystems erhöht.

Nach kurzer Rechnung kann gezeigt werden, dass die Messwerte nach folgendem Schema ausgewertet werden können: Zunächst wird der Mittelwert \( M \), welcher dem Gleichanteil \( a_L \cdot U_{\text{ref}} \) entspricht, nach

\[
M = \frac{1}{4} \sum_{i=1}^{4} m_i
\]

bestimmt. Jetzt lässt sich der Schätzwert \( \hat{U}' \) nach

\[
\hat{U}' = \frac{U_{\text{ref}}}{M} \cdot \sqrt{\left(\frac{m_1 - m_3}{2}\right)^2 + \left(\frac{-m_2 + m_4}{2}\right)^2}
\]

und der des Phasenwinkels \( \varphi' \) nach

\[
\varphi' = \arctan\frac{-m_2 + m_4}{m_1 - m_3}
\]

bestimmen.

Das oben beschriebene Verfahren ist somit eine einfache Möglichkeit zur analogen Messwertübertragung über eine optische Strecke. Durch die Bestimmung des Mittelwerts \( M \) kann die Übertragungsdämpfung berücksichtigt werden. Dieses Verfahren liefert jedoch nur dann genaue Ergebnisse, wenn die vorgegebenen Zeitverzögerungen \( \Delta t_i \) jeweils exakt um ein Periodenviertel auseinander liegen.

### 3.3.6.2 Verfahren für von Vielfachen eines Periodenviertels abweichenden Abtastzeitpunkt-Verzögerungen \( \Delta t_i \)

In der Praxis werden Signalverzögerungen üblicherweise mit Hilfe von zuschaltbaren Verzögerungsgliedern realisiert, weshalb sich sowohl Fehler aufgrund von Ungenauigkeiten der Einzelglieder als auch Diskretisierungsfehler der Gesamtverzögerungseinheit nicht vermeiden lassen.

Im Folgenden soll ein Verfahren entwickelt werden, welches auch mit von \( \frac{2\pi}{\omega} \cdot \frac{i-1}{4} \) abweichenden \( \Delta t_i \) genaue Ergebnisse liefert. Hierzu bietet sich zunächst eine grafische Darstellung der zu messenden Größe \( \vec{u} \) (Amplitude und Phasenwinkel) und der Abtastzeitpunkte \( \Delta t_i \), wie in Bild 3.22 dargestellt, an. Diese Anordnung entspricht der üblichen Darstellung in der komplexen Ebene, jedoch wird im Folgenden nicht komplex gerechnet, sondern mit Hilfe der Vektorrechnung und von geometrischen Überlegungen.

Die Abtastvektoren sind dabei

\[
\vec{v}_i = \begin{pmatrix} \cos(-\omega \cdot \Delta t_i) \\ \sin(-\omega \cdot \Delta t_i) \end{pmatrix}
\]

(3.24)
und die zu messende Spannung ist

\[
\bar{u} = \hat{U} \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}.
\]  (3.25)

Der Abtastwert \( u_{a_i} \) ist somit die Projektion von \( \bar{u} \) auf \( \vec{v}_i \), also das Skalarprodukt \( u_{a_i} = \bar{u} \cdot \vec{v}_i \).

Das an der Datenerfassungseinheit ankommende optische Signal ist somit

\[
m_i = \bar{x} \cdot \vec{v}_i + M + \epsilon_i,
\]  (3.26)

wobei \( \bar{x} = a_L \cdot \bar{u} \) und \( M = a_L \cdot U_{\text{ref}} \) ist. In \( \epsilon_i \) sind sämtliche durch Störungen und Rauschen verursachten Messfehler enthalten.

Durch die Wahl unterschiedlicher \( \vec{v}_i \) erhält man mehrere Gleichungen, die schließlich zur Lösung der Unbekannten \( \bar{x} \) und \( M \) dienen. Dabei ist jedoch zu beachten, dass die Werte \( m_i \) nicht in mathematischer Reinheit vorliegen, sondern mit den Fehlern \( \epsilon_i \) behaftet und daher lediglich Schätzwerte sind. So kann bei ungünstiger Wahl der Abtastvektoren \( \vec{v}_i \) ein kleiner Messfehler zu einem stark verfälschten Ergebnis führen. In [114] werden verschiedene Verfahren zur Kreisregression und deren Empfindlichkeiten gegenüber von Messfehlern diskutiert. So kann der Einfluss der Fehler minimiert werden, wenn Messpunkte nicht zu nahe bieinander liegen. Außerdem ist es günstig, wenn die Vektoren der Paare \((\vec{v}_1, \vec{v}_2), (\vec{v}_2, \vec{v}_3), (\vec{v}_3, \vec{v}_4), (\vec{v}_4, \vec{v}_1)\), welche jeweils ein eigenes Koordinatensystem aufspannen, möglichst senkrecht zueinander stehen. Es kann durch jedes Vektor-Paar eine eigene Schätzung \( \bar{x}_i' \) des gesuchten Vektors \( \bar{x} \) jeweils durch

\[
\begin{align*}
\bar{x}_1' &= (m_1 - M) \cdot \vec{E}_{12} + (m_2 - M) \cdot \vec{E}_{21} \\
\bar{x}_2' &= (m_2 - M) \cdot \vec{E}_{21} + (m_3 - M) \cdot \vec{E}_{32} \\
\bar{x}_3' &= (m_3 - M) \cdot \vec{E}_{32} + (m_4 - M) \cdot \vec{E}_{43} \\
\bar{x}_4' &= (m_4 - M) \cdot \vec{E}_{43} + (m_1 - M) \cdot \vec{E}_{14}
\end{align*}
\]  (3.27-3.30)

angesetzt werden. Dabei ist

\[
\vec{E}_{ij} = \frac{1}{\vec{v}_i \times \vec{v}_j} \cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \vec{v}_j.
\]  (3.31)
Durch Mittelwertbildung der vier Schätzwerte \( \bar{x}'_i \) bis \( \bar{x}'_4 \) kann die etwas genauere Schätzung

\[
\bar{x}' = \frac{1}{4} \sum_{i=1}^{4} \bar{x}'_i
\]

berechnet werden.

Allerdings ist zunächst der Wert \( M \) zu ermitteln. Da jedoch das Gleichungssystem überbestimmt ist, bieten sich mehrere Möglichkeiten zur Berechnung von \( M \) an. Im Rahmen dieser Arbeit wurde hierzu der Ansatz

\[
|x'_1 - \bar{x}'|^2 + |x'_2 - \bar{x}'|^2 + |x'_3 - \bar{x}'|^2 + |x'_4 - \bar{x}'|^2 = \text{min}
\]

gewählt. Zur Lösung werden die Gleichungen (3.27) bis (3.32) in (3.33) eingesetzt und anschließend zur Minimumsuche nach \( M \) differenziert. Auf die etwas aufwändigere Herleitung wird jedoch an dieser Stelle verzichtet. Die genauen Gleichungen zur Berechnung der Schätzwerte \( \hat{U}' \) und \( \varphi' \) finden sich im Anhang A.2.

Bild 3.23 zeigt den gemessenen Verlauf einer Amplitude und Phase nach Gleichungen (3.21) bis (3.23). Deruelle Verlauf zeigt den Einfluss der Ungenaigkeiten des Verzögerungsglieds. Sind hingegen die tatsächlichen \( \Delta t_i \) des Verzögerungsglieds bekannt, was sich durch Vermessung bewerkstelligen lässt, kann mit Hilfe des Ansatzes (3.33) die Genauigkeit des Messsystems erhöht werden. Bild 3.24 zeigt das Ergebnis.

\[\text{Bild 3.23: Verlauf der gemessenen Amplitude und Phase über der tatsächlichen Phase des Eingangssignals ohne Korrektur der Fehler des Verzögerungsglieds. } f = 1 \text{ GHz und } \hat{U} = 100 \text{ mV.}\]

\[\text{Bild 3.24: Verlauf der gemessenen Amplitude und Phase über der tatsächlichen Phase des Eingangssignals mit Korrektur der Fehler des Verzögerungsglieds. } f = 1 \text{ GHz und } \hat{U} = 100 \text{ mV.}\]
3.3.7 Abtastalgorithmus

In Abschnitt 3.3.6 wurde gezeigt, wie anhand sukzessiver Abtastungen, jeweils mit einer anderen Verzögerung \( \Delta t_i \), die Amplitude sowie der Phasenwinkel rekonstruiert wird. Bei einem Messdurchlauf, wie er z. B. für die Messung einer Feldverteilung durchgeführt wird, ist für jeden Ort mindestens ein Satz von Messwerten \( m_i \) mit \( i \in \{1, 2, 3, 4\} \) zu verwenden. Werden für einen Ort mehrere Sätze genommen, lässt sich durch Mittelwertbildung die Dynamik des Sensorsystems erhöhen. Allerdings erhöht sich mit der Anzahl der Messungen pro Ort der mittlere Stromverbrauch. Im Folgenden wird der Algorithmus angegeben, mit welchem der Sensor angesteuert wird, so dass sich eine gute Dynamik bei gleichzeitig niedrigem Stromverbrauch ergibt. Bild 3.25 zeigt den Fahrplan.

![Diagramm](image)

**Bild 3.25:** Ansteuerung und Triggerung des Sensors.

Der Schrittmotor läuft kontinuierlich den Messpfad ab. Dabei wird alle 400 ms eine Messung durchgeführt, wobei insgesamt vier Sätze, jeweils bestehend aus \( m_i \), \( i \in \{1, 2, 3, 4\} \), erfasst werden. Für die Messung \( m_i \) wird die Zeitverzögerung \( \Delta t_i \) eingestellt und dann kohärent abgetastet. Somit wird 1 ms lang der gleiche Momentanwert gemessen, so dass sich der Abtaster, die optische Übertragungsstrecke und ein nachgeschalteter Filter, welcher der Mittelwertbildung dient, einschwingen können. Das Signal wird schließlich analog zu digital gewandelt und abgespeichert.
3.3.8 Apertur-Jitter und sein Einfluss auf die Bandbreite der Messeinrichtung

3.3.9 Definition des Apertur-Jitters

Die tatsächlichen Abtastzeitpunkte werden nicht nur durch deterministische Begebenheiten wie z. B. Kabellaufzeiten beeinflusst, sondern auch durch zufällige Prozesse, welche unter den Begriff Apertur-Jitter fallen.

3.3.9.1 Ursachen des Apertur-Jitters

In Abschnitt 3.3.6 wurden die Algorithmen zur Bestimmung von Betrag und Phase diskutiert. Für eine möglichst genaue Messung, insbesondere der Phase, ist die Berücksichtigung der tatsächlichen Abtastzeitpunkte entscheidend. Systematische Fehler der Zeitverzögerung \( \Delta t \) konnten ermittelt und in den Algorithmus eingebunden werden, so dass schließlich sehr genaue Messungen ermöglicht wurden.

Problematischer hingegen sind die zufälligen Fehler \( t_e \) (Apertur-Jitter). Beiträge zu diesem Jitter entstehen entlang der gesamten Signalkette, angefangen bei der Referenzsignalanzeigung, weiter über die Verzögerungseinheit und optische Strecke bis zum eigentlichen Abtaster.


3.3.9.2 Wahrscheinlichkeitsdichte der Abtastwerte

Der Apertur-Jitter bestimmt zusammen mit der Abtastimpulsbreite die Bandbreite des Messsystems und stellt somit einen wichtigen Aspekt dar. Im Folgenden wird daher der Einfluss des Jitters auf das Messergebnis untersucht.

Nach [65] sind in linearen elektrischen Netzwerken die Werte einer rauschenden Spannung gaußverteilt. Ist die Rauschspannung im Vergleich zu einem Trigger-Signal klein, so kann die
Umwandlung des Trigger-Flankenrauschens in den Jitter der Trigger-Zeitpunkte als linear angenommen werden, so dass diese Zeitpunkte ebenfalls gaußverteilt sind. Die Verteilung hierzu lautet

\[
\rho_\varepsilon(t_\varepsilon) = \frac{1}{t_{\varepsilon,\text{RMS}} \sqrt{2\pi}} \exp\left(-\frac{t_\varepsilon^2}{2t_{\varepsilon,\text{RMS}}^2}\right).
\]

Dabei ist der RMS-Jitter \( t_{\varepsilon,\text{RMS}} \) die Standardabweichung von \( t_\varepsilon \) und bestimmt somit die „Breite“ der Gauß’schen Glockenkurve.

Zur Veranschaulichung ist in Bild 3.26 die abtastende zeitharmonische Spannung

\[
u(t) = \hat{U} \cdot \cos(\omega t + \varphi)
\]
dargestellt. Der gewünschte Abtastzeitpunkt liegt bei \( \Delta t \). Laut dem Bild müsste für diesen Fall der Abtastwert bei \( u_a = u(\Delta t) \approx -\hat{U} \) liegen. Der eigentliche Abtastzeitpunkt \( \Delta t \) wird jedoch durch den Jitter \( t_\varepsilon \) verfälscht. \( t_\varepsilon \) ist dabei nach der ebenfalls im Bild dargestellten Gauß’schen Glockenkurve \( \rho_\varepsilon(t_\varepsilon) \) verteilt. Für das eingezeichnete \( t_\varepsilon \) ergibt sich ein Abtastwert \( u_a = u(\Delta t + t_\varepsilon) \), der erheblich von dem gewünschten Abtastwert \( u_a = u(\Delta t) \) abweicht.

Für die Optimierung des Dynamikbereichs, aber auch zur Überwindung der nicht idealen Abtasteffizienz, können sehr viele Abtastwerte \( u_{a,\mu} = u(\Delta t + t_\varepsilon,\mu + \mu \cdot T_{\text{Abtast}}) \) genommen werden, so dass zum einen die Haltekapazität des Abtasters, trotz \( \eta < 1 \), auf den nahezu vollen Wert geladen wird und zum anderen durch Mittelwertbildung das Rauschen reduziert wird. Allerdings wird die Bandbreite des Messsystems weiterhin durch den Jitter eingeschränkt, da z.B. der Spannungsscheitel \(-\hat{U}\), wie im Bild dargestellt, nur selten „getroffen“ wird und sich durch die Mittelwertbildung nur betragsmäßig kleinere Werte als \( \hat{U} \) ergeben können, was sich umso stärker auswirkt, je kleiner die Periode von \( u(t) \) im Vergleich zum Jitter \( t_{\varepsilon,\text{RMS}} \) ist.

\[\text{Bild 3.26: Einfluss des Jitters auf die Abtastzeitpunkte.}\]

\[\text{\begin{itemize}
\item \[u(t) = \hat{U} \cdot \cos(\omega t + \varphi)\]
\item \[\rho_\varepsilon(t_\varepsilon) = \frac{1}{t_{\varepsilon,\text{RMS}} \sqrt{2\pi}} \exp\left(-\frac{t_\varepsilon^2}{2t_{\varepsilon,\text{RMS}}^2}\right)\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[u_a = u(\Delta t)
\item \[\Delta t \approx -\hat{U}\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[u_{a,\mu} = u(\Delta t + t_\varepsilon,\mu + \mu \cdot T_{\text{Abtast}})\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[\eta < 1\]
\item \[\hat{U}\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[\mu \in \{0, 1, 2, 3, \ldots\}\]
\item \[T_{\text{Abtast}}\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[u(t)\]
\end{itemize}}\]

\[\text{\begin{itemize}
\item \[\mu \in \{0, 1, 2, 3, \ldots\}\]
\item \[T_{\text{Abtast}}\]
\end{itemize}}\]
Hierzu soll im Folgenden der Mittelwert $\overline{\varphi}$ berechnet werden, so dass eine Aussage über die Frequenzabhängigkeit getroffen werden kann. Ein weiterer interessanter Aspekt ist, ob die ursprüngliche $\cos(\omega \cdot \Delta t + \varphi)$-Charakteristik verzerrt wird, da dieses einen störenden Einfluss auf den Algorithmus zur Betrags- und Phasenauswertung von $u(t)$ hätte (siehe Abschnitt 3.3.6).

Bevor jedoch der Mittelwert $\overline{\varphi}$ berechnet wird, soll zunächst die Wahrscheinlichkeitsdichte $\rho_u(u_a)$ bestimmt werden, da sie den Einfluss des Jitters auf das Abtasterausgangssignal gut veranschaulicht.

Zunächst ergibt sich $\rho_u(u_a)$ aus den Einzelwahrscheinlichkeiten für die Fälle, dass $u(t)$ im Intervall der hypothetischen Abtastwerte $[u_a; u_a + du]$ liegt. Dabei muss die Periodizität von $u(t)$ berücksichtigt werden, wie es in Bild 3.26 dargestellt ist. Hierzu ist das Intervall $[u_a; u_a + du]$ auf die in Frage kommenden Einzellinmale für $t_e$ abzubilden. Daraus ergibt sich der Ansatz

$$\rho_u(u_a) = \sum_{k=-\infty}^{\infty} \left[ \rho_t \left( t_e + k \cdot \frac{2\pi}{\omega} \right) \cdot \frac{dt_e}{du_a} + \rho_t \left( -t_e - 2 \cdot \Delta t - 2 \cdot \frac{\varphi}{\omega} + k \cdot \frac{2\pi}{\omega} \right) \cdot \left| \frac{dt_e}{du_a} \right| \right]. \quad (3.36)$$

Wird in diese Gleichung die Gleichung (3.34) eingesetzt, ergibt sich nach weiterer Umformung

$$\rho_u(u_a) = \frac{1}{\omega \sqrt{U^2 - u_a^2}} \cdot \frac{1}{t_e \cdot \text{RMS} \cdot 2\pi} \cdot \sum_{k=-\infty}^{\infty} \left\{ \exp \left[ -\left( \frac{\frac{1}{\omega} \arccos \frac{u_a}{U} - \frac{\varphi}{\omega} - \Delta t + k \cdot \frac{2\pi}{\omega}}{2t_e \cdot \text{RMS}} \right)^2 \right] \right. + \exp \left[ -\left( \frac{-\frac{1}{\omega} \arccos \frac{u_a}{U} - \frac{\varphi}{\omega} - \Delta t + k \cdot \frac{2\pi}{\omega}}{2t_e \cdot \text{RMS}} \right)^2 \right] \right\}. \quad (3.37)$$

Mit Hilfe der Wahrscheinlichkeitsdichte $\rho_u(u_a)$ ist es jetzt möglich, die Auftrittswahrscheinlichkeit eines bestimmten Abtastwerts $u_a$ vorherzusagen. Bild 3.27 zeigt exemplarisch $\rho_u(u_a)$ für verschiedene Werte des Apertur-Jitters. Die Prozentangabe bezieht sich dabei auf das Verhältnis von $t_e \cdot \text{RMS}$ zur Periode des harmonischen Signals $u(t)$, also $2\pi/\omega$. Für das Diagramm ist $\varphi$ so eingestellt, dass sich $u_a = 0.5 \text{ V}$ ergeben müsste. Erwartungsgemäß „verwischen“ die Auftrittswahrscheinlichkeiten mit steigendem Jitter.

### 3.3.9.3 Zusammenhang von Apertur-Jitter und Frequenzgang

Für die Berechnung des Erwartungswerts $\overline{t_e}$ kann prinzipiell die Wahrscheinlichkeitsdichte $\rho_u(u_a)$ benutzt werden. Diese aufwändige Rechnung kann jedoch umgangen werden, wenn statt dessen die Wahrscheinlichkeitsdichte $\rho_t(t_e)$ nach Gleichung (3.34) verwendet wird. Das Integral hierzu lautet

$$\overline{t_e} = \int_{-\infty}^{\infty} u(t_e) \cdot \rho_t(t_e - \Delta t) dt_e. \quad (3.38)$$
Bild 3.27: Dichteverteilung der Abtastwerte für $\varphi = \frac{2}{3}\pi$ und $\Delta t = 0$ für verschiedene Apertur-Jitter.

Werden die Gleichungen (3.34) und (3.35) in (3.38) eingesetzt, so kann zur weiteren Lösung des Integrals die Beziehung

$$\int_{0}^{\infty} e^{-a^2x^2} \cos bx \, dx = \frac{\sqrt{\pi}}{2a} \cdot e^{-b^2/4a^2}$$

(3.39)


$$\bar{u_a} = \dot{U} \cos (\omega \cdot \Delta t + \varphi) \cdot \exp \left( -\frac{(\omega \cdot t_{\text{RMS}})^2}{2} \right)$$

(3.40)

Dieser Zusammenhang zeigt, dass die $\cos(\omega \cdot \Delta t + \varphi)$-Abhängigkeit erhalten bleibt. Diese wichtige Eigenschaft hat zur Folge, dass die Messfehler des Sensors, die durch den Jitter verursacht werden, sich nur auf seinen Frequenzgang, aber nicht auf seinen Phasengang, auswirken.

Während sich die Phasenabhängigkeit, wie dargestellt, gutmütig verhält, wirkt sich im Gegensatz hierzu der Jitter stark auf die gemessene Amplitude aus. Der durch den gaußverteilten Jitter verursachte Frequenzgang ist dem Prinzip nach wieder eine Gauß'sche Glockenkurve und hat somit einen quadratisch exponentiellen Abfall. Mit Hilfe von Gleichung (3.40) kann der Zusammenhang zwischen der 3 dB-Bandbreite $f_{3dB}$ und dem Jitter $t_{\text{RMS}}$ angegeben werden. Er lautet

$$f_{3dB} \cdot t_{\text{RMS}} = 0,133.$$  

(3.41)

Wird für $f_{3dB}$ die für das Messsystem geforderte Frequenz $f_{\text{max}} = 1,9$ GHz eingesetzt, ergibt sich ein zulässiger Jitter von $t_{\text{RMS,max}} = 70$ ps. Bild 3.28 zeigt den jitterverursachten Frequenzgang.
3.3.9.4 Einbeziehung der Abtastimpulsbreite

Der Frequenzgang des Messsystems wird zusätzlich durch die Abtastimpulsbreite beeinflusst, und zwar so, dass der zulässige Jitter dadurch kleiner wird. Die Impulsdauer kann berücksichtigt werden, wenn angenommen wird, dass die Impulse gaußförmig sind. Dies ist durchaus zulässig, wie sich später in Kapitel 4 noch zeigen wird. Im Folgenden wird für den Abtastimpulsstrom

\[ i_S(t) = \hat{I}_S \cdot \exp \left( -\frac{4 \ln 2}{T_S^2} \cdot t^2 \right) \]

(3.42)

angesetzt. Dabei ist \( \hat{I}_S \) der Maximalstrom und \( T_S \) die Abtastimpulsdauer, so dass \( i_S \left( \pm \frac{T_S}{2} \right) = \frac{\hat{I}_S}{2} \)

gilt. Der gaußkernförmige Strom \( i_S(t) \) treibt den Dioden-Schalter gemäß Bild 3.20, welcher daraufhin nach Gleichung (3.17) durch den zeitabhängigen Leitwert

\[ b(t) = \frac{i_S(t)}{2U_T} \]

(3.43)

ersetzt werden kann. Das Abtast-Halteglied ist vereinfacht in Bild 3.29 dargestellt. Die Haltekapa-

![Diagram](image)

**Bild 3.29:** Abtastung des periodischen Signals \( u(t) \) durch den zeitveränderlichen Leitwert \( b(t - \mu T_{\text{Abtast}} - \Delta t) \).

Die Kapazität \( C \) sei dabei so groß, dass sich die Spannung \( U_C \) während eines einzelnen Abtastvorgangs nur vernachlässigbar ändert, jedoch nach sehr vielen Abtastungen mit der Abtastwiederholzeit \( T_{\text{Abtast}} \), welche ein Vielfaches der Periode von \( u(t) \) ist, gegen den mit \( b(t - \Delta t) \) gewichteten Mittelwert von \( u(t) \) strebt, so dass

\[ \overline{u_a} = U_C = \frac{1}{\int_{-\infty}^{\infty} b(t)dt} \cdot \int_{-\infty}^{\infty} u(t) \cdot b(t - \Delta t)dt \]

(3.44)
gilt. Diese Gleichung entspricht der Gleichung für den Jitter (3.38). Somit ist der Koeffizienten-
vergleich zwischen den Gleichungen (3.42) und (3.34) zulässig und es kann ermittelt werden, wie
die Abtastimpulsbreite $T_S$ skaliert werden muss, damit sie in gleicher Weise auf die Bandbreite
Einfluss nimmt wie der Jitter. Damit erhält man

$$t_{\text{c,Abtast}} = \frac{T_S}{\sqrt{8 \ln 2}} \quad (3.45)$$

$t_{\text{c,Abtast}}$ kann somit anstatt $t_{\text{c,RMS}}$ in Gleichung (3.40) eingesetzt werden, um die Abhängigkeit
des Abtastsignals $n_S$ von der Abtastimpulsbreite $T_S$ zu ermitteln. Des Weiteren ergibt sich, in
Gleichung (3.41) eingesetzt, der unmittelbare Zusammenhang zwischen Abtastimpulsbreite $T_S$
und der 3 dB-Grenzfrequenz $f_{\text{3,db}}$

$$f_{\text{3,db}} \cdot T_S = 0,133 \cdot \sqrt{8 \ln 2} = 0,313. \quad (3.46)$$

Dieses entspricht etwa dem Zusammenhang (3.10), welcher in [31] angegeben wurde.

Bis hierher wurde der Einfluss der Abtastimpulsbreite (3.46) und der des Jitters (3.41) jeweils
getrennt angegeben. Diese können aber auf einfache Weise kombiniert werden, wenn auf eine
Eigenschaft der Normalverteilung zurückschauen wird. Hiernach ergibt sich bei der Addition
der beiden normalverteilten und unabhängigen Zufallsveränderlichen $X_1$ und $X_2$ die ebenfalls
normalverteilte Zufallsveränderliche $X_{1+2}$. Die Standardabweichung von $X_{1+2}$ errechnet sich zu
$
\sigma_{1+2} = \sqrt{\sigma_1^2 + \sigma_2^2}$. Somit lassen sich $t_{\text{c,RMS}}$ und $T_S$ kombinieren und es kann nach Gleichung
(3.41) die Beziehung

$$t_{\text{c,RMS}}^2 + \frac{T_S^2}{8 \ln 2} = \left( \frac{0,133}{f_{\text{3,db}}} \right)^2 \quad (3.47)$$

angegeben werden. Dieser wichtige Zusammenhang erlaubt es, den zulässigen Jitter $t_{\text{c,RMS}}$
anhand der Abtastimpulsbreite $T_S$ und der 3 dB-Grenzfrequenz $f_{\text{3,db}}$ zu berechnen. So ergibt
sich z. B. für $f_{\text{3,db}} = 1,9$ GHz und $T_S = 100$ ps ein Jitter von $t_{\text{c,RMS}} = 56$ ps.

### 3.3.9.5 Möglichkeiten zur Messung des Jitters

Während die mathematische Bestimmung des zulässigen Jitters $t_{\text{c,RMS}}$ und der zulässigen Abta-
stimpulsbreite $T_S$ auf einfache Weise anzugeben sind, gestaltet sich die Messung dieser Größen
umso aufwändiger. Im Folgenden werden daher einige Betrachtungen bzgl. der Charakterisie-
rung von Jitter und der Spekttraklichheit des Phasenrauschens angestellt. Des Weiteren werden
verschiedene Messmöglichkeiten aufgeführt.

Ursachen für das Rauschen sind zunächst die thermischen Elektronenbewegungen und das
Schrotrauschen, welches in stromdurchflossenen Leitern auftritt und durch die endliche La-
dung der Elementarladungsträger hervorgerufen wird [65, 86]. Diese Rauschvorgänge können
cum einen mit Hilfe von statistischen Verteilungen behandelt werden, zum anderen aber auch

Schwieriger hingegen ist die Messung des Phasenrauschens, was mit der Messung der Frequenzstabilität einhergeht. Hier können ebenfalls Spektraldichten definiert werden, zum einen die Spektraldichte der Frequenz $S_{\nu}(f)$ und zum anderen die der Phase $S_{\phi}(f)$ [4]. Mit Hilfe dieser Spektren kann zwischen sich langsamen und sich schnell ändernden Instabilitäten unterschieden werden.

Wird das Phasenrauschen als Jitter gemessen, so ist die Anzahl der Perioden $N$, über die gemessen wird, anzugeben. Der Jitter soll daher $t_{\text{RMS},N}$ genannt werden. Für den Fall des weißen Phasenrauschens ist nach [17] $t_{\text{RMS},N}$ zwar von $N$ unabhängig, nicht aber für die restlichen Fälle, bei denen das Rauschen korreliert ist. Nach [90] ist eine Korrelation vorhanden, sobald das Spektrum $S_{\phi}(f)$ eine vom weißen Rauschen abweichende Form besitzt.


Für die Messung des Apertur-Jitters an einem Abtaster bietet sich neben den oben genannten Verfahren ein weiteres an, indem der Abtaster selbst als Detektor Verwendung findet. Diese Möglichkeit erlaubt Messungen mit geringem messtechnischen Aufwand. Allerdings ist die Auswertung der Messdaten etwas aufwändiger, da zwischen Amplituden- und Phasenrauschen unterschieden werden muss.

Kapitel 4

Aufbau des Messsystems nach Kapitel 3

4.1 Übersicht über die Schaltungsgruppen des Sensors

Im Folgenden werden die verschiedenen Schaltungsteile des Messsystems erläutert. Dabei richtet sich das Hauptaugenmerk auf den Sensor, so dass nur teilweise auf das Steuergerät eingegangen wird.

In Bild 4.1 ist das Blockschaltbild des Sensors dargestellt. Die einzelnen Blöcke können in drei Gruppen eingeteilt werden: Abtaster, Stromversorgung und optischer Sender.


Im zweiten Funktionsblock, dem optischen Sender, wird die Abtastspannung zunächst in einen Strom umgewandelt, welcher wiederum die Sende-LED ansteuert. Der Nennstrom der eingesetzten LED ist mit 10 mA recht hoch, was der Grund dafür ist, dass der optische Sender erst dann eingeschaltet wird, wenn regelmäßige Trigger-Impulse anliegen.

Die letzte Funktionsgruppe ist die Stromversorgung. Sie beinhaltet zunächst die Batterie, welche zwei unterschiedliche Spannungen liefert, 16,5 V und 7,5 V. Die 16,5 V werden als Vorspannung
für den optischen Triggerimpulsempfänger benötigt. Die andere Spannung (7,5 V) wird für den Rest des Sensors benötigt, nachdem sie von einem Spannungsregler auf 5 V herabgeregelt wurde.

Bei Unterspannung (Batterie entladen) wird ein Fehlersignal gesetzt und dem optischen Sender mitgeteilt. Dieser Schaltet die Sende-LED ab, so dass von außen der Fehlerfall erkennbar wird. Fehlerhafte Messungen aufgrund einer entladenen Batterie sind somit ausgeschlossen.

Bild 4.1: Blockschaltbild des Sensors.

4.2 Abtaster

4.2.1 Wahl des Verfahrens und dessen Funktionsweise

In Abschnitt 3.3 wurden verschiedene Verfahren zur Abtastung diskutiert. Dabei wurde auf die unterschiedlichen Schalteranordnungen, auf Möglichkeiten der Abtastimpulserzeugung und schließlich auf schnelle elektronische Schalter eingegangen. Aufgrund der kompakten Bauweise und den stromsparenden Betriebsmöglichkeiten ist die Speicherschaltdiode in Verbindung mit einem Diodentor das Verfahren der Wahl.

Gemäß Abschnitt 3.3.5.2 ist der gleichanteilsfreien zu messenden Spannung \( u(t) \) entweder vor der Abtastung oder danach die Referenzspannung \( U_{ref} \) hinzuzufügen, damit später die Dämpfung der analogen optischen Ableitung herausgerechnet werden kann. Dieses lässt sich leicht
mit Hilfe der Schaltung nach Bild 3.19 realisieren, wenn diese etwas modifiziert wird. Bild 4.2 zeigt die modifizierte Schaltung.

Der Abtaster wird über den Balun angesteuert. Die HF-Spannung \(u(t)\) wird über die Kapazität \(C_H\), welche gleichzeitig die Haltekapazität darstellt, eingekoppelt. Dabei kann \(C_H\) Bestandteil der Quellenimpedanz sein, wie es z. B. bei einer elektrisch kurzen Dipolantenne der Fall ist. Andernfalls ist \(C_H\) gesondert zu realisieren. Die Diodenbrücke stellt einen Schalter dar, welcher den mit \(1\) gekennzeichneten Knoten gegen die Referenzspannung \(U_{ref}\) schaltet. Dadurch entsteht am Knoten \(1\) ein Gleichanteil, welcher sich gemäß

\[
u_{gl,i} = U_{ref} - u(\omega \cdot \Delta t_i + \phi)\]

(4.1)

aus der Referenzspannung \(U_{ref}\) und der negativen Abtastspannung \(-u_{a,i} = -u(\omega \cdot \Delta t_i + \phi)\) zusammensetzt und mit Hilfe von \(R_2\) und \(C_2\) herausgefiltert wird.

Eine Variante auf Basis eines Zweidiodentors ist in [95] beschrieben.

4.2.2 Grundsätzliche Topologie des Abtasters

4.2.2.1 Betrieb mit bipolarem Ansteuerimpuls

Bild 4.3-a zeigt eine einfache Ausführung eines Abtasters. Gespeist wird die Schaltung von der Impulsquelle \(u_{in}(t)\) gemäß Bild 4.3-b. Der positive Impuls erzeugt in der Speicherschaltdiode einen Vorwärtsstrom. Nachdem das Ende des Impulses erreicht ist, stellt sich durch die zunächst rückwärtsleitende Diode ein negativer Strom ein. Die Rückwärtsleitung der Diode reißt jedoch nach einer bestimmten Zeit sehr abrupt ab, so dass ein sehr steiler Spannungsanstieg über der Diode entsteht. Dieser Spannungssprung reicht schließlich aus, über die beiden verhältnismäßi
kleinen Koppelkapazitäten einen nennenswerten Strom durch das Diodentor zu schicken. Der Abtastimpulsstrom \( i_2 \) und die Spannungen am Diodentor sind in Bild 4.3-c dargestellt. Die Amplitude von \( i_2 \) erscheint mit 75 mA zwar etwas hoch, jedoch wird ein beträchtlicher Teil des Stromes zum Umladen der Sperrschichtkapazitäten der Dioden aufgewendet. Die eigentliche Diodenleitung beginnt erst ab dem Knick im Verlauf von \( i_2 \) (siehe Bild 4.3-c bei \( t = 12,435 \, \text{ns} \)).

\[ \text{Bild 4.3: Einfacher Abtaster und Verlauf der Spannungen und Ströme bei einem Abtastvorgang.} \]

Dieses Beispiel macht die Größenordnung der von der Impulsquelle \( u_{\text{in}}(t) \) zu liefernden Ströme und Spannungen deutlich. Es werden somit sowohl an die Sensorstromversorgung wie auch an die Schaltung zur Erzeugung von \( u_{\text{in}}(t) \) besondere Anforderungen gestellt.

### 4.2.2.2 Umpolung der Speicherschaltdiode mit Hilfe einer Induktivität

Auf eine aufwändige Stromversorgung, welche sehr hohe Spannungen zur Ansteuerung der Speicherschaltdiode liefern muss, kann verzichtet werden, wenn eine Induktivität als Energiespeicher eingesetzt wird, welche zugleich die Funktion eines Spannungsvervielfachers übernimmt. Bild 4.4-a zeigt eine Schaltungsvariante dieses Prinzips. Gegenüber der Schaltung von Bild 4.3-a enthält diese Schaltung Widerstände zur Unterdrückung der Schwingneigung, die sich aus der Induktivität und den Kapazitäten ergibt. Zur Ansteuerung dient eine Gleichspannungsquelle, welche mit Hilfe eines Schalters für die Zeit von 10 ns zugeschaltet wird. Diese Art der Ansteuerung lässt sich leicht mit Hilfe eines Transistors in Emitter-Schaltung realisieren. Durch das Zuschalten der Quelle ergibt sich zum einen ein Strom durch die Speicherschaltdiode und zum anderen baut sich der Strom \( i_L \) in der Induktivität auf. In Bild 4.4-b sind die Stromverläufe dargestellt. Nach ca. 10 ns trennt der Schalter die Gleichspannungsquelle wieder ab, so dass deren Strom \( i_{\text{in}} \) abrupt null wird. Jedoch kann der Spulenstrom \( i_L \) als energietragende Größe nicht springen, so dass er sich einen anderen Weg „sucht“ und schließlich den Pfad durch die Speicherschaltdiode findet. Dabei polt sich die Spannung über der Diode um. Der von der Induktivität gelieferte Rückwärtsstrom fließt solange weiter, wie noch Ladungsträger
Bild 4.4: Abtaster mit Induktivität als Energiespeicher und Verlauf der Spannungen und Ströme bei einem Abtastvorgang

in der Sperrschicht vorhanden sind. Sobald die Ladungsträger ausgeräumt sind, kommt es zum Abriss von $i_{SRD}$. Außer den beiden Kapazitäten zum Diodentor gibt es für den Spulenstrom $i_L$ keine Möglichkeit mehr zum Weiterfließen, wenn man den Parallelwiderstand zur Diode vernachlässigt. Die Spannung nimmt somit sehr hohe Werte an (Bild 4.4-b, oben), um den Strom $i_L$ über die beiden Koppelkapazitäten durch das Diodentor zu treiben. Sowohl die Spannungen am Diodentor als auch der Strom durch das Tor sind in Bild 4.4-c dargestellt.

Das Schaltungsnetzwerk muss sorgfältig ausgelegt werden, damit es zum einen nicht zu Durchbrüchen in den Diodenstrecken kommt und zum anderen die überschüssige Energie der Induktivität in geeigneter Weise aufgezehrt wird. So zeigt die exemplarische Schaltung von Bild 4.4-a im Diagramm von Bild 4.4-c einen Effekt, der für eine einwandfreie Funktionsweise des Abtasters vermieden werden muss: Nachdem der Stromimpuls, der durch eine Gaufsglocke angenähert werden kann, abgeklungen ist, wird er bei $t = 12,14\,\text{ns}$ negativ. Dieser Vorgang ist zunächst von geringerer Bedeutung, da der Strom lediglich zu Umladeeffekten der Sperrschichtkapazitäten führt. Eine Zeit später, bei $t = 12,2\,\text{ns}$, kommt es jedoch zum Durchbruch der Diodenstrecken, da die Sperrspannung erreicht wurde, was auch am abgeflachten Verlauf von $u_2$ und $u_3$ erkennbar ist. Dieses Beispiel macht deutlich, dass ein geeignetes passives Netzwerk notwendig ist, damit es während der Relaxation nicht zu unerwünschten Effekten kommt.
4.3 Gesamtschaltung des Sensors

4.3.1 Schaltplan

Bild 4.5 zeigt die für die Signalverarbeitung relevanten Schaltungsteile des Sensors. Die Batterien und Spannungsregler sind nicht eingezeichnet.

Bild 4.5: Schaltung des Sensors ohne Stromversorgung.
4.3.2 Trigger-Empfänger


Realisiert wird dieses durch den Transistor $T_1$. Wenn der Sensor im aktiven Modus ist, ist $U_{OP} = 5 \text{ V}$, so dass $T_1$ durch $R_2$ in seinen Arbeitspunkt gebracht wird und sich das Schaltverhalten dadurch verbessert. Der Transistor $T_2$ dient zum Außerkrafteetzen der Miller-Kapazität von $T_1$.

Werden keine Trigger-Impulse mehr gesendet, geht der Sensor in den Stand-by-Modus, so dass $U_{OP} = 0 \text{ V}$ wird und $T_1$ und $T_2$ stromlos werden.

4.3.3 Stand-by-Detektion

Liegen regelmäßig Triggerimpulse an, so wird die Sperrschichtkapazität von $T_6$ regelmäßig über die Diode $D_6$ geladen, so dass sich eine Gate-Source-Spannung aufbaut. In der Folge steuert $T_6$ den Transistor $T_7$ durch, so dass die Spannung $U_{OP}$ bereit steht.

4.3.4 Impulsaufbereitung

Die Triggerimpulse haben aufgrund der eingesetzten optischen Strecke lange Anstiegszeiten. Mit Hilfe von $T_4$, $R_4$ und $C_1$ wird die Impulsform verbessert. Transistor $T_3$ nimmt eine Verstärkung vor.

4.3.5 Impulsverstärker

Die Speicherschaltaudiode benötigt sehr hohe Vorwärtsströme, um anschließend genügend lange rückwärtsleitend zu sein (vgl. Abschnitt 3.3.3.5). Gleichzeitig muss ein hinreichender Strom durch die Induktivität aufgebaut werden (vgl. Abschnitt 4.2.2.2), so dass zusammen mit dem Diodenstrom bis zu 300 mA von den Transistoren $T_5$, $T_9$ und $T_{10}$ getrieben werden müssen. Die Diode $D_1$ verhindert, dass die Transistoren in Sättigung geraten. Die Induktivität $L_1$ sorgt zum einen für ein zügiges Einschalten und zum anderen für ein besonders rasches Abschalten der Transistorstufe.
4.3.6 Balancierung


Die verwendete verdrillte Leitung hat einen Wellenwiderstand von ca. 50 Ω. Der Balun ist daher eingangsseitig mit $R_9$ und $C_2$ abgeschlossen, um Mehrfachreflexionen, hervorgerufen durch die Schaltvorgänge der Speicherschaltdiode, zu vermeiden.

![Bild 4.6: Mechanische Ausführung des Baluns.](image)

4.3.7 Abstastimpulserzeugung

Die Abstastimpulserzeugung erfolgt nach dem Balun. Sobald die Transistorstufe $T_5$, $T_9$ und $T_{10}$ abschaltet, polt die Induktivität $L_2$ die Spannung über der Speicherschaltdiode $D_5$ um. Über die Induktivitäten $L_3$ und $L_4$ fließt der Rückwärtsstrom der Diode. Nachdem dieser abgerissen ist, treiben $L_3$ und $L_4$ ihren Strom über die Kapazitäten $C_{13}$ und $C_{14}$ durch das Diodentor, so dass dieses leitend wird. Aufgrund der kleinen Kapazität von $C_{13}$ und $C_{14}$ ergibt sich ein sehr kurzer Abstastimpuls. Der Widerstand $R_{19}$ dient zum Bedämpfen von Schwingungen.

4.3.8 Abtaster

4.3.8.1 Funktionsweise

Der Abtaster zieht kurzfristig die zu messende HF-Spannung gegen die Referenzspannung von $U_{ref} = 1,24$ V. Dadurch baut sich ein Gleichanteil über der Kapazität der Quelle auf. Das Diodentor wird mit der doppelten Referenzspannung symmetrisch mit Hilfe von $L_{20}$, $L_{21}$, $R_{20}$ und $R_{21}$ vorgespannt. Die Induktivitäten sind nach [12] in Mikrostreifenleitertechnik dimensioniert. $R_{20}$ und $R_{21}$ dienen der Dämpfung von Schwingungen.
4.3.8.2 Übersteuerung des Abtasters

Die Wahl der Referenzspannung von $U_{\text{ref}}$ orientiert sich an der Durchbruchspannung der verwendeten Dioden und begrenzt wiederum die maximale Amplitude der Eingangsspannung $u(t)$. Zur Vermeidung eines Durchbruchs muss $U_{\text{BV}} > 2 \cdot U_{\text{ref}}$ gelten. Für die verwendeten Dioden ist $U_{\text{BV}} = 3 \text{ V}$, so dass der Wert $U_{\text{ref}} = 1,24 \text{ V}$ gewählt wurde.

Bild 4.7 zeigt das Diodektor und die dabei auftretenden Spannungsverhältnisse bei Abtastung des positiven und negativen Spannungsscheitels von $u(t)$ mit der Spitze-Spitze-Amplitude $U_{\text{ref}}$. Wird der negative Scheitel von $u(t)$ abgetastet, so verschiebt sich der Gleichanteil von $u_q(t)$ in der Weise, dass $u_q(t)$ zwischen $U_{\text{ref}}$ und $2 \cdot U_{\text{ref}}$ schwingt. Steigt die Spitze-Spitze-Amplitude über den Wert $U_{\text{ref}}$ hinaus an, treten Gleichrichteffekte durch die Dioden auf, so dass der Gleichanteil von $u_q(t)$, welcher als Abstastwert ausgewertet wird, verfälscht wird. Ähnliches gilt für die Abtastung des positiven Spannungsscheitels. Eine Übersteuerung des Sensors sollte daher vermieden werden.

![Diagramm](image)

Bild 4.7: Spannungsverhältnisse bei Abtastung einer Eingangsspannung mit maximaler Amplitude.

4.3.8.3 Realisierung

Die Realisierung des Abtasters ist in Bild 4.8 dargestellt. Durch entsprechende Leiterflächen in der Multilayer-Platine wurde dafür gesorgt, dass die an das Diodektor herangeführte Referenzspannung $U_{\text{ref}}$ während des Abtasters stabil bleibt. Induktivitäten wurden vermieden und Kapazitäten wurden zur Stabilisierung in den Multilayer-Schichten realisiert. Die Diodebrücke, die Speicherschaltdiode und die Koppelkondensatoren $C_{13}$ und $C_{14}$ sind direkt als Chip auf die Platine aufgebracht und wurden anschließend gebunden.

4.3.9 Anschluss der Antenne bzw. des Tastkopfs

Im Fall des elektrischen Feldsensors, ist die Antenne am Diodenator angeschlossen. Die Antenne, welche zugleich als Haltekapazität dient, muss eine Kapazität von ca. 15 pF aufweisen.
Wird das Sensorsystem als Vektorvoltmeter benutzt, z. B. als Mess-Herzschrimenti, so ist die kapazitive Quelle gemäß Abschnitt 4.5.1 zu realisieren.

### 4.3.10 Auskopplung der Abtastspannung

Die Auskopplung geschieht über die Widerstände $R_{22}$, $R_{24}$ und $R_{27}$. Die Anzahl der Widerstände wird benötigt, um eine verlustbehaftete Leitung zu realisieren, auf der keine Resonanzen entstehen können, die den Frequenzgang des Messsystems beeinträchtigen. $C_{10}$ dient der Glättung.

Der Gesamtwert der Widerstände wurde dabei so gewählt, dass er um den Faktor 100 größer ist als der Blindwiderstand der Quelle bei der unteren Grenzfrequenz des Sensors von 5 MHz. Der Kondensator $C_{10}$ wurde auf den etwas kleineren Wert von 4.7 pF dimensioniert, so dass die Ausleserate des Sensors von 100 kHz nicht beeinträchtigt wird.

### 4.3.11 Optischer Sender

Der Operationsverstärker $U_2$ und der Transistor $T_{12}$ sind als Stromquelle konfiguriert. Proportional zum Gleichspannungsanteil der HF-Quelle wird ein Strom durch die LED $D_3$ geschickt.
Bei entladener Batterie wird Transistor \( T_{13} \) durchgeschaltet, so dass \( D_3 \) kurzgeschlossen wird. Durch diese Vorgehensweise wird verhindert, dass der Batteristrom nach Abschalten der LED verringert wird, sich die Batteriespannung dadurch wieder erholt, dann der Fehlerfall wieder aufgehoben wird und es dadurch zu Oszillationen kommt.

### 4.3.12 Realisierung

Die Gesamtschaltung befindet sich auf der beidseitig bestückten Multilayer-Platine, die in Bild 4.9 dargestellt ist. Auf der Unterseite befindet sich die Stromversorgung, bestehend aus Pufferkondensatoren, Widerstandsnetzwerken und Spannungsreglern. Auf der Oberseite befindet sich der Abtaster und die Schaltung zur Ansteuerung desselben.

**Bild 4.9:** Oberseite der Sensor-Platine.

### 4.4 Elektrische Feldsonde

#### 4.4.1 Antenne


**Bild 4.10:** Gehäuse der Antenne mit Kompensationsadmittanz \( Y_K \) zur Frequenzgangkorrektur.

**Bild 4.11:** Außenansicht des Berechnungsmodells.

**Bild 4.12:** Explosionszeichnung der elektrischen Feldsonde.

Die besondere Platzierung des Batteriefachs führt zu einer sehr hohen Totkapazität (ca. 13,5 pF) der Antenne [66]. Obwohl sich die Fußpunktsspannung dadurch verringert, ist diese Kapazität als Haltekapazität des Abtasters sogar gewünscht.
4.4.2 Frequenzgangkorrektur durch Kompensationsadmittanz


Für die Bestimmung der Kompensationsadmittanz $Y_K$ kann die Antenne als Zweitor $||Y||$ mit den nach außen gezogenen Quellen $L_{S1}$ und $L_{S2}$ aufgefasst werden (siehe Bild 4.13-b). Die Admittanzmatrix $||Y||$ lässt sich z.B. mit Hilfe des Feldberechnungsprogramms FEKO [19] bestimmen. Dabei wird in zwei getrennten Rechnungen einmal an Tor 1 die Spannung 1 V eingeprägt und Tor 2 kurzgeschlossen und in der zweiten Rechnung wird Tor 1 kurzgeschlossen und an Tor 2 die Spannung 1 V eingeprägt. Die resultierenden Ströme ergeben die Elemente der Admittanzmatrix. In einer dritten FEKO-Berechnung wird die Antennenstruktur mit einer einfallenden ebenen Welle bestrahlt und die sich ergebenden Quellenströme $L_{S1}$ und $L_{S2}$ bestimmt.


Das Gleichungssystem, das die Strom- und Spannungsverhältnisse beschreibt, lautet

$$||Y|| \cdot \vec{I} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \cdot \begin{pmatrix} U_1 \\ U_2 \end{pmatrix} = \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} \frac{L_{S1}}{L_{S2} - U_1 \cdot Y_K} \\ \frac{L_{S1}}{L_{S2} - U_1 \cdot Y_K} \end{pmatrix}. \quad (4.2)$$

Wird $U_2$ eliminiert, nach $Y_K$ aufgelöst und $U_1(f) = U_1(f_{\text{min}})$ eingesetzt, ergibt sich die Kompensationsadmittanz $Y_K(f)$. Bild 4.14-a zeigt den mit dem Programm FEKO [19] berechneten Frequenzgang ohne Kompensation, bei dem bei ca. 2 GHz eine Nullstelle vorliegt, und es zeigt den Frequenzgang, wenn das Batteriefach mit der nach Gleichung (4.2) bestimmten Admittanz
\( Y_K(f) \) abgeschlossen wird (siehe Bild 4.14-b). Wie den Bildern zu entnehmen ist, kann der Frequenzgang vollständig geglättet werden. Allerdings lässt sich ein Zweipol mit dem geforderten Admittanzverlauf nur sehr schwer realisieren, weil der ab ca. 1,8 GHz fallende Imaginärteil Schwierigkeiten bereitet. Das hier beschriebene Verfahren ist somit gut geeignet, den Feldsensor an einzelnen Frequenzpunkten, insbesondere im Bereich der Nullstelle, zu kompensieren, für die Kompensation des gesamten Frequenzbereichs eignet es sich jedoch weniger.

**Bild 4.14:** a) Nicht kompensierte und kompensierte Antennenfußpunktspannung \( U_1(f) \) mit \( |E_{inc}| = 1 \) V/m. b) Verlauf der Kompensationsadmittanz \( Y_K \).

4.4.3 Frequenzgangkorrektur durch Skineffekt

4.4.3.1 Modifikation des Batteriefachs


4.4.3.2 Ausführung des dielektrischen Rings

Für eine geeignete Korrektur des Frequenzgangs erwies sich für den dielektrischen Ring eine Leitfähigkeit von $\sigma_{\text{Skin}} = 70 \, \text{S/m}$ als geeignet. Allerdings ist die Herstellung derartiger Festkörper und die Ermittlung der Mischungsverhältnisse sehr aufwändig [102]. Ein alternativer Ansatz besteht in der Anordnung von Lamellen, welche in Dicksschichttechnik mit Widerstandspaste beschichtet werden. Mit Hilfe der Schichtstärke lässt sich die gewünschte Leitfähigkeit leicht einstellen. Bild 4.15-b zeigt das Batteriefach mit Lamellen um den verlängerten Hals. Die Lamellen sind entsprechend der Stromflussrichtung in Längsrichtung angeordnet. Mit einem Flächenwiderstand von $R_{\text{Skin}} = 10 \, \Omega$ ergibt sich der mit dem Feldberechnungsprogramm FEKO [19] ermittelte Frequenzgang nach Bild 4.16.

4.4.3.3 Frequenzgang des Sensors


4.4.4 Batterielebensdauer

Mit dem in Abschnitt 3.3.7 dargestellten Abtastalgorithmus ergibt sich eine Dynamik von 70 dB. Dabei werden pro Sekunde 2,5 Messungen durchgeführt. Der mittlere Stromverbrauch
Bild 4.16: Vergleich der Antennenfußpunktspannung für den Fall des unmodifizierten Batteriefachs mit dem des Batteriefachs mit verlustbehafteten Lamellen, \( |E_{\text{inc}}| = 1 \text{ V/m} \).

liegt dann bei 2,5 mA. Mit einem Satz Batterien, welcher aus fünf Silberoxidzellen zu je 80 mAh und drei Lithiumzellen zu je 30 mAh besteht, können 280.000 Einzelmessungen nach Betrag und Phase durchgeführt werden.

Abschließend zeigt Bild 4.18 den als Feldsonde ausgeführten Sensor. Die 10 m langen optischen Kabel ermöglichen den Einsatz auch in großen Versuchsszenarien, wie z.B. Autobussen. Weitere zum Messverfahren und exemplarische Messergebnisse finden sich in [29, 27].

Bild 4.18: Elektrische Feldsonde mit optischen Kabeln.
4.5 Vektorvoltmeter zur Messung der Herzschrittmacher-Elektrodeneinkopplung

4.5.1 Eingangsschaltung mit Haltekapazität

Für die Messung von Einkoppelspannungen wird die Sensorschaltung in ein wasserdiches Herzschrittmachergehäuse mit 50 Ω-Anschluss platziert. Während die Antenne des vorangegangenen Abschnitts zugleich die Haltekapazität des Abtasters darstellt, muss hier eine Kapazität gesondert bereitgestellt werden. Bild 4.19 zeigt die Eingangsschaltung, bestehend aus Abschlusswiderstand und Haltekapazität. Es wird an dieser Stelle darauf hingewiesen, dass der Abtastalgorithmus mehrmals den gleichen Momentanwert abtastet, bis die Spannung über der Haltekapazität eingeschwungen ist und somit kein Stromfluss mehr stattfindet, so dass effektiv nur noch die Lastimpedanz \( Z_l = 50 \, \Omega \) von außen sichtbar ist.

![C_H = 15pF](image)

**Bild 4.19:** Eingangskreis des Mess-Herzschrittmachers

4.5.2 Herzschrittmachergehäuse

![Sensor Vor- und Rückansicht](image)

**Bild 4.20:** Vor- und Rückansicht des als Herzschrittmacher ausgeführten Sensors.

Bild 4.20 zeigt die Realisierung als Mess-Herzschrittmacher [69]. Das wasserdichte Gehäuse kann in flüssigkeitsgefüllten Phantomen untergebracht werden, um die in die Herzschrittmacherelektrode eingekoppelte Störspannung zu messen. Dank des 50 Ω-SMB-Anschlusses ergeben sich für das Messsystem noch weitere Anwendungen, z. B. die Messung der Einkopplung...
in einen KFZ-Kabelbaum oder die Messung der Empfangsleistung einer Antennenstruktur, bei der Mantelwellen auf der Ableitung unerwünscht sind.

### 4.5.3 Frequenzgang des Mess-Herzschrittmachers


![Bild 4.21: Frequenzgang des Mess-Herzschrittmachers.](image1)

![Bild 4.22: Linearität des Mess-Herzschrittmachers.](image2)

### 4.6 Steuergerät

Steuermodul Mikroprozessor mit Anzeige und Schnittstelle [77].

**Interface für Schrittmotor und Externe Quellen** Triggert intern das Sensormodul, schaltet generische Quellen ein und steuert den Schrittmotor [77]. Die generischen Quellen können z. B. besondere Mobiltelefon-Emulatoren sein, welche über Lichtwellenleiter aktiviert ein Dauerstrichsignal senden [101, 33]. Für die Ansteuerung des Schrittmotors wird zunächst ein gesondertes Gerät mit der Leistungselektronik angesteuert [120]. Um Störungen fern zu halten, erfolgt die Kommunikation auch hier über Lichtwellenleiter.


**Verzögerungsmodul** Das Taktsignal vom Synchronisationsmodul wird mit Hilfe eines programmierbaren Verzögerungsbausteins im Bereich von 0 bis 10 ns verzögert [43]. Um noch längere Verzögerungszeiten zu erzielen, wird in [89] eine Verzögerungsschleife mit programmierbaren Zähler eingesetzt.

4.6.1 Bestimmung des Apertur-Jitters


4.6.1.1 Messung des Phasenrauschens


Allerdings kann diese Methode nicht direkt auf die Messsysteme der vorliegenden Arbeit angewendet werden, da die Konvertierungsrate des AD-Umsetzers im Steuergerät mit 100 kHz wesentlich niedriger ist, als die Abtastrate, welche zwischen 5 MHz und 10 MHz liegt1. Die relevanten Spektralannteile des Apertur-Jitters, könnten daher nicht ausgewertet werden.


Die Abtastung fand stets zum Nullsdurchgang des Signals statt, so dass der Jitter in Form eines Spannungsrauschens auftritt. Dabei ist allerdings zu beachten, dass die Abtasteffizienz, welche ca. bei 2 % liegt, das Spektrum derart verändert, dass eine anschließende Korrektur erforderlich wird.

Die Messung wurde wie folgt durchgeführt: In den Mess-Herzschrittmascher wurde mit einem Synthesizer ein phasenreines Signal (< –114 dBc/Hz bei 20 kHz Versatz) mit einer Leistung

1Die Abtasteffizienz wurde klein gehalten, so dass sich eine Mittelwertbildung der Abtastwerte einstellt, welche für eine hohe Selektivität und geringes Rauschen sorgt. Daraus ergibt sich eine niedrige Bandbreite des Abtaster-Ausgangssignals, welche hier etwa bei 32 kHz liegt.
von -10 dBm und einer Frequenz von 900 MHz eingespeist. Die Auflösebandbreite des Spektrumanalysators betrug dabei 1 kHz.

Allerdings konnte im relevanten Frequenzbereich zwischen 0 Hz und 5 MHz kein durch Apertur-Jitter verursachtes Rauschen festgestellt werden. Der Apertur-Jitter ist somit zu gering, um ihn mit diesen Messaufbau bestimmen zu können.

### 4.6.1.2 Abschätzung des Apertur-Jitters durch Grenzfrequenzmessung

Die Messung aus dem vorhergehenden Abschnitt führte zu keinem Ergebnis, so dass im Folgenden der Jitter durch Bestimmung der Grenzfrequenz nach oben hin abgeschätzt wird. Dabei muss in Kauf genommen werden, dass die Abtastimpulsbreite einen Einfluss auf das Ergebnis hat (siehe Abschnitt 3.3.9.3).


Bild 4.26 zeigt das Messergebnis. Ab 4 GHz treten Resonanzen auf, da die Leitungsführung im Mess-Herzschrittmacher nur für Frequenzen bis 1,9 GHz ausgelegt wurde. Ein Ablesen der 3 dB-Grenzfrequenz ist daher schwierig, so dass gemäß Gleichung (4.3) eine Kurvenanpassung vorgenommen wurde (siehe auch Gleichung (3.40)).

\[
g(f) = 20 \text{ dB} \cdot \log \left\{ \exp \left[ \frac{(2\pi f \cdot t_{\epsilon, \text{RMS, ges}})^2}{2} \right] \right\}
\]  

(4.3)

Für die Funktion \( g(f) \) wurde der Gesamtjitter von \( t_{\epsilon, \text{RMS, ges}} = 30 \text{ ps} \) ermittelt, so dass \( g(f) \) dem gemessenen Frequenzgang am nächsten kommt. \( t_{\epsilon, \text{RMS, ges}} \) beinhaltet den Jitter sämtlicher
Bild 4.25: Messung der Bandbreite.

betäigter Komponenten und setzt sich wie folgt zusammen:

\[ t_{e,RMS,ges}^2 = t_{e,RMS}^2 + \frac{T_S^2}{8 \ln 2} + t_{e,RMS,synth}^2 \]  \hspace{1cm} (4.4)

Dabei ist \( t_{e,RMS} \) der gesuchte Apertur-Jitter des Messsystems und \( T_S \) die Abtastimpulsbreite (siehe Abschnitt 3.3.9.4). Der Jitter der Signalgeneratoren ist \( t_{e,RMS,synth} \) und wurde mit einem Sampling-Oszillographen zu \( t_{e,RMS,synth} = 20 \text{ps}^2 \) bestimmt.

Somit kann Gleichung (4.4) umgestellt werden und die Abschätzung

\[ t_{e,RMS} < t_{e,RMS} + \frac{T_S^2}{8 \ln 2} = t_{e,RMS,ges} - t_{e,RMS,synth} = (30 \text{ps})^2 - (20 \text{ps})^2 = (22.4 \text{ps})^2 \]  \hspace{1cm} (4.5)

vorgenommen werden. Die Abtastimpulsbreite lässt sich auf ähnliche Weise eingrenzen, sie ist dann \( T_S < 53 \text{ps} \).

Die hier angegebenen Werte sind lediglich Abschätzungen nach oben hin. Das Ergebnis zeigt aber, dass sich das Prinzip der optischen Übertragung von Trigger-Signalen zur Ansteuerung eines stromsparenden und daher für Knopfzellenbetrieb geeigneten Abtasters für weitaus höhere Frequenzen eignet, als ursprünglich vorgesehen wurde. Allerdings müsste bezüglich der Signalführung den höheren Frequenzen Rechnung getragen werden, damit Resonanzen, wie sie sich in Bild 4.26 zeigen, nicht auftreten. Dann wäre es durchaus denkbar für das Messsystem Anwendungen im C- oder gar bis zum X-Band zu erschließen.

---

2Der hohe Wert von 20 ps rührt daher, dass es sich bei dem Synthesizer für den Frequenzbereich 2 - 18 GHz nicht um ein integriertes Gerät handelte, sondern um eine Zusammenschaltung eines Source-Synchronizers mit einem Wobblers, von dem letzterer nicht für eine hohe Phasenreinheit ausgelegt ist.
Bild 4.26: Frequenzgangmessung zur Bestimmung des Apertur-Jitters.
Kapitel 5

Berechnungsverfahren

5.1 Übersicht

Eine häufige Ursache für die Störung elektrischer bzw. elektronischer Geräte ist die Einkopplung unerwünschter Signale in deren Zuleitungen und Anschlüssen. So können die Kabel- und Leiterstrukturen als Antennen wirken und Störsignale empfangen. In den Kapiteln 3 und 4 wurde ein Messverfahren vorgestellt, welches sich für die Messung der störungsverursachenden elektrischen Felder eignet und in leicht abgewandelter Form auch zur Messung von Störgrößen an Leitersystemen herangezogen werden kann. Im Folgenden werden die Messverfahren verlassen und numerische Verfahren zur Bestimmung der Störeinkopplungen behandelt.

Numerische Berechnungen bieten neben ihrer hohen Flexibilität die Möglichkeit, Spannungen, Ströme und elektromagnetische Felder an nahezu beliebigen Orten des Berechnungsmodells in Erfahrung zu bringen. Die Bestimmung von detaillierten Daten also, die mit Hilfe von Messungen nicht möglich sind.

Für die Berechnung elektromagnetischer Streufelder haben sich verschiedene Methoden entwickelt, von denen die meisten in folgende Klassen eingeteilt werden können:

- Feldbasierte Verfahren
- Quellenbasierte Verfahren


5.2 Das hybride Verfahren MoM-MMP

5.2.1 MMP-Methode

5.2.1.1 Wellengleichungen

Grundlage der Berechnung elektromagnetischer Felder sind die Maxwell'schen Gleichungen. Sind keine freien Ladungsträger vorhanden, können diese Gleichungen in folgender komplexer Form angegeben werden:

\[
\begin{align*}
\text{rot } \vec{H} &= j\omega\varepsilon \vec{E} \\
\text{rot } \vec{E} &= -j\omega\mu \vec{H} \\
\text{div } \vec{H} &= 0 \\
\text{div } \vec{E} &= 0.
\end{align*}
\]  

(5.1)  
(5.2)  
(5.3)  
(5.4)

Dabei gilt für die komplexen Größen \( \vec{X}(\vec{r}, t) = \text{Re}\{\vec{X}(\vec{r}) \cdot \exp(j\omega t)\} \). \( \varepsilon \) und \( \mu \) sind die Materialeigenschaften des Mediums, welches im Folgenden als homogen, linear und isotrop angenommen werden soll. Das komplexe \( \varepsilon \) setzt sich aus dem reellen \( \varepsilon \) und der Leitfähigkeit \( \sigma \) gemäß

\[
\varepsilon = \varepsilon - j\frac{\sigma}{\omega}
\]

(5.6)

zusammen.

Zur Gewinnung der Wellengleichung für das magnetische Feld wendet man auf Gleichung (5.1) den Rotationsoperator an und setzt anschließend Gleichung (5.2) ein. Entsprechend wird zur Herleitung der Wellengleichung für das elektrische Feld auf Gleichung (5.2) der Rotationsoperator angewendet und Gleichung (5.1) eingesetzt. Man erhält die Gleichungen

\[
\begin{align*}
\text{rot rot } \vec{H} - k^2 \vec{H} &= 0 \\
\text{rot rot } \vec{E} - k^2 \vec{E} &= 0
\end{align*}
\]

(5.7)  
(5.8)

mit \( k^2 = \omega^2 \mu \varepsilon \). Unter Zuhilfenahme der Beziehung \( \text{rot rot } \vec{X} = \text{grad div } \vec{X} - \Delta \vec{X} \) und unter Voraussetzung von Ladungsfreiheit ergeben sich die vektoriellen Helmholtz-Gleichungen

\[
\begin{align*}
\Delta \vec{H} + k^2 \vec{H} &= 0 \\
\Delta \vec{E} + k^2 \vec{E} &= 0.
\end{align*}
\]

(5.9)  
(5.10)
5.2.1.2 Multipolentwicklung


Der vollständige Satz Feldfunktionen kann zunächst in TE-Wellen (transversal elektrisch) und TM-Wellen (transversal magnetisch) unterteilt werden. Die folgenden Gleichungen beschreiben eine TM-Welle [73]1:

\[
\begin{align*}
E_{\text{TM},r,s,n,m}(r, \theta, \phi) &= n(n+1) \frac{b_n(kr)}{r} P_n^m(\cos \theta) \cos (m\phi) \quad (5.11) \\
E_{\text{TM},\theta,s,n,m}(r, \theta, \phi) &= \left[ \frac{\cos \theta}{\sin \theta} P_n^m(\cos \theta) - \frac{n + m}{\sin \theta} P_{n-1}^m(\cos \theta) \right] \frac{\cos (m\phi)}{\sin (m\phi)} \quad (5.12) \\
E_{\text{TM},\varphi,s,n,m}(r, \theta, \phi) &= -\left[ \frac{kb_{n-1}(kr)}{r} - \frac{b_n(kr)}{r} \right] m \frac{\cos (m\phi)}{\sin (m\phi)} \quad (5.13) \\
H_{\text{TM},r,s,n,m}(r, \theta, \phi) &= 0 \quad (5.14) \\
H_{\text{TM},\theta,s,n,m}(r, \theta, \phi) &= -j\omega \beta_n(kr) \frac{m}{\sin \theta} P_n^m(\cos \theta) \sin (m\phi) \quad (5.15) \\
H_{\text{TM},\varphi,s,n,m}(r, \theta, \phi) &= -j\omega \beta_n(kr) \cdot \left[ \frac{\cos \theta}{\sin \theta} P_n^m(\cos \theta) - \frac{n + m}{\sin \theta} P_{n-1}^m(\cos \theta) \right] \cos (m\phi) \quad (5.16)
\end{align*}
\]

Dabei ist \( n \) die Ordnung, \( m \) der Grad, \( b_n \) eine der sphärischen Bessel-Funktionen und \( P_n^m \) die assoziierte Legendre-Funktion erster Art. Die Funktionensätze \( \vec{E}_{\text{TM},s,n,m}, \vec{E}_{\text{TE},s,n,m}, \vec{H}_{\text{TM},s,n,m} \) und \( \vec{H}_{\text{TE},s,n,m} \) 2 sind vollständig, so dass sich ein beliebiges Feld durch Reihenentwicklung angeben lässt. Z. B. das elektrische Feld mit

\[
\vec{E} = \sum_{n=1}^{N_{\text{max}}} \sum_{m=0}^{n} \left( a_{nm} \cdot \vec{E}_{\text{TM},c,n,m} + b_{nm} \cdot \vec{E}_{\text{TM},s,n,m} + c_{nm} \cdot \vec{E}_{\text{TE},c,n,m} + d_{nm} \cdot \vec{E}_{\text{TE},s,n,m} \right).
\]

Gleichung (5.17) nennt sich Multipolentwicklung und besitzt die Koeffizienten \( a_{nm}, b_{nm}, c_{nm} \) und \( d_{nm} \). Damit die Entwicklung im mathematischen Sinn vollständig wäre, müsste \( N_{\text{max}} \to \infty \) gelten. In der Praxis wird \( N_{\text{max}} \) jedoch so gewählt, dass die Entwicklung den Erfordernissen genügt, gleichzeitig aber noch numerisch sinnvoll ist.

1Gegenüber der Literaturstelle sind die Gleichungen konjugiert komplex, da in der Literaturstelle, anders als hier, von \( \vec{X}(\vec{r},t) = \text{Re}(\vec{X}(\vec{r}) \cdot \exp(-j\omega t)) \) ausgegangen wird.

2 \( \vec{X} = (X, X_\theta, X_\phi)^T \)
Die Gesamtzahl der Entwicklungskoeffizienten von Gleichung (5.17) ist $2N_{\text{max}}^2 + 6N_{\text{max}}$. Wird berücksichtigt, dass für die Feldfunktionen $\vec{E}_{\text{TM},s,n,0} = \vec{0}$ und $\vec{E}_{\text{TE},s,n,0} = \vec{0}$ gilt, reduziert sich die Zahl der notwendigen Koeffizienten auf $2N_{\text{max}}^2 + 4N_{\text{max}}$.


Hingegen sind bei der Multipolentwicklung die radialen Abhängigkeiten $b_n$ sphärische Hankel-Funktionen zweiter Art. Diese Entwicklung besitzt eine Singularität im Koordinatensursprung, d.h. ihr Feld wird dort unendlich. Es liegt eine Strahlungsquelle vor, von der es, ausgehend vom Koordinatensursprung, einen Energiefluss gibt.

### 5.2.1.3 Weitere Entwicklungsfunktionen

Multipole werden durch Separation in Kugelkoordinaten gewonnen. Wird hingegen in anderen Koordinatensystemen separiert, ergeben sich z.B. für das kartesische Koordinatensystem die ebenen Wellen und für das zylindrische Koordinatensystem die zylindrischen Wellen [73]. Es können aber auch Feldfunktionen als Wirkung von Linienquellen (z.B. Bündelung von elektrischen Strömen) verwendet werden, wie z.B. Linienmultipole nach [74].

Die Überlagerung von unterschiedlichen Entwicklungsarten, z.B. von Multipolen mit Linienmultipolen, ist zulässig. Dieses kann genutzt werden, wenn dadurch die Geometrie des Streukörpers besser berücksichtigt werden kann [34, 117]. In [78] wurde für die Verwendung unterschiedlicher Entwicklungsarten die Bezeichnung Generalized Multipole Technique (GMT) definiert.

### 5.2.1.4 Zusammensetzung der Felder

Das Berechnungsmodell nimmt eine Unterteilung in verschiedene Gebiete vor. Das Gebiet $\text{geb} \in \{1,...N_{\text{geb}}\}$ hat die Materialeigenschaften $\varepsilon_{\text{geb}}$ und $\mu_{\text{geb}}$. In den Gebieten liegt jeweils das Feld $\vec{E}_{\text{geb}}$ vor, welches sich gemäß

$$\vec{E}_{\text{geb}} = \vec{E}_{\text{inc,geb}} + \vec{E}_{\text{scat,geb}}$$

(5.18)

zusammensetzt. Dabei ist $\vec{E}_{\text{inc,geb}}$ das anregende Feld, welches von außen eingeprägt wird. Daraus resultieren die Felder $\vec{E}_{\text{scat,geb}}$ welche, vereinfacht ausgedrückt, durch Beugung, Brechung und Reflexion entstehen.

Das Streufeld wird in jedem Gebiet durch jeweils ein oder mehrere Entwicklungsansätze repräsentiert. Die $N_{\text{entw,geb}}$ Entwicklungsansätze im Gebiet $\text{geb}$ setzen das Streufeld gemäß

$$\vec{E}_{\text{scat,geb}} = \sum_{\text{entw}=1}^{N_{\text{entw,geb}}} \vec{E}_{\text{scat,geb,entw}}$$

(5.19)
zusammen.

Ein Entwicklungsansatz wird durch

\[ \vec{E}_{\text{scat},\text{geb,entw}} = \sum_{i=1}^{N_{\text{geb,entw}}} \alpha_{\text{geb,entw},i} \cdot \vec{f}_{\text{geb,entw},i} \]  

verallgemeinert ausgedrückt. Dabei sind \( \alpha_{\text{geb,entw},i} \) die Entwicklungskoeffizienten und \( f_{\text{geb,entw},i} \) die Feldfunktionen. Der Entwicklungsansatz kann verschiedene Entwicklungsarten, wie z.B. Multipole oder Linienmultipole, repräsentieren. Im Fall der Multipole entsteht Gleichung (5.20) durch Umsortieren von Gleichung (5.17). In diesem Fall wäre \( N_{\text{geb,entw}} = 2N_{\text{max}}^2 + 4N_{\text{max}} \).

Zur Veranschaulichung soll Bild 5.1 herangezogen werden. Es zeigt einen Außenraum, welcher als Gebiet 1 gekennzeichnet ist. In diesem befindet sich ein dielektrischer Streukörper, welcher sich aus den Gebieten 2 und 3 zusammensetzt. Als Anregung dient eine ebene Welle \( \vec{E}_{\text{inc},1} \), welche auf den Streukörper trifft. Im Innenraum des Körpers gibt es keine Anregung, es sind also \( \vec{E}_{\text{inc},2} = \vec{0} \) und \( \vec{E}_{\text{inc},3} = \vec{0} \). Das äußere Streufeld des Körpers wird durch die beiden Multipolentwicklungen \( 1,1 \) (\( \vec{E}_{\text{scat},1,1} \)) und \( 1,2 \) (\( \vec{E}_{\text{scat},1,2} \)) repräsentiert. Die Felder innerhalb des Körpers werden für Gebiet 2 und 3 jeweils durch einen einzelnen Entwicklungsansatz bestimmt, also \( 2,1 \) (\( \vec{E}_{\text{scat},2,1} = \vec{E}_{\text{scat},2,1} \)) und \( 3,1 \) (\( \vec{E}_{\text{scat},3,1} = \vec{E}_{\text{scat},3,1} \)). Insgesamt liegen also vier Entwicklungen vor. Es sei angemerkt, dass für den Außenraum Multipol- und für den Innenraum Normalentwicklungen angesetzt werden. Multipole besitzen ihre Singularität (\( \vec{E} \to \infty \) )
in ihrem Koordinatenursprung, so dass dieser nicht in das Gebiet platziert werden darf, für das er zuständig ist. Die Koordinatenursprüinge der Multipole \(1,1\) und \(1,2\) sind daher in das Innere des Streukörpers gesetzt. Anders verhält es sich mit den Entwicklungen \(2,1\) und \(3,1\), sie sind Normalentwicklungen und besitzen ihre Singularität im Unendlichen. Ihre Koordinatenursprüinge können daher in die Gebiete gelegt werden, in denen sie wirksam sind.

5.2.1.5 Randbedingungen

Bild 5.2: Anordnung der Gebiete und Anpasspunkte bei der Mehrfach-Multipol-Methode.

Die jeweils isotropen und homogenen Gebiete werden durch die Materialeigenschaften \(\mu_k\) und \(\varepsilon_k\) charakterisiert, wobei \(k\) die Gebietsnummer ist (siehe Bild 5.2). Die Gebietsgrenzen werden durch so genannte Anpasspunkte beschrieben und sie dienen dazu, Randbedingungen festzulegen, mit deren Hilfe schließlich das Gleichungssystem zur Bestimmung der Koeffizienten \(\alpha_{geb,entw,i}\) aufgestellt wird. Die Randbedingungen an dem Anpasspunkt \(j\) für das elektrische und magnetische Feld sind

\[
\hat{t}_{1,j} \cdot \vec{E}_{j,k} = \hat{t}_{1,j} \cdot \vec{E}_{j,l} \tag{5.21}
\]
\[
\hat{t}_{2,j} \cdot \vec{E}_{j,k} = \hat{t}_{2,j} \cdot \vec{E}_{j,l} \tag{5.22}
\]
\[
\varepsilon_k \cdot \hat{n}_j \cdot \vec{E}_{j,k} = \varepsilon_l \cdot \hat{n}_j \cdot \vec{E}_{j,l} \tag{5.23}
\]
\[
\hat{t}_{1,j} \cdot \vec{H}_{j,k} = \hat{t}_{1,j} \cdot \vec{H}_{j,l} \tag{5.24}
\]
\[
\hat{t}_{2,j} \cdot \vec{H}_{j,k} = \hat{t}_{2,j} \cdot \vec{H}_{j,l} \tag{5.25}
\]
\[
\mu_k \cdot \hat{n}_j \cdot \vec{H}_{j,k} = \mu_l \cdot \hat{n}_j \cdot \vec{H}_{j,l}. \tag{5.26}
\]

Dabei sind \(k\) und \(l\) die Nummern der beiden aneinandergrenzenden Gebiete und \(\hat{t}_1\) und \(\hat{t}_2\) sind die normierten Tangentialvektoren und \(\hat{n}\) ist der normierte Normalenvektor des Anpasspunkts.

\(\vec{E}_{j,k}\) ist das elektrische Feld am Anpasspunkt \(j\) im Gebiet \(k\) und \(\vec{E}_{j,l}\) ist das Feld in Gebiet \(l\). Gleiches gilt für die magnetischen Felder \(\vec{H}_{j,k}\) und \(\vec{H}_{j,l}\).
5.2.1.6 Multipolkonfiguration

Mathematisch ist die Beschreibung des Streufeldes eines beliebigen Körpers durch einen einzigen Entwicklungsansatz hinreichend, allerdings führen die dann notwendigerweise hohen Ordnungen zu numerischen Schwierigkeiten. Das kann umgangen werden, indem mehrere Multipolentwicklungen mit jeweils unterschiedlichen Koordinatenursprüngen angesetzt werden [34, 117], daher der Name **Mehrfach-Multipol-Methode**.

Bei diesem Verfahren sind die Multipole derart anzuordnen, dass sie stückweise kugelflächenförmige Gebietsgrenzen abdecken. Bild 5.3 zeigt hierzu einen Streukörper mit rundlichen Formen. Die kugelförmigen Bereiche werden mit Multipolen mit größerem Einflussbereich abgedeckt, während die Zwischenräume mit Multipolen mit kleinerem Einflussbereich abgedeckt werden. Der größte Schwinkel $\Delta \phi$, unter dem ein Multipol zwei benachbarte Anpasspunkte sieht, bestimmt die Ordnung des Multipols. Verfahren zur Multipolkonfiguration finden sich in [72, 113].

Bild 5.3: Multipolkonfiguration zur Beschreibung des Feldes außerhalb des Streukörpers.

5.2.1.7 Überbestimmtes Gleichungssystem

Die Bestimmung der Entwicklungskoeffizienten erfolgt über die Aufstellung eines Gleichungssystems in Form einer Matrix, wie es Bild 5.4 für die Anordnung aus den Bildern 5.1 und 5.2 zeigt. Die Zergliederung der Problemstellung beginnt mit der Unterteilung in Gebiete, hier sind es das Außengebiet 1 und die beiden inneren Gebiete 2 und 3. Für jedes der drei Gebiete müssen Feldentwicklungen angesetzt werden. In diesem Fall sind es für das Gebiet 1 zwei Entwicklungen und für die Gebiete 2 und 3 jeweils eine Entwicklung (siehe Bild 5.1). Jede Entwicklung hat den Satz Koeffizienten $a_{geb,entw,i}$. Dabei ist $i$ die durchlaufende Nummerierung, $entw$ die Nummer der Entwicklung aus dem Gebiet $geb$. In der Matrix ist jede Feldentwicklung für eine bestimmte Gruppe von Matrixspalten zuständig. Die Gebiete werden durch Ränder voneinander getrennt. So begrenzt der Rand $r_{23}$ die Gebiete 2 und 3. Eine Berandung besteht aus einem Satz Anpasspunkte, die neben ihren eigentlichen Aufpunkten noch jeweils zwei in der Randfläche liegende Tangential-Vektoren $\hat{\ell}_1$ und $\hat{\ell}_2$ besitzen\(^3\).

\(^3\)Der Normalenvektor lässt sich mit $\hat{n} = \hat{\ell}_1 \times \hat{\ell}_2$ berechnen.
Bild 5.4: Beispiel für das Gleichungssystem zur Bestimmung der Entwicklungskoeffizienten \( \alpha_{geb,entw,i} \). Die Ränder werden mit den relevanten Entwicklungen verknüpft.

Innerhalb der Matrix werden die Ränder mit den entsprechenden Entwicklungen verknüpft. Nicht jede Entwicklung muss am Feld an einem bestimmten Rand beteiligt sein, so dass die Matrix nicht zwingend besetzt ist.

Üblicherweise werden mehr Anpasspunkte verwendet, als zur Bestimmung der Koeffizienten \( \alpha_{geb,entw,i} \) notwendig wären. Im Angelsächsischen wird diese Methode auch Generalized Point Matching Technique genannt. Das Gleichungssystem ist daher überbestimmt und verhält sich dadurch numerisch gutmütiger. Ein geeigneter Grad der Überbestimmung liegt etwa bei vier.

Gelöst wird das Gleichungssystem, indem die Fehlerquadrate minimiert werden, d.h., die Fehler in den Anpasspunkten werden gegeneinander ausgariert. Gelöst werden kann das Gleichungssystem mit Hilfe der QR-Zerlegung.

5.2.1.8 Fehlervektoren


Werden nach einem Berechnungsdurchlauf die Residuen der Gleichungen (5.21) bis (5.26) gemäß
(5.27) zusammengefasst, erhält man den relativen Fehler \( \rho_j \) \[35\].

\[
\rho_j^2 = \frac{1}{6} \left\{ \frac{\left| \hat{\varepsilon}_j \cdot \hat{n}_j \cdot \hat{E}_{j,k} - \hat{\varepsilon}_j \cdot \hat{n}_j \cdot \hat{E}_{j,l} \right|^2}{\left| \hat{\varepsilon}_j \cdot \hat{n}_j \right|} + \left| \hat{t}_{1,j} \cdot \hat{E}_{j,k} - \hat{t}_{1,j} \cdot \hat{E}_{j,l} \right|^2 + \left| \hat{t}_{2,j} \cdot \hat{E}_{j,k} - \hat{t}_{2,j} \cdot \hat{E}_{j,l} \right|^2 + \left| \frac{\mu_k \cdot \hat{n}_j \cdot \hat{H}_{j,k} - \mu_k \cdot \hat{n}_j \cdot \hat{H}_{j,l}}{\mu_k \cdot \mu_j} \right|^2 \left| \hat{t}_{1,j} \cdot \hat{H}_{j,k} - \hat{t}_{1,j} \cdot \hat{H}_{j,l} \right|^2 + \left| \hat{t}_{2,j} \cdot \hat{H}_{j,k} - \hat{t}_{2,j} \cdot \hat{H}_{j,l} \right|^2 \right\} \quad (5.27)
\]

Dieser kann für jeden einzelnen Anpasspunkt \( j \) berechnet werden. Allerdings ist die tabellarische Auswertung dieser Fehler mühsam, so dass deren grafische Darstellung zusammen mit dem Berechnungsmodell erstrebenswert ist. Hierzu bieten sich die Normalenvektoren der Anpasspunkte an, deren Länge entsprechend Gleichung (5.28) gesetzt werden.

\[
\vec{n}_{\text{error},j} = \hat{n}_j \cdot \rho_j \quad (5.28)
\]

Die grafische Darstellung der Anpasspunkte durch ihre Fehlervektoren \( \vec{n}_{\text{error},j} \) erlaubt eine einfache Überprüfung des Berechnungsergebnisses. Das im Rahmen dieser Arbeit entstandene Programm \textit{xmpedit} ermöglicht dem Benutzer eine komfortable Darstellung der Fehlervektoren (siehe Bild 5.17).

### 5.2.2 Objektorientierte Implementierung der Multipolmethode

#### 5.2.2.1 Philosophie der objektorientierten Programmierung

Insbesondere bei der Mehrfach-Multipol-Methode sind eine Vielzahl von Feldentwicklungen möglich, die je nach Anwendungsfall optimal sind. Mit der Ausdehnung auf weitere Berechnungsaufgaben ergibt sich somit ein Bedarf an ständiger Programmweiterentwicklung. Für eine prozedurale Implementierung des Programms bedeutet dieses, dass häufig das gesamte Programm umgeschrieben werden muss, wodurch sich leicht Fehler einschleichen können.

Ein gängiges Mittel, um Komplexität zu reduzieren, ist Abstraktion. So können z. B. zusammengehörige Daten in einem Verbund gruppiert und als Objekt betrachtet werden. Dabei interessiert nicht, wie im Detail die Programmabschnitte zur Behandlung der Daten aussehen, sondern wie sich das Objekt nach außen hin darstellt und was man mit dem Objekt machen kann. Die Objektierna interessieren dabei nicht. Am Beispiel einer Multipolentwicklung bedeutet dies, dass das Objekt verschiedene Attribute wie Koordinatenursprung, Ordnung, Grad und Entwicklungskoeffizienten gespeichert hat, diese aber nach außen hin nicht sichtbar sind. Auch die komplizierte Berechnung des Feldes bleibt nach außen hin verborgen. Das Objekt bietet lediglich ein paar wenige Methoden\(^4\), wie z. B. die zur Berechnung des elektrischen Feldes für einen bestimmten Ort.


Durch eine geeignete Abstraktion der Feldberechnungsmethode, können Abhängigkeiten reduziert werden, so dass das Programm in möglichst unabhängige Module zergliedert werden kann. Dieses erlaubt den nachträglichen Einbau weiterer Module, ohne nennenswerten Mehraufwand.

5.2.2.2 Gleichungssystem

In der Matrix ist jede Feldentwicklung für eine bestimmte Gruppe von Matrixspalten zuständig. Feldentwicklungen werden daher im Folgenden als Spaltenobjekte bezeichnet (siehe Bild 5.4).

\(^4\)Im objektorientierten Sprachgebrauch werden Klassenfunktionen auch als Methoden bezeichnet.
Jeder Gebietsrand ist für eine Gruppe von Matrix-Zeilen zuständig und wird daher im Folgenden Zeilenobjekt genannt.

5.2.2.3 Umsetzung

Im Rahmen dieser Arbeit wurde die Mehrfach-Multipol-Methode in objektorientierter Weise implementiert. Die Eingabedateien sind an die prozedurale Implementierung der ETH Zürich angelehnt [35], so dass für dieses Programm bereits erstellte Berechnungsmodelle ohne Modifikationen verwendet werden können. Im Anhang B werden die wichtigsten Klassen und deren Interaktionen beschrieben.

Durch die Verwendung des entwickelten Klassenmodells wird eine sehr genaue Schnittstellendefinition gegeben, was eine Programmerweiterung, insbesondere durch mehrere beteiligte Personen, stark vereinfacht. Durch Abstraktion können die verschiedensten Entwicklungsarten auf höherer Ebene allgemein behandelt werden. So kann eine neue Feldentwicklung in ein separates Modul untergebracht werden und dieses durch Hinzufügen von nur zwei Programmzeilen in das bestehende Programm eingehangen werden.

5.2.3 Momentenmethode

Die einfachste Anwendung der Momentenmethode stellt die Behandlung von Drahtstrukturen dar. Hierzu werden die Drahtstücke in Segmente unterteilt, auf denen Basisfunktionen angeordnet werden. Auf diese Weise kann der Stromverlauf entlang des Drahtes approximiert werden. Es sind grundsätzlich verschiedene Basisfunktionen, wie z. B. Rechteckfunktionen, möglich. Im Folgenden wird jedoch nur von dreiecksförmigen Funktionen \( f_i \) als in Bild 5.5 dargestellt, ausgegangen. Jede Basisfunktion \( f_i \) wird mit dem Koeffizienten \( a_i \) gewichtet, so dass sich durch

\[
\vec{E} = \vec{E}_I = -\frac{j}{4\pi\varepsilon_0} \sum_{i} a_i \int_{L'} \frac{\partial I(\vec{r})}{\partial \vec{l}'} \cdot G(\vec{r}, \vec{r}') d\vec{l}' - j\omega \frac{\mu}{4\pi} \int_{L'} I(\vec{r}') \cdot \hat{\vec{l}}' \cdot G(\vec{r}, \vec{r}') d\vec{l}'
\]

Bild 5.5: Approximation des Stromes entlang eines Drahtsegments mit Hilfe dreiecksförmeriger Basisfunktionen.

Überlagerung von hinreichend vielen Basisfunktionen \( f_i \) ein beliebiger Stromverlauf ausdrücken lässt.

Das elektrische Feld eines Fadenstroms lässt sich mit

\[
\vec{E} = \vec{E}_I = -\frac{j}{4\pi\varepsilon_0} \sum_{i} a_i \int_{L'} \frac{\partial I(\vec{r})}{\partial \vec{l}'} \cdot G(\vec{r}, \vec{r}') d\vec{l}' - j\omega \frac{\mu}{4\pi} \int_{L'} I(\vec{r}') \cdot \hat{\vec{l}}' \cdot G(\vec{r}, \vec{r}') d\vec{l}'
\]

(5.29)
berechnen [50]. Dabei ist \( G(\mathbf{r}, \mathbf{r}') \) eine geeignete Green’sche Funktion. Mit Gleichung (5.29) wird ebenfalls der Operator \( \tilde{E} \) definiert.

Der Strom \( \mathbf{I} \) setzt sich gemäß

\[
\mathbf{I} = \sum_{i=1}^{N_\mathbf{i}} a_i \mathbf{f}_i
\]

(5.30)
zusammen. Damit kann das gestreute elektrische Feld in Abhängigkeit von den Koeffizienten \( a_i \) angegeben werden:

\[
\mathbf{E}_{\text{scat}} = \sum_{i=1}^{N_\mathbf{i}} a_i \cdot \mathbf{E}_i.
\]

(5.31)

Bei der Momentenmethode setzt sich das elektrische Gesamtfeld gemäß

\[
\mathbf{E} = \mathbf{E}_{\text{inc}} + \mathbf{E}_{\text{scat}}
\]

(5.32)
zusammen.

Die Koeffizienten \( a_i \) sind derart zu lösen, dass auf der Drahtoberfläche die Randbedingung

\[
\mathbf{E}_{\text{ran}} = \sum_{i=1}^{N_\mathbf{i}} a_i \mathbf{R} \mathbf{E}_i + \mathbf{R} \mathbf{E}_{\text{inc}} = 0
\]

(5.33)
erfüllt ist. Dabei bildet der Operator \( \mathbf{R} \) das elektrische Feld auf die Tangentialkomponenten an den Drahtoberflächen ab. Diese Gleichung kann entweder nach dem Punktanpassungsverfahren auf den Drahtsegmenten erfüllt werden, oder durch die Bildung von Momenten. Letzteres Verfahren liefert genauere Ergebnisse. Mit Hilfe der Gewichtungsfunktion \( w_j \) für das Segment \( j \) und mit

\[
< ..., w_j > = \int_L ... w_j \, dl
\]

(5.34)
wird das Moment berechnet. Es handelt sich also um eine gewichtete Mittelwertbildung entlang eines Segments. Damit kann das Gleichungssystem

\[
\sum_{i=1}^{N_\mathbf{i}} a_i < \mathbf{R} \mathbf{E}_i, w_j > = - < \mathbf{R} \mathbf{E}_{\text{inc}}, w_j >
\]

(5.35)
angegeben werden. Sind die Basisfunktionen \( f_i \) gleich den Gewichtungsfunktionen \( w_j \), dann handelt es sich um das Galerkin-Verfahren. Die Lösung von (5.35) liefert die Koeffizienten \( a_j \). Mit deren Hilfe und mit (5.31) können die gestreuten elektrischen Felder schließlich berechnet werden.

Die Darstellung der Momentenmethode erfolgte anhand des einfachsten Falls, den elektrischen Linienströmen auf Drahtsegmenten. Jedoch kann die Methode auch Flächenströme ausgeweitet werden, so dass auch metallische Flächen, wie z.B. Antennenreflektoren, PKW-Karosserien oder Herzschrägturbinengestänge, behandelt werden können. Werden zusätzlich noch magnetische Ströme berücksichtigt, lassen sich auch homogene dielektrische Körper behandeln. Eine ausführliche Beschreibung der Momentenmethode findet sich in [50].
5.2.4 Iterative Verkopplung MoM-MMP

5.2.4.1 Iterative Verkopplung innerhalb der Mehrfach-Multipol-Methode


\[\text{Bild 5.6: Iterative Berechnung zweier Streukörper mit der Mehrfach-Multipol-Methode.}\]

5.2.4.2 Iterative Verkopplung mit der Methode der Momente (MoM)


Der menschliche Körper wird hierbei mit der Mehrfach-Multipol-Methode behandelt. Die technischen Objekte, welche überwiegend aus Metall bestehen, werden mit der Momentenmethode berechnet.
**5.2.4.3 Iterativer Lösungsansatz**

Wird Bild 5.7 zu Grunde gelegt, so existieren die beiden Gebiete *Außengebiet* und *Innengebiet*. Für jedes Gebiet *geb* ergibt sich das Gesamtfeld $\vec{E}_{geb}$ durch Überlagerung der Felder aller Quellen des Gebiets, wie es durch Gleichung (5.36) ausgedrückt wird.

$$\vec{E}_{geb} = \vec{E}_{MoM,geb} + \vec{E}_{MMP,geb} \quad (5.36)$$

Dabei ist $\vec{E}_{MMP,geb}$ das Feld der Multipole im Gebiet *geb*. Im Außengebiet ist $\vec{E}_{MoM,Außengebiet}$ das Feld des Sprechfunkgeräts und im Innengebiet ist $\vec{E}_{MoM,Innengebiet}$ das Streufeld des Herzschrittmachers.

Mit jedem Iterationsschritt $\nu$ konvergieren\(^5\) die Lösungen $\vec{E}_{MoM,geb,\nu}$ und $\vec{E}_{MMP,geb,\nu}$ gemäß

$$\vec{E}_{MoM,geb} = \lim_{\nu \to \infty} \vec{E}_{MoM,geb,\nu} \quad (5.37)$$

$$\vec{E}_{MMP,geb} = \lim_{\nu \to \infty} \vec{E}_{MMP,geb,\nu}. \quad (5.38)$$

Das elektrische Feld des MoM-Anteils des Gebiets *geb* setzt sich gemäß

$$\vec{E}_{MoM,geb,\nu} = \sum_{i=1}^{N_{geb}} a_{geb,i,\nu} \vec{E}_{geb} f_{geb,i} + \vec{E}_{inc,geb} \quad (5.39)$$

zusammen, siehe auch Abschnitt 5.2.3. Dabei ist $\vec{E}_{inc,geb}$ das anregende elektrische Feld, $f_{geb,i}$ sind die Basisfunktionen im Gebiet *geb* und $\vec{E}_{geb}$ ist der Operator für das Gebiet *geb*, der einen Strom gemäß $f_{geb,i}$ auf das elektrische Feld abbildet. Die Koeffizienten $a_{geb,i,\nu}$ werden für jeden Iterationsschritt $\nu$ erneut berechnet, so dass Gleichung (5.40) erfüllt wird.

$$\vec{R} \vec{E}_{MoM,geb,\nu} + \vec{R} \vec{E}_{MMP,geb,\nu-1} = \vec{0} \quad (5.40)$$

---

\(^5\) Eine geeignete Multipolkonfiguration ist Voraussetzung.
Der Korrekturterm ist das im vorangegangenen Iterationsschritt berechnete Streufeld des MMP-Körpers.

Der iterative Programmablauf beginnt zunächst mit einer MoM-Berechnung. Für diesen ersten Iterationsschritt \( \nu = 1 \) wird

\[
\vec{E}_{\text{MMP,geb},0} = \vec{0}
\]

(5.41)

gesetzt.

Nach Durchlauf dieser Berechnung dient das berechnete Feld \( \vec{E}_{\text{MMP,geb},\nu} \) als anregendes Feld für die MMP-Berechnung. Die Gleichungen (5.21) bis (5.23) werden um Korrekturterme erweitert, so dass sich die Gleichungen (5.42) bis (5.44) ergeben.

\[
\begin{align*}
\hat{t}_{1,j} \left[ \vec{E}_{\text{MMP,k,\nu}}(\vec{r}_j) - \vec{E}_{\text{MMP,l,\nu}}(\vec{r}_j) \right] &= -\hat{t}_{1,j} \left[ \vec{E}_{\text{MoM,k,\nu}}(\vec{r}_j) - \vec{E}_{\text{MoM,l,\nu}}(\vec{r}_j) \right] \\
\hat{t}_{2,j} \left[ \vec{E}_{\text{MMP,k,\nu}}(\vec{r}_j) - \vec{E}_{\text{MMP,l,\nu}}(\vec{r}_j) \right] &= -\hat{t}_{2,j} \left[ \vec{E}_{\text{MoM,k,\nu}}(\vec{r}_j) - \vec{E}_{\text{MoM,l,\nu}}(\vec{r}_j) \right] \\
\hat{n}_j \left[ \hat{\epsilon}_j \vec{E}_{\text{MMP,k,\nu}}(\vec{r}_j) - \hat{\epsilon}_j \vec{E}_{\text{MMP,l,\nu}}(\vec{r}_j) \right] &= -\hat{n}_j \left[ \hat{\epsilon}_j \vec{E}_{\text{MoM,k,\nu}}(\vec{r}_j) - \hat{\epsilon}_j \vec{E}_{\text{MoM,l,\nu}}(\vec{r}_j) \right]
\end{align*}
\]

Korrekturterme

Dabei sind \( \vec{E}_{\text{MMP,k,\nu}} \) und \( \vec{E}_{\text{MMP,l,\nu}} \) die Feldentwicklungen für die Gebiete \( k \) und \( l \) und werden vom MMP-Prozess derart berechnet, dass die Gleichungen (5.42) bis (5.44) erfüllt werden. Im folgenden Iterationsschritt \( \nu + 1 \) wird erneut eine MoM-Berechnung angestoßen, auf die wiederum eine MMP-Berechnung folgt.

Als Abbruchkriterium dient die relative Änderung der Koeffizienten \( a_{\text{geb},i,\nu} \). Hierzu können die Koeffizienten als Vektor \( \vec{a}_{\text{geb},\nu} = (a_{\text{geb},1,\nu}, a_{\text{geb},2,\nu}, \ldots, a_{\text{geb},N_{\text{geb}},\nu})^T \) zusammengefasst werden. Die Iteration wird abgebrochen, sobald für jede MoM-Berechnung des Gebiets \( \text{geb} \) die Ungleichung

\[
\frac{||\vec{a}_{\text{geb},\nu} - \vec{a}_{\text{geb},\nu-1}||_2}{||\vec{a}_{\text{geb},\nu}||_2} < \varepsilon_{\text{geb}}
\]

(5.45)
erfüllt ist. Entsprechend der gewünschten Genauigkeit kann \( \varepsilon_{\text{geb}} \) für jedes Gebiet gewählt werden.

### 5.2.4.4 Vergleichsrechnung

Für eine Vergleichsrechnung wird ein prolates Ellipsoid mit 1000 mm Höhe und 400 mm Durchmesser herangezogen (siehe Bild 5.8). Es ist homogen und seine Materialeigenschaften sind \( \varepsilon_r = 56 \), \( \mu_r = 1 \) und \( \sigma = 0.53 \, \text{S/m} \). In unmittelbarer Nähe ist ein Sprechfunkgerät angebracht, welches bei einer Frequenz von \( f = 100 \, \text{MHz} \) eine Leistung von 1 W abstrahlt. Das Feld wird entlang der in Bild 5.8 dargestellten Achse berechnet. Bild 5.9 zeigt den Betrag der Feldstärke entlang der Achse. Eine sehr gute Übereinstimmung zwischen den beiden Verfahren konnte gefunden werden. Für die hier dargestellte Berechnung wurde für das Abbruchkriterium (5.45) \( \varepsilon_{\text{Außengebiet}} = 10^{-4} \) gesetzt. Es wurden fünf Iterationen benötigt.
5.2.4.5 Relaxationsfaktor

Unter bestimmten Bedingungen können während des Iterationsprozesses Oszillationen auftreten. Im ungünstigsten Fall schaukeln sich die iterativen Berechnungen sogar auf, so dass keine Konvergenz mehr eintritt. Ein Grund hierfür können zu geringe Abstände zwischen den Berechnungsanordnungen sein [75]. Durch geeignete Multipolkonfigurationen kann dieses Problem jedoch etwas entschärft werden.

Insbesondere geringe Abstände zwischen den Berechnungsanordnungen führen zu einer größeren Zahl notwendiger Iterationen. Ein Beispiel hierfür ist ein Herzschieneherzschrittmacher, welches ca. 1 cm tief unter der Haut implantiert ist. Damit die Berechnungsduer nicht zu lang wird, ist es erstrebenswert, die notwendige Zahl an Iterationsschritten gering zu halten.

Nach [63] können die Gauß-Iterationsschritte durch einen Relaxationsfaktor \( q < 1 \) gedämpft oder durch \( q > 1 \) beschleunigt werden (sukzessive Blockunterrelaxation / SBUR und sukzessive Blocküberrelaxation / SBOR). Hierzu werden die Gleichungen (5.42) bis (5.44) modifiziert. So wird z. B. aus (5.42) schließlich

\[
\hat{t}_{1,j} \left[ \vec{E}_{\text{MMP},k,\nu}(\vec{r}_j) - \vec{E}_{\text{MMP},l,\nu}(\vec{r}_j) \right] = \hat{t}_{1,j} \left[ \vec{E}_{\text{MMPinc},k,\nu}(\vec{r}_j) - \vec{E}_{\text{MMPinc},l,\nu}(\vec{r}_j) \right].
\]

(5.46)

Die beiden anderen Gleichungen werden entsprechend modifiziert. Der MMP-Prozess wird jetzt nicht mehr direkt durch den MoM-Prozess angeregt, sondern durch die Hilfsgrößen \( \vec{E}_{\text{MMPinc,geb,}\nu} \), welche unter Zuhilfenahme des Relaxationsfaktors \( q \) gemäß

\[
\vec{E}_{\text{MMPinc,geb,}\nu} = (1 - q) \cdot \vec{E}_{\text{MMPinc,geb,}\nu-1} + q \cdot \vec{E}_{\text{MoM,geb,}\nu}
\]

(5.47)
aus den Feldern der MoM-Prozesse berechnet werden. Zu Beginn der Rechnung wird $\vec{E}_{\text{MMPisc.geb,0}} = \vec{0}$ gesetzt.

Im Folgenden wird von dem Berechnungsbeispiel aus Abschnitt 5.2.4.4 ausgegangen und ein Herzschnittmacher knapp unter der Körperoberfläche modelliert. Die genaue Berechnungsanordnung hierzu ist im Kapitel 6 zu finden. Durch den Schrittmacher erhöht sich die Anzahl der benötigten Iterationen leicht. Für verschiedene Relaxationsfaktoren $q$ ergeben sich die Iterationszahlen nach Tabelle 5.1. Durch den Relaxationsfaktor $q = 0,9$ ergibt sich für dieses Beispiel optimale Konvergenz.

<table>
<thead>
<tr>
<th>$q$</th>
<th>0,4</th>
<th>0,5</th>
<th>0,6</th>
<th>0,7</th>
<th>0,8</th>
<th>0,9</th>
<th>1,0</th>
<th>1,1</th>
<th>1,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl Iterationen</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

**Tabelle 5.1**: Anzahl der benötigten Iterationen in Abhängigkeit vom Relaxationsfaktor $q$.

### 5.3 Methode zur Erzeugung von Multipolkonfigurationen

#### 5.3.1 Schwierigkeiten mit bisherigen Verfahren


Sind die Anpasspunkte in ungeeigneter Weise angeordnet, kann das im Folgenden beschriebene Problem auftreten. Ein trapezförmiger Funktionsverlauf soll durch eine Fourier-Reihe fünfter Ordnung approximiert werden. Der gewöhnliche Lösungsweg würde zwar über das Fourier-Integral führen, im Folgenden sollen aber die Fourierkoefizienten, wie bei der Mehrfach-Multipol-Methode, durch Punktanpassung bestimmt werden. Hierzu werden die Fourier-Koeffizienten $a_0$ bis $a_{10}$ mit Hilfe des linearen Gleichungssystems

$$y_i = a_0 + \sum_{j=1}^{5} a_{(2j-1)} \cos(j \cdot x_i) + a_{(2j)} \sin(j \cdot x_i) \quad i \in \{1, 2, \ldots, 11\} \quad (5.48)$$

gelöst. Die Anpasspunkte $(y_i, x_i)$ werden derart gewählt, dass sie dem Verlauf eines trapezförmigen Impulses folgen. Im ersten Beispiel werden die Punkte so gelegt, dass das Abtasttheorem

$$x_i - x_{i-1} < \frac{2\pi}{2 \cdot 5} \quad i \in \{2, 3, \ldots, 11\} \quad (5.49)$$
befolgt wird und die Punkte auf der x-Achse äquidistant sind. Nach Lösung von (3.48) ergibt sich
der Verlauf nach Bild 5.10. Anders verhält es sich hingegen, wenn die Wahl der Anpasspunkte
ungeeignet ist (siehe Bild 5.11). Das Ergebnis weicht stark von dem gewünschten Verlauf ab,
so dass die Lösung unbrauchbar ist.

![Bild 5.10: Approximation durch Fourier-
Reihe bei richtig gesetzten Anpasspunkten.]

![Bild 5.11: Approximation durch Fourier-
Reihe bei schlecht gesetzten Anpasspunkten.]

Der beschriebene Effekt kann auch bei der Mehrfach-Multipol-Methode auftreten, wenn die
Anpasspunkte lokal nicht hinreichend dicht gesetzt sind oder die Ordnung eines Multipols zu
hoch ist. Insbesondere unerfahrene Benutzer haben es oft schwer, brauchbare Lösungen zu
erzielen, da der relative Fehler $\rho_j$ in den Anpasspunkten$^6$ als Maß für die Güte einer Lösung
dann nicht mehr aussagekräftig ist. Siehe hierzu auch Abschnitt 5.2.1.8.

Diese Schwierigkeit kann dadurch abgemildert werden, dass mehr Anpasspunkte eingesetzt
werden als notwendig sind und sich dadurch ein überbestimmtes Gleichungssystem ergibt$^7$.

Der übliche Weg zur Erstellung einer Multipolkonfiguration besteht zunächst im Setzen der
Anpasspunkte, welche gleichzeitig die Geometrie der Streukörper beschreiben. Im nächsten
Schritt werden die Multipole gesetzt [113, 20, 93, 23]. Dabei muss der Grad und die Ordnung
der Multipole derart gesetzt werden, dass das Abtasttheorem nicht verletzt wird.

Für die separate Multipolmethode mag diese Vorgehensweise noch praktikabel sein. Allerdings
erfordert die Berechnung von wie in Bild 5.8 dargestellten Szenarien mit Hilfe der beschrie-
benen iterativen Hybridmethode besonders geeignete Multipolkonfigurationen, welche mit der
herkömmlichen Vorgehensweise sehr zeitaufwändig zu erstellen ist.

Nähert sich das Sprechfunkgerät von Bild 5.8 dem Körpermodell, entstehen wegen des Nahfelds
komplizierte Streufelder, welche mit Hilfe von Entwicklungsfunktionen, wie z. B. Multipolen,

$^6$Nach einer Berechnung kann die Nichterfüllung der Randbedingungen als relative Fehler in den Anpas-
spunkten berechnet werden.

$^7$Auch Generalized Point Matching Technique genannt.
ausgedrückt werden müssen. Hierzu bietet es sich an, in der Nähe des Sprechfunkgeräts sowohl innerhalb als auch außerhalb des Körpermodells weitere Entwicklungsfunktionen anzusetzen. Dabei stellt die Platzierung der Multipole selbst keinen großen Aufwand dar, jedoch das Setzen weiterer Anpasspunkte, so dass das Abtasttheorem erfüllt bleibt.

### 5.3.2 Neues Verfahren zur Erstellung von Multipolkonfigurationen


Erzeugt werden die Anpasspunkte durch Projektionen ausgehend von den Feldentwicklungen hin auf die Gebietsränder. Bild 5.12 zeigt einen mit Halbkugeln abgeschlossenen Kreiszylinder, in welchem ein Multipol platziert ist. Der Winkel $\Delta \varphi$, unter dem der Multipol zwei benachbarte Anpasspunkte „sieht”, wird Schwinkel genannt. Zur Erfüllung des Abtasttheorems ist der Schwinkel $\Delta \varphi < \pi / N_{\text{max}}$ einzuhalten [113]. $N_{\text{max}}$ ist dabei die Multipolordnung, siehe hierzu auch Abschnitt 5.2.1.2. Bild 5.13 zeigt die Anordnung dreidimensional. In der Nähe des Multipols ergibt sich automatisch eine höhere Dichte von Anpasspunkten. Durch Erhöhen der Multipolordnung oder durch Platzieren eines weiteren Multipols kann auf einfache Weise die Zahl der Anpasspunkte lokal erhöht und damit das Berechnungsmodell verfeinert werden.

Bild 5.12: Zweidimensionale Darstellung der Projektion.

Bild 5.13: Von einem Multipol aus projizierte Anpasspunkte mit Normalenvektoren.


5.3.3 Interaktive Benutzeroberfläche zum Erstellen von Multipolkonfigurationen

Das im vorhergehenden Abschnitt beschriebene halbautomatische Verfahren erfordert für den Benutzer eine visuelle Rückkopplung, so dass er erkennen kann, ob hinreichend Anpasspunkte gesetzt sind und dass er nach einer Feldberechnung die Fehler in den Anpasspunkten überprüfen
Bild 5.14: Von einem Linienmultipol ausgehende Vektoren zur Projektion auf die Anpasspunkte.

Bild 5.15: Von einem ringförmigen Linienmultipol aus projizierte Anpasspunkte mit Normalenvektoren.


Die Benutzeroberfläche wurde unter X11\(^8\) mit Hilfe der Motif-Programmbibliothek\(^9\) [41, 21] implementiert. Für die dreidimensionale Darstellung der Objekte wurde auf OpenGL\(^{10}\) zurückgegriffen [58, 116, 106]. OpenGL ermöglicht das Rendering von dreidimensionalen Objekten in Echtzeit, so dass das Simulationsszenario flüssig auf dem Bildschirm vergrößert, gedreht und modifiziert werden kann.

Das Kernstück der Applikation ist das Grafikfenster. Es erlaubt die detaillierte Darstellung der Multipolkonfiguration. Des Weiteren können die geometrischen Flächen dargestellt werden, aus denen sich nach Abschnitt 5.3.2 die Anpasspunkte berechnen. Eine weitere wichtige Möglichkeit ist, dass die MoM-Anordnungen dargestellt werden können, die bei hybrider MoM-MMP-Berechnung einfließen würden.

---

\(^8\)X11 ist ein netzwerkfähiges Client-Server-Protokoll zur Implementierung von graphischen Bildschirmoberflächen unter UNIX.


\(^{10}\)OpenGL ist ein eingetragenes Warenzeichen von SGI.
**Bild 5.16**: Beispiel für ein Körpermodell. Die Anpasspunkte wurden durch Projektionen von den einzelnen Entwicklungen erzeugt. Um den Hals befindet sich ein Linienmultipol.

Im Grafikfenster kann mittels Mausklicks und -bewegungen die Ansicht des Modells gedreht, verschoben und gezoomt werden. Des Weiteren lassen sich mit Hilfe der Maus Multipole selektieren, drehen und positionieren.


Die hier vorgestellte Benutzeroberfläche erlaubt eine bequeme Erstellung der Multipolkonfiguration. Die Güte der Berechnung kann anhand der Fehler in den Randbedingungen geprüft und kann durch interaktives Nachbearbeiten der Multipolkonfiguration optimiert werden.
Bild 5.17: Benutzeroberfläche zmmpedit.
Kapitel 6

Berechnung der Störeinkopplung in Herzschrittmachelelektroden

6.1 Einführung


Diese gleichgerichteten Anteile führen in der Regel zu Arbeitspunktverschiebungen der Eingangsverstärker. Ein leichter Versatz durch ein kontinuierliches oder allenfalls frequenzmoduliertes HF-Signal wird das Gerät in der Regel nicht beeinträchtigen. Problematisch hingegen
sind amplitudenmodulierte Signale, wie z. B. die des TV-Rundfunks. Diese führen zu einer gepulsten Gleichspannung. Auch wenn diese im mV-Bereich oder gar darunter liegt, kann sie vom Herzschrittmacher verwechselt werden und fälschlicherweise als Herzsignal interpretiert werden.


Hingegen wurden in [36] Berechnungen durchgeführt. Wegen der untersuchten hohen Frequenzen von bis zu 2,5 GHz musste dabei auf ein planares Modell zurückgegriffen werden. In der Untersuchung wurden ebenfalls die sehr wichtigen Elektrodenimpedanzen behandelt. Es zeigt sich, dass aufgrund von Resonanzen sehr hohe Störs Spannungen auftreten können, was auch im Rahmen dieser Arbeit bestätigt werden konnte.

Derselbe Autor untersuchte in [37] die Einkopplung von Nahfeldern in ein Körpermodell. Die untersuchten niedrigen Frequenzen von 30 kHz bis 100 MHz ermöglichen die Verwendung eines dreidimensionalen Körpermodells.

Die Herzschrittmachenerstudie im Rahmen der vorliegenden Arbeit ergänzt die bisherigen Arbeiten um den Frequenzbereich von 50 MHz bis 500 MHz. Es werden im Folgenden sowohl Fernfeld- als auch Nahfelduntersuchungen durchgeführt. Dank der rasanten Entwicklung auf dem Gebiet der Rechnertechnik, aber auch durch die Entwicklung von Hybridmethoden (siehe Kapitel 5), erfolgt die Untersuchung anhand von dreidimensionalen Körpermodellen.

### 6.2 Kopplungsmodell


Gegenstand dieser Arbeit ist das Kopplungsmodell. Es beschreibt die Herzschrittmacherelektrode als verallgemeinerte Quelle, die aus der Spitze-Spitze-Leerlaufspannung $U_{pp}$ und der Elektrodenimpedanz $Z_e$ besteht (siehe Bild 6.2). Das Verträglichkeitsmodell definiert die Herzschrittmacherimpedanz $Z_p$, mit deren Hilfe die tatsächlich am Schrittmacher anliegende Störspannung $U_{Zp,pp}$ berechnet werden kann.


6.3 Definitionen

6.3.1 Körperforme

Im Rahmen der Untersuchung kommen zwei Körpermodelle zum Einsatz. Zum einen ein prolatenes Ellipsoid mit 400 mm Durchmesser und 1000 mm Höhe, im Folgenden Körpermodell 1 genannt (siehe Bild 6.3). Die Abmessungen wurden so gewählt, dass sie den Oberkörper eines Durchschnittsmenschen zwischen 16 und 60 Jahren nach DIN 33402 Teil 2 abdecken. Dieses
einfache Körpermodell eignet sich gut für die Durchführung der Nahfelduntersuchungen mit Hilfe der Mehrfach-Multipol-Methode.

Für die Fernfelduntersuchungen, welche weniger aufwändig sind, kann das etwas detailliertere Körpermodell 2 verwendet werden (siehe Bild 6.4). Es besitzt einen Kopf, Schultern und einen Beinansatz.

Bild 6.3: Körpermodell 1 (Maße in mm). Bild 6.4: Körpermodell 2 (Maße in mm).

### 6.3.2 Dielektrische Eigenschaften des Körpermodells

Die verwendeten Körpermodelle sind homogen. Ihre dielektrischen Eigenschaften werden durch gewichtete Mittelwertbildung der Organparameter bestimmt. Hierzu werden die Anteile gemäß Tabelle 6.1 verwendet, die mit Hilfe eines anatomischen Atlases ermittelt wurden [68].

<table>
<thead>
<tr>
<th>Gewebeart</th>
<th>Muskel</th>
<th>Knochen</th>
<th>Lunge</th>
<th>Leber</th>
<th>Herz</th>
<th>Magen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anteil</td>
<td>41 %</td>
<td>20 %</td>
<td>19 %</td>
<td>11 %</td>
<td>5 %</td>
<td>4 %</td>
</tr>
</tbody>
</table>

Tabelle 6.1: Zusammensetzung des Oberkörpers.


### 6.3.3 Herzschrittmachermodell

Untersuchungen haben ergeben, dass die Form des Herzschrittmachers einen vernachlässigbaren Einfluss auf die Einkopplung hat [36, 68]. Daher wird die einfache Form nach Bild 6.5 gewählt.
<table>
<thead>
<tr>
<th>Frequenz [MHz]</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \varepsilon_r )</td>
<td>70</td>
<td>56</td>
<td>48</td>
<td>45</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>( \sigma , [\text{s/m}] )</td>
<td>0,45</td>
<td>0,53</td>
<td>0,57</td>
<td>0,62</td>
<td>0,65</td>
<td>0,67</td>
</tr>
</tbody>
</table>

Tabelle 6.2: Materialparameter des Körpermodells.

Das Modell der Herzschrittmacherlektrode ist gemäß Bild 6.6 aufgebaut. Für die Isolierung werden die Parameter \( \varepsilon_r, \text{Isolierung} = 2 \) und \( \sigma, \text{Isolierung} = 1 \mu \text{S/m} \) verwendet.

![Bild 6.5: Modell des Herzschrittmachers.](image1)

![Bild 6.6: Beschaffenheit des Herzschrittmacherlektrodenmodells (Maße in mm).](image2)

6.3.4 Implantationsarten


Abbildungen und exakte Maße der Modelle finden sich im Anhang C. Das Gehäuse des Herzschrittmachers ist bei den Berechnungsmodellen stets 1cm tief unter der Körperoberfläche platziert. Die Elektrode wird etwa in die Mitte des Körpers geführt, so dass der Elektrodenkopf dort endet, wo sich das Herz befindet. Für die beiden Körpermodelle 1 und 2 sind die Abmessungen der Elektroden etwas unterschiedlich, von der Grundanordnung jedoch gleich. Die Implantationsarten für Körpermodell 1 sind in den Bildern C.1 bis C.4 dargestellt und für Körpermodell 2 in den Bildern C.5 bis C.7.
<table>
<thead>
<tr>
<th>Links-pektoral</th>
<th>Der Herzschrinmacher ist unter dem linken Schlüsselbein implantiert.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rechts-pektoral</td>
<td>Der Herzschrinmacher ist unter dem rechten Schlüsselbein implantiert.</td>
</tr>
<tr>
<td>Abdominal</td>
<td>Der Herzschrinmacher ist im Bauchraum implantiert. Die Elektrode läuft in einer großen Schleife zum Herz.</td>
</tr>
<tr>
<td>Rechts-pektoral mit aufgewickelter Elektrode</td>
<td>Der Herzschrinmacher ist unter dem rechten Schlüsselbein implantiert. Die überlange Elektrode wird zusammengewickelt und dem Gerät beigefügt.</td>
</tr>
</tbody>
</table>

**Tabelle 6.3: Untersuchte Implantationsarten.**

### 6.4 Fernfeldberechnungen

#### 6.4.1 Definition der Einfallsrichtung

Die Fernfeldberechnungen behandeln die Einkopplung durch einfallende ebene Wellen. Diese werden mit Hilfe des sphärischen Koordinatensystems gemäß Bild 6.7-a definiert. Die Winkel $\varphi$ und $\vartheta$ bestimmen die Einfallsrichtung. Die Polarisation ist durch den Winkel $\eta$ gegeben.

Wird die Einkopplung für eine Vielzahl von Einfallsrichtungen berechnet, ergibt sich ein Diagramm nach Bild 6.7-b. Es wurden jeweils die Werte für die Polarisation mit der höchsten Einkopplung eingezeichnet. Im Beispiel tritt der Worst-Case bei $\varphi_{\text{max}} = 115^\circ$ und $\vartheta_{\text{max}} = 75^\circ$ auf.

![Diagramm](image.png)

**Bild 6.7:** a) Definition der Einfallsrichtung. b) Beispiel für die eingekoppelte Spannung für verschiedene Einfallsrichtungen $\varphi$ und $\vartheta$. Das Maximum befindet sich bei $\varphi_{\text{max}} = 115^\circ$ und $\vartheta_{\text{max}} = 75^\circ$. 

6.4.2 Berechnungsmethode und Reziprozitätstheorem


Für die Fernfeldberechnungen wurde das auf der Momentenmethode basierende Programm FEKO [19] benutzt. Dabei wurde die Berechnungsanordnung am Tor des Herzschnittmachers mit einer definierten Spannungsquelle gespeist. So kann mit einem einzelnen Berechnungsdurchlauf für eine Frequenz die Elektrodenimpedanz $Z_0$ und der Gewinn $G(\vartheta, \varphi, \eta)$ für beliebig viele $\vartheta$ und $\varphi$ bestimmt werden. Mit diesen Daten lässt sich schließlich mit Gleichung (6.1) die im Empfangsfall eingekoppelte Störspannung $|U_{pp}|$ berechnen.

$$|U_{pp}| = \left| \vec{E}_{inc} \right| \cdot 2\lambda_0 \cdot \sqrt{\text{Re} \left( Z_0 \right) \cdot G(\vartheta, \varphi, \eta)}$$  \hspace{1cm} (6.1)

Dabei ist $\lambda_0$ die Wellenlänge und $Z_{F0}$ der Freiraumwellenwiderstand. $|\vec{E}_{inc}|$ ist die Amplitude der einfallenden ebenen Welle. Die Herleitung von Gleichung (6.1) findet sich in [68].

6.4.3 Einfluss der Frequenz auf die Worst-Case-Einfallsrichtung


Bis $f = 175$ MHz ist die Worst-Case-Einfallsrichtung bei ca. $\varphi_{\text{max}} = 100^\circ$. Wird die Frequenz weiter erhöht, ändert sich das und nimmt bei $f = 300$ MHz ein stark verändertes Muster an. Ab $f = 350$ MHz liegt $\varphi_{\text{max}}$ bei ca. $0^\circ$.

Eine Ursache könnte sein, dass bei niedrigen Frequenzen das Magnetfeld maßgebend ist und die induzierte Spannung für die Einkopplung verantwortlich ist. Bei höheren Frequenzen kann das Magnetfeld den Körper nicht mehr durchdringen. Dafür kann sich jedoch das elektrische Feld stärker auf den dicht unter der Oberfläche liegenden Herzschnittmacher auswirken.

6.4.4 Fernfeldberechnungsergebnisse

Die Ergebnisse beziehen sich auf eine einfallende ebene Welle mit einer Feldstärke von $|E_{inc}| = 1$ V/m. Die eingekoppelten Störspannungen $U_{pp}$ werden der Norm VDE 0848 Teil 3 entsprechend

als Spitze-Spitze-Werte angegeben. Des Weiteren handelt es sich bei $U_{pp}$ um Leerlaufspannungen (siehe Bild 6.2).

Es wurden die Störspannungen für die beiden Körpermodelle 1 und 2, jeweils kombiniert mit den Implantationsarten nach Tabelle 6.3 bestimmt. Ausnahme ist die Kombination von Körpermodell 2 mit aufgewickelter Elektrode, diese wurde nicht berechnet, da es sich bei Körpermodell 1 bereits gezeigt hat, dass die aufgewickelte Elektrode nicht zum Worst-Case beiträgt.


Nimmt man von allen Kombinationen die höchsten Werte, so erhält man als Endergebnis der Fernfelduntersuchung die schwarze Kurve in Bild 6.9. Insbesondere treten im UKW-Bereich...
sehr hohe Einkoppelspannungen auf, die zu höheren Frequenzen jedoch rasch abnehmen. Verantwortlich hierfür sind Resonanzeffekte, welche im folgenden Abschnitt 6.5 behandelt werden.

6.5 Untersuchung der Resonanzeffekte

Es hat sich gezeigt, dass durch Resonanzeffekte sehr hohe Einkoppelspannungen im Frequenzbereich des UKW-Rundfunks auftreten. Eine Ursache können Körperresonanzen sein. Um zu klären, ob es sich um Resonanzen innerhalb des Körpers handelt, wurde die relative Permittivität $\varepsilon_r$ des Körpermediums variiert. Dabei konnte jedoch keine signifikante Veränderung der Resonanzfrequenz festgestellt werden. Auch die Feldverteilungen im Körper wurden durch die Variation nur vernachlässigbar beeinflusst. Erst nach einem Absenken der Leitfähigkeit $\sigma$ um den Faktor zehn konnte durch eine Variation von $\varepsilon_r$ eine deutliche Änderung der Feldverteilung im Körper gezeigt werden. Daraus lässt sich schließen dass es aufgrund der hohen Verluste innerhalb des Körpermediums keine Resonanzen gibt.

Allerdings ist bekannt, dass der menschliche Körper, ähnlich einem $\lambda/2$-Dipol, Resonanzfrequenzen besitzt [59]. Dies bedeutet, dass die elektromagnetische Energie im Wesentlichen außerhalb des Körpers gespeichert wird. Diese Resonanzen sind eine Erklärung für die insgesamt hohen Einkoppelspannungen im Bereich von 50 MHz bis ca. 150 MHz, aber nicht für die sehr schmalen Resonanzspitzen einzelner Körper-Elektrode-Kombinationen.

Fündig wird man jedoch, wenn man die Permittivität der Elektrodenisolierungen variiert (siehe Bild 6.10). Entsprechend der Änderung von $\varepsilon_r$, Isolierung kann die Resonanzfrequenz variiert werden.
werden. Daraus lässt sich schließen, dass die Elektrode wie ein Koaxialresonator wirkt. Die Elektrodenisolierung wirkt als Dielektrikum und das umhüllende Körpermedium als Außenleiter. Es zeigt sich, dass die Leitfähigkeit ausreichend ist, um einen Resonator mit vergleichsweise hoher Güte zu realisieren.

Bild 6.10: Eingekoppelte Spannung für verschiedene Permittivitäten \( \varepsilon_r \). Isolierung der Elektrodenisolation.

6.6 Nahfeldberechnungen

6.6.1 Positionierung der Antennen

Bei den Nahfelduntersuchungen wird die Einkopplung durch Sendequellen in der Nähe des menschlichen Körpers berechnet. Die untersuchten Abstände rangieren dabei zwischen \( d_p = 5 \) cm und \( d_p = 2 \) m. Die Positionierung der Antenne erfolgt mit Hilfe eines polaren Koordinatensystems (siehe Bild 6.11). Der Ursprung des Koordinatensystems ist am Eingangstor des Herzschrittmachers, also am Elektrodenanschluss. Der Parameter \( d_p \) bestimmt den Abstand zwischen dem Herzschrittmacher und der Sendeantenne. Durch Variation der Winkel \( \varphi, \vartheta \) und der Polarisation kann der Worst-Case gesucht werden.

6.6.2 Berechnungsverfahren und Körpermodell

Bild 6.11: Positionierung der Antenne mit Hilfe eines polaren Koordinatensystems.

Bild 6.12: Körpermodell 1 mit Anpasspunkten und Multipolen. Links-pektorale Implantation. Handfunkgerät bei $\vartheta = 130^\circ$, $\varphi = 0^\circ$ und $d_p = 50\,\text{cm}$.

zeitaufwändige Aufstellung und QR-Zerlegung der MMP-Matrix für jede Frequenz nur einmal durchzuführen ist, während in den MoM-Berechnungen zwar für jede weitere Antennenposition die Matrix neu aufgestellt und zerlegt werden muss, dieses aber aufgrund der einfachen Antennen sehr schnell geschieht.

Im Gegensatz zu den Fernfeldberechnungen sind die Nahfeldberechnungen sehr aufwändig, was halb sich die Untersuchungen auf das Körpermodell 1 beschränken müssen. Bild 6.12 zeigt ein Berechnungsszenario mit Multipolen. Damit die Streufelder des Herzschrittmachers korrekt behandelt werden, wurden zusätzliche Multipole platziert.

### 6.6.3 Antennen

Die Berechnungsergebnisse sind auf eine Strahlungsleistung von $ERP = 1\,\text{W}^1$ normiert, die gemäß Gleichung (6.2) definiert wird

$$ERP = P_t \cdot \frac{D_a}{D_d}$$

(6.2)

Dabei ist $P_t$ die abgestrahlte Gesamtleistung, $D_d$ ist der Richtfaktor einer $\lambda/2$-Dipolantenne und es gilt somit $D_d = 1.64$. Der Faktor $D_a$ wird durch die jeweils untersuchte Antenne bestimmt.

---

$^1:\text{ERP = Effective Radiated Power.}$
Es wurden vier verschiedene Antennentypen einbezogen. Das sind ein Handfunkgerät \((D_a = 1,59...1,66,\text{ je nach Frequenz})\), ein \(\lambda/2\)-Dipol \((D_a = 1,64)\), ein Hertz’scher Dipol (elektrischer Elementardipol) und ein magnetischer Elementardipol (jeweils \(D_a = 1,5\)). Das Handfunkgerät hat ein quaderförmiges Gehäuse mit den Abmessungen 100 mm x 40 mm x 20 mm (siehe Bild 6.12). Die zentrisch platzierte Monopolantenne hat 100 mm Länge und einen Durchmesser von 5 mm.

Zahlreiche Vergleichsrechnungen haben ergeben, dass für die untersuchten Abstände die Einkopplungen durch die vier verschiedenen Antennenarten ähnlich sind. Im Weiteren wird daher nur mit dem Hertz’schen Dipol und dem magnetischen Elementardipol gerechnet.

### 6.6.4 Nahfeldberechnungsergebnisse


Zahlreiche Berechnungen haben gezeigt, dass die abdominale Implantationsart zu den höchsten Einkopplungsflanken führt. Bild 6.13 zeigt hierzu einen exemplarischen Vergleich zwischen der rechts-pektoralen und der abdominalen Implantationsart. Der Grund für die höhere Einkoppl-

a) Legende, \(U_{pp}\) in V für ERP = 1 W.

![Diagramm a)](image.png)

b) Rechts-pektorale Implantation. c) Abdominale Implantation.

**Bild 6.13:** Vergleich der Einkopplung bei der rechts-pektoralen mit der Einkopplung bei der abdominalen Implantation. Angeregts durch einen Hertz’schen Dipol, vertikal polarisiert, Abstand \(d_p = 80\,\text{cm},\ f = 200\,\text{MHz}\).
lung ist zum einen in der Elektrodenlänge und zum anderen in der größeren umschlossenen Fläche zu finden.

Das abschließende Ergebnis der Nahfelduntersuchung wird anhand der abdominalen Implantationsart gewonnen, welche unter den vier Implantationsarten zur höchsten Einkoppelspannung führt. Des Weiteren werden die Positionswinkel \( \varphi \) und \( \vartheta \) sowie die Polarisation der Elementdipole variiert und davon der Worst-Case herausgegriffen. Bild 6.14 zeigt das Ergebnis für verschiedene Abstände der Strahlungsquelle zum Herzschrumpf.

![Graphik](image)

Bild 6.14: Worst-Case der eingekoppelten Spannung \( U_{pp} \) bei einer Sendeleistung \( ERP = 1 \text{ W} \).

### 6.7 Abstandsgesetz

Im Folgenden soll ein Abstandsgesetz entwickelt werden, welches es erlaubt, für eine Frequenz und einen gegebenen Abstand \( d_p \) die Worst-Case-Einkoppelspannung \( U_{pp,\text{max}} \) zu ermitteln. Hierzu sollen die Ergebnisse der Fern- und der Nahfelduntersuchung zusammengeführt werden.

Tabelle 6.4 führt die Fernfeldergebnisse von Bild 6.9 für diskrete Frequenzen auf. Soll mit

<table>
<thead>
<tr>
<th>Frequenz [MHz]</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernfeldinkopplung ( \frac{U_{\text{pp,\text{max}}}}{E_{\text{inc,0}}} ) [m]</td>
<td>0,17454</td>
<td>0,20774</td>
<td>0,04234</td>
<td>0,02805</td>
<td>0,02600</td>
<td>0,02111</td>
</tr>
</tbody>
</table>

Tabelle 6.4: Zusammenfassung der Fernfeldergebnisse.

diesen Daten die Einkopplung durch ein weit entferntes Handfunkgerät ermittelt werden, so kann Gleichung (6.3) für die Bestimmung des Feldes am Körper herangezogen werden.

\[
\hat{E}_{\text{inc}} = \sqrt{\frac{Z_F \cdot P_t \cdot D_a}{2\pi \cdot d_p^2}} \tag{6.3}
\]
Aus Gleichungen (6.2) und (6.3) und mit $D_d = 1.64$ lässt sich (6.4) angeben.

$$\frac{U_{pp,\text{max}}}{\sqrt{ERP}} = \frac{U_{pp,\text{max},\text{eff}}}{E_{\text{inc},0}} \cdot \frac{9.9198\sqrt{\Omega}}{|d_p|}$$  \hspace{1cm} (6.4)

Mit dieser Gleichung kann die Worst-Case-Einkoppelspannung durch ein weit entferntes Handfunkgerät mit dem Abstand $d_p$ und mit Hilfe der Fernfeldergebnisse nach Tabelle 6.4 bestimmt werden. Das zu entwickelnde Abstandsgesetz muss für große $d_p$ gegen (6.4) konvergieren.

Wegen der $1/d_p$-Charakteristik bietet sich für das Abstandsgesetz eine Padé-Approximation gemäß Gleichung (6.5) an, bei der der Nennergrad um eins größer ist als der Zählergrad.

$$\frac{U_{pp,\text{max},f}}{\sqrt{ERP}} = k_f \cdot \frac{a_{0,f} + a_{1,f} \cdot d_p + d_p^2}{b_{0,f} + b_{1,f} \cdot d_p + b_{2,f} \cdot d_p^2 + d_p^3}$$  \hspace{1cm} (6.5)


| Frequenz $f$ [MHz] | $k_f$ $|\sqrt{\Omega}|$ | $a_{0,f}$ | $a_{1,f}$ [1/cm] | $b_{0,f}$ | $b_{1,f}$ [1/cm] | $b_{2,f}$ [1/cm²] |
|-------------------|------------------|-------|-------------|--------|-------------|----------------|
| 50                | 173,0            | 14900 | -100,0      | 81800 | 1150        | -51,00        |
| 100               | 206,0            | 3870  | -36,0       | 59400 | -651        | 9,86          |
| 200               | 42,0             | 6220  | -74,6       | 13600 | 2580        | -50,00        |
| 300               | 27,8             | 2000  | -40,6       | 2640  | 816         | -20,20        |
| 400               | 25,8             | 13000 | -199,0      | -16200| 12900       | -194,00       |
| 500               | 21,0             | 7200  | -91,9       | -1970 | 6270        | -79,90        |

**Tabelle 6.5: Koeffizienten für Abstandsgesetz.**

Werden die so gewonnenen Funktionen der Einkoppelspannungen für die verschiedenen Frequenzen aufgetragen, ergibt sich das Gesamtergebnis nach Bild 6.15. Bei den niedrigen Frequenzen ist der Nahfeldeinfluss deutlich zu erkennen, während sich bei den hohen Frequenzen 400 MHz und 500 MHz ein Verlauf mit einer $1/r$-Charakteristik zeigt, welche in der logarithmischen Darstellung als Gerade auftritt.

### 6.8 Diskussion der Ergebnisse

Es sei darauf hingewiesen, dass es sich bei den angegebenen Einkoppelspannungen um Leerlaufspannungen handelt. Die tatsächlich anliegende Spannung hängt sowohl von der Eingangs­impedanz des verwendeten Herzschnittmachergeräts als auch von der Elektrodenimpedanz ab. Untersuchungen hierzu finden sich in [69, 36, 68].


Kapitel 7

Messung der
Herzschrittmacher-Einkoppelspannung bei
D- und E-Netzfrequenzen

7.1 Einleitung

In Kapitel 6 wurden die Herzschrittmacher-Einkoppelspannungen für den Frequenzbereich von 50 MHz bis 500 MHz bestimmt. Auf die Mobilfunkfrequenzen des D- und des E-Netzes musste dabei verzichtet werden, da eine Berechnung auf dem PC-Cluster, der für die Untersuchung zur Verfügung stand, aus Speicherplatz- und Rechenzeitgründen nicht möglich war.

Für die Bestimmung der Einkoppelspannung bei D- und E-Netzfrequenzen wird das in den Kapiteln 3 und 4 aufgebaute Messsystem eingesetzt, welches sich für Frequenzen bis 3 GHz eignet.

7.2 Aufbau

7.2.1 Körperphantom

Für die Untersuchung wurde ein Körperphantom aus glasfaserverstärktem Kunststoff aufgebaut, dessen Abmessungen einem Durchschnittsmenschen zwischen 16 und 60 Jahren gemäß DIN 33402 Teil 2 entsprechen. Die Zeichnung in Bild 7.1 zeigt das Phantom und seine Maße. Die Wandstärke liegt zwischen 5 mm und 10 mm. Auf dem Rücken des Phantoms ist eine wasserdicht verschließbare Öffnung angebracht, welche die Montage des Herzschrittmachers erlaubt (siehe Bild 1.4). Für die Befüllung mit Körperersatzflüssigkeit und für die optischen Kabel
Bild 7.1: Abmessungen des Körperphantoms (Maße in mm).

des Messsystems befindet sich oben auf dem Kopf eine Öffnung. Verschlusschrauben an den unteren Enden der Beine ermöglichen die Entleerung.

Die Körperersatzflüssigkeit setzt sich gemäß [68] zusammen und ist in Tabelle 7.1 aufgeführt.

<table>
<thead>
<tr>
<th>Zutat</th>
<th>Zucker</th>
<th>Wasser</th>
<th>Kochsalz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewichtsanteil</td>
<td>58 %</td>
<td>40 %</td>
<td>2 %</td>
</tr>
</tbody>
</table>

Tabelle 7.1: Mischungsverhältnis der Körperersatzflüssigkeit.

7.2.2 Anordnung der Sendeanenne

Die Sendeanenne wird durch eine elektrisch betriebene Linearschiebeeinheit positioniert, welche von der Datenerfassungseinheit des Messsystems gesteuert wird. Damit kann die Einkoppelspannung in Abhängigkeit vom Abstand der Antenne zum Körperphantom gemessen werden. Für die Messungen wird die Antenne auf vier verschiedenen Pfaden bewegt:

1. Antenne wird vor der Brust auf dem Pfad $(x; 0; 65 \text{ mm})^T, x > 0$ bewegt.

2. Antenne wird links vom Körperphantom auf dem Pfad $(0; y; 65 \text{ mm})^T, y > 0$ bewegt.
3. Antenne wird vor Rücken auf dem Pfad \((x; 0; 65 \text{ mm})^T, x < 0\) bewegt.

4. Antenne wird rechts vom Körperphantom auf dem Pfad \((0; y; 65 \text{ mm})^T, y < 0\) bewegt.

Bild 7.2 zeigt das Körperphantom mit der stets vertikal polarisierten Resonanzdipolantenne, welche durch die Antriebseinheit, die jeweils rechts unten in den beiden Bildern zu sehen ist, positioniert wird.

Bild 7.2: Anordnung der Sendeantenne.

### 7.2.3 Implantationsarten

Es wurden, wie in Kapitel 6, die drei Implantationsarten *rechts-pektoral*, *links-pektoral* und *abdominal* untersucht. Hierzu wurde der Mess-Herzschrittmacher und die Elektrode mit Hilfe eines ebenen Rahmens positioniert (siehe Bilder 1.4 und 7.3). Der Rahmen besitzt zum einen verschiedene Aufnahmen für das Messgerät und zum anderen spannt er ein feines Kunststoffgitter auf, welches ein exaktes Positionieren der Elektrode erlaubt. Die genauen Abmessungen der Elektrode und die Maße zur Positionierung des Rahmens finden sich in [69].
Bild 7.3: Anordnungen der Implantationsarten.

7.3 Messung der Elektrodenimpedanzen

7.3.1 Vorgehensweise

Das Kopplungsmodell setzt sich aus der Elektrodenimpedanz $Z_e$ und der Leerlaufspannung $U_{pp}$ zusammen (siehe auch Abschnitt 6.2). Das Messsystem liefert zunächst die Spannung $U_{Z_p,pp}$, so dass die Elektrodenimpedanz $Z_e$ benötigt wird, um $U_{pp}$ bestimmen zu können.


Für die eigentliche Messung der Einkoppelspannungen verzichtet das auf Abtastung basierende Gerät bewusst auf elektrische Ableitungen, um Feldverzerrungen zu vermeiden. So stellt sich auch hier die Frage, ob die koaxiale Ableitung zur Impedanzmessung nicht auch zu verfälschten Messergebnissen führt. Allerdings lassen die Resonanzuntersuchungen von Abschnitt 6.5 vermuten, dass aufgrund der hohen Leitfähigkeit des Körpergartenes nennenswerte Feldstärken
nur in unmittelbarer Umgebung der Elektrode auftreten und das Feld im Bereich der koaxialen Ableitung soweit abgeklungen ist, dass die Elektrodenimpedanz nicht mehr beeinflusst wird.


Bild 7.4: Untersuchung des Einflusses des koaxialen Messkabels auf die Impedanzzmessung. Dargestellt sind die berechneten Elektroden-Impedanzen einmal mit und einmal ohne Messkabel, $\varepsilon_r = 43, \sigma = 0,67 \, \text{S}$.

7.3.2 Ergebnisse der Impedanzzmessungen

Bild 7.5: Impedanz der rechts-pektoral implantierten Elektrode.

Bild 7.6: Impedanz der links-pektoral implantierten Elektrode.

Bild 7.7: Impedanz der abdominal implantierten Elektrode.
7.4 Ergebnisse der EinkoppelspannungsMESSUNGEN

Während in Kapitel 6 vergleichsweise viele Fälle bzgl. Frequenz, Polarisation, Antennenposition und Antennenart berechnet werden konnten, muss sich die Messung auf eine geringere Anzahl von Szenarien beschränken. So wurden für die beiden Mobilfunknetze die Frequenzen 916 MHz und 1878 MHz ausgewählt. Die Anzahl der Pfade, auf der die Sendeannte verfahren wird, beschränkt sich auf vier. In Kombination mit den drei Implantationsarten ergeben sich insgesamt 24 Messdurchläufe.

Die Ergebnisse sind auf die Sendeleistung $ERP = 1$ W normiert und in den Bildern 7.8 bis 7.15 dargestellt. Es zeigt sich, dass die höchsten Einkoppelspannungen auftreten, wenn sich die Sendequelle vor der Brust befindet (siehe Bilder 7.8 und 7.12).

7.5 Worst-Case

 Anders als bei den Berechnungsergebnissen aus Kapitel 6 wird für sehr kleine Abstände nicht immer der Worst-Case getroffen. Der Grund hierfür liegt darin, dass, anders als bei den Berechnungen, die Antenne nicht entlang der gesamten Körperoberfläche verfahren wurde, sondern dass nur wenige Pfade, die senkrecht zum Phantom stehen, verwendet wurden.

Zur Ermittlung des Worst-Case, wurden in den Bildern 7.16 und 7.17 sämtliche Messergebnisse zusammengefasst. Es wurde eine Hüllkurve skizziert, um das Ablesen zu erleichtern.

7.6 Anwendungsbeispiel

Im Folgenden soll ein Beispiel angegeben werden, wie sich anhand der Messergebnisse die Worst-Case-Einkoppelspannung für zwei Herzschnittmacher mit unterschiedlichen Eingangskapazitäten berechnet werden können. Hierzu wird die Ersatzschaltung nach Bild 6.2 herangezogen.

Die Frequenz sei $f = 900$ MHz und für die Sendeleistung des Mobiltelefons im D-Netz gilt $ERP = 2$ W$^1$. Die Implantation ist abdominal und die Sendeanenne befindet sich $0,5$ m vor dem Körper.

Die Elektrodenimpedanz kann aus Bild 7.7 herausgelesen werden und ist $Z_e = (49 - j28) \, \Omega$.

Die Leerlaufspannung ist gemäß Bild 7.16 $|U_{pp}| / \sqrt{ERP} = 60$ mV/$\sqrt{ERP}$. Es werden die Eingangsspannungen für ein Gerät mit $100$ pF und für eines mit $2$ nF Eingangskapazität berechnet. Die Leerlaufspannung $|U_{pp}|$ für $ERP = 2$ W und die tatsächliche Eingangsspannung $|U_{zp,pp}|$ sind in Tabelle 7.2 aufgeführt. Das Ergebnis zeigt, dass durch geeignete Wahl der Eingangskapazitäten die Eingangsspannungen stark reduziert werden können.

---

$^1$Es wird angenommen, dass der Antennengewinn des Telefons gleich dem einer Dipolantenne ist.
Bild 7.8: Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $x > 0$, $f = 916\, \text{MHz}$.

Bild 7.9: Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $y > 0$, $f = 916\, \text{MHz}$.

Bild 7.10: Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $x < 0$, $f = 916\, \text{MHz}$.

Bild 7.11: Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $y < 0$, $f = 916\, \text{MHz}$.
**Bild 7.12:** Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $x > 0$, $f = 1878\, \text{MHz}$.

**Bild 7.13:** Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $y > 0$, $f = 1878\, \text{MHz}$.

**Bild 7.14:** Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $x < 0$, $f = 1878\, \text{MHz}$.

**Bild 7.15:** Gemessene Einkoppelspannung bei verschiedenen Implantationsarten, Sendeleistung $ERP = 1\, \text{W}$, Pfad $y < 0$, $f = 1878\, \text{MHz}$.
Bild 7.16: Zusammenfassung aller Messergebnisse für $ERP = 1 \text{ W}$ und $f = 916 \text{ MHz}$. Skizziert ist die „Hüllkurve”, welche die Worst-Case-Einkopplungspegel darstellt.

Bild 7.17: Zusammenfassung aller Messergebnisse für $ERP = 1 \text{ W}$ und $f = 1878 \text{ MHz}$. Skizziert ist die „Hüllkurve”, welche die Worst-Case-Einkopplungspegel darstellt.

| Eingangsschaltung | $Z_p$      | $Z_r$      | $|U_{pp}|$ | $|U_{Z_{pp}}|$ |
|------------------|------------|------------|-----------|---------------|
| Kapazität mit Wert von 100 pF | $-j1,8 \Omega$ | $(49 - j28) \Omega$ | 85 mV | 2,6 mV |
| Kapazität mit Wert von 2 nF   | $-j88 \text{ m}\Omega$ | $(49 - j28) \Omega$ | 85 mV | 133 µV |

Tabelle 7.2: Eingangsspannungen bei verschiedenen Eingangskapazitäten.
Kapitel 8

Messung der elektrischen Feldverteilung im Kraftfahrzeug bei Mobilfunkbetrieb

8.1 Versuchsaufbau

In den folgenden Untersuchungen kommt der in Kapitel 4 aufgebaute Feldsensor zum Einsatz, um die elektrische Feldstärke in der Fahrgastzelle eines Kraftfahrzeugs bei Mobilfunkbetrieb zu messen.

Der Versuchsaufbau setzt sich aus der Fahrzeugkarosserie, vier unterschiedlichen Antennenanordnungen und vier unterschiedlichen Messpfaden zusammen. Bild 8.1 gibt hierzu eine Übersicht. Die untersuchten Antennenanordnungen unterteilen sich in stationär angebrachte Außen-

![Diagramm](image_url)

Bild 8.1: Anordnung der Antennen und der Messpfade.

antennen und in Mobiltelefone innerhalb der Fahrgastzelle (siehe Tabelle 8.1). Die Antennen sind stets λ/4-Monopole, d.h., für jede Frequenz wurden gesonderte Antennen eingesetzt. Als Mobiltelefonersatz dienten für diesen Zweck entwickelte CW-Sendequellen [101, 33]. Bild 8.4
Tabelle 8.1: Definition der Antennenanordnungen.

zeigt ein solches Gerät an der Position „Mobiltelefon 1“. Die Außenantennen wurden durch einen externen Verstärker gespeist. Die Kabeldämpfungen wurden ermittelt und bei der Kalibration des Systems berücksichtigt [77].

Die insgesamt vier Messpfade sind in zwei Längspfade und zwei Querpfade eingeteilt (siehe Tabelle 8.2). Für jeden Messpfad wurden die Feldstärken für alle drei Raumrichtungen gemessen. Hierzu diente eine Hartschaumstoffhalterung, welche das Fixieren der Sonde für drei verschiedene Richtungen erlaubt (siehe Bilder 8.3 und 8.4).

<table>
<thead>
<tr>
<th>Pfad</th>
<th>Messpfad knapp oberhalb und entlang des Mitteltunnels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfad 2</td>
<td>Messpfad entlang des Mitteltunnels in Fahrerkopfhöhe</td>
</tr>
<tr>
<td>Pfad 3</td>
<td>Messpfad quer zur Fahrtrichtung in Fahrerkopfhöhe</td>
</tr>
<tr>
<td>Pfad 4</td>
<td>Messpfad quer zur Fahrtrichtung knapp über den Mitteltunnel hinweg</td>
</tr>
</tbody>
</table>

Tabelle 8.2: Definition der Messpfade.

Die untersuchten Frequenzen waren 433 MHz als Ersatz für das TETRA-Band¹, 916 MHz für das GSM-900-Band² und 1878 MHz für das GSM-1800-Band.

Als Sonderausstattungsvariante bieten verschiedene Kraftfahrzeughersteller *Siglasol*-Verglasungen³ an. Diese haben einen sehr dünnen Metallfilm zur Reflexion des Infrarotlichts, so dass sich das Fahrzeug in der Sonne weniger aufheizt. Diese schirmende Wirkung hat allerdings auch einen Einfluss auf die elektromagnetischen Wellen der zu untersuchenden Frequenzen. Es werden sämtliche Messungen zum einen ganz ohne Verglasung und zum anderen mit *Siglasol*-Verglasung durchgeführt.

Bild 8.2 zeigt die Fahrzeugkarosserie auf dem Dach des Instituts für Hochfrequenztechnik der Universität Stuttgart. Im Vordergrund ist die Linearschiebeeinheit zu sehen. Sie verschiebt mittels Kunststoff-Bowdenzügen die Feldsonde, welche sich auf einer Schiene aus Holz und Kunststoff befindet (siehe Bild 8.3).

¹TETRA - terrestrial trunked radio
²GSM - global system for mobile communication
³*Siglasol* ist ein eingetragenes Warenzeichen der Fa. Pilkington.
8.2 Ergebnisse


Die Bilder 8.5 und 8.6 zeigen zum einen den Feldstärkeverlauf bei außen angebrachter Antenne und zum anderen bei einem im Fahrzeug angebrachten Mobiltelefon. Die oberen Diagramme


<table>
<thead>
<tr>
<th>Rahmen</th>
<th>Pfad 1</th>
<th>Pfad 2</th>
<th>Pfad 3</th>
<th>Pfad 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenantenne 1, Dach, mitte, hinten</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Außenantenne 2, Fensterrahmen, Fondtür</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Mobiltelefon 1, Mittelkonsole</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Mobiltelefon 2, Fahrerkopf</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>

**Tabelle 8.3**: Untersuchte Kombinationen von Antennarten und Positionen mit Messpfaden. 

zeigen jeweils die Amplitude der elektrischen Feldstärke in dBV/m und die unteren die Phase in Grad. Der Vergleich der beiden Diagramme zeigt den Unterschied zwischen den beiden Antennenpositionen. Für den Fall der Strahlungquelle im Inneren des Fahrzeugs ergibt sich erwartungsgemäß eine höhere Feldstärke.

Quantitative Vergleiche sind allein anhand der Verläufe nur schwer möglich. Daher wird im Folgenden die Ersatzfeldstärke

\[
E = \sqrt{|E_x|^2 + |E_y|^2 + |E_z|^2}
\]

(8.1)

verwendet und diese entlang des Messpfades gemittelt. Die Feldstärkewerte sind Amplitudengwerte. Tabelle 8.4 zeigt hierzu die Ergebnisse für die untersuchten Antenne-Pfad-Kombinationen. Hier gehen sowohl alle drei Frequenzen als auch die beiden Fälle der Verglasungsart ein. Es ist zu erkennen, dass die Außenantennen innerhalb des Fahrzeugs die geringsten Feldstärkewer-
te liefern. In der Praxis ergibt sich zusätzlich, dass bei einer Außenantenne das Telefon die Leistung herunterregelt, da in diesem Fall die Funkverbindung zur Basisstation besser ist.

<table>
<thead>
<tr>
<th>Außenantenne 1, Dach, mitte, hinten</th>
<th>Pfad 1</th>
<th>Pfad 2</th>
<th>Pfad 3</th>
<th>Pfad 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Außenantenne 2, Fensterrahmen, Fondtür</td>
<td>4,08 V/m</td>
<td>5,55 V/m</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mobiltelefon 1, Mittelkonsole</td>
<td>6,12 V/m</td>
<td>-</td>
<td>7,16 V/m</td>
<td>-</td>
</tr>
<tr>
<td>Mobiltelefon 2, Fahrerkopf</td>
<td>22,62 V/m</td>
<td>-</td>
<td>-</td>
<td>18,75 V/m</td>
</tr>
<tr>
<td></td>
<td>18,09 V/m</td>
<td>19,07 V/m</td>
<td>-</td>
<td>20,30 V/m</td>
</tr>
</tbody>
</table>

**Tabelle 8.4**: Mittlere elektrische Feldstärke bei den untersuchten Kombinationen von Antenne und Pfad bei einer Sendeleistung von $P_t = 0,25$ W.

Um den Einfluss der Verglasung, der Frequenz und der Antennenposition aufzuzeigen, zeigt Tabelle 8.5 die mittleren Feldstärken entlang des Messpfades 1 für die verschiedenen Kombinationen. Position 1 in Tabelle 8.5 zeigt den Durchschnittswert aller Messungen, er ist 12,09 V/m bei einer Sendeleistung von 0,25 W.

Positionen 2 und 3 zeigen den Unterschied zwischen Außenantenne und Telefon im Fahrzeug. Die Feldstärken zeigen mit 5,11 V/m zu 20,04 V/m große Unterschiede.


Die hier durchgeführte Untersuchung zeigte die Einflüsse verschiedener Parameter. Die Feldstärkewerte gelten allerdings nur für einen Fahrzeuggrobbau, also ohne Ausstattungssteile und Ausschlag. Insbesondere eine Person, führt zu einer Dämpfung des elektromagnetischen Feldes. Weitere Ergebnisse finden sich in [51].
<table>
<thead>
<tr>
<th>Position</th>
<th>keine Verglasung</th>
<th>Signalab-Verglasung</th>
<th>Aufbauten</th>
<th>Telefon im Exg.</th>
<th>$f = 433,\text{MHz}$</th>
<th>$f = 916,\text{MHz}$</th>
<th>$f = 1878,\text{MHz}$</th>
<th>Alle Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>10,00 V/m</td>
<td>14,30 V/m</td>
<td>11,96 V/m</td>
<td>12,09 V/m</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>5,79 V/m</td>
<td>5,68 V/m</td>
<td>3,83 V/m</td>
<td>5,11 V/m</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>14,79 V/m</td>
<td>24,12 V/m</td>
<td>21,21 V/m</td>
<td>20,04 V/m</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>7,85 V/m</td>
<td>11,84 V/m</td>
<td>10,03 V/m</td>
<td>9,90 V/m</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>5,58 V/m</td>
<td>5,92 V/m</td>
<td>3,40 V/m</td>
<td>4,97 V/m</td>
</tr>
<tr>
<td>6</td>
<td>x</td>
<td>-</td>
<td>-</td>
<td>x</td>
<td>10,44 V/m</td>
<td>18,57 V/m</td>
<td>17,56 V/m</td>
<td>15,53 V/m</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>12,14 V/m</td>
<td>16,77 V/m</td>
<td>13,89 V/m</td>
<td>14,28 V/m</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>6,01 V/m</td>
<td>5,45 V/m</td>
<td>4,26 V/m</td>
<td>5,24 V/m</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>19,13 V/m</td>
<td>29,68 V/m</td>
<td>24,86 V/m</td>
<td>24,55 V/m</td>
</tr>
</tbody>
</table>

**Tabelle 8.5:** Für verschiedene Kombinationen die Mittelwerte der elektrischen Feldstärke entlang des Messpfads 1 bei einer Sendeleistung von $P_t = 0,25\,\text{W}$. 
### Kapitel 9

#### Ausblick

9.1 Messverfahren


Es wurde gezeigt, dass das Verfahren für EMV-Untersuchungen wertvolle Dienste leisten kann, allerdings konnten nicht sämtliche Möglichkeiten zur Optimierung ausgeschöpft werden, ohne den Rahmen dieser Arbeit zu sprengen.

Wie in Abschnitt 3.3.8 hergeleitet wurde, hängt die Bandbreite, neben der Abtastimpulsbreite, auch vom Jitter ab. Hierzu wurden umfangreiche Betrachtungen angestellt und beim Aufbau des Steuergeräts, der optischen Strecke und des Sensors berücksichtigt, so dass der angestrebte Frequenzbereich übertroffen werden konnte.

Was jedoch aus Zeitgründen unterbleiben musste, waren tiefergehende Untersuchungen der einzelnen Rauschbeiträge entlang des optischen Übertragungssystems, welches der Ableitung der Abtastwerte dient. Für die Verbesserung der Dynamik wären eingehendere Betrachtungen der Rauschmechanismen lohnenswert.

Einen beträchtlichen Einfluss auf den Frequenzgang hat das Batteriefach. Um Resonanzen, die zu Nullstellen führen, zu unterdrücken, wurden um den Hals des Batteriefachs verlauthaftete Lamellen gelegt, so dass es zu höheren Frequenzen hin abgeschnürt wird. Durch weiterführende Untersuchungen von Möglichkeiten zur Ausführung der Antennenstruktur könnte der Frequenzgang weiter optimiert werden.


9.2 EMV-Untersuchungen

In der Herzschnittmacheruntersuchung von Kapitel 6 wurden systematisch Worst-Case-Szenarien gesucht und die dabei auftretenden Einkoppelspannungen aufgezeigt. Es wurden jedoch keine Untersuchung der Auftrittswahrscheinlichkeiten angestellt. Ergebnisse hierzu wären hilfreich, um genaue Aussagen über das tatsächliche Risiko treffen zu können.

Neben den unipolaren Herzschnittmachern existieren bipolare Geräte und weitere medizinische Hilfen wie Hirnschnittmacher und Cochlea-Implantate. Es bietet sich an, die Studie für diese Geräte auszuweiten.


Die Untersuchungen erfolgten an einer Rohkarosserie. Kunststoffteile, Dämmmaterialien, Sitze und Verkleidungen konnten daher nicht berücksichtigt werden. Hierzu wären vergleichende
Messungen an einem vollständigen Fahrzeug interessant. Des Weiteren haben Insassen einen erheblichen Einfluss auf das elektromagnetische Feld, was ebenfalls einen interessanten Aspekt darstellt.
Literaturverzeichnis


Anhang A

Messverfahren

A.1 Simulationsmodell für eine Speicherschaltdiode

Nachdem in Abschnitt 3.3.3.5 das dynamische Verhalten anhand von Gleichungen hergeleitet und anschließend gezeigt wurde wie die Ladungsträgerlebensdauer $\tau$ auf einfache Weise gemessen werden kann, wird im Folgenden auf die Modellierung dieses Bauelements eingegangen. Gängige Schaltungssimulationsprogramme bauen auf das von der Universität Berkeley entwickelte Programm Spice auf. Zur Modellierung der Speicherschaltdiode sind daher die Angaben aus den Datenblättern in Form von Spice-Parametern auszudrücken. Im Wesentlichen finden sich dort die Ladungsträgerlebensdauer $\tau$, der Bahnwiderstand $R_S$ und die Sperrschichtkapazität $C_j|_{U_D=-6V}$ bei $-6$ Vorspannung. Die zur Modellierung notwendigen Spice-Parameter sind in Tabelle A.1 aufgelistet (komplette Liste der Parameter siehe [57]). Die Werte für $R_S$ und $\tau$ können direkt aus dem Datenblatt übernommen werden, $C_j|_{U_D=0V}$ muss jedoch aus $C_j|_{U_D=-6V}$ berechnet werden. Nach [108] können für die übrigen Größen $I_S$, $U_D$, $n$ und $m$ die in der Tabelle angegebenen Standardwerte verwendet werden.

Zur Verifizierung der in Abschnitt 3.3.3.5 dargelegten Theorie und der vorgestellten Modellbildung wird ein exemplarisches Simulationsergebnis vorgestellt. Dabei wird die in Bild 3.11 dargestellte Schaltung simuliert. Der Vorwiderstand $R$ hat dabei den Wert $R = 10 \Omega$, und die Parameter der Diode sind $R_S = 0,7 \Omega$, $\tau = 10$ ns und $C_j|_{U_D=-6V} = 0,7$ pF. Die restlichen Spice-Parameter wurden entsprechend Tabelle A.1 gesetzt. Simuliert wurde das Schaltungsbeispiel mit dem Programm ADS der Fa. Agilent. Die berechneten Spannungen und Ströme sind in Bild A.1 dargestellt. Die Spannung $u_{in}(t)$ wurde so gewählt, dass sich ein Vorwärtsstrom von $I_F \approx 172$ mA und ein Rückwärtsstrom von $I_R \approx 100$ mA einstellt, so dass die Ladungsträgerlebensdauer $\tau$ direkt vom Diagramm abgelesen werden kann. In der Simulation wird zunächst $u_{in}(t)$ auf einen konstanten Wert gehalten, so dass sich $i_D(t) = I_F$ über eine Zeitdauer $\gg \tau$ einstellt und somit $Q_F = \tau \cdot I_F$ wird. Zum Zeitpunkt $t = 100$ ns wird $u_{in}(t)$ derart umgestellt, dass sich $i_D(t) = -I_R$ einstellt. Aufgrund des Bahnwiderstandes $R_S$ bricht die Spannung

$F \approx \text{in } R_{(172 mA)} = \tau$ \quad $\tau$ \quad $I$ \quad $U_D = 100 \text{ ns}$ \quad $(6V)$

$F \approx R_{(10 \Omega)} = \tau$ \quad $\tau$ \quad $I$ \quad $U_D = 0 \text{ V}$ \quad $U_D = 6V$

$F \approx \tau$ \quad $\tau$ \quad $I$ \quad $U_D = 6V$

$F \approx \tau$ \quad $\tau$ \quad $I$ \quad $U_D = 0 \text{ V}$
<table>
<thead>
<tr>
<th>Variablenname</th>
<th>Spice-Parameter</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>( I_S )</td>
<td>IS</td>
<td>1 nA</td>
<td>Sättigungsstrom</td>
</tr>
<tr>
<td>( U_J )</td>
<td>VJ</td>
<td>0,6 V</td>
<td>Sperrschichtpotential bei 0 V Vorspannung</td>
</tr>
<tr>
<td>( C_j \bigg</td>
<td>_{U_B=0V} )</td>
<td>CJ0</td>
<td>( C_j \bigg</td>
</tr>
<tr>
<td>( \tau )</td>
<td>TT</td>
<td>Datenblatt</td>
<td>Transitzzeit bzw. Minoritätsladungsträgerlebensdauer aus Datenblatt</td>
</tr>
<tr>
<td>( R_S )</td>
<td>RS</td>
<td>Datenblatt</td>
<td>Bahnwiderstand</td>
</tr>
<tr>
<td>( n )</td>
<td>N</td>
<td>1,5</td>
<td>Emissionskoeffizient</td>
</tr>
<tr>
<td>( m )</td>
<td>M</td>
<td>0,5</td>
<td>Exponent der Sperrschichtkapazität</td>
</tr>
</tbody>
</table>

**Tabelle A.1:** Spice-Parametersatz für die Speicherschaltdiode.

\( u_D(t) \) zunächst etwas ein, hält sich dann aber auf einem relativ stabilen Wert. Zum Zeitpunkt \( t \approx 110,2 \text{ ns} \) bricht die Spannung schließlich schlagartig zusammen und \( i_D(t) \) reißt ab. Die implizierte Dauer der Rückwärtsleitung entspricht etwa der Ladungsträgerlebensdauer \( \tau \), so dass sich das erwartete Verhalten einstellt. Das Beispiel wurde aus Darstellungsgründen so ge-

**Bild A.1:** Verifizierung des Spice-Modells mit dem Schaltungssimulationsprogramm ADS.

A.2 Gleichungen zur Korrektur des Phasenfehlers

Im Folgenden wird die Lösung von Gleichung (3.33) aus Abschnitt 3.3.6.2 angegeben. Zur einfachen Handhabung werden weitere Hilfsgrößen eingeführt, welche mit Hilfe der Werte $m_i$ und Gleichung (3.31) berechnet werden können:

\[
\vec{F} = -m_1 E_{12} - m_2 E_{21} - m_3 E_{23} - m_4 E_{34} - m_4 E_{43} - m_4 E_{41} - m_4 E_{14} \quad (A.1)
\]
\[
\vec{G} = -E_{12} - E_{21} - E_{23} - E_{34} - E_{43} - E_{41} - E_{14} \quad (A.2)
\]

$\vec{F}$ und $\vec{G}$ werden benötigt, um die Hilfsgrößen $\vec{A}_i$ und $\vec{B}_i$ zu definieren:

\[
\vec{A}_1 = 4 m_1 E_{12} + 4 m_2 E_{21} + \vec{F} \quad (A.3)
\]
\[
\vec{A}_2 = 4 m_2 E_{23} + 4 m_3 E_{32} + \vec{F} \quad (A.4)
\]
\[
\vec{A}_3 = 4 m_3 E_{34} + 4 m_4 E_{43} + \vec{F} \quad (A.5)
\]
\[
\vec{A}_4 = 4 m_4 E_{41} + 4 m_1 E_{14} + \vec{F} \quad (A.6)
\]
\[
\vec{B}_1 = 4 E_{12} + 4 E_{21} + \vec{G} \quad (A.7)
\]
\[
\vec{B}_2 = 4 E_{23} + 4 E_{32} + \vec{G} \quad (A.8)
\]
\[
\vec{B}_3 = 4 E_{34} + 4 E_{43} + \vec{G} \quad (A.9)
\]
\[
\vec{B}_4 = 4 E_{41} + 4 E_{14} + \vec{G}. \quad (A.10)
\]

Mit Hilfe von $\vec{A}_i$ und $\vec{B}_i$ kann jetzt das gesuchte $M$ auf einfache Weise berechnet werden:

\[
M = \frac{4}{\sum_{i=1}^{4} |A_i|^2} \sum_{i=1}^{4} \vec{A}_i \cdot \vec{B}_i. \quad (A.11)
\]

Diese Größe ist der ermittelte Gleichanteil, welcher dem durch die Kabeldämpfung $a_L$ abgeschwächten $U_{\text{ref}}$ entspricht. Wird $M$ in die Gleichungen (3.27) bis (3.32) eingesetzt, so kann der Schätzwert $\tilde{z}'$ berechnet werden. Daraus ergibt sich schließlich $\tilde{u}'$:

\[
\tilde{u}' = \frac{U_{\text{ref}}}{M} \cdot \tilde{x}'. \quad (A.12)
\]

Dabei ergeben sich die Schätzwerte der Amplitude und des Phasenwinkels

\[
\hat{U}' = |\tilde{u}'| \quad (A.13)
\]
\[
\varphi' = \arctan \left( \frac{u'_y}{u'_x} \right) \quad (A.14)
\]

Wobei $\tilde{u}' = (u'_x, u'_y)^T$ ist.
Anhang B

Berechnungsverfahren

B.1 Objektorientierte Implementierung der Mehrfach-Multipol-Methode

Im Rahmen dieser Arbeit wurde die Mehrfach-Multipol-Methode in objektorientierter Weise implementiert. Allerdings sind die Eingabedateien an die prozedurale Implementierung der ETH Zürich angelehnt [35], so dass für dieses Programm bereits erstellte Berechnungsmodelle ohne Modifikationen verwendet werden können.

Im Folgenden werden die wichtigsten Klassen beschrieben. Die in den Bildern B.1 bis B.3 dargestellten Klassen zeigen in der jeweils ersten unrahmten Zeile den Namen. In den darunter anschließenden Blöcken sind die öffentlichen Klassenfunktionen oder auch Methoden aufgelistet.

**TEquation** Die Klasse *TEquation* steht im Zentrum der Implementierung (siehe Bild B.1). Sie steuert die Aufstellung und Dreieckszerlegung der Matrix und die Rücksubstitution zur schlussendlichen Bestimmung des Lösungsvektors.

Wie in Abschnitt 5.2.2.2 beschrieben, stellen die Feldentwicklungen *Spaltenobjekte* dar, diese werden durch die abstrakte Klasse *TColumn* repräsentiert und mit der Methode `registColumn` bei *TEquation* registriert. Elektromagnetische Anregungen erfolgen ebenfalls durch Feldentwicklungen, nur dass die Entwicklungskoeffizienten bereits vom Benutzer vorgegeben sind. Auch diese sind *Spaltenobjekte*, werden jedoch mit `registRHSColumn` registriert. Die durch die Anpasspunkte definierten Randbedingungen erzeugen die einzelnen Gleichungen und belegen daher Matrixzeilen. Diese *Zeilenobjekte* werden durch die abstrakte Klasse *TRow* repräsentiert und werden mit der Methode `registRow` registriert (siehe Bild B.1).

Bis zu diesem Zeitpunkt stehen Instanzen von *TRow* und *TColumn* noch in keinerlei Beziehung zueinander. D.h. es wurde nicht definiert, welche Randbedingungen für welche Feldentwicklung

---

1. RHS = right hand side, rechte Seite des Gleichungssystems.

147
gelten. Dies geschieht jetzt mit der Methode connect. Zusammen mit einem Parameter\(^2\) wird TEquation mitgeteilt, welche Gleichungen zur Lösung welcher Koeffizienten anzuwenden sind. Für jede grau schattierte Fläche in Bild 5.4 wird die Methode connect aufgerufen.

\[\text{TEquation} \]
- TEquation()
- registColumn(TColumn *)
- registRHSColumn(TColumn *)
- registRow(TRow *)
- connect(const long int &, TRow *, TColumn)
- calcMatrix()
- calcRHS();
- QRFactorize()
- backSubstitute()
- setColumeCoefficients()

\[\text{Bild B.1: Methoden der Klasse TEquation.}\]


Anschließend erfolgt mit dem Aufruf von QRFactorize die QR-Zerlegung der Matrix, so dass das überbestimmte Gleichungssystem nach dem Quadratinenminimierungsverfahren gelöst wird. Die Methode backSubstitute stösst die Rücksubstitution an, so dass anschließend der Lösungsvektor vorliegt.

Die Methode setColumeCoefficients teilt den Spaltenobjekten die Entwicklungskoeffizienten mit, so dass alle Informationen zur Berechnung der Felder bereit stehen. Die Feldentwicklungen können jetzt für beliebige Punkte im Raum das von ihnen erzeugte elektromagnetische Feld angeben.

TColumn Die speziellen Klassen der verschiedenen Feldentwicklungen sind von TColumn abgeleitet, so dass die Entwicklungen einheitlich von TEquation behandelt werden können, ohne eine spezielle Unterscheidung vornehmen zu müssen (siehe Bild B.2). TColumn stellt hierfür die Klasse TRowColumnConnection mit mehreren Methoden zur Verfügung. TRowColumnConnection dient zum Speichern der Verknüpfung der Anpasspunkte mit den Feldentwicklungen. Mit Hilfe der Methode setJStart teilt TEquation mit, welche Matrixspalten für die Entwicklungskoeffizienten zuständig sind. Damit ist der Instanz von TColumn auch bekannt, welche Bereiche

\(^{2}\text{Durch den Parameter können weitere Bedingungen mitgeteilt werden.}\)
der Matrix sie zu Füllen hat. Mit der Methode \
de\textit{getNoOfUnknowns} kann die Anzahl der Er\ndwicklungskoeffizienten erfragt werden. \textit{createRowColumnConnection} dient zum Speichern der 
Verknüpfung zwischen Anpasspunkten und Feldentwicklungen. Nachdem das Gleichungssystem 
gelöst ist, werden mit \textit{setCoefficients} die Entwicklungskoeffizienten mitgeleitet. Die Multipole 
sind damit bestimmt und die elektromagnetischen Feldstärken können auf einfache Weise er\nfragt werden.

\begin{center}
\begin{tikzpicture}[level 1/.style={level distance=5em, sibling distance=7em},
level 2/.style={level distance=4em, sibling distance=5em},
level 3/.style={level distance=3em, sibling distance=4em},
node distance=2cm]

\node {TColumn}  
  child {node {TExpansion}}
  child {node {TStandardExpansion}}
  child {node {T3DMPAllExp}}
  child {node {TPlaneWaveExp}}
  child {node {TLineMultipoleExp}}
  child {node {TFekoExp}}

\end{tikzpicture}
\end{center}

\textbf{Bild B.2:} Methoden und Ableitungen der Klasse \textit{TColumn}.

Von \textit{TColumn} ist die abstrakte Klasse \textit{TExpansion} abgeleitet. Sie besitzt äußere Eigenschaf\nten, die sämtlichen Feldentwicklungen gemeinsam sind. Initialisiert wird \textit{TExpansion} mit den 
Ganzzahl-Parametern \textit{IE1}...\textit{IE6}, den Fließkommaparametern \textit{SE1} und \textit{SE2}, dem komplexen
Parameter \( g \), dem Koordinatenursprung \( location \), dem Koordinatensystem \( vx \) und \( vy \), der Frequenz \( freq \) und den Materialeigenschaften \( epsr \), \( muer \) und \( sigma \). Diese Parameter sind sehr allgemein gehalten, so dass sie zur Konfiguration verschiedener Feldentwicklungen eingesetzt werden können. Sie orientieren sich an den Multipol-Parametern des MMP-Programms der ETH Zürich [35]. Sobald das Gleichungssystem gelöst ist und die Entwicklungskoeffizienten gesetzt wurden, kann das Feld mit den Methoden \textit{electricField} und \textit{magneticField} erfragt werden.

Die Klasse \textit{TStandardExpansion} dient als Hilfsklasse, um interne Programmabläufe zu vereinfachen. Von ihr wiederum sind die speziellen Feldentwicklungsklassen abgeleitet. Für die Multipole ist dies \textit{T3DMPAllExp}, für Linienmultipole \textit{TLineMultipoleExp} und für ebene Wellen \textit{TPlaneWave} (siehe Bild B.2). Auch mit der Momentenmethode berechnete Feldquellen können als Feldentwicklung angewendet werden, was mit Hilfe der Klasse \textit{TFekoExp} geschieht. Weiteres hierzu findet sich in Abschnitt 5.2.4.

\textbf{TRow} Die abstrakte Klasse \textit{TRow} (Bild B.3) verkörpert die Zeilenobjekte, d.h. sie definiert die Gleichungen, welche zeilenweise die Matrix auffüllen. Hierzu besitzt sie die Methoden \textit{setIStart} und \textit{getIStart}, womit dem Objekt seine erste Zeile in der Matrix mitgeteilt bzw. erfragt werden kann. Eine wichtige Methode für die Verwaltungsklasse \textit{TEquation} ist \textit{getNoOfEquations}. Die Anzahl der Gleichungen, die sich aus der Zahl der Anpasspunkte und der damit verbundenen Randbedingungen ergeben, lassen sich damit erfragen.

```
<table>
<thead>
<tr>
<th>TRow</th>
</tr>
</thead>
<tbody>
<tr>
<td>setIStart(iStart)</td>
</tr>
<tr>
<td>getIStart()</td>
</tr>
<tr>
<td>getNoOfEquations()</td>
</tr>
<tr>
<td>getTypeID()</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>TMatchPt</th>
</tr>
</thead>
<tbody>
<tr>
<td>addMatchPt(location, vx, vy, flags)</td>
</tr>
<tr>
<td>getNoOfEquations()</td>
</tr>
<tr>
<td>getNoOfMatchPts()</td>
</tr>
<tr>
<td>getMatchPt(index, location, v1, v2, n, enWeight, ev1Weight, ev2Weight, hnWeight, hv1Weight, hv2Weight)</td>
</tr>
<tr>
<td>getFrontID()</td>
</tr>
<tr>
<td>getRearID()</td>
</tr>
</tbody>
</table>
```

\textbf{Bild B.3:} Methoden und Ableitungen der Klasse \textit{TRow}.

Anhang C

Einkopplung in Herzschrittmacherelektroden

C.1 Definition der Elektroden im Körpermodell 1

Bild C.1: Links-pektorale Elektrode im Körpermodell 1 (Maße in mm).

Bild C.2: Rechts-pektorale Elektrode im Körpermodell 1 (Maße in mm).
**Bild C.3:** Abdominale Elektrode im Körpermodell 1 (Maße in mm).

**Bild C.4:** Gewickelte Elektrode (Maße in mm).
C.2 Definition der Elektroden im Körpermodell 2

<table>
<thead>
<tr>
<th>Pos.</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁</td>
<td>131</td>
<td>100</td>
<td>455</td>
</tr>
<tr>
<td>p₂</td>
<td>51</td>
<td>100</td>
<td>140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁</td>
<td>154</td>
<td>-55</td>
<td>495</td>
</tr>
<tr>
<td>p₂</td>
<td>53</td>
<td>100</td>
<td>495</td>
</tr>
<tr>
<td>p₃</td>
<td>53</td>
<td>100</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>p₁</td>
<td>131</td>
<td>-100</td>
<td>222</td>
</tr>
<tr>
<td>p₂</td>
<td>51</td>
<td>-100</td>
<td>222</td>
</tr>
<tr>
<td>p₃</td>
<td>51</td>
<td>100</td>
<td>550</td>
</tr>
<tr>
<td>p₄</td>
<td>51</td>
<td>100</td>
<td>220</td>
</tr>
</tbody>
</table>

Bild C.5: Links-pektorale Elektrode im Körpermodell 2 (Maße in mm).

Bild C.6: Rechts-pektorale Elektrode im Körpermodell 2 (Maße in mm).

Bild C.7: Abdominale Elektrode im Körpermodell 2 (Maße in mm).
**Lebenslauf**

<table>
<thead>
<tr>
<th>Nachname</th>
<th>Geisbusch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorname</td>
<td>Lothar Hermann</td>
</tr>
<tr>
<td>geboren</td>
<td>17.8.1970</td>
</tr>
<tr>
<td>in</td>
<td>Sindelfingen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schulausbildung</th>
<th>1977-1981</th>
<th>Grundschule in Sindelfingen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1981-1982</td>
<td>Hauptschule in Sindelfingen</td>
</tr>
<tr>
<td></td>
<td>1982-1988</td>
<td>Realschule in Sindelfingen</td>
</tr>
<tr>
<td></td>
<td>1988-1991</td>
<td>Technisches Gymnasium in Sindelfingen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wehrdienst</th>
<th>1991-1992</th>
</tr>
</thead>
</table>

|---------------------------|-----------|-----------------------|

| wiss. Mitarbeiter | 1998-2005 | wissenschaftlicher Mitarbeiter am Institut für Hochfrequenztechnik, Universität Stuttgart |