
Investigating Dynamics by
Multilevel Phase Space

Discretization

Von der Fakultät
Informatik, Elektrotechnik und Informationstechnik

der Universität Stuttgart
zur Erlangung der Würde eines Doktors
der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

Vorgelegt von

Danny Georg Fundinger

aus Pforzheim

Hauptberichter: Prof. Dr. P. Levi
Mitberichter: Prof. Dr. G. S. Osipenko

Tag der mündlichen Prüfung: 10.3.2006

Abteilung Bildverstehen Institut für Parallele
und Verteilte Systeme

Universität Stuttgart

Institut für Parallele und Verteilte Syteme der Universität Stuttgart, 2006

Abstract

The subject of the thesis is the numerical investigation of dynamical systems.
The aim is to provide approaches for the localization of several topological
structures which are of vital importance for the global analysis of dynamical
systems, namely, periodic orbits, the chain recurrent set, repellers, attractors and
their domains of attraction as well as stable, unstable and connecting manifolds.
The techniques introduced do not require any a priori knowledge about a system,
and are also not restricted by the stability of the solution. Furthermore, they can
generally be applied to a wide range of dynamical systems.

Two theoretical concepts are considered to be at the center of the research –
symbolic analysis and the RIM method. The underlying basic approach for both
of them is multilevel phase space discretization. This means that a part of the
phase space, the area of investigation, is subdivided in a finite number of sets.
Then, instead of each point of the phase space, only these sets are subject of
further analysis. The main target of every method proposed is to find those sets
which contain parts of the solution and subdivide them into smaller parts until a
desired accuracy is reached.

In case of symbolic analysis, a directed graph is constructed which represents
the structure of the state space for the investigated dynamical system. This
graph is called the symbolic image of the focused system and can be seen as
an approximation of the system flow. The theoretical background regarding the
symbolic image graph as well as the constructive methods applied on it were
already described in a series of works by G. Osipenko. In this work, strategies
are introduced for a practical application. This requires the extension of the
theoretical concepts and the development of appropriate algorithms and data
structures. In practice, it turned out that these aspects are essential cornerstones
for the usability of the discussed methods. Also some sophisticated tunings of the
basic methods are proposed in order to extent the field of practical investigation.

Although symbolic analysis can be seen as the main stimulation of this work, the

i

ii

investigation was not limited to it. Indeed, several shortcomings regarding the
solution of some problems can be observed if the method is applied in practice.
This led to the development of the RIM method. The core intention of the method
is to solve the root finding problem. The standard approach toward this task is
the application of an iteration scheme based on the Newton method. However,
it has shown that such Newton schemes have several structural disadvantages
which are especially crucial in the context of the fields of investigation which are
relevant to this work. The RIM method proposes an alternative approach which
does not require the application of any Newton-like method. Numerical case
studies revealed that in several nontrivial scenarios the RIM method provides
better results than both, symbolic analysis as well as Newton-based methods.
Two applications of the RIM method for the investigation of dynamical systems
are provided. One of them is the detection of periodic points. The other is the
computation of stable manifolds.

The proposed methods contribute not only to the direct investigation and sim-
ulation of specific dynamical processes but also to the research in the field of
dynamical system theory in general. This is due to the fact that progress in theory
depends to a large extent on the observation and investigation of phenomenons.
These phenomenons can often only be revealed, analyzed and verified by
numerical experiments. The presented numerical case studies give some concrete
examples for the application of the methods. Hereby, the dynamical models
are taken from different fields of scientific research, like geography, biology,
meteorology, or physics.

Acknowledgements

This work was carried out as a cooperative research project involving the
Non-Linear Dynamics Group of the University of Stuttgart, Germany and the
Laboratory of Mathematical Modeling at the St. Petersburg State Polytechnic
University, Russia. This interdisciplinary environment was a highly stimulating
and excellent workplace. I would like to thank all those people at both universities
who contributed to this work with their commitment and invaluable advice.

It would have been impossible for me to accomplish this project without the gen-
erous support of Prof. Dr. Paul Levi and Prof. Dr. George Sergeevich Osipenko.
The many fruitful and challenging discussions with Prof. Dr. Osipenko built the
sound foundation of this work and encouraged me in my efforts to step deeper
into the fascinating world of science.

The competent advice and ongoing support of Dr. Michael Schanz can also not
be appreciated high enough. His personal confidence and scientific support were
a strong backing during my work.

Although it has been a few years ago since Dr. Viktor Avrutin introduced me
to the fascinating field of dynamical systems theory, his ideas and questions are
still an ongoing source of inspiration and motivation which were truly invaluable
for this work. The discussions with him deeply improved my knowledge. His
expertise guided me through the grounds of dynamical systems theory.

The joint research work with Torsten Lindström from the University of Kalmar
and Gunnar Söderbacka from the University of Lulea were a lively source of
inspiration across the borders of scientific disciplines. Their interest in my work
were a motivating force which encouraged me to proceed and extend my research.

Of no minor importance is the ongoing support of my family. Although some-
times it was probably not so easy for them to follow me on my way they never
lost their confidence I am going the right path.

iii

iv

Last but not least, I have to thank the person who is the most important in my life
– Yulia. Without you there would be a large gap in my life.

There are still many other people in Russia and Germany who contributed in one
way or another to this work. I would like to thank all of those who encouraged
and challenged me.

Contents

1 Introduction 1
1.1 Motivation and Targets . 1
1.2 Fundamental Conceptual Frameworks 5
1.3 Outline . 8

2 Fields of Investigation 11
2.1 Dynamical Systems . 11
2.2 Periodic Points . 15
2.3 The Chain Recurrent Set . 16
2.4 Attractors, Repellers and Basins 19
2.5 Stable and Unstable Manifolds 22
2.6 Filtrations and Connecting Manifolds 26

3 The Symbolic Image Graph 29
3.1 Theoretical Background . 30
3.2 Implementation Details . 33

3.2.1 Box and Cell Objects . 34
3.2.2 Construction of the Symbolic Image 37
3.2.3 Subdivision Process . 42
3.2.4 Comparison with a Similar Implementation 43

3.3 Basic Investigations . 44
3.3.1 Localization of the Chain Recurrent Set 44
3.3.2 Localization of Periodic Points 46

3.4 Performance Analysis . 49
3.5 Accuracy of the Computations 54
3.6 Numerical Case Studies . 55

3.6.1 Ikeda Map . 56
3.6.2 Coupled Logistic Map 62

v

vi CONTENTS

4 Extensions and Tunings 67
4.1 Extensions for the Graph Construction 68

4.1.1 Dynamical Systems Continuous in Time 68
4.1.2 Error Tolerance for Box Images 71

4.2 Tunings for the Graph Investigation 73
4.2.1 Use of Higher Iterated Functions 73
4.2.2 Discretization Time for Systems Continuous in Time . . . 78
4.2.3 Reconstruction of Fragmented Solutions 80

4.3 Numerical Case Studies . 81
4.3.1 Lorenz System . 81
4.3.2 Discrete Food Chain Model 84

5 Investigation of the Symbolic Image 89
5.1 Localization of Attractors and Their Basins 89

5.1.1 Attractors on a Symbolic Image 90
5.1.2 Construction of the Acyclic Graph DG 92
5.1.3 Selection of an Attractor L 94
5.1.4 Localization of the Domain of Attraction 95
5.1.5 Subdivision of the Domain of Attraction 98

5.2 Aspects of Filtration . 101
5.2.1 Filtrations on a Symbolic Image 102
5.2.2 Order Relations . 104
5.2.3 Connecting Recurrent Sets 105

5.3 Construction of Attractors and Repellers 107
5.4 Detecting (Un)stable and Connecting Manifolds 113
5.5 Performance Analysis . 114
5.6 Comparison with Other Approaches 116
5.7 Numerical Case Studies . 119

5.7.1 Duffing System . 119
5.7.2 Ikeda Map . 122

6 The RIM Method 129
6.1 Theory of the Method . 130

6.1.1 The Core Algorithm . 130
6.1.2 The Subdivision Criteria 132
6.1.3 Convergence of the Method 137

6.2 Implementation Details . 142
6.3 Performance Analysis . 145
6.4 Comparisons and Numerical Case Studies 147

CONTENTS vii

7 Application of the RIM Method 153
7.1 Detection of Periodic Points . 153

7.1.1 Definition of the Investigation Task 154
7.1.2 Comparisons and Numerical Case Studies 155

7.2 Localization of Stable Manifolds 162
7.2.1 Outline of the Method 165
7.2.2 Modifications of the Algorithm 166
7.2.3 Comparisons and Numerical Case Studies 169

8 Conclusion 179
8.1 Achievements . 179
8.2 Comparison of Approaches . 181

8.2.1 Symbolic Analysis and the RIM Method 182
8.2.2 Related Approaches . 184
8.2.3 Other Investigation Methods 185

8.3 Outlook . 187

A Zusammenfassung 191
A.1 Relevanz der Arbeit . 191
A.2 Ziele und Vorgehensweise . 192
A.3 Vorgestellte Untersuchungsmethoden 193
A.4 Praktischer Nutzen . 197

Bibliography 199

Glossary 209

Index 212

viii CONTENTS

Chapter 1

Introduction

"The next best thing to knowing something is knowing where to find
it." – Samuel Johnson

1.1 Motivation and Targets

The subject of this work is the numerical investigation of dynamical processes.
Such dynamical, i.e. time-dependent, processes are a fundamental phenomenon
which can be observed in plenty of different fields relevant to scientific research.
Be it the motion of a pendulum in physics, the evolution of species in biology,
or movements in the value of a currency in economics – all of these are time-
dependent processes. These processes can be described by means of mathematics.
The adequate tools to do so are dynamical systems, the mathematical models of
time-dependent processes. Since the concept of dynamical systems was intro-
duced in Newtonian mechanics, large efforts have been undertaken to acquire
appropriate mathematical representations of natural and technical processes. This
is not only the case for the classical fields of application, the natural sciences and
engineering [AFH94], but also for others like medicine, sociology, meteorology
and economics. Reason is that a time-dependent process can be better controlled,
manipulated and predicted if it is modeled by a dynamical system. The analysis of
the mathematical representation leads to a better understanding of the underlying
process and also allows to study its behavior by numerical simulation. Hereby,
dynamical systems theory is the branch of mathematics which focuses on the
investigation of dynamical systems in general, and, hence, plays a key role for the
understanding of every dynamical process.

Large progress has been made during the last 40 years in the field of dynamical
systems theory. To a large extent, this is closely connected with the rapid

1

2 CHAPTER 1. INTRODUCTION

development during the same time regarding the numerical computation and
investigation of dynamical systems. While in the 19th century the simulation of
dynamical processes was still a time-consuming and costly work, it is in today’s
world by far cheaper and faster. The behavior of a dynamical system starting from
an initial position can easily be predicted by computation of trajectories. This led
not only to remarkable achievements for the practical application of mathematical
modeling but also heavily influenced the analytical branch of dynamical systems
theory.

In classical physics it was still assumed that, due to the deterministic nature of
dynamical systems, the behavior of time-dependent processes is in principle com-
putable and therefore also predictable – if only one has the computational power to
do so. One of the most prominent supporters of this so-called causal determinism
was Laplace, whose thoughts are expressed in the following quote:

We may regard the present state of the universe as the effect of its
past and the cause of its future. An intellect which at a certain mo-
ment would know all forces that set nature in motion, and all posi-
tions of all items of which nature is composed, if this intellect were
also vast enough to submit these data to analysis, it would embrace in
a single formula the movements of the greatest bodies of the universe
and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its
eyes.

This intellect is often referred to as Laplace’s demon. Ironically, it was the in-
crease of computational power which revealed that a nonlinear dynamical system,
though clearly deterministic in its future states, is not necessarily also predictable.
In 1963, numerical experiments led to the discovery of chaotic, and, hence,
unpredictable motion in the Lorenz attractor [Lor63]. This discovery resulted in
a fundamental change of paradigms regarding the view on dynamical systems.
The growing gap between non-predictable observations in real life processes
and the expected predictability of dynamical systems had been closed. Notably,
after the door had been opened, it has shown that a large richness of complicated
dynamical behavior can be found even in very simple nonlinear systems, like the
logistic map [May76]. The Mandelbrot and the Julia sets are some impressive
classical examples of complicated, fractal structures [Man82] found in a simple
dynamical system. The investigation of such nonlinear dynamics by purely
analytical methods is, due to the complexity of the dynamics, in most cases
very limited. Hence, modern theory of dynamical systems must rely to a large
extent on the results of numerical exploration. Such investigations are of crucial
importance in the field of dynamical systems theory and have heavily influenced

1.1. MOTIVATION AND TARGETS 3

today’s view on dynamical systems. The methods of numerical investigation are
not only mere tools for the simulation of a specific process, but also essential
cornerstones for the experimental development of the theory.

There are several approaches for the application of numerical investigation in the
context of dynamical system theory. One of them is to reveal phenomena which
might be subject of analytical research, as it was the case for the Feigenbaum
constant. M. Feigenbaum first discovered this constant by numerical experiments.
Then a mathematical proof of the fact was provided which applies to a wide
class of dynamical systems [Fei83]. Other typical applications are the use of
numerical simulation in order to compute measurements, e.g. the Lyapunov
exponent [AFH94], or to apply theoretical results in complicated settings.
For instance, the existence of stable and unstable manifolds has been proved
theoretically but the detection of these manifolds can usually only be achieved by
numerical methods.

Although the use of modern computers has greatly contributed to the investigation
of dynamical systems, the development and application of numerical methods
is still a challenging task. Reason is that the simulation of one trajectory, which
is a considerably easy computational task, is usually not sufficient to capture
the full dynamics. Instead, the global analysis of a dynamical system requires
the simulation of virtually all trajectories. Obviously, this is an aim which can
not be achieved by any finite numerical computation. Appropriate methods are
needed which approximate a system’s global dynamics at least partly. Hereby,
one speaks mainly of two general approaches, the direct and indirect methods,
see e.g. [Bey90].

The direct methods focus on the development of numerical techniques that find
particular dynamical structures, like periodic orbits, invariant manifolds etc.
Knowledge about the topology of an object is used to develop the numerical
method. Often, the aim is to construct a problem of finding zeros, and then
solve this problem with the Newton method. Direct approaches can provide
very exact solutions of a problem. However, they are limited to the detection of
particular structures. Often they are also only useful for local analysis, i.e. they
require a priori knowledge about the position of an object and are not capable to
approximate objects whose existence and position is yet unknown.

The indirect methods are closely related to the simulation of trajectories. The aim
is to develop numerical methods which exhibit the same dynamics as the original
system. Usually, this means that the system’s dynamics are approximated by
the computation of parts of a limited number of trajectories. These methods are

4 CHAPTER 1. INTRODUCTION

always applicable and the computations are usually quite cheap. Furthermore, no
a priori knowledge about a system is required for the application. However, only
those structures of a system can be captured which possess a stable long-term
behavior. Other structures, which might also be important for the analysis of the
system’s dynamics, can not be revealed.

Although both approaches are essential tools for the numerical investigation,
they are not yet sufficient for the global analysis of dynamical systems. What is
needed are numerical methods which do not require any a priori knowledge about
the position of a structure and are also capable to reveal those structures which
do not possess stable long-term behavior. A successful approach to achieve this
aim is given by methods which are based on the discretization of the phase space.
Such methods can not be clearly categorized as direct or indirect. Rather more,
they are a combination of both approaches.

This work is focused on such methods of phase space discretization. It is our
aim to provide new approaches toward the computation of several topological
structures which are of crucial importance for the global analysis of dynamical
systems, like, for instance, periodic orbits, attractors and (un)stable manifolds.
For some of these investigations other approaches already exist. Whenever
necessary, we will later point out the reasons why we nevertheless decided to
propose new ones. In most of these cases we do not consider our methods
as superior to existing ones but rather more as alternatives which might be
advantageous in some situations. Generally, the methods we propose should be
capable of finding structures without any a priori knowledge and without any
restrictions concerning the stability of the solutions. Furthermore, they should be
applicable to a wide class of dynamical systems.

The introduced techniques are motivated by and partly based on symbolic
analysis, a conceptual framework for the global analysis of dynamical systems.
However, not all computational problems could be solved satisfiable within
this framework. Hence, alternative approaches are required. This led to the
development of the RIM method, another framework which is related to symbolic
analysis but advantageous for the solution of several problems. A more detailed
discussion about symbolic analysis, RIM and related concepts follows in the next
section.

Several steps of development are required in order get the appropriate tools for
the computation. First of all, the mathematical background must be set. Each
method must be described mathematically, and it is necessary to prove that it
solves the intended problem correctly. Then, the formulation of an appropriate

1.2. FUNDAMENTAL CONCEPTUAL FRAMEWORKS 5

algorithm must be given. Again, correctness of this algorithm should be proved.
Furthermore, for a practical application one has to consider that a numerical
technique should not only be correct but also efficient. Hence, is is necessary
to analyze the performance of a method and also consider details about the
implementation, like specific data structures. As a last step, numerical case
studies of a concrete implementation have to be performed. Obviously, the
entirety of these steps requires not only aspects linked with the mathematical
field, but also with the field of computer science.

It was our intention to give an overview about all these steps of development.
For some techniques, the mathematical background was already given, e.g. in
case of symbolic analysis, and our focus was put on the development of a correct
and efficient implementation. For other techniques, like those based on the RIM
method, no preliminary knowledge exists, and the mathematical foundation is
also studied. As a main result of our investigation, a software was developed
which allows the practical application of the numerical techniques presented here.
This software is part of the larger non-commercial package AnT [ALS+03] and
available for download, see [ant05].

1.2 Fundamental Conceptual Frameworks
The basic technique for all our numerical methods is multilevel phase space dis-
cretization. Two basic concepts are considered to be its essentials. These are the
discretization of the phase space and the multilevel subdivision of the discretized
areas. Discretization of the phase space means that a part of the phase space, the
so-called area of investigation, is subdivided in a finite number of sets. Then,
instead of each point of the phase space, only these sets are subject of analysis.
Note that such a discretization is a natural assumption for numerical computa-
tions. In fact, every numerical computation requires a discretization given at least
by the finite number of computed digits of its processed numbers. However, the
discretization assumed in this context is usually much coarser. In combination
with the second concept mentioned, the multilevel subdivision, a rough initial dis-
cretization is assumed which gets finer during several steps of computation. More
precisely, after the phase space has been discretized, several elements will be se-
lected. Each of these selected elements is subdivided into smaller parts. By doing
so, a finer discretization of selected areas of the phase space can be achieved. This
process is repeated for several times, until a desired precision of the discretization
has been reached. This technique is called multilevel phase space discretization,
or simply MPSD. It can be considered as the core computational scheme which is
required for all our numerical methods. Actually, the principle computations of all

6 CHAPTER 1. INTRODUCTION

•

•

•

•

•

•

•

•

•

Figure 1.1: Example of multilevel phase space discretization.

our methods are embedded into MPSD. Each method we propose is mainly con-
cerned about the decision if a part of the phase space gets selected for subdivision
or not. The selected parts are those which contain a solution of the problem that
the specific method is trying to solve. If, for instance, the problem to be solved
is the localization of periodic points then the task of our numerical investigation
is to decide for a discretized area of the phase space if it contains at least one of
these periodic points. If so, the area is selected for subdivision, and the numerical
investigation must be repeated for every sub-part of the area. Obviously, the appli-
cation of MPSD always only produces an outer covering of the real solution. The
precision of this outer covering depends on the discretization of the phase space
after the final subdivision step. Furthermore, the analysis is limited to the area of
investigation.

Example 1.1. An example of the method is illustrated in Fig. 1.1. The solution
is marked by 3 points. The phase space is initially divided in 4 boxes. The boxes
which contain a solution are selected for further subdivision. Other areas are
not investigated. After 3 steps of subdivision the selected boxes give a rather fine
outer covering of the solutions.

The techniques of phase space discretization and subdivision are well-known
and widely appreciated in numerics. For instance, the methods of interval
analysis perform a phase space discretization which is often combined with
a subdivision scheme, see Alefeld and Herzberger [AH83], Hansen [Han92],
Kearfott [KN90, Kea96] and references therein. Another example are some
related methods of global optimization, see e.g. Horst and Tuy [HT90], Pin-
tér [Pin96], and Huyer and Neumaier [HN99]. Close to our fields of application
are also the tools for discretization of dynamical systems which were applied by
F.S. Hunt [Hun98] and Diamond et.al. [DKP95].

1.2. FUNDAMENTAL CONCEPTUAL FRAMEWORKS 7

MPSD is considered to be only the basic conceptual layer for the techniques pro-
posed in this work. Built upon are the theoretical concepts of symbolic analysis.
Basically, symbolic analysis provides a unified framework for the acquisition
of information about the flow of a dynamical system without any restrictions
concerning the stability of specific invariant sets. The mathematical theory was
presented in a series of works by G. S. Osipenko [Osi83, Osi93, Osi94, Osi04]. It
can be considered close to Cell-to-Cell mappings [Hsu80, Hsu87] and is related
with symbolic dynamics [Ale76, Bow82, LM95, Wal91]. The main idea of
symbolic analysis is the construction of a directed graph which represents the
structure of the state space for the investigated dynamical system. This graph is
called the symbolic image of the focused system and can be seen as an approxi-
mation of the system flow. It is connected with MPSD by the fact that each vertex
of the graph is an area of the discretized phase space, and a successive refinement
is achieved by multilevel subdivision. From the computational point of view,
the usage of such a graph bears the big advantage that, once it is constructed,
all investigations are matters of graph analysis. For instance, each strongly
connected part represents a component of the chain recurrent set of the flow.
More sophisticated computational analysis of the symbolic image graph allows,
among others, the localization of periodic orbits [Osi93], invariant sets [KMO03],
attractors and their basins [OC99, Osi99] as well as the computation of the
Morse Spectrum [Osi97, Osi00, ORAP04] or verification of hyperbolicity. A
comprehensive overview can be found in [Osi04].

Several other approaches exist which use concepts similar to the construction of
the symbolic image graph. In Eidenschink [Eid95] and Mischaikow [Mis02] a
symbolic image-like graph, called there a multivalued mapping, is constructed
in order to compute isolated blocks in the context of the Conley Index The-
ory, see also [Con78]. The set-oriented methods of Dellnitz, Hohmann and
Junge [DH96, DH97, DJ98, DJ02] use a scheme similar to symbolic analysis
and apply a subdivision technique which is also used slightly modified in our
implementation. Hruska [Hru02, Hru05] makes a box chain construction to get a
directed graph with the aim to compute an expanding, or hyperbolic, metric for
dynamical systems.

The theoretical background regarding the symbolic image graph as well as the
constructive methods applied on it were already described in detail by Osipenko.
But although in [Osi93] first numerical calculations were presented, the algorith-
mic basics, which are needed for the construction of the graph were not reported
until now. Therefore, in this work we introduce algorithms and data structures
which are important for an efficient implementation. In practice, it turned out
that these aspects are essential cornerstones for the usability of the discussed

8 CHAPTER 1. INTRODUCTION

methods. However, this is not yet considered the main task of this work. Instead,
the focus is put on some of the investigation methods on the graph. For their
practical application, the theoretical concepts must be extended, and algorithms
have to be developed. Also, we propose some sophisticated tunings of the basic
methods in order to extent the field of practical investigation.

Although symbolic analysis can be seen as the main stimulation of this work,
our investigation was not limited to it. Indeed, by its practical application we
observed several shortcomings regarding the solution of some problems. It
proved to be difficult to overcome these problems within the given framework.
This led to the development of the RIM method, which fills the second half of this
work. This method, though also based on MPSD, does not fit into the framework
of symbolic analysis. Hence, not only its implementation but also the underlying
theoretical concepts are introduced here.

The core intention of the RIM method is to solve the root finding problem, or, in
other words, to find all the zeros of an equation. It was already mentioned in the
context of direct methods that several problems regarding the global analysis of
dynamical systems can be formulated as such root finding problems. The stan-
dard approach to solve them is to apply an iteration scheme based on the Newton
method. However, it has shown that such Newton schemes have several structural
disadvantages which are especially crucial in the context of our fields of inves-
tigation, see also Chapter 6 for a more detailed discussion. For this reason, the
RIM method proposes an alternative approach which does not require the applica-
tion of any Newton-like method. Numerical case studies revealed that in several
nontrivial scenarios the RIM method provides better results than both, symbolic
analysis and Newton-based direct methods.

1.3 Outline
This work is structured as follows:

Chapter 2 gives an overview about the fields of investigation. We define which
kind of information about a dynamical system we like to acquire by our
numerical methods, and what are the main problems of a numerical compu-
tation.

Chapter 3 describes the implementation of the basic concepts of symbolic analy-
sis. We give details about data structures and algorithms. Furthermore, the
characteristics of this implementation are analyzed. Some numerical case
studies are given to demonstrate the practical application.

1.3. OUTLINE 9

Chapter 4 gives a summary about several extensions and tunings for our pro-
posed implementation. Our focus is put on techniques which improve the
practical application of the investigation methods. Hereby, we respond to
the results of our numerical case studies, and introduce techniques which
are not considered in the theoretical context.

Chapter 5 focuses on advanced investigation methods based on symbolic analy-
sis. For an application of these methods, it is necessary to extend the exist-
ing theoretical concepts. Furthermore, algorithms are introduced and ana-
lyzed. Numerical case studies demonstrate the application of the investiga-
tion methods.

Chapter 6 introduces the RIM method. The underlying theoretical concepts as
well as an implementation of them are subject of discussion. Also, compar-
isons with related concepts are given. Hereby, a strong focus is put on the
characteristics of a practical application.

Chapter 7 describes how the RIM method can be applied for the investigation of
dynamical systems. Several changes and extensions of the basic framework
are necessary to do so. Numerical case studies demonstrate the application
of the methods.

Chapter 8 provides a summary of the achievements of our studies. These
achievements are also compared with those of others. The chapter ends
with an outlook about possible further research.

Note that ideas of Chapters 3, 5 and 5 were published in [AFL+06, Fun05, FO03].

10 CHAPTER 1. INTRODUCTION

Chapter 2

Fields of Investigation

In this chapter we give an introduction to the fields of investigation. More
precisely, we establish the terminology which we will use throughout this work
and provide mathematical definitions for the structures we want to compute by
our numerical methods. These structures are usually subsets of a C∞-smooth
manifold which fulfill certain conditions in the context of the dynamical system in
focus. The motivation for their computation is also considered. It is our intention
to clarify why a field of investigation is of interest, and what kind of information
about the global structure of the dynamical system can be acquired from its
numerical analysis. Furthermore, we discuss some basic considerations about the
computation of these entities and give an overview about existing approaches of
numerical investigation.

The chapter starts with a definition of the classes of dynamical systems for which
our methods are applicable. Then we introduce the different fields of investi-
gations, namely periodic orbits, the chain recurrent set, attractors, repellers, the
basin of attraction, connecting manifolds, stable and unstable manifolds as well
as filtrations.

2.1 Dynamical Systems

Let M be a C∞-smooth manifold which is a compact inRd , andT be a time space
with T ∈ {Z,Z+,R,R+}. A dynamical system is a continuous mapping φ(x, t)
with x ∈M and t,s ∈ T, so that φ : M ×T 7→M ,

φ(x,0) = x, (2.1)
φ(φ(x, t),s) = φ(x, t + s). (2.2)

11

12 CHAPTER 2. FIELDS OF INVESTIGATION

In case t,s ∈ T ⊆ Z we talk about a dynamical system discrete in time, and in
case t,s ∈ T ⊆ R we have a dynamical system continuous in time. In this work,
both types of systems are of relevance though we mainly focus on dynamical
systems discrete in time.

Let f : M 7→ M be a continuous mapping and let ZT = T ⊆ Z be a discrete
time space. Then f generates a dynamical system discrete in time of the form
φ(x,k) = f [k](x), k ∈ ZT . The cascade

xk+1 = f(xk),xk ∈M ⊂Rd

describes its dynamics. The reduction of the time space to ZT = T ⊆ Z ensures
the existence of solutions for all x0 ∈ M and k → ±∞. If T equals Z the
dynamical system is called invertible. In such a system an initial state x0 uniquely
defines the future states of the system as well as its past behavior. If a system is
noninvertible then x0 only defines the future states uniquely and its past behavior
is not unique, i.e there are typically no unique solutions for k < 0. In such a case
the time space T equals Z+. The theoretical works of Osipenko, which are the
basis for our numerical methods, are restricted to dynamical systems generated
by homeomorphisms. By definition, these systems are invertible, i.e. the inverse
f [−1] of the system function f exists. However, the numerical methods we present
in this work are generally also applicable for noninvertible systems. Hence, we
also consider this class of dynamical systems.

Let us next consider a dynamical system which is continuous in time and given
by an ordinary differential equation (ODE). In order to describe this system, we
consider a shift operator along trajectories. Let ẋ = F(t,x) be a system of ordinary
differential equations, whereby x ∈M and F(t,x) is a C1 vector field periodic
in t ∈ T ⊆ R with period ω. Denote the solution of such a system by φ(t, t0,x0)
with an initial condition φ(t0, t0,x0) = x0. For the investigation of the global
evolution of the system, it is usually sufficient to examine the Poincaré map
f(x) = φ(ω,0,x) which is the ω-shift operator along the trajectories of the system.
In case the system is autonomous, i.e. the vector field does not depend on t, we
fix an arbitrary ω 6= 0 and consider a shift operator of the form f(x) = φ(ω,x),
whereby φ(t,x) is the solution of the autonomous system, φ(0,x) = x. Note that
the shift operator is a continuous mapping, or, more precisely, a diffeomorphism.
Hence, it transforms the original system continuous in time into a dynamical
system discrete in time. Consequently, in the following we can only consider
discrete dynamical systems. If the underlying system is continuous in time and
given by an ODE, we construct a shift operator in order to transform it into a
discrete form. In case such a shift operator can not be constructed, the system

2.1. DYNAMICAL SYSTEMS 13

is not suitable for our investigations. In Sec. 4.1.1 the construction and practical
application of a general shift operator for ODEs is discussed in more detail.

So in the following we consider systems discrete in time which are generated
by a mapping f : M 7→M . Such a mapping f is continuous but not necessarily
invertible. This implies that we can also consider systems which are continuous
in time if they can be transformed into discrete ones by a shift operator. In that
case, the mapping f is considered to be the shift operator. Note that such a shift
operator f is a diffeomorphism and, hence, also invertible.

We proceed by introducing some fundamental concepts for dynamical systems
discrete in time. The trajectory (or orbit) of an initial point x0 is a sequence

T (x0) =
{

xk = f [k](x0),k ∈ ZT
}

.

In case of an invertible system, we say that

T +(x0) =
{

f [k](x0),k ∈ Z+
}

,

T−(x0) =
{

f [k](x0),k ∈ Z−
}

are the positive and negative semi-trajectory. The computation of trajectories
is the most basic and probably most widely used approach for the numerical
investigation of dynamical systems. A lot of information about a system can be
gathered by calculation and analysis of trajectories starting from several initial
points. It is clear that only limited parts of a whole trajectory can be computed
numerically. We say that we apply a forward iteration if a finite part of a positive
semi-trajectory is computed, and that we apply a backward iteration if a finite
part of a negative semi-trajectory is approximated. Note that a backward iteration
can only be applied if the inverse f [−1] exists and if it can be computed either
analytically or numerically.

Besides the trajectories, another fundamental concept is the invariant set. A set
Q⊂M is said to be invariant if f(Q) = Q. This means that Q is a union of orbits,
and that orbits starting in Q reside in Q. Some properties of invariant sets are that
a closure, a union and an intersection of invariant sets are invariant as well. It is
clear that in case f is a homeomorphism, an invariant set is also invariant for the
inverse mapping f [−1].

The stability of an invariant set is described according to Lyapunov. Let us first
denote a ρ-norm distance on M by ρ(x,y), e.g. ρ(x,y) = ‖x−y‖. A distance

14 CHAPTER 2. FIELDS OF INVESTIGATION

between a point x and a set A is defined as

ρ(x,A) = inf(ρ(x,y) | y ∈ A) .

An ε-neighborhood of A is denoted by V (ε,A) = {x | ρ(x,A) < ε}, assuming ε >
0.

Definition 2.1. An invariant set Q is called

1. Lyapunov stable, if for every ε > 0 there exists δ > 0 so that if x ∈V (δ,Q)
then the positive semi-trajectory T +(x)⊂V (ε,Q),

2. attracting, if there is a neighborhood V such that limk→∞ ρ(f [k](x),Q) = 0
for all x ∈V ,

3. asymptotically stable if it is Lyapunov stable and attracting.

An invariant set can be classified as being either asymptotically stable (or simply
stable) or unstable.

Stability is an important property of an invariant set. In the context of numeri-
cal computations, stable invariant sets are usually much easier to compute than
unstable ones. Reason for this is that a stable set can be localized by starting a tra-
jectory in its attracting neighborhood. By definition, this trajectory will approach
the invariant set for k→ ∞. In practice, such a forward iteration usually comes
reasonably close to the invariant set after a limited number of n steps. Then every
further iteration of the trajectory T +, i. e. all xk ∈ T + for k > n, approximates
parts of the invariant set. The quality of this approximation depends only on the
number of forward iterations and the type of invariant set. This is not the case
for unstable sets. Trajectories started in the neighborhood of an unstable invari-
ant set do not approach this set. Hence, an approximation is only possible if the
initial point of the trajectory already belongs to the set. This is usually difficult
to achieve. Furthermore, even if the initial point belongs to the invariant set, an
approximation is only possible if the numerical error of the forward iteration is
so small that no point of it lies in the neighborhood of the invariant set because
if a trajectory belongs to the neighborhood of an unstable invariant set, it is not
attracted by this set and usually drifts away from it.

Remark 2.1. One might think now that, if stable invariant sets can be approx-
imated by forward iteration, then it might be possible to approximate unstable
invariant sets by starting a backward iteration in its neighborhood. Although
in some cases, like for repellers, this is true, in general, such a conclusion is not
valid. Some kinds of unstable invariant sets can neither be approached by forward
nor by backward iteration starting in its neighborhood.

2.2. PERIODIC POINTS 15

One of the main advantages of the numerical methods we propose in this work
is that they are capable of approximating several kinds of unstable invariant sets.
This can not be achieved by numerical methods based on the application of for-
ward iterations.

2.2 Periodic Points
The detection of periodic orbits is an essential task for the analysis of nonlinear
dynamical systems discrete in time. Distinctive features which are crucial for
the understanding of a system’s dynamics, like attractors, repellers or sad-
dles, are in many cases represented by periodic orbits. Furthermore, unstable
periodic orbits are considered to be fundamental building blocks of chaotic
attractors [ACE+87, Cvi92, GOY88], and thus also of a special interest for the
study of chaotic dynamics .

A point x0 is called p-periodic with period p ∈N+ if f [p](x0) = x0. The smallest
positive period p is called the least period . If the least period is p = 1 then x0 is
called a fixed point. The trajectory (or orbit) of a periodic point x0 with the least
period p consists of p different points T (x0) = {x0,x1, . . . ,xp−1} and is called a
periodic orbit . The set of periodic points is denoted by

P(p) = {x | f [p](x) = x, x ∈M }. (2.3)

We also consider the subset of P(p) which only consists of points with a least
period p :

P̂(p) = {x | x ∈ P(p) and ∀k < p : f [k](x) 6= x}. (2.4)

Obviously, P(p) and P̂(p) are unions of periodic orbits and invariant. Note that
for any p1 6= p2 the sets P̂(p1) and P̂(p2) are disjunct. The set of all points with a
period ≤ p is denoted by

AP(p) =
[

1≤k≤p

P̂(k). (2.5)

In this work we propose methods for the computation of the sets P(p), P̂(p) and
AP(p) for a fixed period p.

Mainly for two reasons, the computation of periodic orbits is a nontrivial task
which can not be achieved by simple indirect methods, like the application of
forward iterations for some initial conditions. Firstly, there might be several
coexisting periodic orbits of a size p. For each simulation of an orbit from an
initial condition one can find not more than one new periodic orbit. Hence, one

16 CHAPTER 2. FIELDS OF INVESTIGATION

can never be sure if the set of initial points is sufficient to find all coexisting
periodic orbits. Secondly, some of the periodic orbits are usually unstable. In
more complex systems, we might even find several hundreds or thousands of
coexisting unstable periodic orbits. Due to the fact that forward iterations are not
suitable to locate unstable invariant sets, unstable periodic orbits can also not be
detected by this method.

An approach to overcome the difficulties mentioned above by a direct numerical
method was proposed in Nusse and Yorke [NY97]. The focus is put on solving the
second problem – the detection of unstable periodic points. In order to do so, the
task to find a periodic point of period p is transformed into a root finding problem:

f [p](x)−x = 0. (2.6)

Obviously, a real solution (or a root) x of Eq. 2.6 is also a periodic point. Solving
this kind of equation and finding roots by numerical methods is a very well
researched field. The standard approach is to use an iteration scheme based on
the multidimensional Newton method, see also Chapter 6 and Sec. 7.1 for a more
detailed discussion of this topic. However, as is the case for the application of
forward iterations, also the application of the Newton method requires an initial
value. It depends on this initial value if the Newton method converges to a root
and, if so, to which root. In [NY97], a random set of points is proposed to
serve as initial values. Consequently, the first problem we mentioned, that one
can never know if the initial values are sufficient to find all coexisting periodic
orbits is not yet solved. Note that there exist also approaches to find suitable
sets of initial values, see Davidchack et al. [DLKB01] and references therein,
or [BW89, SD97]. However, these techniques can only be applied to some
specific scenarios, like for the detection of unstable orbits in chaotic attractors.

It is our intention to propose numerical methods which are capable to detect pe-
riodic orbits without the usage of the Newton method. This means that our com-
putation of periodic points does not depend on a set of initial values which must
be chosen properly. Furthermore, the Newton method can only be applied if the
underlying system f is differentiable, while our methods only require that f is con-
tinuous.

2.3 The Chain Recurrent Set
The chain recurrent set is of particular interest because it includes all types of
return trajectories, like periodic or recurrent orbits. Hence, the computation of
the chain recurrent set is a good start for the investigation of a dynamical system.

2.3. THE CHAIN RECURRENT SET 17

It provides important global information about a system’s structure. Once the
chain recurrent set is computed, its components can be considered as subjects of
further analysis. Moreover, the chain recurrent set is of importance in context of
the Conley index theory, see [Con78, CE71, MM02].

As a first step toward the definition of the chain recurrent set, we introduce the
notion of an ε-orbit. An ε-orbit can be defined as follows, see also [Ano67].

Definition 2.2. Fix ε > 0. An infinite sequence {xk} is called an ε-orbit or a
pseudo-orbit of f if for any k ∈ ZT the distance between the image f(xk) of the
point xk and the next point xk+1 is less than ε:

ρ(f(xk),xk+1) < ε

A pseudo-orbit {xk} is said to be p-periodic if xk = xk+p for each k ∈N.

Note that the equality sign is in the above definition admissible. In fact it
is important if ε is fixed, and it is not important if ε is arbitrary small, see
also [Osi04] and references therein.

A p-periodic ε-orbit (or periodic path) will be denoted by its periodic part
{x1, . . . ,xp}. The points xk are called (p,ε)-periodic. We say that a point is
ε-periodic if the period is of no importance.

Note that the concept of pseudo-orbits is especially relevant for numerical com-
putations. Reason for this is that in practice a real orbit is seldom known exactly.
What we usually find by numerical methods is nothing more than ε-orbits for
sufficiently small positive ε.

Definition 2.3. [Osi04] A point x is called chain recurrent if x is ε-periodic for
every positive ε, i.e., there exists a periodic ε-orbit passing through x. The set of
chain recurrent points is called a chain recurrent set and denoted by Q.

A chain recurrent set is invariant, closed and contains all types of return trajec-
tories. Among others, these are periodic, quasiperiodic, recurrent, homoclinic
and nonwandering trajectories [Osi93]. Although a chain recurrent point is not
periodic, it may become periodic under a small C0-perturbation of f [Shu87] if
the dimension of M > 1.

We consider now the notions of those types of return trajectories which are rel-
evant in the context of this work. Besides periodic trajectories these are mainly
quasiperiodic trajectories. We use the following definition.

18 CHAPTER 2. FIELDS OF INVESTIGATION

Definition 2.4. [Has03] The trajectory xk = f [k](x0) is called quasiperiodic
if it can be written in the form xk = G(k, . . . ,k),k ∈ ZT where the mapping
(k1, . . . ,km) 7→ G(k1, . . . ,km) with G : Rm 7→M is continuous and periodic with
respect to each argument ki.

By this definition the set of quasiperiodic trajectories comprises the set of periodic
trajectories. A quasiperiodic trajectory is periodic if and only if the vector of
periods K = [K1, . . . ,Km]k of the mapping G is proportional to a vector of integers
n = λK, where the factor λ has to be rational. In case the factor λ is irrational, the
quasiperiodic trajectory forms a closed curve [Has03]. For a better distinction, we
call those quasiperiodic trajectories with an irrational factor λ truly quasiperiodic
trajectories. A truly quasiperiodic trajectory is an m-dimensional manifold if the
corresponding map G requires exactly m arguments. All types of quasiperiodic
trajectories are return trajectories and belong to the chain recurrent set.

Besides the localization of truly quasiperiodic trajectories, another main appli-
cation for the computation of the chain recurrent set is connected with periodic
orbits. In the preceding section we introduced AP(p), see Eq. 2.5, as the set of all
periodic points with a period ≤ p. We also mentioned that we developed meth-
ods for the computation of these points. By definition, this computation is limited
by the fixed least period p. One should consider now that the number p of the
least period of periodic points in M can tend to infinity. In such a scenario, it is
impossible to compute the set of all periodic points

[

p∈N
AP(p) = AP (2.7)

by calculation of a set AP(p). This problem might be solved by computation of
the chain recurrent set Q because AP⊆ Q.

A special case to consider occurs if the underlying dynamical system is contin-
uous in time. In such kind of system, a return trajectory is a closed, continuous
trajectory, also called a limit cycle. The localization of these limit cycles is
also an aim of our investigation methods. We mentioned earlier that we do not
investigate dynamical systems continuous in time directly, but instead apply a
shift operator and transform them into systems discrete in time. In the discretized
version of the system, the limit cycles still exist, but they appear as discrete return
trajectories. Hereby, it depends on the shift operator by which type of return
trajectory the limit cycle of the original system is presented. It might be a fixed
point, a periodic orbit, or another type of return trajectory. Due to the fact that
all kinds of return trajectories belong to the chain recurrent set, the limit cycles

2.4. ATTRACTORS, REPELLERS AND BASINS 19

of the original system can be detected by the computation of the chain recur-
rent set for the discretized system, no matter which shift operator has been chosen.

Although some parts of the chain recurrent set might be computed by forward
iteration, namely those representing stable invariant sets like stable periodic and
quasiperiodic trajectories, there is no such simple approach to compute the whole
chain recurrent set. To our knowledge, all numerical methods capable of comput-
ing an outer covering of the chain recurrent set are, like the symbolic analysis we
discuss in this work, considered to be graph-like or set-oriented approaches, see
for instance [DJ02] or [Eid95, Mis02]. Reason for this is that there is a natural
correspondence – the principle scheme of the chain recurrent set, the ε-trajectory,
is similar to the notion of a trajectory in those approaches. Indeed, in symbolic
analysis the localization of the chain recurrent set is even considered as a basic
computational step which is required for almost all other investigations.

2.4 Attractors, Repellers and Basins

One of the main objectives of dynamical system theory is to describe the final
behavior of some evolving states, i.e. the asymptotic behavior of the states as t
approaches infinity. The mathematical concept which describes such asymptotic
behavior is the attractor. Every trajectory started in a phase space of a dynamical
system eventually ends up in an attractor. Hence, the knowledge of a system’s
attractors is crucial for the understanding of its dynamics. Another important
consideration is the question by which attractor a trajectory is attracted or, in
other words, what is the basin of attraction of each attractor. If one can locate
all attractors of a dynamical system as well as the basins of these attractors, the
long term behavior of each initial state could be predicted. This is especially
important for the practical implementation of dynamical system theory. If, for
example, an engineer knows the attractors and basins of a dynamical system
which models a physical process, he can set proper initial conditions to achieve a
desired behavior, or he can predict the system’s behavior according to the current
settings. In a more analytical approach, also repellers are of importance. The
repeller is the counterpart of an attractor, and usually its numerical computation
is more complicated. However, we present numerical methods to compute all
these entities – attractors, their basins and also repellers.

For the investigation of the asymptotic behavior it is convenient to have a gen-
eral description of all possible asymptotic states of a dynamical system. Such a
description is captured in the concept of limit sets, which contain limit points of

20 CHAPTER 2. FIELDS OF INVESTIGATION

orbits. The ω-limit set ω(B) of a set B⊆M is defined as

ω(B) =
\

k>0

cl f [k](T +(B)),

where cl is the closure. For invertible systems, the α-limit set α(B) is defined
analogously as

α(B) =
\

k<0

cl f [k](T−(B)).

It is easy to see that ω- and α-limit sets are invariant.

Definition 2.5. [BS70, Osi99] An invariant set Λ is an attractor if and only if
there exists a fundamental neighborhood U of Λ so that its ω-limit set ω(U) = Λ.

Note hereby that an attractor can be a fixed point, a (quasi-)periodic orbit or some
other invariant subset of Q which is chain recurrent. Its structure can be highly
nontrivial and fractal. An attractor is called a strange attractor if its dynamics
are chaotic or, more formally speaking, if it has a non-integer dimension. See
also [RT71].

We define the set W s(Λ) as

W s(Λ) = {x| lim
n→∞

ρ(f [n](x),Λ) = 0}. (2.8)

Definition 2.6. [BS70, Osi99] Let Λ be an attractor. The set W s(Λ) is called the
domain of attraction, or the basin, of Λ.

Note that the domain of attraction is an invariant set and a neighborhood of
Λ [BS70]. Let x0 ∈W s(Λ) \Λ be an initial value in a basin of an attractor Λ,
and T +(x0) its trajectory. We denote by n ∈N the position in this trajectory at

n = min(n | ∀xk+n ∈ T +(x0),k ∈N : ρ(xk+n,Λ) < ε for all ε > 0).

Then, assuming k ∈ N, this trajectory T +(x0) is considered to be in its transient
phase for all xk with k < n, and in its asymptotic phase for all xk+n . In the context
of numerical computations, we say that a forward iteration reaches the asymptotic
phase in the k-th step if xk is reasonably close to Λ, i.e. ρ(xk,Λ) < ε. The exact
definition of reasonably close depends on the case-specific desired accuracy ε of
a computation.

Definition 2.7. [Osi99] An invariant set Λ of f is called a repeller if there exists
a neighborhood U so that its α-limit set α(U) = Λ.

2.4. ATTRACTORS, REPELLERS AND BASINS 21

We might say that an invariant set Λ is a repeller for f if Λ is an attractor for f [−1].
Obviously, this definition of a repeller requires that the inverse f [−1] exists. Hence,
it is only valid for invertible dynamical systems, i.e. if f is a homeomorphism.

Proposition 2.1. [BS70] An invariant set Λ∗ is the dual repeller of Λ if Λ∗ =
M \W s(Λ).

The set Λ∗ = M \W s(Λ) is a repeller [BS70]. For an invertible system we can
say that each trajectory through W s(Λ) \Λ begins in the repeller Λ∗ and finishes
in the attractor Λ. So the pair Λ, Λ∗ is called an attractor-repeller pair. Our aim
is to localize attractors, repellers and their domain of attraction as defined above
by numerical methods without any preliminary information about the dynamical
system.

Generally, an attractor can be approximated by forward iterations. This can easily
be derived from its definition and indeed, the application of forward iterations
is still the most straight-forward and well-known method to compute attractors.
However, this naive approach is not sufficient for many applications. Reason for
this is again the general restriction of this kind of computation – forward iteration
can only be applied to a limited set of trajectories, and, due to this limitation,
one never knows if all attractors within M have been detected. Besides that,
in the context of filtrations, see Sec. 2.6, we see that there exist invariant sets
which can be classified as attractors, though it is only possible to capture them
as a whole if the forward iteration was applied for initial values belonging to a
very limited range in the phase space. Furthermore, in case an attractor is not
a periodic orbit, it is also a difficult, or even impossible, task to decide when
a forward iteration reaches the asymptotic phase. And even if the asymptotic
phase has been reached, then the forward iterates still cover only parts of the
attractor. The same considerations concern also the computation of repellers
by backward iteration. Additionally, the computation of backward iterations
might be expensive or even impossible if the inverse f [−1] can not be derived
analytically. Note that a different approach for the computation of relative global
attractors was presented by Dellnitz and Junge [DH97] which will be discussed
in the context of our approaches, see Sec. 5.6.

Similar computational problems as for attractors arise if the basin of attraction is
calculated by simulation of orbits. Following this approach, one computes for-
ward iterates whose initial values are spread all over an area M of investigation.
A number n is fixed as the maximal number of iteration steps. In case a forward
iteration ends up in (or comes reasonably close to) an attractor Λ after not more
than n iterations, the neighborhood of all points belonging to this forward itera-
tion is considered to be part of the basin of Λ. Except that this approach requires

22 CHAPTER 2. FIELDS OF INVESTIGATION

high performance resources, and is therefore usually only applicable for 1- and
2-dimensional systems, two further limitations must be considered. Firstly, it is
generally not known if a trajectory already enters the asymptotic phase within n
iteration steps. Secondly, even if the trajectory enters the asymptotic phase within
those n iteration steps, this might be difficult to find out due to the fact that a test
of intersection with the attractor must be performed. In case the attractor has a
nontrivial structure and, hence, can only be approximated, this test might be com-
putationally expensive and/or easily fail even if the trajectory is in the asymptotic
phase. Different approaches which apply a discretization of phase space were pro-
posed by Hsu [Hsu87] and [NY97]. A more detailed discussion and a comparison
with our approach follows in Sec. 5.6.

2.5 Stable and Unstable Manifolds

Stable and unstable manifolds are, like attractors and repellers, fundamental
building blocks of dynamical systems. They appear as siblings and are considered
to be parts of the "skeleton" of a dynamical system because they indicate the
general directions of the system flow. In phase portraits, these manifolds are used
as the key trajectories to get a schematic view of the system’s dynamics. Besides
that, an important property of the stable manifolds is that they indicate the
boundaries of basins of attraction. This means that in case the stable manifolds
of a system can be computed, the computation of the bounded basins may not be
necessary anymore. The advantage becomes clear if we consider that in general
the computation of the stable manifolds is more widely applicable and more
efficient than the computation of basins. Another important property of stable
and unstable manifolds is that their intersection leads to complicated dynamics
and chaos, see e.g. [GH83]. Hence, the localization of such an intersection by
numerical methods can indicate the occurrence of chaos.

Let x0 be a fixed point of f. We consider the possibly complex eigenvalues
λ1, . . . ,λm of the Jacobian matrix Df(x0). Each of these eigenvalues lies either
inside, on or outside the unit circle C = {λ ∈ C | |λ|= 1}. We say now that x0
is a hyperbolic fixed point if no eigenvalue lies on the unit circle, i.e. λn /∈C for
n = 1, . . . ,m. A hyperbolic fixed point is called a sink if all eigenvalues are inside
the unit circle, a source if all eigenvalues are outside, and a saddle if there exists
both, eigenvalues inside and outside the unit circle.

Let us now assume that f is a diffeomorphism and has a hyperbolic fixed point x0
of saddle type. The local stable and unstable manifolds W s

loc(x0),W u
loc(x0) of x0

2.5. STABLE AND UNSTABLE MANIFOLDS 23

are defined for some neighborhood U of x0 as

W s
loc(x0) =

{
x ∈U | f [k](x)→ x0 as k→+∞, and f [k](x) ∈U,∀k ≥ 0

}
,

W u
loc(x0) =

{
x ∈U | f [k](x)→ x0 as k→−∞, and f [k](x) ∈U,∀k ≤ 0

}
.

The stable manifold theorem [Nit71, Shu87] states that W s
loc(x0) and W u

loc(x0)
exist on some neighborhood of x0 tangent to the stable and unstable eigenspaces
Es(x0), Eu(x0) and that they are of corresponding dimension. Furthermore,
W s

loc(x0) and W u
loc(x0) are as smooth as f.

The global stable and unstable manifolds are defined by taking unions of backward
and forward iterates of the local manifolds,

W s(x0) =
[

k≤0

f [k](W s
loc(x0)), (2.9)

W u(x0) =
[

k≥0

f [k](W u
loc(x0)). (2.10)

We say that W s(x0) and W u(x0) are embedded manifolds in the state space.

These are the classical definitions of the stable and unstable manifolds.
Unfortunately, a serious drawback is the underlying assumption that f is a
diffeomorphism. We try now to overcome this restriction and give notions of the
stable and unstable manifold according to those in [EKO05] which are valid for
a broader class of dynamical systems. See also [MGBC96] for a more detailed
discussion of this topic.

Let us consider that the map f is noninvertible. Obviously, f is then not a diffeo-
morphism and multiple inverses might exist. We assume that f is differentiable
in a neighborhood of the fixed hyperbolic point x0. Let us recall that the global
unstable manifold is expressed in terms of the successive union of forward iter-
ates of the local unstable manifold W u

loc(x0), see Eq. 2.9. Note that, even if f is
noninvertible, the images of W u

loc(x0) will be unique [EKO05]. Hence, W u(x0) is
still an embedded manifold in the phase space and we are justified in speaking of
an unstable manifold. An alternative definition of the global unstable manifold
which avoids the use of the inverse can be given by

W u(x0) =
{

x ∈M |∃{qk}∞

k=0 : q0 = x and f(qk+1) = qk,

so that lim
k→∞

ρ(qk,x0) = 0
}

. (2.11)

24 CHAPTER 2. FIELDS OF INVESTIGATION

Let us next focus on the global stable manifold. Again, we give an alternative
definition of W s(x0). We say that W s(x0) is the set of points that converge to x0
under forward iteration of f. Hence, W s(x0) can be defined as follows:

W s(x0) =
{

x ∈M | lim
k→∞

ρ(f [k](x),x0) = 0
}

. (2.12)

According to this definition, we can still speak of W s(x0) as the stable manifold
in case f is invertible. Recall now that W s(x0) is the union of the successive
pre-images of W s

loc(x0), see Eq. 2.10. Hence, if f is noninvertible and multiple
inverses exist, then W s(x0) may consist of disjoint pieces [EKO05]. In particular,
this set is not an embedded manifold and one also speaks of the global stable set
instead. Despite that, in the following we will generally refer to W s(x0) as the
global stable manifold if the underlying system is a continuous map. Obviously,
the definition of the global stable manifold resembles strongly those of the domain
of attraction, Eq. 2.8, and indeed, in case x0 is a sink, we would refer to the global
stable manifold as the domain of attraction of x0. However, the distinction is more
than a formal one because, as we have already mentioned, the stable manifold
of a saddle has a different meaning regarding the dynamics of a system. Fur-
thermore, the numerical computation generally also requires different approaches.

Note that the concept of stable and unstable manifolds does not only apply to
hyperbolic fixed points, but also to hyperbolic periodic orbits. We keep in mind
that each point xk of a p-periodic orbit is a fixed point for the p-th iterate of f, i.e.
f [p]. Thus we have to determine the eigenvalues of the Jacobian

Df [p](xk) =
p

∏
n=1

f(xp−n+1).

Because cyclic permutations of the matrices within the product do not change
the eigenvalues of the matrix, they do not depend on the selection of the periodic
point xk. If a periodic orbit P = {x1, . . . ,xp} is of saddle type then we say that
W s(P) and W u(P) are the global stable and unstable manifold. Note that these
manifolds are wrapped around each periodic point and, hence, typically consist
of disconnected pieces.

In most cases, stable and unstable manifolds can not be acquired analytically,
so that it is necessary to apply numerical techniques for their computation.
Several approaches already exist to achieve this task, depending on the class of
dynamical system to investigate. In case of a dynamical system continuous in
time, it is sufficient to provide an algorithm for the computation of the unstable
manifold. The stable manifold can then be acquired by following the system’s

2.5. STABLE AND UNSTABLE MANIFOLDS 25

flow in backward time. Different concepts were developed in order to realize such
algorithms. In [GW93] and [KO03] the unstable manifolds are approximated
as a sequence of geodesic circles. The method of Doedel [DKK91a, DKK91b]
computes two-dimensional unstable manifolds by following trajectories Bp as
a boundary value problem. In a different approach by Henderson [Hen03], the
manifolds are constructed by fat trajectories, which are trajectories extended by
tangent and curvature information at each point. A comprehensive survey about
these methods can be found in [KOD+05].

A different scenario occurs if the underlying system is a map. In that case, the
above mentioned techniques are in general not applicable because the manifolds
do not consist of flows but of sequences of points. Other methods are necessary
to compute unstable manifolds. One of them is the approach of Dellnitz et.
al. [DH97] which approximates an outer covering of the unstable manifold by
adaptive subdivision of the state space. As will be discussed later, this method
is in many ways similar to the approaches we present in this work. Another
technique for the computation of one- and two-dimensional manifolds was
introduced by Krauskopf and Osinga [KO98a, KO98b]. Hereby, the computed
manifold grows from a local neighborhood of the origin by finding new points
on the manifold in a prescribed distance from the last point. Additionally, there
exists a popular technique for the computation of one-dimensional manifolds,
see [YKY91, HOV95, Sim89, PC89]. In this approach at first the local unstable
manifold around its origin is computed, and then a fundamental domain is iterated.

All methods mentioned above have in common that they only compute unstable
manifolds. In order to get now a stable manifold for a map, these methods
must be applied on its inverse. If the inverse exists, but is not available, it
might be possible to overcome the problem by numerical approximation using
the Newton’s method. But in case the inverse does not exist the methods
we mentioned so far are insufficient to compute the stable manifolds. In a
recent work by England et. al. [EKO05] this problem was addressed, and a
solution proposed for the computation of one-dimensional stable manifolds. The
approach is close to the one in Krauskopf and Osinga [KO98b] for unstable
manifolds, and lets the manifold grow by searching for an intersection point
of the image of a circle around the last computed point with the part of the
manifold that was already computed. Another technique which might be capable
to compute one-dimensional stable manifolds for noninvertible maps was pro-
posed in [NY89] but has not been used to compute long pieces of stable manifolds.

In this work we present now methods to compute the global stable and unstable
manifolds for continuous mappings in general. Neither the system’s inverse nor its

26 CHAPTER 2. FIELDS OF INVESTIGATION

Jacobian is required. We are also not limited to one-dimensional manifolds. Theo-
retically, the method might be capable to compute manifolds independent of their
dimension, though in practice we only applied it to get one- and two-dimensional
manifolds. To our knowledge, no other technique is capable to compute higher
dimensional stable and unstable manifolds of noninvertible maps.

2.6 Filtrations and Connecting Manifolds
We already mentioned that a dynamical system can have a lot of different
attractors and repellers. These components are connected with each other in a
complex manner. There might be not only connections between attractor-repeller
pairs but also between several layers of attractors and repellers embedded into
each other. In order to understand the dynamics of a dynamical system it is
important to reveal all of these attractors and their relationships. A concept
which is helpful to achieve this task is filtration. It can be seen as a sequence of
attractors embedded into each other, and it is our aim to construct such sequences.
However, in order to construct attractors it is, besides the calculation of filtrations,
also helpful to find out if and how several components of a dynamical system
are connected. The links between these components are the so-called connecting
manifolds. Their computation is required in order to construct attractors.

We refer here to the concept of filtration as it was proposed in [NS75]. A definition
can be given as follows.

Definition 2.8. A filtration for the homeomorphism f is a finite sequence F =
{U0,U1, . . . ,Um} of open sets so that /0 =U0⊂U1⊂ ·· · ⊂Um = M and f(cl Uk)⊂
Uk for each k = 0,1, . . . ,m.

Note that a filtration is not unique [NS75]. The next proposition describes the
structure of attractors generated by a filtration.

Proposition 2.2. [NS75] For a given filtration F the maximal invariant subset in
Uk, k = 0,1, . . . ,m:

Λk =
{\

f [n](Uk) | n ∈ Z+
}

,

is an attractor for f with /0 = Λ0 ⊂ Λ1 ⊂ ·· · ⊂ Λm = M .

It follows that each Uk is a neighborhood of the attractor Λk, and Uk ⊆W s(Λk).

The maximal invariant subset in Uk \Uk−1 is called a Morse set and denoted by

Kk(F) =
{\

f [n](Uk \Uk−1) |n ∈ ZT
}

. (2.13)

2.6. FILTRATIONS AND CONNECTING MANIFOLDS 27

The set Kk(F) can be considered as the intersection of the attractor Λk and the
repeller Λ∗k−1 dual to Λk−1. We define K(F) as

K(F) =
{[

Kk(F) | k = 1, . . . ,m
}

.

In [Osi99] it was proved that the chain recurrent set Q lies in K(F). This leads us
to the following definition of a fine filtration.

Definition 2.9. [NS75] A filtration is said to be fine if K(F) = Q.

In this work we will show ways how to construct filtrations by numerical methods
and identify the attractors Λk of the filtration.

In order to achieve this task, it is necessary to consider the components of the
chain recurrent set Q and connecting manifolds.

Definition 2.10. [Osi04] A subset Ω ⊂ Q is a component of the chain recurrent
set if any two points from Ω can be connected by an ε-orbit for every ε > 0.

It follows that the chain recurrent set Q can be represented as a union of disjoint
closed invariant components:

Q =
[

i

Qi.

Let {Qi} be the components of Q. We say that there is a connection Qi → Q j
between the components Qi and Q j if the intersection between W u(Qi), Eq. 2.11,
and W s(Q j), Eq. 2.12, is not empty, W u(Qi)

T
W s(Q j) 6= /0. In other words, there

exists an orbit which starts in Qi and ends in Q j.

Definition 2.11. Let Qi and Q j be two connected components of the chain recur-
rent set with Qi→ Q j. We say that

C(Qi,Q j) = W u(Qi)
\

W s(Q j)

is the connecting manifold of Qi and Q j.

To our knowledge, there exists no other adequate method for the numerical
computation of filtrations. There are only methods solving parts of the task.
In [Mis02, Eid95] a method for the computation of an order relation between chain
recurrent components was introduced. Such kind of order relations will also be
used by us to build filtrations. Furthermore, in Mischaikow [Mis02] also connect-
ing orbits are studied in the context of the Conley Index Theory, and transition
matrices between the chain recurrent components are computed. Several meth-
ods exist for the explicit computation of connecting orbits, whereby connecting

28 CHAPTER 2. FIELDS OF INVESTIGATION

orbits can be considered as connecting manifolds for dynamical systems contin-
uous in time. One approach for their computation is the solution of a boundary
value problem [Bey90, DF89]. To ensure convergence, this requires a good initial
guess value for the boundary value solver. Another approach, which is is based
on set-oriented investigations and in spirit close to our proposed method, is given
by Dellnitz et. al. [DJT01]. This method requires the underlying system to be
a homeomorphism and also the explicit computation of the inverse. This is not
necessary for our method, which can be applied to every continuous mapping.

Chapter 3

The Symbolic Image Graph

We recall that the central concept of symbolic analysis is a directed graph which
represents the structure of the state space of the investigated dynamical system.
This graph is called the symbolic image and its construction is the basic task for
any investigation. Once the system flow has been transformed into such a graph,
all further investigation methods can be formulated as graph algorithms. Hence,
an efficient implementation of this construction process is crucial for every
investigation based on symbolic analysis. In this chapter, we propose algorithms
and adequate data structures which are appropriate to achieve this task. We also
give a theoretical analysis of the performance. Some of the concepts we mention
were already introduced in implementations of related techniques, especially
by the GAIO software package [DFJ01], which provides an implementation of
several set-oriented methods. We extend these concepts and combine them with
new ones in order to give a complete description of all aspects regarding the
construction of symbolic image graphs. Additionally, we point out the differences
between the two approaches.

We also introduce some investigation methods in order to apply our implemen-
tation in practice. Note that we restricted ourselves to basic operations on the
symbolic image, namely the localization of chain recurrent sets and of periodic
orbits. Reason for this is that the topic of this chapter is not the application of
advanced investigation methods, but rather more the provision of a computational
framework which allows their easy and efficient integration.

Numerical computations are performed for several dynamical systems in order to
verify our theoretical results. We discuss some reasonable parameter settings and
the steps to be taken for the acquisition of the data. While doing so, the reader
will be introduced to possible fields of application for symbolic analysis.

29

30 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

3.1 Theoretical Background
The symbolic image graph was introduced in Osipenko [Osi83]. We give here
a short summary of the theoretical concepts. A comprehensive overview can be
found in [Osi04]. Let f be a continuous mapping on the C∞-smooth manifold M .
Let

C =

{
M(1), ...,M(n) |

n[

i=1

M(i) = M

}
(3.1)

be a finite covering of the area of investigation M by closed sets. We assume that
M = M . The sets M(i) ⊂ M are named boxes of the covering C. For each box
M(i) we consider its image f(M(i)) with respect to the flow f as

f(M(i)) = {y |y = f(x),x ∈M(i)} (3.2)

Then we define for the box M(i) the covering C(i) of its image f(M(i)). This
covering consists of boxes M(j) ∈ C, whose intersections with f(M(i)) are not
empty :

C(i) = {M(j) |M(j)∩ f(M(i)) 6= /0} . (3.3)

Let us construct the directed graph G with n vertices which matches to each box
M(i) the vertex ci. The vertices ci and c j are connected by the directed edge
ci→ c j iff the cell M(j) is an image box of M(i), i.e. M(j)∈C(i). In the following
we denote M(i) as a box, and a vertex ci on G as a cell.

Definition 3.1. The graph G constructed as described above is called the symbolic
image of f with respect to the covering C.

We can consider the symbolic image as a finite approximation of the flow f, which
depends on the covering C. We can change the symbolic image of f by varying C.
If the cells ci and c j are connected by the edge ci→ c j then there exists a point
x in the box M(i) so that its image f(x) lies in the box M(j). Denote by V (G)
the set of cells on G. The graph G can be considered as a multi-valued mapping
G : V (G) 7→V (G) between the vertices.

Example 3.1. The described construction procedure is illustrated by Fig. 3.1. In
this example, an area M⊂R2 is covered by boxes C = {M(1), . . . ,M(12)}. Let the
image f(M(1)) of the box M(1) be the area in the center of the picture. Then the
covering C(1) is given by the set {M(3),M(4),M(6),M(7),M(8),M(10),M(11)}.
These boxes are colored gray in Fig. 3.1.(a). So the symbolic image of f with
respect to the covering C possesses the edges shown in Fig. 3.1.(b). In order
to construct the symbolic image, the covering must be found for all boxes M(1)
. . . M(12).

3.1. THEORETICAL BACKGROUND 31

1 2 3 4

5 6 7 8

9 10

11

12

(a)

1

5

9

2

6

10

3

7

11

4

8

12

(b)

Figure 3.1: Construction of the symbolic image. (a) The box M(1) is marked
with a thick square in the upper left part of the picture. The image f(M(1)) is
represented by the area in the center of picture. The covering C(1) is colored in
gray. (b) Edges of the symbolic image given by c1.

We also introduce some parameters of a symbolic image. Let δ(M(i)) be the
diameter of a box belonging to a covering C,

δ(M(i)) = max(ρ(x,y) |x,y ∈M(i)). (3.4)

The largest diameter of the cells from C is denoted by

δ(C) = max(δ(M(i)) |M(i) ∈C). (3.5)

Definition 3.2. An infinite in both directions (bi-infinite) sequence {cik} of cells in
the graph G is called an admissible path (or simply a path) if for each k the graph
G contains the edge cik → cik+1 . A path {cik} is said to be p-periodic if cik = cik+p

for each k ∈ Z.

A finite path ω = {ci1, ...,cim} with the length |ω|= m is defined on the same way.
There is a natural correspondence between the admissible paths on the symbolic
image G and the ε-orbits, see Definition 2.2. Roughly speaking, an admissible
path represents the trace of an ε-orbit and vice versa.

Definition 3.3. A cell of a symbolic image is called recurrent if there is a periodic
path passing through it. Two recurrent cells ci and c j are called equivalent if there
is a periodic path containing both, ci and c j.

Denote the subset of recurrent cells in G as RV (G). The set RV (G) decomposes
into classes of equivalent recurrent cells

Hi =
{

c j | c j ∈ RV (G) and there is a periodic path containing ci and c j
}

.

32 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

The sets Hk, each representing a disjunct equivalence class, form together the set

ζ = {H1, . . . ,Hn} , ∀Hi,H j ∈ ζ, i 6= j : Hi∩H j = /0, RV (G) =
[

Hk∈ζ

Hk. (3.6)

In graph theory, a class Hk is called a strongly connected component of the graph
G. The boxes M(i) belonging to the cells RV (G) are a neighborhood of the
chain recurrent set, see Definition 2.3, and the boxes belonging to a set Hk are a
neighborhood of a component of the chain recurrent set, see Definition 2.10. As
we have already mentioned, the chain recurrent set contains all types of return
trajectories. For this reason, the detection of the recurrent cells is the basic task
on a symbolic image graph. We will see later that this computation is required as
a first step for almost all other investigation methods.

In order to get a better approximation of the vector field f, a multilevel subdivision
procedure will be applied as proposed in Osipenko [Osi93]. A similar approach
for set-oriented methods exists also by Dellnitz et al. [DH96, DJ98]). This pro-
cedure can be described as follows. Let Cs be a covering of subdivision level s.
Then a subset of boxes belonging to Cs gets selected for the next subdivision. The
decision which boxes get selected depends on the kind of investigation which is
performed, e.g. if the chain recurrent set should be approximated then all boxes
corresponding to recurrent cells of Gs get selected. In general, only the first cov-
ering C0 covers the whole domain M according to Eq. 3.1, and the coverings
Cs,s > 0 are defined as

Cs = {M(1), ...,M(n) |M(i)⊂M} , (3.7)

and do only cover parts of M. Due to limited memory resources in a practical im-
plementation, it is our intention to cover an area as little as possible by Cs, s > 0,
and delete all parts of the covering Cs−1 which are not required for further inves-
tigation. Of course, such an approach requires that each Cs is an outer covering of
the solution, so that

C0 ⊇C1 ⊇C2 ⊇ ·· · ⊇ S,

where S is the solution.

Definition 3.4. We denote M(∞) as the area which is not covered by Cs, i.e.

M(∞) = M \
[

M(i)∈Cs

M(i).

In the symbolic image Gs of Cs, M(∞) is represented by a cell c∞ with no outgoing
edges.

3.2. IMPLEMENTATION DETAILS 33

The cell c∞ can be considered as the target for all edges which point outside
of the covering. Note that such a concept is not used in the original works of
Osipenko. However, this definition is needed for the practical application of some
investigation methods.

Suppose now a new covering Cs+1 is a subdivision of Cs. The boxes of Cs+1 are
denoted as m(i,k). Each box M(i) which is selected for subdivision will be split
up into new boxes m(i,k),k = 1,2, . . . , so that each m(i,k)⊂M(i) and

[

k

m(i,k) = M(i). (3.8)

Denote by Gs+1 the symbolic image for the new covering Cs+1. In this case the
cells of the new symbolic image are designated as ci,k and there is a natural map-
ping h : ci,k→ ci from Gs+1 onto Gs. It holds that

h(Gs+1(ci,k))⊂ Gs(h(ci,k)), (3.9)

so that every path on Gs+1 can be transformed on some path on Gs. This means
that all paths of Gs+1 and, respectively, also their corresponding ε-orbits, are
included in Gs. However, ε can be fixed to a smaller value for Gs+1 and so the
approximation of the investigated area becomes more precise for each application
of the subdivision procedure.

It is obvious that an investigation by symbolic analysis as described above
is embedded into the concepts of MPSD. This is due to the fact that, firstly,
the coverings Cs, s ≥ 0, see Eqs. 3.1 and 3.7, are discretizations of the phase
space, and, secondly, subdivision is applied on a selected part of the covered
phase space after the symbolic image graph has been constructed and investigated.

3.2 Implementation Details
From the viewpoint of an implementation by a computer program, the principle
scheme of every investigation according to the above mentioned theoretical con-
cepts can be considered as an iterative process which will be repeated for increas-
ing levels of phase space discretization. At each level the calculation involves
three main steps which have to be performed several times:

1. Subdivision of selected parts of the phase space into smaller parts, see
Sec. 3.2.1 and Sec. 3.2.3.

34 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

HH
HHHH

��
����

HHH
HHH �

���
��

�

termination criterion
fulfilled?

no

yes

initialization of the area
to be investigated

subdivision

construction
of the symbolic image

investigation
of the symbolic image

Figure 3.2: Flow chart of the described method by symbolic analysis

2. Construction of the symbolic image for the current discretization of the
phase space, see Sec. 3.2.2.

3. Application of an investigation method on the symbolic image graph, see
Sec. 3.3. As a result, parts of the phase space get selected for further subdi-
vision and a more precise investigation.

As it is shown in Fig. 3.2, these steps will be repeated until a termination criterion
is fulfilled. This condition depends on the desired accuracy as well as on the
existing computation power, see Sec. 3.2.3.

In this section we describe the implementation of this basic framework and discuss
those aspects which have to be taken into consideration for an efficient implemen-
tation. The basic framework as proposed here was implemented and tested within
the AnT-project [ant05, ALS+03].

3.2.1 Box and Cell Objects
In order to build a symbolic image for a domain M ⊂ Rd of the state space, a
finite covering C has to be defined according to Eq. 3.1 or 3.7. In contrast to the
theoretical approach, it is usually not possible to cover the complete domain M of
the function f. Instead, in a practical approach we choose an area of investigation
M ⊂M in such way that we assume all important dynamics happen inside this

3.2. IMPLEMENTATION DETAILS 35

area. Note that M is not necessarily invariant and that usually only those objects
can be detected by investigations of symbolic images which are completely cov-
ered by M. Generally, there are no restrictions concerning the geometry of M and
of the boxes M(i) ∈C, except that they have to be closed and compact sets. The
investigated domain M could be any confined part of the state space and has to be
provided by the user. For the simplicity of the implementation we assume here
that it is an d-dimensional rectangular region:

M =
[
Mmin

1 ,Mmax
1

]
×·· ·×

[
Mmin

n ,Mmax
n

]
. (3.10)

Then we can subdivide the area M into uniform grid boxes. In order to do this,
the user has to define for each state space coordinate k (k = 1, . . . ,d) the numbers
imax
k of subdivisions for the domain M. Then M can be subdivided into

m =
d

∏
k=1

imax
k (3.11)

d-dimensional rectangular boxes. The length of the edge k is given for each box
by

dk(M(i)) =
1

imax
k

(
Mmax

k −Mmin
k

)
. (3.12)

Note that after the application of the subdivision procedure there is no need
for the user to explicitly define the domain of the state space which has to be
investigated in the (s+1)-th step. This domain will be determined automatically,
based on the results of the s-th step, see Sec. 3.2.3.

Every box must hold the information about its position in the d-dimensional state
space. In context of an efficient implementation, the positions of boxes are repre-
sented as d-dimensional multi-indices I ∈Nd ,

I = (i1, . . . , id) ∈Nd (3.13)
with ik ∈ [1, . . . , imax

k], ∀k = 1, . . . ,d,

so that for every box M(I) ∈C exists a unique multi-index I defining its position
in M.

This representation was chosen because it allows a fast and easy mapping
from x ∈ M(I) to I and vice versa. Furthermore, the mapping range within the
domain of usual integer values is much larger if multi-indices are used instead
of one-dimensional indices. If Nint is defined as the maximal integer value of a

36 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

computer system and one would only use one-dimensional indices to identify
the boxes M(i) then each i ∈ {1, . . . ,Nint}. An area of investigation M could
only be subdivided in m = Nint boxes because no more values are available for
the description of all possible positions. Note that there must be an index for
every position i, no matter if M(i) exists or not. This is a crucial restriction for
higher-dimensional systems. If multi-indices are used instead, an d-dimensional
domain M can be subdivided in m = (Nint)d boxes which means we have an
exponential growth for the number of possible box positions.

Some mapping functions, which will be introduced in the following, require the
definition of a strict weak order relation ≺ for the box indices I of a covering C.
It can be given by using the mapping

φ(I) =
d

∑
k=1

(
(ik−1)

k−1

∏
l=1

imax
l

)
(3.14)

with φ(I) ∈N and defining the relation ≺ for two indices I and I′ by

I ≺ I′ iff φ(I) < φ(I′). (3.15)

However, one has to be careful when dealing with the implementation of the re-
lation ≺ because for d ≥ 2 the range of the mapping φ defined by Eq. 3.14 can
easily overflow the domain of usual integer data types. Therefore, the relation ≺
should be implemented without a direct usage of Eq. 3.14. It is better to use an
iterative comparison of the components ik (k = 1, . . . ,d) of an index I, starting
with the largest "digit" id:

I ≺ I′ iff ∃k = 1, . . . ,d (3.16)
with ik < i′k and i j = i′j ∀ j > k.

After the construction of the covering C is completed, an approximation of the
symbolic image based on C can be constructed. It represents a graph G, whereby
the cells cI of G correspond to the boxes M(I) of C. Each of the cells has an
adjacency list with its target cells. Note that we do not use an adjacency matrix
to define the edges of the graph G. Reason for this is that the symbolic image
graph is considered to be huge but sparse. Hence, an adjacency matrix would
require by far more memory resources than a list. A distinctive feature of the
cells is, that each of them is uniquely connected with a box M(I). This cor-
respondence represents the link between the domain M and the symbolic image G.

Additionally, we add the cell c∞ to the graph G which corresponds to the area
M(∞), see Def. 3.4. Hereby, M(∞) covers the area M \M as well as the area
M \

S
M(i)∈C M(i) which is not further investigated. In case f(M(i))∩M(∞) 6= /0,

we assume that M(∞) ∈C(i).

3.2. IMPLEMENTATION DETAILS 37

3.2.2 Construction of the Symbolic Image
The construction of a symbolic image based on numerical calculations is always
only an estimation of the "real" symbolic image G. Besides the usual numerical
errors which occur by the computation of a mapping f(x) for x∈M, another reason
for this is the fact that the construction of the image

T (I) = f(M(I)) (3.17)
= {y | y = f(x),x ∈M(I)} ⊂Rd

for a box M(I) would involve the calculation of f(x) for every x ∈M(I). This is,
of course, beyond the limits of every finite numerical computation.

One approach for the approximation of T (I) is given by the usage of interval
arithmetic, see for instance [AH83]. This technique was used by Hruska [Hru02]
in the context of box chain construction. The basic idea is to perform nu-
merical computations on intervals instead of numbers. The results of such
computations are then again intervals which include all solutions. In higher di-
mensions, the operations can be carried out component-wise on interval vectors.
A box M(I) can then be seen as a higher-dimensional interval, and f can be
computed using interval arithmetics. As a result, we get an outer covering of T (I).

Although this is an interesting approach, we did not consider it to be appropriate
for our implementation. Reason for this is, that the error bounds easily tend
to increase largely, as was also reported in [Hru02]. This would lead to an
increase of edges in G which is not desirable. Concerning this topic, see also the
discussion about the method’s performance and its tuning in Secs. 3.4 and 4.2.
Additionally, the system function f is limited to those operations which are
defined for interval arithmetic.

So, for our implementation we use a different method. The image T (I) will be
approximated by a finite set of points. This technique was also used by [Hsu87,
DH97], and has proved to be a good approach in practice. From each box M(I) a
representative set of k points is selected,

S(I) =
{

x j | x j ∈M(I), j = 1 . . .k
}

(3.18)

the so-called scan points of the box M(I). Then the approximation T̃ (I) of the
region T (I) in the state space is calculated by

T̃ (I) = f(S(I)) =
{

y j | y j = f(x j),x j ∈ S(I)
}

(3.19)

As one can see, the continuous region T (I) will be approximated by the discrete
set T̃ (I)⊂ T (I) consisting of k points. The number k of scan points for the boxes

38 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

as well as the positions of these points within the boxes are parameters of the
described method which must be set by the user.

There is no general strategy how the scan points should be placed within the
box M(I). In Dellnitz et. al [DH97] it was proposed that the points should lie
on the boundary or on the edges of the box. Additionally, there should be one
point in the center of the box. This strategy should not be used for symbolic
images. One has to consider that the boundaries of the boxes overlap. Hence, if
the scan points of the boxes lie on the boundary, they also overlap. This leads to
the occurrence of clusters of boxes during subdivision. A better strategy is that
the scan points are either uniformly distributed within M(I) or that they are put
into the neighborhood of the boundaries.

Besides the calculation of scan points, a mapping

p : M 7→Nd, ∀x ∈M(I) ⇒ p(x) = I (3.20)

of a point x ∈M(I) onto a box index I is required for further computations. Addi-
tionally, we need its inverse mapping

p−1 :Nd 7→M, ∀I : p−1(I) = x ⇒ x ∈M(I) (3.21)

which defines for every M(I) the spatial coordinates of a point within this box.
Note that p−1(I) is only defined if M(I) exists for I.

Due to the fact that all uniform grid boxes have the same size, the mapping p :
M 7→Nd can be simply defined as

p(x) = I = (i1, . . . , id) (3.22)

with ik =

⌊
xk−Mmin

k
imax
k

⌋
+1, k = 1, . . . ,d

The inverse mapping can be described in a similar way. Note, however, that the
inverse mapping is not unique and, in practice, requires the definition of an arbi-
trary reference point within the box M(I). If using, for instance, the minimal point
of each box, one can get

p−1(I) = x = (x1, . . . ,xd)
T

with xk = Mmin
k +(ik−1) ·dk(M(I)), (3.23)

k = 1, . . . ,d

After the functions p and p−1 have been defined, the approximation C̃(I),

C̃(I) =
{

M(I′) |M(I′)∩ T̃ (I) 6= /0
}

, (3.24)

3.2. IMPLEMENTATION DETAILS 39

of the covering C(I),

C(I) =
{

M(I′) |M(I′)∩T (I) 6= /0
}

, (3.25)

can be computed. Obviously, we have the relation C̃(I)⊆C(I).

Proceeding this task, the following steps have to be performed for each box M(I)
in the covering C :

1. The set of scan points S(I) is calculated using a set of k globally defined
relative coordinates

S =
{

ξ j | ξ j = (ξ j,1, . . . ,ξ j,d)T , (3.26)

ξ j,i ∈ [0,1], i = 1..d, j = 1..k
}

with respect to the reference point x0 = p−1(I):

S(I) = {x j | x j,i = x0,i +ξ j,i ·di(M(I)), i = 1..d,

ξ j ∈ S, j = 1..k} (3.27)

This is necessary for scaling the relative coordinates ξ j, which are defined
within the hypercube [0,1]d , onto the area M(I).

2. For every point x j ∈ S(I) the target point y j ∈ T̃ (I) will be calculated.

Dealing with dynamical systems discrete in time, i.e. xk+1 = f(xk), the
target point y j can be found by a simple one step iteration of the point x j:

y j = f(x j) (3.28)

Note that also the n-th iterated function f [n] can be used in Eq. 3.28 instead
of f. This is necessary if we want to apply symbolic images to dynamical
systems continuous in time, see Sec. 4.1.1, or if we want to work with higher
iterated functions, see Sec. 4.2 for a more detailed discussion.

3. For each target point y j ∈ T̃ (I) the corresponding box object M(I′) with
y j ∈M(I′) must be found.

The index I′ of this box is given by

I′ = p(y j) (3.29)

It is important to check, whether the conditions

1≤ i′k ≤ imax
k ∀k = 1, . . . ,d (3.30)

40 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

hold for the components of the multi-index I′. If not, the index I′ exceeds
the dimension range and there is no box defined for this index. In such a
case, y j ∈M \M. Hence, M(∞) is added to the list C̃(I).

4. Within the implementation context, a memory access function

g :Nd 7→M, (3.31)
∃M(I′) ∈C ⇒ g(I′) = M(I′)

is required in order to access a box object M(I′) for an index I′.

One can consider at least two approaches to define g:

(a) There is an array A = [1, imax
1]× ·· · × [1, imax

d] covering all possible
index positions I in M and containing pointers to every box M(I) if
such an M(I) exists.

(b) There is a hash map H which contains a key I iff there exists a corre-
sponding M(I).

The first approach, the use of an array, would be very fast and allows the
detection of M(I) in constant time. Unfortunately, it also requires a large
amount of memory space. For every possible index position I in M memory
is needed, even though there might be no box objects M(I) at many index
positions. This aspect becomes more crucial for every subdivision step
and would not allow a precise calculation of non-trivial symbolic images.
Therefore, the second approach should be preferred.

A hash map H is used to map I onto M(I) if such a box object exists. No
memory space is wasted for indices without a corresponding box object. It
should be mentioned that a fast and proper implementation of H requires
the strict weak ordering ≺ of I mentioned before, see Eq. 3.16.

5. If M(I′) has been located, a reference to it will be added to the list of C̃(I). If
no M(I′) exists at the position I′, then M(∞) is added to C̃(I). In such a case,
y j ∈M \C. When the location of the target boxes M(I′) for all scan points
x j ∈ S(I) is completed, the list of C̃(I) is an estimation of the covering C(I)
for the box object M(I).

Example 3.2. Fig. 3.3 illustrates the construction of a covering C̃(1) for a box
M(1). As one can see, the scan points x j, marked with ◦, are mapped onto the

3.2. IMPLEMENTATION DETAILS 41

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

1 2 3 4

5 6 7 8

9 10

11

12

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ • •

•• • ••
••

Figure 3.3: Implementation of the symbolic image construction. The scan points
x j ∈ S(1)⊂M(1) are marked with ◦. The images of these points y j ∈ T̃ (1)⊂C(1)
are marked with •.

points y j, marked with • (j = 1..9). Based on these points, the following approxi-
mation C̃(1) of the covering C(1) was calculated:

C̃(1) = {M(3),M(6),M(7),M(8),M(10),M(11)}. (3.32)

In Fig. 3.3 the covering C(1) is colored gray and the approximation C̃(1) is shown
as a hatched area. As one can see, the box M(4), which belongs to C(1), gets lost
in the approximation C̃(1), so that C̃(1) 6= C(1). This is is due to the insufficient
number of scan points, a typical problem which might occur in numerical simula-
tions with a discretization of the scan points S.

Note that there exists a method [Jun00] for a rigorous computation of the
sets C(I) by scan points. This method was introduced for the application on
set-oriented methods but could be used in our context as well. If the Lipschitz
constants can be estimated for f on M then this method is able to compute a set
C̃(I), so that C(I) ⊂ C̃(I). Though this technique has not yet been implemented
by us, we introduce in Sec. 4.1.2 an error tolerance which can be seen as a basic
framework for the integration of this technique. However, one should consider
that the application of this method, like the interval arithmetic mentioned earlier,
provides an outer covering of C(I). Heuristic experience has shown that such
an approach for the approximation of C(I) is often too pessimistic, and in many
cases not desirable for practical calculations. See the results of Secs. 3.4 and 4.2
for a more detailed discussion.

After the described steps were performed for all boxes of the state space dis-
cretization, an approximation G of the symbolic image has been constructed. The

42 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

vertices of the graph are the cells cI corresponding to the boxes M(I). For each cI
the adjacency list of target cells is given by the cells corresponding to the boxes
of the covering C̃(I).

3.2.3 Subdivision Process
In the previous section, the construction of a symbolic image G was described.
It was already mentioned that the precision of the state space discretization for
such a symbolic image must be increased by an iterative process. To describe this
process, we introduce an index s which indicates the level of state space discretiza-
tion, s = 0,1, . . . , or, in other words, the subdivision depth of a symbolic image.
In the following, the notation for the symbolic image G is extended to Gs. The
notation Cs, Is and so on is introduced in the same way. After Gs is constructed, it
is necessary to decide if the process has to be continued in order to construct the
next image Gs+1, or if the construction process should be stopped, see Fig. 3.2.
There are two typical reasons to terminate the process:

• The user-defined maximal number of subdivision steps has been reached.
This should be the normal case and means that the symbolic image Gs was
calculated with the desired accuracy.

• Although the maximal number of subdivision steps has not yet been
reached, the number of cells in the symbolic image Gs is so huge that the
next subdivision of cells would overflow the memory space of the used com-
puter. This can be interpreted as some kind of failure. An appropriate output
will be produced by the software and the next subdivision will not be per-
formed.

If the subdivision process will be continued in order to get the graph Gs+1 then a
new covering Cs+1 has to be calculated. This covering depends on a selection of
cells SV (Gs)⊆V (Gs) chosen by the application of an investigation method to the
graph Gs. The covering Cs+1 usually covers only parts of the area covered by Cs.
Let cIs be the cell in Gs which matches to the box M(Is). Then the new area of
investigation is given by the joint of all boxes which belong to a selection of cells
SV (Gs):

Ms+1 =
[

cIs∈SV (Gs)

M(Is). (3.33)

Each of these boxes will be divided into m sub-boxes M(Is+1), see Eq. 3.11, which
build together the new covering Cs+1. For every Is = (i1, . . . , id) the m new indices

3.2. IMPLEMENTATION DETAILS 43

Is+1 are defined as follows:

Is+1 =
(

j1 +(i1−1) · imax
1 , . . . ,

jd +(id−1) · imax
d

)
(3.34)

with jk = 1, . . . , imax
k ∀k = 1, . . . ,d

After the subdivision, the graph Gs+1 is constructed for the covering Cs+1 as de-
scribed in Sec. 3.2.2, and the whole calculation process is repeated.

3.2.4 Comparison with a Similar Implementation

In order to summarize the description of the implementation details, we compare
our approach with those of others. To our knowledge, there exists only one
implementation which is comparable with symbolic image construction, and for
which details were published. Namely, this is the implementation by Dellnitz
et. al. [DH97, DJ02] for set-oriented methods. Note that the concepts of the
set-oriented methods differ from those of symbolic analysis. Roughly speaking,
set-oriented methods apply investigations on sets and not on graphs. However,
both concepts require the discretization of the phase space, a multilevel subdi-
vision scheme and the computation of the image of a set, i.e. f(M(i)). Other
authors, like Mischaikow [Mis02], also refer to this implementation as the basic
framework for the application of their methods. Another implementation was
introduced by Hruska [Hru02, Hru05] but only a few details are given about those
aspects of the implementation which we described here.

For the comparison of our implementation with the one of Dellnitz et. al., we
focus on aspects of storage, subdivision and mapping. As mentioned before, the
selection of scan points is similar in both implementations. The main difference
is that the approach of Dellnitz et. al. uses a binary search tree for the storage
of the collection of sets (or boxes in our terminology). This tree spans over the
elements of all subdivision steps. An indexation of the sets is not explicitly given.
Instead, it is implicitly determined by a set’s position in the binary tree. In order
to reach a set belonging to a covering Ck, one has to start at the initial covering
C0 and then traverse the binary tree downwards through the coverings C1, . . . ,Ck.
As in our approach, the coordinates of a box will not be stored but calculated if
needed.

In our opinion, this approach has several disadvantages in comparison with an
explicit indexation and the storage in a hash map as it is proposed by us:

44 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

Flexibility A binary search tree dictates a special geometric structure for the
boxes. The basic covering is a rectangle, and in every subdivision this rec-
tangle can only be subdivided into two pieces. In our approach, one can
use uniform grid boxes at every stage of subdivision and divide them into as
many parts as desired. So it is possible to integrate several subdivision steps
on the binary search tree into one. Furthermore, the geometry of a box is
not bounded to its storage scheme. This makes it possible to easily extend
the implementation on other geometric forms, or even "intelligent" boxes
which decide their geometry themselves. The explicit indexation allows in
general a larger degree of freedom.

Memory requirements The binary tree needs to store boxes of all subdivision
steps, while in our approach, all boxes except those of the current subdivi-
sion step are deleted.

Performance In order to find the corresponding box object to a value f(x), one
must traverse the binary tree. During this traversal, the coordinates of every
visited box must be calculated. This operation gets more expensive the more
subdivision steps must be traversed. In our approach, the coordinates of a
box are only calculated once – to compute the index of a box belonging to
a value f(x), see Eq. 3.20. The search on the hash map in order to find the
box for this index does not involve the computation of further coordinates,
see Eq. 3.31. Note hereby that the hash map might also be represented by
a binary tree. However, this tree is only spanned over the elements of one
subdivision step in contrast to the binary tree of Dellnitz et. al. which is
spanned over the elements of all subdivision steps.

3.3 Basic Investigations
In the preceding section we described the construction of the symbolic image
graph. In this section, we discuss basic investigation techniques that can be ap-
plied to the symbolic image graph in order to analyze properties of the underlying
dynamical system. Note that we use variations of some standard graph algorithms.
A discussion of the original algorithms is out of scope of this work, therefore we
refer to [AHU87, Tar91, Sed93, CLR00].

3.3.1 Localization of the Chain Recurrent Set

The most important kind of investigation technique on the graph is the localization
of the recurrent cells, see Def. 3.3. Applying this technique, we can determine a

3.3. BASIC INVESTIGATIONS 45

neighborhood of the chain recurrent set Q, see Definition 2.3. Let us denote such
a neighborhood as

QSs = {∪M(i) |ci ∈ RV (Gs)} ,

where s is the subdivision depth. Recall that a M(i)⊂M is the box corresponding
to the cell ci of the symbolic image Gs, and RV (Gs) is the subset of the recurrent
cells in Gs. Obviously, this neighborhood is an outer covering of the chain recur-
rent set. Furthermore, recall that δ(Cs) is the largest diameter of the covering Cs,
see Eq. 3.5. In our implementation, δ(Cs) depends on the length of the box edges,
see Eq. 3.12.

Theorem 3.1. [Osi94] The sequence of sets QS0,QS1,QS2, . . . offers the following
properties:

1. the neighborhoods QSs are embedded into each other, i.e.,

QS0 ⊇ QS1 ⊇ QS2 ⊇ ·· · ⊇ Q

2. if the largest diameter δ(Cs)→ 0 as s tends to infinity then

lim
s→∞

QSs =
\

s
QSs = Q.

This theorem states that the chain recurrent set can be approximated as precisely
as one likes by the methods of symbolic analysis. The symbolic image must
be constructed and subdivided for several times. The cells which have to be
selected for subdivision are those which are recurrent. Hence, we propose now
an algorithm for the localization of the recurrent cells in a symbolic image.
Note that almost all other investigation methods of symbolic analysis also
require the detection of the recurrent cells. Therefore, this technique is considered
as a general first computation step of all investigations on a symbolic image graph.

Remark 3.1. In the original work [Osi94] a homeomorphism is assumed as the
underlying dynamical system for Theorem 3.1. However, the theorem is also valid
for noninvertible mappings. Reason for this is that the inverse of the system func-
tion is not required for its proof. Hence, we assume that the proposed method
can be applied on all dynamical systems generated by continuous mappings, no
matter if an inverse exists or not.

An efficient approach to detect the recurrent cells is the variation of Tarjan’s
algorithm for the calculation of strongly connected components in directed
graphs [Tar72]. This algorithm locates the strongly connected components of a

46 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

directed graph G by a depth-first search. Two vertices a and b of G are said to
be strongly connected (a ∼ b) if there exists a path from a to b and from b to
a. Furthermore, the relation a ∼ a (reflexivity) always holds by definition. It
can easily be proved that ∼ is an equivalence relation and that therefore G will
be partitioned by the relation ∼ into equivalence classes, the strongly connected
components. Although recurrent cells of G and strongly connected components
are not the same, they are closely related to each other. If

γa = {b | a∼ b} (3.35)

is a strongly connected component for which there is a path from a to each b and
vice versa with a 6= b then, for a as well as b, exists a periodic path, see Def. 3.2.
It follows that, if |γa| > 1, then for all cells c ∈ γa exists a periodic path and
therefore all these cells are recurrent. The special case to look at is |γa|= 1. Due
to reflexivity, if there is only one component in the set it could mean that this cell
is either non-recurrent or, if there is an edge a→ a, its least period size is 1.

So, for the localization of recurrent cells, Tarjan’s algorithm needs a minor
extension. What has to be done in addition is to perform a test for each set γa
if |γa| = 1 holds. In this case, it has to be checked for the single cell of this set
whether it is one-periodic (or recurrent), which means one of its target cells is
itself, or not. If the cell is not one-periodic, it is non-periodic (or non-recurrent).
All cells belonging to a set γa with |γa| > 1 are periodic, i.e. recurrent. All
recurrent cells that belong to the same set γa can be considered as one of the
equivalence classes Hk ∈ ζ, i.e. as a set of equivalent recurrent cells, see Def. 3.3
and Eq. 3.6.

We like to mention here that the approach to localize the chain recurrent set by
computation of strongly connected components is standard, and was also used by
other authors. In [Eid95, Mis02] a slightly different relation between strongly
connected components and chain recurrent sets was drawn. However, the result-
ing algorithm, like Tarjan’s, is also based on a depth-first search and in O(n).
In [DJ02] the exact algorithm was not outlined but has also the same performance
properties.

3.3.2 Localization of Periodic Points
A related investigation is the localization of p-periodic points P(p) for a given
value p, see Eq. 2.3. Let us denote the neighborhood of P(p) as

SPs = {∪M(i) |ci is p-periodic and ∈V (Gs)} ,

3.3. BASIC INVESTIGATIONS 47

where s is the subdivision depth. Obviously, this neighborhood is an outer cover-
ing of P(p).

Theorem 3.2. [Osi93] The sequence of sets SP0,SP1,SP2, . . . offers the following
properties:

1. the neighborhoods SPk are embedded into each other, i.e.,

SP0 ⊇ SP1 ⊇ SP2 ⊇ ·· · ⊇ P(p)

2. if the largest diameter δ(Cs)→ 0 as s tends to infinity then

lim
s→∞

SPs =
\

s
SPs = P(p).

This theorem states that the set of p-periodic points can be approximated as pre-
cisely as one likes by the methods of symbolic analysis. The symbolic image
must be constructed and subdivided for several times. The cells which have to be
selected for subdivision are those which are p-periodic. Hence, we propose now
an algorithm for the localization of the periodic cells in a symbolic image.

Remark 3.2. In the original work [Osi93] a homeomorphism is assumed as the
underlying dynamical system for Theorem 3.2. However, the theorem is also valid
for noninvertible mappings. Reason for this is that the inverse of the system func-
tion is not required for its proof. Hence, we assume that the proposed method
can be applied on all dynamical systems generated by continuous mappings, no
matter if an inverse exists or not.

For a practical application of Theorem 3.2, we have to consider that there might
be more than one admissible path to which a cell ci belongs to, especially in case
of a coarse phase space discretization. Indeed, the number of admissible paths to
which a cell belongs can even be infinite. In that case, it is impossible to explicitly
compute each periodic path to which the cell belongs. On the other hand, if each
cell of a symbolic image represents exactly one periodic point in the state space
then this cell cp belongs only to one p-periodic path {. . . ,ci0, . . .} with ci0 = cp.
Although such a precise covering can not be achieved by numerical computation,
a reasonably fine phase space discretization is usually sufficient to get a unique
path for a cell which belongs to a covering of a periodic point. Considering these
facts, the p-periodic points can be located by selecting all cells for subdivision
which have a shortest periodic path for a period p′ ≤ p. Obviously, such a
selection contains all cells which belong to a p-periodic path. After several
subdivisions, we check that there exists a unique periodic path for each cell of
the symbolic image. In case this can not be achieved, a higher precision of the

48 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

symbolic image is required, i.e. more subdivisions must be applied.

Consequently, an algorithm is needed which is able to find the shortest periodic
path ci → ··· → ci for every recurrent cell ci on the symbolic image graph.
Furthermore, the length of such a path must be detected. Note that Tarjan’s
algorithm is not capable to solve this task. Instead, we introduce a different
algorithm which is based on the idea of Dijkstra’s algorithm for calculation of
shortest paths in directed graphs [Dij59]. It belongs to the class of so-called
greedy algorithms and performs a breadth-first search.

The Dijkstra algorithm does not only find the shortest paths from each cell ci to all
other cells of the graph but also locates at the k-th step first the path ci→ ··· → cu
so that the following equation is fulfilled:

d(ci,cu) = min{d(ci,cv) | cv ∈V (G)∧ (3.36)
(ci→ ··· → cv) /∈ Dk−1},

where d(ci,cu) is defined as the length n of the shortest path between ci and cu,
and Dk−1 is the set of all shortest paths which have already been detected in the
previous steps. Then the shortest periodic path of a cell ci can be found by check-
ing for the first detected shortest path ci → ··· → cu whether the edge cu → ci
exists. If so, the algorithm can be stopped because the path ci→ ··· → cu→ ci is
the shortest periodic path for the cell ci and the length of this path is the period of
ci. If not, then the next shortest path has to be detected and checked for the same
condition until a periodic path has been found or until all shortest paths have been
visited.

There are several improvements to speed up Dijkstra’s algorithm within our
context. First of all, the original Dijkstra algorithm is developed for weighted
graphs while the edges of G are unweighted. This means that the edge weight
γ(ci→ c j) is 1 for all edges of G. Therefore, the outer edge of visited but not yet
examined cells can be implemented as a queue. Every cell which is visited first
time and becomes a part of the outer edge will be pushed into the queue, while
the next cell which will be examined can be popped out of the queue. This works
fine because our edges are unweighted and so the distance between c1 and the
first element in the queue is always the minimum distance between ci and every
other element in the queue.

Next it should be considered that all periodic cells of G have to be inspected.
So in worst case, the modified Dijkstra algorithm must be started once for each
cell ci ∈ V (G). In order to spare out some of the cells, we can first run the

3.4. PERFORMANCE ANALYSIS 49

Tarjan algorithm to detect the recurrent cells and the sets ζ of equivalent recurrent
cells. The Dijsktra algorithm must then only be started for the recurrent cells
ci ∈ RV (G). Furthermore, it is sufficient to check for each of these cells only the
paths to equivalent recurrent cells, i.e. those cells which belong to the same set
Hk ∈ ζ. Cells which do not belong to the same set can not belong to the same
shortest periodic path.

Despite all improvements, the modified Dijkstra’s algorithm can not compete
with the performance of the aforementioned Tarjan’s algorithm. So it should
only be chosen by the user if the additional information about the periodic paths
and/or the least period sizes are really required for the calculation. Note that we
will also propose an improved approach for the localization of periodic points in
Section 7.1.

The idea of using a breadth-first search algorithm like Dijkstra’s for investigations
on a symbolic image-like graph is not new, see for instance [Hru02, Mis02].
However, to our knowledge it was not yet modified and improved in order to
apply it for the detection of shortest periodic paths.

Another option to compute shortest periodic paths on a graph is given by the
Floyd-Warshall algorithm [Flo62, CLR00]. This algorithm uses the principles of
dynamic programming and solves the all pairs shortest path problem. As with
Dijkstra’s, this algorithm could easily be modified to compute the shortest pe-
riodic paths, see also the method proposed in [Jun03]. For several reasons, we
consider this approach not to be advantageous. First of all, this algorithm works
on the adjacency matrix of the graph, while we use an adjacency list for the stor-
age of edges. As we have already mentioned in Sec. 3.2.1, the storage of edges in
an adjacency matrix would immensely increase the memory requirements. Fur-
thermore, the time complexity of the Floyd-Warshall algorithm is Θ(n3). Even if
modified for our problem, this complexity will not change. On the other hand,
we show in the next section that our approach has a significantly better time com-
plexity of O(n2) if the number of edges in the graph is fixed, i.e. the construction
depends on a fixed number of scan points per box.

3.4 Performance Analysis
The performance of symbolic image construction as described above will be
analysed by studying the worst-case scenario. In this section we show that the
construction of a symbolic image, as well as the basic operations on it, can be
done in the time O(ns log(ns)), see Proposition 3.2. In the following, ns denotes

50 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

the number of cells in the symbolic image Gs.

In order to construct Gs, we consider a function getBoxMapping(M(I)) which
is called for every box M(I) ∈ Cs. This function calculates an estimation C̃(I)
for C(I) by first locating all indices I′ with M(I′) ∈ C̃(I) and afterwards accessing
these boxes by calling the function g(I′), see Eq. 3.31. We discuss the performance
of these steps in the following.

Remark 3.3. The localization of the box index I′ for the box M(I′) with M(I′) ∈
C̃(I) is in O(1).

In order to find an index I′i with i = 1..k and k is the number of scan points, first
for each point xi ∈ S(I) the value yi ∈ T̃ (I) has to be processed. The calculation of
yi requires only the calculation of the system function f for m f times and is there-
fore ∈ O(m f · 1). The constant m f depends on the type of the dynamical system
(discrete or continuous in time) and the applied tunings. For discrete systems it is
usually 1. Afterwards, the mapping p, see Eq. 3.20, must be applied in order to
calculate I′ = p(yi). This calculation takes time tp ∈ O(d), where d is the dimen-
sion of the phase space. Because both, m f as well as d, are constants, it follows
that the calculation of a I′ is in O(m f +d)⊆ O(1).

Remark 3.4. For a given index I′ the access of a box M(I′) is in O(log(ns)).

The function g(I′), see Eq. 3.31, can be implemented by using a hash map. Its
find(I′) operation is in O(d · log(ns)) ⊆ O(log(ns)) whereby d is the state space
dimension and also the maximal number of operations which have to be performed
for determination of the order of two multi-index objects using the relation ≺, see
Eq. 3.16.

Proposition 3.1. The construction of the symbolic image Gs with respect to the
covering Cs is in O(ns log(ns)).

Proof. In order to get the scan points xi ∈ S(I) (i = 1, . . . ,k, k is the number of scan
points), the getBoxMapping(M(I)) function requires first of all the calculation of
p−1(I) = x0 ∈M(I). This takes time tp−1 ≈ tp ∈ O(1). If this was done, the scan
points, which depend on x0, can be computed in O(k · d), see Eq. 3.27. Then
for every yi ∈ T (I) the box index I′i with yi ∈ M(I′i) has to be found and the
corresponding box M(I′i) must be located. According to Remarks 3.3 and 3.4 this
can be done in O(k · (1 + log(ns))). So getBoxMapping(M(I)) needs a total time
of

O(1+(k ·d)+ k · (1+ log(ns))) ∈ O(log(ns)). (3.37)

3.4. PERFORMANCE ANALYSIS 51

Next, all cells cI′ ∈ V (Gs) with M(I′) ∈ C̃(I) must be added as targets to the
adjacency list of cI . This list can also be implemented as a hash map so that
the obligatory check whether cI′ already belongs to the list is in O(log(emax

I)),
whereby emax

I is the maximal number of target cells which is also limited to
a constant by the number k of scan points per cell (emax

I = k). So the com-
plexity with regard to the calculation of all target cells cI′ for the cell cI is in
O(k · log(k))⊆ O(1).

In order to get Gs, the target cells for all cI ∈ Gs must be found. So the final
complexity concerning the construction of the symbolic image Gs for the covering
Cs is

O(ns · log(ns)).

Remark 3.5. The localization of the recurrent cells RV (Gs) ⊆ V (Gs) using Tar-
jan’s algorithm for calculation of strongly connected components is in O(ns).

It is shown in Sedgewick [Sed93] that the strongly connected components can
be found in linear time with Tarjan’s algorithm. The extensions needed to locate
recurrent cells are first the distinction, if a set γa, see Eq. 3.35, contains only a
single recurrent cell, second the creation of the equivalence classes Hk, and third
the assignment of the recurrent cells to these sets. These operations can easily be
embedded into Tarjan’s algorithm and do only require constant time. Therefore,
the localization of recurrent cells is still in O(ns).

Remark 3.6. The localization of RV (Gs) ⊆ V (Gs) and of the shortest periodic
path for each cell c ∈ RV (Gs) is in O(n2

s).

The analysis of Dijkstra’s algorithm, see [AHU87, Tar91, CLR00], leads to the
result that all shortest paths for a cell ci can be found in time

tDijkstra(ns) ∈ O

 ∑
c j∈Gs

 ∑
ck∈T (c j)

O(1)+ |R|

⊆ O(es +ns · |R|) (3.38)

where T (c j) is the list of target cells for c j, R is the outer edge with the number of
elements |R| ≤ ns and es is the number of edges in Gs. As mentioned in Sec. 3.3.2,
if the graph is unweighted, the outer edge R can be implemented as a queue. This
improves the performance time significantly to

t Dijkstra
unweighted

(ns) ∈ O

 ∑
c j∈Gs

∑
ck∈T (c j)

O(1)+O(1)

⊆ O(es +ns ·1) (3.39)

52 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

Furthermore, the number of edges per cell is limited by the number of scan
points k. So the complete number e of edges in the graph Gs can not be larger
than k ·ns. Therefore we obtain

t Dijkstra
unweighted

(ns) ∈ O(es +ns) = O(k ·ns +ns)

⊆ O(ns) (3.40)

The modified version of this algorithm, which locates periodic paths, does also not
require more time. It is even faster because it terminates immediately whenever a
shortest periodic path has been found:

tShortest_periodic_path(ns)≤ t Dijkstra
unweighted

(ns)

⇒ tShortest_periodic_path(ns) ∈ O(ns) (3.41)

Note that the modified Dijkstra’s algorithm for calculation of shortest periodic
paths needs some more checks than the original Dijkstra’s algorithm for un-
weighted graphs. However, the performance time of these operations can be
neglected for theoretical analysis.

In order to calculate the shortest path not only for one cell ci, but for all cells in Gs,
it is next necessary to start the modified Dijkstra’s algorithm for each cell once.
Hence

tAll_periodic_paths(ns)≤ ns · tShortest_periodic_path(ns). (3.42)

Therefore the resulting time is ∈ O(n2
s):

tAll_periodic_paths(ns) ∈ O(n2
s) (3.43)

In Remark 3.6 the worst-case scenario is considered. One should note that some
more improvements of the algorithm were presented. These improvements, al-
though not important for theoretical analysis, can lead to a significant increase of
performance time for the average case. However, this depends strongly on the
properties of the dynamical system in focus.

Remark 3.7. The subdivision of a covering Cs into a covering Cs+1 is in O(ns).

For the subdivision of Cs, all boxes M(Is) which correspond to selected cells cIs ∈
SV (Gs) must be subdivided. For each box M(Is) the subdivision requires m calls,

3.4. PERFORMANCE ANALYSIS 53

see Eq. 3.11, of a function

σ(Is, j) = Is+1
j (3.44)

∀j = (j1, . . . , jd) ∀ jk = 1 . . . imax
k ∀k = 1, . . . ,d

with Is+1
j =

(
j1 +(i1−1) · imax

1 , . . . ,

jd +(id−1) · imax
d

)

which creates a new index Is+1
j , compare with Eq. 3.34. The number of these

boxes, |SV (Gs)|, is not larger than ns. Taking into consideration that m is a con-
stant value and tσ ∈ O(1), it follows that

tsubdivide(ns)≤ ns ·m · tσ ∈ O(ns · k)⊆ O(ns) (3.45)

Proposition 3.2. The complete symbolic image construction process for a sub-
division phase s can be done in time O(ns · log(ns)) if only recurrents cells are
located, and in time O(n2

s) if the least period size for each cell should also be
calculated.

Proof. The complete construction process for the s-th discretization of the state
space involves for s > 0 at first the subdivision of all boxes M(Is−1) with cIs−1 ∈
RV (Gs−1) into Cs. Then, for every s ≥ 0, the construction of Gs and the local-
ization of all recurrent cells RV (Gs) ⊆ V (Gs) must be performed. According to
Remarks 3.1, 3.5 and 3.7, the following performance time can be achieved:

tconstruction(ns) ∈ O
(

ns +ns · log(ns)+ns

)
⊆ O(ns · log(ns)) (3.46)

If the least period size of every cell has to be calculated then the cell location can
not be done with Tarjan’s algorithm. Instead, the modified Dijkstra algorithm for
location of shortest periodic paths must be used. According to Remark 3.6, the
performance time changes as follows:

t least
period

(ns) ∈ O
(
ns +ns · log(ns)+n2

s
)

⊆ O(n2
s) (3.47)

In order to sum up the results obtained so far, one can say that, except for the
calculation of the least period sizes, the time required by the discussed method

54 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

is within O(ns · log(ns)), and therefore almost ideal from the theoretical point
of view, especially for large ns. Note that these results are closely related to
the proposed method for the approximation of the covering C(I), Eq. 3.25. The
number of edges for a cell is limited by the scan points per box, and in our
case this is a constant. If another approach is chosen for the approximation
of the covering like, e.g. interval arithmetic or the calculation of the Lipschitz
constant [Jun00], the number of edges per cell is not longer bounded by a
constant. For the results of performance analysis this would mean that most of
the terms must be multiplied by ns.

Performance analysis shows that the computation time of the algorithms is no
major obstacle for the construction of the symbolic image. Instead, the crucial
factor is the size of the input value ns, i.e. the memory resources required
for a computation. Note that ns could grow almost exponential during the
subdivision process. The size and growth rate of ns depend hereby not only on the
investigation task, i.e. the dimension of those objects which are the subjects of
investigation, but also on the specific properties of the focused dynamical system.
Practical application has shown that a high growth rate of ns is a limitation for
many computations. Hence, it should be the main concern to keep the number
of cells ns low and avoid an high growth rate during subdivision. Often this
can be achieved by appropriate parameter settings or tunings of the method, see
Section 4.2.

To give a rough overview about the computation times necessary for specific in-
vestigations, we present in the following some reference times. The used refer-
ence machine for all these calculations was an Asus L3000D laptop with an
AMD Athlon XP-M 1400+ processor and 512MB SDRAM.

3.5 Accuracy of the Computations
Let us next consider the accuracy of the numerical calculation. One should recall
that we do not calculate specific points in the domain space but boxes M(I) with
some extent. These boxes are always only an outer covering of a solution. In
our implementation, a box M(I) is defined as a uniform grid box. The size of
such a grid box defines the accuracy ε of the calculation. Let us denote by dk the
edge length of a grid box M(I) on the dimension axis k, and by Ls the union of
boxes which correspond to the selected cells SV (Gs) in the symbolic image Gs

constructed after the s-th subdivision. Then these boxes in Ls are neighborhoods
(or an outer covering) of a solution S. The basic principle of symbolic analysis is
that the sequence of embedded neighborhoods L0 ⊇ L1 ⊇ ·· · ⊇ Lm gets for every

3.6. NUMERICAL CASE STUDIES 55

subdivision step s = 0, . . . ,m closer to S in the way that, if the largest edge length
tends to zero as s becomes infinite, then,

lim
s→∞

Ls =
\

s
Ls = S. (3.48)

See also Theorems 3.1 and Theorems 3.2 as examples of this principle. Unfortu-
nately, for practical numerical calculations there is a minimal edge length which
limits the accuracy. Reason for this is that the n-dimensional state space cov-
ered by M, see Eq. 3.10, gets divided into regions which are identified by multi-
indices I ∈ Nn, Eq. 3.13. As mentioned above, a value ik of the k-th component
of the multi-index I is represented by an integer value, and for every computa-
tion machine there exists a constant Nint giving the largest number which can be
represented as an integer value. Consequently, we have the limitation imax

k ≤ Nint.
Therefore, every edge length dk is limited to

dmin
k =

Mmax
k −Mmin

k
Nint

(3.49)

which means that the minimal error εk can only shrink down to εk ≥ dmin
k .

Note that this limit is not specific for the presented method but only for the
implementation presented in this work. Furthermore, it is possible to extend this
limit to any size by taking a different representation of a number ik, though this
implies a higher memory consumption.

Using our reference machine mentioned above, symbolic images of a size up to≈
2000000 cells can be constructed. Furthermore, the largest number representable
by the used hardware architecture is Nint = 232, so that we obtain

εk ≥ dmin
k ≈ 10−9 · (Mmax

k −Mmin
k). (3.50)

This is the limit for the accuracy of every calculation on our reference machine.

3.6 Numerical Case Studies
In order to demonstrate the capabilities of symbolic analysis we present some
typical examples of global analysis. The main aim hereby is to demonstrate what
kind of results can be obtained with the basic investigation techniques presented
in Sec. 3.3, and how the parameters of the method have to be adjusted for specific
investigation tasks.

56 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

3.6.1 Ikeda Map
We start with a 2-dimensional map, namely the Ikeda map [Ike79]. The system is
defined as

x(n+1) = fI(x(n)),
fI :R2→R2, x = (x,y)T (3.51)

fI(x) =
(

r +a (x cosg(x,y)− y sing(x,y))
b (x sing(x,y)+ y cosg(x,y)))

)
with g(x,y) = c1− c2/(1+ x2 + y2)

and occurs in the modeling of optical recording media. The Ikeda map is
interesting for symbolic image analysis because it contains stable and unstable
periodic points as well as a chaotic attractor which we tried to detect.

A comprehensive study of the system by symbolic image methods can be found
in [Osi04]. However, in that work only the results are presented. No details about
the numerical calculation are mentioned. For this reason, some of the computa-
tions are discussed here again. The numerical simulations have been carried out
for the parameter values a = b = 0.9, c1 = 0.4, c2 = 6.0 and r = 0.9. According
to other numerical results obtained up to date, see [MY00] and references therein,
exists at these parameter values a chaotic attractor A , two unstable fixed points
P1,2 (saddle points) and the stable fixed point P3:

P1 =
(

0.4819
0.2545

)
,

P2 =
(

1.1987
−2.3769

)
,

P3 =
(

3.0027
3.8945

)
Additionally, there exists the unstable 2-periodic orbit T 2

1 , as well as two unstable
3-periodic orbits T 3

1,2:

T 2
1 =

{(
0.5964
0.6394

)
,

(
0.4497
−0.6453

)}
T 3

1 =
{(

0.8091
0.7834

)
,

(
0.9960
−1.0090

)
,

(
−0.0280
−0.8758

)}
T 3

2 =
{(

1.3512
−0.0707

)
,

(
0.6568
−1.1932

)
,

(
−0.2418
−0.4462

)}

3.6. NUMERICAL CASE STUDIES 57

Note that T 2
1 and T 3

1,2 lie close to the chaotic attractor A .

We start the global analysis of the system by localization of the chain recurrent
set. As already mentioned, the chain recurrent set contains all kind of return
trajectories and, hence, should give an overview about the areas of interest for
further investigation. We set the area of investigation in the domain space to
M = [−5.0;5.0]× [−5.0;5.0]. This area M is initially divided into a covering C0

of 20× 20 boxes. Then the symbolic image G0 is constructed for C0. We apply
the Tarjan algorithm, see Sec. 3.3.1, to detect the recurrent cells. The construction
and cell detection process was repeated for 4 subdivisions. In each step the boxes
are subdivided into 4×4 new smaller boxes. The results of such a calculation can
be seen in Fig. 3.4. After four subdivision steps, the distinct features of the Ikeda
mapping can be found in the different recurrent sets of the symbolic image. Three
areas in the state space are detected. One of them represents the stable point
P3, the other one the unstable saddle point P2, and the last one contains all cells
representing the chaotic attractor A . It is worth mentioning that chaotic attractors
can be found by computation of the chain recurrent set because their skeleton is
typically build up from unstable periodic cycles [Cvi91, Cvi92] and, therefore,
recurrent points. The calculation of the symbolic image takes less than 2 minutes.
In Tab. 3.1 the number of cells in the symbolic image and the number of located
recurrent cells for every subdivision level are shown. We observe that the number
of recurrent cells grows during the subdivision process by factor ≈ 10. This high
growth rate is due to the fact that it depends on the dimension of those objects
which are the subject of localization, see also [Jun99, Mis02]. In this case, one
of the subjects of localization is the chaotic attractor A which has a dimension
close to 2. Note also that the periodic orbits T 2

1 and T 3
1,2 as well as the fixed point

P1 lie inside the computed outer covering of the chain recurrent set. Due to the
fact that they are close to the attractor A , they can not be distinguished from it by
this kind of computation.

Our next target is the localization of the periodic orbits T 2
1 and T 3

1,2. This requires,
of course, the usage of the time consuming variant of the cell location algorithm
based on the Dijkstra algorithm, see Sec. 3.3.2. We took the same area of
investigation, M = [−5.0;5.0]× [−5.0;5.0], than for the last computation but
select only the cells with period size p′ < p = 3 for further subdivisions. After
an initial subdivision of M into 20× 20 boxes, the boxes get subdivided into
8×8 new smaller boxes in every subdivision. The construction and cell detection
process was repeated for 9 subdivisions. The results of the calculation in the area
[−1.5;2.5]× [−1.5;2.0] can be seen in Fig. 3.5(a), namely the points belonging
to P1, T 2

1 and T 3
1,2. Note that also the points P2,3 were detected but no other orbits

with a period ≤ 3. Here it turns out that the usage of a sufficient number of

58 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

-3

-2

-1

0

1

2

3

4

5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

A

P2

P3

x

y

Figure 3.4: Ikeda system: Numerical computation of an outer covering of the
chain recurrent set. It contains the chaotic attractor A as well as the fixed points
P2,3.

scan points is important. In this example, every box contained 8× 8 scan points
scattered over the box, four more points close to the box corners and another one
in the center. Such a high number is needed to acquire all the periodic orbits. If
less scan points are chosen, another parameter must be set for error tolerance,
see Sec. 4.1.2, or some of the periodic cycles will not be detected. Although
this calculation uses the more time consuming period detection algorithm, the
computation takes less than 30 seconds on the reference machine. This is due to
the fact that only very few cells have a period size smaller or equal than 3. In
our calculations, not more than 97 cells per subdivision step fit to this criterion.
So the size of the symbolic images can be kept very small. However, one should
notice that the performance time can increase exponentially if the parameter p is
set to a higher value and more such cycles with p′ ≤ p exist.

A serious problem we come across in this computation is that for most points
not only one box corresponding to a periodic cell is found, but several boxes
in the neighborhood. In this case we get up to 5 boxes as an outer covering
for each periodic point instead of one box. In the following, we will refer to
this phenomenon as clustering. Empirically, it has shown that clustering can be
considered as one of the most common and crucial numerical artifacts occurring
in the context of symbolic analysis. Due to clustering, the growth rate of the
number of cells in a symbolic image increases during the subdivision process,
and the accuracy of the computation shrinks. Moreover, the analysis of computed
data is more difficult.

3.6. NUMERICAL CASE STUDIES 59

Subdivision level s Phase space discretization |V (Gs)| |RV (Gs)|
0 20×20 400 79
1 80×80 1264 415
2 320×320 6640 3018
3 1280×1280 48288 27878
4 5120×5120 446048 284727

Table 3.1: Ikeda system: Computation of the recurrent cells. The number
s marks the level of subdivision. The phase space discretization of the area
M = [−5.0;5.0]× [−5.0;5.0] is shown. Furthermore, the number of cells be-
longing to a symbolic image, |V (Gs)|, and the number of localized recurrent cells
|RV (Gs)|.

Theoretically, the following accuracy, compare Sec. 3.5, could be achieved for the
calculated points:

ε≤ 1
20
· 1

89 ·4≈ 2 ·10−9.

However, in practice, the error is higher because of clustering. If taking this into
account and analyzing the computed results, the error increases to ε≤ 1 ·10−7.

Because A is a chaotic attractor, one can expect to find in its vicinity some unsta-
ble limit cycles with periods higher than 3. So first we increased p to 6 and then to
14. Some results of these calculations are presented in Fig. 3.5(b), which shows
two of the detected unstable 5- and 6-periodic orbits, and Fig. 3.5(c), an overview
of all detected 6- and 13-periodic points. Remarkably, the symbolic images for
p = 6 contained not more than 325 cells, for which the corresponding boxes got
subdivided and thus the calculation did not take much more computation time
than in the first case (≈ 30 seconds). But the location of cells with a period size
≤ 14 consisted of up to 27000 selected cells. Boxes corresponding to each of
them get subdivided into 8× 8 new smaller boxes, so that the symbolic images
had up to 1700000 cells. Therefore, the calculation took around eight hours in
this case.

Until now we investigated the Ikeda system for fixed parameter values, as
described above. Using the methods of symbolic analysis under variation of some
parameters, interesting results can be obtained as well. For instance, one can
observe the bifurcations which causes the emergence of unstable periodic orbits.
These periodic orbits determine the structure of the chaotic attractor discussed
above. Performing this task, we consider the area M = [−0.4;1.5]× [−1.7;1] in

60 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5
x

y

(a)

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5
x

y

(b)

-1.5

-1

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5
x

y

(c)
Figure 3.5: Ikeda system: (a) P1 – blue square, T 2

1 – green triangles, T 3
1 – empty

circles, T 3
2 – blue circles. (b) Some detected unstable limit cycles with periods 5

(empty circles) and 6 (blue circles). (c) All detected unstable 6-periodic (empty
circles) and 13-periodic (blue circles) points. Note that the chaotic attractor A in
the background is visible for better orientation but was not calculated by the same
computation.

the state space and calculate the periodic orbits up to period six. Using an initial
subdivision into 20×20 boxes and performing 4 subdivision steps, whereby each
box is divided into 2×8×8 smaller boxes, we obtain the results shown in Fig. 3.6.
The parameters a and r are varied in the interval [0;0.9]. The other parameters
are kept fixed to the same values as above. In both experiments we observe a pe-
riod doubling bifurcation scenario and a large number of saddle-node bifurcations.

In this section we have only applied basic investigations on the Ikeda system. It
turned out that one could already gather a large amount of information regarding
the global analysis. However, the Ikeda system will be again subject of discussion
in Sec. 5.7.2. Then, advanced investigation methods of symbolic analysis are
applied on it.

3.6. NUMERICAL CASE STUDIES 61

 0 0.2 0.4 0.6 0.8 1 0
 1

-1

 0

x

y

a

(a)

 0.4 0.6 0.8 1 0
 1

-1

 0

x

y

r

(b)

Figure 3.6: Ikeda system: Periodical points up to period 6 under variation of
parameters a and r.

62 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

3.6.2 Coupled Logistic Map

The preceding example was chosen because the results of the investigation could
easily be reproduced and verified by the use of other methods like forward iter-
ation. In order to illustrate the capabilities of symbolic analyis, we give now an
example of an investigation which can not be done by any other method known to
the authors. Therefore, we take a look at another 2-dimensional map, the coupled
logistic map defined by:

x(n+1) = fC(x(n)),
fC :R2→R2, x = (x,y)T (3.52)

fC(x) =
(

(1− r) g(x,a)+ r g(y,b)
r g(x,a)+(1− r) g(y,b)

)
with g(x,m) = m x (1− x).

The system, as presented here, can be considered as a 2-dimensional case study
of coupled map lattices [Kan93] for the logistic map [GSE93]. In our context, the
study of this system reveals some interesting dynamics. As for the Ikeda system,
we computed the chain recurrent set and periodic orbits. We did not only find an
attractor but also fractal structures which, in contrast to the attractor, can not be
revealed by forward iterations.

For all our investigations, we fixed the parameter settings to a = b = 3.8 and
r = 0.07. Analytically, it is easy to show that, due to a = b, we have symmetric
behavior with respect to the diagonal y = x. This means that orbits become
symmetric if one interchanges the x- and y-coordinates, and that all points on
the diagonal at y = x form an invariant set D . By numerical analysis based on
forward iterations and calculation of Lyapunov exponents, one can find out, that
the system is governed by a single attractor A which consists of two symmetric
parts in the phase space, see Fig. 3.7.

Our first investigation of the system by symbolic image analysis was the
computation of the chain recurrent set. We initially divided the area
M = [0.0;1.0]× [0.0;1.0] into 5× 5 boxes. In each subdivision step, a box
gets divided into 3× 3 new ones. After 5 subdivisions the outer covering of the
chain recurrent set consists of 430000 boxes with a side length ≈ 1 · 10−3. It is
important to mention that a high number of scan points is required. If taken too
little, large parts of the chain recurrent set get lost during the first subdivisions.
Hence, for our investigation we covered each box with a regular grid of 100 scan

3.6. NUMERICAL CASE STUDIES 63

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

y

Figure 3.7: Coupled logistic map: Numerical approximation of the attractor A .

points. Applying these settings, the computation takes around 8 minutes, and its
results can be seen on Fig. 3.8(a). The chain recurrent set does not only consist
of the chaotic attractor but also of fractal structures which are symmetric with
respect to the diagonal. Note that these fractal structures are unstable entities.
Orbits started in a neighborhood of the chain recurrent set are attracted by the
attractor A . We observed that even orbits started in the area covered by the
computed fractal structures are attracted by A . However, this can be explained
by the fact that our numerical computation produced an outer covering of the real
chain recurrent set and, hence, covers also the chain recurrent set’s neighborhood.
To the authors’ knowledge there is no other method of numerical investigation,
except the related set-oriented approach by Dellnitz et.al. [DFJ01], which is
capable to reveal these structures. In Fig. 3.8(b) we colored each component of
the chain recurrent set differently. It is clearly to see that there are 4 distinct
equivalent recurrent sets, one of them represents A , and another one a 2-periodic
unstable orbit in the holes of A .

In order to verify our results, we also computed periodic orbits. We used the cell
location algorithm based on the Dijkstra algorithm, see Sec. 3.3.2, and computed
all periodic points with a periodicity ≤ 8. We applied 17 subdivisions so that
the error ε ≤ 1 ·10−8. The computation took around 25 minutes, and we got 614
periodic points, see Figs. 3.8(c) and 3.8(d). It can be observed that periodic orbits
are scattered over the whole area designated by the approximation of the chain
recurrent set. We confirmed our results by applying a Quasi-Newton method to
locate periodic orbits as proposed in [NY97], see also Sec. 2.2. This method

64 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

y

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

y

(b)

x

y

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

y

(d)

Figure 3.8: Coupled logistic map: (a) Numerical approximation of the chain re-
current set (red) and the attractor A (green). (b) The areas covered by different
components of the chain recurrent set are shown in different colors. (c) Detected
periodic points. Periodicity: 1 (brown), 2 (cyan), 4 (magenta), 5 (green), 6 (black),
7 (blue) and 8 (red). (d) Detected periodic points and the chain recurrent set

3.6. NUMERICAL CASE STUDIES 65

solves the equation
f [p](x)−x = 0,

whereby p is the periodicity of the orbit. As start values for the Newton iteration
we took our computed periodic points. For each of them we found a periodic
orbit of the same period in the immediate neighborhood, giving evidence for the
correctness of our calculations. Furthermore, we also checked that each periodic
orbit is unstable.

Combining the results of our numerical computations so far, we find strong evi-
dence for the hypothesis that the computed fractal structure of the chain recurrent
set is an outer covering of a set of unstable periodic orbits of any size. This re-
minds us of the hypothesis of Cvitanović [Cvi91] regarding periodic orbits as the
skeleton of chaotic attractors. However, the fractal structure we observe here is
not an attractor.

66 CHAPTER 3. THE SYMBOLIC IMAGE GRAPH

Chapter 4

Extensions and Tunings

In the last chapter we have introduced an implementation for the basic framework
of symbolic analysis. It is now our intention to focus on several important aspects
of a practical application. For this purpose we propose some extensions and
tunings of the original concepts. We discuss these techniques and, if necessary,
also mention some of their implementation aspects and useful heuristics for an
efficient usage. Furthermore, several numerical case studies demonstrate their
implications in practice.

The extensions mentioned here regard the construction of the symbolic image
graph. We consider two important extensions. One is the integration of dynamical
systems continuous in time, the other a technique for the better approximation of
the image of a box. Both of these extensions aim to improve the construction
of the graph and are in accordance with the theoretical concepts. This is not
the case for the tunings. The tunings do not aim on providing a more precise
symbolic image. Rather more, the target is to introduce techniques which allow
the application of our investigation methods in scenarios where the construction
of a regular symbolic image graph is not or only to a limited extent possible. Such
a case happens, for instance, if the growth rate of the cells in the symbolic images
is very high during subdivision so that the memory resources get exceeded and the
desired investigation can not be finished. The essence of our approaches for tuning
is that some aspects important in theory are neglected for the sake of a successful
practical application of the investigation method. The tunings proposed in this
chapter are motivated by empirical studies of our computations. Their application
often leads to a more efficient and/or more precise calculation.

67

68 CHAPTER 4. EXTENSIONS AND TUNINGS

4.1 Extensions for the Graph Construction
We introduce additional techniques for the construction of the symbolic image
graph. The intention is to improve and extend the construction process described
in the last chapter.

4.1.1 Dynamical Systems Continuous in Time
Only dynamical systems discrete in time have been discussed so far. The symbolic
image for such a system

xk+1 = f(xk), xk ∈M

can be constructed by performing one iteration which means simply applying
the system function f(x) on the points x ∈M(I) lying in a box M(I) of a certain
covering, see Eq. 3.28. If we are dealing now with systems continuous in time
given by an ODE, i.e. ẋ = F(t,x), some kind of mapping is required which
transforms an orbit continuous in time into one discrete in time. As already
mentioned in Sec. 2.1, a shift operator along trajectories is needed. Such a shift
operator φ(t, t0,x0) is considered to be the solution of the vector field F with an
initial condition φ(t0, t0,x0) = x0.

Several approaches exist toward this task. Ideally, a shift operator for a Poincaré
mapping can be obtained analytically. This means that an explicit shift operator
φ can be found so that a Poincaré map f(x) = φ(ω,0,x) can be constructed
for a fixed period ω. Unfortunately, this is usually not possible. Alternatively,
in [Mis02] the use of local Poincaré sections is proposed. The dynamics of
multiple (n− 1)-dimensional hypersurfaces are studied which are transversal to
parts of the system’s flow. An advantage of both approaches is that the dimension
of the investigated system is reduced by one. On the other hand, their application
is limited.

In our implementation, we use a more general method – a stroboscopic mapping
with a fixed discretization time t. This approach is always applicable if the under-
lying differential equation is autonomous, i.e. the vector field F does not depend
on t. Then the shift operator has the form f(x) = φ(t,x) with φ(0,x) = x. It can be
calculated by solving the equation

ẋ(t) = F(x(t)) (4.1)

for the time t and initial conditions x(0) = x. We assume a fixed t > 0. In that
case, φ(t,x) is also called a time-t map. Such a time-t map is a restriction of φ to
M × tZ and, hence, a discretization of the dynamical system continuous in time.

4.1. EXTENSIONS FOR THE GRAPH CONSTRUCTION 69

Note that similar approaches for a discretization were also proposed by [Jun99]
and [Pil99].

Consider now that in the context of a computer implementation it is suitable to
use a small integration step size ∆t for the applied integration method in order to
minimize numerical errors. Hence, we do not calculate φ(t,x) explicitly. Instead,
we use an integration step size ∆t = t/n with n ∈ N and iterate φ for n times so
that

φ(t,x) = φ(∆t ·n,x) = φ
n(∆t,x).

This approach allows the numerical computation of time-t maps for any precision,
independently of the chosen discretization time t. In the following, we use the
notation f(x) = φ(∆t,x) so that the time-t map for a t = ∆t · n is given by f [n](x).
Hence, the symbolic image is constructed assuming f [n](x) as the system function
instead of f(x), see also the comments to Eq. 3.28.

Both values, ∆t and n, are user-defined parameters. Suitable settings depend on
the properties of the investigated dynamical system as well as on the character-
istics of the particular symbolic image construction. Hereby, the choice of an
appropriate integration step size ∆t should mainly depend on the properties of
the investigated dynamical system and the used integration method. The aim
is to keep the numerical error reasonably small. On the other hand, a suitable
setting for the number of integration steps n should be chosen with respect to
the properties of the symbolic image, especially the used box size, as well as the
velocity of the dynamical system.

It turns out that an appropriate setting of ∆t and n is a nontrivial task upon which
the accomplishment of the symbolic image construction highly depends. This is
mainly due to the fact that a continuous trajectory does not jump from a point xn to
xn+1 in the domain space M but rather more either moves from the area covered
by a box M(I) to the area covered by a neighboring box M(I′), or it stays within
the same box. Hence, we distinguish two critical cases:

1. If t is chosen too small, some trajectories might not leave their boxes M(I)
in our simulation although they would do so at a later time t ′ > t. Then
a cell cI corresponding to such a box M(I) might appear to be 1-periodic
although M(i) contains only transient, i.e. non-recurrent, dynamics. Note
that this behavior can also happen for systems discrete in time. However,
time-t maps are usually much stronger affected.

2. If t is chosen too large, the simulation of a trajectory started in a box M(I)
might not stop after this trajectory has entered the next neighboring box

70 CHAPTER 4. EXTENSIONS AND TUNINGS

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

•
P0

x

y

Figure 4.1: Van der Pol system: A numerical approximation of the chain recurrent
set. It consists of a stable limit cycle and the fixed point P0.

M(J) but only after it has entered a later box M(K) on the path of the trajec-
tory. Then edges between some cells cI and cJ are not detected and spared
out. This might have the effect that the symbolic image graph is not an
appropriate representation of the system’s flow, especially if the velocity of
the flow strongly fluctuates. As a result, for instance, some cycles might not
be, or only partly, located.

As can be seen, the use of a time-t map requires the consideration of problems
which do not exist or are less important in the context of ordinary mappings.
Some of the tunings presented later are also concerned with that and propose
ways to better control the above mentioned difficulties.

In order to demonstrate the construction of a symbolic image graph for dynamical
systems continuous in time, let us consider the Van der Pol system, defined by

ẋ(t) = FVdP(x(t)), FVdP :R2→R2, x = (x,y)T

FVdP(x) =
(

y
γ y (1− x2)− x

) (4.2)

Investigation results for this 2-dimensional dynamical system continuous in time
can be found, for instance, in [AFH94]. For γ = 1.5 the system possesses an
unstable fixed point P0 = (0,0)T and a stable limit cycle around this point.

4.1. EXTENSIONS FOR THE GRAPH CONSTRUCTION 71

We try to reproduce these results. As mentioned in Sec. 2.3, limit cycles
of a system continuous in time can be approximated by computation of the
chain recurrent set. The symbolic image is constructed for the state space area
M = [−3.5;3.5]× [−3.5;3.5]. An initial subdivision of M into 50× 50 boxes
and further divisions of boxes into 4× 4 new ones are used. The trajectories
are approximated by setting the integration step size ∆t = 0.001 and the number
of integration steps n = 100. In order to compute the integration step φ(∆t,x),
the Runge-Kutta method was applied. The construction for four subdivisions
requires a computation time of around 15 minutes and produces images of up
to 800000 cells. The results can be seen in Fig. 4.1. The stable limit cycle as
well as the unstable fixed point P0 were found with an error of ε ≤ 10−2 after
M was divided into 12800× 12800 boxes. Clustering can be observed for the
performed calculation. P0 is not represented by a single cell but rather more by a
bundle of 426 distinct recurrent cell sets, each containing only one periodic cell,
which corresponds to a box in the neighborhood of the fixed point. Furthermore,
the outer covering of the stable limit cycle is represented in the symbolic image
graph by a single recurrent cell set, containing 202886 cells.

4.1.2 Error Tolerance for Box Images
As already stated, the construction of symbolic images requires the approxima-
tion C̃(I) of the covering C(I), see Eqs. 3.24 and 3.25. Note that for our proposed
implementation there is C̃(I) ⊆ C(I), and so some boxes may get lost. This be-
havior can be reduced by usage of a large number of scan points for each box.
A disadvantage of this approach is that the computation time may become inap-
propriately large. As another solution of the problem one can extend the covering
C̃(I) by boxes which correspond to boxes in its neighborhood. We define a small
constant ε and introduce the extended covering

Cext(I) =
{

M(I′) | ∃M(J) ∈ C̃(I),
∃x ∈M(J),∃y ∈M(I′),
ρ(x,y)≤ ε

}
,

(4.3)

Note that a suitable setting of the constant ε depends on the edge length dk(M(I))
of the boxes, Eq. 3.12, and hence on the subdivision level. In our implementation,
the user can define a parameter e, which is in the following denoted as the error
tolerance, so that

εk = e ·dk (4.4)

for the k-th phase space component. The condition |xk− yk| ≤ εk is used instead
of ρ(x,y)≤ ε in Eq. 4.3. Note that dk is the generalized edge length of the boxes

72 CHAPTER 4. EXTENSIONS AND TUNINGS

M(I)

Figure 4.2: Influence of the error tolerance parameter.

in a covering C.

Example 4.1. The influence of this error tolerance parameter is illustrated in
Fig. 4.2. The shape in the middle part of the picture represents the image of the
box M(I). The gray area is the theoretical covering of the image C(I). As one
can see, some boxes of this covering may be lost in the covering C̃(I) obtained
by numerical calculation (shown red). In order to avoid this, the numerically
obtained covering is extended by the area marked by the blue line. Then the
resulting covering Cext(I) (shown green) contains the complete theoretical one.

In practice, this parameter was used to detect p-periodic trajectories if they can
not be found otherwise, whereby a setting of e = 0.1 proved to be sufficient in
our simulations. One should keep in mind that the use of this parameter usually
increases the size of the symbolic image and, therefore, it should only be applied
if necessary. Furthermore, it is often a good alternative to increase the number of
scan points S(I) for a more precise calculation instead of applying error tolerance.
Some of the scan points should then be placed close to the corners of the boxes.

Note that this approach was motivated by the technique described in [Jun00]. If ε

is calculated by Lipschitz constants as proposed by Junge, it could be guaranteed
that C(I)⊆Cext(I).

4.2. TUNINGS FOR THE GRAPH INVESTIGATION 73

4.2 Tunings for the Graph Investigation

The tunings which are presented in this section are motivated by the results of
our empirical experience. It has shown that one of the most crucial limitations
of investigations based on symbolic analysis is due to a high growth rate of the
number of cells during subdivision. This growth rate can be exponential but
should depend on the dimension size of the localized objects. However, due to
the complexity of the dynamics, this is often not the case. Instead, we observed in
many cases that much more cells are selected for subdivision than those covering
the solution. The phenomenon of clustering, which we already mentioned earlier,
see Sec. 3.6.1, is an example of such behavior. Taking the theoretical point of
view, the selection of too many cells does not matter. By successive application of
the subdivision process, the solution will eventually be detected. However, taking
the practical point of view, one has to deal with limited resources. That means
that the number of applicable subdivisions is limited. Firstly, by the memory
space of the computation machine, which only allows the storage of a symbolic
image graph of a limited size. Secondly, by the fact that the division of the phase
space is limited by a constant Nint , see Sec. 3.5.

For the above mentioned reasons, it is now our strong concern to avoid the selec-
tion of cells for subdivision which do not contain a solution. This aim can only
be achieved by a change of paradigm. The target is not anymore the rigorous con-
struction of the symbolic image graph for a phase space discretization. We are
not interested in providing all existing edges between the cells as requested in the
theoretical approach, but rather more only those edges which are necessary for the
detection of the solution. The aim of the proposed tunings is to approach this goal.
By doing so, we are also aware of the fact that some important information might
get lost. However, empirical studies have shown that numerical investigations are
mostly limited by performance resources instead of an insufficient approximation
of the symbolic image. A significant reason for this is that the method is typically
quite robust. Note that also the decision to approximate the image of a cell only
by scan points instead of a rigorous covering, see Sec. 3.2.2, was motivated to a
large extend by these considerations.

4.2.1 Use of Higher Iterated Functions

When dealing with dynamical systems discrete in time xn+1 = f(xn), the points
y ∈ T̃ (I), which represent the images of x, are calculated as direct successors of
the scan points: y = f(x). However, in some cases it is more suitable to use an

74 CHAPTER 4. EXTENSIONS AND TUNINGS

iterated function of f and calculate the image points by

y = f [n](x), n > 1 (4.5)

In other words, the symbolic image is not constructed for the function f but for
the n-th iterated function f [n]. In the following, we will denote a symbolic image
constructed for f by G f and for f [n] by G f [n] .

Obviously, the symbolic image graph G f [n] with n > 1 differs from G f . More
precisely, G f [n] might have less edges than G f . However, G f [n] is still useful for
investigations. In order to clarify this, we introduce some theorems about the
relations of f [n] and f with regard to invariant sets.

Proposition 4.1. If Q⊂M is an invariant set for f, then also for any f [n], n ∈N,
i. e.

f(Q) = Q⇒ f [n](Q) = Q.

Proof. Obviously, if f(Q) = Q then f(f(Q)) = f(Q) = Q. We can conclude that
then also f [n](Q) = f [n−1](f(Q)) = f [n−1](Q) = · · ·= Q.

Considering this result, we can conclude that all invariant sets of a dynamical
system generated by f can also be found in a dynamical system generated by f [n].

Proposition 4.2. If Q′ ⊂ M is an invariant set for f [n], n ∈ N then Q =S
0≤k<n f [k](Q′) is an invariant set for f, i. e.

f [n](Q′) = Q′⇒
[

0≤k<n

f [k](Q′) = Q = f(Q).

Proof. Note that by definition f [0](x) = x and, hence, f [0](Q′) = Q′. We split the
proof in two parts:

1. f(Q)⊆Q: If x∈Q⇒ x = f [k](x′) for some x′ ∈Q′ and some k < n⇒ f(x) =
f [k+1](x′). Obviously, f [k+1](x′)∈Q because if k+1 < n then f [k+1](x′)∈Q,
and if k +1 = n then f [k+1](x′) = f [n](x′) ∈ Q′ ⊂ Q.

2. Q ⊆ f(Q): We first state that f [k](Q′) ⊆ f(Q) for each k < n because if k =
0 then f [0](Q′) = Q′ = f [n](Q′) = f(f [n−1](Q′)) ⊆ f(Q), and if k > 0 then
f [k](Q′) = f(f [k−1](Q′)) ⊆ f(Q). Next we state that if x ∈ Q⇒ x ∈ f [k](Q′)
for some k < n. It follows immediately that x ∈ f [k](Q′)⊆ f(Q).

4.2. TUNINGS FOR THE GRAPH INVESTIGATION 75

Proposition 4.3. If Q′ ⊂ M is an invariant set for f [n], n ∈ N then there is an
invariant set Q for f with Q′ ⊆ Q, i. e.

f [n](Q′) = Q′⇒∃Q⊇ Q′ : f(Q) = Q.

Proof. The proposition is an immediate conclusion of Proposition 4.2.

An important conclusion of Proposition 4.3 is that a dynamical system generated
by f [n] still consists of the same invariant sets than the one generated by f. Each
invariant set Q′ found for f [n] belongs to an invariant set Q of f. Furthermore,
according to Proposition 4.1, all sets Q of f can be found in the dynamical system
of f [n].

Recall now that most of our investigations aim to detect specific types of invariant
sets. If all invariant sets of f are preserved in the dynamical system of f [n]

then, obviously, they can also be detected in G f [n] . However, note that the
characteristics of the sets might change. Let us look, for instance, on the invariant
sets of periodic points P(p), see Eq. 2.4. The invariant set P(6) of f is then
equivalent to the invariant set P(2) of f [3] but the points belonging to these sets
have a different periodicity with respect to f and f [3]. Hence, one has to be careful
when analyzing the results of G f [n] . However, although the periodicity might
change, every periodic point of f is also periodic for f [n], and no other periodic
points than for f are found for f [n]. The same is true for points belonging to
quasiperiodic trajectories (without proof).

Each edge in the graph G f [n] represents a longer part of a trajectory than in G f . In
terms of tuning this is of interest because transient dynamics can then be better
distinguished from asymptotic ones. Less cells which do not contain a solution
are selected for subdivision, and the growth rate of cells during the subdivision
process is lower. However, the tuning has also some drawbacks. First of all, the
computation time for the construction of G f [n] increases by factor n in comparison
to G f . Furthermore, it is more likely that unstable parts of the solution, e.g.
unstable periodic or quasiperiodic points, might not be detected because the
forward iterates y = f [n](x) diverges stronger from these objects than y = f(x),
see also the discussion in Sec. 4.2.3. Last but not least, taking the analytical point
of view, one must be aware about the change of characteristics regarding the
invariant sets of G f [n] in G f .

The practical usage of the tuning method is illustrated by the following example.
Let us consider the logistic map

76 CHAPTER 4. EXTENSIONS AND TUNINGS

x(n+1) = fl(x(n)), fl : [0;1]→ [0;1],

fl(x) = αx(1− x).
(4.6)

For this system, the well-known period-doubling bifurcation scenario can be
observed. It is formed by a sequence of flip bifurcations, as described for instance
in [GT77, Fei78, Fei79].

We consider the area in the vicinity of the first flip bifurcation point α = 3. At this
point, the fixed point

x∗ = 1− 1
α

becomes unstable and a two-periodic limit cycle consisting of the points

x∗∗1,2 =
1
2

+
1

2α

(
1±
√

a2−2a−3
)

emerges. We assume, that these points should be found using our methods of
symbolic analysis. For this reason the interval M = [0.58;0.74] is divided initially
into 50 boxes. In further subdivision steps, the boxes are divided into 4 new ones.
In each box 5 scan points are selected.

The results of the calculation for the parameter range α = [2.98;3.03] are
presented in Fig. 4.3(a). As one can see, the points x∗ and x∗∗1,2 are found, but
in the vicinity of the first flip bifurcation point α = 3, a large number of boxes
are detected as recurrent although it is obvious from the analytical point of view
that these boxes correspond to the transient dynamics. This behavior is known as
critical slowing down behavior [Gol92] and leads to the blurring of the bifurcation
diagram close to the point α = 3.

In order to avoid the numerical errors mentioned above, we have to consider the
influence of the critical slowing down behavior on the calculation of symbolic
images. It is well-known that in the vicinity of a bifurcation point the number
of iterations to reach the asymptotic dynamics with a given accuracy grows
drastically. In Fig. 4.3(b) this number is shown in a logarithmic representation
for the accuracy ε < 10−8. Taking into account the dynamical behavior described
above, the blurring of the bifurcation diagram presented in Fig. 4.3(a) can be
explained easily. The orbits started in boxes which lie close to fixed points (stable
or unstable) do not leave these boxes within a single iteration step. Therefore,
the corresponding cells of the symbolic image are marked as one-periodic. In
an analogous way, the orbits started in the boxes close to the two-periodic limit

4.2. TUNINGS FOR THE GRAPH INVESTIGATION 77

0.64

0.66

0.68

0.7

2.99 3 3.01 3.02

x

α(a)

1.0e+02

1.0e+03

1.0e+04

1.0e+05

2.99 3 3.01 3.02

N

α(b)

0.64

0.66

0.68

0.7

2.99 3 3.01 3.02

x

α(c)
Figure 4.3: Reduction of the critical slowing down phenomenon by calculation of
the bifurcation diagram for the logistic map in the vicinity of the bifurcation point
α = 3. (a) Analytical and numerical results using the function fl . (b) Number of
iterations which the system needs in order to reach the asymptotic dynamics, (c)
Numerical results using the 51-th iterated function f [51]

l .

78 CHAPTER 4. EXTENSIONS AND TUNINGS

cycle return into these boxes after two iteration steps, and the corresponding cells
are detected as two-periodic. We already described such behavior earlier in this
work as clustering. In principle, the problem that an orbit does not leave the box
where it was started can take place at any parameter value. However, due to the
critical slowing down phenomenon, is becomes more crucial in the vicinity of the
bifurcation point.

As one can see, there are two possibilities to improve the quality of the calculation.
The first one is to take a covering consisting of smaller boxes than the ones used
here. However, in this case the number of boxes grows and the obtained quality
improvement is not essential. As a second possibility, we can apply the described
tuning method and construct G f [n] for f = fl . Therefore, let us first consider the
fact that a fixed point of the function fl is obviously a fixed point of the iterated
function f [n]

l for any n as well. Secondly, for any even number n a two-periodic
limit cycle of the function fl corresponds to a fixed point of the iterated function
f [n]
l . For odd numbers n, a two-periodic limit cycle of the function fl represents

a limit cycle with the same period of the iterated function f [n]
l . Therefore, the

bifurcation diagrams of the function f and of the higher iterated f [n]
l for any odd n

are identical but the trajectories, which do not leave a box within a single iteration
step, may do it after a sufficiently large number of steps is reached. Therefore,
we can use the iterated function f [n]

l with a sufficiently large odd n instead of
the function fl in order the avoid the critical slowing down behavior which leads
to the blurring of the bifurcation diagram. The results for this case are shown
in Fig. 4.3.(c), where the 51-st iterated function of the logistic map is used. As
one can see, the critical slowing down behavior could not be avoided at all but
becomes almost not observable.

4.2.2 Discretization Time for Systems Continuous in Time
For dynamical systems continuous in time, the iteration of the function must
be considered in a different context than the iteration of discrete systems. The
number of integration steps n, which determines for a fixed integration step size
∆t the discretization time t = ∆t · n, is an essential part of the parameter setting.
By variation of t one changes the discretization of the continuous trajectory
starting from a point x ∈ M(I). Taking the theoretical point of view, the ideal
approach is to vary the time t for each scan point x ∈M(I) in such a way that the
image f [n](x) = φ [n](x,∆t) = y lies in the next neighboring box M(I′) to which the
continuous trajectory started at x moves to. By doing so, the complete dynamics
of the underlying system can be preserved by the symbolic image graph. Of
course, in that context one must also consider and properly treat the case that a

4.2. TUNINGS FOR THE GRAPH INVESTIGATION 79

trajectory x(t) might never leave its initial box. This happens if the box contains
an invariant set, whereby it can be assumed for the box size shrinking to zero,
that this invariant set is a fixed point.

Unfortunately, empirical experience showed that this approach generally fails in
practical application. Even for dynamical systems which exhibit comparatively
simple dynamics, like the Van der Pol system, see Sec. 4.1.1, a high level of
clustering can be observed and the symbolic image grows too strong in each
subdivision step. A way to avoid this is to fix a reasonably large discretization
time t for all computations. Due to the fact that longer forward iterates are
computed, the same effect happens as for the iteration of the system function
described in the last section. Transient dynamics can be better distinguished from
asymptotic ones, and less cells are selected for subdivision whose corresponding
boxes do not contain a solution. This is in most cases a necessity for a reasonable
numerical simulation. Note that the detection of stable parts of a solution is not
affected by a high setting of t. However, unstable parts may not be detected
because the trajectories started close to them diverge. So it is after all still
essential that the symbolic image is constructed by the combination of many short
forward iterates instead of a few long ones. Otherwise, the distinctive features of
this investigation method can not be used. This means that t must be set to a value
so that the symbolic image does not grow too strong but that also the information
about the whole solution persists. It is not guaranteed that such a setting exists
for every system in focus, and if it exists, there is not yet a general rule how to
derive it. Only user experience and heuristic testing can lead to the most proper
setting of t.

There are two ways to manipulate t. One is to increase or decrease the number n
of iteration steps. Hereby, the precision of the computed parts of the trajectories
does not change. Therefore it is the preferred way to control the size of t.
However, the performance time for the construction of the symbolic image
depends on n, and a high setting can significantly slow down the computation
time. Therefore, one can also consider to change the size of the integration step
∆t instead of n. This can improve the performance of the calculation. Note
that the precision of the computed parts of the trajectories depends on ∆t. But
as a consequence of the fact that the symbolic image graph is build from small
forward iterates, the numerical error which arises from an increase of ∆t is by far
not as crucial as if long forward iterates would be computed.

For the dynamical systems we tested, settings in the range t ∈ [0.1,0.2] turned out
to be a good choice. The trajectories are then long enough to detect and exclude
many cells which do not contain a solution in an early stage of subdivision.

80 CHAPTER 4. EXTENSIONS AND TUNINGS

Nevertheless, the symbolic image can be kept small in the subdivision process.
On the other hand, unstable objects are still recognized, as can be seen for the
unstable limit cycles of the Lorenz system in Sec. 4.3.1.

4.2.3 Reconstruction of Fragmented Solutions

In the former sections we have discussed the usage of higher iterated functions
and large discretization times. In many calculations, these options turned out
to be an adequate technique to tune investigation methods. However, it was
also mentioned that unstable parts of a solution might not be detected if the
number of iterations n or the time t is chosen too large. In practice, we observed,
that for crucial settings of the parameters, some unstable invariant sets do not
completely disappear at once, but rather more fall apart. Some parts of them are
still recognized while others vanish, as it can be seen, for instance, in Fig. 4.5.(a)
– (e) for the Lorenz system.

Such a phenomenon is a result of taking only a limited number of scan points
per box in combination with following a relatively long run of trajectories in
order to construct the edges of the symbolic image graph. This leads to a loss of
information about the structure of unstable invariant sets. It is not our intention to
give here a detailed analysis of this problem, but rather more a solution for the
reconstruction of such unstable objects. Nevertheless, one should keep in mind
that not every structure that looks like a disappearing unstable invariant set is
necessarily a fragment of the solution. In some cases, it turned out that objects
which seemed to be parts of unstable limit cycles belonged to non-cyclic orbits.
So after the application of the method of reconstruction, further tests have to be
applied to approve the correctness of obtained results.

The method, as introduced here, aims only on the reconstruction of the chain
recurrent set. For other investigations, slight changes might be necessary. The
reconstruction can be done by application of an extension to the symbolic image
construction algorithm. The basic idea here is to add and/or select all cells
belonging to boxes M(I) of the symbolic image G f [n] which will be passed by
the forward iterates f [1](x), . . . , f [n−1](x) on its way from x to its image y = f [n].
Therefore, first the symbolic image G f [n] will be constructed according to the
standard approach. Then the investigation method is applied in order to get the
set of recurrent cells RV (G f [n]). Afterwards, the following extension must be
applied before the next subdivision. For every recurrent cell cI ∈ RV (G f [n]) its
corresponding box M(I) is detected. Then, for every scan point x ∈ S(I) it has to

4.3. NUMERICAL CASE STUDIES 81

be checked, whether its target point f [n](x) = y ∈ T̃ (I) lies in a selected cell which
is equivalent, i.e. belongs to the same set of strongly connected components. If
so, we locate for each value f [k](x), k = 1, . . . ,(n− 1), the box f [k] ∈ M(I′). If
the box M(I′) and its corresponding cell cI′ do not exist for a visited area, they
will be added to the symbolic image. Furthermore, the cell cI′ will be marked as
recurrent, no matter if it already existed or was just added.

If this extension is applied, the course of a trajectory, which connects recurrent
cells, will be reconstructed. Note that the symbolic image can only become more
precise by this extension. If a source cell ci and its target cell ci′ are recurrent
and equivalent, then, consequently, all the cells corresponding to boxes which are
passed by the connecting trajectory are also recurrent. In fact, if all numerically
computed symbolic images of an investigation would have been exact and no
approximation, reconstruction would not change them. As already mentioned,
this operation might add new cells to the symbolic image. So it can still be applied
in a stage of subdivision when the fragmented invariant set has already fallen apart
to a large extent. This can be seen in Fig. 4.5, where unstable limit cycles of the
Lorenz system will be reconstructed in the 10-th subdivision step. In the following
section, some numerical case studies are presented which illustrate the application
of the reconstruction method.

4.3 Numerical Case Studies
We present two numerical case studies in order to demonstrate the application of
the above mentioned tunings. As examples, we chose a system continuous in time
and one which is discrete in time. Both of them are 3-dimensional and, hence,
they require higher computational resources than the 2-dimensional examples we
investigated so far. For this reason, it is necessary to apply tuning methods.

4.3.1 Lorenz System
We consider the well-known dynamical system continuous in time introduced by
Lorenz in [Lor63] and defined by

ẋ(t) = FL(x(t)), FL :R3→R3, x = (x,y,z)T

FL(x) =

 σ(y− x),
x(r− z)− y,

xy−bz.

 (4.7)

We use the standard values of the parameters σ = 10, b = 8/3 and investigate
the Lorenz system at two values of the parameter r, namely r1 ≈ 14.6 and

82 CHAPTER 4. EXTENSIONS AND TUNINGS

z

x y

(a) r1 = 14.6

z

x y

(b) r2 = 20

Figure 4.4: Lorenz system: Computation of an outer covering of the chain recur-
rent set at positions r1 = 14.6 and r2 = 20.

r2 ≈ 20. As shown in [Spa73], for these settings exist an unstable fixed point
P = (0,0,0)T and two stable ones C1 and C2, each of them accompanied by
an unstable limit cycle. The value r1 is chosen close to the so-called homo-
clinic explosion which occurs at r ≈ 13.926, where the unstable manifolds
of P return to the origin. Furthermore, at parameter value r2, the both unsta-
ble limit cycles around C1 and C2 are situated close to each other and to C1 and C2.

In order to reproduce these results with methods of symbolic analy-
sis, we compute the chain recurrent set. We define for r1 and r2
the domain spaces M1 = [−35.0;35.0] × [−35.0;35.0] × [0.0;30.0] and
M2 = [−20.0;20.0] × [−20.0;20.0] × [0.0;30.0] as the area of investigation.
The division of these spaces is initially set to 4×4×2 and 2×2×2 boxes. In the
following subdivision stages each box is divided into 2×2×2 smaller boxes. The
integration step ∆t is set to 0.001, and the number of iteration steps to n1 = 100,
n2 = 200. In order to compute the integration step φ(∆t,x), the Runge-Kutta
method was applied.

Figs. 4.4(a) and 4.4(b) show the results of the calculations for the parameters r1
and r2. Remarkably, one can see that the limit cycles for r1 still touch each other,
which is due to some numerical inaccuracy, while for r2 the cycles shrinked
closer around C1 and C2. The computations took 30 minutes for r1 and 2 hours
for r2. Ten subdivision steps were computed, and the symbolic images contained
up to 1400000 cells. Hereby, the high computation time is mainly due to the
relative high setting of the iteration time t. Furthermore, the unstable fixed point

4.3. NUMERICAL CASE STUDIES 83

z

x y

(a) fifth subdivision step

z

x y

(b) sixth subdivision step

z

x y

(c) seventh subdivision step

z

x y

(d) eighth subdivision step

z

x y

(e) tenth subdivision step

z

x y

(f) completion of the fragmented limit cycle

Figure 4.5: Lorenz system: Reconstruction of unstable limit cycles at parameter
r1 = 14.6 with a large discretization time. The limit cycles fall apart and vanish
by time (red), but will be completed (green).

84 CHAPTER 4. EXTENSIONS AND TUNINGS

P can not be computed by this setting. However, if t would be set to a lower
value, the limit cycles could not be detected at all because too many cells would
be selected for subdivision and the memory resources would be exceeded after a
few subdivisions.

Several subdivision steps for the parameter setting r1 = 14.6 are illustrated by
the Figs. 4.5(a–f). We see that the principal shape of the cycles becomes visible
in the fifth subdivision step, while the distinction into fixed points and cycles is
visible in the sixth subdivision. Note that if t would be set to a smaller value,
this distinction could not be computed by our methods. Too many cells would
be considered recurrent and the size of the symbolic image would be too big for
further calculations after the sixth or seventh subdivision step. In Figs. 4.5(c–e)
we see the computations for the next subdivision steps. Although the high setting
of t allows the computation of the distinct invariant sets, a side effect is that parts
of the unstable limit cycles get lost. For this reason, the method for reconstruction
of the fragmented solutions must be applied. The results are shown in Fig. 4.5(f).
We see that the final computation produces a precise outer covering of the unstable
limit cycles.

4.3.2 Discrete Food Chain Model

Next we analyzed a discrete system of mathematical biology. The 3-dimensional
dynamical model describes a discrete food chain model, studied by Lindström
in [Lin02]. The system is defined by

x(n+1) = fdfc(x(n)),

fdfc :R3→R3, x = (x,y,z)T (4.8)

fdfc(x) =

µ0 x e−y

1 + x max(e−y,g(z)g(y))
µ1 x y e−zg(y)g(µ3 y z)

µ2 y z

 ,

with g(s) =

 1− e−s

s
, if s 6= 0,

1, if s = 0.

In this section, we will only focus on the following parameter setting: µ0 = 3.4001,
µ1 = 1 and µ2 = µ3 = 4.

4.3. NUMERICAL CASE STUDIES 85

z

y x

(a)

z

x
y

(b)

Figure 4.6: Discrete food chain model: Two different views of the outer covering
of the chain recurrent set. The attractor (red), an unstable quasiperiodic cycle
(green) and the unstable fixed points (blue) are shown. The fourth fixed point at
(0,0) can not be seen.

The analytic results of Lindström showed, that Eq. 4.8 possesses at most four fixed
points and that three of them can be given analytically by:

P0 = (0,0,0)T

P1 = (µ0−1,0,0)T

P2 =

µ0 log
(

µ1µ0

1+µ1

)
(µ0−1)µ1−1

, log
(

µ1µ0

1+µ1

)
,0

T

(4.9)

By our investigation methods, the following fixed points can be approximated:

P̃0 = (0,0,0)T ,
P̃1 = (2.4001,0,0)T ,
P̃2 = (1.289,0.531,0)T ,
P̃3 = (2.116,0.25,0.423)T .

(4.10)

However, our main intention is not the localization of some fixed points, but
rather more the computation of the complete chain recurrent set within the area
M = [−1.0; 4.0]× [−1.0; 4.0]× [0.0; 1.6]. In this case, it was not possible to get
an appropriate approximation by means of usual symbolic image construction.

86 CHAPTER 4. EXTENSIONS AND TUNINGS

z

y

x

(a) second subdivision step

z

y

x

(b) third subdivision step

z

y

x

(c) fourth subdivision step

Figure 4.7: Discrete food chain model: Numerically calculated fixed points and
three subdivision steps of the symbolic image construction. The outer covering of
the chain recurrent set (green) as well as the attractor (red) are shown. Note that
in this example the attractor was computed by forward iterates.

4.3. NUMERICAL CASE STUDIES 87

The tuning techniques must be applied to get satisfiable results. By doing so, the
equilibrium points, and maybe some other information, get lost in the symbolic
image after several subdivision steps. On the other hand, two invariant manifolds
can be detected which belong to different components of the chain recurrent set,
see Fig. 4.6. By application of forward iteration, it can be verified that both of
them consist of quasiperiodic trajectories, and that one is a stable invariant set,
namely an attractor (red), while the other is an unstable invariant set (green).
Hereby, the unstable entity is not a repeller but of saddle type. For this reason, it
could not be approximated by backward iterates. Such a calculation takes around
one hour and the symbolic image grows up to≈ 1100000 cells. The long calcula-
tion time is mainly caused by the application of the tuning-techniques. Note that
the localization of the unstable quasiperiodic manifold is, from the computational
point of view, a nontrivial task. To the authors’ knowledge, no other numerical
computation method is able to detect this entity. This is, among others, due
to the fact, that the system described by Eq. 4.8 is only piecewise-smooth, has
no explicit inverse, and possesses dynamics which are, in general, difficult to
handle, also for other set-oriented and symbolic image-like approaches. Only by
application of the tuning methods the results can be computed.

In order to get a better impression how the construction process works, Fig. 4.7
shows the results of several subdivision steps. Hereby, 17 scan points per box are
taken. The rough position of the attractor can be located after the second subdivi-
sion of the domain space M into 200×200×32 regions, see Fig. 4.7(a), then, in
the third subdivision, see Fig. 4.7(b), the principal shape of the attractor becomes
visible. But only after the fourth subdivision into 1200× 1200× 192 regions,
see Fig. 4.7(c), the symbolic image splits into two different sets of equivalent re-
current cells, which correspond to the stable and unstable invariant manifolds. In
order to achieve these results, it is necessary to compute the symbolic image graph
for the iterated function f [40] in the third subdivision and for f [80] in the fourth sub-
division step. Otherwise, the principal shape of the cone, see Fig. 4.7(a), would
persist during further subdivisions. Additionally, reconstruction of the fragmented
parts must be applied in order to avoid that the cycles vanish. The final result, see
Fig. 4.6, is computed after the sixth subdivision. Note that in the subdivisions 5
and 6, also the function f [40] is used and reconstruction of the cycles applied.

88 CHAPTER 4. EXTENSIONS AND TUNINGS

Chapter 5

Investigation of the Symbolic Image

The main subject of the last two chapters was an efficient implementation of
the basic techniques of symbolic analysis. We discussed the construction of the
symbolic image graph as well as several extensions and tunings which can be
applied on it. In that context, only basic investigations of the symbolic image
graph were introduced, namely the localization of the chain recurrent set and of
periodic points. These two techniques already proved to be powerful tools for the
global analysis of dynamical systems. In this chapter, we propose now several
more approaches which allow a more sophisticated investigation of the symbolic
image graph. These approaches are based on concepts of symbolic analysis.
Although the theoretical basics of these concepts are already settled, several more
steps of development are necessary for a practical application. It is our aim to
close this gap and provide methods which are applicable in practice for all fields
of investigation mentioned in Chapter 2.

The results of the last chapters build the foundation for the theoretical considera-
tions and algorithms proposed here. An efficient construction and subdivision of
the symbolic image graph are required for all techniques. The theoretical back-
ground for the investigations was set by Osipenko [Osi04]. In the context of a
practical application, some aspects of this theory must be extended. Furthermore,
we provide the required algorithms and prove their correctness. Several numerical
examples illustrate the application of the concepts in practice.

5.1 Localization of Attractors and Their Basins

At first we present an algorithm for the localization of an attractor and its basin.
The task of this algorithm is to detect the cells in a symbolic image G which
correspond to the boxes covering an attractor and its basin in the state space. In

89

90 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

order to do so, we start by giving a definition of attractors and basins on a symbolic
image, and point out their correspondence with real attractors and basins.

5.1.1 Attractors on a Symbolic Image
Consider a symbolic image G of the continuous mapping f. A set of cells L ⊂
V (G) generates a subgraph G(L) which contains the cells L and the edges ci→ c j
iff the cells ci and c j belong to L.

Definition 5.1. [Osi99] A set L ⊂ V (G) is invariant if for each cell ci ∈ L an
admissible path through ci is in L.

So we say that the set L is invariant if for each cell ci ∈ L the edges c j → ci and
ci→ ck exist in G(L).
The set of cells

En(L) = {c j ∈ L : there exists an edge ci→ c j, ci /∈ L} (5.1)

is called the entrance of L and

Ex(L) = {ci ∈ L : there exists an edge ci→ c j, c j /∈ L} (5.2)

is called the exit of L.

Definition 5.2. [Osi99] An invariant set L is an attractor of a symbolic image if
Ex(L) = /0. It is a repeller if En(L) = /0.

The following proposition describes the structure of an attractor on G.

Proposition 5.1. [Osi99] Each attractor L consists only of some classes of equiv-
alent recurrent cells and all paths between these classes.

Let L be an attractor. A basin or domain of attraction is the set of vertices

D(L) = {ci | each path through ci finishes in L}, (5.3)

i.e., for each path {. . . ,ci, . . . ,c jk , . . .} there exists a k∗ so that the vertices c jk with
k > k∗ belong to L.

Proposition 5.2. [Osi99] Let L be an attractor of a connected symbolic image G.
Then

1. the cells from D(L)\L are non-recurrent,

2. the set of cells L∗ = V (G)\D(L) is a repeller.

5.1. LOCALIZATION OF ATTRACTORS AND THEIR BASINS 91

Obviously, this proposition requires that the graph G is connected.

It was shown in Osipenko [Osi99] that, in theory, an attractor of a dynamical
system and its domain of attraction can be constructed as precisely as one likes by
a symbolic image. Therefore, let us consider a covering C of the phase space and
the corresponding symbolic image G. We pick an attractor L on G and detect the
sets

A(L) =
{[

M(i),ci ∈ L
}

, (5.4)

W (L) =
{[

M(j),c j ∈ D(L)
}

, (5.5)

R(L) =
{[

M(k),ck ∈ L∗
}

. (5.6)

Theorem 5.1. [Osi99] If L and D(L) are an attractor and its basin on a symbolic
image G, then there is an attractor Λ of f and its basin W s(Λ) such that

1. the set U = int ·A(L), where int· denotes the interior, is a neighborhood of
Λ such that f(cl U)⊆U,

2. the set W (L) is an estimation of the basin W s(Λ) so that W (L)⊂W s(Λ).

Obviously, by detecting an attractor and its basin on a symbolic image, a real
attractor Λ and its basin W s(Λ) can be approximated. In order to improve the
approximation, a multilevel subdivision scheme can be applied. The following
outline of an algorithm was proposed in Osipenko [Osi99]:

1. Set s⇐ 0, and construct an initial covering C0.

2. The symbolic image Gs is built for a covering Cs.

3. An attractor Ls on Gs is selected by the user.

4. The sets A(Ls),W (Ls),R(Ls) are detected.

5. The boxes M(i) belonging to A(Ls) and R(Ls) are subdivided. Note that it
is required that the boxes W (Ls) are neither deleted nor subdivided.

6. A new covering Cs+1 is constructed for the new phase space discretization.

7. Set s⇐ s+1 and return to the second step.

Let d(C) = max(δ(M(i))|ci ∈ (L∪L∗)) be the maximal diameter of the cells be-
longing to the attractor and repeller on G. We can state the following theorem.

92 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Theorem 5.2. [Osi99]

1. The described algorithm gives a sequence of embedded sets

A(L1)⊇ A(L2)⊇ . . . ,

W (L1)⊆W (L2)⊆ . . . ,

R(L1)⊇ R(L2)⊇

(5.7)

2. If d(Cs)→ 0 as s→ ∞ then
lims→∞ A(Ls) = Λ is an attractor,
lims→∞W (Ls) = W s(Λ) is its domain of attraction,
lims→∞ R(Ls) = Λ∗ is the dual repeller.

3. Any attractor Λ can be constructed by such an algorithm.

Our implementation will mainly follow these propositions of Osipenko though
some modifications are necessary for a practical application as will be pointed out
later.

Remark 5.1. In the original work [Osi99] a homeomorphism is assumed as the
underlying dynamical system for Theorem 5.2 and the proposed approximation of
attractors and basins by multilevel subdivision. However, the concepts are also
valid for noninvertible mappings. Reason for this is that the inverse of the system
function is not required for any of the proofs. Hence, we assume that the proposed
concepts can be applied on all dynamical systems generated by continuous map-
pings, no matter if an inverse exists or not. The only restriction to be aware of
is, that the definition of a repeller, see Def. 2.7, is limited to homeomorphisms.
Hence, in this context the repeller of a symbolic image only approximates a real
repeller, if f is a homeomorphism.

5.1.2 Construction of the Acyclic Graph DG

The symbolic image G is represented by a cyclic directed graph. We transform G
into a different graph representation which is more suitable for our needs. Thus
we construct from G a directed acyclic graph (dag) DG. Recall that each Hk
represents a set of equivalent recurrent cells, see Def. 3.3. In DG all cells ci ∈ Hk
are merged to a new, single cell c̃k which has all the in- and outgoing edges of the
cells belonging to the recurrent cell set Hk. Hence, the graph DG consists only
of non-recurrent cells which either represent all equivalent cells of a set Hk or
one of the non-recurrent cells of G. Obviously, there are also no self-connecting
edges c̃k→ c̃k in DG. Furthermore, we will assign to every forward edge c̃i→ c̃ j
a backward edge c̃i← c̃ j so that we can follow paths on DG in both directions –

5.1. LOCALIZATION OF ATTRACTORS AND THEIR BASINS 93

forwards and backwards.

In the following, we denote a cell belonging to DG as a dag cell c̃i. We can
consider that the graph DG has two subsets. Firstly, the dag cells representing a
set of equivalent recurrent cells,

DV (ζ) = {c̃k |c̃k is a dag cell for Hk}, (5.8)

and, secondly, the dag cells which correspond to non-recurrent cells in G,

DV (G) = {c̃l |c̃l is a dag cell for cl ∈V (G)\RV (G)}. (5.9)

Note that DV (ζ) and DV (G) are disjunct. The union of these sets are the vertices
of the new graph DG:

V (DG) = DV (ζ)∪DV (G). (5.10)

We also assume references between the cells of G and DG according to the fol-
lowing definition.

Definition 5.3. A cell c̃k ∈V (DG) is called corresponding to ci ∈V (G) if it is the
dag cell which represents ci in DG.

The corresponding dag cell c̃k for a cell ci,

d(ci) = c̃k, d : G 7→ DG,

is either a cell c̃k ∈ DV (G) if ci is non-recurrent or, if ci is recurrent, the cell
c̃k ∈ DV (ζ) for the set Hk to which ci belongs to. The mapping d is considered to
be surjective.

The forward edges between the cells of DG are represented as adjacency lists.
More precisely, for each c̃i ∈V (DG) there is a list,

E(c̃i) = {c̃ j | there exists an edge c̃i→ c̃ j}. (5.11)

Additionally, there are adjacency lists for the backward edges. To each c̃i belongs
a list of parent cells

P(c̃ j) = {c̃i | there exists an edge c̃i→ c̃ j}. (5.12)

Note that the distinction between the graphs G and DG should only be considered
in the theoretical context. For an implementation, it is not necessary to explicitly
construct DG. Rather more, the construction of G can be extended so that G
implicitly contains the information of DG.

94 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

5.1.3 Selection of an Attractor L

For the localization of basins, it is necessary to pick an attractor L. In our imple-
mentation, the user of the software is able to select for every symbolic image G
subsets SH ⊆ ζ, so that the union of the sets in SH form an invariant set LS,

LS =
[

Hk∈SH

Hk. (5.13)

Such selections SH can either be defined by a list of indices σ = {k}, or by a region
R⊂M in the domain space M so that the set

SH(σ) = {Hk |k ∈ σ} or (5.14)
SH(R) = {Hk |r(Hk)∩R 6= /0} (5.15)

can get selected. In this context, r(Hk) is defined as the range of the boxes M(i)
belonging to the cells ci ∈ Hk in the domain space M.

The selection LS is an invariant set but not yet an attractor because there is no
guarantee that Ex(LS) = /0, see Def. 5.2. However, our implementation allows the
localization of the basin D(LS). Reason for this is to give the user more freedom
of selection. Later we will show ways how to check if Ex(LS) = /0 and to construct
an attractor L for such selections, see Sec. 5.3. In spite of that it is also possible
to set an additional flag so that only sets Hk with Ex(Hk) = /0 are selected in the
region R and the user can acquire the sets

S̃H = {Hk|r(Hk)∩R 6= /0 and Ex(Hk) = /0}, (5.16)

L̃ =
[

S̃H

Hk. (5.17)

It follows immediately that Ex(L̃) = /0 for S̃H .

An implementation of these concepts is quite easy. If SH is defined by a list σ then
we select every set Hk ∈ ζ with index k ∈ σ. In case of a region selection R the
algorithm tests for every recurrent cell ci ∈ RV (G) if M(i)∩R 6= /0 and, if so, the
set Hk with ci ∈ Hk gets selected. To get the selection S̃H an additional check on
every Hk in SH is necessary. The cell c̃k ∈ DV (ζ) on DG corresponding to Hk is
located. Then the algorithm tests if the list of its target cells E(c̃k) is empty, i.e.
|E(c̃k)|= 0. If so, c̃k, and so also the set Hk, have no exit edge. Only such sets Hk
get selected for S̃H .

5.1. LOCALIZATION OF ATTRACTORS AND THEIR BASINS 95

5.1.4 Localization of the Domain of Attraction
The localization of the basin involves two steps. At first the upper bound of the
basin will be detected and then the lower bound on DG. In this work the upper
bound is defined as the set

Du(L) = {ci | there is a path through ci which finishes in L}, (5.18)

and the lower bound on DG as the cells belonging to

D̃(L) = {ci | each path on DG through d(ci) finishes in a d(cl),cl ∈ L}. (5.19)

Furthermore, D(L), see Eq. 5.3, is denoted as the lower bound on G. This implies
the following relation:

Du(L)⊇ D̃(L)⊇ D(L).

Here, Du(L) ⊇ D̃(L) is trivial and D̃(L) ⊇ D(L) implies that the set D̃(L) \ L
can have recurrent cells, compare with Prop. 5.2. Also consider that this
definition implies that the repeller L∗ of L might intersect with the lower bound,
L∗∩ D̃(L) 6= /0.

The upper bound can be located on DG by applying a breadth-first search. As
shown in Alg. 5.1, we start the search for every marked cell c̃k ∈ DV (ζ) whose
corresponding cells ci are in L or, respectively, Hk ∈ SH . Note that all edges are
traversed backwards, or, in other words, for every cell c̃i which is popped out of
the waiting queue Q, the list of parent cells P(c̃i) instead of the target cells E(c̃i)
will be referred to get the next edges of our search. In the following, we will
denote this kind of operation as a reverse breadth-first search. All cells c̃i which
are visited get a mark. All cells ci ∈ G corresponding to such marked cells c̃i
belong to Du(L).

Theorem 5.3. Algorithm 5.1 locates all cells belonging to Du(L) and terminates.

Proof. A breadth-first search started at a vertex c̃k of a directed graph visits every
cell c̃ j of the graph with a path

c̃k→ ··· → c̃ j.

Remember now that the search is applied on the backward edges of DG. If there
is a backward edge, there is also a forward edge and, hence, we visit all cells
c̃p in DG which have a path to c̃k. If there is a path on DG from a cell c̃p to
c̃k then there is also a path on G from each cell cp with d(cp) = c̃p to the cells
ci with d(ci) = c̃k because all equivalent cells in a set Hk have a path to each
other. No other cells c j on G can have a path to a cell ci,d(ci) = c̃k. We show

96 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Algorithm 5.1 Calculates Du(L). The algorithm applies a reverse breadth-first
search for every c̃k corresponding to a Hk ∈ SH .
Require: DG,SH with L =

S
Hk∈SH

Hk
Ensure: All cells c̃i ∈V (DG) corresponding to cells ci ∈ Du(L) get marked

1: for all Hk ∈ SH do
2: Locate the cell c̃k ∈ DV (ζ) corresponding to Hk
3: Create an empty waiting queue Q
4: Push c̃k in Q
5: while Q is not empty do {Start reverse breadth-first search from c̃k}
6: Pop next c̃i out of Q
7: Mark c̃i
8: for all c̃ j ∈ P(c̃i) do {Traverse over all parent cells of c̃i}
9: if c̃ j was not yet visited then

10: Push c̃ j in Q
11: end if
12: end for
13: end while
14: end for

this by contradiction. Imagine there is a cell c j which has a path to ci,d(ci) = c̃k
and c̃ j = d(c j) is not connected by a path with c̃k. Then c̃ j is not visited by the
reverse breadth-first search. But this is a contradiction because all edges of G
except the ones between equivalent recurrent cells are preserved in DG. Hence,
such a cell c j can not exist and we locate all cells on G which have a path to cells
ci,d(ci) = c̃k, if we visit all cells c̃p which are connected by backward edges with
c̃k.

The breadth-first search is started for every cell corresponding to a set Hk ∈ SH
with L =

S
Hk∈SH

Hk. Therefore we visit every cell of the upper bound. If a cell is
visited first time it is pushed in Q. Every cell in Q is eventually popped out and,
hence, get marked. So every cell of the upper bound gets marked.

The algorithm terminates if the while-loop terminates. This loop depends on
the waiting queue Q. Q grows if a cell c̃i is pushed in. For each c̃i this can happen
only once – when it is visited first time. Hence, the algorithm terminates.

If the upper bound of a basin has been located then the next step is the detection of
the lower bound. For simplification, we denote that a cell c̃i belongs to Du(L) (or
D̃(L)) if its corresponding cell(s) ci belong to Du(L) (or D̃(L)). Detection of the
lower bound can be achieved by starting a reverse breadth-first search for every

5.1. LOCALIZATION OF ATTRACTORS AND THEIR BASINS 97

Algorithm 5.2 Calculates D̃(L).
Require: DG,SH with L =

S
Hk∈SH

Hk

Ensure: All cells c̃i ∈V (DG) corresponding to cells ci ∈ D̃(L) get marked
1: Mark all cells corresponding to Du(L) { Apply algorithm 5.1}
2: for all c̃k ∈V (DG) do
3: if c̃k is unmarked then
4: Create an empty waiting queue Q
5: Push c̃k in Q
6: while Q is not empty do {Start reverse breadth-first search from c̃k}
7: Pop next c̃i out of Q
8: for all c̃ j ∈ P(c̃i) do {Traverse over all parent cells of c̃i}
9: if c̃ j was not yet visited then

10: Push c̃ j in Q
11: if c̃ j is marked then {c̃ j ∈ Dp(L)}
12: Unmark c̃ j
13: end if
14: end if
15: end for
16: end while
17: end if
18: end for

cell c̃k which got not marked as part of the upper bound, c̃k /∈ (Du(L)∪ L), see
Alg. 5.2. Every cell c̃p visited by traversing over the backward edges of each c̃k
has at least one path which does not lead to L and, hence, it can not belong to the
lower bound,

c̃p ∈V (DG)\ D̃(L).

The set of cells of the upper bound which were visited by this operation,

Dp(L) = {c̃i|c̃i ∈ (V (DG)\ D̃(L))∩Du(L)}, (5.20)

will be unmarked because they are considered as not being part of the lower
bound. The remaining marked cells belong then to the lower bound:

D̃(L) = Du(L)\Dp(L). (5.21)

Note that in our implementation the breadth-first search will not traverse parent
cells c̃p ∈ L. Such a parent cell can exist if L is an invariant set but not an attractor.
For simplification we do not consider this special case in Alg. 5.2.

Theorem 5.4. Algorithm 5.2 locates the lower bound on DG.

98 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Proof. Remember that D̃(L)⊆Du(L). Every cell c̃i in Du(L) which has a path to a
cell V (DG)\Du(L) will be unmarked. All remaining marked cells c̃ j do not have
a path to an unmarked cell. Hence, each path going through such a cell c̃ j does
not leave Du(L) and, necessarily, finishes in L. So all cells still marked belong to
D̃(L).

In order to get D(L), the above algorithm needs a slight extension. After the upper
bound was marked, all cells c̃u ∈ DV (ζ) \L will be unmarked and we get the set
D∗u(L)⊆Du(L). If the localisation of the lower bound is applied on the remaining
marked cells D∗u(L) instead of Du(L) then every cell in D∗u(L) which has a path to
a recurrent cell ci /∈ L will not be considered as being part of the lower bound and
we get D∗l (L) = D(L).

Theorem 5.5. The algorithm as described above locates the basin D(L).

Proof. If we unmark all cells of Du(L) which are recurrent cells not belonging to
L then no cells of D(L) get unmarked because all cells in D(L) are non-recurrent,
see Prop. 5.2. It follows that D(L)⊆D∗u(L) and also D(L)⊆D∗l (L). If we calculate
D∗l (L), all non-recurrent cells which have a path to other invariant sets than those
belonging to L will be unmarked. All remaining marked cells have only paths to
cells in Hk ⊆ L and, consequently, are cells of the basin D(L). Hence, D∗l (L) ⊆
D(L)⇒ D∗l (L) = D(L).

5.1.5 Subdivision of the Domain of Attraction
We showed algorithms for the localization of a basin of a symbolic image G. Next
it is important to consider how these algorithms can be combined with multilevel
subdivision. Let s be the level of subdivision. It was stated before that W (Ls) is
the area in the domain space M which is covered by boxes belonging to the basin
of an attractor Ls, see Eq. 5.4. Note now that W (Ls) grows in every subdivision s,
see Theorem 5.2:

W (L1)⊆W (L2)⊆ . . .

Such behavior is not desired for our calculations. According to the multilevel
subdivision scheme as introduced in Secs. 3.1 and 3.2, we have the following
relations for the coverings Cs of a subdivision cascade:

C1 ⊇C2 ⊇

By investigation of the symbolic images Gs, an outer covering of the solution
must be detected which shrinks by subdivision. An area which belongs to
a box M(i) of an unselected cell ci in Gs is discarded, and not part of the
investigation in later subdivisions Gs+k, k ∈N. This contradicts with the growth

5.1. LOCALIZATION OF ATTRACTORS AND THEIR BASINS 99

of W (Ls). The approximation W (Ls) is not an outer covering of the solution,
but a subset of W s(Λ), see also Theorem 5.1. Hence, within our framework of
multilevel subdivision, a sequence W (L1),W (L2), . . . can not be directly com-
puted as proposed in the original algorithm of Osipenko [Osi99], see Theorem 5.2.

Let us therefore look at the following set for the upper bound Du(L),

Wu(L) =
{[

M(i),ci ∈ Du(L)
}

. (5.22)

Proposition 5.3. If L is an attractor on a symbolic image and the set Du(L) an
upper bound of its basin then there are an attractor Λ and its basin W s(Λ) such
that the set Wu(L) is an outer covering of W s(Λ), i.e. W s(Λ)⊆Wu(L).

Proof. The existence of Λ for L was already stated in Theorem 5.1. So we only
need to prove that Wu(L) is an outer covering of the basin of Λ. Let x ∈W s(Λ).
Obviously, f [k](x)→ Λ as k→ ∞. We recall that U = int ·A(L) is a fundamental
neighborhood of Λ. Hence, there exists a k0 ∈ N, so that f [k](x) ∈ A(L) for all
k > k0. Consider next the semi-trajectory T +(x) = {f [k](x) |k ∈ N}. This semi-
trajectory T +(x) generates an admissible path ω = {cik | f [k](x) ∈M(ik),k ∈N},
see also Theorem 1 in [Osi04]. Obviously, cik ∈ L for all k > k0. Hence, ci0 ∈
Du(L) and x ∈M(i0)⊆Wu(L).

Theorem 5.6. If Ls is an attractor on a symbolic image, so that A(L1)⊇ A(L2)⊇
·· · and that there is an attractor Λ, lims→∞ A(Ls) = Λ, then the basin Du(Ls) is
such that the sequences Wu(Ls) are embedded into each other

Wu(L1)⊇Wu(L2)⊇ . . .⊇W s(Λ).

Proof. According to Proposition 5.3 and the assumption A(Ls̃)⊇ Λ, we conclude
that Wu(Ls̃)⊇W s(Λ) for every s̃≥ 0. Let Cs̃ be a covering of M. A covering Cs̃+1

is a subdivision of Cs̃. Consequently, each cell M(i) is subdivided so that new
cells m(i,k),k = 1,2, . . . , form a subdivision of the cell M(i),

[

k

m(i,k) = M(i)

Denote by Gs̃ and Gs̃+1 the symbolic images of Cs̃ and Cs̃+1. Then there is a
natural mapping h : Gs̃+1 7→ Gs̃, h(ci,k) = ci, which takes the graph Gs̃+1 onto
Gs̃, i.e. each cell ci,k is mapped to the cell ci, and the directed edge ci,k → c j,l is
mapped to the directed edge ci → c j. Hence, each path on Gs̃+1 is transformed
to a path on Gs̃. Let Ls̃ and Ls̃+1 be the chosen attractors on Gs̃ and Gs̃+1 so that,

100 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

according to the assumption, A(Ls̃)⊇ A(Ls̃+1). Obviously,

A(Ls̃) =
{[

M(i),ci ∈ Ls̃
}
⊇{[

M(i),ci,k ∈ Ls̃+1
}
⊇
{[

m(i,k),ci,k ∈ Ls̃+1
}

= A(Ls̃+1).

We conclude that Ls̃ ⊇ h(Ls̃+1). Hence, also Du(Ls̃) ⊇ h(Du(Ls̃+1)). It follows
that,

Wu(Ls̃) =
{[

M(i),ci ∈ Du(Ls̃)
}
⊇{[

M(i),ci,k ∈ Du(Ls̃+1)
}
⊇
{[

m(i,k),ci,k ∈ Du(Ls̃+1)
}

= Wu(Ls̃+1).

We conclude that the upper bound of the basin, Wu(Ls), shrinks while the lower
bound W (Ls) grows for s→∞. Furthermore, let us consider that for a subdivision
cascade

Wu(L1)⊇Wu(L2)⊇ . . .⊇W s(Λ)⊇ . . .⊇W (L2)⊇W (L1).

The upper bound Wu(Ls) includes the real basin W s(Λ), while W (Ls) is only a
subset of it. More precisely, the borders of the area covered by the basin W s(Λ)
lie in the additional cells of the upper bound. Due to Theorem 5.6, a sequence
Wu(Ls) is an outer covering for the solution W s(Λ) and, hence, can be computed
by the multilevel subdivision scheme proposed in Sec. 3.1.

However, note that we did not explicitly prove that lims→∞Wu(Ls) = W s(Λ)
as δ(Cs) → 0. Reason for this is that we can compute the lower bound
W (Ls) for every Wu(Ls), see Eq. 5.5 and Alg. 5.2. Due to the fact that
lims→∞W (Ls) = W s(Λ) as δ(Cs)→ 0, see Theorem 5.2, we can then approximate
W s(Λ) as precisely as we like. In practice, only for the last symbolic image,
which will not be subdivided anymore, it is necessary to compute D(L) and W (Ls).

Let us recall that the whole area of interest must be selected for subdivision.
According to Theorem 5.2, this would require to select in each subdivision stage
s the attractor Ls, its domain of attraction Du(Ls) and the repeller L∗s. Consider
now that, due to Proposition 5.2, V (Gs) = D(Ls)∪ L∗s. Hence, all cells of Gs

would be subdivided. This is not desirable in a numerical computation, because
the maximal size of a symbolic image is limited by the memory space. For this
reason we propose a further modification of the algorithm. In each subdivision
step, only the sets Ls and Du(Ls) but not L∗s are selected and subdivided. As a

5.2. ASPECTS OF FILTRATION 101

result, the area R(Ls) is discarded and will not be further investigated. We show
now that the algorithm still works properly under these circumstances.

Let us consider the cell c∞ and its corresponding area M(∞), see Def. 3.4.
In case the area R(L(s−1)) of the repeller L∗(s−1) was not subdivided, then
L∗s = {c∞} ∪ (Du(Ls) \ D(Ls)) because L∗s = V (Gs) \ D(Ls), and, hence,
R(Ls) = M(∞) ∪ (Wu(Ls) \W (Ls)) = M \W (Ls). The area (Wu(Ls) \W (Ls))
can be considered as the edge between R(Ls) and W (Ls). We recall that
if δ(Cs) → 0 as s → ∞ then lims→∞W (Ls) = W s(Λ). Consequently,
lims→∞ R(Ls) = M \W s(Λ) = Λ∗, see also Proposition 2.1. So we have
seen that the explicit computation of R(Ls) is not required in order to compute an
approximation of the domain of attraction and of an attractor by symbolic analysis.

Remark 5.2. It should be considered that c∞ as denoted by Def. 3.4 does not have
any outgoing edges c∞ → ci. This is no restriction for our conclusions. Reason
for this is that the only outgoing edge is c∞→ c∞. This edge is taken for granted.
There can not be any other outgoing edges c∞→ ci. We show this by contradiction.
If such an outgoing edge exists then ci ∈ Du(Ls) and, consequently, c∞ ∈ Du(Ls).
But this is a contradiction because Wu(Ls) belongs to the area of investigation
and, hence, Wu(Ls)∩M(∞) = /0.

Remark 5.3. The proposed algorithm works fine in theory, i.e. for the case that
the area of investigation is the domain M of f : M 7→M . Unfortunately, in a
practical implementation, the area of investigation M is only a part of M , i.e.
M ⊂M . Consequently, the domain of attraction W s(Λ) might partly lie outside
of M so that W s(Λ)

T
(M \M) 6= /0. For such an environment, the proposed scheme

does not work properly because, by definition, (M \M)⊂M(∞) for every M(∞),
and we stated that M(∞)⊂Λ∗. By our algorithm, we assume that every trajectory
which leaves the area of investigation belongs to the repeller. But in case W s(Λ)
lies partly outside of M, it might be that some trajectories leave M but then return.
Up to now, this is still an open problem for our algorithm which causes numerical
artifacts, see also the results of the numerical case studies in Sec. 5.7. However,
the numerical artifacts does not affect the fact that W (Ls) is a lower bound of
W s(Λ). Every trajectory started in W (Ls) ends in the attractor.

5.2 Aspects of Filtration
In order to construct attractors and repellers by symbolic analysis, the concept of
filtration is a helpful tool. We will give an overview about how this concept is
connected with symbolic analysis, and how it can be used in order to construct

102 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

attractors and repellers. Hereby, the focus is put on the practical application of the
method.

5.2.1 Filtrations on a Symbolic Image
We refer here to the theoretical concepts about filtration on symbolic images
according to Osipenko [Osi99]. However, it is not our main intention to construct
a fine filtration F as proposed in [Osi99]. We rather more focus on some aspects
of these concepts which are important in practice and which we can also use later
for the construction of attractors and repellers, see Sec. 5.3. Despite that, we
will see that the algorithms introduced here are also sufficient tools to construct
filtrations for a symbolic image G.

Definition 5.4. [Osi99] A finite sequence φ = {B0,B1, . . . ,Bm} of cells on a sym-
bolic image G is called a filtration on G if

/0 = B0 ⊂ B1 ⊂ ·· · ⊂ Bm = V (G)

and if for each Bk,k = 1,2, . . . ,m the condition holds that if a cell ci of an edge
ci→ c j lies in Bk then also c j lies in Bk.

The second condition means that there is no exit from Bk. Let Lk be a maximal
invariant set in Bk.

Proposition 5.4. [Osi99] Each maximal invariant set Lk ⊂ Bk is an attractor and

/0 = L0 ⊂ L1 ⊂ ·· · ⊂ Lm = V (G)

This proposition clarifies why a filtration can be used to construct attrac-
tors. Hereby, each set Bk corresponds to a fundamental neighborhood
U = int{

S
M(i),ci ∈ Bk} of an attractor.

We introduce a quasi-order relation on the cells of G. We set ci ≺ c j (or c j � ci)
if and only if there exists a path from ci to c j,

ci→ ··· → c j.

Hence, a cell ci is recurrent iff ci ≺ ci, and recurrent cells ci,c j are equivalent if
and only if ci ≺ c j ≺ ci.

Definition 5.5. The cells of a symbolic image G have an order ci < c j (or c j > ci)
if ci ≺ c j ⊀ ci. Cells are said to be equal, ci = c j, if ci ≺ c j ≺ ci or i = j.

5.2. ASPECTS OF FILTRATION 103

There is no order defined for cells ci,c j if ci ⊀ c j and c j ⊀ ci. From the defini-
tion it follows that all cells ci ∈ L, c j ∈D(L) and ck ∈ L∗ have an order ck < c j < ci.

For a better understanding of the structural characteristics regarding a dynamical
system, we are now interested in the classes

L(Hp) = {Hq | c j > ci, ci ∈ Hp,c j ∈ Hq}, (5.23)

which are denoted here as the larger sets of Hp. Also of interest are the connec-
tions between Hp and all of these sets,

CL(Hp) = {c j | c j ≥ ci, ci ∈ Hp}. (5.24)

Furthermore, the connections between a set Hp and distinct sets Hq ∈ L(Hp),

CS(Hp,Hq) = {ck | ck ≥ ci and c j ≥ ck, ci ∈ Hp, c j ∈ Hq}, (5.25)

are required for our investigations. A cell belonging to CS(Hp,Hq) is denoted as a
connecting cell between Hp and Hq. We can then localize the corresponding areas
in the domain space:

UCL(Hp) =
{[

M(i) | ci ∈ CL(Hp)
}

, (5.26)

UCS (Hp,Hq) =
{[

M(j) | c j ∈ CS(Hp,Hq)
}

. (5.27)

We will provide algorithms to calculate L(Hp),UCL(Hp) and UCS (Hp,Hq).
The application of these algorithms allows the user to construct a filtration as
described in the following.

The sets of equivalent recurrent cells Hp ∈ ζ with p = 1, . . . , |ζ| can be renumbered
so that if

c j > ci with ci ∈ Hp,c j ∈ Hq

⇒ q > p and q = 1, . . . , |ζ|
(5.28)

Let us then define Bk:

Bk = {c j | c j ≥ ci, ci ∈ Hp, p = |ζ|+1− k}. (5.29)

We could then construct a filtration as follows.

Proposition 5.5. [Osi99] Let the symbolic image G be a connected graph. The
finite sequence φ = { /0 = B0,B1, . . . ,B|ζ|+1 = V (G)} is a fine filtration on G.

104 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

We already stated that each Bk is a fundamental neighborhood of an attractor. We
denote Uk = {

S
M(i) |ci ∈ Bk}.

Proposition 5.6. [Osi99] The sequence F = { /0 =U0,U1, . . . ,U|ζ|+1} is a filtration
for the dynamical system f.

Obviously, we can get such a filtration F if we renumber the sets Hp of a symbolic
image G according to Eq. 5.28. This can be achieved by analyzing their order
relations L(Hp). Then, each Uk,0 < k < |ζ|, is described by the set UCL(Hp) with
p = |ζ|+1− k.

5.2.2 Order Relations
Due to the fact that the dag graph DG is acyclic and directed, it can be said that
for all cells c̃i, c̃ j ∈ DG there is either

1. c̃i > c̃ j or

2. c̃i < c̃ j or

3. no order relation defined for them (c̃ j ⊀ c̃i and c̃ j ⊀ c̃i).

The same relations exist between the corresponding cells of c̃i on G. Additionally,
if c̃i corresponds to a set Hk, so that c̃i ∈ DV (ζ), then all cells in Hk are equal,
ci = c j with ci,c j ∈ Hk.

Consequently, a graph DG has already an internal representation of the larger
sets L(Hk) for every Hk of G. It can easily be traversed to acquire a L(Hk). More
precisely, a breadth-first search is started for the cell c̃k corresponding to Hk. Every
cell c̃ j with c̃ j ∈DV (ζ) which is visited corresponds to a larger set H j and will be
marked. All marked sets H j belong to L(Hk).

Proposition 5.7. The algorithm as described above computes the larger sets
L(Hk) for a Hk ∈ ζ.

Proof. If a breadth-first search is applied on a cell c̃k ∈ DV (ζ) corresponding to
a Hk then all cells c̃ j � c̃k, and respectively c̃ j > c̃k, are visited. Each of these c̃ j
corresponds either to a non-recurrent cell c j (if c̃ j ∈DV (G)), or to a recurrent cell
set H j ∈ ζ (if c̃ j ∈ DV (ζ)). In the second case, H j is a larger set because c̃ j > c̃k
and so also

∀ci ∈ H j,cl ∈ Hk : ci > cl.

Hence, all sets visited during the traversal are larger than Hk. All of them get a
mark.

5.2. ASPECTS OF FILTRATION 105

No other sets are larger than Hk. We show this by contradiction. Imagine there is
a set Hn with a corresponding cell c̃n which is larger than Hk but was not visited
by the breadth-first search. The set Hn is larger than Hk if there is the relation
ci > cl for all ci ∈ Hn,cl ∈ Hk. To statisfy ci > cl there must be a path from cl
to ci and Hk 6= Hn. Hence, there must also be a path from c̃k to c̃n. But this is
a contradiction because if c̃n was not visited during the breadth-first search then
there is also no path from c̃k to c̃n.

Hence, after the traversal is finished, the marked sets are the larger sets L(Hk) for
Hk.

Note that we could apply a topological sorting on DG, see also [Sed93], to renum-
ber the sets Hk so that they satisfy Eq. 5.28. We have not yet implemented such
an algorithm because in practice this turned out to be of minor importance.

5.2.3 Connecting Recurrent Sets

Let us now discuss an implementation for CL(Hk). For this reason, we consider
a selection L = Hk and detect the upper bound of the inverse domain of attraction
for L. We define

D−1
u (L) = {ci | there is a path through ci which starts in L} (5.30)

as the inverse upper bound of the basin. We can locate D−1
u (L) on almost the

same way than Du(L), see Alg. 5.1. A breadth-first search is applied on every
c̃k ∈ DV (ζ) corresponding to a ck ∈ L. We traverse over all forward edges instead
of the backward edges. The cell c̃k and every visited cell c̃ j get marked. All
cells in G corresponding to them belong to D−1

u (L). If L = Hk then all the cells
c j ∈ D−1

u (L) form CL(Hk).

Proposition 5.8. The algorithm described above calculates CL(Hk).

Proof. The localisation of the inverse basin D−1
u (L) by breadth-first search is triv-

ial and follows almost by definition. If we set L = Hk and start a breadth-first
search for c̃k ∈ DV (ζ) corresponding to Hk we get all cells c̃ j with paths

c̃k→ ··· → c̃ j

Hence, there is the order relation c̃ j > c̃k defined for all these cells c̃ j and also
their corresponding cells on G. No other cells in G than the visited ones can have
this order relation. Furthermore, there is the relation ci = c j for all cells of the set

106 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Hk corresponding to c̃k. So the cells corresponding to the marked cells c̃ j on DG
form the set with all c j ≥ cm,cm ∈ Hk and we conclude that

CL(Hk) = D−1
u (Hk).

We focus now on the computation of the set CS(Hp,Hq). This set can be acquired
by the combination of two algorithms. First we compute CL(Hp). We give every
visited cell c̃i a special mark �. Afterwards, we calculate Du(Hq). For every visited
cell c̃ j we check if it has a mark �. If so, it gets marked as a being a connecting
cell between Hp and Hq. Every cell on G corresponding to such a connecting cell
belongs to CS(Hp,Hq).

Proposition 5.9. The algorithm described above locates all cells belonging to
CS(Hp,Hq).

Proof. We assume c̃p as the cell on DG corresponding to Hp, and c̃q as the one
corresponding to Hq. If CL(Hp) is computed and the cells which are visited get a
mark �, then every cell c̃i ≥ c̃p is marked with �. If then Du(Hq) is computed, we
visit all cells c̃ j ≤ c̃q. For each of these cells c̃ j we can conclude that c̃ j ≥ c̃p if c̃ j
has a mark �. Consequently, the cells c̃ j with a mark � and visited by Du(Hq) are
the connecting cells between Hp and Hq because c̃ j ≥ c̃p and c̃q ≥ c̃ j. The cells
on G corresponding to them are the cells belonging to CS(Hp,Hq).

The cells belonging to CS(Hp,Hq) can be considered as an upper bound. Let us
then define the lower bound on DG as

CS l(Hp,Hq) = {ci | each path through d(ci)
goes to c̃q∧ ci ∈ CS(Hp,Hq)}.

(5.31)

This lower bound can be acquired almost on the same way than D̃(L), see
Alg. 5.2. First we apply the algorithm for CS(Hp,Hq). Then we start a reverse
breadth-first search for every cell c̃l which was not marked. Every cell c̃i visited
by traversing over the backward edges of each c̃l has at least one path which does
not lead to c̃q and, hence, it can not belong to the lower bound. If it is marked, it
will be unmarked. All remaining cells with a mark belong to the lower bound.

In practice, the user should use the same strategy to acquire the lower bound as
proposed for the localization of the basin. The upper bound, CS(Hp,Hq), is lo-
cated for every symbolic image which will be subdivided. Only for the final im-
age, which will not be subdivided anymore, should the lower bound CS(Hp,Hq)
be detected.

5.3. CONSTRUCTION OF ATTRACTORS AND REPELLERS 107

5.3 Construction of Attractors and Repellers
Our next task is the study of methods to construct attractors and repellers. In
Sec. 5.1.3 we introduced user-defined selections SH , see Eqs. 5.14 and 5.15, in
order to pick invariant sets and some attractors. We will now present methods
to compute attractors and repellers in general from such selections SH . These
methods are built upon those used to construct filtrations. Indeed, the construc-
tion scheme we propose here is closely related with filtrations, and requires the
calculation of order relations and connecting cells.

We consider also some restrictions due to the limitations of numerical symbolic
image construction which were neglected in the theoretical studies of Osipenko.
For a homeomorphism f, which is defined on a manifold M , one can usually
only investigate a limited area M ⊂ M . Hence, some of the trajectories may
leave the area M investigated by symbolic analysis, and others may come from
M \M. In that case, we can not avoid that attractors which are only partly covered
by M can not be found. However, it is our intention to verify at least that each
computed outer covering of an attractor or repeller really contains such an object.
Therefore, we must consider the incoming and outgoing trajectories of a covering.
In [KMO03] these problems were already discussed for invariant sets. We refer to
these results and introduce the following, extended definitions.

Definition 5.6. The cell ci of G is called incoming if it has no entry edge,

@c j ∈V (G) : c j→ ci.

If a cell ci has no entry edge then the trajectories which pass M(i) can neither
come from another box M(j) nor originate in M(i) (if so, there would be an edge
ci→ ci). Consequently, they originate outside of the covering C. Obviously, all
such incoming cells can not be recurrent and, hence, are non-recurrent.

Definition 5.7. A cell ci is called entering if c j ≤ ci and c j is an incoming cell.

Definition 5.8. A cell ci of a symbolic image is called leaving if ci ≤ c∞.

If ci is a leaving cell it means that at least one trajectory passing through the
corresponding box M(i) enters M(∞). Hence, such a trajectory leaves the area
covered by C. If ci is an entering cell it means that at least one trajectory entering
the corresponding box M(i) comes from M(∞). Hence, such a trajectory enters
the area covered by C.

Let us denote O+(G) ⊆ V (G) as the set of all leaving cells and O−(G) ⊆ V (G)
as the set of all entering cells. We can assume that in a numerically computed

108 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

symbolic image G there is usually O+(G) 6= /0 and/or O−(G) 6= /0. Furthermore,
we expect that the area of investigation M ⊂M .

Taking this into account, we will now discuss how to construct an attractor L
which lies completely in our area of investigation, i.e. c∞ /∈ L. Let us recall that
the user can select subsets SH ⊆ ζ, see Sec. 5.1.3. If for every Hk ∈ SH there is
Ex(Hk) = /0 then

L =
[

SH

Hk

is an attractor because Ex(L) = /0. Let us now assume we have a selection SH with
Ex(Hl) 6= /0 for some sets Hl ∈ SH . We can still construct an attractor for SH if
there exist sets Hk ∈ SH with Ex(Hk) = /0 and

∀ci ∈ Hl,Ex(Hl) 6= /0 : ci < c j,c j ∈ Hk,Ex(Hk) = /0.

To show this, we define the following selections Sk ⊆ ζ which can be built recur-
sively starting with S1:

S1 =SH , SH ⊆ {Hl | Hl ∈ ζ, Ex(Hl) = /0} ,
Sk ={Hm |L(Hm)⊆ Sk−1 and L(Hm) 6= /0}∪Sk−1 for k = 2, . . . |ζ|.

(5.32)

Let us denote for a selection Sk the set L(Sk) =
S

H j∈Sk
L(H j).

Lemma 5.1. If there is a path ω through a cell ci which belongs to a set Hl ∈ Sk
then for all following cells c j ≥ ci in ω we can state that c j does not belong to a
set Hn /∈ Sk.

Proof. If k = 1 this is trivial because the sets Hl ∈ S1 have no exit edges. If k > 1
then consider that Sk−1 = L(Sk) and Sk−1 ⊆ Sk. For k > 1 we prove the Lemma by
contradiction. Imagine there is a path ω leaving a set Hl ∈ Sk which goes to a set
Hn /∈ Sk. Then Hn must be a larger set of Hl . But this is a contradiction because
the sets L(Hl)⊆ L(Sk) belong to Sk. Hence, no such path exists.

Theorem 5.7. The set

L(Sk) = {ci | ci ∈ CS(Hp,Hq) with Hp,Hq ∈ Sk}

is an attractor of G if O+(G)∩L(Sk) = /0.

Proof. First we show that L(Sk) is an invariant set. Consider that every ci ∈ L(Sk)
belongs to a set CS(Hp,Hq). Consequently, if ci is recurrent, it belongs to an
equivalent recurrent cell set Hq ∈ Sk. If ci is non-recurrent then it is on a path
between two recurrent cell sets because there exist Hp,Hq ∈ Sk so that

∀cp ∈ Hp∧∀cq ∈ Hq : cp ≤ ci ≤ cq.

5.3. CONSTRUCTION OF ATTRACTORS AND REPELLERS 109

Hence, there is an admissible path passing through each ci ∈ L(Sk).

Next, we prove that Ex(L(Sk)) = /0 by contradiction. Assume there is an exit for
L(Sk). Then there exists a finite path ω started in a recurrent cell ci ∈ Hp ∈ Sk
which leaves L(Sk). If this path finishes in a non-recurrent cell it will be extended
until a recurrent cell or c∞ is reached. This is always possible because every non-
recurrent cell except c∞ has at least one exit edge. Such a path can not finish in
a recurrent cell set Hq belonging to Sk because all cells ci ∈ CS(Hp,Hq) belong
to L(Sk). Hence, this path either finishes in c∞ or in a recurrent cell set Hn /∈ Sk.
The condition O+(G)∩L(Sk) = /0 excludes the first possibility. So ω must lead
to a Hn /∈ Sk. But, according to Lemma 5.1, this is also a contradiction. Hence,
Ex(L(Sk)) = /0 and L(Sk) is an attractor.

Corollary 5.1. Note that L(Sk) can also be defined as

L(Sk) = {ci | ci ∈ C L(Hp) with Hp ∈ Sk}

because for every Hp ∈ Sk all larger sets L(Hp) also belong to Sk. Hence, if the
condition O+(G)∩L(Sk) = /0 is fulfilled, we can say that

[

Sk×Sk

CS(Hp,Hq) =
[

Hp∈Sk

([

Hq∈L(Hp)

C S(Hp,Hq)
)

=
[

Hp∈Sk

CL(Hp).

A repeller L∗ can be constructed by the same scheme. We define the selections
S̃k ⊆ ζ as

S̃1 =S̃H ⊆ {Hl |En(Hl) = /0} ,
S̃k =

{
Hm |Hm ∈ L(S̃k−1) and Hm /∈ L(ζ\ S̃k−1)

}
∪Sk−1 for k = 2, . . . |ζ|.

(5.33)

Lemma 5.2. If there is a path ω through a cell ci which belongs to a set Hl ∈ S̃k
then for all preceding cells c j ≤ ci in ω we can state that c j does not belong to a
set Hn /∈ S̃k.

Proof. If k = 1 this is trivial because the sets Hl ∈ S̃1 have no entry edges. If k > 1
then consider that for all 1 < k′ ≤ k:

Hl ∈ S̃k′ \ S̃k′−1 : Hl ∈ L(S̃k′−1) and Hl /∈ L(ζ\ S̃k′−1)

and S̃k′−1 ⊆ S̃k′ . For k > 1 we prove the Lemma by contradiction. Imagine there is
a path ω from a set Hn /∈ S̃k which goes to a set Hl ∈ S̃k. Then Hl must be a larger
set of Hn. Furthermore, there is a 1 < k′ ≤ k so that Hl ∈ S̃k′ \ S̃k′−1. But this is
a contradiction because if Hl ∈ L(Hn) then Hn must belong to S̃k′−1 ⊆ S̃k′ and so
also to S̃k. Hence, no such path exists.

110 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Theorem 5.8. The set

L∗(S̃k) = {ci | ci ∈ CS(Hp,Hq) with Hp,Hq ∈ S̃k}

is a repeller of G if O−(G)∩L∗(S̃k) = /0.

Proof. L∗(S̃k) is an invariant set, see proof to Theorem 5.7. So we only need
to prove that En(L∗(S̃k)) = /0. We do this by contradiction. Assume there is
an entry to L∗(S̃k). Then there exists a finite path ω which starts either in an
incoming cell or a recurrent cell, then enters L∗(S̃k) and ends in a recurrent cell
ci ∈ Hq ∈ Sk. Such a path can not start in a recurrent cell set Hp belonging to
S̃k because all cells ci ∈ CS(Hp,Hq) belong to L∗(S̃k). Hence, such a path either
starts in an incoming cell ci or in a recurrent cell set Hn /∈ S̃k. The condition
O−(G)∩L∗(S̃k) = /0 excludes the first possibility. So ω must originate in a Hn /∈ S̃k.
But, according to Lemma 5.2, this is also a contradiction. Hence, En(L∗(S̃k)) = /0

and L∗(S̃k) is a repeller.

Corollary 5.2. Note that L∗(S̃k) can also be defined as

L∗(S̃k) = {ci | ci ∈ Du(Ls)},Ls =
[

S̃k

Hq

because every Hq ∈ S̃k has either no entrance or all c j ≤ ci with ci ∈Hq belong to
L∗(S̃k). Hence, if the condition O−(G)∩L(S̃k) = /0 is fulfilled, we can say that

[

S̃k×S̃k

CS(Hp,Hq) =
[

Hp∈S̃k

([

Hq∈L(Hp)∩S̃k

CS(Hp,Hq)
)

= Du(Ls).

We will now focus on the conditions O+(G)∩L(Sk) = /0 and O−(G)∩L∗(S̃k) = /0

in order to develop algorithms which allow us to check these conditions. Let us
define the sets

O+(ζ) =
{

Hk| ∃ci ∈ Hk : ci ∈ O+(G)
}

, (5.34)

O−(ζ) =
{

Hk| ∃ci ∈ Hk : ci ∈ O−(G)
}

. (5.35)

Then we can can conclude that

Lemma 5.3.
O+(ζ)∩Sk = /0⇔ O+(G)∩L(Sk) = /0.

Proof. If O+(G) ∩ L(Sk) = /0 then also O+(ζ) ∩ Sk = /0 because all cells ci
belonging to the sets Hl ∈ Sk also belong to L(Sk).

5.3. CONSTRUCTION OF ATTRACTORS AND REPELLERS 111

If O+(ζ)∩ Sk = /0 then also O+(G)∩L(Sk) = /0. We prove this by contradiction.
Let us assume that O+(ζ)∩ Sk = /0 and there is a leaving cell cl in L(Sk). Obvi-
ously, cl is not recurrent because if it would be recurrent then it would belong to
a set Hm ∈ Sk. This would contradict O+(ζ)∩ Sk = /0. Hence, cl must be non-
recurrent. If so, there exists an admissible path ω through cl because L(Sk) is
an invariant set. Consequently, there is a cell ci ∈ L(Sk) in ω so that ci < cl and
ci is recurrent. Obviously, ci belongs to a Hl ∈ Sk and is leaving. But this is a
contradiction and, consequently, cl can not be a leaving cell.

Lemma 5.4.
O−(ζ)∩ S̃k = /0⇔ O−(G)∩L∗(S̃k) = /0.

Proof. If O−(G) ∩ L∗(S̃k) = /0 then also O−(ζ) ∩ S̃k = /0 because all cells ci
belonging to the sets Hl ∈ S̃k also belong to L∗(S̃k).

If O−(ζ)∩ S̃k = /0 then also O−(G)∩L∗(S̃k) = /0. We prove this by contradiction.
Let us assume that O−(ζ)∩ S̃k = /0 and there is an entering cell cl in L∗(S̃k). Ob-
viously, cl is not recurrent because if it would be recurrent then it would belong
to a set Hm ∈ S̃k. This would contradict O−(ζ)∩ S̃k = /0. Hence, cl must be non-
recurrent. If so, there exists an admissible path ω through cl because L∗(S̃k) is
an invariant set. Consequently, there is a cell ci ∈ L(Sk) in ω so that ci > cl and
ci is recurrent. Obviously, ci belongs to a Hl ∈ S̃k and is entering. But this is a
contradiction and, consequently, cl can not be an entering cell.

It is now our intention to calculate O+(ζ) and O−(ζ). We can do this by modi-
fication of the algorithms for calculation of Du(L) and D−1

u (L) (see Eq. 5.30 and
Theorem 5.3 and Proposition 5.8). We define a set L+ = {c̃∞}, where c̃∞ corre-
sponds to c∞. Then we locate all cells c̃l ∈DV (G) corresponding to non-recurrent
cells. If |P(c̃l)| = 0 we add c̃l to L−. Afterwards, the upper bound of the basin
is calculated for L+ as well as the upper bound of the inverse basin for L−. All
cells c̃i belonging to Du(L+) get a marking o+. The ones belonging to D−1

u (L−)
get a marking o-. The sets Hk corresponding to cells c̃k ∈ DV (ζ) with a mark o+
belong to O+(ζ), the ones corresponding to c̃k’s with o- belong to O−(ζ).

Proposition 5.10. The algorithm described above finds the sets O+(ζ) and O−(ζ)
for G.

Proof. We consider all incoming cells and c∞ as invariant sets. Hence, the set L+

in DG can be called an attractor because Ex(L+) = /0, and the set of incoming
cells is said to be a repeller L− because En(L−) = /0. We state now that, firstly,
cells are leaving iff they have a path to c̃∞. Hence, all cells belonging to the upper
bound of the basin of L+ are leaving. Secondly, cells in DG are entering cells
iff there is a path through it which starts in an incoming cell. Hence, all cells

112 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

belonging to the upper bound of the inverse basin of L− are entering cells in case
L− is a set consisting of all incoming cells. If our algorithms for Du(L+) and
D−1

u (L−) get applied then the cells in DG belonging to the basin Du(L+) get a
mark o+, the ones which belong to the inverse basin D−1

u (L−) get o-. All sets
corresponding to cells c̃k ∈ DV (ζ) with a mark o+ are considered to be members
of O+(ζ), and the sets corresponding to cells c̃k ∈ DV (ζ) with a mark o- are
considered to be members of O−(ζ).

We conclude that our algorithm calculates O+(ζ) and O−(ζ) correctly if the condi-
tion is fulfilled that L+ = {c̃∞} and L− is a set consisting of all incoming cells. Ob-
viously, L+ = {c̃∞} is true. Secondly, the cells c̃l with c̃l ∈DV (G) and |P(c̃l)|= 0
are the cells with no entrances corresponding to non-recurrent cells in G. These
are the incoming cells in DG. All of them and only they belong to L−.

The user can now use the algorithms described above to identify attractors L,
repellers L∗ and basins D(L) in a symbolic image G. Usually he will perform
some or all of the following steps:

1. Selection of a set S1 = SH ⊆ {Hk |Ex(Hk) = /0,Hk ∈ ζ} (see Eq. 5.32). The
list of elements Hk ∈ ζ, which is needed to do so, can be computed for G.
The information if Ex(Hk) = /0 is also available because after creation of
DG, a mark can be set for Hk if for the corresponding cell c̃k no target edges
exist, i.e. |E(c̃k)|= 0, and, hence, Ex(Hk) = /0.

2. Recursive construction of a selection Sk, see Eq. 5.32. The list of larger sets
L(Hl) for every Hl ∈ ζ is all that is need to do so. This list can also be
computed, see Proposition 5.7.

3. Check if L(Sk) is an attractor, see Theorem 5.7. Hence, one must check
the condition described in Lemma 5.3 for every Hl ∈ Sk and test that Hl /∈
O+(G). The list O+(G) can be computed, see Proposition 5.10).

4. If L(Sk) is an attractor, we can either construct this attractor by calculation
of the connection cells CL(Hp) for every Hp ∈ Sk (see Theorem 5.7 and
Corollary 5.1) and/or we can construct the basin for L =

S
Sk

Hl . We might
either choose to calculate the upper bound Du(L) or the lower bound D(L),
see Theorems 5.3, 5.4 and 5.5 – depending on the decision if the current
symbolic image will be subdivided or not. Note also that D(L) = D(L(Sk)).

5. Selection of a set S̃1 = S̃H ⊆ {Hk |En(Hk) = /0,Hk ∈ ζ}, recursive construc-
tion of a desired S̃k, see Eq. 5.33, and the test if L∗(S̃k) is a repeller by check-
ing for all Hl ∈ S̃k the condition that Hl /∈ O−(G) as stated in Lemma 5.4.
The list O−(G) can be computed, see Proposition 5.10.

5.4. DETECTING (UN)STABLE AND CONNECTING MANIFOLDS 113

6. If L∗(S̃k) is a repeller then we can construct it by calculation of the upper
bound of the basin Du(L) with L = ∪S̃k

Hk (see Theorem 5.8 and Corol-
lary 5.2).

7. Subdivision of the symbolic image Gs into Gs+1. We subdivide the areas
of interests, that is either the attractor L(Sk), the upper bound of its basin
Du(L(Sk)), or the repeller L∗(S̃k). Note that after a subdivision only the
subdivided type of objects can be detected. If, for instance, the user decides
to subdivide an attractor in G0 then he can approximate attractors by all
following symbolic images G1,G2, . . . but no repellers or basins.

The selection of attractors and repellers is performed by the user. The data he
needs to do so can be acquired by our algorithms. However, proper selections for
Sk as well as the interpretation of the computed results is still the duty of the user.

5.4 Detecting (Un)stable and Connecting Manifolds
The algorithms we introduced so far for the localization of attractors, repellers
and the domain of attraction can also be used for other tasks. In this section we
show further applications. Hereby, we avoid complete proofs of correctness.
Reason for this is that they might be extensive if given in detail. Instead, the
rough outline we present here should be sufficient to get the essentials and make
it obvious to the reader that the proposed methods can be applied properly. In
Sec. 5.7 we give also numerical examples for the techniques.

We first look at the stable manifold. Let us recall that its definition is similar
to those of the domain of attraction, compare Eqs. 2.8 and 2.12. Indeed, the
difference between them is the target. The basin of attraction is the union of points
which are attracted by an attractor, and the stable manifold is, in our definition,
the union of points attracted by a saddle. In our context, we restrict ourselves
to fixed points or periodic orbits of saddle type as targets. Let P = {x0, . . . ,xp}
be a periodic orbit of saddle type. Note that such a saddle is, of course, chain
recurrent. Consequently, using the introduced methods of symbolic analysis,
this object can be approximated by an outer covering, see Sec. 3.3. In the
corresponding symbolic image graph G it is represented by a recurrent set Hk ⊆ ζ.
If SH = {Hk} is now a selection as described in Sec. 5.1.3 then the upper bound
of the basin on G, Du(Hk), can be computed, see Sec. 5.1.4. The area Wu(Hk) is
an approximation of the stable manifold W s(P). Note that we have to consider
that L(Hk) has an exit, Ex(L(Hk)) 6= /0, because it is not an attractor. However,
this is of no importance for the computations, as already mentioned in Sec. 5.1.3.

114 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

In order to select the proper set Hk for SH as target, it is necessary to decide, if
the area corresponding to Hk is an outer covering of a saddle. Up to now, this
can not be done directly on G as in the case of an attractor. However, a possible
approach could be that the saddle is first localized in a different computation by
the application of basic investigation methods, see Sec 3.3, and an analysis of the
Jacobian matrices of the solutions. If a saddle has been found then a symbolic
image graph can be constructed for the computation of the stable manifold. In
such a graph, those Hk is selected as target whose corresponding area covers the
neighborhood of the formerly computed saddle points.

Similar to the stable, also the unstable manifold can be approximated. Let us
therefore consider that the unstable manifold is the sibling of the stable one. More
precisely, if W s(P) is the stable manifold for f then it is the unstable manifold
for f [−1] and vice versa, compare Eqs. 2.9 and 2.10. This lets us conclude that
if W s(P) can be approximated on the symbolic image G by computation of the
basin, then W u(P) can be approximated by the inverse basin, namely the upper
bound D−1

u (L). Note that hereby it is of no importance if the inverse f [−1] exists
and can be computed because the inverse basin is computed on G, and G can be
constructed without the computation of f [−1].

Another field of application for our algorithms is the computation of connecting
manifolds, see Definition 2.11. The connecting manifold was defined as the in-
tersection W u(Qi)∩W s(Q j) of two components Qi,Q j of the chain recurrent set.
Such a connecting manifold can be approximated by the computation of the inter-
section of a basin and an inverse basin of two recurrent sets Hi,H j ∈ ζ. This can
be done by computation of the connections CS(Hi,H j) between Hi and H j, see
also Proposition 5.9. In the last section, we mentioned connecting manifolds in
the context of the construction of attractors and repellers. However, the concept
can also be applied in a more general approach. For instance, also the connecting
manifolds between saddles can be localized.

5.5 Performance Analysis
The performance of the algorithms described in this chapter is analyzed by study-
ing the worst-case scenario. We refer here to the results of Sec. 3.4, especially
Proposition 3.2. Let us recall that the performance time for the construction of
G, the localization of the recurrent cells RV (G) and the sets ζ is in O(n · log(n))
and depends on the number of boxes in the covering C because |C|= |V (G)|= n.
Furthermore, the number of edges per cell ci ∈G, denoted here by e(ci), is limited
by a constant k, so that e(ci)≤ k. This is due to the fact that a user-defined number

5.5. PERFORMANCE ANALYSIS 115

of k scan points per box M(i) are used for the computation of the edges.

Remark 5.4. Localization of Du(L), D̃(L) and D(L), see Theorems 5.3, 5.4
and 5.5, is in O(n).

Localization of the domain of attraction for L requires it to perform a reversed
breadth-first search for each c̃i ∈ L. Note that the search can always be stopped at
a cell c̃ j which was visited before because then all cells c̃k > c̃ j were also visited
and investigated before, see Algorithm 5.1. So every edge of DG is traversed only
once, no matter how large L is, and the search algorithm is in

O(|e(DG)|)⊆ O(k ·n)⊆ O(n),

where |e(DG)| is the number of edges in DG. In terms of performance, the
algorithm to detect the lower bound Du(L) behaves exactly the same. The only
difference is that it is started from the cells c̃k which do not belong to the upper
bound of the domain of attraction, i.e. c̃k ∈V (DG)\Du(L). So it is also in O(n).

The extensions of the algorithm to get D(L) only reduce the number of cells in
Du(L) by unmarking all cells c̃u ∈ DV (ζ) \ L. This operation is in linear time.
Hence, the detection of D(L) is also in O(n).

Remark 5.5. Detection of the larger sets L(Hk) for a Hk ∈ ζ, see Proposition 5.7
is in O(n). Detection of larger sets for all Hk ∈ ζ is in O(|ζ| ·n)⊆ O(n2).

A breadth-first search is started on the cell c̃k corresponding to Hk. For each visited
cell c̃ j we check in O(1) if c̃ j ∈ ζ and, if so, add the corresponding set H j to the
list L(Hk). During the search every edge of DG might get visited but every edge
is visited not more than once. It follows that the algorithm is in

O(e(DG) ·1)⊆ O(k ·n)⊆ O(n).

Usually we have to detect the larger sets for every set Hk ∈ ζ. So we have to start
our algorithm for each set Hk. This takes time

O(|ζ| ·n)⊆ O(n2).

Remark 5.6. Detection of CL(Hk), see Proposition 5.8, is in O(n).

The detection of CL(Hk) is achieved by localization of the inverse domain of
attraction. We use almost the same algorithm than for detection of the basin and
perform again a breadth-first search. Hence, this algorithm is in O(n).

Remark 5.7. Connection of selected cell sets CS(Hp,Hq), see Proposition 5.9, is
in O(n).

116 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

To acquire CS(Hp,Hq), we calculate CL(Hp) and Du(Hq). According to re-
marks 5.6 and 5.4 both operations can be performed in linear time. Hence, the
algorithm is in O(n).

Remark 5.8. Calculation of the sets O+(ζ) and O−(ζ), see Proposition 5.10, is
in O(n).

First thing to do is the selection of the sets L+ and L−. A traverse over all cells
c̃l ∈ DV (G) is sufficient to check the necessary conditions and get the lists of ele-
ments. Afterwards, we detect Du(L+) and D−1

u (L−) and set appropriate markings.
According to Theorem 5.4 this operation can be performed in linear time. Hence,
the algorithm is in

O(|DV (G)|+n)⊆ O(n).

It turns out that most operations on attractors and their basins do not exceed linear
computation time. Only the calculation of the larger sets might be in O(n2), see
Remark 5.5. But it should be mentioned that, in general, the detection of larger
sets is only useful if the number |ζ| is small. In that case, the algorithm does not
really slow down performance.

So the crucial aspect of a computation is the construction of the symbolic image
and not the investigations performed on it. In Chapter 3 an implementation was
introduced which constructs symbolic images in time O(n · log(n)), see Proposi-
tion 3.2. Hence, our implementation works efficiently. Note, however, that an
investigation based on the methods proposed in this chapter is in general rather
more limited by memory space than by performance time.

5.6 Comparison with Other Approaches
We compare now the introduced investigation methods with those of others.
The first technique to look at is the computation of the domain of attraction. In
Sec. 2.4 we have already mentioned an alternative method which is based on
forward iteration. We have pointed out that there are two main problems. First
of all, the number of forward iterates applied to a trajectory is limited. Second,
the transient and the asymptotic phase might be difficult to distinguish. Both
problems do not exist in our approach. The domain of attraction is localized by
the breadth-first search, so that each cell is only visited once, no matter how many
forward iterates a trajectory started in this cell requires to reach the asymptotic
state. Furthermore, the areas of asymptotic state are approximated by the outer

5.6. COMPARISON WITH OTHER APPROACHES 117

covering of the attractor. Consequently, the distinction between transient and
asymptotic phase is clear. Note that the accuracy of this outer covering can be as
precise as one likes, at least theoretically.

A different implementation, which combines phase space discretization with
forward iterates, was proposed by [NY97]. Hereby, the area of investigation
is divided into boxes, and a forward iterate started for each box. The software
keeps track of the results of former forward iterates. If a forward iterate passes
a box which has already been visited then the former results can be taken as a
solution for the current trajectory as well. Although this means that both above
mentioned problems of computation can be solved, the accuracy is quite low.
More precisely, the state of each box is only determined by the results of one
trajectory passing through it. In contrast, by our technique several trajectories
within a box, i.e. the scan points, are investigated. For this reason, it can be
decided if an area belongs to the upper or lower bound of a basin. Even if only a
limited number of boxes can be computed, depending on the size of the memory
space, the distinction if such a box belongs to the upper or lower bound can be
performed to an accuracy which depends mainly on the required computation
time, i.e. the number of scan points used for the construction of the symbolic
image graph. Besides that, a further advantage of our approach is the application
of multilevel subdivision in order to achieve more precise results, and the fact that
the attractor(s) for which the basin should be computed, can be chosen by the user.

A further technique for the computation of the domain of attraction was proposed
by Hsu [Hsu87]. The approach is based on cell mapping. Hence, it can be con-
sidered close to ours. Also a scheme for refinement of parts of the phase space is
applied. Nevertheless, the computation of the basin follows a different paradigm.
Like in case of [NY97], also forward iterates of trajectories are analyzed. Indeed,
the two approaches are similar if taken the simple cell mapping method of Hsu,
which maps a cell only to one other, taking the center of the cell as scan point.
Another method for cell mapping is generalized cell mapping [Hsu87, GK99],
which deals with probability distribution among the image cells. Furthermore,
there is interpolated cell mapping [TG88, HT04], a combination of simple and
generalized cell mapping.

The simple and interpolated cell mapping approaches have in common that, in
contrast to our approach, a lower bound can not be computed and the attractors
can not be explicitly selected. In fact, attractors are detected by finding periodic
cells. In case of an attractor which is not a periodic orbit, such a detection
might not produce correct results. Parts of the attractor may be detected as
belonging to the domain of attraction, or an attractor may not be detected as

118 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

a whole but as several coexisting cycles of periodic cells. These problems
do not exist in our approach because we select attractors not by the localiza-
tion of periodic cells but by the detection of components of the chain recurrent set.

The generalized cell mapping approach can be considered close to ours. Indeed,
recurrent cells can be located as attractors, and the detection of the basin is
also based on a breadth-first search. However, this approach requires additional
amount of computation to construct the probability and also increases the
computational complexity. Note also that the refinement of the phase space is
based on a different approach. An area of investigation M is covered by a mesh
of simplices which is locally refined by an iterative process. Hence, always the
complete area M is subject of investigation, whereas in our approach only those
parts of M are investigated which are covered by the current covering Cs and
contain the solution of the investigation.

Next we look at the computation of attractors, repellers and filtrations. The simple
approach of forward iterates is not capable of computing the complex attractors
whose construction was proposed in Sec. 5.3, nor is it capable of computing
filtrations or repellers. Only minimal attractors can be approximated, and even
the localization of all coexisting minimal attractors can not be guaranteed. By a
set-oriented method proposed by Dellnitz and Junge [DH97], the computation of
relative global attractors can be achieved. As in our approach, also a discretization
of the phase space is applied, and the images of sets are calculated. However,
filtrations or attractors which are embedded into each other can not be computed.
Order relations between components of the chain recurrent sets are also detected
by [Eid95, Mis02] though in a different context, and not for the construction of
attractors, repellers and filtrations. Note that in the same work also connecting
orbits are mentioned but not explicitly computed.

Several methods for the computation of stable and unstable manifolds exist, see
Sec. 2.5. Some of these methods produce better results than ours in terms of accu-
racy and performance. However, these methods can only localize stable manifolds
in case the inverse is computable. Hence, even in case the mapping is invertible,
the stable manifold might not be computed if the Newton method can not be
applied. An exception is the approach by England et. al. [EKO05] but it is limited
to the computation of 1-dimensional manifolds whereas our proposed approach
can also be applied to compute higher dimensional manifolds of continuous
mappings, no matter if they are noninvertible. We like to mention that the method
by Dellnitz et. al. [DH97] uses a set-oriented approach for the computation
of the manifolds close to ours. However, also for this approach, the computa-
tion of the system function’s inverse is required in order to get the stable manifold.

5.7. NUMERICAL CASE STUDIES 119

In terms of connecting manifolds, there exists also a set-oriented approach by
Dellnitz et.al. [DJT01]. The technique works similar to ours but, however, the
computation of the inverse is required whereas our method can also be applied in
case the inverse does not exist or is not computable.

5.7 Numerical Case Studies
In this section we present results acquired by the use of the algorithms described
in this chapter. Besides verifying the correctness of the implementation it is also
our intention to show the reader how to work with the methods in practice. He
should get a deeper insight into the possibilities of our methods as well as their
proper and effective usage. We will give examples for both types of dynamical
systems, those discrete and those continuous in time.

5.7.1 Duffing System
We start with a well-known dynamical system continuous in time, the Duffing
oscillator [AFH94, GH83, LR03]. We take a simple version described by the
perturbed Duffing equation

ẍ− x+ x3 + ε ẋ = 0,

see also Guckenheimer [GH83]. Its corresponding system is of the form

ẋ(t) = FDuf(x(t)), FDuf :R2→R2, x = (x,y)T

FDuf(x) =
(

y
x− x3− ε y

) (5.36)

The parameter ε is set to ε = 0.15 in all our examples. The system has three
equilibria, E1 = (−1,0), E2 = (1,0) and E3 = (0,0). The points E1 and E2 are at-
tractors, the stable manifold of E3 separates the domains of attraction, W s(E1) and
W s(E2). We intend to construct one of these basins, W s(E1), and some sequences
of a filtration containing E1, E2 and E3.

In order to detect the basin of E1, we choose M = [−2.0;2.0]× [−2.0;2.0] as
the area of investigation. This area M is initially divided into 20× 20 boxes. In
every subdivision a box will be divided into 4× 4 new ones. We perform six
subdivisions and compute the images G0, . . . ,G6. For a continuous system like
the Duffing oscillator, we must additionally set parameters for the integration
time ∆t and the number of iterations n,see Sec. 4.1.1. In this case we set ∆t = 0.01

120 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

•
E1

x

y

Figure 5.1: Duffing system: The numerically calculated basin for E1. We see the
upper and lower bound, colored red and green.

and n = 20. In order to get a basin, we must next define the selection of sets
SH which build the attractor LS, see Eq. 5.13. We do this by giving a range
R = [−1.5;0.3]× [−0.5;0.5] so that all recurrent cell sets Hk ∈ ζ which intersect
with R get selected, see Eq. 5.15. We calculate the upper bound of the basin for
this selection, Du(LS), and mark all cells belonging to it for subdivision of the
symbolic images G0, . . . ,G4. Note that R covers the equilibria E1 as well as E3.
Reason is that in the first subdivisions only a rough approximation is required and
our main concern is not to loose cells containing the border areas of the basin.
Hence, we also select the cells around E3. For the symbolic image G5 we change
the selection to SH(R′) and use the range R′ = [−1.5;−0.1]× [−0.5;0.5]. The
recurrent cell sets corresponding to E3 are not included anymore. Furthermore,
we set a flag so that only recurrent cell sets Hk with Ex(Hk) = /0 are selected for
SH , see Eq. 5.16. Note that L(SH) is then an attractor of the symbolic image. We
again calculate the upper bound for G5. Only for the last symbolic image, G6, the
lower bound D(L(SH)), is computed, see Eq. 5.19.

The results of the calculation can be seen in Fig. 5.1. The upper and the lower
bound, Wu(L(SH)) and W (L(SH)), are shown. The area corresponding to the
cells selected for SH cover the immediate neighborhood of E1. Note that due

5.7. NUMERICAL CASE STUDIES 121

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

E3

x

y

(a)

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0

E3

x

y

(b)

Figure 5.2: Duffing system: (a) The numerically calculated boxes correspond-
ing to the set CL(SE3) for E3, which forms an attractor. (b) The boxes for the
connecting cells, CS(SE3,SE1), between E3 and E1.

to clustering, there are two boxes selected in the direct neighborhood of the
fixed point E1. The computation of these results takes around 8 minutes on our
reference machine, and the symbolic images consist of up to 1150000 cells.
Hereby, the construction of the graph takes the most time. The algorithms for the
selection of SH and the localization of the upper and lower bound of the basin
require altogether only a few seconds of the total computation time.

Next we will construct a fine filtration on G for E1, E2, E3 and show that its
sequences are attractors. In the previous calculation we have already computed
the attractor E1. We can get E2 on the same way. Furthermore, we can check
that the point E3 is also an equilibrium, but unstable. Hence, it can not be an
attractor. Let us next consider clustering and define that a selection SE is a set of
recurrent cell sets Hk with recurrent cells ci ∈ Hk whose boxes M(i) are scattered
close around an equilibrium E. We can apply filtration and construct a B2 so that

φ = {B0 = /0,B1 = L(SE1)∪L(SE2),B2 = CL(SE3),B3 = V (G)}

is a fine filtration and B2 is an attractor. We show this in the following.

Ideally, to construct such a filtration we would first calculate and analyze the
list of larger sets, L(Hk), in order to renumber the sets. Unfortunately, this can

122 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

not be done straightforwardly in a practical computation. Due to clustering,
every equilibrium is not represented by a single cell in G but rather more by
several cells, which are also separated in different recurrent cell sets Hk. Note
that clustering usually can be observed to a larger extent in symbolic images
built for systems continuous in time than in those built for systems discrete in
time. In our case, the equilibria of E1, E2 and E3 are scattered over around
70 recurrent cell sets. Hence, we will not analyze the larger cell sets but only
build CL(SE3). To do so, we construct the symbolic images G0, . . . ,G8 using
the same parameter settings as before. This time we do not calculate the basin
but CL(SE3). Therefore, we take the selection SH(R) of recurrent cell sets
intersecting with R = [−0.1;0.1]× [−0.1;0.1] to compute CL(SH) for every Gs.
In the first subdivisions, we also include selections around E1 and E2 to prevent
the loss of required cells.

After the calculation has finished, we get CL(SE3) as presented in Fig. 5.2(a).
Hence, as expected, SE3 is connected with SE1 and SE2 . So we can say that
SE3 < SE1 , SE3 < SE2 . Furthermore, we can compute the result O+(ζ) = /0 for
G8. Consequently, CL(SE3) is an attractor and the filtration φ is correct. The
processing takes around 12 minutes. Again, this is due to the construction process
of the symbolic images which grow up to 1200000 cells.

If desired we can also produce the set CS(SE3,SE1) of all connecting cells be-
tween SE3 and SE1 as shown in Fig. 5.2(b). Therefore, we select the sets in the
range RE3 = [−0.1;0.1]× [−0.1;0.1] for E3 and the ones in RE1 = [−1.1;0.9]×
[−0.1;0.1] for E1. Then we detect the selection CS(SH(RE3),SH(RE1)) for
G0, . . . ,G6. The calculation takes around 7 minutes.

5.7.2 Ikeda Map
After the discussion of a continuous system follows now a system discrete
in time, namely the Ikeda mapping [Ike79], which was already introduced in
Sec. 3.6.1,see Eq. 3.51. All following numerical simulations have been carried
out for the same parameter values a = b = 0.9, c1 = 0.4, c2 = 6.0 and r = 0.9.
Recall that there exists a chaotic attractor A , two unstable fixed points P1,2 and
a stable fixed point P3. We calculate the basin for A and P3 as well as some
sequences of filtration.

In order to detect the domain of attraction for A , the area M =
[−5.0;5.0]× [−5.0;5.0] of the domain space was initially divided into 20× 20
boxes. Later, every box is subdivided in 4×4 new ones. We construct G0, . . . ,G3.
For G0, . . . ,G2 all recurrent cell sets in the range R = [−2.0;2.0]× [−3.0;2.0] are

5.7. NUMERICAL CASE STUDIES 123

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2

• P2

x

y

Figure 5.3: Ikeda system: The numerically calculated basin (red) for the attractor
A (green). For a better orientation, P2 is also shown.

selected as SH and we subdivide all cells belonging to the upper bound Du(LS).
For the last graph G3, we first analyze the recurrent cell sets and then explicitly
choose the set H0 as SH . The boxes corresponding to H0 are an outer covering
of the attractor A . The results of the calculation show that the set H0 has no exit
edges. Therefore it is an attractor on G3. We finally compute the lower bound of
its basin, D(H0).

The results of our computation can be seen in Fig. 5.3. The calculation takes less
than 1 minute whereby the symbolic images consist of up to 350000 cells. The
fast computation is achieved because we are dealing with a system discrete in
time, and so the construction process of the symbolic image graph takes less time
than for the Duffing system which is continuous in time.

Next the basin of the equilibrium P3 within the domain M = [−4.0;7.0] ×
[−4.0;7.0] is computed. We select the recurrent cells sets with no exit edges
in the range R = [3.0;5.0]× [2.0;4.0] as the attractor for the desired basin. In
Fig. 5.4(a), the results of the computation are shown. We clearly see some
numerical artifacts in the corners of the picture. These white areas should also
belong to the basin. Such artifacts occur due to the limitations of symbolic

124 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

-4

-2

0

2

4

6

-4 -2 0 2 4 6

•
P3

x

y

(a)

-4

-2

0

2

4

6

-4 -2 0 2 4 6

•
P3

x

y

(b)

Figure 5.4: Ikeda system: (a) The numerically approximated basin for P3. (b)
Computation by using the higher iterated function f [10]

I .

-3

-2

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4 5 6 7

• P3

•
P2

x

y

(a)

-3

-2

-1

0

1

2

-2 -1 0 1 2 3

• P2

x

y

(b)

Figure 5.5: Ikeda system: (a) The numerically calculated outer covering corre-
sponding to the set CL(SP2) (red) for P2, which forms an attractor. (b) The outer
covering for the connecting cells, CS(SP2,SA) (red), between P2 and A (green).

5.7. NUMERICAL CASE STUDIES 125

image construction already mentioned in Remark 5.3. Trajectories started in
these regions leave the area M covered by the symbolic image. Although they
return to M and eventually finish in P3, they are not computed as part of the basin
because we can not follow their run after they have left M. In order to avoid such
artifacts, some tuning techniques can be applied, see Sec. 4.2.1. More precisely,
we use the higher iterated function f [10]

I instead fI as system function. By doing
so, all images of scan points map into the area of investigation. The results of
the computation are illustrated by Fig. 5.4(b). Note, however, that in this case the
edges to the basin of A are not as smooth as for the computation without tuning.

Hk |Hk| r(Hk) L(Hk)
0 135 951 [−0.372; 1.459] × [−1.662; 8.625] -
1 1 [1.188; 1.191] × [−2.378;−2.375] 0
2 1 [1.191; 1.194] × [−2.378;−2.375] 0,1
3 1 [1.194; 1.197] × [−2.378;−2.375] 1,2,0
4 1 [3.000; 3.003] × [3.894 ,3.897] -
5 79 [2.984; 3.022] × [3.878; 3.909] 4
6 1 [1.200; 1.203] × [−2.381;−2.378] 4,5
7 1 [1.197; 1.200] × [−2.381;−2.378] 4,5,6
8 1 [1.206; 1.209] × [−2.378;−2.375] 4,5
9 1 [1.203; 1.206] × [−2.378;−2.375] 4,5,8

10 1 [1.200; 1.203] × [−2.378;−2.375] 4,5,8,9
11 1 [1.197; 1.200] × [−2.378;−2.375] 0, . . . ,5,8,10
12 1 [1.194; 1.197] × [−2.381;−2.378] 0, . . . ,11
13 1 [1.194; 1.197] × [−2.375;−2.372] 0
14 1 [1.200; 1.203] × [−2.375;−2.372] 0, . . . ,5,8, . . . ,11,13

Table 5.1: Ikeda system: Numerically detected recurrent cell sets and their order
relations.

Next we consider the unstable point P2. We expect that the relations SP2 < SP3

and SP2 < SA exist, and approve that by calculating CL(SP2) in 2 subdivisions.
The initial covering consists hereby of 200×200 boxes, and in every subdivision
step a box is divided in 4× 4 new ones. The results are presented in Fig. 5.5(a).
We analyze the larger sets L(SP2) which we can acquire during the calculation
of CL(SP2). The computed data for G3 is summarized in Tab. 5.1. As we can
see, P2 is, due to clustering, represented by more than one recurrent cell set so
that SP2 = {H1,H2,H3,H6 . . . ,H14}. Furthermore, we have SA = {H0} and SP3 =
{H4,H5}. The investigation of the order relations leads to the conclusion that
SP2 < SP3 and SP2 < SA , as expected. Additionally, the result O+(ζ) = /0 can be

126 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

-4

-2

0

2

4

6

-4 -2 0 2 4 6 8

•
P2

x

y

Figure 5.6: Ikeda system: The numerically calculated outer covering of the stable
(green) and unstable (red) manifolds of the saddle P2.

processed. Hence we have a filtration

φ = {B0 = /0,B1 = L(SA)∪L(SP3),B2 = C L(SP2),B3 = V (G)}

and B2 is an attractor. Note that it is necessary to set an error tolerance, see
Sec. 4.1.2, for this kind of computation. Otherwise, we would get O+(ζ) 6= /0

because the symbolic image is approximated by only a few scan points. After a
subdivision that leads to mappings from the outer covering of the attractor onto
M(∞). This numerical artifact can be avoided if we set e = 0.2 for G0,G1 and
e = 0 for G2.

We also constructed the set C S(SP2,SA) of all connecting cells between SP2 and
SA as shown in Fig. 5.5(b). The area which corresponds to these connecting cells
can be considered as an outer covering of the connecting manifold C(P2,A).

Furthermore, in Fig. 5.6 we present an outer covering of the stable and unsta-
ble manifolds for P2. These manifolds can be acquired by computing the basin
Du(L(SP2)) of a G in order to approximate the stable manifold W s(P2), and the in-
verse basin D−1

u (L(SP2)) for the approximation of the unstable manifold W u(P2).
Note that for this kind of investigation only the upper bound can be computed. The

5.7. NUMERICAL CASE STUDIES 127

lower bound D(L(SP2)) = /0. Reason for this is that the (un)stable manifolds are
1-dimensional boundaries between the basins of attraction. Our coverings consist
of 2-dimensional boxes. Hence, such boxes can not lie inside of the manifolds but
only be a part of an outer covering.

128 CHAPTER 5. INVESTIGATION OF THE SYMBOLIC IMAGE

Chapter 6

The RIM Method: Finding All Roots

In this chapter we introduce a new conceptual framework for the investigation of
dynamical systems. The concept is called the root-in-image method, or simply
the RIM method. Like symbolic analysis, this method is also based on multilevel
phase space discretization. The main target is hereby not to construct a graph but
to solve the root finding problem. Several kind of investigations can be reduced
to such a root finding problem. See, for instance, the discussion in Sec. 2.2
concerning the localization of periodic points.

Root finding in general is a very well researched field if it comes to the localiza-
tion of one solution of the system. However, in the context of our investigation
tasks it is necessary that the method locates all existing roots. Successful
approaches toward this direction were achieved in the field of interval analysis,
see e.g. Alefeld and Herzberger [AH83], Hansen [Han92] or Kearfott [Kea96].
In some cases, also homotopy methods [CMPY78, AG90] can be applied,
like in case the underlying function is polynomial [VH94]. There also exist
approaches which are based on similar schemes like MPSD. See [YK89] in
case the underlying function is holomorphic, and [HT90] in the context of
global optimization. Furthermore, a set-oriented approach which combines a
multilevel subdivision technique with a Newton-based iteration scheme was
introduced by Dellnitz et al. [DSS02]. All these methods have in common
that they are restricted to specific classes of functions, e.g. polynomials, and/or
apply iteration schemes which are based on the multidimensional Newton method.

The advantage gained by the application of the Newton method is a fast con-
vergence toward the solution. On the other hand, it requires that the Jacobian
matrix is computed and that the system function f is smooth. In our approach,
the usage of any Newton-based iteration scheme is avoided. Thus we do not have
to calculate the Jacobian matrix nor any approximation of it. We are also not

129

130 CHAPTER 6. THE RIM METHOD

limited to smooth functions. The only restriction is that f must be a C0 function.
Although the RIM method does usually not converge as fast to the detected
solutions as some of the methods mentioned above, it finds roots with a high
reliability, especially in the case that a large number of roots exist. We will also
show that the performance of our approach is still competitive.

The development of the RIM method was motivated by the techniques of
symbolic analysis. Although the construction and investigation of the symbolic
image graph proved to be successful for many problems, there were also some
shortcomings which are difficult to improve in the same conceptual framework.
One of the main problems is clustering which can lead to inaccuracies concerning
the precision of the results and to a high growth rate of cells during the subdivision
process, see also Sec. 4.2. Another problem is the high computational complexity
for the detection of periodic points, see Sec. 3.3.2 and Remark 3.6. The RIM
method partly overcomes these shortcomings and generally provides better results
than symbolic analysis for those kind of investigations it can be applied to.

In this chapter we focus on the basic task of the RIM method – the localization of
roots. First the theory of the method is introduced, then some of the details regard-
ing the implementation and the performance analysis are discussed. Afterwards,
some numerical case studies are given and the method is compared with other root
finding techniques. The application of the method in relation to the investigation
of dynamical systems is then subject of the following chapter.

6.1 Theory of the Method
As already mentioned, the RIM method is based on the concepts of MPSD.
Starting from this background, the theoretical framework for our method is con-
structed. We set the mathematical background, formulate the core algorithm and
give proofs of correctness. The focus is put on how to identify those discretized
areas which contain a solution and on the convergence of the method during the
subdivision process. Whenever possible, we use a notation similar to that used in
the preceding chapters.

6.1.1 The Core Algorithm
Let us consider a continuous mapping f on Rd . Let the manifold M be a compact
region in Rd . The manifold M defines the region in which we want to detect roots
of f. More precisely, we say that we want to find the following set of points in M:

RO f = {x | f(x) = 0, x ∈M ⊆Rd}. (6.1)

6.1. THEORY OF THE METHOD 131

The main target of the RIM method is to describe an algorithm for the numerical
approximation of the set RO f by an outer covering. Therefore, we consider the
discretization of the phase space. Let

C = {M(1), ...,M(n) |M(i)⊆M for i = 1, . . . ,n} (6.2)

be a finite covering of compact and connected sets for the domain M ⊂Rd . Note
that this definition slightly differs from those of Eq. 3.1. As for the symbolic
image graph, the sets M(i) ⊆ M are called boxes of the covering C, and i is the
index of a box M(i).

Let δ(M(i)) be the diameter of a box according to Eq. 3.4. Every box M(i) can
be subdivided into a subset ϒp(M(i)) of p compact and connected sets m(i, l), l =
1, . . . , p so that

ϒp(M(i)) =

{
m(i, l) |δ(m(i, l)) < δ(M(i)),

p[

l=1

m(i, l) = M(i)

}
. (6.3)

In order to find the roots in M, we use a multilevel subdivision scheme so that a
covering Cs+1 for each s ∈N+ consists of the subdivided boxes of a set R(Cs)⊆
Cs:

ϒp(Cs) =
[

M(i)∈R(Cs)

ϒp(M(i)), (6.4)

Cs+1 =
{

M(j) = m(i, l) | m(i, l) ∈ ϒp(Cs)
}

, (6.5)

whereby C0 = R(C0) = {M}, and j = 1, . . . , |Cs+1| is a new indexation for the
subdivided boxes.

Such a subdivision scheme is in accordance with the concepts of MPSD. Hence,
the main subject of the RIM method is the detection of the set R(Cs)⊆Cs. Due to
our aims, a set R(Cs) is a proper subset iff it contains all boxes M(i)∈Cs in which
at least one point x ∈ M(i) is a root for f, i.e. M(i)∩RO f 6= /0. In that case, the
multilevel subdivision of M converges to a set of boxes which includes all roots
of f in M. Each box M(i) ∈ R(Cs) becomes for s→ ∞ an approximation of a root
with a desired accuracy ε. We say that R(Cs) is a subdivision criteria.

Definition 6.1. We say that ϒp is a subdivision rule on a covering C0 if it is a
relation according to Eq. 6.3 for compact and connected sets, and if an multilevel
subdivision with ϒp, according to Alg. 6.1, can be applied on C0 to get Cs for
every s ∈N+.

132 CHAPTER 6. THE RIM METHOD

Algorithm 6.1 Finding all roots in M.
Require: M, f, n ∈N+

Ensure:
S

R(Cn)⊂M contains all roots of f
1: R(C0)⇐{M} {Initialize C0}
2: for all s = 1, . . . ,n do {Get all boxes R(Cs) which contain roots}
3: Cs⇐ /0

4: for all M̃(j) ∈ R(Cs−1) do {Subdivide R(Cs−1) in Cs}
5: Cs⇐Cs∪ϒp(M̃(j)) { Subdivide each box M̃(j) into new p boxes}
6: end for
7: R(Cs)⇐ /0

8: for all M(i) ∈Cs do {Detect R(Cs)⊆Cs}
9: if hasRoot(f,M(i)) then {Detect if a box M(i) is subdivided}

10: R(Cs)⇐ R(Cs)∪{M(i)}
11: else
12: Delete M(i)
13: end if
14: end for
15: end for

We roughly outline the basic algorithm of our method as shown in Alg. 6.1. For an
area M we construct an initial covering C0 = R(C0) = {M}, and subdivide it into
some subsets M(i) ∈ ϒp(M). Further details about the subdivision ϒp(M) are dis-
cussed in Sec. 6.2. Note that C1 = ϒp(M). Then we select the subset R(C1)⊆C1

with all boxes M(i) ∈ C1 according to the result of a function hasRoot(f,M(i))
which decides if a box M(i) will be subdivided or deleted. A subdivision of all
cells R(C1) provides us the covering C2. Again, we detect R(C2) ⊂C2, and sub-
divide R(C2). We repeat this process until we reach a covering R(Cn) which is
considered to be a good approximation of the roots in M. The accuracy ε of our
covering is decided by the largest diameter of the boxes M(i) ∈ R(Cn), i.e.

ε = max(δ(M(i)) |M(i) ∈ R(Cn)) .

In the following section we discuss the function hasRoot(f,M(i)) in which the
decision takes place if a box should be considered for further subdivision or not.

6.1.2 The Subdivision Criteria
The decision if a box M(i) contains a root is the most integral part of our
method. In Alg. 6.1 this is done by the function hasRoot(f,M(i)). The basic
idea of this function is to approximate the image of M(i) with regard to f by a
convex hull. Then we check if 0 lies inside this convex hull. If so, the function

6.1. THEORY OF THE METHOD 133

hasRoot(f,M(i)) returns true and the box M(i) will be subdivided. If not, M(i)
is deleted. We start now first with some theoretical considerations.

For each box M(i) we consider its image IM(i) with respect to f(x) as

IM(i) = f(M(i)) = {f(x) | x ∈M(i)} . (6.6)

Due to the fact that f is continuous, and every M(i) is a compact and connected
subset of M, the image IM(i) of a box M(i) is also a compact and connected set.

Definition 6.2. A box M(i) is said to contain roots if 0 ∈ IM(i), and it does not
contain any root if 0 /∈ IM(i). We say that a box M(i) might contain roots if 0∈U
for some neighborhood U ⊇ IM(i).

Obviously, if the image IM(i) of the set M(i) contains 0 than there exists at least
one x ∈M(i) which is a root of f. Euclidean geometry is now applied to describe
the property 0 ∈ IM(i). In the following we use the notation IM for an image
IM(i).

Due to the compactness of IM, we can introduce the following parameter. Let

δ(IM) = max(ρ(x,y) |x,y ∈ IM) (6.7)

be the diameter of an image IM whereby the function ρ(x,y) is the Euclidean
distance. Additionally, we introduce

d(x,P) = min(ρ(x,y) |y ∈ P) (6.8)

as the distance between a point x and a set P.

Definition 6.3. [Zie95] A set Q ⊂ Rd is called convex, if the line segment L
between any two points p, p′ ∈ Q ,

Q =
{

λp+(1−λ)p′ | 0≤ λ≤ 1
}

,

is also contained in Q. The convex hull conv(Q) of a set Q∈Rd is the intersection
of all convex sub-sets of Rd containing Q:

conv(Q) =
\{

Q′ ⊂Rd|Q⊂ Q′ and Q′ is convex
}

.

Definition 6.4. [Zie95] Let P = {p1, . . . , pn} ⊂ Rd be a finite non-empty set of
points. Then the convex hull of P is given by

conv(P) =

{
n

∑
i=1

λi pi |λi ≥ 0 for all i and
n

∑
i=1

λi = 1

}
.

134 CHAPTER 6. THE RIM METHOD

The convex hull for a finite non-empty set of points is the minimal convex set
containing the given points. It can be imagined as a finite region of d-dimensional
space enclosed by a finite number of hyperplanes, i.e. a polytope. Proofs and a
more detailed discussion of convex hulls can be found in [Zie95].

Definition 6.5. The set Pε is called an ε-reduced set of IM if it is a finite non-empty
subset of IM so that ∀y ∈ IM : d(y,Pε)≤ ε. .

For any ε > 0 such a Pε of IM exists. Note that in a numerical computation a set
Pε is in general not known for an image IM(i), nor can it be easily computed from
its domain M(i) by numerical methods. However, by taking a sufficiently large
number of scan points x ∈M(i) which are scattered all over the domain M(i), we
can get an approximation of a Pε for a small ε. In Sec. 6.2 we give a more detailed
analysis of this problem.

Consider now for a vector x = (x1, . . . ,xd) and an ε > 0 the element

B(x,ε) = [x1− ε, x1 + ε]×·· ·× [xd− ε, xd + ε]

as a box with an equidistant side length l(B) = 2ε. Then we can cover the image
IM with a finite set of hypercubes:

A(Pε) =
{

B j = B(x j,ε) | x j ∈ Pε

}
.

Proposition 6.1. If Pε is an ε-reduced set of IM then B j ∩ IM 6= /0 for every B j ∈
A(Pε) and

S
B j∈A(Pε) B j ⊇ IM.

Proof. The first property B j ∩ IM 6= /0 is fulfilled due to the fact that for every
B j = B(x j,ε) the point x j ∈ B j and x j ∈ Pε ⊂ IM. The second property we prove
by contradiction. Imagine that IM is not a subset of the union of boxes B j. Then
there exists a x ∈ IM so that x /∈ B j for every B j. If x ∈ IM then there is a x j ∈ Pε

with ρ(x,x j)≤ ε. For each x j there is a B(x j,ε) ∈ A(Pε) and, hence, x ∈ B(x j,ε).
This is a contradiction.

Next we define the set of all corners of a box B j,

P(B j) =
{

x|x ∈ B j,∃y ∈ B j : ρ(x,y) = δ(B j)
}

.

Note that every P(B j) is a finite set with |P(B j)| = 2d . The corners of all boxes
A(Pε) can then be described as

CP(Pε) =
[

B j∈A(Pε)

P(B j). (6.9)

6.1. THEORY OF THE METHOD 135

Proposition 6.2. If Pε is an ε-reduced set of IM then ∀x ∈CP(Pε) : d(x, IM) ≤
ε
√

d.

Proof. Obviously, every x ∈ CP(Pε) belongs to a box B j = B(x j,ε). The point
x j ∈ B j belongs to IM, and the most distant points from x j in B j are the points
x̂ = x j± ε. Hence, due to the definition of B(x j,ε), the dimension d of the image
space IM ⊂Rd and the Euclidean distance ρ we get:

d(x, IM)≤ ρ(x,x j)≤ ρ(x̂,x j)

=

√√√√ d

∑
i=1

((x j(i)± ε)− x j(i))2

=

√√√√ d

∑
i=1

ε2

= ε
√

d.

(6.10)

Proposition 6.3. If A⊆ B then conv(A)⊆ conv(B).

Proof. We prove the proposition by contradiction. Assume there exist sets A⊂ B
so that conv(A) * conv(B). Then there is a point x ∈ conv(A) \ conv(B). Obvi-
ously, x /∈A because A⊂B⊆ conv(B). Due to the definition of a convex hull, such
an x can be described by x = ∑

n
i=1 λi pi, whereby ∑

n
i=1 λi = 1 and {p1, . . . , pn}⊆A.

But then x ∈ conv(B) because p1, . . . , pn ∈ B. This is a contradiction.

Proposition 6.4. If Pε is an ε-reduced set of IM then conv(IM)⊆ conv(CP(Pε)).

Proof. First we show that B j = conv(P(B j)) for every box B j. Obviously, the set
B j is a box, and therefore a convex polytope so that conv(B j) = B j. Consider that
P(B j) is a subset of B j. Hence, conv(P(B j))⊆ B j = conv(B j).

The set P(B j) is defined as all pairs x,y∈B j which fulfill ρ(x,y) = δ(B j). So each
xk ∈ P(B j) can only be described by xk = λxk with λ = 1. Every xl ∈ B j \P(B j)
fulfills for all xk ∈ P(B j) the property ρ(xl,xk) < δ(B j) and hence xl = ∑

n
i=1 λkxk

for some ∑
n
k=1 λk = 1, λk ≥ 0. In other words, P(B j) defines the set of vertices for

the convex polytope B j. It follows that conv(P(B j))⊇ B j⇒ conv(P(B j)) = B j.

In the next step, we conclude that if conv(P(B j)) = conv(B j) = B j then also
conv(P(B j)∪P(Bk)) = conv(B j∪Bk) for any two boxes B j and Bk. Recall that the
convex hull of a set Q is the intersection of all convex sub-sets of Rd containing

136 CHAPTER 6. THE RIM METHOD

Q, see Def. 6.3. Hence, for all convex sets Q′ containing a Q = P(B j)∪P(Bk) we
can state:

P(B j)∪P(Bk)⊂ Q′⇔ conv(P(B j))∪ conv(P(Bk))⊂ Q′

⇔ conv(B j)∪ conv(Bk)⊂ Q′

⇔ B j∪Bk ⊂ Q′
(6.11)

The equality conv(P(B j) ∪ P(Bk)) = conv(B j ∪ Bk) implies also that
conv(CP(Pε)) = conv(∪A(Pε)). Recall next that Proposition 6.1 proves
that IM ⊆ ∪A(Pε). Finally, we can conclude from Prop. 6.3 that
conv(IM)⊆ conv(∪A(Pε)) = conv(CP(Pε).

Theorem 6.1. If for every ε > 0 the set Pε is some ε-reduced set of IM then

lim
ε→0

conv(CP(Pε)) = conv(IM).

Proof. In Proposition 6.2 it was shown that ∀x∈CP(Pε) : d(x, IM)≤ ε
√

d, hence
we can say that for a distance

d(CP(Pε), IM) = max(d(x, IM) | x ∈CP(Pε))

the following inequality is fulfilled:

d(CP(Pε), IM)≤ ε
√

d.

The value d is the dimension of f and, hence, a constant. So if ε→ 0 then obvi-
ously the distance between CP(Pε) and IM tends also to 0:

lim
ε→0

d(CP(Pε), IM) = 0

Note now that for the distance between the convex hulls,

dCH(CP(Pε), IM) = max(d(x,conv(IM)) | x ∈ conv(CP(Pε))),

the inequality dCH(CP(Pε), IM)≤ d(CP(Pε), IM) is fulfilled. So it is easy to see
that also

lim
ε→0

dCH(CP(Pε), IM) = 0.

Note now that for any set P with dCH(P, IM) = 0 it follows that conv(P) ⊆
conv(IM). Due to Proposition 6.4 we also know that conv(CP(Pε)) ⊇ conv(IM)
is fulfilled. Hence we can state that:

lim
ε→0

dCH(CP(Pε), IM) = 0

⇒

(
\

ε>0

conv(CP(Pε))⊆ conv(IM)

)
∧

(
∀ε > 0 : conv(CP(Pε))⊇ conv(IM)

)
⇒ lim

ε→0
conv(CP(Pε)) = conv(IM)

6.1. THEORY OF THE METHOD 137

Definition 6.6. A convex hull conv(CP(Pε)) is called a covering hull for IM if Pε

is an ε-reduced set of IM.

Due to the theorems we stated above, it is obvious that a covering hull for every
IM(i) can be constructed from a set Pε⊂ IM(i). Such a set Pε can be approximated
by the calculation of every f(x) for a finite set of points x ∈M(i).

Theorem 6.2. If conv(CP(Pε)) is a covering hull for IM(i) and 0 /∈ conv(CP(Pε))
then the set M(i) does not contain a root. If 0 ∈ conv(CP(Pε)) then M(i) might
contain a root.

Proof. If conv(CP(Pε)) is a covering hull for IM(i) then conv(CP(Pε)) ⊇
conv(IM(i)) ⊇ IM(i). So if 0 /∈ conv(CP(Pε)) then also 0 /∈ IM(i) and, hence,
M(i) does not contain any root. On the other hand, if 0 ∈ conv(CP(Pε)) then M(i)
might contain a root because conv(CP(Pε))⊇ IM(i).

Theorem 6.2 states that if we can construct a covering hull for M(i) then we can
find out if the domain M(i) does not contain any root. However, due to the fact
that the covering hull as well as conv(IM(i)) are usually proper supersets of IM(i),
in general we can not say that M(i) does contain a root if 0 ∈ conv(CP(Pε)). We
can only state that M(i) might contain a root. But the better the approximation
of conv(CP(Pε)) the more domains M(i) can be identified as containing no roots
and deleted early in the subdivision process, which is essential for our algorithm.
Furthermore, in the following chapter we will see that for higher subdivision steps
the convex hull converges to the image IM(i) and, hence, we eventually get only
sets M(i) ∈ R(Cs) which do contain roots.

6.1.3 Convergence of the Method
We show now that our method converges to the set of all periodic points. For a
subdivision rule ϒp on C0 according to Def. 6.1 we define first the parameter

δC(s) = max(δ(M(i)) |M(i) ∈Cs). (6.12)

This parameter can be considered as the largest diameter of all boxes M(i) ∈Cs.
Note that δC(s) describes the accuracy of the outer covering Cs. If R(Cs) is a set
of boxes so that each of them contains a root then these roots are approximated
with an error of e≤ δC(s).

For the diameter δC(s) we can further say that

lim
s→∞

δC(s) = 0 (6.13)

138 CHAPTER 6. THE RIM METHOD

because for every subdivision s the diameter δ(m(i, l)) < δ(M(i)) for each new
box m(i, l) ∈ ϒp(M(i)) of a M(i) ∈ R(Cs), see Eq. 6.3 and, hence,

δC(0) > δC(1) > δC(2) >

Obviously, if δC(s) goes to 0 then the error e ≤ δC(s) of our approximation also
goes to 0.

The next step is to prove that every box M(i) ∈ R(Cs) does contain a root if s→
∞. In Sec. 6.1.2 we showed that we can construct a covering hull conv(CP(Pε))
around an image IM(i). For ε→ 0 the covering hull converges to conv(IM(i)),
see Theorem 6.1. Hence, it can be decided if 0 ∈ conv(IM(i)). The subdivision
criteria can therefore be defined as follows:

R(Cs) = {M(i) |M(i) ∈Cs and 0 ∈ conv(IM(i))} . (6.14)

We prove now that a convex hull converges to IM(i) for s→ ∞ so that we can
eventually assure that every M(i) ∈ R(Cs) does not only might contain a root but
does contain a root. For this reason we introduce the parameter

δI(s) = max(δ(IM(i)) |M(i) ∈Cs), (6.15)

which describes the largest diameter of all images belonging to a covering Cs.

Proposition 6.5. If ϒp is a subdivision rule on C0 then the following holds for
every continuous function f:

lim
s→∞

δI(s) = 0

Proof. First we prove that δI(s1) ≥ δI(s2) for every s1 > s2. For every appli-
cation of the subdivision rule ϒp we subdivide a box M(i) ∈ Cs in new boxes
m(i, l) ∈ ϒp(M(i)). According to Eq. 6.3, m(i, l) ⊂ M(i) and, hence, every
f(m(i, l)) ⊆ f(M(i)), see also Eq. 6.6. Consequently, δ(f(M(i))) ≥ δ(f(m(i, l)))
and so also δI(s) ≥ δI(s + 1) for every s. We conclude δI(s1) ≥ δI(s2) for every
s1 > s2.

Next we show that for every s1 with δI(s1) > 0 there exists a s2 > s1 so that
δI(s1) 6= δI(s2). We prove that by contradiction. Let us assume that for all
s > s1 the diameter δI(s1) = δI(s). If δI(s1) > 0 then there must exist points
x1,x2 ∈ M(i) ⊂ Cs1 so that x1 6= x2 and ρ(f(x1), f(x2)) = δI(s1) = δI(s) for all
s. We focus now on two points x1,x2 which fulfill this property and have the
smallest distance ρ(x1,x2) of all points which fulfill the property. Without loss of
generality, we assume there is only one such pair x1,x2. For s→ ∞ there exists
now a s2 so that δC(s2) < ρ(x1,x2) for these points x1,x2, see Eq. 6.13. Hence,

6.1. THEORY OF THE METHOD 139

x1 ∈M(i) ∈Cs2 and x2 ∈M(j) ∈Cs2 with M(i) 6= M(j). For every x ∈M(i) with
x 6= x1 it counts that ρ(f(x), f(x1)) < ρ(f(x1), f(x2)), and also for every y ∈M(j)
with y 6= x2 is ρ(f(y), f(x2)) < ρ(f(x1), f(x2)) because x1,x2 are the points with
the smallest distance ρ(x1,x2) which have a distance ρ(f(x1), f(x2)). Hence,
δI(s2) < ρ(f(x1), f(x2)) = δI(s1). This is a contradiction to our assumption, and
so, obviously, there exists a s2 > s1 for every s1 so that δI(s1) 6= δI(s2).

Eventually, we can conclude that for every s1 with δI(s1) > 0 there exists a s2 > s1
so that δI(s1) > δI(s2), and so

lim
s→∞

δI(s) = 0.

As the next step, we show that the distance between an image IM and its convex
hull,

d(conv(IM), IM) = max(d(x, IM) |x ∈ conv(IM)),

tends to 0 if a subdivision scheme is applied and s→ ∞. This is stated by the next
proposition. We first denote the set

Ĉs = {IM | IM = f(M(i)) and M(i) ∈Cs} .

Additionally, we introduce

dCHI(s) = max(d(conv(IM), IM) | IM ∈ Ĉs)

as the largest distance between an image IM ∈ Ĉk and its convex hull conv(IM).

Proposition 6.6. If ϒp is a subdivision rule on C0 then the following holds for
every continuous function f:

lim
s→∞

dCHI(s) = 0

Proof. Due to the definition of a convex hull, d(conv(IM), IM) ≤ δ(IM) and,
consequently, dCHI(s)≤ δI(s). In Proposition 6.5 we stated that lims→∞ δI(s) =
0, and so

lim
s→∞

dCHI(s) = lim
s→∞

δI(s) = 0.

Let RO f (M) be the set of all roots of the function f in the region M, and

U(Cs) =
[

M(i)∈R(Cs)

M(i)

the area selected by the subdivision criteria R(Cs) as defined in Eq. 6.14. The
following can then be stated.

140 CHAPTER 6. THE RIM METHOD

Theorem 6.3. If ϒp is a subdivision rule on C0 then for every continuous function
f:

lim
s→∞

U(Cs) = RO f (M).

Proof. For every s the set R(Cs) contains all boxes M(i) ∈Ck which might con-
tain a root, as described in Sec. 6.1.2. Hence, RO f (M) ⊆U(Cs). Recall that we
check in the subdivision criteria if 0 ∈ conv(IM) for every IM ∈ Ĉs. So, applying
the proposed subdivision criteria we could state that M(i) does contain a root iff
conv(IM) = IM. Recall now that Proposition 6.6 states dCHI(s)→ 0 as s→∞. It
follows that then also d(conv(IM), IM)→ 0 for every IM ∈ Ĉs as s→ ∞. Hence,
as s→ ∞ we can say that every M(i) ∈Cs→∞ does contain a root. We remember
that δC(s)→ 0 for s→ ∞, and so

lim
s→∞

U(Cs) =
\

s≥0

U(Cs) = RO f (M).

Next we state that it is sufficient to compute for every IM an ε-reduced set instead
of the convex hull conv(IM) in order to converge to P(M).

Definition 6.7. We say that Pε(e) is an ε-reduced set of an image IM which depends
on a fixed e > 0 so that ε(e)≤ e ·δ(IM).

Theoretically, such an ε-reduced set can easily be constructed. Assume, for
instance, that e = 1. Then for any x ∈ M(i) ∈ Cs, the set Pε(e) = {f(x)} with
ε(e) = δ(IM) is an ε-reduced set of the image IM = f(M(i)).

Let us now fix an e > 0. We define

dCHP(s,e) = max(d(conv(CP(Pε(e))), IM) | IM ∈ Ĉs)

as the largest distance between an image IM belonging to a box M(i) ∈Ck and its
covering hulls conv(CP(Pε(e))). The next proposition states that if a subdivision
scheme is applied then the distance between an image IM ∈ Ĉs and any covering
hull of it tends to 0 for s→ ∞.

Proposition 6.7. Let us fix e > 0. If ϒp is a subdivision rule on C0 then the
following holds for every continuous function f:

lim
s→∞

dCHP(s,e) = 0.

6.1. THEORY OF THE METHOD 141

Proof. For every Pε(e) of every IM ∈ Cs we can say that ε(e) ≤ e · δ(IM), and
so also dCHP(s,e) ≤ e · δI(s). In Proposition 6.5 we stated that lims→∞ δI(s) =
0, and so also ε(e)→ 0 as s→ ∞. According to Theorem 6.1, we know that
limε→0 conv(CP(Pε)) = conv(IM), and together with Proposition 6.6:

lim
s→∞

dCHP(s,e) = lim
s→∞

dCHI(s) = lim
s→∞

δI(s) = 0.

We denote now a modified subdivision criteria as follows:

R(Cs,e) =
{

M(i) |M(i) ∈Cs and 0 ∈ conv(CP(Pε(e)(i)))
}

, (6.16)

where Pε(e)(i) is an ε-reduced set of an IM(i) = f(M(i)). We assume that in the
context of the subdivision criteria R(Cs,e) only one such set Pε(e)(i) exists, i.e. is
computed, for every M(i). This Pε(e)(i) depends on e, f and Cs.

The area selected by the subdivision criteria R(Cs,e) is denoted by

U(Cs,e) =
[

M(i)∈R(Cs,e)

M(i).

The following can then be stated.

Theorem 6.4. If ϒp is a subdivision rule on C0 then for every continuous function
f and a fixed e > 0:

lim
s→∞

U(Cs,e) = RO f (M).

Proof. Obviously, U(Cs,e) ⊇U(Cs) because conv(CP(Pε(e))) ⊇ conv(IM), see
Proposition 6.4. Hence, also RO f (M) ⊆U(Cs) ⊆U(Cs,e). Recall that we check
in the subdivision criteria if 0 ∈ conv(CP(Pε(e)(i))) for every M(i) ∈ Cs. So,
applying the proposed subdivision criteria we could state that M(i) does con-
tain a root iff conv(CP(Pε(e))) = IM. Recall now that Proposition 6.7 states
dCHP(s,e)→ dCHI(s) and dCHI(s)→ 0 as s→∞. We remember that δC(s)→ 0
for s→ ∞, and so

lim
s→∞

U(Cs,e) =
\

s≥0

U(Cs,e) =
\

s≥0

U(Cs) = RO f (M).

We see that the set R(Cs,e) converges to the set RO f (M) for an infinite number of
subdivisions s by applying the subdivision algorithm of Sec. 6.1.1 and the subdi-
vision criteria described in Sec. 6.1.2.

142 CHAPTER 6. THE RIM METHOD

Algorithm 6.2 Subdivision criteria hasRoot(f,M(i)).
Require: f, M(i), ε̃, e.
Ensure: Returns true if M(i) might contain a root.

1: Calculate Sε̃(M(i))⊂M(i) {Calculate the scan points}
2: P̃(i)⇐ /0

3: for all x ∈ Sε̃(M(i)) do {Get P̃(i) for the scan points Sε̃(M(i))}
4: P̃(i)⇐ f(x)∪ P̃(i)
5: end for
6: ε⇐ e ·δ(P̃(i)) { Approximate ε for P̃(i)}
7: Calculate CP(P̃(i)) for ε

8: Calculate conv(CP(P̃(i))) {Calculate the convex hull using Quickhull}
9: if conv(CP(P̃(i))) = conv(CP(P̃(i)) ∪ 0) then {See Eq. 6.17}

10: Return true
11: else
12: Return false
13: end if

6.2 Implementation Details
In this section we discuss the implementation of the RIM method. As for
the construction of the symbolic image graph, the area M of investigation is
a d-dimensional rectangle area and all coverings Cs consist of d-dimensional
uniform grid boxes M(I) whose positions are described by unique multi-indices
I ∈ Nd , compare with Sec. 3.2.1. A subdivision rule ϒp(M(Is)) divides a box
M(Is) into p new uniform grid boxes M̃(Is+1) which have a new indexation
Is+1 ∈Nd , see also Sec 3.2.3. The size and number of these boxes is user-defined
and variable. For any selection of boxes R(Cs) with |Cs| = ns such a subdivision
can be done in linear time O(ns), see Remark 3.7.

Our main concern focuses now on the subdivision criteria as described in
Sec. 6.1.2. In Alg. 6.1 this criteria is identified by the function hasRoot(f,M(i)).
For its implementation, see Alg. 6.2, mainly two tasks require a further discus-
sion. First, the approximation of an ε-reduced set Pε for each IM(i) as defined in
Def. 6.5, and second, the construction of a covering hull for IM(i) according to
Def. 6.6.

In order to get a set Pε we select a finite set of points belonging to M(i). These
points are denoted the scan points Sε̃(M(i)) ⊂M(i), see also Eq. 3.27. Then the
set Pε of IM(i) is constructed by calculating f(x) for each x ∈ Sε̃(M(i)). The set

P̃(i) = {f(x) |x ∈ Sε̃(M(i))} ,

6.2. IMPLEMENTATION DETAILS 143

is then an ε-reduced set, though we do not know the size of its ε. Hence, we
consider P̃(i) only as an approximation of an ε-reduced set, and say that P̃(i) is a
precise approximation if ε is considered to be small. Empirically, we know that
an approximation P̃(i) is usually sufficiently precise for our purposes if the scan
points Sε̃(M(i)) are chosen properly. A proper selection of scan points can be
achieved by taking mainly points of the box’s boundary, and, additionally, some
of its interior. These points should lie on a fixed grid so that

∀y ∈M(i) : d(y,Sε̃(M(i)))≤ ε̃

for a user-defined ε̃. Note, that the smaller ε̃ is chosen the better is the approxi-
mation P̃(i). The selection of a proper ε̃ depends heavily on the properties of the
system function f and is therefore the task of the user. In Sec. 7.1.2 we present
some standard settings and guidelines for the selection of scan points which
proved to be successful for a large number of systems. As already mentioned, a
different method for the selection of scan points in a set, which is based on the
estimation of Lipschitz constants, was given by Junge, see [Jun00]. We believe
that a similar approach might also lead to a rigorous detection of an ε-reduced
set, though this is not yet implemented in our software.

The second task to focus on is the construction of the covering hull of IM(i),
depending on the ε-reduced set P̃(i), see Def. 6.6. As a first step, this implies the
computation of the set CP(P̃(i)), see Eq. 6.9. In order to do so, the value ε of the
ε-reduced set P̃(i) would be required. But, as stated above, we usually do not
know ε for P̃(i). Hence, ε must be approximated. In our implementation we offer
two approaches to do so. First, the user sets a general value e, and each ε(e) is
then approximated by ε(e) = e ·δ(P̃(i)). For a large e this strategy assures that we
do not loose any box containing roots. As a second approach, we simply set ε = 0
because, in practice, conv(P̃(i)) proved to be a sufficiently good approximation
of conv(IM(i)) if P̃(i) is a sufficiently precise approximation of IM(i). In order
to clarify this, we recall that P̃(i) is a precise approximation of IM(i) if ε is small.
This implies that the difference between CP(P̃(i)) and P̃(i) is also small, see
Proposition 6.2, and we can conclude that CP(P̃(i))≈ P̃(i). In Sec. 7.1.2 we will
compare both approaches in more detail and give examples.

If ε is approximated, the calculation of CP(P̃(i)) can easily be achieved, and we
can next compute the convex hull of CP(P̃(i)). To calculate a convex hull we
use a standard software package called Quickhull, see [BDH96]. For an input set
of finite points CP(P̃(i)), Quickhull computes the convex hull conv(CP(P̃(i))).
The Quickhull software additionally allows us to check our subdivision criteria

144 CHAPTER 6. THE RIM METHOD

M(i)

IM(i)

(a)

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

•
• •

•

•
•

•

•

•

(b)

Figure 6.1: Approximation of the image IM(i) of a box M(i). (a) The box M(i)
and its image IM(i). (b) The scan points x j ∈ Sε̃(M(i))⊂M(i) are marked with ◦.
The images of these points y j ∈CP(P̃(i))⊂ IM(i) are marked with •. The convex
hull conv(CP(P̃(i))) is shown as a hatched area.

0 ∈ conv(CP(P̃(i))), see Theorem 6.2, by testing if

conv(CP(P̃(i))) = conv(CP(P̃(i))∪0). (6.17)

If this condition is fulfilled, the box M(i) belongs to R(Ck), otherwise not.

Example 6.1. Fig. 6.1 illustrates the approximation of the image IM(i) of a box
M(i). A set of scan points x j ∈ Sε̃(M(i)) ⊂M(i) is selected, marked with ◦ (j =
1, . . . ,9). These points are mapped onto the points y j = f(x j), marked with •. We
assume e = 0. Then the set CP(P̃(i)) is given by

CP(P̃(i)) = P̃(i) = {y1, . . . ,y9},

and the convex hull conv(CP(P̃(i))) can be constructed. In Fig. A.3(b), this
convex hull conv(CP(P̃(i))) is shown as a hatched area. As one can see, two
problems can arise. Firstly, conv(CP(P̃(i))) does not cover the complete area
IM(i). If 0 ∈ IM(i) \ conv(CP(P̃(i))) then the box M(i) is deleted although it
contains a root. Secondly, conv(CP(P̃(i))) covers an area outside of IM(i). If
0 ∈ conv(CP(P̃(i))) \ IM(i) then the box M(i) is subdivided although it does not
contain a root.

Although the computation of convex hulls in Quickhull is not limited by the di-
mension d of the input point set CP(P̃(i)), it must be considered that the perfor-
mance heavily depends on d. Let n = |CP(P̃(i))| be the number of input points, r

6.3. PERFORMANCE ANALYSIS 145

be the number of processed points and fr be the maximum number of facets of r
vertices (fr = O(rbd/2c/bd/2c!) [Kle66].

Definition 6.8. [BDH96] An execution of Quickhull is balanced if the average
number of new facets for the j-th processed point is d f j/ j and if the average
number of partitioned points for the j-th processed point is d(n− j)/ j.

We assume that Quickhull is usually balanced in our application and consider the
following theorem.

Theorem 6.5. [BDH96] Let n be the number of input points in Rd , and r be
the number of processed points. If the balance conditions hold, the worst case
complexity of Quickhull is O(n log(r)) for d ≤ 3 and O(n fr/r) for d ≥ 4.

As the dimension d increases, the number of facets in a convex hull grows rapidly
for the same number of vertices. For example, the convex hull of 300 cospherical
points in 6-d has 30,000 facets [BDH96]. Although complexity is almost linear
for low d, it increases dramatically for higher dimensions. Note now that our
method requires the calculation of a convex hull for every M(i) ∈Cs and, hence,
is only applicable for lower dimensions. Practical experience shows that our
approach can be used for dimensions d ≤ 6.

6.3 Performance Analysis
We discuss now the performance of the RIM method in general. In our implemen-
tation, the number of scan points in a box M(i) is fixed to a user-defined constant
l so that for every set of scan points |Sε̃(M(i))|= l. Hence, the performance of the
subdivision criteria depends only on the number l.

Proposition 6.8. The application of the subdivision criteria on a box M(i)⊂Rd ,
see Alg. 6.2, is in O(l log(r)) for l ≤ 3 and O(l fr/r) for d ≥ 4 if the balance
condition holds for every convex hull calculation.

Proof. Obviously, the calculation of P̃(i) depends only on the number of scan
points l. The computation of CP(P̃(i)) is a linear operation as well and, hence,
also in O(l). So the main computational effort arises from the construction of the
convex hull. Recall that the number of input points CP(P̃(i)) for the convex hull
computation depends on the number of scan points c and is in O(l). Consequently,
the complexity of the subdivision criteria is governed by the complexity of the
convex hull computation, and thus can be described as in Theorem 6.5 with input
size l.

146 CHAPTER 6. THE RIM METHOD

Theorem 6.6. The calculation of a set R(Cs+1) for an input R(Cs) with |Cs|= ns
according to Alg. 6.1 is in O(ns).

Proof. According to Remark 3.7, the subdivision of R(Cs) in Cs+1 with |R(Cs)|=
n′s ≤ ns is in O(ns). In order to get R(Cs+1) from Cs+1 , the subdivision criteria
must be applied on every box M(i)∈Cs+1 with |Cs+1|= p ·n′s, whereby p depends
on the subdivision rule ϒp. We stated that the subdivision criteria only depends
on the number of scan points in a box, see Proposition 6.8. Hereby, the number
of scan points is a fixed constant l. Hence, the computation time of a subdivision
criteria is also fixed for every box M(i), and therefore in O(l fr/r)⊆O(l fp/p)⊆
O(1). The calculation of R(Cs+1) requires the computation of the subdivision
criteria for every M(i) ∈ Cs+1. Consequently, the complexity is O(l · p · n′s) ⊆
O(ns).

It can be concluded from the above theorem that our algorithms behave quite well
in terms of complexity. Depending on the number of boxes ns, the whole subdivi-
sion process to get R(Cs+1) requires only linear computation effort. However, the
number of boxes ns can grow exponentially during the subdivision process. We
show this in the following.

Definition 6.9. We say that our method converges under optimal conditions if
every M(i) ∈ R(Cs) for every s does contain roots.

If the optimal conditions are fulfilled then only boxes get subdivided which are of
relevance and every ns is minimal. Consider now that we converge under optimal
conditions. Then the number ns only depends on the number r of roots in M
because we subdivide not more than one box per root in every subdivision s, and
hence, get ns ≤ r. We first consider a best case scenario – there is only one root in
M. Then we would have ns = 1, and converge in O(1). However, in a worst case
scenario the number of boxes ns can grow exponentially during the subdivision
process – even under optimal conditions. We show this by an example. Let f :
Rd → 0 be a continuous function which maps every point to 0. Hence, every
x ∈M ⊂ Rd is a root, and no box will be deleted during the subdivision process.
Let further ϒp be a subdivision rule which subdivides each box M(i) into 2 new
boxes. Then

ns = |R(Cs)|= 2s.

Obviously, in that case we have an exponential growth rate for ns.

Consider next that convergence under optimal conditions (or almost optimal
conditions) can in general not be guaranteed. The property depends heavily on
the characteristics of the investigated system function f. In case that the optimal
conditions are not fulfilled, we will still converge to a R(Cs) which only has boxes

6.4. COMPARISONS AND NUMERICAL CASE STUDIES 147

with roots, as shown in Sec. 6.1.3 – but ns is not minimal and the complexity of
the computation increases. This might especially happen for low s and, in worst
case, can also lead to an exponential increase of ns during the first subdivision
steps.

So we see that the performance of our method mainly depends on the character-
istics of the system function. In best case we have a complexity of O(1), and in
worst case O(2n).

Next we look on the convergence rate for the root approximation. As mentioned
before, the error e is defined by the diameter of the boxes M(i). Let ϒp be a sub-
division rule which divides every box M(i) in p = 2d new boxes with a diameter
1
2 ·δ(M(i)). Then the diameter shrinks exponentially:

es ≤ δC(s) =
1
2s ·δ(M). (6.18)

In terms of root finding, we would say that our method converges linearly to the
roots. Notice that this only counts under optimal conditions. In contrast, we know
that the Newton-based methods converge superlinearly, and so, as mentioned
before, the convergence rate of our method toward a solution can not compete
with those of the Newton-based methods.

We also like to mention that the RIM method can be combined with a Newton-like
iteration scheme in order to improve performance and achieve a higher accuracy of
the solutions. This involves the application of two computational steps. Firstly, the
RIM method is applied to compute an outer approximation R(Cs) of the roots for
a s≥ 0. Then, secondly, for each M(i) ∈ R(Cs) an x ∈M(i) is chosen as the initial
value for the application of a Newton-like iteration scheme. If M(i) is a reasonably
small outer covering of a root then x ∈M(i) is in its linear neighborhood, and the
Newton method converges toward the root. Hereby, each M(i) ∈Cs should be an
outer covering of exactly one root.

6.4 Comparisons and Numerical Case Studies

As stated above, there exist several other global root finding techniques. We
compare our approach with some of these methods by the means of numerical
case studies. The focus is on those techniques which can be applied to a broad
class of functions, namely interval analysis as implemented by Kearfott [Kea96],
the set-oriented approach of Dellnitz et al. [DSS02], and the selection of random

148 CHAPTER 6. THE RIM METHOD

points.

Global root finding by interval analysis is based on interval arithmetics, see
e.g. [AH83]. Hereby, an area M(i) in the state space M, which is in our context a
box, is considered to be an interval vector. On these intervals, an interval Newton
method is applied in order to find roots. The main target hereby is to let those
interval vectors which contain a solution shrink, so that they provide a reasonably
small outer covering of the roots. An advantage of this approach is that a
rigorous computation of an outer covering which contains all roots is generally
possible. However, the practical application is limited by the fact that interval
computations can produce large error bounds. This has a serious impact on the
distinction if there is a root in a box M(i), and if this is the only root in the box,
see e.g. [Kea97]. As a result, there might be clusters of boxes around a solution
and/or large interval vectors M(i) which do not provide a good approximation of
the root(s) they contain. Note, furthermore, that interval analysis depends on the
application of a Newton-like method and requires also the computation of the
Jacobian matrix or an approximation of it.

The set-oriented approach by Dellnitz et al. [DSS02] is based on the same
concepts as the RIM method – discretization of the phase space by boxes and
multilevel subdivision of these boxes. Nevertheless, there are fundamental
differences. The underlying idea of the approach by Dellnitz et al. [DSS02] is to
view a Newton-based iteration scheme as a dynamical system, and then localize
the fixed points of this system. More precisely, assume N f is some Newton-based
iteration scheme for the underlying system f. Then, instead of finding a root by
iteration of N f for an initial guess, N f is seen as a dynamical system, and the
fixed points of this system are all the roots of f. The detection of the fixed points
of N f is achieved by application of set-oriented methods for the localization
of attractors and invariant sets [DH97, DJ98]. These methods were already
mentioned earlier in the context of symbolic analysis. Indeed, considering N f as
the system function, then its fixed points could also be localized by investigation
of the symbolic image graph. The RIM method significantly differs from this
approach in the way that a Newton-based iteration scheme is not considered at
all. Instead, roots are localized by the computation of the convex hull of the
image of boxes M(i).

Let us now focus on the practical application of the RIM method. As a first
approach, we tried to solve the systems presented by Kearfott [Kea87]. These
systems are used as examples for the INTBIS [KN90] and GLOBSOL [kea]
software. Except for the high-dimensional systems with d > 6, we were
able to find the roots for all these nonlinear equations. The RIM method

6.4. COMPARISONS AND NUMERICAL CASE STUDIES 149

even converged under optimal conditions. However, for such a scenario our
approach, though competitive, is not advantageous because only a small num-
ber of roots existed. Therefore, we give a detailed analysis for another test system.

In Dellnitz et al. [DSS02] a global root finding approach was introduced, and some
examples given for its usage. We discuss one of these examples and compare the
results. The system is defined as follows:

fD :R2→R2, x = (x,y) (6.19)

fD(x) =

(
ϕ(y)

40

∏
i=1

(x− xi), φ(x)
40

∏
i=1

(y− yi)

)

with xi = yi =
{

0.1+ −10+i
1000 , for i = 1 . . .20,

0.9+ −30+i
1000 , for i = 21 . . .40

and ϕ(y) = sin(4y), φ(x) = sin(4x).

According to Dellnitz et al. [DSS02], the system has 1649 roots in the domain
M = [−3.0;3.0]× [−3.0;3.0]. Most of these roots are concentrated in four small
clusters. In the original work, the method of Dellnitz was compared with the
global root finding routine c05pbc() of the NAG library [nag]. For 10000
initial random points, the c05pbc() routine found only 300 roots while the
set-oriented method of Dellnitz found a covering of all roots. However, in the
approach of Dellnitz, after 24 subdivisions only a rough approximation of the
four clusters was found. So it was still necessary to switch to a Newton-based
method to get the exact roots.

If we apply now the RIM method to Eq. 6.19 with an initial covering
M = [−3.0;3.1] × [−3.0;3.1], a subdivision of each box into 2 × 2 new
ones, and l = 11 · 22 + 1 scan points per box, we converge straight to all 1649
roots. We even converge under optimal conditions, and have never more than
1649 boxes per subdivision step. In Fig. 6.2 we present the results of our
computation. We calculated the boxes until a subdivision depth of s = 30. The
whole calculation took approximately 1 minute.

Additionally, we also tried to solve this problem with the GLOBSOL software.
But if we use the standard parameter settings, only 13 roots were detected. Hence,
GLOBSOL seems not to be able to handle this problem.

In this context we would also like to mention a special case of clustering which

150 CHAPTER 6. THE RIM METHOD

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
x

y

(a)

0.88

0.89

0.9

0.91

0.92

0.88 0.89 0.9 0.91 0.92
x

y

(b)

Figure 6.2: Numerical computation of all roots for Eq. 6.19 after 30 subdivisions.
All roots are shown in (a), and an enlargement of one of the four clusters in (b).

might happen for our method. It occurs if one of the solutions is on the boundary
of a box M(i). Due to the fact that in our implementation the boundary of boxes
overlap, such a periodic point then also belongs to the boundary of other boxes
M(j). Hence, for this and also for further subdivision steps, more than one box
get subdivided for one periodic point. In Eq. 6.19 this happens for all roots which
lie on the coordinate axis if we choose a covering M = [−3.0;3.0]× [−3.0;3.0].
Hence, we get 1664 boxes with roots instead of 1649. Note, that the algorithm
still converges to the same roots. This kind of clustering can be controlled with
some additional tests and/or a change of the initial covering M.

Derived from Eq. 6.19, also a higher-dimensional test system is investigated by
Dellnitz et al. [DSS02]. It is defined as follows:

fD2 :Rd →Rd, x = (x1, . . . ,xd) (6.20)

fD2(x) =
(

fD(x1,x2), (x3−3)2, . . . ,(xd−d)2) .
Unfortunately, this system presents a special case for which our method can not be
applied easily. Reason for this is it that the root of the function f (x) = (x− k)2 is
a minimum. So, in practice, for e = 0, see Sec. 6.2, an approximate convex hull of
a box, however precise, does never include 0 and the box is missed. This problem
could be solved if we set e to an appropriate size. But if e > 0 and we try to solve
higher-dimensional systems then this also means that we have a high growth rate

6.4. COMPARISONS AND NUMERICAL CASE STUDIES 151

for the boxes, and the calculation becomes ineffective. In order to prevent this, we
chose the test system

fD3 :Rd →Rd, x = (x1, . . . ,xd) (6.21)

fD3(x) =
(

fD(x1,x2), (x3−3)3, . . . ,(xd−d)3) ,
which is similar to fD2. For d = 5, M = [−3.0;3.0]2× [0.0;6.0]3 and p = 5 · 25

scan points per box, we converge under optimal conditions to all 1649 roots. The
calculation until k = 14 took 122 minutes. Except for the two examples described
here, our method was also capable to detect the roots for the other examples with
a dimension ≤ 6 which were presented in Dellnitz’ work.

152 CHAPTER 6. THE RIM METHOD

Chapter 7

Application of the RIM Method

In the last chapter we introduced the RIM method. So far, the method was only
used for the detection of roots of a function f. Now we propose some fields of
application which are closer related to the investigation of dynamical systems.
We already mentioned that several investigation tasks can be formulated as root
finding problems. It is now our intention to provide the necessary transformations
of the investigation tasks and show how the RIM method can be applied on them.

7.1 Detection of Periodic Points

A method for the localization of periodic points was already introduced in the
context of symbolic analysis, see Sec. 3.3.2. Although we gave examples of
a successful application in Sec. 3.6, the performance was lacking efficiency
in case that there are a large number of periodic points. This is mainly due
to two shortcomings. Firstly, the high effort required for the investigation of
the symbolic image graph, see Remark 3.6, and, secondly, the phenomenon of
clustering. For this reason, an alternative approach based on the application of the
RIM method is considered. The advantage of this new approach is that it avoids
the first problem at all because no graph investigations are required and it reduces
the effects of the second problem, clustering, significantly.

Besides the two techniques introduced in this work, there are several other ap-
proaches for computing periodic orbits. The approach by Hansen [Han95] is
based on symbolic dynamics, see e.g. [Wal91]. It is applicable to systems which
can be described by a well-ordered symbolic alphabet. Other techniques known to
the author are all based on root finding by application of a Newton-like method.
The approach by Nusse and Yorke [NY97], also mentioned in Sec. 2.2, uses a

153

154 CHAPTER 7. APPLICATION OF THE RIM METHOD

random set of points as initial values for the Newton method in order to detect
periodic points. Other approaches focus only on the localization of unstable pe-
riodic orbits which are embedded in chaotic sets, see Diakonos et. al. [SD97],
Davidchack et al. [DLKB01, CD05] and references therein. Hereby, the specific
structural characteristics of chaotic sets are exploited in order to get a set of ap-
propriate initial values. The application of a Newton-like method on these initial
values allows then the detection of all periodic orbits up to a specified size which
is only limited by computer precision. Besides that, there are also other methods
for the localization of periodic orbits in specific dynamical system classes, see
e.g. [BW89, SD97]. In the context of numerical case studies, see Sec. 7.1.2, our
approach is compared with some of these alternative techniques.

7.1.1 Definition of the Investigation Task
Let us consider a continuous mapping f : Rd 7→ Rd which generates a dynamical
system discrete in time. Let the manifold M be a compact region in Rd . The
manifold M defines the area of investigation in which we like to detect periodic
points. More precisely, we say that for a given p ∈ N we want to find the set of
periodic points in M:

P(p) = {x | f [p](x) = x, x ∈M ⊂Rd}. (7.1)

To achieve this aim, we introduce the function Hp : M 7→Rd as follows:

Hp(x) = f [p](x)−x. (7.2)

Obviously, Hp is continuous because f is continuous. Furthermore, the union of
all real roots of the function Hp is equivalent to the set P(p). This means that
we can solve the problem of finding all periodic orbits for f in the region M, if
we can detect all real roots of Hp in M. It is easy to see that the RIM method
can be applied to find an outer covering of the roots of Hp and, hence, also of P(p).

We also consider the subset of P̂(p) which only consists of points with a least
period p:

P̂(p) = {x | x ∈ P(p) and ∀p′ < p : f [p′](x) 6= x}. (7.3)

We provide an extension of the basic root finding algorithm which allows us to
localize all sets P̂(p′) with p′ ≤ p.

Recall that the RIM method applied on Hp, see Eq. 7.2, finds all periodic points
⊂ M of f with a period p. Obviously, this includes also all points with a period
p′ < p and

p≡ 0 mod p′.

7.1. DETECTION OF PERIODIC POINTS 155

Algorithm 7.1 Finding all periodic points ≤ p in M.
Require: M, f, p,n ∈N+

Ensure:
S

R(Cn)⊂M contains all periodic points ≤ p of f, and p(M(i)) is set
1: . . . { See Alg. 6.1}
2: for all M(i) ∈Cs do {Detect R(Cs)⊆Cs}
3: l⇐ 1
4: while (l ≤ p)∧ (M(i) /∈ R(Cs)) do {Check if a box M(i) has a root for

l ≤ p}
5: Set Hl(x) = f [l](x)−x
6: if hasRoot(Hl,(M(i)) then {Detect if a box M(i) is subdivided}
7: R(Cs)⇐ R(Cs)∪{M(i)} {M(i) contains a point with a least period l}
8: p(M(i))⇐ l {p(M(i)) is set}
9: end if

10: l⇐ l +1
11: end while
12: if M(i) /∈ R(Cs) then
13: Delete M(i)
14: end if
15: end for
16: . . .

Consider now an extension of the original algorithm of the RIM method which
is given by Alg. 7.1. Hereby, the subdivision criteria is applied for every period
l = 1, . . . , p, and, hence, for every box M(i) the smallest least period of periodic
points x ∈M(i) can be identified. We denote this smallest least period of M(i) as
p(M(i)). If a subdivision scheme is applied, then the diameter of boxes δC(s)→ 0
as the subdivision level s→∞. Each M(i)∈Cs as s→∞ is an outer covering of not
more than one periodic point xp ∈M(i). Consequently, p(M(i)) is then the least
period of this xp, and an outer covering of the set P̂(p′) can easily be constructed
by selecting all boxes M(i) ∈ R(Ck) with p(M(i)) = p′. So, by application of
Alg. 7.1, all sets P̂(p′) with p′ ≤ p can be approximated.

7.1.2 Comparisons and Numerical Case Studies

We give now some examples of usage for this method. We focus on cases for
which we have several coexisting unstable periodic orbits. Hereby, our approach
is also compared with those of others.

156 CHAPTER 7. APPLICATION OF THE RIM METHOD

Tinkerbell Map

The first example is a 2-dimensional system, the Tinkberbell map [NY97] with
the following settings:

x(n+1) = fT (x(n)),
fT :R2→R2, x = (x,y)T (7.4)

fT (x) =
(

x2− y2 +0.9x−0.6013y
2xy+2x+0.5y

)
.

We chose this system because we can compare our results with others reported
by Davidchack et al. [DLKB01] and Nusse et al. [NY97] and verify correctness.

It is our target to find for a specified period size p all sets of periodic points P̂(p′)
with p′ ≤ p, see Alg. 7.1. Note that the orbits we want to detect are unstable. We
chose M = [−2.0;1.5]× [−2.0;1.5] as the area of investigation. The subdivision
rule ϒp which we use here divides each box M(i) into 4 new boxes with the half
side length of M(i). As stated in Sec. 6.2, we also must set the scan points Sε̃ for
the boxes. For comparison we choose different settings of scan points according
to Tab. 7.1. Most scan points are situated on a grid on the boundary of the box.
Additionally, we choose some points in the interior and set the parameter e for the
approximation of the ε-reduced sets with ε(e) and the covering hulls CP(P̃(i)).
Empirically it has shown that it is most effective if the scan points lie on the
boundary. Interior points are of minor importance.

Setting p s Scan points per box e Time Detected points
1 ≤ 10 21 3×22 +1 = 13 0.15 18 min 99.8%
2 ≤ 10 21 26×22 +25 = 130 - 24 min 99.5%
3 ≤ 10 21 3×22 +1 = 13 - 3 min 75.9%
4 ≤ 14 31 3×22 +1 = 13 0.01 114 min 99.8% (p≤ 10)

Table 7.1: Tinkerbell map: Different settings for the calculation of periodic points.
The parameter p describes the number of periods to detect, and s the number of
subdivision steps. The scan points are separated in, first, the number of those on
the boundary and, second, those in the interior. The parameter e for the approx-
imation of the ε-reduced sets with ε(e) and CP(P̃(i)) was only used for setting
1 and 4. We also give here the calculation time and the percentage of detected
points.

7.1. DETECTION OF PERIODIC POINTS 157

p Analytic Setting 1 Setting 2 Setting 3 Sym. An. Setting 4
1 1×2 = 2 2 2 2 6 2
2 2×1 = 2 2 2 2 3 2
3 3×2 = 6 6 6 6 6 6
4 4×3 = 12 12 12 12 12 12
5 5×6 = 30 30 30 29 71 30
6 6×9 = 54 54 54 54 123 54
7 7×18 = 126 126 126 118 235 126
8 8×30 = 240 240 240 199 520 240
9 9×56 = 504 504 504 401 1088 504

10 10×101 = 1010 1007 1001 685 3346 1008
11 - - - - - 2055
12 - - - - - 3975
13 - - - - - 7861
14 - - - - - 14467

Table 7.2: Tinkerbell map: The number of periodic points for period p. We
present analytic results as well as the numerically computed results for the Set-
tings 1–4 and for the computation based on symbolic analysis, see column Sym.
An.

For the Settings 1–3 we calculated all periodic orbits≤ p = 10 in order to compare
them with the results reported in [DLKB01]. We chose to apply 21 subdivisions
for our initial covering. According to Eq. 6.18 and

δ(M) =
√

2 · (1.5− (−2.0))≈ 2.65,

we get for s = 21 the following accuracy of our results:

es ≤ δC(s) =
1

221 ·δ(M)≈ 1
2 ·106 ·2.65≈ 10−6.

In Tab. 7.2 we summarized the results of our calculations. We see that almost all
points were detected for the settings 1 and 2. Only some points of the 10-periodic
orbits are missing. Note that although not all points were detected, the method
found in both cases all periodic orbits. The missing points could easily be
reconstructed by forward iterations starting from the detected points. For setting
3, a larger number of periodic points is missing which is due to the fact that we
chose only a small number of scan points, and no parameter e for correction.
However, the computation time for setting 3 is significantly lower and still, most
of the orbits could be reconstructed.

158 CHAPTER 7. APPLICATION OF THE RIM METHOD

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

0 5 10 15 20

n

s

Setting 1
Setting 2
Setting 3
Sym. An.

Figure 7.1: Tinkerbell map: The number of boxes n for each subdivision step s in
the calculation of the periodic points. Note that we have a strong decrease in the
last subdivision for Setting 1. This is due to the fact, that we set e = 0 for the last
subdivision.

In Fig. 7.1 we reported the number of boxes for each subdivision step in the
calculation of the periodic points. It is clearly to see that more than necessary
boxes get subdivided. Clustering occurs and the method does not converge under
optimal conditions, as would be desired. The number of boxes rather more
increases for each subdivision step up to a peak around the 12-th subdivision,
then it reduces and eventually converges optimally. According to our theorems,
such behavior was expected and is due to the fact, that boxes are selected by the
subdivision criteria which might contain roots.

For comparison, we also computed the periodic points with period ≤ 10 using the
investigation method of symbolic analysis, see Sec. 3.3.2. The same settings as
before are used for the area of investigation M and the subdivision of the boxes.
For this technique, a lower number of scan points is sufficient. We chose to take
17 points per box. The computation takes around 4 minutes, and the results are
also documented in Tab. 7.2 and Fig. 7.1. In terms of performance, the method is

7.1. DETECTION OF PERIODIC POINTS 159

-2

-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5

y

x

Figure 7.2: Tinkerbell map: Numerical computation of all periodic points up to
period p = 14.

competitive but strong clustering can be observed. In contrast to the RIM method,
the effect of clustering does also not decrease during the subdivision process but
keeps constant. Hence, the precision of the computation is much lower.

Another example for a calculation is demonstrated by Setting 4. Here we
calculated all periodic orbits up to p = 14 and applied 31 subdivisions. Note that
we set the parameter e = 0.01 for s = 0, . . . ,19, and e = 0 for s = 20, . . . ,31.
In Fig. 7.2 all detected points are shown. According to Tab. 7.2, the number
of detected periodic points increases sharply. This leads also to an increase of
computation time and stronger clustering, see Fig. 7.3. The peak for the number
of boxes per subdivision is higher and only for subdivisions s≥ 25 we get optimal
convergence. However, for this example we eventually detected 30341 periodic
points with an accuracy of ε ≤ 10−9. We computed the same investigation also
with the methods of symbolic analysis. The results are also illustrated in Fig. 7.3.
As one can see, clustering leads to a strong growth rate of boxes. Although the
peak is lower than with the RIM method, the number of boxes remains on a
higher level after the peak is reached. Due to the fact that the number of boxes
is generally higher than in the last computation of periods ≤ 10, the non-linear
time complexity of the method, see Remark 3.6, has a stronger effect on the
performance. Therefore, the computation takes around 10 hours, and is not

160 CHAPTER 7. APPLICATION OF THE RIM METHOD

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 5 10 15 20 25 30

n

s

Setting 4
Sym. An.

Figure 7.3: Tinkerbell map: The number of boxes n for each subdivision step
s with periodic points ≤ 14 for Setting 4 and by application of the method of
symbolic analysis.

competitive with the RIM method.

At last, we compare our results with those of others. In Nusse et al. [NY97], only
64 period-10 orbits were found. In this approach, the Newton method was applied
on a set of random points to detect periodic points. We verified the reported results
by applying the same method in our test environment. We found 87 orbits for
1445000 random points, and the calculation took over 20 minutes. Note that
even after 40 minutes we got not more than 91 orbits. Next we look at the results
reported by Davidchack et al. [DLKB01]. If this method is applied, all orbits up to
period 10 were found, as it is the case with our method. According to the reports
by Davidchack et al., their method might be more efficient than ours. But it is
only able to detect unstable periodic orbits embedded in chaotic sets, while our
technique is applicable for all kinds of periodic orbits, as can be seen by the next
example.

7.1. DETECTION OF PERIODIC POINTS 161

Discrete Food Chain Model

Now we look at a 3-dimensional system discrete in time which we already
discussed earlier, namely the discrete food chain model, see Sec. 4.3.2. Note that
the underlying system function fdfc, see Eq. 4.8, is not smooth. In this context we
focus on a different parameter setting µ0 = 4.0, µ1 = 1.0, µ2 = 3.0 and µ3 = 4.0.
At this position we can find several coexisting periodic orbits and fixed points.

Due to our numerical experiments, we strongly assume that the system has no
periodic orbits with p > 16 for this parameter setting. Hence, we try to detect all
periodic points ≤ p = 16. The area of investigation is M = [0;4.3]× [0;2.1]×
[0;2.1]. An initial covering was chosen so that the boxes have equidistant side
lengths. The subdivision criteria ϒp divides each box M(i) into 8 new boxes
with the half side length of M(i). As in the previous example, we choose different
settings for the scan points, see Tab. 7.3, but in this case all scan points are situated
on the boundary of the box. Furthermore, we also do not use the e-parameter. We
subdivide s = 30 times and, hence, get the following accuracy for our results:

δ(M)≈
√

3 ·2.0≈ 2.45,

es ≤ δC(s) =
1

230 ·δ(M)≈ 1
2 ·109 ·2.45≈ 10−9. (7.5)

Setting Scan points per box Time Detected points
1 302 12 min 97.0%
2 158 6 min 86.4%
3 62 1 min 48.5%

Table 7.3: Discrete food chain model: Different settings for the calculation of
periodic points. The scan points are all situated on the boundary of the boxes. We
also give here the calculation time and the percentage of detected points.

For the chosen settings we get several cycles and fixed points, see Tab. 7.4 and
Fig. 7.4. It is easy to check that the 4 fixed points as well as the two 8-periodic
orbits and one 16-periodic orbit are unstable. The remaining two 16-periodic
cycles are stable. Note that we also computed coverings for 2-periodic points.
These are numerical artifacts which happened due to clustering, and all of these
coverings are in the immediate neighborhood of a fixed point. For the Settings
1 and 2 we got again almost all periodic points, and for sure all periodic orbits.
However, although we got by far less periodic points for Setting 3, they are still
sufficient to construct all orbits by forward iteration. Except for the numerical

162 CHAPTER 7. APPLICATION OF THE RIM METHOD

artifacts around one of the fixed points, each computed neighborhood for the
Settings 1−3 belongs to exactly one periodic point, and no clustering is involved.

p Analytic Setting 1 Setting 2 Setting 3
1 4×1 = 4 4 4 4
2 - 5 5 1
8 2×8 = 16 15 13 8

16 3×16 = 48 45 40 20

Table 7.4: Discrete food chain model: The periodic points of period p. We present
analytic results as well as the numerically computed results for the Settings 1−3.
The 2-periodic points in the numerical calculation arose due to clustering.

Next we look at the number of boxes per subdivision, see Fig. 7.5. The scenario
is similar to those of the Tinkerbell map. The number of boxes increases
until a threshold is reached, then shrinks and eventually converges optimally.
Empirically, we can assume that this is a common scenario for the application of
our method. The increase of boxes, which usually happens in the first subdivision
steps, is the most crucial factor for our calculations. If it is possible to keep the
growth rate low, we can detect periodic points with a high precision. If not, the
computational effort might grow exponentially. Unfortunately, such a growth rate
highly depends on the properties of the focused system.

We also like to mention that the investigation methods of symbolic analysis can
not be applied in order to get the periodic orbits of the food chain model. Rea-
son for this is that, due to the specific dynamics of the system, clustering occurs
to a large extent. The growth rate of the symbolic image graph is exponential in
every subdivision step and a distinction of the different periodic orbits can not be
achieved. It turns out that the application of the RIM method is clearly advanta-
geous for this computation.

7.2 Localization of Stable Manifolds

Another field of application for the RIM method is the computation of stable
manifolds for maps. As for our other proposed method of symbolic analysis, see
Sec. 5.4, neither the system’s inverse nor its Jacobian is required. We are also
not limited to one-dimensional manifolds. Theoretically, the method might be
capable to compute manifolds independently of their dimension. In practice, we

7.2. LOCALIZATION OF STABLE MANIFOLDS 163

z

x
y

Figure 7.4: Discrete food chain model: Numerical computation of all periodic
points up to period p = 16. Fixed points (unstable) – black, 8-periodic points
(unstable) – red, 16-periodic points (stable) – green, 16-periodic (unstable) – blue.
The fixed point at the origin was neglected.

applied it to get one- and two-dimensional manifolds.

In Sec. 2.5 several other techniques were mentioned for the same task of com-
putation. But to our knowledge, none of these techniques is capable to compute
the higher dimensional manifolds of noninvertible maps. So the advantage of
the proposed method is that it can be applied in a broader range of scenarios
than other techniques. Contrariwise, for invertible maps or dynamical systems
continuous in time, other methods can often achieve better results concerning the
performance and precision of the computation than our method.

In contrast to other approaches, the calculation of the stable manifold by the RIM
method is not achieved by growth from the focused saddle, but rather more by
computation of a rough approximation of the stable manifold’s outer covering in
a compact region M ⊂ Rd . More precisely, a region M is divided into discrete
sets, and for each set we decide if it covers a part of the manifold. This approach
implies a limitation of the method. Only those parts of the manifold can be
computed for which forward iterates reach the neighborhood of the focused
saddle in less than a user-defined number p of iterations. However, although this

164 CHAPTER 7. APPLICATION OF THE RIM METHOD

0

500

1000

1500

2000

2500

3000

0 5 10 15 20

n

s

Setting 1
Setting 2
Setting 3

Figure 7.5: Discrete food chain model: The number of boxes n for each subdivi-
sion step s in the calculation of the periodic points.

is a serious drawback of the method, in many cases p can be set to a sufficiently
high value for the calculation of large parts of the manifold.

In the following, we give an outline about the application of the RIM method
in order to approximate global stable manifolds. Hereby, a slight variation of
the original method is required for a successful computation. Furthermore, the
proposed method is compared with others. Considering that the main advantage
of our approach is the broad field of application, we do not focus on a comparison
of performance but rather more give numerical case studies for scenarios to which
other methods can not be applied to. Hereby, we mainly refer to the approach
of England et. al. [EKO05] which allows the computation of one-dimensional
stable manifolds for noninvertible and piecewise-smooth maps. We show that our
method is not only applicable for the same scenarios but can also be used for the
computation of higher dimensional stable manifolds for this type of dynamical
systems.

7.2. LOCALIZATION OF STABLE MANIFOLDS 165

7.2.1 Outline of the Method
We present a numerical method to compute an approximation of a global stable
manifold W s(x0), see Eq. 2.12, for a given saddle x0 of a continuous map f within
a given domain M ⊂Rd . The proposed method computes an outer approximation
of a set W s

p(x0)⊆W s(x0). This set is limited to a parameter p, so that a trajectory
started from any x ∈W s

p(x0) must reach a neighborhood of x0 within p iterations.
Later, we show that such a limitation is not as serious as it might seem on the first
glance.

Recall that the RIM method can find the roots for any function. We define Ĥp :
M 7→Rd for a f as

Ĥp(x) = f [p](x)−x0, (7.6)

whereby x0 is a fixed point of saddle type. Obviously, the union of all roots of
Ĥp is equivalent to all points which hit x0 after p iterations of f. These points
belong to the global stable manifold W s(x0). Next we consider the roots for all
Ĥp′ with p′ ≤ p. The union of these points corresponds to all points which hit x0
after p′ ≤ p iterations. More precisely, we intend to calculate for a p ∈N+ the set

W s
p(x0) = {x ∈M | f [k](x) = x0 for k ≤ p}. (7.7)

In the following, we call W s
p(x0) the p-limited stable set.

Additionally, we introduce now a parameter ε̃ ∈ R, ε̃ > 0, so that the p-limited
stable set depends on ε̃ in a way such that

W s
p,ε̃(x0) = {x ∈M | f [k](x) ∈Uε̃(x0) for k ≤ p}, (7.8)

whereby Uε̃(x0) is a neighborhood of x0, i.e. Uε̃(x0) = {x | ρ(x,x0) < ε̃}. We say
that W s

p,ε̃(x0) is a p, ε̃-limited set. We can conclude now that

lim
ε̃→0

[

p≥1

W s
p,ε̃(x0) = W s(x0)∩M.

So we see that
S

p≥1W s
p,ε̃(x0) converges for ε̃→ 0 to the global stable manifold of

x0 in the domain M. In practice, of course, a computation of the stable manifold
is limited to an approximation by a set W s

p,ε̃(x0) for fixed parameters p and ε̃. The
larger p and the smaller ε̃ are chosen, the better is the approximation. Note that
the quality of the approximation depends hereby to a large extend on the smallest
stable eigenvalue λmin = min(|λ| | λ is eigenvalue of Df(x0)). The closer λmin is
to ±1, the higher p must be set in order to compute an appropriate approximation
of the stable manifold. However, we were able to approximate sufficiently large

166 CHAPTER 7. APPLICATION OF THE RIM METHOD

parts of the global stable manifolds for most of the systems we tested.

Note now that for every ε̃ > 0 and p > 0, an outer covering of the set W s
p,ε̃(x0) can

be computed by application of the RIM method. Hereby it is necessary to slightly
modify the original method. These modifications are subject of the following
section.

7.2.2 Modifications of the Algorithm
We describe first an algorithm which computes an outer covering of a p-limited
stable set. This algorithm is similar to Alg. 7.1 for the localization of periodic
points. Then we will show how this algorithm can be modified to get an outer
covering of a p, ε̃-limited stable set.

The basic algorithm for the computation of a p-limited stable set is sketched
out in Alg. 7.2. The subdivision criteria is applied for every l = 1, . . . , p, and,
hence, every box M(i) with an x ∈M(i) so that f [l](x)−x0 = 0 belongs to R(Cs).
If a subdivision scheme is applied, then the diameter of boxes δC(s) → 0 as
the subdivision level s→ ∞. The union of all M(i) ∈ Cs converges to W s

p(x0)
as s→ ∞. In practice, the process of subdivision is repeated until we reach a
covering R(Cn) which is considered to be a good approximation of the p-limited
stable set. The accuracy of the covering is decided by the largest diameter δC(n)
of the boxes M(i) ∈ R(Cn).

The above mentioned algorithm computes a p-limited stable set. For the approx-
imation of a global stable manifold this is usually not sufficient. Reason for this
is that the computation of the p-limited set is a too strict limitation. Although
trajectories f [p](x) with x ∈W s(x0) converge toward x0 for p→ ∞, the condition
f [p](x) = x0 is usually not fulfilled for any p. Some further modifications of the
algorithm are necessary. Consider therefore that the condition f [p](x) ∈ Uε̃(x0)
can often be fulfilled for a large number of x ∈W s(x0). Especially in case of a
numerical computation. Therefore, it is our intention to compute a p, ε̃-limited
stable set for a small ε̃.

For each box M(i) we consider its image IMl(i) with respect to Ĥl(x), Eq. 7.6, as

IMl(i) = Ĥl(M(i)) =
{

Ĥl(x) |x ∈M(i)
}

. (7.9)

We recall that the basic idea of the RIM method is to construct an approximation
of the convex hull conv(IMl(i)) around an image IMl(i) so that it can be decided

7.2. LOCALIZATION OF STABLE MANIFOLDS 167

Algorithm 7.2 Finding a p-limited stable set W s
p(x0) for a saddle x0 in M.

Require: M, f, x0 ∈Rd , p,n ∈N+

Ensure:
S

R(Ck)⊂M contains the p-limited stable set of f for x0
1: . . . { See Alg. 6.1}
2: for all M(i) ∈Cs do {Detect R(Cs)⊆Cs}
3: l⇐ 1
4: while (l ≤ p)∧ (M(i) /∈ R(Cs) do {Check if M(i) has a root for l ≤ p}
5: Ĥl := f [l](x)−x0 {Define the root finding function depending on x0 and

l}
6: if hasRoot(Ĥl,M(i)) then {A point x ∈M(i) hits x0 after l iterations}
7: R(Ck)⇐ R(Cs)∪{M(i)} {Add M(i) to R(Cs)}
8: end if
9: l⇐ l +1

10: end while
11: if M(i) /∈ R(Cs) then
12: Delete M(i)
13: end if
14: end for
15: . . .

if 0 ∈ conv(IMl(i)). In case 0 ∈ conv(IMl(i)) the box M(i) might contain a root.
Each xIM ∈ IMl(i) belongs to a neighborhood Uε̃(x0) for some ε̃. We denote by

ε̃max(s) = max(ρ(xIM,x0)|xIM ∈ IMl(i) ∈ R(Cs))

the maximal ε̃ of such a neighborhood in a covering Cs. By application of a
subdivision scheme, and s → ∞ subdivision steps, ε̃max(s) goes to 0. Such a
concept has been proved appropriate for the localization of roots and periodic
points because ε̃max(s) converges relatively fast to 0, and clustering can largely
be reduced. However, for the computation of a global stable manifold, the aim is
to compute xIM ∈Uε̃(x0) for a small ε̃ rather than xIM = x0. A slow convergence
ε̃max(s)→ 0 and, to some extend, also clustering is desired.

Therefore, the most significant modification of the basic algorithm relates to the
approximation of an image IMl(i). Empirically, it has shown that an approxi-
mation of IMl(i) by an axis-aligned bounding box instead of the convex hull for
IMl(i) leads to a slower convergence and better results for the approximation of
stable manifolds. Such an axis-aligned bounding box is defined as

AABB(IMl(i)) = [min(IMl(i))1,max(IMl(i))1]× . . .

× [min(IMl(i))d,max(IMl(i))d], (7.10)

168 CHAPTER 7. APPLICATION OF THE RIM METHOD

whereby min(IMl(i))k and max(IMl(i))k are the minimal and maximal value of
IMl(i) on the k-th coordinate (k = 1, . . . , d):

min(IMl(i))k = min
(

xk | x ∈ IMl(i) with x = (x1, . . . ,xd)T
)
, (7.11)

max(IMl(i))k = max
(

xk | x ∈ IMl(i) with x = (x1, . . . ,xd)T
)
. (7.12)

Note that a set AABB(IMl(i)) is convex, and that we have the relation

AABB(IMl(i))⊇ conv(IMl(i))⊇ IMl(i).

Furthermore, for an ε-reduced set Pε, see Def. 6.5, the bounding box
AABB(CP(Pε)) can be computed by numerical methods and, hence, for all
computations we use AABB(CP(Pε)) instead of conv(CP(Pε)), Eq. 6.9.

We can also easily decide by numerical methods if 0 ∈ AABB(IMl(i)). This
allows us to define a new subdivision criteria

R̃(Cs) = {M(i) |M(i) ∈Cs and 0 ∈ AABB(IMl(i)) for a l ∈ 1, . . . , p} . (7.13)

It is not too difficult to prove that Theorems 6.3 and 6.4 are also valid for
the subdivision criteria R̃(Cs), though we converge "slower" to the solution.
Due to this slower convergence rate, we were able to compute much better
approximations of the global stable manifold. In Sec. 7.2.3 we will give some
practical examples to show this.

Although the application of bounding boxes instead of convex hulls is usually
sufficient for our purposes, we propose also a second modification for the explicit
calculation of a p, ε̃-limited set according to Eq. 7.8. In order to do so, we recall
that d(x,S) is the distance between a point x and a set S, see Eq. 6.8. Then we can
define the following subdivision criteria:

R̂(Cs) =
{

M(i) |M(i) ∈Cs and d
(

0, AABB(IMl(i))
)
≤ ε̃ for a l ∈ 1, . . . , p

}
.

Note that the numerical computation of d
(

0, AABB(Il(i))
)

is an easy task. If the
subdivision criteria R̂(Cs) is applied, we are able to compute an outer covering of
a p, ε̃-limited set. Again, it can be shown that Theorems 6.3 and 6.4 are also valid
for this subdivision criteria, and the method converges to the specified p, ε̃-limited
set.

7.2. LOCALIZATION OF STABLE MANIFOLDS 169

7.2.3 Comparisons and Numerical Case Studies

Some examples are given to demonstrate the successful application of the algo-
rithm. We first compute some known manifolds in order to verify correctness and
to compare our approach with those of others. Later we show new, previously not
computed manifolds.

The Highly Interrupted Cutting Map

As a first demonstration of the method, we computed the one-dimensional stable
manifold of a piecewise-smooth map. We chose the highly interrupted cutting
map which was also used by England et. al., see [EKO05] and references therein,
as an example for the computation of one-dimensional stable manifolds. The
system is defined as follows:

x(n+1) = fhicm(x(n)),
fhicm :R2→R2, x = (x,y)T (7.14)

fhicm(x) =
(

A11 x+A12 y
A21 x+A22 y+g(x,y)

)
with A11 =

eςτ

(1− ς2)

(
cos
(√

(1− ς2)τ
)

+ ςsin
(√

(1− ς2)τ
))

,

A12 =
eςτ

(1− ς2)
sin
(√

(1− ς2)τ
)

,

A21 =− eςτ

(1− ς2)
sin
(√

(1− ς2)τ
)

,

A22 =
eςτ

(1− ς2)

(
cos
(√

(1− ς2)τ
)
− ςsin

(√
(1− ς2)τ

))
,

g(x,y) =

{
Kh3/4 if h = h0 + x−A11 x−A12 y > 0,

0 otherwise.

We were able to successfully reproduce the computation of the stable manifold
for a period-2 saddle

P1 =
(

0.0876
0.5354

)
,

P2 =
(

0.4512
0.2983

)

170 CHAPTER 7. APPLICATION OF THE RIM METHOD

-15

-10

-5

0

5

10

15

-10 -5 0 5 10

x

y

(a)

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2

•P1

•
S
•

P2

x

y

(b)

Figure 7.6: Highly interrupted cutting map: (a) Numerical approximation of the
stable manifold (red) of the period-2 saddle {P1,P2}. (b) An enlargement is given
for the area where the period-2 saddle points (P1 and P2), the unstable manifold
(green) and the sink S is situated.

at the parameter settings ς = 0.01, τ = 2, h0 = 1 and K = 0.87, according
to [EKO05] Fig. 15. The results are shown in Fig. 7.6(a).

In order to get these results, we calculated the p, ε̃-limited set with p = 30, ε̃ = 0.0
for the region M = [−12; 12]× [−18; 18]. Note that an approximation of this
p, ε̃-limited set covers the stable manifold of the whole area M. Hereby, a
setting ε̃ = 0.0 is sufficient for the numerical computation. We applied s = 5
subdivisions on an initial covering of 20×30 boxes. In every subdivision, a box
gets divided into 22 new ones. The outer covering of the p, ε̃-limited set on the
5-th subdivision level is then given by 23406 boxes, each of these boxes has
a side length of 3.75 · 10−2. The total calculation time is 20 minutes, which is
mainly due to the high resolution we like to acquire. For the construction of the
image of each box, we took n = 4×22 scan points on the boundary of the boxes.
Note that a lower setting of n leads to the loss of some boxes which belong to the
stable manifold’s covering.

For the computation of the enlarged area around the period-2 saddle points and

7.2. LOCALIZATION OF STABLE MANIFOLDS 171

the sink

S =
(

0.2730
0.4222

)
,

see Fig. 7.6(b), we changed the parameter settings. The area of investigation is
set to M = [−0.8;2.4]× [−0.2;1.0], the initial covering to 20× 10 boxes, and
the number of scan points is reduced to n = 2× 22. We apply 6 subdivisions.
Then the computation time reduces to 3 minutes and we get a covering of 4499
boxes with a side length ≤ 2.812 · 10−2. Note that the unstable manifold was
computed by the investigation method of symbolic analysis, see Sec. 5.4. Here
the unstable manifold is mainly shown for illustration purposes and not subject of
further analysis.

The Nien-Wicklin Map

We look now on a noninvertible map. This map was used by Nien and Wick-
lin [NW98] as an example for the application of an algorithm which determines
the regions of the state space with different numbers of pre-images. The system is
defined as

x(n+1) = fNW(x(n)),
fNW :R2→R2, x = (x,y)T (7.15)

fNW(x) =
(

x4 + v x2 + x y+µ x
(1+a) y+b+ ex2

)
Like our previous example, this map was also investigated by England et.
al. [EKO05]. This allows us to compare the results. The main intention of
England’s work was it, to compute the primary manifold which is the unique
piece of the global stable manifold W s(x0) that contains the fixed point x0.
Furthermore, parts of the global stable manifold were calculated by using random
seeds, or exploiting the special structure of the map, see [EKO05] Fig. 10. How-
ever, to our knowledge the complete global stable manifold was not yet computed.

As in the other works, we use the parameter settings µ = a = b = e = 0.1 and
v = −1.9. The map has a saddle at P0 = (0,−b/a) = (0,−1) and a period-2
repeller {R1,R2} [EKO05]. We first calculated the p, ε̃-limited set for P0 with
p = 15, ε̃ = 0.0 for the region M = [−2.0; 2.0]× [−2.2; 0.9]. The result is shown
in Fig. 7.7(a). Then we changed p to p = 50, and computed Fig. 7.7(b). Obviously,
this demonstrates how p influences the part of the global stable manifold which is
detected. The larger p, the larger is the detected part of the global stable manifold.

172 CHAPTER 7. APPLICATION OF THE RIM METHOD

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-1.5 -1 -0.5 0 0.5 1 1.5 2

•P0

•
R1

• R2

x

y

(a)

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-1.5 -1 -0.5 0 0.5 1 1.5 2

•P0

•
R1

• R2

x

y

(b)

Figure 7.7: Nien-Wicklin map: Numerical approximations of the global stable
manifold W s(P0) for the map defined by Eq. 7.15. The saddle P0 and the period-
2 repeller {R1,R2} are also shown. (a) the p, ε̃-limited set for p = 15, (b) the
p, ε̃-limited set for p = 50.

For both calculations we used an initial covering of 11× 7 cells and applied 9
subdivisions, whereby a box gets divided into 22 new ones in every subdivision.
For each box we had 8× 22 scan points. The outer coverings consist of up to
≈ 400000 boxes with a side length of≈ 8.6 ·10−4. The total calculation time was
1 hour for p = 15 and 2 hours for p = 50. Note that we lost at least one box during
the subdivision process. This can be concluded by observing the corner in the
outer covering close to (−0.35,−2.0). The loss could be avoided by increasing
the number of scan points in a box.

The Nonlinear Leslie Model

After the computation of one-dimensional stable manifolds, we give now an ex-
ample for the computation of a two-dimensional manifold. We chose to investi-
gate a 3-dimensional population model. The system is based on the linear Leslie
model [Les45] where the population is divided into d age-classes or generations.
Virtually all animal and demographic forecasting models in current use are based
on variations of this model. In our context, we consider a nonlinear extension
of the Leslie model which was studied in [UW04] for two and three generations.
We focus only on the case of three generations for which the model is defined as

7.2. LOCALIZATION OF STABLE MANIFOLDS 173

follows:

x(n+1) = fL(x(n)),
fL :R3→R3, x = (x,y,z)T (7.16)

fL(x) =

h(x+ y+ z) · e−λ(x+y+z)

p1 x
p2 y

This mapping is C∞ smooth and noninvertible, whereby every point has at most
two pre-images [UW04].

For our purposes, the parameter setting h = 37.5, p1 = 0.8, p2 = 0.6 and λ = 0.1 is
chosen. Two coexisting attractors can be found at this position, namely a period-2
cycle

P =

12.728

21.473
6.110

 ,

26.841
10.183
12.884

 ,

and a four-piece chaotic attractor A whose shape resembles the Hénon attrac-
tor [H7́6]. Furthermore, there is a period-4 cycle S of saddle type

S =

 0.106

69.770
10.572

 ,

 0.968
0.084

41.862

 ,

22.024
0.774

0.0507

 ,

87.212
17.619
0.465

 .

These results were already reported in [UW04]. They can also easily be verified
by the investigation methods proposed in this work. An illustration is given by
Fig. 7.8. It is now our intention to approximate the stable manifold W s(S) of the
period-4 saddle S.

We computed a p, ε̃-limited stable set with p = 20, ε̃ = 0 for the area of in-
vestigation M = [0;150]3. An initial covering of 153 boxes was chosen. Four
subdivisions were applied, and in every subdivision, a box got divided into 23

new ones. As scan points of a box we used 2×23 points on the boundary plus the
center point of the box. The result of this computation is shown in Figs. 7.9 (a)
and (b). The stable manifold is approximated by an outer covering of ≈ 460000
boxes with a side length ≈ 6.25 ·10−1. The calculation time was 12 minutes. As
expected, the stable manifold separates the domains of attraction belonging to P
and A .

We also approximated the stable manifold for a larger area of investigation
M = [−150; 150] × [−150; 200] × [0; 150]. Setting an initial covering of

174 CHAPTER 7. APPLICATION OF THE RIM METHOD

z

x

y

Figure 7.8: Nonlinear Leslie Model: Numerical computation of the period-4 sad-
dle S (marked by �), the period-2 cycle P (marked by �) and the four-piece
Hénon-like chaotic attractor A .

35× 30× 15 boxes, a p, ε̃-limited stable set with p = 30 was computed. The
results for the subdivision level s = 3 are shown in Fig. 7.9(c). Hereby, the outer
covering consists of ≈ 910000 boxes with a side length ≈ 1.25 · 10−1. The
computation took around 25 minutes. Though the computation is restricted to
a p, ε̃-limited stable set with p = 30, large parts of the global stable manifold
can be computed. As can be seen in Fig. 7.9(c), the manifold has a highly
nontrivial structure consisting of several layers which are wrapped like leaves
around the attractor A . Our method of investigation is capable of revealing these
structures. Hereby, it is a distinct feature of our method that it is not required
that the different parts of the manifold in the area M are connected with each other.

For comparison, we also computed the stable manifold by the methods of
symbolic analysis, see Sec. 5.4. The same settings as for the first calculation were
used, so that the area of investigation is M = [0;150]3. In Fig. 7.10 the results
of the computation after 4 subdivisions are illustrated. The results are similar
to those computed by the application of the RIM method, see Figs. 7.9 (a) and
(b). However, the precision of a computation by the RIM method is much higher.
Although the box size is equal for both computations, the outer covering which
was calculated by the method of symbolic analysis consists of ≈ 2300000 boxes

7.2. LOCALIZATION OF STABLE MANIFOLDS 175

z

x
y

(a)

z

x

y

(b)

z

x
y

(c)

Figure 7.9: Nonlinear Leslie Model: (a) + (b): Two different views of the
outer covering of the global stable manifold W s(S) for the area of investigation
M = [0;150]3. The period-2 cycle P and the chaotic attractor A are also shown.
(c) An approximation of W s(S) for the area of investigation M = [−150; 150]×
[−150; 200]× [0; 150].

176 CHAPTER 7. APPLICATION OF THE RIM METHOD

z

x
y

(a)

z

x

y

(b)

Figure 7.10: Nonlinear Leslie Model: (a) + (b): Two different views of a nu-
merical approximation of the global stable manifold W s(S) using the symbolic
analysis method. The period-2 cycle P and the chaotic attractor A are also shown.

in contrast to the outer covering computed by the RIM method which consists of
only ≈ 460000 boxes, see also Fig. 7.11. In the visualization of the results, this
difference is reflected by the "thickness" of the coverings. The outer covering of
the stable manifold shown in Fig. 7.10 resembles rather more thick walls than
2-dimensional surfaces. Furthermore, parts of the manifold are not detected, e.g.
the surface at x > 130. However, the numerical example we gave also shows an
advantage of this method – the computation time is much lower, in case of our
example it was 5 minutes in contrast to 12 minutes for the computation by the
RIM method.

7.2. LOCALIZATION OF STABLE MANIFOLDS 177

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 1 2 3 4

n

s

RIM
Sym. An.

Figure 7.11: Nonlinear Leslie Model: The number of boxes n in each subdivision
step s of a numerical approximation of the global stable manifold W s(S) using the
RIM method (RIM) and by application of the method of symbolic analysis (Sym.
An.).

178 CHAPTER 7. APPLICATION OF THE RIM METHOD

Chapter 8

Conclusion

In this chapter we summarize the results of our work. We investigated two related
approaches for the numerical investigation of dynamical systems. An overview is
given about the achievements of these studies. Then follows a comparison of the
two approaches with each other and with alternative strategies. Hereby, it is our
intention to give a general survey about the advantages and disadvantages of our
proposed methods in context to alternative strategies. The conclusion ends with
an overview about open problems and fields of further research.

8.1 Achievements

Several problems regarding the numerical investigation of dynamical systems
were introduced in Chapter 2. All of these problems can be solved by numerical
computations based on symbolic analysis. Hereby, the investigation task is
transformed into a graph problem, and then solved by analysis of the symbolic
image graph. An efficient implementation of the fundamental concepts of sym-
bolic analysis is subject of Chapter 3. Adequate data structures and algorithms
are presented which allow the discretization of the phase space by a covering
of boxes, the construction of a symbolic image graph for these boxes, and the
subdivision of selected boxes of the covering. The most critical part of an
implementation is the approximation of the covering C(i), Eq. 3.3, of a box M(i).
We decided to choose an approximation based on scan points of a box M(i). Such
an approach does not allow a rigorous computation of C(i) but, on the other hand,
has a low computational complexity and the growth rate of the number of cells in
a symbolic image is relatively low during subdivision. Further distinct features of
the proposed implementation are the usage of multi-indices and a hash map for
the storage of the covering. These concepts allow the efficient usage of memory
resources because only those parts of the investigated area M require memory

179

180 CHAPTER 8. CONCLUSION

resources which are subject of further analysis. Several numerical examples are
given to illustrate the successful application of our implementation. However,
also a major problem is identified which occurs for the application of every
symbolic analysis-based method. This problem is clustering.

Several extensions and tunings for our implementation are proposed in Chapter 4.
One of these extensions is the application of the method for dynamical systems
continuous in time, i.e. an implementation of a shift operator φ. Several specific
problems and possible solutions are discussed. Hereby, we showed that a rough
approximation of the system flow is often sufficient for our investigations. On the
contrary, a too precise simulation of the system flow can often hardly be computed
and does not provide better results. Another extension is the introduction of an
error tolerance parameter. The application of such a parameter allows a better
approximation of a covering C(i). As a result, the quality of the constructed
symbolic image graph can be improved. Besides these extensions of the original
method, we also provided some tunings for the graph construction. Namely,
we introduced the application of higher function iterates and the reconstruction
of fragmented solutions in order to improve the numerical computations. Both
extensions are not in accordance with the original concepts of symbolic analysis
but proved to be helpful in case the application of the original method fails
or provides a solution of low precision due to clustering. Depending on the
dynamics and dimension of the underlying system, the application of the tuning
techniques can be a necessity in order to achieve appropriate results.

The construction of the symbolic image and its subdivision as discussed above
provides only the basic framework for investigations on the symbolic image
graph. In Section 3.3 and Chapter 5 the investigation of the graph is subject of
discussion. We introduce algorithms for the realization of different investigation
tasks on the symbolic image graph. The implementation of most of these tasks
requires extensions and/or modifications of the theoretical concepts proposed
by Osipenko [Osi04]. For this reason, we introduce the concept of the shortest
periodic path which is required in order to localize periodic points. Furthermore,
in the context of attractors and their basins, we make a distinction between the
upper and lower bound of the domain of attraction. Based on these consid-
erations, a different scheme for the localization of the domain of attraction is
proposed. Additional theoretical considerations and proofs are also given for
the construction of attractors and repellers. The theory of filtrations as proposed
in [Osi99] serves as a basis for the construction but is extended. We also consider
the case that the area of investigation does only cover parts of the complete area
for which f is defined. This was neglected in the original works [Osi99] but is
important for a practical application. The algorithms, which are proposed for the

8.2. COMPARISON OF APPROACHES 181

realization of the theoretical concepts, have a linear time complexity and, hence,
are quite efficient. We also show that these algorithms can be applied in order to
fulfill other investigation tasks which were not outlined in the theoretical works
of Osipenko, namely the computation of (un)stable and connecting manifolds.

Besides symbolic analysis, we propose a different framework for the investigation
of dynamical systems, the so-called RIM method. The theory of the method as
well as its implementation is subject of Chapter 6. Hereby, the focus is put on the
core task of the method – solving the root finding problem for a large number of
coexisting roots. It is our main objective to provide an approach which is on the
one hand capable of detecting a large number of roots but, on the other hand, also
reduces clustering to a minimum. As for symbolic analysis, the implementation
of the theoretical concepts does not provide a rigorous computation of the
solution. Some of the roots might get lost due to the fact that an ε-reduced
set, see Def. 6.5, can only be approximated. Note, however, that in case of a
rigorous computation, a larger number of boxes which do not contain a root
would be considered as part of the solution and, hence, clustering would increase.
Obviously, this would also impact the main objectives of the current approach.
Therefore, an approximation of the solution which reduces clustering is preferred
to a rigorous computation. We give numerical examples in order to show that
the RIM method is still capable of detecting all or, at least, a large number of roots.

We also provide two applications of the RIM method for the investigation of dy-
namical systems. One of them is the detection of periodic points. Only slight
changes of the basic method are necessary for such a computation. The other
application is the computation of stable manifolds. Hereby, some of the computa-
tion tasks must be modified, i.e. instead of a convex hull, an axis-aligned bounding
box is computed for the approximation of the image IM(i) of a box M(i). Further-
more, recall that a p, ε̃-limited set is computed. Hence, the quality of the stable
manifold’s approximation depends highly on the setting of p. Nevertheless, ap-
proaches towards an investigation task which are based on the RIM method are in
many cases advantageous to those based on the methods of symbolic analysis. In
the following section, the two different approaches are compared in detail.

8.2 Comparison of Approaches
We compare now the different approaches with each other. Detailed comparisons
were already given for specific investigation tasks. In this section, the focus is put
on the general characteristics of the methods. We first give a comparative survey
about the advantages and disadvantages of the concepts of symbolic analysis and

182 CHAPTER 8. CONCLUSION

the RIM method, which were both studied in this work. Then the comparison
is extended to related approaches which are also based on MPSD, and to other
investigation methods.

8.2.1 Symbolic Analysis and the RIM Method
As already mentioned, the RIM method was developed in order to overcome some
of the shortcomings of the methods of symbolic analysis. However, the RIM
method is not advantageous in every situation. It is rather more necessary to con-
sider several aspects of the computation and of the problem which is to solve.
We give a survey about some of these aspects as well as specific characteristics
of the investigation methods. Note hereby that the RIM method can only be ap-
plied for the computation of periodic points and stable manifolds. Therefore, the
comparison is limited to those two investigation tasks.

Performance and computational complexity For the computation of periodic
points of a period ≤ p, the computational complexity of the RIM method is
clearly advantageous to those of symbolic analysis, compare Remark 3.6
and Theorem 6.6. This is especially true in case a large number of boxes ns
belongs to a covering Cs.

The situation is different for the computation of stable manifolds. In that
case, the investigation of a symbolic image graph can be done in linear time,
see Remark 5.4. Although the RIM method has a linear time complexity as
well, the performance depends heavily on the number of function iterates.
Recall that the approximation of the stable manifold by the RIM method
requires the computation of a p,ε-limited set. In fact, the user-defined pa-
rameter p sets the number of function iterates which are applied for every
scan point in order to compute an outer covering. Assuming the same num-
ber of boxes and scan points in the covering of a symbolic image and for
a computation with the RIM method, the localization of the areas covering
the solution is up to p times slower if computed with the RIM method than
by symbolic analysis.

Clustering and memory consumption In several numerical case studies, see
Secs. 7.1.2 and 7.2.3, it has shown that clustering can be largely reduced
if the RIM method is applied instead of symbolic analysis. If clustering is
reduced, then also the number of boxes in a covering is reduced and, hence,
the memory consumption of the computation. However, clustering and its
effects were only studied empirically. There is no theoretical proof that
symbolic analysis is always affected by clustering to a larger extent than

8.2. COMPARISON OF APPROACHES 183

the RIM method.

Besides the effects of clustering, also other factors are advantageous for the
RIM method. In contrast to symbolic analysis, no graph is constructed for
the boxes of a covering and, hence, no memory resources are required for
such a graph. Furthermore, the RIM method does not require to analyze
any relations between the boxes of the covering. Consequently, parts of
the area of investigation M, i.e. boxes, can be investigated and subdivided
independently of each other. A small part M′ ⊂M can be investigated first.
Then all boxes belonging to M′ can be deleted, and the next sub-part M′′ of
M is investigated. As a result, the memory consumption of the RIM method
is scalable.

Precision of the computation Both of our methods are not implemented for a
rigorous computation. Hence, parts of the solution might get lost in the
computation. Empirically, it has shown that generally a larger number of
scan points are required for the RIM method in order to prevent the loss of
parts of the solution. On the other hand, the precision of the computation is
usually higher because the RIM method is less affected by clustering than
symbolic analysis.

Partly covered solutions For the methods of symbolic analysis, it is required
that all parts of the solution are in the area of investigation M. That means
only those periodic points in M can be detected for which all other points
of the same periodic orbit also lie in M. Similarly, only those parts of the
stable manifold can be detected for which forward iterates reach the saddle
x0 without leaving the area M. Furthermore, the saddle x0 of the stable
manifold must also belong to M. Note, however, that these limitations can
be compensated to some extent by use of higher function iterates.

In contrast, the RIM method is capable to compute such partly solutions
without any restrictions. Disconnected parts of the stable manifold as
well as periodic points belonging to partly covered periodic orbits can be
computed in M. It is also not necessary that the saddle x0 lies in M. These
features of the RIM method can be exploited in order to scale the memory
consumption and apply parallel computation.

However, there exists also a restriction for the RIM method. Namely, the
limitation to a p, ε̃-limited set for the approximation of the stable manifold.
Only those parts of the manifold can be computed for which forward iterates

184 CHAPTER 8. CONCLUSION

come close to the saddle x0 within p iterations. Such a limitation does not
exist for the methods of symbolic analysis.

Classes of dynamical systems Both methods can be applied to a wide range of
dynamical systems discrete in time. Noninvertible as well as piecewise-
smooth system functions can be investigated. A different scenario occurs
for dynamical systems continuous in time. We were not able to success-
fully apply the RIM method in combination with a shift operator for any of
the numerical examples we tested. Our empirical studies showed that the
computation of a p,ε-limited set is usually a too strict limitation. In con-
trast, these limitations do not exist for the computation of stable manifolds
by symbolic analysis.

Parallel computing Due to the fact that the RIM method is capable to compute
partly solutions without any restrictions, parallel computing is easily ap-
plicable. Sub-parts of the area of investigation M can be investigated inde-
pendently of each other and, hence, also distributed for a parallel computa-
tion. In case of the methods of symbolic analysis, the application of parallel
computing is more difficult. Indeed, further research would be required to
do so.

The comparison of our two approaches reveals that the evaluation is multi-faceted.
Depending on the scenario, the application of each of the two approaches can
advantageous.

8.2.2 Related Approaches

In this section we compare our proposed investigation methods with related ones
which are also based on the concepts of MPSD. One of them is the cell mapping
approach [Hsu87]. In comparison with this approach, a general advantage of
our methods is that only parts of the area of investigation M are investigated.
Other areas, which are not further investigated, are discarded. This allows a
significant reduction of memory space during the subdivision process, especially
if the target object covers only a small area in M, e.g. in case of periodic points.
In contrast, the cell mapping approach applies a multilevel refinement procedure
and investigates always the complete area M. This might lead to a higher memory
consumption. Note, however, that the strategy of refinement can be advantageous
if large areas of M belong to the solution, like, for instance if the domain of
attraction is computed. In that case, an adaptive subdivision scheme is still
required for a further improvement of our method, see also the notes in Sec. 8.3.

8.2. COMPARISON OF APPROACHES 185

Besides the computational features, there are also significant differences regard-
ing the field of investigation. Generally, the cell mapping approach decides for
each cell only if it is persistent, i.e. recurrent, or transient. By our proposed
methods, several more investigation tasks can be applied, like the construction of
filtrations, attractors and repellers or the localization of (un)stable and connecting
manifolds. Furthermore, the investigation can be focused on selected objects, like
specific attractors and their basins.

Another scheme of computation, which can probably be considered closest to
ours, is the set-oriented approach by Dellnitz et. al. [DJ02]. Similar concepts for
multilevel subdivision and discretization of the phase space are used. Also, some
of the investigations tasks like localization of the chain recurrent set and invariant
manifolds can be solved similarly as with the methods of symbolic analysis.
Nevertheless, there exist significant differences. Firstly, the computation of
stable and connecting manifolds, see [DH97, DJT01], requires the computation
of the function’s inverse which is not necessary in our approach. Secondly, the
implementation of the basic concepts differ, as reported in Sec. 3.2.4. We also
proposed tunings for the computation tasks, see Sec. 4.2, which are essential for
the solution of computational problems like clustering. Thirdly, also the field
of investigation differs. To our knowledge, no set-oriented approach for the
construction of attractors and filtrations, the computation of basins, and periodic
points was yet proposed. Also, the improvements of the RIM method to symbolic
analysis, like for instance the reduction of clustering, are to some extend also
improvements in comparison with the set-oriented methods.

Besides the set-oriented methods, also the computation of multivalued mappings,
see [Mis02], is a concept closely related with symbolic analysis. In this approach,
a symbolic image-like graph is constructed and investigated. Although some
of the graph algorithms are similar to the ones we proposed in this work, they
are used for other investigation tasks, mainly in the context of the Conley Index
Theory. However, the incorporation of these methods of graph investigation into
our framework of implementation might be a possible future task.

8.2.3 Other Investigation Methods
A significant feature of our proposed methods in comparison with others is the
wide field of application. All investigations can be applied if the underlying
system function is a continuous mapping. The methods of symbolic analysis
are furthermore also applicable for dynamical systems continuous in time in
case a shift operator can be defined. Additionally, the investigations are not

186 CHAPTER 8. CONCLUSION

limited by the dimension of either the underlying dynamical system nor of
the object which is investigated. Most of the other methods of investigation
are restricted by one of these criteria. Approaches which are based on the
Newton method like [NY97, DLKB01] in case of the detection of periodic
points require a smooth mapping and often also a good initial guess. Sev-
eral techniques for the computation of stable and connecting manifolds are
restricted to invertible systems because the inverse must be computed see, for
instance, [KO98a, YKY91, DJT01]. Additionally, also the application of a
Newton-based iteration scheme is required for such approaches if the inverse
is not available. Other approaches are limited by the dimension of the solution
as in case of [EKO05] which allows only the computation of 1-dimensional
stable manifolds. Several other methods are developed specifically for systems
continuous in time [KOD+05].

Although the methods of investigation we proposed in this work can be suc-
cessfully applied to a large number of dynamical systems, the use of other
investigation methods might still be advantageous. If they can be applied, meth-
ods which are not based on the concepts of MPSD often achieve better results
in terms of performance, memory consumption and precision. The application
of our techniques can in many cases be considered as only the first step of an
investigation which produces information necessary for the application of more
specialized and precise methods. Consider as an example the computation of
periodic orbits. The methods proposed in this work have proved to be adequate
for the localization of such orbits. But for a precise computation one should
consider to apply a Newton-based method using the results produced by our
methods as initial guesses.

Furthermore, although symbolic analysis and the RIM method are generally
applicable to a large class of dynamical systems, not every computation produces
appropriate results. Empirically, it has shown that computations might be
imprecise or fail due to memory overflow, often caused by clustering. In case the
dimension of the underlying dynamical system or of the object which is target
of the investigation is too large, the computation can as well fail because of the
lack of memory resources. Note also that an outer covering always covers parts
of the investigated area M which do not belong to the solution. Such parts can be
complete boxes, or even complete components of the chain recurrent set. Besides,
a computation can be imprecise in the sense that parts of the solution get lost
during the subdivision process or are not detected at all. Reason for this is that our
implementation is not capable to compute the image of a box rigorously. Instead,
such an image is approximated by a limited number of scan points. As a result,
the user of our investigation methods should be critical about the computations

8.3. OUTLOOK 187

and use other techniques to verify the results whenever possible.

8.3 Outlook
The fields of investigation which are subject of this work are still wide open.
Further research is not only required for MPSD in general but also in the areas of
symbolic analysis and the RIM method. Indeed, it is our intention to present not
only results of our research but also to raise new questions and propose directions
for further research. We give now a survey about those aspects which we consider
the most important for future research in the context of the methods of numerical
investigation proposed in this work.

Further investigation methods Other investigation methods than the ones we
proposed can be incorporated in the basic frameworks. In case of symbolic
analysis, such investigation methods were already proposed and partly
also implemented, like the computation of invariant sets [KMO03] or of
the Morse Spectrum [ORAP04]. Note that the Morse Spectrum is closely
related with Lyapunov exponents and can be used to verify hyperbolicity,
structural stability or controllability [Osi97, Osi04]. Additionally, investi-
gation methods based on related approaches like multivalued mappings and
set-oriented methods can be incorporated into our implementation.

Some tasks might also be approached by the RIM method. We believe
that there might be potential especially in the field of global optimiza-
tion [Han92]. Also, some further investigation tasks for dynamical systems,
like the computation of the domain of attraction, might be approached by
this method.

Besides that, the development of other conceptual frameworks like symbolic
analysis or the RIM method might be an area of further research.

Adaptive subdivision We have used a multilevel subdivision scheme for the
computation of outer coverings. In our approach, we considered that each
box of an outer covering is subdivided in a subdivision step. However,
depending on the investigation task, it might not be necessary to subdivide
each box. Some of the boxes might cover an area which belongs completely
to the solution. A subdivision of these boxes only increases memory con-
sumption but does not improve the precision or quality of the computation.
Hence, the subdivision should be avoided for such boxes. A subdivision

188 CHAPTER 8. CONCLUSION

scheme which subdivides only those boxes by which the quality of the
computation can be increased is denoted an adaptive subdivision scheme,
see also [DJ98, DJ02] for a similar approach.

In order to apply such an adaptive subdivision scheme it is required that the
solution of the investigation task is an object of the same dimension than
the boxes, i.e. the underlying dynamical system. Only in such a case it can
happen that the complete area covered by a box can belong to the solution.
Considering the investigation tasks which were subject of this work, only
one of them fulfills this condition. Namely, the computation of the domain
of attraction.

Other classes of dynamical systems The numerical methods we proposed can
be applied for the investigation of dynamical systems whose underlying
system function is a continuous mapping. Further research is required
in order to find out if and how these methods can be applied to other
classes of dynamical systems. For instance, numerical experiments have
shown that the methods can generally also be applied to systems based on
discontinuous mappings.

Also, the application on systems which are continuous time must be further
investigated. It is yet unclear if and how the RIM method can be applied on
these systems. Furthermore, we have seen that specific problems exist for
the application of the methods based on symbolic analysis.

Higher dimensional dynamical systems The numerical case studies presented
in this work were mainly restricted to two- and three-dimensional dynamical
systems. Reason for this is that computations become increasingly difficult
in higher dimensions. This is firstly due to the strong increase of memory
consumption and, secondly, to the difficulties in visualization of the results.
Note that a visualization is in many cases helpful or even required for the
verification and interpretation of the computed results. The solution of these
problems is a task of further investigation.

Rigorous computation We have already mentioned that no rigorous computa-
tion of an outer covering of a solution is provided by our approaches. Parts
of the solution might get lost during the computation. We argued that such
an approach has the advantage to reduce the effects of clustering signifi-
cantly. Nevertheless, the target should still be a rigorous computation of the
solution, either as an alternative method, or by a technique which is also
capable to reduce clustering.

8.3. OUTLOOK 189

Investigation of clustering We observed that the phenomenon of clustering is
one of the main obstacles for our computations. Although we proposed
methods which allow the reduction of the effects caused by clustering, fur-
ther research is also necessary in order to fully understand and control this
phenomenon.

Optimal parameter settings The computations depend on a large number of pa-
rameter settings, like the number and size of boxes, their subdivision prop-
erties, the number of scan points and function iterates, and several specific
parameters depending on the investigation method. The setting of these
parameters is to a large extent experimental and requires user experience.
Hereby, an optimal setting depends highly on the properties of the under-
lying dynamical system. Therefore, a promising area of research is the in-
vestigation of these parameter settings. A result of research could be some
general guidelines, or even structured methods for the analysis of dynamical
systems in order to compute such optimal settings.

Further tunings We have proposed several tunings for our computation meth-
ods. These tunings have proved to be useful tools in order to extend the
area of application for our methods. However, further possibilities of tun-
ing might be subject of research.

Parallelization We mentioned in Sec. 8.2.1 that parallelization can easily be ap-
plied to the RIM method. Parallelization might also be applied to at least
some methods of symbolic analysis. For instance, different components
of the chain recurrent sets could be computed independently of each other.
However, experimental implementations by us have revealed that several
problems occur in a practical computation which have to be considered and
solved.

Our experience has shown that the capabilities of the investigation methods stud-
ied in this work depend to a large part on the solution of those problems which
occur in the implementation and practical application of the theoretical concepts.
These problems were also the main subject of our research. However, this field of
research is still wide open, and we believe that there is a large, yet undiscovered,
potential for the application of the proposed methods as well as for the develop-
ment of new ones based on the concepts of MPSD.

190 CHAPTER 8. CONCLUSION

Appendix A

Zusammenfassung

Das Thema dieser Arbeit ist die numerische Untersuchung dynamischer Sys-
teme. Ziel ist die Entwicklung von Methoden zur Bestimmung topologischer
Strukturen die von besonderer Bedeutung für die globale Analyse sind. Sig-
nifikant für die vorgestellten Verfahren ist, dass diese kein a priori Wissen
über das zu untersuchende System voraussetzen und ihre Anwendung auch
keinen Beschränkungen in Bezug auf die Stabilität der untersuchten Strukturen
unterliegt. Zudem können die Verfahren auf ein breites Spektrum von Klassen
zeitdiskreter wie auch zeitkontinuierlicher dynamischer Systeme angewandt
werden.

A.1 Relevanz der Arbeit

Die Untersuchung nichtlinearer dynamischer Systeme anhand rein analytischer
Methoden ist aufgrund der Komplexität dieser Systeme nur in den seltensten
Fällen möglich. Daher stützt sich die moderne Theorie der dynamischen Sys-
teme zu einem großen Teil auf die Ergebnisse numerischer Untersuchungen.
Obwohl die Nutzung moderner Rechnersysteme einen erheblichen Beitrag zur
Erforschung dynamischer Systeme leistet, ist die Entwicklung und Anwendung
numerischer Verfahren ein bei weitem noch nicht abgeschlossenes Forschungs-
feld. Grund dafür ist dass das hauptsächlich benutzte Standardverfahren, die
Simulation einzelner Trajektorien, gewöhnlich nicht ausreicht um alle Merkmale
der Dynamik zu erfassen. Für eine vollständige globale Analyse ist die Simu-
lation nahezu aller Trajektorien des dynamischen Systems erforderlich. Dieser
Anspruch kann im Falle einer numerischen Simulation nicht erfüllt werden.
Es werden daher alternative Ansätze benötigt, die die globale Dynamik eines
Systems angemessen approximieren.

191

192 APPENDIX A. ZUSAMMENFASSUNG

Zwar existieren momentan schon einige solcher alternativer Methoden zur
numerischen Untersuchung dynamischer Systeme, doch können mit diesen bei
weitem nicht alle Anforderungen einer globalen Analyse abgedeckt werden.
Ein wesentliches Manko ist es, dass für die Anwendung vieler der Methoden
meist a priori Wissen über die zu untersuchende Struktur benötigt wird oder dass
Methoden nur solche Strukturen detektieren, die ein stabiles Langzeitverhalten
aufweisen. Eine Vielzahl von Methoden nutzen auch spezifische Charakteristika
gewisser Systemklassen. Diese Methoden arbeiten meist sehr effizient und genau,
doch ihre Anwendung ist auch auf diese speziellen Klassen beschränkt.

Die von uns vorgestellten Verfahren zielen darauf ab, die genannten Ein-
schränkungen zu überwinden. Die Verfahren erfordern kein a priori Wissen über
das zugrunde liegende System und sind auch nicht durch das Stabilitätsverhalten
der Lösung eingeschränkt. Außerdem sind die Verfahren grundsätzlich auf ein
breites Spektrum von Klassen dynamischer Systeme anwendbar. Dadurch eröffnet
sich die Möglichkeit einer umfangreicheren globale Analyse. Insbesondere wenn
noch kein Wissen über ein zu untersuchendes dynamisches System vorhanden ist,
kann die Anwendung der hier vorgestellten Methoden von Bedeutung sein.

A.2 Ziele und Vorgehensweise
Ziel der Arbeit ist die Erforschung von Methoden zur Lokalisierung diverser
topologischer Strukturen die von besonderer Bedeutung für die globale Analyse
dynamischer Systeme sind. Bei diesen Strukturen handelt es sich um periodische
Orbits, das Chain Recurrent Set, Repeller, Attraktoren und deren Einzugs-
gebiete sowie um stabile, instabile und verbindende Mannigfaltigkeiten. Für
einige der Untersuchungsmethoden existieren schon vergleichbare Ansätze. In
entsprechenden Fällen werden die Gründe aufgeführt, weshalb ein alternativer
Ansatz gewählt wurde. Meist besteht der Vorteil der hier eingeführten Methoden
in einem breiteren Anwendungsgebiet. In anderen Fällen sind unsere Verfahren
aber auch zuverlässiger oder effizienter.

Mehrere Entwicklungsstufen müssen bei der Umsetzung der Berechnungsmeth-
oden betrachtet werden. Zuerst werden die mathematischen Grundlagen
entworfen. Eine mathematisch korrekte Beschreibung der Methode wie auch die
Beweisführung über die Korrektheit der Berechnung werden hierbei ausgear-
beitet. Anschließend muss ein entsprechender Algorithmus zur Implementierung
der Methode formuliert werden. Auch die Korrektheit der Algorithmen muss
nachgewiesen werden. Die praktische Anwendung erfordert es zudem, dass die

A.3. VORGESTELLTE UNTERSUCHUNGSMETHODEN 193

Algorithmen nicht nur korrekt sondern auch effizient arbeiten. Aus diesem Grund
ist es notwendig, sowohl die Leistungsmerkmale der Methoden zu analysieren
als auch Details der Implementierung, wie z.B. die verwendeten Datenstrukturen,
zu betrachten. Im letzten Schritt werden dann numerische Fallstudien auf Basis
einer konkreten Implementierung erstellt. Die Gesamtheit dieser Schritte ist ein
interdisziplinäres Unterfangen, das sowohl Aspekte der Mathematik wie auch der
Informatik berücksichtigen muss.

Es ist unsere Absicht, im Rahmen dieser Arbeit eine Übersicht über alle aufge-
führten Entwicklungsstufen zu geben. Für einige der Methode wurden die math-
ematischen Grundlagen schon untersucht. In diesem Fall liegt der Fokus auf
der Entwicklung einer korrekten und effizienten Implementierung. Für andere
Methoden ist solch grundlegendes Wissen noch nicht bekannt, so dass auch
die mathematisch-theoretischen Hintergründe erforscht werden müssen. Als
wesentliches Resultat unserer Untersuchungen wurde eine Software entwickelt,
die die praktische Anwendung der eingeführten numerischen Verfahren erlaubt.
Diese Software ist Teil des nicht-kommerziellen Software-Pakets AnT [ALS+03],
welches zum Download zur Verfügung steht, siehe [ant05].

A.3 Vorgestellte Untersuchungsmethoden
Das grundlegende Verfahren auf dem alle vorgestellten Berechnungsmethoden
aufbauen ist die mehrstufige Phasenraumdiskretisierung. Hierbei werden zwei
Konzepte verknüpft – die Diskretisierung des Phasenraumes und eine sukzessive
Verfeinerung der diskretisierten Menge. Die Diskretisierung des Phasenraumes
bedeutet, dass ein Teil des Phasenraumes, der so genannte Untersuchungsbereich,
in eine endliche Anzahl von Mengen unterteilt wird. Anschließend werden anstatt
jedes einzelnen Zustandes im Phasenraum nur diese Mengen als Gegenstand
weiterer Analyse betrachtet. In Kombination mit dem zweiten angesprochenen
Konzept, der sukzessiven Verfeinerung, wird eine ursprünglich sehr grobe
Diskretisierung in mehreren Unterteilungsstufen zunehmend verfeinert. Im
Detail bedeutet dies, dass im diskretisierten Phasenraum diejenigen Mengen
ausgewählt werden, die einen Teil der Lösung enthalten. Diese Auswahl wird
als Lösungsmenge bezeichnet. Die in dieser Lösungsmenge enthaltenen Mengen
werden dann in kleinere Mengen unterteilt. Dieser Prozess wird solange wieder-
holt, bis eine Diskretisierung der Lösungsmenge von ausreichender Genauigkeit
erreicht wurde.

Beispiel A.1. Ein Beispiel für die mehrstufige Phasenraumdiskretisierung wird in
Fig. A.1 aufgezeigt. Die Lösung ist durch 3 Punkte markiert. Der Phasenraum

194 APPENDIX A. ZUSAMMENFASSUNG

•

•

•

•

•

•

•

•

•

Figure A.1: Beispiel einer mehrstufigen Phasenraumdiskretisierung.

ist anfänglich in 4 Boxen unterteilt. Diejenigen Boxen, die eine Lösung enthalten,
werden für eine weitere Unterteilung ausgewählt. Diese Boxen sind in Fig. A.1 mit
einem dicken Rand markiert. Nach 3 Unterteilungsschritten bildet die Lösungs-
menge schon eine relativ genaue Approximation der Lösung.

Auf der mehrstufigen Phasenraumdiskretisierung bauen die theoretischen
Konzepte der symbolischen Analyse auf. Die symbolische Analyse ist ein
strukturiertes Verfahren zur numerischen Bestimmung diverser Strukturen
eines dynamischen Systems ohne Einschränkung in Bezug auf die Stabilität
spezifischer invarianter Mengen. Die mathematischen Grundlagen wurden in
einer Reihe von Arbeiten von G. S. Osipenko [Osi83, Osi93, Osi94, Osi04]
vorgestellt. Das Verfahren ist nahe am Cell-to-Cell Mapping [Hsu87] und
verwandt mit der symbolischen Dynamik [Wal91]. Die grundsätzliche Idee ist die
Konstruktion eines gerichteten Graphen, der die Struktur des Phasenraumes für
das zu untersuchende dynamische System abbildet. Diesen Graphen bezeichnet
man als das Symbolic Image des betrachteten Systems und er kann als eine
Approximation des Phasenflusses interpretiert werden. Die symbolische Analyse
ist mit der mehrstufigen Phasenraumdiskretisierung dadurch verbunden, dass
jeder Knoten des Symbolic Image Graphen einer Menge des diskretisierten
Phasenraumes entspricht und dass eine sukzessive Verfeinerung durch eine
mehrstufige Unterteilung erreicht wird.

Beispiel A.2. Die Konstruktion des Symbolic Image Graphen wird anhand
eines Beispiels illustriert (Fig. A.2). Ein Untersuchungsbereich M ⊂ R2 wird
diskretisiert in Boxen C = {M(1), . . . ,M(12)}. Jede dieser Boxen entspricht
genau einem Knoten im Symbolic Image Graph, siehe Fig. A.2. Sei f die Funk-
tion, die das zu untersuchende dynamische System beschreibt. Die Fläche im
Zentrum von Fig. A.2(a) ist das Bild f(M(1)) der Box M(1). Dieses überdeckt die

A.3. VORGESTELLTE UNTERSUCHUNGSMETHODEN 195

1 2 3 4

5 6 7 8

9 10

11

12

(a)

1

5

9

2

6

10

3

7

11

4

8

12

(b)

Figure A.2: Konstruktion des Symbolic Image Graphen. (a) Die Box M(1)
ist durch einen dicken Rand markiert. Das Bild f(M(1)) wird durch die Fläche
im Zentrum repräsentiert. (b) Ausgehende Kanten des Symbolic Image Graph
gegeben durch die Box M(1).

Boxen {M(3),M(4),M(6),M(7),M(8),M(10),M(11)}. Diese Boxen sind grau
dargestellt. Der Symbolic Image Graph des dynamischen Systems besitzt dann
Kanten zwischen M(1) und allen überdeckten Boxen, wie in Fig. A.2(b) angezeigt.
Für die komplette Konstruktion des Symbolic Image Graphen müssen nun nicht
nur die ausgehenden Kanten für M(1) sondern für alle Boxen M(1) . . . M(12)
bestimmt werden.

Die Theorie der symbolischen Dynamik wurde detailliert beschrieben in
Osipenko [Osi04]. Allerdings sind die algorithmischen Grundlagen einer Im-
plementierung bisher nicht in ausreichendem Maße untersucht worden. In der
praktischen Anwendung hat sich aber gezeigt, dass eine effiziente Implemen-
tierung von entscheidender Bedeutung für die Anwendbarkeit der symbolischen
Analyse ist. Daher werden in dieser Arbeit effiziente Algorithmen und Daten-
strukturen für die Konstruktion des Symbolic Image Graphen vorgestellt. Die
Implementierung von Untersuchungsmethoden, die auf den Graphen angewendet
werden, erfordert neben der Entwicklung von Algorithmen auch eine Erweiterung
der bekannten theoretischen Konzepte. Im weiteren werden auch Ansätze zur
Modifikation des Basisverfahrens aufgezeigt anhand derer das praktische An-
wendungsgebiet der symbolischen Analyse stark ausgeweitet werden kann.

Obwohl die symbolische Analyse als die maßgebliche Motivation für diese
Arbeit betrachtet werden kann, waren unsere Untersuchungen nicht allein
auf dieses Verfahren beschränkt. In der praktischen Anwendung zeigten sich

196 APPENDIX A. ZUSAMMENFASSUNG

strukturelle Nachteile bezüglich der Lösung einiger Berechnungsprobleme.
Diese Nachteile konnten nicht im Rahmen der symbolischen Analyse behoben
werden. Dies führte zur Entwicklung der RIM Methode, die den zweiten Teil
dieser Arbeit beansprucht. Obwohl das Verfahren auch auf der mehrstufigen
Phasenraumdiskretisierung aufbaut, unterscheidet es sich doch grundlegend von
der symbolischen Analyse.

Im Kern befasst sich die RIM Methode mit der Lösung des Nullstellen-Problems.
Dies begründet sich dadurch, dass eine Reihe von Problemen der globalen
Analyse dynamischer Systeme auf solch ein Nullstellen-Problem reduziert
werden kann. Hierbei liegt der Fokus auf der Lösung des Problems im Falle einer
großen Anzahl koexistierender Nullstellen. Der am meisten verbreitete Ansatz für
die Lösung des Nullstellen-Problems ist die Anwendung eines auf der Newton-
Methode basierenden Iterations-Schemas. Dabei hat sich allerdings gezeigt, dass
solch ein Ansatz einige Nachteile aufweist, die im Kontext der in dieser Arbeit
vorgestellten Probleme als besonders kritisch anzusehen sind. Aus diesem Grund
wird mit der RIM Methode ein alternatives Verfahren vorgeschlagen, das nicht
auf der Newton-Methode basiert. Die grundlegende Idee der RIM Methode
ist es, das Bild der Menge einer Diskretisierung durch eine konvexe Hülle zu
approximieren. Numerische Fallstudien haben gezeigt dass die RIM Methode in
einer Reihe von nicht-trivialen Szenarien bessere Ergebnisse liefert als alternative
Verfahren. Wir stellen zwei Anwendungsmöglichkeiten der RIM Methode für die
Untersuchung dynamischer Systeme vor. Zum Einen die Detektion periodischer
Punkte. Zum Anderen die Berechnung stabiler Mannigfaltigkeiten.

Beispiel A.3. Die grundlegende Idee der RIM Methode wird anhand eines
Beispiels erläutert. Sei f die Funktion, die das zu untersuchende dynamische Sys-
tem beschreibt. Die Mengen M(i) sind eine Diskretisierung des Phasenraumes.
Das Bild f(M(i)) einer Menge M(i) ist in Fig. A.3(a) illustriert. Bei der RIM
Methode wird dieses Bild durch eine konvexe Hülle approximiert wie in Fig. A.3(b)
dargestellt. Eine Anzahl von Punkten in M(i) wird ausgewählt. Anschließend wird
eine konvexe Hülle für das Bild dieser Punkte berechnet. Diese konvexe Hülle ap-
proximiert f(M(i)).

Es soll angemerkt werden, dass einige weitere Verfahren existieren, die mit
den von uns vorgestellten verwandt sind. In Eidenschink [Eid95] und Mis-
chaikow [Mis02] wird ein Symbolic-Image-ähnlicher Graph, die so genannte
mehrwertige Abbildung, konstruiert. Auch die mengenorientierten Methoden
von Dellnitz, Hohmann und Junge [DJ02] benutzen ein ähnliches Schema
wie die symbolische Dynamik und wenden eine leicht abgewandelte Unter-
teilungsmethode an. Hruska [Hru05] verwendet Box Chain Construction für

A.4. PRAKTISCHER NUTZEN 197

M(i)

f(M(i))

(a)

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � � �

◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦

•
• •

•

•
•

•

•

•

(b)

Figure A.3: Approximation des Bildes f(M(i)) einer Menge M(i). (a) Die Menge
M(i) und deren Bild f(M(i)). (b) Eine Auswahl von Punkten in M(i) ist mit
◦ markiert. Das Bild dieser Punkte ist mit • markiert. Die konvexe Hülle ist
schraffiert dargestellt.

die Erstellung eines gerichteten Graphen mit dem Ziel, eine expandierende
bzw. hyperbolische Metrik für dynamische Systeme zu berechnen. Eine genaue
Abgrenzung dieser Methoden zu den von uns vorgestellten wird im Rahmen
dieser Arbeit erörtert.

A.4 Praktischer Nutzen
Das Thema dieser Arbeit ist die Untersuchung dynamischer Prozesse. Bei
solchen dynamischen bzw. zeitabhängigen Prozessen handelt es sich um grund-
sätzliche Phänomene, die in vielen Gebieten der wissenschaftlichen Forschung
von Bedeutung sind. Sei es die Bewegung eines Pendels in der Physik, die
Evolution einer Spezies in der Biologie oder Wechselkursschwankungen in der
Wirtschaft – all dies sind zeitabhängige Prozesse. Diese Prozesse können mit den
Mitteln der Mathematik beschrieben werden. Die adäquaten Werkzeuge dafür
sind dynamische Systeme, die mathematischen Modelle zeitabhängiger Prozesse.
Oftmals wird ein großer Aufwand betrieben, um die mathematische Repräsen-
tation von technischen und natürlichen Prozessen zu erhalten. Dies beschränkt
sich nicht nur auf die klassischen Anwendungsfelder dynamischer Systeme, den
Natur- und Ingenieurswissenschaften [AFH94], sondern auch auf andere Gebiete
wie die Medizin, Soziologie, Geographie oder die Wirtschaftswissenschaften.

198 APPENDIX A. ZUSAMMENFASSUNG

Grund dafür ist, dass ein dynamischer Prozess besser kontrolliert und manipuliert
sowie sein Verhalten vorhergesagt werden kann, wenn er durch ein dynamisches
System modelliert wurde. Die Analyse des mathematischen Modells führt zu
einem besseren Verständnis der zugrunde liegenden Prozesse und ermöglicht die
Untersuchung des Verhaltens anhand numerischer Simulation. Die Theorie der
dynamischen Systeme ist hierbei der Zweig der Mathematik der sich allgemein
mit der Untersuchung dynamischer Systeme beschäftigt und daher von zentraler
Bedeutung für das Verständnis dynamischer Prozesse ist.

Die im Rahmen dieser Arbeit vorgestellten numerischen Verfahren dienen nicht
nur der spezifischen numerischen Untersuchung einzelner dynamischer Systeme,
sondern leisten generell einen wichtigen Beitrag zur Forschung im Gebiet der
Theorie nichtlinearer dynamischer Systeme. Dies begründet sich dadurch, dass
der Fortschritt in diesem Forschungsfeld zu einem großen Teil auf der Beobach-
tung numerischer Phänomene beruht. Die Entdeckung, Verifikation wie auch
Analyse derartiger Phänomene ist auf die Anwendung solcher numerischer Ver-
fahren angewiesen, wie sie in dieser Abhandlung untersucht werden. Die
vorgestellten Fallstudien sollen dies verdeutlichen und als konkrete Beispiele
möglicher Anwendungsfelder dienen. Die den verwendeten dynamischen Syste-
men zugrunde liegenden mathematischen Modelle sind hierbei unterschiedlichen
Gebieten der wissenschaftlichen Forschung entnommen, insbesondere der Ge-
ographie, Biologie, Meteorologie und der Physik. Dadurch soll die Relevanz der
vorgestellten Methoden für die Wissenschaft im Allgemeinen hervorgehoben wer-
den.

Bibliography

[ACE+87] D. Auerbach, P. Cvitanović, J.-P. Eckmann, G. H. Gunaratne, and
I. Procaccia. Exploring chaotic motion through periodic orbits. Phys.
Rev. Lett., 58:2387–2389, 1987.

[AFH94] J. Argyris, G. Faust, and M. Haase. An Exploration of Chaos: An
Introduction for Natural Scientists and Engineers. Elsevier Science
Ltd., 1994.

[AFL+06] V. Avrutin, D. Fundinger, P. Levi, G. S. Osipenko, and M. Schanz.
Investigation of dynamical systems using symbolic images: Efficient
implementation and applications. International Journal of Bifurca-
tion and Chaos, 16(12), 2006. To be published.

[AG90] E. L. Allgower and K. Georg. Numerical Continuation Methods.
Springer, 1990.

[AH83] G. Alefeld and J. Herzberger. Introduction to Interval Computations.
Academic Press, 1983.

[AHU87] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1987.

[Ale76] V. M. Alekseev. Symbolic Dynamics. 11th Mathematical School,
Kiev, 1976. In Russian.

[ALS+03] V. Avrutin, R. Lammert, M. Schanz, G. Wackenhut, and G. S. Os-
ipenko. On the software package AnT 4.669 for the investigation
of dynamical systems. In G. S. Osipenko, editor, Fourth Interna-
tional Conference on Tools for Mathematical Modelling, volume 9,
pages 24–35. St. Petersburg State Polytechnic University, Russia,
June 2003.

[Ano67] D. V. Anosov. Geodesic flow on closed Riemannian manifold of
negative curvature. Trudy Mathematical Steclov Institute, 1967. In
Russian.

199

200 BIBLIOGRAPHY

[ant05] Home page of the AnT 4.669 project, 2005. Available at http:
//www.AnT4669.de.

[BDH96] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469–483,
1996.

[Bey90] W.-J. Beyn. The numerical computation of connecting orbits in dy-
namical systems. IMA Journal of Numerical Analysis, 9:379–405,
1990.

[Bow82] R. Bowen. Symbolic dynamics. Ann. Math. Soc., 8, 1982.

[BS70] N. P. Bathia and G. P. Szego. Stability theory of dynamical systems.
Springer, New York, 1970.

[BW89] O. Biham and W. Wenzel. Characterization of unstable periodic or-
bits in chaotic attractors and repellers. Phys. Rev. Lett., 63:819, 1989.

[CD05] J. J. Crofts and R. L. Davidchack. Efficient detection of periodic
orbits in chaotic systems by stabilising transformations, 2005. Avail-
able at http://arxiv.org/abs/nlin/0502013.

[CE71] C. Conley and R. Easton. Isolated invariant set and isolating blocks.
Trans. AMS, 158:35–61, 1971.

[CLR00] T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms.
The MIT electrical engineering and computer science series. MIT
Press, 2000.

[CMPY78] S. N. Chow, J. Mallet-Paret, and J. A. Yorke. Finding zero’s of maps.
Math. Comp., 32:887–899, 1978.

[Con78] C. Conley. Isolated invariant set and the morse index. CBMS Re-
gional Conference Series, 38, 1978.

[Cvi91] P. Cvitanović. Periodic orbits as the skeleton of classical and quan-
tum chaos. Physica D, 51, 1991.

[Cvi92] P. Cvitanović. Focus issue on periodic orbit theory. Chaos, 2, 1992.

[DF89] E. J. Doedel and M. J. Friedman. Numerical computation of hete-
roclinic orbits. Journal of Computational and Applied Mathematics,
26:155–170, 1989.

http://www.AnT4669.de
http://www.AnT4669.de
http://arxiv.org/abs/nlin/0502013

BIBLIOGRAPHY 201

[DFJ01] M. Dellnitz, G. Froyland, and O. Junge. The algorithms behind
GAIO – Set oriented numerical methods for dynamical systems. In
B. Fiedler, editor, Ergodic Theories, Analysis, and Efficient Simula-
tion of Dynamical Systems, pages 145–175. Springer, 2001.

[DH96] M. Dellnitz and A. Hohmann. The computation of unstable mani-
folds using subdivision and continuation. In H. W. Broer, S. A. van
Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Sys-
tems and Chaos, volume 19, pages 449–459. Birkhäuser, 1996.

[DH97] M. Dellnitz and A. Hohmann. A subdivision algorithm for the com-
putation of unstable manifolds and global attractors. Numerische
Mathematik, 75:293–317, 1997.

[Dij59] W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math., 1:269–271, 1959.

[DJ98] M. Dellnitz and O. Junge. An adaptive subdivision technique for
the approximation of attractors and invariant measures. Comput. Vis.
Sci., 1:63–68, 1998.

[DJ02] M. Dellnitz and O. Junge. Set oriented numerical methods for dy-
namical systems. In G. Iooss B. Fiedler and N. Kopell, editors,
Handbook of Dynamical Systems II: Towards Applications, World
Scientific, pages 221–264, 2002.

[DJT01] M. Dellnitz, O. Junge, and B. Thiere. The numerical detection of
connecting orbits. Discrete and Continuous Dynamical Systems –
Series B, 1(1):125–135, 2001.

[DKK91a] E. J. Doedel, H. B. Keller, and J.P. Kernévez. Numerical analysis
and control of bifurcation problems: I. Int. J. Bifurcation and Chaos,
1(3):493–520, 1991.

[DKK91b] E.J. Doedel, H.B. Keller, and J.P. Kernévez. Numerical analysis and
control of bifurcation problems: II. Int. J. Bifurcation and Chaos,
1(4):745–772, 1991.

[DKP95] P. Diamond, P. Kloeden, and A. Pokrovskii. Cycles of spatial dis-
cretizations of shadowing dynamical systems. Math. Nachr., 171:95–
110, 1995.

[DLKB01] R. L. Davidchack, Y.-C. Lai, A. Klebanoff, and E. M. Bolt. Towards
complete detection of unstable periodic orbits in chaotic. Phys. Lett.
A, 287(1-2):99–104, 2001.

202 BIBLIOGRAPHY

[DSS02] M. Dellnitz, O. Schütze, and S. Sertl. Finding zeros by multi-
level subdivision techniques. IMA Journal of Numerical Analysis,
2(22):167–185, 2002.

[Eid95] M. Eidenschink. Exploring Global Dynamics: A Numerical Algo-
rithm Based on the Conley Index Theory. PhD thesis, Georgia Insti-
tute of Technology, 1995.

[EKO05] J. P. England, B. Krauskopf, and H. M. Osinga. Computing one-
dimensional stable manifolds and stable sets of planar maps with-
out the inverse. SIAM J. Applied Dynamical Systems, 3(2):161–190,
2005.

[Fei78] M. J. Feigenbaum. Quantitative universality for a class of nonlinear
transformations. J. Stat. Phys., 19(1):25–53, 1978.

[Fei79] M. J. Feigenbaum. The universal metric properties of nonlinear trans-
formations. J. Stat. Phys., 21(6):669–707, 1979.

[Fei83] M. J. Feigenbaum. Universal behavior in nonlinear systems. Physica
D, 7:16–39, 1983.

[Flo62] R. W. Floyd. Algorithm 97 (Shortest Path). Communications of the
ACM, 5(6):345, 1962.

[FO03] D. Fundinger and G. S. Osipenko. Computation of attractors and
their basins. In G. Osipenko, editor, Fourth International Conference
on Tools for Mathematical Modelling, volume 9, pages 193–207. St.
Petersburg State Polytechnic University, Russia, June 2003.

[Fun05] D. Fundinger. Investigating dynamics by symbolic analysis: Tun-
ings for an efficient computation of the symbolic image. Differential
Equations and Control Processes, (3):16–37, 2005.

[GH83] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields. Springer, N.Y., 1983.

[GK99] R. Guder and E. Kreuzer. Basin boundaries and robustness of non-
linear dynamic systems. Archive of Applied Mechanics, 69:569–583,
1999.

[Gol92] N. Goldenfeld. Lectures on phase transitions and the renormaliza-
tion group. Perseus Books, 1992.

BIBLIOGRAPHY 203

[GOY88] C. Grebogi, E. Ott, and J. A. Yorke. Unstable periodic orbits and the
dimension of multifractal chaotic attractors. Phys Rev A, 37:1711–
1724, 1988.

[GSE93] M. Gyllenberg, G. Söderbacka, and S. Ericsson. Does migration sta-
bilize local population? Analysis of a discrete metapopulation model.
Math. Biosciences, 118:25–49, 1993.

[GT77] S. Grossmann and S. Thomae. Invariant distributions and station-
ary correlation functions of one-dimentional discrete processes. Z.
Naturforsch., 32(a), 1977.

[GW93] J. Guckenheimer and P. Worfolk. Dynamical systems: Some compu-
tational problems. In D. Schlomiuk, editor, Bifurcations and Periodic
Orbits of Vector Fields, pages 241–277. Kluwer Academic Publish-
ers, 1993.

[H7́6] M. Hénon. A two-dimensional mapping with a strange attractor.
Commun. Math. Phys., 50:69–77, 1976.

[Han92] E. Hansen. Global Optimization Using Interval Analysis. Marcel
Dekker, 1992.

[Han95] K.T. Hansen. Alternative method to find orbits in chaotic systems.
Phys. Rev. E, 52:2388–2391, 1995.

[Has03] R. Haschke. Bifurcations in Discrete-Time Neural Networks – Con-
trolling Complex Network Behaviour with Inputs. PhD thesis, Uni-
versity of Bielefeld, 2003.

[Hen03] M. E. Henderson. Computing invariant manifolds by integrating fat
trajectories. Technical Report RC22944, IBM Research, 2003.

[HN99] W. Huyer and A. Neumaier. Global optimization by multilevel coor-
dinate search. J. Global Optim., 14:331–355, 1999.

[HOV95] A. J. Homburg, H. M. Osinga, and G. Vegter. On the computation of
invariant manifolds of fixed points. Z. Angew. Math. Phys., 46:171–
187, 1995.

[Hru02] S. L. Hruska. On the numerical construction of hyperbolic struc-
tures for complex dynamical systems. PhD thesis, Cornell University,
2002.

204 BIBLIOGRAPHY

[Hru05] S. L. Hruska. Constructing an expanding metric for dynamical sys-
tems in one complex variable. Nonlinearity, 18:81–100, 2005.

[Hsu80] C. S. Hsu. A theory of Cell-to-Cell mapping dynamical systems.
Journal of Applied Mechanics, 47:931–939, 1980.

[Hsu87] C. S. Hsu. Cell-to-Cell Mappings. Springer, N.Y., 1987.

[HT90] R. Horst and H. Tuy. Global Optimization. Springer, Berlin, Ger-
many, 1990.

[HT04] W. Huang and D. K. Tafti. A parallel adaptive mesh refinement al-
gorithm for solving nonlinear dynamical systems. The International
Journal of High Performance Computing Applications, 18(2):171–
181, 2004.

[Hun98] F. Hunt. Unique ergodicity and the approximation of attractors
and their invariant measures using Ulam’s method. Nonlinearity,
11(2):307–317, 1998.

[Ike79] K. Ikeda. Multiple-valued stationary state and its instability of the
transmitted light by a ring cavity system. Opt. Commun., 30:257–
261, 1979.

[Jun99] O. Junge. Mengenorientierte Methoden zur numerischen Analyse dy-
namischer Systeme. PhD thesis, University of Paderbonn, 1999.

[Jun00] O. Junge. Rigorous discretization of subdivision techniques. In Pro-
ceedings of Equadiff ’99, Berlin, 2000.

[Jun03] O. Junge. Computing specific isolating neighborhoods. In Progress
in analysis, volume I,II, Berlin, 2003. World Sci. Publishing.

[Kan93] K. Kaneko, editor. Theory and Applications of Coupled Map Lat-
tices,. Wiley, New York, 1993.

[kea] Home page of the GLOBSOL project. Available at http://www.
mscs.mu.edu/~globsol/.

[Kea87] R. B. Kearfott. Some tests of generalized bisection. ACM Trans.
Math. Softw., 13(3):197–220, 1987.

[Kea96] R. B. Kearfott. Rigorous Global Search: Continuous Problems.
Kluwer, 1996.

http://www.mscs.mu.edu/~globsol/
http://www.mscs.mu.edu/~globsol/

BIBLIOGRAPHY 205

[Kea97] R. B. Kearfott. Empirical evaluation of innovations in interval branch
and bound algorithms for nonlinear algebraic systems. SIAM Journal
on Scientific Computing, 18(2):574–594, 1997.

[Kle66] V. Klee. Convex polytopes and linear programming. In Proc. IBM
Sci. Comput. Symp.: Combinatorial Problems, pages 123–158, 1966.

[KMO03] S. Y. Kobjakov, D. Y. Matiassevitch, and G. S. Osipenko. Loca-
tion of the invariant set. In G. Osipenko, editor, Fourth International
Conference on Tools for Mathematical Modelling, volume 9, pages
300–307. St. Petersburg State Polytechnic University, Russia, June
2003.

[KN90] R. B. Kearfott and M. Novoa. Algorithm 681: Intbis, a portable inter-
val newton/bisection package. ACM Trans. Math. Softw., 16(2):152–
157, 1990.

[KO98a] B. Krauskopf and H. M. Osinga. Globalizing two-dimensional unsta-
ble manifolds of maps. Int. J. Bifurcation and Chaos, 8(3):483–503,
1998.

[KO98b] B. Krauskopf and H. M. Osinga. Growing 1D and quasi-2D unstable
manifolds of maps. J. Comput. Phys., 146:406–419, 1998.

[KO03] B. Krauskopf and H. M. Osinga. Computing geodesic level sets on
global (un)stable manifolds of vector fields. SIAM J. Appl. Dyn. Sys.,
4(2):546–569, 2003.

[KOD+05] B. Krauskopf, H. M. Osinga, E. J. Doedel, M. E. Henderson, J. Guck-
enheimer, A. Vladimirsky, M. Dellnitz, and O. Junge. A survey of
methods for computing (un)stable manifolds of vector fields. Int. J.
Bifurcation and Chaos, 15(3):763–791, 2005.

[Les45] P. Leslie. On the use of matrices in population mathematics. Bio-
metrika, 33:183–212, 1945.

[Lin02] T. Lindström. On the dynamics of discrete food chains: Low- and
high-frequency behavior and optimality of chaos. Journal of Mathe-
matical Biology, 45:396–418, 2002.

[LM95] D. Lind and B. Marcus. An introduction to symbolic dynamics and
coding. New York, 1995.

[Lor63] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130–
141, 1963.

206 BIBLIOGRAPHY

[LR03] S. Lenci and G. Rega. Optimal control of nonregular dynamics in a
duffing oscillator. Nonlinear Dynamics, 33:71–86, 2003.

[Man82] B. B. Mandelbrot. The fractal geometry of nature. Freeman, San
Francisco, 1982.

[May76] R. M. May. Simple mathematical models with very complicated dy-
namics. Nature, 261:459–467, 1976.

[MGBC96] C. Mira, L. Gardini, A. Barugola, and J. C. Cathala. Chaotic Dy-
namics in Two-Dimensional Noninvertible Maps, volume 20 of World
Scientific Ser. Nonlinear Sci. Ser A: Monographs and Treaties. World
Scientific, River Edge, NJ, 1996.

[Mis02] K. Mischaikow. Topological techniques for efficient rigorous com-
putations in dynamics. Acta Numerica, 2002.

[MM02] K. Mischaikow and M. Mrozek. Conley index theory. In B. Fiedler,
editor, Handbook of Dynamical Systems II: Towards Applications.
North-Holland, 2002.

[MY00] J. R. Miller and J. A. Yorke. Finding all periodic orbits of maps using
newton methods: Sizes of basins. Physica D, 135:195–211, 2000.

[nag] Home page of the NAG library. Available at http://www.nag.
com.

[Nit71] Z. Nitecki. Differential Dynamics. M.I.T Press, Cambridge, 1971.

[NS75] Z. Nitecki and M. Shub. Filtrations, decompositions, and explosions.
Amer. J. of Math., 97(4):1029–1047, 1975.

[NW98] C.-H. Nien and F. J. Wicklin. An algoritnm for the computation
of preimages in noninvertible mappings. Int. J. of Bifurcation and
Chaos, 8(2):415–422, 1998.

[NY89] H. E. Nusse and J. A. Yorke. A procedure for finding numerical
trajectories in chaotic saddles. Phys. D, 36:137–156, 1989.

[NY97] H. E. Nusse and J. A. Yorke. Dynamics: Numerical Explorations.
Springer-Verlag, 1997.

[OC99] G. S. Osipenko and S. Campbell. Applied symbolic dynamics: At-
tractors and filtrations. Discrete and Continous Dynamical Systems,
5(1, 2):43–60, 1999.

http://www.nag.com
http://www.nag.com

BIBLIOGRAPHY 207

[ORAP04] G. S. Osipenko, J. V. Romanovsky, N. B. Ampilova, and E. I. Pe-
trenko. Computation of the morse spectrum. Journal of Mathemati-
cal Sciences, 120(2):1155–1166, 2004.

[Osi83] G. S. Osipenko. On a symbolic image of dynamical system. In-
teruniv. Collect. sci. Works, pages 101–105, 1983. In Russian.

[Osi93] G. S. Osipenko. The periodic points and symbolic dynamics. Prog.
Nonlinear Differ. Equ. Appl., 12:261–267, 1993.

[Osi94] G. S. Osipenko. Localization of the chain recurrent set by symbolic
dynamics methods. In Proceedings of Dynamics Systems and Appli-
cations, volume 1, pages 227–282. Dynamic Publishers Inc., 1994.

[Osi97] G. S. Osipenko. Morse spectrum of dynamical systems and symbolic
dynamics. Proceedings of the 15th IMACS World Congress, 1:25–30,
1997.

[Osi99] G. S. Osipenko. Construction of attractors and filtrations. Banach
center publication, 47:173–192, 1999.

[Osi00] G. S. Osipenko. Spectrum of a dynamical system and applied sym-
bolic dynamics. Journal of Mathematical Analysis and Applications,
252(2):587–616, 2000.

[Osi04] G. S. Osipenko. Lectures on symbolic analysis of dynamical systems.
St. Petersburg State Polytechnic University, 2004.

[PC89] T. S. Parker and L. O. Chua. Practical Numerical Algorithms for
Chaotic Systems. Springer-Verlag, Berlin, 1989.

[Pil99] P. Pilarczyk. Computer assisted method for proving existence of pe-
riodic orbits. TMNA, 13(2):365–377, 1999.

[Pin96] J. D. Pintér. Global Optimization in Action. Kluwer, Dordrecht,
1996.

[RT71] D. Ruelle and F. Takens. On the nature of turbulence. Communica-
tions of Mathematical Physics, 20:167–192, 1971.

[SD97] P. Schmelcher and F. K. Diakonos. Detecting unstable periodic orbits
of chaotic dynamical systems. Phys. Rev. Lett., 78:4733–4736, 1997.

[Sed93] R. Sedgewick. Algorithms in Modula 3. Addison-Wesley, Massa-
chusetts, 1993.

208 BIBLIOGRAPHY

[Shu87] M. Shub. Global stability of Dynamical Systems. Springer-Verlag,
1987.

[Sim89] C. Simó. On the analytical and numerical approximation of invariant
manifolds. In D. Benest and C. Froeschlé, editors, Les Méthodes
Modernes de la Mécanique Céleste. Goutelas, 1989.

[Spa73] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors. Springer, N.Y., 1973.

[Tar72] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J.
Comput, 1:146–160, 1972.

[Tar91] R. Tarjan. Data structures and network algorithms. Society for In-
dustrial and Applied Mathematics. Philadelphia, Pa., 1991.

[TG88] B. H. Tongue and K. Gu. Interpolated cell mapping of dynamical
systems. ASME Journal of Applied Mechanics, 55:461–466, 1988.

[UW04] I. Ugarcovici and H. Weiss. Chaotic systems of a nonlinearity density
dependent population model. Nonlinearity, 17:1689–1711, 2004.

[VH94] J. Verschelde and A. Haegemans. Homotopies for solving polyno-
mial systems within a bounded domain. Theoretical Comp. Sci. A,
133(3):165–185, 1994.

[Wal91] P. Walters, editor. Symbolic dynamics and its applications. American
Mathematical Society, July 1991.

[YK89] X. Ying and N. Katz. A simple reliable solver for all the roots of a
nonlinear function in a given domain. Computing, 41:317–333, 1989.

[YKY91] Z. You, E. J. Kostelich, and J. A. Yorke. Calculating stable and un-
stable manifolds. Internat. J. Bifur. Chaos Appl. Sci. Eng., 1(3):605–
623, 1991.

[Zie95] G. M. Ziegler. Lectures on Polytopes. Springer-Verlag, 1995.

Glossary

Λ an attractor, 20
Λ∗ a repeller, 21
ρ(x,y) a ρ-norm distance between x and y, 13
ζ {Hk}, 32
ϒp a subdivision rule for the RIM method, 131

AP(p) set of periodic points with a period ≤ p, 15

C a finite covering of an area M or M by closed
sets, 30

C(i) the covering of boxes M(j) ∈C whose intersec-
tions with f(M(i)) are not empty, 30

ci the cell of a graph G which matches to a box M(i)
of C, 30

c̃i a cell of the dag graph representation of G, 92
c∞ sink for all edges which leave a covering C, 32
CL(Hp) the connections between Hp and its larger sets

L(Hp), 103
CS(Hp,Hq) the connections between a set Hp and distinct sets

Hq ∈ L(Hp), 103

D(L) the basin of an attractor L on G, 90
d(ci) the corresponding dag cell c̃k for a cell ci, 93
DG the dag graph representation of G, 92
Du(L) the upper bound of the basin of an attractor L on

G, 95
DV (G) the set of the dag cells corresponding to non-

recurrent cells in G, 93
DV (ζ) the set of those dag cells representing a set of

equivalent recurrent cells, 93

209

210 GLOSSARY

E(c̃i) adjacency list of all target cells of c̃i, 93
En(L) entry of an attractor L on G, 90
Ex(L) exit of an attractor L on G, 90

f a continuous mapping which generates the dy-
namical system in focus, 12

f(M(i)) the image of a box M(i), 30

G a symbolic image, 30

Hk a subset of equivalent recurrent cells in RV (G),
31

Hp transformation of f so that the roots of Hp are the
p-periodic points of f, 154

I unique multi-index which defines the position of
a box M(I) in M, 35

IM(i), IM the image f (M(i)) of a box M(i), 133

L an attractor on a symbolic image G, 90
L(Hp) the larger sets of Hp, 103
L(Sk) the set L(Sk) =

S
H j∈Sk

L(H j), 108

M C∞-smooth manifold which is a compact in Rd

and f : M 7→M , 11
M the area of investigation, M ⊆M , 30
M(i) a box of a covering C, 30
M(∞) the area M \C, 32

Pε an ε-reduced set of IM, 134
P(c̃i) adjacency list of all parent cells of c̃i, 93
P(p) set of periodic points with a period p, 15
P̂(p) set of periodic points with a least period p, 15

R(Cs) a subdivision criteria for the RIM method, 131
RO f the roots of f, 130
RV (G) the subset of recurrent cells RV (G)⊆V (G), 31

Cs,Gs, Is, . . . a covering, symbolic image, index, etc. at subdi-
vision level s, 42

GLOSSARY 211

S(I) the scan points of a box M(I) belonging to a sym-
bolic image, 37

Sk recursively build selection of recurrent sets Hk ⊂
ζ, 108

S̃k recursively build selection of recurrent sets Hk ⊂
ζ, 109

SV (G) a selection of cells SV (G)⊆V (G) considered for
subdivision, 42

T a time space, where T ∈ {Z,Z+,R,R+} , 11

V (G) the set of cells on G, 30

W s(Λ) the basin of an attractor Λ, 20
W s(x0) the stable manifold of a saddle x0, 24
W s

p(x0) p-limited stable set of a saddle x0, 165
W s

p,ε̃(x0) p, ε̃-limited stable set of a saddle x0, 165
W u(x0) the unstable manifold of a saddle x0, 24

ZT a discrete time space, where ZT ∈ {Z,Z+} , 12

Index

ε-reduced set, 134, 142
p, ε̃-limited set, 165

Admissible path, 31
Area of investigation, 5, 30, 34, 154
Attractor, 20

attractor-repeller pair, 21
chaotic, 20
on symbolic image, 90
strange, 20

Basin, 20
inverse, 105
lower bound, 95
on symbolic image, 90
upper bound, 95

Bounding box
axis-aligned, 167

Cell, 30
entering, 107
equivalent, 31, 46
incoming, 107
leaving, 107
recurrent, 31, 44

Chain recurrent set, 17, 32, 45, 57, 62
component, 27, 32

Clustering, 58, 78, 121, 125, 130, 149,
158, 159, 161

Convex hull, 132
Covering, 30
Covering hull, 137

Dag graph, 92
Direct methods, 3

Dynamical system, 11

Equivalent recurrent cell, see Cell
Error tolerance, 71

Filtration, 26
fine, 27
on symbolic image, 102

Finite path, 31
Fixed point, 15

hyperbolic, see Hyperbolic point
Function iterates, see Higher iterated

function

Global stable set, 24

Higher iterated function, 73
Hyperbolic point, 22

Indirect methods, see Direct methods
Invariant set, 13

on symbolic image, 90
stable, see Stability

Iteration
backward, 13
forward, 13

Larger set(s), 103
Limit cycle, 18, 70, 81
Limit set

α-limit set, 20
ω-limit set, 19

Manifold
connecting, 27, 114, 126
global stable, 23, 165

212

INDEX 213

global unstable, 23
local stable, 22
local unstable, 22
stable, 22, 113, 126, 165
unstable, 22, 113, 126

MPSD, 5
Multilevel phase space discretization,

see MPSD
Multilevel subdivision, see Subdivision
Multivalued mapping, 7, 30

Orbit, 13
ε-orbit, 17, 31
pseudo-orbit, see ε-orbit

Order relation, 102, 104
Outer covering, 6, 54

Periodic
(p,ε)-periodic, 17
p-periodic, 15
least period, 15, 154
orbit, 15
points, 15, 46, 57, 63, 154

Periodic path, 31
Phase space discretization, 5, 33, 131

Recurrent cell, see Cell
Repeller, 21
Reverse breadth-first search, 95
RIM, 8, 129
Root finding, 8, 16, 129, 147, 153

Scan point, 37, 71, 73, 142
Set-oriented methods, 7, 29
Shift operator, 12, 68
Shortest paths problem, 48
Stability, 14
Stable set, see Stability

p-limited, 165
Strongly connected components, 32, 45
Subdivision

multilevel, 5, 32, 42, 91, 99

Subdivision criteria, 131
Subdivision rule, 131
Symbolic analysis, 7, 29
Symbolic image, 7, 29

Time-t map, 68
Trajectory, 13

asymptotic phase, 20
quasiperiodic, 17, 87
semi-trajectory, 13
transient phase, 20

	Introduction
	Motivation and Targets
	Fundamental Conceptual Frameworks
	Outline

	Fields of Investigation
	Dynamical Systems
	Periodic Points
	The Chain Recurrent Set
	Attractors, Repellers and Basins
	Stable and Unstable Manifolds
	Filtrations and Connecting Manifolds

	The Symbolic Image Graph
	Theoretical Background
	Implementation Details
	Box and Cell Objects
	Construction of the Symbolic Image
	Subdivision Process
	Comparison with a Similar Implementation

	Basic Investigations
	Localization of the Chain Recurrent Set
	Localization of Periodic Points

	Performance Analysis
	Accuracy of the Computations
	Numerical Case Studies
	Ikeda Map
	Coupled Logistic Map

	Extensions and Tunings
	Extensions for the Graph Construction
	Dynamical Systems Continuous in Time
	Error Tolerance for Box Images

	Tunings for the Graph Investigation
	Use of Higher Iterated Functions
	Discretization Time for Systems Continuous in Time
	Reconstruction of Fragmented Solutions

	Numerical Case Studies
	Lorenz System
	Discrete Food Chain Model

	Investigation of the Symbolic Image
	Localization of Attractors and Their Basins
	Attractors on a Symbolic Image
	Construction of the Acyclic Graph DG
	Selection of an Attractor L
	Localization of the Domain of Attraction
	Subdivision of the Domain of Attraction

	Aspects of Filtration
	Filtrations on a Symbolic Image
	Order Relations
	Connecting Recurrent Sets

	Construction of Attractors and Repellers
	Detecting (Un)stable and Connecting Manifolds
	Performance Analysis
	Comparison with Other Approaches
	Numerical Case Studies
	Duffing System
	Ikeda Map

	The RIM Method
	Theory of the Method
	The Core Algorithm
	The Subdivision Criteria
	Convergence of the Method

	Implementation Details
	Performance Analysis
	Comparisons and Numerical Case Studies

	Application of the RIM Method
	Detection of Periodic Points
	Definition of the Investigation Task
	Comparisons and Numerical Case Studies

	Localization of Stable Manifolds
	Outline of the Method
	Modifications of the Algorithm
	Comparisons and Numerical Case Studies

	Conclusion
	Achievements
	Comparison of Approaches
	Symbolic Analysis and the RIM Method
	Related Approaches
	Other Investigation Methods

	Outlook

	Zusammenfassung
	Relevanz der Arbeit
	Ziele und Vorgehensweise
	Vorgestellte Untersuchungsmethoden
	Praktischer Nutzen

	Bibliography
	Glossary
	Index

