
Neural Dynamics for Mobile Robot
Adaptive Control

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Mohamed Oubbati

aus Algerien

Hauptberichter: Prof. Dr. Paul Levi
Mitberichter: Prof. Dr. Peter Göhner

Tag der mündlichen Prüfung: 27. Juni 2006

Institut für Parallele und Verteilte Systeme
der Universität Stuttgart

2006

Preface

This Thesis is submitted in partial fulfillment of the requirements for the de-
gree of “Doktor der Naturwiessenschaften”(Dr. rer. nat.) at the Institute of
Parallel and Distributed Systems of Stuttgart University. Prof. Dr. Paul Levi
and Prof. Dr. Peter Göhner acted as referees.

Summary of the Thesis

In this thesis, we investigate how dynamics in recurrent neural networks can
be used to solve some specific mobile robot problems.

We have designed a motion control approach based on a novel recurrent neu-
ral network. The advantage of this approach is that, no knowledge about
the dynamic model is required, and no synaptic weight changing is needed
in presence of time varying parameters. Furthermore, this approach allows a
single fixed-weight network to act as a dynamic controller for several distinct
robots.

To generate the robot behavior over time, we adopted the theory of neural
fields. We designed a framework to navigate a robot to its goal in an un-
known environment without any collisions with static or moving obstacles.
In addition, we could optimize the target path through intermediate home-
bases. This framework has also produced a simple and elegant solution for
the problem of moving multiple robots in formation. The objective was to
acquire a target, avoid obstacles and keep a geometric configuration at the
same time.

ii

We have obtained successful results, both on simulations and on real experimentations.

Index Terms : Autonomous mobile robots, recurrent neural networks, metalearning,
adaptive control, adaptive identification, neural field, navigation, behavior-
based control, robot formation.

Acknowledgment

Over the last three years, I have had the privilege to meet many people who
contributed either directly to my scientific work or to my quality of life in
general.

First of all, I would like to express my gratitude to my advisors Prof. Dr. Paul Levi
and Dr. Michael Schanz for supporting me, and for giving me so much free-
dom to explore and discover solutions for robotics. Thanks go also to my
colleagues of the RoboCup COPS-team, with whom I enjoyed to work.

I would also like to acknowledge the many people in Marburg, Bonn, Bremen,
and Stuttgart who have shown great kindness and support, both academi-
cally and administratively over the years.

Many thanks to all my friends, who helped me in many ways.

I am very grateful to the German Academic Exchange Service (DAAD) for
funding my research. During four years, I have enjoyed my scholarship. . . Thanks
a lot.

Finally, I can find no words to express my sincere appreciation and gratitude
to the German people for their hospitality, kindness, punctuality, and for
their passion for science and work.

Thank you Germany . . . Herzlichen Dank Deutschland.

Mohamed Oubbati
Stuttgart, June 2006

Zusammenfassung

Zielsetzung

Autonome mobile Systeme müssen in der Lage sein, sich in ihre Einsatzumge-
bung autonom zu bewegen und dabei zu wissen, auf welchen Wegen sie sicher
an bestimmte Zielpunkte gelangen. Ziel dieser Arbeit ist die Entwicklung
eines Ansatzes, der mittels recurrent neuronaler Netze genaue und sichere
zielgerichtete Bewegungen ermöglicht und dabei die kinematischen und dy-
namischen Einschränkungen eines Roboters berücksichtigt. Hierbei stellt sich
die Frage, wie die Dynamik dieser Netze für die Kontrolle des beobachtbaren
Verhaltens des Roboters eingesetzt werden kann. Im Rahmen dieser Arbeit
soll diese Frage theoretisch, numerisch sowie praktisch untersucht werden.

Aufbau der Arbeit

Die Popularität der neuronalen Netze liegt darin, dass sie eine sehr flexible
Modellklasse beschreiben. Neuronale Netze, deren Konnektivitätsgraf keine
geschlossenen Wege enthält, werden heute in vielen Anwendungen einge-
setzt. Solche zyklenfreie (feedforward) Netze realisieren nichtlineare Abbil-
dungen und sind mit einfachen Lernverfahren trainierbar, besitzen jedoch
keine eigene Dynamik. Rekurrente Netze, die durch einen Konnektivitätsgraf
mit geschlossenen Wegen gekennzeichnet sind, besitzen dagegen ein weit re-
ichenderes Spektrum an Verhaltensmöglichkeiten, da sie eine echte Dynamik
aufweisen. Sie sind jedoch in ihrem Verhalten schwerer zu beherrschen und
wurden daher in Anwendungen bisher selten eingesetzt.
Als Grundlage der Arbeit, wird zu Beginn ein Konstruktives Lernverfahren
für rekurrente neuronale Netze untersucht, welches nur die Ausgabeneu-
ronen führenden Verbindungen modifiziert, um das Lernziel zu erreichen.
Diese Untersuchung ist durch einen speziellen Typ eines rekurrenten Net-
zes motiviert (Echo State Network, ESN), das in dieser Arbeit vor allem

iv

aus Interesse an seiner Fähigkeit einfacher Lernverfahren, näher untersucht
und für die Robotiksteuerung angepasst. Zudem wird gezeigt, dass das ESN
durch metalearning ohne Änderungen seiner Parameter ein adaptives Ver-
halten hat.

Darauf aufbauend wird zunächst das ESN zur Identifikation nichtlinearer
dynamischer Systeme behandelt. Hierfür werden nichtlineare dynamische
Systeme ausgewählt, die durch nichtlineare Differenzengleichungen mit zeit-
varianten Faktoren beschrieben werden. Es wird gezeigt, dass das ESN im
Zusammenhang mit metalearning sehr gute Identifikationsergebnisse liefert
und eine effektivere adaptive Echtzeitidentifikation im Vergleich zu anderen
bekannten Verfahren ermöglicht.

Zur Steuerung autonomer mobiler Roboter wird anhand des Robotersmod-
ells eine adaptive Geschwindigkeitsregelung mittels eines ESN entworfen,
simuliert, realisiert und auf einem realen Roboter getestet. In der Simu-
lation wird ein Neurokontrol-System mit zwei Ebenen entwickelt. Die eine
Ebene (dynamic-level) für die adaptive Kontrolle des dynamischen Modells,
die auf dem ESN und metalearning basiert; die zweite Ebene (kinematic-
level) für das kinematische Modell, die auf einem anderen ESN basiert. Um
die Robustheit zu verbessern, wurde während des Trainings zusätzlich ein
Geräusch hinzugefgt. Hierbei konnten positive Ergebnisse erzielt werden.

Auf dem realen Roboter wird ein ESN zu einem Pulsweitenmodulationsregler
ausgebildet, der aufgrund der gegebenen aktuellen Geschwindigkeiten und
der Sollgeschwindigkeiten die korrekten Parameter der Pulsweitenmodulation
bestimmt. Ein Vorteil dieses Ansatzes ist die Anpassung der Radgeschwindigkeit-
sreglung ohne dass vorher Kenntnisse über die dynamischen Eigenschaften
des Roboters vorliegen müssen. Zudem kann sich ein einmal vortrainierter
ESN-Regler bei Variation der Roboterphysik, z.B. bei Gewichtsveränderungen,
ohne Änderungen seiner Parameter, auf die Änderungen relativ schnell ein-
stellen. Diese Methode ermöglicht auch die gleichzeitige Geschwindigkeit-
sregelung drei unterschiedlicher Roboter mit einem einzigen vortrainierten
ESN-Regler.

Zur Navigation werden dynamische Systeme verwendet, um Navigationsver-
halten für einen oder mehrere autonome Roboter zu produzieren. Insbeson-
dere soll ein biologisch motiviertes neuronales Feldmodell genutzt werden,
um ein stabiles Verhalten eines Roboters zu erzeugen. Neuronale Felder
sind skalare räumlich kontinuierliche Aktivitätsverteilungen, die typischer-
weise die Aktivität des Neokortex beschreiben. Die Felddynamik ist durch

v

nichtlineare Integral-Differentialgleichungen beschrieben, die sich folgender-
maßen darstellen: Der Ort der Neuronen wird durch die kontinuierliche Vari-
able x bezeichnet. Eine orts- und zeitabhängige Funktion (Aktivierung)
u(x, t) repräsentiert dann den Zustand der Dynamik an jedem Ort x zur
Zeit t. Unter Annahme der Gleichgewichtslösung und externer Stimuli wird
ein einziger Gipfel, im Folgenden “Peak” genannt, auf dem Feld erzeugt.
In diesem Fall werden die Verhalten Hindernisvermeidung und Zielanfahrt
durch das Feldmodell generiert. Zuerst werden alle möglichen Richtungsein-
stellungen des Roboters kodiert; dann gibt der Ort, an dem ein Peak generiert
wurde, die Soll-Vorausrichtungen an. Eine vorgeschlagene Richtung wird
solange beibehalten bis eine Änderung in der Umwelt auftritt. Hierdurch
wird gezeigt, dass die stabilen Entscheidungen der neuronalen Felder, eine
sichere Bewegung unter Vermeidung von statischen und dynamischen Hin-
dernissen ermöglichen. Neben der Möglichkeit, Hindernisse zu vermeiden,
wird das entwickelte lokale Navigationsystem angepasst, um auf dem Weg
zum Zielpunkt zusätzlich homebases anzusteuern.
Darüberhinaus wird im Rahmen dieser Arbeit ein Navigationsystem zur koor-
dinierten Steuerung eines Multirobotersystem entwickelt. Es wird eine Neu-
ronale Felder Strategie vorgestellt, mit der es möglich ist, eine Gruppe von
Robotern zu steuern, die ihren Zielpunkt erreichen, eine Formation beibehal-
ten, und Kollisionen mit Hindernissen oder miteinander vermeiden.

Schlagwörter: Mobile Roboter, Autonome Navigation, Rekurrente Neu-
ronale Netze, Adaptive Regelung, Adaptive Identifikation, Metalearn-
ing, Verhaltensbasierte Kontrolle, Neuronale Felder.

Contents

1 Introduction 2
1.1 What sort of thesis is this? . 2

1.1.1 Tasks . 2
1.1.2 How these tasks are addressed? 2

1.2 Issues and Goals . 3
1.2.1 Motion Control . 3
1.2.2 Behavior Generation 4

1.3 Contributions . 4
1.4 Outline of the Thesis . 7

2 Related Work 10
2.1 Control Architectures . 10

2.1.1 Deliberative Control 10
2.1.2 Reactive Control . 11
2.1.3 Hybrid Control . 11

2.2 Behavior-based Control . 12
2.2.1 Behavior Coordination 13
2.2.2 Arbitration Mechanisms 13
2.2.3 Fusion Mechanisms . 14

2.3 Dynamical Systems Approach 14
2.3.1 Behavioral Variables 14
2.3.2 Behavioral dynamics 15
2.3.3 Dynamical systems for mobile robot navigation 15

2.4 Motion Control . 19
2.4.1 Background . 19
2.4.2 Motion Control with Neural Networks 21

CONTENTS vii

3 Recurrent Neural Networks 22
3.1 Introduction . 22
3.2 Artificial Neural Networks . 23

3.2.1 Training of ANNs . 24
3.2.2 Neural Networks Topologies 24

3.3 Learning in Recurrent Neural Networks 25
3.3.1 Backpropagation Through Time 26
3.3.2 Real-Time Recurrent Learning 28
3.3.3 Difficulty of learning long-term dependencies. 30
3.3.4 Long Short-Term Memory 30
3.3.5 Extended Kalman Filter for RNNs Weight Estimation . 31
3.3.6 Temporal Integration in RNNs 32
3.3.7 Liquid State Machine 33

3.4 Echo State Network . 35
3.4.1 Formal Description . 35
3.4.2 How ESN approach works? 36
3.4.3 Training Algorithm . 38

3.5 Conclusion . 40

4 Metalearning 42
4.1 Review of Metalearning . 43

4.1.1 Inductive Transfert . 44
4.1.2 Dynamic Selection of Bias 44
4.1.3 Meta-learner of Base-learners 45
4.1.4 Lifelong Learning . 46
4.1.5 Multitask Learning . 47

4.2 Fixed-Weight Neural Networks 47
4.2.1 Learning Learning Rules 48
4.2.2 Multiple Modeling . 50

4.3 Adaptive Identification with Fixed-Weight ESN 52
4.3.1 Preliminaries on Nonlinear System Identification 52
4.3.2 Problem Statement . 53
4.3.3 Procedure . 53
4.3.4 Results . 54

4.4 Conclusion . 61

CONTENTS viii

5 Control of Nonholonomic Robots with ESNs 63
5.1 Introduction . 63
5.2 Nonholonomic Mobile Robots 64

5.2.1 Kinematic and Dynamic Modeling 65
5.3 Motion control . 69
5.4 Dynamic-level Control with ESNs 71

5.4.1 Procedure . 71
5.4.2 Results . 72

5.5 Adaptive Dynamic Control using Fixed-Weight ESNs 75
5.5.1 Problem Statement . 75
5.5.2 Procedure . 75
5.5.3 Results . 76

5.6 Control of Multiple Distinct Robots 78
5.6.1 Procedure . 78
5.6.2 Results . 79

5.7 Kinematic and Dynamic Adaptive Control with ESNs 82
5.7.1 ESN Kinematic Controller 82
5.7.2 ESN Dynamic Adaptive Controller 84
5.7.3 Kinematic-Dynamic closed loop control 84
5.7.4 Results . 86

5.8 Discussion . 89
5.9 Conclusion . 90

6 Control of an Omnidirectional Robot with ESNs 92
6.1 Introduction . 93
6.2 Omnidirectional Robot . 93

6.2.1 Hardware . 94
6.2.2 Kinematic Model . 95
6.2.3 Control System . 97
6.2.4 Problem Statement . 97

6.3 Velocity Control with ESN 98
6.3.1 Training . 98
6.3.2 Control Procedure . 98
6.3.3 Results . 99

6.4 Fixed-Weight ESN Adaptive Controller 103
6.4.1 Procedure . 103
6.4.2 Results . 104

6.5 Discussion . 108

CONTENTS ix

6.6 Conclusion . 108

7 Neural Fields for Behavior Generation 110
7.1 Introduction . 110
7.2 Neural Fields . 111
7.3 Dynamical Properties of Neural Fields 113

7.3.1 Equilibrium Solutions in the Absence of Inputs 113
7.3.2 Response to Stationary Input Stimulus 114

7.4 Behavior control with neural fields 115
7.4.1 Control Design . 115
7.4.2 Results . 118

7.5 Competitive Dynamics for Home-bases Acquisition 126
7.5.1 Sub-target Neural Field 127
7.5.2 Target-acquisition Stimulus 128
7.5.3 Results . 129

7.6 Neural Fields for Multiple Robots Control 132
7.6.1 Control Design . 133
7.6.2 Field Stimulus . 134
7.6.3 Formation Control . 135

7.7 Results . 138
7.8 Conclusion . 147

8 Neural Fields for Behavior-Based Control of a RoboCup Player148
8.1 Robot System . 149

8.1.1 Environment Sensing 149
8.1.2 Self-Localization . 150
8.1.3 Software Architecture 150

8.2 Neural Fields . 151
8.2.1 Equilibrium Solutions 152

8.3 Control Design . 153
8.3.1 Field Stimulus . 153
8.3.2 Dynamics of Speed . 154

8.4 Results . 155
8.5 Conclusion . 161

9 Conclusions and future work 162
9.1 Summary of Contributions . 162
9.2 Conclusions . 163

CONTENTS x

9.3 Future Directions . 164

List of Figures

2.1 SPA Architecture. 11
2.2 Behavior-based Control . 13
2.3 The dynamics of heading direction ϕ for target-acquisition. An

attractor is generated at the direction ϕtar. 17
2.4 The dynamics of heading direction ϕ for obstacle-avoidance.

A repellor is generated at the direction ϕobs. 18
2.5 Attractor and Repellor interaction 19

3.1 Artificial Neural Networks. a) Feedforward Neural Network.
b) Partially connected RNN. c) Full connected RNN. 25

3.2 Backpropagation Through Time. a) recurrent neural network.
b) network unfolded in time. 27

3.3 Left: A fully recurrent hidden network. Right: LSTM network
with a memory bloc. 31

3.4 Basic architecture of Liquid State Machine. 34
3.5 Basic architecture of ESN. Dotted arrows indicate connections

that are possible but not required. 36

4.1 Base-level learning . 44
4.2 Meta-learning . 46
4.3 Multitask Learning of L tasks with the same inputs. 47
4.4 A weight adaptation of a single unit network. 49
4.5 A fixed-weight network equivalent to a single unit network. . . 49
4.6 Results of example 1. (a). Teacher output. (b). ESN Pre-

diction test on new I/O data. Desired (solid) and network
prediction (dashed) signals. 56

LIST OF FIGURES xii

4.7 Results of example 2 (1st test). (a). Teacher output. (b).
ESN Prediction test on new I/O data. Desired (solid) and
network prediction (dashed) signals. 59

4.8 Results of example 2 (2nd test). System(solid) vs ESN Pre-
diction(dashed). (a). Responses to u1(k). (b). Responses to
u2(k). 60

5.1 Mobile robot with two actuated wheels. 66
5.2 Motion control using the kinematic model. 69
5.3 Two-stage model of a real mobile robot. 69
5.4 Inner loop control of a mobile robot (dynamic-level control). . 70
5.5 Control of a real mobile robot. 70
5.6 Training ESND as a dynamic controller. 72
5.7 Exploitation of ESND as a dynamic controller. 72
5.8 ESN adaptive velocity tracking control. a) Linear velocity

tracking. b) Angular velocity tracking. c) Computed torque
for wheel right. d) Computed torque for wheel left. 74

5.9 ESN adaptive velocity tracking control. a) Linear velocity
tracking. b) Angular velocity tracking. c) Computed torque
for wheel right. d) Computed torque for wheel left. 77

5.10 Linear and Angular velocity tracking (left) and controls (right).
Each robot is controlled separately with the same fixed-weight
ESN controller. 80

5.11 Linear and Angular velocity tracking (left) and controls (right).
The fixed-weight ESN controls the three robots, following swithes
between them. The first switch occurs at time 25s from Robot
II to I. The second switch occurs at time 35s from Robot I to
III. 81

5.12 Training ESNK as a kinematic controller. 83
5.13 Kinematic control. a) Robot trajectory tracking controlled by

the two controllers separately. b)Tracking errors resulted from
the feedback controller (K1 = K2 = K3 = 5). c) Tracking
errors resulted from the ESNK control. 85

5.14 Global control structure of a nonholonomic mobile robot using
ESNs . 86

5.15 Kinematic and dynamic control. a) Linear velocity tracking.
b) Angular velocity tracking. c) Computed torque for wheel
right. d) Computed torque for wheel left. e)Trajectory Tracking 88

LIST OF FIGURES xiii

6.1 Omnidirectional robot. a)hardware photo. b) CAD model . . 92
6.2 An image from the omnidirectional camera. 95
6.3 Kinematic geometry of the Omnidirectional Robot. 96
6.4 Kinematic and dynamic control loops. 97
6.5 Structure of the control system. 99
6.6 Structure of the control system. 99
6.7 Results of Experiment 1. Desired velocity(solid) and actual

robot velocity (dashed). 101
6.8 Results of Experiment 2. Desired velocity(solid) and actual

robot velocity (dashed). 102
6.9 Control results of the case 1. a) Desired speeds(solid), Wheels

speeds (initial mass)(dashed), and Wheels speeds (mass=17.5
Kg) (dash dot). b) ESN control signals initial mass)(dashed).
ESN control signals (mass=17.5 Kg) (dash dot) 105

6.10 Control results of the case 2. a) Desired speeds(solid) and
actual Wheels speeds (dashed), b) ESN control signals 107

7.1 Weihting function w(x) of a lateral-inhibition 113
7.2 Target acquisition with Obstacle avoidance 120
7.3 Collision Avoidance for Moving Obstacles. The dotted lines

in (e) represent the old positions of the obstacles. 121
7.4 Corridor Following: experiment 1 123
7.5 Corridor Following: experiment 2 124
7.6 Door Passing . 125
7.7 Sub-targets Acquisition . 127
7.8 Sub-target Acquisition Through Competition 130
7.9 Sub-targets Acquisition: Flexibility 131
7.10 Geometric Configurations: a) line, b) column, c) triangle . . . 133
7.11 Triangle and Line Configuration 137
7.12 Column Configuration . 137
7.13 Line configuration in obstacle free situation. a)Robots’ head-

ings. b) Robots’ velocities . 139
7.14 Line configuration with obstacles. a)Robots’ headings. b)

Robots’ velocities . 140
7.15 Line configuration with moving target and fixed obstacles.

a)Robots’ headings. b) Robots’ velocities 141
7.16 Triangle configuration. a)Robots’ headings. b) Robots’ veloc-

ities . 142

LIST OF FIGURES xiv

7.17 Triangle configuration with moving target. a)Robots’ head-
ings. b) Robots’ velocities . 143

7.18 Triangle configuration with moving target and fixed obstacles.
a)Robots’ headings. b) Robots’ velocities 144

7.19 Column configuration in a door passing test. a)Robots’ head-
ings. b) Robots’ velocities . 145

7.20 Column configuration in a door passing test. a)Robots’ head-
ings. b) Robots’ velocities . 146

8.1 Omnidirectional robot. a)hardware photo. b) CAD model . . 148
8.2 Information extraction from the camera a) Image captured

from the omni-camera b) Recognition of relevant objects: lines(white),
ball(red), obstacles (black), and goals (blue and yellow). . . . 150

8.3 Robot Software Architecture. 151
8.4 Target acquisition with Obstacle avoidance: first experiment . 157
8.5 Target acquisition with Obstacle avoidance: second experiment 158
8.6 Photos from video sequences of the first experience. 159
8.7 Photos from video sequences of the second experience. 159
8.8 Target acquisition with moving obstacle avoidance 160

List of Tables

4.1 System parameters values and their time intervals 58

5.1 Values of mc and d in their time intervals 77
5.2 Robots Specifications . 78
5.3 . 87

6.1 Robot Specifications . 95

Chapter 1

Introduction

1.1 What sort of thesis is this?

This thesis is a robotics thesis. We address issues of machine learning. We
investigate how recurrent neural networks can offer efficient and practical
solutions. We design adaptive systems. But, this thesis describes progress
towards the ultimate goal of mobile robotics: “move a robot safely and pre-
cisely in real environments”.

1.1.1 Tasks

Two main tasks are addressed in this work. The first task is designing an
adaptive motion control system. The second is the behavior-based control
of single and multiple mobile robots. Both of these tasks involve real-world
constraints.

1.1.2 How these tasks are addressed?

The primary methods we used for solving our robotics problems are based on
recurrent neural network (RNN) techniques. The ability of RNNs to instan-
tiate arbitrary temporal dynamics allows us to design motion control, includ-

1.2 Issues and Goals 3

ing also the dynamics part of the robot. Moreover, through metalearning,
no synaptic weight changing is needed in presence of parameters variation.
The concept of dynamic stability in neural fields is adopted as a framework
for behavior-based control. A self-stabilized peak of activation is linked to
on-line sensory information and decodes optimal behaviors.

1.2 Issues and Goals

This section describes more details of the tasks we address, and what ques-
tions we examine in each task.

1.2.1 Motion Control

Many authors have studied motion control of mobile robots in the last decade.
At the beginning, the research effort was focused only on the kinematic level,
assuming that there is perfect velocity tracking. Later on, the research has
been conducted to design motion controllers, including also the dynamics
part of the robot. Taking into account the specific robot dynamics is more
realistic, because the assumption “perfect” velocity tracking does not hold
in practice. Furthermore, during the motion, the robot parameters may
change due to surface friction, additional load, energy supply, among others.
Therefore, the control at the dynamic level is at least as important as the
control at the kinematic level.
At present, PID controllers are widely used as velocity controllers for mobile
robots. However, their ability to cope with nonlinearities and time varying
parameters is known to be very poor. In recent years, renewed interest
has been shown in the area of systems control using nonlinear control theory.
Instead of using an approximate linear model, nonlinear models are used and
nonlinear feedbacks are employed on the control loop. However, nonlinear
controllers have a more complicated structure and are more difficult to find.
Furthermore, exact knowledge about systems parameters values is almost
unattainable in practical situations.

In this issue, it is desirable to develop a robust motion control, which has
the following capabilities: i) ability to successfully handle errors and noise
in sensor signals, ii) “perfect” velocity tracking, and iii) adaptation ability in
presence of time varying parameters in the robot.

1.3 Contributions 4

1.2.2 Behavior Generation

While moving, the robot must be able to collect knowledge about the environ-
ment, find its location, plan its path, and react to new situations. Approaches
that have been developed for this problem can be divided into global and local
methods. Global methods require the environment to be completely known
and the terrain should be static, and they return a continuous free path. By
contrast, local methods need only local information, and the robot plans its
path in response to environmental changes. Due to their low computational
costs, local methods are much more suitable for real-time applications where
the environmental state changes continually.
Over the last decade, a new paradigm called behavior-based robotics has been
established. Instead of the classical chain “Sense-Plan-Act”, a behavior-
based system is divided up into a set of perception-action units, called be-
haviors. Each behavior produces immediate reactions in order to achieve a
specific task. One of the central design challenges of behavior-based systems
is to find effective mechanisms for coordination between behaviors.
The so-called Dynamical Systems Approach presents a new framework that
unifies both, design of behaviors and their coordination. One great advan-
tage of this approach is that a continuous control signal can be assured at all
times. While their suitability has been already proven to solve the problem
of target-acquisition with obstacle avoidance in simplified real-world settings,
more complex problems need to be tackled: i) target acquisition and avoid-
ing moving obstacles, ii) multi-target acquisition, and iii) target acquisition,
avoiding obstacles, and formation control of multiple mobile robots.

1.3 Contributions

This thesis describes a research work in which the problems cited above are
attacked. It proceeds along two principal directions: recurrent neural networks,
and mobile robot control.
In the first direction, we study the possibility that a readout neuron can
learn to extract salient information from a high dimensional transient state
of a large RNN. This ability reduces significantly the learning complexity
of RNNs, and open new issues to benefit from their powerful capabilities.
Echo State Network (ESN), developed recently, has the same philosophy. It
is formed by a so-called “Dynamic Reservoir, which contains a large num-

1.3 Contributions 5

ber of sparsely interconnected neurons with non-trainable weights. This idea
leads to a simple off-line training algorithm where only the network-to-output
connection weights have to be trained. However, the on-line version is com-
putationally very expensive, and poor performances have been obtained in
real-time adaptation. Therefore, one issue of this thesis was to explore the
notion that fixed-weight RNNs need to change only their internal state to
change their behavior policy. This is possible, since recurrent signal loops can
store information by accumulation, and they act like weights in a conventional
feedforward network. Through the concept of meta-learning, we could build
an ESN, which has the ability to adapt without changing its weights. This
approach was first tested in nonlinear dynamical system identification. The
ESN identifier has the ability to recognize the system dynamics variations
only through its inputs, and its own state, without changing any synaptic
weight. An advantage of ESN is that no multi-streaming is needed, since its
training algorithm uses all data for a single time, and does not suffer from
the recency effect. A conference publication related to this work is:

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Meta-learning for
Adaptive Identification of Non-linear Dynamical Systems. In: Proceeding
of the Joint 20th IEEE International Symposium on Intelligent Con-
trol and 13th Mediterranean Conference on Control and Automation,
Limassol, Cyprus, June 2005.

In motion control, we designed firstly a dynamic controller based on ESNs.
The advantage of the control approach is that no knowledge about the robot
model is required, since the controller is designed only by learning I/O data
collected from the robot. This property is very useful in practical situations,
where the exact knowledge about the robot parameters is almost unattain-
able. The proposed approach has been tested through simulations and exper-
imentations on an Omnidirectional RoboCup Player available at the Robotics
Lab of the University of Stuttgart. Results are summarized in two papers:

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Recurrent Neural
Network for Wheeled Mobile Robot Control. In: WSEAS Transaction
on Systems, 3:2460-2467, August 2004.

• Oubbati Mohamed, Schanz Michael, Buchheim Thorsten, and Levi
Paul. Velocity Control of an Omnidirectional RoboCup Player with
Recurrent Neural Networks. In: Proceedings of the RoboCup Interna-
tional Symposium 2005, July 18-19, 2005, Osaka,Japan.

1.3 Contributions 6

To deal with robustness and time varying parameters, an adaptive neurocon-
trol system with two levels was proposed for the motion control of a nonholo-
nomic mobile robot. In the first level, an ESN (called ESNK) improves the
robustness of a kinematic controller and generates linear and angular veloc-
ities, necessary to track a reference trajectory. In the second level, another
network (called ESND) converts the desired velocities, provided by the first
level, into a torque control. The advantage of the control approach is that,
no knowledge about the dynamic model is required, and no synaptic weight
changing is needed in presence of robots parameters variation. Furthermore,
we demonstrated the ability of a robust single fixed weight ESN to act as a
dynamic controller for several distinct wheeled mobile robots. The controller
showed a reasonable balance between the variety of the reference velocity
and the variety of the robots. Simulation and experimental results can be
found in the following publications:

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Kinematic and
Dynamic Adaptive Control of a Nonholonomic Mobile Robot using a
RNN. In: Proceedings of the 6th IEEE Symposium on Computational
Intelligence in Robotics and Automation, June 27-30, 2005, Helsinki,
Finland.

• Oubbati Mohamed, Schanz Michael, and Levi Paul. A fixed weight
RNN dynamic controller for multiple mobile robots. In: Proceedings
of the 24th IASTED International Conference on Modelling, Identifica-
tion, and Control: MIC 2005,February 16-18, 2005, Innsbruck, Austria.

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Fixed-weight RNN
Adaptive Controller for an Omnidirectional Robot. In: Proceedings of
the 9th International Conference on Engineering Applications of Neural
Networks (EANN05), August 24-26 2005, Lille, France.

• Oubbati Mohamed, Schanz Michael, and Levi Paul.Mobile Robot Mo-
tion using Neural Networks: An Overview. In: 19. Fachgespraech
Autonome Mobile Systeme AMS 2005, 8-9 December 2005, Stuttgart,
Germany.

In behavior-based control, the concept of neural fields was used to gener-
ate the robot behavior over time. We developed a framework to navigate a
mobile robot to its goal in an unknown environment without any collisions

1.4 Outline of the Thesis 7

with static or moving obstacles. In addition, their competitive dynamics was
used to optimize the target path through intermediate home-bases. Further-
more, we could design an elegant solution for the problem of moving multiple
robots in formation. The objective was to acquire a target, avoid obstacles
and keep a geometric configuration at the same time. Several formations for
a team of three robots were considered.
In all these developments, the speed control was fully integrated, relative to
each behavior. In earlier studies, this quantity was usually set to a constant
value. Two papers have been published:

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Neural Fields for
Behavior-based Control of Mobile Robots. In: 8th International IFAC
Symposium on Robot Control(SYROCO 2006), September 6-8 2006,
Bologna, Italy.

• Oubbati Mohamed, Schanz Michael, and Levi Paul. Neural Fields for
Controlling Formation of Multiple Robots. In: 3rd IEEE Conference
On Intelligent Systems. 4-6 September 2006, London, UK.

1.4 Outline of the Thesis

The thesis is organized as follows:

Chapter 1. Introduction

This chapter gives an overview of the thesis, its motivations, and main con-
tributions. It also gives the list of papers published during the completion of
the thesis.

Chapter 2. Related Work

This chapter reviews relevant related work. It gives an overview of different
approaches concerning mobile robot control. Special attention is paid to
motion control with neural networks, and behavior-based control.

Chapter 3. Recurrent Neural Networks

This chapter gives some background on recurrent neural networks. It covers
the currently most important learning methods BPTT, RTRL, and EKF. It

1.4 Outline of the Thesis 8

focuses on random RNNs, and shows, that it is possible to transform transient
state of a large RNN into a stable readout unit. At the end of the chapter,
the architecture of the Echo State Network is formally described.

Chapter 4. Meta-Learning

The concept of meta-learning is discussed in chapter 4, focusing on neural
networks, which have the ability to adapt without changing explicit weights.
To illustrate its use, a fixed-weight ESN is built up for adaptive identification
of non-linear dynamical systems with time varying parameters.

Chapter 5. Control of Nonholonomic Robots with ESNs

This chapter is concerned with the tracking control at the kinematic and
dynamic level of nonholonomic mobile robots. After the description of the
robot model, an adaptive neurocontrol system with two levels is designed for
the motion control. It will be also shown how a single fixed-weight ESN is
able to act as a dynamic controller for several (here 3) distinct robots.

Chapter 6. Control of an Omnidirectional Robot with ESNs

Real implementation of ESNs control approach is presented in this chapter.
We firstly describe the hardware of the robot. After that, we will show how
the ESN controller is designed only by learning I/O data collected from the
robot. Furthermore, the ESN is trained using meta-learning to act as an
adaptive velocity-tracking controller, in presence of global mass variation.
Experimental results are presented.

Chapter 7. Neural Fields for Behavior Generation

This chapter presents firstly an introduction of instantiated dynamical sys-
tems approach. Then, we present the navigation system, which is entirely
based on the concept of neural fields. We also present the extension of this
approach to solve the problem of controlling formation of multi-robots.

1.4 Outline of the Thesis 9

Chapter 8. Neural Fields for Behavior-Based Control of an Omni-
directional RoboCup Player

In this chapter the behavior-based control with neural fields is implemented
on a real omnidirectional robot. We will show how neural fields can solve
some real-time navigation problems in some RoboCup scenarios. Experimen-
tal results are presented.

Chapter 9. Conclusion

This chapter draws conclusions, reviews the contributions, and point out
some open problems and future lines of research.

Chapter 2

Related Work

This thesis has proceeded along two principal directions: behavior-based
control and motion control. The objective is to provide the mobile robot
the capability to solve several problems to successfully perform navigation in
an environment that is unknown. In this chapter we review relevant related
work.

2.1 Control Architectures

While there are infinitely many possible robot control programs, there is a
small set of fundamental approaches. The main difference between them
relies on whether they are more deliberative or more reactive. In this sec-
tion the three main methodology are presented: purely deliberative, purely
reactive, and hybrid architectures.

2.1.1 Deliberative Control

Since the first robots began to be built, the usual approach was to decom-
pose the control problem into a series of functional units as illustrated in
figure (2.1). First, the perception module gets the environment information

2.1 Control Architectures 11

delivered by the sensors, which will be transformed to a world-model by the
modelling module. The information in the world model is then used by the
planning module to produce the appropriate actions to the actuators. This
architecture is also called sense-plan-act (SPA) architectures.

Figure 2.1: SPA Architecture.

This strategy works well when the environment is known and pre-defined
(e.g. factories with marked paths). However, noisy and continually chang-
ing environments require frequent re-planning, which may be prohibitive for
complex tasks. Another drawback of such strategy is the lack of robustness.
Since information is processed in a serial way; a failure in one module causes
a complete breakdown of the system.

2.1.2 Reactive Control

Purely reactive approaches are proposed to achieve real-time performances.
Reactive systems maintain no internal world-model and perform no search for
the optimum path. They typically apply a simple mapping function (i.e. pre-
programmed condition-actions pairs) between sensors and actions to response
rapidly to the environment feedback [1]. However, they are incapable of
performing complex tasks, which needed to be planned.

2.1.3 Hybrid Control

Hybrid approaches attempt a compromise between purely deliberative and
purely reactive approaches. They contain both reactive and deliberative com-
ponents. The reactive component deals with the robot’s immediate needs,
such as avoiding obstacles, while the deliberative component uses the inter-
nal world-model to reason about what actions to take on a longer time-scale.
The big challenge of this methodology is to construct an intermediate com-
ponent, which controls the interaction between the two components. Many

2.2 Behavior-based Control 12

approaches have been proposed: The Three Layered Architectures [2], Servo-
Subsumption-Symbolic [3], and others [4].

2.2 Behavior-based Control

Behavior-based systems are inspired from biology, and try to model how an-
imals deal with their environments. Typically, animals dont have a detailed
model of objects they interact with, and minimal information and a com-
bination of several behaviors are sufficient for them to behave efficiently in
their environment [5][6]. This suggests that building a competent robot does
not necessarily need a huge amount of representations.

The most prominent behavior-based control architecture is the Subsump-
tion Architecture, first proposed by Rodney Brooks in 1986 [7]. Instead of
a single chain Sense-Plan-Act, a behavior-based system is divided up into a
set of Perception-Action units, called behaviors (see figure (2.2)). Based on
selective information, each behavior produces immediate reactions in order
to achieve a specific task. These behaviors are typically associated with some
tasks, such as target acquisition, obstacle avoidance, wall following, etc. The
advantage is that each behavior has to be competent only on the function
delegated to its layer of control. Such “task-specializing” modules are much
easier to built and run quite rapidly than serial functional units. Further-
more, this architecture can be expanded by simply adding more behaviors to
the existing control system. A nice review of this approach can be found in
[8].

While behavior-based systems embody some reactive components, their
computation is not limited to a simple mapping function between sensors
and actions. They can store representations in a distribution fashion through
different behaviors [9][10], while reactive systems cannot do so.

2.2 Behavior-based Control 13

Figure 2.2: Behavior-based Control

2.2.1 Behavior Coordination

One of the central design challenges of behavior-based systems is the formu-
lation of effective mechanisms for coordination between behaviors. At each
time, it must be decided which behavior should be active. This is known
as the behavior coordination problem (also referred to as the action selec-
tion problem). The existing coordination approaches can be divided into
two classes: arbitration mechanisms and fusion mechanisms. More detailed
information can be found in [11].

2.2.2 Arbitration Mechanisms

Arbitration Mechanisms are divided into: priority, state, and winner-takes-
all based mechanisms. In priority based mechanism, a behavior is selected
based on a priory assigned priorities. Behaviors with higher priorities are
allowed to take the control of the robot. The Subsumption architecture [7]
is an example using this type of selection. state based mechanisms select
the appropriate behavior corresponding to the robot’s states. Each state
corresponds to one behavior. Upon detection of a new event, a transition
is made to a new state; thus, a new behavior is activated. Discrete Event
Systems [12], Reinforcement Learning [13], and Bayesian Decision Analysis
[14] are methods where this mechanism is applied. Finally, in winner-takes-
all mechanisms, the behaviors compete according to the situation until one
behavior wins and take the control of the robot [15].

2.3 Dynamical Systems Approach 14

2.2.3 Fusion Mechanisms

Fusion mechanisms combine several behaviors at the same time, to form
a control action that represents their consensus. Usually, these behaviors
have different, and sometimes incompatible objectives. Many approaches
have been proposed to select a motor command from multiple objectives.
They can be roughly classified into Voting, Fuzzy, and Superposition ap-
proaches. In voting schemes [16], each behavior votes “for” or “against”
possible robot actions. At each situation, the action, which received the
maximum of votes, will be selected. Fuzzy approaches are similar to vot-
ing approaches. However, Instead of voting, behaviors are encoded by fuzzy
rule bases that map perceptions to actions. After combination of these be-
haviors, the resulting membership function is defuzzyfied to compute the
motor command [17][18][19]. Superposition techniques fuse different behav-
iors by linear combinations. The most popular superposition approach is
the Potential Fields , proposed by Khatib [20]. The idea is to consider that
the robot moves under influences of an artificial potential field. The target
applies an attractive force to the robot, while obstacles exert repulsive forces
onto the robot. The sum of all forces determines the subsequent direction of
the movement.

2.3 Dynamical Systems Approach

The so-called Dynamic Approach invented by Schöner in 1995 [21] presents
a fundamentally different approach to behavior selection. It uses the theory
of nonlinear dynamical systems to provide a framework that unifies both the
design of behaviors and their coordination. This theory has proven to be an
elegant and easy to generate robot behavior [22, 23, 24, 25]. It is based on
differential equations for so-called behavioral variables the solution of which
generates the robot’s behavior.

2.3.1 Behavioral Variables

To design a behavior, we need to parameterize it by a variable (scalar or
vector) X ∈ RN . This variable defines quantitatively the state of the system
projected on the corresponding behavioral dimension. Variables that fulfill
this characterization are called behavioral variables. Generally, a behavior is
related to the task at hand. This means, the behavioral variables must be

2.3 Dynamical Systems Approach 15

chosen in such a way that the task can be accomplished. In a navigation
task, for example, behavior variables are the heading direction ϕ and the
forward velocity v of an autonomous mobile robot.

2.3.2 Behavioral dynamics

The next step towards generating behavior is to evolve in time the solutions
of a dynamical system that governs the behavioral variables. A requirement
is that these solutions must at all time be or in close to a stable attractor
state of the dynamics. The attractors are defined by the task to solve.

Dynamical systems are formulated as differential equations:

ẋ = f(x, p, t) (2.1)

where ẋ = dx
dt

denotes the time derivative of a variable x, and f is a function
of x, of a set of parameters p, and of time t. This function is designed in such
a way that the set of points xb defining a task constraint are fixed points of
the dynamical system:

dx

dt
|x=xb

= f(x, p, t) = 0 (2.2)

If xb is a desired value of the behavior (for example the desired direction)
than the fixed point must be an attractor. On the other hand, if xb is an
undesired one (for example the direction of an obstacle), the fixed point has
to be a repellor.

An initial perturbation from an attractor needs a certain time τ to decay. In
this sense, the strength of the attractor can be defined by λ = τ−1. This can
be expressed by the slope of the dynamics at the fixed point.

λb = −∂f(x, p, t)

∂x
|x=xb

(2.3)

A negative slope characterizes an attractor of the dynamics, a positive slope
a repellor. A null variation means that the system is in a quasi-stable state.

2.3.3 Dynamical systems for mobile robot navigation

A typical mission of a mobile robot is to reach a target while avoiding ob-
stacles. Following the methodology of the dynamical systems approach, the

2.3 Dynamical Systems Approach 16

behavioral variables x have to be defined first. Because directions and restric-
tions on speeds usually define navigation constraints, behavioral variables can
be chosen as the heading direction ϕ and the forward velocity v of the robot:

x =

(
ϕ
v

)
(2.4)

Usually the dynamics of ϕ and v are not depending on each other:

(
ϕ̇
v̇

)
=

(
fϕ(ϕ, p, t)
fv(v, p, t)

)
(2.5)

These systems are chosen in the simplest mathematical form possible, such
that the desired behavior is achieved. If we assume that the forward velocity
v is kept constant, then dynamics for ϕ consists of contributions of two
dynamics each of which contributes with a strength λ; a dynamics of the
target-acquisition and of obstacle-avoidance:

ϕ̇ = λtarftar + λobsfobs (2.6)

Target Acquisition

The behavior target-acquisition is expected to align the robot’s heading with
the target direction ϕtar. This angle specifies the position of an attractor
in the movement generation dynamics. The simplest form that meets this
criterion is given by [22, 25, 26, 27]:

ftar = sin(ϕtar − ϕ) (2.7)

A plot of the dynamical system in phase space can be seen in Figure(2.3).
The intersection with the ϕ-axis defines the fixed point (ϕ = 0). Since the
slope of ftar at this point is negative, the fixed point is an attractor.

2.3 Dynamical Systems Approach 17

Figure 2.3: The dynamics of heading direction ϕ for target-acquisition. An
attractor is generated at the direction ϕtar.

Obstacle Avoidance

The behavior obstacle-avoidance is expected to turn the robot away from the
direction of obstacles. Thus, the dynamics should create a repellor along the
obstacle direction . The dynamics is constructed for example as [26, 23, 24]:

fobs = (ϕobs − ϕ) exp

(
−(ϕobs − ϕ)2

σ

)
(2.8)

where σ is a positive constant that defines the angular range of the repellor.
A plot of this dynamical system in phase space can be seen in Figure(2.4).

2.3 Dynamical Systems Approach 18

Figure 2.4: The dynamics of heading direction ϕ for obstacle-avoidance. A
repellor is generated at the direction ϕobs.

Figure (2.5) shows a simple interaction between the two behaviors target-
acquisition (attractor) and obstacle-avoidance (repellor). The dynamics of
the robot heading angle is depicted by figure (2.5.b). From equation (2.6),
this dynamics is the result of contributions of the target and obstacle func-
tions (Last graph in figure(2.5).b). The presence of two final attractors,
indicated by the two arrows, show the two possible ways to get to the target.
Other more complex examples solved by dynamical systems can be found in
[27].

In case of multiple N obstacles, the resulting force fobs is computed by
adding the contributions of individual obstacles.

fobs =
N∑

i=1

λi(ϕi − ϕ) exp

(
−(ϕi − ϕ)2

σi

)
(2.9)

The strength λi of each repellor depends on the distance of the obstacles. The
robot heading direction is repelled strongly from near obstacles and weakly
from far obstacles.

2.4 Motion Control 19

(a) (b)

Figure 2.5: Attractor and Repellor interaction

2.4 Motion Control

2.4.1 Background

Motion control may be divided into three basic points: tracking a reference
trajectory, following a path, and point stabilization. The three basic naviga-
tion problems are presented briefly as follows:

Tracking

The trajectory-tracking problem is posed as follows. Assume that our robot
has the posture: P = (x, y, θ)T , and that the reference robot (to be followed)
has the posture:Pr = (xr, yr, θr)

T . The objective is to find control laws for
the linear and angular velocities (v, w) of our robot such as:
limt→∞ |x(t)− xr(t)| = 0, limt→∞ |y(t)− yr(t)| = 0, limt→∞ |θ(t)− θr(t)| = 0.

Path Following

Given a path in the plane ξ, and assuming that eθ and exy are the orientation
error and the distance between a reference point in the mobile robot and the

2.4 Motion Control 20

path ξ , respectively. The objective is to find a velocity control law, such
that limt→∞ |eθ| = 0 and limt→∞ |exy| = 0.

Point Stabilization

Assume that the robot is on the initial pose P . Given an arbitrary config-
uration pose Pr . The objective of Point Stabilization is to find a velocity
control law such that limt→∞(P − Pr) = 0.

Motion control of mobile robots has been studied by many authors in the last
decade, since they are increasingly used in wide range of applications. At
the beginning, the research effort was focused only on the kinematic model,
assuming that there is perfect velocity tracking [28]. The main objective was
to find suitable velocity control inputs, which stabilize the kinematic closed-
loop control. Later on, the research has been conducted to design motion
controllers, including also the dynamics of the robot. However, when the
dynamics part is considered, exact knowledge about the parameters values
of the mobile robot is almost unattainable in practical situations. If we con-
sider that during the robot motion, these parameters may change due to
surface friction, additional load, among others, the problem becomes more
complicated. Furthermore, the control at the kinematic level may be insta-
ble if there is errors control at the dynamic level. Therefore, the control
at the dynamic level is at least as important as the kinematic-level control.
At present PID controllers are still widely used in motor control of mobile
robots and in industrial control systems in general. However, its ability to
cope with some complex process properties such as non-linearities, and time-
varying parameters is known to be very poor. Recently, some investigations
have been conducted to design non-linear dynamic controllers. Instead of
using approximate linear models as in the design of conventional linear con-
trollers, non-linear models are used and non-linear feedback are employed
on the control loop. Using non-linear controllers, system stability can be
improved significantly; a few results are available in [29][30]. However, non-
linear controllers have a more complicated structure, and are more difficult
to find and to implement.

2.4 Motion Control 21

2.4.2 Motion Control with Neural Networks

In the past few years, Neural Networks (NNs) have been investigated ex-
tensively providing complementary/new solutions for identification and con-
trol of non-linear systems. Their ability to handle complex input-output
mapping, without detailed analytical model, and robustness for noise envi-
ronment make them an ideal choice for real implementations. Furthermore,
neural networks deal with cognitive tasks such as learning, generalization,
and adaptation, which constitute the principal navigation problems. In [31]
a model predictive control (MPC) based on a neural network is proposed. Ini-
tially, a PID controller controls the robot to track a path in order to produce
training data for the NN. Once the network is trained, the PID is replaced
by the MPC controller, and an on-line learning is used during the path track-
ing. In [32] a tracking controller using backstepping technique is proposed
and two MLPs are used as inverse controllers for the two DC motors. Exper-
imental results on a low-quality mobile robot show high robustness against
noise signals with an improvment in the path tracking compared with the
PID controller. In [33] a kinematic controller based on back-stepping method
is used for steering, and using Lyapunov stability, a velocity controller is de-
velopped for the dynamic model. In the control law, the nonlinear dynamical
model of the robot is approximated by a NN. A comparison is made between
three controllers: i) a controller that assumes “perfect velocity tracking”; ii) a
controller that assumes a complete knowledge of the robot dynamics; and iii)
a controller based on NN to model the robot dynamics. The performance of
the control system was clearly improved by the NN Backstepping controller
compared with the two others. Furthermore, no prior information about the
robot dynamics was required. However, in that paper it was not clear how to
train the NN and how to use the proposed approach in practice. The same
authors in [34] used the same approach for point stabilization (parking) of a
nonholonomic mobile robot.
Fusion of NNs with fuzzy logic is adopted by many authors for navigation
control. In neuro-fuzzy control, usually the NN tunes the fuzzy control rules
and membership functions [35][36].

Chapter 3

Recurrent Neural Networks

This chapter presents an overview on recent developments on learning with
recurrent neural networks (RNNs), covering the currently most important
ones i.e. BackPropagation Through Time (BPTT), Real-Time Recurrent
Learning (RTRL) and the Extended Kalman Filter (EKF). Then it focuses
on random RNNs, where it is shown the possibility to transform transient
state of a large RNN into a stable readout unit, and how to use it to extract
information during transient dynamics. Finally, the architecture of the Echo
State Network (ESN), which will be used in the remainder of the thesis, is
formally described.

3.1 Introduction

Feedforward networks have been successfully used to solve problems that
require the computation of a static function, i.e a function whose output de-
pends only upon the current input, and not on any previous inputs. In the
real world however, one encounters many problems, which cannot be solved
by learning a static function because the function being computed changes
with each input received. It is clear from the architecture of feedforward neu-
ral networks that past inputs have no way of influencing the processing of

3.2 Artificial Neural Networks 23

future inputs. This situation can be rectified by the introduction of feedback
(recurrent) connections in the network. Recurrent neural networks have an
internal state, which is essential for many domains where time plays a role,
such as telecommunication, adaptive identification and control, time series
prediction, or robotics to name just a few [37][38][39][40][41]. In principle
they can implement almost arbitrary sequential behaviour [42][43][44]. Fur-
thermore, there has been interest, in recent years, in the observed ability of
RNNs to model multiple nonlinear systems with fixed weights (topic covered
in chapter 3).

3.2 Artificial Neural Networks

The main branch of Artificial Intelligence research in the 1960s -1980s pro-
duced Expert Systems. It became rapidly apparent that these systems, al-
though very useful in some domains, failed to capture certain key aspects of
human intelligence. In order to reproduce intelligence, it would be necessary
to build systems with a similar architecture like a brain.

The basic units of the brain are the individual nerve cells ”neurons”.
There are about 1011 neurons in the human brain massively interconnected
(with an average of several thousand interconnects per neuron, although this
varies enormously). Each neuron is a specialized cell, which can process and
propagate an electrochemical signal. All neurons have the same basic mor-
phology, and consist of a soma, or cell body, which is the central part of the
cell between input and output branching structure: dendrites and the axon.
The axon of one cell connects to the dendrites of another via a synapse.
Through these synapses, neurons can communicate with each other. When
a neuron is activated, it sends out spikes of electrical activity through the
axon to other neurons. A neuron is activated only if the total signal received
at the cell body from the dendrites exceeds a threshold.
An Artificial Neural Network (ANN) is an information-processing paradigm
that is inspired by the way biological nervous systems, such as the brain, pro-
cess information. ANNs can be described as computational structures built
up from highly interconnected neurones (I will use the term units) working
in parallel to solve a specific problem. However, much is still unknown about
the brain (even at the lowest cell level) that the models used for ANNs seem
to introduce an oversimplification of the ’biological’ models.

3.2 Artificial Neural Networks 24

3.2.1 Training of ANNs

Learning in biological systems occurs by changing the effectiveness of the
synapses so that the influence of one neuron on another changes. This is
true in ANNs as well. Every artificial neural network possesses knowledge,
which is contained in the values of the connections weights. Modifying the
knowledge stored in the network as a function of experience implies a learning
rule for changing the values of the weights. One way is to set the weights
explicitly, using a priori knowledge. Another way is to “train” the neural
network by feeding it teaching patterns and letting it change its weights
according to some learning rules. In this case, the teaching patterns must be
selected carefully otherwise the network might be functioning incorrectly.

Learning methods can be classified into two major categories: distinction we
can make is between:

Supervised learning in which the network is trained such that it more or
less precisely reproduces training data provided by an external teacher,
hoping that it then generalizes to new inputs.

Unsupervised learning also refered to as self-organisation in which a (ouput)
unit is trained to respond to clusters of pattern within the input. Unlike
the supervised learning, no target values are involved; rather the net-
work self-organizes data presented and detects their emergent collective
properties.

3.2.2 Neural Networks Topologies

The arrangement of neural processing units and their interconnections can
have a profound impact on the processing capabilities of the neural network.
The main distinction we can make is between:

Feedforward neural networks where the data flow from input to output
units is strictly feedforward(figure (3.1.a)). The data processing can
extend over multiple (layers of) units, but no feedback connections are
present.

Recurrent Neural Networks (RNNs) which contain feedback connec-
tions. Contrary to feed-forward networks, the network activation pro-
duced by past inputs can cycle back and affect the processing of future

3.3 Learning in Recurrent Neural Networks 25

inputs. RNN topologies range from partially recurrent (figure (3.1. b)
to fully recurrent networks (figure (3.1. c))

(a) (b) (c)

Figure 3.1: Artificial Neural Networks. a) Feedforward Neural Network. b)
Partially connected RNN. c) Full connected RNN.

3.3 Learning in Recurrent Neural Networks

The dynamics presented by a RNN can be continuous or discrete in time. A
continuous-time RNN is a complex nonlinear dynamical system described by
a set of nonlinear differential equations. This can be generally expressed in
the following form:

Ẋ(t) = −αX(t) + f(W,X(t),Wi, U(t)) (3.1)

where X = [x1, x2, . . . , xN]t ∈ <N and U = [u1, u2, . . . , uK]t ∈ <K are the
neural state and the input vector, respectively, W ∈ <N×N , Wi ∈ <L×K are
the connection weight matrices associated with the neural state and the input
vector, respectively. The parameter α is a fixed constant and is chosen as
0 < α < 1, and f : <N ×<K → <N is an appropriately chosen vector-valued
nonlinear function.

Discrete-time models are described by difference equations:

X(k + 1) = f(WX(k) + WiU(k + 1)) (3.2)

3.3 Learning in Recurrent Neural Networks 26

where X = [x1(k), x2(k), . . . , xN(k)]t is the state vector, U = [u1, u2, . . . , uK]t

is the input vector, W = [wij]N×N is the connection weight matrices associ-
ated with the neural state and Wi ∈ <L×K is the connection weight matrix
with the input vector.
Training recurrent networks is often found to be problematic. The first dif-
ficulty is associated with the derivative calculations that are required for
gradient-based training procedures. Due to the dynamical nature of these
networks, the derivatives must reflect the network dynamics. Treating these
derivatives as static functions of the network weights will result in poor
mapping performances, since the weights search will be along inappropri-
ate directions. Several methods have been explored for calculating deriva-
tives with respect to network weights. Two approaches are generally used:
Back-propagation Through Time (BPTT) and Real-time Recurrent Learning
(RTRL).

3.3.1 Backpropagation Through Time

The central idea of BPTT, proposed by Werbos [45], is the unfolding of the
discrete-time recurrent neural network into a multilayer feedforward neural
network (FFNN) each time a sequence is processed. Instead of mapping a
static input to a static output, BPTT maps a series of inputs to a series of
outputs. This provides the ability to solve temporal problems by extracting
how data changes over time.

To illustrate this idea in general, consider the RNN shown in Figure(3.2.a),
which has n units fully connected and wij is the weight associated from the
unit i to j.

3.3 Learning in Recurrent Neural Networks 27

(a) (b)

Figure 3.2: Backpropagation Through Time. a) recurrent neural network.
b) network unfolded in time.

By unfolding the network of figure (3.2.a) at the time steps 1, 2, . . . , T ,
it can be regarded as one sweep of operation in a T -layered feed-forward net-
work with identical connection weights wij between successive layers (Fig.3.2.b).
This new representation is amenable to the backpropagation algorithm.

Let the training data set be partitioned to epochs. Let t0 denote the
start time of an epoch, and T its end time. Assume that desired responses
specified for a set of units is D, and ej(t) is the error at the output of such
a unit. The error to be minimized is:

Etotal(t0, T) =
1

2

T∑

t=t0

∑

D

e2
j (3.3)

The BPTT algorithm is described as follows: Starting with an initial
state X(0), a single forward pass through the network for the interval [t0, T]
is performed. At each time t, the complete record of input data, network
state, and desired responses are stored. A single backward pass over this
record is performed to compute the values of the local error gradients. These
gradients can be derived in a same way as in the standard back-propagation,
except that the output errors are not only given in the last layer but also
added in each layer:

3.3 Learning in Recurrent Neural Networks 28

δi(t) = −∂Etotal(t0, T)

∂νj(t)
(3.4)

where νj(t) is the output of unit j, before the activation function. j ∈ D
and t0 < t ≤ T .

δi(t) is computed using the equations:

δi(t) =

{
f ′(νj(t))ej(t) if t = T
f ′(νj(t))[ej(t) +

∑
k∈D wkjδk(t + 1)] if t0 < t < T

(3.5)

where f ′(.) is the derivative of an an activation function with respect to
its argument.

Ones the computation above are repeated step by step from t = T to time
step t = t0 + 1, the connection weights adjustment is made according to

∆wji = −η
∂Etotal(t0, T)

∂wji

(3.6)

∆wji = η
T∑

t=t0+1

δj(t)xi(t− 1) (3.7)

where η is the learning-rate parameter and xi(t − 1) is the ith input of unit
j at time t− 1.

It is well known that the standard backpropagation convergence is slow.
This remark is also true for the BPTT. The computation of one epoch is
O(TN2), where N is the number of units. Thousands of epochs are typically
required to a given problem. So, BPTT is not suitable for real time operation
of a recurrent network.

3.3.2 Real-Time Recurrent Learning

Here, we describe another learning algorithm for a RNN that runs continu-
ously. The network so trained is called a real-time recurrent network. Real-
time recurrent learning (RTRL) has been independently derived by many
authors, although the most commonly cited reference for it is Williams and
Zipser [42].

Consider a network consisting of a total of N units with M external input

3.3 Learning in Recurrent Neural Networks 29

connections. Let uext(t) denote the M -by-1 external vector applied to the
network at discret time t, and let y(t) denote the corresponding N -by-1 out-
put units. Let W denote the N -by-(M + N) recurrent weight matrix of the
network. The matrix W consists of two sets of weights. A set, where the
weights represent the connection between uext(t) and the network units, i.e.
wij∀i ∈ U and j ∈ I, where U and I are the set of the network units and
the external inputs, respectively. The other set is formed by weights that
represent connections of the recurrent path, i.e. w′

ij (∀i, j ∈ U).
Let D denote the set units with teaching status, and dk(t) denote the

desired response of the actual unit output yk(t) at time t, where k belongs to
the set D. The main objective of RTRL algorithm is to minimize the network
error E(t) at time t through updating the weight matrix W as follows:

E(t) =
1

2

∑

k∈D

e2
k(t) (3.8)

where ek(t) = dk(t)− yk(t).
For each learning cycle, we may thus define the incremental change ∆wij(t)

made at time t as follows:

∆wij(t) = −η
∂E(t)

∂wij

= η
∑

k∈D

ek(t)
∂yk(t)

∂wij

(3.9)

and

∆w′
ij(t) = −η

∂E(t)

∂w′
ij

= η
∑

k∈D

ek(t)
∂yk(t)

∂w′
ij

(3.10)

where η is the learning rate. Then, the weights are updates by

wij(t + 1) = wij(t)−∆wij(t) ∀i ∈ U, j ∈ I. (3.11)

and
w′

ij(t + 1) = w′
ij(t)−∆w′

ij(t) ∀i, j ∈ U. (3.12)

We may now define a triply indexed set of variables πk
ij(t) = ∂yk(t)

∂wij
and

π
′k
ij (t) = ∂yk(t)

∂w′ij
, which represent the learning sensitivities of the units with

respect to their weight connections. They are updated by

πk
ij(t + 1) = f ′[Sk(t)][

∑

l∈U

wkl(t)π
l
ij(t) + δikuextj(t)] ∀i ∈ U, j ∈ I and k ∈ U.

(3.13)

3.3 Learning in Recurrent Neural Networks 30

and

π
′k
ij (t + 1) = f ′[Sk(t)][

∑

l∈U

w′
kl(t)π

′l
ij(t) + δikyj(t)] ∀i, j, k ∈ U. (3.14)

where
Sk(t) =

∑

l∈U

wkluextl(t) +
∑

l∈I

w′
klyl(t) (3.15)

δik is the Kronecker delta, and f ′(.) denotes the derivative of the sigmoid
function f(.). RTRL is mathematically suitable for online training. However,
its computation cost is expensive, regarding to the size of the network. In
the case of an n units fully network, the complexity computation is O(n4).
Thus this algorithm is useful for on-line adaptation only if a small network
is sufficient to solve a given problem. Schmidhuber [44] proposes a method,
which combines BPTT and RTRL to reduce the average time complexity per
time from O(n4) to O(n3).

3.3.3 Difficulty of learning long-term dependencies.

BPTT, RTRL and their combination share an important difficulty. It is
found in practice, that the network activity from time long past has less effect
than the current network activity for the current derivative calculations. It
is shown in [46] that the temporal evolution of the back-propagated error
depends on the magnitudes of the weights involved. Depending on the gain
of the network loop, the gradient will either explode exponentially or vanish
[47]. Since the networks are usually initialized with small weights using
sigmoidal activation function with small derivatives, most of the gradients
decay in time. Hence standard RNNs fail to learn in the presence of long time
lags between early inputs and late desired outputs. Several solutions have
been proposed to overcome this difficulty. One is the use of long short-term
memory (LSTM), proposed by Hochreiter and Schmidhuber [47].

3.3.4 Long Short-Term Memory

The objective of LSTM is to retain important information over a much longer
period of time than the 10 to 12 time steps, which is the limit of RTRL or
BPTT models. The basic idea is to replace a hidden layer of traditional
RNN by a memory bloc. Figure (3.3) shows a simple LSTM network, with
a single input, a single output, and a single memory block in place of the

3.3 Learning in Recurrent Neural Networks 31

familiar hidden unit. The memory bloc contains linear units with fixed self-
connections, called memory cells. They solve the vanishing error problem
by enforcing error signals in the cell to remain constant, neither growing nor
decaying. Multiplicative adaptive gate units control access to the memory
cells. They are conventional units with sigmoidal activation functions ranging
over [0, 1], and they receive input from the network input units and from other
cells. If the gate activation is near zero, nothing can enter the cell. Similarly,
nothing emerges from the cell unless the output gate is active. Input and
output gates protect the memory cells from irrelevant inputs and noise, and
permit to do not perturb the remainder network. Network training uses a
combination of RTRL and BPTT training algorithms.

LSTM algorithm has been applied successfully to wide range of tasks; i.e.
the embedded reber grammar benchmark [47], speech recognition [48], and
music improvisation [49].

Figure 3.3: Left: A fully recurrent hidden network. Right: LSTM network
with a memory bloc.

3.3.5 Extended Kalman Filter for RNNs Weight Esti-
mation

The gradient descent is not only slow, but also ineffective to find suitable
solutions. This difficulty is addressed by Feldkamp et Puskorius [50] [51] via
the Extended Kalman Filter (EKF). It is found that EKF-based training
procedures proved superior performances than simple gradient methods for
many categories of problems.

3.3 Learning in Recurrent Neural Networks 32

The EKF is an estimation technique for nonlinear dynamics and nonlinear
measurement equations. It is an optimal estimator that recursively combines
noisy sensor data with a model of the system dynamics. Training neural
networks using kalman filter was first proposed by Singhal and Wu [52].
They considered the network weights as a state of a dynamical system to be
estimated, assuming that the transient effects of the network state have died
out. Using the EKF algorithm, the weights updates become [53]:

K(t) = P (t)H(t)[
1

η
I + H(t)tP (t)H(t)]−1 (3.16)

W (t + 1) = W (t) + K(t)e(t) (3.17)

P (t + 1) = P (t)−K(t)H(t)tP (t) + Q(t) (3.18)

Where e(t) is the difference between the observed and the desired network
output. The matrices H contain the derivatives of the network outputs with
respect to the weights, and P (t) is an estimate of the error covariance. K(t)
is the Kalman gain matrix used in updating the network weights W . The
learning rate η in (3.16) is essential to compensate possible bad initialisation
of P (t). Each approximate error covariance is augmented with a diagonal
matrix Q(t) that represents effects of the process noise. This noise insertion
improves the algorithm’s numerical stability and avoids poor local minima
[53].

3.3.6 Temporal Integration in RNNs

Biological neural networks are obviously recurrent, and the existence of feed-
back connections on several spatial scales is one property of the brain. Maass
et al.[54] propose that there is a link between adaptive real-time response in
different cortical areas of the brain and temporally integrated information.
Adaptive real-time response means the ability to produce at any time t a
meaningful response that depends on inputs that the network received at
various times s < t back in the past. Such “any-time intelligent” and mean-
ingful response is desirable for artificial neural networks. The most known
approach to make past inputs u(s) available for the current output response
y(t) is to maintain past samples the inputs u(t−∆), u(t−2∆), . . . , u(t−k∆)
that arrived at a fixed number k of discrete time points. This memory win-
dow has to be updated after every time interval ∆. An obvious disadvantage
of this strategy is the rigid prescribed length of past samples of u, and the

3.3 Learning in Recurrent Neural Networks 33

rigid prescribed sampling period ∆. Since a number of input delays may be
adequate for some computational tasks, but not for others. Furthermore,
there is no evidence that this strategy can be used for temporal integration
tasks that require temporal integration over a few hundred milliseconds (ms)
and longer [54].
Another strategy is to condense all information from earlier inputs into the
current internal state x(t) of the network. This condensed information might
be needed for a decision at time t. An advantage of this strategy is that the
temporal integration is not restricted to a fixed sampling interval ∆ for past
inputs, nor to a fixed number of past samples. The problematic in this
approach is to find a predefined set ℵ (or attractors) of states x(t). Further-
more, such attractor neural networks are in general not able to produce at
any time t a meaningful response y(t) from past input samples because they
spend most of their time in transient states between attractors. Moreover,
study of dynamical systems formed by attractor neural networks focused on
autonomous dynamical systems (i.e., systems whose input can be encoded
in the initial state of the system) and usually consider a very low dimension
[54].

An alternative method [55] to attractor neural networks is to extract in-
formation during transient dynamics of a recurrent network, without control-
ling or manipulating the transient dynamics. This method does not require
convergence to stable internal states, since information about past inputs is
captured during the continuous trajectory of transient internal states [56]. It
only remains to read out this information. It is shown in [55] that a read-
out unit can learn to extract salient information from a high dimensional
transient state of a large RNN, and can transform this transient state into a
stable readout. This readout unit can be trained by supervised or unsuper-
vised learning methods to perform a specified task. This model that analyze
computations without stable states is called Liquid State Machine (LSM). A
Similar idea has been discovered independently by Herbert Jaeger [57], called
Echo State Network (ESN). We will present first the principals of LSM, then
we will give more detailed information about ESN.

3.3.7 Liquid State Machine

Liquid State Machine (LSM) was discovered by Wolfgang Maass et al. [55].
The idea is inspired from the behaviour of a liquid exited by external pertur-
bations (inputs) such as wind, sound . . . etc. Maass et al. propose that ”. . .

3.3 Learning in Recurrent Neural Networks 34

the perturbed state of the liquid, at any moment in time, represents present
as well as past inputs, potentially providing the information needed for an
analysis of various dynamic aspects of the environment . . .”. Their approach
is based on the following observations. If a continuous input stream u(s)
excites a large ”pool” of randomly connected units, then after a later time
t > s the current state of the network, also called ”liquid state”, x(t) holds
a substantial amount of information about recent inputs u(s) [58]. The ob-
jective is then to extract this information. LSM can be considered as a filter
that maps the input u(.) onto an output y(.). Figure(3.4) illustrates the basic
architecture of the LSM.

Figure 3.4: Basic architecture of Liquid State Machine.

The first component of LSM is an operator L that maps input functions
u(.) onto liquid state x(t):

x(t) = (Lu)(t) (3.19)

where L is referred to “liquid filter”.
The second component is a memory-less readout map f that transforms the
current liquid state x(t) into the output y(t) according to:

y(t) = f(x(t)) (3.20)

The readout map f is adjusted to the specific task. It is chosen as memory-
less, because as cited above, the current liquid state x(t) contains all informa-
tion about inputs u(s) from preceding time s ≤ t that is needed to produce
the output y(t).

An implementation of LSM was carried out using a randomly connected
recurrent network called ”liquid neurons” as a liquid filter. Liquid neurons
are based on integrate-and-fire neurons. The output at time t of all the
liquid neurons represented the liquid state of a LSM. The readout map f was

3.4 Echo State Network 35

formed by other unconnected integrate-and-fire neurons with a biologically
realistic membrane time constant of 30ms that are trained to approximate
the target value of the output y(t). Simulations reported in [55] demonstrate
the computational universality of generic recurrent networks of integrate-
and-fire neurons, if viewed as special cases of LSMs.

3.4 Echo State Network

Echo State Network (ESN), developed recently by Herbert Jaeger [57], has
the same philosophy as a liquid state machine: i) Both, ESN and LSM, are
three-layered networks. ii) In both approaches, the hidden layer uses a recur-
rent network with a stochastic connectivity. iii) They have the same strategy
of learning, where only the readout map is to be adjusted according to the
task at hand. However, ESN and LSM are different in the nature and in the
objective. The ”liquid state” in LSM is made by continuous model with bi-
ologically inspired integrate-and-fire units, whereas the so-called ”reservoir”
of ESN is made by large number of sparsely interconnected simple sigmoid
units. As seen above, LSM research focuses on modelling and exploring bio-
logical neural networks dynamics, whereas ESNs are oriented to engineering
applications (prediction, modelling, adaptive control ...etc).

3.4.1 Formal Description

Let us now turn to a more formal description of ESNs. The notation will be
similar to the notation used in [57]. As presented in Figure(3.5), Echo state
network is formed by a so-called ”Dynamic Reservoir”(DR), which contains a
large number of sparsely interconnected units with non-trainable weights. We
consider that the network has K inputs, N internal units and L output units.
Activations of input units at time step n are U(n) = (u1(n), u2(n), . . . , uk(n)),
of internal units are X(n) = (x1(n), . . . , xN(n)), and of output units are
Y (n) = (y1(n), . . . , yL(n)). Weights for the input connection in a (NxK)
matrix are W in = (win

ij), for the internal connection in a (NxN) matrix are
W = (wij), and for the connection to the output units in an L x (K +N +L)
matrix are W out = (wout

ij), and in a (NxL) matrix W back = (wback
ij) for the

connection from the output to the internal units.

3.4 Echo State Network 36

Figure 3.5: Basic architecture of ESN. Dotted arrows indicate connections
that are possible but not required.

The activation of internal and output units is updated according to:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n + 1)) (3.21)

where f = (f1, . . . , fN) are the internal units output sigmoid functions.

The outputs are computed according to:

Y (n + 1) = f out(W out(U(n + 1), X(n + 1), Y (n))) (3.22)

where f out = (f out
1 , . . . , f out

L) are the output neurons output sigmoid func-
tions. The term (U(n+1), X(n+1), Y (n)) is the concatenation of the input,
internal, and previous output activation vectors.

The idea of this network is that only the weights connections from the inter-
nal units to the output (W out) are to be adjusted.

3.4.2 How ESN approach works?

The key to understanding ESN approach is the concept of echo states. It is
a property of the network prior to training. Echo states property is relative
to the weight matrices (W in,W,W back) and to training data.

3.4 Echo State Network 37

Compactness conditions

Compactness conditions are resumed as following: i) If input-ouput sequences
are drawn from spaces U and D respectively, then it is required that U and
D be compact. ii) During update, network states are required to stay in one
compact set (A ⊂ <N). It means that if at time n, the initial state X(n) ∈ A,
then after T iteration updates of (3.21) X(n + T) ∈ A.

Definition 1 (echo states) Assume that the compactness conditions are ver-
ified. Then a network (W in, W,W back) has echo states with respect to the
compact intervals U and D, if the network state X(n) is uniquely determined
by the history of the input-output data.

An equivalent way of stating echo state property is to say that for each
internal state xi there exists a function ei : (U ×D)−N → < that maps the
input-output history to the current state:

xi(n) = ei(. . . , (u(n− 1), d(n− 2)), (u(n), d(n− 1)). (3.23)

Several equivalent characterizations of echo states are collected in [59].
Unfortunately, there is no known necessary and sufficient condition that

permits to say whether a network has the echo state property. There is,
however, a sufficient condition for the non-existence of echo states. I quote
here this condition from [57]:

Proposition 1 Assume an untrained network (W in,W,W back) with state
update according to equation (3.21) and with transfer functions tanh. Let
W have a spectral radius |λmax| > 1, where |λmax| is the largest absolute
value of an eigenvector of W . Then the network has no echo states with
respect to any input/output interval U ×D containing the zero input/output
(0, 0).

This proposition is not helpful for finding ”constructing” echo state networks.
However, in practice it is found that when the spectral radius |λmax| < 1, we
do have an echo state network. This observation and proposition 1 still need
mathematical analysis.

Definition 2 A network (W in,W,W out,W back) is an echo state network if
its untrained ”core” (W in,W,W back) has the echo state property with respect
to the compact intervals U and D.

3.4 Echo State Network 38

3.4.3 Training Algorithm

Here we will give a detailed description of training an ESN (W in,W,W out,W back)
for a given task. The goal is to adjust (train) the matrix W out such that the
network output y(n) approximates a desired output d(n), when the network
is driven by training input u(n).

Step 1: echo state property

The following procedure seems to give a practical solution to guaranty echo
state property:

1. The order of input and output units should be fixed according to the
task at hand.

2. Generate randomly the input weights W in and output backpropagated
weights W back.

3. Generate randomly an internal weight matrix W0.

4. Normalize W0 with its spectral radius λmax and put it in W1 : W1 = 1
|λmax|W0.

5. Scale W1 with a factor α and put it in the final internal matrix of the
network W : W = αW , where 0 < α < 1.

It has been always found that using the steps above the untrained network
(W in,W,W back) is an echo state network.

Step 2: driving the network by training data

Ones the echo state property is verified, the ESN should be driven by given
I/O training sequence (u(n), d(n)). It is a mechanical step, which involves
the following operations:

1. Compute the network states by presenting I/O training data:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n + 1)) (3.24)

n = 0, . . . , T

3.4 Echo State Network 39

2. Collect at each time the state X(n) as a new row into a state collect-
ing matrix M , and collect similarly at each time the sigmoid-inverted
teacher output tanh−1D(n) into a teacher collection matrix C. After
these collections, the matrix M has the size of (T + 1)× (K + N + L),
and the matrix C has the size of (T + 1)× L.

Remark 1 Sometimes it is desirable to don’t consider the transient phase of
the network during training. This is easily made by washing out data, which
are collected before a certain time T0. Thus, the sizes of M and C will be
(T − T0 + 1)× (K + N + L) and (T − T0 + 1)× L, respectively.

Step 3: output weights computation

Compute the pseudoinverse of M and put:

W out = (M−1C)t (3.25)

t: indicates transpose operation.
Computing pseudoinverses exists in every programing package of numerical
linear algebra.

Step 4: exploitation

The ESN is now trained. For exploitation, the network can be driven by new
input sequences and using the equations (3.21) and (3.22) repeated here for
convenience:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n + 1)) (3.26)

Y (n + 1) = f out(W out(U(n + 1), X(n + 1), Y (n))) (3.27)

After several implementations of ESNs on real systems, I want to give some
benefit remarks:

1. The matrix W in plays an important role on the behavior of the ESN.
Small absolute values of W in mean that the network internal units
operate around the linear part of the sigmoid, i.e it is almost a linear
dynamics. With large absolute values, the network will be strongly

3.5 Conclusion 40

driven by the input, and therefore the internal units will operate closer
to the saturation of their sigmoid, which result to a more nonlinear
behavior of the network. Similar remarks hold for W back.

2. Keep the connectivity sparse inside the internal matrix W0, like in
biological neural systems, in order to avoid chaotic effects. In my ex-
periments, 10% and 20% of connectivity works well.

3. There is no general rule to find an optimal size of W0. In my experi-
mental implementation on DC motors and mobile robots, an ESN con-
troller, with more than 30 internal units, lost stability at many times.
This is due perhaps of the high degree of freedom of the closed loop.
The optimal method is to begin with a small network (say 9 units), and
after each test increase the number of internal units until an acceptable
behavior is reached.

4. The parameter α needs to be also hand-tuned. It should be small for
fast dynamics and large for slow dynamics.

3.5 Conclusion

This chapter discussed a variety of theoretical and practical RNN learning
approaches. The intensity of recent work in this field shows that it is worth
to deal with their computational complexity in order to profit from their
powerful capabilities. Some well settled issues can be identified: gradient
learning-based are well understood but they suffer from some problems: i)
local minima, ii) slow convergence, iii) difficulty of Learning Long-term de-
pendencies. Furthermore, they are relatively complex to implement. These
reasons might explain why RNNs are used less often for real-world appli-
cations than FFNNs, although these methods have been known as long as
the backpropagation algorithm for FFNNs. To overcome these difficulties,
many researchers propose to use either task specific algorithms, or to use
specialized architectures, like Long short term memory networks, or both.

Recently, random recurrent neural networks were proposed to avoid the
difficulties involved with training recurrent neural networks. The idea is that
a large recurrent network can serve as a ”source of dynamics” from which
information can be extracted by a readout unit. One approach ”liquid state
machine (LSM)” is biologically motivated and uses continuous time spiking

3.5 Conclusion 41

units [55]. In that work, results show that under some assumptions the net-
work considered is computationally universal and demonstrate some biolog-
ically motivated tasks. A similar approach ”echo state network (ESN)” was
discovered independently by Jaeger [57]. Many dynamical systems, which
were difficult to learn with the existing methods, have been easily learnt by
ESN [60][59].
In this thesis, ESN performances will be used in many non-trivial tasks:
Meta-learning, adaptive nonlinear system identification, high- and low-level
adaptive control of mobile robots, and real implementations on an omnidi-
rectional mobile robot.

Chapter 4

Metalearning

Meta-learning research deals with the question: how learning algorithms can
improve their performances through past knowledge? The machine learning
community uses meta-learning to build up neural networks, which have the
ability to adapt without changing explicit weights. This ability is acquired
by construction (learning learning rules) or through prior training. One may
directly ask: How does the network adapt, if its weights are fixed? It
seems that this question was first discussed in 1990 by Cotter and Conwell
[61]. In that work, they prove the Fixed Weight Learning Theorem that
describes how fixed-weight of a RNN can approximate the dynamics of a
feedforward network trained by an adaptive weight-learning algorithm. This
approximation doesn’t require any weight change, hence the ”fixed-weight”
label. Later on, several researchers have explored independently this notion,
and referred it as metalearning or learning how to learn. Metalearning may
be the most ambitious goal in artificial neural networks. Build a network,
which has the ability to adapt without changing explicit weights, is very
promising for non-stationary time series, robust identification and control of
time varying systems, autonomous intelligent robots...etc.

This chapter consists of four sections. The next two sections introduce
the notion of meta-learning and review recent results on adaptive behaviour
attained with fixed weights recurrent neural networks. Section (4.3) describes

4.1 Review of Metalearning 43

adaptive identification of non-linear dynamical systems problems and their
solution with a fixed-weight echo state network. Finally, section (4.4) con-
cludes with comments.

4.1 Review of Metalearning

It seems that metalearning represents a big puzzle. Each research group see
metalearning from a different angle (for a comprehensive survey refer to [62]).
Despite these differences, a question remains constant: how can we improve
learning algorithms by exploiting past knowledge (learning experience)? In
spite of the many research efforts, no clear answer has emerged. This section
provides different views and definitions of metalearning as reported in the
machine-learning literature.

First, it is important to give some basic concepts that will be helpful to
present recent development in metalearning. Assume that we have to train
a learning algorithm1 L on a set of training examples Ttrain : {(Ui, Y i)}n

i=1

where each object Ui is labeled with a class Yi according to an unknown
function F , F (Ui) = Yi. Figure (4.1.a) shows a base-learning strategy usu-
ally used in a common machine learning procedure. A set of observed data
from the task T is used to train the learner L, which, after being learned,
will predict something about this task. As pointed in recent machine learning
research, learning is a search process caried out by a learner over a space of
hypothesis H, in order to derive a hypothesis h, h ∈ H that could be useful
in estimating a given concept [62][64]. To perform search in our example,
the learning algorithm L maps the space of all training sets (Γ) into the
hypothesis L : Γ → H. The selected hypothesis h is used to approximate
the function F , and then to make generalization on unseen examples. How-
ever, the common learning procedures proposed in machine learning (base-
learning) are characterized by fixed bias2. A hypothesis space H depending
on such learner will be also fixed, thus the learner is specialized in a lim-
ited fixed region RL in S , where S is the space of all possible tasks (target
function F , different training data size, different sampling period of training

1Algorithms that modify theirs modifiable components (policy) are called learning al-
gorithms [63].

2All asymptions related to the behavior of a learner is refered to the ”bias” term. This
term can be considered as a tool of generalization and can be used to measure the power
of a particular learning algorithm [65].

4.1 Review of Metalearning 44

data,...etc)(Figure 4.1.b). The learning algorithm L is suitable only for those
tasks inside RL, and can never learn all possible tasks (i.e. Te) in S as long
as its bias is fixed [62]. It is interesting if through its past learning experi-
ence, the learning algorithm L changes its learning mechanism according to
the task under analysis; this is what we call learning to learn. Following the
terminology in [66], I will refer to the problem of dynamic selection of bias
as the meta-level learning problem. The conventional learning problem will
be referred to as the base-level learning problem (Figure 4.1).

(a) (b)

Figure 4.1: Base-level learning

4.1.1 Inductive Transfert

When learning tasks are closely related, it seems reasonable to expect a
learner to perform increasingly better on a particular task by reapplying
knowledge gaind in previous learning tasks. To improve learning through
time, the learner must be able to transfer knowledge about learning (meta-
knowledge) across tasks. This process is known as inductive transfer [67][68].
Inductive transfer is widely used in the realm of neural networks.

4.1.2 Dynamic Selection of Bias

Transferring knowledge across learning tasks involves dynamic selection of
Bias. In Figure (4.1.b), the task Te is situated outside the area of expertise,
thus a base-learner L is not able to learn this task as long as its bias is
fixed. This is common in machine learning, where a learner performs well
in some contexts, but inadequat in others. To overcome this limitation,
the base-learner should adapt its internal mechanism according to the task.
This enable the learner to shift its region of expertise along the set of the

4.1 Review of Metalearning 45

tasks. A metalearning approach would possibly able to extend the traditional
base-learning mechanism from a fixed bias mechanism to a dynamical bias,
providing a base-learner the ability to learn how to learn. One approach to
solve this problem is to combine predictions from different learners, in order
to shift the dominant region of the meta-learner over the task Te [69][69].
A framework on dynamic-bias selection is given by DesJardins et.al. [65].
The authors propose three search tiers for a bias shifting system. The first
tier refers to a search through a space H where a learner L derives the best
hypothesis h, h ∈ H that could approximate the desired task. Usually, most
learning algorithms assume that this space is fixed. To perform a dynamic
bias selection, the learner L must search in a second tier (bias search space),
where the size of the hypothesis space H can be modified. In the third tier,
search takes place at a meta-bias space level. At this level, it is possible to
select a bias for any search space in the second tier.

4.1.3 Meta-learner of Base-learners

One objective in metalearning is to determine the properties of the base-
learner L (interaction between its components) and how the properties of
the tasks in RL make L suitable in this region. Understanding the problem
above permit to choose the right algorithm for a particular task.

Assume now that the task T lies inside intersection of k regions RL1, RL2,. . . , RLk(Fig.4.2.a),
where k learning algorithms L1,L2,. . .Lk are spesialized, respectively. In this
case, it is reasonable to suppose that all learners are able to fit the task T .
As mentioned above, one objective of metalearning is to use a meta-learner
to combine predictions of base-learners in order to determine the best one
suited for the task at hand (Fig.4.2.b). One common approach is the Stacked
Generalization originally proposed by Wolpert [70]. In the example above,
the k base-learners are applied to the training set Ttrain : {(Ui, Y i)}n

i=1 to
produce k hypotheses h1, h2,. . . , hk, called level-0 generalizers. For met-
alearning, training data are transformed to new set T ′

train , where data are
replaced by predictions made by each hypothesis. The new training set T ′

train

serves as input to the meta-learner, which produces a new hypothesis called
level-1 generalizer. The role of the meta-learner is then to select dynamicaly
the best suitable learning algorithm for the task under study.

4.1 Review of Metalearning 46

(a)

(b)

Figure 4.2: Meta-learning

4.1.4 Lifelong Learning

Common learning artificial neural network generalizes well if sufficiently
many training examples are available. However, they often work poorly when
training data are scarce. In contrast, humans often generalize accurately even
in presence of scarce training data or from only a single training example.
This is because of the re use of knowledge acquired in our previous lifetime.

Lifelong learning is a framework that addresses situations in which a
learner faces many different learning tasks [71]. When facing a new learning
task, the learner may transfer knowledge gaind in previous learning tasks to
improve generalization. In the context of neural network, lifelong learning
goes beyond the limited bounds associated with learning single functions in
isolation. In [66], lifelong learning is investigated empirically in the context of
object recognition. It is shown that in presence of scarce training data, some
learning approaches that learn at the meta-level generalize significantly better
than those that do not. In mobile robot navigation, Complex tasks require

4.2 Fixed-Weight Neural Networks 47

huge amounts of training data when treated in isolation. These tasks can
be achieved much faster if a robot can exploit previously learned knowledge
[72].

4.1.5 Multitask Learning

Another way for the transfer of knowledge is concerned with the construction
of better internal representations, which improve generalizations across mul-
tiples tasks. Caruana [73] shows that training multiple tasks on one learner
improves generalization performances, since each task can benefit from the
information contained in the training signals of other tasks. In that work, the
Multitask Learning approach is used in FFNNs trained by backpropagation
algorithm, where all tasks are treated equally. Many outputs (one for each
task) share a common hidden layer (Fig. 4.3), and backpropagation is done
in parallel on all outputs using the same inputs. Information stored in the
hidden layer for one task can be used by other tasks.

Figure 4.3: Multitask Learning of L tasks with the same inputs.

4.2 Fixed-Weight Neural Networks

The machine learning community uses metalearning to build up neural net-
works, which have the ability to adapt without changing explicit weights.
This ability is acquired by construction (learning learning rules) or through
prior training. While the first strategy focuses on the concept of learning
to implement a learning rule, the second, instead, is built on the concept of

4.2 Fixed-Weight Neural Networks 48

training a RNN that would approximate different families of functions. After
an appropriate training of different functions, the obtained fixed-weight neu-
ral networks (FWNN) will be able to switch between them, using only input-
output pairs from one function family, and without changing any synaptic
weights. The two strategies principles are presented in this section.

4.2.1 Learning Learning Rules

Learning learning rules can be naively stated as following: If neural net-
works can approximate functions, they can approximate learning rules. The
question is whether the learning rule can be considered as a well-behaved
function. If so, then it is possible to built a network that learns this learn-
ing rule. To illustrate this idea we consider a one-neuron network (Figure
(4.4)), which is asked to adapt with a fixed weight. Equation (4.1) gives its
output y. Assuming that the weight is trained by a gradient descent, then
the change in the weight w is given by the weight update rule (4.2), where u
is the input, η is the step size, and e = y − d is the error between the actual
and the desired output. The weight is updated by (4.3).

y = tanh(wu) (4.1)

∆w = −ηE(e, u, y) (4.2)

wk+1 = wk + ∆w (4.3)

Inspired from the fixed-weight architecture proposed by Younger et al.
[74], the one-neuron network will be transformed in a larger network (Figure
4.5). I will consider an auxiliary network called weight update network that
learns (4.2). Equation (4.3) is realized by a single neuron that has a positive
unit feedback connection. Finally, a Π unit replaces the original weight. The
network of figure (4.4) is now transformed to a larger network, which after
learning a learning rule can behave adaptively with fixed weight.

4.2 Fixed-Weight Neural Networks 49

Figure 4.4: A weight adaptation of a single unit network.

Figure 4.5: A fixed-weight network equivalent to a single unit network.

Schmidhuber in [63] proposes a method called self-modifying policy (SMP) to
create learning learning algorithms. A reinforcement learning method called
”success-story algorithm” (SSA) is used to force a SMP to trigger better and
better self-modifications. In that work, a concrete implementation is pre-
sented, where SMP/SSA-based learners solve a complex task in a partially
observable environment. Castiello et al. [64] propose a neuro-fuzzy system
that improves its performance through past experience. The system inte-
grates both a base-learner (performing the ordinary predictive tasks) and a
meta-learner that supports the base-learner to search for a suitable bias in

4.2 Fixed-Weight Neural Networks 50

every new specific task. In [75], a neural network is built to run and improve
its own weight algorithm. Besides its learning capability to solve problems,
the network uses its own weights as inputs and learns new algorithms for
modifying its weights in response to the environment and evaluations of past
learning performances.

4.2.2 Multiple Modeling

Other researchers focus on the concept of training fixed-weight RNNs that
would approximate different families of functions. It is stated in [76] that
any recurrent neural network is a potential metalearning system. In a RNN,
recurrent signal loops can store information by accumulation, and they act
like weights in a conventional network [74]. Therefore, adaptation in RNNs
can manifest only by signal changing in recurrent loops, without need to
change weights to react to a changing environment. The adaptive behav-
ior with fixed weights is named differently. It is termed metalearning in
[51], and ”accommodative” in [77]. In this concept, the selection of training
data determines the difference between base-learning and meta-learning. In
a baselearning, training data are collected from a single functional mapping.
For metalearning, training data are collected from different families of func-
tional mappings such that, after learning, the FWNN produces the correct
output as specified by the selected mapping. It has been shown by Feld-
kamp et al.[78] that a single fixed weight RNN can perform one-time-step
prediction for many distinct time series. In the control domain, it is shown
in [79] that a RNN can be trained to act as a stabilizing controller for three
unrelated systems and to handle switch between them.
In some way, this adaptation depends on storing some meta-level informa-
tion about the different functional mappings. This ”meta-information” is
explored as a form of memory in [80]. In that work, it is considered that
a fixed-weight RNN encodes a set of memories. Each memory represents a
certain mapping, which is already learned by the network. Adaptation is
then defined as the ability of the fixed-weight RNN to recall from memory
the information needed to adapt to the mapping function being presented to
the network. Understanding how this recall mechanism occurs will help sig-
nificantly to build more “intelligent” machine learning. Roberto et al. in [80]
propose a reformulation of FWNN using a Context Discerning Multifunction
Network (CDMN). CDMN is formed by a component called discernment net-
work (CDN) that is able to identify spatial and temporal characteristics and

4.2 Fixed-Weight Neural Networks 51

produce fixed parameters. These parameters can be used by another compo-
nent called multifunction network (MFN) to adjust biases over the presented
task (mapping). CDN and MFN form together the concept of CDMN.

A major problem to be adressed in metalearning is the recency effect : the
tendency to forget what hat learned in the past. If training data are homoge-
nous, then one or more passes through the data can probably produce good
results. However, when training data are heterogeneous, the tendency of the
weights update will be in a favour of the most recently presented data. The
same phenomenon can be found in case of training feedforward networks if
training data are repeatedly presented in the same order. To avoid this, an
effective solution is to scramble the order of training data presentation, or to
run the network through the entire data set, and make an update based on
the entire set errors. The later is known as batch update algorithm.
Multi-stream procedure [81][53][80] is an extension of EKF training methods,
which combines both scrambling and batch update methods. As a result,
this procedure provides the benefits of the batch learning to circumvent the
recency effect, while remaining consistent with the kalman recursion.

Multistream Training

We describe now the general idea of multi-stream training. In a problem
of heterogeneous training data, usually we deal with more than one data
file. Each file contains data collected from a different system, or from one
system under different operating conditions. Multi-stream training is based
on the principal that each weight update should satisfy simultaneously the
conflict demands of heterogeneous training data. First, a specified number of
randomly selected starting points is chosen in each file. Each starting point is
the beginning of a stream. For each stream, a separate RTRL or a BPTT(h)
derivative calculation is used, in order to carry out weight updating. After
saving copies of output units and dynamics derivatives from each stream,
a global EKF update procedure is used. If first-order updates were being
used, one can simply average these updates. A more rigorous method is to
consider the problem as that of training a multiple output network in which
the original output unit’s number is multiplied by the number of streams.

4.3 Adaptive Identification with Fixed-Weight ESN 52

4.3 Adaptive Identification with Fixed-Weight

ESN

In this section, we want to explore the ability of ESNs to exhibit adaptive be-
havior with fixed weights in system identification. This is not to demonstrate
that the fixed-weights ESN can pass any test for adaptive systems. Rather,
we wish to report the metalearning technique so that the resulting fixed-
weight ESN identifier exhibits an adaptive behavior [82]. No multistreaming
is needed, since the ESN has a batch learning algorithm and does not suffer
from the recency effect.

4.3.1 Preliminaries on Nonlinear System Identification

System identification is extremely relevant in real implementations and only
recently has much ongoing research addressed the problem of identifying sys-
tems with nonlinearities. In practice, these systems are frequently modelled
as input/output (I/O) maps of sampled data from the system. A standard
model that has been used to represent a wide class of nonlinear dynamic
systems is the Nonlinear Autoregressive Moving Average (NARMA) model
given by

d(k) = G(d(k − 1), d(k − 2), . . . , d(k − nd), u(k),

u(k − 1), . . . , u(k − nu), θk) (4.4)

where G(.) is some nonlinear function, θk denotes parameters with values
from compact set Θ, and (u(k), d(k)) the input/output pair measured from
the system at time k. The parameters nd and nu are the output and input
orders.
The problem of nonlinear system identification is to approximate the function
G(.) in (4.4) from some sampled data sequences {(u(k), d(k))|k = 1, 2, . . . , t}.
It is well known that system identification can be done using either parallel
models or series-parallel models. If d̂(k) is the approximation of d(k), the
parallel NARMA model is described by

d̂(k) = Ĝ(d̂(k − 1), d̂(k − 2), . . . , d̂(k − nd), u(k),

u(k − 1), . . . , u(k − nu), θk) (4.5)

This model can predict the output given only the input. In contrast to this,
the serie-parallel model uses the system outputs history to predict future

4.3 Adaptive Identification with Fixed-Weight ESN 53

values. It is described by

d̂(k) = Ĝ(d(k − 1), d(k − 2), . . . , d(k − nd), u(k),

u(k − 1), . . . , u(k − nu), θk) (4.6)

In many cases, the parameters θk may vary with time. An adaptive iden-
tification is then required to track these variations. Usually, gradient de-
scent methods like recursive least square (RLS) and recursive prediction error
(RPE) are widely used to adjust the model parameters.

4.3.2 Problem Statement

The problem to solve is that of developing an adaptive ESN identifier for non-
linear systems described by (4.4). The order and the nonlinear function of
the system are assumed to be unknown. Furthermore, the system may have
time-varying parameters. Upon completion of the training procedure, we ex-
pect that the trained ESN will be capable to exhibit characteristics, normally
ascribed to adaptive identifiers: i) make an acceptable generalization to new
incoming data, ii) detect the parameters variation; and iii) instantiate this
information and begin making predictions in this new situation. Naturally,
we only expect adequate performances for system conditions that are close
to those seen during training.

4.3.3 Procedure

A question may be asked: Why the echo state property of the internal
state can make this approach work in identifying systems (4.4)? Assume
that we consider the serie-parallel model (4.6) for the identification. If the
echo state property is satisfied, then after long time running, each state xi

can be mapped by input/output histories through a function called “echo
function”[57]. Thus

xi(n) = ei(d(n− 1), d(n− 2), . . . , u(n), u(n− 1), . . .) (4.7)

where ei are echo functions. Assume that there is no back-connection from
the output to the “dynamic reservoir”(DR), and no synaptic weight connec-
tions from the input directly to the output, then the output of the ESN will
be:

Y (n + 1) = f out(W out(X(n + 1))) (4.8)

4.3 Adaptive Identification with Fixed-Weight ESN 54

The trained network output is now a combination of the network states,
which in turn are governed by these echo functions. To facilitate notation,
we consider the case of a SISO system. In this case the network has only one
output y(n) given by

y(n + 1) = f out(
∑

W out
i ei(d(n− 1), d(n− 2)

. . . , u(n), u(n− 1), . . .)) (4.9)

We can observe the connection between (4.4) and (4.9). The ESN approach
propose to approximate (4.4) by a linear combination of many echo functions
ei in (4.9). The fact that the ESN has the “echo state property” gives ei the
same arguments as the function G in (4.4). Both are collection of inputs and
outputs history.

4.3.4 Results

We performed several adaptive system identification, two examples taken
from the literature are reported here. In all tests, we estimated the normalized
mean square error defined as:

NMSEtest =
E[(ytest − y)2]

σ2
(4.10)

where σ2 is the variance of the system output y, and ytest is the ESN prediction.

Example 1

Let us consider the system described by the following difference equation
[77]:

y(k + 1) = θ1y(k) + (u(k)− θ1)u(k)(u(k) + θ2) (4.11)

where u(k) and y(k) are the input and output of the system, respectively.
Here, we assume that the parameters (θ1, θ2) have predefined possible values,
given by the set Θ = {(0.8,−3), (0.8, 0), (0.8, 3), (0.7, 0), (0.9, 3)}.
Input/Output (I/O) training data are prepared by driving the system (4.11)
with an input sequence sampled from the uniform distribution over [−2, +2].
For each value of (θ1, θ2) from Θ, 1000 sequences are collected to form the
off-line training set. As a result 5000 heterogeneous I/O sequences are used
for training. Figure (4.6.a) shows the resulting scaled output teacher signal,

4.3 Adaptive Identification with Fixed-Weight ESN 55

which clearly shows transitions every 1000 steps. Training was performed
using an ESN with 2 inputs, which receive (u(k), y(k − 1)), 9 internal neu-
rons, and one output, which represents the predicted system output (ytest).
No back-connection from the output to the DR, and no synaptic weight con-
nections from the input directly to the output. The input and the internal
synaptic connections weights were randomly initialized from a uniform dis-
tribution over [−0.5, +0.5]. The internal weight matrix W has a sparse con-
nectivity of 20% and scaled such that its maximum eingenvalue |λmax| ≈ 0.1.
After training, we used the same parameters seen during training, but in a
different order. Inputs are sampled from a uniform distribution over [−2, +2],
then five sequences corresponding to
(θ1, θ2) = {(0.7, 0), (0.8,−3), (0.8, 0), (0.9, 3), (0.8, 3)} are collected. Each se-
quence consists of 200 I/O test data. On test data, the ESN identifier showed
a mean square error of NMSEtest ≈ 0.0226. The network could make a
reasonable generalization on new I/O data, and could recognize parameters
variation only through its inputs and its state, without changing any synap-
tic weight. Figure(4.6.b) illustrates the obtained results.
In the next example, the performance of the ESN is tested on a higher or-
der system. Tests will be done on new incoming data and new parameters
variations.

4.3 Adaptive Identification with Fixed-Weight ESN 56

(a)

(b)

Figure 4.6: Results of example 1. (a). Teacher output. (b). ESN Predic-
tion test on new I/O data. Desired (solid) and network prediction (dashed)
signals.

4.3 Adaptive Identification with Fixed-Weight ESN 57

Example 2

Our goal here is to identify a 10th order nonlinear system, in a presence of
time varying parameters. This example is taken from [83], where the system
to be identified is given by the difference equation:

y(k + 1) = 0.3y(k) + 0.05y(k)
[9∑

i=1

y(k − i)
]

+1.5u(k − 9)u(k) + 0.1 (4.12)

In this thesis, we replace its fixed parameters by time varying parameters α,
β, γ, and ϕ to obtain:

y(k + 1) = αy(k) + βy(k)
[9∑

i=1

y(k − i)
]

+γu(k − 9)u(k) + ϕ (4.13)

I/O training data are prepared by driving the system (4.13) with a 13000-step
input sequence sampled from the uniform distribution over [0, 0.3]. Every
1000 steps, α,β,γ, and ϕ were assigned new random values taken from ±50%
interval around their nominal values. The first 10000-steps I/O are used for
training, and the other 3000-steps for generalization tests. Figure (4.7.a)
shows the resulting output teacher signal, which also shows transitions every
1000 steps.
For problems with long-term time dependencies, RNNs are very hard to train
[47]. The system treated here has a time-lag of ten time steps, and using
the training input pair (u(k), y(k − 1)) was not enough to give complete
information about the dynamics of the system, resulting to poor perfor-
mances of the ESN identifier. Introducing one more delay from the system
(u(k), y(k−1), y(k−2)) as inputs allowed the ESN identifier to demonstrate
better performances. Therefore, the ESN architecture was chosen as follows.
3 inputs, 13 internal neurons, and one output. No back-connection from the
output to the DR, and no synaptic weight connections from the input directly
to the output. The input and the internal synaptic connections weights were
randomly initialized from a uniform distribution over [−0.5, +0.5]. The in-
ternal weight matrix W has a sparse connectivity of 20% and scaled such
that its maximum eingenvalue |λmax| ≈ 0.3. On test data, the network
showed a mean square error of NMSEtest ≈ 0.0066. Results are illustrated
in Figure(4.7. b).

4.3 Adaptive Identification with Fixed-Weight ESN 58

We performed then two other tests using two different inputs collected from
(4.14) and (4.15), and new random parameters listed on Table 1. On test
data obtained from the inputs u1 and u2, the ESN identifier showed a mean
square error of NMSEtest ≈ 0.0058 and 0.0052, respectively. Results of the
two tests are illustrated by Figure(4.8. (a) and (b)).

Table 4.1: System parameters values and their time intervals

Time α β γ ϕ

1≤k≤1000 0.317 0.041 1.558 0.108

1001≤k≤2000 0.318 0.039 1.725 0.077

2001≤k≤3000 0.329 0.058 1.475 0.089

3001≤k≤4000 0.356 0.051 1.780 0.083

u1(k) = 0.05
[
sin(

πk

30
) + 2.7

]
+0.02

[
sin(

πk

10
) + 2

]
(4.14)

u2(k) = 0.05
[
sign(0.1 cos (

πk

150
) + 3.5)

]
(4.15)

4.3 Adaptive Identification with Fixed-Weight ESN 59

(a)

(b)

Figure 4.7: Results of example 2 (1st test). (a). Teacher output. (b). ESN
Prediction test on new I/O data. Desired (solid) and network prediction
(dashed) signals.

4.3 Adaptive Identification with Fixed-Weight ESN 60

(a)

(b)

Figure 4.8: Results of example 2 (2nd test). System(solid) vs ESN Predic-
tion(dashed). (a). Responses to u1(k). (b). Responses to u2(k).

4.4 Conclusion 61

4.4 Conclusion

Like any survey, this chapter did not cover many other relevant works con-
ducted on Metalearning. The objective was to make the reader familiar with
this concept, which is central in this thesis. Despite the different meaning
ascribed to metalearning, no clear consensus exists of what is meant by this
term. However, the question to solve remains constant: How can we improve
learning algorithms by exploiting past knowledge (learning experience)? So a
possible unification of current efforts in this promising area could be resumed
as the building of self-adaptive learners that improve their bias dynamically
according to the task at hand [62].
Several researchers have used metalearning to build up neural networks that
have the ability to adapt without changing explicit weights. Two directions
are used in the literature. The first one focuses on the concept of learning
to implement a learning rule, the second, instead, is built on the concept of
training a RNN that would approximate different families of functions. This
thesis follows the second direction to develop fixed-weight adaptive identi-
fiers/controllers based on ESNs. In the simulations, an ESN is asked to
identify several nonlinear dynamical systems with time varying parameters.
In other words, the ESN is being asked to exhibit a characteristic, normally
ascribed to adaptive systems, whose parameters change in response to an en-
vironmental change. In such problems, neural networks are usually trained
on-line to contineously update their weights. This method is not completely
satisfactory, due to several problems, i.e local minimum, slow convergence
and complexity of the learning process. The fixed-weight solution adopted
here presents a clever and efficient strategy compared with adaptive networks.
”Adaptation” in this work is defined as the ability of the network identifier
to change its behavior policy only by switching its internal state, represented
by recurrence connections, without changing any synaptic weight. This ca-
pability is a natural consequence of prior training. The obtained results
indeed confirm the ability of the fixed-weight ESN identifier to handle bal-
ance between the variety of new I/O data and the variety of the parameters.
Furthermore, no multi-streaming is needed during training, since ESNs use
a batch-learning algorithm and don’t suffer from the recency effect.

The results of the first example compare favourably to the results for the
same problem presented in [77]. Furthermore, the ESN solved not only the
same problem presented in [83], but also its general form where parameters
are replaced with time varying ones.

4.4 Conclusion 62

In this chapter, the examples highlighted the universal approximation
capability of the ESNs. The two following chapters discuss, how ESNs can
be used in mobile robot control.

Chapter 5

Control of Nonholonomic
Robots with ESNs

In this chapter, an adaptive neurocontrol system with two levels is proposed
for the motion control of a nonholonomic mobile robot. In the first level,
an ESN improves the robustness of a kinematic controller and generates lin-
ear and angular velocities, necessary to track a reference trajectory. In the
second level, another ESN network converts the desired velocities, provided
by the first level, into a torque control. The advantage of the control ap-
proach is that, no knowledge about the dynamic model is required, and no
synaptic weight changing is needed in presence of robot’s parameters varia-
tion. Furthermore, we demonstrate the ability of a single fixed-weight ESN
to act as a dynamic controller for several (here 3) distinct mobile robots.
This capability is acquired through prior ’metalearning’. Simulation results
are demonstrated to validate the robustness of the proposed approach.

5.1 Introduction

Control of mobile robots has been studied by many authors in the last decade,
since they are increasingly used in wide range of applications. At the begin-

5.2 Nonholonomic Mobile Robots 64

ning, the research effort was focused only on the kinematic model, assuming
that there is perfect velocity tracking [28]. Later on, the research has been
conducted to design navigation controllers, including also the dynamics of
the robot [29][33]. Taking into account the specific robot dynamics is more
realistic, because the assumption ”perfect velocity tracking” does not hold in
practice. Therefore, it is desirable to develop a robust motion control, which
has the following capabilities: i) ability to successfully handle estimation er-
rors and noise in sensor signals, ii) velocity tracking at the dynamic-level,
and iii) adaptation ability, in presence of time varying parameters.

As seen in the previous chapter, we trained an ESN to act as an adaptive
identifier of non linear dynamical systems, with fixed weights [82]. In this
chapter, a control approach based on ESNs is developped for tracking control
of a nonholonomic mobile robot. Two control levels are designed. First, an
ESN kinematic controller provides the desired velocity, necessary to minimize
the position error. Then, an adaptive dynamic ESN controller transforms the
desired velocity into torques for wheels, such that the robot’s velocity con-
verge to the desired one. In this approach, no dynamical model is required
and no synaptic weight changing is needed in presence of parameters varia-
tion.

The rest of this chapter is organized as follows. The two next sections pro-
vide a review of modelling and control of nonholonomic mobile robots. The
design of the adaptive dynamic ESN controller is described in sections (5.4)
and (5.5). The problem of developping a single controller for three distinct
robots is discussed in section (5.6). In Section (5.7), the neurocontrol system
with two levels is designed for motion control, and some simulation results
are presented. Finally, dicussions and conclusion are drawn in sections (5.8)
and (5.9).

5.2 Nonholonomic Mobile Robots

In this section, a review of modeling and control of Nonholonomic mobile
robots is provided. In such robots, the motion control will be subject to
nonholonomic constraints, which makes motion perpendicular to the wheels
impossible. This constraint involves a non trivial control methods although
the full state is measured.

5.2 Nonholonomic Mobile Robots 65

5.2.1 Kinematic and Dynamic Modeling

A mobile robot system having an n-dimensional configuration space with gen-
eralized variables (q1, q2, ..., qn) and subject to constraints can be described
by [33]:

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) + τd = B(q)τ − AT (q)λ (5.1)

where M(q) ∈ <n×n is a symmetric, positive definite inertia Matrix, Vm(q, q̇) ∈
<n×n is the centripetal and coriolis matrix, F (q̇) denotes the surface friction,
τd denotes bounded unknown disturbances including unstructured unmod-
eled dynamics, B(q) ∈ <n×r is the input transformation matrix, is the input
vector, is the matrix associated with the constraints, and λ ∈ <m×1 is the
vector of constraint forces. The nonholonomic nature of a mobile robot is
related to the assumption that the wheels of the vehicle roll without slip-
ping. They are subject to non-integrable equality nonholonomic constraints
involving the velocity. In other words, the dimension of the admissible ve-
locity space is smaller than the dimension of the configuration space. This
constraint can be written:

A(q)q̇ = 0 (5.2)

In the case of a mobile Robot with two actuated wheels, I will adopt the
model used in [29]. Consider the mobile robot of Figure (5.1). O−xy is the
world coordinate system and P0−XY is the coordinate system fixed to the
mobile robot. P0 is the origin of the coordinate system P0−XY and the
middle between the right and left driving wheels. The distance from P0 to
the center of mass Pc is d.

5.2 Nonholonomic Mobile Robots 66

Figure 5.1: Mobile robot with two actuated wheels.

For the later description, mc and mw are the mass of the body and wheel
with a motor, Ic, Iw, and Im are the moment of inertia of the body about
the vertical axis through Pc, the wheel with a motor about the wheel axis,
and the wheel with a motor about the wheel diameter, respectively.

The matrices M ,V and B are given by :

M(q) =

m 0 2mwd sin φ 0 0
0 m −2mwd cos φ 0 0

2mwd sin φ −2mwd cos φ I 0 0
0 0 0 Iw 0
0 0 0 0 Iw

V (q, q̇) =

2mwdφ̇2 cos φ

2mwdφ̇2 cos φ
0
0
0

, B(q) =

0 0
0 0
0 0
1 0
0 1

, τ =

[
τr

τl

]

I and m are given by: I = mcd
2 + Ic + 2mwb2 + 2Im, m = mc + 2mw.

5.2 Nonholonomic Mobile Robots 67

Five generalized coordinates can describe the configuration of the mobile
robot: q = [x, y, φ, θr, θl]

T where (x, y) are the coordinates of P0, φ is the
heading angle of the mobile robot, and θr, θl are the angles of the right and
left driving wheels.

We assume the wheels roll and do not slip. Then, there exist three con-
straints; the velocity of P0 must be in the direction of the axis of symmetry
and the wheels must not slip:

ẏ cos φ− ẋ sin φ = 0 (5.3)

ẋ cos φ + ẏ sin φ + bφ̇ = rθ̇r (5.4)

ẋ cos φ + ẏ sin φ− bφ̇ = rθ̇l (5.5)

From the constraints (5.3), (5.4) and (5.5), let a matrix A be defined as:

A(q) =

sin φ − cos φ 0 0 0
cos φ sin φ b −r 0
cos φ sin φ −b 0 −r

 (5.6)

Let S(q) be a full rank matrix formed by a set of smooth and linearly inde-
pendent vector such as:

ST (q)AT (q) = 0 (5.7)

It is easy to verify that S(q) is given by:

S(q) =

r
2
cos φ r

2
cos φ

r
2
sin φ r

2
sin φ

r
2b

− r
2b

1 0
0 1

(5.8)

According to (5.1) and (5.7), it is possible to find that:

q̇ = S(q)ν (5.9)

where ν = [ν1, ν2] are the angular velocities of the right and left wheels.
Equation (5.9) represents the kinematic model of the robot.

5.2 Nonholonomic Mobile Robots 68

Differentiating (5.9), substituting the result in (5.1), and then multiply-
ing by ST , we can eliminate the constraint matrix AT (q)λ. Also, if we denote
M̄ = ST MS and V̄ = ST (MS +V S), and after simplifications, the nonholo-
nomic mobile robot (5.1) can be transformed to the following equations:

M̄(q)ν̇ + V̄ (q, q̇)ν = B̄(q)τ (5.10)

where

M̄(q) =

[
r2

4b2
(mb2 + I) + Iw

r2

4b2
(mb2 − I)

r2

4b2
(mb2 − I) r2

4b2
(mb2 + I) + Iw

]
(5.11)

V̄ (q) =

[
0 r2

2b
mcdφ̇

− r2

2b
mcdφ̇ 0

]
(5.12)

B̄ =

[
1 0
0 1

]
(5.13)

and τ = [τr, τ l]T consists of motors torques τr and τl , which act on the
right and left wheels, respectively.

Equations (5.9) and (5.10) represent the kinematic and dynamic models
of the robot, respectively.

From equation (5.9) we obtain:

d

dt

x
y
φ
θr

θl

=

r
2
cos φ r

2
cos φ

r
2
sin φ r

2
sin φ

r
2b

−r
2b

1 0
0 1

[
ν1

ν2

]
(5.14)

The relation between (v, w) and (ν1, ν2) is:
[

ν1

ν2

]
=

[
1
r

b
r

1
r

−b
r

] [
v
w

]
(5.15)

where v and w are the linear and angular velocity of the robot. If we want to
focus only on x, y, and φ then it is sufficient to substitute (5.15) for (5.14).
We will get the ordinary form of a mobile robot with two actuated wheels:

d

dt

x
y
φ

 =

cos(φ) 0
sin(φ) 0

0 1

[
v
w

]
(5.16)

5.3 Motion control 69

5.3 Motion control

Motion control of mobile robots has been studied by many authors in the
last decade, since they are increasingly used in wide range of applications. In
motion control, the objective is to control the velocity of the robot such that
its pose P = [x, y, φ]T follows a reference trajectory Pr = [xr, yr, φr]

T . At
the beginning, the research effort was focused only on the kinematic model,
assuming that there is perfect velocity tracking. Thus, the controllers neglect
the vehicle dynamics and consider only the steering system (5.16), where the
velocities (v,w) are supposed to be the robot inputs (Figure 5.2). Various
feedback controllers have been proposed to solve this problem (see the survey
paper [28] and references cited therein).

Figure 5.2: Motion control using the kinematic model.

Later on, the research has been conducted to design motion controllers,
including also the dynamics of the robot. Taking into account the specific
robot dynamics is more realistic, because the assumption ”perfect velocity
tracking” does not hold in practice. In a real case, the mobile robot is
described with two stages. As mentioned in Figure (5.3), the first stage
contains the dynamics, with two outputs (v, w) linear and angular velocity.
The second stage contains the kinematics.

Figure 5.3: Two-stage model of a real mobile robot.

To have better motion control performance one has to take into account
also the specific vehicle dynamics. In this case the controller structure should
be decomposed into two stages:

5.3 Motion control 70

1. an inner loop (Figure 5.4), depending on the robot dynamics, and can
be used for controlling the linear and angular velocity. It is also called
dynamic-level control of a mobile robot.

2. an outer loop, controls the pose of the robot. It is also called kinematic-
level control of a mobile robot.

The global control structure is then decomposed as presented in Figure(5.5).

Figure 5.4: Inner loop control of a mobile robot (dynamic-level control).

Figure 5.5: Control of a real mobile robot.

Little has been written about integrating the kinematic controller and
the dynamics of the mobile robot, and the literature on robustness and con-
trol in presence of uncertainties in the dynamical model of such systems is
rare [84]. However, when the dynamic model is considered, exact knowl-
edge about the parameters values of the mobile robot dynamics is almost
unattainable in practical situations. If we consider that these parameters
are time varying, the problem becomes more complicated. At present, PID
controller is still widely used in motor control of mobile robot. However, its
ability to cope with some complex process properties such as nonlinearities,

5.4 Dynamic-level Control with ESNs 71

and time-varying parameters are known to be very poor. In the next sections,
an adaptive neurocontrol system with two levels is proposed for the motion
control of a nonholonomic mobile robot. In the first level, an ESN improves
the robustness of a kinematic controller and generates linear and angular ve-
locities, necessary to track a reference trajectory. In the second level, another
ESN converts the desired velocities, provided by the first level, into a torque
control. The advantage of the control approach is that, no knowledge about
the dynamic model is required, and no synaptic weight changing is needed
in presence of robot’s parameters variation.

5.4 Dynamic-level Control with ESNs

In this section, the ESN is asked to act as a dynamic-level controller for
nonholonomic mobile robots. It is desirable to consider that in practical
situations, the knowledge about the dynamic model is not complete.

5.4.1 Procedure

The advantage of the control approach proposed is that no knowledge about
the dynamic model of the robot is required. This property makes it very
useful in practical situation, where the exact knowledge about the real pa-
rameters is almost unattainable. Here, the ESN dynamic controller (we call
it ESND) is designed only by learning I/O data collected from the dynamic
model (5.10).

Training

Training procedure involves using actual and delayed velocities of the robot
as inputs, and correspondent torques as teacher signals (Figure 5.6). The goal
of this training procedure can be summarized as follow: Find the weights of
the network using the teacher signal, which brings the robot from the actual
velocity at time (n) to a future velocity at time (n + 1)[85].

5.4 Dynamic-level Control with ESNs 72

Figure 5.6: Training ESND as a dynamic controller.

Exploitation

After training procedure, the ESND controller is attached to the robot as low-
level closed loop controller (Figure 5.7). The ESND used the actual (w, v)
and the desired (wd, vd) angular and linear velocities, to give the appropriate
control inputs (torques).

Figure 5.7: Exploitation of ESND as a dynamic controller.

5.4.2 Results

In the simulation, the robot’s nominal parameters values are chosen as follows
[29]: a = 2, b = 0.75, d = 0.3, r = 0.15,mc = 30,mw = 1, Ic = 15.625, Iw =
0.005, Im = 0.0025. The network used in these simulations has 4 inputs
(actual and delayed linear and angular velocities of the robot), 2 outputs
(two torques for robot dynamical model), no back-connection from the output
to the dynamic reservoir (DR), and no synaptic weight connections from the
input directly to the output. The input and the internal synaptic connections
weights are randomly initialized from a uniform distribution over [−1, +1].

5.4 Dynamic-level Control with ESNs 73

To train the ESND, we used collected Data from the model (5.10). First,
random inputs (torques) are generated. Then the robot is driven using these
inputs with an open loop, in order to collect the correspondent angular and
linear velocities. 4000 data were collected: 2000 data used to train the net-
work and the 2000 others are used for generalization tests. The dimension of
the DR and the maximum eigenvalue were tuned by hand, in order to avoid
overfitting, and have a good generalization. After many tests, we found that
the best DR dimension is between 18 and 25 units, and an optimum |λmax| is
between 0, 3 and 0, 6. In the simulation, 20 internal units are used, and the
internal weight matrix W has a sparse connectivity of 20% and scaled such
that its maximum eigenvalue |λmax| ≈ 0.4.

After training and generalization tests, the performances of the ESND

controller were tested on new desired linear and angular velocities:

1 ≤ t ≤ 100 : vr = 0.25(1− cos πt
5
)

wr = −vr

100 ≤ t ≤ 200 : vr = 0.5
wr = −0.5

200 ≤ t ≤ 300 : vr = 0.5
wr = 0.5(1− cos πt

5
)− 0.5

300 ≤ t ≤ 700 : vr = 0.5)
wr = 0.5

700 ≤ t ≤ 800 : vr = 0.5
wr = 0.25(1− cos πt

5
)

800 ≤ t ≤ 900 : vr = 0.25π(1 + cos πt
5
)

wr = 0

Figure (5.8) shows the obtained results. As can be seen, the robot model
tracks simultaneously and perfectly the desired linear and angular veloc-
ity. The mean square error between actual and desired linear velocities is
MSELinvelo = 5.7670e − 007 and between the actual and desired angular
velocities is MSEAngvelo = 1.2057e− 005. This result demonstrates that the
ESN approach is able to control the dynamics of the robot, without prior

5.4 Dynamic-level Control with ESNs 74

information about the dynamic model. This property makes it very useful
in practical situation, where the exact knowledge about the mobile robot
parameters is almost unattainable.

Next section will discuss the ability of the ESN controller to adapt with
fixed-weight.

0 100 200 300 400 500 600 700 800 900
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time

reference and actual linear velocity

v
r

v

(a)

0 100 200 300 400 500 600 700 800 900
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

reference and actual angular velocity

w
r

w

(b)

0 100 200 300 400 500 600 700 800 900
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

to
rq

ue

Control for wheel right

(c)

0 100 200 300 400 500 600 700 800 900
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

to
rq

ue

Control for wheel left

(d)

Figure 5.8: ESN adaptive velocity tracking control. a) Linear velocity track-
ing. b) Angular velocity tracking. c) Computed torque for wheel right. d)
Computed torque for wheel left.

5.5 Adaptive Dynamic Control using Fixed-Weight ESNs 75

5.5 Adaptive Dynamic Control using Fixed-

Weight ESNs

Training an echo state network as a dynamic controller for nonholonomic
mobile robots is developed in section (5.4). Here, however, we are interested
in much more interesting problem of requiring a fixed-weights ESN to make
an adaptive dynamic control. In chapter (3), we explored the notion that
a well trained ESN needs to change only its internal state to change its be-
havior policy. It was shown how metalearning provides the ESN identifier
the ability to adapt only by switching its internal state, represented by re-
currence connections, without changing any synaptic weight. In this section,
metalearning will be used to build up an adaptive ESND controller, in pres-
ence of time varying parameters. Furthermore, this ability allows a single
fixed weight ESND to act as a dynamic controller for several distinct robots.

5.5.1 Problem Statement

In this section, an ESN dynamic controller is designed for the model (5.10),
in presence of time varying parameters (d,mc). We assume that mc vary
between the values [30, 35] and the distance d can vary in interval of ±50%
around its nominal value. Upon completion of training, we expect that the
ESN dynamic controller will be capable to track reasonably new (not seen
during training) predefined linear and angular velocities, and to exhibit char-
acteristics, normally ascribed to adaptive controllers: i) detect the variation
of the mass mc and the distance d; ii) adapt itself to the perceived change; and
iii) generate the appropriate control signal, without changing any synaptic
weight.

5.5.2 Procedure

Here, we have a typical case, where adaptive control techniques are needed.
In the sense of control theory, an adaptive controller is an ”intelligent” con-
troller that can modify its behavior in response to the variations in the dy-
namics of the process and the character of the disturbances. This can be
approached in different ways; Self-tuning control, and model reference adap-
tive control are the most popular techniques. Neural Networks can also give
complementary/new solutions in adaptive control of complex non-linear dy-

5.5 Adaptive Dynamic Control using Fixed-Weight ESNs 76

namical systems. Adaptive behavior in neural networks can be achieved by
finding specific learning mechanisms that are able to adapt a network to new
or changed situations. One way to achieve this is to update the weights to the
changing environement. This method is widely used in literature. Multilayer
perceptrons (MLPs) with long-and short- term memory have been proposed
for adaptive systems [77].
In this work, we propose to use the metalearning procedure to develop an
adaptive velocity controller. As mentioned in chapter (3), metalearning can
offer ESNs an adaptive behavior with fixed weights. Metalearning in this
case is to train ESN for ”all” possible operating conditions of the dynami-
cal model, corresponding to possible combinations of the parameters values
(d, mc). I/O training data are prepared by driving (5.10) with input se-
quences sampled from the uniform distribution over [−2, +2]. Training was
carried out using 10 blocs of 1000 sequences. In each bloc, mc and d were
assigned new random values taken from their respective variation intervals.
In this work, no multi-stream is needed, since the ESN batch update uses
all data at once, and does not suffer from the recency effect. To train ESN
as a velocity controller, we used the same training approach presented in
figure(5.6). The network architecture was chosen as follows. 4 inputs, which
represent actual (v, w) and desired (vd, wd) linear and angular velocities, 30
internal neurons, and 2 outputs. No back-connection from the output to
the DR, and no synaptic weight connections from the input directly to the
output. The input and the internal synaptic connections weights were ran-
domly initialized from a uniform distribution over [−1, +1]. The internal
weight matrix W has a sparse connectivity of 20% and scaled such that its
maximum eigenvalue |λmax| ≈ 0.3.

5.5.3 Results

After training, the ESND showed on test data a mean square error of
MSE = 1.352e− 004. To test the performance of the trained controller
ESND, the parameters (mc, d) are varied according to Table 5.1, and new
predefined reference linear and angular velocities (vr, wr) are chosen as in
section (5.4). Figures (5.9. (c) and (d)) show clearly the adaptation per-
formance of the fixed weights ESND to robot parameters variations, and its
generalization capability to track a new reference velocity.

5.5 Adaptive Dynamic Control using Fixed-Weight ESNs 77

Table 5.1: Values of mc and d in their time intervals

Time mc d

0 ≤ t ≤ 200 30 0.3
200 ≤ t ≤ 300 32 0.4
300 ≤ t ≤ 500 35 0.2
500 ≤ t ≤ 700 30 0.35
700 ≤ t ≤ 800 32 0.25
800 ≤ t ≤ 900 35 0.3

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

reference and actual linear velocity

v
r

v

(a)

0 100 200 300 400 500 600 700 800 900
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time

reference and actual angular velocity

w
r

w

(b)

0 100 200 300 400 500 600 700 800 900
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

to
rq

ue

Control for wheel right

(c)

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time

to
rq

ue

Control for wheel left

(d)

Figure 5.9: ESN adaptive velocity tracking control. a) Linear velocity track-
ing. b) Angular velocity tracking. c) Computed torque for wheel right. d)
Computed torque for wheel left.

5.6 Control of Multiple Distinct Robots 78

5.6 Control of Multiple Distinct Robots

In this paragraph, the problem to solve is that of developing a single ESN
dynamic controller for three distinct nonholonomic mobile robots [86]. Each
robot has the same model structure (5.10), but their specific parameters
result in quite different behavior. Upon completion of the training, we expect
that the ESN controller will be capable of detecting the identity of the robot,
only from its input in combination with its own state, without changing any
synaptic weight. Furthermore, we also desire that the trained network be
capable to minimize reasonably errors between the reference and the robots
velocities. In this work, the width b, the distance d and the wheel radius r
are chosen to be different and specific for each robot. Table 5.2 lists their
values, where we label the robots by I, II, and III. The other parameters
values are the same for all robots and chosen as in section (5.4).

Table 5.2: Robots Specifications

b d r

Robot I 0.4 0.1 0.05
Robot II 0.75 0.3 0.15
Robot III 0.3 0.2 0.25

5.6.1 Procedure

Training procedure uses the same training approach of figure (5.6). Training
was carried out using 3000 random heterogeneous input-output sequences.
Each 1000 sequences are collected from one robot. After many hand tuning,
the ESN architecture was chosen as follows. 4 inputs (actual and reference
linear and angular velocities of the robot), 17 internal neurons, 2 outputs (two
torques), no back-connection from the output to the DR, and no synaptic
weight connections from the input directly to the output. The input and
the internal synaptic connections weights were randomly initialized from a
uniform distribution over [−1, +1]. The internal weight matrix W has a
sparse connectivity of 20% and scaled such that its maximum eigenvalue
|λmax| ≈ 0.3.

5.6 Control of Multiple Distinct Robots 79

5.6.2 Results

In the simulation, we performed several tests on the behavior of the trained
network, two of which are reported here. In the first, the fixed-weight ESN
controller was used to control each robot separately. In the second, we tested
its capability to handle switch between the three robots. In the two cases, the
linear and angular velocities to be followed are the same as in [29]. Control
results for the first case are present in Figure (5.10) and those for the second
case in figure (5.11). In each figure, the panels on the left-hand side show
the evolution of a robot state (linear and angular velocities), while the right
hand side panels provide the corresponding control signals (torques) given
by the ESN controller. In figure (5.10), the right-hand column provides the
three control signals delivered by the same fixed-weight ESN controller for the
three robots separately. The three signals are superposed in order to facilitate
the comparison, and to have an idea about the three robots behaviors. As
can be seen on the left-hand panels, the excellent velocity tracking of all
robots is evident. On the predefined reference linear and angular velocities,
the robots I, II, and III showed mean square errors of MSE = {(1.7534e −
004, 1.2619e− 004), (7.9237e− 005, 8.6139e− 005), (0.0013, 7.3374e− 004)},
respectively. Here, the fixed-weight controller did a reasonable job, and could
effectively deliver the appropriate control signals for each robot. The second
case is more complicated. In this case, the controller had to handle balance
between tracking the reference velocity and switch between the three robots.
In figure (5.11), the first switch occurs at time 25s from Robot II to Robot I,
and the second one occurs at time 35s from Robot I to Robot III. A switch
from one Robot to another requires the controller outputs to change, since
each robot has its proper dynamic characteristics. Surprisingly, the control
is barely affected by these switches. The resulting network controller showed
smooth and rapid adaptation to these changes (see right-hand panels), and
the three robots tracked reasonably the reference linear and angular velocities
in their respective time intervals.

5.6 Control of Multiple Distinct Robots 80

Figure 5.10: Linear and Angular velocity tracking (left) and controls (right).
Each robot is controlled separately with the same fixed-weight ESN con-
troller.

5.6 Control of Multiple Distinct Robots 81

Figure 5.11: Linear and Angular velocity tracking (left) and controls (right).
The fixed-weight ESN controls the three robots, following swithes between
them. The first switch occurs at time 25s from Robot II to I. The second
switch occurs at time 35s from Robot I to III.

5.7 Kinematic and Dynamic Adaptive Control with ESNs 82

5.7 Kinematic and Dynamic Adaptive Con-

trol with ESNs

In this section, an adaptive neurocontrol system with two levels is proposed
for the motion control of a nonholonomic mobile robot [87]. In the first level,
a position controller is designed to improve the robustness of a feedback
kinematic controller and generate linear and angular velocities, necessary to
track a reference trajectory. In the second level, another network controller
is designed for the model (5.10), which converts the desired velocities, pro-
vided by the first level, into a torque control, in presence of time varying
parameters (d,mc). The two control levels are then assembled to form the
global navigation control loop.

As in previous section, the advantage of the control approach is that,
no knowledge about the dynamic model is required, and no synaptic weight
changing is needed in presence of robot’s parameters variation. Simulation
results are demonstrated to validate the robustness of the proposed approach.

5.7.1 ESN Kinematic Controller

The ESN kinematic controller (called here ESNK) is designed to emulate the
behavior of a feedback trajectory controller, and to improve its robustness in
presence of noisy data.
The trajectory controller used is described as following. Let there be pre-
scribed a reference robot (trajectory):

ẋr

ẏr

φ̇r

 =

cos(φr) 0
sin(φr) 0

0 1

[
vr

wr

]
(5.17)

where xr, yr, and φr are the pose of the reference robot, and (vr, wr) are its
linear and angular velocities. We define e1, e2, e3 as following:

e1

e2

e3

 =

cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

xr − x
yr − y
φr − φ

 (5.18)

The inputs (v, w) which make e1, e2, e3 converge to zero are given by [33][29]:
{

vd = vr cos e3 + K1e1

wd = wr + vrK2e2 + K3 sin e3
(5.19)

5.7 Kinematic and Dynamic Adaptive Control with ESNs 83

where K1, K2, K3 are positive constants.

Training

Figure(5.12) depicts a bloc diagram of the training procedure. First, a ran-
dom reference trajectories Pr = [xr, yr, φr] was generated. The kinematic
model of the robot is then controlled by (5.19) in order to minimize the error
between the actual pose of the robot P = [x, y, φ] and the reference trajec-
tory. At the same time, ESNK learns the behavior of (5.19). To provide
ESNK robustness against disturbances, a gaussian noise with zero mean and
a variation level of σ = 0.5 was added to training data.
Training procedure was performed using an ESN with 5 inputs (e1, e2, e3,vr,
wr), 9 internal neurons and 2 outputs (desired linear and angular velocities
(vd, wd)). No back-connection from the output to the DR, and no connections
from the input directly to the output. The input and the internal synaptic
connections weights were randomly initialized from a uniform distribution
over [−1, +1]. The internal weight matrix W has a sparse connectivity of
20% and scaled such that its maximum eigenvalue |λmax| ≈ 0.1.

Figure 5.12: Training ESNK as a kinematic controller.

5.7 Kinematic and Dynamic Adaptive Control with ESNs 84

Test

After training, performances of ESNK and the feedback controller (5.19)
are compared in tracking a reference trajectory (see figure 5.13). During
the time interval [0, 1000], the two controllers behave similarly. This result is
expected, since ESNk is trained from (5.19). During time interval [1000, 1200]
a gaussian noise with zero mean and a variation level of σ = 0.5 is added
to the robot pose values. ESNk showed better performance to recover the
perturbation, compared with the feedback controller (see Fig.5.13.(b) and
(c)). In other tests (not presented here), when the variation level of noise
is more than σ = 0.5, the controller (5.19) showed poor performances and
lost stability, whereas ESNk showed more robustness, and could maintain
stability of the closed loop.
Here we presented the case, where no initial errors exist. However, when
the trajectory tracking starts with initial pose errors, ESNK could not bring
the robot to the reference trajectory, and lost stability. This problem can be
solved by using a path planner, which gives a feasible path from the initial
robot pose to the nearest point on the reference trajectory.

5.7.2 ESN Dynamic Adaptive Controller

Here, the ESN dynamic controller (ESND) is the same controller developed
in section (5.4). As mentioned above, metalearning can offer an adaptive
behavior with fixed weights. The ESND is trained for ”all” possible operating
conditions of the dynamical model, corresponding to possible combinations
of the parameters values (d, mc).

5.7.3 Kinematic-Dynamic closed loop control

As seen in the two previous sections, the kinematic and dynamic controllers
(ESNK , ESND) are designed and trained separately. They are now ready to
cooperate together, in order to track a predefined reference trajectory. Thus,
the global control structure can be decomposed in two stages (see figure 5.14).
An outer-loop, where the ESNK computes the desired velocity necessary to
track a reference trajectory Pr, and an inner-loop, depending on the robot
dynamics, where the ESND converts the velocity control provided by the
outer-loop into a torque control.

5.7 Kinematic and Dynamic Adaptive Control with ESNs 85

0 5 10 15 20 25
0

5

10

15

20

25

X

Reference and actual Robot position in X−Y axis

Y

reference trajectory
robot trajectory controlled by the feedback controller
robot trajectory controlled by ESN

K

(a)

0 500 1000 1500 2000 2500
−1.5

−1

−0.5

0

0.5

1

time

tr
ac

ki
ng

 e
rr

or
s

re
su

lte
d

fr
om

 th
e

fe
ed

ba
ck

 c
on

tr
ol

le
r

x
e

y
e

theta
e

(b)

0 500 1000 1500 2000 2500
−1.5

−1

−0.5

0

0.5

1

time

tr
ac

ki
ng

 e
rr

or
s

re
su

lte
d

fr
om

 E
S

N
K
 c

on
tr

ol

x
e

y
e

theta
e

(c)

Figure 5.13: Kinematic control. a) Robot trajectory tracking controlled by
the two controllers separately. b)Tracking errors resulted from the feedback
controller (K1 = K2 = K3 = 5). c) Tracking errors resulted from the ESNK

control.

5.7 Kinematic and Dynamic Adaptive Control with ESNs 86

Figure 5.14: Global control structure of a nonholonomic mobile robot using
ESNs

5.7.4 Results

In the simulation, the parameters mc and d are time varying and chosen
according to Table 5.3. The reference velocities vr and wr are chosen as fol-
lowing:

0 ≤ t ≤ 100 : vr = 0.25(1− cos πt
5
)

wr = −0.5vr

100 ≤ t ≤ 200 : vr = 0.5
wr = −0.25

200 ≤ t ≤ 300 : vr = 0.5
wr = −0.25 cos πt

5

300 ≤ t ≤ 700 : vr = 0.5
wr = 0.25

700 ≤ t ≤ 800 : vr = 0.125(1− cos πt
5
) + 0.25

wr = −0.25 cos πt
5

800 ≤ t ≤ 1000 : vr = 0.25
wr = −0.25

5.7 Kinematic and Dynamic Adaptive Control with ESNs 87

Table 5.3:

Time mc d

0 ≤ t ≤ 400 30 0.3
400 ≤ t ≤ 500 34.4 0.13
500 ≤ t ≤ 600 30 0.3
600 ≤ t ≤ 700 33.2 0.41
700 ≤ t ≤ 1000 30 0.3

Figure (5.15) shows the control results. ESNK tracks the reference tra-
jectory by providing desired linear and angular velocities. Because initial
errors are zero, desired velcities are almost similar to the reference velocities.
On the other hand, ESND shows an excellent tracking of the desired ve-
locity provided by ESNK . Furthermore, when mc and d values are suddenly
changed, ESND locks on the new dynamic behavior of the robot and provides
the appropriate control signal (Figure 5.15 (c) and (d)), without changing
any synaptic weight. We can see small adaptation periods after each varia-
tion. These are necessary for the network to switch from one familly of orbits
to another. Surprisingly, the global control loop is barely affected by these
switches, and the robot tracks reasonably the desired trajectory (figure 5.15
(e)).

5.7 Kinematic and Dynamic Adaptive Control with ESNs 88

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time

reference, desired and robot linear velocity

v
r

v
d

v

(a)

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time

reference, desired and actual angular velocity

w
r

v
w

d

(b)

0 100 200 300 400 500 600 700 800 900 1000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

time

to
rq

ue

Control for wheel right

(c)

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

time

to
rq

ue
Control for wheel left

(d)

−1 0 1 2 3 4 5
−8

−7

−6

−5

−4

−3

−2

−1

0

X

Reference and actual Robot position in X−Y axis

Y

Reference trajectory
Robot trajectory

(e)

Figure 5.15: Kinematic and dynamic control. a) Linear velocity tracking. b)
Angular velocity tracking. c) Computed torque for wheel right. d) Computed
torque for wheel left. e)Trajectory Tracking

5.8 Discussion 89

5.8 Discussion

In this chapter an adaptive neurocontrol system based on ESNs is devel-
opped. A kinematic level controller (ESNK) is trained to mimic a feedback
controller, and to improve its robustness against noise. Indeed, the trained
ESNK showed more robustness against external perturbations. However, ex-
celent control performances are obtained only when initial errors are close
to zero. When initial errors are far from zero, poor performances were ob-
tained. This problem can be solved by using a path planner, which gives
a feasible trajectory to the nearest point on the reference trajectory. Many
approaches are introduced in [28]. To reach the assumption ”perfect velocity
tracking”, the robot dynamics is taken into consideration by a dynamic level
controller (ESND). The role of ESND is to convert the desired velocities,
provided by the first level, into a torque control. At this level, no knowl-
edge about the dynamic model was required, since the controller is designed
only by learning I/O data collected from the robot. This property is very
important in practical cases, where it is almost impossible to have the real
parameters values of a robot. Because of the ”rich” variety of its internal
dynamics, the trained network could make an excellent generalization on in-
coming data and deliver the appropriate control signals, in order to track
the reference velocity. Moreover, the ESND controller was asked to exhibit a
characteristic, normally ascribed to adaptive controllers, whose parameters
change in response to an environmental change. ”Adaptation” in this work
is defined as the ability of the controller to recognize change only through
the robot output and its own state, without changing any synaptic weight.
This capability is a natural consequence of prior ’metalearning’ used during
training.
For multi-robot control, the fixed weight ESN controller showed a reason-
able balance between the variety of the reference velocity and the variety of
the robots. When a ”new” input (from one robot, which is already learned)
is provided, the state of the network switch from one family of orbits to
another, which corresponds to the new input. We recognize here that the
controller trained for many robots may not be as effective on a given robot
as a controller trained only for that robot.

However, in all these developments it was not easy to find the optimum
parameters of the ESN in order to obtain a ”rich” variety of internal dynam-
ics. Using a ”relatively” large dimension (more than 30 internal neurons) the

5.9 Conclusion 90

network lost stability at many times and exhibited sometimes high-frequency
oscillations on smooth test signals. With small dimension (say 4-6 inter-
nal neurons), the network could not react quickly to the velocity variations.
Moreover, some weight initializations result to instabilities at many times,
especially when the switch between Robots I, II and III occurred.

5.9 Conclusion

This chapter has presented the motion control of nonholonomic mobile robots
using echo state networks. The approach proposed includes also the dynamic-
level control, without knowledge about the dynamic model of the robot. This
property makes it very useful in practical situation, where the exact knowl-
edge about the real parameters is almost unattainable. Furthermore, the
ESN dynamic controller was asked to exhibit a characteristic, normally as-
cribed to adaptive controllers, whose parameters change in response to an
environmental change. ”Adaptation” in this work is defined as the ability
of the controller to recognize change only through inputs and its own state,
without changing any synaptic weight. This capability is a natural conse-
quence of prior ’metalearning’ used during training. This strategy was also
used to build up a single fixed weight ESN to act as a dynamic controller
for three distinct robots. After training, the fixed weight ESN controller
showed a reasonable balance between the variety of the reference velocity
and the variety of the robots. Finally, an adaptive neurocontrol system with
two levels based on ESNs was developed. First, a kinematic level controller
(ESNK) is trained to mimic a feedback controller, and to improve its robust-
ness against noise. The dynamic controller (ESND) could make an excellent
generalization on incoming data and deliver the appropriate control signals
(torques), in order to track the desired velocity. Moreover, ESND recognizes
parameters variation only through the robot output (velocity) and its own
state, without changing any synaptic weight.
All in all, training experiments carried out here demonstrate that two control
levels based on small and partially interconnected ESNs can be designed to
act as a motion control system for mobile robots, in presence of external per-
turbations and time varying parameters. However, we are aware of a certain
degree of arbitrariness in the choice of the controller network parameter and
architecture. Substantial investigation on ESNs and more experiences are
still needed to ensure that the results we have achieved to date are statis-

5.9 Conclusion 91

tically significant. Next chapter will present a first real implementation of
ESNs: Control of a real Omnidirectional Mobile Robot.

Chapter 6

Control of an Omnidirectional
Robot with ESNs

In this chapter, the ESN strategy is proposed for the adaptive velocity con-
trol of an omnidirectional mobile robot available at the Robotics Lab of the
University of Stuttgart (figure 6.1). As seen in chapter (5), no knowledge
about the dynamical model is required, since the controller is designed by
learning only input-output data collected from the robot. Furthermore, the
trained ESN controller has the ability to recognize parameters variation (here
the mass and the center of mass) only through its inputs, and to adjust its
behavior to these changes, without changing any synaptic weight. Some
experimental results are presented.

(a) (b)

Figure 6.1: Omnidirectional robot. a)hardware photo. b) CAD model

6.1 Introduction 93

6.1 Introduction

Compared with the nonholonomic mobile robots, omnidirectional mobile
robots provide superior manoeuvring capability. The ability to move simul-
taneously and independently in translation and rotation makes them widely
studied in dynamic environmental applications. The annual RoboCup com-
petition (www.robocup.org) is an example where omnidirectional robots are
widely used. However, quite few research studies on this type of robots have
been reported. Most of them have been focused on the mechanical design
and on the kinematic level control, assuming that there is ”perfect” velocity
tracking. However, as it is well known, the control at the kinematic level
may be instable if there is errors control at the dynamic level. Therefore, the
velocity control is at least as important as the position control. Recently,
dynamic modeling and some analysis for omnidirectional robots have been
addressed in [88, 89, 90]. In contrast with these theoretical developments,
only few experimental works have been presented.
In practical situations, however, exact knowledge about the robot parameters
values is almost unattainable. If we assume that some of these parameters
are time varying, the problem becomes more complicated. To deal with
this problem, there are possible methods, which can be used, even when the
knowledge about the dynamic model is not complete, like robust adaptive
control [30]. Another possible approach is to consider the robot as a ”black
box”, in order to avoid the estimation of its real parameters.

In this chapter, the ESN velocity controller is designed only by learning
I/O data collected from the robot. Furthermore, metalearning offers the
ESN the ability to adapt to time varying parameters without changing any
synaptic weight.

The rest of this chapter is organized as follows. Section (6.2) presents
the omnidirectional robot and the problem to solve. The control approach
with some experimental results are presented in Sections (6.3) and (6.4).
Finally, results are discussed in section (6.5), and section (6.6) summarizes
the conclusions of the present chapter.

6.2 Omnidirectional Robot

A holonomic system is one in which the number of degrees of freedom are
equal to the number of coordinates needed to specify the configuration of the

6.2 Omnidirectional Robot 94

system. In the field of wheeled mobile robots, the term holonomic mobile
robot (also called omnidirectional mobile robot) is used for robots having
three degrees of freedom. In contrast to nonholonomic robots, a holonomic
robot can move in an arbitrary direction continually without changing the
direction of the wheels. It can move back and forth, slide sideways, and
rotate in place. They are desirable because they do not have kinematic
motion constraints, which make path planning and motion control much
simpler. To achieve a holonomic motion only wheels with three degrees of
freedom must be employed. Many different mechanisms have been created;
most of them are based on the same general principle: a wheel provides
traction in the direction normal to the motor axis, and it rolls passively in
the diretcion of the motor axis. Examples of such wheeles are Swedish wheels
[91][92][93], Orthogonal-wheels [94], Mecanum wheels [95], and Ball wheels
[96][97]. However, all these passive mechanisms, except for some types with
ball wheels, have discontinuous wheel contact points, which are a great source
of vibration. This problem becomes significant when the robot moves at high
speeds (see results later).

6.2.1 Hardware

Experimentations are performed on one omnidirectional robot (Figure 6.1) of
Soccer-robots team available at the robotics Lab of University of Stuttgart.
The robot is equipped with 3 omni-wheels equally spaced at 120 degrees from
one to another, and driven by three 90W DC motors. A personal computer
on board is used to manage different sensors and tasks. For environment
sensing, the robot is equipped by an omnidirectional vision system, based on a
hyperbolic mirror and a standard IEEE1394 (FireWire) camera (Figure 6.2).
Omnidirectional vision provides our robot a very large field of view, which has
some useful properties. For instance, it can facilitate the tracking of robots,
the ball, and a set of environmental features used for self-localization. More
hardware specifications of the robot are listed in Table 6.1.

6.2 Omnidirectional Robot 95

Max Acceleration 3.5m/s2

Max. Speed 2.5m/s
Wheels Omni-wheels (Swedish)
Host Computer 2,6GHz , RAM 600MB,60 GB HD
Power supply Two 13 V batteries in series
Steering control Interfaces with 3 DC motors
Dimensions 48,5cm wide, 80cm height
Weight 15 kg

Table 6.1: Robot Specifications

Figure 6.2: An image from the omnidirectional camera.

6.2.2 Kinematic Model

The geometry of the omnidirectional robot of figure (6.1) and its coordinate
definitions are shown in figure (6.3). Let θ̇ denotes the angular velocity
of the internal reference frame of the robot (X, Y) relative to an absolute
refernce frame (x, y). The linear velocity is denoted by v and its direction
with respect to the platform internal reference frame is denoted by ϕ ∈ [0, 2π].
The angular velocities of the wheels can be calculated as [94]:

w1 =
v

2R
(sin φ−

√
3 cos φ) +

θ̇L

R
(6.1)

6.2 Omnidirectional Robot 96

w2 = − v

R
sin φ +

θ̇L

R
(6.2)

w3 =
v

2R
(sin φ +

√
3 cos φ) +

θ̇L

R
(6.3)

where R is the radius of the spherical wheels and L represents the distance
between the center of the platform and the center of the wheel i. wi is the
angular speed of wheel i, and x ,y and θ are the pose of the centre of mass
(CM) of the robot. In the case of our robot, R = 0, 04 and L = 0, 2.

Figure 6.3: Kinematic geometry of the Omnidirectional Robot.

If we set ẋ = v cos φ and ẏ = v sin φ, then equations (6.1)(6.2)(6.3) can
be written as:

w1

w2

w3

 =

1

R

−√3
2

1
2

L
0 −1 L√
3

2
1
2

L

ẋ
ẏ

θ̇

 (6.4)

From the relation (6.4) we can see that the rotational and translational mo-
tions are fully decoupled and can be controlled independently and simulta-
neously.

6.2 Omnidirectional Robot 97

6.2.3 Control System

The control system is decomposed in two stages. An inner loop, depending
on the robot dynamics and used to control linear and angular velocities, and
an outer loop, which guarantees that the robot follows the desired trajectory.
Both controllers are based on PID control strategy (Figure 6.4).

Figure 6.4: Kinematic and dynamic control loops.

6.2.4 Problem Statement

In this chapter, we want to implement our ESN velocity control strategy
on the robot of figure (6.1). We are interested also in much more interesting
problem of requiring a fixed-weights ESN to make a velocity adaptive control.
No knowledge about the dynamics model is available, and the robot has
a time-varying mass (a switch between 15Kg and 17.5Kg), which results
to variations of the center of mass. Also, speed measurements are noisy
due to the nature of the wheels and the sensors. Upon completion of the
training procedure, we expect that the ESN controller will be capable to
exhibit characteristics, normally ascribed to adaptive controllers: i) make an
acceptable generalization, in order to track reasonably a reference velocity;
ii) detect the mass variation; and ii) adapt itself to the perceived change
and generate the appropriate control signal. Naturally, we expect adequate
performance only for the two possible global mass of the robot for which the
network has been trained.

6.3 Velocity Control with ESN 98

6.3 Velocity Control with ESN

In practical situations, the assumption ”perfect” velocity tracking at the
dynamic-level is almost unattainable by the PID controllers implemented on
board. The ability of a PID controller to cope with some complex properties
of the robot such as non-linearities, friction, and time-varying parameters is
known to be very poor. To improve the velocity control, we propose to use
an Echo State Network to deal with the whole dynamics of the robot as a
”black box”. Upon completion of the training procedure, we expect that the
ESN controller will be capable to minimize reasonably errors between the
desired and the actual robots velocities, without knowledge about the robot
parameters.

6.3.1 Training

I/O (PWMs/wheels speeds) training data are collected by moving the robot
”arbitrarily” with different velocities in different directions. 1000 sequences
were collected from the robot and stored in a file. To train the ESN as a
velocity controller, we used the same bloc diagram depicted in figure (6.5).
The ESN learned the teacher signals(PWMs), which bring each wheel from
an actual speed at time (n) to a future speed at time (n + 1).

The ESN architecture was chosen as follows. 6 inputs (actual and delayed
wheels speeds), 13 internal neurons and 3 outputs (PWMs duty ratio for each
motor). No back-connection from the output to the DR, and no connections
from the input directly to the output. The input and the internal synaptic
connections weights were randomly initialized from a uniform distribution
over [−1, +1]. The internal weight matrix W has a sparse connectivity of
20% and scaled such that its maximum eingenvalue |λmax| ≈ 0.3.

6.3.2 Control Procedure

After training procedure has been completed, the network was implemented
in the control system on the host computer on-board (Figure 6.6). Desired
speeds of the wheels were computed from the equation (6.4). Using the
actual (measured) and desired wheel-speeds, the ESN send the appropriate
PWMs duty via a serial (RS232) connection to an electronic interface, which
produces the correspondent amplified PWMs voltage to the three motors.

6.3 Velocity Control with ESN 99

Figure 6.5: Structure of the control system.

Figure 6.6: Structure of the control system.

6.3.3 Results

After training, several experimental tests are performed; two of them are
reported here [98][85]. They cover some typical movements of a RoboCup
player during a soccer game.

Experiment 1

In this experiment, the objective is to track the constant reference velocity:

0s ≤ t ≤ 10s : vd = 0.22 m/s, (ϕ = 0)
wd = 0 rad/s

6.3 Velocity Control with ESN 100

In this experiment, the robot should move straight a head(no angular ve-
locity). Therefore, wheel 3 should be blocked. During this experiment
(Figure 6.7), the ESN controller could bring the robot to the desired ve-
locity, even the presence of high friction between the carpet and wheel 3,
which explains the high frequency in the control signal delivered by the ESN
for this wheel.

Experiment 2

In this experiment, the objective is to track the time varying reference ve-
locity:

0s ≤ t ≤ 7s : vd = 0.22 m/s, (ϕ = 0)
wd = 0 rad/s

7s ≤ t ≤ 15s : vd = 0.22 m/s, (ϕ = π)
wd = 0 rad/s

15s ≤ t ≤ 23s : vd = 0 m/s
wd = −2 rad/s

23s ≤ t ≤ 30s : vd = 0.25 m/s, (ϕ = 0)
wd = −3 rad/s

As shown in Figure (6.8), during [0s, 7s], the robot behaved like in experi-
ment 1. In [8s, 15s], the same desired linear velocity is given to the controller,
but in other direction (according to the angle ϕ in Figure 6.3). At time 8s the
controller stopped the robot, and tried to reach again the same translation
velocity in the new direction (ϕ = π). During [15s, 23s], the robot had to be
turned around it self, since the desired translation velocity is zero, and the
desired rotation velocity is −2 rad/s. In this situation, the wheels are more
sensitive to the carpet, and exhibit higher frequency around the reference. In
the last time interval [23s, 30s], the ESN had to control the robot in a curve.
During training, the ESN did not learn this situation. Despite this lack of
information, the ESN could successfully control the robot independently in
translation and rotation.

6.3 Velocity Control with ESN 101

Figure 6.7: Results of Experiment 1. Desired velocity(solid) and actual robot
velocity (dashed).

6.3 Velocity Control with ESN 102

Figure 6.8: Results of Experiment 2. Desired velocity(solid) and actual robot
velocity (dashed).

6.4 Fixed-Weight ESN Adaptive Controller 103

6.4 Fixed-Weight ESN Adaptive Controller

In section (6.3), an ESN was trained to act as a velocity controller for the
omnidirectional robot. The advantage of the control approach used is that no
knowledge about the dynamic model of the robot is required. In this section,
however, we are interested in much more interesting problem of requiring a
fixed-weights ESN to make an adaptive dynamic control for the robot, in
presence of time-varying mass (a switch between 15Kg and 17.5Kg). This
change can result to variations of the center of mass (CM). Upon completion
of the training procedure, we expect that the ESN controller will be capa-
ble to exhibit characteristics, normally ascribed to adaptive controllers: i)
detect the mass and CM variation; ii) adapt itself to the perceived change
and generate the appropriate control signal; and iii) make an acceptable gen-
eralization, in order to track reasonably a reference velocity. Naturally, we
expect adequate performance only for the two possible global mass (15Kg
and 17.5Kg) of the robot for which the network has been trained.

6.4.1 Procedure

In this work, we propose to use the metalearning procedure to develop an
adaptive velocity ESN controller. ”Adaptation” here is the ability of the
resulting ESN to recognize the mass variation only through its inputs, and
its own state, without changing any synaptic weight. Again, no multi-stream
training is needed, since the ESN batch update uses all data at once, and
does not suffer from the recency effect.
Training data were prepared by driving the robot with different velocities in
different directions. 1000 I/O sequences were collected from the robot having
its initial mass (15Kg) and other 1000 I/O sequences when the extra mass
m = 2.5Kg was added on the robot. As a result, 2000 I/O heterogenous
data are used for training. To train the ESN as a velocity controller, we used
the training approach presented in figure (6.5). The ESN learned the output
teacher signals (PWMs), which bring each wheel from an actual speed at time
(n) to a future speed at time (n + 1). Here the ESN architecture was chosen
as follows. 6 inputs (actual and delayed wheels speeds), 13 internal neurons
and 3 outputs (PWMs duty ratio for each motor). No back-connection from
the output to the DR, and no connections from the input directly to the out-
put. The input and the internal synaptic connections weights were randomly
initialized from a uniform distribution over [−1, +1]. The internal weight ma-

6.4 Fixed-Weight ESN Adaptive Controller 104

trix W has a sparse connectivity of 20% and scaled such that its maximum
eingenvalue |λmax| ≈ 0.3. After training procedure has been completed, the
network was implemented in the control system on the host computer on-
board (Figure 6.6). Desired speeds of the wheels are first computed from the
desired (reference) linear and angular velocities (vd, wd), using the equation
(6.4). Using the actual (measured) and desired wheel-speeds, the ESN send
the appropriate PWMs duty via a serial (RS232) connection to an electronic
interface, which produces the correspondent amplified PWMs voltage to the
three motors [99].

6.4.2 Results

After training, several experimental tests were performed. We report here
two of them. In the first, the fixed-weight ESN controller was used to control
the robot having the two different mass separately. In the second, the adap-
tivity of the ESN is tested during the movement of the robot. Control results
for the first case are present in figure (6.9) and those for the second case in
figure (6.10). In each figure, the three first panels show the wheels-speeds,
while the other panels provide the corresponding control signals (PWMs %)
produced by the ESN controller.

Experiment 1

In this experiment (figure 6.9), the fixed-weight ESN is tested separately on
two operating conditions of the robot (15Kg and 17Kg). In both tests, de-
sired linear and angular velocities (vd, wd) were chosen as follows:

1s ≤ t ≤ 7s : vd = 0.23 m/s, (ϕ = 0)
wd = 0

7s ≤ t ≤ 14s : vd = 0.27 m/s, (ϕ = 2π
3

)
wd = 0

14s ≤ t ≤ 22s : vd = 0 m/s, (ϕ = 0)
wd = 3.5

In the first operating condition (15Kg), the ESN controller has made a good
generalization and could bring the robot to the desired velocity, even the
presence of high friction between the carpet and wheel 3. In the second op-
erating condition (17.5Kg), the ESN recognized this change only through the

6.4 Fixed-Weight ESN Adaptive Controller 105

wheels speeds and its own state, and could provide the appropriate control
signals, in order to bring the robot to the desired velocity.

(a) (b)

Figure 6.9: Control results of the case 1. a) Desired speeds(solid), Wheels
speeds (initial mass)(dashed), and Wheels speeds (mass=17.5 Kg) (dash dot).
b) ESN control signals initial mass)(dashed). ESN control signals (mass=17.5
Kg) (dash dot)

6.4 Fixed-Weight ESN Adaptive Controller 106

Experiment 2

In this experiment (figure 6.10), the performance of the fixed-weight ESN
to handle variation of the mass is tested during the movement of the robot.
(vd, wd) were chosen as follows:

1s ≤ t ≤ 13s : vd = 0.23 m/s, (ϕ = 0)
wd = 0

14s ≤ t ≤ 18s : vd = 0 m/s, (ϕ = 0)
wd = 3.5

19s ≤ t ≤ 26s : vd = 0.27 m/s, (ϕ = 2π
3

)
wd = 0

During the first 13 seconds, the ESN was asked to control the robot hav-
ing a mass of 17.5Kg. In this interval, the ESN could successfully bring
the robot to the desired velocity (0.23m/s) . At time t = 13s, the mass of
the robot is reduced to 15Kg. This switch required the controller outputs
to change, since the robot dynamic characteristics have been changed. Sur-
prisingly, the control is barely affected by this variation, and the controller
showed a rapid adaptation to these change, and delivered the appropriate
control signals to continue tracking the desired velocity.

6.4 Fixed-Weight ESN Adaptive Controller 107

(a) (b)

Figure 6.10: Control results of the case 2. a) Desired speeds(solid) and actual
Wheels speeds (dashed), b) ESN control signals

6.5 Discussion 108

6.5 Discussion

During experiments, we had to deal with many practical problems. The ma-
jor problem was training data. It is technically not possible to use random
inputs, in order to collect training data. The only realistic possibility avail-
able was to drive the robot with different ”low” velocities (max 0.5 m/s),
in order to avoid slippage of the wheels, and to keep the robot on a lim-
ited space. It is clear that using this method, training data will be not rich
enough to give complete information about the robot dynamics. Other prob-
lem is the nature of the robot. Omnidirectional characteristics are obtained
only by using omni-wheels. However, it is known that these wheels are very
sensitive to the road (carpet) condition and their performances are limited,
compared with the conventional wheels. This limitation produces a lot of
errors in speed measurements. In addition, some errors were also produced
by the sensors, since they deal only with integers.
Another problem is the network architecture. During preparation of the net-
work, it was not easy to find its optimum parameters. Using a ”relatively”
large dimension (more than 30 internal neurons) the network lost stability at
many times and exhibited sometimes high-frequency oscillations on smooth
accelerations. This is due to the high degree of freedom of the closed loop
Robot-ESN. With small dimension (say 5-8 internal neurons), we could min-
imize these oscillations, but the network could not make good generalization
on data used during training. With 13 internal units, the ESN showed an
acceptable behavior.

6.6 Conclusion

This chapter has presented a velocity controller for an omnidirectional robot.
The ESN control approach requires no prior information about the dynamics
of the robot. This property makes it very useful in practical situation, where
the exact knowledge about the mobile robot parameters is almost unattain-
able. Despite the ”poor” quality of training data, and the performance limita-
tion of the omni-wheels, the ESN controller could achieve acceptable control
results. Beyond this ”black-box” modeling capability, the ESN controller is
being asked to exhibit an adaptive behavior to control the robot in a pres-
ence of a time varying parameter (here the mass). ”Adaptation” in this work
is defined as the ability of the controller to recognize change only through

6.6 Conclusion 109

the robot wheels-speeds and its own state, without changing any synaptic
weight. This capability was acquired through prior metalearning used during
training. The fixed-weight ESN controller could achieve acceptable adaptive
control results and showed a reasonable balance between the variety of the
reference velocity and the robot mass variation. The resulted controller could
”instantaneously” adjust itself to the perceived change, only through its in-
puts, without changing any synaptic weight. Note that the ESN controller
is effective only for the two operation conditions of the robot (15Kg and
17.5Kg), for which it has been trained, not for arbitrarily chosen robot-mass.

All in all, the real implementation carried out here demonstrates that a
small and partially interconnected ESN can be trained to act as an adaptive
controller for a real system, whose parameters could be time varying. The
resulted controller could ”instantaneously” adjust it self to the perceived
change, only through its inputs, without changing any synaptic weight. Such
behavior in ’classical’ control requires a more complicated adaptive system.

Chapter 7

Neural Fields for Behavior
Generation

7.1 Introduction

The basic task the robot has to perform is to reach a goal under constraints,
e.g moving towards a goal while avoiding obstacles. Approaches that have
been developed for this problem can be divided into global and local methods.
Global methods require the environment to be completely known and the
terrain should be static, and then they return a continuous free path. By
contrast, local methods need only local information. It means that the path
planning is done while the robot is moving, in response to environmental
changes. Due to their low-computational costs, local methods are much
more suitable for real application where the environmental state changes
continually. The most popular local method is the potential field approach
proposed by Khatib [20]. The idea is to consider that the robot moves under
influences of an artificial potential field. The target applies an attractive force
to the robot, while obstacles exert repulsive forces onto the robot. The sum
of all forces determines the subsequent direction of the movement. While
the potential field principle is particularly attractive because of its elegance

7.2 Neural Fields 111

and simplicity, substantial drawbacks have been identified, i.e. local minima
(cyclic behavior), no passage between closely spaced obstacles, oscillations in
narrow passages . . . etc [100].
In the literature, path planning for robots in known and static workspaces
has been studied extensively over the last two decades [101]. Path planning
for robot navigation in unknown workspaces has been studied less frequently.
Kavraki et. al [102] propose the Probabilistic Roadmaps Method to generate
collision-free paths in a very short time (once that the roadmap has been
constructed). However, when generating the paths, no optimization criteria
are taken into consideration. In [103] a technique based on the evolutionary
computation is proposed to produce a global path optimization with limited
computation resources. In [104] the shortest paths problem is formulated
as a Markov decision process. A fast replanning method called D* Lite
for goal-directed navigation is presented in [105]. All these methods have
three disadvantages: first, a path-planning algorithm is complete; if it finds
a path whenever one exists and reports none exists otherwise. However,
achieving this “completeness” is often computationally expensive and grows
quickly with the number of locations to be visited. Second, the entire graph
representation must be known at all times. Third, the graph topology is
assumed to be static, i.e. the calculated trajectory is optimal only, as long
as no external perturbations change the connectivity of the graph.

In this chapter, the concept of neural fields will be used to generate the
robot behavior over time. We develope a framework to navigate a mobile
robot to its goal in unknown environments without any collisions with static
or moving obstacles [106]. Furthermore, through their competitive dynam-
ics we optimize the target path through intermediate home-bases. Finally,
we design a solution for the problem of moving multiple robots in forma-
tion [107]. The objective is to acquire a target, avoid obstacles and keep a
geometric configuration at the same time. Simulation results are presented.

7.2 Neural Fields

The Dynamic Approach to behavior generation uses the theory of nonlinear
dynamical systems. This theory has proven to be an elegant and easy to
generate robot behavior [22, 23, 24, 25]. The so-called Dynamic Approach
invented by Schöner in 1995 [21] provides a framework to design differen-
tial equations for so-called behavior variables the solution of which generates

7.2 Neural Fields 112

the robot’s behavior. Usually, these variables directly parameterize the ele-
mentary behavior to be generated. There are cases, however, for which the
behavioral variable need a more general form. For example, a behavioral
variable can have multiple values or even no value at all. In those cases, it is
necessary to express it by a continuous function. Neural fields can represent
such variable. Originally, these fields were proposed by Amari [108] as models
of the neurophysiology of cortical processes. They are equivalent to contin-
uous recurrent neural networks, in which units are laterally coupled through
an interaction kernel and receive external inputs. In [109], neural fields are
used to recognize complex motion patterns. In [110], they are used for the
intelligent cruise control. In robot control, neural fields were used for target-
acquisition in presence of static obstacles, and for manipulator control [111].

The field equation of a one-dimensional neural field is given by:

τ u̇(ϕ, t) = −u(ϕ, t) + S(ϕ, t) + h +
∫ +∞

−∞
w(ϕ, ϕ́)f(u(ϕ́, t)dϕ́ (7.1)

where u(ϕ, t) is the field excitation at time t (t ≥ 0) at the position ϕ ∈ R.

The temporal derivative of the excitation is defined by

u̇(ϕ, t) =
∂u(ϕ, t)

∂t
(7.2)

The excitation u(ϕ, t) of the field varies with the time constant τ with τ ∈ R+.
The constant h defines the pre-activation of the field, and f(u) is the local
activation function. Usually, f is chosen as a step-function:

f(u) =

{
1, u ≥ 0
0 u < 0

(7.3)

The stimulus S(ϕ, t) ∈ R represents the input of the field and varies with
time. A nonlinear interaction between the excitation u(ϕ) at the position ϕ
and its neighboring positions is achieved by the convolution of an interac-
tion kernel w(ϕ, ϕ́). The function w(.) is, usually, chosen as a Mexican hat
function (Figure 7.1). With this shape, excitatory connections dominate for
proximate units, and inhibitory connections dominate at greater distances.
The structure of the field is specified by this function; when w(ϕ, ϕ́) depends
only on (ϕ− ϕ́) then the field is homogenous.

7.3 Dynamical Properties of Neural Fields 113

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Interaction kernel

x

w

Figure 7.1: Weihting function w(x) of a lateral-inhibition

7.3 Dynamical Properties of Neural Fields

Depending on the parameter h and the form of S, f and w, the activation
dynamics (7.1) can have different types of solutions.

7.3.1 Equilibrium Solutions in the Absence of Inputs

Equilibrium solutions mean that ∂u
∂t

= 0. In the absence of an external
stimulus (S(ϕ, t) = 0, ∀ϕ), the equilibrium solutions satisfy

u(ϕ) =
∫ +∞

−∞
w(ϕ− ϕ́)f [u(ϕ́)]dϕ́ + h (7.4)

Definition 1 Let the set R[u] = {ϕ|u(ϕ) > 0} of all exited units at place ϕ.

. Equilibrium u(ϕ) satisfying R[u] = ∅, i.e u(ϕ) ≤ 0,∀ϕ, is called “∅-solution”.

. Equilibrium u(ϕ) satisfying R[u] = (−∞, +∞), i.e the whole field is ex-
cited, is called “∞-solution”.

. Equilibrium u(ϕ) satisfying R[u] = [a1, a2], i.e a localized excitation from
position a1 to position a2, is called “a-solution”. If only one a-solution
exists, this solution is called also a “single-peak” or “mono-modal” so-
lution.

7.3 Dynamical Properties of Neural Fields 114

The correct choice of the field parameters enables the existence of a single-
peak solution.
Let

W (x) =
∫ x

0
w(y)dy (7.5)

In order to specify some properties of the field, we put

Wm = max W (x),∀x > 0 (7.6)

and
W∞ = lim

x→∞W (x) (7.7)

Under conditions that the output function f is a step function, and the inter-
action kernel w is symmetric (w(x) = w(−x)), then the following theorems
give the conditions for the existence of equilibrium ∅-solution, ∞-solution,
and a-solution, and their stability conditions.

Theorem 1 In the abscence of inputs:

1. There exists a ∅-solution if and only if h < 0.

2. There exists an ∞-solution if and only if 2W∞ > −h.

3. There exists an a-solution (a local excitation of length a) if and only if
h < 0 and a > 0 satisfies W (a) + h = 0.

Theorem 2 In agreement with Theorem 1, the a-solution is asymptotic sta-
ble if dW (a)

da
< 0, and unstable if dW (a)

da
> 0.

The proof of theorems (1) and (2) and a complete list of equilibrium solutions
in relation with the function W (x) are given in [108].

7.3.2 Response to Stationary Input Stimulus

In this section, we consider the field in a-solution. When an input of a
stimulus S(ϕ, t) is very large compared with the within-field cooperative
interaction, it will dominate the solution. As a result, a single-peak will be
stabilized by interaction, even if the stimulus is removed.
Amari studied the effect of a small variation of the stimulus εS̃(ϕ, t), where ε
is a small number. This variation results to a displacement and deformation
of the a-solution, according to the theorem 3 (for demonstrations see [108]).

7.4 Behavior control with neural fields 115

Theorem 3 Consider that the field is in a localized stable equilibrium exci-
tation (a-solution) produced by an external stimulus S(ϕ, t) = S0. Let a0 be
the length of the excited region, and ϕ1(t) and ϕ2(t) be the boundaries of the
excited region. After variation on the stimulus S(ϕ, t) = S0+εS̃(ϕ, t), where
1 > ε > 0 and S̃ is differentiable, the dynamic of the center of the excited
region is given by:

1

2

d(ϕ1 + ϕ2)

dt
=

ε

2τc
[S(ϕ2)− S(ϕ1)] (7.8)

If we assume that the length of the excited region is a(t) = a0 + εa1 + O(ε2),
and a1 is differentiable, then the change of length satisfies:

da1

dt
=

1

τc
[2w(a0)a1 + S(ϕ1) + S(ϕ2)] (7.9)

where c is the gradient of the u(ϕ) at the boundary.

From equation (7.8), the excited region moves in the direction of increasing
stimulus, searching for the maximum of S(ϕ). At the same time, the length
of the excited region changes slightly, according to (7.9).

7.4 Behavior control with neural fields

In this section, we show how to use neural fields to control a robot’s planar
movements regarding:

. Target-Acquisition: moving towards a given target point.

. Obstacle Avoidance: moving while avoiding obstacles

. Corridor Following: moving along corridors in the absence of obstacles.

. Door Passing: passing a door to traverse between two rooms, from a cor-
ridor to a room, or vice versa.

7.4.1 Control Design

First, we choose the robot’s heading ϕ relative to a world-fixed reference
direction as a behavioral variable. Hence, the neural field has to encode

7.4 Behavior control with neural fields 116

angles from −π to +π. By means of a codebook we use N discrete directions.

For numerical reasons equation (7.1) is discretised:

τ u̇(i, t) = −u(i, t) + S(i, t) + h +
N∑

j=1

w(i, j)f [u(j, t)] (7.10)

where τ (τ ∈ R+) is the time constant. The constant h defines the pre-
activation of the field, and f(u) is the local activation function. w(i, j) is the
interaction kernel between neurons i and j. S(i, t) is the external stimulus
at the neuron i. Since the field is periodic, the interaction kernel has to be
periodic too:

w(i, j) = kwe−σw(i−j)2 −H (7.11)

where the parameter σw and kw are used to adjust the range of excitation and
its amplitude, respectively. The global inhibition H allows only one localized
peak on the field.
After the stabilization of the field, the most activated neuron decodes the
direction to be executed by a robot:

ϕF = argmax{u(i)|i ∈ [1, N]} (7.12)

Field Stimulus

Before selecting an appropriate robot direction, the neural field needs some
necessary information (stimulus). Based on the tasks cited above, the stim-
ulus is determined according to two stimulus-functions. These functions de-
scribe:

1 the target direction: This stimulus is designed excitatory, showing an at-
traction towards the target direction. It is chosen as:

ST (i, t) = CT1 − CT2|i− iT (t)| (7.13)

where CT1, CT2 are constants positive, and iT (t) is the field position,
equivalent to the target direction at time t.

2 directions to obstacles {SOl(i, t) : l ∈ [1, NObst]}, where NObst are the num-
ber of obstacles detected by the robot sensors. However, the stimulus
consider only obstacles, which their distances dOl to the robot are less

7.4 Behavior control with neural fields 117

than a threshold dTh. This stimulus must be inhibitory, since obsta-
cles collision must be avoided. It is chosen as a Mexican Hat function
centered at the direction of an obstacle.

SOl(i, t) = COe−σO(i−il)
2

(7.14)

where CO and σO are positive constants. σO defines the range of inhi-
bition of an obstacle. In practical situations, this parameter is tuned
regarding the radius of the robot and the obstacles. il reflects the
direction of the obstacle l at time t.

The contributions of different stimulus define the state of the field. Thus,
the stimulus of the field at time t is determined by

S(i, t) = ST (i, t)−
NObst∑

l=1

g(dOl)SOl(i, t) (7.15)

where g is a step function:

g =

{
1, dOl < dTh

0 dOl ≥ dTh
(7.16)

Dynamics of Speed

In a free obstacle situation, the robot moves with its maximum speed Vmax,
and slows down when it approches a target. This velocity dynamics can be
chosen as:

VT (t) = Vmax(1− e−σvdT) (7.17)

where σv is a positive constant tuned in a relation with the acceleration
capability of the robot. dT represents the distance between the robot and
the target at time t.

Close to obstacles, the robot needs also to be slowed down. In case of many
obstacles, the nearest obstacle in the robot direction is considered. This
dynamics can be chosen as:

VO(t) = CO(1− g(dno)e
−σOv(ϕF−inO)2) (7.18)

where CO and σOv are positive constant, inO is the direction of the nearest
obstacle, which is on the path way of the robot. dnO is its relative distance.

7.4 Behavior control with neural fields 118

The final dynamics of the velocity is the contribution of (7.17) and (7.18).
Furthermore, it is also considered when no appropriate direction can be se-
lected, for example when the robot is completely surrounded by obstacles.
In this case the robot must stop until the environmental situation changes.
Thus, the robot velocity that satisfies the above design creteria is the follow-
ing:

V (t) =

{
VT (t)VO(t), ϕF > 0
0 ϕF ≤ 0

(7.19)

7.4.2 Results

In order to update the field stimulus, we assume a 360o sensor. Its range
is assumed to be a circle with a radius equal to 1. On the field we chose
N = 60 neurons, which means that each direction N decodes a step of
6o. The position of a target is given in the spatial coordinates (Xtar, Ytar)
relative to the origin of the robot’s map. Form the actual position of the
robot (Xr, Yr); the angle of the direction to the target is calculated:

ϕtar = arctan(
Ytar − Yr

Xtar −Xr

) (7.20)

Target-acquisition with Obstacle avoidance

The behavior Target-acquisition is expected to align the robot’s heading
with the direction of the target. During movement, the behavior obstacle-
avoidance is expected to bring the robot away from the nearby obstacles.
We will illustrate this with two simulation examples: Collision avoidance for
static and moving obstacles. Figure 7.2.(e) shows the path movement of the
robot from its initial position to the target position. In the first 14 time steps,
both, the stimulus (Figure 7.2.b) as well as the field activation (Figure 7.2.a)
are unimodal, since no obstacles are detected and the stimulus contains only
the target entries. In the following time steps, the stimulus contains also
obstacle entries. Therefore, it becomes bimodal. By contrast, on the field
activation, the peak follows the optimum position resulted from the combina-
tion of target-acquisition and obstacle-avoidance behaviors. It provides now
the appropriate heading direction towards the target with obstacle avoidance
(Figure 7.2.d). Furthermore, according to (7.19), the robot moves with its
maximum linear velocity when no obstacles are detected, and slowed down
when it is near the obstacle or approaches the target (Figure 7.2.c).

7.4 Behavior control with neural fields 119

For most real-world applications, a mobile robot has to move within a dy-
namic environment. In this context, the problem is how to reach a target in
the presence of dynamically moving obstacles. As seen above, when an ob-
stacle is static, avoidance is accomplished by measuring its relative position.
When an obstacle is moving, on the other hand, collision avoidance is harder
because the robot has to detect not only the position but also the direction
of the moving obstacle. In this experiment, the objective is to navigate the
mobile robot to its goal in an unknown environment without any collisions
with moving obstacles. During the first 7 time steps, both, the stimulus (Fig-
ure 7.3.b) as well as the field activation (Figure 7.3.a) are unimodal, since
the stimulus contains only the target entries. In the following time steps, the
stimulus contains the obstacle 1 entries. On the field activation, the peak
changes its position according to the stimulus. Thus, the robot changes its
direction (Figure 7.3.d) and slows down its speed (Figure 7.3.c). At time 16,
the entries of the target becomes stronger than those of the obstacle. The
peak change its position relative to the direction of the target. At time 18
the stimulus contains entries of obstacle 2. Again, the robot behaves with
the same manner until it reaches the target. Figure 7.3.(e) shows the entire
path movement of the robot.

7.4 Behavior control with neural fields 120

0

10

20

30

40

50

60

0
10

20
30

40
50

60
−4

−3

−2

−1

0

1

2

Time
Neurons

F
ie

ld
 A

ct
iv

at
io

n

(a)

0

20

40

60

0

20

40

60
30

35

40

45

50

55

TimeNeurons

S
tim

ul
us

(b)

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50 60
20

40

60

80

100

120

140

160

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.2: Target acquisition with Obstacle avoidance

7.4 Behavior control with neural fields 121

0
20

40
60

80

0

20

40

60
−3

−2

−1

0

1

2

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
20

40
60

80

0

20

40

60
35

40

45

50

55

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50 60 70
−80

−60

−40

−20

0

20

40

60

80

100

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.3: Collision Avoidance for Moving Obstacles. The dotted lines in
(e) represent the old positions of the obstacles.

7.4 Behavior control with neural fields 122

Corridor Following

The behavior Corridor-Following navigates the robot along an empty corri-
dor. Two experiments are presented: in the first, the initial position of the
robot is supposed to be in the middle between the corridor walls, as well as
the target point. This is the simplest case, since it can be considered as a
target acquisition with no obstacles. During the whole experiment, the field
has only one peak on the heading direction 0o (Figure 7.4.a). This behav-
ior is expected, since the stimulus contains only the target entries (Figure
7.4.b). Thus, the robot moves with the heading angle 0o until it reaches the
target (Figure 7.4.e), and its velocity depends only on the distance relative
to the target (Figure 7.4.c). In the second experiment, the robot starts from
a position near a wall (Figure 7.5.e). In this case, the field is expected to
guide the robot towards the target on the center of the corridor, with wall
avoidance. In the first 14 time steps, the stimulus contains obstacle entries
(Figure 7.5.b). Therefore, the field’s peak moves to an optimum provided by
the stimulus (Figure 7.5.a). The robot moves with negative heading angles,
until the behavior target-acquisition dominates the stimulus entries (Figure
7.5.d).

Door Passing

The behavior Door-Passing is supposed to navigate the robot to a target,
but through a door. This is in principal the same behavior target-acquisition
with obstacle-avoidance. However, the door has to be large enough, so that
at the door, the stimulus entries will be dominated by the target acquisition.
This is necessary to lead the robot through the door. Figure (7.6) shows the
experiment result.

7.4 Behavior control with neural fields 123

0
10

20
30

40
50

0

20

40

60
−4

−3

−2

−1

0

1

2

3

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
10

20
30

40
50

0

20

40

60
40

45

50

55

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.4: Corridor Following: experiment 1

7.4 Behavior control with neural fields 124

0
20

40
60

80

0

20

40

60
−4

−3

−2

−1

0

1

2

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
20

40
60

80

0

20

40

60
30

35

40

45

50

55

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50 60 70
−60

−40

−20

0

20

40

60

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.5: Corridor Following: experiment 2

7.4 Behavior control with neural fields 125

0
20

40
60

80

0

20

40

60
−3

−2

−1

0

1

2

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
20

40
60

80

0

20

40

60
35

40

45

50

55

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50 60 70
−40

−20

0

20

40

60

80

100

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.6: Door Passing

7.5 Competitive Dynamics for Home-bases Acquisition 126

7.5 Competitive Dynamics for Home-bases Ac-

quisition

Eilman and Golani [112] show by experiments that when rats are brought in
a novel environment, they move alternately between stop and go. The place
in which they stay for the longest time is defined as the rat’s home-base. In
addition, it was observed, that when they want to reach a target, they prefer
going through these home-bases instead of going through novel environments.
These home-bases are typically installed only in areas, which are meaningful
for them (e.g food places). In behavior control, this can be considered as
an optimisation problem of planning reliable landmark-based robot naviga-
tion. A necessary condition for this optimization is that the generated path
should be the shortest path through the maximum intermediate home-bases.
Naturally, this must be not much longer than the direct way to the target.

In this section, we adopt the concept of neural fields to optimize the target
path through home-bases. The idea is to use an extra one-dimensional neural
field, we call it sub-target neural field, that expresses, whether a home-base
is the next sub-target or not. A Peak will decode the direction to a sub-
target whenever one, or no peak otherwise. Following this method, the entire
optimal trajectory from the start to the main target will be not necessary to
be known, but only local information about the next sub-target. This implies
also that the optimal decisions are not static: a change in the accessibility
of a home-base leads to change the decision on which optimal home-base to
visit next. To produce an optimal path planning, the sub-target neural field
should produce a peak solution based on two requirements: a sub-target must
be the nearest home-base to the robot and on the way to the main target, i.e.
the shortest path to the main target (Figure 7.7.a), and flexibility: when for
instance an obstacle forces the robot to make a detour, the path should be
changed to another home-base (Figure 7.7.b). This makes a re-calculation of
the optimization not necessary.

Although the local decisions made by the two neural fields, the trajectory
generated through all sub-targets will be the global optimal one, if no changes
in the environment occur.

7.5 Competitive Dynamics for Home-bases Acquisition 127

(a) (b)

Figure 7.7: Sub-targets Acquisition

7.5.1 Sub-target Neural Field

This field has almost the same characteristics as the navigation field (7.10).
It encodes home-bases angles from −π to π :

τ u̇ST (i, t) = −uST (i, t) + SST (i, t) + h +
N∑

j=1

w(i, j)f [uST (j, t)] (7.21)

where uST (i) is the field activation at the position i. A nonlinear inter-
action with its neighboring j positions is achieved by the convolution of an
interaction kernel w(i, j). τ (τ ∈ R+) is the time constant. The constant
h defines the pre-activation of the field, and f(uST) is the local activation
function. SST (i, t) is the external stimulus at the neuron i.

Home-bases Stimulus

As for navigation, the neural field (7.21) needs some necessary information
(stimulus) about the home-bases locations. A home-base becomes a sub-
target if it fulfills the requirement of being the nearest one to the robot
and on the way to the main target. Thus, the stimulus is based on the
location of the home-bases, on the position of the main target and on the
current position of the robot. This stimulus is designed excitatory, showing

7.5 Competitive Dynamics for Home-bases Acquisition 128

an attraction towards a sub-target. The stimulus of each home-base k is
chosen as:

SHBk(i, t) =

{
CHB(dT − dHBk)e

−σHB(i−iHBk)2 , dHBk < dT

0, dHBk ≥ dT
(7.22)

where CHB and σHB are positive constants, which depends on the field char-
acterstics. dT and dHBk are the distances of the main target and the home-
base k relative to the robot, respectively. The distance dHBk gives an ad-
vantage to the home-bases, which lie closer to the robot. However, the term
CB(dT − dBk) alone is not enough, because the generated trajectory may
not be the globally optimal. It may lead to detours, which violate the re-
quirement of shortening the path. To prevent this, a Mexican Hat function
(e−σST (i−iT)2), centred at the direction of the main target iT , is used to elim-
inate the effect of all home bases, which are not on the way to the main
target. Furthermore, obstacles must be taken into consideration, in order to
change the plan if necessary. The global stimulus of the Sub-target neural
field is the contribution of all home bases stimulus. Thus the global stimulus
at time t will be:

SST (i, t) =
∑

k

SHBk(i, t)e
−σST (i−iT)2 −

NObst∑

l=1

g(dOl)SOl(i, t) (7.23)

7.5.2 Target-acquisition Stimulus

To acquire these sub-targets, the stimulus of the navigation neural field (7.15)
must be modified. When a sub-target is localized, the robot should move to
it and ignore the attraction of the main target. Thus the influence of the
main target is switched off, and the active sub-target errects a peak solution.
When an obstacle is detected or no sub-target is active, the main target is
acquired. These requirements can be reached by the modification bellow:

S(i, t) = (1−HV (uST))(ST (i, t)−
NObst∑

l=1

g(dOl)SOl(i, t)) + HV (uST)SST (i, t)

(7.24)
where HV (.) is the heavside function:

HV (uST) =

{
1, uST > 0
0, uST ≤ 0

(7.25)

7.5 Competitive Dynamics for Home-bases Acquisition 129

7.5.3 Results

The sub-target neural field has the same number of neurons (NST = 60).
We consider that the position of a home-base in the spatial coordinates is
(XHB, YHB). From the actual position of the robot (Xr, Yr), the angle to a
home-base is:

ϕHB = arctan(
YHB − Yr

XHB −Xr

) (7.26)

The main target is acquired by planning optimal sequences through the inter-
mediate home-bases. Figure (7.8) illustrates a first experiment. In the first 20
time steps, the sub-target field selects, through competition, the home-bases
1 and 3 to be intermediate sub-targets to the main target (Figure 7.8. b). In
the following time steps, it can be seen that when there is no sub-targets on
the target way, the main target is acquired. This result demonstrates that
the first requirement of shortening the target path, mentioned earlier, is ful-
filled. The second requirement of flexibility is tested in the next simulation.
Figure (7.9) shows the case, where the robot should avoid an obstacle. We
repeat the same experiment above, but an obstacle is added on the way to
the home bases 1 and 3. When the obstacle is detected, the influence of the
home base 1 is switched off, and then only the main target is acquired with
obstacle avoidance. After this detour, the home-bases 1 and 3 are not any
more sub-targets. Instead, the home base 2 has the more advantage to be a
sub-target, which is interpreted by switching ON the sub-target field. After
passing the home-base 2, the main target is acquired.

7.5 Competitive Dynamics for Home-bases Acquisition 130

0
10

20
30

40
50

0

20

40

60
−4

−2

0

2

4

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
10

20
30

40
50

0

20

40

60
0

20

40

60

80

100

120

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

65

70

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.8: Sub-target Acquisition Through Competition

7.5 Competitive Dynamics for Home-bases Acquisition 131

0

20

40

60

0

20

40

60
−4

−2

0

2

4

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0

20

40

60

0

20

40

60
−100

−50

0

50

100

150

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity

(c)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 7.9: Sub-targets Acquisition: Flexibility

7.6 Neural Fields for Multiple Robots Control 132

7.6 Neural Fields for Multiple Robots Control

Recently, there has been increased research interest in systems composed of
multiple mobile robots exhibiting cooperative behavior. Such systems are
of interest for several reasons: i) tasks may be too complex (or impossible)
for a single robot to accomplish, and ii) using several simple robots can be
easier, cheaper, and more flexible than having a single powerful robot for one
task. This is inspired from the nature. Living in a group provides animals
to combine their sensors to maximize the chance of detecting predators, or
searching for food.
A key problem in cooperative robotics is to maintain a certain geometric con-
figuration during movement. The reason is that there are many interesting
tasks that require multiple robots to coordinate their movements for example
box-pushing [113], and movement of a team of military robotic vehicles as
a scout unit [114]). There are two main ways of approaching this problem:
model-based control, and behavior-based control. In the first, the objective
is to build a model for the team of robots and the desired task, and develop
a framework to optimise their performance [115]. This method has a limit
success when the robots behave in a dynamic and unknown workspace. By
contrast, in behavior-based control no model is required. The control system
is in a form of reactive behaviors to the current state of the environment
[114].

In this section we investigate how neural fields can produce an elegant
solution for the problem of moving in formation. The objective is to acquire a
target, avoid obstacles and keep a geometric configuration at the same time.
Several formations for a team of three robots are considered (Figure 7.10):

. line: robots move line-abreast,

. column: robots move one after the other,

. triangle: robots move in a triangle formation.

The strategy is to have a leader (robot 1) guiding followers (robots 2 and 3).
The robots should avoid obstacles and collisions among them. We assume
that the robots are identical, and dont fail during travel.

7.6 Neural Fields for Multiple Robots Control 133

(a) (b) (c)

Figure 7.10: Geometric Configurations: a) line, b) column, c) triangle

7.6.1 Control Design

Each robot 1, 2, and 3 has its own neural field model. We choose the robots’
headings ϕk (k ∈ {1, 2, 3}) relative to a world-fixed reference direction as
behavioral variables. Hence, each neural field has to encode angles from −π
to +π. By means of a codebook we use N discrete directions.

The three neural field models will be described by:

τ u̇k(i, t) = −uk(i, t) +
N∑

j=1

w(i, j)f [uk(j, t)] + Sk(i, t) + h (7.27)

where k ∈ {1, 2, 3}.
Each interaction kernel is chosen as:

w(i, j) = kwe−σw(i−j)2 −H (7.28)

where the parameter σw and kw are used to adjust the range of excitation and
its amplitude, respectively. The global inhibition H allows only one localized
peak on the field.
After the stabilization of the field, the most activated neuron decodes the
direction to be executed by a robot:

ϕF = argmax{u(i)|i ∈ [1, N]} (7.29)

Before selecting an appropriate direction of a robot, each neural field needs
some necessary information (stimulus).

7.6 Neural Fields for Multiple Robots Control 134

7.6.2 Field Stimulus

Based on the tasks described earlier, the stimulus is determined according to
two stimulus-functions. These functions describe:

1 the direction towards the target. This stimulus is designed excitatory,
showing an attraction to the desired direction of each robot.
The target of the leader is the “main target”. Thus, its stimulus can
be chosen as:

ST leader(i, t) = CT1 − CT2|i− imain(t)| (7.30)

where CT1, CT2 are constants positive, and imain(t) is the field position,
equivalent to the main target direction at time t.
The followers are attracted by the required configuration relative to the
leader. In this case each follower has the target stimulus :

STk(i, t) = CT1k − CT2k|i− iTk(t)| (7.31)

where CT1k, CT2k are constants positive, and iTk(t) is the field position,
equivalent to the direction of the required position of the robot k (k ∈
{2, 3}) at time t.

2 the directions to obstacles {SOl(i, t) : l ∈ [1, NObst]}, where NObst are the
number of obstacles detected by the robot sensors. This stimulus must
be inhibitory, since obstacles collision must be avoided. It is chosen as
a Mexican Hat function centered at the direction of an obstacle.

SOl(i, t) = COe−σO(i−il)
2

(7.32)

where CO and σO are positive constants. σO defines the range of inhi-
bition of an obstacle. In practical situations, this parameter is tuned
regarding the radius of the robot and the obstacles. il reflects the di-
rection of the obstacle l at time t. Obstacles here include also other
robots, since they should avoid collision among tem. However, the
stimulus consider only obstacles, which their distances dOl to the robot
are less than a threshold dTh. Thus, the global obstacle stimulus is
determined by:

SO(i, t) =
NObst∑

l=1

g(dOl)SOl(i, t) (7.33)

7.6 Neural Fields for Multiple Robots Control 135

where g is a step function:

g(d) =

{
1, d < dTh

0 d ≥ dTh
(7.34)

Using the step function g, only obstacles , which their distances dOl to
the robot are less than a threshold dTh, are considered.

The contributions of different stimulus define the global stimulus for each
neural field. For the leader neural field, the stimulus at time t is determined
by

Sleader(i, t) = ST leader(i, t)− CMSO(i, t) (7.35)

For the followers, the stimulus is:

Sk(i, t) = STk(i, t)− CMSO(i, t) (7.36)

where k ∈ {2, 3}, and CM is a constant positive.

7.6.3 Formation Control

For each configuration, two tasks, formation-speed and formation-steer run
simultaneously to maintain each robot in its desired position.

formation-speed

In a free obstacle situation, the leader moves with its maximum speed Vmax,
and slows down when it approches a target. This dynamics can be chosen
as:

VT (t) = Vmax(1− e−σvdT) (7.37)

where σv is a constant tuned in a relation with the acceleration capability of
the robot, and dT represents the distance between the robot and the target
at time t. When it approaches obstacles, its velocity must be reduced. This
dynamics can be chosen as:

VO(t) = CO(1− g(dno)e
−σOv(ϕF−inO)2) (7.38)

where CO and σOv are constant. inO is the nearest obstacle direction to
the robot movement direction, and dnO is its distance relative to the robot.
The final dynamics of the leader velocity is the contribution of (7.37) and

7.6 Neural Fields for Multiple Robots Control 136

(7.38). It is also considered when no appropriate direction can be selected, for
example when the robot is completely surrounded by obstacles. In this case
the robot must stop until the environmental situation changes. Thus, the
global leader velocity that satisfies the above design creteria is the following:

Vleader(t) =

{
VT (t)VO(t), ϕF > 0
0 ϕF ≤ 0

(7.39)

The following steps summarize how a follower selects its speed:

. If a follower is behind its desired position, it should speed up.

. If a follower is in front of its desired position, it should slow down.

In presence of obstacles, the speed is slowed down, depending on the distance
to the obstacle. This speed dynamics can chosen as follows:

Vk(t) =

{
(Vleader(t) + p|δspeed|)VO(t), ϕF > 0
0 ϕF ≤ 0

(7.40)

where p is a positive constant parameter used to adjust the rate of correction,
and δspeed ∈ [−1, +1] is the correction term. Its value varie depending on how
far a follower from its desired position is.

formation-steer

According to figure (7.11), desired positions for the configurations line and
traingle are:

{
x2 = xleader + dist2 sin(θleader − α2)
y2 = yleader − dist2 cos(θleader − α2)

(7.41)

{
x3 = xleader − dist3 sin(θleader + α3)
y3 = yleader + dist3 cos(θleader + α3)

(7.42)

where dist2 and dist3 are the distances of the followers 2 and 3 relative to
the leader, respectively. In the case of line formation, α2 = 0 and α3 = 0.

For the column formation (Figure 7.12) , desired positions are:

{
x2 = xleader − dist2 cos(θleader)
y2 = yleader − dist2 sin(θleader)

(7.43)

7.6 Neural Fields for Multiple Robots Control 137

{
x3 = xleader − dist3 cos(θleader)
y3 = yleader − dist3 sin(θleader)

(7.44)

Figure 7.11: Triangle and Line Configuration

Figure 7.12: Column Configuration

7.7 Results 138

7.7 Results

In order to update the field stimulus, we assume that each robot has a 360o

sensor. The sensor range is assumed to be a circle with a radius equal to
1. On each neural field we chose N = 60 neurons, which means that each
direction N decodes a step of 6o. Figure (7.13) shows a simulation run, where
the objective is to maintain the line-abreast formation. At the beginning the
followers started with a higher speed, in order to reach the desired position,
since they started away from the leader (Figure 7.13 a). Once the required
positions are reached, they move with the same heading and speed of the
leader. The next simulations evaluate the obstacle-avoidance and maintain-
formation performance. Figures (7.14) and (7.15) show the obtained results
for avoiding obstacles and acquiring static and moving targets. When a
robot is close to an obstacle, the stimulus contain obstacle entries, which
brought the robot away from the obstacle. This behavior was expected, since
obstacle-avoidance behavior has the highest priority. The same behaviors can
observed on figures (7.16), (7.17) and (7.18) for the formation triangle. The
result of colmun formation are presented in Figure(7.19). colmun formation
is also tested in the case of door passing (Figure 7.20). In this test, the
control approach has succefully provided the robots the ability to traverse
through a narrow gap, and maintaining the colmun formation.

7.7 Results 139

0 5 10 15 20
−150

−100

−50

0

50

100

150

Time

R
ob

ot
s

he
ad

in
gs

Leader
Follower 2
Follower 3

(a)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ne

ar
 V

el
oc

iti
es

Leader
Follower 2
Follower 3

(b)

(c)

Figure 7.13: Line configuration in obstacle free situation. a)Robots’ head-
ings. b) Robots’ velocities

7.7 Results 140

0 5 10 15 20 25
−80

−60

−40

−20

0

20

40

60

80

Time

R
ob

ot
s

he
ad

in
gs

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ne

ar
 V

el
oc

iti
es

(b)

(c)

Figure 7.14: Line configuration with obstacles. a)Robots’ headings. b)
Robots’ velocities

7.7 Results 141

0 5 10 15 20 25
−80

−60

−40

−20

0

20

40

60

80

Time

R
ob

ot
s

he
ad

in
g

s

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ne

ar
 V

el
oc

iti
es

(b)

(c)

Figure 7.15: Line configuration with moving target and fixed obstacles.
a)Robots’ headings. b) Robots’ velocities

7.7 Results 142

0 5 10 15 20 25
−150

−100

−50

0

50

100

150

Time

R
ob

ot
s

he
ad

in
gs

(a)

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

iti
es

(b)

(c)

Figure 7.16: Triangle configuration. a)Robots’ headings. b) Robots’ veloci-
ties

7.7 Results 143

0 2 4 6 8 10 12 14
−150

−100

−50

0

50

100

Time

R
ob

ot
s’

 h
ea

di
ng

(a)

0 2 4 6 8 10 12 14
1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

ity

(b)

(c)

Figure 7.17: Triangle configuration with moving target. a)Robots’ headings.
b) Robots’ velocities

7.7 Results 144

0 5 10 15 20 25 30
−150

−100

−50

0

50

100

Time

R
ob

ot
s’

 h
ea

di
ng

(a)

0 5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

ity

(b)

(c)

Figure 7.18: Triangle configuration with moving target and fixed obstacles.
a)Robots’ headings. b) Robots’ velocities

7.7 Results 145

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

Time

Li
ne

ar
 V

el
oc

ity

(a)

0 5 10 15 20
−100

−80

−60

−40

−20

0

20

40

60

80

Time

R
ob

ot
s’

 h
ea

di
ng

(b)

(c)

Figure 7.19: Column configuration in a door passing test. a)Robots’ head-
ings. b) Robots’ velocities

7.7 Results 146

0 5 10 15 20 25 30 35
−0.5

0

0.5

1

1.5

2

2.5

3

Time

Li
ne

ar
 V

el
oc

ity

(a)

0 5 10 15 20 25 30 35
−150

−100

−50

0

50

100

150

Time

R
ob

ot
s’

 h
ea

di
ng

(b)

(c)

Figure 7.20: Column configuration in a door passing test. a)Robots’ head-
ings. b) Robots’ velocities

7.8 Conclusion 147

7.8 Conclusion

In this chapter, neural fields have been chosen as a framework for the be-
havior based robot control. While their suitability has been already proven
to solve the problem of target-acquisition with obstacle avoidance [110][111],
we described here how neural fields could be used in more complex problems:
avoiding static and moving obstacles, multi-target acquisition, and maintain-
ing formation for multiple robots. The navigation model is developed in order
to produce peak-solutions of the field activation, which encode the appropri-
ate robot direction in response to a change in the environment. Through
competitive dynamics, the sub-target neural field expresses, whether a home-
base is the next sub-target or not. A Peak will decode the direction to a
sub-target whenever one, or no peak otherwise. Following this method, the
entire optimal trajectory from the start to the main target was not necessary
to be known, but only local information about the next sub-target. This im-
plies that the optimal decisions were not static: a change in the accessibility
of a home-base leaded to change the decision on which optimal home-base
to visit next. For multirobot control, we have decomposed the problem of
formation control into: 1) control of a single lead robot and 2) control of two
follower robots in the team. The lead robot has to acquire the main target,
while the follower robots maintain formation. In addition, all robots have to
avoid obstacles and collision with each other. Based on these requirements,
the three neural fields were provided by the necessary stimulus information.
Three geometric configurations were considered: line, column, and triangle.
For each configuration, two tasks, formation-speed and formation-steer run
simultaneously to keep each robot in its desired position. Simulations results
demonstrate the smooth behavior of the robots, despite all imposed con-
straints. Figure (7.18) demonstrates that tracking a moving target, avoiding
obstacles, and maintaining triangle formation is not an absolute limitation
of our approach. The scenario of passing a door in a column formation did
not present any difficulty as well (figure (7.20)). Furthermore, in all devel-
opments, the speed control is fully integrated here. In earlier studies, this
quantity was usually set to a constant value.

All in all, simulations results demonstrate that the neural field concept could
provide an elegant solution for behavior-based control of single or multiple
mobile robots, despite many imposed constraints. A real implementation of
the control design will be presented in chapter (8).

Chapter 8

Neural Fields for
Behavior-Based Control of a
RoboCup Player

As seen in previous simulation results, neural fields provide an elegant local
solution for behavior control. Due to their low-computational costs, this ap-
proach is suitable for real application where the environmental state changes
continually. This chapter presents a set of experiments in a real environment.
The main objective is to move a robot to a target while avoiding static and
moving obstacles. Experimental tests were obtained using the same robot
(figure 8.1) used in chapter (6).

(a) (b)

Figure 8.1: Omnidirectional robot. a)hardware photo. b) CAD model

8.1 Robot System 149

8.1 Robot System

The neural field approach is implemented on one robot of the CoPS-Team
(Cooperative Soccer Playing Robots) of Stuttgart University [116]. It is
equipped with 3 omni-wheels, each of them driven by a 90W DC motor.
Gearboxes with reduction ratios of 14:1 are used to reduce the high angu-
lar speeds of the motors (7000 rpm) and to amplify the wheel’s mechanical
torques, and 500 ppr digital incremental encoders are used to measure the ac-
tual wheels speed. Motors are controlled by 3-channel microprocessor-based
interface. The robot is equipped with a laptop to manage different sensors
and tasks. The communication between the sensors and the laptop can be
done through USB, RS232, or IEEE1394 (FireWire). A pneumatic kicker
supplied by a small air pressure tank is also installed on the robot.

8.1.1 Environment Sensing

For environment sensing, the robot platform is equipped with an omnidirec-
tional vision system, based on a hyperbolic mirror and a standard IEEE1394
(FireWire) camera. The Omnidirectional vision provides the robot a very
large field of view, which has some useful properties. For instance, it can
facilitate the tracking of robots, the ball, and a set of environmental fea-
tures used for self-localization. To extract information, the captured image
is segmented using the calibrated colors of relevant objects, such the ball,
field lines, and obstacles. An example of an image with recognized objects is
shown in Figure (8.2).

8.1 Robot System 150

(a) (b)

Figure 8.2: Information extraction from the camera a) Image captured from
the omni-camera b) Recognition of relevant objects: lines(white), ball(red),
obstacles (black), and goals (blue and yellow).

8.1.2 Self-Localization

The problem of self-localization is to estimate the robots pose relative to
its environment. In our robots we use a probabilistic localization algorithm
called Monte Carlo Localization (MCL) [117]. MCL can solve the localization
problem in a highly robust and efficient way, even with temporary partial or
total occlusion of relevant sensor features.

8.1.3 Software Architecture

The Software architecture has a modular design structured into three parallel
working layers (Figure 8.3):

1 Sensor layer, where low level features or raw data are gathered,

2 World Model layer, which is used for storage and administration of data
objects. It provides so-called Data Processor modules. These modules
work on dedicated data objects of the world model to generate data
of a higher degree of abstraction. Monte Carlo based localization and
Kalman filter based ball tracking are examples of theses modules. The

8.2 Neural Fields 151

world model stores locally gathered data as well as communicated data
by other robots.

3 Control layer, responsible for the execution of actions. While its Pilot
module simply provides driving and steering capabilities, its Navigator
module implements complete soccer behaviors like driving or dribbling
to a position or shooting a ball.

Figure 8.3: Robot Software Architecture.

8.2 Neural Fields

For convinient, we rewrite the field equation of a one-dimensional neural field:

τ u̇(ϕ, t) = −u(ϕ, t) + S(ϕ, t) + h +
∫ +∞

−∞
w(ϕ, ϕ́)f(u(ϕ́, t)dϕ́ (8.1)

where u(ϕ, t) is the field excitation at time t (t ≥ 0) at the position ϕ ∈ R.
The temporal derivative of the excitation is defined by

u̇(ϕ, t) =
∂u(ϕ, t)

∂t
(8.2)

The excitation u(ϕ, t) of the field varies with the time constant τ with τ ∈ R+.
The constant h defines the pre-activation of the field, and f(u) is the local
activation function. Usually, f is chosen as a step-function:

f(u) =

{
1, u ≥ 0
0 u < 0

(8.3)

8.2 Neural Fields 152

The stimulus S(ϕ, t) ∈ R represents the input of the field which is de-
pendent on the field position and varies with time. A nonlinear interaction
between the excitation u(ϕ) at the position ϕ and its neighboring positions
is achieved by the convolution of an interaction kernel w(ϕ, ϕ́).

To integrate neural fields in the software system of the robot, equation
(8.1) is discretised as:

τ

∆t
[u(i, t+∆t)−u(i, t)] = −u(i, t)+

+∞∑

j=−∞
w(i, j)f [u(j, t)]+S(i, t)+h (8.4)

where ∆t is the discretised time, and w(i, j) is the interaction kernel between
neurons i and j. S(i, t) is the external stimulus at the neuron i. To specify
the dynamic properties of the field, the term W (x) (see chapter 7) will be
defined as:

W (x) =
x∑

j=0

w(j) (8.5)

8.2.1 Equilibrium Solutions

In the absence of an external stimulus (S(i, t) = 0,∀j), the equilibrium solu-
tions satisfy

u(i, t + ∆t) = u(i, t) : ∀i (8.6)

The field equation will be independant of time

u(i) =
+∞∑

j=−∞
w(i, j)f [u(j)] + h (8.7)

As in the continuous case, the model (8.4) has three equilibrium solutions,
according to the theorems (1) and (2) in chapter (7):

1. There exists a ∅-solution if and only if h < 0.

2. There exists an ∞-solution if and only if 2W∞ > −h.

3. There exists an a-solution (a local excitation of length a) if and only if
h < 0 and a > 0 satisfies W (a) + h = 0.

4. The a-solution is asymptotic stable if dW (a)
da

< 0, and unstable if dW (a)
da

> 0.

8.3 Control Design 153

As seen in chapter (7), if the field is in a-solution and an input of a stimulus
S(i, t) at time t is very large compared with the within-field cooperative
interaction, this input will dominate the solution. As a result, a single-peak
will be stabilized by interaction, even if the stimulus is removed.

8.3 Control Design

In the experiments, the neural field has to encode angles from −π to +π.
By means of a codebook we use N discrete directions. The one-dimensional
neural field for the robot directions will be:

τu(i, t + ∆t) = (τ −∆t)u(i, t) + ∆t

N∑

j=1

w(i, j)f [u(j, t)] + S(i, t) + h

 (8.8)

The neural parameters field are chosen as follows. The pre-activation h of
the filed is fixed to h = −1, the time constant to τ = 2, and the discret time
∆t = 0, 2. The interaction kernel is chosen as:

w(i, j) = 5e−0.5(i−j)2 − 2 (8.9)

8.3.1 Field Stimulus

Before selecting an appropriate robot direction, the neural field needs some
necessary information (stimulus). The stimulus is determined according to
two stimulus-functions. These functions describe

1 the direction towards the target ST (i, t). This stimulus is designed excita-
tory, showing an attraction towards the target direction. It is chosen
as

ST (i, t) = CT1 − CT2|i− iT (t)| (8.10)

where CT1 = 25, CT2 = 1, and iT (t) is the field position, equivalent to
the target direction at time t.

2 directions to obstacles {SOl(i, t) : l ∈ [1, N]}, where NObst are the number
of obstacles detected by the robot sensors. However, the stimulus con-
sider only obstacles, which their distances dOl to the robot are less than

8.3 Control Design 154

a threshold dTh = 1m. This stimulus must be inhibitory, since obsta-
cles collision must be avoided. It is chosen as a Mexican Hat function
centered at the direction of an obstacle.

SOl(i, t) = COe−σO(i−il)
2

(8.11)

where CO = 50,and σO = 0.05 which defines the range of inhibition of
an obstacle.

The contribution of different stimulus defines the state of the field. Thus,
the stimulus of the field at time t is determined by

S(i, t) = ST (i, t)−
NObst∑

l=1

g(dOl)SOl(i, t) (8.12)

where g is a step function:

g =

{
1, dOl < dTh

0 dOl ≥ dTh
(8.13)

8.3.2 Dynamics of Speed

In a free obstacle situation, the robot can move with its maximum speed
Vmax = 1.5m/s. However, close to obstacles or a target the robot needs to
be slowed down. In free obstacles, the velocity can be chosen as:

VT (t) = Vmax(1− e−σvdT) (8.14)

where σv = 0.8, and dT represents the distance of the robot relative to the
target at time t. When the robot approaches obstacles, its velocity must be
reduced relative to the obstacle distance and its direction. In case of many
obstacles, the nearest obstacle direction to the robot movement direction is
considered. This dynamics can be chosen as:

VO(t) = CO(1− g(dno)e
−σOv(ϕF−inO)2) (8.15)

where CO = 1 and σOv = 0.003. inO is the nearest obstacle direction to
the robot movement direction and dnO is its distance relative to the robot.
The final dynamics of the velocity is the contribution of (8.14) and (8.15).
Furthermore, it is also considered when no appropriate direction can be se-
lected, for example when the robot is completely surrounded by obstacles.

8.4 Results 155

In this case the robot must stop until the environmental situation changes.
Thus, the robot velocity that satisfies the above design creteria is the follow-
ing:

V (t) =

{
VT (t)VO(t), ϕF > 0
0 ϕF ≤ 0

(8.16)

8.4 Results

Expriments were made on a soccer field of 10, 421m length and 5, 720m width.
The origin of the coordinates is taken on the middle of the field. On the neural
field we chose N = 60 neurons, which means that each direction N decodes
a step of 6o. In all experiments, the initial and the target positions of the
robot are given in the spatial coordinates and equal to (−3000, 0), (3000, 0),
respectively. The neural field is expected to align the robot’s heading with
the direction of the target, and to bring it away from the nearby obstacles.
We will illustrate this with some experiments showing target acquisition with
collision avoidance for multiple static and moving obstacles.
Figure (8.4) shows the results of the first experiment. In the first 20 time
steps, both, the stimulus (Figure 8.4.b) as well as the field activation (Figure 8.4.a)
are unimodal, since no obstacles are detected and the stimulus contains only
the target entries. In the following time steps, the stimulus contains also
obstacle entries. Therefore, it becomes bimodal. By contrast, on the field
activation, the peak follows the optimum direction produced by the target-
acquisition and obstacle-avoidance behaviors. It provides now the appro-
priate heading direction towards the target with obstacle avoidance (Figure
8.4.d). We can see also how the robot speed is slowed down when it is near
the obstacle or approaches the target (Figure 8.4.c). In this experiment, the
distance between the obstacles 2 and 3 is not enough to contain the robot di-
mension. Due to the contribution of the two obstacle stimulus the robot was
obliged to pass to the right and avoid obstacle 3 in order to reach the target.
Figure (8.4.e) shows the entire path movement of the robot from its initial
position to the target position. Photos from video sequences are presented in
figure (8.6). In the second experiment (figure 8.5), the distance between the
obstacles 2 and 3 is now large enough to contain the robot dimension. The
robot could move through these two obstacles to reach the target. Figure
(8.7) shows some photos from video sequences of the second experiment.
The third experiment (figure 8.8) was carried out to verify the navigation

8.4 Results 156

approach ability in tackling moving obstacles. In this context, the problem
is how to reach a target in the presence of dynamically moving obstacles.
During the first 20 time steps, both, the stimulus (figure 8.8.b) as well as the
field activation (figure 8.8.a) are unimodal, since the stimulus contains only
the target entries. In the following time steps, the robot avoids the obstacle
1. At time step 51, the stimulus contains obstacle 2 entries. In the next
15 time steps, the neural field provides the appropriate heading direction
towards the target with obstacle 2 avoidance (Figure 8.8.d). After passing
obstacle 2, the entries of the target became stronger. The peak changed its
position towards the direction of the target. Figure (8.8.e) shows the whole
path movement of the robot.

8.4 Results 157

0
20

40
60

80

0

20

40

60
−8

−6

−4

−2

0

2

4

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
20

40
60

80

0

20

40

60
−40

−20

0

20

40

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60 70 80
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity
 (

m
/s

)

(c)

0 10 20 30 40 50 60 70 80
−100

−50

0

50

100

150

200

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 8.4: Target acquisition with Obstacle avoidance: first experiment

8.4 Results 158

0
20

40
60

80

0

20

40

60
−10

−5

0

5

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
20

40
60

80

0

20

40

60
−60

−40

−20

0

20

40

TimeNeurones

S
tim

ul
us

(b)

0 10 20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Li
ne

ar
 V

el
oc

ity
 (

m
/s

)

(c)

0 10 20 30 40 50 60 70
−100

−50

0

50

100

150

200

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 8.5: Target acquisition with Obstacle avoidance: second experiment

8.4 Results 159

Figure 8.6: Photos from video sequences of the first experience.

Figure 8.7: Photos from video sequences of the second experience.

8.4 Results 160

0
50

100
150

200

0

20

40

60
−8

−6

−4

−2

0

2

4

TimeNeurones

F
ie

ld
 A

ct
iv

at
io

n

(a)

0
50

100
150

200

0

20

40

60
−60

−40

−20

0

20

40

TimeNeurones

S
tim

ul
us

(b)

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

Li
ne

ar
 V

el
oc

ity
 (

m
/s

)

(c)

0 20 40 60 80 100 120 140 160
−200

−150

−100

−50

0

50

100

150

200

Time

R
ob

ot
’s

 h
ea

di
ng

(d)

(e)

Figure 8.8: Target acquisition with moving obstacle avoidance

8.5 Conclusion 161

8.5 Conclusion

In this chapter, we have demonstrated how neural fields have been chosen
as a framework for the behavior-based control of a RoboCup Player. The
navigation model is developed in order to produce peak-solutions of the field
activation, which encode the appropriate robot direction in response to a
change in the environment. The robot had to acquire the main target, while
avoiding static and moving obstacles.

This chapter demonstrated the utility of the approach only on one robot.
One issue that needs to be addressed in future research is to implement the
approach on multiple robots. In RoboCup, formation control plays a major
role. For example, if a lead robot loss the ball, the other follower robots could
catch it and continue the movement. Another application is in the defense
position, where the robots should form a “wall” around the goal area.

Chapter 9

Conclusions and future work

9.1 Summary of Contributions

When we started this work, we had two goals: explore recurrent neural net-
works, and develop solutions for two robotics problems.

We studied the idea that a large recurrent network can serve as a source of
dynamics from which information can be extracted by a readout unit. It was
adopted as a solution to overcome some RNNs training difficulties. Also, we
explored the concept of metalearning to train a RNN that can adapt without
changing explicit weights.

Regarding robotics, we firstly designed a motion control approach based on a
novel random recurrent neural network called echo state network (ESN). The
advantage is that no knowledge about the robot model is required, and no
synaptic weight changing is needed in presence of parameters variation. In
addition, this ability allowed a single fixed weight ESN to act as a dynamic
controller for several distinct mobile robots. In behavior-based control, the
concept of neural fields theory was adopted to generate the robot behavior
over time. We described how neural fields could be used to move a robot
towards a target while avoiding static or moving obstacles. The naviga-

9.2 Conclusions 163

tion model was developed in order to produce peak-solutions of the field
activation, which encode the appropriate robot direction in response to en-
vironment changes. Through their competitive dynamics, we also designed
a framework to optimize the target path through intermediate home-bases.
Moreover, we have demonstrated how neural fields are able to generate be-
havior control for multiple mobile robots. The objective was to move a team
of robots to a target while avoiding obstacles and keeping a geometric con-
figuration.

9.2 Conclusions

In this thesis we investigated how dynamics in recurrent neural networks can
be used to solve some specific mobile robot problems. The ability of RNNs to
handle arbitrary temporal dynamics, and robustness for noise environment
make them an ideal choice for real dynamical systems control. However,
this potential is not being exploited because simple and powerful training
algorithms were missing. To overcome this problem we adopted the concept
of echo state networks (ESNs). ESN has an easy training algorithm where
only the network-to output connection weights have to be trained using a lin-
ear regression. The training experiments carried out here demonstrate that
small and partially interconnected ESNs could be trained to act as motion
controllers for mobile robots. Moreover, ESNs were being asked to deal with
parameters variation. In other words, they were asked to exhibit a character-
istic, normally ascribed to adaptive controllers, whose parameters change in
response to an environmental change. “Adaptation” in this work is defined
as the ability of an ESN to recognize change only through the system output
and its own state, without changing any synaptic weight. This capability
is a natural consequence of prior metalearning used during training. When
a change occurred, the state of ESN switched from one family of orbits to
another, which corresponds to the change. This ability allowed us also to
design a single fixed-weight controller for multiple distinct mobile robots.
The fixed-weight solution adopted here presents a clever and efficient strat-
egy compared with adaptive networks. Furthermore, no multi-streaming is
needed during training, since ESNs use a batch-learning algorithm and do
not suffer from the recency effect.

Neural fields have been chosen as a framework for the behavior-based

9.3 Future Directions 164

control. While their suitability has been already proven to solve the problem
of target-acquisition with obstacle avoidance, we described here how they
could be used in more complex problems: acquiring one or multiple targets,
avoiding static and moving obstacles, and maintaining formation for multiple
robots. The navigation models were developed in order to produce peak-
solutions of the field activation, which encode the appropriate robot direction
in response to a change in the environment. The entire optimal trajectory
from the start to the main target was not necessary to be known, but only
local information was needed. This implies that the optimal decisions were
not static: a change in the accessibility of a home-base for example leaded
to change the decision on which optimal home-base to visit next.
In multi-robot control, two behaviors, formation-speed and formation-steer
run simultaneously to keep each robot in its desired position.
The obtained results demonstrate the smooth behaviors, despite all imposed
constraints.

All in all, we have shown that dynamics in RNNs could provide simple
and elegant solutions for some problems in mobile robotics. Successful results
have been obtained on simulations and on real implementations. However,
several open issues still remain for future research.

9.3 Future Directions

Although we consider that the objectives of this thesis have been accom-
plished, there are plenty of improvements that could be done in order to
achieve better results. Here, only the main points are summarized.

• We are aware of a certain degree of arbitrariness in our choice of the
ESN parameters and architecture. Substantial investigation and more
experiments on much larger data sets are still needed to ensure that
the results we have achieved to date are indeed statistically significant.

• How to guaranty stability? As any RNN, a relatively large dimen-
sion ESN lost stability at many times and exhibited sometimes high-
frequency oscillations on smooth test signals.

• What is the behavioral capacity of RNNs? In this work, we explored the
performance of ESNs to exhibit adaptive behavior with fixed-weights.

9.3 Future Directions 165

However, we did not discuss the question whether the obtained fixed-
weights ESNs could pass any test in adaptive system. Our network
works well only for those situations, for which it has been trained.
This may be seen as a limitation relative to explicitly adaptive systems.
Does a more efficient training method exist?

• We have provided a control framework based on neural fields theory.
Much more efforts must be done to completely integrate movement
planning and motor control. One important issue is to integrate the
speed control with the temporal evolution of neural activation. A first
step towards addressing this issue is to find out what are the opti-
mal neurons activation states before and after performing movements.
Further step is to estimate the optimal timing of the movement.

• Only simulation results demonstrated the neural fields utility for multi-
robot system. This approach must be implemented and tested on a
team of real robots (for example a team of RoboCup robots).

Bibliography

[1] Mataric Maja J. Behavior-based control: Examples from navigation,
learning, and group behavior. Journal of Experimental and Theoret-
ical Artificial Intelligence, special issue on Software Architectures for
Physical Agents, 9:323–336, 1997.

[2] Erann Gat. On three-layer architectures. Artificial Intelligence and
Mobile Robots,MIT/AAAI Press, 1997.

[3] Connell Jonathan. A hybrid architecture applied to robot navigation.
In Proc. of the 1992 IEEE International Conf. on Robotics and Au-
tomation, pages 2719–2724, 1992.

[4] Arkin R. Towards the unification of navigational planning and reac-
tive control. In American Association for Artificial Intelligence Spring
Symposium on Robot Navigation, pages 1–5. AAAI/MIT Press, 1989.

[5] Brooks Rodney A. A robot that walks; emergent behavior from a
carefully evolved network. Neural Computation, pages 253–262, 1989.

[6] Connell Jonathan. Designing behavior-based robots. In SPIE-91 Con-
ference on Mobile Robots, volume 1613, pages 34–45, 1991.

[7] Brooks Rodney A. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14–23, Mar 1986.

[8] Brooks Rodney A. New approaches to robotics. Science, 253:1227–
1232, 1991.

[9] Mataric Maja J. Navigating with a rat brain: a neurobiologically-
inspired model for robot spatial representation. In First International
Conference on Simulation of Adaptive Behavior, pages 169–175, Cam-
bridge,MA, 1990. MIT Press.

BIBLIOGRAPHY 167

[10] Mataric Maja J. Integration of representation into goal-driven
behavior-based robots. IEEE Transactions on Robotics and Automa-
tion, 8(3):304–312, 1992.

[11] Pirjanian P. Multiple Objective Action Selection and Behaviour Fusion
using Voting. PhD thesis, Aalborg University, 1998.

[12] Jana Kosecka and Ruzena Bajcsy. Discret event systems for au-
tonomous mobile agents. In Proceedings of Intelligent Robotic Systems,
pages 21–31, July 1993.

[13] Long-Ji Lin. Scaling up reinforcment learning for robot control. In
Proceedings of the 10th International Conference on Machine Learning,
1993.

[14] Steen Kristensen. Sensors Planning with Bayesian Decision Analysis.
PhD thesis, Department of Medical Informatics and Image Analysis,
Aalborg University, 1996.

[15] Pirjanian P. Behavior coordination mechanisms – state-of-the-art.
Technical Report IRIS–99–375, Institute of Robotics and Intelligent
Systems, School of Engineering, University of Southern California,
1999.

[16] Payton D., Kersey D., Kimble D., Krozel J., and Rosenblatt K. Do
whatever works: A robust approach to fault-tolerant autonomous con-
trol. Applied Intelligence, 3:226–249, 1992.

[17] Saffiotti A., K. Konolige, and E. H. Ruspini. A multivalued-logic ap-
proach to integrating planning and control. Artificial Intelligence, 76(1-
2):481–526, 1995.

[18] Hoffmann Frank. An overview on soft computing in behaviour based
robotics. In Proc. Joint 10th IFSA World Congress, Istanbul, Juni
2003.

[19] Hoffmann Frank. Fuzzy behavior coordination for robot learning from
demonstration. In NAFIPS 2004, Banff Canada, June 2004.

[20] O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. International Journal of Robotic Research, 5(1):90–98, 1986.

BIBLIOGRAPHY 168

[21] Gregor Schöner, Michael Dose, and Christoph Engels. Dynamics of
behavior: Theory and applications for autonomous robot architectures.
Robotics and Autonomous Systems, 16, 1995.

[22] Sergio Monteiro and Estela Bicho. A dynamical systems approach to
behavior-based formation control. In Proceedings of the 2002 IEEE
International Conference on Robotics and Automation, Washington,
DC, May 2002.

[23] Axel Steinhage and Gregor Schöner. Self-calibration based on invari-
ant view recognition: Dynamic approach to navigation. Robotics and
Autonomous Systems, 20:133–156, 1997.

[24] Axel Steinhage and Gregor Schöner. The dynamic approach to au-
tonomous robot navigation. In ISIE97, IEEE International Symposium
On Industrial Electronics, 1997.

[25] S. Goldenstein, D. M. Metaxis, , and E. W Large. Nonlinear dynamic
systems for autonomous agent navigation. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence. American As-
sociation for Artificial Intelligence., Menlo Park CA, 2000.

[26] Axel Steinhage. Dynamical Systems for the Generation of Navigation
Behavior. PhD thesis, Ruhr-Universitaet Bochum, Germany, Novem-
ber 1997.

[27] Althaus Philipp. Indoor Navigation for Mobile Robots: Control and
Representations. PhD thesis, Royal Institute of Technology, Stockholm,
October 2003.

[28] kolmanovsky I. and McClamroch N. H. Development in Nonholonomic
Control Problems. IEEE Control Systems, pages 20–36, December
1995.

[29] Fukao T., Nakagawa H., and Adachi N. Adaptive Tracking Control
of a Nonholonomic Mobile Robot. IEEE transactions on Robotics and
Automation, 16(5):609–615, October 2000.

[30] Kim Min-Soeng, Shin Jin-Ho, Hong Sun-Gi, and Lee Ju-Jang. Design-
ing a Robust Adaptive Dynamic Controller for Nonholonomic Mobile

BIBLIOGRAPHY 169

Robots under Modeling Uncertainty and Disturbances. Mechatronics,
13:507–519, 2003.

[31] Dongbing Gu and Huosheng Hu. Neural Predictive Control for a Car-
like Mobile Robot. International Journal of Robotics and Autonomous
Systems, 39(2–3), May 2002.

[32] Zhang Qiuju, J. Shippen, and J. Barrie. Robust backstepping and neu-
ral network control of a low quality nonholonomic mobile robot. In-
ternational Journal of Machine Tools and Manufacture, 39:1117–1134,
1999.

[33] Fierro R. and Lewis F. L. Control of a Nonholonomic Mobile Robot Us-
ing Neural Networks. IEEE Transactions on neural networks, 9(4):589–
600, July 1998.

[34] Fierro R. and Lewis F. L. Control of a nonholonomic mobile robot:
Bachstepping kinematics into dynamics. Journal of Robotic Systems,
14(3):149–163, 1997.

[35] Watanabe K., Tang J., Nakamura M., Koga S., and Fukuda T. A fuzzy-
gussian neural network and its application to mobile robot control.
IEEE Transaction on Control Systems Technology, 4(2), March 1996.

[36] Rusu P., Petriu M., Whalen T. E, Cornell A., and Spoelder H.
Behavior-Based Neuro-Fuzzy Controller for Mobile Robot Navigation.
IEEE Transaction on Instrum. and Measurment, 52(4), August 2003.

[37] J.T. Connor, Martin R.D, and Atlas L.E. Recurrent neural networks
and robust time series prediction. IEEE Transactions on Neural Net-
works, 5:240–254, March 1994.

[38] Kechriotis G.and Zervas E.and Manolakos E.S. Using recurrent neu-
ral networks for adaptive communication channel equalization. IEEE
Transactions on Neural Networks, 5:267–278, March 1994.

[39] Chao-Chee Ku and Lee K.Y. Diagonal recurrent neural networks for dy-
namic systems control. IEEE Transactions on Neural Networks, 6:144–
156, January 1995.

BIBLIOGRAPHY 170

[40] Harter D.and Kozma R. Chaotic neurodynamics for autonomous
agents. IEEE Transactions on Neural Networks, 16:565–579, May 2005.

[41] Zhu Quanmin and Lingzhong Guo. Stable adaptive neurocontrol for
nonlinear discrete-time systems. IEEE Transactions on Neural Net-
works, 15:653–662, May 2004.

[42] Williams R. J. and Zipser D. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1:270–
280, 1989.

[43] Perez-Ortiz J. A., Gers F. A., and D. Eck Schmidhuber J. Kalman
filters improve lstm network performance in problems unsolvable by
traditional recurrent nets. Neural Networks, 2:241–250, 2003.

[44] Schmidhuber Juergen. A fixed size storage o(n3) time complexity learn-
ing algorithm for fully recurrent continually running networks. Neural
Computation, 4(2):243–248, 1992.

[45] Werbos Paul J. Backpropagation through time: What it does and how
to do it. In Proceedings of the IEEE, pages 1550–1560, 1990.

[46] Hochreiter J. Untersuchung zu dynamischen neuronalen netzen. Mas-
ter’s thesis, Technische Universitt Mnchen, 1991.

[47] Hochreiter Sepp and Schmidhuber Jurgen. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

[48] Graves A., Eck D., Beringer N., and Schmidhuber J. Biologically plau-
sible speech recognition with lstm neural nets. In J. Ijspeert, editor,
Workshop on Biologically Inspired Approaches to Advanced Informa-
tion Technology, pages 175–184, Lausanne, Switzerland, 2004.

[49] Douglas Eck and Juergen Schmidhuber. Learning the long-term struc-
ture of the blues. In J.R. Dorronsoro, editor, Proceedings of Interna-
tional Conference on Artificial Neural Networks (ICANN 2002), pages
284–289, Madrid, 2002.

[50] Puskorius G.V. and Feldkamp L.A. Neurocontrol of nonlinear dynami-
cal systems with kalman filter trained recurrent networks. IEEE Trans.
Neural Networks, 5(2):279–297, 1994.

BIBLIOGRAPHY 171

[51] Prokhorov D., Feldkamp L., and Tyukin I. Adaptive Behavior with
Fixed Weights in Recurrent Neural Networks: An Overview. In Proc.
International Joint Conference on Neural Networks, Honolulu,Hawaii,
May 2002.

[52] Singhal S. and Wu L. Training multilayer perceptrons with the ex-
tended kalman algorithm. Touretzky D. S. editor. Advances in Neural
Information Processing Systems, 1:133–140, 1989.

[53] Prokhorov D., Puskorius G., and Feldkamp L. Dynamical Neural Net-
works for Control. IEEE Press, 2001.

[54] Maass W.and Markram H. Temporal integration in recurrent micro-
circuits. In In M.A. Arbib, editor, The Handbook of Brain Theory and
Neural Networks, pages 1159–1163. MIT Press (Cambridge), 2 edition,
2003.

[55] Maass W., Natschlg̈er T., and Markram H. Real-time computing with-
out stable states: A new framework for neural computation based on
perturbations. Neural Computation, 14(11):2531–2560,, 2002.

[56] Buonomano D.V. and Merzenich M.M. Temporal information trans-
formed into a spatial code by a neural network with realistic properties.
Science, 267:1028–1030, Feb 1995.

[57] Jaeger H. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the echo state network approach. Technical
Report 159, AIS Fraunhofer, St. Augustin, Germany, 2002.

[58] Maass W., Natschläger T., and Markram H. A model for real-time
computation in generic neural microcircuits. In S.Becker, S.Thrun,
and K.Obermayer, editors, Advances in Neural Information Processing
Systems, volume 15, pages 229–236. MIT Press, 2003.

[59] Jaeger H. The ’echo state’ approach to analysing and training recurrent
neural networks. Technical Report 148, AIS Fraunhofer, St. Augustin,
Germany, 2001.

[60] Jaeger H. and Haas H. Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication. Science, April
2004.

BIBLIOGRAPHY 172

[61] Cotter N.E.and Conwell P.R. Fixed-weight networks can learn. In
IJCNN International Joint Conference on Neural Networks, volume 3,
pages 553–559, June 1990.

[62] Vilalta R. and Drissi Y. A perspective view and survey of meta-
learning. Artificial intelligence Review, 18:77–95, 2002.

[63] Schmidhuber J., Zhao J., and Schraudolph N. Reinforcement learning
with self-modifying policies. In S. Thrun and L. Pratt, editors, Learning
to learn, pages 293–309. Kluwer, 1997.

[64] Castiello C. and Castellano G.and Fanelli A.M. Designing a meta-
learner by a neuro-fuzzy approach. In IEEE Annual Meeting of the
Fuzzy Information Processing, volume 2, pages 893–898, June 2004.

[65] DesJardins M. and Gardon D. Evaluation and selection of biases in
machine leaming. Machine Leaning, 20:5–22, 1995.

[66] Thrun S. Lifelong learning: A case study. Technical Report CMU-CS-
95-208, Carnegie Mellon University, Computer Science Department,
Pittsburgh, PA, 1995.

[67] Eric Horvitz Bennett Paul N., Susan T. Dumais. Inductive transfer for
text classification using generalized reliability indicators. In Proceed-
ings of the ICML-2003 Workshop on The Continuum from Labeled to
Unlabeled Data, Washington DC, U.S.A, August 2003.

[68] Schmidhuber J. On learning how to learn learning strategies. Technical
report, Technical Report FKI-198-94, Fakultt fr Informatik, Technische
Universitt Mnchen, 1994.

[69] Chan P.K and Stolfo S. Experiments on multistrategy learning by
meta-learning. In Proceedings of the International Conference on In-
formation Knowledge Management, pages 314–323, 1998.

[70] Wolpert D. H. Stacked generalization. Neural Networks, 5(2):241–259,
1992.

[71] Thrun S. Explanation-Based Neural Network Learning: A Lifelong
Learning Approach. Kluwer Academic Publishers, Boston, MA, 1996.

BIBLIOGRAPHY 173

[72] Thrun S. A lifelong learning perspective for mobile robot control. In
V. Graefe, editor, Intelligent Robots and Systems. Elsevier, 1995.

[73] Caruana Rich. Multitask learning. Machine Learning, 28:41–75, 1997.

[74] Younger A. Steven, Conwell Peter R., and Cotter Neil E. Fixed weight
on line learning. IEEE Transaction on Neural networks, 10(2):272–283,
March 1999.

[75] Schmidhuber J. An ‘introspective’ network that can learn to run its
own weight change algorithm. In Third International Conference on
Artificial Neural Networks, pages 191–194, May 1993.

[76] Younger A.S., Hochreiter S., and Conwell P.R. Meta-learning with
backpropagation. In International Joint Conference on Neural Net-
works, volume 3, pages 2001–2006, July 2001.

[77] Lo J. Adaptive vs. Accommodative Neural Networks for Adaptive Sys-
tem Identification. In Proc. International Joint Conference on Neural
Networks, pages 1279–1284, 2001.

[78] Feldkamp L.A., Puskorius G.V., and Moore P.C. Adaptation from
Fixed weight Dynamic Networks. In Proc. IEEE International Confer-
ence on Neural Networks, pages 155–160, Washington, 1996. IEEE.

[79] Feldkamp L.A., Puskorius G.V., and Moore P.C. Fixed weight Con-
troller for Multiple Systems. In Proc. IEEE International Conference
on Neural Networks, pages 773–778, Texas, June 1997. IEEE.

[80] Santiago Roberto. Context discerning multifunction networks: Refor-
mulating fixed weight neural networks. In International Joint Confer-
ence on Neural Networks, July 2004.

[81] Feldkamp L., Prokhorov D., Eagen C., and Yuan F. Enhanced multi-
stream kalman filter training for recurrent networks. In J. Suykens
and J. Vandewalle, editors, Nonlinear Modeling: Advanced Black-Box
Techniques, pages 29–53. Kluwer Academic Publishers, 1998.

[82] Mohamed Oubbati, Michael Schanz, and Paul Levi. Meta-learning for
Adaptive Identification of Non-linear Dynamical Systems. In Proc.
Joint 20th IEEE International Symposium on Intelligent Control and

BIBLIOGRAPHY 174

13th Mediterranean Conference on Control and Automation, Limassol,
Cyprus, June 2005. IEEE.

[83] Atiya A. F. and Parlos A. G. New results on recurrent network train-
ing: Unifying the algorithms and accelerating convergence. IEEE-NN,
11(3):697, May 2000.

[84] Dong Wenjie an Wei Huo, S. K. Tso, and W. L. Xu. Tracking control of
uncertain dynamic nonholonomic system and its application to wheeled
mobile robots. IEEE Transactions on robotics and automation, 16(6),
December 2000.

[85] Mohamed Oubbati, Michael Schanz, and Paul Levi. Recurrent Neural
Network for Wheeled Mobile Robot Control. WSEAS Transaction on
Systems, 3:2460–2467, August 2004.

[86] Mohamed Oubbati, Michael Schanz, and Paul Levi. A fixed-weight
RNN Dynamic Controller for Multiple Mobile Robots. In Proc. 24th
IASTED International Conference on Modelling, Identification, and
Control, pages 277–282, Innsbruck, Austria, February 2005.

[87] Mohamed Oubbati, Michael Schanz, and Paul Levi. Kinematic and
dynamic adaptive control of a nonholonomic mobile robot using a rnn.
In Proceedings of the 6th IEEE Symposium on Computational Intelli-
gence in Robotics and Automation, Helsinki, Finland, June 27-30 2005.
IEEE.

[88] Williams R., B. Carter, P. Gallina, and G. Rosati. Dynamic model
with slip for wheeled omnidirectional robots. IEEE transactions on
Robotics and Automation, 18(3), June 2002.

[89] Chung J.H., B.Yi, W.K. Kim, and H. Lee. ”the dynamic modeling and
analysis for an omnidirectional mobile robot with three caster wheels”.
In Proc. IEEE International Conference on Robotics and Automation,
Taipei, Taiwan, September 2003. IEEE.

[90] Kalmár-Nagy Tamás, Raffaello D’Andrea, and Pritam Ganguly. ”near-
optimal dynamic trajectory generation and control of an omnidirec-
tional vehicle”. Robotics and Autonomous Systems, 46:47–64, 2004.

BIBLIOGRAPHY 175

[91] Gerke M. and Hoyer H. Planning of optimal paths for autonomous
agents moving in inhomogeneous environments. In 8th Int. Conf. Adv.
Robot. (ICAR’97), 1997.

[92] Borgolte U. et al. Intelligent control of a semi-autonomous omnidi-
rectional wheelchair. In Proc. of the 3rd International Symposium on
Intelligent Robotic Systems, pages 113–120, Pisa, Italy, 1995.

[93] Mobile Robot Laboratory, Hans Moravec, Chuck Thorpe, Gregg Pod-
nar, and Patrick Muir. Autonomous mobile robots, annual report.
Technical Report CMU-RI-TR-86-04, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, February 1985.

[94] Fragois G. Pin and Stephen M. Killough. A new family of omnidi-
rectional and holonomic wheeled platforms for mobile robots. IEEE
Transaction On Robotics and Automation, 10(4), 1994.

[95] Diegel O. et al. Improved mecanum wheel design for omni-directional
robots. In Australien Conference on Robotics and Automation, Auck-
land, November 2002.

[96] Wadi M. and H.Asada. Design and control of a variable footprint
mechanism for holonomic omnidirectional vehicles and its application
to wheelchairs. IEEE Transaction On Robotics and Automation, 15(6),
1999.

[97] West Mark and Haruhiko Asada. Design and control of ball wheel
omnidirectional vehicles. In ICRA, pages 1931–1938, 1995.

[98] Mohamed Oubbati, Michael Schanz, Thorsten Buchheim, and Paul
Levi. Velocity control of an omnidirectional robocup player with re-
current neural networks. In Proceedings of the RoboCup International
Symposium, Osaka, Japan, July 2005.

[99] Mohamed Oubbati, Michael Schanz, and Paul Levi. Fixed-weight rnn
adaptive controller for an omnidirectional robot. In Proceedings of the
9th International Conference on Engineering Applications of Neural
Networks (EANN05), Lille, France, August 24-26 2005.

[100] Y. Koren and J. Borenstein. Potential field methods and their in-
herent limitations for mobile robot navigation. In Proceedings of

BIBLIOGRAPHY 176

the IEEE Conference on Robotics and Automation, pages 1398–1404,
Sacramento, California, April 1991.

[101] J. C Latombe. Robot Motion Planning. Kluwer Academic Publishers,
1991.

[102] L.E Kavraki, P. Svestka, J.C Latombe, and M. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[103] D. Jia and J. Vagners. Parallel evolutionary algorithms for uav path
planning. In Proceedings of the AIAA 1st Intelligent Systems Confer-
ence, 2004.

[104] Amy J. Briggs, C. Detweiler, D. Scharstein, and A. Vandenberg-Rodes.
Expected shortest paths for landmark-based robot navigation. In Fifth
International Workshop on Algorithmic Foundations of Robotics, Nice,
France, December 2002.

[105] Koenig S. and Likhachev M. Fast replanning for navigation in unknown
terrain. IEEE Transactions on Robotics and Automation, 21(3):354–
363., June 2005.

[106] Mohamed Oubbati, Michael Schanz, and Paul Levi. Neural fields for
behavior-based control of mobile robots. In Proc. 8th International
IFAC Symposium on Robot Control (SYROCO 2006), Bologna, Italy,
September 6-8 2006.

[107] Mohamed Oubbati, Michael Schanz, and Paul Levi. Neural fields for
controlling formation of multiple robots. In Proc. 3rd IEEE Conference
On Intelligent Systems, UK, September 4-6 2006.

[108] S. Amari. Dynamics of pattern formation in lateral-inhibition type
neural fields. Biol. Cybern., 27:77–87, 1977.

[109] M. A. Giese. Neural field model for the recognition of biological mo-
tion. In Second International ICSC Symposium on Neural Computa-
tion, Berlin, Germany, May 2000.

[110] H. Edelbrunner, U. Handmann, C. Igel, I. Leefken, and W. von See-
len. Application and optimization of neural field dynamics for driver

BIBLIOGRAPHY 177

assistance. In IEEE 4th International Conference on Intelligent Trans-
portation Systems, pages 309–314. IEEE Press, 2001.

[111] P. Dahm, C. Bruckhoff, , and F. Joublin. A neural field approach to
robot motion control. In Proceedings of the 1998 IEEE International
Conference On Systems, Man, and Cybernetics, pages 3460–3465, 1998.

[112] D. Eilam and I. Golani. Home base behavior of rats (rattus norvegicus)
exploring a novel environment. Behavioural Brain research, 34:199–211,
1989.

[113] M.J. Mataric, M. Nilsson, and K.T. Simsarin. Cooperative multi-robot
box-pushing. In IROS ’95: Proceedings of the International Conference
on Intelligent Robots and Systems, volume 3, Washington, DC, USA,
1995. IEEE Computer Society.

[114] T. Balch and R.C Arkin. Behavior-based formation control for mul-
tirobot teams. IEEE Transactions on Robotics and Automation,
14(6):926–939, December 1998.

[115] Jaydev P. Desai, James P. Ostrowski, and R. Vijay Kumar. Model-
ing and control of formations of nonholonomic mobile robots. IEEE
Transactions on Robotics and Automation, 17(6):905–908, December
2001.

[116] T. Buchheim, U.-P. Kaeppeler, R. Lafrenz, M. Oubbati, H. Rajaie,
M. Schanz, F. Schreiber, O. Zweigle, and P. Levi. Team description
paper 2005 cops stuttgart. In RoboCup 2005, Osaka, Japan., July 2005.

[117] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence, 128(1-2):99–141,
2000.

