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Abstract

The core-based design style of integrated circuits (ICs) helpgbage the develop-
ment challenges brought by the ever increasing complekitytegrated systems and
the ever tighter time-to-market. Nevertheless, test-relateglgms are still far away
from having a unitary and satisfactory solution, especially ensystem on a chip
(SOC) context.

For the test of ICs two reference approaches are avaiatilynal testing and built-in
self-test (BIST), out of which a variety of hybrid test &gges are obtained by test
resource partitioning (TRP). The final goal is to provide advantagemiesoffs of the
test evaluation indicators like: test development and application laslware over-
head, fault coverage, etc.

BIST offers support for in-field, on-line, burn-in and at-speed test that
indispensable for delay fault testing. Moreover, tradeoffs éetwfault coverage,
hardware overhead and test length are possible. External testohgracterized by
flexibility, reduced hardware overhead and high fault coverage for a gistelength.

Deterministic logic BIST (DLBIST) is an attractive tesstategy, since it combines the
advantages of deterministic external testing and pseudo-ramdperBIST (LBIST).
Unfortunately, previously proposed DLBIST methods are unsuited for laggesilice
computation time and memory consumption of the DLBIST synthesis thligisriin-
crease exponentially, or at least cubically, with the circuit size.

In this work, a novel procedure for the development of the so-chlteftipping
DLBIST scheme is proposed, which has nearly linear complexitgrins of both
computation time and memory consumption. This new method is based o thie us
Binary Decision Diagrams (BDDs). The efficiency of the emgptb algorithms is
demonstrated for industrial designs containing up to 2M gates.

The embedded test sequences obtained by mapping deterministic a@yis=ido-
random sequences are also evaluated with respect to the covérage-target
defects, which are modeled with the help of resistive bridgingstalihe experimen-
tal results prove that both deterministic cubes and pseudo-randprenses are
useful for detecting non-target defects. Moreover, possible tfadbetween test
length, hardware overhead, fault coverage and non-target defectagevare
analyzed.

This work additionally presents the results of extending the pjpifig DLBIST
scheme such that it also supports the transition fault testsiddsethe stuck-at fault
testing. Transition faults model defects which are responsiblethi®rincorrect
operation of the core under test (CUT) at the desired speedmplogtance of these
defects is continuously enhanced by the ever increasing clock aatkintegration
density of today's circuits. Experimental results obtained fogelamdustrial
benchmark designs are reported. plare DLBIST approach for the test of delay
faults in circuits with standard scan design has been published so far.
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In order to decrease the logic overhead of DLBIST, an innovativeoivegnstructing
efficient implementations for the involved Boolean functions (e.g-flipjting
functions) is presented. A key feature of these functions isitie@mplete specifica-
tion which is based on larg#on’t care setqsets of input assignments for which it
does not matter whether they are mapped to ‘0’ or ‘1"). Reduced or8aray Deci-
sion Diagrams (ROBDD) are used for representing and manipuldtengnvolved
functions and multi-level implementations are obtained based on the use of free BDDs
(FBDD). Experimental results show that for all the considemedtfons, implementa-
tions are found with a significant reduction of the gate count apa@d to a state-
of-the-art multi-level synthesys tool (SIS [Sen92]) or to metludfdsed by a state-of-
the-art BDD package. This performance is due to a reductitreafode count in the
corresponding FBDDs and a decrease in the average number ofngetésd to
implement the FBDD nodes.

The experimental results obtained for large industrial benchmailgrdeshow that
DLBIST may be well suited for use in special segmentoflévelopment, like the
ones dealing with security chips or hard cores.
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Zusammenfassung

System on a Chi(5OC) sind komplexe Systeme mit Millionen von Transistoren auf
einer einzelnen integrierten Schaltung (erigtegrated circuit (IC)). Solche ICs
enthalten in der Regel verschiedene Komponenten und Technologien, wie
beispielsweise Speicher, Prozessoren, anwendungsspezifische Hoghfrequenz-

und Analogmodule. Um die Kosten der Entwicklung zu reduzieren, werdeerimm
haufiger vorentworfene Funktionsblocke verwendet (ecwyle-based designDieser
Entwurfsstil stellt eine grol3e Herausforderung an die Testverfahren dar.

Das Hauptziel eines jeden Testverfahrens ist es, einen Kompramischen den
Testkosten und der Testqualitat (Produktqualitat) zu finden. Wichtigeri€n fur

den Test von ICs sind: Testentwicklungskosten, Testapplikationskostéty|zher

Bedarf an Schaltungsflache, Fehlererfassung, etc.

Zu den Anforderungen, die an die heutigen IC Testverfahren gestetien, gehoéren
spezifische Anforderungen, die auf die verschiedenen Typen von Module
abgestimmt sind. Zudem besteht zunehmender Bedarf an Verzégests)gstiéeld
undon-line Tests.

In den traditionellen Testverfahren werden die ICs normalervesigen mit speziel-
len Testautomaten (enghutomated test equipme(®TE)) getestet. Die externen
Testverfahren zeichnen sich durch hohe Flexibilitat, relativ gemingusatzlichen
Bedarf an Schaltungsflache und hohe Fehlererfassung fiir einméstirestlange
aus.

Die zunehmende Komplexitat und der wachsende Umfang der Testdatten die
Durchfiihrung externer Tests immer schwierig. Die QualkditFehlererfassung wird
durch die Unzugénglichkeit der internen Blécke verringert. Aul3erdérasissehr
teuer, mit ATEs die maximal mdgliche Taktfrequenz modernerziCsiessen. Diese
Probleme werden durch die hohe Komponentendichte sowie die Anwendung
verschiedener Technologien in der SOC-Fertigung vergrol3ert, so @asmbthoden

mit externen Testautomaten ungenau, und das ATE selbst sehr teuer wird.

Selbsttestverfahren (engbuilt-in self-test (BIST)) sind dem oben genannten
Verfahren in Bezug auf die erwéhnten Problemen uberlegen. Mit Bi&henon-
line, in-field, burn-inund at-speedTests realisiert werdemn-field Tests werden fir
periodische Wartungen verwendbtirn-in Tests sind wichtig fir die Steigerung der
Produktqualitdt und Zuverlassigkeit urat-speedTests sind notwendig um die
Verzogerungsfehler zu finden. Auf3erdem sind Kompromisse zwischemreiehten
Fehlererfassung, dem zusatzlichen Bedarf an Schaltungsflachelemndestlange
moglich.
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Neben den externen und den Selbsttestverfahren gibt es noch verscigdanesn
Testverfahren, die atést resource partitioningTRP) basieren.

Deterministic logic BIST (DLBIST) ist eine sehr attraldiTeststrategie, weil sie die
Vorteile von deterministischen externen Testverfahren und pseudozrialbgic
BIST kombiniert. Die bisher vorgeschlagenen DLBIST Verfahren kormme bei
kleineren Entwirfen angewendet werden, da die Laufzeit und deh8pmedarf der
Hardwaresynthese exponentiell oder wenigstens kubisch mit der Wgsagtolie
steigen.

Es gibt zwei grundlegende DLBIST Verfahretore and generat¥erfahren undest
set embeddingVerfahren. Bei demstore and generatéV/erfahren werden die
Testmuster in einer komprimierten Form auf dem Chip gespeidner darauf ein
Dekompressionsalgorithmus angewendet. Bekanntere Beispiele dBEI®IST
Methode basieren auf Kodierung dumtitkgekoppelte Schieberegister (eldgtSR
[Koe91], Multipolynom Reinitialisierung [Hel92] [Hel95] und Faltendehi&i (engl.
folding countey [Lia02].

Bei Test set embeddinyerfahren werden pseudozufallsgenerierte Muster durch
deterministische Muster erganzt. Bekanteist set embeddinderfahren sind didit-
flipping [Kie00][Wun96][Kie97][Kie98] undbit-fixing [Tou96] Verfahren.

Bei diesen beiden DLBIST Verfahren werden Testmustergenanagamgesetzt, die
eine gute Fehlererfassung ermdglichen. Die Besonderheit diesenustergenerato-
ren ist ein Logikmodul, das eirat-flipping Funktion (BFF), beziehungsweibé-
fixing Funktion (BFX), durchfuhrt. Die Implementierung dieser Testmustergtne
ren umfasst zwei Schritte: (1) die Abbildung einer Reihe detestischer Testmuster
zu einer Folge von Pseudozufalltestmustern und (2) die Synthese dksadygjs,
welches die Abbildung durchfuhrt.

In dieser Arbeit wird ein neues Verfahren fur den Aufbauldeflipping DLBIST
Hardware vorgeschlagen. Die BFF beschreibt das Einbetten vermdgstischen
Testmustern zu einer pseudozufalligen Testfolge, die durch einen wk@&Bventuell
einen Phasenschieber (enghase shifter erzeugt wird. Die Suche nach einem
effizienten deterministischen Testmuster-Einbettungsverfahreit geringem
zusatzlichem Bedarf an Schaltungsflache ist eine schwierige Aafgab

Ein Beitrag dieser Arbeit ist eine skalierbare Losung, sowinhtlie Abbildung von
deterministischen Testmustern (d.h. die Generation von BFF), als fauatiie
Logiksynthese der resultierenden BFF [Ghe04]. Ein ATPG Werkzeirg w
verwendet, um deterministische Testmuster fur alle Fehlerrzugen, die nicht
durch die pseudozufallige Testfolge entdeckt werden. Diese detstisthen
Testmuster enthalten eine grof3e Zahl nicht spezifizierter (Biigl.don't care (DC)
bits). Ein Pseudozufallstestmuster wird jedem dieser determimisetisd estmuster
zugeteilt, so dass die GrolRe der resultierenden BFF minimiedt imi Anbetracht
eines deterministischen Testmusters werden nur diejenigen Pselidtesifauster
untersucht, die eine minimale Zahl von unpassenden (@nglicting Bits enthalten.
Um weiter die Abbildung von Testmustern zu optimieren, wird Kim@bination von
folgenden MalRnahmen verwendet:
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* Minimierung der Taktzyklen, die sowohl zusammenpassende aagthing
als auch unpassende Bits enthalten. Dadurch wird versucht den Lodjkantei
der bei der BFF Implementierungen fur unterschiedliche Prifpfade mgame
benutzt wird, zu maximieren.

e Minimierung der Zahl von Priufpfaden, die sowohl zusammenpassende als
auch unpassende Bits pro eingebettetem Testmuster enthalsrerbbht die
Optimierungsmoglichkeiten fur die BFF Implementierung jedes Prifpfades

Das neue Verfahren stitzt sich auf die Effizienz und die Korhpiaktler BDD-
basierten Funktionsdarstellung und hat eine beinahe lineare Komplex3@rug auf
Laufzeit und Speicherbedarf.

Die Effizienz des neuen Verfahrens wird fur industrielle Sdngen bis zu einer
GroRRe von 2 Millionen Gattern nachgewiesen. Mit der neuen Einbettungsmethode
sind Verbesserungen mehrerer Grof3enordnungen, verglichen mit den genrheri
Verfahren [Wun96] sowohl in Bezug auf den Laufzeitbedarf, als aucteaud@auf

den Speicherbedarf, erreichbar. Die neue DLBIST Hardware-$mthat jetzt
denselben Laufzeit- und Speicherverbrauch wie die anderen bendétigten
Verfahrensschritte, ATPG und Fehlersimulation. Die Laufzeitvedyesgen konnen

auch dazu verwendet werden, um noch bessere Losungen in Bezug auf den
zusatzlichen Bedarf an Schaltungsflache und Fehlererfassung zu erhalten.

Ein anderer Beitrag dieser Arbeit ist eine Studie zur Wirksdtmdesbit-flipping
DLBIST im Test von nicht modellierten Defekten [Eng05]. Die withrdsbehatfte-
ten Bruckenfehler (englresistive bridging faulis wurden verwendet, um nicht
modellierte Defekte zu simulieren. Experimentelle Ergebnissgen, dass sowohl
deterministische als auch pseudozufallige Testmuster nutzlict, sim nicht
modellierte Defekte zu testen. Aul3erdem werden mdgliche Komserzisischen
der Testlange, zusatzlichem Bedarf an Schaltungsflache, &dassung und
Erfassung der nicht modellierten Defekte analysiert. Egt Zch, dass durch die
Erh6hung der Anzahl von Testmustern die Defekterfassung erhéht und der zusatzliche
Bedarf an Schaltungsflache bedeutend reduziert wird. Das vergdiféttraktivitat
der vorgeschlagenen DLBIST Architektur und reduziert den Bedarf an teuren ATE

Diese Arbeit enthalt auch eine Erweiterung der entwickdiieflipping DLBIST
Architektur, so dass neben Haftfehlern auch Ubergangsfektbateverden [Ghe05].
Die Ubergangsfehler (engiransition faulty sind eine Art von Verzdgerungsfehler
und modellieren Defekte, die fir eine nicht funktioniernde Schaltung dbeei
verwendeten Taktfrequenz verantwortlich sind. Die Bedeutung diesiekti® wird
durch die jeweils zunehmende Taktrate und Integrationsdichte heStgaitungen
standig erhont.

Es ist bis jetzt kein DLBIST Verfahren fur die Prifung der fdaegsfehler
veroffentlicht worden. Die Besonderheit der Tests von Ubergangs- lgeinainen
Verzdgerungsfehlern besteht in der Notwendigkeit, Paare von Testmustkmnicht
einzelne Testmuster, wie im Falle von Haftfehlern, anzuwenden.ir@sirwdiesem
Verfahren das erste Testmuster jedes Paares genau Viallimon Haftfehler-Test
erzeugt, und die Schaltungsantwort auf das erste Testmustealwimveites Test-
muster verwendet (endlnctional justification.
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Da bei diesem Test Testmusterpaare verlangt werden, wufdiége Fehlererfassung
bedeutend kleiner als fur Haftfehler. Um das Einbetten von Testmetezienter zu
machen, wird ein spezielles Modgbrrection logic(CRL) genannt, eingefihrt. Das
CRL-Modul wird genau wie das BFF-Modul synthetisiert. Die Ausgsiggsle des
CRL-Moduls mussen wahrend decanTaktzyklen, entsprechend jedem Testmuster,
unverandert bleiben. Da sich einige der Eingangssignale wahrersdateraktzyk-
len &ndern, werden die Ausgangssignale des CRL-Moduls in eingfiog-
gespeichert. Dieses Flipflop kann nur dann beschrieben werden, wenmewss
Testmuster in den Prifpfad gescannt wird. Das Flipflop wird durclsaas enable
Signal gesteuert, das benutzt wird, um slianrFlipflops zwischenscan modeund
functional modezu schalten.

Um die GrolRe des CRL und BFF zu beschranken, werden die determtieistisc
Testmuster am Ende der pseudozufalligen Testfolge eingebbteetLange der
pseudozufalligen Testfolge, die modifiziert werden kann, ist ein Beuakdr ganzen
Testlange. Um die Bits in der pseudozufalligen Testfolge davor zuhbemagekippt
(engl. flipped zu werden, werden die Ausgangssignale des BFF mit der éiilés
UND-Gatters pro Prufpfad auf Null gesetzt.

Die geringere pseudozufillige Testbarkeit von Ubergangsfehkativr zu den
Haftfehlern verlangt bedeutend langere Testmusterfolgen. Digsenesich sowohl
zum Begrenzen des zusatzlichen Bedarfs an Schaltungsflacheudisfur eine
verbesserte Erfassung von modellierten und nicht modellierten Deféktperimen-
telle Ergebnisse fir grolRe Industrieschaltungen zeigen mdglichapiémisse
zwischen der Testlange, zusatzlichem Bedarf an Schaltungsfldiotie Fehler-
erfassung auf.

Ein weiterer Beitrag dieser Arbeit ist ein Logikoptimiegswerkzeug, das verwendet
wird, um die Implementierung des BFF zu verbessern. Diesekdpignhierung-
swerkzeug ist besonders zur Implementierung von unregelmafigen und téandadls
spezifizierten Booleschen Funktionen geeignet. In diesem Fall e¢dele
Unregelmafigkeit einer Booleschen Funktion, dass ihre Eingaben, derdd Abbi
ist, zufallig tber dem Definitionsraum verteilt sind. Unvollstand@pezifizierung
beruht auf Inputs, fur die es gleichgultig ist, ob sie auf ‘0’ otleabgebildet werden.
Beispiele fur diese Art von Funktionen sind: BFF, BFX [Tou96] und diges@nnte
X-Maskierungsfunktion (XMF) [Tan04]. Alle diese Beispiel-funktionenrdes in
verschiedenetest set embeddingerfahren verwendet.

Fiur solche Funktionen werden effiziente mehrstufige Logikimplememgen
erzeugt. Diese Logikimplementierungen kénnen sehr gut mit Hitfgeordneter
BDDs (FBDDs) modelliert werden. Das Problem wird auf die Sw#heines
minimalen FBDD reduziert. Dies wird durch den Ansatz zweierschiedener
Methoden erreicht: (a) auf DC-basierte Knotenzahlreduzierung unée(t®ilung des
Definitionsraumes der Zielfunktion in eine reduzierte Zahl von Subrdumiien,
entweder zu ‘0’ oder zu ‘1’ abgebildet werden konnen. Heuristiken werden
verwendet, um fast optimale Teilungen des Definitionsraums imesol&ubraumen
zu finden und folglich die Anzahl der Knoten und Pfade der resultiere FBDD-
artigen Implementierungen zu minimieren. Aul3erdem ist diese Néheruch im
Stande, unter Anwendung des DC-Raumes, die Gatteranzahl zu redutieiender
Implementierung jeder Knotenfunktion erscheint.

Verglichen mit den im CUDD-Paket [Cudd] enthaltenen Methodestrict-Operator
und Umstellung von BDD Variablen), liefert das FBDD-basierte fateen
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Logikimplementierungen, deren Schaltungsbeschreibungen ungefahr edtgew
Logikoperatoren benétigen. Diese Schaltungsbeschreibungen, erzéuggeiden
Verfahren, wurden mit dem Synopsys Design Compiler synthetiéndolgedessen
konnte man erkennen, dass das FBDD-basierte Verfahren denizhsétBedarf an
Schaltungsflache um einen Faktor zwischen zwei bis drei verbessedie Laufzeit
bedeutend reduziert wird. Des Weiteren kann beobachtet werden, dass das
vorgeschlagene Verfahren besser skaliert und einen gréReren Nutzerr &(G-de
Menge zieht als das bekannteste mehrstufige Synthesewerkzeug SIS [Sen92].

Insgesamt zeigen die experimentellen Ergebnisse fir groRe ietdas®chaltungen,
dass dadit-flipping DLBIST Verfahren fir verschiedene Segmente der IC Tests
verwendet werden kann, z.B. fur die jenigen die sich mit Sicherheitschips (z.B- Smar
Cards) oder miHardcoresbefassen.

Am Ende dieser Arbeit werden einige Ideen vorgeschlagen, um diprasentierte
Forschung fortzusetzen.
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Chapter 1

Introduction

1.1 Motivation and Goal of the Work

The sustained improvement of deep-submicron technologies has led to an explosion in
the number of transistors that may be integrated on a chip and further to thdipossibi

of putting a wholesystem on a chifSOC). Core-based design is one paradigm of the
new trends used to reduce complexity and costs of chip developmentthgmes,
test-related costs are problems still far away from hasinmitary and satisfactory
solution.

The external testing of integrated circuits (ICs) is diti@nal approach in which
automated test equipme(ATE) provides all the necessary test data. This may set
high requirements on the storage capacity and speed of the ATtRerruore, the
ever increasing transistor count per 1/O pin and the low atdégsof internal blocks

are affecting the tradeoff between the final fault coveragk the test application
time. All of these, combined with the necessity of specially tuastérs for different
types of cores and the growing need for periodic in-field maintenand on-line
testing capabilities make the external testing difficult, costlyiaswfficient.

All the above mentioned problems demdnualt-in self-test(BIST) solutions. In this
context, BIST for random logic (LBIST) is becoming an attvactlternative in IC
testing.

The standard BIST architecture [Bar82][Eic83] uses an LFSRfekds pseudo-ran-
dom patterns into the scan paths. It is easy to implement and @esiboth hardware
overhead and impact on the system performance. However, due to raritienm-pa
resistant (RPR) faults, pseudo-random patterns cannot alwayseashi&cient fault
coverage within an acceptable test time.

The fault coverage can be increased by biasing the pseudo-rand®segiesnce to-
wards the RPR faults [Brg89][Wun88]. Conflicting input values requmedifferent
RPR faults may need different weighting sets. Unfortunatetycontrol logic and the
storage requirements for the weighting sets can increase unacceptably.

Pseudo-exhaustive testing [Mcc81] achieves the benefits of extptessting while
usually requiring less test patterns. This reduction is obtainexpliiting the circuit
into various segments that are tested exhaustively. Theeefficiof the method is
limited by the size of the largest segment that has to be tested.
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An alternative approach for increasing the fault coverage is the orsefttest points,
which has been proposed for both LBIST and external testing [Gew O
[Sei91][Vra02]. While the area increase due to test pointtingemay be tolerable,
they can introduce additional signal delays, which could require a etamp-
synthesis and a new timing verification [Vra04].

Deterministic LBIST (DLBIST) guarantees higher or complé&alt coverage by
embedding deterministic testubes (test patterns with unspecified bits) into the
pseudo-random sequence. There is a wide range of deterministiBl&Jianethods
that apply deterministic test patterns and hence improve the idixctverage often
obtained by pseudo-random patterns. In an initial deterministic Bi&¥eme,
additional external patterns were applied on top of the pseudo-randofhl¢&39].
Unfortunately, the very last percentages of fault coverage retipgriargest amount
of deterministic patterns. For instance, it has been reported §89B#hat detecting
the last 10% of undetected faults typically requires 70% or mdreedgst patterns in
an automatic test pattern generated set. Consequently, the behefgserministic
BIST are severely reduced by this approach.

Compression and decompression methods in which a small amount of esgstnal
data is continuously fed into the circuit [Koe91][Koe01][Raj02] amramefficient.
However, this approach is no longer a BIST method; it may sgliire a relatively
expensive ATE and lose some benefits of BIST like in-field testing.

In contrast to the above mentioned BIST methods, pure DLBIST schigntesavoid
both the modification of theore under tes{CUT) and the application of additional
external test data. These methods can be classifiedton® and generatschemes
andtest set embeddiraghemes.

Store and generatechemes consist of hardware structures which store thpatest
terns on-chip in a compressed form and implement a decompressioithaigor
Widely known representatives of this method are LFSR-reseediog9[l{, multi-
polynomial reseeding [Hel92][Hel95] and folding counter based-LBIST [Lia02].

Test set embeddirgghemes rely on a pseudo-random test pattern generator plus some
additional circuitry that modifies the pseudo-random sequence in suah that a set

of deterministic cubes is embedded. Widely known test set embeddimggees are
bit-flipping [Kie00][Wun96][Kie97][Kie98] andbit-fixing [Tou96].

In the bit-flipping approach, the output sequence of an LFSR isteavat a few bit
positions in order to increase the fault coverage (Figure 1.1hdE i the bit-fixing
approach constant values are applied (Figure 1.1.b). The test generatiess is
controlled by ait-flipping function(BFF) or abit-fixing function(BFX), respectively.

The termpattern mappingwill be used for referring to the assignment of a pseudo-
random pattern to a given deterministic cube. The synthesis procddarBLBIST
scheme consists of pattern mapping and generation of the hardwatare used to
implement the mapping, e.g. by means of a BFF or BFX. The symimesiedure for
generating the BFX as published in [Tou96] is based on rectaagéing, while the
synthesis procedure for generating the BFF as published in [Wun96]]e®8] is
based on manipulating sets of test cubes. In both cases, the procesguhesiristics
that generally require at least cubical, but often exponential, effort is frmemory
consumption and computation time.



1.1 Motivation and Goal of the Work 3
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Figure 1.1: (a) Bit-flipping and (b) bit-fixing BIST schemes.

In this work, a novepattern mappingapproach is proposed that has nearly linear
complexity in terms of both computation time and memory consumption. Thle use
algorithms are based on Binary Decision Diagrams (BDDs). Theesgf@giof the new
algorithms is demonstrated by experimental results obtainedS@AS benchmarks
and industrial designs containing up to 2M gates.

The embedded test sequences obtained by mapping deterministic @yisesido-
random sequences are also evaluated with respect to their gwaranon-target
defects. Moreover, possible tradeoffs between the test length, hardwerhead,
fault coverage and non-target defect coverage are analyzed.

All the methods discussed so far mainly refer to the testuck<at faults. Unfortu-
nately, the steady increase of the clock rate and the intagm@nsity in today’s IC
designs enhance the significance of the timing accuracy d¢€ta®6], which are
difficult to be covered by the classical stuck-at fault model. €guantly, delay fault
models and, implicitly, delay fault testing become more and more important.

Here, an extension of the bit-flipping DLBIST approach to thedesansition faults

is also presented. The scheme is based on functional justificaticonaard efficient
pattern embedding. A special module, tterection logic(CRL), is introduced to
further improve the pattern embedding. Due to the rather low rapdern
testability of transition faults, the saturation of their randawnitfcoverage requires
significantly longer test sequences, which in turn is benefiorabbth limiting the
hardware overhead and improving the coverage of modeled and non-modelesl defect
[Tan04].

A major concern of the test set embedding schemes is thsdivare overhead.
Reducing the hardware overhead of the DLBIST scheme considered here iseeuival
to optimizing the logic synthesis of the BFF. Two properties & thnction are
relevant for its logic implementation: theregularity, defined by the random
distribution over the definition space of the input assignments mappédaond the
incomplete specificatigrdefined by the existence of input assignments for which it
does not matter whether they are mapped to ‘O’ or ‘1’. Othempbks of such
functions are the BFX [Tou96], the function implemented by the CRL la@dsd-
calledX-masking functioiiXMF) [Tan04].

This work proposes an efficient and innovative way to implement iaed@oolean
functions with largedon’t caresets. Reduced ordered BDDs (ROBDD) are used for
representing and manipulating the involved functions. Multi-level reptasons are
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obtained based on free BDDs (FBDD). The problem is reduced t@tis¢raction of

an efficient BDD-based representation by usingdiwe’t carespace to perform node
reduction and to partition the definition space of the considered funtctiona
minimum number of sub-spaces which may be mapped either ‘0’ or ‘1’. Heurisics ar
used to find near-optimal partitions of the definition space into sucisgades and,
consequently, to minimize the path and node count of the resulting FBDD.
Furthermore, this approach is also able to useltimé careset to reduce the average
gate count per node. Experimental results show that for atiahgidered functions,
implementations are found with a significant reduction of the gatatacompared to

the well known multi-level synthesis tool, SIS [Sen92], or to methofiseaf by a
state-of-the-art BDD package. This performance is due to atreduaf the node
count in the corresponding FBDDs and a decrease in the average nungja¢esof
needed to implement the FBDD nodes.

1.2 QOutline

Chapter 2 briefly describes the three logical fault modelshwhiill be used in this
work. Section 2.1 introduces the stuck-at fault model. In Section 2.2gesinstive
bridging fault model is described. Section 2.3 presents two delaynfeudels: the
transition and the path delay fault models. Only the transitionfaadel will be used
later in the work. The path delay fault model is briefly mentoimeorder to better
understand specific aspects of the delay fault testing.

Basic BIST concepts are reviewed in ChaptefT&st-per-scanand test-per-clock
BIST schemes are described in Section 3.1 and Section 3.2, respe&ta&dyof-the-
art methods for test pattern generation and test response&temalare analyzed in
Section 3.3 and Section 3.4, respectively.

Chapter 4 compares two of the basic approaches that are uskd feptesentation

and the manipulation of Boolean functions. Section 4.1 introduces the cube-based,
also called disjunctive two-level representation. The generalizaf this representa-

tion to the multi-level representation and implementation is desciib&ection 4.2.
Section 4.3 presents the representation, manipulation and logic symthBsislean
functions based on Binary Decision Diagrams (BDDs).

Chapter 5 presents a new algorithm for mapping deterministicibes to a pseudo-
random test sequence. The algorithm is based on BDDs and outpettoems
previously published cube-based approach [Wun96] by several orders of magnitude. It
has been applied to the bit-flipping Deterministic Logic LBI®ILBIST) architec-

ture which is presented in Section 5.1. The pattern mapping probléonmally
defined in Section 5.2. Sections 5.2 and 5.3 provide a detailed descriptioniaf a pr
cube-based and of the new BDD-based mapping algorithms, respecteaipn®.5
reports the experimental results obtained with a set of indudésidins containing up

to 2M gates, ISCAS-85 and combinational parts of ISCAS-89 benchmaiginde
These results prove that significant improvements can be achieved with the thelp of
BDD-based mapping approach. In Section 5.6, the embedded test sequences generated
for single stuck-at faults are evaluated with respect to tiverage of non-target
defects. Resistive bridging faults are used as a surrogate of rgeh-tdefects
[Eng05]. This is the first time when the results of such a saudypresented. This
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investigation especially adresses the impact of the test sexqilesrgth on the non-
target defect coverage and on the hardware overhead. The chapterlisiaxbnc
Section 5.7.

Chapter 6 extends the approach introduced in Chapter 5 to make ivalabla for
the test of transition faults. Due to the fact that pairs sif patterns are required,
transition faults are more difficult to test than stuck-at fauft Section 6.1, a qualita-
tive comparison of stuck-at and transition faults is made wipect to their pseudo-
random testability. The extension of the bit-flipping DLBISTheame for transition
fault testing is described in Section 6.2. Relevant experimergaltsefor large
industrial benchmark designs are reported in Section 6.3. The cisaptanmarized
in Section 6.4.

In Chapter 7, an innovative BDD-based logic synthesis method isitsesbahat
improves the implementation of the BFF. This approach is espesiatigd for the
logic implementations ofrregular functions that have larggon’t care sets. Some
examples of such functions are: the BFF, the BFX [Tou96] and tleidanXMF

introduced in [Tan04], etc. Two of these examples are analyzed citorser. 1.

Section 7.2 presents a new heuristic method to find efficient logic implenoeist&or

such functions. In Section 7.3, experimental results are used to cothpanew
approach with SIS [Sen92] and methods available in the CUDD-pa(lkegeestrict

[Cou90]). Furthermore, the outcome of the proposed method is evaluatgala$oi
Synopsys Design Compiler. The chapter is concluded in Section 7.4.

Chapter 8 summarizes the work and suggests some related edeactions that
look promising and may be investigated in a future work.






Chapter 2

Basic Fault Models

This chapter describes the three logical fault models ustus work. Logical faults

represent the effect of physical defects on the logic behavitbreoodeled system.
Restricting the analysis of physical defects to the levetheflogic behavior has
several advantages. The complexity is reduced by transformpityscal problem

into a logical problem. The space of physical defects is ldngerthe space of logical
faults, such that a fault model can cover several physicattdgfees. Moreover, tests
derived for certain logical faults may cover physical dafdot which no accurate
fault model is known. Most of the logical fault models are techneiodgpendent

and hence testing and diagnosis methods developed for such fault medsiplara-

ble to many technologies [Abr90].

A distinction is made between faults that affect the logiceotness of a circuit and
delay faults that affect the operating speed of the systeperideng upon the type of
modeling used for the system, the former faults may be dividedruntwal and
functional faults. Structural fault models are usually definetthetgate level net-list
and assume that components are fault-free and only their intectiomseare af-
fected. Functional faults are usually defined at RTL or higineel$ (like behavioral
or system level) and they affect the proper execution of theaxtipes used at these
levels.

Shortsandopensare two examples of structural faultssortis formed by connect-
ing points not intended to be connected whileopanresults by breaking a connec-
tion.

In this work only structural, permanent and single faults of combmitlogic are
considered. Intermittent, transient, or multiple-faults aretaké¢n into account. The
analog and the memory elements that may be present in ¢hé ainder test are not
considered.

Under the single-fault assumption one assumes that in a systaewsabne logical

fault is present. This assumption is justified by the fact ithahost of the cases a
multiple fault can be detected by the tests designed for thedodivsingle faults that
compose the multiple-fault [Abr90].

Section 2.1 introduces the stuck-at fault model. In Section 2.2, thevedisgdging
fault model is briefly described. Section 2.3 introduces two repasentdelay fault
models: the transition and the path delay fault model. Only the ttcanfault model
will be used later in this work. The path delay fault model istioeed in order to
better understand specific aspects of the delay fault testing.
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2.1 Stuck-at Faults

The logical fault corresponding to a signal line beshgek ata fixed logic value (0/1)
is referred to as a single stuck-at 0/1 fault (Figure 2.1).i€ddydefects which can be
modeled with the help of a stuck-at 0/1 fault on the signalilinelude an open on
the fan-out lines driven by the linea short to power/ground or an internal error in
the component driving the line

stuck-at 0 C —

= |-

Figure 2.1: Example of a stuck-at fault.

Despite the fact that the single stuck-at fault model doesowar @ll the physical
defects that can appear in a digital circuit, it is very ulsdtie to the following
properties:

* Itis very simple. As compared to other fault models, the numbéngiesstuck-
at faults in a circuit grows linearly with its size. Moregviae number of these
faults that have to be explicitly considered can be reduced bycfaldpsing.
Techniques like structural-based and dominance-based fault collapsing-c
duce the number of faults to be explicitly analyzed by 50% and 4Gpece
tively [Abr90].

* It models many different physical defects [Tim83]. Test getserated for single
stuck-at faults may detect many faults belonging to other fault models.

* Itis technology independent.

* The single stuck-at fault model and its analysis can be used toumirsnd
analyze other types of fault models, like the transition fawdteh (Section
2.3.3).

A combinational circuit that contains an undetectable stuck-at i&waid to be
redundant since such a circuit can always be simplified by removingaat one gate
or input. The test generation problem for stuck-at faults belongsetolass of NP-
complete problems (worst-case behavior) [Iba75]. Undetectable (redyfalats are
usually the ones that cause test generation algorithms to exhibitwibiest-case
behavior [Abro0].

A straightforward extension of the single stuck-at fault magléhe multiple stuck-at
fault model. This fault model is more difficult to handle. Thedistaults for a circuit
havingN possible sites for single stuck-at faults can contain upNtsifgle and 3-1

multiple stuck-at faults [Abr90]. Fortunately, the importance ofrthudtiple stuck-at
fault model is reduced due to the fact that tests with comgétesetion of the single
stuck-at faults would usually also detect most of the multipieksat faults [Hug84].
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For all fault models introduced in this chapter, whose descriptionraietepend on
a continuous parameter, the following metrics are used to chaadtez quality of a
test set.

Definition 2.1: The fault coverage(FC) is the percentage of detected faults with
respect to the total number of faults.

Definition 2.2: The fault efficiency(FE) is the percentage of detected faults with
respect to the total number of testable faults.

2.2 Resistive Bridging Faults

A logical fault representing an electrical connection betwe@aiaof signal lines
(nets) is referred to ashaidging fault The non-resistive bridging fault model consid-
ers a short between the two nets. The logic value of the shorgedthagtbe modeled
as 1l-dominated (OR bridge), 0O-dominated (AND bridge) or intermediafgending
upon the implementation technology [Bus00][Mal92].

More general and realistic is the resistive bridging fault madekhich the connec-
tion between the two nets is characterized by an arbitraryrietdcresistance
[Ren95]. The resistive bridging fault model will be used in theovalhg chapters to
account for non-target defects.

The main difficulty when dealing with resistive bridging fauk that, unlike the non-
resistive case, there is an unknown value to be taken into account idthegoresis-

tance. This is due to the fact that the cause which geneshtird bridging fault

cannot be known in advance. Topological and physical parametershhige, size,
electrical conductivity, exact location on the die, evaporation behagiectron-

migration and environmental temperature can influence the mesestf the short
defect [EngO03].

A test pattern may detect a bridging defect for one resistance valuetdod another
resistance value. This fundamentally changes the meaning ofistatedting con-
cepts, like testability, redundancy, fault coverage, etc [Ren95].

In order to illustrate this, consider the example sketched in &2 [Eng03]. The
netsa andb in this example are bridged by a short defect with theteesie B, The
voltage 4 ona and the voltage yonb both depend not only on the input pattern, but

also on the bridge resistancg.R
%ﬁ c
0 — A a
0(1) DO |
—{ D
resistive bridging fault |Rs
1 b |
1 L E

Figure 2.2: Example of a resistive bridging fault [Eng03].
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Consider the input assignment 0011. Here, it is considered that lmigesv1’ and

‘0’ are encoded by a high-, respectively a low-voltage. A passibitage dependence
on the R, values is depicted by the solid curves in Figure 2.3. EprRQ, there is

an intermediate voltage identical for both lines. With increastgg V, and \
diverge with \4 approaching VDD and y/approaching 0. The transistors succeeding
the bridge will interpret these voltages as logic-0 or logic-fiedding on theimput
threshold voltage3h. In Figure 2.3, the threshold voltages for transistors C, D and E
are shown as horizontal lines labeled by, Thhy and Tk, respectively. Hence, the
resistive bridging fault may be observed at the drain of theistars C or E and
eventually at the output of the gates containing these transiStéts, [1 [0, Rc],
respectively &, O [0, Re]. For transistor D, the threshold voltagepTis below the
curve, implying that transistor D will recognize the voltagea@s a logic-1 for any
Rsh. Consequently, the fault effect is visible at one of the outputsdffilR0, Rc] O [
0[O, Re] = [0, Rel.

Next, consider the input pattern 0111 that sets a high-voltage on thredsaput of

the NAND gate. In this case, only one p-transistor will pull upvtiiage on the net

to the power supply. Thus, the reeis still driven with logic-1, but with less strength,
while the logic-0 on the ndi has the same strength as before. One possible voltage
characteristic for Yand \{ is described in Figure 2.3 by the dashed curves situated
underneath the solid ones. Hence, the fault effect is visibnetof the transitor
drains and eventually at the outputs of the corresponding gatesg [ff[R, Rl [ [0,

Ro] O [0, RE] = [0, Rc']. Consequently, a resistive bridging fault withyR! [Rc,

Re] may be detected by the pattern 0011, but not by the pattern Offidygl the
logic values on all internal lines of the fault-free circui¢ @&entical for these two
patterns.

In order to handle this ambiguity, the concepawalogue detectability intervghDI)
and probabilistic fault coverage are introduced [Ren95][Ren99].

Definition 2.3: The interval [R, Ry] (0 £ R; £ R, < ) in which a resistive bridging
fault fr is detected by a pattern P at one output (at least) isl chbe
analogue detectability intervgADI) of the pattern P with respect to
fr [Ren99].

Voo

The

.[-|]|]

Thy

R, ReRLR: Ry R

Figure 2.3: RgV — diagram [Eng03].
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The ADI of the patterns 0011 and 0111 with respect to the bridgitigbetween the
netsa andb are given by the intervals [0gRand [0, R’] (O [0, Re]), respectively.

The fault simulation forclassical fault models determines whether a fault can be
detected or not. In contrast to this, resistive bridging faultilsiion determines the
ADI for a given fault and test pattern, i.e. the values of the mipgesistance for
which the considered fault can be detected by the specified pattern.

Given the resistive bridging faulg find a set of test patterns S, the following defini-
tions can be given [Ren99]:

Definition 2.4: The ADL (C stands focovered of the test set S with respect toi$
defined as the union of the ADIs of each individual test pattern in S
corresponding toxf

Definition 2.5: ADIg (G meangglobal) with respect tod is the maximum ADQJ
corresponding togt

ADI¢ characterizes the testability of a resistive bridgingitfavith respect to the
patterns in a given test set S. Albheasures the testability of a resistive bridging fault
independently of the test seit corresponds to an exhaustive test set. A bridging fault

with an empty AD§ (ADIg = [0) is untestable(at least if effects on delay and IDDQ
testing or on reliability are not considered).

Definition 2.6: Theglobal fault coverag€FCs) [Ren99][Eng03] of a test set S with
respect to a resistive bridging fauitis defined as:

[ [ ,o(R)dR}

ADI¢

[ | p(R)dR] |

ADIg

FCs(fr) =

whereo(R) is the probability density function of the short resistance
R obtained from manufacturing data(R) is chosen such that the
second integral is equal to 1.

If for any considered bridging faulg,ffor which the AD¢ is different from the empty
set, ADL is set equal to AR then the non-probabilistic case associated to the non-
resistive bridging models is obtained ¢@g) = 1).

Definition 2.7: For N bridging faults;f 1< i < N, theaverage resistive bridging fault
coveraggEng03] is defined as:

Up to now there is no known method to determine thegABmd implicitly the FG,
without simulating all 2 test patterns, where n is the number of inputs. Approxima-
tion methods for computing ARland F& are given in [Eng03].
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2.3 Delay Faults

Delay fault testing is used to prove and estimate the perfornwrnbe core under
test (CUT) and has become a standard option in today's technoRagi-delay
segment-delagndgate-delay faulinodels have been proposed so far [Her96][Sha00]
[Smi85][Krs98][lye90]. These models have different complexity in begh genera-
tion and test application. A special case of the gate-delayrfendel is thdransition
fault model [Krs98][Lev86][Wai87], also callegross-delay faulinodel, in which the
gate-delay fault is assumed to be of the same order of magnitude as the clutk peri

In order to test delay faults, two patterns are requiredhigalization patternV; that
sets the circuit to a predefined state, andaetivation patternV, that launches the
appropriate transition and propagates the fault effect to a (pseudo-)primauy. out

2.3.1 Path-Delay Faults

Path-delay faults are used to model defects that are codrelieg a path from a
(pseudo-)primary input to a (pseudo-)primary output of the CUT. Botbwiitehing
delays of devices and the transport delays of the interconnectpnetaybate the
propagation of a signal transition along the considered path.

Path-delay faults may be robustly and non-robustly tested. Ahtisjuarantees to
detect a path-delay fault, only if no other path-delay fauipeesent, is called a non-
robust test [Lin87][Bus00]. Besides the application of the right in@urtsttion, the
other requirement for the non-robust test of a path is that alffigath input signals
assume non-controlling in the steady state following the applicati the activation
pattern \.

A robust path-delay test guarantees to detect a path-delayifeadpective of the
delay distribution in the circuit [Lin87][Bus00]. In addition to the requieats of the
non-robust test, the robust test of a path requires that all tipatbfinputs must have
a steady non-controlling value in bothy \And \, when the on-path event is a
transition from non-controlling value to controlling value.

Unfortunately, in the worst case the number of path-delay faultg in@ease
exponentially with the number of the signal lines in the CUT. Consglguéor large
industrial designs simpler delay fault models like the gate-dately the transition
fault models are usually considered.
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2.3.2 Transition Faults

The transition fault model is used to cover delay effects whiehganerated by
localized (spot) defects and whose sizes are in the order afitodey of the clock
cycle or of the test pattern period.sfow-to-riseandslow-to-fall transition fault may
be associated to each signal line in the CUT. Consequently, the mafrtbensition

faults increases linearly with the number of the signal linehe CUT. The upper
bound of the number of transition faults is twice the number of sigmed in the

CUT. Moreover, the similarity to the test of stuck-at faultplies that (1) tests for
transition faults can be easily generated by modifying aksttidest generator
[Krs98][Lev86] and (2) circuits with high stuck-at fault coveragally also have
large transition fault coverage [Bus00][Wai87].

Due to its limited complexity, the transition fault model is meglespread. For an
efficient delay testing, it is recommended to augment tiansiault testing by path
delay testing performed for a sub-set containing at least the crittbal [jBus00].






Chapter 3

Basic Concepts of Built-In Self-Test

Built-in self-test(BIST) is a technique in which additional circuitry is added tore

under test(CUT) in order to make it able to test itself with mioim external help.
Figure 3.1 sketches the general structure of a self-testaiblét composed of est

pattern generato(TPG), atest response evaluatqfRE) and aBIST control unit
(BCU).

This technique is especially preferable when it is difficulatsess the CUT exter-
nally. It also helps to protedhtellectual property(IP) and to reduce cost of the
external test equipmelfATE) by minimizing the amount of test data that has to be
stored off-chip. Its implementation can result in an improvement inetequality
due to its better support for at-speed testing, which is edséntidetecting delay
faults. BIST supports in-field and on-line testing [Kar98], which hédpseduce the
cost of system maintenance. It also offers the opportunity toowapreliability by
means of burn-in testing.

BIST approaches can be divided intest-per-scanand test-per-clock schemes
[Wun98], which are described in Section 3.1 and Section 3.2, respectitetiy-05
the-art methods for test pattern generation and test response evaluagioalyred in
Section 3.3 and Section 3.4, respectively.

> Test Pattern Generator (TPG)

Test start
— .
BIST Control Unit | Core Under Test
Test end BCU v (CUT)
¢ (BCU)

\ 4

Test Response Evaluation (TRE

Figure 3.1: Built-in self-test (BIST) (adapted from [Hua03]).
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3.1 Test-per-scan Schemes

Test-per-scan BIST schemes require scan-based design. Instheofcaequential
circuits, this means that all the storage cells can be configag@ne or several scan
paths (chains), which are used as serial shift registéestimode (Figure 3.2). In this
way, each storage device of the CUT becomes easily contradiathlebservable. The
test stimuli/responses are shifted into/out of the scan paths [ABIEEB][Tri80].
Scan-based design helps to reduce the problem of testing sequeatids ¢o the
simpler problem of testing combinational circuits.

The BCU in Figure 3.2 must contain at least a shift counter gadtern counter. The
shift counter controls the bit stream which is generated afiédimto the scan path

by a TPG. The pattern counter controls the length of thedgaeace. Aystentlock
cycle (also calledcapture or functional clock cycle) is applied to load the CUT
response to the current test pattern into the scan path. Duringrtiadlesishift mode
(also calledscanor testmode) a new test pattern is shifted into the scan path, while
the CUT response to the previous pattern is shifted out and compressed by a TRE.

A very common and effective parallel-serial mixed scheme mimdad by partitioning
a full scan path into multiple scan chains (Figure 3.3).

Test start —»
Pattern CUT
Counter
A A
Sh|ft \A 4
Counter TPG — Scan Patt » TRE
Testenc <+— 7'y
BCU
Shift/Capture

Figure 3.2: Test-per-scan scheme (adapted from [Wun98]).

FE Multiple Scan Chains
Y
= LR R =y
FIF— Phase e |
= shifer | "L LT ——
(PS) S
=1 o S ey
| [
i CuUT "
-
PRPG TRE

Figure 3.3: STUMPS architecture for parallel-serial mixed scheme (adapted
from [Wun02]).
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In Figure 3.3, the test patterns are generated jaseado-random pattern generator
(PRPG) and the responses are compacted royltple input shift registe(MISR).
Both the PRPG and the MISR are typically implementediresr feedback shift
registers(LFSRs) (Section 3.3.1). Such a scheme is c&kéi Test Using MISR and
Parallel Shiftregister sequence genera@TUMPS) [Bar82].

The basic design with multiple scan chains suffers from highlseleted patterns
(Section 3.3.1). To solve this problem, XOR-trees (phase shifterg (R&8) be
inserted between the LFSR and the scan chains inputs (Figure 3:S0][Baj98].

This logic transforms the LFSR outputs into several uncorrelagedls. In order to
reduce test time, power consumption and storage requirement, othetractures
like scan fores{Xia03] or lllinois scan[Hsu01] may be used.

There are several approaches to transform the storagent&denfieghe CUT into scan
elements. For example, edge-triggered D-type flip-flops candosformed into so-
called scan flip-flops by adding a multiplexer (Figure 3.4 {@)jront of them. A

scan-enablesignal is used to switch between shift and capture modes arsartiee
clock signal can be used for both modes [Abr90].

An example of level-triggered storage element transformed irdo stement is
shown in Figure 3.4 (b). Here, the switching between shift and captues is made
with the help of two clock signals that control the first of the two latches.

Test-per-scan schemes have several advantages: (a) higtefauit/coverage; (b)
reduced test data size (compared to sequential test pati@ngsdjatively low test

generation time; (d) reduced test costs (no special requirdiorenbstly ATEs for

functional testing); (e) low impact on the system behaviomrdg scan paths are
included into the mission logic and (f) separation of the patienerator from the
CUT, so that it can be synthesized at a later step of the design flow.

(a) Edge — Triggered Scan Element (Scan Flip-Flop)

Data-Out /
Scan-in —> 1 M| ™D Q> geanout
U -
Data-in —» 0 X > CLK
A
Scan-Enable—— Clock

(b) Level Sensitive Scan Element (Shift Register Latch)

Data-in >

System Clock > L > Data-Out

Scan-in » Latch .

Shift Clock A > > Lo > Scan-Out
Latch

Shift Clock B >

Figure 3.4: Storage cells for scan design (adapted from [Wun02]).
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The drawbacks of test-per-scan schemes are: (i) longpggltation time required by
the scan mode; (ii) functionally untestable faults can be aetfatiii) reduced

testability for faults whose detection necessitates paitestfpatterns and (iv) re-
duced system performance if scan elements are introduced intotib& paths. If

partial scan paths [Jou95][Tri80] are used, such problems can be deghatenore

test patterns may be applied within the same test time.

3.2 Test-per-clock Schemes

In a test-per-clock scheme [Koe79][Kra89][Str94][Wan86], apesiern is applied to
the CUT every clock cycle. This scheme is best suited pster-based design. This
kind of scheme employs a specific BIST architecture usingufiein logic block ob-
server(BILBO) [Koe79], which is a more sophisticated register taat function as a
normal state register, scan register, PRPG or MISR uNttionality of the BILBO
depends on the mode input signalsaB®d B. Signal B controls all the registers to
switch between the global and local modes (Figure 3.5). The glaixe covers the
functional and scan modes. In the local mode the registers mag pettern genera-
tors or response evaluators. In order to select each of theseodels-associated with
the global or local mode, the signal B used. In contrast to signab,Bwhich is
unique for all registers, the signal 8epends upon the addressed register.

In Figure 3.6, it can be seen how to facilitate testing by gihgrthe functionality of
the BILBO registers. Initially, the registerss Rnd R are initialized in scan mode.
Then register Ris set to a PRPG mode for the combinational logiar@ the test re-
sponses are observed by registertiiat functions in response evaluation mode as
MISR. The combinational logic s tested after the test outcome contained.iisR
shifted out and the functionalities of Bnd R are interchanged. In the end, the new
test outcome contained in Ras to be shifted out.

inputs {n
SDO
5 BoB1 Mode
SDI 00 Shift
BILBO Bo le—
- ° 01 System global
B1 f— 1 0 | Pattern generatior
~ .| local
1 1 |Response evaluation
outputs 1 n

Figure 3.5: Control signals of a BILBO (adapted from [Wun98]).

SDI l SDO T

C2 R1 Ci R2

| )

Figure 3.6: Test-per-clock scheme (adapted from [Wun02]).

* The test of faults (paths) that cannot be funelilgractivated may result in a yield loss.
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Compared to test-per-scan schemes, the test-per-clock scheradsotiaadvantages
and disadvantages. The advantages of test-per-clock schemes) akor{ar test
times and better support for two-pattern testing [Coc98], as apa¢tern can be
applied in each clock cycle; and (b) better support for at-sfgstithg, as no pattern
shifting is required, which generally is done at a lower speed.

The disadvantages of the test-per-clock schemes may beltbweirig: (i) larger
hardware overhead and (ii) stronger impact on the system behaviodesigd flow.
The overhead can also be affected by the increased complexity testkger-clock
schedule that requires the synthesis of a rather complex B@& r&son for these
disadvantages is that additional test registers have to heléu;ldue to the fact that
normal BILBO registers cannot work as TPG and TRE simultahedagWan86], a
special type of BILBO register, also calledncurrent BILBQ has been introduced,
which is able to perform signature analysis and pattern generation concurrently

3.3 Test Pattern Generation

Test pattern generation for ba#st-per-scarandtest-per-clockBIST schemes can be
classified into the following groups: pseudo-random, weighted, exhaugseudo-
exhaustive, deterministic and mixed-mode schemes.

3.3.1 Pseudo-Random Pattern Generation

Pseudo-random pattern testing is an attractive approach for BtS$ible choices for
pseudo-random pattern generators (PRPGs) are one-dimensionahyinedrcellular
automata (LHCAS), linear feedback shift registers (LFSRgjiféerent accumulator
based structures [Gup96][Wu98]. As processor kernels or programmnaitdeare
integrated into SOCs, they can also be used for pattern generation [Hel96].

An LHCA [Cat96][Kha87] is a collection of memory cellg, Xz,..., X1, X, Xj+1, ..
connected in such a way that each cell is restricted toreogthborhood interactions.
The next state of each cell is determined based on the stdtescells with each the
considered cell interacts. For example, if cell j] can communiocaly with the
neighbor cells, j-1 and j+1, one of the following two rules can be emqirloyerl) =
Xi.1(t) O X+2(t) or x(t+1) = x.1(t) O xi(t) O x+1(t), where 1) represents the state of
cell jat time t.

An LFSR is a Moore finite state machine that consists of domerected memory
elements, also referred to atagesor cells and linear logic elements such as
exclusive-OR (XOR) or exclusive-NOR (XNOR) gates. SeveR8R configurations
are used in a variety afesign for testabilitf{DFT) schemes. In this sub-section, the
basic theory and the operation of two basic LFSR types will be briefly discusse

The canonical form of an LFSR, also called standard LFSR (B),AS sketched in
Figure 3.7. Here,;his a binary constant;#1L implies that a connection exists, while
hi=0 implies that no connection exists. In the latter case thespmnding XOR gate
can be replaced by a direct connection between the gate input and its output.
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Xo “— ... T Xk-2
>

L/ L/
Figure 3.7: Standard linear feedback shift register (adapted from [Wun98]).
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The behavior of an SLFSR is completely determined by the feedoaékcients b,

k=1 ,
..., he1, which define a polynomiah(x) = x* +ZhjxJ called thecharacteristicor
j=0
feedbackpolynomial. The output sequencedd the SLFSR has to satisfy the follow-
ing recurrence equation:
k-1

forv=0, .., k-1: @ x,andforvzk: a, =) a,.;h
i=0

The state transition matrix H of the SLFSR is shown in Figure @Gix&en the state
transition matrix H, the characteristic polynomial h(x) is eqaadet(H+xID). If the
initial state is an all-0 state, the subsequent states canbenii-O states. Conse-
quently, the all-0 state will lock up the SLFSR in a degeneratgeesee. If the initial
state of an SLFSR is different from the all-0 state, theSR mill produce a non-
degenerated sequence of states/outputs, which is periodic and its ¢eeriunt be
greater than'21 (k is the length of the SLFSR).

The period of the non-degenerated output sequeRke (@oduced by an SLFSR of
length k is the smallest integerp#-1) such that the polynomial (¥)s divided by

k
the reciprocal of the characteristic polynomial [GOI&Z]:EH][EJ =1+ Z he_ X!,
X j=l

For any length k of an SLFSR, feedback polynommsst which can generate
state/output sequences of maximum length1f2 The characteristic polynomial
corresponding to such an SLFSR is referred to esitpre polynomial. A primitive
polynomial is irreducible [Gol82], which means tltatannot be factored out. Figure
3.9 illustrates an example of a maximum length RFS

X\t +1 X, (t 010..0 O X, (t
X (t+1 X, (t 001...0 O X, (t
=H [ = il
xo(+D)| x| [000.0 1| x ()
X1 (t + 1) Xy (t) hO hl h2 "'hk—Z hk—l Xy (t)

Figure 3.8: State transition matrix of an SLFSR (adapted fféfan98]).
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Figure 3.9: Example of maximum length SLFSR (adapted from [@&]n

The output sequence,Jao generated by an SLFSR with a primitive polynonhias
several random properties [Gol82] and it is cale@seudo-random sequence. Test
patterns that are pseudo-randomly generated arck inseany BIST schemes. The
main limitation of this test pattern generation @aeh is that, in most of the cases,
insufficient fault coverage is achieved due todindependencies. This happens when
the initial state of an LFSR, that has to geneagparticular output sequence)(gy, is
defined by the solution of an unsolvable systemsgofations.

In the example of Figure 3.10, each specified it ¢he test sequence corresponds to
a linear equation in the variables describing thigal state of the LFSR:gx X1, Xo.
The detection of the stuck-at O fault at the outputrequires all a, 0 a = 1, for
which no solution exits.

If s is the number of specified bits in the outpatjuence of a k-bit SLFSR, then the
probability P that the system of equations determined by thetses is linearly
dependent is given by the following expression [€&3je

s-1 2k _ 2i

P=1-[1-—"—
| 1ok —j-1

For example, the selection of 20 entries from thgut sequence produced by a 32-
bit SLFSR leads to a probabiliy = 0.000244 that these 20 bits are dependent and
cannot be set randomly.

The linear dependency problem is enhanced in the cadesigns with multiple scan

chains. As already mentioned in Section 3.1, thablem can be solved by inserting
XOR-trees (phase shifters) [Bar90][Raj98] betweke LFSR and the scan chains
inputs (Figure 3.3). Besides reordering the mem@igments in the scan paths,
another way to improve the encoding efficiency milL&SR or of any other linear test
pattern generator or decompressor is to insertrsnwe logic (invertors or XOR-gates)

between the scan elements [BalO4][Lai04].
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Figure 3.10: LFSR-based testing (adapted from [Wun98]).

An alternative way to implement an LFSR is the afbedd modular linear feedback

shift register (MLFSR) as illustrated in Figure B.IThe XOR-gates are connected
between the stages of the MLFSR. MLFSRs are féiséer SLFSRs as the maximum
delay is one XOR gate. Moreover, the difference betwsuccessive internal states is
enhanced in the case of an MLFSR, which is espgciséful for BIST applications.

It can be easily proven that for each MLFSR (SLESR) SLFSR (MLFSR) with an
equivalent state transition matrix can be foundcohhs expressed by the relations:
HSLSFR = T[E-IMLSFREl"l and H/ILSFR = Tl[EHSLspﬂ (Figure 312) Hence, all results
derived for SLFSRs also hold for MLFSRs.

%l R | a

<
<

Xk-1 - - Xo

»
>

Figure 3.11:Modular linear feedback shift register (adaptedniffsVun98]).
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Figure 3.12: Equivalence between the transition matrices of BIRE and
SLFSRs (adapted from [Hua03]).

3.3.2 Weighted-Random Pattern Testing

Although LFSRs, LHCAs or other linear TPGs can gateea large set of pseudo-
random test patterns with very simple hardwares, sleldom provides sufficient fault

coverage for a CUT. A way to address this probleto iuse weighted-random pattern
testing techniques.

The TPG used in weighted-random pattern testingommposed of an LFSR and
additional combinational logic to modify the probaip of ones and zeros in the
output sequence. Thigeightingcircuitry is used to bias the pseudo-random padgter
towards those that detect random pattern resisalts, such that the fault coverage
is increased and the test length can be reduced.

Several techniques have been proposed for computanght sets [Wun85][Bar87].
In [Wun90] it has been shown that for most cirguitsiltiple weight sets are required
to achieve sufficient fault coverage. For this ogaghe weight sets have to be stored
on-chip and additional control logic is neededwatch between them during the test
time. This increases the BIST overhead a lot.

Extensions of the weighted-random pattern testmggpaiesented in [Tsa00][Lai04],
among others.



24 3 Basic Concepts of Built-In Self-Test

3.3.3 Exhaustive and Pseudo-Exhaustive Testing

Exhaustive testing applies all possiblét@st patterns to an n-input combinational
circuit [Mcc81], so that a high quality test can digtained and no particular fault

model is used. The test pattern generator cantbeaay counter or an LFSR with a

primitive feedback polynomial, in which the all-eepattern may be generated by a
reset signal. As the number of test patterns isegaxponentially with the number of
the circuit inputs, this approach is usually natsible for circuits with a large number

of inputs (n>30).

Pseudo-exhaustive testing relies on the partitiotn@ CUT into output cones which
are tested exhaustively [Mcc81][Hel90][Abr90]. Asngoared to exhaustive testing,
far fewer test patterns are required. Neverthelbgsfeasibility of pseudo-exhaustive
testing depends on the size of the largest outpug.c

3.3.4 Deterministic Testing

Deterministic testing applies a pre-computed setest cubes (test patterns with
unspecified bits) to the CUT. Thus, any coveragethe#f testable faults can be
achieved. The patterns may be stored on-chipusigg a ROM, or off-chip in which
case they have to be loaded from an ATE. In bofitragches the data volume to be
stored tends to be extremely large.

In the case of the ATE-based approach this may lsds@ a strong impact on the
required bandwidth. In order to reduce the storagd bandwidth requirements,
special algorithms for generating compact test sets be used [Cha0l1][Gon02]
[Kaj95][Red92][Tro91][Wue04]. Similar approachesncalso be used with (ROM-
based) BIST schemes to reduce the storage requiterm®uch methods are often
calledstore and generatA\gr81].

An intensively investigatedtore and generateechnique uses LFSR-reseeding. It is
based on storing pre-computed LFSR seeds thateaisdd to generate deterministic
test cubes [Koe91]. Reseeding-based encoding mewdhigher compression ratio
than any other entropy-based compression methaadOJoAs seeds are smaller than
the test patterns themselves, they require less R@khge. A small LFSR with a
single feedback polynomial may not always have eddbat will generate all the
required deterministic test cubes. Multiple-polynahtiFSR schemes [Hel92][Hel95]
can fix this problem. The LFSR can operate corredpw to a limited number of
different feedback polynomials and produce all teterministic cubes. Both
polynomial and seed identifiers need to be stored.

A different class of reseeding techniques is basedpecial counters that generate a
deterministic set of test cubeswisted-ring countefCha00] andfolding counter
[Lia02] are approaches which embed deterministibesuinto counter sequences.
They can efficiently reduce test data storage wth fault coverage, but the ap-
proaches are not compatible with standard scagulesi

More efficient compression and decompression metlanelghose in which a small
amount of external test data is continuously fetb ithe chip [Koe91][Raj02]
[Wue04]. As long as these methods are based onsth®f an external ATE and not
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on an internal memory, they are no longer BIST mdshand lose some specific
benefits of BIST like in-field and on-line testing.

3.3.5 Mixed-Mode Testing

Mixed-mode approaches can achieve more efficientdats compression and hard-
ware implementation than pure deterministic tedtesmes. Mixed-mode testing
combines pseudo-random testing with various detestic testing schemes so that
the test storage requirements can be significamttijuced and high levels of fault
coverage can be obtained within a reasonable pestation time.

Usually in mixed-mode approaches, the pseudo-rangititerns produced by LFSRs
are used to test easy-to-detect faults. To incréssaumber of detected faults, test
points can be inserted into the CUT [GeuOO0][Hay34]P1][Vra02]. While the area
increase due to the test points may be tolerabéy; tmay also introduce additional
delays, which could require a complete resynthasd a new timing verification
[Vra04]. For the remaining faults, determinististt@atterns can be generated by an
automatic test pattern generator (ATPG) and storadROM.

In other mixed-mode approaches, often cakbstl set embeddirsghemes, determinis-
tic test patterns are embedded in pseudo-randomesegs with the help of some
additional combinational logic [Tou96][Wun96][Ghg04h the bit-flipping approach,
the output sequence of an LFSR is inverted at abiéwositions in order to increase
fault coverage [Wun96][Ghe04], while the bit-fixiagproach applies constant values
[Tou9e6].

The so-calledstar Testapproach introduced in [Tsa97][Tsa00] uses detastit test
patterns which are surrounded at a limited Hamnuisgance by clusters of child
patterns. Based on the use of parent pattern§t#rel esapproach can be considered
a deterministic method. Due to the way in which thesters of child patterns are
produced, this scheme can also be classified as@alized weighted-random pattern
testing.

Processor kernels or programmable units integrated the system containing the
CUT may also be used to emulate deterministic cietimode schemes [Hel96].

3.4 Test Response Evaluation

Besides test pattern generation, BIST architectstesuld also be able to com-
press/evaluate test responses. As the number topaéerns applied to the CUT is
usually very large, it is infeasible to store &k texpected values on-chip and compare
them with the response values. It is much cheaptarins of storage requirement and
compacting circuitry to compress the test respotsaort sequences, calledna-
tures which are delivered for analysis at the end eftdst session [Abr90].

A signature is obtained as the final state of ddiatate machine whose inputs are fed
with test responses. This type of compression whibtiresses the length of the test
response sequence is also knowtirae compressiarExamples of time compressors
are accumulator, LFSR- and counter-based compdébr80][Raj93].



26 3 Basic Concepts of Built-In Self-Test

The other type of test response compaction, cafste compressions used to
transformn test outputs intan<n signals, which may be connected to the primary
outputs of the chip or, eventually, to the inputsadime compressor. Linear space
compactors are built with XOR or XNOR gates [MitOgonsequently, they may
mask out bits carrying the information about theTCerrors. For example, any
combination of an odd number of errors on the ismita XOR tree propagates to its
output, but a combination of an even number ofreremains undetected.

A reduced number of test outputs helps to redueeARE storage and bandwidth
requirement. In the case of a BIST scheme, theespampression can be also used to
reduce the size of the time compressor by limitimg number of its parallel inputs.
Limitations of space compression may be the logsfofmation and fault coverage,
if the CUT output includes joint cones [Mit04].

This sub-section considers the LFSR-based time oessn and the related signa-
ture analysis. An LFSR has the property that itddig the input data (in this case, the
test responses) by the characteristic polynomibk 3ignature is obtained as final
remainder of such successive divisions. Insteacbofparing a large set of test out-
puts, only the signature defined as the final stéithhe LFSR obtained at the end of
the testing needs to be compared.

MLFSR and SLFSR-based time compressors are showAgure 3.13. Their input
signals come from the outputs of the scan paths. dliput stream is not observed,
and only the final state of the LFSR is used.

Q Scan Path O

Sr1 D—1s D5 ®— So @
E
5 (@) OO
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(a) MLFSR

A

(b) SLFSR Scan Path O

Figure 3.13:LFSR-based time compressors (adapted from [Wun98])
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Figure 3.14 shows an example of the polynomialstiwvi performed by an MLFSR-
based time compressor. The operation of the tinrapcessor is defined by its
feedback polynomial g(x) = & + g1 x> + ... + g = xX* + X* + x + 1, the input

sequence e(x) e + g1 X"+ ..+ @ = X'+ X+ x>+ x = 10001110, the output
sequence q(X) =" + th.a X" + ... + @ = XC+ x' + 1 and the remainder polynomial

s(x) =1 X + ... +3=x+x*+ x'+ 1. Among these polynomials the following
relation exists:

EQQ=QOO+3%%

The signature S = 1111 can be derived from theesgoon of the remainder polyno-
mial s(x).

The LFSR-based time compressor discussed aboverigdone single input. It is
straightforward to extend the number of inputs flL&SR-based time compressor

and to obtain a so-calledhulti-input shift registe(MISR), which can be used for
parallel signature analysis (Figure 3.15).

q=1011 s=111: e =1000111
< S |« S [D— S S
92:1 glzl g():l

Figure 3.14:LFSR performing division (adapted from [Hua03]).
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Figure 3.15: Parallel signature analysis (adapted from [Wun02])
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An ideal compaction algorithm has the followingtteas: (a) it should be easy to
implement it as a part of the on-chip DFT circuitlg) it should not be a limiting
factor with respect to test time; (c) it shouldpde a logarithmic compression of the
test data; and (d) it should not lose informationaerning the tested faults. However,
there is no known compaction algorithm that sassfall the above criteria. In
particular, it is difficult to ensure that the corapsed output obtained from a faulty
circuit is not the same as the output of the féek- circuit. This phenomenon is often
referred to agrror maskingor aliasing and is measured in terms of the likelihood of
its occurrence.

Aliasing occurs because many compaction operahiame an inherent filtering effect.
Methods to design test response compactors withnmimi aliasing probability are
available in [Dac90][Dam89][Str90][Zor90], amondhets. They use primitive feed-
back polynomials and assume that errors occur rahydo

The probability of aliasing for MISR-based compresshas been theoretically
proven to be2*, wherek is the signature length. We can note that theltrésu
independent of the size and complexity of the Cdd a long signature can provide
low aliasing.

The use of accumulator based structures for teppbrese compaction leads to aliasing
probabilities comparable to the MISR-based methugipl[Raj93]. In the counter-
based time compression approach the number of andgse number of 0-1 and 1-0
transitions in the test response sequences ardetbudepending upon the situation,
either ones counting, transition counting or MIS&séd time compression is a better
solution [Abr90].

Due to its low aliasing, high speed, small hardwaverhead and better scalability
(for improving the aliasing probability only theatacteristic polynomial or the length
of the register needs to be changed), the MISRebsalaition is chosen for BIST.



Chapter 4

Representation, Manipulation and Implementation of
Boolean Functions

This chapter discusses two basic approaches teaisad for the representation and
manipulation of Boolean functions. These two apphes rely on the cube- and
Binary Decision Diagram (BDD)-based representatiorespectively. Logic im-
plementation styles using the two representatioasiso analyzed.

Here, a distinction has to be made between contplated incompletely specified
Boolean functions. In the sequel, lowercase lettgitsbe used to indicate completely
specified functions (e.gf, g), while uppercase letters will be used to denote
incompletely specified functions (efg. G).

Definition 4.1: Given an incompletely specified functidn{0,1}" - {0,1,X} (the
symbol ‘X’ indicates alon’t care, its definition space is partitioned
into 3 sets: ON-set, OFF-set andDC-set containing all the input
assignments mapped to ‘1, ‘0’ and ‘X', respectiweDepending
whether the DC-set is empty or not, the functiores dassified into
completely specifiedDC-set =[1) andincompletely specifie@©C-
setz ).

In order to define an incompletely specified fuantiat least 2 of the 3 sets above in
their true or negated form should be specified.odtr this work, the ON-set and the
OFF-set are chosen to represent incompletely seediinctions. Consequently, an
incompletely specified functiof:{0,1}" - {0,1,X} will be represented by 2 com-

pletely specified functionk, and fu that have the following properties:

« fn{0,1}"-{0,1} defines the input assignments mappedrp ‘1’: fo(ON-
set) = 1 fon(OFF-set) =,(DC-set) = 0.

+  fo:{0,1}"-{0,1} defines the input assignments mapped-p ‘0’: fo(OFF-
set) = 1f,#(ON-set) =f,«(DC-set) = 0.

In the sequelF(fon, for) Will denote an incompletely specified functidn{0,1}"
~.{0,1,X}, represented by the functiofig, andf,:{0,1}" - {0,1}.

Definition 4.2: A completely specified functioBoVF) is called acoverof F(fon, for)
iff the following holds:fon/ICoF) = f,, andfss ZCoWF) = 0. Here,
CoVF) will be assimilated to a possible implementawdi(fop, for).

Section 4.1 introduces the cube-based, also cdigdnctive two-level, representa-
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tion. The generalization of this representatiorthte multi-level representation and
implementation is described in Section 4.2. Sectidh presents the representation,
manipulation and logic synthesis of Boolean funwibased on BDDs.

4.1 Two-level (Cube-based) Representations of Boale
Functions

The definitions below are given for a better untierding of the following discussion.

Definition 4.3: A literal is a variable in its true or negatednio
Examples of literals arex, —a, b,=b, c,-c

Definition 4.4: The cofactor of a Boolean functidnby a literal IT{x, =X} is a
Boolean functionf|;, which is equal td evaluated ax, if | = x, or at
=X, if | ==x

Definition 4.5: A product-term, also called cube, is a set ofditeand it is used to
represent the function obtained by the producthef literals in the
set. Examples of cubes aegbh/Ac,~b/¢/AHd/é

Using the cube-based representation, a functiorbeaexpressed in the sum-of-prod-
ucts form, also calledisjunctive formExamples of cube-based representations are:

fi=a/Ac + -blefAdle
fo==-a/bHc +c/d +-b/fe +ad

Besides the disjunctive form, the two-level repreggon also has eonjunctiveform,
in which the considered function is represented gsoduct-of-sums. Examples of
conjunctive formsre:

fs=@+b+-c)(-b+c+-d+e
fs,=(a+b+-c)(c+d)(-b+-ga+-d)

Definition 4.6: Each cube in a sum-of-products (also called cbbhsgd representa-
tion of the functiorf is also called product-term onplicant

Definition 4.7: Given a Boolean functioft{0,1}"-{0,1}, an implicant of it that
containsn literals is calledminterm A minterm corresponds to a
completely specified input assignment mapped toy1'.

Two-level representations are especially suitale & design style based on
programmable logic array$PLAS). This is due to the fact that each producti of
the two-level representation is implemented asndaaumn of the PLA.

All the following considerations can be applied loth the disjunctive and the
conjunctive two-level representations, assumingva odifications. For the sake of
simplicity, only the disjunctive two-level (alsollsl cube)-based representations will
be considered from now on.
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Definition 4.8: An implicant (or cubeg of a sum-of-products expressibis prime if
none of thec's literals can be removed such that the functepre-
sented by remains unchanged. A sum-of-productprisneif it con-
tains only prime implicants.

Definition 4.9: A sum-of-products expressidris irredundantif the removal of any
implicant (or cubekl] f produces a non-equivalent expression.

The goal of the cube-based implementation is t diisjunctive two-level representa-
tions with a (near-)minimal number of product teram literals. Consequently, for
an efficient manipulation and implementation, treedi sum-of-products has to be
prime and irredundant. Exact minimization techngfer the cube-based logic
implementation involve two steps [Bra97]:

» generation of all prime implicants
» extraction of a minimum prime and irredundant cover

Two well known methods for the generation of alhpr implicants are based on the
covering of Karnaugh-Veitch maps or on the Quine-Mes&ey algorithm [Mcc65].
Unfortunately, the number of all prime implicantfseoBoolean function can be very
high. It can be shown that this number can be @ las3"/n for a function withn
inputs [Bra97].

Exact extraction of a minimum prime cover involvie® solution of a minimum
covering problem that is known to belong to thesslaf NP-complete problems
[Bra97].

Most known heuristics to deal with the minimizatioh the two-level covers are
included in the program ESPRESSO [Bra97], whictespecially suitable for the
implementation of incompletely specified functiotimfortunately, many of the em-
ployed algorithms have an exponential worst-casepbexity [Bra97]. Consequently,
only relatively small problems can be efficientiyraled with ESPRESSO.

The poor scalability of ESPRESSO is also a consempuef the poor scalability of the
cube-based implementation of the Boolean operatdrsvay to circumvent this
problem was given by Minato in [Min97] where a newresentation, called Zero-
Suppressed Binary Decision Diagram (ZBDD), had be&nduced.

4.2 Multi-level Implementations of Boolean Functios

A generalization of the two-level representationthe multi-level representation,
which is used to obtain more compact implementatioihBoolean functions. As an
example, consider the implementation of the Boofeantionf below, which is given
in its minimal cube-based representation:

f=a/b/¢+alb/+e+alb/g+cld+dFe+dh (4.1)
By using an intermediate varialpethe functiorf can be rewritten as follows:

f=pl+plfe+abg+dh p=ab+d
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By using another two intermediate variabdgsndr, the functiorf can be rewritten as
follows:

f=plg+rig+dH, p=r+d, qg=c+-e r=alb (4.2)

Multi-level implementations are especially useful &tandard cell design. In such a
case the implementation of the expression (4.1)ireg 14 2-input logic gates, while
the implementation of the expression (4.2) needg ®R2-input logic gates.

The operation used to simplify the expression (40lf4.2) is called factorization.
Factorized forms can be achieved by performing ohéhe two types of division
[Bra87]: thealgebraic-division,also calledweak-division or the Boolean-division
The algebraic-division is relatively easier to iemplent, but the Boolean-division
provides better results.

For multi-level logic synthesis based on factoimatthe quality of the results greatly
depends on the choice of the divisors. Divisorastion methods for both algebraic-
division and Boolean-division are described andcessfully used in [Bra87]. A
simple and fast divisor extraction method togetivith a fast algebraic-division
approach is presented in [Min97].

A way to represent multi-level forms is to use Bxaol networks:

Definition 4.10: A Boolean network is a net-list of connected comgnts, where
each individual component may implement an arhjtfdoolean
function.

Relevant examples of multi-level synthesis toolsciwlare able to handlgon’t cares
are MIS [Bra87], SIS [Sen92] and Minato’s multi-lel@gic synthesizer [Min97]. In
MIS and SIS, the DC-based optimization relies o EBESSO or simpler variants of
it, which can act only on the two-level represdaontabf the functions implemented by
each node of the target Boolean network. This D€etaoptimization does not
necessarily guarantee a reduction of the sizesoBtholean network [Bra87].

In Minato’s multi-level logic synthesizer, the algbm of Minato and Morreale is
used to generate a prime-irredundant cube covéreofarget incompletely specified
function [Min97]. The cube cover is transformed imtanulti-level circuit with the

help of a heuristic for fast algebraic-division.

In both multi-level synthesis approaches, the DOssenly used for optimizations of
two-level representations.



4.3 BDD-based Representations of Boolean Functions 33

4.3 BDD-based Representations of Boolean Functions

Reduced ordered BDDs (ROBDDs) [Akr78][Lee59] offan efficient way for

manipulating and representing a large variety oblBan functions [Bec95][Bry86].
Moreover, the internal structure of BDDs provideg thasis for logic synthesis
solutions that can be considered as a compromisebe two- and multi-level logic
implementations (Section 4.3.3).

Definition 4.11 A BDD is a rooted, directed, acyclic graph {V, @}th an edge set E
and a vertex (node) s&t containing two types of vertices. Aon-
terminal vertex v has two attributes: an argument indegex V) [
{1,..., n}, which indexes an input variable, and twbildren (sib-
lings) low(v), high(v) O V. A terminal (leaf) vertexv has as attribute
a valuevalugv) [{0,1}. Each non-terminal node is connected to
its high(v), lowm(V) children by athen-edgeelse-edgdl E, respec-
tively.

Figure 4.1 shows the BDD-based representation efptrity functionparity(a,b,c)
that operates on the input variabéed, andc. The function result is O if there is an
even number of input variables that have the valughile the function result is 1 if
there is an odd number of input variables that hthee value 1. For instance,
parity(011) = 0 angparity(010) = 1. The labels at the edges correspondetodhable
value of the parent vertex. The BDD-based represient of the parity function with
n input variables containsn2l vertices, while a cube-based representatiorhef t
same function would requiré 2cubes. When evaluating the compaction of the cube-
and BDD-based representations, one should lookmigtat the numbers of cubes and
nodes, but one should also notice that the cube miay grow linearly with the
number of input variables, while the size of a BD@le stays constant.

This example illustrates that a BDD may be a vemygact representation for certain
logic functions. A second advantage of BDDs is tiha& complexity of many logic

operations performed by using BDD-based representatscales linearly with the

number of input variables [Bry86].

A few special BDD types and their properties arspnted in the following.

Figure 4.1: BDD representation of the parity function witlmet input variables
(adapted from [Bry86]).
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4.3.1 Types of Binary Decision Diagrams

BDDs can be compactedefiuced with the help of two rulesmerginganddeletion
(elimination). Merging unifies pairs of BDD nodes with the same index mtstical
low- and high-children. Such a pair of nodes iseceisomorphic Deletionremoves a
node whose children represent the same functiomeplidces it by one of its children
[Bry86]. If each node in a BDD represents a diffeéreinction, then this BDD is said
to be areducedBDD (RBDD). For example, the BDD presented in Fegdrl is
reduced.

ZBDDs have a differentleletion rule according to which only those non-terminal
nodes are eliminated whose then-edge points torartal node with thealueO.

Each non-terminal node of a BDD implements a Shannon decomposition (expan
sion) of the Boolean functioifv) represented by the sub-graph rooted at

f(v) = x(high(v)) + = x/F(low(V))

wherex is the input variable indexed laydex V). The functions implemented by the
children ofv are thef(v) cofactors by the input variabbe f(high(v)) = f(v)|x=1 and
flow(v)) =f(V)k=o.

If, instead of the Shannon decomposition, each teoninal node implements the
Reed-Muller (Davio) expansion, a new type of decisthagram is obtained: the
functional Decision Diagram (FDD) [Keb92][Keb93]a&h non-terminal node of a
FDD may implement a positive or a negative Davigcameposition of the Boolean
functionf(v) represented by the sub-graph rooted at

f(v) = f(high(v)) O x#(low(Vv)) (positive Davio)
f(v) = f(high(v)) O -xd(low(v)) (negative Davio)

wheref(low(v)) = f(V)|x=0 O f(V)|x=1, f(high{)) = f(V)|x=0 (positive Davio) off(high(v)) =
f(v) x=2(negative Davio).

In order to improve the BDD-based manipulation obRan functions, a restriction is
introduced that the input variable (node index)eond fixed on all the paths starting
from the root node and ending at a terminal nodeyg8]. With respect to this

restriction the following types of BDDs can be defil.

Definition 4.12 A free BDD (FBDD) is a BDD in which: (a) each node indeanc
appear at most once on a given path from roottésrainal node (for
reasons explained in Section 7.2, this restrictiil be disabled
here) and (b) different paths can have differedeongs of the node
indices. AnorderedBDD (OBDD) [Bry86] is a free BDD where the
node indices can appear at most once and onlyeisdame order on
all the paths from root to a leaf node. For exampee BDD
presented in Figure 4.1 is a reduced OBDD (ROBDD).

For a given variable order, ROBDDs provide only eaaonical representation of the
Boolean functions. ROFDDs may providedifferent canonical representations for a
given variable order, whemis the number of input variables. The numbtis2due
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to the fact that for each variable, either the fpesior the negative Davio decomposi-
tion can be used.

In order to improve performance, these BDD types lwa combined to obtain hybrid
structures with better properties (e.g. better cactipn) [Ger96][Dr98].

4.3.2 ROBDD-based Manipulation of Boolean Functions

One of the benefits of the ROBDD-based represamtasi the efficient manipulation
of Boolean functions. The time complexities of ROBDD-based implementations
of the basic logic operations [Bry86][Sie93] arepded in Table 4.1, using the
notations given below:

* nisthe number of input variables of the considéeolean functions.

* G denotes the graph of the ROBDD-based representafi the considered
Boolean function for a given variable order. Ortig teduceoperator, which
transforms an OBDD into a ROBDD, receives an unteduG as input. |G|
represents the node count of the graph G.

* & denotes thesatisfying setof the Boolean functiorf, which is set of
completely specified input assignments mapped’tbythe functior.

* |[f|| represents the cardinality qf S

Procedure Result Time Complexity
Equivalence check fi==forfy =1, Constant
Negation -f Constant
Reduce G reduced to canonical form o(|G))
Apply F, <operator>;, O(|G|I=,)])
Compose fal=ro O(IGf 1)
Cofactor computation flx=b O(|G))
Satisfy-one Some element of S O(n)
Satisfy-all S O(nlHl])
Satisfy-count fll o(|G))

Table 4.1: Time-complexity of basic logic operations perfodweith ROBDD-
based representations [Bry86].

Due to the fact that for a given variable order R@BDD-based representation is
canonical, the ROBDD-based implementationseqgtiivalence(f; = f,), tautology
(f = 1) andsatisfiability (f = 0)) have constant complexity in BDD-packages wladr
the nodes are stored in a so-called unique tafllee use ofcomplemented edges
[Cudd] enables to implement the BDD-basedjationwith constant complexity. The
ROBDD-based implementation of thapply operator (e.g. logic OR or AND
operators) can be made very efficient by the udsash-tablegCudd], as long as the

® A hash table in which each BDD-node represenifferent function.
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size of the ROBDD-based representation does ndoégmue to the dependence of
theapply operator on |G]|.

The complexity of the cube-basegply operator has a lower bound given by the
product of the cardinalities of the cube-based esgntations of the involved
operands. The cube-based implementations cédnesalencecheck tautologycheck,
negationand composeoperators are very expensive. The cube-based mnepiation

of these operators can require exponential spagddiaue in terms of the number of
input variables more often than in the case obther operators.

The last four operators in Table 4.1 are speatfithe ROBDD-based representation.
Two other operators also specific to the ROBDD-Haspresentation arenstrain
[Cou89] andrestrict [Cou90]. One of these operatoredtrict) will be used here as a
reference for the experimental evaluations.

Definition 4.13 For the functiond and g (with n primary inputs), the functior
constrainedoy g, writtenf | g, is defined by:

f(r) if g(r)=1
f =
(f 2 o) {f(s) if g(r)=0
wheresis the input assignment such that:

gs) =1 andZN:|ri ~s|2"" is minimum.
i=1

The pseudo-code f@onstrainis given in Figure 4.2.

constrain(f g){
if (9= 1or fis constantjeturn f;
if (f=g)return 1;
if (f=-gorg=0)return 0;
letv be the top variable off{g};
if (gl = 0)return constrain(f-v, gl-v);
if (gl-v = O)return constrain(f, gl);
return v Cconstrain(f, gl) + (V) Ctonstrain(f.y, gl-v);

}

Figure 4.2: Procedureonstrainwithout hash table (adapted from [Cou90]).

In general the ROBDD-based representatiohiof) (constrain(f, g)) has fewer nodes
than the ROBDD-based representatiorf.dh most cases of incompletely specified
functions F(fon, fo), the ROBDD-based representation of the co@av(F) =

fon I (fon + for) has fewer nodes than the cowawv(F) = f,,. Sometimes the reverse
may occur: the ROBDD foir | g can have more nodes than the ROBDDfforhis
frequently occurs when the ROBDD fgrdepends on many variables thatoes not
depend on. These variables may be introducéd ig, causing an undesirable growth
of the corresponding ROBDD. Sometimes, this incommce can be avoided if the
procedure return! (O} g)°, when the top variable of g has a lower index than the
top variable off. The resulting algorithm implements the so-callestrict operator

® The operatof} g = gl + gl.«is called the existential quantification with respe the variable.
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[Cou90] (Definition 4.14). Normally, the ROBDD foestrict(f, g) is more compact
than the ROBDD forconstrair{f, g), becauseestrict does not increase the support of
the result with respect to the support.of

Definition 4.14 For the functiond and g (with n primary inputs), the functio
restrict by g, writtenf U g, is defined by:

_[f(r) if g'(r)=1
(FVak)={ 19 s o)oe
where g'=fit(f, g) (Figure 4.3) and is the input assignment such that:

g(s)=1 andZN:|ri —s|2"" is minimum.
i=1

fit (f, g){
if f=-gorg=0orf=gorg=1orfis constantjeturn g;
let v be the top variable off{g};
if (g|y!=0andg|-,!=0andv is not the top variable @f
return fit (f, 4, g); // return fit (f, g|, + g|-v);
return v it (fly, gly) + (=v) it (f-v, 9]-v);
}

Figure 4.3: Procedurdit without hash table.
The pseudo-code foestrictis given in Figure 4.4.

restrict(f, g}{

if (g=1or fis constantjeturn f;

if (f=g)return 1;

if f=-gorg=0)return 0O;

let v be the top variable off{g};

if (gl =0)return restrict(ff-v, g|-v);

if (g|-v = 0)return restrict(f, gl);

if (vis not the top variable &f

return restrict(f, i, g); // return restrict(f, g|, + 9l-v);

return v Crestrict(fly, gl) + (-v) Crestrict(fl-v, gl-v);

}

Figure 4.4: Procedureestrict without hash table (adapted from [Cou90]).

4.3.3 BDD-based Implementation of Boolean Functions

The internal structure of a BDD offers the basislégic synthesis solutions that can
be considered as a compromise between two- and-lexdt logic implementations.

If each non-terminal node of a BDD is substitutgdabmultiplexer (MUX), a multi-
level circuit can easily be generated [Bec92] (Fegu4.5 and 4.6). This also happens
if each node of a FDD is implemented with the ha&ia 2-input AND gate and a 2-
input XOR gate [Keb92].
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o

(a) (b)

Figure 4.5: (a) BDD for the function f = al{-bl{-cl}-d) + b +d) + d{c +-d).
(b) MUX-based implementation of the function f.
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Figure 4.6: Non-redundant implementation of the circuit frorgu¥e 4.5 (b).
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A minimal BDD/FDD can offer an efficient implemetfitan or at least a good starting
point for a multi-level logic synthesis tool. Thenitation of the resulting multi-level
representations is that they contain factorizednfoin which at most one of the
factors is not a literal (Figure 4.6).

The size of a ROBDD depends on the used orderraiblas. Due to the direct corre-
spondence of a BDD to a combinational logic circsatving nodes in a BDD by using
good variable orders already pays off. Dynamicdeong heuristics which try to im-
prove a given order of variables can be found iel9B][Ish91][Pan94][Rud93],
among others.

The situation is more complex don’'t cares(DC) are involved. In the case of
Minato’s approach [Min97], the OBDD-based represémmabf the target circuit and
of its DC-set are transformed with the help of Maaorreale’s algorithm into a
prime-irredundant cube cover implicitly represenbgda ZBDD. However, mapping
BDDs to cubes and applying known algorithms basedwmn-level representations
(e.g. ESPRESSO) may destroy all the benefits oBiDB-based representation.

The problem of minimizing the size of an OBDD-basegblementation using the
DC-set has been proven to be NP-hard [Sau96]. IO&{) an exact OBDD
minimization algorithm based on the DC-set is pnésg Nevertheless, due to the
NP-hardness of the problem, this approach hasitetimpplicability.

Some of the first heuristics that take advantagdefDC-set for the minimization of
the OBDD-based implementations have been introdbgedoudert and Madre based
on the operatorsonstrainandrestrict (Section 4.3.2) [Cou89][Cou90]. A cover for
an incompletely specified functiof(fon, for), Can be calculated using the operators
constrainandrestrictas shown below:

CoVF) = constrain(fn , fort forr) (4.3)
CoWF) = - constrain(§s , fon+ for) (4.4)
CoMF) =restrict(fn , font forr) (4.5)
CoM(F) = = restrict(fy , font forr) (4.6)

where ‘+’ represents the logic disjunction operator

The ROBDD-based representation of the covers addaby applying the operators
constrain and restrict, according to the expressions 4.3 — 4.6, is ndymalore
compact than the ROBDD-based representations,adr for, as long as the same
order of variables is considered. This is due ® fact thatf,, or fo¢ are expanded
towards the DC-set, described tpy = =(fort forr), Such that new opportunities are
created for the application of tlieletionrule presented in Section 4.3.1. In this way
the ROBDD-based representation of the exparfgedr fo becomes usually more
compact.

The ROBDD minimization methods developed in [Ch§SHi94] exploit the DC-set
for sibling matching or, more generally, for matehiBDD nodes below cut lines
through the BDD, which enables a more aggressigdecteon of the BDD size. None
of these methods is safe, which would require that resulting BDD is always
smaller than the original one. The compaction atigor of [Hon97][Hon00] avoids
this problem by using a preprocessing step to ifjetite nodes that can make the
minimization unsafe Compared taestrict or constrainthis compaction algorithm
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gives better results on the average, but it isidensbly slower. Moreover, none of
the heuristics analyzed in [Shi94] succeeds toartwpm restrict by more than a few
percents.

All the ROBDD-based minimization methods discussalove consider only
ROBDDs with a fixed variable order. In [Sch99], tbencept of variable reordering
based on symmetries has been extended to incomypgtecified functions such that
a ROBDD can be minimized by means diin’t care assignments combined with
variable reordering. This method cannot handledgmgpblem instances.

The additional degree of freedom of the FBDD-bassgresentations (Definition

4.12) allows them to have a larger compaction p@kthan the OBDD-based rep-
resentations. The same holds in the case of frd2-bd@3ed representations [Bec95].
There are functions, like thedden weighted bifunction, which require OBDDs and

OFDDs of exponential size [Bec95][Bry91], indepemntdef the variable order, while

FBDD-based representations of polynomial size amk [Sie95].

In the case of completely specified functions, sace algorithm for the minimization
of FBDD-based representations is described in [Gue8nfortunately, despite
sophisticated pruning techniques, such an apprisaictnerently bound to very small
problems (with a maximum of 8 input variables). Hstics for the minimization of
FBDDs have been proposed in [Gue00][Gue99], amdimgrs. A complexity analysis
of the FBDD minimzation is given in [Sie99].

The first FBDD-based logic synthesis method foromgletely specified functions
will be presented in Chapter 7. The new method awgs considerably all the synthe-
sis parameters of the Boolean functions which lelintroduced in the next chapters,
as compared to other synthesis approaches, likerSIBDD-based methods.



Chapter 5

Scalable Pattern Mapping for Deterministic Logic
BIST

In this chapter, a new algorithm is introduced fwapping deterministic test cubes to
a pseudo-random test sequence. The approach i ba€DDs and outperforms the
previously published cube-based algorithm [Wun9gkbveral orders of magnitude.
It has been applied to the bit-flipping Determimistogic LBIST (DLBIST)
architecture which is presented in Section 5.1Séttion 5.2, the pattern mapping
problem is formally defined. Sections 5.2 and S@vple a detailed description of a
prior cube-based and of the new BDD-based mapppmoaches, respectively.
Section 5.5 reports the experimental results obthwmith a set of industrial, ISCAS-
85 and combinational parts of ISCAS-89 benchmasdigies. These results prove that
significant improvements can be achieved with tak lof the BDD-based mapping
method. In Section 5.6, the embedded test sequayeresrated for single stuck-at
faults are evaluated with respect to the coverdgeon-target defects. Resistive
bridging faults are used as a surrogate of noretaitgfects [Eng05]. This is the first
time when the results of such a study are presefted investigation especially
adresses the impact of the test sequence lengtireamon-target defect coverage and
on the hardware overhead. The chapter is conclud®dction 5.7.

5.1 Bit-Flipping DLBIST Architecture

The bit-flipping DLBIST scheme is a mixed-mode technique (Secti@b3 in which

an LFSR and, eventually, a phase shifter (PS) sed to generate the pseudo-random
test sequence. If the achieved pseudo-random déidtency (Definition 2.2) is not
enough, deterministic test patterns are embeddedtie pseudo-random sequence
with the help of a XOR gate inserted in front otleautput of the pseudo-random
pattern generator (LFSR + PS). The XOR gates antralted by a combinational
module that implements a so-calleitHlipping function (BFF) to selectively flip bits
of the pseudo-random test sequence. The pseudorapdttern generator together
with the BFF module and the XOR gates form theegpatgenerator of this BIST
architecture.

From now on, in order to keep the presentation Enthe core under test (CUT) will
be assumed to fullfill the following design for t®FT) constraints, even though
these requirements are not mandatory for the imgri¢ation of the proposed scheme.
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Test shell around: a flip-flop is associated tohgagmary input and output.

Full scan design: all flip-flops (CUT + test shafbund) are transformed into
scan flip-flop and connected together in one oess\balanced) scan chains.

BIST readiness: the test responses do not contdinouvn bits (Xs).

A scan enable signal is used to switch the scpffloips between two modes:

In shift mode (also calledcanor testmode), the scan flip-flops can store only
the signal coming from the previous flip-flop iretecan chain. The first scan
flip-flop in each scan chain stores the signal egmirom the test pattern
generator.

In functional mode (also calledapture or systemmode), the scan flip-flops
can store only signals coming from the CUT. Thensitip-flops in the test
shell associated to the primary inputs will stdre signals coming from the
corresponding primary inputs.

The test application process is managed with tle dfea finite state machine, the so-
called BIST control unit, which must contain atdea shift counter (SC) and a pattern
counter (PC). The SC controls the bit stream cpmeding to each test pattern. The
PC is used to control the length of the test secgiem functional mode, the CUT
response to the current test pattern is loadedatscan paths. During the shift mode
a new test pattern is shifted into the scan patlsle the CUT response to the
previous pattern is shifted out and compressed foylé-input shift register (MISR).
At the end of the test, the MISR contains a sigmawith the information about the
correctness of the CUT.

As shown in Figure 5.1, the state bits of the LF8R,PC and the SC are connected
to the BFF inputs, while the BFF outputs are coteteto the XOR-gates at the scan
inputs. The operation of the BFF module is contilby the state bits of the LFSR,
the PC and the SC. In the case where a phaserqf8¢ is introduced, it is highly
recomandable to use also the output of the PSritvatdhe bit-flipping.

T vV vV T
v
L xor |—— Scan Chain 1 | M
F
S xor >_| Scan Chain 2 | é
R Core Logic =
+ 1
P xor >_| Scan Chain m [ >
S A
A
4 Shift Counter |
+ | BFF
4 Pattern Counter |
Control Unit
. I I

Figure 5.1: Bit-flipping DLBIST architecture.
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The LFSR and the SC are updated in every cloclecydhile the PC is updated after
applying a new test pattern. In the current impletaton, both the SC and the PC are
decremented. The all-zero state of the SC indicii@isa new test pattern has been
shifted in. The new test pattern is applied to@h&r with the help of one clock cycle
in functional mode. In order to shift in a new tpsttern, the SC is reloaded from a
shadow register with a state which correspondiedddngth of the longest scan chain
of the CUT. The all-zero state of the PC indicatest all the patterns of the test
session have been applied and the signature stotkd MISR can be shifted out.

5.2 The Pattern Mapping Problem

Most of the pseudo-random test patterns used inxadnnode BIST scheme do not
contribute to the fault coverage, since they caly detect faults that are already
detected by the previous pseudo-random test patt&uchuselesspseudo-random
test patterns may therefore be skipped or modifieahy arbitrary way. The key idea
of the bit-flipping DLBIST scheme is to modify soraselespseudo-random patterns
into useful deterministic test patterns to imprtive fault coverage. In order to do so,
an ATPG tool determines test cubes that targetetHaslts not detected by the
pseudo-random test sequence. In such a deterroitesti cube, only a few bits are
actually specified, while most of the bits aten’'t careand hence can be arbitrarily
setto ‘0O’ or ‘1.

In the bit-flipping DLBIST approach, the modificati of the pseudo-random patterns
is realized by invertingflipping) some of the LFSR outputs, such that deterministic
test stimuli are obtained [Wun96]. In the bit-figimpproach, the modification of the
pseudo-random patterns is realizediking some of the LFSR outputs to either ‘1’ or
‘0’, such that deterministic test patterns are posdl [Tou96]. In [Wun96], it has
been shown that the expected number of bits tolippetl in order to embed a
precomputed test cube is significantly smaller ttrennumber of specified bits.

From now on, only pattern modification by meandfflipping will be considered.
Nevertheless, the considerations presented herbecapplied to both the bit-flipping
and the bit-fixing approaches, assuming a few niatibns.

The bit-flipping is realized by combinational logimplementing a so-called bit-flip-
ping function (BFF). The BFF realizes the mappih@ set of deterministic test cubes
to a (larger) set of pseudo-random patterns. Egpgcified bit (i.e. care bit) in a
deterministic test cube either matches the corredipg bit in the associated pseudo-
random pattern, in which case bit-flipping shoutd be performed, or the bit does not
match, in which case bit-flipping is required. Rk unspecified bits (i.edon’t care
bits) in a deterministic test cube, the correspogdiits in the associated pseudo-ran-
dom pattern may be flipped or not. The BFF mustigiethat (1) all conflicting bits
are flipped, (2) all matching bits are not flipp&dile (3) thedon’t carebits may be
flipped or not. The BFF can be kept quite smalichyefully selecting the candidates
for each deterministic test cube in the large feselespseudo-random patterns.

Without any loss of generality, consider a CUT watkingle scan chain. L&tdenote
the set of all possible combinations of the stafebhe LFSR, the PC, the SC and the
PS output (if any). The ON-set is the sub-seb tifat corresponds to the clock cycles
in which the LFSR (or PS) output must be flippethitarly, the OFF-set is the sub-
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set of Sthat corresponds to the clock cycles in whichltR8&R (or PS) output must
not be flipped. Obviously, the ON-set and OFF-setdisjoint (ON-seth OFF-set =
). Thedon't careset (DC-set) contains those statesSahat corresponds to the
clock cycles in which the LFSR (or PS) output mayflpped or not, i.e. the states
that are neither in the ON-set nor in the OFF-B&l-6et = S - {ON-sef]l OFF-set}).
The DC-set may be exploited to minimize the logiplementation of the BFF.

The ON-set, OFF-set, and DC-set specify an incormlylespecified function
BFF:{0,1}" - {0,1,X}, where the symbol ‘X’ indicates don’t care and n corre-
sponds to the total number of state bits of theRRBe PC, the SC and output bits of
the PS (if any). For instance, consider the siregkemple of a DLBIST scheme with a
2-bit LFSR, a 2-bit PC, a 2- bit SC and no RS @). Considering that the symbol *_’
stands for the concatenation of the LFSR, the PG #@me SC states. Then
BFF(01_10 _01) = 1 indicates that the pseudo-randidrmust be flipped when the
LFSR state is 01, the PC state is 10, and the &€ & 01. The state 01_10 01 is
therefore part of the ON-set. BFF(01_10_11) = Ocaes that the pseudo-random bit
must not be flipped when the LFSR state is 01 R@estate is 10, and the SC state is
11. The state 01_10_11 is therefore part of the-8#FBFF(10_01_01) = ‘X’ indi-
cates that the pseudo-random bit may be flippatbbwhen the LFSR state is 10, the
PC state is 01, and the SC state is 01. The diai@1101 is therefore part of the DC-
set.

In a CUT withm scan chains, each scan chiafh < i < m) has its own ON-sgtOFF-
set and DC-set In this case, the BFF is a multi-output functioonsisting ofm
single-input functions BRFone for each scan chain. The size of the BFFemphta-
tion can be minimized by sharing logic between ith@lementations of the BFF
corresponding to the individual scan chains.

Any pattern mapping approach should take into agcthe following two constraints:

» Generate a BFF that can be efficiently implemeiméallogic.

* Require limited run-time and memory resources.

Two fundamentally different pattern mapping apphmescare presented in Section 5.3
and Section 5.4. The first approach has been prsljiantroduced in [Wun96], while
the second approach is an original contributiontro$ work. These two pattern
mapping solutions are compared on the basis ofrempetal results in Section 5.5.

5.3 Cube-based Pattern Mapping

The original pattern mapping algorithm presentefiMan96] and further improved in
[Kie97][Kie98] uses the cube-based representatimhraanipulation of the BFF. The
output of this initial approach is a two-level covef the BFF, optimized using
ESPRESSO-like algorithms [Bra97].

Besides the underlying cube-based representatien,other characteristics of the
original pattern mapping approach are as follows:
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» The mapping process is incremental and coupled twv@hoptimization of the
two-level (cube-based) implementation of the resgIBFF.

* The whole pseudo-random test sequence is used lieceneterministic test
cubes. Useful pseudo-random test patterns thattditelts not detected by
previous pseudo-random patterns are not protected being corrupted by
the bit-flipping logic. They could be protected widy explicitly considering
them during the logic optimisation of the BFF, whienight be very
expensive.

The cube-based mapping approach is explained ifollogving subsections.

5.3.1 Mapping Cost-Function

AssumeV is the set of test patterns generated by the LR&Rtlze partly generated
BFF. LetT be a set of deterministic test cubes to be mappedeach cube I T, a
test patternpy [J V has to be selected such thatan beefficiently mapped topo
[Wun96]. Deterministic test cubes with only a fepesified bits correspond to faults
that are relatively easy to test and might be deteby patterns modified in some
later iteration of the algorithm. So, initially tb® cubest O T are selected for
mapping, whose number of specified bits is large.

Let the DLBIST hardware states be the concaterstegds of the LFSR, the PC, the
SC and the output of the PS (if any). Given a deit@stic test cubé [ T and a test
patternp O V, let on(, p)/off(t, p) be the set of DLBIST hardware states which
correspond to those bits ofp that are conflicting/identical to the correspomgin
specified bits of.

Let FIX-set denote the set of DLBIST hardware stdlat correspond to those bits of
the modified test sequence that are not alloweddochanged anymore due to
previous assignments. In the beginning, the pseaddem test sequence is not
modified yet and FIX-set £]. The cubd can only be mapped to the patterii the
relation ont, p) n FIX-set =00 holds.

The cost for assigning the cub¢o the patterrp is estimated by the increase in the
number of product terms required by a 2-level immatation of the BFF. An
elementc of on(, p) can beefficiently expandednd therefore does not cause any new
product term, if there is a culsgin the On-set of BFF (Definition 4.1) such that:

(FIX-setO off(t, p)) n (EXPAND(c, co) — {c, co}) = O,

where the term EXPANDR( c;) denotes the smallest Boolean sub-space coveoitting b

c andcp as used in ESPRESSO [Bra97][Wun96].

The cost of an assignment, cospy, is defined as the number of minterms that cannot
be efficiently expanded:

costt, p) = cardinality of £ [ on(, p) / c cannot be efficiently expanded}

" A state of the DLBIST hardware is saiddmrrespondo a bit of the test sequence, if the DLBIST
hardware is in this state when the consideredftifietest sequence is scanned in.
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That test patterpo (I V, which minimizes the cost function cdstf), is assigned to
the deterministic test culte

5.3.2 The Algorithm

The cube-based algorithm used to map determinesicpatterns to a pseudo-random
sequence is outlined in Figure 5.2. This mappingn&eled by a BFF which is
generated incrementally. The construction procesgns with BFE = 0 and ends
with BFF® which provides the required fault coverage. Inheiéerationr, 1<r <R,
BFF is enhanced to BEFsuch that new deterministic test cubes are ensueifdo
the test sequence produced by the LFSR and thé'BRfhile certain useful test
patterns are protected from being corrupted. THwidual steps are detailed below:

1. Identify the seF of all the non-redundant faults of the CUT.

The following steps are repeated until the requieedt coverage is achieved.
Here,r represents the index of the current iteration ®ns the set of test pat-
terns generated by the LFSR and the implementatid®FF ™, which will be
represented by Cov(BE (Definition 4.2).

Initialize r = 1, ON-set =1, OFF-set =1 (Definition 4.1) and Cov(BF¥ = 0.

2. Determine the sdf'haq Of Nnon-redundant faults not detected by the ctitest
sequence.
Compute the set of fault,, =| | Fi
Given Fi;, all the patterng [0 V of the current test sequence are simulated in
several permutated orders, until a small suliPse{po, ..., px} of essentialpat-
terns is found which still detects all faultskg;;. In order to guarantee complete
fault detection, not all the bits of, 0< i <k, need to be specified. Don’t cares
are inserted into each essential pattern as lotigea®ult coverage is preserved.
In this way,P is transformed into a s& = {po’, ..., p«'} of patterns that contain
as manydon’t caresas possible and can still detect all fault&ip.

Let FIX(p’) be the set of DLBIST hardware states correspontiinipe speci-
fied bits (also calledgssentiabits) in the patterp;” 0 P’.

Let Fix-set =( J*_FIX(p,").
3. An ESPRESSO-like REDUCE operator [Bra97] is appt@@ov(BFFE™):

ON-set= REDUCEgx.set (COV(BFFE™),  OFF-set = FIX-set ON-set

REDUCE transforms the prime and irredundant cover Cov(BFfto a new
cover ON-set, which is irredundant but usually pome. This is done by re-
placing each cube in Cov(BFYy by a new and, in general, smaller cube that
covers the same number of minterms in FIX-set. rAtte replacement of each
cube, all minterms in FIX-set covered by the repthcube are removed from
FIX-set. Consequently, the result of REDUCE depedthe order in which the
cubes in Cov(BFF) are replaced.
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Fault simulation of the pseudo-random
LFSR sequenc
v <
Compute theessential patterns and their
essential bits
v
ESPRESSO-like REDUCE
v
ATPG
v
Pattern assignment
v
ESPRESSO-like EXPAND
v
Fault simulation of the pseudo-random
LFSR sequence with bit-flipping by BFF

Figure 5.2: Cube-based pattern mapping by means of bit-flgppin

REDUCE allows the cube-based algorithm to move away frooally optimal
solutions towards a better one

4. Find a set of deterministic test cublewith as manydon’t caresas possible that
detect as many faults froRi,q as possible.

5. For each deterministic culteé] T find an appropriate pattem U V that mini-
mizes cost( p) (Section 5.3.1) and compute:

ON-set = ON-sefl on(, p), OFF-set = OFF-sét off(t, pp)
6. An ESPRESSO-like EXPAND operator [Bra97] is applied®N-set:

CoV(BFE) = EXPAND ofr-sei(ON-s€t)
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EXPAND transforms the cover ON-set of BARto a prime and irredundant
cover Cov(BFB. The goal of EXPAND is to remove as many cubepassible
from ON-set and to remove as many literals as ptesgrom the remaining
cubes. The result of EXPAND depends on the ordevhith the cubes in ON-
set are expanded.

7. Simulate the test sequence generated by the LF8R av(BFF).

8. Return to step 2 if the required fault coverage matsbeen achieved, else the
iterative mapping process is stopped.

There is a trade-off between the computation tinméckvis smaller for a few loop
iterations and the quality of the result which istter if there are only a few
assignments per iteration. Usually, the number sdigmments per iteration is
increased progressively with the iteration number.

Using the DC-set for the optimisation of the bipfiling logic, modeled by
Cov(BFF), makes the number of modified pseudo-random pettiarger than the
number of embedded deterministic cubes. Whileitltgeases the chance of detecting
additional previously undetected faults not targdig the ATPG tool in the previous
iterations [Wun96], useful pseudo-random pattears @so be corrupted. Due to this
fact, the number of iterations cannot be controdlad the run-time may explode.

5.3.3 An Example

Consider a scan path containing 5 memory elemdipsflops), which is fed by the
output of the LFSR sketched in Figure 5.3. Tabledhows the state sequence of the
LFSR. The resulting pseudo-random patterns ancceineesponding DLBIST hard-
ware states are listed in Table 5.2. In this paldiccase, only the LFSR states are
considered.

/R
\VV

A 4

\ 4

1]0]1 p[5] | p[4] | p[3] | pI2] | P[1]

Figure 5.3: LFSR used in the example (adapted from [Wun96]).
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Table 5.1: States of the LFSR (adapted from [Wun96]).



5.3 Cube-based Pattern Mapping

49

# Patterns States
p[1] ... p[5]

1 10100 5SLS S

2 ino1 $S 959

3 in S5

4 01001 899S9S

5 11010 5§99 SLS:S

Table 5.2:Pseudo-random patterns and corresponding LFSRs gtatapted
from [Wun96]).

First, the following initializations are performed:
r =1, ON-set =1, OFF-set =1 and Cov(BFB) =

Consider that all the faults included Fg;i; can be detected by the patterns 11XXX
and 0XX1X. The procedure for extracting tbssentialpatternsp; [ P returns the
patterns 2 and 3 in Table 5.2. Consequently, orairb P = {p1, p2} = {11101,
00111}. Consider that the analysisedsentiabits transformd$? to P’ = {p;’, p2'} =
{11XXX, 0XX1X}. Table 5.2 can be used to look uprfeets: FIX(p,') andFIX (p2').

FIX-set= FIX (p') O FIX (p2) = {ss, s} U {ss, S} = {ss, S, s} = {100, 111, 011}
Due to the fact that Cov(BRFis equal tdJ, it cannot be reduced anymore:

ON-set= REDUCEgx.set (Cov(BFF)) = [
OFF-set = FIX-set - ON-set = FIX-set

Let us assume that the deterministic test ¢ub80X00 has been generated and has to
be mapped to one of the five pseudo-random patteisiag the information in Table
5.2, one can derive the sets toq) and off{, p) of states in which the bit-flipping
logic must be on or off. For every pattern, thedibon on¢, p) n FIX-set =0 is
verified and cost( p) is computed. Table 5.3 shows the results.

# p[1]...p[5] on(t, p) off(t, p) cost(t, p)
1 10100 5 LS S 1
2 11101 $ %S S 00
3 Q11 % 9 8 S 00
4 01001 5S% S, S co
5 11010 5§99 ) co

Table 5.3:Finding a pattern for mapping t = 00X00 (adapt@f{\Wun96]).

All patterns except the first one cannot be setbfbe mapping without violating the
condition: on{, p) n FIX-set =[0. The only way of mappingis to modify the first
pattern. So, the BFF should be accordingly extended
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ON-set= ON-setl] onf, po) = {so} = {so} = {101}
OFF-set OFF-set] off(t, po) = {s1, &3, & S5, Sep= {010, 100, 110, 111, 011}

Finally, the bit-flipping function is expanded inch a way that none of the terms in
OFF-setis covered:

Cov(BFF) = EXPANDorrsef(ON-set) = {X01}

Figure 5.4 shows the corresponding pattern geneirattuding the bit-flipping logic
(Cov(BFF)). The set of patterns produced by the new tesieagenerator differs
considerably from the original one (Table 5.4). Bitheless, patterns 2 and 3 are still
compatible with the fixed patterns 11XXX and OXX14nd pattern 1 is now
compatible with the deterministic test citbe 00X00.

In general, the ON- and OFF-sets are very irregatat their cardinalities increase
with the total number of specified bits in the ewhibed test cubes.

Unfortunately, the experimental results (SectioB) farove that the cube-based bit-
flipping mapping approach scales poorly with theTC&ize, more precisely, with the
size of the ON- and OFF-sets. This is due to thrg kigh (exponential) complexity of

the cube-based methods used for the generatiothanchplementation of the BFF.

N
N
w101 »D——{pis] | pi41 | pl3] | pi2] | pI1]

e

Figure 5.4: New pattern generator including bit-flipping lodadapted from

[Wun96]).
# Old New
1 10100 _0000
2 11101 1100
3 0011 00110
4 01001 00001
5 11010 10000

Table 5.4:0Ild and new set of patterns (adapted from [Wun96]).
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5.4 BDD-based Pattern Mapping

A scalable pattern mapping approach based onipjtiflg can be implemented only
if a more efficient way to represent and maniputhte BFF is found. Such a way is
described in this section. It is based on the UsR@BDDs (Section 4.3) for the
represention and the manipulation of dheracteristic functiorfsof the involved sets.
For example, an ON-BDD and an OFF-BDD are emplagetepresent the ON-set
and the OFF-set of the BFF. The ON-BDD will outpl value ‘1’ if the input is
taken from the ON-set, otherwise the output is Similarly, the OFF-BDD will
output ‘1’, only if the input is selected from tkaF-set. In the sequel, the acronym
BDD will be used in the sense of ROBDD.

As explained in Section 4.3.2, the BDD-based reprgion offers a more efficient
way to manipulate Boolean functions than the cudeed representation. The
complexity of the logic operations used here isnakimum linear in the size of the
BDD operands. In contrast to this, the cube-basgit Imanipulations can have up to
an exponential complexity in the size of the opdsanvhich may grow linearly with
the number of embedded deterministic patterns laaCtUT size.

In the worst case, the size of BDDs may grow exptially with the number of input
variables. Nevertheless, in practice the size efBDD-based representation of the
BFF has always been within practical limits to l@ndied by state-of-the-art com-
puters and BDD software packages (e.g. [Cudd]).

Besides the underlying BDD-based representati@pther characteristics of the new
pattern mapping approach are as follows:

» The pattern mapping is performed in a one-passegeand it is decoupled
from the logic optimization of the resulting BFF.

* Only a sub-sequence of the whole pseudo-randonsegsience is used to map
deterministic test cubes. All useful pseudo-randesh patterns not included in
this sub-sequence are protected from being comluptehe bit-flipping logic.

In the new approach, the test sequence is pasedianto two regions. The first part of
the test sequence is used only for pseudo-randolnd@tection, and no deterministic
stimuli are embedded into this part. In generalsingd the faults of the CUT can be
quickly detected by the first few hundred or thousgseudo-random test patterns.
The DLBIST hardware states associated to this fiast are included into the DC-set,
since increasing the DC-set gives more room fomaping the bit-flipping logic.
Consequently, the implemented BFF can arbitratify its of theessentialpseudo-
random patterns from this region, and some prelyaletected faults might no longer
be detected. In order to prevent this, the outptithe BFF are disabled during the
first part of the test sequence. Disabling the BEEputs is achieved with the help of
only one single AND gate per scan chain controldgda combination of the most
significant bits of the PC.

® The characteristic function of an arbitrary seis & completely specified Boolean function, whose
ON-set is equal to S.
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The second part of the test sequence is used ontixd mapping of deterministic test
cubes. The outputs of the BFF are enabled to mautfy this last region of the test
sequence, whose length is usually set to one faditie total test length.

The splitting of the test sequence into a pseuddam and an embedded part to-
gether with the more efficient BDD-based repres@mniaand manipulation of the in-
volved Boolean functions enable a decoupling of pagtern mapping from the
synthesis of the resulting BFF. This is not theecagh the cube-based approach that
requires an iterative algorithm in order to taki iaccount the potential corruption of
essentialpseudo-random patterns (Section 5.3.2) and tad li@ overhead of the
resulting bit-flipping logic. Consequently, withalBDD-based approach it is possible
to use a one-pass algorithm that needs signifigdotver run-time and memory
requirements, while the overhead of the bit-fligpilogic becomes much smaller
(Section 5.5). The BDD-based algorithm for the gathen and the implementation of
the BFF is outlined in Figure 5.5.

The individual steps of the BDD-based flow are destd below:

1. The sequence of pseudo-random test patterns gedebgt an LFSR and,

optionally, a phase shifter (PS) is simulated tieaeine which non-redundent
stuck-at faults of the CUT remain undetected.

. An ATPG tool is used to generate a limited numbdeteterministic test cubes

for a sub-set of the non-redundant stuck-at fatks remained undetected by
the pseudo-random patterns. The deterministic cabetin a large number
of don't carebits. The number of new faults tested by these culepends on

the size of the CUT, the pseudo-random fault edficy, the required fault

efficiency and the maximum number of deterministicbes allowed for

embedding.

. A pseudo-random test pattern is assigned to eaehndi@istic test cube. Each

assigned pseudo-random test pattern is modifiedibflipping to become
compatible with the corresponding deterministi¢ tege. The mapping of the
deterministic test cubes is done with the goal thatsubsequent implementa-
tion of the BFF can be efficiently optimized. F@ch deterministic cube only
a limited number of pseudo-random patterns arekatestarting with the ones
at the minimum Hamming distance. For these mappamnglidates a combina-
tion of the following two objectives is used:

e Minimize the number of clock cycles in which bothtolang and con-
flicting bits appear. This tries to make the ouspuif the BFFs
corresponding to different scan chains switch iageh In this way, the
logic sharing among the logic implementations oé tborresponding
BFF’s can be maximized.

e Minimize the number of scan chains which containhbwtatching and
conflicting bits. This attempts to make some corabon of the variables
corresponding to the state bits of the PC to appelgrin the satisfying set
of either the ON-BDD or the OFF-BDD of a certairascchain. This in-
creases the degrees of freedom for optimizing tiy@ementation of the
corresponding BFRF5.
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Fault simulation of the pseudo-
random LFSR sequence

v
ATPG

v

Pattern mapping

v

BDD-based optimization and
logic synthesis of BFF

v

Fault simulation of the pseudo-
random LFSR sequence with bit-
flipping by BFF

v

Figure 5.5: BDD-based pattern mapping by means of bit-flipp#gescription
of the program implementing this algorithm is giverppendix 2.

For example, consider the simplified case whereéPtiecounter has 4 state
bits (%, X1, X2, andxz) and only 3 deterministic test cubes have to be
mapped. Assume that these cubes are mapped tosthegrandom
patterns which are generated when the PC sgat&;x; is equal to 1001,
1100 and 0100, respectively. Consider also thdt reispect to thé" scan
chainthe first pseudo-random pattern has only conflgctiits, the second
pseudo-random pattern has both conflicting and immagdbits and the third
pseudo-random pattern has only matching bits agpaed to the specified
bits of the corresponding test cubes. If one negltée other state bits of
the DLBIST hardware (e.g. LFSR, SC, PS), the comatibn »Xix:X3 =
1001 appears only in the satisfying set of ON-BMDile the combination
XoX1X2X3 = 0100 is included only in the satisfying set dFFOBDD,. The
combination ¥xixox3 = 1100 appears in the satisfying sets of both BDDs
Consequently, the variableg, x; and % can help in the implementation of
BFF. One can choose Cov(BFE x3+ XoDffi(Xs,..., X.-1), where X,..., X,

1 are the variables corresponding to the other didseof the DLBIST
hardware and the function [§®s,..., X,.1) IS used to implement the bit-
flipping necessary for embedding the second test.cu

If all the assigned pseudo-random patterns had iatiching and conflict-
ing bits with respect to their corresponding tagbes, then the variables
Xo, X1, X2, @andxz could not be used for the optimization of Cov(BFk
such a case, the resulting Cov(BRRight be more complicated.
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4. The BDD-based representation of the BFF is optithizg efficiently exploit-
ing its DC-set and transformed into a RTL VHDL ciitcdescription (Chapter
7). The circuit description can be synthesized gissommercial logic
synthesis tools, e.g. Synopsys Design Compiler.

5. Inthe end, a simulation of the embedded test seugenerated by the LFSR,
the PS (if any) and the bit-flipping logic determénthe final stuck-at fault
coverage.

5.5 Experimental Evaluation of the BDD-based Approah vs.
the Cube-based Approach

Experiments have been performed to evaluate theBield-based pattern mapping
approach with respect to the original cube-basgulogegh [Wun96]. The experimen-
tal setup and results are described in Appendikablé 5.5 — 5.9).

In the case when industrial benchmark designs amsidered, the use of the BDD-
based approach instead of the cube-based appredsbes the pattern mapping time
from several days down to a few minutes. The rares$ of the two other tasks, ATPG
and fault simulation, are considerably improvedvali. This is due to the fact that the
BDD-based approach uses a single pass algorithrohwihvolves ATPG and fault
simulation less often than the original cube-bagpgroach which uses an iterative
algorithm, where ATPG, pattern mapping and fauttidation alternate [Wun96]. The
BDD-based approach reduces the total run-time froatre than a week down to
several hours, while also the memory requiremecadesquite well with the circuit
size.

These amazing improvements are not achieved atdke of fault efficiency and
hardware overhead. The BDD-based approach outpesftiie cube-based approach
also with respect to these parameters.

In the experiments discussed so far, the faultieficy of the BDD-based approach
has been limited to the maximum reachable withctii®e-based approach. It is shown
that all relevant parameters of the BDD-based nmap@ipproach, total run-time,
memory consumption and cell area overhead scalewet also when the target fault
efficiency is increased to the highest levels alldwy the ATPG tool. The logic over-
head decreases significantly for the larger designs

The experimental results reported till now prove tdapability of the new mapping
approach in achieving the scalability goal for whichas been devised. Nevertheless,
it is still interesting to investigate how the BOdased approach performs on smaller,
but still difficult to test designs for which theilze-based approach is still efficient.
ISCAS designs have been choosen for this purpodethenexperimental results of
this investigation are presented in Appendix 1 (@&bh10 — Table 5.11).

For all the designs, it has been possible to réggther final fault efficiencies with the
BDD-based approach. With few exceptions, the tatah-time, the memory
consumption and the cell area overhead of the BB§et approach are much lower.
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Sometimes, the total run-time is reduced by evem amler of magnitude. For the
larger ISCAS designs the difference between the @pproaches is more obvious.
This proves the better scalability of the BDD-basaldorithm, just like the
experimental results for the large industrial desig

5.6 Non-Target Defect Coverage and Overhead Depeni=
on Sequence Length

This section presents a study of the non-targetatlefoverage of the embedded test
sequences obtained with the bit-flipping DLBIST ecte. This is the first time when
such a study has been carried out. Resistive Ioigdigiults are used as a surrogate of
non-target defects [Eng05]. They accurately repregattern dependency, Byzantine
behaviour and other complex phenomena that areorstidered by the stuck-at fault
model. Due to the fact that the embedded detertianigst cubes target only the
stuck-at faults, resistive bridging faults are d&idvaon-target defect surrogate. This
investigation especially adresses the impact oftélse sequence length on the non-
target defect coverage and on the hardware overhead

The algorithm used for these evaluations is oudlimeFigure 5.6. Given the CUT, an
LFSR is used to generate a pseudo-random testrsaguEhis sequence is simulated
to determine its stuck-at and resistive bridgingiltfacoverage. Subsequently,
deterministic test cubes are produced for all remuntant stuck-at faults remained
undetected. These cubes are mapped to the psendtmmwasequence and a BFF is
generated. Next, the BDD-based representation efBfRF is optimized and trans-
formed into a RTL VHDL circuit description. Finallyhe test sequence generated by
the LFSR and the bit-flipping logic is simulated fesistive bridging faults. Note that
this embedded test sequence detects all non-redustieck-at faults not aborted by
the ATPG tool.

The experimental data reported in Appendix 1 (TéhE2 — 5.13) illustrates the
impact of embedding deterministic test cubes farclstat faults and of the test
sequence length on the coverage of resistive Impigiults and on the logic overhead
of the bit-flipping logic.

The simulation results show that the resistive ding fault coverage of the pseudo-
random test sequences is consistently higher ti@indtuck-at fault coverage. On the
other hand, the validity of stuck-at fault coveragdadentifying circuits with many
random pattern resistant resistive bridging faafipears to be limited. Circuits with
many random pattern resistant resistive bridgindtamay have a relatively reduced
number of random pattern resistant stuck-at faults.

These results clearly demonstrate the importancéhef embedded deterministic
cubes, as the resistive bridging fault coverageresmes significantly due to
embedding. However, the pseudo-random patterns sdsm to contribute to the
detection of non-target defects. This is impliecthosy fact that applying more pseudo-
random patterns results in appreciably higher tigsidridging fault coverage.
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Stuck-at and resistive bridging fault
simulation of the pseudo-random LFSR

v

ATPG for 100% stuck-at fault efficiency

v

Pattern mapping

v

BDD-based optimization and
logic synthesis of BFF

v

Resistive bridging fault simulation of the
pseudo-random LFSR sequence with bit-
flipping by BFF

v

Figure 5.6: Evaluation of the effect of embedding determigisgist cubes into a
pseudo-random sequence on non-target defect caverag

Finally, the longer sequences require less logerloead. This is due to two facts.
First, the pattern embedding process has more eegoé freedom that can be
exploited. Second, more stuck-at faults are covesethe pseudo-random sequence
before pattern mapping. These faults do not havbet@onsidered by the ATPG.
Overall, there is a three-dimensional trade-offnger DLBIST sequences mean a
larger test application time, but also less arest and an enhanced coverage of both

target and non-target defects.
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5.7 Conclusion

In this chapter, a new pattern mapping algorithra been proposed for bit-flipping
and more generally fotest set embeddin®LBIST schemes. The new mapping
method exploits the maneuverability and the commess of the BDD-based function
representation. Evaluations performed in the casetuck-at fault testing have
revealed that both run-time and memory requiremargsmproved by several orders
of magnitude as compared to the original cube-bamgproach. Moreover, the
proposed generation and implementation of the B&&sdot require more run-time
and memory resources than the ATPG or the faululsition steps. This efficiency
gain can be used to obtain even better solutiorierms of logic overhead and fault
coverage.

For the first time, the effectiveness of the emlgedtbst sequences obtained by map-
ping deterministic test cubes to pseudo-random dequiences has been evaluated
with respect to the coverage of non-target defddte. resistive bridging fault model
has been used to model non-target defects. Thaimgrdal results reveal that both
deterministic test cubes and pseudo-random testeseqs are useful for detecting
non-target defects. Furthermore, it has been shbtahincreasing the length of the
test sequences enhances their non-target defeetageyand significantly reduces the
logic overhead. This increases the competitivityhef proposed DLBIST scheme and
reduces the need for expensatgomated test equipmeiTE).






Chapter 6

Deterministic Logic BIST for Transition Fault
Testing

This chapter presents an extension of the bitifigdDLBIST scheme described in
Chapter 5 to make it also available for the tedfrarfisition faults. Some specific as-
pects of delay fault testing are considered below.

In order to test delay faults, two patterns areumregl, aninitialization patternthat
sets the circuit to a predefined state, andaativation patternthat launches the
appropriate transition and propagates the faulceéffo a (pseudo-)primary output.
There are two approaches for the application depaipairs to a standard scan design
[Sav92][Sav94][Wai87]functional justification also calledbroadside andscan shift-
ing, also calledskewed-load In the functional justification approach, the ccit
response to the first pattern is used as the sepatidrn. In order to apply pattern
pairs, the circuit is operated two consecutive klogcles in functional mode after the
initialization pattern has been scanned in. Indban shifting approach, the second
pattern is generated by operating the scan patlorieradditional scan clock cycle
after the first pattern has been applied. Since stafting may require additional
efforts for a consistent clocking scheme beyond BT hardware, only the
functional justification approach will be considgreAnother advantage of this
approach is the expected limitation of the scamited overtesting, as long as the
activation pattern is computed by the CUT itseldl ot scanned in, like in the scan
shifting approach. So, the impact on the yield $thdne less than in the case of the
scan shifting approach.

Here, the bit-flipping DLBIST scheme used for thestt of stuck-at faults will be
adapted to transition fault testing based on fameti justification. LBIST approaches
for the test of delay faults (especially for patday faults) have been presented in
[Che96][Duf97][Fur91][Gir97][Kei99][Li03][Muk98][WuB5], among others. Never-
theless, this is the first time when a DLBIST sckamused to test delay faults in cir-
cuits with scan design.

The extension of the bit-flipping DLBIST scheme foansition fault testing requires
the modification of the test control unit such thia scan enablesignal allows two
consecutive functional clock cycles and not onlg @s in the case of stuck-at fault
testing.

Since pairs of test patterns are required, tramsiaults are more difficult to test than
stuck-at faults. Consequently, the pseudo-randoamsition fault coverage is
significantly lower than the pseudo-random stuckaatt coverage. The final effect is
an increase of the mapping effort and the logialosad.
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As a solution, this work proposes a trade-off betwthese costs and the test applica-
tion time. Slightly larger test application timegiuce logic overhead and enhance test
quality in terms of both transition fault and n@mnget defect coverage (Chapter 5).

A guantitative estimation of the random testabitifythe stuck-at and transition faults
IS made in Section 6.1. The extension of the Ippihg DLBIST scheme for
transition fault testing is described in SectioB. Relevant experimental results for
large industrial benchmarks, containing up to 2Megatre reported in Section 6.3.
The chapter is summarized in Section 6.4.

6.1 Random Testability of Transition and Stuck-at Rults

The probability that a stuck-atfault ({J{0,1}) on the signal lineJ is tested by a
random pattern is equal to the probability B&i) that the lineJ can be controlled to
the logic value-i and observed at a (pseudo-)primary output [Brg&4483]:

P@ sai) = P is controllable to~i andJ is observable)

The probability that a transition fault fronto =i on the signal ling is tested by a
pair of independent random patterns is equal tgtbbability P slow fromi to —i)
that the first pattern controls the linkto the logic valuei multiplied by the
probability that the second pattern controls time I to the logic value~i and can
make the signal lind visible at a (pseudo-)primary output:

P slow fromi to =i) = P@ is controllable ta) * P(J sai) (6.1)

From the relation (6.1), it results that if thecktati fault on a signal line is random
pattern resistant, then the transition fault frofo -=i on the same line is random
pattern resistant as well. Consequently, a digiteduit contains at least as many
random pattern resistant transition faults as rangattern resistant stuck-at faults.

The following expression gives the numberdfl random patterns required to test a
fault f having the detection probability &<1) with thetest confidenceC [Wun85].

Ni=-In(1-C) /R
Consequently, for two faulfsandg with B = P*Ry (P; <<1, P<1) we have:
Ni = Ng/ P (6.2)

From the relations (6.1) and (6.2), one can obsdhat in the case when
controllability toi of a signal line is close to 0, a slow transitfanlt fromi to =i on
the same line may require a much larger numberonfiom test patterns than the
corresponding stuck-at fault, if the same testickanice is the objective.

° Probability that the considered fault is testecableast one pattern of the test sequence.
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As an example, consider the circuit sketched inuifeigs.1. The inputs of this circuit
are driven by four scan flip-flops. #can enableignal (SE) is used to switch the scan
flip-flops between scan and functional modes. Tossble patterns to test the stuck-
at ‘0’ and ‘1’ faults on the nel are ABCD [0 {1XXX, X11X} and {00XX, 0X0X},
respectively. Based on functional justificatiore thitialization patterrABCD = 0011
will generate an activation pattern 0111 such ¢éhslow-to-rise fault on the nédtcan

be tested. The slow-to-fall transition fault on tietJ cannot be tested.

Note that there is only 1 initialization patterrr the slow-to-rise fault on the nét
which has 4 specified bits, while each of the Zegponding stuck-at faults has 2 test
patterns with 1 or 2 specified bits. The probaletitto randomly detect the slow-to-
rise, the stuck-at ‘O’ and the stuck-at ‘1’ fautin the net] are 1/16, 5/8 and 3/8,
respectively. (1/16 < (3/8x (5/8). The reduced testability of the transition faslt
due to the fact that the initialization pattern inust only set the required initial logic
value on the target line, but it must also geneagi@opriate logic values at the CUT
outputs in order to define an useful activatiortqrat

Figure 6.2 presents a comparison between the ctiveuktuck-at and transition fault

coverage of a pseudo-random sequence applied fodastrial benchmark design

with 5116 flip-flops arranged into 11 scan chaingd 427K nodes in the net list. The
lower level and the slower saturation of the tramsifault coverage is due to the

larger number of random pattern resistant transitéwlts and to the larger number of
pseudo-random patterns required by these fauléshteve the same test confidence
as in the case of the random resistant stuck-&sfau

This slow saturation is expected for any type olfagdault testing and may be
enhanced in the case of robust delay fault testirngcreases the necessity of having
long test sequences when DLBIST is used. Moreovaeva DLBIST architecture is
necessary that is able to use the whole test sequéar pseudo-random fault
detection and not only one fraction of it as in tlase of the architecture presented in
Chapter 5.

SE Patterns which can test the
Sl stuck-at 0, stuck-at 1 and
’jf FR| A slow-to-rise faults on the
£ >1 HJ wire J:
L [ L K
*} FF| B >1 & >1 AB C D

H —
;}FB c 1& F stuckat-0 1 X X X
’—‘ L G =11 stuckat-1 0 0 X X
}FF D &

A
slow-to-rise 0 0 1 1
SO

slow-to-fall is untestable

v

Figure 6.1: Specified bits for testing stuck-at and transitiaualts.



62 6 Deterministic Logic BIST for Transition Fault Steng

100

. 6 666 6o
920 — 000000 06000000009
/.*fv

[
60

|

|

|

|

|

|

—e— Stuck-at
Testing

50
40
30
20
10

Delay
Testing

Fault Coverage [%]

# Pseudo-random Patterns [K]

Figure 6.2: Cumulative stuck-at and transition fault coverafja pseudo-random
sequence applied to an industrial benchmark dekagrcontains
5116 flip-flops arranged into 11 scan chains. Thaditionfault
testing was based on functional justification.

6.2 Bit-flipping Deterministic Logic BIST for Transition
Fault Testing

Applying a DLBIST scheme to transition fault testiis a challenge due to the lower
random testability of the transition faults. Thegjuires more deterministic cubes with
more specified bits to be embedded into the pseaddem sequence as compared to
the case of stuck-at fault testing.

In the case of transition fault testing based oncfional justification, only the
initialization pattern of each pair of test pateshould be generated by the DLBIST
hardware. The activation pattern is generated byGWT as a response to the first
pattern and only single test cubes have to be eddgedhto the pseudo-random
sequence. Consequently, the DLBIST synthesis flmwirainsition fault testing based
on functional justification may be derived by adagtthe flow used for stuck-at fault
testing, provided that the ATPG and the fault setioh are correspondingly
modified. This is also true in the case of trapsitiault testing based on scan shifting,
with the observation that in this case the testtrobrunit should generate one
additional shift clock cycle instead of the firdbak cycle of each pair of functional
clock cycles. For this reason, the approach preddmére can also be applied to scan
shifting approaches.

Here, each pattern of a test sequence that caotdatdts not detected by any of its
precedent patterns is referred to agssentiapattern(Section 5.3.2). The embedding
of deterministic test cubes into a pseudo-randost $equence may corrupt the
essentiapseudo-random patterns even if they are not assigmdeterministic cubes.
This is due to the fact that the logic synthesid aptimization of the BFF are
intensively using its DC-space (Chapter 7). Consaty, the resulting bit-flipping
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Figure 6.3: Architecture of the bit-flipping DLBIST.

logic flips more bits than necessary for the embeglof the target deterministic test
cubes and the consequence is thsgentialpseudo-random test patterns may be
corrupted .

In order to limit the number of corrupted pseudod@m patterns in the case of the
architecture presented in Chapter 5, the set @freheistic cubes is embedded only at
the end of the pseudo-random test sequence. Tlgthlesf the pseudo-random
sequence that can be modified is a fraction giwea begative power of 2 of the total
test length. The first part of the test sequencesed only for pseudo-random fault
detection and it is protected from being flippeddigabling the outputs of the BFF
with the help of an AND gate per scan chain, whgcbontrolled by a combination of
the most significant bits of the pattern counteevéttheless, thessentialpseudo-
random patterns of the embedded test sequencetgpeatected.

Due to the slower saturation of the random tramsitiault coverage discussed in
Section 6.1, the application of longer test seqesr@nd the protection of all the
essentialpseudo-random patterns become critical. A wayréwgnt the corruption of
the essentialpseudo-random patterns without increasing the é&axip of the BFF
implementation is to utilize an additional combioatl module, here referred to as
correction logic(CRL), to enable/disable the outputs of the bgging logic (Figure
6.3). The partition of the test sequence into pageudo-random and embedded se-
qguences is preserved to limit the CRL size.

The algorithm used for the generation of the hgpiing DLBIST for transition fault
testing based on functional justification is owtlihin Figure 6.4. The individual steps
of the flow are described below:

1. Initial fault simulation is used to detect the saion faults that cannot be tested
by the pseudo-random test sequence produced byF&mR land, optionally, a
phase shifter (PS). During this step a ligid generated containing the indices of
all the essential pseudo-random patterns of the test sequence pherew
deterministic test cubes will be embedded.

2. An ATPG tool is used to generate a limited numifedlegerministic initialization
test cubes for all or a sub-set of the transiteuté that remained undetected by
pseudo-random test patterns.
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Fault simulation
of the pseudo-random LFSR sequence

v
ATPG

v

Pattern mapping

v

BDD-based optimization and
logic synthesis of BFF

v

Fault simulation of the pseudo-random LFSR
sequence with bit-flipping by BFF

v

BDD-based optimization and
logic synthesis of CRL

v

Fault simulation of the pseudo-random LFSR
sequence with bit-flipping by BFF and CRL

v

Figure 6.4: Implementation flow of the bit-flipping DLBIST fdransition fault
testing based on functional justification. A degtian of the
program implementing this algorithm is given in Asplix 2.

The number of new faults tested by the determmisibes depends on the size of
the CUT, the pseudo-random fault efficiency, thgureed fault efficiency and the
maximum number of deterministic test cubes allofegdmbedding.

A pseudo-random test pattern is assigned to eatehndgiaistic initialization test
cube. The same mapping costs are utilized as irfldlheused for stuck-at fault
testing. Nevertheless, this time tbssentialpseudo-random test patterns are not
allowed to be assigned. Each assigned pseudo-ratesirpattern is modified by
bit-flipping to become compatible with the corresgdimg deterministic test cube.

During this step, a BDD-based representation iggad for the resulting BFF.
The BFF is only partly specified and has a largede€

The BDD-based representation of the BFF is optithiaad transformed into a
RTL VHDL circuit description (Chapter 7). The logamptimization procedure
exploits the DC-sdeft by the incomplete specification of the BFF.nSequently,
the optimized bit-flipping logic flips additionalits besides the conflicting biis
the assigned pseudo-random test patterns, schiessentiappseudo-random test
patterns (with the index included in)lmay be corrupted.
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5.

In order to determine which of the patterns witl thdex in Ly must be protected
from being corrupted, the embedded test sequermthiped by the LFSR, PS (if
any) and the bit-flipping logic, which is not alled to act on the test patterns with
the index in L, is simulated to generate a second lisbLindices corresponding
to theessentialpatterns in the embedded test sequence. The tiéstnzawhose
indices are included iniln L, need to be protected from being corrupted by the
bit-flipping logic. On the other hand, the testtpats whose indices are included
in L>- L; should remain modified by the bit-flipping logic.

A combinational logic calleatorrection logic (CRL) is built (Figure 6.3). The
CRL prevents the bit-flipping logic from flippindpé patterns with the index in L
n L, and allows it to modify the patterns with the irdie L, - L1. In this way, the
essentialpseudo-random test patterns (referencediim LL,) will not be cor-
rupted, while theuselesstest pseudo-random patterns that become useful by
means of bit-flipping can still be generated. THRLGmMplements an incompletely
specified function whose ON-set and OFF-set contiaén states of the pattern
counter, LFSR and the output of the PS (if anyyesponding to the first scan
clock cycle of the test patterns with the indexjn L; and Ly n Ly, respectively.
The DC-set of the CRL function is used to optimizamplementation, exactly as
in the case of the BFF implementation (Chapter 7).

The output of the CRL has to be kept constant duiile scan clock cycles corre-
sponding to each test pattern. Due to the factdbate of the input signals to the
CRL (the state bits of the LFSR and the output bftshe PS (if any)) change

during the scan clock cycles, a latch is useddmeghe output of the CRL (Figure

6.5). The operation of the latch is controlled vitile help of the SE signal, so that
its state can be changed only before a new tetsrpas scanned in.

Without the CRL, all the inputs of the BFF corresgimg to theessentiapseudo-
random patterns should be included into the OFFoEéhe BFF. Consequently,
the use of the CRL leaves more DC-space to optithizdogic implementation of
the BFF. On the other hand, storing the outpuhef@RL into a memory element
that cannot be written during the shift cycles @ases significantly the degrees of
freedom for the optimization of the CRL.

While a BFF function has to be implemented for eachn chain, the CRL is
common for all the scan chains. The circuit desionpof the BFF and CRL can
be synthesized using commercial logic synthesidst@e.g. Synopsys Design
Compiler).

Test Control Unit ELFSR T PS| ’Gﬁ* Scan Patt >

Shift Counter | | Pattern Counter ¥

// // ; I
l » CrRL P|Latch
A4

sl

Figure 6.5: Bit-flipping function (BFF) and correction logic &L).

BFF
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7. In the end, the embedded test sequence generatiéet SR, the PS (if any),
the bit-flipping and the CRL is simulated to detarenthe final transition fault
coverage.

The use of the CRL can be benefical even in the oastuck-at fault testing. This is
illustrated in Table 6.1 (Appendix 1).

6.3 Experimental Results

Experiments have been performed to evaluate thiéigping DLBIST approach with
respect to transition fault testing. The experiraksetup and results are described in
Appendix 1 (Table 6.2 — 6.4).

It can be observed that, indeed, the pseudo-raridomsition fault efficiency is much
lower than the pseudo-random stuck-at fault efficie In general, increasing the test
sequence length has a stronger impact on the timang$ault detection than on the
stuck-at fault detection.

Comparing the results obtained using the bit-fiygpDLBIST approach for the stuck-
at and transition fault testing, one can obsens, ttvith only one exception, the
deterministic test cubes embedded for transitiasit feesting have larger ratios of
specified bits. This is due to the lower transitfaalt testability. In all the cases, the
final stuck-at fault efficiency is much larger thdre final transition fault efficiency.
Moreover, this has been achieved along with a lovedirarea overhead. The reason
for this difference is again the lower random te#ity of the transition faults with the
consequence that more patterns have to be embaddedore bits have to be flipped
or preserved in the pseudo-random sequence. Forea test length, the DLBIST
hardware overhead depends on the random testatiilie CUT and on the amount
with which the fault efficiency has to be increased

The hardware overhead of the designs for whicmthmeber of embedded patterns has
not been limited is significantly reduced by theragase of the test sequence length.
Extending the test length from 10K to 64K redudesdverhead by more than 10% of

the CUT size. In one case, increasing the testhelg two orders of magnitude has

reduced the overhead to half of the level fromgrevious entry that corresponds to a
test sequence containing 64K patterns, at the pfigelarge increase in the run-time

and memory requirements.

As long as the same number of deterministic telesus embedded, it is difficult to
predict the dependence of the hardware overhedldeolength of the test sequence. In
this case, the overhead primarily depends on tkeeage number of specified bits per
embedded test cube, which is determined by the eurabd the difficulty of the
target faults. Longer pseudo-random test sequdeags undetected faults which are
more difficult to test. This tends to increase tlenber of specified bits necessary to
detect the remaining fault. On the other hand, mhéy also decrease the number of
newly detected faults per embedded test cube. i$halty it is difficult to predict the
evolution of the average number of specified bés @mbedded test cube when the
length of the test sequence is augmented. Incigdben length of the test sequence
also improves the pattern embedding opportunities.
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In the case of one design for which the numbemabexided deterministic test cubes
has been limited, increasing the length of the sesfuence does not significantly
change the hardware overhead, but it improvesitia¢ fault efficiency by more than
11%. In the other two such cases, extending theséegience has a twofold beneficial
impact. Incresing the number of the test patteros f10K to the maximum that pass
in a test application time of one second at thguemcy of 100 MHz reduces the
overhead by 11% and 7%. In parallel, the final ttafficiency is improved by more
than 8% and 3%. It should be mentioned that theease of the test sequence length
Improves the coverage of the non-modeled defectgeigSection 5.6).

In the case of the three largest designs, incrgdbim length of the test sequence has
no significant impact on the run-time and memoxuiszments.

Investigating the trade-offs between the hardwamerteead and the fault efficiency,
which were obtained using test sequences that icotit@ maximum number of

patterns which can fit in one second of test tih¢ha frequency of 100 MHz, the

following observations can be made. In the casevoflarge benchmark designs, 10
deterministic test patterns are already enougtbtaim a larger fault efficiency than in

the case when 800 deterministic test patterns ratedded into a 10K long test se-
qguence. In this way, the hardware overhead caedigced to 1% from 43% and 62%,
respectively. In the case of the other large bermchrdesign used during the experi-
ments, a similar fault efficiency can be achieveddmbedding 100 deterministic
patterns, at the cost of 5.5%, instead of 22%,\karel overhead.

6.4 Conclusion

In this chapter, an extension of the bit-flippingg EXST approach for transition fault
testing has been presented. This is the first twhen a DLBIST scheme is used to
test delay faults in circuits with standard scasigie The investigated delay testing
approach is based duanctional justification but the scheme can also be applied with
a minimum modification to an approach basedsoan shifting A special combina-
tional module, theorrection logic(CRL), has been introduced to further improve the
test pattern embedding. Due to the rather low ramgattern testability of the
transition faults, the saturation of their randasalf coverage requires significantly
longer test sequences, which in turn is benefifval both limiting the hardware
overhead and improving the coverage of the tanggt@n-target defects.






Chapter 7

Scalable Synthesis of Irregular Combinational
Functions with Large Don’'t Care Sets

This chapter presents an innovative BDD-based lagiathesis method which is
especially suitable for the logic implementatiohsrieegular functions that have large
don’t caresets. Here, a Boolean function is called irregiflats input assignments

mapped to ‘1’ are randomly spread over the definitspace. Examples of such
functions are the BFF, the function implementedtsy CRL, the BFX [Tou96] and

the XMF [Tan04].

This is the first technique that exploits the DE&+&gether with the compactness of
FBDDs (Definition 4.12) to improve the efficiency the BDD-based logic synthesis.

The presented experimental results show that forthed considered functions,

implementations are found with a significant redutiof the gate count compared to
SIS [Sen92] or the methods offered by a state-efaith BDD-package [Cudd]. This

performance is due to both a reduction of the rammts in the resulting FBDDs and
to a reduced number of gates needed to implemenEBDD nodes. The proposed
method scales better and succeeds to get a bet@ntage of the DC-set.

Two examples of irregular Boolean functions witlmgka DC-sets are analysed in
Section 7.1. Section 7.2 presents a new heurisethod to improve the cover
synthesis for such functions. In Section 7.3, expental results are used to compare
the proposed approach with SIS [Sen92] and metheaitable in the CUDD-package
(e.g.restrict [Cou90]). Furthermore, the outcome of the new etis evaluated as
input to Synopsys Design Compiler. The chapteumrsarized in Section 7.4.
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7.1 Examples of Irregular Incompletely Specified Bolean
Functions

The bit-flipping function (BFF) and the bit-fixinfunction (BFX) [Tou96] are exam-

ples of irregular and incompletely specified fuong with large DC-sets. Besides
these functions, another such example will be dasdrin this section. Like the BFF

function, also this example comes from the field¢@ding and testing.

In most embedded test approaches [Ghe04][KoeO)Edjou96], the test responses
are compressed by a multi-input shift register (RII§Figure 7.1), which delivers a
signature containing the information about the ecmess of the CUT. The test
responses may contain unknown bits (Xs), which ajgmear due to the existence of
multiple clock domains, floating buses or uniniiad memory elements. In order to
obtain an uncorrupted signature at the end ofdke these Xs have to beaskedo
either logic ‘0O’ or logic ‘1’ before they propagaiato the MISR. This may be
performed by combinational logic implementing acstled X-masking function
(XMF) [Tan04]. The XMF can be kept quite small byefaily selecting those bits of
the test responses carrying the information abdoeitGUT correctness which have to
remain unmasked.

The inputs of the BFF and the XMF are the state ditthe pattern counter, the shift
counter and the test pattern generator (TPG) wtachbe an LFSR and, eventually, a
phase shifter. Both functions are incompletely gpetfunctions. Consequently, they
can be described by an ON-set and an OFF-set,icmgdhe input assignments for
which these functions must take the values ‘1’ @drespectively. The remaining
input assignments build the DC-set.

According to Chapter 5, the ON-set and the OFFotéhie BFF are the sets of states
that correspond to the clock cycles in which theGT&utput must or must not be
flipped, respectively. The DC-set is the set oftestathat correspond to the clock
cycles in which the LFSR output may be arbitraflifyped.

In the case of the XMF, the ON-set is the set atiest that correspond to the clock cy-
cles in which an unknown test response bit musnhbsked before it is scanned into

- v
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G Core Under Test R
{ Scan Chain m | {or |+
A
A
Shift Counter p—4
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Test Control Unit
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Figure 7.1: Embedded test architecture with MISR and X-maskimgtion (XMF).
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the MISR. Similarly, the OFF-set is the set of etathat correspond to the clock
cycles in which a test response bit carrying tiermation about the CUT correctness
must not be masked. The DC-set contains the sths#scorrespond to the clock
cycles in which the test response bits may be rariiit masked before they are
propagated into the MISR.

The DC-sets cover more than 99.99% of the defimiipace of both functions while
the ON-sets and OFF-sets are randomly distributest the rest of the definition
space. One can identify the following sources eftitgh cardinality of the DC-sets.

* Not all the possible states and state combinatainthe shift counter, pattern
counter, LFSR and phase shifter (Figure 7.1) acessarily appearing during the
testing process.

* In the case of the BFF, the deterministic test subat have to be mapped to the
pseudo-random test sequence contain ndmyt care bits and the number of
embedded deterministic test cubes is a small &mactf the total number of
pseudo-random test patterns.

* In the case of the XMF, usually a very small fraotof the bits in test responses
are Xs or relevant to the fault coverage.

The large DC-sets offer a good base to optimizeldge implementation of these
functions despite their irregularity, which is nibe case with random functions with
no or small DC-sets.

7.2 Proposed FBDD-based Logic Synthesis

This section proposes a new synthesis approachtrdraaforms the ROBDD-based
representation of an incompletely specified Boolearction into a FBDD-like cover

whose circuit description requires a reduced numbkergates. The following

considerations are based on the notations intrabduseChapter 4 and on the
definition below.

Definition 7.1 The cardinality of a functionf:{0,1}" - {0,1}, denoted by {||, indicates
the number of fully specified input assignments pepto ‘1’, i.e. the
number of minterms (Definition 4.7).

The goal of the synthesis procedure described beldav generate FBDD-like covers
with a reduced gate count in the resulting cirdescriptions. This is achieved by first
reducing the number of paths from the root node leaf node and second by looking
for node sharing among different paths and evderéift FBDDs.

On one hand, each path in a BDD corresponds tb-@sace which is mapped either
to ‘1’ or to ‘0’. Similarly, the cover of an incongiely specified functior(fon, for)
can be choseaqual to ‘0’ on the subspaces mappeddhyo ‘0’ and equal to ‘1’ on
the subspaces mapped fgy to ‘0’. Consequently, the path reduction of theDHEB
based implementation can be achieved by findingrénmal partition of the definition
space of the considered function into appropriatespaces on which eith&y, or fox

is equal to ‘0’. Given the incompletely specifiath€tion F(fo,, for) and the set of its
input variablesV, the synthesis method introduced here looks fgo@d partition of
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the definition space into such special sub-spa@sguthe recursive depth-first
process sketched below.

CreateCover (fon, forr, V){
/I'V contains the indices of all the relevant inpatiables

if sizefon) > sizefor) then // size = ROBDD node count
return ~ CreateCover (fof, fon, V);

| = /7

Cov = CreateLiteralCover (fon, forr, V, I);
if (Cov# ) thenreturn Coyv,

Cov=FindCover (fon, forr); // optional: DC-based node reduction
if (Cov# ) thenreturn Coy,

for all i 0 Vand for |; O{x, %}
if fonlli =0and fof-f||i =0or
if fonli = fonl-i @and fosli = forili thenV =V —{i};

if | /7 then
Cov = CreateCover (fon|-1, fofil-1, V);
if fof (Cov= 0thenreturn Cov,
else return (-1) Cov, // new FBDD-node required

return SplitOperator (fonl-1, foit-1, V);
}

First, it is decided whethét(fon, for) or = F(forr, fon) is implemented, depending on the
compactness of the ROBDD-based representatifyy ahdf,r. The ROBDD sizes are
determined by their node count.

Subsequently, a variable is determined (procedure€reateLiteralCover or
SplitOperatoj with respect to which the current definition godse is decomposed
into two new subspaces whetés either ‘1’ or ‘0’. For each of the two subspaees
further recursive call o€reateCovemay be required. The size of the resulting cover
may be reduced by determining a minimal numbemuchssuccessive recursive calls.
ProceduresCreateLiteralCoverand SplitOperator implement heuristics to obtain
near-optimal solutions.

CreateLiteralCover (fon, forr, V, I){
Min = oo;
for all i 0 Vand for I; C{x, 7%}
if fonli = 0and || fos-ii || <Min then
Min = || fosthi ||;1 = 1i;
if Min # o then
if forfl.1 = Othen return - 1;

return O;

}

The procedureCreateLiteralCoverprovides the recursive process with the first stop
condition. The recursion is stopped if a literas found for whichfyq]-; andfen| are
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equal to ‘0. In this caseil is chosen as cover fdf. If this condition cannot be
fulfilled and there are literals, for whichfy)i is equal to ‘0’, then that liter&l which
minimizes the cardinality dq-; will be assigned to the generic argumient

The procedurd-indCoverwhich provides the algorithm with the second stopdi-
tion is optional and will be discussed later.

Subsequently, the set of input variablés pruned from those variables on whigh
andf.¢ depend in drivial way for loop of CreateCovey. Depending on whether the
literal | returned byCreateLiteralCoveris different from the empty seéi, either
CreateCovewor SplitOperatoris called.

SplitOperator (fon, forr, V){
Il first heuristic (lval | used for the absolute valuevaf)

Max = O;
forallidV

Check= | [fonhill = [forthill | + | fbetl-xill = fonl-xill |;
if Check> Maxthen Max=Checkm=i;

/I second heuristic

if Max = | |forfl| - [fonl| [then
MinOn = o; MinOff = o;
for all i OV and for |; O{ x;, =X}
if |fonli|| <MinOnor
if |fonli|l =MinOnand |forl-i|| <MinOff then
MinON = |ffonfi]|; MINOF = |ffosili||; M = i;

/I choose the literal for the first recursion
V=V-{m}
choose [ Xm, = Xm} such that |fos || = |ffortl-1|];

Cow = CreateCover (fonl;, for, V);
if Cow %0 then
Cow, = CreateCover (forl-1, foft1, V);
else iffor.| # O then
Cow, = CreateCover ((- Cow) -1, for]-1, V);
elseCow =1,

Il assemble the cover: new FBDD-node required

if Cow ot # 0then Cow = /Cov;
if Cow ot # 0then Cow = =/ Cow;
return Cowv; + Cow;

}

ProcedureSplitOperatoruses two heuristics. The first one looks for ardit! such
that the cardinalitiesfd}|i|| and fl«l-i|| are higher than the cardinalitieks|||| and

|fonl-1]|, respectively. If such aannbalancingoccurs, then the following inequality
must hold:

| [Fonbdl = Hfotthl| | + | Thtl-xl - [fonb-xll 1> 1 [Fortl] - [fonll | (7.1)
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The intuition behind the unbalancing is that weristigally try to find the variable
that simultaneously minimizes both cardinalitigg) and forl-i (IC{X, =x}). For
example, consider the definition space presentédguare 7.2, where the symbols ‘X’
and ‘o’ are used to represent the input assignmagitsnging to the ON-set and the
OFF-set of the considered function, respectivelye fashed squares give a minimal
partition of the definition space into sub-spacestaining only input assignments
belonging either to the ON-set or to the OFF-setsuine that one has to choose
between the input variables and x, for the decomposition of the considered
definition space. The enclosed table shows the eundd input assignments
belonging to the ON-set and the OFF-set in thesp#zes defined by = 1,x,=0,%

= 1 andx,; = 0. The other input variables are not explicithown for simplicity
reasons. In this case, the first heuristics of ghmedureSplitOperatorchooses the
variablex; with respect to which the definition spaceaidalancedand the inequality
(7.1) is fulfilled. The left-hand side member oétimequality (7.1) is evaluated to 15/3
with respect to the variable/x,. In total, there are 13/10 input assignments lggian

to the ON-set/OFF-set, so that the right-hand swéenber of the inequality (7.1) is
evaluated to 3. It can also be observed that thelioe corresponding to the
decomposition of the definition space with respidet input variables; does not
intersect any sub-space of the minimal partitionisTdoes not happen in the case of
the variablex.

If no unbalancingvariable has been found, then the second heuisstised. This
heuristic chooses the variablewhich has an associated liteta x, —=x} that mini-
mizes the cardinalityf}}|i|| as a primary optimization goal and minimizesdaelinal-
ity |foril-1]| @S @ secondary optimization objective. The timiibehind this is similar to
the one mentioned for the first heuristicSglitOperator For each literal(l{x, =X} a
recursive call with the argumerit, fox|) is performed ifffox) # O.

Both heuristics irSplitOperatorare used to increase the chance of fulfilling stap
condition fromCreateLiteralCovein the next recursive calls and thus to decrease |
greedy manner the number of subsequent recursilis ©h the procedure
CreateCover

X =1 X1=0
Coxi e o
=1[iXx 1ol Lo ON-set | OFF-set
R x=1| 10 2
P X PX PO ¢)
e RN S x1=0 8
P X A
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Figure 7.2: Example of the proposed decomposition of the didimispace.
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In order to limit the memory consumption of the \Wehprocess, the cofactdk is
computed using the operatBDD.Composenstead of the operat@DD.And In this
way, the dependence of the cofadfoon the variable is eliminated.

The heuristics used here to choose the new vanathgend only on the distribution
of the ON-set and of the OFF-set over the definispace of the target functidn
This makes the algorithm largely independent of Yiaeable order used for the
underlying ROBDD-based representation, which is thet case with the heuristic
used in [Gue99], which has been proposed onlydorgetely specified functions.

The structure of the resultinG@oF) can be efficiently modeled as a FBDD
(Definition 4.12). A FBDD-based representation refprred in this case, since an
OBDD could require excessive memory usage. Consglguen this process a
FBDD-based representation is constructed node bg.neach non-terminal node of
the FBDD is created during a distinct recursionpst& node created outside
SplitOperatorrequires at most one 2-input logic operator, whileode created inside
SplitOperatormay require between one and three 2-input logeratprs.NAND and
NOR operators are preferred ®ND and OR operators. In this way the logic is
optimized not only by reducing the number of nodeshe FBDD, but also by
reducing the operator count per node. Both go@saahieved by exploiting the DC-
set.

So far, the node count has been minimized onlytmgting to decrease the path
count (e.g. looking for minimal partitions of thefohition space, where eithéj;, or
forf IS equal to ‘0’). The node count can be furthetueed by allowing non-terminal
nodes to become children of more than one pared# aad by allowing parent nodes
of the same child to belong to FBDDs correspondindifferent outputs of the target
function. This is nothing else than the well-knomede reduction [Bry86] that usually
makes the ROBDDs very compact, but which in thee aafsFBDDs is expected to
have less impact on the node count.

Procedure=indCoveris used to check whether the cov@e(SG implemented by
already synthesized sub-graph& are useful also in the case of the target function
F(for, forf). If such a sub-graph is found, one has only timtpi its root node with a
normal or a complemented edge (WheboSQ is required).

In order to reduce the node depth of the coverrmetu by CreateCover it is
important thaCreateLiteralCoveis called beforéindCover In order to increase the
chances that a cover will be found ByndCover this should be calledefore thefor
loop inCreateCover

FindCover (fon, for){

for each elemerGof a sub-setf all completed sub-graphs

if fonCOMSG =f,nand for /CO(SG = 0then
return Co(SG);

if fon/CoMSG =0 and for [CoM(SG =foxthen
return - CoSG);

return [;
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The DC-based node reduction implementedrioglCoverhas the effect that the same
node index (variable) may appear more than onca path going from the root to a
terminal node of the resulting FBDD (Definition 2)1 Nevertheless, such an effect
has never been observed during the experimentgpexXor some increase of the
circuit depth.

In order to be able to express all the possiblensothatCoF) can take, a special
node structure has been chosen. This allows theotissomplemented edges to
indicate the inversion of the function implementedthe sub-graph to which they
point. As long as it is not required that the FBD&sed representations of the
resulting covers are canonical, bo#ise and then edges are allowed to be
complemented. Special flags indicate whether timetfan implemented by each of
the two child nodes has to beultiplied or not with the current node variable, taken
with the right polarity. These flags have beenadtrced to support the optimization
of the logic implementation by reducing the gaterdoper node. Each FBDD node
also contains a pointer to the ROBDD-based reptasen of the function
implemented by its sub-graph. In this way, the Baalfunctions involved in the DC-
based node reduction can be efficiently manipulatée run-time and the memory
consumption of the search associated with the Dfadbanode reduction can be
reduced by limiting the number of investigated reotfppendix 1).

The worst case run-time complexity of the FBDD-lohk®gic implementation of an

incompletely specified function is proportionalttee product of the number of input
variables, the maximum size of the ROBDD-basedasgrtation of each output and
the size of the resulting cover. When the DC-basede reduction is enabled, the
square of the resulting cover size has to be takba.node counts of the resulting
covers are usually orders of magnitude smaller thennode counts of the original
ROBDDs.

7.3 Experimental Results

The FBDD-based approaches published so far do agett the synthesis of
incompletly specified functions. Consequently, pneposed FBDD-based method has
been evaluated with respect to SIS [Sen92] an@BD-based methods available in
the CUDD-package [Cudd] that are able to handlétdamnes.

The experimental setup and results are describAgpendix 1 (Table 7.1 —7.5).

First, the FBDD-based approach has been comparedheorestrict operator
(Definition 4.14). For the other OBDD-based optiatian methods from [Cudd] that
are able to handle don’t cares likenstrain (Definition 4.13) orsqueezesimilar
results have been obtained as wéhktrict

The FBDD-based approach outperforms téstrict-based approach with respect to
the node count and the number of logic operatothenresulting circuit descriptions
at the cost of a run-time increase. The run-tingelirement of the proposed approach
can be significantly reduced by decreasing thech@ay space associated with the
DC-based node reduction. On the other hand, enigrtiis searching space will
further improve the compaction of the resulting ABIke cover. The size of the
searching space associated with the DC-based moldetion can be controlled with
the help of several thresholds described in AppeRdi
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Subsequently, the FBDD-based method has been cethpéih several OBDD-based
approaches that use combinations ofrtésrict operator and variable reordering. The
variable reordering has been applied to all OBDBsesponding to each output of
the target function. As a result, all the coverdaoied with the OBDD-based
approach have the same variable ordering and, goas#ly, a maximized probability
of node sharing among them. Variable reorderingrawgs the operator count at the
cost of a significant increase in the run-time.

The results of this comparison prove that the psedo FBDD-based method
outperforms all the investigated OBDD-based apgreacRunning the FBDD-based
flow with the DC-based node reduction switchedreffults in operator counts that are
between two and four times better than those obthwwith the best investigated
ROBDD-based approach. The FBDD-based approach itfbased node reduction
disabled also provides the implementations with sheallest depths. The operator
count of the FBDD-based covers can be further inguidoy enabling the DC-based
node reduction and increasing the associated segrepace. In this way, one can
obtain tradeoffs between the size of the resultimgers and the required run-time.

The resulting circuit descriptions have been sysiteel with Synopsys Design
Compiler and using a proprietary library. Compa@the best investigated ROBDD-
based approach, the FBDD-based flow with the D@&dbasode reduction disabled
reduces the area figures by a factor between twibtlaree. This improvement has
been achieved by using shorter run-times as compéoe all ROBDD-based
approaches. Moreover, the run-time of this simplefigaration of the FBDD-based
approach is by at least one order of magnitudetshdhan the run-time of the
ROBDD-based approach with the best logic area tesilihe area results of the
FBDD-based approach can be further improved by lemplthe DC-based node
reduction.

In the end, the FBDD-based approach has been cethpaSIS [Sen92] with respect
to the implementation of single-output incompletsjyecified functions with large
DC-sets. It is obvious that the FBDD-based methodles better and improves
dramatically the number of gates and area (betv2eand 19 times). This suggests
that the proposed FBDD-based approach enables h bafter use of thdon't cares
which in the descriptions of SIS and MIS are rafdrto asexternal don’'t cares
[Bra87][Sen92].
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7.4 Conclusion

A new BDD-based logic synthesis procedure for utagand incompletely specified
functions with large DC-sets has been presentedchwban help to find efficient
multi-level implementations. The problem is redutedhe construction of a minimal
FBDD by performing DC-based node reduction and igaby partitioning the
definition space of the target functiorio a reduced number of subspaces, which may
be mapped either to ‘0’ or to ‘1’. Heuristics arged to find near-optimal partitions of
the definition space into such subspaces and, qoesdy, to minimize the path and
node count of the resulting FBDD-like covers. Farthore, this approach is also able
to use the DC-set to reduce the number of logicaipes (i.e. gates) appearing in the
circuit description of the non-terminal nodes.

Applying this approach to the synthesis of somecharark bit-flipping functions
[Ghe04] resulted in covers whose circuit descripicontained about 70% less logic
operators than the implementations obtained with mhethods available in the
CUDD-package restrict operator and variable reordering) [Cudd]. The lsgais of
the resulting circuit descriptions with Synopsyssiga Compiler revealed that the
FBDD-based approach improves the area figures fagtar between two and three,
while the run-time consumption is significantly veg¢d. Moreover, the proposed
method scales better and succeeds to get a bet@ntage of the DC-set than SIS.

A tool that implements a version of the approaatsented here can be downloaded
from [Fbdd].



Chapter 8

Conclusions

8.1 Summary

This work presents and details the developmentheffirst scalabledeterministic
logic built-in self-tes{DLBIST) approach. The implemented scheme is basethe
STUMPS architecture (Figure 3.3) and it relies qgratiern generator that can achieve
very high fault coverage. The particularity of thattern generator is a combinational
module that implements a so-called bit-flipping dtion (BFF). The BFF maps
deterministic test cubes to a pseudo-random tesiesee generated by an LFSR and,
optionally, a phase shifter. Finding an efficiergttprn (cube) mapping with low
hardware overhead is a challenging task. The dnriton of this work is a scalable
solution for both the pattern mapping problem arallbgic synthesis of the resulting
BFF that describes this mapping.

This work starts with a short presentation of thoé¢he basic fault models used to
describe the defects which can appear during theufaeturing process of integrated
circuits and with an introduction in the field ofilt-in self-test. An overview of the

state-of-the-art methods that can be used for digec Isynthesis of incompletely
specified Boolean functions is also given.

A new pattern mapping algorithm has been proposedbit-flipping and more
generally fortest set embeddirQLBIST schemes. The new mapping method exploits
the maneuverability and the compactness of the BBEed function representation.
Evaluations performed in the case of stuck-at fimsiting have revealed that both run-
time and memory requirements are improved by sewvedars of magnitude as com-
pared to the original cube-based approach. Moredtier proposed generation and
implementation of the BFF does not require moretimn@ and memory resources
than the ATPG or the fault simulation steps. THiigiency gain can be used to obtain
even better solutions in terms of logic overhead fanlt coverage.

For the first time, the effectiveness of the emlgedtést sequences obtained by map-
ping deterministic test cubes to pseudo-random dequiences has been evaluated
with respect to the coverage of non-target defddte. resistive bridging fault model
has been used to model non-target defects. Thaimgrdal results reveal that both
deterministic test cubes and pseudo-random testeseqs are useful for detecting
non-target defects. Furthermore, it has been shbanincreasing the length of the
test sequences enhances their non-target defeetageyand significantly reduces the
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logic overhead. This increases the appeal of tlopgsed DLBIST scheme and
reduces the need for expensive ATES.

An extension of the bit-flipping DLBIST approach foansition fault testing has been
also presented. This is the first time when a DIIBBEEheme is used to test delay
faults in circuits with standard scan design. Tineestigated delay testing approach is
based orfunctional justification but the scheme can also be applied with a minimum
modification to an approach basedswan shifting A special combinational module,
the correction logic(CRL), has been introduced to further improve it pattern
embedding. Due to the rather low random-pattertaltdgy of the transition faults,
the saturation of their random fault coverage nexguisignificantly longer test se-
quences, which in turn is beneficial for both limi the hardware overhead and
improving the coverage of the target and non-tadgétcts.

A new BDD-based logic synthesis procedure for utagand incompletely specified
functions with large DC-sets has been presentedchwban help to find efficient
multi-level implementations. The problem is redutedhe construction of a minimal
FBDD by performing DC-based node reduction and igaby partitioning the
definition space of the target functiorio a reduced number of subspaces, which may
be mapped either to ‘0’ or to ‘1’. Heuristics arged to find near-optimal partitions of
the definition space into such subspaces and, qoesdy, to minimize the path and
node count of the resulting FBDD-like covers. Farthore, this approach is also able
to use the DC-set to reduce the number of logicaipes (i.e. gates) appearing in the
circuit description of the non-terminal nodes.

Despite the fact that this new approach has beerelaged to optimize the
implementations of the BFF and the CRL, the resglalgorithm can be applied for
the synthesis of any incompletely specified funttibat is irregular and has a large
DC-set. Among others, examples of such functioestlaebit-fixing function(BFX)
[Tou96] and theX-making functiol)XMF) [Tan04].

Applying this approach to the synthesis of somecherark bit-flipping functions
[Ghe04] resulted in implementations whose circesgaiptions contained about 70%
less logic operators than the implementations nbthwith the methods available in a
state-of-the-art BDD packageeétrict operator and variable reordering) [Cudd]. The
synthesis of the resulting circuit descriptions hwiBynopsys Design Compiler
revealed that the FBDD-based approach improveargeefigures by a factor between
two and three, while the run-time consumption gmiicantly reduced. Moreover, the
proposed method scales better and succeeds to lgsttem advantage of thabon’t
careswhich in the descriptions of SIS and MIS are refdrnio asexternal don’t cares

A tool that implements a version of the approaatsented here can be downloaded
from [Fbdd].
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8.2 Contributions Overview

The main contributions of the research presenteédisnwork are as follows:

Scalable Pattern Mapping Approach: An innovative approach has been
introduced for mapping deterministic cubes to augserandom test sequence.
This approach relies on the ROBDD-based representand manipulation of
the involved Boolean functions and sets. The usgarithm assigns a pseudo-
random pattern to each deterministic cube basedeanand efficient mapping
cost functions.

Evaluation of an Embedded Test Sequence with Respect toet Coverage of
Non-modeled DefectsAn analysis has been presented of the coveragerof
modeled defects by pseudo-random sequences in wdetdrministic cubes
have been embedded for the test of stuck-at farétsistive bridging faults have
been used as a surrogate of non-modeled defects.

Evaluation of the Test Length Impact on Hardware Overhead and Bfect
Coverage: The impact of the length of the embedded test exatps on the
hardware overhead and the coverage of non-modefettd has been investi-
gated as well.

Extension of the bit-flipping DLBIST for Transition Fault Testing: An
extension of théit-flipping DLBIST scheme for transition fault testing hasrbee
described. In order to improve pattern embeddihg, kit-flipping scheme has
been extended with a combinational logic moduldedatorrection logic
Possible tradeoffs between test length, hardwasghead and final transition
fault coverage have been presented.

Innovative FBDD-Based Logic Synthesis ApproachAn important achieve-
ment of this work is a logic synthesis tool, whigh used to improve the
implementation of the BFF. In general, this tooéspecially suited for the logic
implementations oirregular functions that have larg#on’t caresets. For such
functions (e.g. BFF, BFX [Tou96] and XMF [Tan04])BBD-like covers are
obtained and used as multi-level logic implemeaotegi

The correspondence between these contributiongrendhapters of the manu-
script is given in Table 8.1.
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Work Contributions Manuscript Structure

Scalable Pattern Mapping Approach

Evaluation of an Embedded Test Sequence with
Respect to the Coverage of Non-modeled Defects Chapter 5

Evaluation of the Test Length Impact on Hardware
Overhead and Defect Coverage

Extension of the bit-flipping DLBIST for Transition

Fault Testing Chapter 6

Innovative FBDD-Based Logic Synthesis Approach Chapter 7

Table 8.1: Contributions of the work mapped to the structfrthe manuscript.

8.3 Future Work

The proposed DLBIST scheme has been investigatég with respect to the
transition fault testing based dunctional justification(Chapter 6). Nevertheless, in
some cases [Sav94] tkean shiftingapproach may ensure a better random testability
of the transition faults and, consequently, a lowardware overhead for the same
final fault coverage.

Transition fault testing based on scan shifting loardone in parallel to stuck-at fault
testing without affecting the diagnosis capabilltythe case of transition fault testing
based on functional justification, the diagnosimptexity is significantly increased if
the investigated circuits are not guaranteed t@ paes stuck-at fault test, at least for
the initialization patterns used for transition Ifaiesting. The problem here is that
such a guarantee is expensive in the context efmgtistic logic BIST.

Once an appropriate ATPG tool will be availableg gproposed DLBIST scheme
should be evaluated also for the test of path dédaits especially of the critical
paths. A combination of critical path-delay testsd @ransition tests provides an
adequate at-speed testing [Bus00].

The test sequence generated by the DLBIST schemogliced here cannot be modi-
fied anymore, once the target CUT together withickdd test hardware have been
cast in silicon. Consequently, it would be intareggstto combine this method with
other approaches that retrieve the test informdtiom on-chip memory or ATE. In
this way, the scheme introduced here becomes rexible and also the memory and
bandwidth requirements of tlom-topmethod may be significantly reduced.

Another extension of the work presented here ideteelop a new data compression
method for deterministic test cubes, in which, east of encoding directly deter-
ministic patterns, bit-flipping and reseeding [HZI9information is stored and
compressed. This method would work especially wekn thedon’t careratio in the
embedded deterministic test cubes is sufficiendyge, such that the encoded
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information can be efficiently stored on-chip or @artheap ATE. A first step in this
direction is described in [Hak05].

The power consumption of any at-speed BIST-basedoaph can exceed the power
rating of the chip, due to the high signal activitat random test patterns cause in
some circuits. Both peak and average power fopthsented DLBIST scheme should
be analyzed and, if necessary, corrected.
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Appendix 1 — Tables with Experimental Results

The first experiments considered here refer toetvmuation of the new BDD-based
pattern mapping approach presented in Chapter Ib neipect to the original cube-
based approach [Wun96]. The experimental resulebl€l 5.5 — 5.11) have been
obtained using GNU Linux machines equipped withB & memory and an AMD
Athlon-XP processor running at 1.5 GHz. The BDDdaihsomputations have been
implemented using the CUDD-package [Cudd].

Table 5.5 presents the characteristics of the indlislesigns that have been used as
benchmark circuits. The first column reports thewit name encoded @i, whereN
denotes the number of nets in the design. The gecolumn gives the number of
scan flip-flops contained in each circuit. The lasb columns report the stuck-at fault
coverage and efficiency (Definition 2.1 — 2.2) a&sk@d after applying 10,000 pseudo-
random test patterns generated by a 32-staged BB with a primitive polynomial.

Deterministic test cubes generated with an indais&iTPG tool (AMSAL™) have
been embedded into the pseudo-random test sequeasiogsthe original cube-based
and the new BDD-based mapping approaches.

During the generation of the BDD-based represemtatiof the resulting BFFs, no

static or dynamic variable reordering has beenoperéd. The variables have been a
priori and optimally arranged in groups correspogdio the state bits of the LFSR,

the pattern counter and the shift counter. No phslséier has been used. The
experiments have been performed with the sameblartader for all the designs.

In Table 5.6, the BDD-based and the cube-based img@pproaches have been
compared with respect to the run-time requirementthe pattern mapping, ATPG
and fault simulation tasks. The BDD-based appro@cuces the pattern mapping
time from several days down to a few minutes. Turetimes of the two other tasks,
ATPG and fault simulation, are considerably impaas well.

Design|# Flip-flops |Random stuck-at fault coverage [%] Random stuck-at fault efficiency [%]
p19k 1,407 63.11 69.03

p59k 4,730 87.30 97.00

pl27k 5,116 82.14 83.96

p278k 9,967 79.92 81.29

p333k| 20,756 93.64 95.57

p951k| 104,624 92.91 92.56

p2074Kk 58,835 64.11 92.54

Table 5.5:Benchmark designs characteristics with respeduitksat fault testing.

19 Automatic Multi restartable Scan test pattern getien And Localization of faults.
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Cube-based approach BDD-based approach
Design Mapping |ATPG time |Fault simulation| Mapping |ATPG time|Fault simulation
time [h:m] [h:m] time [h:m] time [h:m] [h:m] time [h:m]
p19k 02:57 00:00 00:33 00:02 00:00 00:01
p59k 02:20 00:05 00:30 00:02 00:01 00:03
pl27k 76:54 02:22 18:25 00:14 03:10 00:12
p278k 193:10 05:20 37:23 00:09 02:29 00:22
p333k 116:15 00:48 47:45 00:14 00:37 00:17
p951k - - - 03:12 01:14 00:57
p2074k - - - 03:59 02:55 00:35

Table 5.6: Run-time for different tasks of the cube-based BBiD-based algo-
rithms. For the desigp2074ka machine equipped with 2 GB of memory
and an Intel Pentium 4 CPU running at 2.4 GHz lesnhused.

The overall run-timeTime and the memoryMemory consumption (including also
the run-time and the memory required for the BDBduhlogic optimization) are
quoted in Table 5.7. The BDD-based approach is &bleduce the total run-time
from more than a week down to several hours, wdlge the memory requirements
scale quite well with the circuit size.

The fault efficiencies and the cell area overhehthioed with both mapping ap-
proaches are reported in Table 5.8. In order te ltawnparable experimental results,
the fault efficiency of the BDD-based approach basn limited to the maximum
reachable with the cube-based approach. By spendorg resources, even higher
fault efficiency could be achieved. The only liniité is represented by the resources
given to the ATPG tool. The last columng|Carea shows the cell area overhead of
the BFF implementation relative to the cell areghef CUT, obtained using Synopsys
Design Compiler and a proprietary library. Only tlogic overhead of the BFF
implementation is given. The overhead of the offeets of the DLBIST hardware is
relatively small and it may be neglected.

. Cube-based approach BDD-based approach
Design
Time [h:m] Memory [MB] | Time [h:m] | Memory [MB]
p19k 03:30 58 00:27 58
p59k 02:55 138 00:11 66
pl27k 97:41 368 11:13 211
p278k 235:53 584 15:21 318
p333k 164:48 660 09:07 290
p951k - - 14:22 1106
p2074k - - 18:37 1865

Table 5.7:Run-time and memory consumption of the cube-basddB®D-based
algorithms. For the desigr074ka machine equipped with 2 GB of
memory and an Intel Pentium 4 CPU running at 2.4 Gék been used.



Tables with Experimental Results

Cube-based approach BDD-based approach
pesion S:f?gzrg?;! i[ Cell area [%)] S&?;Zn?;?;: ; Cell area [%]
p19k 96.57 89.67 97.46 21.71
p59k 98.95 7.64 99.05 3.59
p127k 94.56 27.86 95.47 9.81
p278k 90.67 25.77 91.47 9.66
p333k 97.41 12.07 97.47 3.56

p951k - - 99.65 1.49
p2074k 98.97 2.64
Table 5.8:Fault efficiency and logic overhead of the cubeeldaand BDD-based
algorithms.

Due to excessive run-time and memory requiremendsexperimental results are
available for the cube-based approach in the chdee @ largest designs in Table 5.6,
5.7 and 5.8.

Table 5.9 illustrates how the new pattern mappipgr@ach scales when the target
fault efficiency is increased to the highest levalswed by the ATPG tool. Most of
the additional run-time is consumed during the mheir@stic pattern generation and
the BDD-based logic synthesis of the BFF, while tihee spent for fault simulation
remains constant. These final fault efficiencies practically not reachable by the
cube-based approach in the case of the largestdé@s@gns. The presented approach
does not only scale very well in terms of run-tiamel memory consumption, but also
in terms of fault efficiency and area overhead. ifiddally, it is shown that the logic
overhead decreases considerably in the case tHrtfest designs.

Below, it is shown how the new mapping approacHqgpers on smaller, but still
difficult to test designs (Table 5.10 — 5.11). Huis purpose, the ISCAS-85 and the
combinational part of the ISCAS-89 benchmarks [Bip8un96] have been used.
The two benchmark suites are identified with thelsgls “c” and “cs”, respectively.

Design # Embedded | Fault efficiency Ti.me Memory | Cell area
patterns [%] [h:m] [MB] [%0]
p19k 181 99.19 00:32 91 25.36
p59k 137 99.10 00:11 68 3.75
pl27k 582 99.26 18:20 295 21.81
p278k 1,549 98.87 55:37 536 34.58
p333k 1,298 99.30 23:00 359 7.00
p951k 259 99.65 14:22 1,106 1.49
p2074k 302 98.97 18:37 1,865 2.64

Table 5.9:Results obtained with the BDD-based approach tagéhe fault
efficiency allowed by the ATPG tool. For the desg278kandp2074k
a machine equipped with 2 GB of memory and an P&gitium 4 CPU
running at 2.4 GHz has been used.
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Table 5.10 presents the number of scan flip-flopstained in each circuit and the
stuck-at fault efficiency (Definition 2.2) obtainexdter applying 10,000 pseudo-ran-
dom patterns generated by a 13-stages long LFSRanprimitive polynomial. Only
those ISCAS benchmarks which still have undeteataredundant stuck-at faults
after applying 10,000 pseudo-random patterns aabyzed.

In Table 5.11, a comparison is presented betwesBED-based and the cube-based
approaches with respect to the mentioned ISCASdssin most of these experi-
ments, it has not been possible to achieve 1008 fault efficiency, due to the fact
that the available ATPG tool was especially adagtedlarge industrial designs,
where it is not relevant whether a few fadigpensiveo detect remain undetected.

For all the designs it has been possible to reagiehfinal fault efficiencies with the
BDD-based approach. This is due to a loss of pseanidomly testable faults after
some iterations of the cube-based approach, whicidcnot be recovered by the
available ATPG tool. With the exception of 2 smi&ICAS designsas641cs713,
which have been completed in a few seconds, tla toh-time of the BDD-based
approach is much shorter, sometimes by even orex ofdnagnitude. For the larger
ISCAS designs the difference between the two ambes is more obvious. This
proves the better scalability of the BDD-based rllgm, just like the experimental
results for the large industrial designs. Furtheemavith the exception of a few
ISCAS designs, the memory consumptias641 cs713, cs838and the logic area
(cs641cs5378 are lower for the BDD-based algorithm.

Tables 5.12 — 5.13 present the experimental resfilen investigation of the non-
target defect coverage of the embedded test segsi@itained with the bit-flipping

DLBIST scheme. Resistive bridging faults are usedaasurrogate of non-target
defects [Eng05]. The same types of machines hawn heilized as for the

experiments considered before.

Design Size [FFs] Random fault efficiency[%]
c2670 221 91.77
c7552 313 97.11
cs641 78 98.01
cs713 77 98.16
cs838 67 69.19
cs5378 263 97.44
€s9234 286 87.75
€s13207 852 91.69
€s15850 761 94.48
cs38417 1,770 92.22
cs38584 1,768 98.05

Table 5.10:Characteristics of the ISCAS (85 and 89) benchrdasigns.
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Cube-based approach BDD-based approach

Design Final fault | Time |Memory |Cell area Final fault | Time |Memory [Cell ares

efficiency [%]| [m:s] | [MB] [um? |efficiency [%]| [m:s] | [MB] [um?]
€2670 99.00 07:3( 10 2,213 99.67 06{55 5 852
c7552 99.73 03:59 14 5,694 99.87 01{16 6 3,272
cs641 99.65 00:03 4 73 99.65 0004 4 101
cs713 99.78 00:03 4 87 99:78 00:03 4 79
cs838 97:13 00:13 4 1,631 98.35 00j06 4 1,362
cs5378 99.71 01:21 14 1,048 99.94 00;12 5 1,065
€s9234 98.89 69:18 17 8,575 99.40 3159 6 5,578
€s13207 99.25 29:06 46 4,740 99.74 01:25 8 3,226
€s1585( 99.88 11:23 27 11,23% 100.00 00:35 9 6,259
€s38417 99.87 557:48 113 56,338 99.99 46:24 15 25,534
€s38584 99.95 94:37 88 8,696 99.99 02:29 14 4,769

Table 5.11:Comparison of the two approaches on some ISCASI(839) designs.

Sequences of 1K, 5K and 10K test patterns have beesidered. The stuck-at fault
coverage (Definition 2.1) achieved by the pseudwoan test sequences (before de-
terministic cube embedding) is reported in Tablé25.The pseudo-random test
sequences have been generated by a 13-stages B8® lwith a primitive
polynomial. The results are reported for those IS and combinational cores of
the ISCAS-89 circuits for which the 10K long pseudadom test sequence did not
detect all the non-redundant faults. For the otB€AS circuits, no pattern embed-
ding is required for 10K long test sequences.

The pseudo-random test sequences have been sithtdateesistive bridging faults
before and after deterministic test cubes have bagedded. The fault set consists of
10K randomly selected non-feedback resistive bnigdaults. A density functiom
(Section 2.2) derived from the one used in [LeaB8@mployed for all experiments.
All measurements are performed using the simulton [Eng03]. The SAT-based
ATPG procedure from [Eng04] is used for computihg txact value of AR
(Definition 2.5). Due to the fact that the embeddeterministic cubes consider only
the stuck-at faults, resistive bridging faults arealid surrogate of non-target defects.

Design 1K 5K 10K

c7552 92.38 93.51 94.68
cs09234 72.31 80.79 83.60
€s13207 76.56 86.76 91.47
€s15850 84.58 89.98 91.14
cs38417 86.23 90.57 92.61
€s38584 90.47 93.44 94.31]

Table 5.12:Stuck-at coverage of pseudo-random sequences lteaministic
cube embedding.
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Due to the fact that AMSAL and the available brighaglt simulator [Eng03] do not
use compatible circuit formats, the Mentor Grapmsl,tFlexTest, has been utilized
for stuck-at fault simulation and deterministicttpattern generation. The determinis-
tic test patterns generated by FlexTest have be@sformed into deterministic test
cubes by insertindon’t caresbased on fault simulation.

Table 5.13 reports the resistive bridging fault eage FG (Definition 2.6) of the
pseudo-random test sequerfBandom FG) and of the test sequence obtained after
the deterministic cubes had been embedd#edbedded Fg), for the circuits men-
tioned in Table 5.12 and the test sequence lengtgioned before. The size of the
bit-flipping logic (LSIZE) is measured as the number of 2-input logic opesah the
resulting circuit descriptions.

It can be seen that the resistive bridging faultecage of the pseudo-random se-
quences is consistently higher than their studiat coverage. Interestingly, random
pattern resistant faults seem to be distributefibrdintly in the case of stuck-at and
resistive bridging faults. Two circuit€$09234 cs38584 have more random pattern
resistant resistive bridging faults than the othimuits. Whilecs09234has the lowest
stuck-at fault coverages38584has the second highest stuck-at coverage. Hdmee, t
validity of stuck-at fault coverage in identifyirgrcuits with many random pattern
resistant resistive bridging faults appears tarédd.

The resistive bridging fault coverage increasessictamably due to embedding.
However, the pseudo-random test patterns also ibatdrto the detection of non-
target defects. This is implied by the fact thaplging more pseudo-random test
patterns results in significantly higher resistlwédging fault coverage. This can be
seen best in the case of the two circuits with rgedlanumber of random pattern
resistant resistive bridging faultss09234andcs38584 for which the coverage gain
from 1K to 5K is 5% and 2%, respectively. Note thia¢ circuits for which the
sequence Yyielded good resistive bridging fault cage before embedding also have
the highest resistive bridging fault coverage agrabedding.

Finally, it can be observed that the increase eftdst sequence length reduces the
overhead of the bit-flipping logic up to a factdr24 (€s13207.

1K 5K 10K
Design| Random | Embedded Random| Embedded Random |Embedded
FCe FCe LSIZE FCe FCq LSIZE FCq FCq LSIZE
c7552 99.28 99.83 583 99.44 99.87 546 99.61 9987 33 4

cs09234 90.68 98.55 1,097 95.3( 99.26 824 96.%5 99.39 683
cs13207 95.58 99.31 889| 97.67 99.66 541 98.53 99.70 367
€s15850 96.29 99.36 1,107 98.34 99.67 783 98.81 99.70 686
cs38417 97.50 99.46 4,13% 98.57 99.54 3,17098.93 99.65 2,697
cs38584 93.01 98.74 894| 95.1( 99.43 878 96.47 99.67 590

Table 5.13:Resistive bridging fault coverage (E®f the pseudo-random and
embedded test sequences and DLBIST overhead (LSIZE)
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In Table 6.1, the effect of using tleerrection logic(CRL) on the logic overhead of
the bit-flipping DLBIST architecture is shown inetlsase of stuck-at fault testing. The
final stuck-at fault efficiency and the 2-input logyates in the circuit description of
the bit-flipping logic and the correction logic aeported for both architectures (with
and without CRL). The last colum®yerhead Improvemenshows the ratio of the
overhead with and without CRL.

The next experiments considered here refer to theuation of the bit-flipping
DLBIST scheme, as proposed in Chapter 6, with m@sfme transition fault testing.
The reported experimental results (Table 6.2 — Bab)e been obtained using GNU
Linux machines equipped with 2 GB of memory andlrsel Pentium 4 processor
running at 2.4 GHz.

Table 6.2 presents the industrial designs that bae& used as benchmark circuits. It
is assumed that these circuits contain only siogtde paths. The same circuit
denomination is utilized as in the case of Tabte he second and the third columns
give the number of scan flip-flopg Flip-flops and scan chaingt Scan Chains
contained by each design. The following coluriagt lengthshows the length of the
test sequence. The last two columns report thedaseandom stuck-at and transition
fault efficiencies (Definition 2.2), respectivelffor each design, the last entry line
corresponds to a test sequence whose applicatiadwequire one second at the
frequency of 100 MHz. The pseudo-random test pastbiave been generated by a
32-stages long LFSR with a primitive polynomial anpghase shifter.

In Table 6.3, one can compare the results obtaus#t the bit-flipping DLBIST
approach for the stuck-at and transition faultingsof the benchmarks in Table 6.2.
Table 6.3 reports the number of embedded deterticinest cubes, the percentage of
specified bits in each set of embedded test cuthesachieved final fault efficiency
and the cell area overhead of the BFF and CRL (Eigw3) implementations for both
fault models. The overhead of the other parts ef ILBIST hardware is relatively
small and it may be neglected.

In order to limit the hardware overhead in the cakéhe three largest designs, the
number of deterministic test cubes embedded forsitian fault testing has been
limited to 800.

Without CRL With CRL Overhead

Design BEF | Final fault efficiency |BFF+CRL|Final fault efficiency | ImProvement
[# gates [%)] [# gates] [%] [%]

p19k 8,636 99.98 8,520 99.97 98.7
p59k 3,357 99.15 3,015 99.15 89.8
pl27k | 71,795 99.87 68,049 99.87 94.8
p278k | 97,270 99.49 93,443 99.42 96.1
p333k | 33,406 99.43 31,136 99.44 93.2

Table 6.1: CRL impact on the overhead of the bit-flipping DIS=1 architecture.
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Desian #Flip- | #Scan| Test | Random stuck-atfault | Random transition fault
g flops chains | length efficiency [%] efficiency [%)]
10K 80.8( 73.6¢€
ploK | 1407 | 20 | 32K 85.5¢ 82.6¢
64K 90.3¢ 86.97
1923K 95.87 90.7¢
10K 97.12 81.8i
p59K | 4,730 20 | 32K 97.9¢ 85.6:
64K 98.11 87.31
192K 98.3¢ 89.67
10K 84.4:2 55.8:
pl27k| 5116 | 11 32K 89.3¢ 64.€0
64K 91.6¢ 68.57
187K 93.7¢ 73.82
10K 84.2¢ 63.8¢
p278K| 9,967 32K 88.6¢ 71.0Z
64K 90.6:2 75.0C
318K 93.3¢ 82.81
10K 95.62 66.6¢€
p333k| 20,756 | 30 | 32K 96.7¢ 73.3¢
64K 97.1¢ 76.3¢
140K 97.51 78.2¢

Table 6.2:Benchmark characteristics with respect to transitault testing.

With the exception of the desigri9K the deterministic cubes embedded for transi-
tion fault testing have larger ratios of specifigts. This is due to the lower transition
fault testability. In the case of the desftBK this lower testability has the effect that
the used ATPG tool (AMSAL) delivers less determikisest cubes with less detected

faults and also less specified bits per cube thdahea case of stuck-at fault testing.

N
»

Stuck-at fault testing Transition fault testing

Design # Ratio of| Fault | Cell # Ratio of | Fault | Cell

Embeddedspecifiegefficiency area [Embedded specified |efficiency area

patterns |bits [%] | [%] [%] | patterns | bits [%] [%] [%]
p19K 181 26.48 99.19 25 145 10.64 94.40 17
p59K 137 2.77 99.10 4 1,077 03.00 96.43
pl127K 582 12.04 99.26 22 800 15.24 76.85 43
p278K 1,549 6.10 98.87 35 800 14.48 86.66 62
p333K 1,298 0.75 99.30 7 800 2.94 84.95

N
N

Table 6.3:DLBIST applied to stuck-at and transition faulttieg (10K test patterns).



Tables with Experimental Results 103

In all cases, the final stuck-at fault efficiensymuch larger than the final transition
fault efficiency. Moreover, this has been achievéoh@ with a lower cell area
overhead with the exception of the des@tOK The reason for this difference is
again the lower random testability of the transitfaults with the consequence that
more patterns have to be embedded and more biestbave flipped or preserved in
the pseudo-random sequence. This seems not toebeate of thg@l9K design.
Nevertheless, as mentioned before, here it wasthestATPG that provided fewer
deterministic test cubes to be embedded for tiansiault testing.

In Table 6.4, one can observe the impact of inangatke test length on the final fault
efficiency and cell area overhead (BFF and CRLihefconsidered DLBIST scheme
used for transition fault testing. The run-time anédmory requirements are reported
as well.

As expected, the hardware overhead of the firstdesigns, for which the number of
embedded patterns has not been limited, is sigmifig reduced by the increase of the
test length. Extending the test length from 10K4& reduces the overhead by more
than 10% of the CUT size. In the case of the lasttyecorresponding to the design
pl9K increasing the test length by 2 orders of mageitoas reduced the overhead to
half of the level from the previous entry that esponds to a test sequence containing
64K patterns, at the price of a large increasehe run-time and memory require-
ments.

Design I(;rr?gstth Emedded Erﬁ: M[i/ln;c])ry Felfrlli?:li;ig Fi?#;trc?\f/]l%eenniy g\?e”rr?:ﬂz
patterns | [h:m] [%] [%] [%]
10K 145 00:16 58 94.40 20.74 17
019K 32K 125 00:24 61 94.40 11.76 11
64K 105 00:23 67 94.40 7.43
1,923K 54 04:01 577 94.41 3.67
10K 1077 07:22 252 96.43 14.56 26
059K 32K 942 06:19 240 96.55 10.92 20
64K 865 05:45 230 96.64 9.33 18
192K 738 05:53 286 96.69 7.02 15
10K 800 32:55 716 76.35 20.52 43
p127K 32K 800 32:09 738 82.20 17.40 44
64K 800 31:47 755 84.98 16.45 44
187K 800 30:17 786 87.75 13.93 42
10K 800 29:01 1,408 86.66 22.80 62
32K 800 30:34 1,415 90.24 19.22 57
P278K | g4k 800 | 32:16 1,431 91.84 16.84 54
318K 800 48:37 1,508 94.93 12.12 51
10K 800 33:40 758 84.95 18.29 22
p333K 32K 800 35:58 760 86.77 13.38 19
64K 800 35:29 742 87.61 11.22 17
140K 800 35:39 801 88.25 9.99 15

Table 6.4:Test sequence length impact on DLBIST used forsttem fault testing.
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As in the case of the previous experiments, thebaurof embedded deterministic test
cubes for the three largest designs has been drtot&00, in order to limit the hard-
ware overhead. As long as the same number of distim test cubes is embedded,
it is difficult to predict the dependence of thedware overhead on the length of the
test sequence. In this case, the overhead prindejpends on the average number of
specified bits per embedded test cube, which isroehed by the number and the
difficulty of the target faults.

Longer pseudo-random test sequences leave undktfectés which are more diffi-
cult to test. This tends to increase the numbepetified bits necessary to detect the
remaining fault. On the other hand, this may alsoréase the number of new de-
tected faults per embedded test cube. That is tikydifficult to predict the evolution
of the average number of specified bits per embetielt cube when the length of the
test sequence is augmented. Increasing the leridtie dest sequence also improves
the pattern embedding opportunities.

In the case of the desigrl27K increasing the length of the test sequence does n
significantly change the hardware overhead, bimjroves the final fault efficiency
by more than 11%. In the case of the despig8Kandp333K increasing the length
of the test sequence has a twofold beneficial impgalcoosing a test sequence length
of 318K and 140K instead of 10K reduces the ovetli®all% and 7%, respectively.
In parallel, the final fault efficiency is improveay more than 8% and 3%, respec-
tively. It should be mentioned that the increasehef test sequence length improves
the coverage of the non-modeled defects as wetki(Be5.6).

In the case of the three largest designs, incrgdbm length of the test sequence has
no significant impact on the run-time and memoxyuieements.

Table 6.5 reports possible trade-offs between #udt fefficiency and the hardware
overhead in the case of the largest three benchuahesigns. The considered test
sequences contain the maximum number of test pattehich can fit in one second
of test time at the frequency of 100 MHz. In theeca$ the design127K and
p278K 10 deterministic patterns are already enougtbtain a larger fault efficiency
than in the case when 800 deterministic test pattare embedded into a 10K long
test sequence. In this way, the hardware overhaade reduced to 1% from 43%
and 62% (Table 6.4), respectively. In the casehefdesignp333K a similar fault
efficiency can be achieved by embedding 100 detestic test patterns, at the cost of
5.5%, instead of 22%, hardware overhead.

The experiments described in the following havenbeenducted to evaluate the
FBDD-based logic synthesis approach proposed irpteh&. For this purpose, SIS
[Sen92] and the OBDD-based methods available inQtl®D-package [Cudd] that

are able to handldon’t careshave been used as reference. The experiments have
been performed on GNU Linux machines equipped #i@B of memory and an Intel
Pentium 4 processor running at 2.4 GHz.

Table 7.1 presents three multi-output bit-flippifghctions which will be used as
benchmark functions. These functions can be dowlelddrom [Fbdd]. The second
and the third column report the number of inputd antputs of the target functions.
The fourth column (|]|ON-set|| + ||OFF-set||) givessum of the cardinalities of the
ON-set and the OFF-set corresponding to each famclihe last two columns show
the non-terminal node count of the OBDD-based mapr&tion of each function.
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' Test # Run— Memory Fin_al_ fault F_ault efficiency | Cell area
Design length Embedded t@e [MB] efficiency | improvement overhead
patterns | [h:m] [9%6] [%] [%]
10 5:16 477 76.83 3.01
50 5:38 492 79.48 5.66
pl27K| 187K 100 6:41 510 80.56 6.74
400 16:22 731 85.28 11.46 24
800 30:17 786 87.75 13.93 42
10 23:44| 1,150 87.96 5.15
50 24:00| 1,169 88.98 6.17 4
p278K| 318K 100 26:44| 1,190 90.71 7.90 6.5
400 34:53| 1,306 93.26 10.45 27.5
800 48:37| 1,508 94.93 12.12 51
10 5:33 528 81.29 3.03 15
50 7:36 630 83.32 5.06 4
p333K| 140K 100 9:44 661 84.47 6.21 5.5
400 31:05 786 87.28 9.02 11.5
800 35:39 801 88.25 9.99 15

Table 6.5:Possible trade-offs between the fault efficiencg ire hardware
corresponding to the maximum test length whichfitan one second
of test time at the frequency of 100 MHz.

First, the FBDD-based approach has been comparedheorestrict operator

(Definition 4.14). This evaluation has been donthwespect to the synthesis of each
single output of the functions in Table 7.1. Theutes are reported in Table 7.2. For
the other OBDD-based optimization methods from [@uithat are able to handle
don’t cares, likeconstrain (Definition 4.13) orsqueezesimilar results have been

obtained as witlestrict
The node sharing among the ROBDDs in the manag#reo€UDD-package, which

correspond to different outputs of the target fiomd, has not been taken into account
and, consequently, no node or logic sharing has bkewed among the FBDD-based

covers of the different outputs.

Multi-output function | #inputs | #outputs ||||(())NF-|§,-21|'[|T O'\[;Bn[;[d):;jize OF; ?‘[0)5) ess]s iz¢
p19K 82 24 85,215 615,379 654,387
p59K 77 19 9,918 158,160 315,314
pl27K 67 10 663,750 6,876,383 8,067,136

Table 7.1: Multi-output incompletely specified benchmark fuocts.
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Single-output Restrict-based FBDD-based FBDRestrict
function
[L(;:osééi] [;Orf]fosézeesl #nodes #gates E#}Z #nodes#gates Run- time|#nodeg#gates E#}Z
142 142 2 3 Oms 1 0 Oms 0.50 0 -
207 77 2 1 Oms 1 0 Oms 0.5 0 -
162 160 3 3 Oms 1 0 Oms 0.38 0 -
206 308 6 5 Oms 1 0 Oms 0.1y 0 -
142 450 5 5 Ooms 1 0 Oms 0.20 0 -
321 801 9 10 Oms 1 0 Oms 0.11 q -
519 950 12 15 Oms 6 6 10ms 0.50 0.40
605 1,554 21 28 Oms 7 6 20ms 0.33 0.p1
1,011 2,447 29 39 Oms 10 11 20ms 0.34 0{28 -
1,096 2,853 31 46 Oms 5 4 10ms 0.16 0,09 -
1,696 1,936 30 49 Oms 11 14 50ms 0.37 0]29
1,637 3,902 54 82 10ms 14 18 60ms 0.26 0(22 6
2,132 3,416 52 76 Oms 3 2 10ms 0.06 0,03 -
2,877 4,483 70 117 Oms 24 3] 80ms 0.34 0}26 -
2,983 5,421 61 105 Oms 22 30Q 420ms 0.86 0129 -
4,533 5,369 82 146 Oms 15 17 60ms 0.18 0}12 -
4,997 8,100 105 208 Oms 41 52 370ms 0.39 0.25 -
6,516 8,592 109 190 Oms 16 2( 80ms 0.15 0111 -
6,672 10,402 130 243 Oms 30 37 150ms 0.p3 a.15 -
10,620 15,783 199 365 10ms 68 102 290ms 0J34 (0.289 |2
9,644 17,004 202 390 10mg 49 61 250ms 0.p4 Q.16 25
14,152 22,127 259 493 10ms 38 50 180ms 015 0.10 18
21,934 30,621 369 736 10ms 21 33 310ms 0,07 0.04 31
24,298 32,539 368 774 10ms 22 28 270ms 0,06 0.03 27
30,745 63,286 651 1,337 20ms 235 373 4s:370ms Q0.36.28 218
60,075 87,712 897 1,973 20ms 230 342 3s:31Qms Q.26.17 165
46,628 116,086 1,138 2,261 20ms 287 464 5s5:370ms 25 (. 0.21 268
64,744 128,072 1,260 2,763 30ms 285 429 75:530ms 23 (. 0.16 251
101,594 133,596 1,330 3,13p 40ms 488 718 13s:410n@37 0.25 335
102,056 134,892 1,371 3,17| 40ms 6D 82 3s:290ms 5 0.00.03 82
122,817 168,964| 1,646 3,830 50ms 347 541 11s:310n@s21 0.14 226
121,533 179,303] 1,682 3,911 50ms 128 1y0 45:800ms.08 0.04 96
128,631 175,122 1,673 3,94p 50ms 84 103 3s:250ms 05 (. 0.03 65
125,024 181,348 1,700  3,97f 50ms 6b 80 3s:280ms 4 (.00.02 65
135,639 171,062 1,754 4,092 50ms 143 194 55:560ms.08 0.05 111
140,137 179,155| 1,758 4,140 50ms o 123 4s:230ms 06 (. 0.03 84
168,650 202,362 2,075 4,908 60ms 104 186 5s:270ms.05 0.03 87
162,915 215,385 2,129 4,980 60ms 103 124 55:840ms.05 0.02 97
165,145 216,792 2,129 4,97b 60ms 546 86  20s:510n@26 0.18 341
172,147 242,628 2,221 5,31P 70ms 858 485  38s:500n0.39 0.28 550
170,524 249,451 2,253 5,32p6 70ms 8717 1,483 43s:9740n0.39 0.28 615
188,465 249,986| 2,364 5,651 80ms 601 967  31s:330n0s25 0.17 391
195,170 245,448| 3,688 8,699 090ms 1,068 1,/58 26s18| 0.29 0.20 287
397,885 514,091 7,11y 17,405 210ms 2,635 4,796 $Bm:1 0.37 0.28| 1,804
657,647 816,669| 11,26828,345| 340ms| 2,24% 3,836 5m:21s$ 0.20 0/14 944
1,025,346| 1,261,45816,832| 43,348 | 530ms| 4,29% 7,463 14m:59s 0.26 0/17 1,696
1,001,823| 1,305,25p17,343| 44,309| 490ms| 6,927 13,00122m:42s 0.40 0.29) 2,779
1,296,617| 1,609,52821,175| 54,782| 630ms| 7,190 12,960 32m:17s 0.34 0.24 3,074
1,330,764| 1,706,07/22,397| 57,813| 610ms| 7,771 14,362 28m:46s 0.35 0.25 2,829
1,408,613| 1,749,11p22,837| 59,246| 700ms| 7,672 14,08046m:57s 0.34 0.24 4,024
1,429,387| 1,760,30522,979| 59,886| 730ms| 8,227 14,97238m:19s 0.36 0.25 3,149
1,732,319| 2,137,12528,219| 73,670| 870ms| 8,357 15,041 1h:05m 0.30 0.20| 4,482

Table 7.2:Comparison between the FBDD-based optimizationcggtr and the
approach based on thestrict operator.
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The first two columns in Table 7.2 report the numisenon-terminal nodessizg of

the ROBDD-based representation of each output effdhctions in Table 7.1. The
synthesis results obtained with ttestrict operator and the FBDD-based method are
shown in the following six columns. The two meth@ae evaluated with respect to
the required run-times, the non-terminal node c®@ode$ and the logic operator
counts (gateg in the resulting circuit descriptions.

The number of logic operators in the circuit dgstoon of a non-terminal FBDD node
is obtained by counting the 2-input logic operatorghe expression of the corre-
sponding coveCoVF). In the case of the OBDD-based implementatioa, dincuit
description of each non-terminal node may requijré 8r O 2-input logic operators,
depending on whether the node has 0, 1 or respictvchildren, that are terminal
nodes [Bec92]. The terminal nodes require no harehimplementation and, as a
consequence, their gate count is zero. The cidrstription of a BDD with only 1
non-terminal node requires no logic operator (ghiejts implementation. This is the
case of the first examples in Table 7.2. 1-inpgtdmperators (e.g. INV-operator) are
not counted. The last three columns in Table 7pdntethe ratios between the node
counts(#node$, logic operator counts ¢gateg and the run-timesn-time required
by restrictand the FBDD-based method.

The FBDD-based approach outperforms téstrict-based approach with respect to
the node count and the number of logic operatothenresulting circuit descriptions
at the cost of a run-time increase. The run-tingeirement of the proposed approach
can be significantly reduced by decreasing thech@ay space associated with the
DC-based node reduction. On the other hand, enlgrthis searching space will
further improve the compaction of the resulting HBIke cover. The size of the
searching space associated with the DC-based maoldetron can be controlled with
the help of several thresholds described in AppeRdi

Table 7.3 provides a comparison between the FBDE2dbanethod and OBDD-based
approaches that use combinations of variable reogland theestrict operator. This
evaluation has been done with respect to the ssistlod the functions in Table 7.1.
The number of 2-input logic operatq¢ggates, the node depthNode depthand the
2-input gate depthQate depth of the resulting covers as well as the run-time
required to generate these cove@®ptfmization timg are reported for both ap-
proaches.

Each function has been synthesized three timesegith approach. In the case of the
FBDD-based approach, the reported experiments staagoffs between the run-time
and the number of 2-input logic operators in theuwt description of the resulting
covers. These tradeoffs have been obtained by cl@tige thresholds that control the
size of the searching space associated with thd&¥ed node reduction. The first run
corresponding to each function has been done vaghDC-based node reduction
disabled.

In the OBDD-based approaches used for the evatuafisthe FBDD-based method,
the variable reordering has been applied befestrict and to all ON- and OFF-
ROBDDs corresponding to each output of the targetction. As a result, all the
covers obtained with theestrict operator have the same variable ordering and,
consequently, a maximized probability of node stgaamong them.
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An unexpected observation is that the variabledeang performed on the covers
found withrestrict does not bring any node reduction of a multi-otuimplementa-
tion. Due to the fact that variable reordering igirme consuming procedure, the
reported run-time consumption of the ROBDD-basegra@gch with variable
reordering takes into account only the applicatdrihe restrict operator and of the
variable reordering done before it.

In the first OBDD-based run, no variable reorderrag been performed. In the next
two runs, the variables have been reordered basedhe heuristics: CUDD _
REORDER_SYMM_SIFT and CUDD_REORDER_SYMM_SIFT_CONV [Cldd
respectively. The first heuristic is an implemeiatatof symmetric sifting [Pan94],
while the second heuristic is a converging varadrthe first one. Variable reordering
improves the operator count at the cost of a saamt increase in the run-time. The
converging heuristic for reordering the variabldstlee functionpl27K was still
incomplete after days of execution.

The proposed method outperforms all the investly@BDD-based approaches. Run-
ning the FBDD-based flow with the DC-based nodaictidn switched off results in
operator counts (#gates) that are between two and times better than those
obtained with the best investigated ROBDD-basedagmh. The operator count of
the FBDD-based covers can be further improved abkmg the DC-based node
reduction and increasing the associated searchanes

The FBDD-based approach with DC-based node redudigabled also provides the
implementations with the smallest depths. In theecwhere the DC-based node
reduction is enabled, the maximum node depth iaydviess than the number of input
variables. A variable index appearing more thareomt a path from root to a leave
node has never been observed.

The circuit descriptions presented in Table 7.3eha@en synthesized with Synopsys
Design Compiler and using a proprietary librarybl€a7.4 reports the resulting area
(Cell areg measured in an arbitrary unit, the synthesistime- (Synthesis tinjeand
the total run-time required to generate the cof@ggimization timein Table 7.3) and
to synthesize thenBfnthesis timan Table 7.4).

. Restrict + Variable Reordering FBDD
Mult- output Node | Gate |Optimization Node Gate |Optimization
function figates depth | depth time figates depth depth time
54,672 17 30 0m:20s 8,269 15 24 1m:31g
p19K 39,231 17 30 4m:52s 7,200 23 37 17m:28s
33,443 17 29 40m:22s 7,161 27 42 22m:07s
7,084 20 33 2s 1,543 16 25 11s
p59K 4,669 19 31 2m:16s 1,428 23 34 27s
4,601 19 30 18m:27s 1,423 23 34 1m:109
390,057 23 42 24m:21s 120,122 21 36 35m:18s
P127K 756 883] 24 42 11h:16m| 94,113 68 97 15h:00m
93,837 61 96 16h:34m

Table 7.3:Optimization potential of the FBDD-based and theDDRbased
(restrict + variable reordering) approaches.
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Multi- Restrict + Variable Reordering FBDD
OUIpUL | cg|| grea| Synthesis | Optimization + Cell area | Synthesis | Optimization +
function time Synthesis time time Synthesis time
147,074 46m:32s 46m:52s 34,464 1m:56s 3m:27s
p19K | 101,332| 25m:30s 30m:22s 33,286 1m:29s 18m:57s
89,681 17m:12s 57m:34s 32,917 1m:30s 23m:37s
23,075 1m:54s 1m:56s 7,014 30s 41s
p59K | 15,198 1m:02s 3m:18s 7,046 37s 1m:04s
15,292 1m:07s 19m:34s 6,869 29s 1m:39s
1,349,051 15h:02m 15h:26m 521,814 4h:40m 5h:15m
P127KT1 036,493 7h:06m 18h:22m 507,949 2h:51m 17h:51m
- - - 508,840 3h:07m 19h:41m

Table 7.4:Synthesis results obtained using the FBDD-basedren@®BDD-based
(restrict + variable reordering) approaches.

Compared to the best investigated OBDD-based appytiae FBDD-based flow with
the DC-based node reduction disabled reduces #e fagures by a factor between
two and three. This improvement has been achieyedsing shorter run-times as
compared to all OBDD-based approaches, if one dersithe sum o®ptimization
time and Synthesis timeMoreover, the run-time of this simple configuratiof the
FBDD-based approach is by at least one order ohinatge shorter than the run-time
of the OBDD-based approach with the best logic azsalts.

In the case of the FBDD-based approach, the asedigsecan be further improved by
enabling the DC-based node reduction. Neverthelbgs]ogic area is not always

reduced by enabling the DC-based node reductiorreason for this surprising

phenomenon is the fact that the DC-based node tiedwspproach has not been tuned
towards improving the area performance of Desigmgiter, considered here as a
black-box. This also indicates that Design Compdan perform an efficient node

reduction, equivalent to the node reduction basedyraph isomorphism. The DC-

based node reduction of the FBDD-based approaeéspscially useful in the case
where the available logic synthesis tool cannotgoer efficient logic optimizations.

Table 7.5 presents a comparison between SIS [Sem@R{he FBDD-based approach
with respect to the implementation of incompletgbgcified functions with large DC-
sets. Due to the scaling problems of SIS, only saiée smallest but untrivial
functions that correspond to single outputs of filmections presented in Table 7.1
could be implementedlhe second column reports the number of inputsazhe
single-output function. The third column (]|ON-set||OFF-set||) gives the sum of the
cardinalities of the ON-set and the OFF-set cooedmg to each function. The
fourth and the fifth columns show the non-terminatie count of the OBDD-based
representation of each functionhe next three columns (SIS) report the resulting
number of gates, area and the required run-timenviihe target functions have been
implemented directly with SIS. In the last threduoans (FBDD+SIS), the same
parameters are reported for the case where FBDDddvers have been generated
and later synthesized using SIS. In all the caS&S,has been run with thegged
script. The statemerfull_simplify -m nocomghas been inserted at the beginning of
the script. The librarpand-nor.genlithas been used.
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Single- [ON-set| 4 ON-BDD | OFF-BDD SIS FBDD * SIS
output \#inputs| | see ol size size cell | RUn- cell | RUN-
function [#nodes]| [#nodes] [f9ate$ ... tl[sm]e #gates_ o tl[r:]e
pl 82 229 6,516 8,592 354 76D  28.60 ’1 39 0.11
p2 82 843 21,934 30,621 180 395 3.83 31 |64 0.31
p3 77 1,708 30,745 63,286 614 1,534 1,0465.386 | 754|26.85
p4 77 3,652 64,744 128,072 1,145,586 | 3,997.4) 366 | 820| 7.58

Table 7.5:Comparison between SIS and the FBDD-based appamanhined
with SIS.

It is obvious that the FBDD-based approach scaggteiband improves dramatically
the number of gates and area (between 2 and 1%)tinidis suggests that the
proposed FBDD-based approach enables a much betenf thedon’t careswhich

in the descriptions of SIS and MIS are referrechs@xternal don't care§Bra87]
[Sen92].



Appendix 2 — Implementation of the Proposed
Methods

This appendix presents some information relatetthe¢oC/C++ code that implements
the DFT flow sketched in Figure 6.4 and the logyoteesis algorithm shown in
Figure 7.2. The DFT flow has been integrated intoirdustrial tool of Philips
(AMSAL™), and its algorithm is a generalization of theoainm in Figures 5.5.

The algorithm is implemented by the functido_bddFlow Relative to the storage
system of thdnstitut fir Technische InformatidTI) at the University of Stuttgart,
the functiondo_bddFlowis included in the file:

/home/ghermanv/vob_39 sa/amsal/src/atpg/src/bitidjbitfliping/bddFlow.cxx
in the case of stuck-at fault testing, and in itee f
/home/ghermanv/vob_gd/amsal/src/atpg/src/bitflnitfliping/bddFlow.cxx

in the case of transition fault testing. The padiwve correpond to the AMSAL
release 3.9.

Relative to the flow presented in Figure 6.4, ésks are executed by the functions
listed in Table 9.1.

Function Task
do_simulateLfsrPatterr Performs the fault simulation
do_atpg Performs the ATPG
do_mapping Implements the pattern mapping algorithm

Implements the BDD-based optimization and logi
synthesis of the BFF

)

LogicSyntheis_BFF

)

LogicSyntheis_CRL Implements the BDD-based optimization and logi

B synthesis of the CRL

Synthesizes a combinational module that can be yse

LogicSyntheis WEIGHT 0 weight, with a single set of complementary wesgh

- the pseudo-random test sequence where the
deterministic test cubes are embeded

Table 9.1:The functions that implement the flow presentefigure 6.4.

* Automatic Multi restartable Scan test pattern getien And Localization of faults.
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In the same folder with the fileddFlow.cxxare the filebflBdd.* in which the class
CbflBddis defined. The most important methods of this€lare explained in Table
9.2. In the same folder, the files FBDD.* and bddah be found, where the structure
Nodeand the clas€Bddare defined. The structuModecontains all the parameters
of a FBDD node (Chapter 7). The claSBddis an encapsulation of tH&#DD class
defined in the CUDD-package [Cudd].

In order to enable different configurations of twnsidered DFT flow described in
Figure 6.4, different thresholds and flags are rafi at the beginning of the files
bflIBdd.* andbddFlowcxx. Some of the most important of these parameterde-
scribed in Table 9.3.

The DFT flow described in Figure 5.2 is implementég the procedure
processBitFlip which is included in the file:

/home/ghermanv/vob_3.4.0/amsal/src/atpg/src/bitffbitfliping/bitflip.cxx

relative to the storage systemh the Institut fir Technische InformatildTI) at the
University of Stuttgart.

Function Task

. Implements the mapping cost function used by theepa
ASSIgnTeStPatterr mapp|ng a|gorithm
It is called bydo mapping

LogicSyntheis_BFf}
and See Table 9.1
LogicSyntheis_CR

=

Implements the heuristics described in Figure 7.2

OBdd2FBdd It is called byLogicSyntheis_BFR&nd byl ogicSyntheis_CRL
Performs the DC-based node reduction described in
search Chapter 7
It is called byROBdd2FBdd
WriteVhdIBfi It is called by the functiodo_writeLogicfrom the already
mentioned top functiodo bddFlow
traverse It is used to dumghe BFF and CRL in VHDL format It

called byWriteVhdIBfl
_ It checks whether the bits of a pattern generayeitiéd LFSR
GetFlippedPattern and, eventually, by a phase shifter (PS) have titigyeed by
the BFF and the CRL

Table 9.2: The most important methods of the cl@dsIBdd
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Parameter Name File Used to
Enable the weighting with a single set|of
ComplWeight bflBdd.h complementary weights of the pseu_d D-
random test sequence where determin
patterns are embedded
o Set the fraction of the testgeence wher
SequencePartitioning | - bfiBdd.h deterministic cubes are embedded
useCRL bflBdd.h Enable the use and the |mpllementat|oq of
the correction logic
Control the number of FBDD nodes that
THRESHOLD OVERLAP bflBdd.cxx point to the ROBBDbased representati
- ' of the function implemented by their sub-
graph
Control the size of the searching space
THRESHOLD_SEARCH bflBdd.cxx | used for the DC-based node reduction
(Section 7.3)
Permute the groups of ROBDD variables
corresponding to the state of the: LFSR,
PERMUTATION bfiBdd.cxx shift counter (SC), pattern counter (PC),
phase shifter (PS) and scan chain number
INVERSION bfIBdd.Cxx Inverse the order of_ variables inside the
groups mentioned above
considerLFSR / bfIBdd.cxx Enable the inclusion of the LFSR/PS
considersPS ' states in the definition space of the BFF
Set OFF-set = ON-set
FLIP2FIX bflBdd.cxx |  Transforms the BFF in a completely|
specified function
Store_bfiBdd / bddElowexx Stores/Loads the ROBDD-based
Load_bflBdd representation of the BFF
Store_atpg / bddElowexx Stores/Loads the deterministic test cupes
Load_atpg to be embedded
Mapping bddFlowcxx| Choose one pattern mapping heuristic

Table 9.3: Thresholds and flags used to configure the DFT flowigure 6.4.
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