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Abstract 
Water is a precious natural resource which is vital for life, the health of people and the 

ecosystem and a basic requirement for the development of a country; and at the same time, the 

judicious management of water poses a complex situation. This complexity has further increased on 

account to the possible impacts due to projected climate change. Floods are the most dangerous 

hydrological phenomena, causing a considerable loss of human life and huge property damages 

every year throughout the world. Nearly one third of natural catastrophes belong to floods. The 

modern water resources management, no matter whether interested in the origin of the water, in its 

consumption, its use, or even in the possible consequences of human activity on the water cycle, 

can not neglect the new potentialities issued from the fast developing mathematical models. 

Hydrological models are simplified representations of a part of the hydrologic cycle. The estimation 

and representation of the input precipitation in hydrological models are crucial. Precipitation is 

governed by complicated physical processes which are inherently nonlinear and extremely 

sensitive. Precipitation is often significantly variable in space and time within a catchment. Indeed, 

the estimation of precipitation is very important in rainfall-runoff modeling since no model, 

however well founded in physical theory or empirically justified by past performance, will be able 

to predict adequate hydrographs if the model inputs do not characterize the rainfall inputs. The main 

aim of this dissertation was to investigate and quantify the impact of spatial variability of 

precipitation on the predictive uncertainty of hydrological model simulations. Given the importance 

to the role of the precipitation input in hydrological applications, the following research questions 

were addressed: (a) how does the spatial variability of precipitation influence the hydrological 

simulation results? (b) will a higher spatial resolution of model input data necessarily lead to a 

better model performance? (c) what is the impact on the simulated hydrographs of interpolated 

precipitation at different spatial resolutions through varying raingauge networks? (d) what is the 

benefit of using conditionally-simulated precipitation in hydrological modeling? (e) how does 

uncertainty in precipitation affect parameter identification of a conceptual model? 

The modified rainfall-runoff model HBV was applied to investigate majority of the objectives. 

Based on the HBV model concept, four different structures namely, fully-lumped, semi-lumped, 

semi-distributed and distributed were developed. The main differences among the model structures 

lies on the scale of representation of forcing meteorological variables, the scale of different 

processes calculation and the scale of parameterization. The physically-based spatially-distributed 

modeling system SHETRAN was also used to investigate how does uncertainty in precipitation 

affect parameter identification of a conceptual model? The upper Neckar catchment (up to gauge 
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Plochingen, Neckar; approximately 4000 km2), located in south-wast Germany, was selected as test 

catchment. 

A number of simulation experiments were carried out in line with the objectives and scope of 

this study. The study aimed to investigate the influence of spatial variability of precipitation in a 

rainfall-runoff model indicated no significant differences in the model performance when the model 

was run using averaged precipitation at different spatial scales. However, there was clear 

deterioration in the model performance during the summer season. The results also highlights that 

there can be a significant deterioration in the model performance when the model calibrated using 

detailed precipitation is run using relatively less detailed input precipitation. When the level of main 

forcing precipitation input is different for the model simulation than that used for calibration, one 

should be cautious.  

The study on the comparison of modeling performance using different representations of spatial 

variability indicates that for the present study catchment semi-distributed and semi-lumped model 

structures of the HBV model out-performs the distributed and fully-lumped model structures for the 

given level of information. The results highlight that using interpolated precipitation on finer 

resolution does not improve the simulation accuracy in either the calibration or validation periods at 

the subcatchments’ outlets. Perhaps there is a higher compensation for the bias in the precipitation 

input over the calibration period for the relatively simple model structures. Also the error in 

representing spatial variability of precipitation in finer resolution is more and perhaps, dominating 

the bias compensation in the precipitation input by the calibration procedure for the distributed 

model structure, even with the scope of large number of parameters to be adjusted.  

The study related to assess the impacts of raingauge density on the simulation results showed 

that the number and spatial distribution of raingauges affect the simulation results. It was found that 

the model performances worsen radically with an excessive reduction of raingauges. However, the 

performances were not significantly improved by increasing the number of raingauges more than a 

certain threshold number. The analysis also indicates that models using different raingauge 

networks might need their parameters recalibrated. Specifically, models calibrated with dense input 

precipitation information fail when run with sparse information. However, the models calibrated 

with sparse input precipitation information can perform well when run with dense information. Also 

the model calibrated with complete set of observed precipitation and being run with incomplete 

observed precipitation data in associated with the data estimated at the locations with missing 

measurements using multiple linear regression technique, performed well. This result offers an 

encouraging perspective for the implementation of such a procedure for an operational flood 

forecasting system.  
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Conditional spatial rainfall simulation indicates significantly more spatial variability in the 

simulated rainfall than the interpolated rainfall. The model performs better for modeling the peak 

discharges using conditionally-simulated rainfall than the model using interpolated rainfall. Thus 

conditional rainfall simulation is reasonable for flood modeling. Application of copulas for rainfall 

simulation was very encouraging. Non-Gaussian copulas can be used to generate conditionally-

simulated rainfall as an alternative of the Gaussian copula. The analysis also indicates that 

inadequate representation of spatial variability of precipitation in modeling is partly responsible for 

modeling errors and also this leads to the problems in parameter estimation of a conceptual 

hydrological model. Thus spatial variability must be captured and used as an input to the 

hydrological model in order to eliminate the errors due to input rainfall data. 
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Kurzfassung 

Einführung 

Wasser ist eine wertvolle natürliche Ressource. Es ist die Grundlage des Lebens, der Gesundheit 

von Menschen und Ökosystemen und eine Grundbedingung für die wirtschaftliche Entwicklung 

eines Landes. Das vernünftige Haushalten mit der Ressource Wasser ist jedoch eine komplexe 

Aufgabe – und die Komplexität hat zugenommen durch die möglichen Folgen des prognostizierten 

Klimawandels. Es ist wahrscheinlich, dass der Wasserkreislauf sich durch den Klimawandel 

verändern wird (Stehlik und Bárdossy, 2000; Dibike und Coulibaly, 2005; Merritt et al., 2006). Die 

globalen Auswirkungen des menschlichen Handels wirken sich zusätzlich auf diese Entwicklung 

aus und werden die Probleme verstärken. Aus dem Wasserkreislauf ergeben sich schwierige 

Aufgaben; die Herausforderung, diese zu lösen, wird immer größer. Hochwasserereignisse sind das 

gefährlichste hydrologische Phänomen, dem jedes Jahr überall auf der Welt eine erhebliche Zahl an 

Menschen zu Opfer fallen und durch das sehr große Schäden zu beklagen sind. Fast ein Drittel aller 

Naturkatastrophen gehören zur Kategorie Hochwasser. Auch in Europe treten katastrophale 

Ereignisse immer häufiger auf. Vor allem in den letzten Jahren ereigneten sich auf den großen 

europäischen Flüssen einige Hochwasser. Die meisten Hochwasser sind das Ergebnis 

außergewöhnlicher meteorologischer Ereignisse wie außergewöhnlich intensiver und/oder 

außergewöhnlich langer Niederschläge. Vom Flood-Routing bis zur Regelung des 

Niedrigwasserabflusses, vom wachsenden Wasserbedarf der Industrie bis zur Überwachung der 

ökologischen Eigenschaften des Trinkwassers ist die nachhaltige Bewirtschaftung der knappen 

Ressource Wasser eines der Hauptprobleme des 21. Jahrhunderts. 

Die moderne Wasserwirtschaft, egal ob sie sich für die Vorkommen des Wassers interessiert 

oder den Verbrauch oder gar für die möglichen Effekte menschlicher Eingriffe in den 

Wasserkreislauf, kann die neuen Möglichkeiten nicht vernachlässigen, die sich aus der schnellen 

Entwicklung mathematischer Modelle ergeben haben. Hydrologische Modelle sind vereinfachte 

Repräsentationen eines Teils des Wasserkreislaufs. Sie dienen einer Reihe verschiedener Ziele, 

werden aber vor allem zur hydrologischen Vorhersage eingesetzt und dafür,  hydrologische 

Prozesse zu untersuchen und zu verstehen. Entscheidend für ein hydrologisches Modell ist die 

richtige Abschätzung und Abbildung des Modellinputs Niederschlag. Die Niederschlagsbildung 

wird von sehr komplexen physikalischen Prozessen bestimmt, die von Natur aus nichtlinear sind 

und sehr stark auf Veränderungen reagieren (Bárdossy und Plate, 1992). Niederschlag ist innerhalb 

eines Flusseinzugsgebiets zeitlich und räumlich sehr variabel und die richtige Abschätzung des 

Niederschlags ist sehr wichtig für die Niederschlags-Abfluss-Modellierung in hydrologischen 
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Modellen. Denn kein Modell, wie gut es auch immer in der physikalischen Theorie begründet ist 

und wie verlässlich es auch aufgrund der bisherigen Modellgüte zu sein scheint, kann präzise 

Vorhersagen der Abflussganglinie erzeugen, wen der Modellinput den Niederschlag nicht richtig 

abbildet (Beven, 2001). Darum ist die Zielsetzung dieser Dissertation zu untersuchen, wie sich die 

räumliche Variabilität des Niederschlags auf die Vorhersageunsicherheit hydrologischer Modelle 

auswirkt.  

Aufgrund der beschriebenen Bedeutung, die der Niederschlag als Input für hydrologische 

Anwendungen hat, werden folgende Fragestellungen untersucht: 

a. Wie beeinflusst die räumliche Variabilität des Niederschlags die Ergebnisse hydrologischer 

Simulierung? 

b. Welchen Einfluss hat eine Variation des Messstationen Netzwerks bei der Interpolation des 

Niederschlags auf verschiedenen räumlichen Skalen auf simulierte Hydrographen? 

c. Welchen Nutzen bietet die Verwendung bedingter Niederschlagssimulation in hydrologischer 

Modellierung? 

d. Wird eine höhere räumliche Auflösung der Input-Daten eines Modells zwingender Weise zu 

einer besseren Modelleistung führen? 

Die Hauptzielsetzung der Arbeit ist es, die genannten Fragestellungen zu beantworten. Weitere 

Ziele sind: (1) die Verlässlichkeit von Parametrisierungen zu untersuchen, die aus einer 

Kalibrierung mit Input Daten resultieren, die sich von den Daten unterscheiden, die im Modell 

verwendet werden. (2) die Unsicherheit zu analysieren, die sich aus den hydrologischen Parametern 

ergibt und die Abhängigkeit der Parameter untereinander zu identifizieren. 

Die Mehrzahl der Fragestellung wurde anhand einer modifizierten Version des HBV 

Niederschlag-Abfluss Modells untersucht. Das HBV Modell beinhaltet konzeptionelle Routinen, 

um Schneeakkumulation und Schneeschmelze, Bodenfeuchtigkeit und Abflussgenerierung, die 

Abflusskonzentration im Untereinzugsgebiet und die Ganglinien des Abfluss im Flussnetz zu 

simulieren. Die Routine zur Schneeberechnung verfolgt den Grad-Tag-Ansatz. Die momentane 

Bodenfeuchtigkeit wird unter Berücksichtigung von Niederschlag und Evapotranspiration 

berechnet. Die Abflussgenerierung wird mit einer nicht-linearen Funktion der momentanen 

Bodenfeuchte und des Niederschlags berechnet. Die Dynamik der verschiedenen 

Abflusskomponenten auf der Raumskala des Untereinzugsgebiets wird konzeptionell mit zwei 

linearen Speichern repräsentiert. Basierend auf dem HBV Modellkonzept wurden vier verschiedene 

Strukturen entwickelt, das räumlich aggregierte, das halb-aggregierte, das halb-verteilte und das 

verteilte Model. Der Hauptunterschied zwischen den Modellstrukturen liegt in der maßgebenden 

Raumskala der Repräsentierung des Niederschlagsinputs.  
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Für eine Fragestellung wurde das physikalisch basierte, räumlich-verteilte Modellsystem 

SHETRAN verwendet. SHETRAN ist ein 3D finite Differenzen Modell mit 

Oberflächen/Untergrund Kopplung für Abfluss, Sedimenttransport verschiedener Korngrößen und 

dem Transport mehrerer löslicher reaktiver Substanzen im Einzugsgebiet. SHETRAN repräsentiert 

physikalische Prozesse anhand der physikalischen Gesetze, die auf ein 3D finite Differenzen Netz 

angepasst sind. In dieser Arbeit wird die Komponente zur Abflussberechnung des SHETRAN 

Model Systems verwendet (Version 4.3). 

Die Arbeit dieser Dissertation hat ihren Fokus auf dem oberen Neckareinzugsgebiet (bis zum 

Pegel Plochingen, rund 4000 km2). 

Simulationsexperimente 

Es wurde eine Vielzahl von Simulationsexperimenten durchgeführt, um die genannten 

Fragestellungen zu klären. Die angewandten Methoden und die erzielten Ergebnisse werden in den 

folgenden Abschnitten vorgestellt.  

Das Kapitel 4 der Arbeit widmet sich der Untersuchung des Einflusses der räumlichen 

Niederschlagsaktivität auf die Vorhersageunsicherheit eines konzeptionellen Niederschlags-

Abfluss-Modells. Die interpolierten Niederschlagsdaten von einer Regenmessstelle (Punktdaten) 

und gemittelte Niederschlagswerte über verschiedene räumliche Auflösungen wurden als 

zwingender Modellinput verwendet. Die räumliche Skala reicht von 1 km2 bis 25 km2. Die verteilte 

und halb-verteilte Modelstruktur des modifizierten HBV Modells wurden angepasst.  Die 

simulierten Abflussganglinien unter Verwendung der originalen Niederschlagswerte und unter 

Verwendung der gemittelten Niederschlagswerte wurden untersucht. Es konnten keine signifikanten 

Unterschiede in der Leistung des kalibrierten Modells festgestellt werden, wenn ein 1 km x 1 km 

Niederschlagsraster verwendet wurde und gemittelte Niederschlagswerte auf verschiedenen 

räumlichen Skalen entweder einer verteilten oder einer halb-verteilten Modellstruktur als Input 

dienten. Geringe Unterschiede ergaben sich jedoch für die Abschätzung der Abflussspitzen. 

Die Studie wurde dann erweitert, um die Verlässlichkeit der Parameter zu testen, die von der 

Kalibrierung mit einem Niederschlagsinput stammen, wenn sie auf ein anderes Set von 

Niederschlagsinput angewendet werden. Die Ergebnisse zeigen, dass es signifikante Störungen der 

Modellleistung gibt, wenn ein Modell, welches mit detaillierten Niederschlagsdaten kalibriert 

wurde, mit relativ dazu weniger detaillierten Niederschlagsdaten betrieben wird. Im Gegensatz dazu 

werden nur minimale Verbesserungen der Modellleistung erzielt, wenn ein Model, das mit weniger 

detaillierten Niederschlagsdaten kalibriert wurde mit im Vergleich dazu detaillierten Daten 

betrieben wird. 
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In Kapitel 5 wird eine Antwort auf die Frage gesucht, ob eine höhere räumliche Auflösung des 

Modellinputs auch zwingend zu einer besseren Modellleistung führen wird. Für die Beantwortung 

der Frage wurden die 4 Modellstrukturen des modifizierten HBV-Modells verglichen. Für die 

Reproduktion der räumlichen Variabilität der meteorologischen Input-Daten wird „External Drift 

Kriging“ angewandt. Damit wird die Interpolation vorhandener Punktmessungen über das gesamte 

Einzugsgebiet ermöglicht. Die Kalibrierungen der verschiedenen Modellstrukturen werden mit dem 

„simulated annealing“ Optimierungsalgorithmus durchgeführt. Die simulierten Abflussganglinien 

der verschiedenen Modellstrukturen, die sich am Ausfluss des Unter-Einzugsgebiets ergeben, 

werden unteruscht. Die Ergebnisse zeigen, dass die halb-verteilte- und die halb-aggregierte 

Modellstruktur den anderen beiden Strukturen bei einer gegebenen Anzahl an Beobachtungen 

überlegen sind. Es zeigt sich auch, dass die Verwendung detaillierter, vollständig verteilter 

Regendaten die Simulationsgenauigkeit weder in der Kalibrierungsperiode noch in der 

Validierungsperiode verbessert. Die Ergebnisse lassen den Schluss zu, dass eine höhere Auflösung 

der Eingangsdaten nicht immer besser ist und die Auswahl der Modellstruktur nach dem Prinzip der 

Einfachheit erfolgen und sich an der Verfügbarkeit beobachteter Daten orientieren sollte. 

In Kapitel 6 werden die Auswirkungen von Veränderungen des Niederschlagsmessstationen-

netzes für die Interpolation auf die simulierten Hydrographen untersucht. Die optimale räumliche 

Lage einer bestimmten Anzahl an Messstellen innerhalb eines Netzwerks wird mit „simulated 

annealing“ als kombinatorischen Optimierungsalgorithmus bestimmt. Die räumliche 

Repräsentierung des Niederschlags wird ausgehend von dem gewählten Netzwerk untersucht. Die 

verteilte- und halb-verteilte Modellstruktur des modifizierten HBV Modells werden dann dazu 

verwendet, den Effekt zu bestimmen, den die Anzahl an Regenstationen und ihre Lage auf die 

Vorhersageunsicherheit des jeweiligen Modells hat. 

Die Analyse ergab, dass die Anzahl und die räumliche Verteilung der Regenmessstationen die 

Simulationsergebnisse durchaus beeinflusst. Es zeigte sich, dass sich die Modellleistung mit einer 

sinkenden Anzahl an Messstellen extrem verschlechtert. Andererseits jedoch wird die 

Modelleistung mit einer steigenden Anzahl an Messstationen nicht signifikant verbessert, sobald 

eine bestimmte Mindestanzahl überschritten wird. Der Einfluss des Netzwerks der 

Niederschlagsstationen auf die Modellkalibrierung und die Anwendung werden ebenfalls 

untersucht. Es soll bestimmt werden, ob eine Kalibrierung der Parameter mit Niederschlagsdaten 

von einem Typ des Messstationennetzes in der Lage ist, die Phänomene abzubilden, die den 

Niederschlags-Abfluss-Prozess bestimmen, wenn der Input dazu von einer anderen Konfiguration 

des Messstellennetzes kommt.  Die halb-verteilte Modellstruktur des HBV Modells wird mit 

Niederschlägen kalibriert, die von verschiedenen Messnetzen stammen. Das kalibrierte Modell wird 
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dann für den Validierungszeitraum mit einem Messnetz betrieben, dass nicht zur Kalibrierung 

verwendet wurde. Die Analyse zeigt, dass für Modelle, die verschiedene Niederschlagsmessnetze 

verwenden, die Parameter nachkalibriert werden müssen. Vor allem versagen Modelle, die mit 

einem dichten Netzwerk an Niederschlagsmessstationen kalibriert wurden, wenn sie mit einem 

spärlichen Netzwerk betrieben werden. Modelle jedoch, die mit wenig Information kalibriert 

wurden, können sehr gute Resultate zeigen, wenn sie mit einem dichten Netzwerk betrieben 

werden. Des Weiteren wird geprüft, wie verlässlich es ist, fehlende Niederschlagsdaten bei der 

Kalibrierung mit Daten zu ergänzen, die durch multiple lineare Regression erzeugt werden. Das 

Modell wird dabei mit einer Kombination erzeugter und beobachteter Daten betrieben. Die 

Ergebnisse legen nahe, dass das Modell gute Ergebnisse liefert, ob es nun mit einem vollständigen 

Satz an beobachteten Niederschlagsdaten kalibriert wird oder mit einem unvollständigen Datensatz, 

der mit simulierten Daten ergänzt wird. In der Tat eröffnet dieses Ergebnis die ermutigende 

Perspektive, dass ein solches Verfahren in ein operationelles Hochwasservorhersagesystem 

implementiert werden könnte.  

Eine letzte Reihe von Analysen wurde durchgeführt, um den Einfluss von 

Temperaturmessstellen auf die Simulationsergebnisse zu untersuchen, wenn man die Anzahl der 

Regenmessstellen konstant hält. Die Resultate zeigen, dass die Temperaturmessstellen die 

Simulationsergebnisse für das untersuchte Einzugsgebiet beeinflussen, insbesondere im Winter. Der 

Einfluss ist jedoch im Vergleich mit dem Einfluss des Niederschlagsmessstellennetzes sehr niedrig. 

In Kapitel 7 wird der Nutzen von bedingter Simulation bei der Erzeugung der 

Niederschlagsdaten für hydrologische Modelle untersucht. Die halb-verteilte Modellstruktur des 

modifizierten HBV Modells wird mit interpolierten Niederschlägen kalibriert. Das kalibrierte 

Model wird mit interpolierten, durch bedingte Simulation erzeugten Niederschlagsdaten validiert. 

Die bedingte Simulation erfolgt über „Turning Bands“ Simulation und einer Gauss’schen Copula 

Methode. Die bedingten räumlichen Niederschlagssimulationen zeigen signifikant mehr Variabilität 

im Niederschlag, behalten aber die Hauptstrukturen bei. Darüber hinaus war im Vergleich zu den 

interpolierten Niederschlagsfeldern im Falle der „turning band“ Simulation die Modellleistung 

schlechter, wenn das Mittel der bedingten Simulation verwendet wurde, im Fall der auf 

Gauss’schen Copula basierenden Simulation war sie besser. Werden nicht der gesamte Zeitraum 

einer Untersuchung betrachtet, sondern nur Hochwasserereignisse, wird die Modellgüte für beide 

Arten bedingter Simulation besser als bei einen Modell mit interpolierten Niederschlagswerten. 

Eine weitere Reihe an Versuchen beschäftigte sich mit dem Einfluss der räumlichen 

Repräsentierung des Niederschlagsinputs auf die Ergebnisse und die Unsicherheit der Simulation, 

die konzeptionellen Modellparameter zu identifizieren (Kapitel 8). Diese Untersuchung wurde mit 
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dem physikalisch basierten hydrologischen Model SHETRAN und dem konzeptionellen 

Niederschlag-Abfluss-Modell HBV durchgeführt. Konditionell simulierte Niederschläge mit auf 

Copula basierender Simulation, wurden als Niederschlagsinput für das SHETRAN bzw. das HBV 

Modell verwendet. Die simulierten Abflüsse, die aus verschiedenen Realisationen der 

konditionellen Simulation des Niederschlags resultieren, werden untersucht, um die Unsicherheit 

im resultierenden Abfluss zu quantifizieren. Die Studie wird dann erweitert, um die Unsicherheit 

bei der Parameterfestlegung des HBV Modells zu charakterisieren. Die simulierten Abflüsse des 

SHETRAN Modells werden dabei als eine Basis für die Kalibrierung des HBV Models unter 

Verwendung der interpolierten Niederschläge verwendet. Das SHETRAN Modell wird 

angenommen als die „wahre“ Repräsentation des herrschenden hydrologischen Regimes des 

untersuchten Einzugsgebiets.  

Die Studie zeigt sehr deutlich, dass die räumliche Variabilität des Niederschlags zum Teil für 

Modellierungsfehler verantwortlich ist – was auch zu Problemen bei der Parameterabschätzung von 

konzeptionellen hydrologischen Modellen führt. 

Zusammenfassung der Ergebnisse 

Aus der Vielzahl an Untersuchungen können einige Hauptergebnisse gewonnen werden:  

Es konnten keine signifikanten Unterschiede in der Modellleistung beobachtet werden, wenn das 

Modell mit gemittelten Niederschlägen verschiedener räumlicher Skalen betrieben wird. Es wird 

jedoch eine klare Störung der Modellleistung während des Sommers festgestellt. Die Ergebnisse 

zeigen ebenso, dass die Modellleistung signifikant gestört wird, wenn ein Modell, welches mit 

detaillierten Niederschlagsdaten kalibriert wurde, mit relativ schlechterem (wenig detailliertem) 

Niederschlagsinput betrieben wird. Dies ist eine Warnung an den Anwender, besonders vorsichtig 

zu sein, wenn die Art der Niederschlagsdaten als Modellinput eine andere ist als die, die für die 

Kalibrierung verwendet wurde.  

Die Untersuchung des Vergleichs der Modellleistungen bei der Verwendung verschiedener 

räumlicher Variabilitäten des Niederschlags zeigt, dass die halb-verteilte und die halb- aggregierte 

Modellstruktur für das gegebene Untersuchungsgebiet der verteilten und der räumlich aggregierte 

Modellstruktur bei einem gegebenen Niveau an Inputinformation überlegen sind. Es wird deutlich, 

dass die Verwendung vollständig verteilter Daten die Genauigkeit der Simulation des Abflusses am 

Auslass des Untereinzugsgebietes weder für die Kalibrierungsperiode noch für die 

Validierungsperiode verbessert. Eventuell tritt bei relativ simplen Modellstrukturen eine höhere 

Kompensation des Bias in den Niederschlagsbeobachtungen während der Kalibrierungsperiode auf. 

Ebenso ist der Fehler bei der Repräsentierung der räumlichen Variabilität des Niederschlags bei 

einer feineren Auflösung höher. Möglicherweise dominiert er darum bei der verteilten 
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Modellstruktur die Kompensierung des Bias der Niederschlagsbeobachtungen bei der Durchführung 

der Kalibrierung. Dies ist eben auch in Anbetracht der großen Zahl an Parametern zu sehen, die 

angepasst werden müssen.  

Die Anzahl der Regenmessstationen und deren räumliche Verteilung beeinflusst sehr stark die 

Simulationsergebnisse. Vermindert man die Anzahl an Regenmessstationen im Modell übermäßig, 

geht die Modellleistung extrem zurück. Umgekehrt jedoch, wenn man mehr Messstellen 

berücksichtigt, verbessert sich ab einem bestimmten Schwellenwert die Leistung des Modells nicht 

mehr signifikant. Es zeigt sich auch, dass Modelle, die mit verschiedenen Messstellennetzen 

betrieben werden, nachkalibriert werden müssen. Speziell versagen Modelle, die mit einer sehr 

hohen Informationsdichte kalibriert wurden, wenn Sie mit sehr wenig Information betrieben 

werden. Umgekehrt können Modelle, die mit wenig Niederschlagsinformation kalibriert wurden, 

gute Ergebnisse bringen, wenn sie mit hoher einer hohen Dichte an Inputinformation betrieben 

werden. Auch Modelle, die mit einem kompletten Satz an beobachteten Niederschlagsdaten 

kalibriert wurden funktionieren gut, wenn sie mit einem lückenhaften Satz an Beobachtungen 

betrieben werden, bei dem fehlende Werte mit multipler linearer Regression ersetzt wurden. Dieses 

Ergebnis eröffnet eine ermutigende Perspektive für den Einsatz solcher Verfahren in operationellen 

Hochwasservorhersagesystemen. Es ist allerdings noch Forschungsbedarf in dieser Hinsicht über 

deren praktische Anwendbarkeit.  

Bedingte räumliche Niederschlagssimulation resultiert in einer signifikant höheren Variabilität in 

der Niederschlagsverteilung, behält jedoch die Hauptstruktur der Daten bei. Ein gewähltes 

hydrologisches Modell liefert bessere Simulationen der Spitzenabflüsse, wenn bedingt simulierte 

Niederschlagswerte anstatt interpolierter Werten verwendet werden. Der Einsatz bedingter 

Simulation des Niederschlags für die Hochwasser-modellierung ist demnach sehr sinnvoll. Sehr 

vielversprechend ist vor allem der Einsatz von Gauss’schen Copulas bei der räumlichen 

Niederschlagsverteilung. In weiterführenden Versuchen könnten auch nicht-Gauss’sche Copulas 

zur Erzeugung bedingt simulierter Niederschlagsdaten verwendet werden. Die Untersuchung zeigt 

auch, dass die räumliche Variabilität des Niederschlags zum Teil für Fehler in der Modellierung 

verantwortlich ist. Dies führt zu den Problemen bei der Abschätzung von Parametern 

konzeptioneller hydrologischer Modelle. 
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1 Introduction 

1.1  Problems classification and motivation 

Water is a precious natural resource which is vital for life, the health of people and the 

ecosystem and a basic requirement for the development of a country; and at the same time, the 

judicious management of water poses a complex situation. This complexity has further increased on 

account of the possible impacts due to projected climate change. The hydrological cycle is likely to 

be altered due to projected climate change (Stehlik and Bárdossy, 2000; Dibike and Coulibaly, 

2005; Merritt et al., 2006). The modern human society and its globalization also influence the 

evolution of the problems incident to it. Nevertheless, water is still a challenge which has become 

even greater. Floods are the most dangerous hydrological phenomena, causing a considerable loss 

of human life and huge property damages every year throughout the world. Nearly one third of 

natural catastrophes belong to floods. Floods are also becoming more common natural disasters in 

most parts of Europe. Especially in recent years there were some large floods in major European 

rivers. Most of the floods resulted from climatic events such as excessively heavy and/or 

excessively prolonged rainfall. From flood routing to granting a low-water flow, from the growing 

demand of water for industrial use in a large sense to the maintenance of the ecological 

characteristics for consumption, the sustainable management of the scare resource water is one of 

the major challenges of the 21st century. Modern water resources management, no matter whether 

interested in the origin of the water, in its consumption or in its use or even in the possible 

consequences of human activity on the water cycle, can not neglect the potential of the fast 

developing mathematical models. Hydrological models are simplified representations of a part of 

the hydrologic cycle. They serve a range of purposes but they are primarily used for hydrological 

prediction and for understanding hydrological processes. The estimation and representation of the 

input precipitation in hydrological models are crucial. Precipitation is governed by complicated 

physical processes which are inherently nonlinear and extremely sensitive (Bárdossy and Plate, 

1992). The estimation of precipitation is very important in rainfall-runoff modeling since no model, 

however well founded in physical theory or empirically justified by past performance, will be able 

to produce accurate hydrograph predictions if the inputs to the model do not characterize the 

precipitation inputs (Beven, 2001). Rainfall-runoff models have uncertainties arising from a number 

of sources, namely: (a) input data error and inadequate representativeness of the variability 

(Grayson and Blöschl, 2000) (b) model structure as the model itself is only an approximation of the 

hydrological reality (Beven, 2001) (c) model parameters (Wood, 1976; Seibert, 1997) and (d) 

output measurement error. 
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1.1.1 Influences of rainfall variability 

The spatial variability of rainfall is often termed as the major source of error in investigations of 

rainfall-runoff processes and modeling (O’Loughlin et al., 1996; Syed et al., 2003). Precipitation is 

often significantly variable in space and time within a catchment. Many studies have dealt with the 

sensitivity of hydrological models together with other uncertainties related to spatial rainfall 

variability, i.e. with the spatial density of the raingauge network and with the interpolation methods 

(Kuczera and Williams, 1992; Goovaerts, 2000; St-Hilarie et al., 2003; Brath et al., 2004; Dong et 

al., 2005) and with rainstorm displacement (Niemczynowicz, 1991). These studies demonstrate that 

the spatial distribution of rainfall should be taken into account in any catchment area. It influences 

not only the runoff volumes and the peak flows, but also the time shift of hydrographs (Krajewski et 

al., 1991). Duncan et al., 2003 studied the effect of raingauge sampling density on the accuracy of 

river flow prediction for a rural catchemnt. They observed that gauge density has a very strong 

effect on the estimation accuracy of hydrograph parameters with the standard error generally falling 

off as a power law with increasing gauge density. Schilling and Fuchs (1986) also noted the 

dominant impact of spatial rainfall variability on runoff modeling.  

Arnaud et al., (2002) observed a substantial effect of rainfall spatial averaging on the synthetic 

discharges simulated for four fictitious catchments of varying area. Zehe et al., (2005) observed 

reduction in model’s predictive uncertainty when spatially averaged precipitation is used during 

parameter estimation. Finnerty et al., (1997) investigated runoff timing and volume biases when 

they were performing hydrological forecasting at space-time scales different from those at which 

the model parameters were calibrated. They observed that hydrological model parameters are 

inherently tied to the space-time scales at which they were calibrated.  

Additionally, the need to accurately describe temporal rainfall variability for modeling small 

catchment response is relatively well-known (Beven, 2001). On a small catchment, Krajweski et al. 

(1991) found a higher sensitivity to the temporal resolution of precipitation than to the spatial 

resolution. Ogden and Julien (1994) performed tests that identified the period when spatial and 

temporal variability of precipitation was dominant. However, in large catchements, the spatial 

variation is generally more important than the temporal variation (Beven, 2001). At larger scales, 

the crucial importance of spatial rainfall pattern estimates for runoff modeling has also been 

demonstrated (Liang et al., 2004; Brath et al., 2004). For urban drainage design, the impact of 

spatial rainfall variability on runoff modeling has been shown to be important on catchments of 

decreasing size with increasing raingauge density (Schilling and Fuchs, 1986). At yet a smaller 

scale of eight raingauges in a 0.4 km2 Swiss catchment, Mutzner (1991) found only one event from 

a set of 177 in which spatial rainfall variability was large enough to impact runoff modeling. 
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Moreover, it significantly increases uncertainty about the estimation of hydrological model 

parameters, and consequently estimation of the extreme quartiles (Kuczera and Williams, 1992). 

Brath et al., (2004) observed that the performances of a spatially-distributed hydrological model 

did not considerably deteriorate for a medium sized catchment under the hypothesis of spatially 

uniform rainfall, provided that the mean areal rainfall intensity was reliably estimated based on 

sufficient number of raingauges. However, they noted that different case studies may provide fairly 

different results, depending on the geomorphologic and climatic characteristics of the catchment 

area, the scale of the catchment, the dominant runoff production mechanism and the period of the 

year.  

On the other hand, Beven and Hornberger (1982) stated that rainfall patterns have only a 

secondary effect on runoff hydrographs, while a correct assessment of the global volume of rainfall 

input in a variable pattern is more important in simulating streamflow hydrographs.  

It should be noted that the majority of these and other studies were based on synthetically 

generated precipitation and stream flow records. Usually, comparisons were made against a 

“reference” hydrograph generated by running the hydrologic model at the finest data resolution. 

Synthetically-generated data were often used due to the lack of appropriately long periods of 

observed data. Moreover, many of the studies emphasizing the importance of the spatial variability 

of precipitation used models containing the Hortonian runoff generation mechanism.  

Obled et al. (1994) argued that numerical experiments in the literature were based on the use of 

models which may be only a simplified representation of reality. Furthermore, they argued that the 

actual processes at work in a catchment may not be those predicted by the model. Thus, the research 

in the literature may have shown the sensitivity of a particular model to the spatial variability of 

precipitation, and not the sensitivity of the actual catchment. Obled et al. (1994) examined the 

effects of the spatial variation of precipitation using observed precipitation and stream flow data. In 

addition, the model used in their studies focused on saturation excess runoff as the main runoff 

generation mechanism. In simulations against observed data, they were unable to prove the value of 

distributed inputs as they had intended. They showed that even if the simulated hydrographs exhibit 

different characteristics for uniform and distributed forcing, the performances are similar when 

compared with the actual observations. In their attempt to capture the spatial variability of 

precipitation, they observed that their model sometimes responded to a precipitation event which 

the catchment ignored or dampened. This study highlighted the problem of how well a model 

structure and parameters fit the real system when making conclusions from simulation studies. 

Furthermore, they noted that in medium-sized catchments (ranging from 100 to a few 1000 km2) 

most evidence for the significance of the rainfall pattern was based on synthetic studies. They also 
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suggested that if the dominant runoff-generation process is of the Dunne type rather than Hortonian, 

then most of the rainfall infiltrates and will be smoothed out as the water is stored and delayed in 

the soil layers.  

Winchell et al. (1998) noted that there has been a bias towards the use of infiltration-excess 

runoff mechanisms as opposed to the saturation excess type. Their work with both types of runoff 

generation mechanisms found that saturation excess and infiltration excess models respond 

differently to uncertainty in precipitation. They suggest that generalizations concerning the effects 

of rainfall variability on runoff generation cannot be made. Koren et al. (1999) indicated a similar 

conclusion based on simulation results from several different rainfall-runoff partitioning 

mechanisms. Shah et al., (1996) studied the spatial variability of rainfall on a small catchment 

having area of 10.55 km2 for various levels of antecedent moisture conditions. They observed that 

spatial averaging of rainfall inputs provided adequate simulations under wet conditions. However, 

they observed higher errors when spatially-averaged rainfall fields were used with dry antecedent 

moisture conditions. This indicated a linkage between spatial variability of rainfall and the 

distribution of soil moisture which subsequently controls the generation of runoff. 

From the above review, it is clear that the different case studies may provide fairly different 

results, depending on the geomorphologic and climatic characteristics of the catchment area, the 

scale of the catchment, the dominant runoff production mechanism and the period of the year.  

1.1.2 Complexity and challenges in distributed hydrological modeling 

Again, the question may arise how one can obtain highly spatially resolved precipitation data; 

weather radar and satellite precipitation may be the option. The development of radar rainfall 

measurement has allowed for a greater appreciation of the temporal and spatial variation of rainfall 

intensities than was previously possible from raingauge measurements alone. This would appear to 

be a very important development in the data available for rainfall-runoff modeling; indeed it is. But 

there are some important limitations that must be recognized (Collier, 1989; Ehret, 2003).  

Today, spatially-distributed hydrological models are increasingly applied to account for spatial 

variability of the main forcing variables within the catchment (e.g., precipitation); landscape 

characteristics (e.g., soil, land use) and detailed process calculation (Götzinger and Bárdossy, 

2005). Distributed models in hydrology have been developing rapidly since the first outline of a 

physically-based distributed model published by Freeze and Harlen (1969). The same models are 

also utilized to undertake impact assessment studies, land use changes, prediction in ungauged 

basins, climate change studies and investigation of the influence of the spatial variability of 

meteorological variables as well as basin characteristics. A major reason for the use of distributed 

rainfall-runoff models is the hypothesis that by accounting for the spatial variability of precipitation 
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and physical features within the catchment, better simulations can be achieved at the catchment 

outlet. One of the few studies that have carried out a systematic intercomparision of different model 

structures is documented by Refsgaard and Knudsen (1996). They compared three different models 

embodying three quite different model structures and degrees of spatial distribution using a 

systematic calibration and validation procedure. Farmer et al. (2003) and Atkinson et al. (2002, 

2003) applied models of increasing complexity to investigate the trade-off between model 

complexity and prediction accuracy and to determine the physical controls on flow prediction. The 

different model structures investigated were conceptual rainfall-runoff models based on one or 

more simple storages, where increasing complexity was obtained by adding thresholds and more 

storages, etc.  

Also, it is of concern that few of the studies have shown a direct comparison of distributed 

model’s and lumped model’s results with observed discharge data. The emergence of high 

resolution data sets, Geographical Information System capabilities, and rapidly increasing computer 

power have pushed distributed hydrological models to the forefront of research and development 

(Vieux, 2001). While the utility of distributed models to predict interior hydrological processes is 

well known (Uhlenbrook et al., 2004), few studies have specifically addressed the advantage of 

distributed models over lumped models for predicting catchemnt outflow hydrographs (Toth and 

Brath, 2003). Sieber and Uhlenbrook (2005) carried out sensitivity analyses of the complex process-

oriented model TACD (tracer aided catchment model, distributed) to verify the model structure. Lee 

et al., (2005) attempted a study to identify relationships between suitable conceptual rainfall-runoff 

model structures and catchment types. They demonstrated an objective procedure for selection of 

model structures for use in model regionalization studies across UK catchments. 

However, a higher spatial and temporal resolution of data and model application does not always 

lead to a better representation of the water fluxes for a given catchment (Reed et al., 2004). This 

depends on the variability and distribution of catchment properties. Results from the Distributed 

Model Intercomparison Project (DMIP) (Reed et al., 2004; Smith et al, 2004a,b) indicate that 

distributed modeling approaches may not always provide improved outlet simulations compared to 

lumped conceptual models. They suggested that there may be a trade-off between the complexity of 

the model descriptions necessary to represent the catchment processes, the accuracy and the 

representativeness of the input data available and the accuracy required to achieve reliable 

simulation results. Butts et al. (2004) evaluated impacts of different model structures on 

hydrological modeling uncertainty for streamflow simulation. They showed that model performance 

is strongly dependent on model structure. Nevertheless, they observed that distributed routing and 
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to a lesser extent distributed rainfall were the dominant processes controlling simulation accuracy in 

their study catchment.  

It is worth mentioning that distributed modeling may play an important role in the future. 

However, the main disadvantage of this strategy is the increase in model complexity and parameters 

parallel to the increase in partitioning. For complex, highly parameterized models, as the number of 

hydrological units is increased, the calibration procedure quickly becomes intractable. Further, 

many of the parameters may not be identifiable by the information contained within the observed 

data, remotely sensed or otherwise. The hydrological modeling problem can be partitioned into 

three main components; hydrological model structure, model input data, any parameter estimation 

procedures. Successful development and application of any hydrological model requires careful 

consideration of each component and its relevance to the overall modeling problem.  

Nevertheless, a large volume of research continues to emerge that addresses the possibility of 

improving lumped hydrologic simulations by using distributed and semi-distributed modeling 

approaches which account for the spatial variation not only of physiographic catchment features but 

of precipitation as well. Recently, the availability of high resolution precipitation estimates from 

weather radar or satellite has intensified this investigation. Most efforts have focused on event-

based modeling, and mixed and somewhat surprising results have been realized compared to the 

numerical results discussed above. As a consequence, the hypothesis that higher resolution data will 

lead to more accurate hydrograph simulations remains largely unexamined.  

Moreover, in practical hydrological applications, the existing model and data collection system 

must be compromised (Dong et al., 2005). Beven (1989) pointed out the limitations of the current 

generation of rainfall-runoff models and also argued that the possible way forward must be based 

on a realistic assessment of predictive uncertainty.  

The reality is that most recording systems in use are still point-measuring raingauges. Point 

estimation of raingauge accumulations is distributed in space over the river basin by interpolation 

techniques (i.e., kriging, thiessen polygon, inverse distance method). However, hydrologists have 

long recognized the problems of interpolating point raingauge measurements to estimate spatial 

rainfall fields. Kriging as mostly used interpolation techniques provides idealized smooth rainfall 

fields and does not possess the same fluctuation pattern (Haddeland et al., 2002). However the 

variability of rainfall has a considerable impact in hydrological model’s predictive uncertainty 

(Brath et al., 2004; Zehe et al., 2005). Simulations usually conditional on the observations preserve 

typical fluctuation patterns (Mantoglou and Wilson, 1982). 

Nevertheless, the question may arise: what is the influence of such distributed precipitation on 

the uncertainty when estimating stream flows? And will a higher spatial resolution of model input 
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data necessarily, as most people assume, lead to a better model performance? Is there a compromise 

between model complexity and available information, i.e., an interaction between the resolution of 

input data and model structure itself, when generating model uncertainty? 

This research work was thus initiated with the overall objective to better understand how spatial 

rainfall variability impacts the performance of a rainfall-runoff model for a meso-scale catchment.  

1.2 Research questions and objectives 

Given the importance to the role of the precipitation input in hydrological applications, the 

following research questions were addressed: 

a. How does the spatial variability of precipitation influence the hydrological simulation results? 

b. Will a higher spatial resolution of model input data necessarily lead to a better model 

performance? 

c. What is the impact on the simulated discharges of interpolated precipitation at different spatial 

resolutions through varying raingauge networks?  

d. Is there any benefit of using conditionally-simulated precipitation in hydrological modeling? 

The main objective of this study is to answer the above research questions. Supplementary 

objectives are: (1) to investigate the reliability of the parameters obtained from calibration over 

input data different from those used in model simulations and (2) to study the uncertainty in 

identifying the model parameters of a conceptual model due to uncertain precipitation. 

1.3 Structure of the dissertation 

In line with the objectives and scope of this study, the dissertation consists of nine chapters. In 

Chapter 2, the data of the study catchment is discussed. A description of the model structure, 

modifications of the structure and automatic parameter estimation for the hydrological model 

applied in the study are given in Chapter 3. Chapter 4 focuses on the study to identify the influence 

of spatial variability of precipitation on the predictive uncertainty of the hydrological model. An 

attempt has been made in Chapter 5, to provide an answer to the question, ‘Will a higher spatial 

resolution of model input data necessarily lead to a better model performance?’ Chapter 6 explains 

the impact on the simulated hydrographs of interpolated precipitation at different spatial resolutions 

through varying raingauge networks. The possible benefits, of using conditionally simulated 

precipitation in hydrological modeling are illustrated in Chapter 7. ‘How does uncertainty in 

precipitation affect parameter identification of a conceptual model?’ is explored in Chapter 8. 

Chapter 9 presents a summary of the study and recommendations for further works. 
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2 Study area and data description 

2.1  Introduction 

The upper Neckar catchment, located in the region of Baden-Württemberg (south-west of 

Germany), was selected as the test catchment. The reason for the selection of the upper Neckar 

catchment for the study is that the rivers in the catchment are not affected by larger hydropower 

plants or other water management structures or navigations, which may influence the runoff 

characteristics of the catchment. Further, the upper Neckar catchment can be considered to be a 

typical example of a medium-sized catchment. In addition, data availability must be carefully 

considered before any modeling attempt is carried out. All the required data was provided by the 

German Weather Service (DWD) and the State Agency for Environmental Protection (LUBW, 

Baden-Württemberg). Due to the reasons stated above, it is worthy at the present stage of this 

research to have an overview of the relevant information available for the chosen study area. The 

description of the study area is partly based on the description of Bárdossy et al., 1999 and 

Samaniego, 2003. 

2.2 General description of the study area  

The study area is located to the south and south-east of Stuttgart, Germany (Figure 2.1). It 

comprises the upper catchment of the Neckar River upstream of the Plochingen gauging station 

covering an area of about 4000 km2. The upper Neckar catchment was divided into 13 

subcatchments depending on the available discharge gauges. Table 2.1 summarizes the sizes of the 

different subcatchments. The catchment area represents approximately 28% of the whole Neckar 

catchment. The Neckar is a right-bank tributary of the Rhine; it is 367 km long and flows 40% of its 

course in direction north and north-east within the study area. The upper Neckar is bounded by the 

north-western edge of the Swabian Jura on the right bank side of the Neckar and by the Black 

Forest on its left bank. Its elevation ranges from about 240 m a.s.l. to around 1010 m a.s.l., with a 

mean elevation of 548 m a.s.l.. Slopes are generally mild; approximately 90% of the area has slopes 

varying from 0ο to 15ο, although some areas of the Swabian Jura and the Black Forest may have 

values as high as 50ο.  

The main geological formations in the upper Neckar catchment originated in the Triassic and 

Jurassic periods, both corresponding to the Mesozoic Era. The main formations are composed of 

altered keuper, claystone-jura, claystone-keuper, limestone-jura, loess, sandstone and shelly 

limestone (Muschelkalk). Conversely, the river bed of the Neckar and its tributaries are relatively 
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young compared with the previous formations. They are mainly composed of Quaternary 

sediments, originating mainly from the erosion of outcrops of the aforementioned rock types.  

 
 

Figure 2.1: Study area: upper Neckar catchment in south-west Germany (upper-right: 13 

subcatchments of the upper Neckar catchment). 

Table 2.1: Summary of the sizes of the different subcatchments in the study catchment. 

Subcatchments 
Subcatchment 

size  
[km2] 

Drainage 
area  

[km2] 
1 Rottweil 454.65 454.65 

2 Oberndorf 240.13 694.78 

3 Horb 420.18 1114.96 

4 Bad Imnau, Eyach 322.94 322.94 

5 Rangendingen, Starzel 119.89 119.89 

6 Tuebingen, Steinlach 140.21 140.21 

7 Kirchentellinsfurt, Neckar 613.33 2311.33 

8 Wannweil, Echaz 135.26 135.26 

9 Riederich, Erms 169.84 169.84 

10 Oberensingen, Aich 178.18 178.18 

11 Suessen, Fils 345.74 345.73 

12 Plochingen, Fils 349.09 694.83 

13 Plochingen, Neckar 472.05 3961.49 
 

2

6 

10 

4 

1

3
7 

5 

13 11

9 

12

8 



 

 

10 

The climate of the study area is characterized by warm-to-hot summers with generally mild 

winters, and is wet during all seasons. The coldest and hottest months in the study area are January 

and July respectively. The daily mean air temperature in the former is about -0.8οC and in the latter 

is about 17οC according to the daily mean temperature records available for the period 1961 to 

1990. The annual variation of precipitation in the study area exhibits a multi-modal distribution. 

Precipitation-events may occur the whole year round, the wettest month being June and the driest 

one October with monthly means of 126 mm and 64 mm respectively, according to the daily 

amount of raingauge records available for the period 1961 to 1990. The mean annual precipitation 

observed during this period is 908 mm. Snowfall is an important parameter during the winter 

months, particularly in the upper parts of the catchment. With regard to land use, the study area has 

endured rapid land use transitions from crop land or grass land to built-up area or industrial usages 

in the last several decades.  

2.3 Physical structure of study area 

The physiographical factors considered in this study have been derived from different sources, 

mainly: (1) Digital Elevation Model (DEM) available for the study area with a spatial resolution of 

30 m × 30 m; (2) a digitized soil map of the state of Baden-Württemberg at the scale 1:200 000; (3) 

a digitized geological map of the state of Baden-Württemberg at the scale 1:600 000. A detailed 

explanation of the relevance and calculation of these factors is provided below. 

2.3.1 Topography 

The upper Neckar catchment is characterised by strong variation in altitude between the foothills 

of the Black Forest in the west, the valley of the Neckar in the centre and again the steep ascent to 

the Swabian Alb in the east (Figure 2.2). The catchment consists of a number of narrow valleys.  

The origin of the river Neckar is situated in the south-western part of the catchment near to the 

city of Schwenningen (‘Schwenninger Moos’), in an area called the Baar region, which is a small 

area between the Black Forest and the Swabian Alb. Starting at the city of Rottweil, the river 

Neckar digs a steep and impressive but narrow valley, with many meandering loops, into the 

Muschelkalk. In this area of the river Neckar (at the city of Horb) the river bed becomes smoother. 

At the city of Rottenburg the river leaves the narrow Muschelkalk valley and flows into a broad 

valley bottom to Plochingen. The slope of the Neckar catchment is illustrated in Figure 2.2 (right 

panel). Table 2.2 represents the topographic and slope characteristics of different subcatchments. 
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Figure 2.2: Digital Elevation Model (left panel) and Slope (right panel) of the upper Neckar 

catchment. 

Table 2.2: Elevation and slope of the different subcatchments of the upper Neckar catchment. 

Elevation (m) Slope (degree) 
Subcatchments 

Min. Max. Mean Std. 
dev. Min. Max. Mean Std. 

dev. 
Rottweil 555.0 1010.0 700.0 59.9 0.0 34.2 4.4 4.0 
Oberndorf 460.0 1004.0 651.7 86.4 0.0 44.2 6.1 6.1 
Horb 383.0 841.0 597.1 79.1 0.0 48.9 6.4 6.4 
Bad Imnau, Eyach 394.0 988.0 626.3 124.9 0.0 42.5 7.0 5.8 
Rangendingen, Starzel 421.0 954.0 644.9 133.0 0.0 36.9 7.7 6.1 
Tuebingen, Steinlach 341.0 882.0 541.4 127.5 0.0 38.8 7.0 6.6 
Kirchentellinsfurt, Neckar 308.0 622.0 457.3 59.7 0.0 36.8 4.9 4.9 
Wannweil, Echaz 309.0 862.0 5291.0 144.6 0.0 45.9 8.1 7.8 
Riederich, Erms 317.0 865.0 629.7 149.1 0.0 49.4 9.2 8.4 
Oberensingen, Aich 278.0 601.0 425.6 49.2 0.0 27.1 5.0 3.8 
Suessen, Fils 359.0 859.0 625.2 107.5 0.0 49.3 9.2 8.6 
Plochingen, Fils 252.0 785.0 396.5 68.7 0.0 39.7 5.7 4.8 
Plochingen, Neckar 241.0 871.0 431.0 139.8 0.0 45.8 6.0 6.3 
Whole Catchment 241.0 1010.0 548.8 144.0 0.0 49.4 6.3 6.2 

2.3.2 Geology 

The study area belongs to the ‘Süddeutsches Schichtstufenland’, a terraced landscape which was 

formed during the Mesozoic era (225 to 145 million years before). The area was flooded several 

times during that time leaving different sediment layers behind. The oldest formations are the 

variegated sandstones in the western part of the catchment, near the Black forest. These formations 

lay directly on the bedrock of the Black forest. This variegated sandstone is followed by 

Muschelkalk, Keuper and the Jurassic formations Lias, Dogger and Malm, which can be found in 

the Swabian Alb. The terraces are very narrow in the Baar region, due to the small distance between 

the Black forest and the Swabian Alb. The type of geological formations –along with their faults 
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and interstices- underneath a given basin have a special relevance to its water balance because they 

can act as groundwater reservoirs (i.e., aquifers), as well as pipelines for groundwater flow. In 

general, a catchment whose subsurface consists of proportions of karstic formations would present 

huge abnormalities in its water budget, and thus in its discharge regime. There are some karstic 

formations within the study area. Figure 2.3 (left panel) illustrates the main geological formations 

of the study area. 

Figure 2.3: Main geological formations (left panel) and Soil map (right panel) of the upper Neckar 

catchment. 

2.3.3 Soils 

The variability in geological formations leads to variability in soil within the study catchment. In 

the western part of the catchment, the variegated sandstones were weathered to shallow podsols and 

grey brown podsolic soils, which are poor in minerals. The Muschelkalk area of the upper Gäu is 

mainly covered with a layer of fertile loess. In the Keuper area there are sandy as well as heavy clay 

soils. Despite not all of this area being covered with loess, it is still good for agriculture. Figure 2.3 

(right panel) shows a soil map of the upper Neckar catchment. Table 2.3 represents the soil 

characterization of different subcatchments.  
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2.3.4 Vegetation 

There is a wide variety of vegetation in the study catchment. The differences of altitude, 

pedological, hydrological and other site relevant factors exhibit this variation. In the western part of 

the catchment, forest grows on acid soils which are poor in minerals. Spruce, fir and beech are the 

dominating trees. The wide plateau of the Gäu with its fertile soil is mostly arable. Vegetation on 

the sandy soils of the keuper area mainly consists of forest with spruce, fir and beech. The heavy 

clay soil is used as pasture and meadows. On the slopes of the southern part of the catchment, fruit 

and vines are cultivated. 

The foreland between the keuper area and the Alb area has heavy clay soil and is used as arable 

land, pasture and meadows. On the slopes to the Alb, ash trees, beech, elm and lime trees grow. The 

barren soil on top of the Alb is covered with heath and juniper. Dry meadows, mesoxerophytic 

meadows with rare Orchids can also be found. 

2.3.5 Land cover data 

The land cover map available for this study is a LANDSAT TM scene for the year 1993 with a 

spatial resolution of 30 m × 30 m with 16 classes. Figure 2.4 illustrates the distribution of different 

land cover classes within the study area. The area under different land cover for different 

subcatchments is represented in Table 2.4.  

 

Figure 2.4: Land cover map of the upper Neckar catchment for the year 1993.  



 

 

16 

The land cover map was categorized into four major classes and latter used for modeling 

purposes. The land cove map for the year 1975 was also available. Figure 2.5 compares the spatial 

distribution of different classes for the year 1975 and 1993. 

  

Figure 2.5: Reclassified land cover map of the upper Neckar catchment for the year 1975 (left 

panel) and for the year 1993 (right panel). 

2.4 Climate 

The study area’s weather is influenced by both continental and oceanic climate systems. This is 

due to the prevailing westerly winds within the region and the impact of the Atlantic Ocean, which 

is relatively strong. The second major impact on the climate is the topography; the climate on a 

local scale differs due to variations in elevation.  

For the Neckar catchment, a long time series of observed daily data is available for a large 

number of locations. Though only part of the network is located within the study catchment area, 

the information of locations in the surroundings of the catchment is still useful for analysis purposes 

and for improving the results of simulations and other calculations. The raingauges and temperature 

stations located within and around 30 km from the boundary of the catchment were used for the 

study (Figure 2.6). 
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Figure 2.6: Observation network within and around the study catchment: raingauges (left panel) and 

temperature stations (right panel). 

2.4.1 Precipitation and temperature 

Precipitation is the main input in a rainfall-runoff model. Temperature is another input to a 

model that influences the amount of evapotranspiration and snowmelt. Correct assessment of their 

distribution within a catchment under study is, therefore, a crucial step in rainfall-runoff modeling 

practice. 

The daily amount of precipitation and daily maximum, minimum and mean temperatures from 

151 precipitation stations and 74 temperature stations respectively distributed in and around the 

study catchment were acquired from the DWD for the period from 1961 to 1990 (Figure 2.6). The 

data obtained from the meteorological stations were point data, and it was necessary to interpolate 

them in order to calculate areal values for each grid. The External drift kriging method (Ahmed and 

de Marsily, 1987) was chosen for interpolation allowing the orographic effect to be taken into 

account by using the topography as an additional variable. This method was used to interpolate 

precipitation and temperatures on 1 km × 1 km grid resolution. It should be noted that in the study 

catchment, the rate of increase of precipitation decrease with increasing elevation. The square root 

of the topographic elevation was assumed as a good approximation to account for this variation and 

it was used as the drift variable for precipitation (Hundecha, 2005). Since the temperatures show a 

fairly constant lapse rate, the topographic elevation was used as the drift variable for interpolating 

the temperature. 

The highly variable topography causes highly varying precipitation in the study catchment. The 

maximum value of mean annual precipitation with 1800 mm is found in the Black Forest at the 

western border of the catchment, and the minimum annual precipitation with 650 mm in the area of 
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Stuttgart, close to the outlet. The precipitation data, averaged over the observed time period, exhibit 

a weak annual cycle, with maximum precipitation in summer for subcatchment, located in the high 

altitude of the Black Forest (the north-west of the catchment, subcatchment Horb). The average, 

maximum and minimum of long-term monthly precipitation sum over the catchment is shown in 

Figure 2.7. Figures 2.8 and 2.9 represent the average, maximum and minimum values of long-term 

monthly precipitation sum over the Rottweil and Horb subcatchments, respectively.  
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Figure 2.7: Precipitation over the catchment: annual sum (left panel) and monthly sum (right panel). 
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Figure 2.8: Precipitation over the subcatchment Rottweil: annual sum (left panel) and monthly sum 

(right panel). 
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Figure 2.9: Precipitation sum over the subcatchment Horb: annual sum (left panel) and monthly 

sum (right panel). 
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The spatial distribution of annual precipitation within the study area for the years 1961, 1970, 1980 

and 1990 is depicted in Figure 2.10. 

  

  
 

 

Figure 2.10: Spatial distribution of annual precipitation within the study area for the years 1961, 

1970, 1980 and 1990. 

Daily mean temperature within the catchment varies between -17.9 °C and 27.3 °C. The annual 

mean temperature is 8.7 °C. Figure 2.11 shows the mean monthly temperature over the catchment 

and selected subcatchments, namely Rottweil, Bad Imnau and Plochinegn, Neckar. The minimum, 

maximum and average values of mean daily temperature and daily amount of precipitation were 

also calculated for different subcatchments (Table 2.5). The data from 1961 to 1970 was used for 

calibration and the remaining data was used for validation of the hydrological model latter on. As 

can be seen in the table, the mean daily temperature in the validation period is slightly higher than 

that of the calibration period in the majority of the study area. The difference in the mean daily 

temperature between the validation and calibration periods ranges between 0.4 °C in the Suessen, 

[mm] 

1961 

1990 1980 

1970 
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Fils subcatchment with no observable changes in the Bad Imnau, Eyach and Rangendingen, Starzel 

subcathments. A higher difference is observable on the minimum and the maximum mean daily 

temperature. In contrast, the mean daily precipitation over the validation period in different parts of 

the study area is between 0 to 11% less than that the corresponding value in the calibration period. 

The variability of both the daily mean temperature and daily amount of precipitation are more or 

less similar in the calibration and validation periods. 
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Figure 2.11: Mean monthly temperature over the study catchment (left panel) and over the selected 

subcatchments (right panel). 

2.5 Runoff 

The mean runoff for the entire catchment at the outlet in Plochingen is 50.2 m3/s for the period 

of 1961 to 1990. The runoff within the catchment is highly variable is illustrated in Table 2.6. The 

lowest values of 0.5 m3/s occurred in February for Rottweil gauge, and in September for Oberndorf 

gauge. Low flow periods for Horb, Plochingen, Fils and Plochingen, Neckar gauges occur mostly in 

October and at the beginning of November. Flood periods for most of the subcatchments are in 

February. The highest discharge value of 1031 m3/s for the observed period of 1961 to 1990 for 

Plochingen, Neckar gauge took place in May 1978. Since there were some periods of missing data 

(61% days of the total period) for the discharge gauge at Kirchentellinsfurt, no value is given for 

this gauge. Figure 2.12 depicts the stream network and discharge gauges of the study catchment. 
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Figure 2.12: Stream network and discharge gauges of the study catchment. 

Table 2.6: Characteristics of different discharge gauges in the upper Neckar catchment.  

Discharge measurements [m3/s] 
Discharge gauge Drainage 

area [km2] Min. 
 

Max. 
 

Mean 
 

St. dev. 
 

1 Rottweil 456.0 0.5 146.7 5.2 7.1 
2 Oberndorf 691.0 0.4 172.7 8.0 9.7 
3 Horb 1118.0 1.0 420.3 14.8 18.5 
4 Bad Imnau, Eyach 323.0 0.3 85.8 3.5 4.8 
5 Rangendingen, Starzel 118.0 0.0 36.2 1.3 1.7 
6 Tuebingen, Steinlach 140.0 0.0 46.5 1.8 2.2 
7 Kirchentellinsfurt - - - - - 
8 Wannweil, Echaz 135.0 0.0 34.2 2.8 2.1 
9 Riederich, Erms 170.0 0.2 31.7 3.1 2.2 
10 Oberensingen, Aich 175.0 0.1 82.2 1.3 2.0 
11 Suessen, Fils 340.0 0.6 75.5 6.0 6.2 
12 Plochingen, Fils 692.0 0.6 171.2 9.9 11.6 
13 Plochingen, Neckar 3962.0 5.3 1031.0 50.2 51.1 

 

2.6 Evapotranspiration 

Evapotranspiration (ET) is the process by which water is returned to the atmosphere. It is an 

important hydrological process that influences the water balance of the catchment.  It represents a 

significant water loss from a catchment. Types of vegetation and land use both considerably affect 

evapotranspiration, and therefore the amount of water leaving a catchment. 
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ET is the sum of evaporation and plant transpiration. Evaporation accounts for the movement of 

water to the air from sources such as the soil, canopy interception, and water bodies. The process of 

evaporation is influenced by different meteorological variables, the nature of the evaporating 

surface, and availability of water. The meteorological variables include the energy available from 

net radiation and ambient air temperature, which is responsible for converting the liquid water into 

vapour; the humidity gradient at the evaporating surface, which influences the capacity of the water 

vapour on the evaporating surface to move into the atmosphere; and the wind speed, which removes 

the water vapour from the adjacent air mass and maintains the humidity gradient. Transpiration 

accounts for the movement of water within a plant and the subsequent loss of water as vapour 

through stomata in its leaves. The amount and rate of transpiration depends on the type of 

vegetation cover and their stage of growth, season of the year, time of the day, availability of water 

in the root zone, and the same meteorological factors that affect evaporation.  

Potential ET is the amount of water that would be evaporated under an optimal set of conditions, 

among which is an unlimited supply of water. This demand incorporates the energy available for 

evaporation and the ability of the lower atmosphere to transport evaporated moisture away from the 

land surface. Actual ET is the amount of water that is actually removed from a surface due to the 

processes of evaporation and transpiration. Depending on the availability of water, it can be equal 

or lower than the potential ET. Although it is the actual ET that is used in the water balance 

calculation, an estimate of the potential ET for a given catchment condition under the prevailing 

climatic conditions is an important step in rainfall-runoff modeling practice. The actual ET is then 

estimated based on the potential value and the availability of moisture supply to meet this demand. 

There are many methods available for the estimation of potential ET that range from data 

intensive physical approaches, such as Penman-Monteith equation (Monteith, 1965), to the less data 

demanding approaches like the Blaney and Criddle (1950); Hargreaves and Samani (1985) method. 

The Penman-Monteith equation is a predominantly physically-based approach, indicating that the 

method can be used globally without any additional parameter estimation. A major drawback to 

application of the Penman-Monteith equation, however, is the relatively high data demand, the 

method requires air temperature, wind speed, relative humidity, and solar radiation data.  

The limitation of reliable data made the Hargreaves and Samani (1985) method the appropriate 

choice in this study. This method estimates potential ET as a function of extraterrestrial radiation 

and air temperature. 

  

5.0
minmax0 )()8.17(408.00023.0 TTTRAET avg −×+×××=  (2.1) 
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where: 

ET0 [mmd-1] potential evapotarnspiration 
RA [MJm-2d-1] extraterrestrial radiation 
Tmin [οC] daily minimum temperature 
Tmax [οC] daily maximum temperature 
Tavg [οC] average daily temperature 

 

The constant 0.408 is used to convert the radiation to evaporation equivalents in mm. Since 

extraterrestrial radiation can be calculated for a certain day and location (Allen, et al., 1998), only 

the minimum and maximum temperature requires observation. The Hargreaves method (Hargreaves 

and Samani, 1985) has been tested using some high quality lysimeter data representing a broad 

range in climatological conditions (Hargreaves, 1994). The results have indicated that this equation 

was nearly as accurate as Penman-Monteith on a weekly or longer time step, and was therefore 

recommended in cases where reliable data were lacking.  

The long-term mean monthly potential evapotranspiration for a reference crop (grass) was 

estimated using the Hargreaves and Samani (1985) method on the same grid used for the 

interpolation of precipitation and temperature within the study area. Depending on the type of 

vegetation cover, these values were multiplied by the crop coefficient for the given vegetation type 

to that of grass to estimate the potential evapotranspiration of other vegetation types.  
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3 Model structure description 

3.1  Model selection for the study 

There are numerous criteria which can be used for selecting the appropriate hydrologic model. 

These criteria are always research study dependent, since every research study has its own specific 

requirements and needs. Among the various selection criteria, the following had to be considered in 

selecting the model to be applied in this study: 

• The model should not be data intensive. The data requirement should be addressed by the 

available observations and measurements within the study area. 

• The model should not be complex. The model structure should represent the most 

relevant processes to estimate the desired outputs adequately. 

• The model should not have too many parameters. 

Based on the above criteria, the HBV model (Bergström and Forsman, 1973) was selected to 

carry out majority of the study objectives. Originally, the HBV model was developed at the 

Swedish Hydrological and Meteorological Institute (SMHI) for runoff simulation and hydrological 

forecasting, but the scope of applications has increased steadily. Based on the original model, a 

modified version developed at the Institute of Hydraulic Engineering has been used for the study. 

The following brief introduction to the principal model structure and process representations is 

based on the description of Bergström, 1995, Lindström et al. (1997), Ehret (2003), Hundecha and 

Bárdossy (2004) and Das et al. (2006). 

3.2 The HBV model  

Figure 3.1 shows the principal processes covered by the modified HBV model. The model 

consists of three main components: 

• Snow accumulation and melt routine 

• Soil moisture accounting routine 

• Runoff response routine 

The model uses subcatchments as primary hydrological units. Further zoning of the 

subcatchments into homogeneous units based on elevation, land use, soil type or combinations of 

them is possible. On the following pages, each model component is explained in detail.  
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Figure 3.1: Schematic view of the modified HBV model. 

3.2.1 Snow accumulation and melt 

Snow accumulation and melt is modeled by a degree-day method. In this method, the daily rate 

of snowmelt in water equivalent is proportional to the increase in daily temperature above a 

threshold value Tcrit.  

)( critTTDDMELT −⋅=  (3.1) 

where: 

MELT [LT-1] snowmelt rate as water equivalent 
DD [Lθ-1T-1] degree-day factor 
T [θ] mean daily air temperature 
Tcrit [θ] threshold temperature for snow melt initiation 
 

The precipitation is assumed to accumulate as snow when the air temperature drops below the 

threshold value Tcrit. Precipitation input is thus modeled as snow or rain according to the prevailing 
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temperature. The zoning of subcatchments based on elevation allows the individual consideration of 

snowfall and snowmelt at different heights. 

The snow routine of the HBV model generally has two free parameters, DD and Tcrit, which have 

to be estimated by calibration. 

In the original HBV model, the degree-day factor, DD, was set as constant. However, it is known 

that whenever there is rainfall, the energy available in the rainwater with a positive temperature 

enhances snow melt. In order to include this effect in the rate of snowmelt, the degree-day factor 

was modified as a linear function of the daily depth of precipitation (Hundecha, 2005).  

⎪⎩

⎪
⎨
⎧ −

≤+=
elseDD

k
DDDD

PifPkDDDD
max

0max
0 .

 

(3.2) 

where: 

DD0 [Lθ-1T-1] degree-day factor when there is no rainfall 
DDmax [Lθ-1T-1] upper limit to the degree-day factor 
P [L] daily depth of precipitation 
k [-] a positive constant 
 

This entails that the degree-day value not only increases with rising temperature but also with 

higher precipitation amounts. Unrealistically with high snowmelts which might occur with high 

rainfall intensities are prevented by the degree-day value’s upper limit (DDmax). 

3.2.2 Soil-moisture and effective precipitation  

The soil-moisture accounting routine of the HBV model is based on a modification of the bucket 

theory in that it assumes a statistical distribution of storage capacities in a catchment. The routine 

computes an index of the wetness of the entire catchment and integrates interception and soil 

moisture storage. The routine is controlled by two free parameters, FC and β. FC is the maximum 

soil storage in the basin and β determines the relative contribution to runoff from a millimetre of 

rain or snowmelt at a given soil-moisture deficit. This is calculated using the following relation. 

 

( )eff
SMP P MELT
FC

β
⎛ ⎞= ⋅ +⎜ ⎟
⎝ ⎠  
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Soil moisture
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where: 

Peff [L] effective precipitation 
SM [L] actual soil-moisture 
FC [L] maximum soil storage capacity 
β [ - ] a model parameter (shape coefficient) 
P [L] depth of daily precipitation 
 

The remaining part of the rainfall or snow melt is added to the soil moisture until the storage 

capacity of the soil FC is reached. The effect of the curve determining runoff generation is that the 

response is gradually increasing with increasing wetness. Thus the routine may be considered to 

account for small scale properties within the catchment. 

3.2.3 Evapotranspiration 

The evapotranspiration routine in the HBV model is based on monthly values of potential 

evapotranspiration as inputs. In order to improve the model performance when either the spring or 

summer is much colder than normal and when daily changes of the weather inputs need to be taken 

into account, a correction factor based on mean daily temperatures and long-term averages is 

included according to the following equation.  

a m mPE (1 C (T T )) PE= + ⋅ − ⋅  (3.4)

where: 

PEa [L] adjusted potential evapotranspiration 
C [θ-1] model parameter 
T [θ] mean daily air temperature 
Tm [θ] long term mean monthly air temperature 
PEm [L] long term mean monthly potential evapotranspiration 
 

The actual soil-moisture has an important influence on the magnitude of the real 

evapotranspiration. Only in the case of optimum water availability, the actual evapotranspiration 

occurs at the rate of potential evapotranspiration. In the model, this is accounted for by a soil-

moisture limit, PWP, from which the actual evapotranspiration will be linearly reduced according to 

a lack of water availability.  

a a

a a

SME PE    for   SM < PWP
PWP

E PE               for   SM PWP

= ⋅

= ≥  
0.0

1.0

PWP FC  

(3.5) 
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where: 

Ea [L] actual evapotranspiration 
PWP [L] soil-moisture limit for evapotranspiration decrease 
 

The actual potential evapotranspiration, Ea, cannot have a negative value. 

3.2.4 The response function 

The catchment response routine transforms excess water from the soil-moisture routine to 

discharge at the outlet of each subcatchment. The routine consists of two conceptual reservoirs 

arranged one over another. The first reservoir simulates the near surface flow and interflow in the 

sub-surface, while the lower reservoir represents the base flow. Both reservoirs are connected in 

series by a constant percolation rate and are considered linear with a constant recession coefficient. 

In addition to the regular outlet, the upper reservoir also features a threshold-dependent runoff 

component: only if the reservoir level exceeds a certain threshold, will fast runoff from the upper 

outlet occur. Overall, the response function consists of the following model parameters: three 

recession coefficients K0, K1, K2, a threshold water level L and a constant percolation rate Kperc 

between upper and lower reservoirs. 
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(3.6) 

where: 

Q0 [L3T-1] near surface flow 
Q1 [L3T-1] interflow 
Qperc [L3T-1] percolation 
Q2 [L3T-1] baseflow 
K0 [T-1] near surface flow storage constant 
K1 [T-1] interflow storage constant 
Kperc [T-1] percolation storage constant 
K2 [T-1] baseflow storage constant 
Si [L] upper reservoir water level 
Sb [L] lower reservoir water level 
L [L] threshold water level for near surface flow 
Asc [L2] subcatchment area 
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The total runoff is computed as the sum of the outflows from the upper and the lower reservoirs. 

The total flow is then smoothed using a transformation function, consistsing of a triangular 

weighing function with one free parameter, MAXBAS. 
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(3.7) 

where: 

Q [L3T-1] current overall discharge  
MAXBAS [T] duration of the triangular weighting function (Unit Hydrograph) 

3.2.5 River routing 

The flow is routed from one node to the other of the river network by the means of Muskingum 

flood routing method. It represents a river stretch between two sections using a prism and a wedge 

storage. Following iterative calculation of the two routing parameters, K and x, the flood 

propagation is calculated according to the formula provided below.  

( ) ( )

( )

( )

' ' '
out i 1 in i 2 in i 1 3 out i 1

' ' '
1 2 3

Q (t ) C Q (t ) C Q (t ) C Q (t )

t t tK x K x K K x
2 2 2C   ;  C   ;  C

t t tK 1 x K 1 x K 1 x
2 2 2

− −= ⋅ + ⋅ + ⋅

Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ − ⋅ + − ⋅ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠= − = = −

Δ Δ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⋅ − + ⋅ − + ⋅ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  

(3.8) 

where: 

Qout(ti) [L3T-1] discharge leaving the river stretch at time-step ti 
Qout(ti-1) [L3T-1] discharge leaving the river stretch at time-step ti-1 
Qin(ti) [L3T-1] discharge entering the river stretch at time-step ti 
Qin(ti-1) [L3T-1] discharge entering the river stretch at time-step ti-1 
K [L] retention constant of the Muskingum model 
x [ - ] weighting factor of the Muskingum model 
C1', C2', C3' [ - ] formula parameters 

3.3 Development of different model structures 

In the existing HBV model structure, the subcatchment is divided into a number of zones 

according to elevation, land use or soil type or combinations of those characteristics. However, the 

distribution of each subcatchment into different elevation and land categories is not spatially fixed. 

It implies that geographical information is taken from actual physical data, and is represented in 

each subcatchment only as a percentage of the whole area for that subcatchment without keeping 

track of exactly where that percentage is located in space.  
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Based on the HBV model concept, four different model structures were developed. The 

differences and similarities of different structures are summarized below.  

3.3.1 Distributed model structure 

The modifications were undertaken in the distributed model structure to account for detailed 

basin characteristics (e.g., soil and land use), processes calculation and highly resolved 

meteorological variables (e.g., precipitation). The modified model was configured into a raster 

form. In the modified structure, the catchment can be divided into number of subcatchments, as in 

the case of existing semi-distributed model structure. However, each subcatchment can be divided 

into a number of regular grid cells in the modified structure. Thus the advantage of representing the 

subcatchment as raster form lies in the ability to utilize spatially highly resolved rainfall data, to 

account for detailed processes calculation and to obtain the detailed configuration of the 

aforementioned catchment characteristics. The primary difference between the original model 

structure and the modified distributed structure is the use of grid cells as primary hydrological units 

in the modified structure (Figure 3.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Modified distributed model structure and representation of main processes. 
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Due to this modification in the model structure, the snow accumulation and melt routine, the soil 

moisture accounting routine and the actual evapotranspiration are computed for each grid cell 

individually. The runoff response process, which is represented conceptually by reservoirs for direct 

discharge and base flow, for each subcatchment is kept unchanged as in the original model structure 

to restrict the numbers of model parameter to be optimized. In principle the model parameters 

related to snow accumulation and melt and soil moisture accounting routines can be adjusted 

differently for every grid in the modified model structure. In the present study, the subcatchments 

were divided into a number of regular grids having an area of 1 km2. For the modeling of the 

processes in each grid, the interpolated daily precipitation amount and mean daily temperature on a 

regular grid of 1 km × 1 km was assigned to every computational grid.  The evapotranspiration 

calculated on 1 km × 1 km grid was used as an input to the model grid. 

3.3.2 Semi-distributed model structure 

In the semi-distributed model structure sub-division of the subcatchments into a number of 

different homogenous zones can be accomplished based on the catchment characteristics that have 

an influence on the runoff generation processes. Topographic elevation, soil type, and land use may 

be considered in defining zones. The meteorological variables are then assigned for each zone. In 

principle, the model parameters related to the snow accumulation and melt and the soil moisture 

accounting routine can be different for each zone.  

As elevation affects the distribution of the basic meteorological variables such as precipitation 

and temperature as well as the rate of evaporation and snow melt and accumulation, it represents an 

important catchment characteristic that was considered in defining zones in this study. Elevation 

zones were defined using a contour interval of 75 m. Areas between successive contour intervals 

were considered homogenous with respect to elevation. The elevation of the study area varies from 

about 250 m to around 1000 m and therefore, a maximum of 10 elevation zones were defined in 

each subcatchment. In order to model the processes in each zone, the values of mean daily 

precipitation amount and the mean daily temperature were assigned in each zone. The 

meteorological variables for each zone were estimated as the mean of the interpolated values on the 

regular grids of 1 km × 1 km located within a given zone. The potential evapotranspiration was also 

averaged over each zone from the calculated evapotranspiration on 1 km × 1 km grids located 

within a given zone.  

3.3.3 Semi-lumped model structure 

The meteorological variables and potential evapotranspiration are assigned to each zone similar 

to the semi-distributed model structure. The only difference between the semi-distributed and semi-
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lumped structures lies in the fact that the model parameters for the snow accumulation and melt and 

soil moisture accounting routines are assigned same values for every zone within each 

subcatchment. However, those can be different for different subcatchments.  

3.3.4 Fully-lumped model structure 

The meteorological variables and actual evapotranspiration are assigned to each subcatchment. 

All the processes namely, snow melt and accumulation, soil moisture accounting and runoff 

response are calculated for each subcatchment. The model parameters related to snow accumulation 

and melt and soil moisture accounting routines are maintained for each subcatchment.  

For each subcatchment the meteorological variables were estimated as the mean of the 

interpolated values on the regular grids of 1 km × 1 km located within a given subcatchment. The 

potential evapotranspiration was also averaged over each subcatchment from the calculated 

evapotranspiration on 1 km × 1 km grids located within a given subcatchment.  

Table 3.1 demonstrates the features of the different model structures.  

3.4 Automatic parameter estimation procedure for the HBV model 

Conceptual models describe all of the component hydrological processes perceived to be of 

importance as simplified conceptualization (Kokkonen and Jakeman, 2001). Contrary to more 

complex, physically-based distributed models such as the MIKE SHE model (Abbott et al., 

1986a,b), or the SHETRAN model (Ewen et al., 2000), the required input data are readily available 

for most applications. In addition to their modest data requirement, conceptual models are usually 

simple and relatively easy to apply. However, for partly or fully conceptual models, some 

parameters cannot be considered as physically measured quantities and thus have to be estimated on 

the basis of the available data and information. Thus, the final parameter estimation must be 

performed by calibration against observed data. Traditionally, calibration has been performed 

manually using a trial and error parameter adjustment procedure. The process of manual calibration, 

however, may be a very tedious and time consuming task, depending on the number of free model 

parameters and parameter interaction. Furthermore, because of the subjectivity involved, it is 

difficult to explicitly assess the confidence of the model simulations. Due to this, a great deal of 

research has been directed to the development of more effective and efficient automatic calibration 

procedures (Madsen et al., 2002). Effective and efficient state-of-the-art procedures include 

combinatorial algorithm simulated annealing (Hartmann and Bárdossy, 2005), population-evolution 

based optimization algorithms such as genetic algorithms (Seibert, 2002) and the shuffled complex 

evolution method (Duan et al., 1993a,b). The model calibration procedure adopted in this work 

followed the automatic parameter estimation technique based on the combinatorial optimization 
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algorithm simulated annealing (Aarts and Korst, 1989). Simulated annealing (Aarts and Korst, 

1989) is a Monte Carlo optimization technique (Metropolis et. al., 1953) proposed by Kirkpatrick et 

al., (1983). A simulated annealing optimization starts with a Metropolis Monte Carlo simulation at 

high temperature. This means that a relatively large percentage of the random steps that result in an 

increase in the energy will be accepted. After a sufficient number of Monte Carlo steps, or attempts, 

the temperature is decreased. The metropolis Monte Carlo simulation is then continued. This 

process is repeated until the final temperature is reached. 
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Optimization by simulated annealing mimics the physical process of annealing, which is the 

process of growing a crystal in a fluid by melting the fluid at higher temperature and cooling slowly 

to a lower temperature in a way that minimizes the energy of the system. At the end of this process, 

the crystal attains at its lowest energy state. In statistical mechanics, experiments that determine the 

low-temperature state of a material spend a long time at the vicinity of the freezing point. If this is 

not done, then either the resulting crystal may have many defects or the substance may form a glass, 

with no crystalline order (Kirkpatrick et. al., 1983). Thus, finding the low temperature state of a 

system, when a description for calculating its energy is given, is an optimization problem like those 

in combinatorial optimization. The temperature of a physical system has no obvious equivalent in 

the optimized systems. In simulated annealing, temperature is the control parameter.  

The implementation of an automatic model calibration procedure requires the selection of the 

followings (Yapo et al., 1996): 

• a calibration data set 

• a ‘goodness-of-fit’ measure i.e., objective function 

• an automatic parameter estimation procedure i.e., optimization algorithm 

• a region of the parameter space to be searched i.e., a feasible parameter space 

• a validation procedure to determine the degree of uncertainty in the model 

The most important part of this procedure is the selection of an appropriate objective function.  

3.4.1 Objective function 

For the determination of an appropriate set of parameters, the performance of a model must be 

measured, i.e., the objective criteria to measure the quality of the results must be defined. A typical 

objective function is the Nash Sutcliffe coefficient (Rm
2) (Nash and Sutcliffe, 1970) was used. The 

model was calibrated with the dual objective of simulating the observed daily discharge and 

preserving the mean runoff over longer periods based on the procedure described by Hartmann and 

Bárdossy, 2005. This was achieved by a simultaneous calibration of the model for the daily and 

longer time scales. The different aggregation times are calculated as follows. Assuming Qo(ti) is the 

observed discharge series and Qs(θ,ti) is the simulated discharge with model parameter θ for the 

time step ti. According to the selected time period P and whether extremes are considered or not, the 

weight for time ti is defined as w(ti,P,x). Considering the time step of the model is ti-ti-1= t; I is the 

total number of time steps and l is the summation index. Thus Rm
2 can be defined for time steps jΔt 

as: 
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where, in case extremes are not emphasized (x=1): 
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or, in case extremes are emphasized (x=2): 
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The calibration of the model was performed for different time intervals. Thus, multiple 

objectives were considered when calibrating the model. The overall objective function to be 

optimized is therefore the arithmetic sum of the Nash-Sutcliffe coefficients corresponding to the 

discharges at the different time scales defined as: 

)1,,,365()2,,,1()1,,,1(),( 2
3

2
2

2
1 θαθαθαθ PRPRPRPS mmm ++=  (3.12)

The weights 1α , 2α  & 3α are defined by the user depending on the application purposes. For this 

study, the main objective is the estimation of the daily and the peak discharges, while preserving the 

annual water balance. The values of 1α , 2α  & 3α  were assigned as 1, 2 and 1 respectively. 

3.4.2 Automatic optimization algorithm Simulated Annealing 

The algorithm of the simulated annealing method applied for maximizing the objective function 

to optimize the HBV model parameters is as follows: 

1. Select a starting annealing temperature and a number of iterations Ns to be tried before 

decreasing the temperature. Select a reduction factor in which the temperature decreases. 

2. Compute the initial value of an objective function (O0) using the initial value of the model 

parameters. These parameters for the HBV model are, for example, parameters for the snow 

module, soil module, runoff concentration module and river routing module. Assign at the first 

time Oold=O0. 
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3. Change the randomly selected parameter value slightly and calculate the objective function 

(Onew) using the new value. If Onew>Oold the change is accepted (positive change). Else calculate 

the probability of acceptance pa defined as: 

where: 

 Accept the change with probability pa (negative change) and undo it with probability (1-pa). 

This Step ensures that the optimization does not stop at any local minima but will converge 

toward a global minimum. The annealing temperature Ta regulates the probability of negative 

changes. The lower Ta indicates less likely the acceptance of a negative change.  

4. Repeat the previous step Ns times. 

5. Reduce the annealing temperature slightly at a rate defined at step 1. Repeat steps 3 and 4. 

6. Repeat the previous step until the termination criteria is reached. 

With this optimization algorithm, it is possible to include all kind of known preconditions on the 

model parameters. Appropriate constraints were assigned for the ranges of the parameters based on 

the previous studies (Hundecha, 2005). Table 3.2 depicts the model parameters selected to be 

optimized by the automatic calibration procedure. The interval is broadly defined such that it can 

include almost all feasible parameter values. Alongside these, other physically meaningful 

constraints were applied on some model parameters. Here for example, close constraints on soil 

properties were applied according to the soil types, e.g., the conceptual parameter FC was always 

kept higher than PWP. Two hundred iteration steps were used, each having a number of repetition 

steps. To consider non-uniqueness of the optimal parameter set, the same objective functions was 

used for at least three times with different set of random numbers each time. 
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oldO   old objective function 

newO   new objective function 
 Ta  annealing temperature 
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Table 3.2: Model parameters selected to be optimized by the automatic calibration procedure. 

Parameter Unit Minimum Maximum 
Snow accumulation and melt module 

DD0 [mm°C-1day-1] 0.5 5.0 
DDmax [mm°C-1day-1] 10 
k [-] 0.0 0.5 
Runoff generation module 
FC [mm] 100.0 400.0 
PWP [mm] 10.0 FC-10.0 
β [-] 1.0 5.0 
Runoff concentration module 
L [mm] 1.0 30.0 
K0 [h] 0.5 20 
K1 [h] 5.0 50.0 
Kperc [h] 20.0 100.0 
K2 [h] 10.0 1000.0 
River routing module 
K [h] 0.8 10.0 
x [-] 0.1 0.4 

3.4.3 Automatic calibration for different model structures 

In the distributed model structure, the model parameters were calibrated based on the concept of 

hydrological response units (geoclasses) in order to reduce the problem of over-parameterization. A 

geoclass is defined on the basis of soil type and land use information. The soil type and land use 

type were re-classified into a smaller number of classes; 7 classes for soil types and 4 classes for 

land use types. The mentioned catchment characteristics were then categorized into 28 geoclasses. 

The parameters involved in the soil module (e.g., FC, PWP and β) were optimized based on the 

geoclasses. Here, for each parameter of each geoclass, a range of maximum and minimum was 

calculated based on the soil type. Optimized parameters corresponding to the 28 geoclasses were 

assigned to the grids. Grids (irrespective of location) with similar geoclasses will receive the same 

value. Thus the calibration procedure based on the hypothesis that the model elements with 

identical landscape characteristics have similar hydrological behaviour, and should consequently be 

assigned the same parameter values. During calibration, parameters related to the snow module 

were optimized and assigned the same value for all the subcatchments.  

In the semi-distributed model structure the optimized model parameters related to the soil 

moisture accounting and snow accumulation and melt routines were different for different zones 

within a given subcatchment. On the other hand, the optimised parameters were kept constant for 

every zone within a given subcatchment for the semi-lumped model structure. In the fully-lumped 

model structure, the parameters were optimized individually for each subcatchment.  

Tcrit [°C] -2.0 +2.0 
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3.5 Modeling time step 

In order to properly model the magnitude and the time distribution of flood flows from a 

catchment, rainfall series of higher time resolution is required, since high rainfall intensities over 

shorter periods have a significant effect on the peak of a flood. However, daily records of 

meteorological data were used in the present study. Disaggregation of the daily amount by 

uniformly distributing it through out the day was implemented and the model was run at a time step 

of 6 hours for the study (Hundecha, 2005).  

3.6 The SHETRAN model 

To carry out one of the objectives of the research the physically-based spatially-distributed 

modeling system SHETRAN was also applied. The SHETRAN modeling system was developed at 

the Water Resource Systems Research Laboratory (WRSRL), University of Newcastle upon Tyne, 

and is based on the SHE (Systeme Hydrologique Europeen) (Abbott et al., 1986a,b) which was 

developed by international collaboration among groups in the United Kingdom, Denmark and 

France. 

The following brief introduction to the principal model structure and process representations in 

the SHETRAN model is mainly based on the description of Ewen et al. (2000), Parkin et al., 2000 

and Bathurst et al., 2005.  

SHETRAN is a three-dimensional, coupled surface/subsurface, physically-based, spatially-

distributed, finite-difference model for coupled water flow, multifraction sediment transport and 

multiple reactive solute transport in catchments (Figure 3.3). SHETRAN simulates hydrological, 

sediment transport and landslide response of a catchment. It incorporates a detailed description in 

time and space of the flow and transport in the catchment. SHETRAN represents processes using 

physical laws applied on a three-dimensional finite-difference mesh. The mesh follows the 

topography of the catchment and the parameters of the physical laws vary from point to point on the 

mesh thus allowing the representation of the spatial heterogeneity of the physical properties of the 

rocks, soils, vegetation cover, etc.  

The main advantage of SHETRAN over existing physically based, spatially-distributed, 

catchment modeling systems lies in its comprehensive nature and its capabilities for modeling 

subsurface flow and transport. The subsurface is treated as a variably saturated heterogeneous 

porous medium and fully three-dimensional flow and transport can be simulated for combinations 

of confined, unconfined and perched systems. The “unsaturated zone” is modeled as an integral part 

of the subsurface, and subsurface flow and transport are coupled directly to surface flow and 

transport. Unlike SHE, SHETRAN has not followed the “layered” approach (i.e., ground surface, 
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unsaturated zone, and saturated zone) for computation. The main computational structures in 

SHETRAN are “stream links” and “columns” (Figure 3.3). River networks are modeled as networks 

of stream links, and the rest of the basin is modeled as a set of columns, each containing its own 

part of the ground surface and vegetation. Each column comprises of many finite-difference cells, 

stacked one above the other, and there may be a different soil or rock associated with each cell. 

There is lateral flow between cells in neighboring columns, as well as vertical flow in each column, 

thus giving flow in three dimensions. Three main components lie at the core of SHETRAN, one 

each for water flow, sediment transport and solute transport. Flow is assumed not to be affected by 

sediment transport and sediment transport not to be affected by solute transport. The three 

components lie in a natural hierarchy.  

 

 

Figure 3.3: Schematic diagram of the SHETRAN model. 

The water flow model component of the SHETRAN modeling system (version 4.3), used for the 

present study, was obtained from the WRSRL. Necessary modifications were undertaken with the 

collaboration of WRSRL to work with highly spatially resolved meteorological forcing variables. 

Table 3.3 shows Flow equations used in the SHETRAN model. 
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Table 3.3: Flow equations in SHETRAN  

 
Process 
 

Equation 

Subsurface flow Variably saturated flow equation (3D) 

Overland flow Saint-Venant equations, diffusion approximation (2D) 

Channel flow Saint-Venant equations, diffusion approximation 
(flow in a network of 1D channels) 

Canopy interception and drip Rutter equation 

Evaporation1 Penman-Monteith equation (PME) (or as fraction of 
potential evaporation rate) 

Snowpack and melt2 Accumulation equation and energy budget melt equation 
(or degree-day melt equation) 

1 To represent Evaporation process the option as fraction of potential evaporation rate is applied 
in the present study. 

2 To represent snow pack and melt process degree-day melt equation is applied in the present 
study. 

Table 3.4 depicts main processes represented in the water flow component of the SHETRAN 

model. 

Table 3.4: Main processes represented in the water flow component of the SHETRAN model. 

Processes 
 

• Canopy interception of rainfall 
• Evaporation and transpiration 
• Infiltration to subsurface 
• Surface runoff (overland, overbank, and channels) 
• Snow pack development and snowmelt 
• Storage and 3D flow in variably saturated subsurface 
• Combinations of confined, unconfined, perched aquifers 
• Transfers between subsurface water and water 
• Ground-water seepage discharge 
• Well abstraction 
• River augmentation and abstraction 
• Irrigation 

Table 3.5 presents main data requirement for physical properties and initial and boundary 

conditions in SHETRAN. 
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Table 3.5: Main data for physical properties and initial and boundary conditions in SHETRAN. 

Data requirement 
• Precipitation and meteorological data for each station 
• Station numbers for each column and river link 
• Size and location of columns, river links, and finite-difference cells 
• Soil/rock types and depths for each column 
• Land-use/vegetation for each column 
• Man-controlled channel flow diversions and discharges 
• Rates of borehole pumping, artificial recharge, flow diversions, and so forth 
• Initial hydraulic potentials for subsurface 
• Initial overland and channel flow depths 
• Initial snow pack thicknesses and temperatures 
• Boundary hydraulic potentials (or flow rates) 
• Boundary stream inflow rates 
• Canopy drainage parameters and storage capacities 
• Ground cover fractions 
• Canopy resistances and aerodynamic resistances (for PME) 
• Vegetation root density distribution over depth 
• Porosity and specific storage of soils/rocks 
• Metric potential functions for soils/rocks 
• Unsaturated hydraulic conductivity functions for soils/rocks 
• Saturated hydraulic conductivity of soils/rocks 
• Snow density, zero-plane displacement, and roughness height 

3.7 The SHETRAN model calibration 

In principle, the parameters of a physically based spatially distributed model should not require 

calibration. They are supposedly based on measurements and are truly representative of that part of 

the catchment for which they were evaluated. However, within the model there are approximations 

in the representation of physical processes and potential inconsistencies among the model grid 

scale, the scale at which property measurements are made and the scale relevant to each particular 

hydrological process. A degree of calibration or adjustment of parameter values is, therefore, likely 

to be needed to minimize the differences between observed and simulated responses. Such 

calibration, however, should be constrained by physical plausibility so that the parameter values 

either lie in a physically realistic range or can otherwise be explained by physical reasoning. 

Furthermore, given the large number of parameters, it is not realistic to obtain an accurate 

calibration by gradually varying all the parameters individually or in combination. Typically with 

SHETRAN, calibration is, therefore, limited to only the few parameters to which the simulation is 

most sensitive. These are the Strickler resistance coefficient for the overland flow, ratio of actual to 

potential evapotranspiration at soil field capacity, the Van Genuchten exponent n for soil 

moisture/tension curve and the soil saturated zone hydraulic conductivity (Ewen et al., 2000; Lukey 

et al., 2000). 
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3.8 Goodness-of-fit criteria in simulations 

The standard split sampling model calibration procedure was followed. The model calibration 

period runs from 1961 to 1970 using the observed daily discharges. The subsequent period until 

1990 was used to validate the calibrated model. In order to minimize the effect of the initial states 

of the subcatchments on the model performance, the first 12 months were used as a warm up period 

and the model simulation results during this period were not used to compute the model 

performance.  

3.8.1 Overall model simulations performance 

The simulation results were compared using different statistical criteria, namely, the Nash-

Sutcliffe coefficient, the relative accumulated difference, the peak error, the index of Agreement 

and Root mean squared difference. 

The Nash-Sutcliffe coefficient (Rm
2) (Nash and Sutcliffe, 1970) is defined as: 
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where: 

Qo(ti) [m3/s] observed daily discharge 

Qs(ti) [m3/s] simulated daily discharge 

oQ  [m3/s] mean observed daily discharge 

N [-] number of time steps 
 

The range of 2
mR  lies between 1.0 (perfect fit) and -∞. An efficiency of lower than zero indicates 

that the mean value of the observed times series would have been a better predictor than the model. 

 
The relative accumulated difference and the peak error were computed to judge the performance 

of the model with regard to its ability to maintain the water balance and its estimation capacity of 

the peak flow.  

The relative accumulated difference (rel. accdif.) is defined as: 
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where: 

Qo(ti) [m3/s] observed daily discharge 
Qs(ti) [m3/s] simulated daily discharge 
N [-] number of time steps 
 

Accordingly, the peak error is defined based on the relative difference of the mean annual 

simulated and observed peak discharges:  

(max)

(max)(max) 
o

os

Q
QQ

errorpeak
−

=  (3.16)

where: 

(max)oQ  [m3/s] mean annual maximum observed discharge 

(max)sQ  [m3/s] mean annual maximum simulated discharge 

 

The index of agreement, a measure of differences between the observed and model simulated 

means and variances, was also calculated. The index of agreement varies from 0.0 to 1.0, with 

higher values indicating better agreement between the model and observations.  

The index of agreement (AI) is defined as: 
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where: 

Qo(ti) [m3/s] observed daily discharge 
Qs(ti) [m3/s] simulated daily discharge 

oQ  
[m3/s] mean observed daily discharge 

N [-] number of time steps 
 

The potential error in the denominator represents the largest value that the squared difference of 

each pair can attain. Because the mean squared error is in the numerator, AI is very sensitive to peak 

flows and insensitive for low flow conditions.  

 
Additionally, the root mean squared error (RMSE) between the observed and simulated 

discharges was computed. RMSE is defined as: 
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where: 

 

The mean model performance ( 2
mmR ) is calculated using the model performances obtained at the 

measured discharge gauges. The model performances obtained at the Kirchentellinsfurt, Neckar, 

Wannweil, Echaz and Riederich, Erms gauges were not considered for the calculation of the mean 

model performance. Kirchentellinsfurt, Neckar was not considered due to its large number of 

missing measurements. The performances at the Wannweil, Echaz and Riederich, Erms gauges 

were not considered because the drainage area of those gauges is located at the karstic formation. 
2
mmR  is calculated using the Nash-Sutcliffe coefficient values obtained during the calibration and 

validation periods, defined as: 

where: 

im ncalibratioR )(2
 

[-] Nash-Sutcliffe coefficient during calibration period 

im validationR )(2
 

[-] Nash-Sutcliffe coefficient during validation period 
L [-] number of subcatchments 
 
Higher values of 2

mmR  indicate better mean model performance. 
 
The value of model parameters’ transferability ( mT ) is also computed to evaluate their 

transferability during the simulation period when the model parameters were not allowed to change. 

The model parameters’ transferability is calculated using the following equation. 

where: 

im ncalibratioR )(2
 

[-] Nash-Sutcliffe coefficient during calibration period 

im validationR )(2
 

[-] Nash-Sutcliffe coefficient during validation period 
L [-] number of subcatchments  
 

Qo(ti) [m3/s] observed daily discharge 
Qs(ti) [m3/s] simulated daily discharge 
N [-] number of time steps 
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As we are more concerned about deterioration of model performance in the validation period, 

therefore, the maximum positive difference of the model performance was considered in the above 

equation as an index of model parameters’ transferability. 

Lower values of Tm indicate better model parameters’ transferability.  

3.8.2 Event statistics 

The event statistics were also calculated for different gauges using the simulated and observed 

discharges. The average absolute error (AE) and root mean squared error (see eq. 3.18) were 

calculated for each annual maximum flood event. The average absolute error (AE) is defined as: 

where: 

Qop(ti) [m3/s] observed daily discharge within each annual event 
Qsp(ti) [m3/s] simulated daily discharge within each annual event 
Np [-] number of time step in a particular peak event 
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4 Influence of spatial variability of precipitation in a hydrological model 

4.1  Introduction 

In this chapter attempts have been made to elaborate the following two aspects: (a) the impacts 

of spatial variability of precipitation on the hydrological modeling results and (b) the reliability of 

model parameters, calibrated from a certain level of input information, to use for simulations with 

different level of input precipitation information. The distributed and semi-distributed structures of 

the HBV model were applied. Interpolated precipitation by external drift kriging (Ahmed and de 

Marsily, 1987) from the available point raingauge measurements were used to represent the spatial 

variation of rainfall. In the first section of the chapter, the averaged precipitation over different 

spatial resolutions obtained from interpolated precipitation was used as a main forcing input in the 

model. In the second section, a discussion on the question (b) is made. The model performance was 

assessed through the analysis of the simulated hydrographs and the computation of goodness-of-fit 

indexes. 

4.2 Data preparation and model simulations 

The daily precipitation and the daily average temperature were interpolated on a 1 km × 1 km 

grid. In order to investigate the impact of the spatial variability of precipitation, the interpolated 

precipitation was averaged over different spatial scales. The spatial scales range from 4 km2 to 25 

km2 (Table 4.1). 

The original interpolated precipitation and averaged precipitation over different spatial 

resolutions were used as a main forcing input in the models. The distributed and semi-distributed 

model structures of the HBV model were applied in accordance to the study objectives. The 

simulated hydrographs obtained using original and averaged precipitation were analyzed by 

comparison of their Nash-Sutcliffe coefficients and other goodness-of-fit indices. The areal 

averaged precipitation and their corresponding spatial resolution are shown in Table 4.1. 

Table 4.1: Areal averaged precipitation and corresponding spatial resolution. 

Spatial resolution of 
precipitation [km2] Simulation abbreviation 

1 1×1 
4 2×2 
9 3×3 
16 4×4 
25 5×5 
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4.2.1 Simulations using the distributed HBV model structure 

The distributed structure of the HBV model was calibrated using the interpolated precipitation 

on 1 km × 1 km grid. The other input variables required to setup the model were assigned at the 

same model grid. Table 4.2 summarizes the model performance for the calibration and validation 

periods at different discharge gauges.  

Table 4.2: Model performances using the distributed HBV model for the calibration and validation 

periods. 

 

As shown in Table 4.2, the Nash-Sutcliffe coefficient for the simulation of the daily discharge in 

the subcatchments during the calibration period has values ranging between 0.59 and 0.84 with a 

mean value of 0.74 and the Nash-Sutcliffe coefficient for the validation period ranging between 

0.59 and 0.83 with a mean value of 0.73. It can be observed that the model performances increased 

with the increase of drainage area. The relatively low value of Nash-Sutcliffe coefficient was 

noticed for small subcatchments due to higher uncertainty in the precipitation estimation for small 

subcatchments. The highest Nash-Sutcliffe coefficient value was observed during both calibration 

and validation period at the catchment outlet Plochingen, Neckar. The lowest value was observed at 

the gauge Rangendingen, Starzel, which is, in part, located in a karstic geological formation.  

Gauge Simulation 
period Rm

2 Rel. 
accdif. 

Peak 
error RMSE 

calibration 0.69 0.13 -0.42 3.91 Rottweil validation 0.71 0.17 -0.38 3.88 
calibration 0.73 0.03 -0.42 5.10 Oberndorf validation 0.72 0.07 -0.34 5.19 
calibration 0.82 0.05 -0.27 7.66 Horb validation 0.77 0.15 -0.30 9.15 
calibration 0.71 -0.07 -0.43 2.47 Bad Imnau, Eyach validation 0.74 -0.02 -0.45 2.49 
calibration 0.59 0.03 -0.55 1.18 Rangendingen, 

Starzel validation 0.59 0.29 -0.45 1.10 
calibration 0.72 -0.01 -0.12 1.20 Riederich, Erms validation 0.67 0.04 -0.08 1.21 
calibration 0.71 0.11 -0.11 1.10 Oberensingen, Aich validation 0.70 0.18 0.02 1.32 
calibration 0.77 -0.17 -0.17 3.03 Suessen, Fils validation 0.80 -0.09 -0.25 2.78 
calibration 0.79 -0.12 -0.33 5.30 Plochingen, Fils validation 0.77 -0.01 -0.40 5.62 
calibration 0.84 -0.05 -0.23 20.39 Plochingen, Neckar validation 0.83 0.02 -0.28 21.47 
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The calibrated model was then run for the validation period using the averaged precipitation over 

different spatial resolutions mentioned earlier. In this simulation experiment, the model resolution 

was also 1 km × 1 km. Table 4.3 summarizes the model performance at selected two gauges, Horb 

and Plochingen, Neckar.  

Table 4.3: Model performances obtained using spatially averaged precipitation through the 

application of the distributed HBV model at selected two gauges Horb and Plochingen, 

Neckar.  

Horb Plochingen, Neckar Resolution of 
precipitation 

[km2] Rm
2 Rel. 

accdif. 
Peak 
error RMSE Rm

2 Rel. 
accdif.

Peak 
error RMSE

1 0.77 0.15 -0.30 9.15 0.83 0.02 -0.28 21.47 
4 0.77 0.13 -0.32 9.01 0.83 0.02 -0.28 21.33 
9 0.75 0.13 -0.33 9.55 0.81 0.02 -0.28 22.78 
16 0.77 0.13 -0.32 9.02 0.83 0.02 -0.28 21.32 
25 0.77 0.13 -0.32 9.01 0.83 0.03 -0.28 21.32 

 

No significant differences were observed in the model performances when the calibrated model 

using 1 km × 1 km grid precipitation was run for the validation period using averaged precipitation 

over different spatial scales. No distinguishable differences were also observed in terms of relative 

accumulative difference and peak error (Table 4.3). 

Figures 4.1 and 4.2 show the scatter plots of observed discharges and simulated discharges 

obtained using the spatially averaged precipitation for Rottweil and Riederich, Erms gauges, 

respectively.  

 

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Simulated discharge on 1x1 [m3/s]

Si
m

ul
at

ed
 d

is
ch

ar
ge

 o
n 

2x
2 

[m
3 /s

]

 

Figure 4.1: Scatter plots of simulated discharges using spatially averaged precipitation through the 

application of the distributed HBV model for the gauge at Rottweil: 1 km2 vs 4 km2 (left 

panel) and 1 km2 vs 25 km2(right panel). 
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Figure 4.2: Scatter plots of simulated discharges using spatially averaged precipitation through the 

application of the distributed HBV model for the gauge at Riederich, Erms: 1 km2 vs 4 

km2 (left panel) and 1 km2 vs 25 km2(right panel). 

The mean difference (meandiff) and mean squared difference (meansqdiff) between the model 

simulated discharges using spatially averaged precipitation for different gauges were also 

calculated.  
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The meansqdiff is defined as: 
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Tables 4.4 and 4.5 represent the meandiff and meansqdiff for the gauge at Horb. These were 

calculated using the simulated discharges produced using spatially averaged precipitation. 

Qss(ti) [m3/s] daily simulated discharges using averaged precipitation over one 
resolution 

Qso(ti) [m3/s] daily simulated discharges using averaged precipitation over 
different resolution 

N [-] number of time steps 

Qss(ti) [m3/s] daily simulated discharges using averaged precipitation over one 
resolution 

Qso(ti) [m3/s] daily simulated discharges using averaged precipitation over 
different resolution 

N [-] number of time steps 
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Table 4.4: Mean difference between the simulated discharges obtained using spatially averaged 
precipitation through the application of the distributed HBV model for the gauge at 
Horb. 

spatial 
resolution 1×1 2×2 3×3 4×4 5×5 

1×1 0.00 0.26 0.25 0.23 0.22 
2×2 -0.26 0.00 -0.01 -0.03 -0.03 
3×3 -0.25 0.01 0.00 -0.02 -0.02 
4×4 -0.23 0.03 0.02 0.00 0.00 
5×5 -0.22 0.03 0.02 0.00 0.00 

Table 4.5: Mean squared difference between the simulated discharges obtained using spatially 

averaged precipitation through the application of the distributed HBV model for the 

gauge at Horb. 

spatial 
resolution 1×1 2×2 3×3 4×4 5×5 

1×1 0.00 0.63 0.96 0.59 0.58 
2×2 0.63 0.00 0.83 0.00 0.01 
3×3 0.96 0.83 0.00 0.85 0.81 
4×4 0.59 0.00 0.85 0.00 0.00 
5×5 0.58 0.01 0.81 0.00 0.00 

 

Relatively higher differences were observed between the simulated discharges obtained using 

precipitation at 1 km2 resolution and the simulated discharges resulting from the precipitation 

averaged over the remaining spatial scales (Tables 4.4 and 4.5). 

The Nash-Sutcliffe coefficient was computed for different years during the validation period at 

the different discharge gauges. Figure 4.3 shows the yearly model performance for the gauges at 

Horb and Suessen, Fils. 
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Figure 4.3: Nash-Sutcliffe coefficient calculated using spatially averaged precipitation through the 

application of the distributed HBV model for the gauges at Horb (left panel) and 

Suessen, Fils (right panel). 
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It can be observed that there is no significant difference resulting from the different spatially 

averaged precipitation for the majority of the years. 

To investigate the influence of spatially averaged precipitation during different seasons, the 

Nash-Sutcliffe coefficient was also computed on seasonal basis for the validation period. This was 

calculated using the simulated discharges resulting from spatially averaged precipitation.  

Figure 4.4 (left panel) shows the seasonal model performance for the gauge at Horb. The overall 

mean value of the seasonal Nash-Sutcliffe coefficient is shown in Figure 4.4 (right panel). The 

overall mean value was calculated using the Nash-Sutcliffe coefficients obtained at all gauges used 

for the evaluation. 
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Figure 4.4: Seasonal Nash-Sutcliffe coefficients using spatially averaged precipitation through the 

application of the distributed HBV model for the gauge at Horb (left panel). Mean 

seasonal Nash-Sutcliffe coefficient over the catchment using spatially averaged 

precipitation through the application of the distributed HBV model (right panel). 

The figures show that there are significant differences in the model performance during the 

different seasons; there is a remarkable deterioration in the model performance during the summer 

season. This is due to the presence of convective precipitation events that were not well captured by 

the coarse raingauge networks. However, no significant differences were observed for a season 

using the spatially averaged precipitation.  

The event statistics were calculated for each flood event in order to investigate the differences to 

simulate peak discharges, resulting from different spatially averaged precipitation. The average 

absolute error and root mean squared error were calculated for each annual maximum flood event 

for this purpose.  

The average absolute error and root mean squared error for the gauge at Rottweil are shown in 

Figure 4.5. Figure 4.6 shows the average absolute error and root mean squared error for the gauge at 

Horb.  
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Figure 4.5: Event statistics at each annual maximum flood event for the gauge at Rottweil using 

spatially averaged precipitation through the application of the distributed HBV model: 

average absolute error (left panel) and root mean squared error (right panel). 
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Figure 4.6: Event statistics at each annual maximum flood event for the gauge at Horb using 

spatially averaged precipitation through the application of the distributed HBV model: 

average absolute error (left panel) and root mean squared error (right panel). 

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Rottweil ranges between 9.0% and 9.3% using the spatially averaged precipitation. The same value 

for the gauge at Horb ranges between 9.2% to 9.4%. 

Figure 4.7 shows the scatter plots of the root mean squared error of the annual maximum flood 

events resulting using different spatially averaged precipitation for the Suessen, Fils gauge. 
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Figure 4.7: Scatter plots of root mean squared error of the annual maximum flood events using 

spatially averaged precipitation through the application of the distributed HBV model 

for the gauge at Suessen, Fils. 

From the event statistics as presented in figures above, it can be observed that there is no 

significant difference when using different spatially averaged precipitation for the annual maximum 

flood events. 

4.2.2 Simulations using the semi-distributed HBV model structure 

A similar simulation experiment was carried out using the semi-distributed structure of the HBV 

model. The meteorological variables for each zone were estimated as the mean of the interpolated 

values on the regular grids of 1 km × 1 km. The potential evapotranspiration was also averaged over 

each zone from the calculated evapotranspiration on 1 km × 1 km grids. The model was calibrated 

using the input data on the above mentioned spatial scale. Table 4.6 shows the model performance 

using the semi-distributed model structure for the calibration and validation periods.  

Table 4.6: Model performance obtained using the semi-distributed HBV model for the calibration 

and validation periods. 

Gauge Simulation 
period Rm

2 Rel. 
accdif. 

Peak 
error 

RMSE 
 

calibration 0.78 0.00 -0.22 3.30 Rottweil validation 0.79 0.03 -0.08 3.35 
calibration 0.80 0.01 -0.17 4.37 Oberndorf validation 0.76 0.05 0.01 4.81 
calibration 0.84 0.02 -0.08 7.13 Horb validation 0.82 0.10 -0.07 8.05 
calibration 0.79 0.00 -0.21 2.12 Bad  Imnau, Eyach validation 0.80 0.05 -0.20 2.20 
calibration 0.67 -0.01 -0.16 1.05 Rangendingen, 

Starzel validation 0.59 0.22 -0.04 1.09 
calibration 0.79 -0.02 -0.18 1.03 Riederich, Erms validation 0.77 0.02 -0.06 1.02 
calibration 0.77 0.01 -0.12 0.97 Oberensingen, 

Aich validation 0.66 0.05 -0.08 1.21 
calibration 0.78 0.00 -0.10 2.96 Suessen, Fils validation 0.79 0.09 -0.16 2.82 
calibration 0.81 0.01 -0.12 5.06 Plochingen, Fils validation 0.81 0.13 -0.21 5.10 
calibration 0.86 -0.01 -0.07 19.12 Plochingen, 

Neckar validation 0.86 0.05 -0.08 19.18 
 

As shown in Table 4.6, the Nash-Sutcliffe coefficient for the simulation of the daily discharge 

during the calibration period has values ranging between 0.67 and 0.86 with a mean value of 0.79. 
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The Nash-Sutcliffe coefficients for the validation period are ranging between 0.59 and 0.86 with a 

mean value of 0.77. As observed in the distributed model structure, the highest Nash-Sutcliffe 

coefficient value was observed at the catchment outlet Plochingen, Neckar during both the 

calibration and validation periods. The lowest value was observed at the gauge Rangendingen, 

Starzel. 

Comparing the performances using the distributed and semi-distributed model structures, the 

semi-distributed model, in general, performs better than the distributed model. Relatively higher 

differences in the model performances are observed in the smaller subcatchments. 

Further, the precipitation for each zone was calculated using the averaged precipitation over 

different spatial scales, mentioned earlier. The calibrated model was then run using the spatially 

averaged precipitation for the validation period. The other input data, namely mean daily 

temperature and daily potential evapotranspiration, were assigned at the same spatial scale that was 

used for the calibration.  

Table 4.7 presents the model performance resulting from spatially averaged precipitation at 

selected two gauges, namely Horb and Plochingen, Neckar.  

Table 4.7: Model performance obtained using spatially averaged precipitation through the 

application of the semi-distributed HBV model for selected gauges.  

Horb Plochingen, Neckar Resolution of 
precipitation 

[km2] Rm
2 Rel. 

accdif. 
Peak 
error RMSE Rm

2 Rel. 
accdif.

Peak 
error RMSE

1 0.82 0.10 -0.07 8.05 0.86 0.05 -0.08 19.18 
4 0.83 0.06 -0.13 7.74 0.87 0.04 -0.10 18.89 
9 0.83 0.06 -0.13 7.74 0.87 0.03 -0.10 18.87 
16 0.83 0.06 -0.12 7.74 0.87 0.03 -0.10 18.86 
25 0.83 0.06 -0.12 7.73 0.87 0.03 -0.10 18.85 

 

No significant differences were observed in the model performance when the model was run 

using averaged precipitation at different spatial scales, as observed with the distributed model 

described earlier. Figures 4.8 and 4.9 show the scatter plots of the simulated discharges obtained 

using the spatially averaged precipitation for Rottweil and Riederich, Erms gauges, respectively.  
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Figure 4.8: Scatter plots of the simulated discharges resulting using spatially averaged precipitation 

through application of the semi-distributed HBV model at the Rottweil gauge: 1 km2 vs 

4 km2 (left panel) and 1 km2 vs 25 km2 (right panel). 
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Figure 4.9: Scatter plots of the simulated discharges resulting using spatially averaged precipitation 

through the application of the semi-distributed HBV model for the Riederich, Erms 

gauge: 1 km2 vs 4 km2 (left panel) and 1 km2 vs 25 km2 (right panel). 

 
Tables 4.8 and 4.9 show the mean differences and mean squared differences between the 

simulated discharges obtained using spatially averaged precipitation for the Horb gauge. 

Table 4.8: Mean differences between the simulated discharges resulted using spatially averaged 

precipitation through the application of the semi-distributed HBV model for the gauge 

at Horb. 

spatial 
resolution 1×1 2×2 3×3 4×4 5×5 

1×1 0.00 0.55 0.56 0.54 0.55 
2×2 -0.55 0.00 0.01 -0.01 0.00 
3×3 -0.56 -0.01 0.00 -0.02 -0.01 
4×4 -0.54 0.01 0.02 0.00 0.01 
5×5 -0.55 0.00 0.01 -0.01 0.00 
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Table 4.9: Mean squared differences between the simulated discharges resulted using spatially 

averaged precipitation through the application of the semi-distributed HBV model for 

the gauge at Horb. 

spatial 
resolution 1×1 2×2 3×3 4×4 5×5 

1×1 0.00 2.06 2.02 1.91 1.91 
2×2 2.06 0.00 0.00 0.01 0.01 
3×3 2.02 0.00 0.00 0.00 0.01 
4×4 1.91 0.01 0.00 0.00 0.00 
5×5 1.91 0.01 0.01 0.00 0.00 

 

As obverted with the distributed model structure, relatively higher differences were observed 

between the simulated discharges obtained using precipitation at 1 km2 resolution and the simulated 

discharges resulting from the precipitation averaged over the remaining spatial scales (Tables 4.8 

and 4.9). 

The Nash-Sutcliffe coefficient was also computed for different years during the validation period 

for the different gauges. Figure 4.10 shows the yearly model performance at the Horb and Suessen, 

Fils, gauges.  
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Figure 4.10: Annual Nash-Sutcliffe coefficient obtained using spatially averaged precipitation 

through the application of the semi-distributed HBV model for the gauges at Horb (left 

panel) and Suessen, Fils (right panel). 

The semi-distributed structure also shows no distinct difference in the use of different spatially 

averaged precipitation for most of the year in the validation period, as observed with the distributed 

model structure. 

Further, the Nash-Sutcliffe coefficient was computed on a seasonal basis for the simulated 

discharges. Figure 4.11 (left panel) shows the seasonal model performance for the Horb gauge and 

Figure 4.11 (right panel) shows the overall mean Nash-Sutcliffe coefficient. 
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Figure 4.11: Seasonal Nash-Sutcliffe coefficients using spatially averaged precipitation through the 

application of the semi-distributed HBV model at the Horb gauge (left panel). Mean 

seasonal Nash-Sutcliffe coefficient over the catchment using spatially averaged 

precipitation through application of the semi-distributed HBV model (right panel). 

The average absolute error and root mean squared error were also calculated for each maximum 

annual flood event for different discharges. No considerable differences were observed using 

different spatially averaged precipitation, as observed with the distributed model structure. 

The analysis using the distributed and semi-distributed model structures of HBV indicate that 

there in generally no distinguishable differences are observed in the model performances when 

using spatially averaged precipitation. The insensitivity of the model performances to the use of 

spatially averaged precipitation is, however, strongly dependent on the case study. It should be 

noted that obtaining the same values of goodness-of-fit indices does not indicate that the simulation 

was insensitive to the precipitation field. Indeed, the different spatial representations of the 

precipitation field did not provide the same simulated discharges as might be reflected in Tables 4.5 

and 4.9, rather they show similar performances because none of the types is a perfect representation 

of reality. It should also be mentioned that the precipitation fields used for the analysis were 

interpolated from the point raingauge measurements.  

4.3 Reliability of model parameters, calibrated from a certain level of input information, 

to use for simulations with different level of precipitation information 

This section reports the work carried out to identify the reliability of the parameters obtained 

from the calibration with a set of precipitation input, for using in model simulations with a different 

set of precipitation input. The work by Obled et al., (1994); Chauby et al., (1999) and Arnaud et al., 

(2002) explicitly deals with the calibration issue. They carried out different parameterisations 

through varying the spatial representation of precipitation in order to use the parameter set most 

consistent with the input in validation. Brath et al., (2004) performed calibrations over different 
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input precipitation types and the simulations results compared with those derived when using a 

fixed parameter set, calibrated by most dense raingauge network available. They concluded that the 

parameterization resulting from historical data with a relatively poor spatial resolution may be 

considered reliable for more detailed rainfall fields. This is because it is reasonable to assume that 

the calibration procedure partly compensates for the input error (Brath et al., 2004). Zehe et al., 

(2005) showed that the usage of biased (spatially homogenized precipitation) input during 

parameter estimation yields a biased model structure, which provides poor simulation results when 

used with highly distributed precipitation input. 

Consequently, the aim of the simulation experiment in the following section is to investigate 

whether the model parameters obtained using a given rainfall input type may also be considered 

reliable for a different spatial resolution of precipitation input data. The semi-distributed model 

structure of HBV was used for this investigation. Thus the model calibrated, using precipitation 

input with one level of information, was run for the validation period using precipitation with 

another level of information. In real-world applications, it is indeed frequently the case that the 

spatial variability of precipitation data may vary because of the addition or subtraction of raingauge 

measuring stations or developments of new measuring technologies (e.g., weather radar rainfall 

data, Collier, 1989; Ehret, 2002).  

In order to investigate the mentioned phenomena, the following 3 cases were considered: 

Case I: the model calibrated using the precipitation for each zone (Pzone) was run for the 

validation period with (a) the precipitation for each zone (Pzone), (b) the uniform precipitation 

obtained from each subcatchment (Psubcatch) and (c) the uniform precipitation obtained for the 

catchment (Pcatch). 

Case II: the model calibrated with the uniform precipitation obtained from each subcatchment 

(Psubcatch) was run with (a) the uniform precipitation obtained from each subcatchment 

(Psubcatch), (b) the precipitation for each zone (Pzone) and (c) the uniform precipitation obtained 

for the catchment (Pcatch). 

Case III: the model calibrated with the uniform precipitation obtained for the catchment 

(Pcatch) was run with (a) the uniform precipitation obtained for the catchment (Pcatch), (b) the 

precipitation for each zone (Pzone) and (c) the uniform precipitation obtained from each 

subcatchment (Psubcatch). 

 

The value of Psubcatch was obtained using the interpolated precipitation on the grids located 

within a given subcatchment. The model grid located within each subcatchment was assigned the 

same uniform averaged precipitation obtained for an individual subcatchment. The value of Pcatch 
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was obtained using the interpolated precipitation on the grids located within the complete 

catchment. Similarly, the model grid located within the catchment was assigned the uniform 

averaged precipitation over the catchment. Finally, the precipitation for zones, for the semi 

distributed HBV model, was calculated using these two types of uniform precipitation and the 

interpolated precipitation on 1 km × 1 km grid. The HBV model was then calibrated using each of 

the input precipitation and run using the other two types of precipitation and also the same type of 

precipitation, used for calibration, for the validation period. 

4.3.1 Simulation results of Case I: 

In the first simulation experiment, the model calibrated using Pzone was run using Psubcatch 

and Pcatch for the validation period Table 4.10 presents the model performances. 

Table 4.10: Model performances obtained using Psubcatch and Pcatch for the validation period. The 

model was calibrated using Pzone. 

Gauge Type of precipitation Rm
2 Rel. 

accdif. Peak error RMSE 
 

using Pzone 0.79 0.03 -0.08 3.35 
using Psubcatch 0.79 0.03 -0.10 3.31 Rottweil 
using Pcatch 0.76 -0.10 -0.31 3.57 
using Pzone 0.76 0.05 0.01 4.81 
using Psubcatch 0.77 0.05 0.00 4.78 Oberndorf 
using Pcatch 0.77 -0.06 -0.21 4.73 
using Pzone 0.82 0.10 -0.07 8.05 
using Psubcatch 0.82 0.10 -0.07 7.99 Horb 
using Pcatch 0.76 -0.14 -0.37 9.39 
using Pzone 0.80 0.05 -0.20 2.20 
using Psubcatch 0.79 0.05 -0.20 2.23 Bad Imnau, 

Eyach 
using Pcatch 0.70 0.13 -0.13 2.69 
using Pzone 0.59 0.22 -0.04 1.09 
using Psubcatch 0.59 0.22 -0.04 1.09 Rangendingen, 

Starzel 
using Pcatch 0.45 0.28 0.07 1.27 
using Pzone 0.66 0.05 -0.08 1.21 
using Psubcatch 0.66 0.05 -0.08 1.20 Oberensingen, 

Aich 
using Pcatch 0.49 0.58 0.30 2.36 
using Pzone 0.79 0.09 -0.16 2.82 
using Psubcatch 0.79 0.09 -0.17 2.80 Suessen, Fils 
using Pcatch 0.71 -0.06 -0.27 3.30 
using Pzone 0.81 0.13 -0.21 5.10 
using Psubcatch 0.81 0.13 -0.21 5.08 Plochingen, 

Fils 
using Pcatch 0.72 0.04 -0.29 6.16 
using Pzone 0.86 0.05 -0.08 19.18 
using Psubcatch 0.87 0.04 -0.08 19.06 Plochingen, 

Neckar 
using Pcatch 0.86 0.03 -0.07 19.72 
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As shown in Table 4.10, it can be observed that the model performances are different depending 

on whether the input precipitation type during calibration was changed or kept the same. It also 

indicates that the model performance deteriorated when the applied precipitation input was less 

detailed than that used for the calibration of the model. However, when the level of precipitation 

input was not changed too much, the model performance did not show significant differences. Also, 

the difference in the model performance was found to be more significant in the smaller 

subcatchments as compared to the larger ones.  

Figure 4.12 shows the seasonal model performance for the Horb and Riederich, Erms, gauges, 

respectively.  
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Figure 4.12: Seasonal Nash-Sutcliffe coefficients for the gauges at Horb (left panel) and Riederich, 

Erms (right panel). The model calibrated using Pzone was run using Psubcatch and 

Pcatch for the validation period. 

Figures 4.13 and 4.14 show the event statistics for the gauges at Horb and Suessen, respectively. 
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Figure 4.13: Event statistics at each annual maximum flood event for the gauge at Horb: average 

absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Pzone was run using Psubcatch and Pcatch for the validation period. 
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Figure 4.14: Event statistics at each annual maximum flood event for the gauge at Suessen, Fils: 

average absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Pzone was run using Psubcatch and Pcatch for the validation period.  

Figures 4.12, 4.13 and 4.14 indicate that there is significant reduction in the model performance 

when the calibrated model using Pzone was run using Pcatch, whereas there is no distinct difference 

when the calibrated model was run using Psubcatch. On average, the absolute error with respect to 

the annual maximum discharges for the gauge at Horb ranges between 7.3 % and 10.2%. The 

highest error was observed when the calibrated model using Pzone was run using Pcatch. The same 

value for the gauge at Suessen, Fils ranges between 8.1% to 12.3% and the highest error was 

observed when the calibrated model using Pzone was run using Pcatch. 

4.3.2 Simulation results using Case II: 

The model calibrated using Psubcatch was run using Pzone and Pcatch for the validation period 

in this experiment. The model performance for the validation period is shown in Table 4.11. 

Table 4.11: Model performances obtained using Pzone and Pcatch for the validation period. The 

model was calibrated using Psubcatch. 

Gauge Type of precipitation Rm
2 Rel. 

accdif. Peak error RMSE 
 

using Psubcatch 0.80 0.03 -0.13 3.26 
using Pzone 0.80 0.03 -0.13 3.27 Rottweil 
using Pcatch 0.75 -0.10 -0.34 3.59 
using Psubcatch 0.77 0.03 0.00 4.78 
using Pzone 0.77 0.03 0.00 4.79 Oberndorf 
using Pcatch 0.77 -0.08 -0.22 4.69 
using Psubcatch 0.82 0.11 -0.08 7.95 
using Pzone 0.82 0.11 -0.08 7.95 Horb 
using Pcatch 0.76 -0.13 -0.37 9.32 
using Psubcatch 0.79 0.07 -0.19 2.24 
using Pzone 0.79 0.08 -0.19 2.23 Bad Imnau, 

Eyach 
using Pcatch 0.69 0.16 -0.11 2.71 
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Table 4.11 (continued): Model performances obtained using Pzone and Pcatch for the validation 

period. The model was calibrated using Psubcatch. 

Gauge Type of precipitation Rm
2 Rel. 

accdif. Peak error RMSE 
 

using Psubcatch 0.59 0.23 -0.03 1.09 
using Pzone 0.59 0.23 -0.02 1.10 Rangendingen, 

Starzel 
using Pcatch 0.44 0.28 0.05 1.28 
using Psubcatch 0.66 0.06 -0.07 1.22 
using Pzone 0.65 0.05 -0.07 1.22 Oberensingen, 

Aich 
using Pcatch 0.39 0.58 0.33 2.36 
using Psubcatch 0.79 0.09 -0.17 2.82 
using Pzone 0.79 0.09 -0.17 2.83 Suessen, Fils 
using Pcatch 0.70 -0.05 -0.29 3.36 
using Psubcatch 0.82 0.14 -0.17 5.00 
using Pzone 0.82 0.14 -0.17 5.01 Plochingen, 

Fils 
using Pcatch 0.72 0.05 -0.25 6.13 
using Psubcatch 0.87 0.02 -0.10 18.70 
using Pzone 0.87 0.03 -0.10 18.73 Plochingen, 

Neckar 
using Pcatch 0.86 0.01 -0.08 19.27 

 

Table 4.11 indicates that the model performance diminished when the calibrated model was run 

using Pcatch. A similar trend was observed on the seasonal basis and also in terms of event 

statistics for the annual maximum flood events.  

 

Figure 4.15 shows the seasonal model performance for the gauges at Horb and Suessen, Fils , 

respectively.  
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Figure 4.15: Seasonal Nash-Sutcliffe coefficients for the gauges at Horb (left panel) and Suessen, 

Fils (right panel). The model calibrated using Psubcatch was run using Pzone and 

Pcatch for the validation period. 

Figures 4.16 and 4.17 represent the event statistics for the gauges at Horb and Suessen, Fils, 

respectively.  
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Figure 4.16: Event statistics at each annual maximum flood event for the gauge at Horb: average 

absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Psubcatch was run using Pzone and Pcatch for the validation period. 
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Figure 4.17: Event statistics at each annual maximum flood event for the gauge at Suessen, Fils: 

average absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Psubcatch was run using Pzone and Pcatch for the validation period. 

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Horb ranges between 7.5% and 10.4%. The highest error was observed when the calibrated model 

using Psubcatch was run using Pcatch. The same value for the gauge at Suessen, Fils ranges 

between 8.4% to 12.7% and the highest error was observed when the calibrated model using 

Psubcatch was run using Pcatch.  

4.3.3 Simulation results using Case III: 

In the third simulation experiment, the model calibrated using Pcatch was run using Pzone and 

Psubcatch for the validation period. Table 4.12 shows the model performance for the validation 

period. 
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Table 4.12: Model performances obtained using Pzone and Psubcatch for the validation period. The 

model was calibrated using Pcatch. 

Gauge Type of precipitation Rm
2 Rel. 

accdif. Peak error RMSE 
 

using Pcatch 0.74 0.12 -0.13 3.69 
using Pzone 0.62 0.25 0.10 4.45 Rottweil 
using Psubcatch 0.63 0.25 0.10 4.39 
using Pcatch 0.75 0.07 -0.05 4.94 
using Pzone 0.63 0.18 0.17 5.98 Oberndorf 
using Psubcatch 0.64 0.18 0.17 5.93 
using Pcatch 0.79 -0.04 -0.28 8.65 
using Pzone 0.77 0.20 0.03 9.06 Horb 
using Psubcatch 0.78 0.20 0.02 9.00 
using Pcatch 0.72 0.12 -0.27 2.60 
using Pzone 0.78 0.04 -0.33 2.28 Bad Imnau, 

Eyach 
using Psubcatch 0.78 0.04 -0.33 2.30 
using Pcatch 0.58 0.18 -0.20 1.11 
using Pzone 0.66 0.14 -0.26 0.99 Rangendingen, 

Starzel 
using Psubcatch 0.67 0.13 -0.26 0.99 
using Pcatch 0.49 0.07 -0.31 1.48 
using Pzone 0.47 -0.35 -0.63 1.52 Oberensingen, 

Aich 
using Psubcatch 0.46 -0.35 -0.63 1.52 
using Pcatch 0.67 0.02 -0.16 3.55 
using Pzone 0.70 0.17 -0.02 3.36 Suessen, Fils 
using Psubcatch 0.70 0.17 -0.02 3.35 
using Pcatch 0.69 0.13 -0.23 6.46 
using Pzone 0.76 0.22 -0.14 5.67 Plochingen, 

Fils 
using Psubcatch 0.76 0.22 -0.14 5.67 
using Pcatch 0.86 0.03 -0.11 19.65 
using Pzone 0.85 0.05 -0.11 19.90 Plochingen, 

Neckar 
using Psubcatch 0.85 0.05 -0.12 19.81 

 

As shown in Table 4.12, the model performance deteriorated for some of the subcatchments 

when the calibrated model was run using Psubcatch and Pcatch. However, model performance 

improved for some of the subcatchments when the calibrated model was utilizing relatively more 

detailed precipitation information.  

 

Figure 4.18 shows the seasonal model performance for the Horb and Suessen, Fils, gauges 

respectively.  
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Figure 4.18: Seasonal Nash-Sutcliffe coefficients for the gauges at Horb (left panel) and Suessen, 

Fils (right panel). The model calibrated using Pcatch was run using Pzone and 

Psubcatch for the validation period. 

Figures 4.19 and 4.20 represent the event statistics for the Horb and Suessen, Fils, gauges, 

respectively.  
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Figure 4.19: Event statistics at each annual maximum flood event for the gauge at Horb: average 

absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Pcatch was run using Pzone and Psubcatch for the validation period. 
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Figure 4.20: Event statistics at each annual maximum flood event for the gauge at Suessen, Fils: 

average absolute error (left panel) and root mean squared error (right panel). The model 

calibrated using Pcatch was run using Pzone and Psubcatch for the validation period. 



 

 

70 

Figures 4.19 and 4.20 indicate that there was improvement in the event statistics when the 

calibrated model using Pcatch was run using Pzone and Psubcatch.  

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Horb ranges between 8.5% and 10.1%. The lower error was observed when the calibrated model 

using Pcatch was run using either Psubcatch or Pzone. The same value for the gauge at Suessen, 

Fils ranges between 9.6% to 12.7%. The lower error was observed when the calibrated model using 

Pcatch was run using either Psubcatch or Pzone.  

Comparing the results of the three cases, it can be observed that the model performance 

deteriorated when the model calibrated with either Pzone or Psubcatch was run with the 

precipitation averaged over the catchment (Pcatch). Also, it is observed that a considerable 

equivalent model performances can be obtained when the model calibrated using Pzone was run 

using Psubcatch or vice versa.  

The simulation experiments show that there is dependency of the model’s parameters on the data 

used for its calibration. In fact, there is compensation among the model parameters when it is 

calibrated using Pzone or Psubcatch, as the level of input (precipitation) details is almost the same 

in both the cases. The results support the findings of Brath et al., (2004). They suggested that the 

parameterization resulting from historical data with a relatively poor spatial resolution may be 

considered reliable for more detailed rainfall fields. However, such compensation cannot be 

achieved when the level of input precipitation is reduced substantially, as in the case of Pcatch. 

Moreover, parameterization yields biased model structure, which provides poor simulation results 

when used with relatively spatially detailed precipitation input.  

4.4 Concluding remarks 

This study demonstrates number of simulation experiments to investigate the influence of the 

spatial variability of precipitation on the predictive uncertainty using a conceptual rainfall-runoff 

model in a meso-scale catchment.  

In the first part of the study the interpolated precipitation from point raingauge measurements 

and averaged precipitation over different spatial resolutions were used as a main forcing input into 

the distributed and semi-distributed structures of the HBV model. The results demonstrate that there 

is no significant difference in the model performance calibrated using 1 km × 1 km grid 

precipitation and run using averaged precipitation on different spatial scales. This may be due to the 

fact that the averaged precipitation was obtained from the interpolated precipitation values (external 

drift kriging) which are already smoothed, and due to the coarse raingauge network.  

Comparing the performances using the distributed and semi-distributed model structures of the 

HBV model, the semi-distributed model, in general, performs better than the distributed model. 
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Relatively higher differences in the model performances are observed for the smaller 

subcatchments. 

The second part of the study was related to the model calibrated using precipitation with one 

level of information and run using precipitation with another level of information. The results 

indicate that there could be a significant deterioration in the model performance when the model 

calibrated using detailed precipitation was run using relatively less detailed precipitation (for 

expamle model calibrated using radar rainfall data and run using coarse raingauge data). When the 

level of main forcing precipitation input is different for the model simulation than that used for 

calibration, one should be cautious.  
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5 Comparison of modeling performance using different representations of 

spatial variability 

5.1 Introduction 

The objective of this section is to explore a solution to the question: Will a higher spatial 

resolution of model input data necessarily, as most people assume, lead to a better model 

performance? An attempt is made to modify the conceptual rainfall-runoff model HBV to 

incorporate a spatially-distributed structure. Its predictive performance was then assessed and 

compared with other model structures, namely semi-distributed, semi-lumped and fully-lumped, of 

the HBV model in accordance with the study objective. To reproduce the spatial variation of the 

meteorological input at the catchment scale, external drift kriging (Ahmed and de Marsily, 1987) 

was applied to enable interpolation from the available point measurements over the investigated 

area. The simulated hydrographs obtained using different model structures were analyzed through 

the comparisons of the computed Nash-Sutcliffe coefficient and other goodness-of-fit indices.  

5.2 Simulations using different model structures 

The different model structures were setup and calibrated using the automatic calibration 

procedure based on the simulated annealing optimization algorithm. The same calibration period 

and calibration objectives were used for each model structure. The details on the data preparation to 

setup the different model structures and model calibration are described in the Chapter III.  

A summary of the performances of different model structures in the calibration period are shown 

in Table 5.1. It can be observed that the Nash-Sutcliffe coefficient for the simulation of the daily 

discharge in the subcatchments during the calibration period has values ranging between 0.61 and 

0.84, with a mean value of 0.73 for the distributed structure. The minimum, maximum and mean 

values of Nash-Sutcliffe coefficients obtained using the semi-distributed model structure are 0.68, 

0.86 and 0.78 respectively. The values of the Nash-Sutcliffe coefficients obtained using the semi-

lumped model structure range between 0.65 and 0.87, with a mean value of 0.78. 
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Table 5.1: Performances of different model structures for different gauges during the calibration 

period. 

Gauge Model structure Rm
2 Rel. 

accdif. 
Peak 
error AI RMSE 

 
Distributed 0.69 0.16 -0.43 0.74 3.97 
Semi-distributed 0.78 0.00 -0.20 0.80 3.34 
Semi-lumped 0.73 0.01 -0.21 0.77 3.67 Rottweil 

Fully-lumped 0.74 0.01 -0.22 0.77 3.64 
Distributed 0.72 0.07 -0.43 0.77 5.18 
Semi-distributed 0.79 -0.01 -0.15 0.80 4.44 
Semi-lumped 0.78 0.02 -0.18 0.78 4.52 Oberndorf 

Fully-lumped 0.77 0.02 -0.19 0.77 4.68 
Distributed 0.82 0.08 -0.28 0.81 7.72 
Semi-distributed 0.84 0.02 -0.06 0.81 7.19 
Semi-lumped 0.84 0.02 -0.10 0.80 7.23 Horb 

Fully-lumped 0.83 0.02 -0.13 0.80 7.42 
Distributed 0.75 0.00 -0.25 0.76 2.30 
Semi-distributed 0.78 0.01 -0.20 0.77 2.18 
Semi-lumped 0.74 0.08 -0.22 0.72 2.34 

Bad Imnau, 
Eyach 

Fully-lumped 0.72 0.06 -0.25 0.72 2.46 
Distributed 0.61 0.02 -0.48 0.68 1.14 
Semi-distributed 0.68 0.00 -0.12 0.69 1.04 
Semi-lumped 0.65 0.00 -0.17 0.67 1.08 

Rangendingen, 
Starzel 

Fully-lumped 0.64 0.00 -0.17 0.66 1.10 
Distributed 0.64 -0.08 -0.56 0.70 1.27 
Semi-distributed 0.75 0.02 -0.08 0.71 1.05 
Semi-lumped 0.74 0.03 -0.16 0.69 1.08 

Riederich,  
Erms 

Fully-lumped 0.73 0.02 -0.13 0.69 1.10 
Distributed 0.72 0.08 -0.07 0.71 1.09 
Semi-distributed 0.79 0.01 -0.10 0.73 0.95 
Semi-lumped 0.78 0.01 -0.14 0.73 0.96 

Oberensingen,  
Aich 

Fully-lumped 0.77 0.01 -0.13 0.70 0.99 
Distributed 0.76 -0.11 -0.18 0.77 3.12 
Semi-distributed 0.78 0.01 -0.13 0.74 2.99 
Semi-lumped 0.81 -0.01 -0.16 0.78 2.74 Suessen, Fils 

Fully-lumped 0.78 0.00 -0.13 0.74 3.00 
Distributed 0.79 -0.05 -0.32 0.77 5.30 
Semi-distributed 0.79 0.02 -0.07 0.75 5.22 
Semi-lumped 0.83 0.01 -0.09 0.79 4.70 

Plochingen,  
Fils 

Fully-lumped 0.82 0.01 -0.07 0.78 4.83 
Distributed 0.84 0.01 -0.22 0.80 20.34 
Semi-distributed 0.86 -0.03 -0.09 0.80 19.23 
Semi-lumped 0.87 0.02 -0.06 0.80 18.68 Plochingen, Neckar 

Fully-lumped 0.86 0.02 -0.09 0.79 18.87 
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The Nash-Sutcliffe coefficient obtained using the fully-lumped model structure ranges between 

0.64 and 0.86, with a mean value of 0.76. The table also indicates that the highest Nash-Sutcliffe 

coefficient value was observed at the catchment outlet Plochingen, Neckar using all four model 

structures. Among the different model structures, the semi-distributed and semi-lumped models 

show relatively higher mean values of the Nash-Sutcliffe coefficients. There is clear 

underestimation to simulate the mean annual maximum discharges over the calibration period.  

A Summary of the performance of the different model structures in the validation period is 

shown in Table 5.2. The Nash-Sutcliffe coefficient for the simulation of the daily discharge in the 

subcatchments during the validation period has values ranging between 0.59 and 0.82, with a mean 

value of 0.72 for distributed model, as observed in Table 5.2. The minimum, maximum and mean 

values of the Nash-Sutcliffe coefficient obtained using the semi-distributed model are 0.55, 0.87 

and respectively 0.75. In the semi-lumped model structure, the values of the Nash-Sutcliffe 

coefficient range between 0.58 and 0.86, with a mean value of 0.75. The Nash-Sutcliffe coefficient 

obtained using the fully-lumped model structure ranges between 0.55 and 0.87, with a mean value 

of 0.74. As observed in the calibration period, the highest Nash-Sutcliffe coefficient value was 

observed at the catchment outlet Plochingen, Neckar using all model structures. The lowest value of 

the Nash-Sutcliffe coefficient was observed at the gauge Rangendingen, Starzel, which is partly 

located in a karstic geological formation. Among the four different model structures, the semi-

distributed and semi-lumped structures show relatively higher mean values of the Nash-Sutcliffe 

coefficient, as also observed in the calibration period. Among the distributed and semi-distributed 

model structures, relatively higher differences are observed for smaller subcatchements.  

There is clear pattern in the underestimation of mean annual maximum discharges, as observed 

in the calibration period. The maximum underestimation of about 60% was observed using the 

distributed model structure at the gauge Riederich, Erms, where the water balance is partly affected 

by the karstic geological formations.  
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Table 5.2: Model performances of the different model structures during the validation period. 

Gauge Model structure Rm
2 Rel. 

accdif. 
Peak 
error AI RMSE 

 
Distributed 0.70 0.19 -0.41 0.72 4.07 
Semi-distributed 0.79 0.03 -0.06 0.80 3.42 
Semi-lumped 0.72 0.03 -0.12 0.76 3.93 Rottweil 

Fully-lumped 0.76 0.03 -0.16 0.77 3.61 
Distributed 0.72 0.12 -0.36 0.76 5.37 
Semi-distributed 0.75 0.03 0.05 0.79 5.04 
Semi-lumped 0.76 0.06 -0.02 0.77 4.91 Oberndorf 

Fully-lumped 0.76 0.06 0.03 0.77 4.95 
Distributed 0.76 0.18 -0.31 0.77 9.43 
Semi-distributed 0.82 0.11 -0.05 0.80 8.11 
Semi-lumped 0.82 0.10 -0.10 0.79 8.22 Horb 

Fully-lumped 0.82 0.10 -0.08 0.79 8.28 
Distributed 0.76 0.07 -0.31 0.76 2.42 
Semi-distributed 0.80 0.06 -0.20 0.76 2.21 
Semi-lumped 0.77 0.13 -0.22 0.72 2.40 

Bad Imnau, 
Eyach 

Fully-lumped 0.77 0.10 -0.24 0.72 2.37 
Distributed 0.59 0.29 -0.37 0.64 1.08 
Semi-distributed 0.55 0.24 0.07 0.67 1.13 
Semi-lumped 0.58 0.23 0.03 0.66 1.09 

Rangendingen, 
Starzel 

Fully-lumped 0.55 0.24 0.04 0.64 1.14 
Distributed 0.62 -0.03 -0.59 0.70 1.37 
Semi-distributed 0.70 0.07 -0.15 0.70 1.21 
Semi-lumped 0.71 0.07 -0.23 0.68 1.19 

Riederich,  
Erms 

Fully-lumped 0.69 0.06 -0.19 0.68 1.24 
Distributed 0.62 0.14 -0.01 0.56 1.24 
Semi-distributed 0.66 0.06 -0.06 0.63 1.17 
Semi-lumped 0.65 0.05 -0.09 0.62 1.19 

Oberensingen,  
Aich 

Fully-lumped 0.62 0.06 -0.08 0.61 1.24 
Distributed 0.81 -0.03 -0.27 0.75 2.72 
Semi-distributed 0.79 0.10 -0.18 0.61 2.79 
Semi-lumped 0.81 0.08 -0.23 0.74 2.66 Suessen, Fils 

Fully-lumped 0.77 0.09 -0.21 0.64 2.96 
Distributed 0.77 0.08 -0.40 0.65 5.60 
Semi-distributed 0.81 0.15 -0.18 0.56 5.15 
Semi-lumped 0.83 0.14 -0.21 0.66 4.88 

Plochingen,  
Fils 

Fully-lumped 0.82 0.13 -0.20 0.63 4.97 
Distributed 0.82 0.08 -0.26 0.78 22.03 
Semi-distributed 0.87 0.02 -0.09 0.82 18.78 
Semi-lumped 0.86 0.07 -0.07 0.78 19.27 Plochingen, Neckar 

Fully-lumped 0.87 0.07 -0.11 0.78 19.08 
 

Figure 5.1 shows the scatter plots of the simulated and observed daily discharges obtained using 

different model structures at the gauge Horb. It can be observed that low flows and medium peak 



 

 

76 

flows were estimated well by different model structures, while higher peak flows were 

underestimated. The peak flows generally occurred during the winter period in the study catchment. 

This underestimation of the peak flows may be due to an improper representation of the snow 

accumulation and snow melting phenomena or the simplification adopted in the model to simulate 

water redistribution in the soil.  
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Figre 5.1: Scatter plots of the model simulated and the observed daily discharges using different 

model structures at the Horb gauge for the validation period. 

The RMSE as a function of correlation coefficient in the calibration and validation periods are 

shown in Figures 5.2 and 5.3 for the gauges at Horb and Plochingen, Neckar, respectively. 
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Figure 5.2: RMSE versus correlation coefficients using different model structures for the gauging 

station at Horb during calibration period (left panel) and during validation period (right 

panel). 
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Figure 5.3: RMSE versus correlation coefficients using different model structures for the gauging 

station at Plochingen, Neckar during calibration period (left panel) and validation period 

(right panel). 

As shown in Figures, the highest correlation coefficients with the lowest RMSE values are 

observed using the semi-distributed model structure. Among the semi-distributed, semi-lumped and 

fully-lumped model structures, less difference in the values of correlation coefficients and RMSE 

are observed for the outlet gauge at Plochingen, Neckar. 

Regarding modeling of runoff at higher time scales, the performance of the models in terms of 

the Nash-Sutcliffe coefficient shows a similar trend, as observed at the daily time scale. However, 

the model performance improves with increasing time scale using the all model structures. A 

Summary of the Nash-Sutcliffe coefficient at 7 days and 30 days time scale obtained using the 

different model structures in the validation period is shown in Table 5.3. These Nash-Sutcliffe 

coefficients show the model performance in simulating the 7 days and 30 days mean discharges of a 

moving window. 
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Table 5.3: Nash-Sutcliffe coefficients at 7 days and 30 days time scale obtained using the different 

model structures in the validation period. 

Nash-Sutcliffe coefficient 
Gauge Model structure 7 days time 

scale 
30 days time 

scale 
Distributed 0.82 0.86 
Semi-distributed 0.86 0.90 
Semi-lumped 0.82 0.89 Rottweil 

Fully-lumped 0.82 0.89 
Distributed 0.81 0.87 
Semi-distributed 0.82 0.87 
Semi-lumped 0.80 0.88 Oberndorf 

Fully-lumped 0.80 0.88 
Distributed 0.84 0.87 
Semi-distributed 0.86 0.89 
Semi-lumped 0.86 0.88 Horb 

Fully-lumped 0.86 0.88 
Distributed 0.84 0.87 
Semi-distributed 0.86 0.86 
Semi-lumped 0.82 0.82 Bad Imnau, Eyach 

Fully-lumped 0.82 0.82 
Distributed 0.69 0.69 
Semi-distributed 0.80 0.80 
Semi-lumped 0.79 0.80 

Riederich, Erms 

Fully-lumped 0.79 0.80 
Distributed 0.69 0.67 
Semi-distributed 0.78 0.81 
Semi-lumped 0.78 0.80 

Oberensingen, Aich 
 

Fully-lumped 0.78 0.80 
Distributed 0.82 0.82 
Semi-distributed 0.82 0.81 
Semi-lumped 0.80 0.81 

Suessen, Fils 
 

Fully-lumped 0.80 0.81 
Distributed 0.84 0.85 
Semi-distributed 0.84 0.82 
Semi-lumped 0.86 0.85 

Plochingen, Fils 

Fully-lumped 0.86 0.85 
Distributed 0.88 0.90 
Semi-distributed 0.89 0.91 
Semi-lumped 0.89 0.91 

Plochingen, Neckar 

Fully-lumped 0.89 0.91 
 
Figure 5.4 shows the model performance obtained using different model structures at different 

gauges in the validation period. The model performance obtained using the semi-distributed and 

semi-lumped model structures are relatively better, in general, as compared to the other model 

structures. It can be observed that model performances are better for larger subcatchments using all 
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the model structures. This is a general trend for the conceptual model. It can also be noticed that 

there are higher differences in the model performances for the smaller and medium-sized 

subcatchments, while the differences are negligible for the gauge at outlet of the catchment.  
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Figure 5.4: Nash-Sutcliffe coefficient using different model structures for different subcatchments. 

The flow duration curves obtained using different model structures for the Horb gauge in the 

validation period is shown in Figure 5.5.  
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Figure 5.5: Flow duration curves obtained using different model structures at the Horb gauge for the 

validation period. 

There is a trend of overestimation to simulate the mean values of low and medium discharges 

using the different model structures. However there is underestimation to simulate the mean values 

of high discharges (Figure 5.5). 
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The computed mean model performance and parameters’ transferability are shown in Table 5.4. 

The mean model performance and parameters’ transferability were calculated using the Nash-

Sutcliffe coefficient values obtained during the calibration and validation periods.  

Table 5.4: Mean model performance and parameters’ transferability obtained using different model 

structures. 

Model structure Mean model 
performance 

Model parameters’ 
transferability 

Distributed 0.75 0.06 
Semi-distributed 0.80 0.05 
Semi-lumped 0.80 0.04 
Fully-lumped 0.79 0.04 

 

The highest value of mean model performance was observed using the semi-distributed and 

semi-lumped model structures, as shown in the above table. The worst model parameters’ 

transferability was observed for the distributed model structure.  

The Nash-Sutcliffe coefficient was also computed on a seasonal basis in order to investigate the 

model performances during different seasons in the calibration and validation periods. Figure 5.6 

shows seasonal model performance in the validation period for the gauges at Horb and Plocingen, 

Neckar. As shown in Figure 5.6, the seasonal model performances are observed better, in general, 

for the semi-distributed model structure. However, the performance is comparatively poor in the 

summer season using all the model structures. This is because of the convective precipitation 

events, which are more localized and are not well captured by the coarse raingauge networks. 
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Figure 5.6: Seasonal Nash-Sutcliffe coefficients obtained using different model structures for the 

validation period for the gauges at Horb (left panel) and Plochingen, Neckar (right 

panel). 

Further, the Nash-Sutcliffe coefficient was computed for different years during the calibration 

and validation periods for different gauges to investigate the variation of the model performance 

from year to year. Figure 5.7 shows the annual model performance during the validation period for 
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the gauges at Rottweil and Horb. It can be observed that the distributed model does not outperform 

when compared to other model structures for most of the year in the validation period. 
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Figure 5.7: Annual Nash-Sutcliffe coefficient during the validation period for the gauges at 

Rottweil (left panel) and Horb (right panel). 

On average, the standard deviation of the yearly Nash-Sutcliffe coefficients is relatively higher 

using the distributed model structure as compared to the same obtained using the other model 

structures. This implies that the model performance using the distributed structure is not consistent. 

The average absolute error and root mean squared error were also calculated for each annual 

maximum flood event to investigate the peak discharge estimation performance using the different 

model structures. Figures 5.8 and 5.9 show the average absolute error and root mean squared error 

obtained using different model structures for the gauges at Rottweil and Horb, respectively. 
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Figure 5.8: Event statistics for different years during the validation period obtained using different 

model structures for the gauge at Rottweil: average absolute error (left panel) and root 

mean squared error (right panel). 
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Figure 5.9: Event statistics for different years during the validation period using different model 

structures for the gauge at Horb: average absolute error (left panel) and root mean 

squared error (right panel). 

The higher errors were observed for the distributed model structure, as shown in Figures 5.8 and 

5.9. On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Rottweil ranges between 6.6% and 9.8% using the four different model structures. The highest error 

was observed using the distributed model structure. The same value for the gauge at Horb ranges 

between 7.2% to 9.6% and the highest error was observed using the distributed model structure, as 

observed for the gauge at Rottweil. 

It is worth mentioning that the model comparisons in this study were made based on stream 

flow, an integrated measure of hydrological response, at different subcatchments’ outlets. The 

results showed that interpolated precipitation values on finer resolution did not improve the 

simulation accuracy in either the calibration or validation periods. It appeared that the additional 

information about the spatial variability of the precipitation did not provide any additional benefit. 

However, the main difficulty with the spatially-distributed calculation arises from the enormous 

spatial variability of hydrological processes which complicates the up scaling of point 

measurements. The main inputs to the model, precipitation and temperature, were interpolated from 

the coarse observation network. The estimation of precipitation input from the point measurements 

to the grid cells in the distributed model is more difficult. Additionally, a conceptual model always 

needs a degree of calibration based on hydrological response data. Due to the high degree of model 

parameter interaction and dependency, the calibration task for a distributed model is even more 

difficult.  

Figure 5.10 compares the model performance using different model structures obtained without 

optimized model parameters and the performance with optimized parameters, for the calibration and 

validation periods. 
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Figure 5.10: Nash-Sutcliffe coefficients obtained using different model structures with and without 

optimization of the model parameters for the gauges at Rottweil (left panel) and Horb 

(right panel). 

It can be noticed that the calibrated models have improved model performance on the average 

over uncalibrated models since uncalibrated models do not have the benefit of accounting for the 

bias in the rainfall input over the calibration period. It may also be observed that the rate of 

improvement is relatively low for the distributed model structure. This may be due to the huge 

number of parameters to be optimized and their underlying dependency and the problems to 

estimate the areal precipitation on finer grids used for the distributed HBV model. Table 5.5 

compares the model performance using two different attempts for the calibration of the model 

parameters of the distributed model structure. For the second attempt, the number of repetitions was 

doubled compared to the first attempt in the automatic optimization algorithm. Table 5.5 indicates 

that there was an improvement in the model performance as a result of doubling the number of 

repetitions in the optimization scheme. However, the model performance still did not improve 

significantly compared to the other structures. Perhaps there was a higher compensation for the bias 

in the rainfall input over the calibration period for the simpler model structures.  

Table 5.5: Nash-Sutcliffe coefficients for different gauges obtained through the application of the 

distributed HBV model using different optimization trails. 

 Rottweil Oberndorf Horb Bad Imnau, 
Eyach 

Suessen, 
Fils 

Plochingen, 
Fils 

Plochingen, 
Neckar 

Calibration(I) 0.69 0.72 0.82 0.75 0.76 0.79 0.84 

Calibration(II) 0.72 0.77 0.83 0.76 0.77 0.78 0.84 

Validation(I) 0.70 0.72 0.76 0.76 0.81 0.77 0.82 

Validation(II) 0.70 0.74 0.77 0.76 0.80 0.77 0.82 

5.3 Concluding remarks 

A solution to the query ‘Will a higher spatial resolution of model input data necessarily lead to a 

better model performance?’ is explored in this chapter. Four different model structures based on the 
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HBV model was developed for simulating hydrological processes in a meso-scale catchment. The 

spatial variation of the meteorological input at the catchment scale was produced using the external 

drift kriging method from the available point measurements. The performance was assessed using 

different model performance evaluation criteria. For the present study catchment, the semi-

distributed and semi-lumped model structures outperformed the distributed and lumped model 

structures for the given level of observation. Among the model performances obtained using the 

distributed and semi-distributed structures, relatively higher differences are observed for smaller 

subcatchements. However, the differences in the model performances are less for the larger 

subcatchments. 

The results highlighted that using interpolated precipitation values on finer resolution did not 

improve the simulation accuracy in either the calibration or validation periods. The additional 

information about the spatial variability of the precipitation data did not provide any additional 

benefit to simulate the discharge at the subcatchments’ outlets. The results suggested that finer input 

is not necessarily always better and the selection of the model structure should be guided by the 

principal of parsimony, purpose and the availability of observations.  

 

The findings of this study may be due to the following reasons: 

(1) More detailed information about topography, vegetation and other relevant landscape 

characteristics may assist in the determination of model parameters; and this may 

improve the predictions of runoff. However, the major problem in this study was 

determination of areal precipitation for the model grid cells. The precipitation used in the 

present study was interpolated from the available point raingauges, which does not 

account enough for the spatial variability of the precipitation. In fact, the parameter 

values in principle may compensate for an incomplete representation of the precipitation 

field. Perhaps there was a higher compensation for the bias in the rainfall input over the 

calibration period for the relatively simple model structures. Thus in the semi-distributed 

and semi-lumped model structures, the error representing the spatial variability of 

precipitation was possibly compensated by the model parameterization. However the 

error in representing spatial variability of precipitation in finer resolution is more and 

perhaps dominated the bias compensation in the rainfall input by the calibration 

procedure for the distributed model structure. Additionally, the model parameterization 

for the distributed structure is more challenging due to the parameters’ large number of 

degrees of freedom and their underlying interactions. 
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(2) The HBV model, used for the present study, is a conceptually lumped model. This fact 

may perhaps constraint its performance in accounting for the spatially resolved input 

data. 

(3) Moreover, there can be a trade-off between model complexity and the available 

observations, i.e., the resolution of input data and the model structure itself interact when 

generating model uncertainty. 

However, considering the practical difficulties in applying a physically-based distributed 

hydrological model, lumped models and lumped modeling experience can be fully exploited in a 

distributed modeling framework, with necessary modifications in the process representation.  

The use of fully, spatially resolved radar rainfall data or combination of radar-raingauge rainfall 

data may be used to re-examine the outcomes of the comparison of different model structures 

carried out in this study. 
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6 Assessing the impacts of raingauge density on the simulation results of a 

hydrological model 

6.1  Introduction 

The question, ‘What is the impact on the simulated hydrographs of interpolated precipitation at 

different spatial resolutions through varying raingauge networks?’ is explored in this chapter. First, 

a method based on combinatorial optimization algorithm simulated annealing (Aarts and Korst, 

1989) was used to identify the optimal locations of particular number of raingauges. Secondly, 

distributed and semi-distributed model structures of the HBV model were used to investigate the 

effect of the number of raingauges and their locations on the predictive uncertainty of hydrological 

models. The performance of the HBV model was analyzed as a function of the raingauge density 

through the comparisons of Nash-Sutcliffe coefficient and other goodness-of-fit indices. In the 

second section the influence of the rainfall observation network on model calibration and 

application was examined. This study seeks to determine whether the parameters calibrated using 

the rainfall coming from one type of network have the ability to represent the phenomena governing 

the rainfall-runoff process with the input provided by a different configuration of the raingauge 

network. The semi-distributed model structure was calibrated using precipitation produced from 

different raingauges network. The calibrated model was then run for the validation period using the 

precipitation obtained from the raingauges network which was not used for the calibration. Other 

experiments were carried out to analyze the reliability of supplementing missing precipitation 

measurements used for the calibration with data estimated using a multiple linear regression 

technique, and running the model using that precipitation combined with available observed 

precipitation. At the end a set of experiments carried out to investigate the influence of temperature 

gauges on the model simulation results. 

6.2 Raingauge selection method and data preparation 

The raingauges that have no missing measurements for the period between 1961 - 1990 and are 

located within or up to 30 km from the study catchment were used as a basis of complete raingauge 

network. The raingauge networks were selected from the complete network using the combinatorial 

optimization algorithm simulated annealing (Aarts and Korst, 1989). The main idea behind the 

raingauge selection algorithm was to identify a uniform set of locations for a particular number of 

raingauges.  
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The algorithm was applied repeatedly to obtain optimal locations of different number of 

raingauges. Seven networks consisting of different number of raingauges ranging from 5 to 51 were 

obtained. Figure 6.1 shows the spatial distribution of the selected raingauges. 
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Figure 6.1: Geographical locations of selected raingauge networks. 

The point measurements obtained from the selected raingauge networks were interpolated on a 1 

km × 1 km grid using the external drift kriging method (Ahmed and de Marsily, 1987). Figure 6.2 

depicts the standard deviation of the interpolated precipitation over the catchment. It can be 
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observed that the variability of the interpolated precipitation decreases with an increasing number of 

raingauges, but there is no change in the variability beyond a certain number of raingauges.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Standard deviation of areally averaged precipitation vs. number of raingauges.  

6.3 Model simulations  

The interpolated precipitation from the different raingauge networks was used to simulate 

hydrographs using the distributed and semi-distributed structures of the HBV model. The models 

were calibrated using the interpolated precipitation obtained from the different networks. The other 

input data, namely daily mean temperature and daily potential evapotranspiration, were kept 

unchanged in each calibration. Thus the input precipitation was different in each calibration. The 

automatic calibration method based on the combinatorial algorithm simulated annealing (Aarts and 

Korst, 1989) was used to optimize the model parameters.  

6.3.1 Simulations using the distributed HBV model structure 

A summary of the model performance for the calibration period using the distributed model 

structure for selected three gauges is shown in Table 6.1. Table 6.2 shows the model performance 

for the validation period. The model performances are shown for the gauges at Horb and Suessen, 

Fils because there were major variations in the number of raingauges within each network for the 

drainage area of these two gauges.  
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As shown in Table 6.2, the values of Nash-Sutcliffe coefficient for the validation period for the 

gauge at Horb range between 0.73 and 0.78. The values of Nash-Sutcliffe coefficient for the 

validation period for the gauge at Suessen, Fils range between 0.78 and 0.81. Also, the values of 

Nash-Sutcliffe coefficient for the gauge at Plochingen, Neckar range between 0.81 and 0.83. The 

network consisting of 10 raingauges yields the lowest model performance, whereas the highest 

model performance was observed using the 20 raingauge network. The model simulation bias is 

considerably higher using the precipitation resulting from 10 raingauge network. Interestingly, 

increase of raingauge stations above 20 did not improve the model performance; on the contrary the 

model performance was reduced slightly. As observed in the validation period, the highest values of 

Nash-Sutcliffe coefficient were also observed in the calibration period using the 20 raingauge 

network (Table 6.1). 

Regarding modeling of runoff at higher time scales, the model performance in terms of the Nash-

Sutcliffe coefficient shows a similar trend, as observed at the daily time scale. The worst 

performance is observed using the 10 raingauges network. However the performance improves with 

increasing time scale for all the raingauge networks. A summary of the Nash-Sutcliffe coefficients 

at a 7 day and 30 day time scale in the validation period is shown in Table 6.3. The Nash-Sutcliffe 

coefficients show the model performance in simulating the 7 days and 30 days mean discharges of a 

moving window. 

Table 6.3: Nash-Sutcliffe coefficient at 7 days and 30 days time scale through the application of the 

distributed HBV model for the validation period for selected three gauges.  

Nash-Sutcliffe coefficient Gauge Number of 
raingauges 7 days time 

scale 
30 days time 

scale 
10 0.79 0.81 
20 0.85 0.87 
30 0.85 0.88 
40 0.82 0.86 

Horb 

51 0.83 0.86 
10 0.84 0.86 
20 0.85 0.87 
30 0.83 0.84 
40 0.84 0.84 

Suessen, Fils 

51 0.81 0.81 
10 0.86 0.88 
20 0.88 0.90 
30 0.88 0.90 
40 0.87 0.89 

Plochingen,Neckar 

51 0.87 0.90 
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The mean model performance and model parameters’ transferability obtained using precipitation 

from different raingauges are shown in Table 6.4. The mean model performance and model 

parameters’ transferability was calculated using the Nash-Sutcliffe coefficients obtained at the 

different gauges during the calibration and validation periods.  

 

Table 6.4: Mean model performance and model parameters’ transferability obtained using different 

raingauge networks through the application of the distributed HBV model. 

Number of 
raingauges 

Mean model 
performance 

Model parameters’ 
transferability 

10 0.72 0.04 
20 0.76 0.04 
30 0.75 0.03 
40 0.74 0.06 
51 0.74 0.05 

 

The highest value of mean model performance was observed using the 20 raingauges network, as 

shown in the above table. The worst model parameters’ transferability was observed for the 40 

raingauges network.  

Figure 6.3 shows the seasonal Nash-Sutcliffe coefficient obtained using the precipitation 

produced from different raingauge networks.  
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Figure 6.3: Seasonal Nash-Sutcliffe coefficients using precipitation produced from different 

raingauge networks through the application of the distributed HBV model during the 

validation period for the gauges at Horb (left panel) and Plochingen, Neckar (right 

panel). 

The above figure indicates that the poorest model performance was observed using the 10 

raingauge network for all seasons.  Among the seasons, the poorest performance was observed 

during the summer season for all the considered raingauge networks. This is due to the fact that 
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there are convective precipitation events during the summer season, which are more localized and 

are not well captured by any of the raingauge networks. 

Comparing the model performance for the gauges at Horb and Plochingen, Neckar, better model 

performance are observed for the gauge at Plochingen, Neckar for all seasons. 

The event statistics were calculated for each annual maximum flood event for the validation 

period. Figure 6.4 depicts the average absolute error and root mean squared error for the gauge at 

Horb.  
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Figure 6.4: Event statistics for each annual maximum flood event through the application of the 

distributed HBV model using varying raingauge networks during the validation period 

for the gauge at Horb: average absolute error (left panel) and root mean squared error 

(right panel). 

Figure 6.5 shows the average absolute error and root mean squared error for the gauge at 

Suessen, Fils.  
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Figure 6.5: Event statistics for each annual maximum flood event through the application of the 

distributed HBV model using varying raingauge networks during the validation period 

for the gauge at Suessen, Fils: average absolute error (left panel) and root mean squared 

error (right panel). 

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Horb ranges between 8.9% and 10.6% using the precipitation produced from varying raingauge 
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networks. The same value for the gauge at Suessen, Fils ranges between 8.1% to 10.4%. The 

highest errors were observed using the network consisting of 10 raingauges. However, the errors 

were not significantly reduced by increasing the number of raingauges more than 20 raingauges.  

6.3.2 Simulations using the semi-distributed HBV model structure 

A similar simulation experiment was carried out using the semi-distributed model structure. For 

the semi-distributed structure, networks consisting of 5 and 15 raingauges were used in addition to 

the networks used for the distributed model structure. Table 6.5 show the model performance for 

selected three gauges using the precipitation produced from different raingauges network for the 

calibration period. The model performance for the validation period is shown in Table 6.6. The 

network consisting of 5 raingauges yields the minimum model performance, whereby the highest 

model performance was observed using the 20 raingauge network. As observed in the distributed 

model, interestingly, increasing the raingauge numbers above 20 did not improve the model 

performance; in fact the Nash-Sutcliffe coefficient was reduced slightly in some cases. The best 

model performance for Suessen, Fils was observed using the 15 raingauge network. On the other 

hand, the best model performance for the Plochingen, Neckar was observed using the 30 raingauge 

network. This shows the influence of the spatial distribution of raingauges within each 

subcatchment. The number of raingauges is different for different subcatchments within each 

selected network (Figure 6.1). The difference in number of raingauges within and close to each 

subcatchment influences the interpolated precipitation.  
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Table 6.7 represents the mean model performance and model parameters’ transferability 

obtained through the application of the semi-distributed model structure using the precipitation 

produced from different raingauge networks. 

Table 6.7: Mean model performance and parameters’ transferability obtained through the 

application of the semi-distributed HBV model using the precipitation produced from 

different raingauge networks. 

Number of 
raingauges 

Mean model 
performance 

Model parameters’ 
transferability 

5 0.74 0.12 
10 0.78 0.03 
15 0.80 0.04 
20 0.80 0.04 
30 0.82 0.04 
40 0.80 0.05 
51 0.80 0.05 

 

It can be observed that the lowest mean model performance was observed using the 5 raingauge 

network. The highest value was observed using the 30 raingauge network. However, there was not 

remarkable change in the mean model performance when the number of raingauges was increased 

to more than 15. The worst model parameters’ transferability was observed using the 5 raingauge 

network.  

The inability of the 5 raingauge network to adequately represent the precipitation field seems to 

negatively influence the estimation of parameters, further increasing the remarkable simulation 

errors. Moreover, the unsatisfactory results obtained using the 5 raingauge network certainly 

indicate a definite lack in its ability to represent the precipitation fields. On the other hand, the 

model performance was not significantly improved when using more than 15 raingauges. In fact, 

there was a slight deterioration in the overall model performance. This is because there are only 20 

raingauges within and close to the catchment. Estimating the precipitation fields using raingauges 

located considerably at far distance from the boundary of the catchment, perhaps, brings more error 

in the model simulation.  

Figure 6.6 shows the seasonal model performance for the Suesen, Fils and Plochingen, Neckar, 

gauges.  
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Figure 6.6: Seasonal Nash-Sutcliffe coefficients using the precipitation produced from different 

number of raingauges through the application of the semi-distributed HBV model 

during the validation period for the gauges at Suessen, Fils (left panel) and Plochingen, 

Neckar (right panel). 

A significant inability to represent the spatial precipitation fields using 5 raingauges network in 

the smaller subcatchment for the summer season can be observed (Figure 6.6). 

Further, the event statistics were calculated for each annual maximum flood event. Figures 6.7 & 

6.8 show the average absolute error and root mean squared error for the gauges at Horb and 

Suessen, Fils, respectively.  
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Figure 6.7: Event statistics for each annual maximum flood event through the application of the 

semi-distributed HBV model using different raingauges networks during the validation 

period for the gauge at Horb: average absolute error (left panel) and root mean squared 

error (right panel). 
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Figure 6.8: Event statistics for each annual maximum flood event through the application of the 

semi-distributed HBV model using different raingauges networks during the validation 

period for the gauge at Suessen, Fils: average absolute error (left panel) and root mean 

squared error (right panel). 

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Horb ranges between 6.9% and 8.4% using the precipitation produced from varying raingauge 

networks. The same value for the gauge at Suessen, Fils ranges between 8.2% to 9.2%. The highest 

errors yielded using the network consisting of 5 raingauges. On the other hand, the errors were not 

significantly reduced by increasing the number of raingauges to more than 20, as observed for the 

distributed model structure.  

Comparing the performances using the distributed and semi-distributed model structures, the 

semi-distributed model, in general, performs better than the distributed model using the different 

raingauge networks. 

It may be noted that obtaining similar goodness-of-fit indices does not mean that the simulation 

was insensitive to the spatial variability of the precipitation fields obtained using different number 

of raingauges. In fact, the two models using different precipitation fields did not give the same 

hydrograph. Because there are differences in the average absolute error and root mean squared error 

obtained using precipitation produced from varying raingauge networks. In general, it can be noted 

that using too coarse a raingauge network for estimating the rainfall fields can give rise to 

remarkable errors, for the both the distributed and semi-distributed model structures. However, the 

network formed by the threshold number of raingauges (20-30 in the present study) provides an 

acceptable estimate of the precipitation fields, while other modeling errors will dominate in that 

case. 

6.4 Influence of the rainfall observation network on model calibration and application 

It may be of interest to investigate the results of the simulations obtained with the rainfall input 

when the model is parameterized according to a different type of input data. It is, in fact, frequently 
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the case that a raingauge network changes due to an addition or subtraction of raingauges. The 

raingauge network can be strengthened by the addition of new instruments, so that a more detailed 

representation of rainfall is allowed, but, for calibration purposes, past observations are available 

only over the original, less numerous measuring points. On the other hand, in the case of an 

operational flood forecasting system, the opposite situation may occur. In the flood forecasting 

system, the rainfall-runoff model is usually calibrated using all the available flood events. However, 

during the operational forecasting time, the precipitation data from all past observation stations may 

not be available due to a malfunctioning of a few of the observations in the network or the 

observation data may not be available in time. 

In such cases, it is crucial to understand if the parameters calibrated using the rainfall coming 

from one type of network have the ability to represent the phenomena governing the rainfall-runoff 

process with the input provided by the different configuration of the raingauge network. 

In the following section, the aim of the simulation experiment was, thus, to investigate the 

influence of the spatial resolution of the rainfall input on the calibration of the semi-distributed 

model structure. First, the semi-distributed structure of the HBV model was calibrated with the 

precipitation interpolated from the available observed rainfall of varying raingauge networks. The 

calibrated model was then run using the same precipitation used for the calibration as well as 

interpolated precipitation based on networks of reduced and increased raingauge density.  

As for example, the model was first calibrated using precipitation interpolated from 10 and 20 

raingauges. The calibrated model using 10 raingauges was then run using precipitation obtained 

from 20 raingauges for the validation period and vice versa. This experiment is indicated in tables 

and figures, latter on, as follows: 10/10: calibrated with 10 raingauges and validated with 10 

raingauges; 20/20: calibrated with 20 raingauges and validated with 20 raingauges; 10/20: 

calibrated with 10 raingauges and validated with 20 raingauges and 20/10: calibrated with 20 

raingauges and validated with 10 raingauges. 

It can be noticed that the model calibrated using less detailed precipitation (precipitation from 10 

raingauges) often slightly improves when it was run using relatively more detailed precipitation 

(precipitation from 20 raingauges) (Table 6.8). On the other hand, the model performance obtained 

using precipitation from 20 raingauges deteriorated when the same model was run using 

precipitation obtained from 10 raingauges. 

In fact, the parameter values in principle may compensate for an incomplete representation of the 

precipitation field, provided they were updated by performing a new calibration, for which the input 

precipitation was estimated from the reduced raingauges network. However, there was no such type 

of compensation for the second case when the calibrated model using 20 raingauges was run using 



 

 

99

precipitation obtained from the 10 raingauge network. This demonstrates the inability of the 10 

raingauges to adequately represent the precipitation field for the catchment. 

Table 6.8: Model performances using the input precipitation information obtained from different 

number of raingauges. 

 Rottweil Horb Riederich, 
Erms 

Suessen, 
Fils 

Plochingen,
Fils 

Plochingen
,Neckar 

Rm
2 0.74 0.80 0.75 0.79 0.82 0.87 

Rel. 
accdif. -0.05 0.07 -0.01 0.09 0.12 0.04 

Peak error -0.23 -0.14 -0.06 -0.14 -0.16 -0.09 
10/10 

RMSE 3.74 8.61 1.05 2.82 5.03 19.20 
Rm

2 0.78 0.83 0.76 0.79 0.81 0.87 
Rel. 
accdif. 0.00 0.09 0.02 0.13 0.17 0.06 

Peak error -0.07 -0.12 -0.03 -0.15 -0.16 -0.06 
20/20 

RMSE 3.49 7.99 1.03 2.86 5.07 18.99 
Rm

2 0.74 0.82 0.77 0.78 0.80 0.88 
Rel. 
acc dif. -0.18 -0.03 0.00 0.13 0.19 0.01 

Peak error -0.36 -0.25 -0.06 -0.13 -0.12 -0.13 
10/20 

RMSE 3.75 8.10 1.02 2.91 5.22 18.06 
Rm

2 0.66 0.77 0.75 0.79 0.82 0.84 
Rel.  
accdif. 0.13 0.19 0.00 0.09 0.10 0.08 

Peak error 0.08 0.00 -0.04 -0.16 -0.20 -0.01 
20/10 

RMSE 4.28 9.32 1.06 2.79 4.95 20.84 
 

The following simulation experiment was carried out in order to investigate whether the 

estimated precipitation at the missing raingauges, together with the precipitation data from the 

remaining stations that were used during the model calibration, has any benefit over the model 

operated by precipitation from the reduced raingauges. A new spatial representation of the rainfall 

input was considered: the precipitation was estimated using a multiple linear regression technique 

(Montgomery and Peck, 1982) at specific locations (the precipitation data for the 10 raingauges 

network are treated as missing measurements for the model validation period in the present 

example) of a selected raingauge network (20 raingauges network in the present example). The 

observed precipitation was considered at the remaining 10 locations of the 20 raingauges network. 

The model, calibrated with the precipitation data obtained from 20 raingauges, was then run in the 

validation period using the precipitation field above described.  

Thus, in this experiment, the precipitation of the 10 raingauges (the location of these stations are 

same of the 10 raingauges network) within the 20 raingauges network was considered missing for 

the validation period. The multiple linear coefficients at the locations of the above 10 raingauges 

were derived using the precipitation measurements of the neighboring stations and the available 

precipitation measurements at those 10 raingauges. 
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Regression analysis is a statistical technique generally used for investigating and modeling the 

relationship between variables. A regression model that involves more than one regressor variable 

is called a multiple regression model. The general purpose of multiple regressions is to learn more 

about the relationship between several independent or predictor variables and a dependent or 

criterion variable.  

Consider that the precipitation for a particular station is missing for some time period. The 

missing measurements then can be estimated using the measurements of the neighboring stations 

through the application of the multiple linear regression coefficients. A multiple regression model 

that can describe this relationship is as follows: 

 

where R(us) denotes the missing precipitation measurements of a particular station at a location 

us; u1,u2,…,uk denotes the precipitation measurement locations of the remaining stations and ε  is a 

statistical error. The parameters βj, j = 0, 1,…, k are called the regression coefficients (Montgomery 

and Peck, 1982). Coefficients are calculated using all available observations. 

Thus, the missing measurements at the mentioned 10 raingauges were estimated using the 

derived multiple linear regression coefficient. The precipitation was then interpolated using the 

estimated precipitation at the 10 raingauges and also the remaining 10 raingauges within the 20 

raingauge network. As a result, the interpolated precipitation field consisted of 20 raingauges once 

again, however, with 10 raingauges of precipitation data estimated using the multiple linear 

regression and the remaining 10 from the observed data.  

Figure 6.9 shows the model performance for selected six gauges during the validation period 

using the different level of input precipitation information. The data shown in Table 6.7 is partly 

used to prepare the Figure 6.9. In the following tables and figures 20/20MLR indicates model 

calibrated with 20 raingauges and validated with 20 raingauges (rainfall estimated at 10 locations 

considered as missing measurements). 

εββββ +++++= )(...)()()( 22110 kks uRuRuRuR  (6.1) 
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Figure 6.9: Nash-Sutcliffe coefficient obtained using different level of precipitation input 

information for the validation period for selected six gauges. 

It can be observed that the model performed well when it was calibrated using precipitation from 

20 raingauges and was run with an incomplete observed data set combined with data generated 

using the multiple linear regression technique at the locations of the remaining 10 raingauges.  

A summary of the Nash-Sutcliffe coefficients at a 7 day and 30 day time scale in the validation 

period are shown in Table 6.9.  

Table 6.9: Nash-Sutcliffe coefficients at 7 days and 30 days time scale obtained using different 

level of precipitation input information for selected six gauges for the validation period. 

Nash-Sutcliffe coefficient 
Gauge Number of raingauges 7 days time 

scale 
30 days time 

scale 
20/10 0.76 0.82 Rottweil 20/20MLR 0.86 0.90 
20/10 0.69 0.77 Oberndorf 
20/20MLR 0.83 0.88 
20/10 0.80 0.82 Horb 
20/20MLR 0.89 0.91 
20/10 0.82 0.80 Suessen, Fils 
20/20MLR 0.82 0.80 
20/10 0.85 0.83 Plochingen, Fils 
20/20MLR 0.85 0.82 
20/10 0.88 0.90 Plochingen, Neckar 
20/20MLR 0.90 0.92 
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Regarding modeling of runoff at higher time scales, the model performance in terms of the Nash-

Sutcliffe coefficient shows a similar trend as that observed earlier at the daily time scale. The table 

indicate that the model performance improves at the higher time scales. 

Figure 6.10 depicts the average absolute error and root mean squared error for the gauge at 

Rottweil.  
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Figure 6.10: Event statistics for each annual maximum flood event during the validation period 

using precipitation obtained from different raingauge networks and estimated 

precipitation for the gauge at Rottweil: average absolute error (left panel) and root mean 

squared error (right panel). 

On average, the absolute error with respect to the annual maximum discharges for the gauge at 

Rottweil ranges between 6.8% and 8.2%. The highest error was observed when the calibrated model 

using 20 raingauges was run using 10 raingauges. The error reduced to 6.9% when the calibrated 

model using 20 raingauges was run using 20 raingauges, however, with 10 raingauges of 

precipitation data estimated using the multiple linear regression technique and the remaining 10 

from the observed data. 

This analysis indicates that model performance reduces when the model calibrated using more 

detailed input precipitation information is run using precipitation obtained from a reduced 

raingauge networks. The analysis also highlights that the missing measurements can be 

supplemented using a simple multiple linear regression technique or another appropriate data filling 

technique.  

6.5 Influence of temperature stations on the model simulation results  

To investigate the influence of the temperature gauges on the predictive uncertainty, the 

following simulation experiment was carried out. The eighteen temperature gauges were selected 

from the network, having no missing measurements and within and around 20 km from the 

catchment. Then, three different networks, consisting of 18, 11 and 6 temperature gauges (Figure 

6.11), were used to interpolate the daily mean temperature over the grid used before. The 
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interpolated temperature was averaged over the zone and used in the semi-distributed HBV model. 

The model was calibrated using the temperature data obtained from the different temperature 

networks. The other input data, namely daily precipitation amount and daily potential 

evapotranspiration, were kept unchanged in each calibration. The raingauge network consisting of 

30 raingauges was used to prepare the input precipitation. 
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Figure 6.11: Geographical locations of temperature gauges in selected networks. 

Tables 6.9 and 6.10 show the model performance using the varying temperature gauges for the 

calibration and validation periods, respectively. As shown in Table 6.11, the minimum and 

maximum values of the overall Nash-Sutcliffe coefficient during the validation period for the 

simulation of the daily discharge for the gauge Rottweil are 0.77 and 0.80, respectively. The 

network consisting of 6 temperature gauges yields the minimum model performance, whereby the 

highest model performance was obtained using the 18 temperature gauges network. Interestingly, 

the highest model performance for the gauge Horb was obtained using 6 temperature gauges. The 

best model performance for the outlet gauge Plochingen, Neckar was observed using the 11 

temperature gauges network. This is due to the difference in spatial locations of the temperature 

gauges in the selected networks. This shows the influence of the spatial distribution of temperature 

gauges within each subcatchment.  
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Figure 6.12 shows the seasonal Nash-Sutcliffe coefficient obtained using different temperature 

gauges.  
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Figure 6.12: Seasonal Nash-Sutcliffe coefficient obtained using different temperature stations 

during the validation period for the gauges at Rottweil (left panel) and Horb (right 

panel). 

It can be observed that the selected temperature stations still do influence in the model 

performance and this is more evident during the winter season, as could be expected. This is 

because there is more fluctuation in the winter temperature and that affects the snow melt and 

accumulation procedure.  

6.6 Concluding remarks 

In this chapter attempts have been made to describe several experiments investigating the 

influence of the spatial representation of the precipitation input, with distributed and semi-

distributed model structures. A first set of experiments considered the spatial representation of 

precipitation from varying raingauge networks. It showed that the number and spatial distribution of 

raingauges affects the simulation results. It was found that the model performances worsen radically 

with an excessive reduction of raingauges. However, the performances were not significantly 

improved by increasing the number of raingauges more than a certain threshold number.  

Comparing the performances using the distributed and semi-distributed structures of the HBV 

model, the semi-distributed model, in general, performs better than the distributed model using the 

precipitation of each raingauge network. 

A second set of analysis considered the model calibration using one type of input precipitation 

and was run using another type of precipitation data. The analysis indicated that models using 

different raingauge networks might need their parameters recalibrated. Specifically, the HBV model 

calibrated with dense information fail when run with sparse information. While, the HBV model 

calibrated with sparse information can perform well when run with dense information. 
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A third set of experiments analyzed the reliability of supplementing missing precipitation 

measurements used for the calibration with data estimated using a multiple linear regression 

technique, and running the model using that precipitation combined with observed precipitation. 

The results showed that the model performs well when calibrated with a complete set of observed 

precipitation and when run with an incomplete observed data set combined with estimated data. 

This result offers an encouraging perspective for the implementation of such a procedure for an 

operational flood forecasting system. Further research is needed in this direction to prove the 

practical applicability. 

At the end a set of experiments showed the influence of temperature gauges on the model 

simulation results. The influence is relatively low compared to that introduced by the raingauges. 

The influence is more evident during the winter season, as could be expected. 
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7 Conditionally-simulated precipitation and hydrological modeling 

7.1 Introduction 

One of the most important hydrological model inputs is precipitation. Because the precipitation 

varies in space and time within a catchment, it is usually interpolated from the measurements of an 

available raingauge network for model computational units using interpolation techniques like 

kriging, Thiessen polygon, and inverse distance method. However, hydrologists have long 

recognized the problems of interpolating point raingauge measurements to estimate spatial rainfall 

fields. Kriging as mostly used interpolation techniques provides idealized smooth rainfall fields and 

does not possess the same fluctuation pattern (Haberlandt and Gattke, 2004). However the 

variability of rainfall has a considerable impact in hydrological model’s predictive uncertainty 

(Zehe et al., 2005). Simulations usually conditional on the observations preserve typical fluctuation 

patterns (Mantoglou and Wilson, 1982).  

The aim of this chapter is, thus, to investigate the uncertainty incurred in the HBV model 

simulations due to spatial uncertainty of precipitation. The first section of this chapter describes two 

different spatial rainfall simulation procedures employed to generate conditionally-simulated 

precipitation. In the second section, the benefits of using conditionally-simulated precipitation in 

hydrological modeling are described using the semi-distributed HBV model.  

7.2 Data preparation and spatial rainfall simulation  

The spatial distribution of the daily precipitation and the daily average temperature were 

produced on a 500 m × 500 m grid using the external drift kriging method (Ahmed and de Marsily, 

1987) from the available point measurements. The semi-distributed HBV model was setup and then 

calibrated using the automatic calibration procedure based on simulated annealing (Aarts and Korst, 

1989). The calibrated model was validated using the interpolated precipitation. Further, 

conditionally-simulated precipitation was also used as an input to the model for the validation 

period. The conditionally-simulated precipitation was generated using turning bands simulation 

(Bárdossy, 2003; Mantoglou and Wilson, 1982) and copula-based simulation methods. The 

modeling performance was assessed at the three discharge gauges namely, Rottweil, Oberndorf and 

Horb. Figure 7.1 depicts the discharge gauges and elevation zones used for the semi-distributed 

HBV model structure. 
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Figure 7.1: Stream network and discharge gauges (left panel) and elevation zone for different 

subcatchments (right panel). 

7.2.1 Conditional spatial rainfall simulation  

It is well recognized that kriging provides a smooth mapping of the variable under consideration. 

This is because the minimum estimation variance as the optimization criterion necessarily yields 

less variable estimators. (Bárdossy, 2003). The disadvantage is the loss of variability, for example, 

small values may be over- and large values may be under-estimated. This may lead to simulation 

errors, particularly if the data are used for modeling floods. In that case the high non-linearity 

between input and output as well as extreme values determine the modeling response. One means of 

preserving this variability is the conditional spatial simulation of precipitation providing several 

equally probable realizations. Subsequent runs of a hydrological model using these different 

realizations of precipitation would then allow an assessment of uncertainty from the precipitation 

input and provide a less biased model result (Haberlandt and Gattke, 2004). There are different 

methods available for spatial stochastic simulation of a random variable, such as Gaussian 

sequential simulation, turning bands simulation, simulated annealing, etc. (Deutsch and Journel, 

1992; Goovaerts, 1997; Bárdossy , 2003).  

In this study, conditionally-simulated rainfall was generated using two approaches: (1) 

conditionally-simulated precipitation using turning bands simulation (hereafter referred as turning 

bands simulation) and (2) turning bands simulation using copula (hereafter referred as copula-based 

simulation). 

The following brief introduction to the turning bands simulation is mainly based on the 

description of Mantoglou and Wilson (1982), Kottegoda and Kassim (1991) and Bárdossy (2003). 

Oberndorf 

Rottweil 

Horb 
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The turning bands method was originally introduced by Matheron (1973), and has seen extensive 

application in multi-dimensional spatial simulation (Mantoglou and Wilson, 1982). This method is 

based on the theory of the random fields. The main principle of this approach is that sets of one 

dimensional simulation are merged to one multi-dimensional set, while preserving the statistical 

properties of the random field. One dimensional simulation is performed for different possible 

directions “turning” around a center point. Depending on the variogram, different covariance 

structures have to be used for the one dimensional simulations (Bárdossy, 2003).  

Hence, by applying the covariance structure to the rain field, which is indeed a two dimensional 

space process, each uni-directional process is generated by a spectral method (Kottegoda and 

Kassim, 1991; Bárdossy, 2003). It is assumed that the field to be simulated is second-order 

stationary and isotropic. It is also assumed that the covariance C(r) of the simulated field is known. 

Instead of simulating the two dimensional field directly, one thus carries out simulations along 

several lines using a uni-dimensional covariance function that corresponds to the two-dimensional 

one. Then at each point of the two-dimensional field a weighted sum of the corresponding values of 

the line processes is assigned. 

Considering that for a set of lines l =1,…,Ln, all going through the origin of the coordinate 

system, random functions with zero mean and covariance functions C(r) are simulated 

independently. Let Rl(u) for l =1,...,Ln be these functions. Then for a point u the random function 

R(u) can be defined as: 

where ..,  denotes the scalar product of the vectors, and vl is the unit vector on line l. 

The advantage of the method is that it is nearly independent of the number of points. Moreover, 

it preserves the statistics of the real random field. However, the method has the disadvantage that 

one-dimensional covariance structure corresponding to the variogram must be calculated or given 

analytically (Bárdossy, 2003).  

The measurement data are not used directly in the unconditional simulation. It is only through 

the variogram that they influence simulation results (Bárdossy, 2003). The knowledge of the value 

of a selected parameter at a given point restricts the possible values in a neighborhood. Those 

realizations are especially interesting where the simulated values equal the measured values at the 

observation points. Thus, unconditional simulations are conditioned with the help of a simple 

transformation, as defined below (Bárdossy, 2003): 
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where:  

 Rs(u) is the simulated value at point u 
)(* uRs is the kriging estimator of Zs based on the simulated values at the measurement points 

 Rc(u) is the conditionally-simulated value at a point u 
)(* uR is the kriging estimator of Z based on the measurement data 

 

Because of the exactness property of kriging, for measurement points at ui  

 

Thus by definition:  

 

This means that the above modification of the unconditional simulation reproduces the measured 

values at the observation points. The conditioning of the unconditional simulation does not 

influence the variability; Rc(u) and Rs(u) have the same variogram. 

 

Figure 7.2 shows the principal steps for conditionally-simulated precipitation using turning 

bands simulation. The principal steps for conditionally-simulated precipitation using copula-based 

simulation are depicted in Figure 7.3.  
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The rainfall simulation procedure using turning bands simulation follows the steps mentioned 

below:  

a. The rainfall is observed at discrete points from raingauges. 

b. The raingauge observations are used to obtain the best linear unbiased estimate of rainfall 

on a specified regular grid using the kriging method.  

c. The random rainfall field is simulated on the specified regular grid using the turning 

bands simulation with the variogram constructed using the observed data.  

d. Only the simulated rainfall values at the raingauge positions are used to estimate the 

interpolated values of the simulated rainfall at each grid point.  

e. At each grid point, the deviation of the simulated and interpolated values of the simulated 

rainfall field is calculated as follows.  

( ) ( )[ ]uRuRudeviation ss
*)( −=  (7.5) 

Thus, at the raingauge locations, this deviation is always equal to zero. 

f. The field of deviation, obtained in step e, is added to the rain field from raingauge 

interpolation. 

( ) ( ) [ ])()( ** uRuRuRuR ssc −+=  (7.6) 

g. A rainfall field that follows the mean field of the raingauge interpolation while 

preserving the mean field deviations from the simulated field is obtained. 

For copula-based simulation, the steps are more or less similar (Figure 7.3). Copulas are no more 

than multivariate distributions on the unit hypercube with uniform marginal distribution. They 

describe the dependence of multivariate distributions with any kind of marginal distribution. They 

are also invariant to monotonic transformations of the variables. The main advantage of using 

copulas is that marginal distributions of individual variables can be of any form. Thus copula is 

insensitive to the problems arising due to highly skewed distributions (for example, extreme values 

resulting from measurement error) (see for more details Bárdossy, 2006).  

The main difference between two spatial rainfall simulation approaches lies in the fact that the 

rainfall from the raingauge observations is first transformed to Gaussian distribution function for 

the copula-based simulation. This is done because in the turning bands simulation method, it is 

assumed that the values of the field to be simulated at each point are normally distributed 

(Mantoglou and Wilson, 1982), and kriging is also done assuming the fields are normally 

distributed. The variogram is thus constructed using the normally distributed transformed values of 
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the raingauge measurements. The kriging and simulation of the rainfall fields are then carried out 

using the transformed values. After conditioning the simulated field using the observations, which 

are normally distributed values, the conditionally-simulated values are transformed back. This 

transformation is done using the empirical distribution function calculated based on the 

observations. Thus the conditionally-simulated values followed the original distribution function of 

the observations.  

The principal steps of the copula-based simulation are described below:  

Step1: Calculate the empirical distribution function Fn(R) according to observations R(ui). 

This is done by calculating the ranks of the observed data set. 

Step 2: Calculate the normally distributed values Z(ui) from the probability of the 

measurement values using the inverse normal distribution function. 

( ) )()((1
iin uZuRF =Φ−

 (7.7) 

where Φ  being the distribution function of the standard normal distribution. 

Step 3: Simulate the values Zs(u) by turning bands simulation method using these normally 

distributed transformed values and conditioning the simulated values using these 

transformed values at the observations. Thus the conditionally-simulated values Zc(u) follow 

the normal distribution function. 

Step 4: Calculate the probability ( ))(uZcΦ  from the conditionally-simulated values Zc(u) 

using the normal distribution function. 

Step 5: Back transformation of the probability ( ))(uZcΦ  obtained at step 4, using the inverse 

of the empirical distribution function, already calculated at step 1, to obtain the target value. 

Thus the target value again follows the same distribution obtained using the measurements. 

( ) )())((1 uRuZF scn =Φ−

 (7.8) 

 

7.2.2 Interpolated and simulated precipitation fields  

Twenty one realizations of conditionally-simulated rainfall were generated using the mentioned 

two approaches namely, turning bands simulation and copula-based simulation. This number of 

realization attempted in this study is less; however, the high computational demand imposed this 

constraint.  
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Figure 7.4 shows the frequency diagram for the precipitation from different sources for the 

selected date 08.12.1978.  
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(c) (d) 

(e) (f) 

Figure 7.4: Histogram of precipitation for the date 08.12.1978 (a) observed station data (b) 

interpolated precipitation (c) & (d) turning bands simulation (e) & (f) copula-based 

simulation.  

It can be observed that the distribution of copula-based simulation closely follows the 

distribution of the observed station data (Figure 7.4). Figure 7.5 depicts a comparison between 

spatial distribution of interpolated and simulated precipitation for the selected date 08.12.1978. 

Each map contains mean and standard deviation (std. dev.) of the simulated and interpolated 

precipitation for that date. As can be seen, the smooth interpolation map is clearly different from the 

two simulation maps. The simulation maps indicate significantly more spatial variability but still 

conserve the major pattern. 
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(a) Mean: 21.2  Std. dev.: 9.1 

 
(b) Mean: 19.0  Std. dev.: 6.7 

 
(c) Mean: 19.5  Std. dev.: 5.6 

Rainfall [mm] 

 

Figure 7.5: Spatial distribution of rainfall for 08.12.1978 (a) copula-based simulation (b) turning 

bands simulation (c) interpolated rainfall using external drift krging. 

Comparing the two simulation maps, the map obtained using turning bands simulation shows a 

more structured pattern. It is worth mentioning that the external drift kriging method was used for 

the turning bands simulation. However, for the copula-based simulation the ordinary kriging 

method was used. Thus the difference of the spatial variability in the conditionally-simulated 

precipitation is also influenced by this consideration. The application of external drift kriging 

method, which is capable to consider additional information like elevation for rainfall interpolation, 

can be incorporated as an alternative of ordinary kriging method in the copula-based simulation.  
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The descriptive statistics and total number of dry grids over the catchment (here dry grids are 

defined as the mean precipitation less than 8 mm over the catchment) were computed using the 

interpolated precipitation. The values were calculated from the days having a total rainfall amount 

greater than 8 mm (Table 7.1). 

Table 7.1: The descriptive statistics calculated from the interpolated precipitation. 

Mean Std. dev. Skewness Max. Dry grid no. 
14.3 4.1 0.6 28.8 3.0 

 

The above statistics were also calculated from each realization of the conditionally-simulated 

precipitation obtained using the copula-based and turning bands simulation. Table 7.2 shows the 

overall mean values of the statistics calculated from the realizations.  

Table 7.2: The overall mean values of the descriptive statistics of the conditionally-simulated 

precipitation. 

 Mean Std. dev. Skewness Max. Dry grid 
no. 

Copula-based simulation 14.0 5.6 0.8 36.7 20.0 
Turning bands simulation 14.3 5.8 0.3 35.3 88.0 

 
Comparing the Tables 7.1 and 7.2, it can be observed that the mean value of standard deviation 

is higher for the conditionally-simulated precipitation compared to the same of the interpolated 

precipitation. Among the two spatial rainfall simulation methods, the turning bands simulation 

shows slightly higher variability; however, the mean value of skewness is higher for the rainfall 

simulated using copula-based simulation. The total number of dry grids is higher for the rainfall 

simulated using turning bands simulation.  

7.3 Conditionally-simulated rainfall and the semi-distributed HBV model 

The semi-distributed HBV model was setup, calibrated and validated using the interpolated 

precipitation. Table 7.3 shows the model performance for the calibration and validation periods.  
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Table 7.3: Model performances for different gauges using the interpolated precipitation for the 

calibration and validation periods. 

Gauge Simulation 
period Rm

2 Rel. 
accdif. 

Peak 
error 

RMSE 
 

calibration 0.78 0.01 -0.22 3.29 Rottweil validation 0.79 0.04 -0.13 3.40 
calibration 0.81 0.01 -0.18 4.24 Oberndorf validation 0.78 0.06 -0.01 4.70 
calibration 0.86 0.01 -0.13 6.73 Horb validation 0.84 0.10 -0.12 7.74 

 

It can be observed that the Nash-Sutcliffe coefficient for the simulation of the daily discharge in 

the subcatchments during the calibration period has values ranging between 0.78 and 0.86, with a 

mean value of 0.82. The Nash-Sutcliffe coefficient for the validation period has values ranging 

between 0.78 and 0.84, with a mean value of 0.80. The highest Nash-Sutcliffe coefficient value is 

observed for the gauge at Horb, both for the calibration and validation periods.  

Further, the conditionally-simulated precipitation of each realization, obtained using the turning 

bands and copula-based simulation, was used to calculate the mean value over each elevation zone 

used for the semi-distributed HBV model. The averaged precipitation over the elevation zone was 

then used as an input precipitation to the calibrated HBV model. Table 7.4 shows the model 

performances obtained using the conditionally-simulated precipitation for the validation period. The 

value of each model performance criteria shown in Table 7.4 is the overall mean value calculated 

from the model performances obtained using the twenty one realizations. 

As shown in Table 7.4, the mean values of Nash-Sutcliffe coefficient for the gauge at Horb when 

using the precipitation based on copula simulation and the turning bands simulation are 0.85 and 

0.82, respectively. The mean error to estimate the annual peaks using the precipitation by the 

copula-based simulation is slightly higher than that obtained using the interpolated precipitation. 

However, this error is lower when the model is running with the precipitation obtained using the 

turning bands simulation than the same obtained using the interpolated precipitation. It can also be 

observed that the model simulation bias is higher using the precipitation obtained by the turning 

bands simulation as compared to the same obtained using the precipitation produced by the copula-

based method. 
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Table 7.4: Mean model performances using the simulated precipitation for different gauges during 

the validation period. 

 Rottweil Oberndorf Horb 

Rm
2 0.79 0.79 0.85 

Rel. accdif. 0.00 0.01 0.04 
Peak error -0.16 -0.03 -0.16 

Copula-
based 
simulation 

RMSE 3.38 4.65 7.58 
Rm

2 0.76 0.74 0.82 
Rel. accdif. 0.12 0.13 0.17 
Peak error -0.09 0.05 -0.09 

Turning 
bands 
simulation 

RMSE 3.64 5.09 8.21 
 

The average simulated discharge time series were calculated using the simulated discharges 

obtained using the conditionally-simulated precipitation. The model performances were then 

calculated using the average simulated discharges and the observed discharges (Table 7.5). The 

average values of the simulated discharges are used to compute the model performances, because it 

is reasonable to consider that a large number of realizations of conditionally-simulated precipitation 

somehow capture the non-linearity of the complicated precipitation process and each of them is one 

of the probable realizations. It can be observed that the Nash-Sutcliffe coefficient, calculated using 

the average simulated discharges obtained using different realizations of precipitation based on 

copula-based simulation, is higher than that obtained using the interpolated precipitation. On the 

contrary, the Nash-Sutcliffe coefficient, calculated from the average simulated discharges obtained 

using different realizations of precipitation based on turning bands simulation, is lower than that 

obtained using the interpolated precipitation. The time series of maximum simulated discharges 

were also calculated using the simulated discharges obtained using the conditionally-simulated 

precipitation. Thus this discharge series consists of maximum value of simulated discharges from 

all the realizations of the simulated discharges. Also the Nash-Sutcliffe coefficient was computed 

using the maximum simulated discharge series and the observed discharge series to investigate the 

model performance to estimate the peak discharges. It can be observed that the Nash-Sutcliffe 

coefficient, calculated using the maximum values of the simulated discharges obtained from 

different realizations of the both conditionally-simulated precipitation, is low compared to the same 

obtained using the interpolated precipitation. However, the peak estimation is better when using the 

maximum values of the simulated discharges obtained from the realizations of the conditionally-

simulated precipitation as compared to the same obtained using the interpolated precipitation.
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It can also be observed that the model simulation bias, using the maximum values of the 

simulated discharges obtained from the conditionally-simulated precipitation, is higher than the 

same obtained using the interpolated precipitation. Among the two spatial rainfall simulation 

methods, the model simulation bias is double for the turning bands simulation as compared to the 

same obtained using the copula-based simulation.  

The standard deviation obtained using the conditionally-simulated precipitation and the daily 

observed discharge for the Horb gauge is shown in Figure 7.6.  
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Figure 7.6: Observed discharge vs. Standard deviation of the simulated discharges using copula-

based simulation (left panel) and turning bands simulation (right panel). 

It can be noticed that there is high variability in the simulated discharges for high observed 

discharge values. This indicates an involvement of the higher uncertainty to simulate the high 

discharges.  

Figure 7.7 shows seasonal Nash-Sutcliffe coefficient for the gauges at Rottweil and Horb. The 

seasonal Nash-Sutcliffe coefficient was calculated using the average values of the simulated 

discharges obtained using different realizations of the conditionally-simulated precipitation. It can 

be observed that the model performance is comparatively poor in the summer season even with the 

use of the conditionally-simulated precipitation. This is because there are convective precipitation 

events in the summer season which are more localized. 
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Figure 7.7: Seasonal Nash-Sutcliffe coefficient using simulated and interpolated precipitation for 

the gauges at Rottweil (left panel) and Horb (right panel). 

The hydrographs corresponding to the maximum, minimum and mean of the simulated 

discharges obtained using different realizations of the simulated precipitation through the 

application of the turning bands simulation and copula-based simulation are shown in Figures 7.8 

and 7.9, respectively. The figures are shown for a selected flood peak in the validation period for 

the gauge at Horb. 
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Figure 7.8: Comparisons between calculated discharges from interpolated precipitation and 

conditionally-simulated precipitation using turning bands simulation with observed 

discharge for the gauge at Horb in the validation period. 
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It can be observed that the flood event is better estimated using the conditionally-simulated 

precipitation (Figures 7.8 and 7.9). It can also be noticed that there is higher uncertainty in the 

simulated discharges obtained using the conditionally-simulated precipitation for high discharge, 

however, such uncertainty is less for low discharge. 
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Figure 7.9: Comparisons between calculated discharges from interpolated precipitation and 

conditionally-simulated precipitation using copula-based simulation with observed 

discharge for the gauge at Horb in the validation period. 

Figure 7.10 shows the standard deviation of the simulated discharges obtained using the 

conditionally simulated precipitation for the selected flood peak in the validation period for the 

gauge at Horb.  
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Figure 7.10: Standard deviation of the simulated discharges for the selected flood peaks in the 

validation period at the gauge Horb obtained using the conditionally-simulated 

precipitation.  

Figure 7.10 indicates that the standard deviation of the simulated discharges obtained using the 

turning bands simulation is relatively higher than that obtained using the copula-based simulation.  

7.4 Concluding remarks  

In this chapter attempts have been made to investigate the benefit using the simulated 

precipitation for the hydrological modeling. Two different spatial rainfall simulation methods were 

applied for conditional rainfall simulation. The precipitation was simulated using turning bands 

simulation and copula-based simulation. The comparison of the conditionally-simulated 

precipitation and interpolated precipitation highlights that conditional spatial rainfall simulation 

indicates significantly more variability in the simulated rainfall.  

The conditionally-simulated precipitation was then used to simulate discharges for a meso-scale 

catchment using the semi-distributed rainfall-runoff model HBV. The study showed that the 

modeling performance using the mean of the simulated discharges obtained using conditionally-

simulated precipitation based on turning bands simulation was worser than that obtained using 

interpolated precipitation. While, the model performance using the mean of the simulated 

discharges obtained using conditionally-simulated precipitation through the application of copula-

based simulation was better than that obtained using the interpolated precipitation. The analysis also 

highlighted that the modeling performance was better using both types of conditionally-simulated 

precipitation than that obtained using the interpolated precipitation if only floods are considered. 

Thus conditional spatial precipitation simulation is reasonable for flood modeling.  

Application of the Gaussian copulas for spatial precipitation simulation was very encouraging. 

The application of non-Gaussian copula can also be aimed as an alternative of the Gaussian copula 

as further research efforts. 
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8 Uncertainty investigation in model simulation and in identifying the model 

parameters of a conceptual model due to uncertain precipitation 

8.1 Introduction 

Uncertainty is an unavoidable element in any hydrologic modeling study (Beven, 2001). This 

uncertainty stems from the parameters, the model structure and measurements of input and output 

data. Precipitation is one of the most important hydrological model inputs. Precipitation is governed 

by complicated physical processes, which are inherently nonlinear and extremely sensitive 

(Bárdossy and Plate, 1992). Nevertheless, inadequate representation of spatial variability of 

precipitation in modeling can be partly responsible for modelling errors. This may also lead to the 

problem in parameter estimation of a conceptual model. Because for partly or fully conceptual 

models, some parameters cannot be considered as physically measured quantities and have to be 

estimated on the basis of the available data and information. Thus the performance of a conceptual 

model tends to depend on parameter optimization. The interpolated precipitation can be used as an 

input precipitation to a conceptual model and the model parameters can then be estimated by 

calibration. It is already seen that interpolation provides idealized smooth precipitation fields and 

does not possess the same fluctuation pattern. The uncertainty in spatial variability of precipitation 

may thus introduce significant uncertainty in the optimized parameters of a model. 

The research objective of this study is therefore two fold: 

1. To study the uncertainty in the model’s simulations due to spatial uncertainty in precipitation 

input. 

This study was carried out using the physically-based spatially-distributed modeling system 

SHETRAN and the conceptual semi-distributed rainfall-runoff model HBV. The similar simulation 

experiment was documented in the previous chapter using the HBV model. Conditionally-simulated 

precipitation using copula-based simulation was used as an input precipitation to the SHETRAN 

and the HBV models. The simulated discharges by means of different realizations of the 

conditionally-simulated precipitation were then analyzed to assess and quantify the uncertainty in 

the simulated discharges.  

2. To investigate the uncertainty incurred in the model parameters of a conceptual rainfall-runoff 

model arising from uncertain precipitation. 

A dual rainfall-runoff modeling strategy was employed for this investigation. Figure 8.1 explains 

the applied modeling strategy schematically. 
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Figure 8.1: Schematic flow chart of the dual modeling procedure.  

The following steps were followed in accordance to the mentioned investigation.  

Step 1: Set up of the physically-based hydrological model SHETRAN and HBV model using the 

interpolated precipitation obtained using the external drift Kriging method (Ahmed and de Marsily, 

1987). 

Step 2: The conditionally-simulated precipitation was then used as an input precipitation to the 

calibrated SHETRAN model to simulate the discharges. A number of realizations of the 

conditionally-simulated precipitation were used. 

Step 3: The simulated discharges from the previous step, produced using the different 

realizations of simulated precipitation, were used to identify the model parameters of the conceptual 

rainfall-runoff model HBV. 

The SHETRAN model was assumed, in this experiment, to represent the true copy of the 

prevailing hydrological system of the study catchment. It was considered that SHETRAN acts as a 

virtual catchment. It is well recognized that it is not possible to represent the actual spatial 

variability of precipitation through interpolation of the point measurements. The conditionally-

simulated precipitation is one of the probable realizations of the natural condition and was attemped 

to capture the non-linearity of complicated precipitation process. A large number of realizations of 

conditionally-simulated precipitation were used as an input precipitation into the SHETRATN 

model to obtain the reaction as what may happen in the real catchments. Thus the simulated 

discharges are the results due to one of the probable realizations. The simulated discharges were 

then used as a basis to calibrate the HBV model to investigate the impact of spatially variability of 

precipitation on the identification of the model parameters. The calibration of the HBV model was 

carried out automatically by means of the combinatorial optimization algorithm simulated annealing 

Conditionally-
simulated precipitation 

Calibrated 
SHETRAN 

Interpolated 
precipitation 

Physically-based distributed 
hydrological model 

(SHETRAN) 

Conceptual 
hydrological model 

(HBV) 

Simulated discharges 

(Automatic model calibration) 

(Manual model calibration) 



 

 

127

(Aarts and Korst, 1989). Finally, different sets of optimized parameters of the HBV model were 

investigated to assess and quantify the uncertainty associated with the optimized model parameters.  

In the present study, the models were applied to a portion of the Upper Neckar catchment (up to 

gauge Horb; approximately 1200 km2) (Figure 8.2).  

8.2 Models and simulations 

8.2.1 The SHETRAN model  

The SHETRAN model was configured to the catchment property data and then calibrated and 

validated against the available precipitation and discharge data for the study catchment. The 

catchment was subdivided into 500 m × 500 m grid squares, with river channel elements running 

along the edges of the grid squares. Figure 8.2 presents the SHETRAN grid for the study catchment 

together with tops of SHETRAN columns, river network, and ground surface elevations. Four 

vegetation types were chosen for the catchment: forest, urban area, agricultural and water body. 

Standard vegetation parameters were used for each type, taken from literature. Strickler roughness 

coefficients for overland flow were specified for each vegetation type, with values ranging from 1.2 

m1/3s-1 for forest to 25 m1/3s-1 for water body. Each SHETRAN grid square was split vertically into 

25 horizontal layers, and two soil/geology categories were chosen for the grid squares based on 

geology and soil maps.  

The required input meteorological values for every SHETRAN model grid were obtained 

through interpolation. The potential evapotranspiration was calculated using the Hargreaves and 

Samani method (Hargreaves and Samani, 1985). The interpolated daily precipitation amount, mean 

daily temperature and potential evpotranspiration were used as inputs to all of the SHETRAN 

model grid squares. Thus each of the SHETRAN grid squares has a different daily precipitation, 

evapotranspiratin and temperature. It was recognized that this was not a satisfactory representation 

of spatial variability, particularly for precipitation, but this constraint was imposed by the nature of 

the available data. The model was calibrated and validated using continuous simulation within the 

period 1961-1980. A split sample approach was followed, using the period 1961-1970 for 

calibration, and the period 1971-1980 for validation. The maximum time step of 4 hours was used 

for the SHETRAN model simulation. However, this time step can be further reduced internally 

during rainfall events. 
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Figure 8.2: SHETRAN grid showing tops of SHETRAN columns, river network, and ground 
surface elevations. 

During the calibration, adjustments were made to some of the parameters to which the results are 

most sensitive. These were the Strickler resistance coefficient for the overland flow, ratio of actual 

to potential evapotranspiration at soil field capacity, the Van Genuchten exponent n for soil 

moisture/tension curve and the soil saturated zone hydraulic conductivity. The thick gravel deposits 

on which the main river channel runs, had also an important effect on the simulation by reducing 

the peak flow and increasing flows during the recession. Satisfactory agreement was obtained 

between the measured and simulated discharge for the gauge at Horb with Nash-Sutcliffe 

coefficient of 0.62 for the calibration and 0.55 for the validation period.  
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Figure 8.3: Scatter plots of the observed and simulated discharges for the gauge at Horb during the 
calibration period (left panel) and validation period (right panel). 
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Figure 8.4: Comparison between observed and simulated discharges for the gauge at Horb for 
selected time period during the calibration period (left panel) and validation period 
(right panel). 

It can be observed that there is underestimation of peak events both for the calibration and 

validation periods (Figures 8.3 and 8.4). The underestimation is perhaps due to the use of the daily 

precipitation data. The daily precipitation is uniformly disaggregated over a 24 hour period when it 

was applied to the model. So the model receives uniform rainfall for 24 hours whereas in fact there 

may be very heavy rainfall for couple of hours or so. The heavy rainfall may produce infiltration 

excess runoff, however, the uniformly disaggregated precipitation would not produce this sort of 

response. This problem can be overcome possibly by disaggregating the daily precipitation into 

hourly data using disaggregation algorithm (Gyasi-Agyei, 2002). However, this was not attempted 

due to mainly constraints of time. 

 

Figure 8.5 depicts the water content in the upper soil column at the end of the validation period. 
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Figure 8.5: Soil water content in the upper soil column at the end of the validation period. 

8.2.2 The HBV model 

The spatial distribution of the daily precipitation and the daily average temperature were 

produced on the same 500 m × 500 m grid, as used in the SHETRAN model, by the external drift 

kriging method (Ahmed and de Marsily, 1987) from the available point measurements. The 

interpolated meteorological variables were then averaged over each elevation zone to set up the 

semi-distributed HBV model. The model was calibrated using an automatic calibration procedure 

based on simulated annealing optimization algorithm (Aarts and Korst, 1989). The same calibration 

and validation period, as used in SHETRAN, was used for the HBV model. The model time step of 

6 hours was used for the simulation. Excellent agreement was obtained between the measured and 

simulated discharge for the gauge at Horb with Nash-Sutcliffe coefficient of 0.86 for the calibration 

and 0.83 for the validation period.  
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Figure 8.6: Scatter plots of observed and simulated discharges for the gauge at Horb during the 

calibration period (left panel) and validation period (right panel). 
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Figure 8.7: Comparison between observed and simulated discharges for the gauge at Horb for 

selected time period during the calibration period (left panel) and validation period 

(right panel). 

Comparing the performances of the SHETRAN and HBV model, it is clear that the HBV model 

performs better to simulate the discharge at the catchment outlet. It is worth mentioning that 

estimation of areal precipitation for the SHETRAN model grid cells from the point measurements 

are very difficult. This is because the error in representing spatial variability of precipitation in finer 

resolution is more. It should also be mentioned that an automatic calibration procedure was used to 

optimize the model parameters for the HBV model. Hundreds of simulation trails was attempted 

within the automatic calibration procedure to optimize the model parameters of HBV. On the other 

hand, in SHETRAN, only few simulation trails were attempted to adjust some of the parameters to 

which the results are most sensitive due to mainly long simulation time requirement. Another 

potential reason for lower performance of SHETRAN could be due to the use of daily precipitation 

data and simplification of the basin characteristics, for example, use of only two soil/geology 

classes. The grid resolution used for the SHETRAN model is 500 m × 500 m which is coarse 

resolution. Perhaps by using a higher resolution grid cells the better model performances can be 
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obtained. However, the problem to determine of areal precipitation for finer SHETRAN model grid 

cells from the point measurements should also be considered. 

8.3 Uncertainty in the models’ simulations due to spatial variability of precipitation 

Fifty realizations of conditionally-simulated rainfall were generated on the same 500 m × 500 m 

model grid using the copula based simulation. This spatial rainfall simulation procedure was 

adopted due to better overall performance (described in the chapter VIII). Conditionally-simulated 

precipitation was used as input to the SHETRAN model to simulate discharges for the validation 

period. For each elevation zone, mean values from each realization of conditionally-simulated 

precipitation was also calculated. The averaged precipitation was then used to the calibrated HBV 

model as input precipitation in the validation period.  

Table 8.1 shows the statistics of Nash-Sutcliffe coefficient obtained using the different 

realizations of conditionally-simulated precipitation for different gauges. The table indicates that 

there is variation in the models’ performance that result from the uncertainty in the spatial 

variability of precipitation. Figures 8.8 and 8.9 present the uncertainty in the simulated discharges 

due to spatial variability of precipitation. The standard deviation was calculated from the simulated 

discharges obtained using the different realizations of conditionally-simulated precipitation.  

 

Table 8.1: Statistics of Nash-Sutcliffe coefficient obtained using the different realizations of 

conditionally-simulated precipitation using the SHETRAN and HBV model for 

different gauges. 

 

Gauge Simulation 
period Minimum First 

quartile Median Third 
quartile Maximum 

SHETRAN 0.47 0.48 0.49 0.50 0.51 Rottweil HBV 0.72 0.73 0.74 0.74 0.76 
SHETRAN 0.49 0.50 0.51 0.52 0.53 Oberndorf HBV 0.74 0.76 0.77 0.77 0.79 
SHETRAN 0.55 0.56 0.56 0.56 0.57 Horb HBV 0.82 0.83 0.84 0.85 0.87 
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Figure 8.8: Daily discharges vs. standard deviation using the HBV model for the gauges at Rottweil 

(left panel) and Horb (right panel). 
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Figure 8.9: Daily discharges vs. standard deviation using the SHETRAN model for the gauges at 

Rottweil (left panel) and Horb (right panel). 

It can be observed that there is high variability in the simulated discharge obtained using the both 

models for high discharge values (Figures 8.8 and 8.9). This indicates an involvement of the higher 

uncertainty to simulate the high discharge.  

The simulated discharges using different realizations of simulated precipitation for selected flood 

event in the validation period for the gauge at Horb is shown in Figure 8.10. In the figure dashed 

line indicates observed discharges and the simulated discharges are indicated by the continuous 

lines. 
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Figure 8.10: Comparison between observed and simulated discharges for selected flood event in the 

validation period for the gauge at Horb using the HBV model (left panel) and the 

SHETRAN model (right panel). 

As expected, better hydrographs can not be obtained by the SHETRAN model even using the 

simulated precipitation. Nevertheless, focusing on the precipitation forcing, it can be observed that 

the variability of the simulated hydrographs is high for the both models, in particular for the peak 

events. The simulated peak discharges exhibit a big range which implies that the predictive 

uncertainty is considerable. 

8.4 Effect of rainfall spatial variability on the HBV model parameters uncertainty 

The simulated discharges obtained using the SHETRAN model was used as basis for calibrating 

the HBV model using the interpolated precipitation as input in this simulation experiment. The 

HBV model was automatically calibrated by means of the combinatorial optimization algorithm 

simulated annealing (Aarts and Korst, 1989). There were fifty independent optimization runs for the 

HBV model. These runs were done using the automatic calibration procedure, each using the 

simulated discharges obtained from the SHETRAN model as basis for the calibration. Two 

parameters for the snow module (DD0 and Tcrit) for each elevation class, three parameters for the 

runoff generation module (FC, PWP and β) for each elevation class and five parameters for the 

runoff concentration module (L, K0, K1, K2 and Kperc) for each subcatchment were optimized. No 

explicit dependence between the parameters was considered. As a result, fifty parameter vectors 

were generated. Following this, the HBV model was applied using those calibrated parameter 

vectors and the model performance was assessed. Table 8.2 represents the statistics of Nash-

Sutcliffe coefficient, showing the lower to upper quartile fractions of the Nash-Sutcliffe coefficients 

resulting from different optimized parameter vectors for different gauges. The values of Rm
2 were 

computed based on the simulated discharges by the HBV model and the simulated discharges by the 
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SHETRAN model which was assumed as original discharges produced due to the forcing 

precipitation. 

Table 8.2: Statistics of Nash-Sutcliffe coefficient obtained from different optimized parameter 

vectors. 

Gauge Minimum First 
quartile Median Third 

quartile Maximum 

Rottweil 0.69 0.70 0.71 0.71 0.73 

Oberndorf 0.68 0.70 0.70 0.71 0.72 

Horb 0.70 0.72 0.74 0.76 0.77 

 

Figure 8.11 depicts the flow duration curves for the gauges at Rottweil and Horb. The flow 

duration curves were calculated using the simulated discharges resulting from different optimized 

model parameter vectors. 
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Figure 8.11: Mean flow duration curves obtained using the simulated discharges resulting from 

different optimized parameter vectors for the gauges at Rottweil (left panel) and Horb 

(right panel).  

Figure 8.12 shows the scatter plots of the selected model parameters together with the 

corresponding model performance (Nash-Sutcliffe coefficient) for the Horb subcatchment. The 

values of the parameters FC, β, DD0 and Tcrit are shown for one elevation class for the Horb 

subcatchment. The values for other elevation classes showed a similar behavior, however, varying 

in magnitude (not shown here).  
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Figure 8.12: Scatter plots of the optimized model parameters for the Horb subcatchment. 
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Figure 8.12 indicates a large uncertainty in the estimated model parameters due to the spatial 

variability of the precipitation. The similar behaviors were observed for the other parameters and 

also for other subcatchments (not shown here). 

The variability in the optimized model parameters induced by the spatial variability of rainfall 

can quantitatively be described using standard deviation ( θσ ) and coefficient of variation ( θCV ). 

These statistics are defined as: 
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θ =CV  (8.2) 

where: 

iθ  optimized parameter value 

θ  mean of the optimized parameter  

θN  number of calibration trails (50 in the present study) 
 

Parameter variability induced by spatial variability of rainfall for the Horb subcatchment is 

shown in Table 8.3. Coefficient of variation and standard deviation are numerical representations of 

the variability in the data. The results indicate that there is a high variation in the optimized 

parameters due to spatial variability of rainfall. The variations are more for some parameters than 

the others.  

Table 8.3: Parameter variability induced by spatial variability of rainfall for the Horb subcatchment. 

Parameters Minimum Maximum Mean θσ  θCV  
FC 129.2 191.2 163.2 12.1 0.1 
PWP 63.5 107.5 91.1 11.5 0.1 
β 1.2 3.9 2.6 0.9 0.3 
DD0 1.1 2.3 1.4 0.4 0.3 
Tcrit -0.8 0.8 0.1 0.5 9.8 
L 0.9 8.4 2.2 2.1 1.0 
K0 6.2 12.5 9.4 1.6 0.2 
K1 6.2 34.4 20.5 7.7 0.4 
K2 155.1 252.9 199.3 23.3 0.1 
Kperc 20.4 22.8 21.4 0.6 0.0 

 

The study indicates that there can be a large uncertainty in the parameter estimation due to 

inadequate representation of spatial variability of precipitation (Figure 8.12).  
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It may be also interesting to investigate the optimized parameters as a vector. Figure 8.13 depicts 

ten selected parameter vectors resulted the similar model performance for the Horb subcatchment. 

Each parameter value was standardized with respect to its mean and standard deviation, defined as: 

( )
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−
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where: 

iS  ,θ   standardized value of a parameter 

iθ   parameter value 

θ   mean of the parameter value  

θσ   standard deviation of the parameter  

θT   number of selected trails 
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Figure 8.13: Standardized values of the optimized model parameters for the Horb subcatchment. 

Each line indicates each parameter vector. 

The figure shows an interesting internal compensation among the model parameters. It can be 

noticed that for a particular parameter vector, one parameter can be low while the remaining 

parameters in that vector are compensating it resulting in a similar model performance. 

8.5 Concluding remarks 

In this chapter attempts was made to investigate the influence of the spatial representation of the 

precipitation input to the model simulation results and the uncertainty to identify the conceptual 

model parameters. This study was carried out using the physically-based spatially-distributed 

modeling system SHETRAN and the conceptual semi-distributed rainfall-runoff model HBV.  

L K0 K1 K2 Kperc PWP βFC TDD0
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The results obtained by the SHETRAN and HBV models, using the conditionally-simulated 

precipitation, demonstrated that inadequate spatial variability of precipitation is partly responsible 

for modeling errors. The simulated discharges, using different realizations of simulated 

precipitation, exhibit a larger variability among the different realizations, particularly at the peak 

events. The study also indicated that inadequate representation of spatial variability of precipitation 

is partly responsible for the problems of parameter estimation. There can be a great uncertainty in 

the estimation of the model parameters due to the spatial variability of the precipitation. Thus 

spatial variability must be captured and used as an input to the hydrological model in order to 

eliminate the errors due to input rainfall data. 

Parameter uncertainty comes into play when developing and validating a model. The results of 

this simulation experiment indicate that even in the case of physically-based distributed parameter 

models, uncertainty in the parameter estimates would be observed. This is because the input error 

may come from the spatial variability of rainfall.  

The study also shows that it was not possible to achieve a better model performance at the 

catchment outlet when applying a complex physically-based spatially-distributed model instead of a 

conceptual simple model. Higher complexity did not provide better model performance. However, 

the major problem in this study was determination of areal precipitation for the SHETRAN model 

grid cells. Additionally, it is worth mentioning that parameter estimation method that was applied 

successfully for the conceptual model can not be applied for the physically based model. Because 

this automatic optimization algorithm requires a large number of model simulations to obtain the 

optimum solution. Nevertheless, the quality of the performance of the SHETRAN model was 

enough good to allow for further investigation.  
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9 Summary and Recommendations 

9.1 Summary 

The estimation and representation of the input precipitation in rainfall-runoff modeling are 

crucial. The importance of the spatial variability of precipitation in hydrological applications has 

been addressed to this dissertation. The research questions, posed in Chapter 1 and reiterated below, 

have motivated and guided the research. 

a. How does the spatial variability of precipitation influence the hydrological simulation 

results? 

b. Will a higher spatial resolution of model input data necessarily lead to a better model 

performance? 

c. What is the impact on the simulated discharges of interpolated precipitation at different 

spatial resolutions through varying raingauge networks?  

d. Is there any benefit of using conditionally-simulated precipitation in hydrological 

modeling? 

The main objective of this study was to answer the above research questions. Supplementary 

objectives were: (1) to investigate the reliability of the parameters obtained from calibration over 

input data different from those used in model simulations and (2) to study the uncertainty in 

identifying the model parameters of a conceptual model due to uncertain precipitation. 

Attempts made towards answering the above research queries are summarized in this chapter.  

The theme of Chapter 4 was dedicated to investigate the influence of the spatial variability of 

precipitation on the predictive uncertainty of a conceptual rainfall-runoff model. The interpolated 

precipitation from point raingauge measurements and averaged precipitation over different spatial 

resolutions were used as a main forcing input into the model. The spatial scale ranges from 1 km2 to 

25 km2. The distributed and semi-distributed structures of the conceptual rainfall-runoff model 

HBV were applied. The simulated hydrographs obtained using original interpolated precipitation 

and averaged precipitation were analyzed by comparison of their Nash-Sutcliffe coefficients and 

other goodness-of-fit indices. No significant differences were observed in the calibrated model 

performance using 1 km × 1 km grid precipitation and averaged precipitation at different spatial 

scales for either the distributed or semi-distributed model structure. However, minor differences 

were observed for peak discharge estimation. The study was then extended to identify the reliability 

of the parameters obtained from the calibration with a set of precipitation input for using in model 

simulations with a different set of precipitation input. In order to investigate this phenomenon, the 

semi-distributed model structure was calibrated using (a) the uniform precipitation obtained from 
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each subcatchment (Psubcatch) (b) the uniform precipitation obtained for the catchment (Pcatch) 

and (c) the precipitation for each zone (Pzone). The results indicate that there is significant 

deterioration in the model performance when the model calibrated using detailed precipitation 

(either Pzone or Psubcatch) is run using relatively less detailed precipitation (Pcatch). In contrast, 

minimal improvements of model performance are observed when the model calibrated using less 

detailed precipitation (Pcatch) is run with comparatively detailed precipitation data (either Pzone or 

Psubcatch).  

An answer to the question ‘Will a higher spatial resolution of model input data necessarily lead 

to a better model performance?’ was explored in Chapter 5. Four different structures, namely fully 

lumped, semi-lumped, semi-distributed and distributed, of the HBV model were used to explore the 

solution to this question. The external drift kriging method (Ahmed and de Marsily, 1987) was 

applied to interpolate the meteorological varaiables from the available point measurements. The 

calibrations of the different model structures were carried out by means of the simulated annealing 

optimization algorithm. The simulated hydrographs obtained at the subcatchments’ outlets using 

different model structures were analyzed through comparison of the computed Nash-Sutcliffe 

coefficients and other goodness-of-fit indices. The results indicate that for the study catchment, 

semi-distributed and semi-lumped model structures outperform the distributed and fully-lumped 

model structures under the given level of observations. The study indicates that using interpolated 

precipitation on finer resolution does not improve the simulation accuracy in either the calibration 

or validation periods. The results suggest that finer input data is not necessarily always better and 

the selection of the model structure should be guided by the principal of parsimony, purpose and 

nature of the available observation. 

In Chapter 6, the impact on the simulated hydrographs of interpolated precipitation at different 

spatial resolutions through varying raingauge networks was studied. The optimal locations of a 

particular number of raingauges within a netwrok were determined by means of combinatorial 

algorithm simulated annealing (Aarts and Korst, 1989). The spatial representations of precipitation 

were estimated from the selected raingauge networks. The distributed and semi-distributed 

structures of the HBV model were then used to investigate the effect of the number of raingauges 

and their locations on the predictive uncertainty of the hydrological models. The analysis indicates 

that the number and spatial distribution of raingauges affect the simulation results. It has been found 

that the model performances worsen radically with an excessive reduction of raingauges. However, 

the performances were not significantly improved by increasing the number of raingauges more 

than a certain threshold number. The influence of the rainfall observation network on model 

calibration and application was also examined. The study seeks to determine whether the 
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parameters calibrated using the rainfall coming from one type of network have the ability to 

represent the phenomena governing the rainfall-runoff process with the input provided by a 

different configuration of the raingauge network. The semi-distributed structure of the HBV model 

was calibrated using interpolated precipitation produced from different raingauges network. The 

calibrated model was then run for the validation period using the precipitation obtained from the 

raingauges network which was not used for the calibration. The analysis indicates that models using 

different raingauge networks may need their parameters recalibrated. Specifically, models 

calibrated with dense precipitation information fail when run with sparse information. While, 

models calibrated with sparse information can perform well when run with dense information. 

Other experiments were carried out to analyze the reliability of supplementing missing precipitation 

measurements used for the calibration with data estimated using a multiple linear regression 

technique and running the model using that precipitation combined with observed precipitation. The 

results suggest that the model performs well both when calibrated with a complete set of observed 

precipitation and when run with an incomplete data set combined with estimated data. This finding 

offers an encouraging perspective for the implementation of such a procedure for an operational 

flood forecasting system. A last set of experiments was carried out to investigate the influence of 

temperature gauges on the model simulation results while keeping the number of raingauges 

constant. The results indicate that the temperature gauges influence the model simulation results, for 

the study catchment particularly in winter. However, this influence is relatively low compared to 

that introduced by the raingauges.  

The benefits of using conditionally-simulated precipitation in hydrological modeling were 

described in chapter 7. The semi-distributed model structure of the HBV was calibrated using the 

interpolated precipitation. The calibrated model was then run using interpolated and conditionally-

simulated precipitation in the validation period. Conditionally-simulated precipitation was 

generated using turning bands simulation and a Gaussian copula method. The comparison of the 

conditionally simulated precipitation and interpolated precipitation highlights that conditional 

spatial rainfall simulation indicates significantly more variability in the simulated rainfall. 

Moreover, the modeling performance using the mean of the conditional simulations was worse than 

that when using interpolated rainfall in the case of turning bands simulation and better in the case of 

simulation based on a Gaussian copula, if the whole period is considered. However, if only floods 

are considered, the model performance is found to be better using either type of simulated rainfall 

than the model using interpolated rainfall.  

Attempts have been made to investigate the influence of the spatial representation of the 

precipitation input to the model simulation results and the uncertainty to identify the conceptual 
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model parameters in Chapter 8. This study was carried out using the physically-based hydrological 

model SHETRAN and the conceptual rainfall-runoff model HBV. Conditionally-simulated 

precipitation based on copula-based simulation was used as input precipitation to the SHETRAN 

and the HBV models. The simulated discharges by means of different realizations of the 

conditionally-simulated precipitation were analyzed to assess and quantify the uncertainty in the 

simulated discharges. The study was then extended to investigate the uncertainty to identify the 

parameters of the HBV model. The simulated discharges from SHETRAN were used as basis for 

calibrating the HBV model using the interpolated precipitation. The SHETRAN model was 

assumed, in this experiment, to represent the true copy of the prevailing hydrological system of the 

study catchment. It was considered that SHETRAN acts as a virtual catchment. The study indicated 

that inadequate representation of spatial variability of precipitation in modeling is partly responsible 

for modeling errors and also this leads to the problems in parameter estimation of a conceptual 

hydrological model. 

9.2 Concluding remarks 

A number of simulation experiments were carried out to investigate the impact of spatial 

variability of precipitation on the predictive uncertainty of hydrological models. The main findings 

are:  

(1) No significant differences in the model performance are observed when the model is run 

using averaged precipitation at different spatial scales. However, there is clear 

deterioration in the model performance during the summer season. The results also 

indicate that there can be a significant deterioration in the model performance when the 

model calibrated using detailed precipitation is run using relatively less detailed 

precipitation. When the level of main forcing precipitation input is different for the model 

simulation than that used for calibration, one should be cautious.  

(2) The study on the comparison of modeling performance using different representations of 

spatial variability indicates that for the present study catchment semi-distributed and 

semi-lumped model structures out-performs the distributed and lumped model structures 

for the given level of information. The study highlights that using interpolated rainfall on 

finer resolution does not improve the simulation accuracy in either the calibration or 

validation periods at the subcatchments’ outlet. Perhaps there is a higher compensation 

for the bias in the rainfall input over the calibration period for the relatively simple model 

structures. Also, the error in representing spatial variability of precipitation in finer 

resolution is more and, perhaps, dominating the bias compensation in the rainfall input by 
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the calibration procedure for distributed model structure, even with the scope of large 

number of parameters to be adjusted.  

(3) The study related to assess the impacts of raingauge density on the simulation results 

shows that the number and spatial distribution of raingauges affects the simulation 

results. It is found that the model performances worsen radically with an excessive 

reduction of raingauges. However, the performances are not significantly improved by 

increasing the number of raingauges more than a certain threshold number. The analysis 

also indicates that models using different raingauge networks might need their 

parameters recalibrated. Specifically, models calibrated with dense information fail when 

run with sparse information. However, the models calibrated with sparse information can 

perform well when run with dense information. Also, the model calibrated with complete 

set of observed precipitation and being run with incomplete observed data in associated 

with the data estimated using multiple linear regression technique at the locations treated 

as missing measurements, performed well. This result offers an encouraging perspective 

for the implementation of such a procedure for an operational flood forecasting system. 

Further research is needed in this direction to find the practical applicability. 

(4) Conditional spatial rainfall simulation indicates significant more variability in the 

rainfall. The analysis also indicates that the model performs better for modeling the peak 

discharges using conditionally-simulated rainfall than the model using interpolated 

rainfall. Thus conditional rainfall simulation is reasonable for flood modeling. 

Application of Gaussian copulas for spatial rainfall simulation is very encouraging. The 

analysis also highlights that inadequate representation of spatial variability of 

precipitation is partly responsible for modeling errors and also this leads to the problems 

in parameter estimation of a conceptual hydrological model. 

The study suggested that even in the case of physically-based distributed models, uncertainty in 

the model simulations would be observed. This is because the input error may come from the spatial 

variability of rainfall. 

9.3 Recommendations for future works 

Based on the investigations carried out during the different modeling experiments and the scope 

of the work presented in this dissertation, the following outlooks towards the direction of future 

work are suggested: 

(1) Interpolated precipitation from the point raingauge measurements is used in this study. 

Further research can be directed to obtain a better perspective of the precipitation 
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integration on the predictive uncertainty of a rainfall-runoff model using radar rainfall 

data in addition to raingauge data.  

(2) Considering the practical difficulties in applying a physically-based distributed 

hydrological model lumped models and lumped modeling experience can be fully 

exploited in a distributed modeling framework. The use of fully, spatially resolved radar 

rainfall data or a combination of radar-raingauge rainfall data may be used to re-examine 

the outcomes of the comparison of different model structures carried out in this study. 

(3) Application of copulas for rainfall simulation was very encouraging. Non-Gaussian 

copulas can be used to generate conditionally-simulated rainfall as a future attempts. 

(4) The research questions addressed in this study were analysed mainly through the 

application of the modified HBV model. The uncertainty in identifying the model 

parameters of a conceptual model due to uncertain precipitation was investigated using a 

dual rainfall-runoff modeling strategy through the application of the physically-based 

spatially-distributed modeling system SHETRAN and the conceptual rainfall-runoff 

model HBV. However, other models having different runoff generation mechanism may 

also be dealt with.  
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