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Abstract

The thesis on hand investigates the interplay between detailed radiation balances and

charge carrier transport. The first part analyzes the role of limited carrier transport for

the efficiency limits of pn-junction solar cells. The second part points out the influence

of transport on the absorption and emission of light in inhomogeneous semiconductors.

By incorporating an integral term that accounts for the repeated internal emission

and reabsorption of photons (the so-called photon recycling) into the diffusion equation

for the minority carriers, the first part of the thesis develops a self-consistent model

that is capable of describing the power conversion efficiencies of existing devices as well

as of devices in the radiative recombination limit. The model thus closes the gap be-

tween the classical diode theory and the Shockley Queisser detailed balance efficiency

limit. While the model converges towards the Shockley Queisser limit when recombi-

nation is exclusively radiative and the minority carrier mobility is infinity, it converges

towards the classical diode theory once the minority carrier lifetime is dominated by

non-radiative recombination. It is shown that the classical diode theory without the

inclusion of photon recycling produces accurate results only if the minority carrier life-

time is at least ten times smaller than the radiative lifetime. The thesis shows that even

in the radiative recombination limit, charge carrier transport is extremely important.

The efficiency is reduced drastically once the minority carrier mobility drops below a

critical mobility even under otherwise most ideal conditions. A closed-form expression

is derived for this critical mobility, which depends on the absorption coefficient and

the doping concentration. The thesis thus presents a universal criterion that needs

to be fulfilled by any photovoltaic material in order to obtain high power conversion

efficiency. The numerical results are analyzed and compared to an analytical approx-

imation. This approximation is capable of describing the efficiency of solar cells with

assumed energy-independent absorption coefficient. While it also accurately predicts

v



vi ABSTRACT

the open circuit voltage of solar cells with energy-dependent absorption coefficient, it

is only a rough estimate for the short circuit current. The thesis applies the developed

model to solar cells made of crystalline silicon, amorphous silicon and Cu(In,Ga)Se2

(CIGS). It shows that crystalline silicon solar cells neither have transport problems in

the radiative recombination limit nor in existing devices. In Cu(In,Ga)Se2 solar cells,

mobilities are at most two orders of magnitude above the critical mobility and guaran-

tee complete carrier collection only close to the radiative limit. Existing devices utilize

graded band gaps equally as a means of passivating the back contact and for increasing

carrier collection in the bulk. Amorphous silicon solar cells, however, not only need to

overcome insufficient carrier collection in existing devices by means of built-in electric

fields, but also come close to being limited by carrier collection even in the radiative

limit.

The second part of the thesis investigates the role of carrier transport for the absorp-

tion and emission of light in semiconductors with band gap fluctuations. The chapter

develops an analytical statistical model to describe the absorption and emission spec-

tra of such inhomogeneous semiconductors. Particular emphasis is placed on the role

of the length-scale of the band gap fluctuations. As it turns out, the crucial quan-

tity with respect to the emission spectrum is the ratio of the charge carrier transport

length and the length-scale of the band gap fluctuations. Both, absorption edge and

emission peak are broadened by band gap fluctuations. While the absorption spec-

trum is not influenced by the length scale of the fluctuations, the developed model

shows that the spectral position of the emission peak relative to the absorption edge

depends on the ratio of fluctuation length and transport length. Comparison with

numerical simulations underlines the importance of the fluctuation length in relation

to the diffusion length and also points out the influence of the magnitude of the band

gap fluctuations in terms of the standard deviation of the fluctuations. The model is

applied to experimental absorption and photoluminescence data of Cu(In,Ga)Se2 thin

films with varying gallium content. The ternary compounds CuInSe2 and CuGaSe2

exhibit the smallest magnitude of fluctuations with standard deviations in the range

of 20− 40 meV. The fact that the quaternary compounds show standard deviations of

up to 65 meV points to alloy disorder as one possible source of band gap fluctuations.

All observed fluctuations occur on a very small length scale that is at least ten times

smaller than the electron diffusion length of approximately 1 µm.



Zusammenfassung

Die vorliegende Arbeit untersucht das Zusammenspiel von detailierten Strahlungs-

gleichgewichten mit dem Transport von Ladungsträgern. Der erste Teil analysiert

die Bedeutung von begrenztem Ladungsträgertransport für die Wirkungsgradgrenzen

von pn-Übergang Solarzellen. Der zweite Teil zeigt den Einfluss von Transport auf die

Absorption und Emission von Licht in inhomogenen Halbleitern auf.

Zur Berücksichtigung der wiederholten internen Emission und Reabsorption von

Photonen (des sog. Photon Recyclings) baut der erste Teil der Arbeit einen Inte-

gralterm in die Diffusionsgleichung für die Minoritätsladungsträger ein. Dadurch wird

wird ein selbstkonsistentes Modell entwickelt, das in der Lage ist, den Wirkungsgrad

von realen Solarzellen ebenso zu beschreiben wie den idealen Wirkungsgrad im Limit

strahlender Rekombination. Das Modell schließt somit die Lücke zwischen der klassi-

schen Diodentheorie und dem aus der detailierten Bilanz abgeleiteten Shockley Queisser

Wirkungsgrad Limit. Während das Modell gegen das Shockley Queisser Limit kon-

vergiert, wenn Rekombination ausschließlich strahlend und die Minoritätsträger Be-

weglichkeit unendlich ist, geht es in die klassische Diodentheorie über, wenn die Mi-

noritätsträgerlebensdauer durch nicht-strahlende Rekombination dominiert wird. Es

wird gezeigt, dass die klassische Diodentheorie ohne die Berücksichtigung von Photon

Recycling nur hinreichend genaue Resultate produziert, wenn die Minoritätsträgerle-

bensdauer mindestens zehnmal kleiner ist als die strahlende Lebensdauer. Die Ar-

beit zeigt, dass Ladungsträgertransport sogar im strahlenden Wirkungsgrad Limit

von höchster Wichtigkeit ist. Selbst unter ansonsten idealen Bedingungen wird der

Wirkungsgrad drastisch reduziert, sobald die Minoritätsträgerbeweglichkeit kleiner als

eine kritische Beweglichkeit ist. Es wird ein einfacher analytischer Ausdruck für die kri-

tische Beweglichkeit hergeleitet, die vom Absorptionskoeffizienten und der Dotierung

abhängt. Damit präsentiert diese Arbeit ein universales Kriterium, das von jedem

vii



viii ZUSAMMENFASSUNG

photovoltaischen Material erfüllt werden muss, um einen hohen Wirkungsgrad zu er-

reichen. Die numerischen Resultate werden analysiert und mit einem analytischen

Modell verglichen. Dieses analytische Modell ist in der Lage, den Wirkungsgrad von

Solarzellen mit energieunabhängigem Absorptionskoeffizienten zu beschreiben. Wäh-

rend es ebenso die Leerlaufspannung von Solarzellen mit energieabhängigem Absorp-

tionskoeffizienten korrekt approximiert, erbringt das analytische Modell in diesem Fall

jedoch nur eine ungefähre Näherung für den Kurzschlussstrom. Die Arbeit wendet das

entwickelte Modell auf Solarzellen aus kristallinem und amorphem Silizium und aus

Cu(In,Ga)Se2 an. Es zeigt sich, dass Solarzellen aus kristallinem Silizium weder im

strahlenden Limit noch in existierenden Solarzellen durch eine zu kleine Beweglichkeit

begrenzt sind. In Solarzellen aus Cu(In,Ga)Se2 sind die Mobilitäten nur maximal zwei

Größenordnungen größer als die kritische Beweglichkeit und garantieren vollständige

Ladungsträgersammlung daher nur sehr dicht am strahlenden Limit. Real existierende

Zellen nutzen gradierte Bandlücken zur Sammlungsunterstützung im Volumen ebenso

wie zur Rückseitenpassivierung. Solarzellen aus amorphem Silizium hingegen müssen

nicht nur in realen Bauelementen eingebaute elektrische Felder zur Sammlungsun-

terstützung einsetzen. Auch im Grenzfall rein strahlender Rekombination sind die

Mobilitäten in der Nähe der kritischen Mobilität und somit unter Umständen nicht

ausreichend, um eine vollständige Ladungsträgersammlung zu gewährleisten.

Der zweite Teil der Arbeit untersucht die Bedeutung von Ladungsträgertransport

für die Absorption und Emission von Licht in Halbleitern mit Bandlückenfluktuatio-

nen. Dieses Kapitel entwickelt ein analytisches statistisches Modell zur Beschreibung

von Absorptions- und Emissionsspektren solch inhomogener Halbleiter. Besonderes

Augenmerk wird dabei auf die Rolle der Längenskala von Bandlückenfluktuationen

gelegt. Wie sich herausstellt, ist die entscheidende Größe in Bezug auf das Emission-

sspektrum das Verhältnis aus der charakteristischen Ladungsträger Transportlänge und

der Fluktuationslänge der Bandlückenfluktuationen. Sowohl Absorptionskante als auch

der Emissionspeak werden durch Bandlückenfluktuationen verbreitert. Während das

Absorptionsspektrum jedoch unbeeinflusst von der Längenskala der Fluktuationen ist,

zeigt das entwickelte Modell, dass die spektrale Position des Emissionspeaks relativ

zur Lage der Absorptionskante von dem Verhältnis aus Transportlänge und Fluktu-

ationslänge abhängt. Der Vergleich mit numerischen Simulationen unterstreicht die

Bedeutung der Fluktuationslänge im Vergleich zur Transportlänge. Aufgezeigt wird
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außerdem der Einfluss der Fluktuationshöhe, ausgedrückt durch die Standardabwei-

chung der Fluktuationen. Das Modell wird auf experimentelle Absorptions- und Pho-

tolumineszenzdaten von Cu(In,Ga)Se2 Filmen mit verschiedenem Gallimgehalt ange-

wandt. die ternären Verbindungen CuInSe2 und CuGaSe2 weisen die geringsten Fluk-

tuationen mit Standardabweichungen zwischen 20 und 40 meV auf. Der Umstand,

dass die quaternären Systeme Standardabweichungen von bis zu 65 meV besitzen,

deutet darauf hin, dass Unordnung infolge der Legierung eine mögliche Ursache der

Bandlückenfluktuationen darstellen. Alle beobachteten Fluktuationen besitzen eine

sehr kurze Fluktuationslänge, die mindestens zehnmal kleiner ist als die Elektronen

Diffusionslänge von ca. 1 µm.





Chapter 1

Introduction

Today, the biggest share of the world output of solar cells is made of crystalline sili-

con. This dominance of crystalline silicon is owed to the long history of experience in

silicon microelectronics [1]. From a perspective based on the suitability of silicon as a

photovoltaic absorber material, however, this dominance seems rather astonishing. In

particular, the low absorption coefficient seems to disqualify the indirect semiconductor

silicon as the photovoltaic material of choice.

Therefore, a lot of effort has been put in the investigation of new high-absorption

thin-film materials [2–4], such as amorphous silicon [5], Cu(In,Ga)Se2 [6], organic semi-

conductors [7], or organic dyes [8]. However, so far, these so-called second generation [9]

thin-film solar cells have not yet lived up to expectations. They all fall short of achiev-

ing the efficiencies reached with conventional first-generation silicon solar cells.

Of course, the absorption of light is only the first step to the successful conversion

of optical into electrical energy. The photo-generated charge carriers also need to

be separated before they recombine. Obviously, this requires high carrier lifetimes.

However, one factor which is often overlooked in this context is the importance of charge

carrier transport. High lifetimes guarantee high open circuit voltages. Additional high

mobilities are needed to achieve high short circuit current. While many of the new

materials under consideration, in particular the organic materials, feature excellent

lifetimes and open circuit voltages, most of them suffer from low short circuit currents

caused by insufficient carrier mobilities.

This problem is well known in existing devices. Means to improve carrier collection

include the application of pin structures in amorphous silicon, graded band gaps in

1



2 CHAPTER 1. INTRODUCTION

Cu(In,Ga)Se2, or enlarged junction areas in the case of dye-sensitized solar cells.

However, up to now it remains unclear, what influence carrier transport has on the

efficiency limits of solar cells. Such efficiency limits have only been calculated for de-

vices with assumed complete carrier collection. The efficiency limits of photovoltaic

energy conversion are reached when all heat-dissipating loss-mechanisms are avoided.

In accordance with the principle of detailed balance, the only unavoidable loss mech-

anism is radiative recombination. This is because in thermodynamic equilibrium all

thermal radiation from outside the solar cell needs to be balanced by an equal radiation

flux from within the cell. Hence, a general treatment of solar cell efficiencies needs to

address radiation balances as well as charge carrier transport.

An extra dimension is added to the problem by inhomogeneous material parameters,

such as the fundamental band gap. While the laws governing the radiative interaction

between the solar cell and its ambience, i.e., the reciprocity between light absorption

and emission, are still valid locally on a microscopic scale, they need to be modified on

a macroscopic level. Once again, the description of the macroscopic radiation balances

needs to take into account transport phenomena.

1.1 Structure

This thesis investigates the role of carrier transport and inhomogeneous band gaps for

the radiation balances between absorbed and emitted radiation, which determine the

efficiency limits of pn-junction solar cells. The thesis is structured as follows:

Chapter 2 delineates existing theories to describe the efficiencies of solar cells. It

classifies solar cells according to complete and incomplete collection of photo-generated

carriers and points out the shortcomings of the existing theories when it comes to

describe the efficiencies of solar cells with incomplete carrier collection.

Chapter 3 is the main chapter of this thesis. It develops a generalized numerical

model that combines issues of carrier transport and radiation balances which is capable

of describing solar cell efficiencies for all combinations of radiative or non-radiative re-

combination and complete or incomplete carrier collection. The chapter points out the

importance of carrier transport for the solar cell efficiency even under otherwise most

ideal conditions. It shows that the efficiency is reduced sharply once the mobility drops

below a critical mobility. Subsequently, the chapter develops an analytical approxima-
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tion of the numerical model. It closes with the efficiency limits of real pn junction solar

cells made from crystalline silicon, amorphous silicon, and Cu(In,Ga)Se2.

Chapter 4 develops an analytical model to describe light absorption and emission

in semiconductors with fluctuations of the fundamental band gap. It focusses on the

relationship between carrier transport and the length-scale of band gap fluctuations.

The model is applied to Cu(In,Ga)Se2 layers with different gallium content. It is shown

that the gallium content influences the extent of band gap fluctuations and that all

observed fluctuations occur on a length-scale which is much smaller than the electron

diffusion length.



Chapter 2

Efficiency limits of solar cells

Abstract: This chapter discusses existing solar cell theories. It categorizes the

theories along the dimensions of charge carrier recombination and charge carrier

transport (carrier collection). The detailed balance efficiency limit presented by

Shockley and Queisser describes the radiative recombination limit with complete

carrier collection. The classical diode theory in turn holds for non-radiative

recombination and incomplete as well as complete carrier collection. For the

case of complete carrier collection, a simple combination of the detailed balance

theory with the classical diode theory is given by adding up radiative and non-

radiative recombination currents.

In very general terms, there are three pillars that constitute a solar cell’s photovoltaic

ability to convert solar energy into electrical energy:

(i) Carrier generation,

(ii) Carrier recombination, and

(iii) Carrier transport.

This chapter analyzes the influence of these three pillars on the power conversion

efficiency of a solar cell. It shortly delineates the two main currently existing theories

describing solar cell efficiencies. Subsequently, the chapter presents a classification

scheme to distinguish solar cell modelling approaches according to the ideality of carrier

recombination and carrier transport. By placing the two theories into the classification

scheme, it points out, where they fail to converge.

4



2.1 CLASSIFICATION OF SOLAR CELL MODELS 5

Until now, there existed two completely different approaches to calculate the ef-

ficiency of ideal and non-ideal solar cells. For the ideal case Shockley and Queisser

(SQ) [10] developed their detailed balance theory as described in section 2.3.1. The

efficiency of non-ideal pn-junction solar cells on the other hand is based on the solu-

tion of the continuity equation as described by Shockley’s diode equation [11], which

is recapitulated in section 2.4.

2.1 Classification of solar cell models

Shockley-Queisser (SQ) theory

Shockley and Queisser regard the solar cell as a black box as sketched in Fig. 2.2 and

base their derivation of the current/voltage characteristic on the radiation balance

between the solar cell and its ambience. In their view, the cell consists only of a light

absorbing and emitting surface with two electrical terminals. They do not account for

internal (microscopic) processes; only externally visible (macroscopic) quantities are

considered. Their idealized conception of the three pillars outlined above is structured

as follows:

(i) Carrier generation is completely defined by the macroscopic absorptance a which

ideally depends only on the band gap energy Eg (cf. Eq. (2.5)) and the photon

flux of solar and ambient black body irradiation impinging on the surface of the

solar cell.

(ii) Carrier recombination is exclusively radiative. Due to the required balance of

absorbed and emitted radiation in thermodynamic equilibrium, radiative recom-

bination cannot be prevented and is described by the macroscopic radiative re-

combination current which equals the emitted photon flux. The radiative recom-

bination current depends only on the absorptance a, the cell temperature T , and

the voltage V at the terminals.

(iii) Carrier transport is a microscopic phenomenon taking place within the black box.

In the SQ theory, carrier collection is assumed to be ideal, and the concept of

transport therefore simply does not exist.
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Summing up, the radiative SQ efficiency limit of a solar cell depends only on the

magnitude and spectral distribution of the solar irradiation, the cell temperature, and

the band gap energy of the absorber material.

Classical diode theory (CDT)

In contrast to the SQ theory, the classical diode theory does not treat the solar cell

as a black box. Instead, it looks at the interior, replacing the macroscopic quantities

by microscopic quantities that describe the local opto-electronic phenomena within the

solar cell.

(i) Carrier generation is described by Lambert-Beer’s law of absorption. The ab-

sorptance a(E) is replaced by the absorption coefficient α(E).

(ii) Carrier recombination is described by the local recombination rate, which under

low level injection conditions is determined by the minority carrier lifetime τ .

(iii) Carrier transport is determined by the gradient of the electro-chemical potential

of the minority carriers. In the case of a homogeneous material without electrical

field, carrier transport is exclusively diffusive.

As pointed out above, the classical diode theory consists of solving the continuity

equation for the minority carriers. The approach is thereby explicitly based on carrier

transport, which had been completely disregarded in the SQ approach.

The emission of photons, however, which is essential to the SQ theory is not being

tagged by the classical diode theory. Without accounting for the photons emitted by

the solar cell, though, the compliance of the detailed radiation balance between the

solar cell and its ambience becomes intrinsically impossible.

Therefore, it is intuitively obvious that the classical diode theory does not result in

the same maximum efficiencies as the SQ theory.

Unified model

Consequently, a model that unifies the SQ theory with the classical diode theory needs

to tackle the question of how to incorporate the detailed radiation balance of absorbed

and emitted photons into a microscopic transport approach.
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Non-radiative
Lifetime τnr

SQ

CDT µn →∞τnr ¿ τr

τnr ≈ τr

τnr = ∞

µn = ∞

This thesis

Mobility µn

J0 = J rad
0 + Jnr

0

EQE(E) < a(E) EQE(E) = a(E)

Fig. 2.1: Classification of solar cell models in the two-dimensional space of carrier recom-

bination and carrier transport. The Shockley-Queisser (SQ) theory describes the case with

only radiative recombination where it holds τnr À τr, i.e. τ = τr. The SQ theory is a

macroscopic theory that assumes complete carrier collection with µn → ∞, which leads to

EQE(E) = a(E). In contrast, the classical diode theory (CDT) is a microscopic theory that

covers the case τnr ¿ τr and includes incomplete carrier collection. The CDT can easily be

extended to comprise infinite carrier mobility. At the macroscopic level with µn → ∞, it

can also be combined with the SQ theory to cover the whole lifetime range. However, on

the microscopic level with incomplete carrier collection, such an easy combination of the two

theories is not possible.

Moreover, with the solar cell no longer being a black box, the radiation balance not

only has to be fulfilled with respect to the external radiative interaction between the

solar cell and its ambience but also within the solar cell.

2.1.1 Classification scheme

Figure 2.1 systemizes the above considerations. It divides solar cells according to the

’idealization’ of carrier recombination and carrier transport.



8 CHAPTER 2. EFFICIENCY LIMITS OF SOLAR CELLS

With respect to recombination, the ideal case is reached, when carriers only re-

combine radiatively. The crucial parameter for recombination is the minority carrier

lifetime, which consists of a radiative lifetime τr and a lifetime τnr for non-radiative

processes and is computed with 1/τ = 1/τr + 1/τnr.

The second dimension is the dimension of carrier transport as expressed by the

minority carrier mobility µn. Ideally, µn is infinity. Then, the spatial resolution of the

solar cell becomes obsolete, since all generated carriers are collected independent of the

position of the generation. In this case, a macroscopic solar cell model is sufficient to

describe the cell’s efficiency.

The ideal carrier transport also makes a spatial resolution of carrier generation

unnecessary. The solar cell is completely defined by macroscopic quantities, such as

the absorptance spectrum a(E), where E is the photon energy.

As a consequence of the infinite mobility, the probability to collect an absorbed

photon under short circuit conditions becomes unity. Therefore, the external quan-

tum efficiency EQE(E) as defined by the number of collected electrons divided by the

number of incident photons under short circuit conditions equals the absorptance a(E).

Non-ideal transport requires a spatial resolution in the direction of current transport.

The macroscopic approach has to be replaced by a microscopic approach that includes

the spatial resolution of carrier generation, recombination, and transport. Not all

absorbed photon are collected and it holds EQE(E) < a(E).

The SQ theory assumes only radiative recombination, i.e. τ = τr, and also complete

carrier collection, i.e. µn →∞. Conversely, the classical diode theory (CDT) is suited

for solar cells with non-ideal recombination and non-ideal carrier collection. While

the diode theory can easily be extended to comprise complete carrier collection, such

an extension is not so straightforward when recombination is dominated by radiative

recombination.

The existing theories are well equipped to describe the case of complete carrier

collection, where the solar cell is only described as a black box with macroscopic prop-

erties. However, they fail to describe the combination of incomplete carrier collection

with radiative recombination.

In the following, I recapitulate the SQ theory and the diode theory. The next chapter

will then address the task of providing the missing link between the theories.
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2.2 Current-voltage characteristic of solar cells

Throughout this thesis, all solar cells are considered ideal insofar that their series

resistance is zero and their parallel resistance is infinity. Therefore, they exhibit the

current/voltage characteristic

J(V ) = J0

(
exp

(
qV

kBT

)
− 1

)
− Jsc, (2.1)

where J0 is the saturation current density and Jsc is the short circuit current density.

The applied voltage is V , q is the elementary charge, kB is Boltzmann’s constant, and

T is the absolute temperature.

From the saturation current J0 and the short circuit current Jsc one obtains the

open circuit voltage

Voc =
kBT

q
ln

(
Jsc

J0

+ 1

)
, (2.2)

the fill factor with the phenomenological expression [12]

FF =
uoc − ln (uoc + 0.72)

uoc + 1
(2.3)

with uoc = qVoc/(kBT ), and the efficiency

η =
qJscVocFF

Pin

, (2.4)

where Pin is the areal power density of the illumination. Throughout this thesis I use

the global AM1.5g spectrum scaled to Pin = 100 mW/ cm2 from Ref. [13].

2.3 Radiative efficiency limit

This section discusses the maximum power conversion efficiency of a single junction

solar cell, as determined by the detailed radiation balance between the solar cell and

its ambience. This maximum efficiency is called detailed balance efficiency limit or

radiative efficiency limit. In the radiative efficiency limit, radiative recombination is

the only loss mechanism. As will be shown below, such radiative recombination cannot

be circumvented.

Section 2.3.1 analyzes the radiative efficiency limit of solar cells with infinite mo-

bility and the resulting consequences as described above. Section 2.3.2 discusses the

implications of a non-ideal quantum efficiency for the detailed balance efficiency, which

constitutes the basis for the detailed analysis presented in chapter 3.
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ΦemΦsun Φbb

Solar cell

Φsun − Φabs
sun Φbb − Φabs

bb

Fig. 2.2: Sketch of a solar cell as seen by Shockley and Queisser. The cell is a black box

with complete carrier collection. Internal processes are not accounted for. Only the external

radiation fluxes and the electrical current drawn from the cell are considered. From the

incoming solar radiation Φsun and the ambient black body irradiation Φbb only the fluxes

Φabs
sun and Φabs

bb are absorbed. The rest is transmitted (or rather: reflected, since the back side

is perfectly reflected). The absorbed fluxes are balanced by the voltage-dependent emission

flux Φem and the electrical current Jel.

2.3.1 Complete carrier collection

As it turns out, the absorptance spectrum a(E) of the solar cell, where E is the the

photon energy, is the crucial material characteristic that determines the solar cell’s

radiative efficiency limit. In this section, I recapitulate the case of a solar cell with

homogenous material parameters, in particular a homogeneous band gap energy Eg,

which ideally results in a step like absorptance function. Appendix A presents the

influence of lateral fluctuations of the band gap energy, which cause a broadening of

the absorption spectrum, on the radiative efficiency limit. It also discusses the existence

of an optimal absorptance spectrum that would result in an ultimate efficiency limit

for a given irradiation spectrum.

Homogeneous band gap

The maximum power conversion efficiency of a solar cell with homogeneous band gap

is given by the radiative recombination limit and depends only on the cell temperature,

the spectral distribution of the solar irradiation, and on the band gap energy Eg of the

semiconductor acting as the photovoltaic absorber material. This theoretical efficiency

limit was initially presented by Shockley and Queisser [10] and consists of a very much
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idealized thermodynamic approach that is based on the detailed balance between the

radiation fluxes absorbed and emitted by the solar cell. Geometrical extensions as well

as optical and electrical material parameters are not accounted for. The solar cell is

regarded as a black box, and only external radiation fluxes and currents are balanced

as sketched in Fig. 2.2.

The ideal solar cell is completely characterized by its absorptance a(E) expressed

by the Heavyside function

a(E) =

{
1, E ≥ Eg

0, E < Eg,
(2.5)

where E is the photon energy.

From this starting point Shockley and Queisser based their derivation of the radiative

efficiency limit on four basic assumptions:

(i) All photons with energy larger than the band gap Eg are completely absorbed

and generate one electron/hole pair each.

(ii) Under short circuit conditions all photo-generated carriers are collected and con-

tribute to the photocurrent Jsc.

(iii) Spontaneous emission of photons by radiative recombination of electron/hole

pairs is the only loss mechanism as required by the principle of detailed balance.

(iv) All photons emitted by radiative recombination have the same chemical potential

µ.

Hidden within these four assumptions are two important aspects. Assumption (i) im-

plicitly requires virtually infinite thickness of the photovoltaic absorber and assumption

(ii) and (iv) require virtually infinite mobility of the photogenerated minority carriers.

Given the above assumptions, Shockley and Queisser now calculate the saturation cur-

rent J0 of the solar cell from the thermodynamic equilibrium in the dark and compute

the short circuit current Jsc from the irradiating solar spectrum. They therewith ar-

rive at the current/voltage characteristic of the solar cell from which they derive the

conversion efficiency. In this section I recapitulate these calculations.

The fundamental starting point for the calculation of the SQ efficiency limit is the

principle of detailed balance, which states that in thermodynamic equilibrium, every
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process has to be in equilibrium with its reverse process. For a solar cell this means

that in the dark, the radiation emitted from the surface of the cell has to balance the

flux of black body radiation from the surroundings which is absorbed by the cell. As a

consequence, the loss mechanism of radiative recombination which is the only feasible

source of radiation in a solar cell and constitutes the reverse process of fundamental

absorption cannot be circumvented.

In a black body the photon flux density φdΩ
bb,n̄ per energy interval dE and solid angle

interval dΩ is given by the generalized Planck’s law [14,15]

φdΩ
bb,n̄ (E, µ) dEdΩ =

2n̄2

h3c2

E2

exp
(

E−µ
kBT

)
− 1

dEdΩ, (2.6)

where µ is the chemical potential of the radiation, n̄ is the refraction index of the

material, h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant and

T is the temperature of the cell and the surroundings. For the ambient black body

radiation, it holds n̄ = 1 and µ = 0.

The black body photon flux φbb(E) impinging on the solar cell per area element of

the cell’s surface is given by the integration of the irradiation density φdΩ
bb,n̄(E, 0) over

dΩ = sin (θ) dϕdθ and reads as

φbb(E)dE = φdΩ
bb,1 (E, 0) dE

∫ 2π

0

dϕ

∫ π
2

0

cos (θ) sin (θ) dθ

= πφdΩ
bb,1 (E, 0) dE. (2.7)

The factor cos (θ) stems from the projection onto the plane surface of the solar cell.

Both angles θ and ϕ are defined as sketched in Fig. B.1. Integrated over all photon

energies E this yields the overall black body flux

Φbb =

∫ ∞

0

φbb(E)dE =
4π (kBT )3

h3c2
(2.8)

impinging on the cell’s surface. The exact solution of the integral is obtained by using

the Boltzmann approximation of Eq. (2.6) which neglects the 1 in the denominator.

If only the photons with energies larger than the band gap are considered, we obtain

the photon flux

ΦEg
bb =

∫ ∞

Eg

φbb(E)dE =
2π

h3c2
exp

(−Eg

kBT

)
kBT

(
E2

g + 2EgkBT + 2 (kBT )2) . (2.9)
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The black body photon flux absorbed by the solar cell is given by the integration of

the irradiation density φdΩ
bb,n̄(E, 0) over dE and dΩ = sin (θ) dϕdθ and reads as1

Φabs
bb =

∫ ∞

0

a (E) φdΩ
bb,n̄ (E, 0) dE

∫ 2π

0

dϕ

∫ θc

0

cos (θ) sin (θ) dθ

=

∫ ∞

0

a (E) φbb(E)dE. (2.10)

Due to Snellius’ law of refraction the half sphere outside of the cell will be mapped

onto the cone with critical angle θc = arcsin (1/n̄). Therefore, the interaction between

cell and surroundings only affects radiation (inside the cell) within angles smaller than

θc.
2 For the step function Eq. (2.5) we find Φabs

bb = ΦEg
bb .

With the equilibrium emission current Φem(V = 0) in the dark being equal to the

absorbed black body radiation ΦEg
bb from the ambience we obtain from Eq. (2.10) the

emission current under short-circuit conditions with V = 0. Next, we need to derive the

current voltage dependence of the emission current. Whereas the chemical potential of

the emitted photons is µ = 0 in thermal equilibrium, it holds µ = EFn − EFp > 0 if a

voltage V is applied or if the cell is illuminated. Here, EFn and EFp are the quasi-Fermi

levels for electrons and holes respectively. Under the assumption that the mobility µn

of the minority carriers is large enough to guarantee that all carrier gradients will

immediately be levelled out, µ is constant throughout the cell and equal to the applied

voltage qV . This means that all photons emitted by radiative recombination have

the same chemical potential µ = qV (assumption (iv)). Therewith and by using the

Boltzmann approximation of Eq. (2.6) which is valid for E − µ À kT , the emission

current caused by radiative recombination is given by

Φem (V ) = π

∫ ∞

0

a (E) φdΩ
bb,1 (E, V ) dE ≈ ΦEg

bbexp

(
qV

kBT

)
. (2.11)

Next, we consider the solar cell under illumination and compute the electrical current

Jsc under short-circuit conditions. The solar irradiation impinges vertically on the solar

cell surface with an integrated photon flux density

Φsun =

∫ ∞

0

φsun(E)dE, (2.12)

1Note that throughout this thesis I assume a perfectly reflecting back side which means that

radiative interaction is limited to the front surface. Note also that all fluxes are denoted as particle

flux densities per unit area ( cm−2 s−1)
2Note the equivalence of either integrating φdΩ

bb,1(E, 0) from θ = 0 to π/2 outside the cell surface

or integrating φdΩ
bb,n̄(E, 0) from θ = 0 to θc inside the cell.
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where φsun(E) is the spectral density of the solar spectrum. In analogy to Eq. (2.9), I

define the photon flux ΦEg
sun which includes all photons with an energy larger than the

band gap.

For a step-function absorptance, all photons with energies E ≥ Eg are being ab-

sorbed and generate one electron/hole pair each regardless of any surplus energy (as-

sumption (i)). The absorbed photon flux Φabs
sun is equal to ΦEg

sun. From balancing in-

coming and outgoing photon fluxes and the electrical current under short-circuit con-

ditions as depicted in Fig. 2.2, it holds for the electrical current Jel(V = 0) = Jsc =

ΦEg
sun + ΦEg

bb − Φem(V = 0), i.e. Jsc = ΦEg
sun. This means that under short-circuit con-

ditions all excess carriers are completely collected and contribute to the current Jsc

(assumption (ii)).

Balancing incoming and drawn off currents for V 6= 0 leads to the current/voltage

characteristic

Jel (V ) = ΦEg
sun + ΦEg

bb − Φem (V ) = ΦEg
sun − ΦEg

bb

(
exp

(
qV

kBT

)
− 1

)
, (2.13)

with the short circuit current Jsc = ΦEg
sun and the saturation current J0 = ΦEg

bb (cmp.

Eq. (2.1). Note again that all currents are denoted as particle currents and have to be

multiplied with the elementary charge q to obtain electrical currents.

2.3.2 Incomplete carrier collection

When transport is non-ideal, the quantum efficiency no longer equals the absorptance.

The short-circuit current is given by

Jsc =

∫ ∞

0

EQE(E)φsun(E)dE. (2.14)

As Rau shows in his disquisition on the reciprocity between photovoltaic quantum

efficiency and electroluminescent emission of solar cells [16], the excess emission current

caused by radiative recombination reads as

Φem (V )− ΦEg
bb =

∫ ∞

0

EQE (E) φbb(E)dE

{
exp

(
qV

kBT

)
− 1

}
. (2.15)

In analogy to Eq. (2.13), the short circuit and the emission current yield the cur-

rent/voltage characteristic of the solar cell.

There exists no closed-form expression for the quantum efficiency EQE. Therefore,

the next chapter derives a numerical computation scheme.
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2.4 Classical diode theory

2.4.1 Incomplete carrier collection

Shockley’s and Queisser’s detailed balance considerations give the overall efficiency

limit for any single band gap material in dependence of the semiconductor’s band gap

Eg. They do not take into account geometrical extensions and either incomplete absorp-

tion or incomplete carrier collection. A real solar cell is far from being perfect though.

Therefore, it has to be treated differently. In this section, the cell is still ideal insofar as

there are no parasitic Ohmic losses. I will consider an abrupt one-sided pn+-junction

where I also neglect absorption and recombination in either emitter or space-charge

region. Non-idealities are expressed by finite mobility µn of the minority carriers (in

our case electrons), by the finite absorptance of the cell in terms of cell thickness d and

absorption coefficient α and by non-radiative recombination mechanisms as expressed

by the lifetime τ .

In contrast to the SQ efficiency limit the following classical derivation of the diode

equation is based on charge carrier transport or, more precisely, diffusive minority

carrier transport in the quasi-neutral base region of the absorber material. To describe

the current/voltage characteristic of an abrupt one-sided pn-junction under low-level

injection conditions with n(x) ¿ p(x) ≈ NA, one has to solve the diffusion equation [17]

Dn
d2n

dx2
− n− n0

τ
= −Gsun (x) (2.16)

for the minority carriers (electrons for p-type doped samples) in the quasi-neutral base

of the device with the boundary conditions

n (x = 0) = n0exp

(
qV

kBT

)
(2.17)

at the edge of the space charge region (x = 0) and

dn

dx

∣∣∣∣∣
x=d

=
−Sn

Dn

(n (x = d)− n0) (2.18)

at the back contact (x = d). Here, Dn = (kBT/q)µn is the electron diffusion constant, τ

is the electron lifetime and Sn is the electron recombination velocity at the back contact

(which ideally equals zero). Also, n0 = n2
i /NA is the electron concentration in thermal

equilibrium where ni is the intrinsic carrier concentration and NA is the doping density.
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Carriers are generated by external excitation with the generation rate Gsun(x) and

recombine with the (low level injection) recombination rate R = (n−n0)/τ . Calculating

the current Jel (V ) = Dndn/dx at x = 0 yields the current/voltage characteristic

Jel (V ) = Jsc − J0

(
exp

(
qV

kBT

)
− 1

)
(2.19)

where with Sn = 0, J0 is given by

J0 =
Dnn0

Ln


1− 2

1 + exp
(

2d
Ln

)

 =

Dnn0

Ln

tanh

(
d

Ln

)
. (2.20)

Here, Ln =
√

Dnτ is the diffusion length of the minority carriers.

The short-circuit current Jsc depends on the generation profile Gsun(x). For a thick

cell with d À 1/α(E), where α(E) is the absorption coefficient, the easiest approach

is [18]

Gsun(x,E) = φsun(E)α(E)exp (−α(E)x) , (2.21)

where φsun(E) is the incident photon flux. With Sn = 0 we obtain

Jsc =

∫ ∞

0

φsun(E)αLn

1− α2L2
n



1− αLn + 2

αLnexp (−αd)− exp
(
−d
Ln

)

exp
(

d
Ln

)
+ exp

(
−d
Ln

)


 dE

=

∫ ∞

0

φsun(E)αLn

1− α2L2
n



tanh

(
d

Ln

)
− αLn +

αLnexp (−αd)

cosh
(

d
Ln

)


 dE. (2.22)

2.4.2 Complete carrier collection

In the case of ideal transport with µn → ∞, the derivations of the previous section

simplify significantly. Under short circuit conditions, all absorbed photons are collected

and the short circuit current

Jsc =

∫ ∞

0

(1− exp (−αd)) φsun(E)dE =

∫ ∞

0

a(E)φsun(E)dE = JSQ
sc (2.23)

is equal to the maximum achievable short circuit current JSQ
sc .

For the non-radiative recombination current, the high mobility limit reads as

Jnr
0 =

n0d

τnr

. (2.24)
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If the non-radiative lifetime is comparable to the radiative lifetime then the overall

recombination current is the sum of non-radiative and radiative recombination current

according to J0 = Jnr
0 + J rad

0 , where J rad
0 is given by Eq. (2.9). Note that this simple

summing up of the recombination currents is only applicable in the limit of complete

carrier collection with µn →∞. Otherwise, the spatially resolved recombination rates

have to be added up, which is accomplished by adding up the inverse lifetimes. For

the solution of the diffusion equation Eq. (2.16), this adding up of the inverse lifetimes

does not lead to a simple linear superposition of the recombination currents, as can be

verified by looking at Eq. (2.20).

And besides, at this point, microscopic detailed balance arguments come into play,

which brings us to the elaborated model presented in the next chapter.



Chapter 3

Generalized efficiency limit

Abstract: This chapter presents a self-consistent model that combines charge

carrier transport and detailed radiation balances to describe the efficiency of solar

cells in the whole range of non-radiative and radiative recombination as well as

complete and incomplete carrier collection. An extra generation term accounting

for the absorption and reemission of photons emitted by radiative recombination

(photon recycling) is incorporated into the diffusion equation, thereby fulfilling

internal and external radiation balances. The chapter shows that if the minority

carrier mobility drops below a critical mobility then the solar cell efficiency is

reduced drastically even in the otherwise most ideal case. It presents an analytical

approximation of the numerical model. After having discussed the hypothetical

case of an energy-independent absorption coefficient, the model is extended to

energy-dependent light absorption and applied to experimental absorption data

of crystalline silicon, amorphous silicon, and Cu(In,Ga)Se2. While for crystalline

silicon, transport is not a limiting factor, solar cells made of amorphous silicon

or Cu(In,Ga)Se2 need to utilize built-in electric fields or band gap grading to

enhance carrier collection. Amorphous silicon comes close to having an inherent

mobility problem even in the radiative recombination limit.

Based on the considerations presented in the previous chapter, this chapter develops

a generalized model that combines the SQ theory with the classical diode theory by

incorporating the detailed radiation balance of absorbed and emitted photons into a

microscopic transport approach.

18
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3.1 Radiative recombination and photon recycling

Understanding the interaction between photons and electrons inside a semiconductor

begins with fundamental light absorption. A photon is absorbed by exciting a valence

electron into the conduction band, thereby creating an electron/hole pair. After a

certain time, this electron/hole pair will recombine again, thereby dispensing its surplus

energy either in form of phonons to the crystal lattice (non-radiative recombination) or

by emitting a photon (radiative recombination). Non-radiative recombination would

lead to an increase in the cell temperature, were it not for the assumed perfect thermal

coupling to the surroundings which act as an ideal heat sink. With such perfect thermal

coupling, however, the surplus energy is simply transferred to the ambience in form of

heat. It is irretrievably lost for the utilization of electrical energy.

In contrast, radiative recombination is not such a simple one-step mechanism. Dur-

ing the radiative recombination of an electron/hole pair, a photon is spontaneously

emitted into an arbitrary direction. This photon is either emitted through the surface

of the cell or it is reabsorbed along its path within the solar cell. In the latter case, it

generates an additional electron/hole pair, which in turn can again recombine radia-

tively and emit another photon. The repeated absorption and emission of photons is

called photon recycling (PR). As will be shown in this chapter, the photon recycling

process supplies the missing link between the SQ theory and the classical diode theory.

It is the basis for the internal and external radiation balances.

Furthermore, the additional generation rate caused by reabsorbed photons effec-

tively decreases the loss of carriers caused by radiative recombination. Radiatively

recombining carriers are only lost if they recombine close to the surface. Deep within

the bulk material they are completely recycled and therefore not lost at all. As a con-

sequence, the internal generation caused by photon recycling leads to an increase in

cell efficiency when compared to the case without photon recycling.

After surveying the treatment of the photon recycling effect in the literature, quan-

tifying the internal generation rate will be the main element in the model developed in

section 3.3.
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3.2 Photon recycling in the literature

The effect of photon recycling (PR) was first addressed by Dumke [19], Moss [20], and

Landsberg [21] as early as 1957. Dumke was already aware of the fact that the PR

would lead to an infinite radiative lifetime deep in the bulk. He also pointed out the

relevance of photonic transport in addition to electron transport.

First experimental evidence of the PR effect was reported another 10 years later

in the late 1960ies and early 1970ies. As was to be expected, the effect gained im-

portance in direct semiconductors with low radiative and high non-radiative lifetimes

such as GaAs that were used for optoelectronic devices. Carr [22] and later Carr and

Kameda [23] discovered PR effects in luminescence measurements with GaAs sam-

ples and termed them ’self-excitation’. Hwang [24] found reabsorption of photons to

influence the quantum efficiency of radiative recombination determined in photolumi-

nescence experiments with heavily doped GaAs. Stern and Woodall [25] were the first

to introduce the denotation ’photon recycling’. They found PR effects to reduce the

threshold current of GaAs double-heterostructure lasers by roughly 20 %.

The first rigorous theoretical treatment was presented in 1977 by Kuriyama et al. [26]

who used their theory to analyze quantum efficiencies and diffusion lengths in AlGaAs

heterostructures. Whereas previously, small quantum efficiencies [27] and large surface

recombination velocities [24] had led to a domination of non-radiative recombination

which made the treatment of PR effects superfluous, the development of higher quality

crystals now required the consideration of photon recycling. Analysis without the

consideration of PR yielded obviously false internal quantum efficiencies and, thus,

made a detailed theoretical treatment indispensable.

Despite being the first treatment of PR, the publication of Kuriyama et al. [26] still

remains the basis for virtually all following publications. Additionally to providing

the theoretical treatment to compute the internal generation rate caused by radiative

interaction within the semiconductor, they also developed an iterative scheme to solve

the integro-differential equation resulting from the formulation of the problem, which is

still widely used amongst scholars working on the topic. Using the fundamental system

of the homogeneous solution they compute the contribution of each reabsorption cycle

from the previous carrier profile. The initial profile is obtained from the analytical

solution without PR.
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Almost simultaneously, Asbeck [28] derived a (numerical) expression for a modi-

fied radiative lifetime that includes reabsorption of photons. Mettler [29] modified

Kuriyama’s rather complex derivation with cylindrical coordinates, and developed the

approach also used in this thesis.

Following publications extended the treatments to include, for instance, graded band

gaps [30,31], transient effects [32–35], optical modulation [36], pin structures [37], and

two-dimensional effects [38].

Various procedures have been proposed for the mathematical formulation of the

problem. For perfect optical confinement, an infinite spatially periodic continuation

of the problem allows for an anharmonic Fourier analysis [39]. Also, perturbational

and variational methods have been developed [40–42]. However, these mathematically

more sophisticated approaches suffer from their limited applicability arising from the

dependence of the PR effect on device geometry, energy dependencies, and operating

conditions.

Special emphasis was placed on analytical approximations that allowed for incor-

porating the PR effect as modified lifetime and diffusion constant into the classical

diffusion equation [40, 43–50]. These approaches and either their usefulness or the

potential conflicts with respect to the detailed balance principle will be discussed sep-

arately in section 3.7.1 in the context of developing analytical approximations for the

solar cell efficiency.

Most of the above publications dealt with light emitting diodes and lasers and the

role of photon recycling for the experimental determination of lifetimes and quantum

efficiencies. The relevance of PR for solar cells was not investigated until 1991 when

Parrott [51] and Durbin and Gray [52] presented simulations of solar cell efficiencies

at the 22nd IEEE PVSEC conference. In a further publication [53], Durbin and Gray

refined their numerical model. They investigated the influence of photon recycling on

the efficiency of solar cells but restrained themselves to the practical cases with non-

radiative recombination being the dominant recombination process. A similar focus was

also chosen by Badescu and Landsberg [54], Yamamoto et al. [55], and Balenzategui

and Mart́ı [56].

Parrott [57] was the first to relate photon recycling and the detailed balance effi-

ciency limit of Shockley and Queisser. However, while deriving his model for spatially

dependent chemical potential of the emitted photons, all his computations are carried
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out under the assumptions that the chemical potential is constant within one absorp-

tion length. Especially for low mobilities and for the relevant energy range close to the

band gap, where the absorption coefficient is very small, this approximation is rather

crude.

The objective of this thesis is to provide a detailed and, particularly important,

self-consistent model that combines the diffusion equation with the detailed balance

approach. Special emphasis is placed on finite carrier transport in the radiative ef-

ficiency limit and the interplay between photon recycling and the detailed balance

principle. This approach differs from most other contributions in the literature insofar

as the detailed radiation balances provide a relentless limit that imposes strict checks

for the numerical accuracy of the computations. For instance, these radiation balance

checks call for the self-consistent averaging of all generation rates, thereby warranting

the conservation of particles1. In the practical cases discussed in the vast variety of the

literature, these strict conditions were not imposed. On the one hand this greatly sim-

plified the equations entering in the numerical model but on the other hand deprived

the model of an accuracy check that - with regard to the complexity of the equations

- might prove utterly necessary to guarantee the accuracy of the obtained results.

3.3 Diffusion equation with reabsorption

This section tackles the task of incorporating the photon recycling effect into a micro-

scopic transport approach. The starting point will be the classical diode theory, i.e.

the minority carrier diffusion equation (2.16), which is valid under low-level injection

conditions. The photon recycling leaves everything unchanged except for an additional

generation term caused by reabsorbed photons.

For the mathematical treatment of the photon recycling effect, a one-dimensional

description of electron transport is still sufficient but has to be complemented by the

three-dimensional emission of photons by recombining electron/hole pairs. Photons

emitted by radiative recombination which are reabsorbed cause an extra generation of

carriers. The diffusion equation (2.16) is extended to

Dn
d2n

dx2
+ Gint (x)− n

τr

− n− n0

τnr

= −Gsun (x)−Gbb (x) , (3.1)

1In the literature, such averaging was only performed by Durbin and Gray [53].
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Fig. 3.1: In a solar cell with plane surface (a) all external rays impinging on the front

surface are refracted towards the surface normal due to the higher refractive index n̄ inside

the semiconductor. Internally emitted rays leave the cell if the emission angle is smaller than

the critical angle θc = arcsin (1/n̄) (ray 1). If the emission angle is larger than θc then the

ray is internally reflected until it is completely absorbed within the solar cell (ray 2). In a cell

with textured surface (b) an external ray is randomized upon transmitting the front surface.

The same accounts for internally emitted rays. These internal rays are transmitted with the

transmission probability tlamb (rays 3) and reflected with the probability 1− tlamb (rays 4).

where recombination is split up into radiative recombination with the radiative lifetime

τr and non-radiative recombination with the non-radiative lifetime τnr. The external

generation consists of the equilibrium black body generation rate Gbb and the non-

equilibrium solar generation rate Gsun. The extra internal generation is accounted for

by adding the internal generation rate

Gint (xg) =

∫ xr=d

xr=0

δGint (xg, xr) = const

∫ d

0

fr(xg, xr)n(xr)dxr (3.2)

caused by radiative recombination throughout the sample. Here, δGint(xg, xr) denotes

the generation rate at x = xg that is caused by radiatively recombining carriers in the

incremental plain xr < x < xr + δxr. As will be shown in appendix B, δGint(xg, xr) de-

pends on the electron concentration at xr and the optical interaction function fr(xg, xg).

To obtain the overall internal generation rate at x = xg one has to integrate over all

possible recombination events, that is over the whole thickness of the solar cell from

xr = 0 to xr = d. For all terms that include light reflection at or light transmission

through the front surface of the solar cell, the nature of the front surface has to be

considered as well. As sketched in Fig. 3.1, I distinguish two cases, namely (a) a plane

and (b) a textured front surface.

The detailed derivation of the model is provided in appendix B. The appendix starts
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by reformulating the diffusion equation as a linear matrix equation based on linear op-

erators. Then it gives expressions for the transport operator and the recombination

operator. Subsequently, it derives an expression for the internal generation rate, start-

ing with the direct radiative interaction between two locations in the cell, and followed

by the inclusion of multiple reflections. Finally, it derives expressions for the external

generation rates Gbb and Gsun caused by black body and solar irradiation respectively.

3.3.1 Parameter normalization

The major difference between the Shockley-Queisser detailed balance treatment and

the considerations of the preceding section is, that non-ideal phenomena in terms of

optical absorption and electrical transport can be analyzed with the latter approach.

The analysis is not restricted to infinite mobility and complete absorption anymore as

it had been in the SQ theory. Now the solar cell features the finite thickness d, the

absorption coefficient α, the minority carrier mobility µn, the doping density NA, and

the non-radiative lifetime τnr.

In the following sections I investigate the influence of these device and material

parameters on the saturation current J0 and the short circuit current Jsc, and conse-

quently on the power conversion efficiency η. To obtain Jsc, I solve the matrix equation

obtained from the discretization of Eq. (3.3) performed in appendix B with illumination

for the boundary conditions V = 0 at x = 0. Subsequently, I solve the matrix equation

without illumination for V = (kBT/q) ln (2) at x = 0 to obtain J0. From Jsc and J0 I

obtain the open-circuit voltage, the fill factor and the efficiency in dependence of µnorm

and Eg (cf. section 2.2).

In order to facilitate the analysis of the influence of the different parameters, I sum

up several quantities in normalized parameters. To investigate the influence and mutual

interplay of these parameters, it is convenient to introduce the normalized length ξ =

α0x, where α0 = α (E = Eg + kBT ) is the absorption coefficient at a photon energy

Eg + kBT . The electron concentration is normalized to ν = n/n0 with n0 = n2
i /NA

being the equilibrium electron concentration that in turn depends on the intrinsic

carrier concentration ni and the doping density NA. Additionally, I normalize the

photon fluxes on the black body flux ΦEg
bb as defined in Eq. (2.9).
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By dividing Eq. (3.1) by α0Φ
Eg
bb one obtains the dimensionless equation

µnorm
d2ν

dξ2
+ γint (ξ)− ν (ξ) (1 + ϑr)

τ r
norm

= −γsun (ξ)− γbb (ξ)− ϑr

τ r
norm

(3.3)

with ϑr = τr/τnr and with the dimensionless rates γi = Gi/
(
α0Φ

Eg
bb

)
. All dependencies

on α0, µn and NA are summed up in the normallized mobility

µnorm =
µ

µref

(3.4)

with the reference mobility

µref =
qΦEg

bb

kBTα0n0

=
q2πNA

(
E2

g + 2EgkBT + 2 (kBT )2)

h3c2NCNVα0

. (3.5)

Here, I used n2
i = NCNVexp (−Eg/(kBT )) with NC and NV being the effective densi-

ties of states in the conduction and the valence band respectively. With τr given by

Eq. (B.21), the normalized lifetime

τ r
norm =

α0Φ
Eg
bbτr

n0

=
α0Φ

Eg
bb

R0

=
α02πexp

(
−Eg

kBT

)
kBT

(
E2

g + 2EgkBT + 2 (kBT )2)

h3c2
∫∞

Eg
α (E) 4πφdΩ

bb,n̄ (E, 0) dE
(3.6)

and the dimensionless rates γi only depend on the band gap Eg and on the functional

dependence of the absorption coefficient α(E) on the energy E as listed in Tab. 3.2.

• For an energy-independent absorption coefficient α = α0 for E ≥ Eg and α = 0

for E < Eg it holds R0 = 4α0n̄
2ΦEg

bb (cf. Eq. (2.9) and Eq. (B.19)) and therewith

τ r
norm(const) =

1

4n̄2
. (3.7)

• With α(E) = α0

√
(E − Eg)/kBT for a direct semiconductor we obtain the Boltz-

mann approximation of the normalized lifetime

τ r
norm(direct) =

4
(
E2

g + 2EgkBT + 2 (kBT )2)
√

πn̄2
(
4E2

g + 12EgkBT + 15 (kBT )2) ≈
1√
πn̄2

(3.8)

• In an indirect semiconductor it holds α(E) = α0 (E − Eg)
2 /(kBT )2 and therewith

we obtain the normalized lifetime

τ r
norm(indirect) =

E2
g + 2EgkBT + 2 (kBT )2

4n̄2
(
E2

g + 6EgkBT + 12 (kBT )2) ≈
1

4n̄2
(3.9)
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The approximations in the previous equations (3.8) and (3.9) are valid as long the

band gap Eg is larger than the thermal energy kBT , which is the case for semiconductors

commonly used for solar cells with Eg > 1 eV and kBT = 26 meV at room temperature.

In all three cases the generation rates γi are independent of α0 as well. Thus, only

the functional dependence of the absorption coefficient on the energy influences the

normalized generation profiles.

For the electrical current

Jel = Dn
dn

dx
= µnormΦEg

bb

dν

dξ
(3.10)

only the normalized mobility µnorm is relevant and therefore also the efficiency only

depends on the normalized lifetime and normalized mobility.

This result shows that in the ideal case where radiative recombination is the only

loss mechanism, it is impossible to distinguish between the influence of the optical

absorption in terms of α0 and the influence of the minority carrier mobility µn for a

given normalized thickness d/α0 and given front and back side reflectivities. Only the

product µnα0 is relevant for the achievable efficiency. In the non-ideal case of non-

radiative recombination however, electrical and optical effects can be separated. This

will be described below in section 3.4.2. The repeated emission and reabsorption of

photons causes an effective optical transport of charge carriers. The fact that only the

product µnα0 is important for the current-voltage characteristic of the device shows

the virtual equivalence of optical and electrical carrier transport.

3.3.2 Free parameters

As a consequence of the normalization, the number of parameters is reduced and the

only free parameters in the model are

(i) the band gap energy Eg,

(ii) the normalized mobility µnorm = µ/µref ,

(iii) the normalized thickness α0d,

(iv) the nature (textured or plane) of the front surface,

(v) the lifetime ratio ϑr of radiative and non-radiative lifetime, and
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Tab. 3.1: Standard parameters used for the computations of the reabsorption scheme.

Eg n̄ d %f %b Sn α(E) front surface

1 eV 3 10/α0 0 1 0 α0 textured

(vi) the energy-dependence of the absorption coefficient α(E) (constant, square root,

parabolic).

All discussions are first performed for the theoretical case with constant absorption

coefficient to emphasize fundamental dependencies. Afterwards, I discuss the cases of

direct and indirect semiconductors. If not indicated otherwise, all computations use

the parameters listed in Tab. 3.1. In fact, these parameters are also free parameters

but they are not varied in this thesis. The thickness is chosen in a way that guarantees

virtually complete absorption but still allows for a sufficiently accurate discretization

(cf. appendix B.7). The reflection coefficients %f and %b and the back contact recom-

bination velocity are part of the model but are assumed to be ideal throughout the

whole chapter, since no new fundamental insights are expected that do not hold for

the classical diode treatment as well.

3.4 Results with constant absorption coefficient

This section discusses the influence of the different parameters on the short circuit

current Jsc and the saturation current J0 for the case of constant absorption coefficient.

I begin the analysis with the radiative efficiency limit, i.e. with radiative recombination

being the only loss mechanism. For a sufficiently thick sample that guarantees virtually

complete light absorption, I investigate the influence of normalized mobility and band

gap energy. Subsequently, I analyze the impact of reduced sample thickness, combined

with light trapping effects of a randomly textured front surface. Finally, I discuss the

influence of non-radiative recombination.

The emphasis of this section lies in the descriptive presentation of the simulation

results. The discussion of the results, analytical approximations, and explanations

for the results are performed in the subsequent sections. Section 3.8 investigates the

influence of energy-dependent absorption coefficient. All discussions before section 3.8

assume a constant α(E) = α0 for E > Eg.
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3.4.1 Radiative efficiency limit

In the SQ theory as described in section 2.3.1 the radiative efficiency limit of a solar

cell depends only on the band gap energy Eg of the absorber material. The band

gap energy defines the absorptance and consequently the number of absorbed photons

from solar and black body irradiation, which in turn determine the short circuit current

JSQ
sc = ΦEg

sun and the saturation current JSQ
0 = ΦEg

bb . Varying the band gap results in

a varying spectral match to the two spectra and, thus, in a varying efficiency. Figure

3.2a displays the SQ efficiency limit for an AM1.5G spectrum [13] versus the band gap

energy (stars). For a band gap Eg = 1.15 eV and Eg = 1.35 eV the efficiency reaches

its maximum of approximately 33 %.

Figure 3.2a also displays the simulation results for a solar cell with radiative recombi-

nation as the only loss mechanism (assumption (iii) on page 11) but with finite mobility

µnorm. For very large µnorm the efficiency is equivalent to the efficiency limit calculated

by Shockley and Queisser. The large thickness α0d = 10 guarantees complete light

absorption (assumption (i)) and the large mobility guarantees complete collection of

the generated carriers (assumption (ii)/(iv)). The photon recycling processes guaran-

tee the fulfillment of the detailed internal and external radiation balances. Thus, all

assumptions of the SQ theory are fulfilled, and with increasing mobility, the simulated

efficiency converges towards the SQ efficiency. Upon decreasing the mobility µnorm, the

carrier collection is diminished, which leads to a reduction in the short circuit current

and consequently a reduction in the efficiency.

As demonstrated in Fig. 3.2b, the influence of the mobility is completely independent

of the band gap energy: The short circuit current Jsc(Eg, µnorm) normalized to the

achievable maximum value JSQ
sc (Eg) for the respective band gap is constant for all

band gap energies. Therefore, I restrict all following analyses to the band gap energy

Eg = 1 eV.

Figure 3.3a demonstrates the influence of the mobility on the short circuit and

the saturation current. The figure shows J0 and Jsc normalized to JSQ
0 = ΦEg

bb and

JSQ
sc = ΦEg

sun versus the normalized mobility µnorm. For sufficiently large mobilities

the normalized currents approach unity i.e. the Shockley-Queisser limit. However,

reducing the normalized mobility below a critical value µcrit results in a sharp drop of

the extracted currents. Section 3.6 derives an analytical expression for µcrit.

Due to the spectral independence of the absorption coefficient α(E) = α0 and the
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Fig. 3.2: a) Radiative efficiency (no non-radiative recombination) vs. band gap energy

Eg. The absorption coefficient is α = α0, the normalized thickness is α0d = 10, and the

front surface is textured. All parameters are listed in Tab. 3.1. For increasing mobility the

efficiency approaches the Shockley Queisser limit (stars). For lower normalized mobilities

however, the efficiency is reduced drastically, even though radiative recombination is the only

loss mechanism. b) The efficiency loss is caused by reduced carrier collection manifested in a

reduced short circuit current Jsc. The loss in Jsc(Eg) when compared to the maximum value

JSQ
sc (Eg) is completely independent of the band gap energy Eg.

textured front surface, the generation profiles caused by black body and solar irradia-

tion are identical except for their magnitude. Therefore, J0 and Jsc exhibit the same

dependency on µnorm and, thus, the open circuit voltage Voc as depicted in Fig. 3.3b

is completely independent of the normalized mobility. Consequently, the reduction of

the efficiency with decreasing µnorm is exclusively caused by the reduction of the short

circuit current.

As Fig. 3.3a shows, Jsc and J0 saturate (with increasing mobility) at lower levels

when the sample thickness d is reduced. This effect stems from the reduced absorp-
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Fig. 3.3: Short circuit current Jsc and saturation current J0 normalized to the maximum

currents in the Shockley Queisser limit vs. the normalized mobility µnorm (a). The currents

approach their maximum value for sufficiently large mobility. With decreasing normalized

mobility µnorm, both, short circuit current and saturation current drop sharply once µnorm

falls below a critical mobility µcrit. Due to the identical dependency of Jsc and J0 on µnorm,

the open circuit voltage is for all thicknesses completely independent of the mobility (b). The

absorption coefficient is α = α0, the band gap is Eg = 1 eV, and the front surface is textured.

All parameters are taken from Tab. 3.1

tance which in turn defines the maximum achievable current. Since the absorption

coefficient is energy-independent, the absorptance is identical for solar and black body

irradiation. Consequently, the normalized short circuit and saturation current are iden-

tical. Accordingly, the open circuit voltage is not only independent of the mobility but

also independent of the sample thickness.

For low mobilities on the other hand, the absorptance has no influence on the cur-

rents. The diffusion length is much smaller than the absorption length and Jsc and J0

are limited by transport rather than optics.
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Fig. 3.4: Currents J0 and Jsc normalized to the maximum values in the Shockley-Queisser

limit vs cell thickness d for a textured (a) and plane (b) front surface. The absorption

coefficient is α = α0 and the band gap is Eg = 1 eV, all other parameters are listed in

Tab. 3.1. For low d the currents are limited by the incomplete absorbtance of the cell (open

squares). For low mobilities µnorm the current saturates at lower levels. This is because once

the sample thickness is larger than the diffusion length, further increase of the thickness will

not lead to increased carrier collection even though the absorptance might still be increased.

3.4.1.1 Light trapping

Figures 3.4a and b demonstrate the absorption losses due to decreasing sample thick-

ness for a solar cell with either textured (a) or plane (b) front surface. The figures

display the absorptance (squares) and the short circuit current (lines) vs. the normal-

ized thickness α0d.

Complete light absorption is only maintained as long as the sample is thicker than

a critical thickness dcrit, below which the absorptance drops drastically. I define the
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critical thickness as the thickness at which it holds a(dcrit) = 0.5. For thicknesses

below dcrit the current is limited by incomplete light absorption and the mobility has

no impact on the current. With increasing thickness and corresponding saturating

absorptance the current is limited by the diffusion length if the mobility is too low.

In a solar cell with textured front surface the critical thickness is by roughly a

factor of ten lower than in a solar cell with plane front surface. This effect is due to

two reasons. Firstly, the incident light is diffracted and traverses the sample at an

angle, thus experiencing a longer passage than light with normal incidence on a plane

surface. Secondly, all rays are internally reflected at the front surface with the increased

reflection coefficient 1−tlamb = 1−(1−%f)/n̄
2, leading to efficient light trapping within

the sample.

Note that in a solar cell with plane front surface, solar irradiation and black body

irradiation cause slightly different generation profiles because of the different angular

distribution of the impinging radiation. While the solar spectrum includes only rays

with normal incidence, the black body spectrum impinges on the front surface from all

directions and consequently, the rays within the sample cover all angles lower than the

critical angle θc = arcsin (1/n̄). Therefore, (i) the average path length is larger for black

body irradiation than for solar irradiation and, thus, the absorptance is increased and

(ii) carriers are generated closer to the front surface which leads to increased collection

for low mobility. In total, the normalized saturation current is slightly larger than the

normalized short circuit current. However, the effect is only very slight.

3.4.2 Non-radiative recombination

So far, radiative recombination was the only recombination mechanism considered in

our investigation. But of course, besides finite mobility and absorption real solar

cells also exhibit non-radiative recombination mechanisms such as Auger- or Shockley-

Read-Hall recombination. All non-radiative recombination processes only affect excess

carriers and can be expressed by a lifetime τnr. In the normalized differential equation

Eq. (3.3), the non-radiative recombination rate Rnr = (n − n0)/τnr is expressed as

ϑr > 0.

Naturally, non-radiative recombination processes reduce the resulting electron con-

centration. If τnr is much smaller than τr that is ϑr À 1 then radiative recombination

plays only a minor role and reabsorption can be neglected. In this case the conventional
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diode treatment of section 2.4 is sufficient to describe the current/voltage characteristic

of the device. For ϑr ¿ 1 non-radiative recombination can be neglected.

As in the ideal case with radiative recombination as the only recombination pro-

cess, all dependencies on α0 and µn are summed up in the normalized mobility µnorm

for all values of ϑr. However, this holds only for a given ratio ϑr of radiative and

non-radiative recombination. Assuming that τnr is independent of α0 then ϑr would

of course depend on α0. For a given τnr, an increase of the absorption would reduce

the radiative lifetime τr and thus also decrease ϑr. Therewith, the overall recombina-

tion will be reduced although the radiative recombination rate R0 has been enlarged.

This astonishing paradox stems from the reabsorption mechanism which recycles the

emitted photons and therewith makes radiative recombination a far more desirable loss

mechanism than non-radiative recombination. While the latter leads to an irreversible

loss of all recombining charge carriers the former only induces a partial loss of carriers.

Due to the competitive nature of all recombination processes, enlarging the radiative

recombination rate implies an effective reduction of non-radiative recombination.

Figures 3.5a-d illustrate how the currents J0 and Jsc, the open circuit voltage Voc,

and the efficiency η depend on the ratio ϑr of radiative and non-radiative recombination

(solid lines). The quantities are displayed for the two normalized mobilities µnorm = 1

and µnorm = 104. With increasing non-radiative recombination (increasing ϑr) the

recombination current J0 increases as well (Fig. 3.5a). In contrast, the short circuit

current in Fig. 3.5b decreases with increasing ϑr due to the decreasing diffusion length

and the resulting reduced carrier collection. In both cases, a higher mobility increases

the currents. For Jsc, only the diffusion length, i.e. the product of mobility and lifetime,

is relevant, and, thus, the losses induced by decreasing lifetime can be compensated

with high mobility (cmp. section 3.7). Therewith, almost complete carrier collection

can be achieved even with miserable lifetimes.

Combined, J0 and Jsc lead to a reduced Voc with increasing ϑr (Fig. 3.5c). While

the mobility has no influence on Voc in the radiative limit for ϑr → 0, the open circuit

voltage is slightly higher for lower mobilities when non-radiative recombination comes

into play. However, the mobility by no means has the compensating effect it has on

the short circuit current. For the open circuit voltage the crucial factor is definitely

the lifetime. Since both, Jsc and Voc, decrease with increasing ϑr, also the efficiency is

decreased (Fig. 3.5d). For high mobilities, η is dominated by Voc as long as the short
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Fig. 3.5: Solar cell output parameters vs. the lifetime ratio ϑr of radiative and non-

radiative lifetime for different normalized mobilities µnorm = 1 and µnorm = 104. Solid lines

represent the numerical calculations including photon recycling (PR), dashed lines stand for

the classical approach obtained by leaving out the PR term. The classical approach yields

reasonable results only if the non-radiative lifetime is at least ten times smaller than the

radiative lifetime, i.e. for ϑr > 10. Whereas losses in the short circuit current Jsc for low

lifetimes can be compensated by increasing the mobility (b), the open circuit voltage is almost

exclusively dominated by the lifetime (c). For high mobilities, the efficiency is limited by Voc,

for low mobilities, Jsc is the limiting factor (d). The absorption coefficient is α = α0, the

normalized thickness is α0d = 10, the band gap is Eg = 1 eV, and the front surface is textured.

All parameters are listed in Tab. 3.1.

circuit current remains high. For low mobilities, however, the efficiency is dominated

by the drastic losses in Jsc.

For comparison, the results from the classical diode theory are displayed as well

(dashed lines). In this context, classical diode theory means leaving out the internal
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generation rate γint in Eq. (3.3) that is caused by photon recycling. If recombination

is dominated by non-radiative recombination, i.e. for ϑr > 10, photon recycling is

negligible and and the classical diode theory is sufficiently accurate; the results with

or without the inclusion of photon recycling converge.

With decreasing ϑr, radiative recombination and PR become much more important.

The classical diode theory is not sufficient to describe the efficiency in the radiative

limit. In the form chosen here, the classical theory predicts efficiencies that are far

below the SQ limit. A detailed discussion will be given in section 3.7.

3.5 Photon recycling and detailed balance

This section analyzes the influence of the photon recycling (PR) on the spatial dis-

tribution of the electron concentration in the solar cell. It also discusses how the PR

mechanism leads to the compliance of the internal and external radiation balances.

Only with the inclusion of PR, the principle of detailed balance is warranted. All dis-

cussions are performed in the radiative recombination limit with τnr À τr and assume

a perfect back contact with the back surface recombination velocity Sn = 0.

3.5.1 Radiation balance in equilibrium

In thermodynamic equilibrium, all processes have to be in equilibrium with their reverse

process. Therefore, photon and electron densities have to be constant throughout the

cell. The electron concentration is given by the equilibrium value n(x) = n0 and the

radiative recombination rate equals the generation rate R(x) = G(x) = R0.

This section analyzes how the reabsorption scheme developed in this chapter com-

plies the internal and external radiation balances and leads to the required constant

electron and photon distribution. For the numerical computation, the self-consistency

of the model is particularly important in order to avoid a violation of the detailed

balance principle

3.5.1.1 Internal radiation balance

Let us first consider a solar cell with a perfectly reflecting front and back side, i.e.

without any radiative interaction with its surroundings. Let us further assume ϑr = 0,
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i.e. only radiative recombination. Then all right hand side excitation terms in Eq. (3.3)

vanish. Let us now assume the equilibrium situation with n(x) being constant. In the

following, I analyze, what requirements this equilibrium situation poses for the internal

generation rate γint and whether the approach developed above is capable of meeting

those requirements.

For any given constant electron distribution, the curvature d2ν/dξ2 is zero. Thus, it

follows from Eq. (3.3) without the external generation rates that the internal generation

rate

γint(ξ) =
ν(ξ)

τ r
norm

(3.11)

equals the radiative recombination rate. According to Eq. (3.2) and with help of R0 =

4α0n̄
2ΦEg

bb = α0Φ
Eg
bb/τ r

norm from Eq. (B.19) and Eq. (3.7) the internal generation rate

reads as

γint(ξ) =
1

α0Φ
Eg
bb

∫ α0d

0

∫ ∞

0

r0(E)ν(ξr)fr(E, ξ, ξr)dEdξr, (3.12)

where fr(ξ, ξr, E) is the radiative interaction function that describes the probability

with which a photon emitted at ξr is reabsorbed at ξ.

For the sake of simplicity, let us restrict the following derivation to the case of energy

independent absorption coefficient α(E) = α0 for E ≥ Eg. Then, the interaction

function fr becomes independent of the photon energy and the energy integral is given

by Eq. (2.9). With help of R0 = 4α0n̄
2ΦEg

bb = α0Φ
Eg
bb/τ r

norm we thus obtain

γint(ξ) =
1

α0Φ
Eg
bb

∫ α0d

0

ν(ξr)fr(ξ, ξr)dξr

∫ ∞

0

r0(E)dE

=
R0

α0Φ
Eg
bb

∫ α0d

0

ν(ξr)fr(ξ, ξr)dξr =
1

τ r
norm

∫ α0d

0

ν(ξr)fr(ξ, ξr)dξr. (3.13)

Inserting this result into Eq. (3.11) and keeping in mind that ν(ξ) is constant yields

the requirement

∫ α0d

0

fr(ξ, ξr)dξr = 1 (3.14)

which needs to be fulfilled in order to satisfy the equilibrium condition of a constant

electron distribution and to comply the condition of photon conservation.
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Since both sides of the solar cell are ideal mirrors, no photons can leave the cell. The

probability that a photon which is emitted at a certain location within the cell will be

reabsorbed at some point within the cell is unity. Therewith, the condition Eq. (3.14)

is intuitively fulfilled.

Another approach is to regard the perfectly reflecting surfaces as the infinite con-

tinuation of the solar cell (at least optically). Then, radiative interaction occurs only

via direct paths of light and we obtain from Eq. (B.26)

fr(ξ, ξr) =
1

2
Ei (|ξ − ξr|) . (3.15)

Since for the exponential integral Ei (ξ) defined in Eq. (B.3) it holds

1

2

∫ ∞

−∞
Ei (ξ) dξ = 1, (3.16)

the radiative interaction function fr is indeed a normalized probability function and

Eq. (3.14) is fulfilled.

Therewith, we arrive at the conclusion that the reabsorption scheme presented in

this chapter leads to the compliance of internal radiation balances.

The requirement Eq. (3.14) is also extremely important for the accuracy of the dis-

cretization scheme utilized for the numerical computations as presented in appendix

B. In our selfconsistent approach which averages recombination and generation over

each interval, it is guaranteed that no photons are lost or unintendedly generated.

Except for Ref. [53], all other approaches in the literature neglect such averaging.

While this might be justified for most applications, the averaging increases the precision

of the computations substantially and is absolutely necessary to reproduce such results

as the equilibrium situation discussed above.

In the discretization scheme used to solve the differential equation (3.3), the internal

generation rate γint(ξ) = PRn(ξ) is expressed as a Matrix multiplication (cmp. section

B.2.1). Now Eq. (3.14) implies that the sum of each row and each column in the

matrix A representing the internal generation normalized to R0 equals unity. Due to

the perfect reflection at front and back side, a certain amount of photons emitted by

recombination in a given interval δxr generates exactly as many electrons throughout

the cell.

So far we have only proven that any constant electron distribution is a solution

to the differential equation Eq. (3.3). The result ν(ξ) = 1 is only determined by the

boundary condition at ξ = 0.
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In fact, this argument leads us to a rather astonishing conclusion, namely, that the

ideal diode discussed here is really no diode at all because there is no way an electric

current can flow. For the special case discussed here with perfectly reflecting front and

back side and only radiative recombination being allowed, no radiation can leave the

cell and there will not be an electrical recombination current. The electron distribution

will always be constant even with an applied voltage V 6= 0. There will be no carrier

gradients and the arising electron concentration is ν(ξ) = exp (qV/kBT ) =const.

The situation changes for ϑr > 0. Then, non-radiative recombination takes place

for V > 0 and the equilibrium situation is only reached for ν(ξ) = 1.

3.5.1.2 External radiation balance

Let us next consider a solar cell in the radiative recombination limit where the front

side is not perfectly reflecting. Then, there will be radiative interaction between the

cell and its ambience via the front surface. Recombination shall again be exclusively

radiative.

In thermal equilibrium, the semiconductor now not only needs to be in equilibrium

with itself but also with its surroundings. We have to consider the generation γbb(ξ)

caused by the ambient black body radiation as well. With the equilibrium electron

concentration again being constant ν(ξ) = 1 throughout the absorber, there exists an

equilibrium of recombination and generation which, according to Eq. (3.3), reads as

1

τ r
norm

= γbb(ξ) + γint(ξ). (3.17)

In analogy to Eq. (3.14) and with τ r
norm = 1/(4n̄2), we rewrite this equation and obtain

the condition

∫ α0d

0

fr(ξ, ξr)dξr +
1

4n̄2
γbb(ξ) = 1, (3.18)

which needs to be shown in the following.

Essentially, this equation states that all radiation losses through the front surface

have to be balanced by the incident black body radiation. It therewith implicitly

includes the external radiation balance.

By using γint from Eq. (B.28) and Eq. (B.27) and γbb from Eq. (B.38) for a plane

front surface or γint from Eq. (B.36) and γbb from Eq. (B.41) for a textured surface,
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the above condition can in principle be proven. Here, I restrict the analysis to a semi

infinite solar cell with a plane front surface at ξ = 0. For angles smaller than the

critical angle θc = arcsin (1/n̄), the reflection coefficient is %f = 0.

The key to fulfilling the condition Eq. (3.18) lies in the connection between the

exponential integral functions Ei1 (z, θc) and Ei2 (z, θc), which is given by

Ei2 (z, θc) =

∫ ∞

z

Ei1 (ξ, θc) dξ (3.19)

as shown in Eq. (B.6) in the appendix. As a result, all generation functions basically

feature identical spatial dependencies.

Let us start with the internal radiative interaction fr. For the case discussed here,

fr(ξ, ξr) is limited to the direct interaction between ξ and ξr and one reflection at the

front surface for angles θ > θc. According to Eq. (B.27) it holds

fr(ξ, ξr) =
1

2
Ei (|ξ − ξr|) +

1

2
Ei

(
ξ + ξr

cos (θc)

)
. (3.20)

For the semi infinite sample with d →∞ we have to solve the integral
∫∞
0

fr(ξ, ξr)dξr.

By splitting up the first integral and using the substitution u = ±(ξ − ξr) as well as∫∞
0

Ei (ξ) dξ (cmp. Eq. (3.16)) we obtain
∫ ∞

0

1

2
Ei (|ξ − ξr|) dξr =

∫ ξ

0

1

2
Ei (u) du +

∫ ∞

0

1

2
Ei (u) du

= 1−
∫ ∞

ξ

1

2
Ei (u) du = 1− 1

2
Ei2 (ξ, 0) . (3.21)

Accordingly, the second term in Eq. (3.20) yields the integral
∫ ∞

0

1

2
Ei

(
ξ + ξr

cos (θc)

)
dξr =

1

2
Ei2 (ξ, cos (θc)) . (3.22)

Hence, it holds
∫ ∞

0

fr(ξ, ξr)dξr = 1− 1

2
Ei2 (ξ, 0) +

1

2
Ei2 (ξ, cos (θc)) . (3.23)

From Eq. (B.38) the black body generation rate is given as

γbb(ξ) = 2n̄2 {Ei2 (ξ, 0)− Ei2 (ξ, θc)} . (3.24)

Combining Eq. (3.23), and Eq. (3.24) then yields the condition Eq. (3.18).

We have thus shown that the thermal equilibrium holds outside the cell as well as

within the cell and also across the front interface where the change in refractive index

occurs.
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3.5.2 Non-equilibrium concentration profile

Figures 3.6a-d demonstrate the impact of PR on the electron profile in the solar cell

with and without illumination. The figures display the profiles ν(ξ) = n(ξ)/n0 versus

the absorber depth ξ = α0x in the dark under applied voltage V = (kBT/q) ln (2) (J0

condition, (a), (b)) and under 1 sun illumination and short circuit (Jsc condition, (c),

(d)). Recombination is purely radiative, all other parameters are listed in Tab. 3.1.

Profile in the dark

Let us first consider the dark case. The electron concentration at the front surface at

ξ = 0 is given by the boundary condition ν(0) = 2 (cmp. section 3.4). Without PR (i.e.

by leaving out the internal generation rate γint in Eq. (3.3)), the electron concentration

decreases exponentially towards the back contact. Due to the approach Rr = n/τr

instead of Rr = ∆n/τr, ν(ξ) approaches zero deep in the absorber.

By including the internal generation rate in Eq. (3.3) and thereby accounting for the

recycling of photons, the electron concentration is substantially increased throughout

the sample. Therefore, also the absolute value of the gradient at ξ = 0 is reduced,

which means that the recombination current according to Eq. (3.10) is always lower

than in the classical approach (cf. Fig. 3.5a). The photon recycling ensures that ν(ξ)

never drops below the equilibrium concentration ν = 1, even deep in the absorber.

The PR effect is all the more pronounced the lower the normalized mobility. This

is because the optical transport of photons from radiative recombination leads to in-

creased carrier injection far away from the junction, which can be pictured as an

increased ’effective diffusion length’. For low mobilities, i.e. low diffusion lengths

Lnorm =
√

µnormτ r
norm the role of optical transport in comparison to diffusive transport

increases, and the impact of the PR on the electron profile is amplified.

Profile under illumination

Next, we consider the illuminated case (Fig. 3.6c, d). The illumination generates excess

carriers. Due to the short circuit condition, it holds ν(0) = 1. Again, the PR increases

the electron concentration. Therewith, the gradient at ξ = 0 is enlarged, which leads

to an enhanced short circuit current in comparison to the case without PR (cmp.

Fig. 3.5b)
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Fig. 3.6: Electron profiles with (solid lines) and without (dashed lines) PR in the dark under

applied forward voltage (a, b) and under illumination without voltage (c, d). The absorption

coefficient is α = α0, the normalized thickness is α0d = 10, the band gap is Eg = 1 eV,

and the front surface is textured. The parameters are listed in Tab. 3.1. Only radiative

recombination is allowed (ϑr = 0). The normalized mobilities are µnorm = 1 and µnorm = 104.

The photon recycling significantly increases the electron concentration throughout the sample

and therewith increases the efficiency. For lower mobilities the PR effect is more pronounced.

Interestingly, the electron concentration is a function which is monotonically increas-

ing with the absorber depth ξ. This finding holds true independent of the thickness of

the solar cell. At first glance, this result seems astonishing: Photons are only entering

the cell from the front side, why should illumination then result in a higher electron

concentration deep in the bulk?

To understand this apparent paradox, consider a thick solar cell in the dark with

only radiative recombination, no recombination at the back contact and a perfectly

reflecting back side. Upon switching on the light, carriers are generated primarily close

to the front surface. There will be excess photons and electrons close to the front side
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but deep in the bulk, electrons and photon concentrations still possess their equilibrium

values. Therefore, there will be a net photon flux and a diffusive electron flux towards

the bulk (in positive x-direction). Since neither photons nor electrons can be lost in

the bulk, this net elctron/photon flux into the bulk persists only until a steady state

is reached. Such a steady state implies that at each point the photon flux into the

bulk has to be balanced by an electron flux out of the bulk and vice versa. Under

illumination (and V < Voc), there will always be a net photon flux into the cell, the

emitted photon flux cannot exceed the incident photon flux. Extending this reasoning

to within the absorber implies that there cannot be a net photon flux out of the bulk (in

negative x-direction) at any point. Therefore, there cannot be a steady state electron

flux in positive x-direction. This means that there cannot be any negative gradients

in the electron concentrations, i.e. that the electron concentration is a function which

monotonically increases towards the back contact. In contrast, the electron profile

obtained with the classical diode theory without PR does decrease towards the back

contact and therewith violates the principle of detailed balance.

The number of electrons exiting the cell at the junction (at the front side) depends

on the bias conditions of the solar cell which determine the electron concentration at

x = 0. As long as V < Voc, there will be an electron current flowing out of the cell.

Under open circuit conditions, there is no net current flow and, thus, the gradient

dn(x)/dx at x = 0 vanishes. Therefore, the electron concentration under open circuit

conditions will simply be constant n(x) = n0exp (qVoc/(kBT )) throughout the absorber.

With Voc being independent of the mobility µnorm as shown in Fig. 3.3, this means that

under open circuit conditions also n(x) is independent of µnorm.2

3.5.3 Radiation balance in non-equilibrium

Sections 3.5.1.1 and 3.5.1.2 have shown how the photon recycling mechanism leads

to a constant equilibrium concentration within the cell by guaranteeing the internal

and external detailed balance requirements. We have included the incoming black

body radiation in form of the generation rate γbb. However, we have hitherto not yet

scrutinized the other direction of external radiative interaction, namely the emission

2Note however that these considerations hold only in the radiative recombination limit and for a

perfect back side. As soon as non-radiative recombination is introduced carriers can be lost in the

bulk as well and the electron distribution is not monotonically increasing any more.
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of radiation.

This section takes a closer look at the emitted radiation, first deriving an expression

how to compute the emission current for a given voltage from the electron profile

and then discussing the relation between radiative recombination current and emitted

radiation.

3.5.3.1 Reciprocity of emission and absorption

In principle, a complete derivation of the emitted radiation that is in line with the

derivations for the internal and external generation rates in section 3.3 would include

direct and reflected rays of light and would also include the cases of plane and textured

front surfaces. However, I will refrain from performing all derivations here. Instead,

I restrict the analysis to direct emission of radiation through a plane surface for an

energy-independent absorption coefficient α(E) = α0 for E ≥ Eg. From the obtained

result I exemplarily show the reciprocity between emitted radiation and the absorption

of black body radiation thereby providing an easy way to calculating the emission

current if the black body generation rate γbb(ξ) and the electron concentration ν(ξ)

are known.

In analogy to Eq. (B.25) the photon flux directly emitted through the (plane) front

surface at x = 0 from recombination within the infinitesimal plane δx = at x reads as

δΦem(x) =

∫ ∞

0

∫ 2π

0

dϕ

∫ θc

0

r0

4π
ν(x)(1− %f)exp

( −αx

cos (θ)

)
cos (θ)

δx

cos (θ)
sin (θ) dθdE.

(3.25)

Note that r0/(4π)ν(x)δx/cos (θ) is the emitted photon flux per solid angle interval

and (1− %f)exp (−αx/cos (θ)) cos (θ), where %f is the reflection coefficient of the front

surface, denotes the emission probability through the front surface. In this last term,

the factor cos (θ) stems from the projection onto the front surface (cmp. Eq. (2.7)),

which is needed because the areal photon flux density Φem of the emitted radiation

refers to a unit front surface area.

Using Eq. (B.4) and keeping in mind that α = α0 is constant we obtain

δΦem(x) =
R0

2
ν(x)(1− %f) {Ei2 (αx, 0)− Ei2 (αx, θc)} δx. (3.26)

With R0 =
∫∞
0

r0(E)dE = 4α0n̄
2ΦEg

bb from Eq. (B.19) and Eq. (2.9) this yields the
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normalized expression

δΦem(ξ)

ΦEg
bb

= 2n̄2ν(ξ) {Ei2 (ξ, 0)− Ei2 (ξ, θc)} δξ. (3.27)

Comparison with the direct black body generation rate γbb(ξ) as given in Eq. (3.24)

finally brings us to the reciprocity relation

δΦem(ξ)

ΦEg
bb

= γbb(ξ)ν(ξ)δξ. (3.28)

This relation is not only valid for direct rays as shown here, but also for multiple

reflections. It stems from the fundamental theorem of the reversibility of the direction

of light. In our case this means that the probability of absorbing a photon impinging

on the surface from a certain direction at the location ξ is identical to the probability

of emitting a photon generated by recombination at ξ into the same direction.

The total flux of emitted photons is given by the integral

Φem(ξ)

ΦEg
bb

=

∫ α0d

0

γbb(ξ)ν(ξ)δξ. (3.29)

3.5.3.2 Emission flux and recombination current

In this section I discuss the relation between emitted radiation and the recombination

current. In thermodynamic equilibrium, the emitted photon flux Φem(V = 0) is equal

to the part of the black body radiation that is absorbed by the solar cell. This fol-

lows directly from Eq. (3.29). In equilibrium, the electron concentration is ν(ξ) = 1

throughout the whole solar cell (see section 3.5.1). Then, the overall emitted radiation

is simply determined by the absorptance a of the sample and reads as

Φem(V = 0)

ΦEg
bb

=

∫ α0d

0

γbb(ξ)δξ = a(α0d). (3.30)

Assuming a thick solar cell with a(d) = 1 for E ≥ Eg it holds Φem(V = 0) = ΦEg
bb .

Let us now take a look at the voltage dependence of the emission current. Shockley

an Queisser simply assumed (cf. Eq. (2.11)) the exponential voltage dependence

Φem (V ) = ΦEg
bbexp

(
qV

kBT

)
. (3.31)

They have also tacitly equated the saturation current J0 with the emission flux Φem(V =

0) = ΦEg
bb . But this assumption would imply that in the radiative recombination limit
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all diodes with the same band gap Eg would exhibit the same current/voltage char-

acteristic in the dark regardless of their minority carrier mobility µn. As shown in

Fig. 3.3 this is obviously not the case. But when the saturation current J0 depends on

the mobility how does this affect the emission flux without violating the equilibrium

condition Φem(V = 0) = ΦEg
bb? Furthermore, this equilibrium condition also has to hold

in the case of additional non-radiative recombination.

Let us consider a diode in the dark to which we apply a certain voltage V which leads

to the electrical recombination current Jrec = J rad
rec +Jnr

rec consisting of the radiative part

J rad
rec and the non-radiative part Jnr

rec. To obtain the relation between emitted photon flux

and injected electron current we balance all fluxes being injected or extracted from the

cell. Balancing the recombination current with the absorbed black body photon current

Φabs
bb = ΦEg

bb and the emitted photon flux Φem leads to Jel(V ) = J rad
rec (V ) + Jnr

rec(V ) =

ΦEg
bb − Φem(V ) 3.

Let us first assume completely immobile carriers, i.e. µnorm = 0. Then it is not

possible to inject or extract carriers. In that case, there will not be an electric cur-

rent, no matter how high the voltage is increased. Therefore, the emitted photon flux

Φem(V ) = ΦEg
bb is independent of the applied voltage and equal to the flux of incoming

black body radiation. Except for a voltage dependent delta peak at ξ = 0 caused by

the boundary condition Eq. (2.17) the electron distribution is constant with ν(ξ) = 1.

In the other extreme case with µnorm → ∞ the electron distribution is also con-

stant but voltage-dependent with ν(ξ) = exp (qV/ (kBT )). This electron distribution

is associated with the highest possible splitting of the quasi-Fermi levels, i.e. the high-

est chemical potential of the emitted photons µ(ξ) = EFn(ξ) − EFp(ξ) = V . For a

given voltage and lifetime this implies that recombination and emission current are

maximized for µnorm →∞.

In general, the saturation current J0 = J rad
0 (µnorm, ϑr) + Jnr

0 (µnorm, ϑr), where J rad
0

is the radiative part and Jnr
0 is the non-radiative part, is a function of the normalized

mobility µnorm and the ratio ϑr of radiative and non-radiative lifetime. Then the

recombination current obeys the diode characteristic

Jrec(V ) = −J0(µnorm, ϑr)

(
exp

(
qV

kBT

)
− 1

)
(3.32)

3Throughout this chapter I follow the convention that recombination currents are negative and

photo currents Jsc are positive.



46 CHAPTER 3. GENERALIZED EFFICIENCY LIMIT

0.05 0.10 0.15

1

10

100

10-4

N
or

m
. E

m
is

si
on

 F
lu

x 
em

 / 
E

g
bb

 

(b)

102

1
10-2

norm = 0

0.05 0.10 0.15

1

10

100
102

1
10-2

norm = 10-4

N
or

m
. R

ec
om

b.
 C

ur
r. 
J el

 / 
E

g
bb

 

Voltage V [V]

(a)

Fig. 3.7: Normalized recombination current (a) and emission flux (b) in the radiative

recombination limit versus applied voltage V . The absorption coefficient is α = α0, the

normalized thickness is α0d = 10, the band gap is Eg = 1 eV, and the front surface is

textured. All parameters are listed in Tab. 3.1. The saturation current J0 increases with

increasing normalized mobility µnorm until it reaches the Shockley-Queisser limit J rad
0 =

JSQ
0 = ΦEg

bb (a). The emission flux (b) consists of a superposition of a constant part ΦEg
bb plus

an exponentially voltage-dependent part. In compliance with the detailed balance principle

it holds Φem(V = 0) = ΦEg
bb for all mobilities.

With Φem(V ) = ΦEg
bb − J rad

rec (V )− Jnr
rec(V ) we obtain the emission

Φem(V ) = (J rad
0 (µnorm, ϑr) + Jnr

0 (µnorm, ϑr))

(
exp

(
qV

kBT

)
− 1

)
+ ΦEg

bb . (3.33)

Figures 3.7a and b display the normalized recombination current Jel(V )/ΦEg
bb and the

emission current Φem(V )/ΦEg
bb versus the applied voltage in the radiative recombination

limit with ϑr = 0 for a textured cell (parameters see Tab. 3.1). The figures illustrate

how the electrical recombination current and the emitted radiation are affected by

the mobility µnorm. For V = 0 the emission is always Φem(V = 0) = ΦEg
bb . While

for µnorm = 0 it holds Jrec = 0 and Φem = ΦEg
bb , emission and recombination current
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increase with increasing mobility until they approach the Shockley-Queisser limit Φem =

ΦEg
bbexp (qV/(kBT )) where it holds J0 = J rad

0 = Φem(V = 0) = ΦEg
bb . For sufficiently

high voltages, the equilibrium fraction ΦEg
bb of the emission flux becomes negligible and

emission flux and recombination current are equal.

3.5.4 Reciprocity between solar cell and light emitting diode

The radiative efficiency limit of a solar cell is based on the radiative interaction between

the solar cell and its surroundings. While light emission is the reason for the upper

limit of solar cells, it is also utilized in light emitting diodes (LEDs). Such LEDs are

reciprocal devices to solar cells. Whereas the former convert electrical energy into

optical energy, the latter convert optical energy into electrical energy.

However, the reciprocity between solar cells and LEDs does not automatically imply

that both devices have the same material requirements in terms of lifetime and mobility.

This section analyzes the relationship between solar cell and LED performance and

points out the different material criteria to obtain high performance device.

Whereas the performance of a solar cell is measured by its power conversion effi-

ciency, the performance of a light emitting diode is mostly not quantified in energy

terms but in terms of the (external) quantum efficiency

EQELED =
Φem(V )− ΦEg

bb

Jel(V )
. (3.34)

that states which part of the electrical current Jel is converted into the excess photon

flux Φem − ΦEg
bb .

On page 58 in section 3.7, we will see that the quantum efficiency of a solar cell is

linked to the emission flux (cmp. Eq. (3.55)). In Ref. [16], Rau shows that the LED

quantum efficiency in turn is coupled to the open circuit voltage of a solar cell.

Under the assumption that radiative and non-radiative recombination current obey

the same dependency on the applied voltage we rewrite Eq. (3.34) at V = kBT/qln (2)

to obtain

EQELED =
J rad

0

J rad
0 + Jnr

0

=
Jsc

J rad
0 + Jnr

0

× J rad
0

Jsc

= exp

(
qVoc

kBT

)
exp

(−qV rad
oc

kBT

)
= exp

(
q

kBT

(
Voc − V rad

oc

))
, (3.35)
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Fig. 3.8: Solar cell efficiency η/ηSQ (a, c) and LED quantum efficiency EQELED (b, d)

versus the normalized mobility µnorm (a, b)and the lifetime ratio ϑr of radiative and non-

radiative lifetime (c, d). Whereas the decrease of the power conversion efficiency η caused by

non-radiative recombination can be compensated by a sufficiently high mobility µnorm, the

quantum efficiency EQELED depends almost exclusively on the non-radiative carrier lifetime

and is hardly influenced by the mobility. The absorption coefficient is α = α0, the normalized

thickness is α0d = 10, the band gap is Eg = 1 eV, and the front surface is textured. All

parameters are identical to the parameters used in Fig. 3.5.

where V rad
oc is the open circuit voltage that would be achieved if the device were domi-

nated by radiative recombination only. In a first order approximation, V rad
oc is equal to

V SQ
oc . The relation Eq. (3.35) demonstrates that the LED quantum efficiency EQELED,

i.e. the quality of an LED is coupled directly to the open circuit voltage of the device

when acting as a solar cell. Therefore, the crucial material parameter to obtain a good

quantum efficiency EQELED is - just as for the open circuit voltage Voc - the lifetime

ratio τr/τnr.
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Figures 3.8a-d display the normalized solar cell efficiency η/ηSQ (a, c) and the LED

quantum efficiency EQELED (b, d) vs. the normalized mobility µnorm (a, b) and the

lifetime ratio τr/τnr (c, d). The figures clearly underline that the carrier mobility has

only minor effects on the LED quantum efficiency. For a light emitting diode the

relevant parameter is the carrier lifetime or more precisely the ratio ϑr of radiative

and non-radiative lifetime. Comparison with Fig. 3.5c on page 34 points out the anal-

ogy of LED quantum efficiency and open circuit voltage. Both quantities are almost

exclusively governed by the carrier lifetime.

These considerations show that the material requirements to obtain a good light

emitting diode are not necessarily equivalent to the requirements necessary to obtain

a good solar cell. Whereas for the LED a high lifetime is essential, the solar cell

additionally needs a high carrier mobility (cf. section 3.6). In a solar cell it is not

enough to prevent non-radiative recombination. One also has to ensure the transport

of photo-generated minority carriers out of the cell.

3.6 Critical mobility

In section 3.4.1 we have seen that even in the radiative efficiency limit the power

conversion efficiency strongly depends on carrier transport and drops sharply once

the normalized carrier mobility µnorm drops below a critical value µcrit. This section

derives an expression for this critical mobility. The critical mobility provides a means

to assess the suitability of a material with respect to photovoltaic energy conversion.

Moreover, it gives an estimate, whether the upper efficiency limit of a photovoltaic

absorber material needs to be computed numerically (which is the case for µ < µcrit)

or whether the limit is given by the SQ limit corresponding to the material’s band gap

(for µ > µcrit).

This section is structured in the following manner: I derive expressions for the

radiative recombination current in the high mobility limit and in the low mobility

limit. Then I define the critical mobility as the intersect between the resulting two

limiting asymptotes. For very high mobilities on the one hand, the maximum radiative

recombination current J rad
0 (µnorm → ∞) is given by the absorptance of the solar cell.

For very low mobilities on the other hand, certain simplifications can be made that

allow for an analytical solution of the integro-differential equation Eq. (3.3).
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3.6.1 High mobility limit - absorptance

The maximal short circuit current that can be extracted from a solar cell for sufficiently

high carrier mobility is given by the number of absorbed photons. The same holds

true for the radiative recombination current with respect to the ambient black body

irradiation. This section derives an expression for the absorptance a(d) of a solar cell

with energy-independent absorption coefficient α(E) = α0 for E ≥ Eg and thickness

d. Then the average absorptance is identical for solar and black body irradiation and

for µnorm →∞ it holds J rad
0 /ΦEg

bb = Jsc/J
SQ
sc = a(d).4

3.6.1.1 Textured front surface

Let us consider the photon fluxes at the cell’s front surface in Fig. B.3. Since the

textured surface leads to a complete randomization, the angle at which the incident

irradiation impinges on the cell becomes irrelevant and, thus, the absorptance is iden-

tical for solar and black body irradiation.5 With %b = 1, there is no light transmission

through the sample and the absorptance a(d) is simply determined by the total re-

flectance of the cell according to

a(d) = 1− %f − tlambΦ
lamb
ref

ΦEg
bb + ΦEg

sun

= 1− %f − tlambtcellΦ
lamb
em

ΦEg
bb + ΦEg

sun

, (3.36)

where I used Φlamb
ref = tcellΦ

lamb
em . With help of tlamb = (1− %f) /n̄2 from Eq. (B.30) and

Φlamb
em from Eq. (B.40) plus Eq. (B.42) this yields

a(d) =
(1− %f) (1− tcell)

1− tcell +
(1−%f)

n̄2 tcell
=

(1− %f) (1/tcell − 1) n̄2

(1/tcell − 1) n̄2 + 1− %f

. (3.37)

Figure 3.9b depicts the term 1/tcell − 1 with the transmission probability tcell =

2Ei3 (2α0d, 0) according to Eq. (B.31) vs. the cell thickness α0d. For α0d < 0.1, this

expression can be approximated linearly by 1/tcell − 1 ≈ 4α0d. For larger thicknesses

α0d > 0.1, the expression 1/tcell − 1 cancels out in Eq. (3.37). Therefore, the given

approximation holds for all thicknesses and we obtain the simplified relation

a(d) ≈ (1− %f) 4α0dn̄2

4α0dn̄2 + (1− %f)
=

(1− %f) d

d + dcrit

. (3.38)

4Due to the different angular distributions of the two spectra, this is not entirely true for a cell

with a plane front surface
5This holds only at a given energy when the absorption coefficient is energy-dependent.
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Fig. 3.9: a) Absorptance vs. cell thickness for a textured solar cell with energy-independent

absorption coefficient. The band gap is Eg = 1 eV, all other parameters are listed in Tab.

3.1. The numerical results (open squares) are identical to the exact solution Eq. (3.37) (solid

line) which is approximated by the rational function Eq. (3.38) (dashed line). b) Functions

underlying the approximation in a). Below a thickness α0d ≈ 0.1 both functions 1/tcell − 1

and 4α0d are identical.

This expression is identical to the one derived in Ref. [14]. Here, the critical thickness

dcrit =
(1− %f)

4α0n̄2
(3.39)

is defined as the thickness at which it holds a(d) = 0.5(1− %f).

Figure 3.9a depicts the absorptance vs. the sample thickness for the constant ab-

sorption coefficient α = α0 and %f = 0. The absorptance is unity for large sample

thicknesses but drops sharply for d < dcrit.
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3.6.1.2 Plane front surface

For a plane front surface the absorptance differs slightly for solar irradiation with

normal incidence and black body irradiation with spherical incidence. For normal

incidence and with %b = 1 the absorptance reads as

a(d) = (1− %f)
1− exp (−2α0d)

1− %fexp (−2α0d)
, (3.40)

where %f is the reflection coefficient of the front surface. From a(dcrit) = 0.5(1− %f) we

obtain the critical thickness

dcrit =
ln (2− %f)

2α0

. (3.41)

Figure 3.10 compares the absorptance of a solar cell with textured front surface and

plane front surface. There is no direct reflection at the front surface, i.e. it holds %f = 0.

All other parameters are listed in Tab. 3.1. Numerical simulation results are depicted

as solid squares for the textured and open squares for the plane front surface. Also

displayed are the analytical expressions Eq. (3.38) (solid line) and Eq. (3.40) (dashed

line).

By texturing the front surface, the critical thickness below which incomplete ab-

sorption occurs is more than ten times lower than in a sample with plane surface. This

effect stems from two causes. Firstly, the incident light is diffracted and traverses the

sample at an angle, thus experiencing a longer passage than light with normal inci-

dence on a plane surface. Secondly, rays are internally reflected at the front surface

with the increased internal reflection coefficient 1− tlamb = 1− (1− %f)/n̄
2. Especially

for %f = 0 light rays with normal incidence only traverse the cell twice in cells with

plane front surface. In a textured cell, however, the reflection at the front surface with

1 − tlamb = 1 − 1/n̄2 = 0.88 (for n̄ = 3) leads to efficient light trapping within the

sample.

3.6.2 Low mobility limit

In this section I analyze the radiative recombination current in the limit µnorm → 0. I

begin with a recapitulation of the non-radiative recombination current from the clas-

sical diode theory to emphasize the analogies between non-radiative and radiative re-

combination.



3.6 CRITICAL MOBILITY 53

10-3 10-2 10-1 100

0.2

0.4

0.6

0.8

1.0

dtext
crit dplane

crit

 

 
A

bs
or

pt
an

ce
 a

Norm. Thickness 0d 

textured
plane

Fig. 3.10: Absorptance of a solar cell with textured (solid squares, solid line) and plane

front surface (open squares, dashed line). The absorption coefficient is α = α0 and the band

gap is Eg = 1 eV. The reflection coefficient is %f = 0, all other parameters are listed in Tab.

3.1. Squares represent numerical simulation results and lines are the analytical expressions

Eq. (3.38) (solid line) and Eq. (3.40) (dashed line). The fact that the critical thickness at

which it holds a(dcrit) = 0.5 is more than ten times larger for a plane than for a textured

front surface underlines the importance of Lambertian light trapping for thin solar cells.

3.6.2.1 Non-radiative recombination

For a real solar cell far from the radiative efficiency limit, the non-radiative recombi-

nation current is given by Eq. (2.20). Normalized, this equation turns into

Jnr
0

ΦEg
bb

=

√
µnorm

τnr
norm

tanh

(
α0d√

µnormτnr
norm

)
, (3.42)

where the normalized mobility and non-radiative lifetime are given by µnorm = kBTα0

n0µn/(qΦ
Eg
bb) (cmp. Eq. (3.4) and Eq. (3.5)) and τnr

norm = α0Φ
Eg
bbτnr/n0 (cmp. Eq. (3.6)).

To analyze the influence of the carrier mobility µnorm, we shall consider the limiting
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cases µnorm → ∞ and µnorm → 0. For µnorm → ∞ and with help of tanh (x) ≈ x for

|x| → 0, Eq. (3.42) turns into

lim
µnorm→∞

Jnr
0

ΦEg
bb

=

√
µnorm

τnr
norm

α0d√
µnormτnr

norm

=
α0d

τnr
norm

. (3.43)

For µnorm → 0 and with help of tanh (x) → 1 for x →∞ it holds

lim
µnorm→0

Jnr
0

ΦEg
bb

=

√
µnorm

τnr
norm

. (3.44)

3.6.2.2 Radiative recombination

As mentioned in section 3.6.1, the maximum radiative saturation current, which is

reached for µnorm → ∞, is given by the absorptance. In the following, I derive an

expression for the limit µnorm → 0. For the sake of simplicity, I restrict the derivation

to the case of an energy-independent absorption coefficient α(E) = α0 for E ≥ Eg.

To obtain the radiative saturation current, we have to solve the integro differential

equation (3.3) in the dark with the boundary condition ν(ξ = 0) = 2. For short

diffusion lengths, the electron distribution will decay towards ν(ξ) = 1 deep in the

bulk. If the diffusion length, i.e. if the normalized mobility is small enough the decay

is so steep that we can approximate ν(ξr) in the internal generation rate by ν(ξ) ≈ 1.

With this approximation the internal generation rate from Eq. (3.13) reads as

γint(ξ) =
1

τ r
norm

∫ α0d

0

ν(ξ)fr(ξ, ξr)dξr ≈ 1

τ r
norm

∫ α0d

0

fr(ξ, ξr)dξr. (3.45)

The integral of the radiative interaction function fr(ξ, ξr) is obtained from the equilib-

rium situation as described in section 3.5.1.2. In thermodynamic equilibrium it holds

ν(ξ) = 1 for all ξ (the applied voltage is V = 0). Then the integro-differential equation

Eq. (3.3) simplifies to Eq. (3.17) and we obtain Eq. (3.18), which slightly rearranged

reads as

γint(ξ) =
1

τ r
norm

∫ α0d

0

fr(ξ, ξr)dξr = −γbb(ξ) +
1

τ r
norm

. (3.46)

Therewith, we obtain the low mobility limit of the integro-differential equation

Eq. (3.3) in the dark with applied voltage V = (kBT/q)ln (2) (boundary condition
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ν(ξ = 0) = 2) as the ordinary differential equation

µnorm
d2ν

dξ2
− ν

τ r
norm

= −γbb(ξ)− γint(ξ)

≈ − 1

τ r
norm

. (3.47)

Using δν = ν − 1, this becomes the simple homogeneous differential equation

µnorm
d2δν

dξ2
− δν

τ r
norm

= 0, (3.48)

which together with the boundary conditions δν(ξ = 0) = 1 and dδν/dξ|ξ=α0d = 0

leads to

lim
µnorm→0

J rad
0

ΦEg
bb

=

√
µnorm

τ r
norm

tanh

(
α0d√

µnormτ r
norm

)
. (3.49)

This result is identical to the non-radiative recombination current Eq. (3.42) with only

the lifetime replaced by the radiative lifetime τ r
norm = 1/(4n̄2). Keeping in mind that

this result is only valid in the low mobility limit, we simplify further to obtain

lim
µnorm→0

J rad
0

ΦEg
bb

=

√
µnorm

τ r
norm

= 2n̄
√

µnorm. (3.50)

3.6.3 Critical mobility in the radiative recombination limit

The previous two sections have provided analytical expressions for the radiative re-

combination current in the high and in the low mobility limit. Since in the radiative

recombination limit the short circuit current and the saturation current normalized

to their respective maximum values are identical (cf. section 3.4.1), these expressions

hold for the short circuit current as well.

Figure 3.11a displays the normalized short circuit current versus the normalized

mobility for a cell with textured front surface. The intersect of the low mobility limit

Jsc/J
SQ
sc → 2n̄

√
µnorm = 2n̄

√
µn/µref and the high mobility limit Jsc/J

SQ
sc → a(d)

defines the critical mobility

µrad
crit =

µref

4n̄2
a2(d) =

qΦEg
bbNA

4n̄2kBTα0n2
i

a2(d). (3.51)

If the minority carrier mobility drops below the critical mobility µcrit the short circuit

current and therewith the efficiency drops drastically. Materials with lower mobility
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Fig. 3.11: a) Normalized short circuit current in the radiative recombination limit vs.

normalized mobility for different absorber thicknesses α0d = 10−3 and α0d = 1. The intersect

of low mobility limit and high mobility limit, i.e. absorptance, defines the critical mobility

µcrit. b) Critical mobility vs. lifetime ratio ϑr for thick solar cells with α0d > 1, for which the

critical mobility is given by Eq. (3.53). For comparison, Fig. a) also displays the normalized

short circuit current calculated with the classical diode theory (dotted line, cf. section 3.4.2).

As Fig. b) shows, the radiative critical mobility obtained from the classical solution is by a

factor of 550 too large. The absorption coefficient is α = α0, the band gap is Eg = 1 eV, and

the front surface is textured. All parameters are taken from Tab. 3.1.

than the critical mobility µrad
crit in the radiative limit are not suited as photovoltaic

absorber material without current-enhancing device features such as built-in electric

fields.

For comparison, Fig. 3.11a also displays the short circuit current that would be

obtained from a computation based on the classical diode theory, i.e. based on the

solution of Eq. (3.1) without the internal generation rate Gint. Figure 3.11b clearly

conveys the impact of the photon recycling in the radiative limit. The radiative critical
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mobility in the classical case is 550 times larger than µrad
crit from Eq. (3.51).

3.6.4 Critical mobility for non-radiative recombination

Section 3.7.3 will derive the low mobility limit for the general case. From this limit as

expressed by Eq. (3.61), we derive the general critical mobility

µcrit =
µref

τnorm

(
a(d)JSQ

sc /kα

F0 + Frexp (−2kαα0d)

)2

. (3.52)

The normalized lifetime τnorm and the parameters F0, Fr, and kα are defined by the

modified lifetime model in section 3.7.3. With increasing non-radiative recombination,

i.e. with decreasing τnorm, the critical mobility is increased linearly. A lower lifetime

has to be compensated by a higher mobility in order to maintain sufficient carrier

collection. While in the classical limit, only the diffusion length, i.e. the product of

lifetime and mobility, determines the short circuit current, the situation changes when

coming closer to the radiative limit, where Jsc is proportional to the ratio
√

µnorm/τ r
norm.

This shift will be discussed during the analytical approximation in the next section.

For thick solar cells with α0d > 1 reflections at the back side can be neglected.

It follows a = 1, F0 = JSQ
sc , Fr = 0, and kα = 2 (for a Lambertian front surface).

Therewith, Eq. (3.52) simplifies to

µcrit = µref

(
1

4n̄2
+ n̄2ϑr

)
= µrad

crit + µref n̄
2ϑr. (3.53)

This dependence of the critical mobility on the ratio ϑr of radiative and non-radiative

lifetime is illustrated in Fig. 3.11b. The critical mobility approaches its radiative limit

µrad
crit for ϑr ≤ 10−3. For increasing non-radiative recombination, where the diffusion

length, i. e. the product of lifetime and mobility, is the crucial factor for the collection

of carriers, µcrit is proportional to ϑr.

3.7 Analytical approximation

The objective of this section is to provide an analytical approach that is capable of

computing the efficiency of solar cells over the whole lifetime range. As the previous

sections have shown, the rigorous treatment of the photon recycling leads to a rather

complicated model that can only be solved numerically. For a simpler applicability and
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also to understand the fundamental consequences of the PR, it would be desirable to

have a simple analytical model that approximates the numerical results. Moreover, such

a model can also serve as a test to verify the validity of the numerical computations.

Let me proleptically anticipate the results: To my knowledge, there is no consistent

classical approach that is capable of correctly reproducing the dependence of both, short

circuit current and saturation current on the mobility in the radiative recombination

limit. The reason for this lies in an inherent contradiction:

As we have seen in section 3.4.1, J0 and Jsc feature an identical dependence on the

mobility in the radiative recombination limit. This is because the radiative recombi-

nation current J rad
0 is linked to the emission flux Φem at V = (kBT/q)ln (2) via the flux

balance J rad
0 = Φem − ΦEg

bb and the emission flux in turn is linked to the short circuit

current via a reciprocity relation [16].

The short circuit current can be written as

Jsc = EQE ΦEg
sun, (3.54)

where EQE is the external quantum efficiency, i.e. the percentage of the impinging

photons that contributes to the short circuit current.6

From the reciprocity theorem derived by Rau [16] it follows for the excess emission

flux

Φem − ΦEg
bb = J rad

0 = EQE ΦEg
bb . (3.55)

Since these two equations are valid for all mobilities, it is obvious that Jsc and J rad
0

have to obey the same dependence on the mobility.

The situation changes when non-radiative recombination becomes dominant. Then,

J0 = J rad
0 + Jnr

0 is no longer linked directly to the emission current, but depends also

on non-radiative recombination.

To illustrate the resulting dependence on the mobility, let us look at the low mobility

limit: The saturation current is given by

J0/Φ
Eg
bb =

√
µnorm/τnorm (3.56)

(cmp. Eq. (3.44)), but as will be shown below, the low mobility limit of the short

circuit current is given by

Jsc/J
SQ
sc =

√
µnormτnorm (3.57)

6For a constant absorption coefficient α(E) = α0, EQE(E) is constant for all energies E ≥ Eg.
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(cmp. Eq. (3.61)).

These reciprocity considerations for the low mobility limit underline the impossibility

to reproduce all effects of the photon recycling with one consistent model that is based

on the classical approach. Therefore, in the next sections I present two separate models

to compute J0 and Jsc.

Before doing so, I review the attempts to introduce analytical approximations of

the photon recycling effect in the literature. Then I introduce a two-layer model that

captures the fundamental effect of the PR, namely that deep in the volume of the solar

cell, there is no limitation induced by radiative recombination because all photons are

recycled. This model provides a surprisingly accurate approximation for the saturation

current. However, as pointed out above, the short circuit current is not reproduced by

this model as accurately as desired. Therefore, I derive the short circuit current from

a phenomenological extension of the classical diode theory. Subsequently, I discuss the

quality of the approximations.

3.7.1 Analytical approximations in the literature

From the very discovery of the photon recycling effect, there have been several sug-

gestions for analytical approximations of the relatively complex formulation of the

problem. Probably the most well-known ansatz consists of the lifetime enhancement

factor introduced by Asbeck in 1977 [28]. Asbeck calculates the fraction Fe(d, n̄) of the

emitted photons that are reabsorbed in the solar cell. Neglecting carrier diffusion he

assumes that in steady state, i.e. under open circuit conditions, the minority carrier

concentration is constant throughout the sample. The lifetime is then given by

1

τeff

=
1

τnr

+
1− Fe(d, n̄)

τr

. (3.58)

This implies that of all photons from radiative recombination only the fraction 1 −
Fe(d, n̄) which is emitted from the cell contributes to the limitation of the lifetime.

Therefore, the radiative lifetime is effectively enhanced by the lifetime multiplication

factor 1/(1− Fe).

This approach has found ample use to describe the lifetimes and internal quantum

efficiencies extracted from photoluminescence measurements [58–63]. For these steady

state measurements, it is well suited. However, it is questionable, what the obtained

lifetimes tell us about the photovoltaic performance of the devices. Obviously, the
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lifetime can be applied to the open circuit case to compute the open circuit voltage

Voc. However, it is not suited to describe the non-steady-state case including the

diffusion of carriers as has been attempted by Kerr et al. [64].

For the non-steady-state situation, besides carrier recombination, one needs to con-

sider carrier transport. Dumke pointed out the influence of photon recycling on the

diffusion constant already in 1957 [19]. He derived a diffusion constant

Deff = Dn +
1

3τrα2
. (3.59)

Similar or slightly modified expressions have also been found by other authors who

approximated the PR term in the diffusion equation by using Taylor expansions or by

using other methods such as variational or perturbational methods [39–41,44,46,48,65].

However, Eq. (3.59) is only valid under certain conditions, for instance, αLn > 1.

These more sophisticated approaches tried to convert the integro-differential Eq. (3.1)

with PR into a quasi-classical diffusion equation with modified lifetimes and diffusion

constants. As it turns out, such a quasi-classical diffusion equation can indeed be de-

rived. Both, lifetime and diffusion constant are, however, functions of the applied bias

voltage V and of the spatial coordinate x [46, 49,50,53,57].

Therewith, the derived quasi-classical diffusion equation can not be solved analyti-

cally. Just as the initial integro-differential equation 3.1, a numerical scheme is required

for the solution of the problem.

Rossin and Sidorov [45,66] proposed an analytical solution for the transport equation

under short circuit conditions, but had to use multiple assumptions that restrict the

applicability of the approximation to only a handful of special cases.

Von Roos [47] addressed the influence of photon recycling on the saturation current.

While he derived a relatively simple expression, his approach suffers from not account-

ing for the external detailed balance principle. Therefore, his approach obviously yields

erroneous results when coming close to the radiative recombination limit, i.e. when

PR effects start to matter in the first place.

Summing up, there are no analytical models available that are capable of computing

the current/voltage characteristics of solar cells in the complete lifetime and mobility

range. The following sections try to fill this gap.
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3.7.2 Two-layer model

The two-layer model is based on the following considerations: Deep in the bulk of

the solar cell, all photons emitted from radiatively recombining electron/hole-pairs are

reabsorbed. Therefore, there exists no such thing as a loss mechanism inflicted by

radiative recombination. The radiative lifetime is infinity.

Close, i.e. within one absorption length to the front surface, however, internally

emitted photons can actually leave the cell via external emission through the front

surface. These emitted photons are irretrievably lost to the system.

The idea of the two-layer model is to approximate the exponential emission charac-

teristic by a discrete approach. I divide the absorber into two regions as illustrated in

Fig. 3.12. In region 1 close to the front surface, all radiatively recombining electrons are

assumed to be lost to the system, photon recycling does not exist (0 % PR). In region

2 in the bulk, all photons are completely recycled thereby completely compensating

radiative recombination (100 % PR). In terms of the radiative lifetime this implies

the ’standard’ radiative lifetime τ r
norm = 1/(4n̄2) in region 1 and an infinite radiative

lifetime in region 2.

With these assumptions, I arrive at a classical treatment that solves the diffusion

equation in both layers and in conjunction with the boundary conditions at the interface

between the two regions leads to an analytical solution for the electron concentration

and the resulting electrical current. The mathematical derivation of the two-layer

model is given in appendix C.

As will be shown in section 3.7.4, the saturation current computed with the current

two-layer approach is a surprisingly accurate approximation of the numerical results

from the ’exact’ PR treatment. However, as it turns out, the approximation of the short

circuit current lacks the desired accuracy. Therefore, I will introduce a phenomenolog-

ical approach in section 3.7.3 that yields an approximation of the short circuit current

from a modified classical approach with a rather simple substitution of the radiative

lifetime.

3.7.3 Modified-lifetime model

The goal of this section is to provide an approximation of the photon recycling effect on

the short circuit current by slightly modifying the classical approach without PR. This
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τ = τnr

Region 2:

EC

EV

hν hν

τ−1 = τ−1
r + τ−1

nr

Region 1:

Norm. Coordinate ξ

α0dξpr

hν

Fig. 3.12: Two-layer model of the solar cell. The solar cell is divided into a top layer

(region 1) and a bottom layer. In region 1 with 0 ≤ ξ ≤ ξpr, there is no photon recycling at

all, all photons emitted by radiative recombination leave the cell through the front surface,

it holds τ−1 = τ−1
r + τ−1

nr . In region 2 with ξpr ≤ ξ ≤ α0d, all photons emitted by radiative

recombination are completely recycled, it holds τ = τnr.

approach will not reproduce the saturation current correctly, let alone fulfill detailed

balance requirements. It is, however, capable of reproducing the short circuit current

more precisely than the two-layer approximation. The idea of this approach is to

analyze the effect of the PR on Jsc in the radiative limit and then modify the classical

approach in such a way that the same radiative limit is obtained.

In the high mobility limit, all generated excess carriers are collected and both, PR

treatment as well as classical diode treatment result in the same limit of unity for the

short circuit current Jsc normalized to the maximum current JSQ
sc .

From section 3.6.2 we know that in the radiative limit the low mobility limit of

short circuit and radiative saturation current is given by
√

µnorm/τ r
norm = 2n̄

√
µnorm

(cf. Eq. (3.50)). In the following, I recapitulate the low mobility limit predicted by
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the classical diode theory and subsequently present a modification of the lifetime that

ensures the accordance with the radiative limit.

The classical one-layer treatment as presented in section 2.4 with gsun according to

Eq. (C.2) results in the same differential equation as Eq. (C.3) extended over the whole

absorber thickness. The short circuit current then reads as

Jsc

JSQ
sc

=
k2

αL2
norm

1− k2
αL2

norm

{
F0

JSQ
sc


−1 +

tanh
(

α0d
Lnorm

)

kαLnorm

+
exp (−kαα0d)

cosh
(

α0d
Lnorm

)

 +

Fr

JSQ
sc

exp (−2kαα0d)


−1 +

tanh
(

α0d
Lnorm

)

kαLnorm

− exp (kαα0d)

cosh
(

α0d
Lnorm

)



}
. (3.60)

For µnorm → 0 it holds

lim
µnorm→0

Jsc

JSQ
sc

= kαLnorm
F0 + Frexp (−2kαα0d)

JSQ
sc

. (3.61)

With Lnorm =
√

µnormτnorm it is clear that in the radiative limit the low mobility

limit Eq. (3.61) is not identical to the low mobility limit
√

µnorm/τ r
norm. However, we

can force such an agreement by modifying the radiative lifetime in Eq. (3.61) such that

Lnorm =

√
µnormτ r,mod

norm . Equating Eq. (3.61) with
√

µnorm/τ r
norm = 2n̄

√
µnorm in the

radiative limit τnr →∞ yields the modified radiative lifetime

τ r,mod
norm = 4n̄2

(
JSQ

sc /kα

F0 + Frexp (−2kαα0d)

)2

=
1

τ r
norm

(
JSQ

sc /kα

F0 + Frexp (−2kαα0d)

)2

. (3.62)

For a thick solar cell with α0d À 1 it holds Fr ≈ 0, and F0 ≈ JSQ
sc . Due to the

refraction of light at the textured front surface, we obtain kα = 2 for a textured

solar cell and kα = 1 for a plane solar cell. Therewith, the modified lifetime becomes

τ r,mod
norm ≈ 1/(4τ r

norm) = n̄2 for a textured cell and τ r,mod
norm ≈ 1/τ r

norm = 4n̄2 for a plane solar

cell. This means that the modified radiative lifetime is increased by an enhancement

factor of 4n̄4 ≈ 320 or 16n̄4 ≈ 1300 when compared to the radiative lifetime τ r
norm.

The total normalized lifetime of the modified approach is then given by

1

τmod
norm

=
1

τnr
norm

+
1

τ r,mod
norm

. (3.63)

3.7.3.1 Critical diffusion length

The purpose of this section is to interpret the critical mobility in terms of a critical

diffusion length. For the classical situation and assuming α0d À 1, Eq. (3.61) yields
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the critical diffusion length

Lcrit :=

√
kBT

q
µcritτn =

Lα0

kα

(3.64)

from the intersect kαLnorm = 1.

While the low mobility limit in the classical case is proportional to the diffusion

length Ln =
√

kBT/qµnτn, the low mobility limit in the radiative case is given by

Eq. (3.50) and reads as

lim
µnorm→0

Jsc

ΦEg
bb

=

√
µnorm

τ r
norm

=
n0

ΦEg
bb

√
kBTµn

qτr

. (3.65)

As pointed out above, this inverse dependency on τr at first glance disqualifies the

attempt to define a critical diffusion length in the radiative limit. However, since the

radiative lifetime is a given material parameter and in the case of constant absorption

coefficient reads as

τr =
n2

i

4α0NAn̄2ΦEg
bb

(3.66)

we can easily transform τr into 1/τr to obtain the low mobility limit as a modified

version of Eq. (3.65)

lim
µnorm→0

Jsc

ΦEg
bb

= 4α0n̄
2

√
kBTµnτr

q
. (3.67)

Therewith, the critical diffusion length in the radiative limit is given by

Lrad
crit :=

√
kBTµrad

critτr

q
=

Lα0

4n̄2
. (3.68)

Comparison with Eq. (3.64) shows that the impact of PR in the radiative recombination

limit is comparable to the effect of a light trapping scheme in the non-radiative situation

with path length enhancement factor kα = 4n̄2.

3.7.4 Evaluation of the approximation

This section analyzes the accuracy of the approximations introduced in the previous

two sections. Starting the discussion with the electron profiles in the radiative limit,

I will then turn to the comparison of simulated and approximated solar cell output

parameters J0, Jsc, Voc and η.
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Fig. 3.13: Electron profiles in the radiative recombination limit with ϑr = 0 for different

mobilities µnorm = 1 and 100. Solid lines represent numerical simulations, dashed lines stand

for the results from the two-layer model, dotted lines are the classical approach as introduced

in section 3.5.2, and dashed-dotted lines in Figs. c and d represent the results from the

classical approach with modified radiative lifetime. The absorption coefficient is α = α0,

the normalized thickness is α0d = 10, the band gap is Eg = 1 eV, and the front surface is

textured. All parameters are listed in Tab. 3.1. While the two-layer model correctly captures

the slope of the electron profile in the dark at ξ = 0 (J0), it does not reproduce the profile in

the bulk very accurately for low mobilities (a). Therefore, it does not accurately reproduce

the short circuit current Jsc, and the modified classical model provides a much more accurate

approximation of the slope at ξ = 0 under illumination (c).

3.7.4.1 Electron profile

Figures 3.13a-d display the electron profiles in the radiative recombination limit versus

the absorber depth. The thickness of the cell is α0d = 10, all other parameters are

listed in Tab. 3.1. Figures a and b depict the profile in the dark for ν(ξ = 0) = 2, i.e.

V = (kBT/q)ln (2), which corresponds to an electrical current Jel = −J rad
0 . Figures c
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and d depict the profile under illumination and short circuit conditions with ν(ξ = 0) =

1, which yields the short circuit current Jsc. Both cases are displayed for a normalized

mobility µnorm = 1 (a and c) and µnorm = 100 (b and d).

In all figures, solid lines represent the results from the numerical simulations, dashed

lines are the profiles from the two-layer model, and in the illuminated case, dashed-

dotted lines stand for the profile computed with the modified radiative lifetime. For

comparison, the profiles computed with the classical approach are displayed as well

(dotted lines). These results are obtained numerically by simply leaving out the internal

generation term in Eq. (3.3) as described in section 3.4.2.

Let us first discuss the dark profiles in Fig. 3.13 with µnorm = 1. The short diffusion

length leads to a steep exponential decay towards δν = 0 in the classical profile. In

contrast, photon recycling leads to an increased electron density which is constant

almost throughout the absorber depth.

This feature is correctly captured by the two-layer model. However, the exact level

of the electron density is not necessarily reproduced accurately. Without external

irradiation, i.e. G = H = 0, it follows E = 0 from Eq. (C.26). Therefore, the electron

profile from Eq. (C.8) with Lnr
norm →∞ is constant

δν2 = F = −tanh

(
ξpr

Lnorm

)
sinh

(
ξpr

Lnorm

)
+ cosh

(
ξpr

Lnorm

)
(3.69)

for ξ ≥ ξpr. For a thick cell with absorptance a = 1 it holds ξpr = τ r
norm = 0.028 which

yields ν2 = 1.99 for µnorm = 1. As can be seen in Fig. 3.13a, this level is higher than

the level of ν2 = 1.84 obtained from the numerical simulations. The two-layer model

is only capable of reproducing the complete profile in the high mobility limit depicted

in Fig. 3.13b.

However, for the saturation current, only the initial slope dν/dξ at ξ = 0 is of inter-

est. In the low mobility limit, the numerical approach with PR, the two-layer model,

and the classical approach without PR result in the same dependence
√

µnormτ r
norm.

And since the thickness ξpr has been chosen appropriately the radiative recombination

current J rad
0 = a in the high mobility limit is rendered correctly by definition of the

model. This means that in both limits, the initial slope dν/dξ at ξ = 0 is reproduced

correctly by the two-layer model. Abberations can occur only in the intermediate

mobility range.

Whereas the saturation current J0 depends only on the slope at ξ = 0, the short
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circuit current is related to the integral of the electron profile in the dark. The proba-

bility that an electron generated at a position ξ contributes to the short circuit current

is given by the collection efficiency fC(ξ). Then, the total short circuit current reads

as

Jsc =

∫ α0d

0

Gsun(ξ)fC(ξ)dξ. (3.70)

From a reciprocity relation derived by Donolato [67] the collection efficiency is linked

to the electron profile in the dark according to

fC(ξ) =
δν(ξ)

exp
(

qV
kBT

)
− 1

. (3.71)

Therefore, the short circuit current is related to the spatial integral over the electron

profile in the dark. From the inaccuracy of the electron profile it is thus clear that

the two-layer model does not reproduce the short circuit current correctly for low

mobilities.

Let us now turn to the profiles under illumination. Here, only the initial slope at

ξ = 0 is important for the computation of the short circuit current. Figures 3.13c and

d illustrate again the difference between the correct profile with photon recycling (solid

lines) and the profile obtained with the classical treatment (dotted lines). As has been

discussed in section 3.5.2, the PR prevents a decrease of the profile towards the back

contact in the radiative limit. Again, this feature is correctly captured by the two-layer

model. But again, a different level deep in the bulk is predicted.

In contrast to the two-layer model, the modified classical model with the increased

radiative lifetime τ r,mod
norm from Eq. (3.62) does not reproduce the qualitative features of

the correct profile with photon recycling. The profile of the modified classical approach

(dashed-dotted lines) decreases towards the back contact as does the profile from the

classical approach (dotted lines). However, the modified classical approach is designed

in such a way that the low mobility limit for the short circuit current is identical to

the theoretical limit 2n̄
√

µnorm. Therefore, the slope of the electron profile at ξ = 0 in

Fig. 3.13c is almost identical to the slope obtained from the numerical simulation.

As pointed out at the beginning of this section, a consistent quasi-classical analytical

model that is able to reproduce both, J rad
0 and Jsc correctly, does not exist because

of the inherent discrepancy with respect to the low mobility limits of J rad
0 and Jsc (cf.
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p. 58). Therefore, I use the two-layer model to compute J0 and the modified-lifetime

model to compute Jsc. The combination of the two models thus yields a fairly accurate

approximation of the numerical results which allows us to analytically calculate the

efficiency of pn-junction solar cells in the whole thickness, mobility and lifetime range.

The results of these computations are presented in the next section.

3.7.4.2 Photovoltaic output parameters

Figures 3.14a-d and 3.15a-d demonstrate the accuracy of the analytical approximations

for a solar cell with textured front surface, a constant absorption coefficient α = α0

and a cell thickness α0d = 0.1 and 10. All other parameters are listed in Tab. 3.1.

The figures display the normalized saturation current J0/Φ
Eg
bb (a), the normalized

short circuit current Jsc/J
SQ
sc (b), the open circuit voltage Voc (c), and the efficiency

η (d) versus the normalized mobility µnorm for different ratios ϑr = 10−2, 1 and 100

of radiative and non-radiative lifetime. Open squares represent the numerical results,

solid lines are the approximated results where both, J0 and Jsc are computed with the

two-layer model, and dashed lines stand for the results obtained from combining the

saturation current J0 from the two-layer model with the short circuit current Jsc from

the modified-lifetime model. Note in Fig. 3.15 that at low mobilities the numerical

results are prone to be flawed with discretization errors when the diffusion length is

smaller than the discretization interval d/N (see p. 173 in appendix B.7).

The two-layer model is well suited to describe the saturation current in the com-

plete lifetime and mobility range. The model is constructed in such a way that in

the radiative recombination limit the high mobility limit of J0 converges towards the

absorptance of the sample. The low mobility converges towards
√

µnorm/τ r
norm and

therewith also meets the requirements. Only in an intermediate range around the

critical mobility µnorm
crit does the approximation differ from the numerical results. The

difference is more pronounced in solar cells with a thickness larger than the absorption

length (Fig. 3.15a), where PR is more important than in solar cells with a thickness

α0d < 1 (Fig. 3.14a).

The two-layer model also yields a correct approximation of the short circuit current

for ϑr > 1 as depicted in Fig. 3.14b and Fig. 3.15b (solid lines). The differences to the

numerical results (squares) stem from the errors in the approximation of the generation

profile, since the profile of a cell with textured surface can not completely be reproduced
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Fig. 3.14: Photovoltaic output parameters versus the normalized mobility µnorm. The

absorption coefficient is α = α0, the normalized thickness is α0d = 0.1, the band gap is

Eg = 1 eV, and the front surface is textured. All parameters are listed in Tab. 3.1. Open

squares are the numerical results, solid lines are the results from the two-layer model, and

dashed lines are the results from combining the saturation current from the two-layer model

with the short circuit current from the modified-lifetime model. While the two-layer model

provides a good approximation of the saturation current, it is not suited to describe the

short circuit current accurately. In combination with the modified-lifetime model however, it

presents a fairly accurate analytical model to compute the efficiency of pn-junction solar cells

in the whole lifetime and mobility range. (Note that the modified-lifetime model (dashed

lines) is only included in figures b-d.)

by two exponential functions.

However, the approximation of Jsc in the radiative recombination limit with ϑr → 0

is rather crude. In particular, the low mobility limit for the short circuit current is

given by the radiative diffusion length Lnorm =
√

µnormτ r
norm (corrected by the optical
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Fig. 3.15: Photovoltaic output parameters versus the normalized mobility µnorm. The

absorption coefficient is α = α0, the normalized thickness is α0d = 10, the band gap is

Eg = 1 eV, and the front surface is textured. All parameters except for the thickness are

identical to the parameters in Fig. 3.14. Open squares are the numerical results, solid lines

are the results from the two-layer model, and dashed lines are the results from combining the

saturation current from the two-layer model with the short circuit current from the modified-

lifetime model. For low mobilities, discretization errors lead to flawed numerical results,

which are therefore not displayed here.

term in Eq. (3.61)). It is therewith by roughly a factor of 4n̄2 smaller than the limit√
µnorm/τ r

norm.

The modified-lifetime model is not based on physical reasons but it is constructed

to reproduce the radiative low mobility limit of the short circuit current correctly. As

Fig. 3.14b and Fig. 3.15b demonstrate (dashed lines), the model yields a surprisingly

accurate approximation of the numerical results. Only in an intermediate range around

the critical mobility does the approximation depart from the numerical results.
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In the next step we combine the saturation current from the two-layer model with the

short circuit current from the modified-lifetime model to obtain the open circuit voltage

and the efficiency (dashed lines). For comparison, the results where both currents are

taken from the two-layer model are displayed as well (solid lines). For low mobilities

the underestimated short circuit current leads here to a large error in the open circuit

voltage which for all lifetime ratios ϑr < 1 converges towards the voltage corresponding

to ϑr = 1.

The combined model provides a simple tool to compute the efficiency of pn-junction

solar cells for all thicknesses and different kinds of front surfaces. It is capable of

predicting the efficiency with an error of typically less than 0.5 % (absolute). The error

is largest for the radiative recombination limit in the mobility range approximately two

decades below the critical mobility µnorm
crit . In this range, the error can be es large as

3.5 % (absolute).

The model replaces the exact but very complicated numerical model with a simple

analytical approach. It is here only presented for the case with constant absorption

coefficient but can be extended to energy-dependent absorption coefficients (see section

3.9.1.

3.8 Energy-dependent absorption coefficient

So far, all simulations have been performed for the hypothetical case with constant ab-

sorption coefficient. This section analyzes the influence of energy-dependent absorption

coefficient α(E). With respect to the spectral dependence of α(E) on the photon energy

E I distinguish the three different cases listed in Tab. 3.2: (i) The hypothetical case of

constant absorption above the band gap energy, (ii) direct semiconductors where the

absorption of photons occurs via direct transitions without a change in momentum and

which therefore exhibit a square-root dependence of the absorption coefficient on the

energy [68, p. 36], and (iii) indirect semiconductors, where phonons are needed for mo-

mentum conservation during light absorption and which therefore exhibit a parabolic

dependence [68, p. 38].

The parameter α0 in Tab. 3.2 is the absorption coefficient at the photon energy

E = Eg + kBT for all three cases. Note that the choice of Eg + kBT as this crossover

energy is somewhat arbitrary. To compare the three cases, we assume identical α0
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Tab. 3.2: Spectral dependence of the absorption coefficient.At E = Eg + kBT , all types

feature the absorption coefficient α(Eg + kBT ) = α0.

Type α(E)

constant α0

direct α0

√
E−Eg

kBT

indirect α0

(
E−Eg

kBT

)2

for all. In reality, though, indirect semiconductors possess much lower absorption

coefficients than direct semiconductors, which leads to a crossover energy more in

the proximity of Eg + 1 eV. However, such an approach would imply that for a given

sample thickness d the average absorptance in an indirect semiconductor would be much

smaller than in a direct semiconductor, which in turn would distort the comparability

of the currents. Therefore, I chose to stick with the crossover energy Eg + kBT close

to the band gap energy.

Figures 3.16a-i demonstrate the influence of the spectral dependence of the absorp-

tion coefficient on the currents Jsc and J0, the open circuit voltage Voc, and the efficiency

η. All quantities are again normalized to their respective maximum values in the SQ

limit. In analogy to the representation in Fig. 3.4, all quantities are displayed vs. the

thickness α0d of the solar cell. The front surface is textured.

Constant absorption The energy independent light absorption leads to identical

generation profiles for solar and black body irradiation. Therefore, the external quan-

tum efficiency EQE(E) is independent of the photon energy, and Rau’s reciprocity

relation [16] which relates the EQE to the radiative recombination current as eluci-

dated in section 3.7 on page 58, holds not only for the spectral quantity EQE(E) but

also for the integrated spectrum. In consequence, the normalized currents Jsc/J
SQ
sc and

J0/J
SQ
0 are identical (Fig. 3.16a). As in Fig. 3.4a, the currents approach the absorp-

tance a of the sample for sufficiently large mobilities. For lower mobilities, however,

the currents are limited by insufficient transport.

Since the ratios Jsc/J
SQ
sc and J0/J

SQ
0 are independent of the absorber thickness,

it always holds Jsc/J0 = JSQ
sc /JSQ

0 and, therefore, the open circuit voltage is always

Voc = V SQ
oc (Fig. 3.16d). Accordingly, the efficiency is exclusively determined by the
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Fig. 3.16: Currents Jsc and J0 in the radiative recombination limit with ϑr = 0 normalized

to the maximum values in the Shockley-Queisser limit vs cell thickness d for a textured front

surface (a, d, g). The band gap is Eg = 1 eV and the front surface is textured. I distinguish

between constant absorption above the band gap (a-c), a direct semiconductor (d-f), and

an ı́ndirect semiconductor (g-i). The spectral dependence of the absorption coefficient α(E)

in comparison to the spectrum of the incident light leads to different spatial generation

profiles for solar and black body irradiation and, therefore, to differences between Jsc and

J0. Figures b, e, and h display the resulting normalized open circuit voltage Voc/V SQ
oc . With

the normalized short circuit current being larger than the normalized saturation current for

small thicknesses, the open circuit voltage exceeds the SQ limit V SQ
oc (e, h). The efficiency

η/ηSQ displayed in Figs. c, f, and i is mainly dominated by the short circuit current. Apart

from the absorption coefficient, all parameters are listed in Tab. 3.1.
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loss in the short circuit current (Fig. 3.16b).

Direct absorption Due to the spectral dependence of the absorption coefficient,

the solar spectrum and the 300 K black body spectrum cause different generation pro-

files. Consequently, the absorptance a(E, d) is energy-dependent, and the average

absorptance as defined in appendix B.7 is different for the two spectra. Therefore, the

reciprocity relation is restricted to the spectral quantities, and Jsc/J
SQ
sc is not identical

to Jo/J
SQ
0 anymore.

Since the spectral density of the solar spectrum is larger for higher photon energies

when compared to the density of the black body spectrum, the average absorption

coefficient is also larger for the solar spectrum. This means that for small absorber

thicknesses the average absorptance asun of the solar spectrum exceeds the average

absorptance abb of the black body spectrum, and, therefore, Jsc/J
SQ
sc in Fig. 3.16d is

larger than J0/J
SQ
0 .

Consequently - and at first glance astonishingly - the open circuit voltage Voc in

Fig. 3.16e exceeds the open circuit voltage V SQ
oc for low thicknesses. The efficiency in

Fig. 3.16f, however, does not exceed the SQ efficiency ηSQ because with decreasing thick-

ness the absorption losses that result in a reduction of Jsc more than counterbalance

the increase in Voc.

The detailed discussion in section 3.8.1 reveals that such efficiency enhancement

above the SQ limit is indeed possible, but only for small band gap energies. Effectively,

the variation of the spectral dependence of the absorption coefficient can be regarded

as an increase of the band gap energy. In particular, the indirect semiconductor with

the parabolic dependence of α exhibits hardly any absorption below Eg + kBT when

the sample is thin enough.

Indirect absorption The reasoning given for the direct semiconductor holds for

indirect semiconductors as well. The difference between Jsc and J0 in Fig. 3.16g is

even more pronounced. For energies E < Eg + kBT the absorption coefficient is much

smaller than α0 which implies a reduced abb. For E > Eg + kBT on the other hand, α

is much larger than α0 which results in an amplified asun. Note again that the choice

of Eg + kBT as a crossover point is somewhat arbitrary and does not reflect crossover

points of real semiconductor materials.
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Note that with respect to the shift of the critical thickness towards smaller thick-

nesses, the opposite holds true for the saturation current J0 because the black body

spectrum possesses its maximum at an energy much below the band gap Eg = 1 eV

and only the exponentially decreasing Boltzmann tail of the spectrum is relevant for

the saturation current. Therefore, the relevant energy regime for J0 lies between Eg

and Eg +kBT , where direct and indirect semiconductors have an absorption coefficient

below α0.

3.8.1 Thickness-dependent current enhancement

Figure 3.16d shows that for a certain cell thickness d the short circuit current Jsc

features a maximum. This section takes a closer look at this phenomenon and explains

the underlying mechanism. As will be discussed in the following, this mechanism

involves the relationship between photon absorption and emission and carrier collection.

In principle, there are two questions arising from the observations in Fig. 3.16d that

need to be answered: (i) Why does the short circuit current only feature a maximum

for low mobilities and (ii) Why does this maximum not occur for energy-independent

absorption coefficient?

3.8.1.1 High mobility

Let us first consider the high mobility limit of the short circuit current, which is given

by the absorptance. In this context, high mobility limit means that the minority

carrier diffusion length is larger than the average absorption length of the photon flux

impinging on the cell, i.e. that all generated carriers contribute to the short circuit

current.

As pointed out in section 3.6.1, the absorptance increases monotonically with in-

creasing sample thickness. Even though the generation rate close to the front surface

decreases with increasing thickness when the influence of multiple reflections recedes,

the overall absorptance given by the integrated generation rate over the cell thickness

always increases with increasing thickness. Consequently, for high mobilities the short

circuit current increases monotonically with increasing thickness as well and does not

show a maximum over the cell thickness.
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3.8.1.2 Low mobility

The case is different for lower mobilities. If the collection length (i.e. the diffusion

length) of the photo-generated carriers is smaller than the absorption length then not

all generated carriers can contribute to the short circuit current. Carriers that are

generated deep in the bulk are not collected and thus recombine.

In the radiative recombination limit, a carrier that is absorbed but not collected can

only be emitted by the cell. We thus have to consider the relation between absorption

and emission length. To do so, we have to differentiate between energy-independent

and energy-dependent absorption coefficient.

Constant absorption coefficient In the case of constant absorption coefficient as

depicted in Fig. 3.16a, the emission length is identical to the absorption length. Let

us now consider the influence of the cell thickness on the carrier collection in the low

mobility limit. As long as the thickness is smaller than the diffusion length, all gener-

ated carriers are collected and the short circuit current is identical to the absorptance.

With increasing thickness, however, not all generated carriers are collected anymore

and the current is lower than the absorptance. Once the thickness exceeds the absorp-

tion length, Jsc/J
SQ
sc saturates. The saturation level is below unity and is determined

by the collection length, i.e. the carrier mobility.

Energy-dependent absorption coefficient Let us now turn to energy-dependent

light absorption. Consider the low mobility limit of the short circuit current as depicted

in Fig. 3.16d. In the following, I will illustrate, why the current features a maximum

over the sample thickness.

As long as the thickness is smaller than the diffusion length, the short circuit

current is again equal to the absorptance. It keeps increasing with a lower slope

than the absorptance until the thickness is identical to the average absorption length

Lα,norm = α0/(5α0) = 0.2 (cf. Tab. B.2 on page 172) for the solar irradiation. Any

further increase of the thickness, however, leads to increased emission of internally

reabsorbed carriers, while the absorptance of solar radiation essentially remains unaf-

fected. Therefore, the current decreases until the thickness is equal to the emission

length Lem,norm = α0/α0 = 1, which is identical to the absorption length of the black

body spectrum. For thicknesses larger than the emission length, the current saturates
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at a slightly higher level than in Fig. 3.16a because of the higher average absorption

coefficient for the solar irradiation.

Summing up, the discrepancy between absorption and emission length leads to the

maximum of the short circuit current over the cell thickness. In a range Lα,norm <

α0d < Lem,norm any increase of the thickness leads to emission losses which are larger

than the gain in absorptance and therefore to a decreasing current. Since for the black

body spectrum the absorption length is equal to the emission length, this effect can

not be seen in the saturation current, which therefore increases monotonically with the

cell thickness.

3.8.2 Thickness-dependent efficiency enhancement

In the last section we have seen that the discrepancy between the absorptance of solar

and black body irradiation leads to a maximum in the short circuit current for low

mobilities. This discrepancy, which in a certain thickness range leads to Jsc(d)/JSQ
sc >

J0(d)/JSQ
0 for all mobilities, is also responsible for the enhancement of the open circuit

voltage Voc(d) above V SQ
oc as depicted in Fig. 3.16e and h.

From a thermodynamic point of view, the reduced radiative recombination current

in comparison to the short circuit current can leads to a reduced entropy production

per absorbed photon [69], which results in higher open circuit voltages. Unfortunately,

the voltage enhancement occurs in a thickness range, where the cell is so thin that the

short circuit current Jsc/J
SQ
sc is significantly lower than unity. Therefore, the efficiency

as the product of Jsc and Voc does not exceed the Shockley-Queisser limit.

This situation changes, when the band gap energy of the solar cell is reduced. Figure

3.17 demonstrates that for a cell with Eg = 0.5 eV, the maximum radiative efficiency,

i.e. the high mobility limit with µnorm = 104, can indeed exceed the SQ limit for

this particular band gap. The figure depicts the normalized efficiency versus the cell

thickness for a semiconductor with constant absorption coefficient (const), a direct

semiconductor (dir), and an indirect semiconductor (ind). Both, the direct and the

indirect semiconductor feature a thickness regime, where the normalized efficiency is

larger than unity. Especially the absorptance spectrum of the indirect semiconductor

as depicted in Fig. 3.17 leads to the efficiency enhancement of almost 15 % (relative) for

a thin cell with thickness α0d ≈ 3× 10−4. These considerations have also been carried

out in a similar form by Araújo and Mart́ı [70]. They have shown that even with the



78 CHAPTER 3. GENERALIZED EFFICIENCY LIMIT

10-3 10-2 10-1 100 101

0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

 

 
N

or
m

. E
ffi

ci
en

cy
 

 / 
S

Q

Norm. Thickness 0d 

Eg = 0.5 eV

norm = 104

const.
dir.

ind.

Fig. 3.17: Normalized radiative efficiency versus cell thickness α0d for a semiconductor with

constant absorption above the band gap energy (const), a direct semiconductor (dir), and an

indirect semiconductor (ind). The band gap is Eg = 0.5 eV, the mobility is µnorm = 104, and

the front surface is textured. All other parameters are listed in Tab. 3.1. Due to the higher

absorptance of the solar irradiation compared to the black body irradiation, the efficiency

η(Eg) exceeds the SQ efficiency ηSQ(Eg) for the direct semiconductor and even more so for

the indirect semiconductor.

band gap of silicon, a maximum radiative efficiency is obtained for the (rather large)

optimal thickness d ≈ 1 mm.

The reason for this rather astonishing phenomenon lies in the fact that the energy-

dependent absorption coefficient of the solar cell translates into an energy-dependent

absorptance if the sample is thin enough. When the sample is thick enough, the ab-

sorptance is unity for all energies larger than Eg. This means that the absorptance can

be expressed by a step function as described in Eq. (2.5). Reducing the cell thickness

results in a reduction of the absorptance at energies, where the absorption coefficient

is low, i.e. at energies close to the band gap energy. This means that the absorp-
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tance for thin cells can again be approximated with a step function, but one that is

shifted towards higher energies. Consequently, the thickness reduction can effectively

be described as an increase of the band gap Eg. This increase of the band gap in turn

implies a higher maximum efficiency ηSQ(Eg) if the band gap is below the band gap

Eg ≈ 1.1 eV that corresponds to the global maximum efficiency ηSQ ≈ 33 %. For band

gaps larger Eg = 1.4 eV, which corresponds to the second global maximum, there is

no such efficiency enhancement for thin cells. This is because increasing the effective

band gap would only result in lower efficiencies (cmp. Fig. 3.2).

3.8.3 Maximum open circuit voltage

The previous section 3.8.2 has shown that it is possible to exceed the SQ efficiency

limit of a solar cell with given band gap if the band gap is small enough. Due to

energy-dependent light absorption, the thickness of the cell can be tuned in such a way

that almost the entire solar irradiation above the band gap is absorbed while the black

body irradiation, which occurs predominately at lower photon energies, is only partly

absorbed. Therewith, the open circuit voltage is increased above its SQ limit. If this

increase is not compensated entirely by the loss in Jsc due to incomplete absorption,

the efficiency is also increased above its SQ limit ηSQ(Eg).

This result brings up two questions: (i) What is the maximum open circuit voltage

for a given band gap energy and (ii) Is it possible to exceed even the global maximum

ηSQ ≈ 33 %, or in other words: Is there an optimal absorptance spectrum that is

superior to the step function absorptance assumed by Shockley and Queisser?

The latter question has already been answered in section A.2, which proves that

the global SQ limit of 33 %, which is obtained with a step-like absorptance function,

is indeed the ultimate maximum efficiency that can be obtained with a single junction

solar cell. A similar proof has also been derived by Araújo and Mart́ı Ref. [70]. This

section discusses the first question of the maximum open circuit voltage obtainable

with a single junction solar cell with a given band gap energy.

It is often assumed that the maximum open circuit voltage in the SQ limit is given

by the band gap energy Eg. Indeed, Shockley and Queisser introduced a so-called

ultimate efficiency in their publication [10] that is obtained when Voc = Eg is assumed.

However, the detailed balance limit itself does not include an inherent restriction to the

open circuit voltage. The open circuit voltage is exclusively determined by the ratio of
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short circuit current and saturation current, i.e. by Voc = (kBT/q)ln (Jsc/J0 + 1). The

currents in turn are entirely determined by the solar and the black body spectrum and

the absorptance a(E).

In a strict sense, it is a mere coincidence that V SQ
oc (Eg) is smaller than the band gap.

In fact, the SQ theory would predict Voc > Eg for highly concentrated sunlight with

concentration factors exceeding 30000.

However, the SQ theory only accounts for the spontaneous radiative recombination

of electron and holes. If the voltage exceeds the band gap, then the quasi Fermi levels

will be located in the conduction and valence band, which would result in stimulated

emission. Due to this additional recombination the maximum open circuit voltage of

a single pn-junction solar cell is indeed given by the band gap energy Eg.

3.9 Maximum efficiencies of real materials

So far, most of the discussions have focused on the hypothetical case of constant absorp-

tion coefficient to facilitate the understanding of the fundamental mechanisms involved

and to allow for relatively simple analytical expressions. As helpful as these analyses

proved for the theoretical construction of the model features, they fail to provide any

practical information.

This section analyzes the critical mobility and the efficiency limits for the three

semiconducting materials crystalline silicon (c-Si), hydrogenated amorphous silicon

(a-Si:H), and Cu(In1−x,Gax)Se2 with x = 0.26 (CIGS). Admittedly though, it needs

to be mentioned that the simulations conducted here only describe the efficiencies of

idealized pn-junction solar cells without, for instance, optical losses or recombination

in the space charge region, in the emitter or at the back contact. On the other hand,

carrier generation and collection in the space charge region are neglected as well. While

the model quite reasonably describes crystalline silicon solar cells, it is hardly suited

to simulate actual devices made of amorphous silicon or CIGS.

The parameters used for the simulations are listed in Tab. 3.3. The cell thicknesses

are chosen as typical values but also large enough to guarantee virtually complete

absorption of the solar spectrum. All solar cells are assumed to be pn-junction solar cells

with a zero reflectance textured front surface, and no recombination at the back contact.

The absorption coefficients are taken from Ref. [12] in the case of crystalline silicon
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Tab. 3.3: Parameters used for the computation of the critical mobility of crystalline silicon

(c-Si), hydrogenated amorphous silicon (a-Si:H), and Cu(In1−x,Gax)Se2 (CIGS, x = 0.26).

Eg n̄ α0 (Type) ni d Ref.

[ eV] [ cm−1] [ cm−3] [ µm]

c-Si 1.124 3.6 3.3 (indirect) 1.04× 1010 200 [12,17]

a-Si:H 1.75 4 180 (indirect) 1× 106 1 [5, 71]

CIGS 1.17 3.1 11000 (direct) 3× 108 2 [72]

or from measured data and are displayed in Fig. 3.18. Table 3.3 lists the absorption

coefficients at an energy Eg+kBT and the type of the semiconductor. In contrast to the

theoretical types listed in Tab. 3.2, the measured data also include sub band gap tail-

like absorption and at higher energies abberations of the strict theoretical square-root

or parabolic dependencies on the energy.

Figures 3.19a-d, 3.20a-d, and 3.21a-d display the results of the simulations, i.e., the

saturation current J0 (a), the short circuit current Jsc (b), the open circuit voltage Voc

(c), and the efficiency η (d), versus the non-radiative lifetime τnr for different mobilities

(open symbols). The chosen mobilities vary between the materials and are chosen in

such a way that measured values fall in the displayed range. The mobilities are µn = 24,

240, and 2400 cm2( Vs)−1 for c-Si, µn = 0.34, 3.4, and 34 cm2( Vs)−1 for a-Si:H, and

µn = 0.15, 1.5, and 150 cm2( Vs)−1 for CIGS.7

For the transformation of the normalized mobility µnorm and the normalized lifetimes

τ r
norm and τnr

norm into the unit-bearing quantities µn, τr, and τnr, one requires the doping

concentration NA. I assume NA = 5×1016 cm−3 which is a typical value for silicon solar

cells. However, as section 3.10 shows, the doping concentration must not be chosen

too low in order not to violate the low-level injection assumptions, in particular in the

radiative recombination limit.

Section 3.9.3 discusses the results of the simulation. Before doing so, however, the

next section applies the analytical model of section 3.7 to the analyzed materials.

7The unconventional values result from the de-normalization of the normalized mobilities. Note

that for CIGS, the chosen range is by a factor of 10 larger than for the other two cases because of the

uncertainty connected with measured values.
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Fig. 3.18: Experimental absorption coefficients of crystalline silicon (c-Si, squares), hydro-

genated amorphous silicon (a-Si:H, circles), and Cu(In1−x,Gax)Se2 (CIGS, triangles) with

x = 0.26 versus the photon energy. The measured data are fit with either a square-root

function for the direct semiconductor CIGS or a parabolic function in the case of crystalline

and amorphous silicon (lines). Table 3.3 lists the fit parameters. Amorphous silicon exhibits

a significant sub band gap absorption in band tail states. In the chosen spectrum of CIGS

the band tails are much less pronounced. In crystalline silicon and CIGS, the absorption

coefficient shows a sharp increase at photon energies above 2 eV that cannot be explained

with the simple parabolic or square-root dependence.

3.9.1 Analytical approximation

This section discusses the applicability of the analytical model derived in section 3.7

to the three materials under investigation and introduces necessary modifications. The

model with constant absorption in section 3.7 was based on the analysis of the low

mobility limits of saturation and short circuit current. Hence, the main question that

needs to be answered is, what influence the energy-dependent absorption coefficient

has on those low-mobility limits.
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Fig. 3.19: Simulation results of a crystalline silicon pn-junction solar cell (open symbols):

Saturation current J0 (a), short circuit current Jsc (b), open circuit voltage Voc (c), and

efficiency η (d) versus the non-radiative lifetime τnr. The thickness of the solar cell is d =

200µm and the doping density is NA = 5 × 1016 cm−3. The minority carrier mobility is

assumed as µn = 24, 240, and 2400 cm2(Vs)−1.

3.9.1.1 Saturation current

The low mobility limit of J rad
0 can still be obtained in the simple fashion of section

3.6.2, where the generation rates need to be augmented by integrating over the photon

energy. Interestingly, the relation limµnorm→∞ J rad
0 /ΦEg

bb =
√

µnorm/τ r
norm is only valid for

the integrated spectrum, but not for the spectral radiative saturation current jrad
0 (E)

that is obtained under monochromatic excitation with the black body intensity φbb(E).

This is because even with monochromatic generation rate gbb(E), the internal gener-

ation still includes the complete integral Gint =
∫∞
0

gint(E)dE. The thermodynamic

equilibrium as expressed in Eq. (3.46) requires illumination with the integrated black
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Fig. 3.20: Simulation results of an amorphous silicon pn-junction solar cell (open symbols):

Saturation current J0 (a), short circuit current Jsc (b), open circuit voltage Voc (c), and

efficiency η (d) versus the non-radiative lifetime τnr. The thickness of the solar cell is d = 1µm

and the doping density is NA = 5× 1016 cm−3. The minority carrier mobility is assumed as

µn = 0.34, 3.4, and 34 cm2(Vs)−1.

body spectrum, which implies that the approximation performed in Eq. (3.47) is only

valid for the integrated spectrum.

The high mobility limit is also still given by the integrated absorbed black body

spectrum Φabs
bb as listed in Tab 3.4. To define the thickness ξpr of layer 1 in the two

layer model, we need the absorptance a = Φabs
bb /ΦEg

bb . Then we can apply the two-layer

model from section 3.7.2 without any other modifications.

Figures 3.19a, 3.20a, and 3.21a display the analytical saturation currents computed

with the two-layer model as solid lines. The figures demonstrate the excellent agreement

of the analytical model and the numerical simulations.
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Fig. 3.21: Simulation results of a Cu(In,Ga)Se2 pn-junction solar cell (open symbols):

Saturation current J0 (a), short circuit current Jsc (b), open circuit voltage Voc (c), and

efficiency η (d) versus the non-radiative lifetime τnr. The thickness of the solar cell is d = 2 µm

and the doping density is NA = 5× 1016 cm−3. The minority carrier mobility is assumed as

µn = 0.15, 1.5, and 150 cm2(Vs)−1.

3.9.1.2 Short circuit current

The derivation of the modified-lifetime model for the determination of the short circuit

current in section 3.7.3 was based on the reciprocity between the short circuit current

and the radiative recombination current. This section discusses the influence of the

energy-dependent absorption coefficient on the reciprocity relation.

Let us first have a look at the relationship between short circuit current and radiative

saturation current in the radiative recombination limit if the absorption coefficient

is energy-dependent. In section 3.6.2 we have seen that the low mobility limit of

short circuit and saturation current is identical if the absorption coefficient is energy-
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independent. In the following, I explain, why this relation does not hold for energy-

dependent light absorption, and what consequences this fact implies for the modified

lifetime model.

For energy-dependent light absorption, the reciprocity theorem Eq. (3.55) is still

valid, but now has to be considered separately for each individual photon energy E

according to

EQE(E) =
jsc(E)

φsun(E)
=

jrad
0 (E)

φbb(E)
. (3.72)

Here, the spectral currents refer to the short circuit current jsc(E) and saturation

current j0(E) that are obtained under monochromatic illumination at the energy E

with intensity φsun(E) or φbb(E)8. The total currents Jsc and J rad
0 are then obtained

by integrating the quantum efficiency EQE(E) weighted with the corresponding photon

flux φsun(E) or φbb(E) over all energies E. Therewith, we arrive at

Jsc

Φsun

=

∫∞
0

EQE(E)φsun(E)dE∫∞
0

φsun(E)dE
6=

∫∞
0

EQE(E)φbb(E)dE∫∞
0

φbb(E)dE
=

J rad
0

Φbb

. (3.73)

Only if the EQE were energy-independent, would the reciprocity relation hold for

the integrated currents as well. For high mobilities, all photo-generated carriers are

collected and the quantum efficiency EQE(E) equals the absorptance a(E). If the

sample is sufficiently thick and subbandgap absorption is neglected, then a(E) = 1 for

energies E ≥ Eg. This case is equivalent to the monochromatic case. For the general

case with energy-dependent absorptance a(E) and/or lower mobilities, however, the

reciprocity holds only for the spectral quantities jsc(E) and j0(E). But unfortunately,

this spectral reciprocity does not help, since - as section 3.9.1.1 has shown - there is no

simple analytical expression for the low mobility limit of jrad
0 (E).

In the case of low mobilities, carrier collection is limited and the quantum effi-

ciency EQE(E) is smaller than the absorptance a(E), i.e. even more energy-dependent.

Therefore, and because they are weighted with the different spectra φsun(E) and φbb(E),

the integrated short circuit current Jsc and the integrated saturation current J rad
0 fea-

ture different low mobility limits.

8Note that the reciprocity relation has to consider the angular distribution of solar and black body

radiation as well. Therefore, Eq. (3.72) holds only for solar cells with a Lambertian texture that

ensures complete directional randomization of the incident light rays.
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In sections 3.6.2 and 3.6.3, we have used the equivalence of the low mobility limit of

Jsc and J rad
0 to derive an expression for the critical mobility and later for the modified

lifetime τmod
norm from Eq. (3.63). This path is now blocked. For the short circuit current,

no simple low mobility limit is available. However, an analytical approximation for Jsc

can be derived from fitting the results of the numerical simulations with help of the

modified lifetime model.

From the simulation results one finds that the low mobility limit of the short cir-

cuit current is still proportional to the square-root
√

µnorm according to Jsc/Φ
abs
sun =

cµ(ϑr)
√

µnorm, where the proportionality constant cµ(ϑr) depends on the ratio ϑr of

radiative and non-radiative lifetime.

Even though being aware of the crudeness of the approximation, I assume that not

only under monochromatic illumination with excitation flux φsun(E), but also under

illumination with the integrated spectrum Φsun, the short circuit current can be de-

scribed with the modified lifetime model resulting in Eq. (3.60). If the cell is thick

enough, so that virtually all photons are absorbed during the first transition through

the cell, then it holds F0 = Φabs
sun (see Tab. 3.4) and Fr = 0, and Eq. (3.60) simplifies to

Jsc

Φabs
sun

=
k2

αL2
norm

1− k2
αL2

norm


−1 +

tanh
(

α0d
Lnorm

)

kαLnorm

+
exp (−kαα0d)

cosh
(

α0d
Lnorm

)

 . (3.74)

Here, the quantity kα = klamαsun/α0 comprises the average absorption coefficient

αsun as well as the factor klam = 1 for plane front surfaces or klam = 2 for tex-

tured surfaces which accounts for the diffraction of light at the textured front surface

(with an angle of 60◦). As in section 3.7.3, the normalized diffusion length reads as

Lnorm =
√

µnormτmod
norm, where τmod

norm is the modified lifetime. The modified lifetime is

given by 1/τmod
norm = 1/τnr

norm + 1/τ r,mod
norm according to Eq. (3.63). However, τ r,mod

norm is no

longer given by Eq. (3.62) because the low mobility limit of Jsc and J0 are not identical.

Therefore, we have to extract τ r,mod
norm from fitting the numerical results.

To obtain the two unknown quantities kα and τ r,mod
norm , I proceed as follows: First

I fit Eq. (3.74) to the numerical data for ϑr À 1, where τmod
norm = τnr

norm, to obtain

kα. Then I extract the modified radiative lifetime τ r,mod
norm . In analogy to Eq. (3.62), I

define τ r,mod
norm = 1/(crτ

r
norm) and use the radiative lifetime multiplication factor cr as a

fit parameter, which I extract from fitting Eq. (3.74) to the numerical data for ϑr = 0.

Table 3.4 displays the fit parameters for crystalline silicon, amorphous silicon, and
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Tab. 3.4: Parameters obtained from the numerical computation of the critical mobility

of crystalline silicon (c-Si), hydrogenated amorphous silicon (a-Si:H), and Cu(In1−x,Gax)Se2

(CIGS, x = 0.26). The doping density used to compute the radiative lifetimes is (NA =

5× 1016 cm−3).

ΦEg
bb/Φabs

bb qΦEg
sun/qΦ

abs
sun τr kα cr Lcrit

[ cm−2 s−1] [ mA cm−2] [s] [ nm]

c-Si 446/2871 42.7/43.2 4.7× 10−3 710 64757 4268

a-Si:H 6.2/2.7× 10−5 20.76/23.1 6.2× 10−5 404 2.7× 109 138

CIGS 81.4/80.4 40.75/40.7 6.4× 10−8 8.36 29.5 109

CIGS.

Figures 3.19b, 3.20b, and 3.21b display the analytical short circuit currents com-

puted with the modified lifetime model as solid lines. The figures show that the mod-

ified lifetime approach is capable of capturing the general trends of the short circuit

current. However, it is obvious that the approach is too crude to precisely reproduce

the numerical simulations. The abberations between analytical and numerical results

are particularly severe in the case of crystalline silicon.

Due to the misfits in the short circuit current, also the analytical results for the

open circuit voltage and the efficiency as displayed in Figs. 3.19c,d 3.20c,d, and 3.21c,d

deviate from the numerical results. While Voc is hardly influenced because the depen-

dence on Jsc is only logarithmic, the efficiency exhibits severe abberations between

analytical and numerical results. For more precise results, one would have to obtain

energy-dependent kα(E) and cr(E). However, this would significantly complicate the

procedure. Moreover, the low mobility limit would also consist of an integral over the

energy.

As Figs. 3.19b, 3.20b, and 3.21b demonstrate, the analytically computed short cir-

cuit currents intersect the numerically obtained currents when the current is roughly

half of the maximum attainable value. This is because the fitting routine to determine

the parameter kα is designed accordingly. Therewith, we are able to give a quite accu-

rate approximation for the critical mobility of the three materials under investigation.
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3.9.2 Critical mobility

This section derives a closed-form expression for the critical mobility µcrit(τnr) of crys-

talline and amorphous silicon and CIGS from the analytical modified lifetime model

developed in the previous section.

The low mobility limit of Eq. (3.74) yields

lim
µnorm→0

Jsc

JSQ
sc

= kαLnorm = kα

√
µnormτmod

norm. (3.75)

Equating Eq. (3.75) at µnorm = µcrit with the absorptance asun(d) (which is unity if

the cell is thick enough) for the solar spectrum yields the critical mobility

µcrit(ϑr) =
a2

sun(d)

k2
ατmod

norm(ϑr)
µref (3.76)

in dependence of ϑr, i.e., the non-radiative lifetime.

With kα and cr obtained from the fits and asun(d) ≈ 1, we compute the critical

mobility in dependence of the non-radiative lifetime as

µcrit(τnr) =
µref

k2
α

(
1

τnr
norm

+ crτ
r
norm

)

=
q

kBTk2
αα2

0τnr

+ µrad
crit, (3.77)

where the critical mobility in the radiative limit is given by

µrad
crit =

qΦEg
bbNAcrτ

r
norm

kBTk2
αα0n2

i

=
q

kBT

(
ΦEg

bbNA

kαn2
i

)2

crτr. (3.78)

Figures 3.22a-c display the dependency of the critical mobility of c-Si, a-Si:H, and

CIGS on the non-radiative lifetime. From inserting the critical mobility in Eq. (3.74),

one finds that Jsc(µn = µcrit)/Φ
abs
sun = 0.5. Therefore, I extract the critical mobility

from the numerical simulation as the mobility where the short circuit current has

reached 50 % of its maximum value. These values are depicted as solid symbols in

Figs. 3.22a-c. As a comparison, the figures also display the mobility, where the current

has reached 90 % of its maximum value (open symbols). Depending on the steepness

of the absorption spectrum, the mobility needed to achieve 90 % of the current is by a

factor of 400 for c-Si, 70 for a-Si:H, and 40 for CIGS larger than the critical mobility µcrit

needed to obtain 50 % of the current. This factor is independent of the non-radiative

lifetime τnr.
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Fig. 3.22: Critical mobility for crystalline silicon (c-Si), hydrogenated amorphous silicon

(a-Si:H), and Cu(In,Ga)Se2 (CIGS, with x = 0.26) versus non-radiative lifetime. The critical

mobility is inversely proportional to the non-radiative lifetime and saturates once the non-

radiative lifetime is much larger than the radiative lifetime τr of the respective material. At

a doping level NA = 5 × 1016 cm−3, it holds τr = 4.7 × 10−3 s for c-Si, τr = 6.2 × 10−5 s for

a-Si:H, and τr = 6.4× 10−8 s for CIGS. The saturation level depends linearly on the doping

concentration.

The analytically obtained critical mobilities according to Eq. (3.77) are included in

the figures as well (solid lines). Even though the modified lifetime model does not
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render the current correctly in the whole mobility and lifetime range, the analytical

approximations for the critical mobility are excellent.

From the integrated absorption spectra, one obtains the radiative lifetimes τr =

n2
i /(NAR0) with R0 according to Eq. (B.19). The radiative lifetimes τr for the different

materials are listed in Tab. 3.4 for a doping density NA = 5×1016 cm−3. For crystalline

silicon, it holds τr = 4.7×10−3 s. This value translates into the radiative recombination

constant B = R0/n
2
i = 4.25 × 10−15 cm3 s−1, which corresponds well to the values

reported in Ref. [73]. The radiative lifetime in amorphous silicon is τr = 6.2 × 10−5 s

which strongly depends on the bandtails of the utilized absorption spectrum. The

associated radiative recombination coefficient B = 3.2× 10−13 cm3 s−1. For CIGS, one

obtains τr = 6.4× 10−8 s and B = 3.1× 10−10 cm3 s−1 which is comparable to the value

of B = 7× 10−9 cm3 s−1 published in Ref. [74]

In analogy to the critical mobility with constant absorption coefficient depicted

in Fig. 3.11b, µcrit decreases with increasing carrier lifetime and saturates once the

radiative recombination limit is reached. For very low non-radiative lifetimes τnr ¿ τr,

µcrit is proportional to 1/τnr, i.e., the product of µcrit and τnr is constant. Therefore,

the critical mobility translates into a critical diffusion length

Lcrit =

√
kBTµcritτnr

q
=

1

kαα0

= Lα, (3.79)

which is identical to the average absorption length Lα of the solar spectrum.

Amorphous silicon and CIGS both feature very similar absorption lengths, and,

consequently, similar critical diffusion lengths. Crystalline silicon with the larger ab-

sorption length has a much larger critical diffusion length. The critical diffusion lengths

are listed in Tab. 3.4.

3.9.3 Discussion

This section compares and discusses the photovoltaic performance of the three materials

c-Si, a-Si:H, and CIGS as presented in Figs. 3.19a-d 3.20a-d, and 3.21a-d.

Crystalline silicon

Mono-crystalline silicon has a very high electron mobility µn = 1240 cm2( Vs)−1 [17].

With passivated surfaces, at a doping density NA = 5× 1016 cm−3, lifetimes of several
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hundreds of microseconds are attainable, (see for example Ref. [75]). Therefore, at such

lifetimes, insufficient transport is not an issue. All photo-generated charge carriers are

completely collected and the short circuit current has already reached its maximum

value. The diffusion lengths are in the range of several hundreds of microns [18], thus

by far surpassing the critical diffusion length Lcrit = 4.3 µm (cmp. Tab. 3.4). Figure

3.23a depicts the short circuit current of a crystalline silicon solar cell with textured

front surface versus the cell thickness. Short circuit currents above Jsc = 40 mA cm−2

are already achievable with a thickness of d = 20 µm. For non-radiative lifetimes

τnr ≥ 10 µs, the current is almost independent of the lifetime. Insufficient carrier

collection is only an issue in poly-crystalline silicon solar cells with lifetimes below

τ = 10 µs.

High efficiency silicon solar cells are limited by the open circuit voltage. The physical

limit is reached when Auger recombination dominates the lifetime. At a doping concen-

tration NA = 5×1016 cm−3 the Auger lifetime is τnr = 466 µs [76]. Figure 3.23b displays

the thickness-dependence of the open circuit voltage for different lifetimes (solid lines).

In the Auger limit, the maximum open circuit voltage at a thickness d = 200 µm is

Voc ≈ 750 mV (cmp. Ref. [77]). This limit is enhanced by another 50 mV by thinning

down the solar cell to a thickness of 20 µm. Existing record solar cells feature open

circuit voltages below 710 mV [78]. To achieve higher voltages, thinner solar cells with

perfect surface passivation are necessary. Another way to improve the voltage is the

usage of n-type silicon which is less prone to Shockley-Read-Hall recombination [79].

As Fig. 3.23c demonstrates, the converse thickness-dependence of Jsc and Voc leads to

an efficiency maximum at d ≈ 20 µm, which underlines the great potential for reducing

the consumption of expensive silicon.

For comparison, Figs. 3.23a-c also include the numerical results without PR (dashed

lines). The simulations unveil that the elaborate computations with PR are only nec-

essary for (unrealistically high) non-radiative lifetimes τnr > 1 ms and can be readily

neglected in physically relevant cases.

Amorphous silicon

Existing amorphous silicon solar cells suffer from very low short circuit currents of Jsc ≤
17.5 mA cm−2 [80], even though pin structures are used to enhance carrier collection.

Electron mobilities in intrinsic a-Si:H are in the range of µn = 1 − 5 cm2( Vs)−1 (see
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Fig. 3.23: Short circuit current Jsc (a), open circuit voltage Voc (b), and efficiency η of a

crystalline silicon solar cell versus the cell thickness d for different non-radiative lifetimes τnr

from τnr = 10µs to τnr = 10 ms. The doping concentration is NA = 5× 1016 cm−3, the front

surface is textured and all other parameters are identical to the parameters used in Fig. 3.19.

Solid lines are the results including PR and dashed lines are the results without PR. While

Jsc increases with increasing thickness, Voc decreases because of increasing non-radiative bulk

recombination. Therefore, the efficiency features a maximum at d ≈ 20µm.

for example Refs. [81, 82]). With the critical mobility µrad
crit = 8.5 × 10−3 cm2( Vs)−1,

which allows to collect 90 % of the current, these mobilities would be high enough to
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guarantee complete carrier collection in the radiative recombination limit if the device

were only limited by electron transport.

However, when looking at hole mobilities, one finds such low values that holes might

limit carrier collection even when holes are majority carriers. For hole mobilities we

have to distinguish between the band mobility µband
p that accounts for a mobile hole

above the mobility edge and the effective drift mobility µeff
p that takes into account

trapping of the carriers in the valence band tails during their transport to the electrical

terminal [83]. The band mobility is µband
p = 0.3 cm2( Vs)−1 [83] or even much larger [84].

However, this quantity is irrelevant for the practical working conditions of the device.

Values for the relevant drift mobility µeff
p range between few times 10−4 cm2( Vs)−1

and few times 10−2 cm2( Vs)−1 [83, 84]. When considering a pin model that is based

on non-radiative recombination Schiff found a critical mobility of about 1 cm2( Vs)−1

which by far exceeds the measured values for µeff
p [5, 83], and therefore proposed the

term ’low-mobility solar cells’ [5]. As the current considerations show, only the best

of the measured values are above the critical value µrad
crit = 8.5 × 10−3 cm2( Vs)−1 that

allows to collect 90 % of the available short circuit current density (cf. Fig. 3.22b).

Therefore, a-Si:H is a photovoltaic material which comes close to having an inherent

mobility problem.

Cu(In,Ga)Se2

Solar cell absorbers made from Cu(In,Ga)Se2 (CIGS) exhibit mobilities in the range

of 1 − 20 cm2( Vs)−1 [85].9 Therewith, in the radiative recombination limit, CIGS is

not being limited by insufficient carrier collection. The critical mobility to achieve

90 % of the maximal short circuit current in the radiative recombination limit is µrad
crit =

0.08 cm2( Vs)−1.

Whether existing devices are limited by insufficient carrier collection depends on the

lifetime. Due to the extremely low radiative lifetime τr = 64 ns, the material is very

tolerant towards non-radiative recombination. Although reported lifetimes are in the

low ns range [74, 87], measured diffusion lengths are in the range of 0.5 − 1.5 µm [6]

9The values reported in Ref. [85] are majority carrier (hole) mobilities. However, the determination

of the minority carrier mobilities is rather difficult. Therefore, I use the hole mobilities as a rough

estimate for the electron mobilities. In fact, since electrons mostly possess a higher mobility than

holes, the values should be regarded as lower limits. An overview is given in Ref. [86]
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and thus exceed the critical diffusion length Lcrit = 109 nm. Consequently, insufficient

carrier collection is not a problem (for a review of the topic see Ref. [86]).

Moreover, carrier collection is enhanced by collection in the space charge region and

by band gap grading [88]. The grading also leads to an effective passivation of the

interface to the back contact.

In total, CIGS solar cells are limited by their open circuit voltage rather than by

carrier collection [89]. In order to reach higher efficiencies, higher minority carrier

lifetimes are the top priority.

3.10 Limitations to the model

Restricting the computation of solar cell efficiencies to a mere minority carrier problem

relies on the assumption that the majority carrier concentration is much larger than

the minority carrier concentration throughout the solar cell. This situation is termed

’low-level injection’.

The maximum minority carrier concentration is achieved in the radiative recombi-

nation limit under open circuit conditions. This is because (i) any additional recombi-

nation and (ii) the extraction of carriers under non-open circuit conditions both result

in reduced carrier concentrations.

If we neglect thickness-dependent voltage enhancement then for given illumination

conditions, the maximum open circuit voltage in the radiative recombination limit is

given by the Shockley-Queisser limit Voc = V SQ
oc . In a p-type semiconductor the major-

ity carrier (hole) concentration is equal to the doping concentration NA. Therewith, it

holds for the maximum minority carrier (electron) concentration

nmax =
n2

i

NA

exp

(
qV SQ

oc

kBT

)
. (3.80)

Therefore, the minimum doping concentration necessary to fulfill the low-level injection

condition nmax < NA reads as

Nmin
A = ni exp

(
qV SQ

oc

2kBT

)
. (3.81)

For the above materials, the minimum doping concentrations are Nmin
A = 2.5 ×

1017 cm−3 for crystalline silicon, Nmin
A = 2 × 1018 cm−3 for amorphous silicon, and
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Nmin
A = 1.6×1016 cm−3 for CIGS. Therefore, it is obvious that the doping concentration

NA = 5 × 1016 cm−3 is too low for crystalline and amorphous silicon once the open

circuit voltage approaches the SQ limit. In other words, the computations presented

in Figs. 3.19-3.21 are only valid below a voltage V max
oc = (2kBT/q)ln (NA/ni). For

NA = 5 × 1016 cm−3, it holds V max
oc = 0.797 V for c-Si, V max

oc = 1.28 V for a-Si:H, and

V max
oc = 0.98 V for CIGS.

In that case the problem cannot be treated as a mere minority carrier problem any

more. Instead, it requires the simultaneous solution of the generalized drift-diffusion

equations for electrons and holes including the photon recycling integrals. At that

point, the problem is not linear anymore and the system of equations needs to be

solved iteratively. This task, however, will be addressed in a later publication [90]

which also encompasses the coverage of pin structures.

3.11 Conclusion

This chapter has pointed out the importance of carrier transport for the efficiency of

solar cells. Even in the radiative recombination limit the efficiency is reduced drastically

once the minority carrier mobility drops below a critical mobility.

In crystalline silicon solar cells, insufficient transport is neither a problem in the

radiative limit nor in existing devices. In CIGS, mobilities are at most two orders of

magnitude above the critical mobility in the radiative recombination limit. Complete

carrier collection is maintained only as long as non-radiative lifetimes are only one or

two orders of magnitude below the radiative lifetime. In amorphous silicon, however,

drift mobilities of holes are in the range of the critical mobility even in the radiative

limit and, therefore, a-Si:H must be considered as having an inherent mobility problem.

While existing solar cells made of crystalline silicon rely almost exclusively on dif-

fusive carrier collection, solar cells made of amorphous silicon utilize pin structures to

enhance carrier collection and overcome mobility problems (see for example Ref. [5]).

In CIGS solar cells, band gap gradings play an analogous role [91].

However, such collection enhancement by means of built-in (quasi-)electric fields is

not possible in excitonic solar cells that rely on the diffusive transport of coupled (and

therefore neutral) electron/hole pairs (excitons) [92,93]. This explains, why organic or

dye-sensitized solar cells as examples of excitonic solar cells suffer from extremely low
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short circuit currents although they feature excellent absorptance and lifetimes (for

reviews see Refs. [8, 94, 95]). While organic materials are well-suited for light-emitting

diodes where transport is not such a big issue [96], their utilization as photovoltaic

absorber materials is hampered by the limited diffusive transport of low-mobility ex-

citons.10 In such devices, insufficient transport not only poses a problem for existing

devices but also most probably limits the maximum attainable efficiency in the ra-

diative recombination limit. It is in excitonic solar cells, where the considerations

presented in this chapter unfold their real importance.

10Since doping is irrelevant in excitonic solar cells, the model will not be limited by such strict

restrictions as imposed on pn-junction solar cells, either.



Chapter 4

Band gap fluctuations

Abstract: This chapter investigates the influence of lateral fluctuations of

the fundamental band gap on the global light absorptance and emission spectra

of spatially inhomogeneous semiconductors. A model that assumes a Gaussian

distribution for the local band gaps yields closed-form expressions for the spectral

absorptance and emission. Band gap fluctuations broaden the absorption edge of

the fundamental band gap as well as the associated emission peak. The spectral

position of the photoluminescence emission peak depends on the length-scale of

the fluctuations in relation to the characteristic charge carrier transport length.

The model is applied to experimental results from Cu(In1−x,Gax)Se2 thin films.

The films feature band gap fluctuations with standard deviations between 15 meV

and 65 meV which would lead to losses in the open circuit voltage of solar cells

made from these films in the range of 5 to 80 mV. The fact that the pure

ternary compounds CuInSe2 and CuGaSe2 exhibit smaller standard deviations

than their quaternary alloys indicates alloy disorder as one possible source of

band gap inhomogeneities. The length-scale of the observed fluctuations turns

out to be much smaller than the minority carrier diffusion length. Hence, the

fluctuations occur on a length-scale below 100 nm.

The previous chapter has analyzed the influence of finite carrier mobility on the

radiative efficiency limit of pn-junction solar cells. The approach was based on the

analysis of the radiative interaction within the solar cell as well as between the solar

cell and its ambience. Such radiative interaction consists of (i) light absorption and

(ii) light emission.

The absorption of light at a given photon energy E only depends on optical material

98
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properties, i.e. the complex refractive index. Primarily important is the imaginary part

expressed as the absorption coefficient α(E), which is a function of the band gap energy

Eg of the photovoltaic absorber material (cmp. Tab. 3.2). The emission of light on the

other hand does not only depend on optical properties but also on local charge carrier

concentrations, i.e. the chemical potential µ.

In the last chapter, the solar cell featured completely homogeneous material proper-

ties throughout the entire device. Low minority carrier (electron) mobilities, however,

caused non-constant carrier profiles in the direction of current transport, i.e. a vertical

spatial variation of the chemical potential over the depth of the solar cell. Therewith,

light emission (and consequently, the radiative power conversion efficiency) turned out

to depend on the carrier mobility.

This chapter puts a different aspect of the problem into the center of attention,

namely material inhomogeneities in form of lateral fluctuations of the band gap energy,

as they occur, for instance, in polycrystalline compound semiconductors.

In a manner of speaking, this problem is complementary to the low mobility problem

of the previous chapter, where the device had a homogeneous band gap but featured

vertical spatial variations of the chemical potential. Now, in contrast, the carrier

mobility is assumed to be sufficiently large to guarantee a constant chemical potential

throughout the absorber depth. Laterally, however, the band gap fluctuations under

certain conditions induce lateral variations of the chemical potential as well.

As will be shown below, the lateral band gap inhomogeneities influence the ab-

sorptance and emission spectrum of the semiconductor acting as photovoltaic absorber

material. The emission spectrum additionally depends on the lateral variations of the

chemical potential. Anticipating the results of the following analysis, the extent to

which band gap fluctuations lead to fluctuations of the chemical potential depends on

the length-scale of the band gap fluctuations in comparison to the minority carrier

diffusion length.

This chapter investigates the influence of this length-scale relationship on the absorp-

tion and emission spectra of semiconductors with band gap fluctuations. It presents an

analytical statistical model that extends an earlier approach [97,98] in order to extract

information about extent and length-scale of fluctuations from global absorption and

photoluminescence (PL) measurements. Both, absorptance and emission spectra, are

increasingly broadened by increasing band gap inhomogeneities. While the absorp-
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tance spectra are not influenced by the length-scale of the band gap fluctuations, the

length-scale affects the spectral position of the emission peak.

The chapter is structured as follows. To begin with, I shortly delineate the concept

of band gap fluctuations as a form of spatial disorder in a semiconductor’s lattice

structure and clarify the correlation between band gap fluctuations and other forms of

disorder.

The next part presents the theoretical model of the band gap fluctuations. First,

the effect of fluctuations on the absorptance spectrum is analyzed, followed by the

analysis of the effect on the emission spectrum. Whereas the effect on the absorptance

sptectrum is independent of the length-scale of the fluctuations, the length-scale signif-

icantly determines the emission spectrum. For a comprehensible analysis, I distinguish

between fluctuations that occur on a small, a large, and an intermediate length-scale.

A numerical simulation reveals that the minority carrier diffusion length is the criti-

cal parameter on which the categorization of the fluctuations as being ’small-scale’ or

’large-scale’ is based.

The last part of the chapter applies the model to experimental data from polycrys-

talline Cu(In1−x,Gax)Se2 thin films commonly used as photovoltaic absorber material

in ZnO/CdS/Cu(In,Ga)Se2 heterojunction solar cells [6]. Such Cu(In1−x,Gax)Se2 films

are likely to display band gap inhomogeneities due to the high degree of disorder

caused by structural defects, spatial fluctuations of stoichiometry and/or alloy com-

position [86, 99, 100]. Band gap inhomogeneities (see section A.1 and Ref. [98]) or

inhomogeneities of the electronic properties [101–103] in such polycrystalline thin films

result in reduced power conversion efficiency for solar cells made from such absorbers.

The quantitative statistical analysis of luminescence/absorption spectra yields band

gap fluctuations expressed by standard deviations σg in a range of σg = 15 meV up

to σg = 65 meV. In the composition range x = 0.2 to x = 0.5 that is technologically

relevant for Cu(In1−x, Gax)Se2 thin film solar cells these inhomogeneities would lead

to losses in the open circuit voltage of up to 80 mV. From the analysis I find that the

observed band gap fluctuations have a length-scale that is at least ten times smaller

than the minority carrier diffusion length in the material.
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4.1 Disorder and band gap fluctuations

The well-defined band gap energy of a crystalline semiconductor results from the perfect

spatial order, i.e. from the periodicity in the semiconductor’s lattice. Any symmetry-

breaking disorder in the lattice, i.e. disruption in the crystal’s periodicity, splits de-

generate electronic states such as the band edges into separate levels and leads to the

formation of states in the forbidden gap [104]. These states are observable in the optical

absorptance and emission spectra and are commonly described as Urbach tails [105].

The classical interpretation regards band tail states as the result of local disorder lead-

ing to localized states in the forbidden gap. However, tail-like absorption and emission

can also result from spatial fluctuations of the fundamental band gap [106–108], which

can in principle occur on any length-scale.

4.2 Band gap fluctuations model

This section develops a model that describes the absorptance and emission spectra

of inhomogeneous semiconductors with lateral fluctuations of the fundamental band

gap. Note that besides the band gap fluctuations, inhomogeneities due to a spatially

inhomogeneous distribution of charges (electrostatic potential fluctuations) have an ad-

ditional influence on the final performance of the material in the finished solar cell [86].

However, only band gap fluctuations are detectable by the optical analysis performed

in this paper.

Figure 4.1 depicts the general situation of a semiconductor with band gap fluctu-

ations under illumination. The valence band energy E loc
V and the conduction band

energy Eloc
C fluctuate independently as a function of the spatial coordinate x. As a

consequence, the local band gap energy Eloc
g = Eloc

C − Eloc
V fluctuates as well. In the

simplest case, the local absorptance aloc will only depend on E loc
g .

In contrast to the previous chapter, the current approach neglects the spatial reso-

lution in the direction normal to the surface of the semiconductor. Since charge carrier

transport is assumed to be sufficiently ideal to result in a constant chemical poten-

tial throughout the whole absorber depth, the generation profile of carriers is of no

interest. Instead of the microscopic absorption coefficient α(E) only the macroscopic

absorptance a(E) is needed.
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Fig. 4.1: Band diagram of a semiconductor with fluctuations of the local band gap Eloc
g =

Eloc
C − Eloc

V . These fluctuation of Eloc
g lead to fluctuations of the chemical potential µloc =

Eloc
Fn − Eloc

Fp .

The illumination of the semiconductor causes a splitting of the local quasi-Fermi

levels E loc
Fn and Eloc

Fp of electrons and holes. Because of the spatial variations of the

band edges, the excess electrons and holes will move within their lifetime towards the

minima or maxima of their respective bands. Therefore, Eloc
Fn and Eloc

Fp will have a

dependence on x that differs from that of the band edges. This difference is especially

important when considering the local chemical potential µloc = E loc
Fn −Eloc

Fp that defines

the photon emission by radiative electron/hole recombination.

For the sake of simplicity, I neglect tunnelling. Therefore, the radiative recombina-

tion of electron/hole pairs is a strictly local process. Moreover, this chapter assumes

that the fluctuations of the band edges are small enough that even in regions with

small band gap, the quasi-Fermi levels are more than a couple kBT away from the

band edges. Therewith, all emission of radiation remains spontaneous and stimulated
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emission of light can be neglected.

4.2.1 Light absorption

Let us assume a locally well-defined band gap Eloc
g . In a first order approach, the local

absorptance aloc will be given by the step-function aloc(E, E loc
g ) = 1 for photon energies

E ≥ E loc
g and aloc = 0 for E < E loc

g . Note that I use the term ’local’ for a small region

with well-defined constant band gap E loc
g . The term ’global’ applies to a considerably

larger region comprising a statistically significant number of regions with different local

band gaps.

Following the statistical approach of Refs. [97, 98], I use a Gaussian distribution

PG(Eloc
g ) of the local band gaps Eloc

g around a mean band gap Ēg with a standard

deviation σg as given by

PG(Eloc
g ) =

1

σg

√
2π

exp

(
− (

Eloc
g − Ēg

)2

2σ2
g

)
. (4.1)

The spatially averaged, global, absorptance aglob is given by the integral of the local

absorptance spectraum over the surface area A

aglob(E) =
1

A

∫

A

aloc
(
E,E loc

g (x)
)
dx. (4.2)

Since the local band gap is the only independent variable determining the absorptance,

the areal integral in Eq. (4.2) can be replaced by the integral over the probability

distribution PG(Eloc
g ) [98]. The global absorptance is then calculated from

aglob
(
E, Ēg, σg

)
=

∫ ∞

−∞
aloc

(
E, E loc

g

)
PG(Eloc

g )dE loc
g

=

∫ E

−∞
PG(E loc

g )dEloc
g

=
1

2
erfc

(
Ēg − E√

2σg

)
. (4.3)

Note that the complementary error function in Eq. (4.3) yields the step function at

E = Ēg in the limit σg → 0. With increasing σg, i.e. with an increasing degree of

non-uniformity, the absorptance spectrum is increasingly smeared out as depicted in

Fig. 4.2a 1.

1I use the lower integration limit −∞ only to simplify the solution of the integral and to obey the
normalization of the probability function. Assuming the Gaussian probability (4.1) for Eloc

g < 0 is

justified as long as the mean band gap Ēg is much larger than the standard deviation σg.
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Fig. 4.2: Influence of the standard deviation σg on a) the global absorptance spectrum,

b) the global spectrum in the case of small-scale fluctuations, and c) the global emission

spectrum for large-scale fluctuations. The absorptance curves are calculated from Eq. (4.3).

The emission curves are calculated from Eq. (4.28) with β = 0 in the case of small-scale

fluctuations and with β = 1 in the case of large-scale fluctuations. The average band gap is

Ēg = 1 eV. A higher degree of inhomogeneity in terms of higher σg leads to a broadening of

the spectra. For small-scale fluctuations, the emission peak is shifted towards lower energies

(b), whereas the maximum emission of large-scale fluctuations is at the mean band gap energy

(c).

4.2.2 Light emission

Light emission of a homogeneous semiconductor is linked to its absorptance via Würfel’s

generalization of Planck’s law [15]. In an inhomogeneous semiconductor, this relation

holds on a local level. The locally emitted photon flux φloc
r per energy interval dE is
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related to the local absorptance aloc via

φloc
r (E)dE =

2π

h3c2

aloc(E, E loc
g )E2

exp
(

E−µloc

kBT

)
− 1

dE, (4.4)

where h is Planck’s constant, c is the speed of light, kB is Boltzmann’s constant and T

is the absolute temperature. Note that here and in the following all photon fluxes and

electron currents are understood as particle current densities per unit surface area.

In analogy to the case of the absorptance spectrum, the global emission spectrum,

i.e. the globally emitted photon flux per energy interval

φglob
r (E)dE =

2π

h3c2
dE × (4.5)

1

A

∫

A

aloc
(
E,E loc

g (x)
)
E2exp

(
−E − µloc(x)

kBT

)
dx

is obtained by the areal integral over the local emission spectra. Note that Eq. (4.5) uses

the Boltzmann approximation of Eq. (4.4), which is valid as long as E − µloc À kBT .

Unlike in Eq. (4.2), we now have two variables, E loc
g (x) and µloc(x) that depend

on the spatial coordinate x. Hence, to solve the integral in Eq. (4.5), we would have

to calculate µloc(x) for an explicitly given distribution Eloc
g (x). A rigorous treatment

would have to solve the two- or three-dimensional continuity equation for the minority

and majority charge carriers (cmp. for instance Ref. [109]).

This chapter chooses a different approach by postulating that µloc is reasonably well

approximated by

µloc = µloc(E loc
g ). (4.6)

Thus, we reduce Eq. (4.5) again to an integration over the band gap distribution ac-

cording to

φglob
r (E)dE =

2π

h3c2
dE

∫ E

−∞
PG(Eloc

g )E2exp

(
−E − µloc(Eloc

g )

kBT

)
dE loc

g . (4.7)

Note that the assumption made in Eq. (4.6) is necessary to transform the geometrical

transport problem hidden in Eq. (4.5) into the statistical integral of Eq. (4.7). I am

aware that Eq. (4.6) is not strictly fulfilled for any pair of Eloc
g (x), µloc(x) but represents

a correlation that holds when averaging over large areas.

In the following, I introduce two limiting cases for which Eq. (4.7) provides the

exact solution of Eq. (4.5). These limiting cases are defined by the comparison of the
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characteristic length Lg of the band gap fluctuations with the characteristic length Lµ

of the charge carrier transport. Note that the definition of Lµ is not straight forward

in the general case where transport of both kinds of carriers is equally important.

However, in the situation where one kind of carriers is clearly identified as minorities,

Lµ equals the minority carrier diffusion length Ln. For the treatment of the general

statistical problem, we define the quantities Lg and Lµ as the autocorrelation lengths

of Eloc
g and µloc as shown in section 4.2.2.3. In analogy to Ref. [110], I distinguish three

cases:

i) Small-scale fluctuations, Lg ¿ Lµ: In this situation, the flow of carriers will lead

to a complete flattening of the quasi-Fermi levels. Consequently, the chemical

potential is constant as sketched in Fig. 4.3a.

ii) Large-scale fluctuations, Lg À Lµ: Here, transport of carriers within their lifetime

can be readily neglected. All photo-generated carriers recombine at the location

of their generation. Consequently, the chemical potential will follow the band

gap energy as sketched in Fig. 4.3b.

iii) Intermediate length-scale, Lg ≈ Lµ: In this situation, µloc only reproduces the

features of E loc
g that have a small spatial frequency as sketched in Fig. 4.3c.

4.2.2.1 Small-scale fluctuations

If the length-scale of band gap fluctuations is very small compared to Lµ, we have

µloc = µ0 = const. (4.8)

Consequently, the integration of Eq.(4.7) is carried out in analogy to Eq.(4.3) and we

obtain the global spectral emission

φglob
r (E)dE =

π

h3c2
erfc

(
Ēg − E√

2σg

)
E2exp

(
−E − µ0

kBT

)
dE. (4.9)

Steady state During PL measurements, the sample is in a global steady state. In

steady state, no external currents are flowing and for the splitting of the quasi-Fermi

levels it holds µloc = µ = µss (cf. Fig. 4.3a). In this case, the sum of radiative and non-

radiative recombination current Jrec = Φglob
r +Jnr is equal to the impinging photon flux
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Fig. 4.3: Sketch of a semiconductor with spatial variations in the local band gaps Eloc
g

under illumination. Also depicted are the resulting chemical potentials µloc for the case of a)

small-scale fluctuations, where the typical fluctuation length Lg of the band gap fluctuations

is much smaller than the characteristic transport length Lµ, b) large-scale fluctuations where

Lg is much larger than Lµ, and c) fluctuations with intermediate length-scale. In the case of

large-scale fluctuations (b), the variations in µloc reproduce the variations in Eloc
g . For smaller

length-scales of the band gap fluctuations (c), compensating currents level out differences in

the chemical potential. In case (a), µloc is constant throughout the entire semiconductor.

Φγ. If one type of carriers is clearly identified as minorities, the ratio of non-radiative

and radiative recombination current is determined by the ratio ϑr = Jnr/Φ
glob
r = τr/τnr

of radiative lifetime τr and non-radiative lifetime τnr. Therewith, the steady state
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condition Jrec = Φγ yields

Φglob
r = (1 + τr/τnr)

−1 Φγ ≈ Φγ

ϑr

, (4.10)

where the last term holds if τr À τnr. Following [98], the global radiative recombination

current

Φglob
r =

∫ ∞

0

φglob
r (E)dE =

2πkBT

h3c2
E2

1exp

(
−2

(
Ēg − µ

)
kBT − σ2

g

2 (kBT )2

)
, (4.11)

where E2
1 is given by

E2
1 =

(
Ēg + kBT

)2
+ (kBT )2 − σ2

g(2Ēg/kBT + 1) + σ4
g/(kBT )2, (4.12)

is obtained from integrating Eq. (4.9) over the photon energy E. Using the steady

state condition Eq. (4.10) and solving for µ = µss allows us to derive an expression for

µ = µss under steady state conditions

µss = Ēg + kBT ln

(
c2h3Φγ

2πϑrkBTE2
1

)
− σ2

g

2kBT
. (4.13)

By inserting Eq. (4.13) into Eq. (4.9) we obtain the spectral emission under steady

state conditions

φglob
r (E)dE =

Φγ

2ϑrkBTE2
1

exp

(
2ĒgkBT − σ2

g

2 (kT )2

)
×

erfc

(
Ēg − E√

2σg

)
E2exp

(−E

kBT

)
dE. (4.14)

4.2.2.2 Large-scale fluctuations

In the large-scale situation, the photogenerated charge carriers recombine before mov-

ing to (distant) regions with different band gap Eloc
g . Because of this lack of lateral

interaction, each region has to be in a steady state condition, i.e. locally, the total

recombination current J loc
rec equals the excitation flux Φγ

2. Now, the steady state

condition holds on a local as well as on a global level.

2During PL measurements the sample is illuminated with laser light at a wavelength λ = 488 nm

which corresponds to a photon energy E = 2.54 eV that is much larger than the common average

band gaps of approx. 1.2 eV. Therefore, the local excitation flux Φloc
γ = Φγ is roughly independent of

the local band gap Eloc
g .
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Locally, radiative as well as non-radiative recombination currents depend on the

band gap. However, in the case of bulk recombination both currents obey roughly

the same dependency on the band gap. Therewith, the ratio of local radiative and

non-radiative recombination current is independent of the band gap Eloc
g . For a doped

semiconductor this ratio is determined by the ratio ϑr of radiative lifetime τr and

non-radiative lifetime τnr, which are roughly independent of the band gap (cf. section

4.3.1).

The overall local radiative recombination current

Φloc
r =

∫ ∞

E

φloc
r (E,E loc

g )dE =
Φγ

ϑr

= const. (4.15)

is obtained by integrating Eq. (4.4) over the photon energy dE and equals a con-

stant fraction of the excitation flux. This equation allows us to compute the hitherto

unknown dependence of the local chemical potential µloc on E loc
g under steady state

conditions with µloc = µloc
ss . Inserting Eq. (4.4) into Eq. (4.15) yields

Φloc
r =

2π

h3c2

∫ ∞

Eloc
g

E2exp

(
−E − µloc

ss

kBT

)
dE. (4.16)

Solving this integral and rearranging the result leads to

µloc
ss (Eloc

g ) = Eloc
g + kBT ln

(
h3c2Φγ

2πϑrkBT

)
(4.17)

−kBT ln
({

(Eloc
g + kBT )2 + (kBT )2

})
.

The knowledge of µloc
ss (E loc

g ) now allows us to compute the spectral dependence of the

global emission φglob
r (E) with help of Eq. (4.7). The resulting integral can only be

solved numerically. However, approximating Eloc
g with Ēg in the logarithmic term in

Eq. (4.17) leads to a simple linear relationship

µloc
ss (Eloc

g ) = Eloc
g − const. (4.18)

In the next section I use a generalization of this approach to derive an expression for the

emission under steady state conditions for any length-scale of the band gap fluctuations

with respect to the characteristic transport length.

4.2.2.3 Intermediate length-scale

The last two sections have shown that the splitting of the quasi-Fermi levels is constant

µloc = µ0 in the case of small-scale fluctuations and that it is roughly equal to the local
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band gap reduced by a constant according to µloc
ss = E loc

g −const in the case of large-scale

fluctuations. In the general case of intermediate length-scales, the simplest approach is

to assume a linear superposition of these two cases namely to assume that µloc consists

of a constant part and a part that depends linearly on the local band gap according to

µloc = µ0 + βEloc
g (4.19)

where the local chemical potential consists of a constant part µ0 and a part that is

linearly fluctuating with Eloc
g . The constant factor β with 0 ≤ β ≤ 1 is the quantity that

contains the information about the length-scale of the fluctuations. In the following I

will show that β is equal to the ratio σµ/σg of the standard deviations for band gap

and chemical potential. Subsequently, I derive an expression that relates β to the ratio

Lµ/Lg of the typical length-scales of the respective fluctuations.

Inserting Eq. (4.19) into Eq. (4.1) yields

PG(E loc
g ) =

1

σg

√
2π

exp

(
− (

µloc − µ0 − βĒg

)2

2β2σ2
g

)

=
β

σµ

√
2π

exp

(
− (

µloc − µ̄
)2

2σ2
µ

)
= βPG(µloc) (4.20)

and therewith the probability density P (µloc) of the chemical potential which is de-

termined by the mean chemical potential µ̄ = µ0 + βĒg and the standard deviation

σµ = βσg. Thus, it follows

β = σµ/σg. (4.21)

Next, I derive an expression that relates σµ/σg to the length-scale of the band gap

fluctuations. As pointed out above, I will not attempt to find the exact solution of the

drift-diffusion equation. Instead I provide an approximate approach that makes use of

the Fourier transforms for stochastic processes3.

Basically, the spatial distribution of the chemical potential can be regarded as a

filtered distribution of E loc
g where the fractions with large spatial frequency have been

cut off. By using some useful theorems of Fourier transforms for stochastic processes

[111] we arrive at the desired relationships between standard deviations and fluctuation

lengths.

3For details concerning Fourier transforms of stochastic processes, see, e.g., Ref. [111].
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The spatial distribution of band gaps is not entirely uncorrelated but instead obeys

an autocorrelation function Rg which states that the probability to find a certain band

gap E loc
g at a given position will also depend on the neighboring band gaps. This

spatial correlation becomes immediately plausible by considering the origin of band

gap fluctuations. For instance, the alloy composition may exhibit lateral fluctuations.

However, there are always compensating processes that prohibit too steep variations.

Mostly, local interaction is restricted to the immediate vicinity of a given location.

With increasing distance the correlation decreases strongly. To obtain integrable func-

tions 4 I assume

Rg(x) = exp

(−x2

L2
g

)
, (4.22)

where x is the distance vector between the two correlated locations and the correlation

length Lg describes the length-scale of the fluctuations. Then the power spectrum of

the distribution

Sg(k) =

∫ ∞

−∞
exp (−ikx) Rg(x)dx

=

(
Lg√

2

)dim

exp

(
−L2

gk
2

4

)
, (4.23)

where k is the spatial frequency, is given by the spatial Fourier transform of Rg (cf.

Ref. [111], p. 319). Depending on the dimension dim of the fluctuations, the integral

in Eq. (4.23) is multidimensional. Integrating over the whole power spectrum yields

the standard deviation

σ2
g =

1

2π

∫ ∞

−∞
Sg(k)dk (4.24)

as a measure for the overall power contained in the fluctuations (for a mean band gap

Ēg = 0) [111, p. 106, 288].

The advantage of using Fourier transforms is that we are now able to deduce the

power spectrum of the chemical potential µloc by applying a filter to the power spec-

trum Sg. If the length-scale of the band gap fluctuations is too short than the chemical

potential does not reproduce the fluctuations exactly but only to an alleviated degree.

4Other approaches such as Rg(x) = exp
(
−x
Lg

)
qualitatively lead to equivalent results but do not

provide analytic solutions for fluctuations that occur in more than one dimension.
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In the spatial frequency space, this means that band gap fluctuations with high spa-

tial frequency are not reproduced by the chemical potential. Effectively, the power

spectrum of the chemical potential is the result of applying a low-pass filter to the

power spectrum Sg of the band gap distribution. The relevant quantity determining

the filter is the correlation length of the chemical potential Lµ. Band gap fluctuations

with a higher spatial frequency can not be reproduced and are cut off by the filter. At

the moment, Lµ is an unknown quantity. However, as will be shown in section 4.3, Lµ

equals the minority carrier diffusion length Ln if one type of carriers is clearly identified

as minorities. In analogy to Eq. (4.23) I assume a Gaussian filter

F (k) = exp
(−L2

µk
2/4

)
(4.25)

and can thus compute the standard deviation of µloc as

σ2
µ =

1

2π

∫ ∞

−∞
exp

(
−L2

µk
2

4

)
Sg(k)dk. (4.26)

Performing the integrations in Eq. (4.24) and Eq. (4.26) and combining the two equa-

tions yields the length-scale coefficient

β =
σµ

σg

=
1

(
(Lµ/Lg)

2 + 1
)dim/4

(4.27)

as a function of the length-scale ratio. Here, dim denotes the dimension of the band

gap fluctuations, that is dim = 2 in the case of lateral fluctuations5. It is readily seen

from Eq. (4.27) that we have β = 0 for Lg ¿ Lµ (small-scale fluctuations) and β = 0

for Lg À Lµ (large-scale fluctuations). Thus, Eq. (4.19) represents a general approach

that applies to all length-scales.

Inserting Eq. (4.19) into Eq. (4.7) and integrating over Eloc
g yields the global emission

spectrum

φglob
r (E)dE =

π

h3c2
erfc

(
Ēg − E + βσ2

g/kBT√
2σg

)
× (4.28)

E2exp

(
−E − µ0 − βĒg

kBT
+

β2σ2
g

2(kBT )2

)
dE.

5Note that the choice of the auto-correlation function Rg and especially the filter for µloc is some-

what arbitrary and is not based on physical reasoning. The analytical expression Eq. (4.27) is an

approximation that is not applicable if the actual autocorrelation function and filter function deviate

significantly from the above assumptions.
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After integration over the photon energy E and by using the global steady state con-

dition Eq. (4.10) we find

µss
0 = (1− β)Ēg + kBT ln

(
h3c2Φγ

2πϑrkBTE2
2

)
− (1− β)2σ2

g

2kBT
(4.29)

with

E2
2 = (Ēg + kBT )2 + (kBT )2 + (1− β)2σ4

g/(kBT )2

+σ2
g

(
2β − 1− 2Ēg(1− β)/kBT

)
. (4.30)

Inserting these expressions into Eq. (4.28) finally results in the global emission spektrum

φglob
r (E)dE =

ϑrΦγ

2kBTE2
2

exp

(
2ĒgkBT − σ2

g

2(kBT )2

)
× (4.31)

erfc

(
Ēg − E + βσ2

g/kBT√
2σg

)
E2exp

(
− E

kBT

)
dE.

With Eq. (4.31) we now have an expression that describes the emission spectrum for

a semiconductor with inhomogeneous band gap for all possible length-scales of the band

gap fluctuations. In the limit of small-scale fluctuations with Lg ¿ Lµ and thus β = 0,

Eq. (4.31) turns into Eq. (4.14). In the case of large-scale fluctuations with Lg À Lµ and

β = 1, the approach (4.19) which results in Eq. (4.31) does not yield the exact situation

as described by Eq. (4.17) where all subdomains are independently under steady state

conditions. Even though the sample is under global steady state conditions, the local

steady state conditions are not necessarily fulfilled. However, Eq. (4.31) provides a

reasonable approximation which is valid as long as σg ¿ Ēg. Figure 4.4 demonstrates

that for a medium band gap Ēg = 1 eV the differences between the emission spectra

according to the numerical solution of Eq. (4.7) with µloc given by Eq. (4.17) on the one

hand and the analytical approximation Eq. (4.31) one the other hand are negligible for

σg < 100 meV.

4.2.3 Discussion

Figure 4.2b depicts the emission current in the case of small-scale band gap fluctu-

ations according to Eq. (4.14) with Ēg = 1 eV and σg = 50 meV and 100 meV. The

figure shows how band gap fluctuations with the resulting broadening of the absorption

transition also broaden the emission peak. Due to the exponential dependence of the
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Fig. 4.4: Luminescence spectra in the case of large-scale fluctuations. Comparison between

numerical solution of Eq. (4.7) with µloc = µloc
ss according to Eq. (4.17) (dashed lines) and the

analytical approximations Eq. (4.31) with β = 1 (solid lines) for Ēg = 1 eV and σg = 50meV

or 100 meV. For standard deviations σg larger than 100 meV the difference between the

analytical approximation and the the numeric solution becomes more pronounced.

emission spectrum on the photon energy, a small increase of the absorption at lower

energies results in an amplified increase of the corresponding emission, whereas a small

increase of the absorption at higher energies results only in a reduced increase of the

emission. Therefore, the position of the emission peak is shifted towards lower energies

for more inhomogeneous samples.

Figure 4.2c displays the emission spectrum for large-scale fluctuations according to

Eq. (4.31) with β = 1. As in the case of small-scale fluctuations, the emission peak

of an increasingly inhomogeneous sample is broadened. But whereas small-scale band

gap fluctuations lead to a shift of the emission peak towards lower photon energies,

large-scale fluctuations leave the position of the peak unchanged at the average band

gap Ēg.
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Note that for identical σg the only difference between the spectra in Figs. 4.2b and

4.2c is the position of the peak. Spectral shape and magnitude of the spectra and, as a

consequence, the integrated emission spectra are the same. Since both cases are under

steady state conditions, the global recombination current is equal to the impinging

photon flux and it holds in all cases Φglob
r = Φγ/ϑr according to Eq. (4.10).

Therefore, the position of the emission peak relative to the absorption edge yields

information about the length-scale of the band gap fluctuations. Fitting Eq. (4.3) and

Eq. (4.31) to a set of experimental absorptance and PL data yields the average band

gap Ēg, the standard deviation σg, and the length-scale ratio Lµ/Lg. We can thus

extract extent and length-scale of the measured inhomogeneities from experimental

absorption and emission data, as will be shown in section 4.4. First, however, we need

to analyze the relationship between the fluctuation length Lµ of the chemical potential

and the minority carrier diffusion length Ln.

4.3 Numerical approach

In the previous sections I have only provided hand-waving arguments for the alleged

agreement of the correlation length Lµ of the chemical potential µ with the diffusion

length Ln in the situation where one type of carriers is clearly defined as minorities.

As plausible as the reasoning might seem - the compensating lateral currents are not

driven by carrier diffusion alone. The band gap fluctuations also lead to local quasi-

electric fields that cause minority carrier drift currents. Drift and diffusion currents

both depend on the strength and the length-scale of the band gap fluctuations, i.e. on

σg and Lg. It is thus not completely clear, whether the resulting correlation length Lµ

really is identical to the diffusion length Ln.

This section provides a numerical solution of the drift-diffusion equation to verify

the results of the above analytical model and to show that the diffusion length in-

deed represents a very good indicator to approximate the correlation length Lµ of the

chemical potential.

Osvald [109] investigates a very similar problem consisting of a Schottky diode with

spatial variations of the Schottky barrier. However, while he needs to simultaneously

solve the drift-diffusion equation and the Poisson equation to solve the problem , here,

the band gap is not only preset as a boundary condition but throughout the entire
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sample. Thus, the band diagram is already known and we do not need to additionally

solve the Poisson equation.

4.3.1 Formulation of the problem

For the sake of simplicity, I assume that all band gap fluctuations occur in the con-

duction band as depicted in Fig. 4.5. The valence band features no variations and is

constant throughout the entire semiconductor. Moreover, I treat the problem as a

pure minority carrier problem. The quasi Fermi level EFp of the holes is invariant as

well. Thus, the majority carrier concentration does not fluctuate and is given by the

doping density NA. Furthermore, the fluctuations of the conduction band are assumed

to be sufficiently small, such that even in regions with small band gap, the electron

concentration is still decisively smaller than the hole concentration.

The simplification of assuming that all band gap fluctuations occur in the conduction

band, is only a special case of the general case depicted in Fig. 4.1. Therewith, the

numerical results obtained in this section are not as general as the results obtained with

the analytical model. However, the approximation is sufficient to show the relevance

of the diffusion length for the length-scale of the chemical potential.

In general, the drift-diffusion equation for the minority carriers can be written as

[112]

∇ (n0∇u)− n0u

L2
n

= − g

Dn

. (4.32)

Here, Dn is the electron diffusion constant and g(x) is the generation rate. The equi-

librium electron concentration is determined by the local band gap according to

n0(x) =
n2

i

p0

=
NCNV

NA

exp

(
−Eg(x)

kBT

)
. (4.33)

The normalized excess electron concentration is given by

u(x) =
n(x)− n0(x)

n0(x)
. (4.34)

Equation (4.32) assumes a spatially constant lifetime τn and, therewith, a constant

diffusion length Ln. Such an assumption is only valid if the lifetime is independent of

the band gap.
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Fig. 4.5: Band diagram of a semiconductor under illumination with band gap fluctuations

Eloc
g that occur only in the conduction band Eloc

C . These fluctuations of Eloc
C lead to fluctua-

tions of the electron quasi Fermi level Eloc
Fn , i.e., to fluctuations of the chemical potential µloc.

Both, the valence band edge EV and the hole quasi Fermi level EFp, are constant.

The equilibrium electron concentration n0 and the equilibrium radiative recombina-

tion rate R0 (cmp. Eq. (B.19)) feature the same exponential dependence on the band

gap. Apart from the small polynomial dependence in the denominator of Eq. (B.19),

the radiative lifetime τr(x) = n0/R0 is therefore largely independent of the band gap.

If we assume Shockley-Read-Hall (SRH) recombination through defects as the predom-

inant non-radiative recombination mechanism, then the non-radiative lifetime is also

mainly independent of the band gap as long as the defect level is situated not too close

to one of the band edges (see for example [113, p. 15]). The Auger lifetime under

low-level injection only depends on the doping and, thus, shows no dependence on the

band gap [113, p. 10]).

Overall, the dependence of the lifetime on the band gap for different recombination
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mechanisms is weak enough to justify the assumption of a constant lifetime.

In order to reduce the computational cost necessary for the solution of the problem,

I restrict the discussion to the one-dimensional problem

dn0

dx

du

dx
+ n0

d2u

dx2
− n0u

L2
n

= − g

Dn

. (4.35)

To solve this equation, I transform it to the spatial frequency domain via Fourier

transform to obtain
∫ ∞

−∞
N0 (k − l) U(l)

(
klL2

n + 1
)
dl =

2πG(k)L2
n

Dn

(4.36)

where N0(k), U(k), and G(k) are the Fourier transforms of n0(x), u(x), and g(x),

respectively. The use of finite fast Fourier transforms (FFT) leads to a Matrix equation.

Solving this equation for U(k) and subsequently transforming U(k) back into the spatial

domain yields u(x) and also the local chemical potential

µss(x) = kBT ln (u(x) + 1) . (4.37)

4.3.2 Correlated band gap sequence

As input for the problem we require a stochastic distribution of band gaps that feature

a Gaussian distribution with standard deviation σg and a specified spatial correlation

function Rg. Such a band gap distribution is generated in the following manner [114, p.

61]:

The Fourier transform of an uncorrelated stationary sequence of random numbers

with Gaussian distribution and standard deviation σg yields a stationary uncorrelated

white noise sequence. Applying a filter F (k) and transforming the filtered sequence

back into the spatial domain results in a correlated sequence.

The filter has to be chosen in accordance with the desired auto-correlation function.

As has been pointed out in Eq. (4.23) and Eq. (4.25), the Gaussian auto-correlation

function

Rg = exp

(
−x2

L2
g

)
(4.38)

corresponds to the filter

F (k) = exp
(−L2

gk
2/4

)
. (4.39)



4.3 NUMERICAL APPROACH 119

Using this filter allows the comparison between the numerical results and the results

from the analytical model which is based on the Gaussian auto-correlation function.

Performing an inverse Fourier transform of the filtered sequence and adding the

mean band gap Ēg finally yields the desired Gaussian band gap distribution with the

mean value Ēg, the standard deviation σg, and the Gaussian auto-correlation function

Eq. (4.38).

4.3.3 Discussion

Figure 4.6 exemplarily displays one-dimensional spatial fluctuations of the band gap

energy Eg versus the spatial coordinate x normalized to the fluctuation length (cor-

relation length) Lg (bold line). The fluctuations in Fig. 4.6 feature a Gaussian auto-

correlation function and a standard deviation σg = 50 meV. For simplicity, the band

gap is corrected by the mean band gap Ēg, i.e., the plot shows Eg − Ēg.

The figure also displays the resulting fluctuations of the chemical potential µ − µ̄

corrected by the mean chemical potential µ̄ for different length-scale ratios Ln/Lg of

diffusion length Ln and fluctuation length Lg.

For very small diffusion lengths Ln < 0.3 Lg (large-scale fluctuations), the chemical

potential essentially reproduces the spatial fluctuations of the band gap. With increas-

ing diffusion length, lateral currents increasingly compensate the fluctuations of the

chemical potential. For Ln > 100 Lg, i.e., small-scale fluctuations with a length-scale

that is much smaller than the diffusion length, µ hardly features any fluctuations at

all.

Figure 4.7 depicts the dependence of the ratio β = σµ/σg of the standard deviations

σµ and σg on the length-scale ratio Ln/Lg for different magnitudes of the band gap

fluctuations in terms of the standard deviation σg.

The analytical model Eq. (4.27) with the fluctuation length of the chemical potential

Lµ = Ln being equal to the diffusion length Ln predicts that β is unity for Ln < Lg and

drops sharply once the diffusion length exceeds the fluctuation length (dashed line).

This dependence is independent of the magnitude of σg.

In contrast, the numerical results unveil that β does depend on σg. While numerical

and analytical results agree reasonably well for small fluctuations with σg ≤ 25 meV,

the numerically obtained curves exhibit a broadened decline.

At a small amplitude, fluctuations thus seem to enhance lateral compensating cur-
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Fig. 4.6: Band gap fluctuations and resulting fluctuations of the chemical potential versus

the spatial coordinate x normalized to the fluctuation length Lg for a standard deviation

σg = 50meV. The bold line represents the band gap fluctuations Eg − Ēg corrected by

the mean band gap Ēg. With increasing length-scale ratio Ln/Lg of diffusion length and

fluctuation length, the chemical potential µ− µ̄ corrected by the mean chemical potential µ̄

can not follow the band gap fluctuations.

rents, resulting in β being smaller than predicted by the analytical model. For increas-

ing magnitude σg of the fluctuations, however, this effect is reversed and β is larger

than the analytical β obtained with Eq. (4.27).

Overall, the simulations show that

(i) the analytical model is a good approximation for the relation between the stan-

dard deviation ratio β = σµ/σg and the length-scale ratio Ln/Lg as long as the

magnitude of the band gap fluctuations does not exceed σg ≈ 50 meV, and that

(ii) the diffusion length indeed is the crucial parameter that determines the fluctua-
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Fig. 4.7: Ratio β of the standard deviations σg and σµ versus the length-scale ratio Ln/Lg

of diffusion length and fluctuation length for different standard deviations σg. The analytical

model Eq. (4.27) is represented by the dashed line. Solid lines are the numerical results. For

σg ≤ 25meV analytical model and numerical results show a high degree of agreement. For

larger standard deviations however, the analytical model predicts a much steeper curve than

the numerical simulations.

tion length Lµ = Ln of the chemical potential.

4.4 Experimental results

This section applies the above theory to absorptance and photoluminescence mea-

surements in polycrystalline Cu(In1-x,Gax)Se2 thin-films. The samples are fabricated

by coevaporation of the individual elements onto soda-lime glass substrates with a

substrate temperature Tsub = 550◦ C. The films have a thickness d ≈ 2 µm. The in-
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vestigated samples are either prepared in a three-stage process described in detail in

Ref. [115] or in a single-stage process which means coevaporation of all elements at

constant rates. All samples have a slightly copper-poor final composition. I vary the

relative Ga content x from x = 0 to x = 1. The three-stage samples are covered with a

50 nm thick CdS layer deposited from a chemical bath in order to reduce surface recom-

bination during PL measurements. The CdS layer has a band gap of approx. 2.4 eV. It

passivates the surface and therewith substantially improves the luminescence signals.

The single-stage samples, which are only used for absorptance measurements, do not

have such a protective layer.

Absorptance spectra are obtained from room temperature reflection and transmis-

sion measurements as described in Ref. [72]. Photoluminescence (PL) spectra are

measured at room temperature under monochromatic excitation at λ = 514 nm with

an areal power density of 300 mW/ cm2 as described in Ref. [116].

The fabricated three-stage CIGS thin films exhibit three different Ga contents x =

0.3, x = 0.4 and x = 0.5. Figures 4.8a-c show the measured absorptance and PL

spectra. Also displayed are the theoretical curves obtained from simultaneously fitting

Eq. (4.3) to the measured absorptance data and Eq. (4.31) to the measured PL data.

The fit-parameters are the mean band gap Ēg, the standard deviation σg, the length-

scale coefficient β and an additional factor for adjusting the magnitude of the emission

spectra. In accordance with the literature [117], the average band gap increases with

the Ga content. The obtained medium band gaps are Ēg = 1.15, 1.19, and 1.24 eV for

x = 0.3, 0.4 and 0.5. These results are consistent with the band gaps obtained from

quantum efficiency measurements of solar cells fabricated from absorbers processed in

the same run. The standard deviations resulting from the fits are σg = 48, 50, and

62 meV. Figure 4.9 displays the values as solid triangles. For the length-scale coefficient

we obtain β = 0 in all cases, which means that the length-scale Lg of the observed band

gap fluctuations is much smaller than the characteristic transport length Lµ. Since all

prepared samples are p-type semiconductors, Lµ equals the electron diffusion length

Ln. Note that some systematic deviations of the experimental in Fig. 4.8 are due to

parasitic absorption as discussed in section 4.5.1 and to optical interference effects as

discussed in section 4.5.3.1.

We have also fabricated CIGS thin films in a single-stage process with varying

gallium content x =Ga/(In+Ga) from x = 0 to x = 1 from pure CuInSe2 to pure
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Fig. 4.8: Absorptance and photoluminescence spectra of CIGS thin films processed in a

three-stage process with different gallium content x. Fitting Eq. (4.3) and Eq. (4.31) (solid

lines) to the experimental data (symbols) simultaneously yields the fit-parameters Ēg = 1.15,

1.19, and 1.24 eV and σg = 48, 50, and 62 meV for x = 0.3, 0.4, and 0.5. All data-sets exhibit

small-scale fluctuations with β = 0, i. e. Lg ¿ Ln.

CuGaSe2 and analyzed the absorptance spectra of these films by fitting Eq. (4.3) to the

measured data. As for the three-stage samples, Ēg increases with x. We obtain Ēg =

1.0, 1.13, 1.29, 1.41, and 1.66 eV for x = 0, 0.25, 0.5, 0.75, and x = 1. The standard

deviations obtained from fitting the measured absorptance spectra are displayed in

Fig. 4.9 as solid squares.
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Fig. 4.9: Standard deviation σg of the local band gap energy Eloc
g in dependence of the

relative gallium content x as obtained from the combined absorptance/photoluminescence

fits displayed in Fig. 4.8 (solid triangles), and from fitting absorptance spectra of single-layer

samples with either Eq. (4.3) (solid squares) or a numerical approach that considers coherent

optics (open squares). The solid lines are a guide to the eye. For the ternary compounds

CuInSe2 and CuGaSe2 the fluctuations are minimal. This finding indicates alloy disorder as

one possible source of inhomogeneities.

4.5 Discussion

4.5.1 Length-scale of band gap fluctuations

The simultaneous analysis of absorptance and emission spectra relies on the assumption

that light emission is associated with fundamental light absorption, i.e. that the dom-

inant radiative recombination mechanism is band to band recombination. In general,

the measured luminescence spectra are a superposition of all possible optical transi-

tions. Especially donor-acceptor transitions are well-known in heavily compensated
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semiconductors like CIGS [118–121]. However, such transitions are usually analyzed

at temperatures below T = 20 K. At such low temperatures, the Fermi-distribution

is very steep and therefore, the occupation probability of states below the conduction

band edge is much higher than the occupation probability of higher energy levels. Con-

sequently, transitions like donor-acceptor transitions gain importance at low tempera-

tures. At room temperature, the Fermi-distribution is quite broad and it is reasonable

to assume band to band recombination as the dominant radiative recombination path.

Recently, Kirchartz et al. [122, 123] have shown in electroluminescence measurements

that the dominant luminescent emission changes from a broadened donor-acceptor

pair recombination at temperatures below T = 140 K to band to band recombination

at temperatures above T = 200 K. Indications for this change are the higher peak

energies of the emission peak as well as the absence of an intensity-dependent blueshift

of the spectra at temperatures above 200 K. Another indication for the validity of this

assumption is the consistency of the standard deviations σg obtained from absorptance

and luminescence fits of the three-stage samples, which are obtained in different energy

ranges. Whereas σg determines the slope of the absorption edge in an energy range

around the mean band gap Ēg, it determines the low-energy flank of the luminescence

peak which is located more than 100 meV below the absorption edge.

The experimentally observed shifts between luminescence peak and absorption edge

displayed in Fig. 4.8 yield the length-scale coefficient β = 0 in all cases. Therefore, I

conclude that all investigated samples feature fluctuations that occur on a length-scale

which is much smaller than the electron diffusion length Ln of Ln ≈ 1 µm. Reasonable

fit results could only be obtained when using β < 0.1. Via Eq. (4.27) and assuming two-

dimensional band gap fluctuations, this β-value corresponds to a diffusion length Ln

that is at least ten times larger than the fluctuation length Lg. Moreover, comparison

with the numerical results in Fig. 4.7 suggest that, with σg ≥ 50 meV, the diffusion

length needs to be more in the order of 100 times larger than the fluctuation length

to obtain such low values for β. Therefore, even accounting for the influence of donor-

acceptor pair recombination, which would also shift the emission peak towards lower

energies, would not alter the result of Lg ¿ Ln. The observed fluctuations are definitely

small-scale fluctuations.

In the case of small-scale band gap fluctuations, the electron and the hole population

in the entire semiconductor are each described by homogeneous quasi-Fermi levels.
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Therefore, the chemical potential µ of photons is uniform throughout the sample and

Würfel’s generalization of Kirchhoff’s law holds for the global light emission spectrum.

Local and global emission spectra are determined by the product of absorptance and

black body spectrum according to Eq. (4.4).

In contrast, any departure from the small-scale limit leads to a spatially nonuniform

µ(x) and Eq. (4.4) is only valid locally. Thus, a way to access the length-scale of

inhomogeneities is to test the validity of Eq. (4.4) for global absorption/emission data.

Figure 4.10 compares the measured absorptance data (open squares) of a three-stage

sample with x = 0.4 to the data (open triangles) that are reconstructed from the PL

spectra [124,125] by inversion of Eq. (4.4) according to

aloc(E) ∝ E−2exp

(
E

kBT

)
dΦloc

r (E)

dE
. (4.40)

Additionally, Fig. 4.10 displays the theoretical fit to Eq. (4.3) (solid line) as performed

in Fig. 4.8b. All three curves show a good agreement for E > 1.1 eV. In the case of

fluctuations on a larger length-scale, the absorption data reconstructed with help of

Eq. (4.40) and the measured absorption data would not show such an agreement. In

that case, the luminescence is no longer the product of absorptance and black-body

spectrum, but instead the modified spectrum according to Eq. (4.31) with β 6= 0.

To underline the inapplicability of Kirchhoff’s law in the large-scale limit, I com-

pute the large-scale emission spectrum according to Eq. (4.31) with β = 1 using the

parameters Ēg = 1.19 eV and σg = 50 meV from the fit of the absorption data (cf.

Fig. 4.8b). The spectral position of the large-scale emission peak is at higher energies

than the measured PL peak and therewith, reconstructing the absorptance spectra with

help of Eq. (4.40) results in a shifted absorption edge (dotted line in Fig. 4.10) that is

not in agreement with the measured absorptance spectrum. Thus, the consistency of

PL and absorption data at energies E > 1.1 eV unveils the small-scale nature of the

fluctuations.

It is however also evident that at energies E ≤ 1.1 eV the absorption of the sample

is far larger than would be expected from the emission data. I observe such a parasitic

absorption, which is also heavily influenced by interference patterns, in all our samples.

Similar results were also reported earlier for samples from other sources [126]. Obvi-

ously, this absorption stems from parts of the samples that do not contribute at all to

the radiative emission, i.e., parts with negligible chemical potential µ of the photons.
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Fig. 4.10: Absorptance spectrum of a Cu(In1-x,Gax)Se2 three-stage sample with a gallium

content x = 0.4. The spectrum obtained from transmission and reflection measurements

(open squares) exhibits pronounced sub-band gap absorption. The spectrum reconstructed

from PL measurements (open triangles) does not show this parasitic sub-band gap absorp-

tion. The theoretical absorptance curve from Fig. 4.8b is displayed as well (solid line). It

nicely represents the absorptance spectrum extracted from the luminescence measurements.

The consistency of measured and reconstructed absorptance spectrum underlines the validity

of Würfel’s generalization of Kirchhoff’s law, which only holds in the case of small-scale fluc-

tuations. Assuming large-scale fluctuations would result in an absorptance spectrum which

is substantially shifted towards higher energies (dotted line).

Most likely, this ’dark matter’ corresponds to photovoltaically inactive phases with a

broad-range absorption. Whether or not these phases play a significant role for the

device performance is unclear up to now.
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4.5.2 Origin of band gap fluctuations

The dependence of the standard deviations σg on the Ga/(In+Ga)-ratio x as depicted

in Fig. 4.9 shows that the pure alloys CuInSe2 and CuGaSe2 are less inhomogeneous

than the quaternary alloys. Thus, alloy disorder is clearly one source of the inhomo-

geneities detected by our experiments. This conclusion is also compatible with the fact

that we are dealing with fluctuations on a length-scale of less than 100 nm because

statistical alloy disorder occurs on a length-scale of a few unit cells of the crystal struc-

ture. Orgassa [72] analyzed the band tails of the absorption coefficient and reports an

analogue dependence of the Urbach energy on the gallium content. Along a similar line,

the broadening of the transition peaks in the admittance spectra in Cu(In,Ga)(S,Se)2

solar cells was found to increase with increasing In/Ga and/or S/Se alloying [127].

The fact that maximum inhomogeneity is achieved at x = 0.75 instead of x = 0.5

and the fact that σg is larger in CuGaSe2 than in CuInSe2 points to a second source of

inhomogeneities. In general, the material quality decreases in Cu(In,Ga)Se2 alloys with

increasing Ga content such that structural defects on a small length-scale contribute to

the inhomogeneity of the Cu(In,Ga)Se2 thin-films and significantly reduce the electronic

film quality [128,129].

Also, Cu-poor/Cu-rich nanodomains as recently found by transmission electron mi-

croscopy combined with x-ray energy-dispersive spectroscopy [100] might contribute

to band gap fluctuations. Such a conclusion would fit to the observation that band

gap fluctuations in CuInSe2 films detected by absorption measurements increase with

decreasing Cu-content [130].

In contrast to small-scale fluctuations, there are also variations of the electronic

properties of Cu(In,Ga)Se2 thin films on a length-scale of 3 − 20 µm as detected by

spatially resolved PL measurements [131] and electron-beam induced voltage analysis

[132]. These variations most likely originate from variations of the electronic material

quality and are not or only slightly related to variations of the fundamental band gap.

Grabitz finds Voc variations with a standard deviation σ = 70−85 mV. Looking at the

local PL spectra measured by Gütay and Bauer (cf. Fig. 3c in Ref. [131]) unveils that

the spectral position of the maxima of those peaks differs only slightly. The authors find

that the associated band gap energies vary by at most 15 meV. In contrast, the width

of each local spectrum (taken with a spatial resolution of less than 1 µm) corresponds

to a standard deviation σg ≈ 35 meV if analyzed by fitting the present Eq. (4.14) to the
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data in Fig. 3c in Ref. [131]. We may thus conclude that in those sub-micron-resolution

PL spectra the band gap fluctuations below the resolution limit are larger than those

that are resolved in these measurements. Conversely, the chemical potential µloc in

terms of the PL-yields, which varies by a factor of ten, shows significant fluctuations

on a larger length-scale of 3− 20 µm which are not caused by band gap fluctuations.

From the differences of the observed length-scales, I conclude that there are various

types of inhomogeneities in CIGS absorber films. Localized disorder such as composi-

tional or alloy disorder results in small-scale fluctuations of the band gap. On a larger

length-scale the chemical potential µloc shows additional fluctuations due to variations

in the local electronic quality of the absorber films.

In his PhD thesis [133, p. 97], Grabitz discusses different types of inhomogeneities

in CIGS absorber layers and possible causes of the inhomogeneities. He also describes

which method can be used to characterize different types of inhomogeneities. For

the analysis of large-scale fluctuations of electronic material properties, he develops

a multi-diode model that assigns different diode properties to regions with varying

electronic material quality [133, p.33], [103,134]. However, such a model is only suited

for large-scale inhomogeneities that do not require 2 or 3-dimensional device simulation.

Applying the model to temperature-dependent current-voltage measurements of CIGS

solar cells, Grabitz finds standard deviations σ ≈ 140 meV in the activation energy

that describes the local recombination behavior.

One important question arising from these different types of inhomogeneities is in

how far fluctuations of the chemical potential that originate from causes other than

band gap fluctuations influence the measured luminescence spectra.

The theoretical model developed in section 4.2 assumes that all regions with identical

local band gap Eloc
g also exhibit identical local chemical potential µloc(E loc

g ).

If µloc features additional fluctuations, this implies that for a given Eloc
g , different

regions can still exhibit different µloc. The average chemical potential µav(E
loc
g ) of these

regions differs from the chemical potential µmodel(E
loc
g ) which would have corresponded

to that band gap if no additional fluctuations had been present. However, under

the assumption that the additional fluctuations of µloc are completely uncorrelated to

fluctuations in E loc
g , the relationship between the average chemical potential µav(E

loc
g )

and µmodel(E
loc
g ) is independent of the band gap energy.

Therefore, the resulting global luminescence spectrum changes only in magnitude
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but not in spectral position. This means that PL measurements on an arbitrary yield

scale are not influenced by fluctuations of electronic material properties which cause

fluctuations in the chemical potential. The spectral position of the luminescence peak

is only determined by fluctuations of optical properties, e.g. fluctuations of the band

gap energy which lead to fluctuations of the absorptance spectrum.

4.5.3 Model refinements

This section introduces some refinements of the relatively simple analytical model pre-

sented in section 4.2. The first section deals with fluctuations of the band gap over the

film depth, incomplete absorption and optical interference effects. Subsequently, the

implications of vertical gradings in the gallium content which lead to vertical band gap

gradings are analyzed.

4.5.3.1 Coherent optical analysis

The presented analytical model only features lateral fluctuations and assumes a con-

stant band gap throughout the film depth. Such an assumption is justified as long

as the length-scale of the fluctuations is larger than the film thickness. However, the

analysis of experimental data results in length-scales in the sub-micron regimes which

is much smaller than the film thickness of approximately 2 µm. In addition, the absorp-

tance and luminescence spectra feature pronounced interference patterns that hamper

the interpretation of the data. A more accurate approach therefore requires the treat-

ment of vertical band gap fluctuations and a coherent optical approach that accounts

for non-ideal absorption and interference effects.

In direct semiconductors the absorption coefficient α obeys a square root-depen-

dence on the photon energy E according to α(E) = α0

√
(E − Eg)/kBT where α0 is

the absorption coefficient at E = Eg + kBT (cmp. Tab. 3.2). In the small-scale limit

of an inhomogeneous absorber with a band gap that is stochastically fluctuating over

the absorber depth I define the effective absorption coefficient as

αeff(E) =

∫ ∞

−∞
α0

√
(E − Eloc

g )/kBTP (Eloc
g )dE loc

g . (4.41)

In this case, Eloc
g denotes the (fluctuating) band gap over the absorber depth. Note

that laterally, the effective absorption coefficients are identical so that we do not need

an additional lateral averaging.
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For a system of plane-parallel thin layers, the absorptance can be calculated in a

coherent optical analysis by making use of the matrix formalism for the propagation

of electro-magnetic waves in stacks of homogeneous materials [72, 135]. With help of

the effective absorption coefficient αeff we thus numerically calculate the small-scale

limit of the coherent absorptance. Note that the coherent optical analysis can also be

carried out by calculating the coherent local absorptance with a locally well defined

αloc and inserting that value into Eq. (4.3).

Figure 4.11a exemplarily displays the measured absorptance data of a single-stage

sample with x = 0.5 and the theoretical curves from fitting Eq. (4.3) or the coherent

optical computation to the measured data. Accounting for non-ideal local absorption

instead of the step-function utilized in Eq. (4.3) leads to far better fits to the experi-

mental data. However, the standard deviations σg obtained from using the coherent

optical model are only about 5 meV smaller than those obtained from the analytical

model (cf. Fig. 4.9 (open squares)). This result demonstrates the reliability of the

analytical model with respect to determining the extent of band gap fluctuations. For

the reliability of the fit results it is crucial though, not to fit the whole data range but

only a section that features no interference patterns.

4.5.3.2 Band gap grading

Another aspect to be discussed here is a nonuniform gallium content throughout the

film depth. Samples grown in a three-stage process exhibit a gallium grading over the

depth of the films [115, 136, 137]. The gallium content and therewith the band gap is

larger at the back of the film than towards the film surface. Therefore, the absorption

coefficient α(E) for a given energy E decreases towards the substrate [88,91].

Figure 4.11b demonstrates the impact of a band gap grading on the absorptance

spectrum. The figure depicts the absorptance for different ∆Eg = Eg(z = d)−Eg(z =

0) = 0 meV, 50 meV, and 300 meV, where z is the spatial coordinate over the absorber

depth6 and d is the absorber thickness. The parameters for the simulation are the

surface band gap Eg(0) = 1 eV, the thickness d = 2 µm, and an absorption coefficient

α(E, z) = 104 cm−1
√

(E − Eg(z))/(kBT ).

The effect of the grading is very similar to the effect of band gap fluctuation. At

6In contrast to the notation in chapter 3, the vertical coordinate is denoted as z because here, x

already denotes the Ga content.
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Fig. 4.11: a) Absorptance spectrum of a single-layer sample with Ga content x = 0.5.

Fitting Eq. (4.3) to the measured data (open triangles) yields the dotted line. Accounting

for optical interferences leads to the solid line. The fit parameters are Ēg = 1.29 eV and

σg = 45meV when using Eq. (4.3) and σg = 40 meV when accounting for interferences. b)

Simulated absorptance spectrum for different gradings from ∆Eg = Eg(d) − Eg(0) = 0,

50meV, and 300 eV. The thickness is d = 2µm, the surface band gap is Eg(0) = 1 eV, and

the absorption coefficient is given by the square-root dependence of a direct semiconductor

as described in the text. Particularly in the energy range Eg(0) < E < Eg(d) the grading

decreases the absorptance.

energies Eg(0) < E < Eg(d), the absorption is reduced which leads to a broadening

of the absorption edge. Three-stage samples that are grown at a constant Ga rate,

typically feature band gap gradings F ≈ 25 meV/ µm [88,115]. Such gradings result in

a broadening which is comparable to the broadening induced by band gap fluctuations

with standard deviations σg ≈ 15 meV. The grading can be enhanced by intentionally

decreasing the Ga rate during absorber deposition. Such samples feature gradings up

to F ≈ 150 meV/ µm which correspond to standard deviations σg ≈ 40 meV.

Obviously, this finding has serious consequences for the interpretation of the ob-
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tained standard deviations in terms of lateral band gap fluctuations in the case of

three-stage samples. The standard deviations displayed in Fig. 4.9 as solid triangles

are obtained under the assumption that the complete broadening is a result of band

gap fluctuations only. Thus, they represent maximum values for the band gap inho-

mogeneities. Taking into account the band gap grading would result in significantly

smaller standard deviations. Therewith, the grading provides a qualitative argument

why the standard deviations of three-stage samples are larger than the ones obtained

from single stage samples.

4.5.4 Implications for solar cell performance

Inhomogeneous samples exhibit absorption at lower photon energies. Due to the ex-

ponential dependence of all recombination mechanisms that are governed by the band

gap, the overall recombination current in an inhomogeneous semiconductor will thus

be larger than in a homogeneous sample with a band gap Eg that equals the average

band gap Ēg of the inhomogeneous sample. This increase of the total recombination

current leads to a reduced open circuit voltage [98]

V inhom
oc ≈ V hom

oc − σ2
g

2kBTq
(4.42)

of inhomogeneous solar cells in comparison to a uniform cell with a single band gap

that is equal to the average band gap of the inhomogeneous cell. Therefore, it should

be possible to see a correlation between the standard deviations obtained from the

absorptance spectra in Fig. 4.9 and measured open circuit voltages of solar cells fab-

ricated from these absorber films. However, the poorer cell-performance of wide-gap

CIGS solar cells with x > 0.4 [128, 138–142] is only partially explained by band gap

fluctuations. The standard deviations σg derived in the present work account for Voc-

losses in the range of 5 mV (for σg ≈ 15 meV, CuInSe2) up to 80 mV (for σg ≈ 65 meV,

Cu(In1−x,Gax)Se2 with x = 0.5). Especially in the technologically relevant range of

Cu(In1−x,Gax)Se2 alloying with 0.2 < x < 0.5, these losses are significant and mak-

ing the devices more homogeneous would substantially improve their performance.

However, the systematic degradation of the open-circuit voltage with increasing Ga-

content x > 0.3 that hampers the development of efficient wide-gap Cu(In,Ga)Se2

solar cells cannot be explained with the present data. The Voc degradation of wide-gap

Cu(In,Ga)Se2 devices corresponds to Voc losses of more than 250 mV when comparing
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the Voc of the best CuGaSe2 devices to the Voc that would be expected if the electronic

quality of high efficiency Cu(In0.8,Ga0.2)Se2 devices could be preserved for the wide-

gap CuGaSe2 solar cells [140]. Thus, the difficulty to produce high efficiency wide-gap

chalcopyrite solar cells is not exclusively explained by the small-scale inhomogeneities

detected in the present work. Rather, the overall poorer electronic quality of those

wide-gap materials reflected in the larger concentration [143] or less favorable ener-

getic position [129] of bulk defects plays a more decisive role. In addition, electrostatic

potential fluctuations [86] that are superimposed on band gap fluctuations and that are

not detected by room-temperature PL measurements might play a role in deteriorating

the performance of wide-gap chalcopyrite solar cells.

Note at this point, that Eq. (4.42) holds only if all local chemical potentials µloc are

equal to the global open circuit voltage. This is automatically the case for small-scale

fluctuations but also for ideal front contacts that lead to a perfect parallel connection

of the local subdomains which in turn levels out all voltage differences. However, in the

case of large-scale fluctuations the lateral resistivity of the emitter decides about the

resulting global open circuit voltage [103]. The emitter resistivity can thus be tuned

to compensate Voc losses due to large-scale inhomogeneities.

4.6 Conclusions

I have presented an analytical model that predicts the broadening and energetic po-

sition of absorptance and emission spectra for semiconductors with lateral band gap

inhomogeneities. This model supplies information about the extent of the investigated

band gap fluctuations from the broadening of absorption edge and emission peak. The

length-scale of the fluctuations is determined by the position of the emission peak with

respect to the absorption edge.

From fitting the model to experimental data of CIGS thin films with varying gal-

lium content we extract standard deviations σg of the fluctuations in the range of 15

to 65 meV which would result in Voc losses in the range of 5 to 80 mV for solar cells

made of these films. As the ternary compounds CuInSe2 and CuGaSe2 show the small-

est standard deviations we conclude alloy disorder as a possible source of band gap

fluctuations. All investigated three-stage samples show a luminescence peak that is

substantially shifted towards lower energies when compared to the absorption edge.
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This shift means that the length-scale of the fluctuations is much smaller than the

diffusion length. Hence, the fluctuations detected here result from rather local disorder

on a length-scale below 100 nm.



Chapter 5

Outlook

The thesis on hand has focussed on the interplay of charge carrier transport and the

detailed radiation balances of absorbed and emitted radiation fluxes.

The first focus was placed on the efficiency limits of pn-junction solar cells. This

approach consisted of a pure low-level injection approach that neglected the behavior

of majority carriers. However, as has been pointed out in section 3.10, in the radiative

recombination limit, the low-level assumption is only valid for almost unrealisticly high

doping concentrations.

Consequently, the next step needs to extend the approach to the simultaneous treat-

ment of minority and majority carriers. Since the differential equations of electrons

and holes are coupled via the recombination term that includes the product of electrons

and holes, such a problem can no longer be transformed into a linear matrix equation

but needs to be solved iteratively.

As an additional advantage, such a general approach allows the inclusion of built-in

electric fields as they occur in the space charge region of pn-junctions or in the intrinsic

layer of pin structures. This approach is particularly important for the description of

multiple quantum well structures. Such structures are investigated as third generation

solar cells to use as top cells in tandem structures. The quantum confinement leads

to increased band gaps and to potentially very high lifetimes. However, charge carrier

transport in these structures is hampered by the tunnelling across the potential barriers

[144].

Tunnelling also plays a role when it comes to extend the analysis of inhomogeneous

semiconductors. In this thesis, I have assumed that the recombination of electrons and
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holes is a strictly local process. However, this assumptions can hardly be maintained

once fluctuations in the band gap or additional potential fluctuations are too steep and

too abrupt. Then, tunnelling processes need to be considered that lead to non-local

recombination.

Overall, the further development of new materials, such as organic semiconductors,

or new solar cell device structures, such as fluorescent concentrator systems, requires

further investigations of the interaction between electronic and photonic transport.

The considerations performed in this thesis will gain importance whenever electronic

transport is limited and increased radiative recombination enhances photonic transport.

New generations of photovoltaic devices will encompass all kinds of combinations. Con-

ventional solar cells feature near to perfect electronic transport but negligible photonic

transport. New devices, however, might reverse this situation. An extreme case, for

instance, consists of the fluorescent concentrator where transport is exclusively pho-

tonic. In systems with such fluorescent concentrators, conventional solar cells as we

know them now only make up a very small part of the complete photovoltaic system.



Appendix A

Radiative efficiency limit with

energy-dependent absorptance

A.1 Inhomogeneous band gap

Shockley and Queisser have performed their calculation of the maximum power con-

version efficiency under the assumption of a homogenous band gap, which - provided

that the solar cell is thick enough - leads to a step-like absorptance function.

Rau and Werner [98] have extended the SQ-approach to solar cells with lateral band

gap fluctuations. Such fluctuations lead to a broadening of the absorption edge and

consequently to a reduction of the radiative power conversion efficiency.

This is because radiative recombination is increased in the regions with small band

gap and decreased in the regions with larger band gap. Due to the exponential de-

pendence of the radiative recombination rate on the band gap, the overall radiative

recombination rate is increased.

The following section shortly recapitulates the effect of band gap fluctuations on

the power conversion efficiency. A detailed discussion of band gap fluctuations with

different length-scales is given in chapter 4.

The simplest approach to model band gap fluctuations is to assume a Gaussian

distribution of band gaps around a mean band gap Ēg with a standard deviation

σg (cmp. Eq. (4.1)). As derived in Eq. (4.3), this approach yields the absorptance
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spectrum

a
(
E, Ēg, σg

)
=

1

2
erfc

(
Ēg − E√

2σg

)
. (A.1)

A higher degree of inhomogeneity in terms of the standard deviation σg results in an in-

creasingly broadened absorption edge when compared to a homogeneous semiconductor

with band gap Ēg (see Fig. 4.2a).

In analogy to Eq. (2.10) and Eq. (2.11), the absorptance influences the emission. In

total the broadened absorption edge results in the enlarged emission current

Φem(µ, Ēg, σg) =
π

h3c2

∫ ∞

0

erfc

(
Ēg − E√

2σg

)
E2exp

(
−E − µ

kBT

)
dE

= J00(Ēg, σg)exp

(
−Ēg − µ

kBT
+

σ2
g

2(kBT )2

)
, (A.2)

where

J00(Ēg, σg) =
2πkBT

h3c2
× (A.3)

{(
Ē2

g + 2ĒgkBT + 2(kBT )2
)− σ2

g

kBT

(
2Ēg + kBT

)
+

σ4
g

(kBT )2

}
.

The chemical potential µ of the emitted photons is assumed to be constant throughout

the depth of the solar cell. Also, lateral currents within the absorber layer or in the

highly conductive emitter layer lead to a laterally homogeneous chemical potential.

This case corresponds to the small-scale limit discussed in chapter 4.

As a result of the increased emission current, the radiative efficiency limit is sig-

nificantly decreased by band gap fluctuations. Comparison of Eq. (A.2) with Eq. (2.9)

reveals that the main contribution to the increase in the recombination current stems

from the exponential factor.

The short circuit current is only slightly influenced by the fluctuations because the

maximum of the solar spectrum is at energies larger than typical mean band gaps.

Therefore, and by using Eq. (2.2) and Eq. (2.10), the drop in efficiency is almost exclu-

sively caused by the decreased open circuit voltage

V inhom
oc =

Ēg

q
− σ2

g

2kBTq
− kBT

q
ln

(
J00

Jsc

)

≈ V hom
oc − σ2

g

2kBTq
. (A.4)
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A.2 Optimal absorptance

For given solar irradiation φsun(E) and black body irradiation φbb(E), the maximum

efficiency of a solar cell is given by the absorptance a(E). Shockley and Queisser

based their efficiency limit on the assumption of a step-like absorptance function. The

previous section has shown that a deviation from the step function in the form of a

broadened absorption edge according to Eq. (A.1) leads to a decreased power conversion

efficiency. But does this result automatically mean that the step function is the optimal

absorptance function leading to the ultimate maximum efficiency?

In this section, I show that for virtually any spectrum, the optimal absorptance

is indeed given by a stepfunction. For uni-modal spectra φsun(E) and φbb(E), the

stepfunction consists of only one step at the band gap energy Eg.

The underlying idea of the following proof is to consider a solar cell with a given

arbitrary absorptance spectrum that is defined for all energies except an infinitesimally

small interval dE at an energy E. By looking at the efficiency gain dη implied by adding

this interval dE with a certain absorptance a(E), I determine the optimal absorptance

that leads to maximized efficiency gain for all energies. A very similar proof is given by

Araújo and Mart́ı [70]. Their approach is slightly different as it considers the maximum

power Pmax = VmppJmpp and forms the derivative dVmpp/dEg. However, the results are

essentially identical to the results obtained here.

For our consideration let us assume that the fill factor FF is independent of the

voltage so that the efficiency can be approximated by

η =
FF

Pin

JscVoc = constJsc (ln (Jsc)− ln (J0)) . (A.5)

To simplify further, let us assume const = 1. The short circuit current is given by the

integrated solar spectrum φsun(E
′) weighted with the corresponding absorptance a(E ′)

according to

Jsc =

∫ ∞

0

a(E ′)φsun(E
′)dE ′

=

∫ E

0

a(E ′)φsun(E
′)dE ′ +

∫ ∞

E+dE

a(E ′)φsun(E
′)dE ′ + a(E)φsun(E)dE (A.6)

By replacing φsun(E) with φbb(E) we obtain an identical equation for the radiative

saturation current J0.
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The currents depend on the absorptance at all energies. Since we want to determine

the optimal absorptance a(E) at the energy E, we have to split up the integral as

performed in the last line of Eq. (A.6). Neglecting the term a(E)φsun(E)dE yields

Jsc ≈ J ′sc =

∫ E

0

a(E ′)φsun(E
′)dE ′ +

∫ ∞

E+dE

a(E ′)φsun(E
′)dE ′ (A.7)

which is independent of a(E). This approximation is valid as long as the absorptance

is nonzero for most other energies, i.e. as long as the remaining integrals are much

larger than the incremental contribution a(E)φsun(E)dE. In the same way we define

J ′0 =

∫ E

0

a(E ′)φbb(E
′)dE ′ +

∫ ∞

E+dE

a(E ′)φbb(E
′)dE ′ (A.8)

Next, we determine the efficiency gain dη(E) by looking at the derivative

dη

dE
=

dJsc

dE
ln

(
Jsc

J0

)
+ Jsc

(
dln (Jsc)

dE
− dln (J0)

dE

)

=
dJsc

dE
ln

(
Jsc

J0

)
+ Jsc

(
1

Jsc

dJsc

dE
− 1

J0

dJ0

dE

)

=
dJsc

dE

(
ln

(
Jsc

J0

)
+ 1

)
− Jsc

J0

dJ0

dE
(A.9)

With dJsc/dE = a(E)φsun(E) and dJ0/dE = a(E)φbb(E) and the approximations

Jsc ≈ J ′sc and J0 ≈ J ′0 we rewrite Eq. (A.9) as

dη

dE
≈ a(E)φdiff (A.10)

with

φdiff(E) = φsun(E)

(
ln

(
J ′sc
J ′0

)
+ 1

)
− φbb(E)

J ′sc
J ′0

. (A.11)

This equation is the starting point of the following iterative argument. It consists of

the product of the absorptance a(E) and the photon flux difference φdiff(E) which is

independent of a(E).

Let us now assume an arbitrary absorptance spectrum as depicted in Fig.A.1a. This

spectrum determines J ′sc and J ′0, which in turn determines φdiff(E). An exemplary

term φdiff(E) is shown in Fig.A.1b. Then the maximum efficiency gain is obtained for

a(E) = 1 if φdiff(E) > 0 and a(E) = 0 if φdiff(E) ≤ 0. Therewith, we obtain a new

absorptance spectrum according to Fig.A.1c, which leads to an efficiency that is larger
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Fig. A.1: Iterative scheme to obtain the optimal absorptance. a) Initial random absorptance

spectrum vs. photon energy E. b) Term φdiff(E) in Eq. (A.11) resulting from the absorptance

in a). c) Depending on the signum of φdiff(E), the optimal absorptance at the energy E is

either one (for φdiff(E) > 0) or zero (for φdiff(E) ≤ 0). d) Optimal step-function absorptance

spectrum under irradiation with a solar black body irradiation. The optimal band gap is

Emax
g ≈ 1.24 eV.

or equal to the one obtained with the previous absorptance spectrum. Repeating these

steps by randomly changing the energetic position E of the interval in question results

in an absorptance spectrum that consists only of ones and zeros.

This digital optimal absorptance is only a consequence of the way the efficiency is

defined in Eq. (A.5). The spectra Φsun and Φbb determine only if the signum sdiff(E)

of φdiff(E) is positive or negative for a particular energy.

Next, we have to determine, whether the iteration will converge. With each new

absorptance spectrum, the roots of the term in brackets will change as well. What is

needed is an absorptance that reproduces itself at all energies. This absorptance will
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consequently also reproduce the roots of φdiff . Whether φdiff(E) has one or more roots

depends on the shape of the two spectra φsun(E) and φbb(E). For any two uni-modal

spectra that feature at most one intersect, which is the case if both, solar cell and

sun, are regarded as black bodies, the term has only one (or no) root. In particular,

the approximation of the solar spectrum as a black body spectrum at T = 5800 K

(normalized to an areal power density of 100 mW/ cm2) leads in combination with the

black body spectrum Φbb at T = 300 K to sdiff < 0 for E < Emax
g ≈ 1.24 and sdiff > 0

for E > Emax
g . Therefore, the iteration converges once the absorptance is given by the

optimal absorptance a(E) = 0 for E < Emax
g and a(E) = 1 for E > Emax

g as depicted

in Fig.A.1d. For this mono-step function, the efficiency reaches its ultimate maximum

η ≈ 31 %.

For a spectrum that can not clearly be classified as a uni-modal function such as the

AM1.5g solar spectrum, the case is slightly different. In principle, φdiff could feature

more than one intercept, and, therefore, it would be feasible that the optimal absorp-

tance would consist of a multiple step function to account for the different atmospheric

absorption losses that lead to sharp recesses in the spectrum.

This reasoning becomes clear, if we consider a hypothetical spectrum consisting of

multiple discrete peaks. Then, the optimal absorptance would be a = 1 at the peak

energies and a = 0 everywhere else.

However, while the irregularities in the AM1.5g spectrum do lead to two optimal

band gaps of Eg = 1.15 eV and Eg = 1.34 eV that each result in the ultimate maxi-

mum efficiency η ≈ 33 %, the recesses are not deep enough to require an absorptance

spectrum that deviates from the mono-step function. The SQ limit of 33 % remains

the ultimate efficiency for single junction solar cells.

The SQ limit can only be overcome by breaking the link between radiative recombi-

nation current and the absorptance. This can, for instance, be achieved by restricting

the Fermi-levels governing certain energy regimes as has been conceptualized for the

so-called intermediate band solar cell [145]. With such an arrangement, the theoretical

maximum efficiency is increased to over 60 %.



Appendix B

Derivation and numerical

implementation of the photon

recycling scheme

B.1 Exponential Integrals

This section provides the integrals needed for the derivation of various interaction terms

for the internal and external generation rates. In general, the problem always consists

of an integration of the term exp
(
− z

cos(θ)

)
over the angle θ in different combinations

with the terms cos (θ) and sin (θ). Using the substitution t = z/cos (θ) we obtain

dθ =
cos2 (θ)

zsin (θ)
dt =

cos (θ)

tsin (θ)
dt =

z

t2sin (θ)
dt =

z2

t3sin (θ) cosθ
dt. (B.1)

Since in the case of plane front surfaces the reflection coefficient at the front surface

is different in the regime 0 ≤ θ ≤ θc and θc < θ ≤ π/2, I divide the integral into two

parts according to
∫ θc

0

f(θ)dθ =

∫ π/2

0

f(θ)dθ −
∫ π/2

θc

f(θ)dθ, (B.2)

where f(θ) stands for any function depending on θ.

In the following, I only list the general cases with the lower integral boundary being

θc that is also valid for the first integral when θc is replaced by zero and accordingly,

cos (θc) is replaced by one.

We need the following integrals:

144
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• Ei1 (z, θc)
∫ π/2

θc

exp

(
− z

cos (θ)

)
sin (θ)

cos (θ)
dθ (B.3)

=

∫ ∞

z/cos(θc)

exp (−t)

t
dt =: Ei

(
z

cos (θc)

)
=: Ei1 (z, θc)

• Ei2 (z, θc)
∫ π/2

θc

exp

(
− z

cos (θ)

)
sin (θ) dθ (B.4)

= z

∫ ∞

z/cos(θc)

exp (−t)

t2
dt = cos (θc) exp

(
− z

cos (θc)

)
− zEi

(
z

cos (θc)

)

=: Ei2 (z, θc)

• Ei3 (z, θc)
∫ π/2

θc

exp

(
− z

cos (θ)

)
cos (θ) sin (θ) dθ (B.5)

= z2

∫ ∞

z/cos(θc)

exp (−t)

t3
dt

=
1

2

{
(1− z/cos (θc)) cos2 (θc) exp

(
− z

cos (θc)

)
+ z2Ei

(
z

cos (θc)

)}

=: Ei3 (z, θc)

These three exponential integrals are connected via the integration over the spatial

variable ξ as performed in the following exemplarily for Ei1 (z, θc). The solution is best

obtained by changing the order of integration over dθ and dξ. We thus obtain the

integral
∫ ∞

z

Ei1 (ξ, θc) dξ =

∫ ∞

z

∫ π/2

θc

exp

(
− ξ

cos (θ)

)
sin (θ)

cos (θ)
dθdξ (B.6)

=

∫ π/2

θc

∫ ∞

z

exp

(
− ξ

cos (θ)

)
sin (θ)

cos (θ)
dξdθ (B.7)

=

∫ π/2

θc

exp

(
− z

cos (θ)

)
sin (θ) dθ = Ei2 (z, θc) . (B.8)

Every integration of exp (ξ/cos (θ)) over ξ yields the factor cos (θ). Therefore, we

also obtain∫ ∞

z

Ei2 (ξ, θc) dξ = Ei3 (z, θc) . (B.9)
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For the transformation of the integro-differential equation into a finite differences

scheme we need the double integration over the coordinates xr and xg given by

∫ xi

xi−1

∫ xj

xj−1

exp

(−αxl,m (sgxg, srxr)

cos (θ)

)
dxrdxg (B.10)

= −sr
cos (θ)

α

∫ xi

xi−1

{
exp

(−αxl,m (sgxg, srxj)

cos (θ)

)
− exp

(−αxl,m (sgxg, srxj−1)

cos (θ)

)}
dxg

= sgsr
cos2 (θ)

α2

{
exp

(−αxl,m (sgxi, srxj)

cos (θ)

)
− exp

(−αxl,m (sgxi, srxj−1)

cos (θ)

)

− exp

(−αxl,m (sgxi−1, srxj)

cos (θ)

)
+ exp

(−αxl,m (sgxi−1, srxj−1)

cos (θ)

)}

=: sgsr
cos2 (θ)

α2
f ij

exp (B.11)

B.2 Diffusion equation with reabsorption

This section starts by reformulating the diffusion equation as a linear matrix equation

based on linear operators. Then it gives expressions for the transport operator and

the recombination operator. Subsequently, it derives an expression for the internal

generation rate, starting with the direct radiative interaction between two locations

in the cell, and followed by the inclusion of multiple reflections. Finally, it derives

expressions for the external generation rates Gbb and Gsun caused by black body and

solar irradiation respectively.

B.2.1 Linear matrix formalism

Using methods from functional analysis allows us to rewrite the rather complex integro-

differential Eq. (3.1) in a simple operator notation. On the one hand, this operator no-

tation facilitates the derivation of certain theorems about for instance, the reciprocity

of photovoltaic action and light emission, from basic properties of the operators [146].

On the other hand, linear operators in infinite spaces can be expressed as matrices in fi-

nite spaces since both describe linear transformations. This analogy directly points out

the way to the numerical computation scheme, which transforms the integro-differential

equation into a finite Matrix equation. This method is only possible due to the linear-

ity of the operators. Otherwise, iterative numerical schemes would have to be used. In

the following, I shortly discuss the properties of the operators.
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Operators can only be defined on a certain normed space of functions with respect

to a given norm. The electron concentration n(x) is a function belonging to the Hilbert

space L2 of integrable functions on the set 0 ≤ x ≤ d, where d is the thickness of the

solar cell. A Hilbert space is a Banach space with a norm that is defined by the scalar

product according to ‖u‖ =< u, u >1/2 if u is real-valued [147, p.173, p.177]. In L2,

the scalar product is defined as

< u, v >=

∫ ∞

−∞
u(x)v(x)dx, (B.12)

again, for real-valued functions u, v.

Transport operator The transport operator T is the differential operator d2/dx2,

which is a linear and continuous operator [147, p.51]. In matrix notation, T is given

by (cmp. appendix B.4)

T =
Dn

∆x2




−2 1 0 . . . 0 0 0

1 −2 1 . . . 0 0 0

0 1 −2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −2 1 0

0 0 0 . . . 1 −2 1

0 0 0 . . . 0 1 −2




. (B.13)

From the symmetric structure of the matrix one can directly tell the symmetry of

the transport operator. An operator T is symmetric if it holds < v, Tu >=< Tv, u >.

Such a symmetric operator is also called Hermitian or self-adjoint1.

Recombination operator The recombination operator R simply consists of the

multiplication of n(x) with the scalar 1/τ = 1/τr + 1/τnr. Apart from this factor the

operator is nothing else but the identity operator Id, which maps a function onto itself.

1Note that the transport operator would no longer be symmetric if drift currents were included

in Eq. (3.1). However, the generalized drift-diffusion operator in Eq. (4.32) is self-adjoint and real-

valued when applied to the normalized carrier concentration (n−n0)/n0, where n0 is the equilibrium

concentration. Therewith, the reciprocity relation between photocarrier collection and dark carrier

distribution is still valid [67,146].
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It is evident that this operator is linear. In matrix notation R reads as

R =
n0

τ




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1




. (B.14)

The constant term n0/τnr from non-radiative recombination that is not included in

the recombination operator is shifted to the right-hand side of the equation as the

equilibrium non-radiative generation term Gnr = n0/τnr.

Internal generation operator The photon recycling integral operator PR in Eq. (3.2)

is also linear, continuous and symmetric as long as the kernel function fr(xg, xr) is con-

tinuous and symmetric [147, p.52]. As will be shown below, this is the case for the

radiative interaction function derived in sections B.2.4 and B.2.5. Such an integral

operator is called Fredholmian integral operator. In matrix notation, PR is given by

PR =
R0

4πn0




f1,1 f1,2 . . . f1,N

f2,1 f2,2 . . . f2,N

...
...

. . .
...

fN,1 fN,2 . . . fN,N




, (B.15)

where fi,j denotes the radiative interaction function fr(xi, xj).

Matrix equation With the operators as defined above, we are now able to rewrite

the integro-differential Eq. (3.1) in the simple operator form

(T + PR−R) n(x) = −Gsun(x)−Gbb(x)−Gnr(x)− I(x), (B.16)

where the injection vector I(x) includes the boundary condition, i.e. the applied volt-

age. The matrix notation for the discretization scheme that is described in detail in

appendix B is given by

(T + PR−R) n(xi) = −Gsun(xi)−Gbb(xi)−Gnr(xi)− I(xi), (B.17)

where xi are the mesh points of the discretization.
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Due to the simple form of the recombination operator, the equation can be mul-

tiplied with τ to obtain the operator τT + τPR − Id. For T ∈ L2 and PR ∈ L2,

this operator is isomorph and therewith explicitly invertible [147, p.56], such that the

electron concentration is given by

n(x) = (T + PR−R)−1 (−Gsun(x)−Gbb(x)− I(x)) . (B.18)

B.2.2 Transport

As pointed out above, transport is diffusive and defined by the transport operator T .

A general formulation of the transport operator in more than one dimension is given

by the generalized expression in Eq. (4.32) derived in Ref. [112]. The generalized drift-

diffusion equation also includes drift-currents caused by electric fields or variations of

the material properties. Here, however, I only consider diffusive transport.

B.2.3 Recombination

Radiative recombination Radiatively recombining carriers emit radiation isotrop-

ically into all directions with a radiative recombination rate Rr = R0np/n2
i = R0n/n0

with n0 = n2
i /NA, where

R0 =

∫ ∞

0

r0 (E) dE =

∫ ∞

0

α(E)4πφdΩ
bb,n̄ (E, 0) dE (B.19)

is the radiative recombination rate in thermodynamic equilibrium, which is the integral

over

r0(E) = 4πα(E)φdΩ
bb,n̄(E, 0) =

8πα(E)n̄2

h3c2

E2

exp
(

E
kBT

)
− 1

≈ 8πα(E)n̄2

h3c2
E2exp

(−E

kBT

)
. (B.20)

Here, the approximation in the last line again represents the Boltzmann approximation.

This expression was first derived by van Roosbroeck and Shockley in 1954 [148] and

later generalized by Würfel [15]. The derivation is based on the detailed balance of

absorbed and emitted photons in a semiconductor material with refractive index n̄ and

absorption coefficient α. The semiconductor has infinite extensions in all directions

and is in thermodynamic equilibrium. Then the radiative recombination rate has to
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equal the generation rate caused by the thermal radiation within the sample. This

generation rate is equal to the photon density per unit volume and the probability that

a photon is absorbed per unit time. Via R0 = n2
i B the radiative recombination rate is

related to the radiative recombination constant B.

The radiative recombination rate can also be expressed as a radiative lifetime

τr =
n0

R0

=
h3c2n2

i

8πn̄2NA

(∫ ∞

0

α(E)E2exp

(−E

kBT

)
dE

)−1

(B.21)

Note the similarity between Eq. (B.20) and Eq. (2.6). Only due to the identical

spectral distribution of radiation emitted within the solar cell and thermal radiation

outside the cell, can the radiation balance between the cell and its ambience be fulfilled.

For the analysis of the radiative interaction between two locations xr and xg, each

photon energy needs to be considered separately because the absorption coefficient

α(E) depends on the photon energy. Therefore, we require the spectral radiative re-

combination rate rr(E, x). With the chemical potential µ of the emitted photons being

equal to the local splitting of the quasi-Fermi levels, the Boltzmann approximation of

the spectral radiative recombination rate is given by

rr (E, x) = r0(E)exp (µ (x) /kT ) = r0 (E) n (x) /n0. (B.22)

Non-radiative recombination Non-radiative recombination includes Auger recom-

bination or Shockley-Read-Hall recombination. Throughout the thesis I assume an in-

jection independent non-radiative lifetime τnr. For Auger recombination, for instance,

this assumption is justified as long as the doping level is not too high and the sample

is operated in low-level injection conditions (see for example Ref. [76]).

Since all non-radiative recombination vanish in thermal equilibrium, the non-radiative

recombination rate Rnr(x) = (n(x)−n0)/τnr is proportional to the excess electron con-

centration ∆n(x) = n(x)− n0.

B.2.4 Direct internal generation

In the following, I derive the expression for the internal generation rate δGint (xg, xr)

between two locations xr and xg. The derivation chosen here is based on the treatment

presented by Mettler [29]. First I consider the generation Gdir
int from direct paths of light,
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then I extend the approach to the generation rate Gref
int caused by multiple reflections

at front and back surface of the cell. The overall internal generation is then given by

the sum Gint = Gdir
int + Gref

int.

First, we have to consider the generation rate δgint(E, xg) which is caused by the

radiative recombination rate rr(E, xr) at xr. Let us consider the spherical symmetry

around a recombination event at xr according to Fig. B.1a. The relation between

photon flux φγ and generation rate as well as recombination rate is given by ∇φγ(x) =

r(x)−g(x). 2 Recombining carriers emit radiation isotropically into all directions. The

photon flux density per solid angle interval dΩ = sin (θ) dθdϕ is obtained by dividing

by 4π. Despite this three-dimensional photon emission, the calculation of the radial

component φγ,ρ of the photon flux density per solid angle interval dΩ poses only a

one-dimensional problem. This is because of the spherical symmetry of the emitted

radiation.

With the radius ρ = |xg−xr|/cos (θ) and the angle θ in accordance to Fig. B.1a, the

photon flux δφγ,ρ per solid angle interval dΩ emitted by a thin layer with thickness δxr

at x = xr into the direction θ, reads as

δφγ,ρ (E, x = xr) =
r (E, x = xr)

4π
δρ. (B.23)

Since φγ,ρ (ρ) is attenuated exponentially according to Lambert-Beer’s law φγ,ρ (ρ) =

φγ,ρ(ρ = 0)exp (−α(E)ρ), the generation rate caused at x = xg is given by

δgint (E, θ, ρ) = −dδφγ,ρ

dρ
= α(E)δφγ,ρ (E, ρ)

=
α(E)r (E, x = xr)

4π
exp (−α(E)ρ) δρ. (B.24)

We now change perspective and put the point xg where the generation takes place in the

center of the spherical coordinates as depicted in Fig. B.1b. This change of coordinates

does not change the validity of Eq. (B.24). Using two different sets of coordinates is

simply more descriptive to demonstrate the relevant spherical symmetries. In fact, by

projecting the radius ρ|xg − xr|/cos (θ) onto the x-axis we obtain cylinder coordinates

with the coordinates x, θ and ϕ. We can therewith consider cylindrical plains and

have the x-axis as an emphasized direction. On the other hand we could initially take

advantage of the spherical symmetry of radiative photon emission which allowed for the

one-dimensional treatment of the radial photon flux per solid angle described above.

2Vectors are indicated by bold symbols
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Fig. B.1: Geometry of the radiative interaction between xr and xg. (a) A radiative

recombination event at x = xr emits radiation in a spherical symmetry. (b) To obtain the

generation rate at x = xg, coordinates are transformed so that xg is in the center of the

coordinate system.

To obtain the generation rate δGint (xg, xr) we have to integrate over all possible

angles θ and ϕ and over all possible photon energies E. Thus, by inserting Eq. (B.22)

into Eq. (B.24) and by making use of δρ = δxr/cos (θ), the rate at which carriers are

generated at x = xg by recombination between x = xr and x = xr +δxr and subsequent

direct radiative transfer to xg reads as

δGdir
int (xg, xr) =

∫ ∞

0

α(E)r0 (E)

4π

n (xr)

n0

∫ 2π

0

dϕ

×
∫ π/2

0

sin (θ)

cos (θ)
exp

(−α(E)|xg − xr|
cos (θ)

)
dθdEδxr. (B.25)

With the substitution t = α(E)|xg − xr|/cos (θ) this becomes

δGdir
int (xg, xr) =

∫ ∞

0

α(E)r0 (E)

2
Ei (α(E)|xg − xr|) n (xr)

n0

dEδxr (B.26)

where the exponential integral Ei (z) is given by Eq. (B.3) in appendix B.1.

Eventually, one has to carry out the integration over all possible recombination

events at 0 ≤ xr ≤ d, i.e. over the whole thickness of the cell, as denoted in Eq. (3.2)

to obtain the overall generation rate Gdir
int(xg).
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B.2.5 Internal generation after multiple reflections

So far, we have only considered direct paths of light, but especially for thin cells and low

photon energies with a corresponding low absorption coefficient α(E), the reflected rays

have to be accounted for as well. This holds in particular for the black body radiation

and the internally emitted radiation which contain a significantly larger fraction of low

energy radiation than the solar spectrum emitted by the sun.

In this thesis, I consider two types of reflections, namely (i) reflections at plane sur-

faces, where the angle of reflection is equal to the angle of incidence and (ii) reflections

at textured surfaces that lead to a complete randomization of the reflected light and

therewith to a Lambertian radiation characteristic. Figure 3.1a depicts a solar cell with

a plane front surface. Whereas all external rays enter the cell, only internally emitted

rays that are emitted within the critical angle θc = arcsin (1/n̄) are emitted through

the front surface of the cell (ray 1). Rays emitted at larger angles are internally re-

flected by total internal reflection (ray 2). A textured surface randomizes all external

and internal rays and emits radiation in all directions. Rays from within the solar cell

are transmitted with the probability tlamb (rays 3) and internally reflected with the

probability 1− tlamb (rays 4).

As will be shown below, the textured surface especially enhances light absorption

by means of light trapping in thin samples. For the sake of simplicity I restrict this

distinction to the front surface. The back surface is always plane.

B.2.5.1 Plane front surface

To compute the internal generation caused by reflected rays that stem from radiation

emitted by recombination in a thin plane at xr, we have to consider four basic rays that

reach the point x = xg where carriers are generated with an angle θ or π − θ. Figure

B.2 depicts the photon fluxes caused by recombination in the plane with thickness δxr

at xr that reach the point xg via multiple reflections.

Radiation is emitted at the location xr either in the direction of the front surface

or in the direction of the back surface. Accordingly, radiation reaches the location xg

either from the front side or from the back side. Combined this makes four possible

combinations. I use the notation F for paths with a final reflection at the front side

and B with a final reflection at the back side. For rays with an even/odd number of
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Φdir
int
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even

x

Fig. B.2: Multiple reflections in a solar cell with plane front surface. Radiation emitted

by recombination events in the plane with thickness δxr at the location xr reaches the point

xg either directly or via multiple reflections. Four basic reflected paths are distinguished

according to Tab. B.1. For all further reflections the path simply needs to be prolonged by

2d/cos (θ).

reflections, I use the subscript even and odd, respectively.

For all further reflections, the x-component of the path is simply prolonged by twice

the thickness of the device. For instance, the path B3
odd is obtained by path B1

odd. For

each reflection, the reflection coefficient %f of the front and %b of the back side has to

be considered3. The x-components ∆xl,m of the different paths and the corresponding

reflection coefficients are displayed in Tab. B.1. Here, l is the number of reflections

and m is the basic ray path type. The paths Bodd and Fodd are valid for odd numbers

of reflections, and the paths Beven and Feven are valid for even numbers of reflections.

Also displayed are the x-components of the direct rays. For the reflected rays, the term

|xg − xr| in Eq. (B.26) has to be replaced with ∆xl,m from Tab. B.1.

Due to total internal reflection for θ ≥ θc, radiative interaction between the solar

cell and its ambience only takes place for angles 0 < θ < θc. We obtain for θ > θc the

reflection coefficient for total reflection %totref = 1. Therefore, the integral over θ has

to be split up into two separate integrals with %l,m according to Tab. B.1 from θ = 0

to θ = θc and %l,m = 1 from θ = θc to θ = π/2. For each path m and reflection l we

3With no radiative interaction between the solar cell and its ambience through the back side, as is

assumed throughout this thesis it holds %b = 1 for all angles. In contrast, %f can be chosen freely.



B.2 DIFFUSION EQUATION WITH REABSORPTION 155

Tab. B.1: Components xi normal to the cell surface of the four basic paths and correspond-

ing reflection coefficients %l,m after l reflections. Paths are termed B if the last reflection occurs

at the back side and F if it occurs at the front surface. The indices even/odd indicate an

even/odd number of reflections.

path m # of refl. l ∆xl,m %l,m

0 - direct l = 0 |xg − xr| 1

1 - Bodd l = 1, 3, 5, ... (l + 1) d− xr − xg %
l−1
2

f %
l+1
2

b

2 - Fodd l = 1, 3, 5, ... (l − 1)d + xr + xg %
l+1
2

f %
l−1
2

b

3 - Beven l = 2, 4, 6, ... ld + xr − xg %
l
2
f %

l
2
b

4 - Feven l = 2, 4, 6, ... ld− xr + xg %
l
2
f %

l
2
b

thus obtain the internal generation at xg

δGl,m
int (xg, xr) =

∫ ∞

0

α(E)r0 (E)
n (xr)

2n0

× (B.27)

{
%l,m

∫ θc

0

sin (θ)

cos (θ)
exp

(−α∆xl,m

cos (θ)

)
dθ +

∫ π/2

θc

sin (θ)

cos (θ)
exp

(−α∆xl,m

cos (θ)

)
dθ

}
dEδxr

=

∫ ∞

0

α(E)r0 (E)
n (xr)

2n0

×
{

%l,mEi (α(E)∆xl,m) + (1− %l,m) Ei

(
α(E)∆xl,m

cos (θc)

)}
dEδxr.

Summing up the direct ray and all reflected rays yields the total internal Generation

in the plain xg caused by recombination in the plain xr

δGint (xg, xr) =
4∑

m=0

∞∑

l=0

δGl,m
int (xg, xr) . (B.28)

For the special case with %f = 0, it holds %l,m = 0 except for %0,0 = 1 and %1,1 = 1.

There is only one reflection at the back side and we obtain

δGint (xg, xr) = δGdir
int (xg, xr) + δG1,1

int(xg, xr). (B.29)

B.2.5.2 Textured front surface

For thin solar cells multiple reflections are of increasing importance to absorb the inci-

dent light. One means to increase the light confinement within the cell is by texturing
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Fig. B.3: Photon fluxes in cell with textured front surface

the front surface as sketched in Fig. B.3. The texture leads to a randomization of the

reflected light rays independent from the angle of the incident light ray. Completely

randomizing surfaces have a Lambertian emission characteristic, which means that the

emitted photon flux per solid angle interval dΩ is constant in all directions. A Lamber-

tian source emits light isotropically in all directions, but also, a one-directional light

beam impinging on a Lambertian surface is isotropically reflected into all directions4.

Upon being ’absorbed’ and ’reemitted’ by a Lambertian surface, a light beam loses all

information about previous light reflections. Each time light impinges on a Lambertian

surface, the cards a shuffled anew.

Therefore, we obtain an important difference to the case of a plane surface. In the

case of a plane surface, each angle θ has to be treated separately. the integration over

all angles has to be carried out over the complete path, the light travels before it is

absorbed. Consequently, an analytical solution of the resulting integral does not exist.

Instead, the contributions of all rays have to be summed up as performed in Eq. (B.28).

4The isotropic emission implies that the radial photon flux per solid angle interval is constant.

The photon flux emitted from a unit surface area, however, follows Lambert’s cosine law because the

surface area element dA = cos (θ) dAθ appears smaller from large angles.
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This infinite series with the exponential integral function Ei (z) as an argument has no

analytical solution and thus brings along high computational costs when carried out

numerically with a finite number of reflections (see appendix B).

In contrast, the case with Lambertian surface allows for an angular integration

after each transition of the cell. Consequently, we obtain a closed-form expression for

the generation rates including an infinite number of reflections. Especially for thin

cells, where multiple reflections are increasingly important this enormously reduces

computational costs and guarantees the accuracy of the computation.

Consider the solar cell with Lambertian surface in Fig. B.3.5 All incident radiation

from the outside consisting of the photon fluxes ΦEg
bb and Φsun is initially reflected with

reflection coefficient %f . Light beams impinging on the surface from the inside of the

solar cell are transmitted with a transmission probability tlamb which is independent

of the angle of incidence. For a plane surface, the transmission probability is (1 − %f)

for θ < θc = arcsin (1/n̄) and zero for θc ≤ θ ≤ π/2. The transmission probability

through a Lambertian surface equals the average transmission probability through a

plane surface and is given by [149]

tlamb =
(1− %f)

∫ θc

0
cos (θ) sin (θ) dθ

∫ π/2

0
cos (θ) sin (θ) dθ

=
1− %f

n̄2
. (B.30)

This result is in accordance with the fact that the radiation density φdΩ
bb,n̄ in a medium

with refractive index n̄ is n̄2 times higher than the ambient black body radiation density

φdΩ
bb,1 (cf. Eq. (2.6) in section 2.3.1). It is also in accordance with Snell’s law of refraction

which states sin (θ) = n̄sin (θr), where θ is the angle of the incident light beam and θr

is the angle of the refracted light beam.

The radiation flux Φlamb
em which is emitted from the surface to the inside of the solar

cell is partially absorbed in the sample, partially transmitted through the back side

(for %b 6= 1) and partially reaches the front surface again after one reflection at the

back side, here denoted as the flux Φlamb
ref . Both fluxes Φlamb

em and Φlamb
ref are connected

via the energy-dependent transmission probability tcell(E) through the cell, which I

derive in the following. The reasoning is similar to the above derivation of the internal

generation and is identical to the derivation given by Green [150].

5Note again that I use capital letters Φsun, Φint
em,... to denote fluxes integrated over energy and small

letters φsun, φint
em,... to denote fluxes per energy interval dE. The fluxes δφint

em, δφF
int,... correspond to

recombination in the infinitesimal plane δxr at xr.
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The photon flux φdΩ
em emitted into the solid angle interval dΩ = sin (θ) dθdϕ per

energy interval dE is constant as demanded from the Lambertian radiation charac-

teristic. Upon traversing the sample to the back side, being reflected and traversing

to the front side again, this photon flux is attenuated exponentially with the factor

%bexp (−2αd/cos (θ)). The total flux per unit surface area reaching the front side is

then obtained by integrating over all angles as performed in Eq. (2.7). By normalizing

this flux to the total flux that is emitted from each front surface unit area we obtain

the transmission probability

tcell(E) =
φdΩ

em

∫ 2π

0
dϕ

∫ π/2

0
%bexp

(
−2α(E)d

cos(θ)

)
cos (θ) sin (θ) dθ

φdΩ
em

∫ 2π

0
dϕ

∫ π/2

0
cos (θ) sin (θ) dθ

= 2

∫ π/2

0

%bexp

(−2α(E)d

cos (θ)

)
cos (θ) sin (θ) dθ

= 2%bEi3 (2αd, 0) . (B.31)

With the transmission probability tcell we know what fraction of the light that is

emitted from the internal front surface returns to the front side. Therewith, we balance

all photon fluxes across the front surface. Due to the linearity of the system, we can

separate the contributions of external photon flux Φsun, the ambient photon flux Φbb,

and the photon flux Φint from internal photon emission. We can subsequently superpose

the generation terms just as in the case of flat surfaces.

To compute the internal generation rate we assume Φsun = Φbb = 0 and obtain the

energetically resolved balance

δφint
em(E, xr) =

(
δφF

int + δφB
int + δφint

ref

)
(1− tlamb)

=

(
δφF

int + δφB
int

)
(1− tlamb)

1− tcell (1− tlamb)
(B.32)

from balancing all photon fluxes at the front surface.

Note at this point that the denotations of the fluxes in Fig. B.3 are the overall

stationary fluxes and include multiple reflections. The same result could be obtained

by summing up all the contributions after each reflection. This leads to a geometric

series which simplifies to Eq. (B.32).

The photon flux δφF
int that directly reaches each unit surface area from photon
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emission in the plane at xr with thickness δxr reads as6

δφF
int(E, xr) =

r0n(xr)

4πn0

∫ 2π

0

dϕ

∫ π/2

0

exp

( −αxr

cos (θ)

)
sin (θ) dθδxr

=
r0n(xr)

2n0

Ei2 (αxr, 0) δxr, (B.33)

where Ei2 (z, θ) is given by Eq. (B.4).

Accordingly, the flux δφB
int reaching the front surface after one reflection at the back

side is given by

δφB
int(E, xr) =

%br0n(xr)

2n0

Ei2 (α(2d− xr), 0) δxr. (B.34)

With Eq. (B.32) we can now compute the internal generation rate from rays that

are reflected one or more times at the textured front surface, i.e., the generation rate

caused by the photon flux δΦint
em. Including direct beams Φdir

em and beams Φref
em reflected

once at the back side, it holds

δGlamb
int (xg, xr) (B.35)

=

∫∞
0

α(E)δφint
em

∫ 2π

0
dϕ

∫ π/2

0

{
exp

(
−αxg

cos(θ)

)
+ %bexp

(
−α(2d−xg)

cos(θ)

)}
sin (θ) dθdE

∫ 2π

0
dϕ

∫ π/2

0
cos (θ) sin (θ) dθ

= 2

∫ ∞

0

α(E)δφint
em(E, xr) {Ei2 (αxg, 0) + %bEi2 (α (2d− xg) , 0)} dE

=

∫ ∞

0

α(E)r0(E) (1− tlamb)

1− tcell (1− tlamb)

n(xr)δxr

n0

×

{Ei2 (αxr, 0) + %bEi2 (α (2d− xr) , 0)} {Ei2 (αxg, 0) + %bEi2 (α (2d− xg) , 0)} dE.

The total internal generation rate is then given by the sum

δGint(xg, xr) = δGdir
int(xg, xr) + δGB1

int(xg, xr) + δGlamb
int (xg, xr), (B.36)

where δGdir
int is specified in Eq. (B.26) and δGB1

int is given by Eq. (B.27) with l = m = 1.

The internal generation caused by radiative recombination throughout the sample is

obtained from the integral Eq. (3.2).

Independent of the nature of the front surface, the internal generation rate can be

written as

Gint(xg) =

∫ d

0

∫ ∞

0

const(E)fr(E, xg, xr)
n(xr)

n0

dEδxr, (B.37)

6Note that the cos (θ) term from the projection to the front surface cancels out against the cos (θ)

term from δρ = δxr/cos (θ).
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where fr(E, xg, xr) (cmp. Eq. (B.27) is the radiative interaction function between xr

and xg and Eq. (B.28) for a plane surface and Eq. (B.35) and Eq. (B.36) for a textured

surface).

As can be seen from Tab. B.1 and Eq. (B.35), fr(E, xg, xr) is symmetric in xr and

xg. The location of light emission and light absorption can be exchanged because the

path of light is reversible. Due to the symmetry and linearity of the kernel-function fr,

the whole photon recycling operator as defined in section B.2.1 is linear and symmetric

as well.

B.2.6 External generation

This section derives expressions for the external generation rates caused by the external

photon fluxes ΦEg
bb and Φsun. As the light has to enter the cell through the front surface,

the optical properties of the front surface play a role not only for reflected rays but also

for direct rays. I use the same distinction between plane and textured front surface as

in the previous section.

B.2.6.1 Plane front surface

Equilibrium irradiation The next step to obtain all generation rates in the integro-

differential equation (3.1) is to give an expression for the equilibrium generation rate

Gbb (x) =
∑

m=0,1,4

∞∑

l=0

∫ ∞

0

(1− %f) α(E)φdΩ
bb,n̄ (E, 0)

∫ 2π

0

dϕ (B.38)

×
∫ θc

0

%l,mexp

(
−α∆xl,m

cos (θ)

)
sin (θ) dθdE

=
∑

m=0,1,4

∞∑

l=0

∫ ∞

0

2π (1− %f) α(E)φdΩ
bb,n̄ (E, 0) %l,m

×
{

Ei2 (α∆xl,m, 0)− Ei2 (α∆xl,m, θc)

}
dE

caused by the ambient black body radiation. The geometrical reasoning is analog

to the derivation of Gint. We consider the thermal radiation (1− %f) α(E)φdΩ
bb,n̄ (E, 0)

entering the cell at x = 0+, attenuate it by the factor %l,mexp ((−α(E)∆xl,m)/(cos (θ)))

and integrate over all possible angles. Here, %f is the reflection coefficient at the front

surface. The ambient radiation from all directions at x = 0− is refracted into the cone

within the critical angle θc = arcsin (1/n̄) at x = 0+.
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Non-equilibrium irradiation For the external generation, I assume normal inci-

dence and thus, the integration over all angles is unnecessary. The functional depen-

dence of the photon flux on the coordinate x is therefore given by Lambert-Beer’s

exponential law. This has the advantage that it is possible to simplify the sum of

all reflected rays in a geometrical series. Carrying out this series leads to the total

non-equilibrium generation rate

Gsun (xg) =

∫ ∞

0

(1− %f) αφsun (E) (B.39)

{
e−αxg +

(
%be

−α(2d−xg) + %f%be
−α(2d+xg)

) ∞∑

l=0

(%f%b)
le−2lαd

}
dE

=

∫ ∞

0

(1− %f) αφsun (E)

{
e−αxg +

%be
−α(2d−xg) + %f%be

−α(2d+xg)

1− %f%bexp (−2αd)

}
dE

where φsun is the spectral density of the incoming photon flux so that the overall

external photon flux reads as Φsun =
∫∞
0

φsun(E)dE (cf. Eq. (2.12)).

B.2.6.2 Textured front surface

The derivation of the generation rates in the case of a textured front surface is identical

to the derivation of the internal generation rate in section B.2.5.2.

Equilibrium irradiation For the generation rate caused by ambient black body

radiation it holds ΦF
int = ΦB

int = Φsun = 0 and from Fig. B.3 we derive the photon flux

emitted from the front surface towards the inside of the cell

φbb
em =

(1− %f) φbb

1− tcell(1− tlamb)
, (B.40)

where φbb(E) = 2π/(h3c2)E2exp (−E/(kBT )) = πφdΩ
bb,1(E, 0) is the energy-resolved

black body flux φdΩ
bb,1 integrated over all angles as performed in Eq. (2.7). In analogy

to Eq. (B.35) we thus obtain the black body generation rate

Gbb(xg) = 2

∫ ∞

0

αφbb
em {Ei2 (αxg, 0) + %bEi2 (α (2d− xg) , 0)} dE. (B.41)

Non-equilibrium irradiation Accordingly, we assume ΦF
int = ΦB

int = Φbb = 0 to

calculate the generation rate contributed by solar irradiation and obtain

φsun
em =

(1− %f) φsun

1− tcell(1− tlamb)
. (B.42)
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dxNxN−1

x2x1x0 xN+2dxNxN−1

0 x1 x2

x−1 xk, xmi, xmj

x, xi, xj

∆x

Fig. B.4: Discretization of the absorber into intervals with thickness ∆x. The electron

concentrations are computed in the middle xmi/xmj of each interval. To obtain equidistant

spacing of the mesh points, the boundaries are extrapolated beyond the cell dimensions.

Therewith, it holds

Gsun(xg) = 2

∫ ∞

0

αφsun
em {Ei2 (αxg, 0) + %bEi2 (α (2d− xg) , 0)} dE. (B.43)

Now, we have the expressions for all generation rates in Eq. (3.1). To solve the

linear integro-differential equation, I transform it into a matrix equation as performed

in appendix B. The numerical evaluation scheme is closely related to the procedure

used by Durbin and Gray [52, 53]. In the next section I discuss the results of the

computations.

B.3 Generation terms

The integro-differential Eq. (3.1) cannot be solved analytically. Therefore, I transform

it into a finite differences equation by discretizing the absorber depth from x = 0 to

x = d into N intervals. The discretization I use is in accordance with the formulation

given by Durbin and Gray [53], only that they use different coordinates. I restrict the

following derivation to energetically resolved terms. The overall generation terms are

obtained by integrating over the energy E.
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B.3.1 Internal generation

In contrast to the differential equation, where we can consider the internal genera-

tion at one distinct point xg caused by recombination within an infinitesimal interval

δxr at another distinct point xr we now have to build a matrix where each element

comprises the radiative interaction between two finite intervals around xg and xr with

thickness ∆x. Considering the radiative interaction between two finite intervals instead

of between two discrete locations makes the approach self-consistent and ensures the

conservation of photons and electrons.

The internal generation at a point xg caused by recombination in the incremental

plane with thickness δxr at xr is given by

δgint(xg, xr) =
αr0

2

n(xr)

n0

∫ π/2

0

exp

(−αxl,m (sgxg, srxr)

cos (θ)

)
sin (θ)

cos (θ)
dθδxr. (B.44)

Here, xl,m (sgxg, srxr) is the path of the light which can either be a direct ray or a

reflected ray. Depending on the path, the signum sg = ±1 of xg and the signum

sr = ±1 of xr can be either positive or negative.

For the discretization, I divide the sample into finite intervals with thickness ∆x.

With the approximation that the electron density is constant throughout one interval

we obtain the generation rate at xg caused by recombination in the interval between

xr = xj−1 and xr = xj by integrating over δgint according to

∆gint (xg, xmj) =

∫ xr=xj

xr=xj−1

δgint (xg, xr) (B.45)

≈ αr0

2

n (xmj)

n0

∫ xr=xj

xr=xj−1

∫ π/2

0

exp

(−αxl,m (sgxg, srxr)

cos (θ)

)
sin (θ)

cos (θ)
dθδxr.

Note that here and in the following I use the index j for the discretization of the location

xr where the recombination process takes place and the index i for the discretization

of the location xg where we consider the generation. The electron concentrations are

computed in the middle of each interval. I use the notation

xmj =
xj−1 + xj

2
(B.46)

when referring to the middle of the recombination interval and

xmi =
xi−1 + xi

2
(B.47)
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when referring to the middle of the generation interval.

The internal generation rate at xg caused by recombination in the whole sample is

then given by the sum

gint(xg) =
N−1∑
j=0

∆gint (xg, xmj) . (B.48)

For a self-consistent treatment we require the average internal generation in a finite

plane with thickness ∆x between xg = xi−1 and xg = xi which reads as

gl,m
int (xmi) =

1

∆x

∫ xg=xi

xg=xi−1

gint(xg)dxg (B.49)

=
αr0

2∆x

N−1∑
j=0

n (xmj)

n0

×
∫ π/2

0

∫ xg=xi

xg=xi−1

∫ xr=xj

xr=xj−1

exp

(−αxl,m (sgxg, srxr)

cos (θ)

)
sin (θ)

cos (θ)
δxrdxgdθ

=
αr0

2∆x

N−1∑
j=0

n (xmj)

n0

∫ π/2

0

sgsrf
ij
exp

cos2 (θ)

α2

sin (θ)

cos (θ)
dθ

=:
sgsrr0

2α∆x

N−1∑
j=0

n (xmj)

n0

Eiij3 (α, 0) ,

where

Eiij3 (α, θc) := Ei3 (αxl,m (sgxi, srxj) , θc)− Ei3 (αxl,m (sgxi, srxj−1) , θc) (B.50)

−Ei3 (αxl,m (sgxi−1, srxj) , θc) + Ei3 (αxl,m (sgxi−1, srxj−1) , θc) .

In general, the interval thickness ∆x depends on xj−1 and xj. However, I use an

equidistant discretization mesh so that ∆x is constant.

The energy integral of this general expression is the analogy to Gint from Eq. (B.26).

For the final expression including direct and reflected rays we again have to distinguish

the two cases of plane and textured front surface.
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B.3.1.1 Plane front surface

For a plane front surface we obtain in analogy to Eq. (B.27) the internal generation

caused by the reflection l along path m

gl,m
int (xmi) = (B.51)

sgsrr0

2α∆x

N−1∑
j=0

n (xmj)

n0

{
%l,mEiij3 (α, 0) + (1− %l,m) Eiij3 (α(E), θc)

}
.

Summing up the direct ray and all reflected rays yields the total internal Generation

in the finite plane xi−1 ≤ xg ≤ xi caused by recombination throughout the sample

gint (xmi) =
4∑

m=0

∞∑

l=0

gl,m
int (xmi) . (B.52)

B.3.1.2 Textured front surface

The discretization has no influence on the transmission probability tcell through the

sample so that Eq. (B.31) still holds. We rewrite the photon flux balance Eq. (B.32) at

the front surface to obtain the photon flux internally emitted from the front surface

∆φint
em (xj−1, xj) =

(
∆φF

int + ∆φB
int

)
%lamb

1− tcell%lamb

(B.53)

caused by radiative recombination in the plane xj−1 ≤ xr ≤ xj. The fluxes ∆φF
int and

∆φB
int are obtained by integrating δφF

int and δφB
int from xr = xj−1 to xj according to

∆φF
int (xj−1, xj) =

r0

2

n (xmj)

n0

∫ π/2

0

∫ xr=xj

xr=xj−1

exp

( −αxr

cos (θ)

)
sin (θ) cos (θ)

cos (θ)
δxrdθ

=
r0

2α

n (xmj)

n0

∫ π/2

0

{
exp

(−αxj−1

cos (θ)

)
− exp

( −αxj

cos (θ)

)}
cos (θ) sin (θ) dθ

=
r0

2α

n (xmj)

n0

{
Ei3 (αxj−1, 0)− Ei3 (αxj, 0)

}
(B.54)

and

∆φB
int (xj−1, xj) =

r0

2α

n (xmj)

n0

{
Ei3 (α(2d− xj), 0)− Ei3 (α(2d− xj−1), 0)

}
. (B.55)

Note that the cos (θ) term in line one of Eq. (B.54) cancels out because in contrast to

Eq. (B.45) the projection to the front surface unit area requires an additional cos (θ)
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term (cmp. Eq. (B.31) and Eq. (B.33)). The cos (θ) term in line two stems from the

integration over xr.

The emission caused by recombination throughout the sample is then given by the

sum

φint
em =

N−1∑
j=0

∆φint
em (xj−1, xj) . (B.56)

In analogy to Eq. (B.35) this photon flux causes the average internal generation in the

plane xi−1 ≤ xg ≤ xi

glamb
int (xmi) = (B.57)

2αφint
em

∆x

∫ π/2

0

∫ xg=xi

xg=xi−1

{
exp

( −αxg

cos (θ)

)
+ %bexp

(−α(2d− xg)

cos (θ)

)}
sin (θ) dxgdθ

=
2φint

em

∆x

∫ π/2

0

{
exp

(−αxi−1

cos (θ)

)
− exp

( −αxi

cos (θ)

)

+ %bexp

(−α(2d− xi)

cos (θ)

)
− %bexp

(−α(2d− xi−1)

cos (θ)

)}
cos (θ) sin (θ) dθ

=
2φint

em

∆x

{
Ei3 (αxi−1, 0)− Ei3 (αxi, 0)

+ %bEi3 (α(2d− xi), 0)− %bEi3 (α(2d− xi−1), 0)
}
.

The total internal generation rate is then given by the sum

gint (xmi) = gdir
int(xmi) + gB1

int(xmi) + glamb
int (xmi), (B.58)

where gdir
int(xmi) and gB1

int(xmi) are given by Eq. (B.51) with l = m = 0 in for the direct

path and l = m = 1 for the ray reflected once at the back side. The overall internal

generation rate Gint (xmi) is obtained by integrating over the energy.

B.3.2 External generation

This section derives expressions for the average external generation rates caused by the

external photon fluxes Φbb and Φsun.
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B.3.2.1 Plane front surface

Equilibrium irradiation In analogy to Eq. (B.38) the average black body genera-

tion rate reads as

gbb (xmi) =
∑

m=0,1,4

∞∑

l=0

(1− %f) 2παφdΩ
bb,n̄ (E, 0)

∆x
(B.59)

×
∫ θc

0

∫ xg=xi

xg=xi−1

%l,mexp

(−α∆xl,m(sgxg)

cos (θ)

)
sin (θ) dxgdθ

=
∑

m=0,1,4

∞∑

l=0

(1− %f) 2πsgφ
dΩ
bb,n̄ (E, 0)

∆x

×
∫ θc

0

%l,m

{
exp

(−α∆xl,m(sgxi−1)

cos (θ)

)
− exp

(−α∆xl,m(sgxi)

cos (θ)

)}
cos (θ) sin (θ) dθ

=
∑

m=0,1,4

∞∑

l=0

(1− %f) 2πsgφ
dΩ
bb,n̄ (E, 0)

∆x

{
Ei3 (α∆xl,m(sg, xi−1), 0)− Ei3 (α∆xl,m(sg, xi), 0)

}
.

Non-equilibrium irradiation For the non-equilibrium irradiation, I assume normal

incidence and, thus, from the integration of Eq. (B.39) we obtain the average solar

generation rate at xi−1 ≤ xg ≤ xi

gsun (xmi) =
(1− %f) αφsun (E)

∆x
(B.60)

∫ xg=xi

xg=xi−1

{
e−αxg +

%be
−α(2d−xg) + %f%be

−α(2d+xg)

1− %f%bexp (−2αd)

}
dxg

=
(1− %f) φsun (E)

∆x

{
exp (−αxi−1)− exp (−αxi)

+
%b

(
e−α(2d−xi) − e−α(2d−xi−1)

)
+ %f%b

(
e−α(2d+xi−1) − e−α(2d+xi)

)

1− %f%be−2αd

}
.

B.3.2.2 Textured front surface

The derivation of the generation rates in the case of a textured front surface is identical

to the derivation of the internal generation rate in section B.3.1.2. We obtain the

average black body generation rate gbb(xmi) and the average external generation rate

gsun(xmi) by simply replacing φint
em in Eq. (B.57) with φbb

em from Eq. (B.40) and φsun
em from

Eq. (B.42) respectively.
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B.4 Diffusion operator

The simplest discrete approximation of the second derivative of a function n(x) at

equidistant meshpoints with meshwidth ∆x is obtained from the Taylor expansion of

n(x) at x = xk and reads as

d2n(x)

dx2

∣∣∣∣∣
x=xk

=

n(xk+1)−n(xk)

xk+1−xk
− n(xk)−n(xk−1)

xk−xk−1

∆x

=
n(xk−1)− 2n(xk) + n(xk+1)

∆x2
. (B.61)

However, in our case the meshpoints xk are not equidistant. Instead, the xk are given

by the centerpoints of the equidistant intervals xi−1 ≤ x ≤ xi. Therefore, The distance

from x0 = xk(k = 0) = 0 to x1xk(k = 1) = ∆x/2 and the distance from xN to xN+1 = d

is only ∆x/2.

For a non-equidistant spacing of the meshpoints, the second derivative can again be

obtained from the Taylor expansion [151]. In general, it holds

d2n(x)

dx2

∣∣∣∣∣
x=xk

=
2

(xk − xk−1)(xk+1 − xk−1)
n(xk−1) (B.62)

+
−2

(xk − xk−1)(xk+1 − xk)
n(xk)

+
2

(xk+1 − xk)(xk+1 − xk−1)
n(xk+1)

However, in that case, the consistency error of the discretization is only of the order

O(∆x) compared to O(∆x2) for equidistant grids [151]. Therefore, the approximation

of the second derivative is much worse than in the equidistant case and the solution of

the differential equation will be much less exact.

To elude this problem, I extrapolate the electron distribution to the external points

x−1 = −∆x/2 and xN+2 = d + ∆x/2 as sketched in Fig. B.4 by assuming identical

slopes

n(x0)− n(x−1)

∆x/2
=

n(x1)− n(x0)

∆x/2
(B.63)

at x0 and (x0 + x1)/2 and

n(xN+2)− n(xN+1)

∆x/2
=

n(xN+1)− n(xN)

∆x/2
(B.64)
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at xN+1 and (xN + xN+1)/2. Therewith, we obtain the second derivatives

d2n(x)

dx2

∣∣∣∣∣
x=x1

=

n(x2)−n(x1)
∆x

− n(x1)−n(x0)
∆x/2

∆x

=
2n(x0)− 3n(x1) + n(x2)

∆x2
(B.65)

at x = x1 and

d2n(x)

dx2

∣∣∣∣∣
x=xN

=

n(xN+1)−n(xN)

∆x/2
− n(xN)−n(xN−1)

∆x

∆x

=
n(xN−1)− 3n(xN) + 2n(xN+1)

∆x2
(B.66)

at x = xN.

B.5 Boundary conditions

Apart from the boundary conditions, we have all the components for calculating the

electron (minority carrier) profile in the absorber by inverting the established ma-

trix equation equivalent to Eq. (3.1). The electron profile in turn supplies the cur-

rent/voltage characteristic of the solar cell. Since the voltage-dependence occurs only

in the boundary condition Eq. (2.17) at the edge of the space-charge region, the recom-

bination current exhibits the well known exponential voltage-dependence. With the

linear dependence on the external excitation being unchanged the principle of super-

position of recombination and short circuit current remains valid as well.

B.5.1 Back contact

In the ideal case of Sn = 0, the boundary condition Eq. (2.18) at the back contact

simplifies to

dn

dx

∣∣∣∣∣
x=d

= 0. (B.67)

In conjunction with assumption Eq. (B.64), it holds n(xN) = n(xN+1) = n(xN+2), and

we rewrite the last row Eq. (B.66) of the diffusion matrix as

d2n(x)

dx2

∣∣∣∣∣
x=xN

=
n(xN−1)− 3n(xN) + 2n(xN+1)

∆x2
=

n(xN−1)− n(xN)

∆x2
. (B.68)
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B.5.2 Junction

The boundary condition Eq. (2.17) at the junction depends on the applied voltage.

Short circuit current Under short circuit conditions with the applied voltage V =

0, the electron density at the junction, which according to Eq. (B.65) is needed for the

first row of the diffusion matrix, reads as

n(x0) = n(0) = n0exp

(
qV

kBT

)
= n0. (B.69)

Solving the matrix equation under illumination with this boundary condition and com-

puting the current density

J(V ) = −qDn
dn

dx

∣∣∣∣∣
x=x0

≈ −qDn
n(x1)− n(x0)

x1 − x0

(B.70)

at x = 0 yields the short circuit current density Jsc = |J(V = 0)|.

Saturation current I compute the saturation current density J0 by solving the

matrix equation in the dark under the applied bias V = (kBT/q)ln (2) which leads to

the boundary condition

n(x0) = n(0) = n0exp

(
qV

kBT

)
= 2n0. (B.71)

With this boundary condition it holds exp (qV/(kBT ))−1 = 1 and the current becomes

J(V ) = J0(exp (qV/(kBT ))− 1) = J0.

B.6 Discussion

B.6.1 Reabsorption matrix

The computation of the photon recycling matrix PR can be very time-consuming. This

is because the computation of the exponential integral Ei (z) is very expensive. For a

sufficient accuracy of the computations, we need N = 1000 mesh points which results

in a matrix with a million elements.

Fortunately, the matrix exhibits certain symmetries, namely the symmetry along

the main diagonal because the interaction between two intervals at xj and xi equals

the reverse interaction between the intervals at xi and xj.
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Additionally, the radiative interaction depends only on the distance ∆xl,m (cf. Tab.

B.1). Since only the function Ei3 (n∆x) occurs in the final equations, I only compute

the array Ei3 (n∆x) for n = 1..(M + 1)N − 1, where M is the maximum number

of multiple reflections. The elements of the reabsorption matrix are then generated

from this array without having to compute each element separately. Thereby, the

computation cost is roughly reduced by a factor of N .

B.6.2 Energy superposition

With respect to the energy-dependence of internal, external and dark generation rate,

the PR integral term evokes a fundamental difference between the differential equa-

tion Eq. (2.16) without PR and the integro-differential equation Eq. (3.1) with PR. In

the former problem, energy-dependencies occur only in the right hand side generation

terms which consist of the integrated generation rates at each energy. Due to this linear

superposition, one can determine the exact solution for each energy and subsequently

calculate the current from the convolution integral with the density of the incoming

radiation fluxes. In the latter case with photon recycling, the radiation emitted by re-

combining carriers which causes the internal generation is always distributed according

to Planck’s law Eq. (2.6) regardless of the energy of the exciting photons. Consequently,

in that case a linear superposition is not possible, the energy integration of the internal

generation rate has to be carried out before inverting the matrix equation. However,

for the external generation rate, the linear superposition is still valid.

B.7 Numerical error sources

Every numerical approximation scheme has its limits. The results delivered by the

numerical program are only valid as long as the assumptions underlying the numerical

approximations are not violated.

B.7.1 Optical limitations - absorption length

Optically, i.e., with respect to the absorptance of the solar cell, the reabsorption scheme

is self-consistent. Due to the fact that I integrate the radiative interaction between two

layers with finite thickness, no photons are lost in the computation, which makes the
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Tab. B.2: Average absorption coefficients according to Eq. (B.74) and maximum thickness

according to Eq. (B.73) for a numerical computation scheme with discretization N = 1000

and Eg = 1 eV.

α(E) ᾱ(Φsun) ᾱ(Φbb) α0dmax(Φsun) α0dmax(Φbb)

α0 α0 α0 2000 2000

α0

√
E−Eg

kBT
5 α0 α0 400 2000

α0

(
E−Eg

kBT

)2

1.4× 103 α0 2.4 α0 1.4 840

computation almost insensitive to the resolution of the discretization. This means that

the absorptance of the solar cell

a(E) =

∫ d

0

g(x)dx =
N∑

i=1

ḡ(E, xmi)∆x (B.72)

as given by the integration over the generation profile is always exact.

However, if the generation profile is too steep, i.e. if the variation of g(x) within

one interval ∆x is too large, then the average generation rate ḡ(xmi) is not an accurate

approximation of the real generation rate g(x = xi) anymore.

As a crude condition I postulate that the first interval length d/(2N) should not ex-

ceed the average absorption length 1/ᾱ, which leads to the condition for the maximum

thickness of the solar cell

d ≤ 2N

ᾱ
. (B.73)

Table B.2 lists the average absorption coefficients

ᾱ :=

∫ ∞

0

α(E)φ(E)dE/

∫ ∞

0

φ(E)dE, (B.74)

where φ(E) is either the solar spectrum φsun(E) or the black body spectrum φbb(E).

The maximum thickness listed in the last column of Tab. B.2 shows the numerical

restrictions for a discretization scheme with N = 1000 intervals for a band gap Eg =

1 eV.
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B.7.2 Electrical limitations - diffusion length

The electrical current is calculated according to Eq. (3.10) which in the case of the

normalized saturation current and with the discretization scheme of Fig. B.4 becomes

J0

ΦEg
bb

= −µnorm
dν

dξ
= −µnorm

ν(ξ = ∆ξ/2)− ν(ξ = 0)

∆ξ/2
, (B.75)

where the normalized electron concentration at the junction ν(ξ = 0) = 2 is determined

by the boundary condition Eq. (B.71).

This approximation holds only if the carrier distribution ν(ξ) is not too steep. Let

us assume an exponential decay ν(ξ) ≈ 2exp (−ξ/Lnorm), where Lnorm =
√

µnormτnorm

is the normalized diffusion length. Then reducing Lnorm below Lnorm ≈ ∆ξ/2 results

in ν(∆ξ/2) approaching ν(∆ξ/2) = 1. Consequently, the numerical approximation

will be flawed and with ∆ξ = α0d/N the erroneous saturation current approaches the

low-mobility limit

lim
µnorm→0

J0

ΦEg
bb

= −µnorm
ν(ξ = ∆ξ/2)− ν(ξ = 0)

∆ξ/2
=

2N

α0d
µnorm (B.76)

although in reality, the current follows the square root dependence Jel ∝ √
µnormτnorm.

Thus, the numerical discretization scheme is only valid for Lnorm > ∆ξ/2, i.e.

µnorm >
(∆ξ)2

4τnorm

=
(α0d)2

4N2τnorm

. (B.77)

Summing up, the numerical computations are only valid below a maximum thickness

defined by the average absorption length and above a minimum diffusion length.



Appendix C

Derivation of the two-layer model

This appendix performs the derivation of the two-layer model presented in section

3.7.2.

Region 1: 0 ≤ ξ ≤ ξpr In analogy to Eq. (3.3) without the PR term γint(ξ) we obtain

the following diffusion equation

µnorm
d2ν

dξ2
− ν (ξ) (1 + ϑr)

τ r
norm

= −γsun (ξ)− γbb (ξ)− ϑr

τ r
norm

. (C.1)

For both, plane and textured front surface, I approximate the non-equilibrium gen-

eration profile by the exponential profile

γsun(ξ) =
kαF0

ΦEg
bb

exp (−kαξ) +
kαFr

ΦEg
bb

exp (−kα(2α0d− ξ)) (C.2)

in order to guarantee an analytical solution. For the sake of simplicity, I assume that

α(E) = α0 for E ≥ Eg. For a plane front surface, the profile is exact. The amplitudes

F0 and Fr and the path length enhancement factor kα are determined by comparison

with Eq. (B.39). For a textured surface, it holds F0 = JSQ
sc / (1− tcell(1− tlamb)). I

extract Fr and kα from fitting γsun to the exact generation profile Eq. (B.43). For the

case of a textured front surface and %f = 0 and %b = 1 we obtain for the thicknesses

α0d = 0.1 the coefficients Fr = 1.02 F0 and kα = 3.24, and for the thickness α0d = 10

Fr = 0 and kα = 2. The parameters are chosen in such a way that the integrated

generation profile, i.e. the absorptance of the solar cell does not exceed the actual

absorptance.

174



175

Since I assume that all emitted photons leave the cell, i.e. a constant emission

probability of unity, I also assume a constant black body generation rate γbb(ξ) =

const = 1/τ r
norm. Therewith, we obtain for the excess carriers δν = ν − 1

µnorm
d2δν

dξ2
− δν (ξ)

τnorm

= −kαF0

ΦEg
bb

exp (−kαξ)− kαFr

ΦEg
bb

exp (−kα(2α0d− ξ)) (C.3)

with the lifetime τnorm = τ r
norm/(ϑr+1). The general solution of this differential equation

reads as

δν1(ξ) = Asinh

(
ξ

Lnorm

)
+ Bcosh

(
ξ

Lnorm

)
+ Cexp (−kαξ) + Dexp (kαξ) , (C.4)

where Lnorm =
√

µnormτnorm is the normalized diffusion length and the coefficients

C =
kαF0τnorm

ΦEg
bb (1− k2

αL2
norm)

(C.5)

and

D =
kαFrexp (−2kαα0d) τnorm

ΦEg
bb (1− k2

αL2
norm)

(C.6)

are obtained from the particular solutions. The coefficients A and B will follow from

the boundary conditions given below.

Region 2: ξpr ≤ ξ ≤ α0d Deep in the bulk the radiative lifetime is infinity due to the

assumed complete reabsorption of all emitted photons. Along with radiative recombi-

nation the black body generation vanishes as well thereby guaranteeing the compliance

of the internal detailed balance (zero emission is balanced by zero absorption). There-

with we arrive at the following differential equation for the excess carriers:

µnorm
d2δν

dξ2
− δν (ξ)

τnr
norm

= −kαF0

ΦEg
bb

exp (−kαξ)
kαFr

ΦEg
bb

exp (−kα(2α0d− ξ)) , (C.7)

which is identical to Eq. (C.3) in region 1, only that the lifetime is exclusively deter-

mined by the non-radiative lifetime τnr
norm.

With the ansatz

δν2(ξ) = Esinh

(
ξ

Lnr
norm

)
+ F cosh

(
ξ − α0d

Lnr
norm

)
+ Gexp (−kαξ) + Hexp (kαξ) , (C.8)
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where Lnr
norm =

√
µnormτnr

norm is the normalized non-radiative diffusion length, the coef-

ficients G and H read as

G =
kαF0τ

nr
norm

ΦEg
bb

(
1− (kαLnr

norm)2) (C.9)

and

H =
kαFrexp (−2kαα0d) τnr

norm

ΦEg
bb

(
1− (kαLnr

norm)2) . (C.10)

Boundary conditions As boundary conditions we obtain the well-known conditions

δν1(ξ = 0) = exp (qV/(kBT )) − 1 at ξ = 0 and dδν2/dξ|ξ=α0d = 0 at ξ = α0d. At the

Interface between the two regions the continuity of the electron concentration δν(ξ) and

the continuity of the diffusion current result in the conditions δν1(ξ = ξpr) = δν2(ξ =

ξpr) and µnormdδν1/dξ|ξ=ξpr = µnormdδν2/dξ|ξ=ξpr .

Coefficients From these boundary conditions we obtain the coefficients

B = exp

(
qV

kBT

)
− 1− C −D, (C.11)

E =
kαGexp (−kαα0d)−Hexp (kαα0d)

1
Lnr

norm
cosh

(
α0d

Lnr
norm

) , (C.12)

F =
EK3 −K2sinh

(
ξpr

Lnorm

)
+ K1

Lnorm
cosh

(
ξpr

Lnorm

)

K4

, (C.13)

and

A =
Esinh

(
ξpr

Lnr
norm

)
+ F cosh

(
ξpr−α0d

Lnr
norm

)
+ K1

sinh
(

ξpr

Lnorm

) , (C.14)

where the abbreviations K1, K2, K3, and K4 are given by

K1 = (G− C) exp (−kαξpr) + (H −D) exp (kαξpr)−Bcosh

(
ξpr

Lnorm

)
, (C.15)

K2 = kα (C −G) exp (−kαξpr)+kα (H −D) exp (kαξpr)− B

Lnorm

sinh

(
ξpr

Lnorm

)
, (C.16)

K3 =
1

Lnorm

cosh

(
ξpr

Lnorm

)
sinh

(
ξpr

Lnr
norm

)
− 1

Lnr
norm

sinh

(
ξpr

Lnorm

)
cosh

(
ξpr

Lnr
norm

)
,
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(C.17)

and

K4 =
1

Lnr
norm

sinh

(
ξpr

Lnorm

)
sinh

(
ξpr − α0d

Lnr
norm

)
−

1

Lnorm

cosh

(
ξpr

Lnorm

)
cosh

(
ξpr − α0d

Lnr
norm

)
. (C.18)

Layer thickness In order to comply the external detailed balance principle, we have

to guarantee that the radiative recombination current does not exceed the absorptance

a of the solar cell. Therefore, I choose the thickness ξpr of layer 1 in such a way,

that the maximum radiative recombination current J rad
0 (µnorm → ∞)/ΦEg

bb equals the

absorptance and therewith the numerical result in section 3.4.1.

Radiative recombination only takes place in region 1. Therefore, and with keeping

in mind that all photons emitted by radiative recombination are also emitted from the

front surface by definition (no PR), we obtain the radiative saturation current

J rad
0

ΦEg
bb

=

∫ ξpr

0

δν1

τ r
norm

dξ

∣∣∣∣∣
V =kBT/qln(2)

. (C.19)

For µnorm → ∞ and with δν1(ξ = 0) = 1 for V = (kBT/q)ln (2) it holds δν1(ξ) =

δν1(ξ = 0) = 1. Therewith, we arrive at the condition

lim
µnorm→∞

J rad
0

ΦEg
bb

=
ξpr

τ r
norm

!
= a (C.20)

which with τ r
norm = 1/(4n̄2) gives

ξpr =
a

4n̄2
. (C.21)

The absorptance a is either given by Eq. (3.37) for a textured or Eq. (3.40) for a plane

front surface.

With the above choice of the layer thickness ξpr, the model inherently predicts the

correct high mobility limit for the saturation current in the radiative recombination

limit. When non-radiative recombination is dominant, the model simply turns into the

classical approach.

With respect to the low mobility limit the model also renders the correct result,

namely the limit
√

µnorm/τ r
norm. But this limit is not the crucial point since it is
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also correctly reproduced by the standard classical model. The high mobility limit

makes up the much more critical issue, since the change from the limit α0d/τnr
norm to

the absorptance a with increasing non-radiative lifetime can not be captured with the

classical approach.

The final step in the model is the calculation of the electrical current which is

conducted in the usual manner according to

Jel(V )

ΦEg
bb

= µnorm
dδν1

dξ

∣∣∣∣∣
ξ=0

= µnorm

(
A

Lnorm

− kαC + kαD

)
. (C.22)

C.0.2.1 Radiative recombination limit

In the limit of radiative recombination, the two-layer model allows some simplifications.

Without non-radiative recombination, i.e. with an infinite non-radiative lifetime, the

lifetime in region 1 is simply given by the radiative lifetime and the diffusion length

turns into Lnorm =
√

µnormτ r
norm. In region 2, recombination vanishes altogether. With-

out the recombination term δν2/τ
nr
norm in Eq. (C.7), the electron profile in region 2 is

given by

δν2(ξ) = Eξ + F + Gexp (−kαξ) + Hexp (kαξ) (C.23)

with the coefficients

G =
−F0

ΦEg
bbk2

αµnorm

, (C.24)

H =
Frexp (−2kαα0d)

ΦEg
bbk2

αµnorm

, (C.25)

and

E = kαGexp (−kαα0d)− kαHexp (kαα0d) . (C.26)

From the boundary conditions at ξ = ξpr we obtain

A =
(E + K2)Lnorm

cosh
(

ξpr

Lnorm

) (C.27)

and

F = Asinh

(
ξpr

Lnorm

)
− Eξpr −K1. (C.28)

The coefficients B, C, D, and K1 and K2 remain unchanged.



Nomenclature

Physical constants

c Speed of light 3× 1010 cm s−1

h Planck’s constant 4.14× 10−15 eV s

kB Boltzmann’s constant 8.62× 10−5 eV K−1

q Elementary charge 1.602× 10−19 As

Symbols

aloc Local absorptance

αloc Local absorption coefficient cm−1

αsun Average absorption coefficient of the solar spectrum cm−1

asun Average absorptance of the solar spectrum

abb Average absorptance of the terrestrial black body spec-

trum

Beven Reflected path coming from the back side with even #

of reflections

Bodd Reflected path coming from the back side with odd #

of reflections

cµ Proportionality constant between the normalized short

circuit current in the low mobility limit and the normal-

ized mobility

cr Radiative lifetime multiplication factor

dcrit Critical thickness for light absorption cm

dim Dimension of band gap fluctuations
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dmax Maximum thickness for numerical accuracy cm

Dn Electron diffusion constant cm2 s−1

EC Conduction band eV

Eloc
C Local conduction band eV

EF Fermi level eV

EFn Electron Fermi level eV

Eloc
Fn Local electron Fermi level eV

EFp Hole Fermi level eV

Eloc
Fp Local hole Fermi level eV

Eg Band gap eV

Eloc
g Local band gap eV

EV Valence band eV

Eloc
V Local valence band eV

Ēg Mean band gap eV

EQE External quantum efficiency (spectral)

EQELED External LED quantum efficiency (integrated)

η Solar cell power conversion efficiency

ηSQ Shockley Queisser efficiency

fC Collection efficiency

FF Fill factor

F0 Initial photon flux at the solar cell surface cm−2 s−1

Fr Reflected photon flux cm−2 s−1

Feven Reflected path coming from the front side with an even

# of reflections

Fodd Reflected path coming from the front side with an odd

# of reflections

fr Radiative interaction function

φdΩ
bb,n̄ Spectral black body photon flux per solid angle in a

material with refractive index n̄

cm−2 s−1 eV−1

φbb Spectral black body photon flux projected on the cell

surface

cm−2 s−1 eV−1

Φbb Integrated black body photon flux projected on the cell

surface

cm−2 s−1
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ΦEg
bb Black body photon flux integrated from the band gap

and projected on the cell surface

cm−2 s−1

Φabs
bb Integrated black body photon flux absorbed by the cell cm−2 s−1

φsun Spectral solar photon flux projected on the cell surface cm−2 s−1 eV−1

Φsun Solar photon flux integrated over all energies and pro-

jected on the cell surface

cm−2 s−1

ΦEg
sun Solar photon flux integrated over all energies larger than

the band gap and projected on the cell surface

cm−2 s−1

Φabs
sun Integrated solar photon flux absorbed by the cell per

unit surface area

cm−2 s−1

Φloc
r Local radiative recombination current cm−2 s−1

Φem Integrated emitted photon flux per unit surface area cm−2 s−1

gbb Spectral black body generation rate cm−3 s−1 eV−1

Gbb Black body generation rate cm−3 s−1

γbb Normalized black body generation rate

gint Spectral internal generation rate cm−3 s−1 eV−1

Gint Internal generation rate cm−3 s−1

γint Normalized internal generation rate

gsun Spectral solar generation rate cm−3 s−1 eV−1

Gsun Solar generation rate cm−3 s−1

γsun Normalized solar generation rate

Jel Electrical current drawn from the solar cell cm−2 s−1

J0 Reverse saturation current cm−2 s−1

JSQ
0 Saturation current in the SQ limit cm−2 s−1

J rad
0 Radiative saturation current cm−2 s−1

Jnr
0 Non-radiative saturation current cm−2 s−1

J loc
nr Local non-radiative recombination current cm−2 s−1

J loc
rec Local recombination current cm−2 s−1

Jnr
rec Non-radiative recombination current cm−2 s−1

J rad
rec Radiative recombination current cm−2 s−1

Jsc Short circuit current cm−2 s−1

JSQ
sc Short circuit current in the SQ limit cm−2 s−1
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kα Absorption multiplication factor that contains the ab-

sorption spectrum and the nature of the cell surface

klam Absorption multiplication factor that contains the na-

ture of the cell surface

Lα Absorption length cm

Lα,norm Normalized absorption length

Ln Electron diffusion length cm

Lnorm Normalized diffusion length

Lcrit Critical diffusion length cm

Lrad
crit Critical diffusion length in the radiative limit cm

Lem,norm Normalized emission length

Lg Fluctuation length of band gap fluctuations cm

Lg Fluctuation length of the chemical potential cm

µ Chemical potential of photons eV

µloc Local chemical potential eV

µss Steady state chemical potential eV

µloc
ss Local steady state chemical potential eV

µ̄ Mean chemical potential eV

µn Electron mobility cm2( Vs)−1

µref Reference mobility for normalization cm2( V s)−1

µnorm Normalized mobility

µcrit Critical mobility cm2( Vs)−1

µnorm
crit Normalized critical mobility

µrad
crit Critical mobility in the radiative recombination limit cm2( Vs)−1

µband
p Hole mobility in valence band cm2( V s)−1

µeff
p Effective hole mobility cm2( V s)−1

NA Acceptor concentration cm−3

ni Intrinsic carrier concentration cm−3

n Electron concentration cm−3

ν Normalized electron concentration

n̄ Real part of the refractive index

p Hole concentration cm−3

PG Gaussian probability
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%b Reflection coefficient at the back contact

%f Reflection coefficient at the front surface

rr Spectral radiative recombination rate cm−3 s−1 eV−1

Rr Radiative recombination rate cm−3 s−1

Rnr Non-radiative recombination rate cm−3 s−1

Rg Autocorrelation function of the band gap fluctuations

Sg Power spectrum of the band gap fluctuations cmdim

σg Standard devieation of the band gap fluctuations eV−1

σµ Standard devieation of the chemical potential eV−1

Sn Electron surface recombination velocity at the back con-

tact

cm s−1

τ Minority carrier lifetime s−1

τnorm Normalized lifetime

τr Radiative minority carrier lifetime s−1

τ r
norm Normalized radiative minority carrier lifetime

τnr Non-radiative minority carrier lifetime s−1

τnr
norm Normalized non-radiative minority carrier lifetime

τmod
norm Normalized modified minority carrier lifetime

τ r,mod
norm Normalized modified radiative minority carrier lifetime

θc Critical angle of total internal reflection

ϑr Ratio of radiative and non-radiative lifetime

Voc Open circuit voltage V

V inhom
oc Open circuit voltage with inhomogeneous band gap V

V rad
oc Open circuit voltage in the Shockley Queisser limit V

wscr Width of the space charge region cm

x Spatial coordinate cm

ξ Normalized spatial coordinate

xg Position of carrier generation cm

xi Discrete position (interval) of carrier generation cm

xr Position of carrier recombination cm

xj Discrete position (interval) of carrier recombination cm

ξpr Normalized depth of the layer from where all emitted

photons exit the cell
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[110] M. Schöfthaler, U. Rau, and J. H. Werner, J. Appl. Phys. 76, 4168

(1994).

[111] A. Papoulis, Probability, Random Variables, and Stochastic Processes

(McGraw-Hill, Inc, 1991).

[112] M. A. Green, J. Appl. Phys. 81, 268 (1997).

[113] S. Dauwe, Low-Temperature Surface Passivation of crystalline Silicon, Phd the-

sis, Universität Hannover (2004).



BIBLIOGRAPHY 191

[114] S. J. Orfanidis, Optimum signal processing: An introduction (MacMillan Pub-

lishing Company, New York, 1985).

[115] A. Gabor, J. Tuttle, D. S. Albin, M. Contreras, R. Noufi, and

A. Hermann, Appl. Phys. Lett. 65, 198 (1994).

[116] K. Bothe, G. H. Bauer, and T. Unold, Thin Solid Films 403, 453 (2002).

[117] B. Dimmler, H. Dittrich, and H.-W. Schock, in Conf. Rec. 19th IEEE

Photov. Spec. Conf. (IEEE, New York, 1987), p. 1454.

[118] I. Dirnstorfer, M. T. Wagner, D. M. Hofmann, M. D. Lampert,

F. Karg, and B. K. Meyer, Phys. Stat. Sol. (a) 168, 163 (1998).

[119] A. Bauknecht, S. Siebentritt, J. Albert, and M. C. Lux-Steiner, J.

Appl. Phys. 89, 4391 (2001).

[120] N. Rega, S. Siebentritt, I. E. Beckers, J. Beckmann, J. Albert, and

M. C. Lux-Steiner, Thin Solid Films 431, 186 (2003).

[121] N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajoqin, M. C.

Lux-Steiner, R. Kniese, and M. J. Romero, Thin Solid Films 480, 286

(2005).

[122] T. Kirchartz, U. Rau, M. Kurth, J. Mattheis, and J. H. Werner,

Thin Solid Films 515, 6238 (2007).

[123] T. Kirchartz and Rau, J. Appl. Phys. 102, 104510 (2007).

[124] E. Daub and P. Würfel, Phys. Rev. Lett. 74, 1020 (1995).

[125] T. Trupke, E. Daub, and P. Würfel, Sol. En. Mat. Sol. Cells 53, 103

(1998).

[126] T. Unold, D. Berkhahn, B. Dimmler, and G. H. Bauer, in Proc. 16th

Europ. Photovolt. Sol. Energy Conf., Glasgow, edited by H. Scheer, B. Mc-

Nellis, W. Palz, H. A. Ossenbrink, and P. Helm (James & James Ltd,

London, 2000), p. 736.
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• Kay Orgassa für die Einführung in die Optik von Cu(In,Ga)Se2 Solarzellen,

197



198 DANKSAGUNG

• Thomas Kirchartz, Peter Grabitz und Hannes Rostan für das kritische Korrek-

turlesen meiner Arbeit,

• George Hanna für die super Betreuung meiner Studienarbeit, die darin gipfelte,

dass ich einfach nicht mehr vom ipe losgekommen bin,

• Werner Wille für alle Arten der Computerunterstützung, selbst als ich meine
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