
Towards Meshless Volume Visualization

Von der Fakultät Informatik, Elektrotechnik und Informations-
technik der Universität Stuttgart zur Erlangung der Würde

eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von

Eduardo Jose Tejada-Gamero

aus Arequipa

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. D. Weiskopf

Prof. Dr. L. G. Nonato

Tag der mündlichen Prüfung: 26. März 2008

Institut für Visualisierung und Interaktive Systeme
der Universität Stuttgart

2008

Berichte aus der Informatik

Eduardo Jose Tejada-Gamero

Towards Meshless Volume Visualization

Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes

D93 (Diss. Universität Stuttgart)

Shaker Verlag
Aachen 2008

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Stuttgart, Univ., Diss., 2008

Copyright Shaker Verlag 2008
All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8322-7389-7
ISSN 0945-0807

Shaker Verlag GmbH • P.O. BOX 101818 • D-52018 Aachen
Phone: 0049/2407/9596-0 • Telefax: 0049/2407/9596-9
Internet: www.shaker.de • e-mail: info@shaker.de

A Paola y Andŕes,
quienes son la luz en mi vida.

CONTENTS

List of Abbreviations and Acronyms 1

Abstract and Chapter Summaries 3

Zusammenfassung und Kapitelzusammenfassungen 9

1 Introduction 15
1.1 Goals of This Thesis . 16
1.2 Outline of This Thesis . 17
1.3 Acknowledgments . 18

2 Interactive Visualization 21
2.1 Visualization Pipeline . 21
2.2 Surface Visualization . 23

2.2.1 Surface data . 23
2.2.2 Surface reconstruction 23
2.2.3 Surface rendering . 25

2.3 Volume Visualization . 27
2.3.1 Volume data . 27
2.3.2 Volume data reconstruction 29
2.3.3 Volume rendering . 35

2.4 Visualization and Graphics Processing Units 41
2.4.1 The rendering pipeline 41
2.4.2 General-purpose GPU programming 43

3 Meshless Approximation Methods 45
3.1 Radial Basis Functions . 45
3.2 Moving Least-Squares . 47
3.3 Orthogonal Polynomials in Moving Least-Squares 47

3.3.1 Indexing orthogonal polynomials 48
3.3.2 Constructing orthogonal polynomials 49
3.3.3 Avoiding repetitive computations 50

3.4 Approximate Approximation . 51
3.4.1 Approximate moving least-squares approximation 51
3.4.2 Connecting RBF and Iterated AMLS 52

I

II Contents

4 Meshless Surfaces from Point Clouds 55
4.1 Meshless Surface Approximation 56
4.2 Curvature-driven Projection Operator 62

4.2.1 Principal directions and curvatures 64
4.2.2 Projection and rendering procedures 66

4.3 Approximate MLS Surfaces . 71
4.3.1 Iterated AMLS implicits 74
4.3.2 Introducing sharp edges 79

4.4 Adaptive Partition of Unity Implicits 82
4.4.1 Multi-level partition of unity implicits 84
4.4.2 TheJ1

A triangulation . 85
4.4.3 Robust adaptive partition of unity implicits 87
4.4.4 Extensions to the method 91

4.5 GPU-based Rendering of Meshless Surfaces96
4.5.1 Rendering surfaces based on projection operators 97
4.5.2 Rendering implicit surfaces 101

5 Meshless Surfaces from Volumes 105
5.1 Meshless Surface Extraction from Volume Data 105
5.2 Moving Least-squares Iso-surfaces108

5.2.1 Computing MLS surfaces from volumetric data 109
5.2.2 Hardware-accelerated MLS Iso-surfaces and HG-surfaces 110

5.3 Point-based Stream Surfaces . 114
5.3.1 Streamlines and path-lines generation 115
5.3.2 Point-based surface rendering 120
5.3.3 LIC on the point-based surface 122

6 Meshless Volume Visualization 127
6.1 Meshless Methods for Volume Visualization 129
6.2 Moving Least-Squares Volume Visualization 131

6.2.1 Detail-preserving volume data approximation 132
6.2.2 Matrix-free detail-preserving volume data approximation . 134

6.3 Approximate MLS Volume Visualization 138
6.3.1 Ellipsoidal weight functions revisited139
6.3.2 Anisotropic iterated approximate moving least-squares . . 140
6.3.3 Gradient estimation . 142
6.3.4 GPU-based rendering . 143

6.4 Moving Least-Squares Volume Deformation147
6.4.1 Affine, similarity and rigid deformations148
6.4.2 Nonlinear polynomial deformation 155
6.4.3 GPU-based MLS displacement map computation 156

Contents III

6.4.4 Other approaches for moving least-squares deformation . 161
6.4.5 Comparison with physically-based mesh deformation .. . 164

7 Meshless Methods in Visualization 171

Color Plates 177

Bibliography 189

IV Contents

L IST OF ABBREVIATIONS AND ACRONYMS

AMLS Approximate Moving
Least-Squares

bit binary digit
bspw. beispielsweise
CG Conjugate Gradient
CPU Central Processing Unit
CUDA Compute Unified Device

Architexture
CT Computer Tomography
CTM Close To Metal
Dr. rer. nat. Doctor rerum naturalium
EBF Elliptical Basis Functions
e.g. exempli gratia
et al. et alii, et aliae, et alia
etc. et cetera
fps frames per second
GB gigabyte
GHz gigahertz
GPGPU general computations on

the GPU
GPU Graphics Processing

Unit
HG high-gradient
IAMLS Iterated Approximate

Moving Least-Squares

i.e. id est
LIC Line Integral Convolution
LS Least-Squares
MB megabyte
MLS Moving Least-Squares
MRI Magnetic Resonance

Imaging
PC Personal Computer
pixel picture element
Prof. Dr. Professor Doctor
PU Partition of Unity
RAM Random Access Memory
RBF Radial Basis Functions
RGB red, green, blue
RGBA red, green, blue, alpha
s second
SIMD Single Instruction,

Multiple Data
surfel surface element
SVD Singular Value

Decomposition
texel texture element
voxel volume element
WLS Weighted Least-Squares

1

2 Abbreviations and Acronyms

ABSTRACT AND CHAPTER SUMMARIES

Abstract

In this thesis, novel meshless methods for surface and volume data reconstruc-
tion and rendering are proposed. Surface reconstruction from unorganized point
sets is first addressed with projection operators. Specifically, a curvature-driven
projection operator is presented which defines an approximate surface for a given
point cloud based on a diffusion equation and on curvature estimation for point
sets. Implicit formulations for surface approximation arealso addressed. An im-
plicit surface definition based on approximate moving least-squares approxima-
tion is introduced, which is able to provide high-order local approximations to
the surface without requiring to solve systems of equations. Bilateral filters are
introduced into this surface definition in order to better represent sharp features
by robustly estimating normal vectors. An adaptive implicit formulation based
on partition of unity and orthogonal polynomials is also proposed. This formu-
lation addresses approximation and robustness issues presented by previous work
on partition of unity implicits. To accelerate the rendering of these surface defini-
tions, hardware-accelerated ray-casting of implicit surfaces and surfaces defined
by projection operators is also discussed.

The results obtained for surface approximation are then applied to volume
data in order to extract surfaces that represent some feature in the volume. Re-
garding scalar data, a moving least-squares surface definition is proposed which
is able to approximate iso-surfaces and surfaces located are regions with high
gradient magnitude. The rendering of such surfaces is performed on graphics
hardware to accelerate the computations. Visualization ofvector fields is also ad-
dressed, specifically the interactive computation and rendering of streamsurfaces
and of the novel path-surfaces. To that end, a hardware-accelerated streamlines
and path-lines generation process is presented, which is able to produce a quasi-
regular sampling of the surface. This allows the use of knownpoint-based surface
rendering algorithms to interactively visualize the streamsurface or path-surface.

Volume visualization is then addressed using meshless methods. These visu-
alization methods are based on a meshless volume model extracted from the data.
This model is obtained using the moving least-squares approximation method. In
order to preserve details in the reconstruction of the volumetric data, bilateral fil-
tering is used which, together with the use of orthogonal polynomials, provides
a matrix-free detail-preserving reconstruction of the volume data. To further ac-
celerate the computation of the function reconstruction, the use of approximate
approximation is also explored in this context. To that end,an anisotropic iterated

3

4 Abstract and Chapter Summaries

approximate moving least-squares approximation of the volume data is defined,
which converges to an ellipsoidal-basis-functions interpolation of the data. Fi-
nally, volume deformation by means of moving least-squaresis addressed and a
closed formulation for nonlinear polynomial deformationsis proposed. An imple-
mentation of the set of moving least-squares deformations on hardware graphics is
also presented and used to interactively compute volume deformations by means
of displacement maps.

Chapter Summaries

An overview of this thesis is given in this section as chaptersummaries.

Chapter 1: Introduction

This chapter introduces the topic of the thesis. The need fora reconstruction of
the volume model in the context of volume visualization is used as starting point
for the discussion. The problem of reconstructing the underlying function which
represents the volume model using meshless methods is the goal of this work.
Thus, the methods developed were based on the success of meshless techniques
in solving problems from surface modeling and rendering, which techniques based
on combinatorial structures have failed to solve in the past. This leads to a brief
description of the research performed, initially in the context of meshless surfaces
from point clouds and volumes and latter of meshless volume visualization.

Chapter 2: Interactive Visualization

In this chapter an overview of topics on interactive visualization is given. The
chapter starts by describing the visualization pipeline and its stages. Then a brief
discussion on surface data, modeling and rendering is given. Since the focus of
the research reported in this work is on meshless methods, unorganized point sets
and polygon soups are mentioned as the primary source of datafor modeling and
rendering algorithms based on meshless techniques.

Groundbreaking work on meshless surface reconstruction, which set the basis
for the development of the area in the last decade, is then described. These ap-
proaches represent the main trends in meshless surface reconstruction that have
gained the attention of the community lately; namely, surface representations
based on projection operators and surface representationsbased on implicit for-
mulations. The methods based on projection operators definethe approximate
surface as the set of static points for a certain map, while the methods based on
implicit formulations define the approximate surface as theset of points belong-
ing, usually, to the zero set of the function.

Meshless surface rendering is then addressed. Rendering methods based on
points have gained popularity in the last years. Many works have been proposed
and their detailed description is beyond the scope of this thesis. Nonetheless, the

Abstract and Chapter Summaries 5

main ideas are mentioned with emphasis on ray-casting, specifically on the com-
putation of the intersection of a ray with the meshless surface. In latter chapters
this description is detailed further in the context of the techniques presented.

After addressing surface visualization in the context of the visualization pipe-
line, the same approach is taken for volume visualization. Starting with the vol-
ume data types usually found in various applications areas,the different grid types
that must be handled by volume visualization methods are described. The sources
of the volume data are many and different, which in turn translates into a large
variation in the nature of the volume data, including the grid type, which is of par-
ticular interest to the techniques presented latter in the thesis. This is due to fact
that part of the research described in this work is focused onproviding a means to
reconstruct volume data stored in meshes of arbitrary topology and geometry.

After addressing reconstruction methods, volume rendering methods are then
described, specifically direct volume rendering. Therefore, the derivation of the
rendering integral for the emission-absorption model is given. Finally, the chapter
ends with basic concepts of graphics processing units programming. The ren-
dering pipeline implemented by most commodity graphics hardware is described.
Since graphics processing units were used to a large extent in the approaches de-
scribed in this work in order to accelerate the computations, the concept of general
purpose programing using graphics processing units is alsointroduced.

Chapter 3: Meshless Approximation Methods

In this chapter, an overview of the meshless approximation methods used through-
out the thesis is given. The scattered data approximation and interpolation prob-
lems are defined followed by a description of radial basis functions, where the
concept of radial basis functions interpolation is introduced as well as the most
widely known radial functions. Then, the polynomial movingleast-squares ap-
proximation is approached with a simple and general definition.

With this basis set, orthogonal polynomials in the context of moving least-
squares are addressed. For this, the concept of orthogonality of a polynomial
basis for a specific inner product defined by a given weightingfunction is intro-
duced. Then, an indexing that has proven to be efficient in reducing the number of
operations performed to orthogonalize a polynomial basis with the Gram-Schmidt
orthogonalization is described.

Lastly, approximate moving least-squares approximation is described as an
efficient and matrix-free approach to approximate scattered data. This method
produces an approximation to the solution of the moving least-squares method
and is based on specific generating functions by means of which solutions of
different approximation orders can be obtained. Radial basis functions and ap-
proximate approximation have been recently connected through an iterative pro-
cess that, starting from an approximate approximation, converges to a radial basis

6 Abstract and Chapter Summaries

functions interpolation. This process is also briefly described here.

Chapter 4: Meshless Surfaces from Point Clouds

This chapter presents novel approaches for surface reconstruction from unorga-
nized point sets. Projection operators are firstly addressed. In this context, a novel
curvature-driven projection operator is proposed, which is based on the computa-
tion of a non-complete second degree polynomial defined by the principal curva-
tures and directions at a given point on the surface. Therefore, the robust compu-
tation of the principal curvatures and directions for a set of points is addressed.
This result is then used, together with an anisotropic diffusion equation, to define
the projection operator, which is included in a ray-castingengine to render the
surface.

Implicit surfaces are also addressed in this chapter. Two different implicit
approaches are taken to tackle the problem of surface reconstruction from point
clouds. The first approach proposed is based on moving least-squares surfaces and
addresses approximation and performance issues presentedby them. By using
approximate approximation, the reconstruction process isefficiently performed
while enabling the computation of high-order approximations to the surface. Fur-
thermore, the iterative process mentioned above to obtain aradial basis functions
interpolation can be used to produce interpolating surfaces. The efficiency of the
method is exploited to introduce bilateral filtering in the process in order to ro-
bustly estimate the normal vectors at the surface points. This makes it possible to
better visually represent sharp edges since the changes in the normal field on the
surface are more important to the perception of sharp features than the approxi-
mation to the surface itself.

The second approach taken to reconstruct surfaces from point clouds is based
on partition of unity implicits. Firstly, a review of the original method is given.
This method presents robustness issues, which are addressed in this chapter. Fur-
thermore, the method proposed here is twofold adaptive in that the space is adap-
tively partitioned to fit the details on the surface and the degree of the polynomial
approximation is set adaptively to better approximate the surface. This can be
done by means of orthogonal polynomials. This, however, introduces robustness
problems, which are addressed by developing coverage domain criteria that guide
the approximation process. Moreover, an interactive tool that enables the user to
edit the surface is also presented, which allows the user to correct errors in the
approximate surface or to improve the quality of the approximation. Lastly, the
mesh resulting from the triangulation performed on the datastructure used, theJ1

A

, presents triangles with low quality. To solve this problem, a mesh enhancement
procedure based on vertex displacements is applied as a post-processing. This
procedure successfully improves the quality of the triangles.

In the final section of this chapter, commodity graphics hardware is used to

Abstract and Chapter Summaries 7

accelerate the rendering of surfaces defined with projection operators and with
implicit functions. Specifically, a ray-tracing engine implemented on graphics
hardware able to render such meshless surfaces is described.

Chapter 5: Meshless Surfaces from Volumes

Meshless methods can be exploited in volume visualization as well. Thus, in
this chapter, techniques addressing two different visualization problems are in-
troduced. The first problem is the extraction of surfaces representing meaning-
ful information from volume scalar data; in this case, isosurfaces and surfaces
located at regions of high gradient magnitude. This is done by defining suit-
able weighting functions and using them in the moving least-squares surface ap-
proximation method. Moreover, a novel combination of a weighted least-squares
approach with the moving least-squares approximation, in apredictor-corrector
sense, widens the domain of the definition allowing to project points far from
the surface onto it. This process is implemented in the hardware-accelerated ray-
casting engine and applied to Cartesian grids. To that end, the implementation is
accommodated to fit the nature of the data and of the projection process.

The second problem addressed is the interactive generationof streamsurfaces
and of the novel path-surfaces proposed here. The main issuein visualizing vec-
tor fields using streamsurfaces is the need for triangulating the input streamlines.
This process can be slow and if the user interactively changes the seed points,
this could lead to long waiting times. This problem is more critical in the case of
path-surfaces which are generated from path-lines since the vector field is time-
dependent. Thus, streamlines and path-lines are generatedon the fly in this work
using graphics hardware, which allows to interactively reconstruct them when the
user modifies the position of the seeding points. Moreover, to be able to better sup-
port point-based rendering methods, the density of the streamlines and path-lines
is maintained nearly constant by adaptively seeding and removing lines according
to the evolution of the integration. This allows the use of splatting to render the
surface which eliminates the need for triangulating it. Furthermore, line integral
convolution is calculated on the surface to better depict the details of the flow.

Chapter 6: Meshless Volume Visualization

This chapter proposes novel methods for visualizing volumedata stored in meshes
of arbitrary topology. These methods are based on meshless approximation tech-
niques to reconstruct the underlying function in the data. This problem is ad-
dressed using two different approaches. The first approach is based on a detail-
preserving approximation of the volume data, obtained by minimizing a specific
function. However, this problem is ill-conditioned and, since the formulation re-
sults in an iterative method based on moving least-squares and bilateral filtering,
the performance is considerably reduced compared to other simpler, albeit unsta-

8 Abstract and Chapter Summaries

ble, meshless methods. Therefore, orthogonal polynomialsare used to accelerate
the computation of the approximation in each iteration while improving stability.
This also allows to implement the technique on graphics hardware since no system
of equations must be solved.

A less accurate approach based on approximate approximation, able to reduce
computation times considerably, is also proposed. This approach uses the iterated
approximate approximation method to produce a result that approximates a radial
basis functions interpolation of the data. This way, besideincreasing performance
in comparison to both moving least-squares approximation and radial basis func-
tions interpolation, a compromise between accuracy and robustness to noise can
be achieved. However, like all meshless methods applied on anisotropic domains,
the method must adapt to the anisotropy, which in the case of grids containing vol-
ume data is given by the configuration of the grid elements influencing the result
at the evaluation point. Therefore, ellipsoidal weight functions are introduced into
the process and a novel anisotropic iterated approximate approximation is defined.
Thus, the iterative process converges to an elliptical basis functions interpolation.
This method is also implemented on graphics hardware to reconstruct the function
for performing ray-casting.

Lastly, volume manipulation using moving least-squares isalso presented. To
that end, previously developed methods for image and surface deformation based
on moving least-squares are extended to volumes and nonlinear polynomial de-
formations are introduced. The key point of this novel nonlinear moving least-
squares deformation is the closed formulation provided, which is one of the main
advantages of the rigid, similarity and affine moving least-squares deformations
proposed previously by other authors. Thus, the nonlinear deformation is an ad-
dition to the set of moving least-squares deformations available. This complete
set of deformations was implemented in graphics hardware toaccelerate the com-
putation of displacement maps to support volumetric deformations. By redefining
the deformations as backward mappings, it is possible to calculate this displace-
ment map in a way that allows their use in commonly known hardware-accelerated
volume rendering methods. The chapter finishes with a comparison of meshless
deformations with physically-based deformations for tetrahedral meshes imple-
mented on graphics hardware. Besides providing an opposingcomparison case
to meshless deformations, the novel description of the hardware-accelerated im-
plementation of implicit integration methods for solving the differential equation
governing the deformation is a further contribution.

Chapter 7: Meshless Methods in Visualization

The last chapter of the thesis provides guidelines for the use of the methods pro-
posed in this work for surface and volume modeling and rendering. A discussion
on the advantages and issues to be addressed in the future is also given.

ZUSAMMENFASSUNG UND

KAPITELZUSAMMENFASSUNGEN

Zusammenfassung

Interaktive Volumenvisualisierung hat in den letzten Jahren in vielen Bereichen
Anwendung gefunden. Wichtige Fortschritte wurden gemacht, welche die algo-
rithmische Performanz sowie die Fähigkeit von Visualisierungstechniken für Vo-
lumendatenuntersuchung verbessert haben. Unabhängig von der Art der Daten
und der Paradigmen der verwendeten Visualisierungstechnik muss ein Modell der
Daten zur Verfügung stehen. Allerdings sind die Lösungsmethoden in den mei-
sten Fällen nicht vorhanden und daher muss ein Volumenmodell der abgetaste-
ten Funktion rekonstruiert werden. Für die interaktiven Visualisierungsmethoden
wird meistens ein Volumenmodell gewählt ohne die ursprüngliche Lösungsme-
thode zu beachten. Trotz existierender Forschungen über Interpolation höherer
Ordnung und Filterung von Volumendaten wird oft ein einfacheres Modell be-
nutzt bspw. Rekonstruktion mittels linearer Interpolation.

Anderseits sind gitterlose Methoden für Oberflächenrekonstruktion populär
geworden. Gitterlose Methoden haben verschiedene Vorteile, wie Skalierbarkeit
auf verschiedenen Datentypen, Unabhängigkeit von expliziter Konnektivität und
wenig Speicherverbrauch. Zusätzlich sind gitterlose Approximationstechniken ge-
nau und einfach zu berechnen. Theoretische Ergebnisse sowie praktische Anwen-
dungen wurden mit Erfolg entwickelt. Zu Beginn beschäftigt sich diese Disser-
tation mit gitterloser Oberflächenapproximation und stellt neue Methoden in die-
sem Bereich vor. Die Ergebnisse werden dann auf Volumendaten angewendet,
um Oberflächen zu extrahieren, welche bestimmte Eigenschaften in den Daten
repräsentieren. Diese Richtung wird weiterverfolgt und Volumenvisualisierung
wird dann mit gitterlosen Methoden behandelt. Diese Visualisierungsmethoden
basieren auf einem gitterlosen Volumenmodell, das aus den Daten und der Kon-
nektivitätsinformation des Gitters extrahiert wird. DasZiel dieser Arbeit ist eine
Grundlage zu bilden, um eine allgemeine Methode zu definieren, die auf verschie-
denen Volumendatentypen anwendbar ist und auf Techniken basiert, die in ande-
ren Bereichen bereits erfolgreich verwendet wurden.

Kapitelzusammenfassungen

EineÜbersicht dieser Dissertation wird in den folgenden Abschnitten als Kapitel-
zusammenfassungen gegeben.

9

10 Zusammenfassung und Kapitelzusammenfassungen

Kapitel 1: Einführung

Dieses Kapitel führt in das Thema dieser Dissertation ein.Der Bedarf für eine
Rekonstruktion des Volumenmodells im Kontext der Volumenvisualisierung wird
als Ausgangspunkt für die Diskussion verwendet. Das Problem der Rekonstrukti-
on der zu Grunde liegenden Funktion, welche das Volumenmodell repräsentiert,
mit gitterlosen Methoden ist das Ziel dieser Arbeit. Daher basiert diese Arbeit auf
dem Erfolg von gitterlosen Methoden im Rahmen der Oberflächenmodellierung
und -darstellung, welche Methode, die auf kombinatorischen Strukturen basieren,
bisher nicht lösen konnten. Das ist die Argumentation, diein diesem Kapitel ein-
geführt wird. Dies führt zu einer kurzen Beschreibung derForschungsarbeiten,
die sowohl die Rekonstruktion von gitterlosen Oberflächenaus Punktmengen und
Volumina als auch die gitterloser Volumenvisualisierung behandelt.

Kapitel 2: Interaktive Visualisierung

In diesem Kapitel wird ein̈Uberblick über interaktive Visualisierung gegeben. Das
Kapitel fängt mit einer Beschreibung der Visualiserungspipeline an. Diese Pipeli-
ne wird dann für den spezifischen Fall von Oberflächen angepasst und eine kurze
Diskussion über Oberflächendaten, Modellierung und Rendering wird gegeben.
Da der Fokus dieser Arbeit auf gitterlose Methoden liegt, werden Punktmengen
undPolygon Soupsals elementare Datenquellen für gitterlose Modellierungs- und
Renderingmethoden erwähnt.

Bezüglich der Modellierung sind Rekonstruktionsmethoden aus Punktmengen
im Fokus der Diskussion. Daher werden grundlegende Arbeiten der gitterlosen
Oberflächenrekonstruktion beschrieben, welche die Basisfür die in der letzten De-
kade entwickelten Arbeiten darstellen. Dabei werden die beide Hauptrichtungen
von gitterlosen Oberflächenrekonstruktion eingeführt,nämlich Oberflächenreprä-
sentationen basierend auf Projektionsoperatoren und auf impliziten Formulierun-
gen. Die Methoden basierend auf Projektionsoperatoren definieren die approxi-
mierte Oberfläche als die Menge statischer Punkte für einegegebene Abbildung.
Die Methoden basierend auf impliziten Formulierungen definieren die approxi-
mierte Oberfläche als die Menge von Punkten, die zur Nullmenge der Funktion
gehören. Moving-Least-Squares-Oberflächen können sowohl mit Projektionsope-
ratoren als auch mit impliziten Formulierungen definiert werden, wie später dis-
kutiert werden wird.

Gitterloses Oberflächenrendering wird als nächstes Thema behandelt. Dabei
sind Methoden basierend auf Punkten als Renderingprimitive in den letzten Jahren
populär geworden. Da sehr viele Arbeiten in diesem Bereichvorgestellt wurden,
übersteigt ihre detailierte Behandlung den Umfang dieserDissertation. Allerdings
werden die Hauptideen erwähnt und der Fokus auf Ray-Casting gesetzt, speziell
auf die Berechnung des Schnittspunktes zwischen einem Strahl und der gitterlo-

Zusammenfassung und Kapitelzusammenfassungen 11

sen Oberfläche. In späteren Kapiteln wird diese Beschreibung im Rahmen der in
dieser Arbeit vorgestellten Techniken weiter detailliert.

Nachdem Oberflächenvisualisierung basierend auf der Visualisierungspipeline
behandelt wird, wird der gleiche Ansatz für Volumenvisualisierung verwendetet.
Die unterschiedlichen Datentypen und Gittertypen, welchevon den Visualisie-
rungsmethoden behandelt werden, werden beschrieben. Das breite Spektrum der
Gitterypen ist in dieser Arbeit speziell wegen des Bedarfs an unterschiedlichen
Rekonstruktionstechniken für unterschiedliche Gittertypen wichtig. Ein Teil der
in dieser Dissertation beschriebenen Forschung konzentriert sich auf der Entwick-
lung einer Technik für die Rekonstruktion von in Gittern mit beliebigen Topolo-
gie und Geometrie gespeicherten Volumendaten. Nachdem Rekonstruktionsme-
thoden beschrieben sind, werden Volumerenderingtechniken dargestellt, speziell
direktes Volumenrendering. Dabei wird das Renderingintegral für das Emissions-
Absorptions-Modell abgeleitet.

Schließlich endet das Kapitel mit den grundlegenden Konzepten der Grafik-
hardwareprogrammierung. Die von der meisten Grafikhardware implementierte
Renderingpipeline wird beschrieben. Da Grafikhardware in dieser Arbeit oft be-
nutzt wird, um die Berechnungen zu beschleunigen, wird ferner das Konzept von
Allzwecksgraphikhardwareprogrammierung eingeführt.

Kapitel 3: Gitterlose Approximationsmethoden

In diesem Kapitel wird einÜberblick über gitterlose Approximationsmethoden
gegeben. Die Scattered-Daten-Interpolations- und Approximationsprobleme wer-
den definiert. Dann werden radiale Basisfunktionen beschrieben, wobei das Kon-
zept der radialen Basisfunktionen-Interpolation, sowie die bekanntesten radia-
len Basis-Funktionen eingeführt werden. Danach wird die polynomiale Moving-
Least-Squares-Approximation mit einer einfachen und allgemeinen Definition be-
handelt.

Zusätzlich zu diesen Grundlagen werden orthogonale Polynome im Rahmen
von Moving-Least-Squares beschrieben. Dafür wird das Konzept von Orthogona-
lität einer Polynombasis für von einer bestimmten Gewichtungsfunktion definier-
te Skalarprodukte eingeführt. Dann wird eine effiziente Indizierung beschrieben,
welche die Anzahl von notwendigen Operationen für die Konstruktion einer or-
thogonalen Basis mit Gram-Schmidt-Orthogonalisierung reduziert.

Schließlich wird die approximierte Moving-Least-Squares-Approximation als
eine effiziente matrizenlose Methode für die Approximation von Scattered-Daten
beschrieben. Diese Methode liefert eine Approximation derLösung eines Moving-
Least-Squares-Problems. Die Methode basiert auf spezifischen Generierungsfunk-
tionen, wobei man Lösungen mit verschiedenen Approximationsordnungen erhal-
ten kann. Ferner wurden radiale Basis-Funktionen und approximierte Approxi-
mationen mittels eines iterativen Prozesses miteinander verbunden. Dieser Pro-

12 Zusammenfassung und Kapitelzusammenfassungen

zess fängt mit einer approximierten Approximation an und konvergiert zu einer
radialen Basisfunktionen-Interpolation. Da dieser Prozess in dieser Dissertation
verwendet wird, um Oberflächen und Volumendaten zu rekonstruieren, wird ein
Überblick über die in dieser Arbeit verwendeten Theorie gegeben.

Kapitel 4: Gitterlose Oberflächen aus Punktmengen

Dieses Kapitel stellt neue Methoden zur Oberflächenrekonstruktion aus Punkt-
mengen vor. Zu Beginn werden bisherige gängige Verfahren erklärt. Projekti-
onsoperatoren werden zuerst behandelt. In diesem Kontext wird ein neuer krüm-
mungsbasierter Projektionsoperator vorgestellt, welcher auf der Berechnung von
einem Polynom zweiten Grades basiert. Dieses Polynom wird von den Hauptrich-
tungen und Krümmungen an einem gegebenen Punkt definiert. Daher wird die
robuste Berechnung der Hauptrichtungen und Krümmungen aus Punktmengen
gezeigt. Diese Ergebnisse werden dann zusammen mit einer anisotropen Diffu-
sionsgleichung dazu benutzt, um den Projektionsoperator zu definieren. Dieser
Operator wird dann in einen Raycaster integriert, um die Oberfläche zu rendern.

Ein weiteres Thema bilden die impliziten Oberflächen. Zweiverschiedene
Methoden werden benutzt, um das Problem von Oberflächenrekonstruktion aus
Punktmengen zu lösen. Die erste Methode basiert auf Moving-Least-Squares-
Oberflächen und behandelt Performanz- und Approximationsprobleme solcher
Oberflächen. Approximierte Approximation wird verwendet, um den Rekonstruk-
tionsprozess zu beschleunigen und Approximationen höherer Ordnung zu ermögli-
chen. Ferner wird der oben genannte iterative Prozess dazu genutzt, interpolieren-
de Oberflächen zu generieren. Die Effizienz dieser Methode wird ausgenutzt, um
bilaterale Filterung in den Prozess einzuführen, damit man eine robuste Berech-
nung von Normalenvektoren erhält. Dies ermöglicht eine bessere Repräsentation
von scharfen Kanten, da diëAnderungen in dem Normalenfeld wichtiger für die
Perzeption von scharfen Kanten als die eigentliche Approximation der Oberfläche
sind.

Die zweite in dieser Arbeit vorgeschlagene Methode für dieRekonstruktion
von Oberflächen aus Punktmengen basiert auf Partition der Eins. Erstens wird ein
Überblick der ursprünglichen Methode gegeben. Diese Methode hat jedoch Pro-
bleme mit der Robustheit, was in diesem Kapitel behandelt wird. Ferner ist die
hier vorgeschlagene Methode zweifach adaptiv im Sinne, dass der Raum adaptiv
geteilt wird und das Grad des Polynomes adaptiv gesetzt wird, um die Approxi-
mation den Details der Oberfläche anzupassen. Dies kann mittels orthogonalen
Polynomen umgesetzt werden. Allerdings führt dies Probleme der Robustheit ein,
welche durch die Entwicklung von sogenannten Domänen-Abdeckungskriteria
behandelt werden. Ferner wurde ein interaktives Tool entwickelt, damit der Benut-
zer die Oberfläche editieren kann, um Fehlern zu korrigieren oder um die Qualität
der Approximation zu verbessern. Schließlich wird eine Methode basierend auf

Zusammenfassung und Kapitelzusammenfassungen 13

Vertexverschiebungen dazu benutzt, um die Qualität der Dreiecke des resultieren-
den Gitters zu verbessern.

Im letzten Abschnitt dieses Kapitels wird die Grafikhardware dazu verwen-
det, um das Rendering von Oberflächen basierend auf Projektionsoperatoren oder
impliziten Funktionen zu beschleunigen. Speziell wird einin der Grafikhardware
implementierter Raycaster für gitterlose Oberflächen beschrieben.

Kapitel 5: Gitterlose Oberflächen aus Volumina

Gitterlose Methoden können im Rahmen der Volumensvisualisierung eingesetzt
werden. Daher werden in diesem Kapitel zwei verschiedene Visualisierungspro-
bleme behandelt. Das erste Problem ist die Extraktion von Oberflächen, die ei-
ne bestimmte Eigenschaft von einem Skalarfeld repräsentieren. In diesem Fall
werden spezifisch Isoflächen und Oberflächen in der Nähe von Bereichen mit
hohem Gradientbetrag extrahiert. Dies wird durch die Definition von geeigne-
ten Gewichtungsfunktionen für Moving-Least-Squares-Oberflächen gemacht. Die
Domain der Definition wird mittels der Kombination von Moving-Least-Squares
und Weighted-Least-Squares erweitert. Dies ermöglicht die Projektion von Punk-
ten, die weit weg von der Oberfläche sind. Der Prozess wird als Grafikhardware-
basierter Raycaster implementiert und auf kartesische Gitter angewendet.

Das zweite Problem ist die interaktive Generierung von Strom-Oberflächen
und der neuen Pfad-Oberflächen. Das Hauptproblem in der Visualisierung von
Vektorfeldern mit Strom-Oberflächen ist der Bedarf an der Triangulierung von
der Stromlinien. Dieser Prozess kann langsam sein besonders im Fall von Pfad-
Linien. Deshalb werden in dieser Arbeit Strom- und Pfad-Linien mittels einer Gra-
fikhardwareimplementierung generiert. Damit wird die Konstruktion der Strom-
und Pfad-Linien schnell genug, um eine interaktiveÄnderung der Saatpunkte
zu ermöglichen. Ferner wird die Dichte der Strom- und Pfad-Linien nach der
Auswertung der Integration adaptiv gesetzt, um punktbasierte Renderingmetho-
den besser zu unterstützen. Dies ermöglicht die Benutzung von Splatting, um die
Oberfläche zu rendern und damit wird der Bedarf an Triangulierung vermindert.
Line-Integral-Convolution (LIC) wird außerdem verwendet, um die Details der
Strömung besser darzustellen.

Kapitel 6: Gitterlose Volumenvisualisierung

Dieses Kapitel führt neue Methoden für die Visualisierung von Gittern mit belie-
bigen Topologie und Geometrie an. Diese Methoden basieren auf gitterlosen Ap-
proximationstechniken, um zugrundeliegende Funktion zu rekonstruieren. Dieses
Problem wird mit zwei verschiedenen Methoden behandelt. Die erste Methode
basiert auf einer Detail-erhaltenden Approximation der Volumendaten. Dies wird
mittels der Minimierung einer spezifischen Funktion gemacht, welche die Details
in den Daten erhalten kann. Allerdings ist dieses Problem schlecht konditioniert

14 Zusammenfassung und Kapitelzusammenfassungen

und da eine iterative Methode aus dieser Formulierung resultiert, wird die Per-
formanz deutlich reduziert. Deswegen werden orthogonale Polynome verwendet,
um den Approximationsprozess in jedem Schritt zu beschleunigen, wodurch die
Stabilität verbessert wird. Dies ermöglicht die Implementierung der Technik in
Grafikhardware, weil kein Gleichungsystem gelöst werden muss.

Eine billigere ungenauere Methode wird auch vorgestellt, basierend auf ap-
proximierter Approximation, welche die Berechnungszeit deutlich reduziert. Die-
se Methode benutzt iterative approximierte Approximation, welche eine radia-
le Basis-Funktionen-Interpolation approximiert. Außer die Performanz im Ver-
gleich zu Moving-Least-Squares-Approximation und radiale Basis-Funktionen-
Interpolation zu verbessern, kann man mit dieser Methode einen Kompromiss
zwischen Genauigkeit und Robustheit erreichen. Allerdings muss sich diese Me-
thode an die Anisotropie der Gitter anpassen. Daher werden ellipsenförmige Ge-
wichtungsfunktionen in den Prozess eingeführt und eine neue anisotrope iterative
approximierte Approximation definiert. Folglich konvergiert der iterative Prozess
zu einer ellipsenförmigen Basisfunktionen-Interpolation. Diese Methode wird auch
in Grafikhardware implementiert, um die Funktion im Rahmen eines Raycasters
zu rekonstruieren.

Schließlich wird Volumenmanipulation mittels Moving-Least-Squares vorge-
stellt. Dafür werden Moving-Least-Squares Methoden fürdie Deformation von
Bildern und Oberflächen erweitert, um Volumina zu unterst¨utzen und nicht-lineare
polynomiele Deformationen werden eingeführt. Der Hauptpunkt dieser neuen,
nicht-linearen Deformationen ist die geschlossene Formulierung, welche einer
der Vorteile von Moving-Least-Squares-Deformationen ist. Diese Deformationen
wurden in Grafikhardware implementiert, um die Berechnung von Displacement-
Maps zu beschleunigen. Daher ist es durch die Definition der Deformationen als
Rückwärtsabbildungen möglich, die Displacement-Map zu berechnen, so dass be-
kannte Grafikhardwarebeschleunigte Volumenrenderingmethoden benutzt werden
können. Das Kapitel endet mit einem Vergleich zwischen gitterlosen Deforma-
tionen und Grafikhardwarebeschleunigten physikalischen Deformationen für Te-
traedernetze. Außer einen Vergleich anbieten zu können, ist die neue Beschrei-
bung der Grafikhardwareimplementierung von impliziten Integrationsmethoden
für physikalische Deformationen ein weiterer Beitrag dieser Arbeit.

Kapitel 7: Gitterlose Methoden in der Visualisierung

Das letzte Kapitel dieser Dissertation bietet Richtlinienfür die Benutzung der in
dieser Arbeit vorgeschlagenen Methoden an. Eine Diskussion über die Vorteile,
Probleme und zukünftige Arbeiten kann auch in diesem Kapitel gefunden werden.

CHAPTER

1 INTRODUCTION

Volume visualization has become commonplace in the last years. Different tech-
niques aimed at both improving algorithmic performance andincreasing the in-
sight gained from the data have been presented by numerous authors in the vi-
sualization community. The range of visualization and manipulation techniques
developed to help users gain a better understanding of the volumetric data at hand
is very wide. However, independently of the nature of the visualization technique
and of the paradigms upon which it is based, a volume model needs to be avail-
able.

The volume model is the mathematical abstraction of the acquisition or simu-
lation process that was used to generate the data. However, the method of solution,
in most cases, is not attached to the volumetric data and therefore a volume model
must be reconstructed from the sampled data, which can be stored at scattered
positions or in the elements of a mesh. This model definition is normally based
on the sampled data and some kind of neighborhood information, or stencil, that
defines which samples have influence upon the reconstructed volumetric data at
a given position in the domain. This stencil is usually defined by thek nearest
neighbors, in the case of scattered data, and by the neighboring elements, be-
ing vertices or cells, in the case of meshes. In most cases this model is chosen
without regarding the original method of solution since, asstated before, it is not
available. The volume model in interactive visualization methods is usually very
simple. For instance, linear interpolation is a popular choice despite the fact that
research on reconstruction filters and interpolation/approximation methods that
provide a higher-order reconstruction has been reported.

On the other hand, meshless methods in the context of volume data visualiza-
tion have been restricted to scattered data. However, in thelast years, the use of
mehless techniques for solving tasks addressed in the past with methods based on
combinatorial structures has gained popularity, specially within the surface recon-
struction community. Meshless methods provide a number of advantages, such
as scalability to a variety of data, independence from explicit connectivity and
low storage requirements. Additionally, meshless approximation techniques have
proven to be accurate and easy to compute. Theoretical results as well as practical
solutions have been reported with success.

Despite the good results obtained with meshless methods forsurface approx-
imation, open issues remain to be addressed. Therefore, results from approxi-

15

16 Chapter 1. Introduction

mation theory are explored in the context of the work reported in this thesis to
approach problems presented by meshless surface reconstruction methods. Per-
formance issues due to the computation of local approximations are addressed
by means of mathematical results as well as algorithmic solutions implemented
on commodity graphics hardware. Furthermore, robustness and numerical issues
found in meshless surface approximation methods are addressed and new mech-
anisms for modeling challenging surface features, such as sharp edges, are pro-
vided.

The results obtained in addressing the issues presented by meshless surface re-
construction techniques are then applied to volume data in order to extract surfaces
that represent some feature in the volume. Thus, meshless methods for modeling
smooth manifolds that approximate iso-surfaces and surfaces located at regions of
high gradient magnitude were developed and are presented inthis work. Meshless
methods are not restricted to modeling, but have been used with increasing popu-
larity in rendering. A large number of works based on local information to render
a surface have been proposed. The flexibility of such approach is exploited here
to interactively render streamsurfaces and path-surfacesusing graphics hardware
algorithms.

Following this direction, volume visualization is then addressed using mesh-
less approximation methods. The visualization methods developed are based on
a meshless volume model extracted from the data using connectivity information
available in the mesh as well as the sampled data stored at theelements of the
mesh. Although the visualization methods used as proof of concept in this work
are direct volume rendering and iso-surface rendering, thegenerality of the ap-
proximation methods presented allows their use with any visualization technique
that needs to reconstruct the underlying function from sampled data. Furthermore,
the flexibility of meshless methods allows the use of the proposed techniques with
a wide range of meshes. With this, we aim at laying the basis towards defining a
general method applicable to a variety of grid types based onmeshless techniques
that have proven successful in other areas.

1.1 Goals of This Thesis

Since the main application area of meshless methods within computer graphics
nowadays is surface reconstruction and rendering from unorganized point clouds,
a specific goal of this work is to address performance and approximation issues
of known meshless surface approximation techniques. Specifically, to improve
the robustness of the surface reconstruction and to accelerate the approximation
process without compromising the quality of the reconstruction. This is done to
set the basis for the use of surface reconstruction in volumevisualization prob-
lems. Thus, a further specific goal of this work is to modify the moving least-

1.2. Outline of This Thesis 17

squares surface approximation method to reconstruct surfaces that represent some
feature of interest in the volume, specifically iso-surfaces and surfaces located at
regions with high gradient magnitude. Thereby, manifold surfaces representing
these features can be obtained. Furthermore, exploiting the advantages of mesh-
less techniques not only for the reconstruction but also forthe visualization of
surfaces extracted from volume data is sought in this work. This is the goal of
the techniques developed to interactively sample and render streamsurfaces and
path-surfaces.

As stated before, the main goal of this work is to explore the use of mesh-
less methods for volume visualization. Approximate approximation, orthogonal
polynomials and bilateral filtering are used to define meshless methods for re-
constructing the underlying function in the data. The specific goal is to obtain
an efficient means to reconstruct the function independently of the geometry and
topology of the grid. Thus, the focus of the last part of this work is to define a
method to compute the function reconstruction required in visualization applica-
tions from data stored in meshes of arbitrary type. Details in the data must be
preserved and the methods must be easy to understand and to compute. Since
the use of these techniques in practical applications is of special importance, the
acceleration of the computations by means of hardware implementations of the
different techniques proposed is also a specific goal of thiswork.

1.2 Outline of This Thesis

Chapter 2 provides an introduction to interactive visualization, focused on sur-
face and volume visualization. Popular methods for reconstructing the underlying
function of the data are described as well as rendering algorithms for surfaces and
volumes. For the latter, we focus on direct volume rendering, specifically for the
emission-absorption model. This description is given in the context of the visu-
alization pipeline, which is introduced in the first section. A brief discussion of
graphics hardware and the rendering pipeline encloses the chapter.

In Chapter 3, the mathematical background that is the base for the algorithms
presented in this work is given. Since the focus of the work ison meshless meth-
ods, the chapter is dedicated to offer a general descriptionof moving least-squares,
radial basis functions, orthogonal polynomials, and approximate approximation.

The main part of this thesis can be found in Chapters 4 to 6, where mesh-
less methods for modeling and rendering surfaces and volumes are proposed.
Chapter 4 is dedicated to meshless methods for surface approximation from point
clouds. Issues found in meshless techniques are addressed and contributions to the
area in terms of numerical stability, robustness and performance of the methods
are presented. The natural extension to this work is the application of meshless
surface approximation and rendering methods to surfaces extracted from volu-

18 Chapter 1. Introduction

metric data. This is the focus of Chapter 5, where methods to extract smooth
two-manifolds from volumetric data and to interactively render streamsurfaces
and path-surfaces are proposed.

In Chapter 6, volume visualization based on meshless methods is addressed.
Firstly, the problem of devising a volumetric data approximation method, from
the visualization point of view, valid for a wide range of meshes and grids, is
approached. The use of meshless approximation methods is a clear choice to
address this problem since, as opposed to methods based on parameterizations
of the position of the evaluation point with respect to the elements of the mesh,
they are independent of the mesh connectivity. However, although the approxi-
mation method itself is completely meshless, mesh information must be used to
influence the approximation obtained so as to include the mesh connectivity infor-
mation in the computations. The main concern in defining the methods proposed
in this chapter is on the accuracy of the approximation, since meshless approxi-
mation methods tend to smooth the data; on the performance, since the locality
of the computations turns into the need for solving a large number of systems
of equations; and on stability. Secondly, interactive meshless volume deforma-
tion is addressed by using moving least-squares deformations implemented on the
graphics hardware. Affine, similarity, rigid and the novel nonlinear polynomial
deformations are addressed.

Finally, Chapter 7 concludes the thesis with an overview of the methods pro-
posed and a discussion of the usefulness of meshless techniques in the visualiza-
tion. Guidelines on the cases where the techniques presented may be applied are
also provided.

1.3 Acknowledgments

I am greatly indebted and most grateful to my advisor, ThomasErtl, who sup-
ported and guided my work, provided a great environment to work in, and was
always more than ready to make sure that my stay at the University of Stuttgart,
and in Germany in general, be positive and constructive, notonly professionally.
Many thanks to him. I would like to express my deep gratitude to Daniel Weiskopf
and Luis G. Nonato for their valuable and detailed comments and for their help in
developing different methods presented in this work.

I thank the German Academic Exchange Service (DAAD) for providing the
financial support for carrying out this work. Special thanksto Rosa Nagel and
Maria-Luise Nünning for their help with different mattersduring my stay in Ger-
many.

I am very grateful to João P. Gois, with whom I developed partof the tech-
niques presented in this work; to Antonio Castelo for his useful comments on
mathematical issues; to Tobias Schafhitzel, for our work oninteractive stream-

1.3. Acknowledgments 19

surfaces and on hardware-assisted rendering of meshless surfaces and volumes,
for proofreading Chapter 4, for the long constructive discussions, and for his help
on many different matters; to Ralf Botchen, for proofreading Chapter 6, for his
valuable help on different matters, and for our still on-going work on higher-order
data visualization; to Magnus Strengert and Thomas Klein, for answering an aw-
ful amount of technical questions about visualization and graphics hardware, and
for proofreading Chapter2 (Magnus) and Chapter3 (Thomas); to Tiago Etiene
and Valdecir Polizelli-Junior, for their collaboration indeveloping the curvature-
driven projection operator and the adaptive partition of unity implicits; to my
advised students, Siegfried Hodri, Clemens Spenrath, Maurice Gilden, and Tjark
Bringewat, for the great work; and to João Dihl Comba and Christian Pagot for
their hospitality and the pleasure of working with them in Porto Alegre.

Although not included in this thesis, the works on multi-volume fMRI ren-
dering developed with Friedemann Rößler, Markus Knauff and Thomas Fang-
meier and on pre-integrated illustrative methods developed with Nikolai Svakhine,
David Ebert and Kelly Gaither, were of particular importance to me. To them, and
to Martin Kraus for his essential help in making the pre-integrated illustrative tech-
niques work, my deep gratitude. Special thanks to Friedemann for proofreading
Chapter 5.

Many thanks to Michel Westenberg, my first office mate, for themany con-
structive discussions; to Ulrike Ritzmann, for her help with the formalities; and to
the persons I had the pleasure to work with at the University of Stuttgart; in partic-
ular (in alphabetical order, without the ones mentioned above), Sven Bachthaler,
Katrin Bidmon, Rita Borgo, Marianne Castro, Carsten Darchsbacher, Joachim
Diepstraten, Mike Eissele, Thomas Engelhardt, Martin Falk, Mark Giereth, Frank
Grave, Sebastian Grottel, Rul Gunzenhäuser, Gunter Heidemann, Andreas Hub,
Steffen Koch, Sebastian Klenk, Hermann Kreppein, Andreas Langjahr, Dietmar
Lippold, Christoph Müller, Thomas Müller, Guido Reina, Matthias Ressel, Dirc
Rose, Martin Rotard, Martin Schmid, Waltraud Schweikhardt, Simon Stegmaier,
Christiane Taras, Markus̈Uffinger, Joachim Vollrath, and Manfred Weiler.

The models and datasets used in this work were provided by different persons
and organizations. The EtiAnt pointset in Figure 4.1 is courtesy of Tiago Etiene.
The Stanford Bunny model in Figures 4.6, 4.10 and 4.18, the Stanford Dragon
model in Figures 4.7 and 4.11, the Armadillo Man model in Figure 4.10, and the
Lucy model in Figure 4.14 are courtesy of the Stanford Computer Graphics Lab-
oratory. The Skeleton Hand point set in Figure 4.24 is from the Stereolithography
Archive at Clemson University. The Neptune model in Figure 4.22, the Fertility
and Buste models in Figure 4.26, the Chinese Lion model in Figure 4.21, and the
Filigree model in Figure 4.20 are provided by the AIM Shape Repository. The
Rocker Arm model in Figure 4.5 is courtesy of Cyberware Inc.

The Knee volume in Figures 4.25 and 6.8 is courtesy of the Department of

20 Chapter 1. Introduction

Radiology, University of Iowa. The Boston Tee Pot scan in Figures 6.10 and 6.12
is courtesy of Terarecon Inc., MERL and the Brigham and Women’s Hospital.
The Foot volume in Figure 6.15 is courtesy of Philips Research. The tretrahedral
mesh extracted from the Foot dataset is courtesy of Alex Cuadros. The Bucky
Ball dataset in Figures 5.1 and 6.4 is courtesy of AVS. The Engine volume in
Figures 5.2, 6.2 and 6.7 is courtesy of General Electric. TheCadaver Head volume
in Figures 5.2 and 6.7 is courtesy of the North Carolina Memorial Hospital. The
Bonsai Tree scans in Figure 6.7 are courtesy of Stefan Röttger.

The Space Shuttle Launch Vehicle dataset in Figures 6.1 and 6.4, the Oxygen
Post dataset in Figures 6.5 and 6.6, and the Blunt Fin datasetin Figure 6.6 are pro-
vided by the NASA repository. The Combustion Chamber in Figures 6.3 and 6.4 is
from the Visualization Toolkit (VTK). The Tornado dataset in Figure 5.3 is cour-
tesy of Roger Crawfis. The Cylinder dataset in Figure 5.6 is courtesy of Octavian
Frederich.

It goes without saying that I am most thankful to my family fortheir constant
support. To my wife, Paola Oviedo, many thanks for her love and understanding
and for the many useful suggestions to my work.

Eduardo Tejada

CHAPTER

2 INTERACTIVE V ISUALIZATION

Visualization is the process performed to provide a graphical depiction of the in-
formation contained in a given raw data. The popularizationof visualization in
the last decades is due, in part, to the increasing complexity of the data avail-
able nowadays. Many different data sources exist, which produce usually very
complex data of a specific nature. Simulations and data acquisition techniques
are able to produce data with different geometry, includingpoint clouds, polygon
soups, and polygonal and polyhedral meshes. If the geometric data itself is the
input to the visualization process, we deal with computer graphics problems such
as surface approximation, mesh healing, and finite-elementmanipulation. On the
other hand, in scientific visualization the geometric data usually has some kind of
measured or simulated data attached to the geometric elements. For instance, vol-
umetric data obtained from computer tomography, magnetic resonance imaging,
computational fluid dynamics simulations, and sonar equipment, to name a few,
are input data with scalar, vectorial or tensorial quantities stored in geometric and
topological structures, normally meshes.

In this chapter, an overview of interactive visualization techniques, related to
the research reported in this work, is given. Interactive visualization has been the
focus of research of a large number of works in the past three decades. Different
approaches based on parallel computing, efficient data structures, compression
and level-of-detail, signal processing, and hardware-accelerated techniques have
been presented. Of particular interest in the context of this thesis are hardware-
accelerated techniques, which take advantage of current advances in graphics
hardware. Thus, in this chapter, basics concepts on visualization and graphics
hardware are given.

2.1 Visualization Pipeline

Thevisualization pipelinedescribes the stages of the process used to visualize a
dataset. Although there are many different versions of the visualization pipeline,
they all describe the data flow that transforms the raw data into an image displayed
on some device. Figure 2.1 shows the stages of the visualization pipeline, namely,
data acquisition, filtering, mappingandrendering. The intermediate data is also
shown.

Data acquisitionis comprised by the methods used to produce theraw data,
such as computer simulations or measurements of natural phenomena. Usually,

21

22 Chapter 2. Interactive Visualization

Figure 2.1: Stages and intermediate data of the visualization pipeline.

this raw data is not well-suited for visualization algorithms. The task of processing
this data to provide the desired input to the display method is calledfiltering. Fil-
tering includes several operations of different nature, such as interpolation, clip-
ping, and deformation. The data obtained from the filtering,thevisualization data,
is then used to generate a geometric representation during themappingstage. The
geometric dataresulting from the mapping is independent from the method used
for displaying it and takes the form of geometric primitivesor implicit definitions,
as well as properties such as color. The graphical result itself is produced during
therenderingstage which generates the sought visualization of the data.Although
this visualization pipeline arose from the visualization community, it can be di-
rectly applied to other areas of computer graphics. This is important for the focus
of this thesis, since the flow of the line of research reportedhere goes from surface
modeling and rendering to volume modeling and rendering.

An important filtering task is the reconstruction of the volumetric data at any
given point in the domain. As will be seen, interpolation andapproximation tech-
niques have been developed to accomplish this task for a widerange of different
input data. This filtering partially determines the mappingtechnique to be used.
It is worth mentioning that in the last years, a renewed interest on mapping tech-
niques based on implicit definitions and meshless modeling has arisen, specially
in problems related to surface representations. The application of such techniques
to volume data has not been fully explored yet. However, their use in this sce-
nario poses new problems for the interactive rendering of the data resulting from
mapping techniques based on them. As mentioned before, these are the issues

2.2. Surface Visualization 23

addressed in this thesis.

2.2 Surface Visualization

Although the term surface visualization is often used in scientific visualization
applications, some authors use it to refer, in general, to the process described
by the visualization pipeline applied to surface data. In this thesis, for sake of
consistency, this latter approach is followed to better fit the description of the
research reported in Chapters 4 and 5 within the visualization context.

Here, an overview of basic concepts on surface data, surfacereconstruction,
and surface rendering focused on the approximation of surfaces from sampled
data is given. We will see in later chapters that this sampleddata can refer both to
surface and to volumetric data.

2.2.1 Surface data

In the context of this thesis, input surface data can come from two different
sources. The first type of such input data is comprised by the so-calledpoint
cloudsor unorganized point sets. A point cloud is a setX = {x1, · · · ,xN} of
points sampled on the surface∂S of an objectS ⊂ R3. This sampling is usually
performed by means of a three-dimensional scanner (see for instance the Digital
Michelangelo Project[100]). Other information, such as the normal vector to the
surface at the sample position, radius, and material properties, can be attached to
the point data. In this case, each sample is referred to as asurfel, short forsurface
element. Currently available technology is able to generate very large point sets
with tens and even hundreds of millions of points, usually with problems such as
noise, non-uniformity, or regions devoid of data.

Polygon soupsare a further type of surface data that has been handled lately
with meshless methods. A polygon soup is a setK of polygons with no inherent
structure,i.e., a list of polygons with no connectivity information between them.
Sources of polygon soups are often polygonal data sets containing holes, gaps,
T-junctions, self intersections, and non-manifold structure. Thus, the term can be
used to describe collections of polygons that do not posses guarantees concerning
their structure.

Polygonal meshes can also constitute input surface data to meshless methods,
for instance, when polygons with bad aspect ratio are found,or up-sampling or
down-sampling the surface is the task to perform.

2.2.2 Surface reconstruction

The work on surface reconstruction from sampled surface data is vast and vari-
ate. One can broadly divide the approaches found in the literature into meshless
approaches and approaches based on combinatorial structures, i.e., mesh-based
approaches. In the latter group, approaches usingDelaunay triangulations[22;

24 Chapter 2. Interactive Visualization

84], alpha shapes[19; 43; 15] andVoronoi diagramscan be found[8; 9]. These
methods usually generate jagged triangle meshes or triangle meshes with poor
quality. Therefore, algorithms to smooth the surface and improve the quality of
the triangles are often used as post-processing.

On the other hand, meshless approaches do not rely on any combinatorial
structure, although the result of the method can be a mesh. Since meshless tech-
niques are the focus of this work, and the mathematical foundation upon which
they are based is given in the next chapter, a description of these techniques will
be given later throughout the thesis. However, it may be important to mention here
two groundbreaking works upon which much current research is based: Hoppe’s
implicit surface definition[69] and Levin’smoving-least-squares surfaces[98].
These two works are representatives of the two main approaches to meshless sur-
face reconstruction, namely, the definition of the surface (a) as a level set of an
implicit function and (b) as the set of static points for someprojection operator.
It must be noted, however, that it has been proven that moving-least-squares sur-
faces can also be stated as an implicit surface[11]. As discussed later, implicit
surfaces have a number of advantages,e.g., their suitability for CSG operations or
the simplicity of their definition.

Hoppe and collaborators defined the approximate surface as the zero set of a
functionfH that approximates thesigned distancefrom a pointx to the surface
∂S. A simplicial surface is then constructed by means of a contouring algorithm.
The functionfH is defined as

fH(x) = 〈x− xi,ni〉,

where〈, 〉 is the scalar product,xi is the nearest point tox, andni is the approxi-
mation of the normal vector to the surface∂S atxi. The vectorni is estimated by
means of covariance analysis. To that end, forxi, the covariance matrix

Ci =
∑

xj∈N (xi)

(xj − xi)⊗ (xj − xi)

is calculated, whereN (xi) is the set ofM nearest neighbors toxi. If λk; k =
1, · · · , 3 denote the eigenvalues ofCi, whereλ3 < λ1, λ2, associated with the
eigenvectorsek; k = 1, · · · , 3, respectively, the vectorni is chosen to be eithere3

or−e3. The actual orientation is computed afterwards by stating the orientation
problem as a graph optimization, so as to obtain consistently oriented normal
vectors.

On the other hand, Levin defines themoving least-squares surfacefor a point
cloud as the set of stationary points of a certain mapfMLS : R3 → R3. Although
the moving least-squares methodis described in the next chapter, the definition

2.2. Surface Visualization 25

of moving least-squares surfaces is given here since the details of moving least-
squares are not necessary to understand this surface definition.

Given a pointr ∈ R3 near∂S to be projected,fMLS(r) is defined in two steps
as follows. First, a local approximating planeH = {x : 〈a,x〉 − 〈a,q〉 = 0,x ∈
R3} is computed by findingq anda = a(q); ‖a‖ = 1, so thata minimizes

eMLS(q, a) =

N∑

i=1

(〈a,xi〉 − 〈a,q〉)2 ωMLS(q,xi) (2.1)

wherea is in the direction of the line throughq andr, the directional derivative
of JMLS(q) = eMLS(q, a(q)) in the direction ofa(q), evaluated atq is zero,i.e.,
∂a(q)JMLS(q) = 0, andωMLS(p,q) ≡ w(‖p− q‖), wherew is a monotonically
decreasing function, typically a Gaussian

w(s) = exp(− s
2

h2
),

whereh is the fill size. OnceH is found, a local polynomial approximation is
computed. To that end, let{x̃i : i = 1, · · · , N} be the orthogonal projections of
the points{xi : i = 1, · · · , N} ontoH, represented in an orthonormal coordinate
system onH defined so thatr is projected onto the origin. Also, letfi = 〈xi, a〉−
〈q, a〉; i = 1, · · · , N , be the heights of the points{xi : i = 1, · · · , N} overH.
Find a polynomial̃p ∈∏2

m as

p̃ = argmin
p∈Π2

m

N∑

i=1

(p(x̃i)− fi)
2 ωMLS(q,xi), (2.2)

whereΠd
m is the space ofd-variate polynomials of degreem. The projection ofr

is defined as
fMLS(r) ≡ q + p̃(0)a. (2.3)

Then,
M∂S ≡ {x ∈ R3 : x = fMLS(x)}.

Many extensions to these methods have been proposed, among which are those
presented in Chapter 4.

2.2.3 Surface rendering

A large number of computer graphics techniques are involvedin surface render-
ing, ranging from visible surface determination to global illumination algorithms.
As stated before, the output of the meshless surface approximation method can be
used to generate a mesh, in which case traditional renderingmethods can be used.

26 Chapter 2. Interactive Visualization

On the other hand, if the meshless surface representation isto be direct input to
the rendering method, some considerations must be taken, for instance, for the
ray/surface intersection calculation. There is a considerable amount of work on
meshless rendering methods and many of them will be described in the following
chapters. However, some seminal works on the topic are mentioned here.
Image-order algorithms. Ray-casting (or ray-tracing) meshless surface repre-
sentations has been approached both for implicit surfaces definitions[2] and for
surfaces defined as the set of static points of a projection operator[3]. In the case
of implicit surfaces, the surface/ray intersection problem can be regarded as the
problem of finding the roots of the implicit function on the domain of the line de-
fined by the ray. Analytical and numerical approaches have been proposed[67].
However, for general implicit functions, the most widely used approach is the bi-
section method (Figure 2.2), where the ray is sampled with a regular step size
starting at a point near∂S, until a change in the sign of the implicit function is
found. Then, the bisection method is applied starting with the two last points
(one on each side of the surface). Note that this process is specific to implicit
definitions where the inside/outside state is given by the sign of the function.

Computing the intersection of a ray with a surface defined by aprojection
operator takes a different approach. Starting with a point near∂S, an iterative
process that provides an approximation to the intersectionis performed[3]. In
each iteration, the projection of the current approximate intersection is computed.
If the distance between the point and its intersection (t in Figure 2.2) is less than
a predefined threshold, the process ends and the result is thecurrent approximate
intersection. Otherwise, a local approximation to the surface,e.g., a polynomial
approximation, is computed and its intersection with the ray defines the new ap-
proximate intersection. Details on how to compute the localapproximation to the
surface, on defining its support, and on the data structures used for accelerating
the intersection computation are given in Chapters 4 and 5.
Object-order algorithms. A number of techniques are able to generate a dense
sampling of points from the original input set of points. Levin’s surface definition
is an example of this, since the projection operator can be repetitively applied on a
dense set of points near∂S in order to project them onto the approximated surface.
When a sufficiently dense sampling is available,point-based surface rendering
can be applied. The idea behind point-based rendering is to exploit the advantages
of points as graphical primitives compared to triangles, namely, the compactness
of the representation, ease of manipulation, and flexibility. The first work on
point-based rendering was published by Levoy and Whitted[101]. Nowadays,
renderingsurfels, e.g., by means of surface splatting, is the most widely used
approach for rendering a dense point set. As stated before, surfels are points
which have additional information attached to them, for instance, normal vectors,
radii and material properties. This information can be calculated if not available

2.3. Volume Visualization 27

Mf

x

t

Figure 2.2: Ray-casting implicit surfaces (left) and surfaces defined as the set of static
points of some projection operator (right). For implicit definitions, a surface cross is
found by sampling the ray at regular intervals. With the two last sampled points, the
bisection method is applied to find an approximation to the intersection point. In the
case of projection operators, the approximate intersection is projected onto the surface. If
the distancet to the projection is less than a threshold, the current approximation is the
intersection point. Otherwise a local approximationMf to the surface is computed and
its intersection with the ray defines the new approximate intersectionx. In both cases the
process starts with a point near the surface∂S depicted by the circled point (see color
plates).

as there is a large amount of work on these topics. The rendering is implemented
by projecting the surfels onto the image plane and compositing the contribution
of each surfel to the color of the pixels in the projection[126].

2.3 Volume Visualization

The visualization pipeline applied to volumes is known as volume visualization.
The goal in volume visualization is to create a graphical representation of the in-
formation contained in the volume data to help the user gain insight into it. To that
end, many methods that address modeling, filtering and rendering of the volume
have been developed. The goal is not only to generate a graphical representation
of the data, but to provide the user with a means to better understand it. How-
ever, since the literature on volume visualization is very extensive, this section
will be focused on basic volume visualization concepts thatare used throughout
this thesis.

2.3.1 Volume data

Since volume data is acquired by a large number of different means, such as com-
puter simulation and medical imaging, the type, domain and structure of the data,

28 Chapter 2. Interactive Visualization

Figure 2.3: Classification of common grids types found in scientific visualization.

in turn, can vary largely. The data type, for instance, ranges from scalar data to
higher-order tensor data, and very often it is possible to find volume data with
multiple fields of different type.

Concerning the structure, volume data can be stored, in general, as scattered
data or at the elements of a grid (Figure 2.3). Grids are usually subdivided in two
broad types, namely,structuredandunstructured grids. The sample positions in
structured grids can be indexed, for the three-dimensionalcase, by(i, j, k), where
i ∈ I, j ∈ J , andk ∈ K, andI,J ,K denote indexing sets. Among struc-
tured grids,regular gridspossess the most ‘regular’ geometry and the position of
each samplei, j, k, for the three-dimensional case, is implicitly stored and can be
reconstructed by

vi,j,k = (i∆x, j∆y, k∆z)R + t,

whereR is a rotation matrix,t is a translation vector, and∆x, ∆y and∆z are the
grid cell size in each direction. A specific subtype of regular grids areCartesian
grids, for which∆x = ∆y = ∆z.

A more general type of structured grids arerectilinear gridswhich possess
irregularly spaced vertices in each dimension, so that

vi,j,k = (x(i), y(j), z(k))R + t.

Curvilinear gridshave the same connectivity as rectilinear grids however thever-
tex position cannot be implicitly defined and must be explicitly specified as a
position in space

vi,j,k = (x(i, j, k), y(i, j, k), z(i, j, k))R + t.

The advantage of curvilinear grids is that the domain of the simulation can be
better represented without having to increase the resolution as it would be the case
with rectilinear grids. Also, the implicit nature of the connectivity is maintained.
This type of structured grids is largely used in the aircraftand car manufacturing
industries.

2.3. Volume Visualization 29

Figure 2.4: Different multiblock grid types.

Unstructured gridsare the most general grid type since the connectivity is
explicitly stored. These grids are also referred to as polyhedral meshes. A polyhe-
dral mesh is a finite set of polyhedra where the intersection of any two polyhedra
is either empty or a face, edge or vertex of each; or for any partition of the set into
two subsets, there is always at least one polygon that is a face of a polyhedron
from each subset. The term cell and polyhedron will be used synonymously in
the following. In practice, the cells in these grids are usually limited to tetrahedra,
hexahedra, prisms, and pyramids. As shown in Figure 2.3, unstructured grids can
have cells of different type.

Multiblock grids(Figure 2.4) are also often found as result of computer sim-
ulations. Multiblock grids are formed by two or more grids ofany of the pre-
viously mentioned grid types. Multiblock grids can be classified asconformal,
semi-conformal, non-conformalandoverlapping grids. Conformal grids are the
easiest to handle, since a natural continuity in the connectivity is present. This
is also the case for semi-conformal grids, where the main issue that must be ad-
dressed is the different ‘resolutions’ of the grids. Non-conformal grids, on the
other hand, can be arbitrarily placed with the only constraint that the intersection
of two grids is non-void and the meshes do not overlap as is thecase with overlap-
ping grids. A very important grid type that can be included among the multiblock
grids is comprised by theadaptive mesh refinementgrids. These grids are formed
by a set of grids, where the grids of greater resolution are within the coarser grids
and the boundaries of the former are identical to the boundaries of the cell in the
latter that contains it. This type of grid adapts the resolution of each block to
the accuracy requirement of each part of the domain. Interpolating in multiblock
grids is a challenging task, which is addressed in Chapter 6.

2.3.2 Volume data reconstruction

In general, visualization algorithms require as input a reconstruction of the vol-
ume data from the samples on the entire domain. This data reconstruction is
usually associated with interpolation methods. However, approximation methods
can also be useful, for instance, when noisy data is to be handled. Volume data
reconstruction is also referred to asfiltering, specially in reconstruction methods

30 Chapter 2. Interactive Visualization

for Cartesian grids. Here, an overview of the most common approaches for vol-
ume data reconstruction is given. In the next chapter, meshless approximation
methods that are directly related to the research reported in this thesis will be de-
scribed in detail. As will be seen in Chapter 6, these methodscan be used for
volume data reconstruction in arbitrary grids, while providing a means to define
a unified approach that is able to generate both interpolations and approximations
of the volume data. That is, a method that is able to effectively deal with data with
and without noise stored in arbitrary meshes will be presented. In the following,
let X be the set of sample pointsxi ∈ R3; i = 1, . . . , N , in a three-dimensional
domain. The sample points can be the vertices of a grid, the cell centers of a grid
or scattered samples. The sampled data at sample pointxi is referred to byfi.
Scattered data. In general, there are two basic approaches to scattered datare-
construction. The first is based only on the scattered positions while the second
makes use of some sort of spatial decomposition to aid the interpolation process.
In the latter approach, once the spatial decomposition is computed, the values
are reconstructed using reconstruction methods for gridded data, such as the de-
scribed below. On the other hand, meshless scattered data reconstruction methods,
as mentioned above, are applied directly on the scattered samples. Since meshless
data interpolation and approximation are directly relatedto the research reported
here, a detailed description that includes methods based onpartition of unity, least-
squares, and radial basis functions will be given in the nextchapter as part of the
mathematical foundations. However, here the two most widely known recon-
struction methods for meshless scattered data reconstruction are briefly described,
namely, Shepard’s method[143], also known asinverse distance weighing, and
Sibson’s interpolation[7]. Shepard’s interpolation can be written as

fs(x) =

∑N
i=1 fiωs(x,xi)∑N
i=1 ωs(x,xi)

,

where

ωs(x,y) =
1

‖x− y‖2 .

Shepard’s method producesC0-continuous interpolations and cusps, corners and
flat spots can be obtained. Modifications to this method that address this issue
have been proposed, which fall within the category of methods based on partition
of unity. Shepard’s method can be regarded as the simplest case of the moving
least-squares method.

On the other hand, data interpolation using Sibson’s parameterization pro-
ducesC1-continuous interpolations. Sibson’s method takes into account only the
natural neighborsof the evaluation pointx to calculate the interpolated value.
TheVoronoi diagram̥ of the setX is a domain partitioning into regionsV (xi),

2.3. Volume Visualization 31

such that any point inV (xi) is closer tositexi than any other sitexj. The regions
V (xi) are calledVoronoi cells. Given̥ and ̥̂ , wherê̥ is the Voronoi diagram
of the setX ∪ {x}, with Voronoi cellsV̂ (p);p ∈ X ∪ {x}, the setN b̥(x) of
natural neighbors ofx is comprised by the sites of the neighboring Voronoi cells
to the cell of the sitex. The Sibson’s interpolant is then calculated as

fc(x) =

∑
xi∈N b̥ (x) fiωc(x,xi)
∑

xi∈N b̥ (x) ωc(x,xi)
,

whereωc(x,y) = v(V̂ (x) ∩ V (y)) andv is a function that returns the volume of
a region.
Rectilinear grids. The simplest reconstruction method used in rectilinear grids
is thenearest-neighbor interpolation, where the reconstructed valuefn(x) at the
evaluation pointx is given byfi, where‖xi − x‖ < ‖xj − x‖; ∀j 6= i. Since this
interpolation is discontinuous, unpleasant abrupt changes in the visual representa-
tion (rendering) are obtained. On the other hand, piecewisetri-linear interpolation
generatesC0-continuous reconstructions and due to its simplicity, ease of coding,
and low computational cost, is widely used in visualizationmethods. Given the
verticesxck

; k = 1, . . . , 8, of the cellC, such thatx is in the interior ofC, the
reconstructed valueft(x) is in this case obtained as

ft(x) = (1− α) (1− β) (1− γ) fc1 + α (1− β) (1− γ) fc2

+ α β (1− γ) fc3 + (1− α) β (1− γ) fc4

+ (1− α) (1− β) γ fc5 + α (1− β) γ fc6

+ α β γ fc7 + (1− α) β γ fc8

with

α =
‖x̂c1c2 − xc1‖
‖xc2 − xc1‖

, β =
‖x̂c1c4 − xc1‖
‖xc4 − xc1‖

, and γ =
‖x̂c1c5 − xc1‖
‖xc5 − xc1‖

,

wherex̂c1c2, x̂c1c4, andx̂c1c5 are the projections ofx on the lines defined by the
pairs of vertices(xc1,xc2), (xc1,xc4), and(xc1,xc5) respectively. If the data is cell
centered, the dual mesh is used.

Higher-order reconstruction schemes such asB-splines, Catmull-Rom splines
and,windowedsinc filtersare also used in visualization applications[109]. These
schemes areseparable filters, which can be written ash(ϑ, ̺, ς) = hs(ϑ)hs(̺)hs(ς).
The reconstructed value is obtained as the sum over the sampling points,

fh(x) =
N∑

i=1

fih(ϑi, ̺i, ςi),

32 Chapter 2. Interactive Visualization

where(ϑi, ̺i, ςi) = xi − x. Catmull-Rom splines and cubic B-splines belong to
the family of cubic splines

hs(ς) =

1

6

(6− 2b)− (18− 12b− 6c)|ς|2 + (12− 9b− 6c)|ς|3 |ς| < 1
8(b+ 3c)− 12(b+ 4c)|ς|+ 6(b+ 5c)|ς|2 − (b+ 6c)|ς|3 1 ≤ |ς| < 2
0 otherwise,

where differentb andc generate different cubic splines. Note that this assumes
that the distances between two neighboring samples in any dimension is one. If
this is not the case, a normalization in each dimension is performed. B-splines are
obtained by settingb = 1 andc = 0, while Catmull-Rom splines are obtained with
b = 0 andc = 0.5. Windowedsinc filters, on the other hand, approximate the ideal
sinc filter with a filter of finite support. Since simple truncationof thesinc filter
causes ringing artifacts, it is multiplied with functions that drop smoothly at the
boundaries of the support. The defining equation of a windowed sinc, considering
one window, is

hs(ςm)(ς) =

{
(1 + cos(πς/ςm)) sinc(4ς/ςm) |ς| < ςm
0 otherwise,

whereςm is the radius of the support. Note that this filter needs to be normal-
ized to ensure the unity of its integral on the domain. As a side note, tri-linear
interpolation is also a separable filter.

Lagrange interpolationcan also be found to a lesser extent in visualization
methods. In the univariate case, the approach fits a polynomialP of degreed− 1
to d points(xj , fj); j : 1, . . . , d, as

P (x) =
d∑

j=1

Pj(x),

where

Pj(x) = fj

d∏

k = 1
k 6= j

x− xk

xj − xk

.

The method can be extended to the three-variate case for rectilinear grids to obtain
a reconstructionfl(x) of the value atx by successively applying the interpolation
to higher dimensions.
Curvilinear and unstructured grids. Linear interpolation in unstructured and
curvilinear grids is also widely used in visualization applications. The most com-
mon approach is to partition each polyhedral cell into tetrahedra and compute the

2.3. Volume Visualization 33

linear interpolation on the tetrahedral partition. Note, however, that this interpo-
lation depends on the partition used. Given a pointx in the interior of a tetrahe-
dronT = [xv1

,xv2
,xv3

,xv4
] in the tetrahedral mesh, the barycentric coordinates

λk; k = 1, . . . , 4, of x with respect toT are obtained by solving

4∑

k=1

λkxvk
= x,

4∑

k=1

λk = 1.

Then, the volumetric data can be linearly interpolated within T as

ft(x) =
4∑

k=1

λkfvk
.

Barycentric coordinates are a parameterization of the position of a point with
respect to the tetrahedra. Similarly,mean value coordinateswhere recently pro-
posed by Floateret al. [52] to parameterize any star-shaped polyhedra. LetΩ ⊂
R3 be the domain defined by the set of cells of a polyhedral mesh. Furthermore,
let C ⊂ Ω be a polyhedron in the mesh, with triangular facets and verticesxvk

;
k = 1, . . . , m. The kernelK of C is the open set consisting of all pointsx
in the interior ofC with the property that for allk = 1, . . . , m, the only in-
tersection between the line segment[x,xvk

] and the boundary∂C is xvk
. C is

star-shaped, if K is non-empty. The boundary∂C of C is a mesh of triangles.
For anyx in K, each oriented triangleH = [xvj

,xvk
,xvm

] defines a tetrahedron
T = [x,xvj

,xvk
,xvm

]. Given the angleβrs; r, s = 1, . . . , 3, between two line
segments[x,xvr

] and [x,xvs
], and the unit normalnrs to the face[x,xvr

,xvs
],

pointing into the tetrahedronT , the barycentric coordinates ofx with respect toC
are defined by

λj =
wj∑m

k=1wk

,

where

wj =
1

rj

∑

H∋xvj

υj,H,

rj = ‖x− xj‖ and

υj,H =
βkm + βjk〈nkm,nkm〉+ βmj〈nmj ,nkm〉

2〈ej ,nkm〉
,

34 Chapter 2. Interactive Visualization

where

ej =
xvj
− x

‖xvj
− x‖ .

Higher-order approximation in tetrahedral meshes is usually addressed with
theBernstein-B́ezier formof trivariate splines[39]. Therefore, a tetrahedral par-
tition must be constructed. Let∆ be a tetrahedral partition ofΩ in R3. Then for
any integers0 ≤ r ≤ d, the associated space of polynomial splines of degreed
and smoothnessr is defined by

Sr
d(∆) = {s ∈ Cr(Ω) : s|T ∈ Pd, all tetrahedra T ∈ ∆} ,

wherePd is the space of trivariate polynomials of degreed. Although there is no
general theory, there are a fewC1 trivariate spline spaces which have been shown
to be useful in applications, such as the classical finite-element spaces withd = 9
on general tetrahedral partitions and finite-element spaces withd = 5, d = 3, and
d = 2 on subpartitions of∆ where every tetrahedron is split into four, twelve, and
twenty four tetrahedra respectively.

Given a tetrahedronT = [xv1
,xv2

,xv3
,xv4

], any cubic splines on ∆, can be
written in its piecewise Berstein-Bézier form

s|T =
∑

i+j+k+l=d

cijklB
d
ijkl, cijkl ∈ R,

wherecijkl are called theBernstein-B́ezier coefficientsof the polynomial pieces|T
associated with theBézier points

{
ξT
ijkl =

ixv1
+ jxv2

+ kxv3
+ lxv4

d

}

i+j+k+l=d

.

Here, theBernstein basis polynomialsof degreed with respect toT are

Bd
ijkl(x) =

d!

i!j!k!l!
λi

1λ
j
2λ

k
3λ

l
4, i+ j + k + l = d.

If s ∈ Cr(Ω) with r ≥ 1, then the coefficientscijkl must satisfy certain
smoothness conditions. Suppose that two tetrahedra,T = [xv1

,xv2
,xv3

,xv4
] and

T̃ = [xv5
,xv2

,xv3
,xv4

], share the faceF = [xv2
,xv3

,xv4
]. Suppose also that

s|T =
∑

i+j+k+l=d

cijklB
d
ijkl,

s| eT =
∑

i+j+k+l=d

c̃ijklB̃
d
ijkl,

2.3. Volume Visualization 35

where{B̃d
ijkl}i+j+k+l=d are the Bernstein polynomials of degreed associated with

T̃ . Given1 ≤ i ≤ d, let

τ i
jkl = cijkl −

∑

ν+µ+κ+ι=i

c̃ν,j+µ,k+κ,l+ιB̃
i
νµκι(v1).

for all j + k + l = d − i. Note that for a given pair of adjoining tetrahedra,τ i
jkl

is uniquely associated with the domain pointξT
ijkl. The splines isCr continuous

across the faceF if and only if

τ i
jkls = 0, for all j + k + l = d− i and i = 0, ..., r.

Thus, the reconstructed value atx ∈ T is fb(x) = s|T (x).
Multiblock grids. Reconstructing the volume data stored in multiblock grids is a
challenging task depending on the grid type. Conformal multiblock grids can be
addressed with the approaches described above. Semi-conformal, non-conformal,
and adaptive-mesh-refinement grids can be addressed by reconstructing the value
inside each cell independently if linear interpolation suffices. However, discon-
tinuities are often introduced. Overlapping multiblock grids pose an even more
difficult problem, since the domains of two or more grids overlap. As mentioned
before, this problem is addressed in Chapter 6.

2.3.3 Volume rendering

Volume rendering is the process in the visualization pipeline that generates the
graphical representation of a volume data set. Volume rendering methods can be
broadly divided intodirect volume renderingmethods andindirect volume ren-
dering methods. The former regard the volume data as a non-opaque cloud of
particles, and visualize it directly by modeling certain physical effects, while the
latter visualize some derived model,e.g., an isosurface mesh. Since indirect vol-
ume rendering in the context of this thesis, as will be seen inthe subsequent chap-
ters, is in the form of surface visualization, the above presented description of
surface rendering suffices. Therefore, direct volume rendering is the focus of the
following discussion.

Direct volume rendering aims at visualizing a volume by modeling three phys-
ical effects affecting the appearance of non-opaque materials: emission, absorp-
tion andscattering. Emission refers to the light coming from chemical reactions
or excitation on an atomic level. In a scattering process a photon interacts with
a scattering center and emerges from the event moving in a different direction in
general with a different frequency (inelastic scattering). If the frequency does
not change, one speaks ofelastic scattering. Absorption refers to the attenua-
tion of light between a particle and a light source. In the following, the focus of
the discussion is on the so-calledemission-absorption model, which will be used

36 Chapter 2. Interactive Visualization

A

E

∆s

L0

L(D)

Figure 2.5: Ray through the volume.

throughout the rest of the thesis. A detailed description ofdifferent models in-
cluding scattering, shadowing and multiple scattering canbe found in the work by
Max [111].
Volume rendering integral. Consider a cylinder with lengthD centered around a
viewing ray that passes through the volume, whose radius is small enough so that
volume properties change only along its length (Figure 2.5). Also, consider a light
source positioned at the end of the cylinder,i.e. the extreme opposite to the view
point, with radianceL0 (per wavelength) in the direction of the ray. The color
of the pixel corresponding to the ray is determined by the radianceL(D) coming
from the front of the cylinder. Consider furthermore a thin slab of this cylinder
with base areaE and length∆s. Finally, consider a participating medium with
particle densityρ. In the emission-absorption model, as the light ray flows along
the direction∆s the particles absorb the light that they intercept and emit new
light. For simplicity, assume that all particles are identical spheres with radiusr.
The area of the projection of each particle on the base of the slab isA = πr2. The
volume of the slab isE∆s and therefore containsN = ρE∆s particles. If∆s is
small enough, the particle projections on the base of the slab have low probability
of overlap. Thus, the area of the base of the slab occluded by the particles is
approximated byNA = ρAE∆s and the fraction of light occluded when flowing
through the slab is

AρE∆s/E = ρA∆s. (2.4)

As stated above, in addition to absorbing light, the particles emit light with inten-
sity C per unit projected area. Thus, the radiance of the light emitted by theN
particles in the slab isCAN = CρAE∆s which gives an added flux per unit area
equal to

CρA∆s. (2.5)

Thus, considering the light occluded (Equation 2.4) and thelight emitted (Equa-
tion 2.5) by the particles in the slab per unit area, since as∆s approaches zero, the

2.3. Volume Visualization 37

probability of overlap also approaches zero, the change in the radiance of a ray of
light through the volume can be defined as

dL

ds
= C(s)ρ(s)A− ρ(s)AL(s)

= C(s)τ(s)− τ(s)L(s)

= Le(s)− τ(s)L(s). (2.6)

The quantityτ(s) is called theextinction coefficientandLe(s) is called thesource
term.

To solve this differential equation, the termτ(s)L(s) is brought to the left
hand side and both sides are multiplied by the integrating factor exp

(∫ s

0
τ(t)dt

)

giving

(
dL

ds
+ L(s)τ(s)

)
exp

(∫ s

0

τ(t)dt

)
= Le(s) exp

(∫ s

0

τ(t)dt

)

or
d

ds

(
L(s) exp

(∫ s

0

τ(t)dt

))
= Le(s) exp

(∫ s

0

τ(t)dt

)
.

Integrating froms = 0, at the back end of the volume, tos = D, at the eye, we
obtain

L(D) exp

(∫ D

0

τ(t)dt

)
− L0 =

∫ D

0

Le(s) exp

(∫ s

0

τ(t)dt

)
ds,

which can be rewritten as

L(D) = L0 exp

(
−
∫ D

0

τ(t)dt

)
+

∫ D

0

Le(s) exp

(
−
∫ s

0

τ(t)dt

)
ds. (2.7)

An analytic solution of this integral is, in general, not feasible. Thus, numer-
ical integration is needed. The most common numerical approximation of the
volume rendering integral is done by means of Riemann sums asfollows. The
interval from0 toD is divided inton equal segments of length∆x = D/n and a
samplexi at each segment is choses to bexi = i∆x. Then

exp

(
−
∫ D

0

τ(x)dx

)
≈ exp

(
−

n∑

i=1

τ(i∆x)∆x

)

=
n∏

i=1

exp (−τ(i∆x)∆x) =
n∏

i=1

t(i).

38 Chapter 2. Interactive Visualization

LetL(i)
e = Le(i∆t) and define

exp

(
−
∫ D

i∆x

τ(x)dx

)
≈

n∏

j=i+1

t(j).

The Riemann sum for
∫ D

0

Le(s) exp

(
−
∫ s

0

τ(t)dt

)
ds

becomes
n∑

i=1

L(i)
e

n∏

j=i+1

t(j),

and the final estimate of Equation 2.7 is

L(D) ≈ L0

n∏

i=1

t(i) +

n∑

i=1

L(i)
e

n∏

j=i+1

t(j)

= L(n)
e + t(n)

(
L(n−1)

e + t(n−1)
(
L(n−2)

e + · · ·
(
L(1)

e + t(1)L0

)
· · ·
))
,

which gives us the back-to-front compositing formulation

L(i) = L(i)
e + (1− α(i))L(i−1),

whereL(i) is the accumulated color for thei first ray segments,α(i) = 1 − t(i)

can be thought of as the opacity of thei-th segment along the ray, andL(0) = L0.
L

(i)
e is know as thepre-multiplied coloror associated colorin volume rendering

algorithms.
A better approximation to the volume rendering integral canbe obtained by us-

ing pre-integrated classification[85], where a continuous, piecewise linear scalar
function is reconstructed along the viewing ray and the volume rendering integral
between each pair of successive samples of the scalar field isevaluated by table
look-ups.
Image-order algorithms. The evaluation of the volume rendering integral is
common to all direct volume rendering algorithms. As in the case of surface
rendering, these algorithms can be subdivided into object-order and image-order
algorithms. Ray-casting techniques for volume rendering[99; 54] are image-order
algorithms, where usually at least one ray is traced for eachpixel in the image
from the view point to the volume. The volume is traversed along each ray and
the final color is composited using the color and opacities reconstructed at each
sample point on the ray. In Figure 2.6 the ray-casting process is depicted. The

2.3. Volume Visualization 39

Figure 2.6: Volume ray-casting (see color plates). From left to right: at least one ray
is traced for each pixel in the image (ray casting), on each ray the volume is sampled
a number of times (sampling), the contribution of each segment is computed (shading),
and the contributions of all ray segments are composited to determine to final color of the
pixel (composition).

four main steps are shown, namely,ray casting, sampling, shading, andcomposit-
ing. During ray casting, the rays for each pixel are traced from the view point
to the volume. Each ray is then sampled at specific locations (sampling). The
sampling locations are not necessarily evenly spaced and depend largely on the
grid type and on the volume ray-casting techniques implemented,e.g., accelera-
tion techniques and feature enhancement methods. The way the contribution of
each ray segment is computed can also vary due to the specific shading technique
used and to the numerical approximation of the volume integral for the individual
segment. The contributions of all ray segments are then blended together during
thecompositingas explained above. In the last years, one of the main problems
approached by researches has been the acceleration of the rendering process by
means of graphics hardware[45].

Object-order algorithms. In contrast to image-order algorithms, object-order
volume rendering algorithms compute the contribution of individual parts of the
volume to the rendering integral. Usually, each part contributes to the integral
along many rays. One of the most widely used image-order algorithms is cell
projectionwhere cells in the grid are projected onto the image plane in visibility
order (see Figure 2.7). The contributions of the cells to theintegral along a ray
are blended using compositing as described above. Another very well known
object-order algorithm issplatting[171], which generates the image by computing
for eachvoxel (a cell in a Cartesian grid together with its volumetric data) its
contribution to the result in all pixels which overlap with its footprint in image
space. The computation is performed by slicing the volume and project each slice
onto the image plane. The footprint of each voxel is actuallythe reconstruction
kernel centered around it (see the section on volume data reconstruction above).

The support for texture mapping by graphics hardware made possible the de-

40 Chapter 2. Interactive Visualization

Figure 2.7: Object-order volume rendering algorithms. Clockwise (from top left): splat-
ting, cell projection, object-aligned, and view-aligned texture-based volume rendering.
Note that splatting and cell projection are not restricted to regular grids (see color plates).

velopment oftexture-based volume renderingmethods for Cartesian grids[25]
(Figure 2.7). Where two-dimensional texturing is available, volume rendering
can be accomplished by projecting object-aligned texturedslices onto the image
plane. The contribution of the slices to the final image are composited together
by means of the blending operations supported by the graphics hardware. In this
case, three stacks of slices aligned along the axis of the object coordinate sys-
tem are used. During rendering, the stack corresponding to the axis closest to the
viewing direction is used. This requirement of maintainingthree stacks of tex-
tures is alleviated with the support for three-dimensionaltextures, in which case
the volume is sliced orthogonally to the viewing direction.The resulting slices
are textured directly by accessing the three-dimensional texture holding the vol-
ume. An approach related to texture-based volume renderingis theshear-warp
algorithm[87] where the viewing transformation is factorized such that the near-
est facet of the volume becomes axis aligned with an off-screen image buffer with
a fixed scale of voxels to pixels. The volume is then renderered into this buffer
using this more favorable memory alignment. Once all slicesof the volume have
been rendered, by rasterizing them in software, the buffer is then warped into the
desired orientation and scale in the displayed image.

2.4. Visualization and Graphics Processing Units 41

2.4 Visualization and Graphics Processing Units

In the last years, the rapid technological advances in graphics hardware has been
exploited in different areas of computer graphics to accelerate processes that ac-
complish tasks not necessarily restricted to those for which the graphics process-
ing units (GPU) are designed. This includes the implementation on graphics hard-
ware of many visualization algorithms for modeling and rendering volume data
sets, which has provided interactive means for the real-time exploration and ma-
nipulation of simulated and measured data.

The capabilities of commodity graphics hardware have been exploited for ac-
celerating the techniques presented in this thesis. Therefore, in this section, basic
concepts of commodity graphics hardware and their use in general programming
tasks will be introduced.

2.4.1 The rendering pipeline

The process performed by the graphics hardware to display a list of primitives is
known as therendering pipeline(see Figure 2.8). This list of primitives, generated
by the application, is input to the rendering pipeline in theform of vertices. These
vertices are then transformed, first toworld coordinates, then toeye coordinates,
clip coordinates, normalized device coordinates, and finally towindows coordi-
nates, by the vertex processor (which in Figure 2.8 includes the primitive assembly
stage). The spatial relationships among the local coordinates systems of the ob-
jects are defined in world coordinates. The per-vertex lighting computations and
the specification of texture coordinates are also performedin world coordinates.
Eye coordinates result from positioning a virtual camera atan arbitrary location
in world coordinates. The transformation to eye space is determined by the posi-
tion, the viewing direction and the up vector of the camera. Culling is performed
in eye coordinates since the visibility of the polygons is determined by the line-
of-sight and the normal vector and center of each polygon. The vertices in eye
coordinates are then projected onto the viewing plane to obtain a two-dimensional
representation of the scene in clip coordinates. In this space, clipping and removal
of hidden surfaces are performed. Perspective division is then performed to obtain
normalized device coordinates. The normalized device coordinates are then trans-
formed to window coordinates by means of a viewport transformation. Finally,
in the last stage of the rendering pipeline, the projected polygons are rasterized.
Rasterization is the process by which the representation ofthe polygons in win-
dow coordinates is converted into raster format, vertex attributes are interpolated
and per-fragmentshading (including texturing) and hidden surface removal is per-
formed. A fragmentcan be regarded as a pixel with additional information such
as depth and texture coordinates.

Since the introduction of theprogrammable pipeline, the operations performed

42 Chapter 2. Interactive Visualization

Figure 2.8: The programmable rendering pipeline.

by the vertex and fragment processors can be defined by the programmer by writ-
ing GPU programs. Additionally, the geometry shader stage has been introduced
into the pipeline recently. Avertex programis a graphics processing function that
performs mathematical operations on the vertex data,e.g., geometrical transfor-
mations, per-vertex lighting and texture coordinates computations. It is important
to note that the operations are performed on the vertex data input to the render-
ing pipeline by the application or on data previously written by thestream output
stage, later described. Ageometry shader, on the other hand, can generate new
primitives from existing primitives. The geometry shader is executed after the
vertex program shader and its input is the primitive with adjacency information.
During the stream output stage, the vertex data generated bythe geometry shader
is streamed out to buffers in graphics memory, always as complete primitives but
without the adjacency information. As hinted before, this streamed data can be
read back into the pipeline, which would be processed in a subsequent rendering
pass. Similarly, the operations performed by the fragment processor, can be pro-
gramed by means offragment programs. These operations are performed on a
per-fragment basis.

One important aspect of the rendering pipeline is that the GPU can only pro-
cess independent vertices and fragments. However, it can process many of them
in parallel. That is, the GPU is in some sense a stream processor and the pro-
grams (kernels) perform the same operations on all elements(vertices, primitives,
fragments) in parallel. This fact has been exploited by manyauthors to perform
tasks for which the GPU was not originally designed. This is done by mapping
the programming problem at hand into a stream processing problem in order to
exploit the high parallelism and computational power of theGPU, as will be seen
in the following.

2.4. Visualization and Graphics Processing Units 43

2.4.2 General-purpose GPU programming

The use of the GPU for solving general computing problems is known asgeneral-
purpose computations on the GPU(GPGPU). Since GPUs are designed to per-
form graphics tasks, their programing is very restrictive compared to the CPU.
However, problems that can be solved using stream processing can be effectively
tackled using the GPU. In this context, the programmable processors of the GPU
are seen as resources that perform the operations defined by the kernels. The
capabilities of the rasterizer for creating fragments and interpolating per-vertex
constants are also often exploited in GPGPU applications and the recent introduc-
tion of the geometry shader has given programmers a new tool with new capabil-
ities for solving problems. The texture unit and the framebuffer can be seen as
read-only and write-only memory interface respectively. Awrite-only texture can
be attached to the framebuffer in order to store results in it. Another possibility
is given by the recently introduced stream-out stage. Sincethe introduction of
Shader Model 3, branching and loops are supported by the processors. However,
such flow control structures have a significant performance penalty. Currently
available hardware supports single floating point precision in all its stages, as well
as in the texture unit. This has boosted the used of GPUs in non-graphical appli-
cations.

Recently, in order to overcome the limitations of the use of graphics hardware
in stream processing, NVIDIAR© and ATI R© developed the Compute Unified
Device Architecture (CUDATM) and Close To MetalTM(CTM) technologies re-
spectively. CUDA allows the use of the computing features ofthe latest NVIDIA
GPUs through the standard C programming language. That is, the shader kernels
are replaced by kernels written in C. The advantage of using CUDA on NVIDIA
GPUs is the possibility of processing thousands of threads simultaneously in com-
parison with multi-core CPUs that can execute only a few threads at the same time.
Additionally, the threads on NVIDIA GPUs can communicate among themselves.

CTM, on the other hand, is a hardware interface that gives developers access
to the native instruction set and memory of the AMD Stream Processors and its
Radeon GPUs. The use of CTM opens up the architecture of the stream processors
and offers developers the low-level, deterministic, and repeatable access to hard-
ware that is essential to develop compilers, debuggers, mathematical libraries, and
applications platforms.

44 Chapter 2. Interactive Visualization

CHAPTER

3 MESHLESSAPPROXIMATION METHODS

Meshless approximation methods were originally used to solve geoscience prob-
lems. Eventually, applications in other areas such as PDEs,artificial intelligence,
signal processing, sampling theory, and optimization started making use of these
tools. This popularization was due to the need of standard methods, such as
splines, for an underlying mesh to define the basis functions. The most widely
known multivariate meshless method, often referred to asinverse distance weight-
ing, was introduced by Shepard[143]. Hardy[64] proposed themultiquadricand
inverse multiquadricmethods, while Duchon[42] developedthin plate splines.
Lancaster anďSalkauskas[89; 88] generalized the idea of Shepard’s functions to
define themoving least-squaresmethod. On the other hand, the amount of re-
search onradial basis functionsis vast. However, the work by Wendland[168]
is of special significance, since Wendland presented for thefirst time a class of
compactly supported radial basis functions. This made possible the use of com-
putationally efficient meshless radial basis function methods.

In this chapter, a brief overview of radial basis functions and the moving
least-squares method is given. Also, the use oforthogonal polynomialsandap-
proximate approximationwithin the context of moving least-squares is described.
The definitions presented here are used throughout this thesis to propose meshless
modeling and visualization techniques.

3.1 Radial Basis Functions

The general approximation problem can be defined as follows.Given a set of
pointsX = {x1, · · · ,xN} (Rs, and a functionf : Rs → R evaluated on
X , generating the setF = {f1, . . . , fN} (R, find a functionMf such that
Mf(xj) ≈ fj ; j = 1, · · · , N , that is, a functionMf that approximates the data
(xj , fj); j : 1, . . . , N .

On the other hand, in the case of interpolation, the functionMf must hold
Mf(xj) = fj. An usual approach to solve both the approximation and the inter-
polation problems is to regard the functionMf as a linear combination of certain
basis functionsβk:

Mf(x) =

N∑

k=1

ckβk(x), (3.1)

wherex ∈ Rs. Solving the interpolation problem using this approach leads to

45

46 Chapter 3. Meshless Approximation Methods

a system of linear equations of the formAc = f , whereA = {βk(xj)}Nj,k=1,
c = [c1, · · · , cN]t andf = [f1, · · · , fN]t. Thus, a unique solution to the problem
exists if and only ifA is non-singular. It is known that apositive definitematrix is
non-singular. Thus, since astrictly positive definite functionis a functionf such
that for any real numbersx1, · · · , xN , theN ×N matrixM = {f(xi − xj)}Ni,j=1

is a positive definite matrix, to ensure thatA is non-singular, one can choose a set
of strictly positive definite functionsβk(x) = ψ(x−xk) as basis functions. Thus,
the functionMf is atranslation invariantinterpolant.

A function ψ : Rs → R is calledradial if there exists a univariate function
σ : [0,∞)→ R such that

ψ(x− xk) = σ(r),

wherer = ‖x− xk‖. Thus, radial functions are not only invariant under transla-
tion but also under rotation and reflection. More importantly, the approximation
problem becomes insensitive to the dimensions.

There is a variety of basis functions that have been studied and applied in com-
puter graphics, among which arethin plate splines, multiquadricsandGaussian
functions. Thin plate splines were presented by Duchon[42], who defined the
radial function as

σ(r) =

{
r2 log(r) r 6= 0
0 otherwise.

The functionσ is the fundamental solution of the biharmonic equation∆2σ̃(x) =
0 where∆ is theLaplace operator.

Multiquadrics and inverse multiquadrics where introducedby Hardy. The
multiquadric and inverse multiquadric basis functions aredefined as

σ(r) =
√
a2 + r2

and

σ(r) =
1√

a2 + r2
,

respectively, for some constanta.
Gaussian functions of the type

σ(r) = exp(−ǫr2),

whereǫ is a constant, are the most widely used basis functions in computer graph-
ics applications, perhaps due to their smoothness and rapiddecay despite serious
drawbacks such as their sensitiveness to the choice of the parameterǫ.

3.2. Moving Least-Squares 47

3.2 Moving Least-Squares

For a set of basis functions (polynomial functions throughout this thesis)Ψ =
{ψ1, . . . , ψM}, the moving least-squares method[88] aims at defining a linear
combination ofΨ that approximatesf . Let us define the vectorsΓ = [f1, · · · , fN]
andΨj = [ψj(x1), . . . , ψj(xN)]. Let us also define the inner product〈, 〉ω : RN ×
RN → R+ as a weighted sum:

〈ξ, η〉ω(x) =
N∑

i=1

ξiηiω(x,xi), (3.2)

whereω(p,q) ≡ w(‖p − q‖), w : R → R+ being a monotonically decreasing
function. Note thatω depends on the evaluation pointx andX . A functionMf
that minimizes

minE(x) =
N∑

i=1

(fi −Mf(xi))
2 ω(x,xi), (3.3)

where

Mf(x) =
M∑

j=1

cj(x)ψj(x)

is known asmoving least-squares(MLS) polynomial approximation because as
x changes, the minimization changes,i.e., the solution depends on the evaluation
point.

It is known[38] thatMf can be found by solving the system:

〈Ψ1,Ψ1〉ω . . . 〈Ψ1,ΨM〉ω

...
. . .

...
〈ΨM ,Ψ1〉ω . . . 〈ΨM ,ΨM〉ω

c1
...
cM

=

〈Γ,Ψ1〉ω

...
〈Γ,ΨM〉ω

 (3.4)

or compactly written

{
M∑

j=1

〈Ψi,Ψj〉ωcj = 〈Γ,Ψi〉ω; i = 1, . . . ,M .

3.3 Orthogonal Polynomials in Moving Least-Squares

If a setΨ is defined such that the inner product satisfies〈Ψi,Ψj〉ω = κijδij , where
δij is the Kronecker delta, System 3.4 becomes a linear system where the coef-
ficient matrix is diagonal. This means thatΨ is a set of orthogonal polynomials

48 Chapter 3. Meshless Approximation Methods

with respect to the inner product. Thus, the moving least-squares approximation
is given by the sum

Mf(x) =
M∑

i=1

ψi(x)
〈Γ,Ψi〉ω
〈Ψi,Ψi〉ω

. (3.5)

A setΨ with such property can be obtained by making use of the multivari-
ate Gram-Schmidt orthogonalization process. However, this process is computa-
tionally unattractive. On the other hand, the revised Gram-Schmidt process for
several variables by Weisfeld[164] provides a generalization of the recurrence of
three terms[24] for polynomials of several variables, making it a more attractive
method in terms of computational performance. Bartels and Jezioranski[18] im-
proved the results by Weisfeld and presented an even more efficient method. The
authors argue that the revised Gram-Schmidt process is moreefficient than calcu-
lating and solving System 3.4. Although the method by Bartels and Jezioranski
is used in this thesis, there are different ways to constructorthogonal polynomials
in several variables, since the construction is not ensuredto be unique. Methods
to construct the setΨ can be found in the works by Stokmanet al. [147] and by
Philips[127]. Here, the method by Bartels and Jezioranski is used since italways
produces a matrix-free (or system-free) moving least-squares approximation,i.e.
no systems of equations must be solved, and is easy to understand and to imple-
ment for discrete domains without losing efficiency. Therefore, this method is
described below fors = 3.

3.3.1 Indexing orthogonal polynomials

In the following bold formatting (e.g., x) will be used for points inR3 and indexed
normal formatting (e.g.xi) for the components of the point,i.e., x = (x1, x2, x3).
The approach by Bartels and Jezioranski to construct a set oforthogonal polyno-
mials Ψ is based on a special ordering of a set{xs1

1 x
s2

2 x
s3

3 : si ∈ I (N, i =
1, 2, 3} of multinomials and a mapping of such ordered multinomials to integer
numbers so as to reduce the number of operations performed. This method is
described here for the three-variate case for sake of clarity.

Let us arrange the multinomials in a recursive triangular pattern where ther-th
row contains all multinomials of(r−1)-th power and each row, with the exception
of the first, is organized into3 groups (ranges): row (1) contains the multinomial
1; row (2) contains3 ranges with multinomialsx1, x2, x3; and row (r) has as their
1st, 2nd and3rd ranges the multinomials found by multiplyingx1, x2 andx3 by
each member, in order, of ranges1, 2, 3; 2, 3 and3 in row r − 1 respectively. For
instance the second, third and fourth rows of the triangulararray are (recall that
the first row contains only the monomial1):

3.3. Orthogonal Polynomials in Moving Least-Squares 49

Row 2. x1 x2 x3

Row 3. x2
1 x1x2 x1x3 x2

2 x2x3 x2
3

Row 4. x3
1 x2

1x2 x2
1x3 x1x

2
2 x1x2x3 x1x

2
3 x3

2 x2
2x3 x2x

2
3 x3

3

where the symbol indicates a range. The set of positions in this table is{i} =

{1, 2, 3, 4, 5, 6, . . .}, that is,e.g., the multinomial in position6 is x1x2. The set of
multinomials is{β(i)} = {1, x1, x2, x3, x

2
1, x1x2, x1x3, x

2
2, x2x3, . . . } and the set

of vectors of exponents associated with{β(i)} is given by{γ(i)} = {(0, 0, 0),
(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (1, 1, 0), (1, 0, 1), . . .}.

During the construction of the orthogonal polynomials, it is important to track
polynomials previously constructed. Therefore, the predecessorj′ of positionj
in the triangular array is defined as follows: for the first range, we haveγ(j) =
(j1, j2, j3) which is in the rowj1 + j2 + j3 + 1. The position of the predecessor
j′ of j in the array can be found by consideringγ(j′) = (j1 − 1, j2, j3). Thus by
looking for γ(j′) in the set{γ(i)} it is possible to identify the positionj′ (which
is in row (j1 − 1) + j2 + j3 + 1). For instance, let us considerj = 6, which is in
the first range. Thus,β(6) = x1x2 whoseγ(6) = (1, 1, 0) andγ(j′) = (0, 1, 0).
Therefore,j′ = 3. For the second range, similar arguments can be followed:
γ(j) = (0, j2, j3) which is in the rowj2 + j3 + 1. The position ofj′ can be found
by consideringγ(j′) = (0, j2 − 1, j3). The predecessorj′ is in this case in row
(j2− 1) + j3 + 1. For the third range,γ(j) = (0, 0, j3) which is in the rowj3 + 1.
Thus,j′ is found by consideringγ(j′) = (0, 0, j3−1), which is in row(j3−1)+1.

Based on this ordering, the construction of the set of orthogonal polynomials
is performed following the same triangular pattern so as to let ψi correspond to
positioni in the array.

3.3.2 Constructing orthogonal polynomials

The revised Gram-Schmidt process is given by the following recurrence relation

ψ1 = 1 andψj = xkj
ψj′ −

j−1∑

l=1

αj,lψl; j = 2, 3, . . . ,

wherexkj
= x1 when the predecessorj′ is in the first range,xkj

= x2, whenj′ is
the second range andxkj

= x3 whenj′ is in the third range,

αj,l =
〈xkj

Ψj′,Ψl〉ω
〈Ψl,Ψl〉ω

,

and〈xkj
Ψj′,Ψl〉ω =

∑N
i=1 xkj

[i]ψj′
[i]ψ

[i]
l ω

[i], where the upper index[i] means the
function evaluated at pointxi andψj′ is thej′-th orthogonal polynomial.

50 Chapter 3. Meshless Approximation Methods

The traversal of the table of multinomials is performed in the following way.
As j runs through one rangekj (1, 2, or, 3), j′ runs from rangekj to 3 in row
r − 1 (note that in both cases there are the same number of multinomials). When
j jumps from rangekj to kj + 1, j′ is set back to the beginning of rangekj + 1 in
row r − 1. A similar process is also considered for the predecessorj′′ of j′.

The first six orthogonal polynomials calculated with this process have the
following structure: ψ1(x) = 1, ψ2(x) = x1 + a, ψ3(x) = x2 + b x1 + c,
ψ4(x) = x3 + d x2 + e x1 + f , ψ5(x) = x1ψ2(x) + g x3 + h x2 + i x1 + j,
andψ6(x) = x1ψ3(x) + k x2

1 + l x3 + m x2 + n x1 + o, wherea througho are
constants depending onx andX .

Here, the three-variate polynomialsψm, form = 2, · · · , 10, obtained with this
method are shown (recall thatψ1(x) = 1.)

ψ2(x) = x1 −
∑n

i=1 x
[i]
1 ω

[i]

∑n
i=1 ω

[i]

ψ3(x) = x2 −
2∑

l=1

∑n
i=1 x

[i]
2 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ4(x) = x3 −
3∑

l=1

∑n
i=1 x

[i]
3 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ5(x) = x1ψ2(x)−
4∑

l=1

∑n
i=1 x

[i]
1 ψ

[i]
2 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ6(x) = x1ψ3(x)−
5∑

l=1

∑n
i=1 x

[i]
1 ψ

[i]
3 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ7(x) = x1ψ4(x)−
6∑

l=1

∑n
i=1 x

[i]
1 ψ

[i]
4 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ8(x) = x2ψ3(x)−
7∑

l=1

∑n
i=1 x

[i]
2 ψ

[i]
3 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ9(x) = x2ψ4(x)−
8∑

l=1

∑n
i=1 x

[i]
2 ψ

[i]
4 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

ψ10(x) = x3ψ4(x)−
9∑

l=1

∑n
i=1 x

[i]
3 ψ

[i]
4 ψ

[i]
l ω

[i]

∑n
i=1 ψ

[i]
l ψ

[i]
l ω

[i]
ψl(x)

3.3.3 Avoiding repetitive computations

To reduce the computational cost, two important results by Bartels and Jezioranski
are used : (1)∀i < j′′ ⇒ αj,i = 0 wherej′′ is the predecessor ofj′, and (2) if

3.4. Approximate Approximation 51

j, l, p andm are such that〈xkj
ψj′, ψl〉ω = 〈xkp

ψp′, ψm〉ω, then

αj,l = αp,m
〈Ψm,Ψm〉ω
〈Ψl,Ψl〉ω

.

The former helps to identify theα’s with value equal to0 and the latter makes it
possible to reuse inner products previously computed.

3.4 Approximate Approximation

Approximate moving least-squares(AMLS) [46] is a computationally efficient
approach free of systems of equations that is able to achievehigher-order approx-
imations. However, this method provides good approximations only for regularly
spaced points. On the other hand, radial basis functions interpolation methods are
known to produce good results in many applications. However, numerical insta-
bilities arise during the computation of radial basis functions interpolations due
to the nature of the system of equations that must be solved. This system is in
general large and ill-conditioned.

Recently, theiterated approximate moving least-squaresmethod[48] was de-
veloped to overcome the issues mentioned above of both approximate moving
least-squares and radial basis functions. This method generates a sequence of ap-
proximated solutions that converges to a radial basis functions interpolation. This
turns the method suitable for irregularly spaced sample points. Since it is based
on approximate approximations, no systems of equations must be solved and thus
numerical instabilities are better avoided.

3.4.1 Approximate moving least-squares approximation

Maz’ya [112] proposed higher-order approximation methods free of systems of
equations, which achieve approximations up to a certain saturation error which
can be negligible due to computer precision[46]. Maz’ya developed such approx-
imate approximations for the numerical solution of differential operators, such as
multidimensional integro-differential operators[137]. Fasshauer observed that the
approximate approximation by Maz’ya can be regarded as a constrained moving
least-squares[46]. In addition, he presents methods to efficiently define such an
approximation, therefore named approximate moving least-squares approxima-
tion. Although it is a promising theory which can be useful inseveral applications
due to its computational simplicity, to our knowledge, onlyFasshauer[47; 46]
makes use of the theory in practical problems, specifically data compression.

Consider, as before, a set of pointsX = {x0, . . . ,xN} ⊂ Rs and the set
F = {f(x0), . . . , f(xN)} of values of some functionf ∈ Cd evaluated onX .
Fasshauer[47; 46] defines the approximate moving least-squares approximation,

52 Chapter 3. Meshless Approximation Methods

for a regularly spaced set of pointsX , as the functionMf that approximatesf as

f(x) ≈Mf(x) =

N∑

i=1

fiϕi(x), (3.6)

for suitable pre-definedgenerating functionsϕi. For instance, Fasshauer pro-
proses:

ϕi(x) =
ǫs
∏s/2

L
s/2
d (ri(x)) exp (−ri(x)) , (3.7)

whereri(x) = ǫs‖x− xi‖2/h2, L
s/2
d are the generalized Laguerre polynomials of

degreed [167], h is the fill distance of the data set,s is the dimension, andǫ is the
shape parameter that controls the saturation error by scaling the basic weight func-
tion. Using such generating functions, also known as Laguerre-Gaussian func-
tions, it is possible to ensure an approximation order ofO(h2d+2).

Although there are important results extending this methodto irregularly spaced
points, they are difficult to implement[46]. However, Fasshauer and Zhang[48]
proved recently an interesting result that helps overcome such deficiency. Specifi-
cally, the authors proved a connection between approximatemoving least-squares
and radial basis functions interpolation. It was shown thatit is possible to obtain
a radial basis functions interpolation using an iterative process based on approx-
imate moving least-squares. Thus, this connection brings advantages from both
approaches; on the one hand the matrix-free nature of approximate approxima-
tions and, on the other hand, the capacity of radial basis functions to interpolate
functions from irregularly spaced points.

3.4.2 Connecting RBF and Iterated AMLS

Based on Equation 3.6, Fasshauer and Zhang[48] proposed the following iterative
process, built upon approximate moving least-squares,

Mf (0)(x) =
N∑

i=1

fiϕi(x), (3.8)

Mf (n+1)(x) = Mf (n)(x) +

N∑

i=1

(
fi −Mf (n)(xi)

)
ϕi(x), (3.9)

and named ititerated approximate moving least-squares approximation(IAMLS).
Fasshauer and Zhang proved, under easy-to-check conditions for the matrixA =
{ϕi(xj)}Ni,j=1 , that

‖A‖2 < 2 =⇒Mf (n)(x)→MfR(x) whenn→∞,

3.4. Approximate Approximation 53

whereMfR(x) is the radial basis function interpolation for the basis{ϕi}. In
fact, such a matricial condition is easily achieved, for instance, if{ϕi} define a
partition of unity, the matrix norm becomes‖A‖2 = 1. It is worth to mention
that radial basis functions methods can suffer from numerical instability, for in-
stance, for smallǫ when Gaussian basis functions are used. On the other hand,
since the IAMLS produces a sequence of smooth solutions which converges to
the radial basis functions solution, it produces more stable results as shown by
Fasshauer and Zhang.

54 Chapter 3. Meshless Approximation Methods

CHAPTER

4 MESHLESSSURFACES FROMPOINT CLOUDS

Meshless surface rendering methods have been around for decades with the first
work on point-based surface rendering proposed by Levoy andWhitted in 1985.
However, it was not until some years ago that meshless modeling and rendering
became popular. We refer the reader to surveys on the topic[133; 82]. Note that
meshless methods are not limited to point-based techniques. In fact, a number of
works on point-based rendering are based on a meshless surface representation
defined by an implicit function or by a projection operator. Perhaps the ground-
breaking work that most influenced this trend nowadays, is the work by Levin
on moving least-squares surfaces[98]. At this point, it is necessary to remark
that meshless surface approximation techniques can be usedto generate a mesh as
output. Nonetheless, the techniques remain meshless.

In this chapter, work developed upon recent results on moving least-squares
surface approximation is reported. As seen before, moving least-squares is a pow-
erful approximation method. Levin[97] studied the approximation power of the
moving least-squares, setting the basis for a number of works that used the method
to solve a large range of problems in several areas includingcomputer graphics.
The clear advantage of the moving least-squares method is that the accuracy of
the approximation can be concentrated around a determined point in the domain,
e.g., the point where the function is evaluated. Although this means that an ap-
proximation has to be computed for every point where the function is evaluated,
a very important consequence is that the data can be accurately approximated on
the entire domain using polynomials of low degree locally.

The work described in Sections 4.2 and 4.3 was carried out in collabora-
tion with João Paulo Gois from the Universidade de São Paulo, Brazil. Valdecir
Polizelli-Junior and Tiago Etiene from the Universidade deSão Paulo were active
collaborators during the development of the techniques presented in Section 4.4
and must be credited for the implementation of the techniqueand development
of the extensions to improve robustness. Different detailsof the hardware imple-
mentation of ray-tracing for projection operators (Section 4.5.1) were separately
developed in collaboration with Tobias Schafhitzel from the Universität Stuttgart
and Jõao Paulo Gois from the Universidade de São Paulo.

55

56 Chapter 4. Meshless Surfaces from Point Clouds

4.1 Meshless Surface Approximation

Before detailing the methods introduced here, an overview of previous work is
given. The techniques presented in this thesis are to a greatextent based on mov-
ing least-squares surfaces where, given a point setX = {x1, · · · ,xN} ⊂ R3

sampled on a surface∂S, we wish to find an approximationM∂S to ∂S. As seen
in Chapter 2, Levin definesM∂S as the stationary points of a mapfMLS, given
as a two-step procedure.

Amenta and Kil[11] generalized the moving least-squares surfaces and de-
finedextremal surfaces. To that end, they start by giving an explicit definition of
the moving least-squares surfaces as described in the following. Firstly, consider
a vector field

n(x) = argmin
a∈S2

eMLS(x, a),

whereeMLS is, as in Chapter 2, defined as

eMLS(q, a) =

N∑

i=1

(〈a,xi〉 − 〈a,q〉)2 ωMLS(q,xi).

This vector field can be usually uniquely determined sincex is fixed and therefore
eMLS is a quadratic function ofa. As noted by Amenta and Kil, the set of points
wheren is not well-defined form surfaces which separate the space into regions,
within each of whichn is a smooth function ofx.

Then, given the linelx,n(x) throughx with directionn(x), Amenta and Kil
characterize the moving least-squares surfaces as the set of points x for which
n(x) is well-defined andx locally minimizeseMLS(y,n(x)), wherey ∈ lx,n(x).
The authors presented a proof that this characterization defines points on the mov-
ing least-squares surface and generalized it to define extremal surfaces by letting
n be any function that assigns directions to points in space and using any function
e(x, a) as energy function. Furthermore, ifn is a consistently oriented smooth
vector field, the implicit surface associated with an extremal surface defined byn
ande(x, a) is given by

g(x) = 〈n(x),∇ye(y,n(x))|x〉 = 0,

where∇ye(y,n(x))|x is the gradient ofe as a function ofy, whenn(x) is fixed,
evaluated atx.

Implicit definitions using moving least-squares have been studied by other au-
thors as well. Adamson and Alexa[2] presented a simple surface definition based
on weighted averages and weighted covariances. Given a point x, the weighted
average is given by

a(x) =

∑N
i=1 xiωSMLS(x,xi)∑N
i=1 ωSMLS(x,xi)

,

4.1. Meshless Surface Approximation 57

where
ωSMLS(x,xi) = exp(−‖x− xi‖2/h2),

and the weighted covariance atx in directionn, describing how well a plane
〈n,x− xi〉 fits the weighted points, is given by

σ2
n(x) =

∑N
i=1〈n,x− xi〉2ωSMLS(x,xi)∑N

i=1 ωSMLS(x,xi)
.

Let σ(x) be the vector of weighted covariances along the directions of the canon-
ical base,i.e.,

σ(x) =

σ(1,0,0)(x)
σ(0,1,0)(x)
σ(0,0,1)(x)

then the directions of smallest and largest weighted covariances atx can be com-
puted as the eigenvectors of the bilinear form

∑
(x) = σ(x)σ(x)T ,

where an eigenvalue is the covariance along the direction ofthe associated eigen-
vector. Thus, the normal directionn(x) atx is given by the direction of smallest
weighted covariance. The implicit definition of the surfacein this case is given as
the zero set of the function

ISMLS(x) = 〈n(x), a(x)− x〉.

Kolluri [83] analyzed the implicit moving least-squares surface definition orig-
inally proposed by Shenet al. [141] to approximate polygon soups when used to
approximate a point cloud. If∂S is a smooth closed surface and each pointxi is
equipped with an outside surface normalni, the approximated surfaceM∂S is
defined as the zero set of the function

IIMLS(x) =

∑N
j=1 ωIMLS(x,xi)〈x− xi,ni〉
∑N

j=1 ωIMLS(x,xj)
,

where
ωIMLS(x,xi) = exp(−‖x− xi‖2/h2)/Ai

andAi is the number of samples inside a ball of radiush centered atxi. Kolluri
proved that the functionIIMLS is a good approximation to the signed distance
function to the surface∂S and thatM∂S is geometrically close and homeomor-
phic to∂S under the following sampling condition. Let thelocal feature size̥ (x)
of a pointx ∈ ∂S be the distance fromx to the nearest point of the medial axis

58 Chapter 4. Meshless Surfaces from Point Clouds

of ∂S. A point setX is anh-sample if the distance from any pointx ∈ ∂S to
its closest sample inX is less thanh̥(x). The proof of correctness presented by
Kolluri requires auniformh-sampling. The setX is a uniformh-sampling if, af-
ter having being scaled so that̥(x) > 1; ∀x ∈ ∂S, the distance from each point
x ∈ ∂S to its closest sample is less thanh. Also, for each samplexi, the distance
to its closest surface pointp should be less thanh2. Moreover, the angle between
ni of a samplexi and the normalnp of the closest surface point toxi should be
less thanh. Finally, letαx be the number of samples inside a ball of radiush
centered atx. Kolluri assumes that for each pointx, if αx > 0, the number of
samples inside the ball of radius2h centered atx is at most8αx.

Dey and Sun[40], following on the work of Kolluri, presented an implicit
moving least-squares surface definition able to deal with adaptively sampled points.
Thus, the sampling condition is similar to that of Kolluri with the exception of the
uniform sampling density. The form of the implicit functionin this case is the
same as in the work by Kolluri with the exception of the weighting function. Con-
cretely, the implicit function is defined as

IAMLS(x) =

∑N
j=1 ωAMLS(x,xi)〈x− xi,ni〉
∑N

j=1 ωAMLS(x,xj)
,

where

ωAMLS(x,xi) = exp

(
−
√

2‖x− xi‖2
ρ2

ef(x̃)f(x̃i)

)
,

wherex̃ andx̃i are the nearest points tox andxi on∂S respectively. The function
f is a smooth function arbitrarily close to̥, i.e.,

|f(x)−̥(x)| < β̥(x)

for arbitrarily smallβ > 0. This is done since̥ is not smooth everywhere on
∂S. The factor

√
2 in the exponent of the weighting function is introduced for

convenience in the proofs of correctness presented by Dey and Sun.
Multi-level partition of unity implicits were proposed by Ohtakeet al. [122].

To define the supports of the partition of unity, the domain isdecomposed using
an octree. The reconstructed surface mesh is then obtained from a regular grid
(resampled from the octree) using Bloomenthal’s polygonizer [21]. The implicit
function is given by

IMPU(x) =
M∑

i=1

Qi(x)φi(x),

where{φ1, · · · , φM} is as set ofM non-negative functions with compact support

4.1. Meshless Surface Approximation 59

such that
M∑

i=1

φi(x) = 1,

Qi ∈ Vi, andVi is a set of local approximation functions associated with each
sub-domainsupp(φi). The set of functions{φi} can be generated by letting

φi(x) =
ωMPU(ci,x)

∑M
i=1 ωMPU(ci,x)

,

where the quadratic B-splineb(t) is used to generate weight functions

ωMPU(ci,x) = b

(
3‖x− ci‖

2Ri

)

centered atci and having a spherical support of radiusRi. An interpolation ofX
can be obtained by using

ωMPU(ci,x) =

[
(Ri − ‖x− ci‖)+

Ri‖x− ci‖

]2

,

where

(a)+ =

{
a if a > 0
0 otherwise

Given an octree partition of the space, which defines the centersci and radiiRi of
the supports, the local fitting of the data is calculated using general (three-variate)
quadrics or bivariate quadratic polynomials. In the lattercase, a local coordinate
system(η, ζ, χ) is defined for each support(ci, Ri) with origin at ci, such that
the plane(η, ζ) is orthogonal toni and the positive direction ofχ coincides with
the direction ofni, whereni is the normal vector estimated atci using covariance
analysis. Once the local system is constructed, the local polynomial approxima-
tion is defined as

Qi(x) = χ−
(
c1η

2 + 2c2ηζ + c3ζ + c4η + c5ζ + c6
)
.

The unknown coefficientsck; k = 1, · · · , 6, are determined by minimizing

N∑

j=1

Qi(xj)
2ωMPU(ci,xj).

Ohtakeet al. [123] later extended their work to improve the resulting surface by
using normalized radial basis functions. Basically, the implicit function is defined
as

IRMPU =
M∑

i=1

Qi(x)φi(x) +
M∑

i=1

γiφi(x),

60 Chapter 4. Meshless Surfaces from Point Clouds

where{φi} is a set of normalized radial basis functions, andγi; i = 1, · · · ,M ,
are the coefficients of the radial basis functions interpolation to be determined.

Kazhdanet al. [79] proposed an interesting approach in which the surface
approximation is formulated as a Poisson problem. This method presents sev-
eral advantages over other formulations, but its processing time is higher than
the one needed by partition of unity and moving least-squares formulations. This
technique is based on the insight that there is an integral relationship between ori-
ented points sampled from the surface of a model and theindicator functionof
the model. The indicator functionχS for a modelS is defined as1 at the points
insideS, and0 outsideS. Given a patchPxi

⊂ ∂S for eachxi, the authors start
by constructing a gradient field

V(x) ≡
N∑

i=1

|Pxi
|F̃xi

(x)ni,

whereF̃xi
(x) = F̃ (x − xi), F̃ is a smoothing filter, and|Pxi

| is the area of the
patchPxi

. This vector field approximates the gradient field of the filtered indicator
function,i.e.,

∇(χ̃) = ∇(χS ∗ F̃) ≈ V,

where(·∗·) is the convolution operator. This problem can be regarded asa Poisson
problem, for which the solution of the Poisson equation

△χ̃ = ∇ ·V

provides the best least-squares approximation.
Lipman et al. [104] presented an approximation technique based on moving

least-squares able to faithfully reconstruct piecewise-smooth surfaces from unor-
ganized point sets. The method finds, for each projected point, a proper local
approximation space of piecewise polynomials. The locallyconstructed spline
encapsulates the local singularities which may exist in thedata, which constitutes
a very important contribution for the meshless surface reconstruction community.
This technique will be described in detail later in this chapter in the context of the
work on approximate moving least-squares surfaces presented here.

Lipman et al. [105] also developed a projection operator for surface recon-
struction, which is parameterization free, in the sense that is does not rely on
estimating a local parametric representation, such as the local tangent planes used
by most of the approaches described in this section. Given the input point set
X = {xi : i = 1, · · · , N} ⊂ R3, the operator maps an arbitrary point set

P [0] =
{
p

[0]
j : j = 1, · · · ,M

}
⊂ R3 onto the setX . The goal is to compute a

set of projected pointsQ = {qj : j = 1, · · · ,M} ⊂ R3 such that it minimizes

4.1. Meshless Surface Approximation 61

the sum of weighted distances to points ofX , with respect to radial weights cen-
tered at the same set of pointsQ. Furthermore, the points inQ should not be too
close to each other. Thus, the desired set of pointsQ is defined as the fixed point
solution of the equation

Q = G(Q),

where

G(C) = argmin
P={pj :j=1,··· ,M}

{E1(P,X , C) + E2(P, C)} ,

E1(P,X , C) =
N∑

i=1

M∑

j=1

‖pj − xi‖ωLOP (cj,xi),

E2(P, C) =
M∑

k=1

λk

M∑

j=1,j 6=k

η(‖pk − cj‖)ωLOP (cj, ck),

whereωLOP (p,q) ≡ wLOP (‖p − q‖), andwLOP , as before, is a fast-decreasing
smooth weight function with compact support radiush defining the size of the
influence radius,η(r) is another decreasing function penalizingpk which become
too close to other points, andΛ = {λk : k = 1, · · · ,M} is a set of balancing
terms. Intuitively, the termE1 drives the projected points inQ to approximate the
geometry ofX , and the termE2 strives at keeping the distribution of the points in
Q fair. The authors prove the approximation order of the operator and provide a
means to compute suitable values forλk.

Guennebaud and Gross[62] presented a surface approximation method based
on moving least-squares fitting of algebraic spheres. The use of the algebraic
sphere to locally approximate the data improves stability under low sample rates
and in the presence of high curvature. An algebraic sphere isdefined as the zero
set of the scalar fieldsu(x) = [1,xT ,xTx]u, whereu = [u0, · · · , us+1]

T ∈ Rs+2

is the vector of coefficients describing the sphere, withs being the dimension. In
degenerate cases,u corresponds to the coefficients of a plane withu0 representing
the distance from the origin,[u1, · · · , us]

T being its normal, andus+1 = 0. To
fit the algebraic sphere to a set ofN points, letW(x) andD respectively be the
N ×N diagonal weight matrix and theN × (s+ 2) design matrix defined as

W(x) = [ωAPSS(x1,x), · · · , ωAPSS(xN ,x)] , D =

1 xT
1 xT

1 x1

. . .

. . .

. . .
1 xT

N xT
NxN

,

where

ωAPPS(xi,x) = φ

(‖xi − x‖
h

)

62 Chapter 4. Meshless Surfaces from Point Clouds

and

φ(r) =

{
(1− r2)4 r < 1
0 otherwise.

Then, the solutionu(x) can be expressed as

u(x) = argmin
u,u6=0

∥∥∥W
1

2 (x)Du

∣∣∣
2

. (4.1)

In order to avoid the solutionu(x) = 0, Pratt’s constraint is used where the norm
of the gradient at the surface of the sphere is constrained tounit length by means of
a quadratic normalization, namely,‖(u1, · · · , us)‖2 − 4u0us+1 = 1. This ensures
that the algebraically fitted sphere is close to the least-squares Euclidean best fit.
This minimization is only used to estimate the normal vectors ni at the points in
X . Once the normals are available, as input or by means of the fitting described
above, the actual sphere fitting to reconstruct the surface is performed. To that
end, the constraints∇su(xi) = ni are added to the minimization problem of
Equation 4.1. Therefore, the implicit function is defined as

IAPSS = su(x)(x) =
[
1,xT ,xTx

]
u(x).

This method is able to provide curvature information as a by-product of the fitting
process. We, on the other hand, first estimate the curvature at a given point on the
surface and exploit it to perform polynomial fitting using non-complete quadratic
polynomials instead of full polynomials, as described in the following.

4.2 Curvature-driven Projection Operator

In this section, a novel projection operator for surface approximation from unorga-
nized point sets is presented, based on the approximation ofdirectional curvatures
and the diffusion equation[59]. The anisotropic diffusion equation used helps
preserve the geometry of the original surface and makes it possible to represent
thin features in the model. Also, it is shown how principal curvatures and di-
rections can be estimated for point clouds. This curvature information may be
used to defined a local polynomial approximation as will be also described. The
fact that the local approximation performed by the method proposed is defined
as a non-complete quadratic polynomial can help decrease the processing time of
algorithms that perform intensive intersection computations such as ray-tracing.
The ray-tracing algorithm by Adamson and Alexa[3] is used to render the sur-
faces defined by the curvature-driven projection operator.To that end, the inter-
section computation must be modified to fit the proposed projection operator. This
ray-tracer is used to demonstrate the quality of the approximations obtained (see
Figure 4.1 for an example).

4.2. Curvature-driven Projection Operator 63

Figure 4.1: Rendering of the approximate surface for the EtiAnt dataset obtained with the
curvature-driven projection operator described in this section (see color plates).

Lange and Polthier[90] adapted the well known mesh-oriented method by
Taubin [148] for surface fairing to the point cloud context. In their work, the
authors used the method by Taubin together with an anisotropic diffusion equation
for removing noise from point clouds without smoothing sharp corners.

Curvatures and principal directions estimation for regular grids and polygonal
meshes has been extensively studied in both the qualitativeand the quantitative
cases. Maltred and Daniel[108] presented a survey on classical work on curva-
ture estimation and a classification based on the requirements and constraints of
the methods described. Although there are many methods for estimating prin-
cipal curvatures and directions, almost all of them need a mesh. Only recently,
effective methods to estimate curvature information directly from point sets were
presented[4; 154; 90; 72].

Tong and Tang[154] presented a robust curvature estimation method based on
adaptive curvature tensors by means of tensor voting. In addition, they presented
an analytical comparison with classical and efficient methods with respect to their
input (point clouds or mesh models), their requirements (geometrical measures)
and their outputs (quantitative or qualitative estimations). Huang and Menq[72]
proposed a curvature estimation method built upon the least-squares scheme and
Euler’s theorem from differential geometry. Although the method was proposed
to locally optimize unstructured surface meshes, it is alsosuitable for point clouds.

64 Chapter 4. Meshless Surfaces from Point Clouds

We derive the method presented from this work, since it can beeasily adapted to
support weighting functions, which is an important condition for the quality of the
models generated by meshless techniques. Thus, the curvature estimation method
by Huang and Menq was modified to introduce weighting functions in order to
improve the robustness of the method. These weighting functions were carefully
constructed and are specific to the problem at hand.

4.2.1 Principal directions and curvatures

The directional curvatures at a pointx on a smooth surface∂S are defined in terms
of the curvatures of smooth curves containingx. The minimum and maximum di-
rectional curvatures computed from the curves are calledprincipal curvaturesand
their respective directions are calledprincipal directions. One important result is
that principal directions are orthogonal atx [28].

Euler’s theorem from differential geometry states that every directional cur-
vature inx ∈ ∂S can be described as a function of its principal directions and
curvatures. More formally, let us define the principal directions and curvatures
at x asνx

1 andνx
2 , andκx

1 andκx
2 respectively. Euler’s theorem states that the

curvature atx in the directionµ is given by:

κx(µ) = κx
1 cos2(α) + κx

2 sin2(α), (4.2)

whereµ = cos(α)νx
1 + sin(α)νx

2 .
Let us consider the approximated tangent planeH at x, where a local or-

thonormal coordinate system(η, ζ, χ) with origin at x is defined, such that the
plane(η, ζ) is parallel toH (Figure 4.2). The projections̃xi onH of the points
xi ∈ X are computed, which define the directionsνi. In practice only a sub-
set ofX consisting of the nearest neighbors ofx are used. However, as before,
this restriction is not included in the formulation here, since later by introducing
weighting functions, it is ensured that only the meaningfulpoints inX for the
computations atx are taken into account.

By sorting such directions in counterclock direction, the anglesθi from η to x̃i

are obtained. Denote byβi the counterclockwise angle from the principal direction
νx

1 to νi. The directional curvature can be approximated by

κx(νi) :=
2〈n(x), ̺i〉
〈̺i, ̺i〉 , (4.3)

wheren(x) is the normal vector atx and̺i = xi − x for xi. The following non-
linear overdetermined system is obtained from Euler’s theorem and the directional
curvatures approximation (Equation 4.3)

{
κx

1 cos2(β1 + δβi) + κx
2 sin2(β1 + δβi) = κx(νi); i = 1, . . . , N , (4.4)

4.2. Curvature-driven Projection Operator 65

β1

δβ2

δβ3

x2

x3

x1

νx
1

νx
2

ν1

ν2

ν3η

ζ

Figure 4.2: Estimating directional curvatures on the approximated tangent plane atx (see
color plates).

whereδβi = βi − β1 = θi − θ1. Note thatδβ1 = 0. Following the work by
Huang and Menq, let us define

γ1 =
1

2
(κx

1 + κx
2), γ2 = − cos(2β1)(κ

x
2 − κx

1), γ3 = sin(2β1)(κ
x
2 − κx

1),

to obtain the following overdetermined linear system

{γ1 + γ2 cos(2δβi) + γ3 sin(2δβi) = κx(νi); i = 1, . . . , N . (4.5)

Therefore, the normal equation for System 4.5 becomes

N
N∑

i=1

ci

N∑

i=1

si

N∑

i=1

ci

N∑

i=1

c2i

N∑

i=1

cisi

N∑

i=1

si

N∑

i=1

cisi

N∑

i=1

s2
i

γ1

γ2

γ3

 =

N∑

i=1

κ̂i

N∑

i=1

κ̂ici

N∑

i=1

κ̂isi

, (4.6)

whereci = cos(2δβi), si = sin(2δβi) and κ̂i = κx(νi). Thus, the principal
directions and curvatures are straightforwardly obtainedfrom γi, 1 ≤ i ≤ 3.

Although Huang and Menq state that the method is robust for noisy data, ro-
bustness for the problem at hand was only achieved by adding suitable weights.

66 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.3: Examples of “M”-like function graphs. From leftto right: h = 2 andς = 1,
h = 1 andς = 1, andh = 1 andς = 2.

To that end, the following weighting function was introduced for the first time in
the process

ωCPO(xi,x) = ‖x− xi‖2ς exp

(
−‖x− xi‖2

h2

)
, (4.7)

whereς ∈ N∗. Note that this function is an “M”-like function. Thus, by letting
ωi ≡ ωCPO(xi,x), the normal equation becomes

N∑

i=1

ωi

N∑

i=1

ωici

N∑

i=1

ωisi

N∑

i=1

ωici

N∑

i=1

ωic
2
i

N∑

i=1

ωicisi

N∑

i=1

ωisi

N∑

i=1

ωicisi

N∑

i=1

ωis
2
i

γ1

γ2

γ3

 =

N∑

i=1

ωiκ̂i

N∑

i=1

ωiκ̂ici

N∑

i=1

ωiκ̂isi

. (4.8)

The use of an “M”-like function is very important to obtain good results with
the method proposed. This is due to the fact that the directional curvatures ob-
tained by Equation 4.3 are dependent on the position of the points and their nor-
mal vectors. A small perturbation in the position of pointx can produce a quite
different solution with the original method by Huang.

In the “M”-like function,‖x−xi‖2ς controls the influence of the points close to
x on the solution. The largerς is, the smaller the region aroundx which will have
significant influence in the solution is. The exponential member of the function
maintains the same behavior of the traditional Gaussian function. Examples of
graphs of this function are presented in Figure 4.3 with different parameter values.

Unlike a Gaussian weight, the “M”-like function is able to solve the prob-
lem and to increase robustness. This will be shown in the nextsection after the
description of the surface approximation procedure.

4.2.2 Projection and rendering procedures

As mentioned before, traditional projection-based surface reconstruction tech-
niques define the approximated surface for a given point cloud as the set of station-

4.2. Curvature-driven Projection Operator 67

ary points for a carefully designed projection operator. This way, the input point
cloud can be resampled by projecting a sufficiently large number of points from
its neighborhood onto the approximated surface. With this procedure, a dense
sampling that covers the image space consistently can be obtained.

In this section, a new projection operator, derived from thediffusion equation
and directional curvature information, is described. Also, a local approximation
to the surface, that is not part of the projection procedure,is obtained using the
method for computing principal curvatures and directions given in the previous
section and a result from differential geometry, which states that a surface can be
approximated locally (in the neighborhood of a pointx ∈ ∂S) by

Mfκ(ξ, η) =
1

2

(
κx

1ξ
2 + κx

2η
2
)
, (4.9)

where(ξ, η) is in the local coordinate system defined by the principal directions
atx.

The projection procedure is based on the surface fairing method proposed by
Lange and Polthier[90] for point clouds. The authors make use of an anisotropic
diffusion equation, which is useful to preserve sharp corners. Let us consider the
diffusion equation

∂x

∂t
= λ∆x, (4.10)

where∆x is the Laplacian ofx andλ is the diffusive term. The Laplace operator
can be approximated by the umbrella operator

∆̃x =
1

Ω

∑

xi∈N (x)

ωi · (xi − x), (4.11)

whereN (x) is the set ofk nearest neighbors ofx, k being user-defined,

ωi =
1

‖xi − x‖2

andΩ =
∑
ωi. The explicit forward Euler method for Equation 4.10 leads to

x(n+1) = x(n) + λδt∆̃x(n), (4.12)

whereδt is the step size andx(n) is the integration at iterationn. It must be
observed thatλδt must satisfy the time step conditions[68]. Lange and Polthier
modified the traditional umbrella operator to obtain an anisotropic operator by
introducing a suitable real function which offers information related to the shape
of the object. This operator is able to move a point onto the surface fairly. The
anisotropic Laplacian becomes

∆̃Λx =
1

Ω

∑

xi∈N (x)

Λi · (xi − x), (4.13)

68 Chapter 4. Meshless Surfaces from Point Clouds

whereΛi is a real function which depends on the directional curvatures (Equation
4.3) atx. Lange and Polthier argued for the use of one of the followingfunctions
for a given thresholdε

Λi =

{
1 |κx(νi)| < ε
0 otherwise;

(4.14)

Λi =

{
1 |κx(νi)| < ε

λ2

λ2+10(|κx(νi)|−λ)2
otherwise.

(4.15)

With this framework, the projectionp of a pointr onto the surface and the
local approximation to the surface atp can be found using following procedure:

Find the planeH with normal vectorl = 1
Ω

∑
ωi · ni passing through1

o = 1
Ω

∑
ωi · xi, whereni is the normal vector atxi;

Find the projectionq of r onH;2

Find the projected pointp resulting from using the anisotropic diffusion3

equation starting atq;
Calculate the principal directionsνp

1 , ν
p
2 and curvaturesκp

1 , κ
p
2 atp;4

Define a local coordinate system with axis(νp
1 , ν

p
2) and origin atp;5

The polynomial12(κp
1 ξ2 + κ

p
2 η2), whereξ andη are in the local coordinate6

system, approximates the surface locally.

The approximated surface is defined as the set of stationary points for the
projection process described above. To render the approximated surface, the ray-
tracing algorithm proposed by Adamson and Alexa[3] is used, changing only the
projection procedure. This can be done because the process above described pro-
vides not only the projection of the point but also a local polynomial approxima-
tion to the surface (see Section 2.2.3). However, a good estimate of the principal
curvatures (κp

1 , κp
2) and directions (νp

1 , νp
2) is of major importance to obtain a

good local approximation to the surface (Equation 4.9). As claimed in the previ-
ous section, only by introducing suitable weights into the curvature estimation a
robust approximation can be obtained. Figure 4.4 shows the effect of introducing
weights into System 4.8. As can be seen, a Gaussian weight does not solve the
problem. The use of the “M”-like function was inspired by thefact that instabil-
ities may arise in the estimate of the directional curvaturegiven by Equation 4.3
whenx→ xi for somexi ∈ X . Note, however, that the “M”-like function is used
only for the curvature estimation, while a Gaussian weight is used for the rest of
the process.

The moving least-squares-based surface approximation method proposed by
Alexaet al.[5] was implemented to compare the results obtained with their method
and the method presented here. The goal was to be able to obtain a comparable
approximation to the surface using a reduced polynomial obtained from the cur-
vature information. Therefore, complete quadratic polynomials were used in the

4.2. Curvature-driven Projection Operator 69

Figure 4.4: Polynomial approximations obtained (from leftto right) without weights, with
Gaussian weights and with the “M”-like function (top row).

Figure 4.5: Ray-tracing of the approximated surface for theRocker Arm dataset obtained
with the moving least-squares-based (left) and the curvature-driven (right) methods.

implementation of Alexa’s method. In Figure 4.5 the resultsof both the moving
least-squares-based approximation and the curvature-driven approximation for the
Rocker Arm dataset are shown. In both cases, the ray-tracingalgorithm by Adam-
son and Alexa was used to render the approximated surface. Ascan be seen in the
figure, the results are equally good, however the method presented is between 1.5
to 2.5 times faster. For these performance tests, the modelswere rendered with
no reflection or refraction effects to a533× 400 viewport. More complex scenes
were also rendered and are shown in Figures 4.6 and 4.1. Note that thin features
in the EtiAnt model in Figure 4.1 were correctly reconstructed with our method.

The difference in the processing time is due to the fact that,although the
method proposed makes use of trigonometric functions to construct the normal
equation, it only needs to solve a linear system with three unknowns and thus
closed formulations can be used. Although a complete quadratic polynomial can
better approximate a larger neighborhood than the non-complete quadratic poly-
nomial used, for the local computations involved in the method proposed this latter
quadratic polynomial approximates the surface accurately. Another important ad-
vantage of the method developed is the availability of an explicit characterization
of the surface by means of the curvature information. Also, in practical terms,
when computing the local approximation, the points for which the “M”-function

70 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.6: Rendering of the approximate surface for the Stanford Bunny dataset obtained
with the curvature-driven projection operator described in this section.

has values lower than a threshold are discarded. This minimizes the computational
cost since less trigonometrical operations are performed.Additionally, it reduces
the possibility of numerical instability during the local approximation computa-
tion.

As mentioned before, the use of a non-complete quadratic polynomial for the
polynomial approximations simplified the ray-surface intersection computation.
However, it would be desirable to analyze the performance impact of the principal
directions and curvature estimation process and of the anisotropic diffuse equation
(although it was found that this latter process needs few iterations to converge).
Acceleration techniques can be introduced into the implementation of the ray-
tracing algorithm in order to be able to exploit the simplicity of the intersection
computation.

Besides the potential gain in computation time, the availability of curvature
information is important for a number of applications. Thisis a clear advantage
of the method presented over other surface approximation techniques. There are
few works in the literature for curvature estimation from clouds of points and so

4.3. Approximate MLS Surfaces 71

far there is no work presenting comparisons among these methods. A mathe-
matical and computational efficiency study of such methods must be performed.
Although, with the method proposed, local characterization of the surface offered
by the principal directions and curvatures is available, itcould be of interest to
define global properties,e.g., the Euler characteristic.

4.3 Approximate MLS Surfaces

In this section, two problems of approximation techniques based on moving least-
squares are addressed. The first one is the need for solving a large number of small
systems of equations when local polynomials are used to approximate the surface.
This computational effort can be high for large models and viewport resolutions,
turning the approaches prohibitively slow. On the other hand, methods that define
the surface as the zero set of an implicit function are considerably faster. How-
ever, the implicit formulations presented in previous workprovide a planar fitting
to the surface, which is not able to model details in the data as well as methods
based on local polynomial approximations of higher order. Although the work
by Guennebaud and Gross[62] is an exception in that the implicit definition is
based on local spheres fitting, a more general polynomial fitting might be desir-
able. Therefore, the goal is to define a surface approximation that combines the
approximation power of local polynomial approximations obtained with moving
least-squares and the simplicity and performance of the implicit formulations. To
that end, a method free of systems of equations is proposed using recent results
on approximate moving least-squares approximation. Connections between the
theories on radial basis functions and on approximate moving least-squares ap-
proximation enable the use of such functions for meshless surface modeling and
rendering of irregularly sampled point sets. By performingan iterative correc-
tion process, an approximation to the surface that better fits the sample points is
obtained. The iterative process defined with iterated approximate moving least-
squares generates a family of implicit surfaces ranging from the approximated
moving least-squares implicit surface to a radial basis functions interpolated solu-
tion. The method is able to deal with noisy point sets by computing an estimate
of the optimal number of iterations of this correction process. An example of a
surface reconstructed with this method is shown in Figure 4.7.

The second problem addressed is the modeling of sharp features,i.e., discon-
tinuities in the approximating function or its derivatives. Point-based modeling
and rendering techniques are, in general, not able to automatically represent sharp
edges. This problem is depicted in Figure 4.8, where renderings of the Cube and
Fan Disk datasets obtained with known point-based methods are shown. As can be
seen, the surface approximation based on local polynomial approximations pro-
duces good results, but the edges are still smooth. This issue has been addressed

72 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.7: Approximated surface for the Stanford Dragon obtained as the zero set of the
implicit function based on approximate moving least-squares approximation (see color
plates).

by point-based methods so far using extensive tests, complex and computationally
expensive statistical tools, auxiliary meshes, piecewiseapproximations and user
intervention[104; 51; 130].

Fleishmanet al. [51] make use of boolean operations where sharp edges are
modeled by identifying them through detection of outliers.The method by Fleish-
manet al. uses a robust statistical technique, called forward search[14], to define
piecewise local approximations. Given a pointx to be projected onto the surface,
the method computes a set of piecewise smooth surfaces in theneighborhood ofx.
This is done by an incremental statistical method that adds points progressively to
the local approximation, investigating the quality of the approximation each time
a new point is added. Once such set of piecewise smooth surfaces is defined, the
method projects the point according to possible neighborhood situations. Other
methods making use of boolean operations have been previously addressed[63;
1; 124; 172]. To the extent of our knowledge, only the work by Reuteret al. [130]
and by Lipmanet al.[104] do not make use of boolean operators among point sets
to define sharp edges.

The method by Reuteret al. makes use of theenriched reproducing kernel
particle approximationto substitute the local polynomial approximation in the
operator defined by Alexaet al. [5] for a local approximation that considers not
only polynomial terms, but also enriched functions that describe, in some sense,
discontinuous derivatives. The main drawbacks are the non-automatic process

4.3. Approximate MLS Surfaces 73

Figure 4.8: Surface approximations for the Cube and Fan Discs datasets. From left to
right: EWA splatting, Adamson and Alexa’s implicit surfacedefinition, moving least-
squares polynomial surface approximation (degree 2) and the implicit function based on
approximate approximation (orderO(h6)).

to define the domain of the enriched functions and the need forinvestigating the
properties of the enriched functions to ensure that the system of equations is in-
vertible. Oriented normal vectors are also required by thismethod and, more
importantly, a user-driven tagging of the points near sharpfeatures.

Lipmanet al. [104] presented a very interesting method that effectively repre-
sents singularities of the model. The method computes asingularity indicator field
which intuitively assigns to each point an estimate of its proximity to a singularity.
The computation of this field is based on the construction of alower bound of the
derivative at each sample point which is in turn based on the error expresion of the
moving least-squares approximation previously presentedby the authors[103].
Once the singularity indicator field is calculated, the singularity is approximated
as an one-manifold by means of moving least-squares using the singularity indi-
cator field to influence the weighting functions. This one-manifold is then used to
generate either a discontinuous approximation or a continuous piecewise-smooth
approximation. The discontinuous approximation is obtained by separating the
space in two halves (limited by the one-manifold) and approximating the surface
on both sides independently. The continuous piecewise approximation is gener-
ated by aligning one axis of the local coordinate system withthe tangent line to the
one-manifold at the origin of the local system and using the space of continuous
piecewise bivariate polynomials of certain degreed for computing the approxi-
mation to the surface instead of the complete space of bivariate polynomials of

74 Chapter 4. Meshless Surfaces from Point Clouds

degreed.
In this section, an efficient iterative method to represent sharp features is

presented, which does not require any user intervention, based on bilateral fil-
tering. This method is coupled with the proposed implicit surface definition
based on approximate approximation. Bilateral filters havebeen previously used
to robustly de-noise point sets by modifying either the sampled point positions
(Mederoset al.[114]) or the normal vectors at the sampled points (Joneset al.[78]).
The main difference between the method by Mederoset al. and the method by
Joneset al. is that, while the former interprets the estimation of the normal as
a minimization of a robust approximation formulation, the latter interprets it as
the transformation of the normal vector given by the transposed inverse of the
Jacobian matrix of the bilateral filter.

Similar results are used here to more accurately estimate normal vectors at
points on the implicit surface. For this, consistently oriented normal vectors must
be available at the sample points. If not, they can be precomputed. Traditionally,
weighted covariance analysis has been used to estimate the normal vectors at the
sample points when they are not available[5]. However, to represent sharp fea-
tures using the approach presented here the input normal vectors at the sample
points must be robust and noise-free. This can be achieved with the method by
Mederoset al. [114] for denoising point clouds. In order to ensure a consistent
orientation of the estimated normal vectors at the sample points, the method by
Hoppeet al. [69] to orient normal vectors can be used.

4.3.1 Iterated AMLS implicits

The advantages of iterated approximate moving least-squares are twofold, firstly,
it is possible to compute local approximations from scattered points without solv-
ing any linear system. Secondly, the number of iterations and the shape parameter
can be set so as to produce an approximation that better fits the data but does not
interpolate noise. Fasshauer and Zhang[48] present an iterative approach to es-
timate the optimal number of iterations and shape parameter. These advantages
are exploited to define an implicit functionMfAMLS : R3 → R, whose zero set
approximates the input point set, as

MfAMLS(x) =

N∑

i=1

giϕi(x) (4.16)

wheregi = 〈xi − x,ni〉 andni is the normal vector, given or estimated, atxi.
This makes it possible to handle irregularly sampled point clouds and to provide
a family of approximations ranging from approximate movingleast-squares sur-
faces to radial basis functions interpolated surfaces. Theiterative process for the

4.3. Approximate MLS Surfaces 75

Figure 4.9: Plot of the value of the implicit function for a regularly (top) and an irregularly
(bottom) sampled dataset. From left to right: AMLS implicits with 5 iterations, AMLS
implicits with 20 iterations, Adamson and Alexa’s implicits and Kolluri’s implicits. The
white line shows the zero set of the function while colors mapthe value of the implicit
function with red corresponding to low values and blue to high values (see color plates).

surface approximation proposed is similarly defined as

Mf
(0)
AMLS(x) =

N∑

i=1

giϕi(x) (4.17)

Mf
(n+1)
AMLS(x) = Mf

(n)
AMLS(x) +

N∑

i=1

[
gi −Mf

(n)
AMLS(xi)

]
ϕi(x). (4.18)

If gi were not dependent ofx, it would be possible to pre-compute this iterated
process in order to obtain the approximation by simply performing a weighted
sum, as will be done in Chapter 6 for approximating volumetric data. Unfortu-
nately this is not the case.

The direction of the normal vector atx can be also similarly stated as an iter-
ative process as follows

n
(0)
AMLS(x) =

N∑

i=1

niϕi(x)

n
(n+1)
AMLS(x) = n

(n)
AMLS(x) +

N∑

i=1

[
ni − n

(n)
AMLS(xi)

]
ϕi(x).

This is done, since convergence was not proved for the derivative of the iterated

76 Chapter 4. Meshless Surfaces from Point Clouds

Adamson’s Kolluri’s AMLS implicits

Model (points) implicits implicits 1 iter. 3 iter. 10 iter.

Stanford Bunny (35K) 30 29 103 107 126
Horse (48K) 50 52 183 283 389

Fan Disk (103K) 30 30 79 97 109
Armadillo Man (172K) 30 32 106 152 236
Stanford Dragon (400K) 116 120 361 499 778

Table 4.1: Performance measurements in seconds per frame for Adamson and Alexa’s im-
plicit formulation, Kolluri’s implicit formulation and AMLS implicits. The performance
increase in the Fan Disc and Armadillo Man datasets is due to the number of rays that
effectively intersect the surface.

approximate approximation. That is, no theoretical guarantees are available that
supports deriving Equations 4.17 and 4.18 to obtain a good reconstruction of the
gradient. It is important to note that sincegi is fixed for eachx during the whole
iterative process, the fact that it depends onx does not affect the convergence of
the method.

In the tests performed, for

ri(x) =
ǫ3‖x− xi‖2

h2
,

Laguerre-Gaussian functions of orderO(h2),

ϕi(x) =
ǫ3

π3/2
exp (−ri(x)) , (4.19)

orderO(h4)

ϕi(x) =
1

π3/2

(
5

2
− ri(x)

)
exp (−ri(x)) (4.20)

and orderO(h6)

ϕi(x) =
1

π3/2

(
35

8
− 7

2
ri(x) +

1

2
ri(x)2

)
exp (−ri(x)) (4.21)

were used. Higher-order functions can be used, but the improvement would not be
visually perceived and controlling their shape parameter is more difficult. One can
easily generate the generalized Laguerre polynomials using mathematical soft-
ware such as MATHEMATICA[167].

Comparisons with the implicit surface definitions by Kolluri [83] and by Adam-
son and Alexa[2] were performed for a two-dimensional synthetic point set (see

4.3. Approximate MLS Surfaces 77

Figure 4.10: Renderings of the surfaces obtained with Adamson and Alexa’s implicit
function (left), Kolluri’s implicit function (center) andAMLS implicits (right)

.

Figure 4.9). Irregularity was introduced into the point setto illustrate the adaptive-
ness of each method to these cases. Although Adamson and Alexa’s and Kolluri’s
definitions are targeted to regularly sampled point clouds,the method based on
AMLS is compared with them due to the fact that the simplicityof their definition
match that of the AMLS implicits. Also, this helps to appreciate the impact on
the performance caused by the iterative AMLS when compared to other similar
implicit surface definitions.

As can be seen in Figure 4.9, the AMLS implicit function generates an ap-
proximation that fits the data more tightly without being truly an interpolant. The
smoothness of the approximation can be controlled with the shape parameter and
the number of iterations. In the detail windows of the figures, it can be appreci-
ated that with5 iterations, the approximation moves towards an interpolation but
effectively filters noise. After20 iterations however, the function fits the data even
better and consequently starts to interpolate noise.

To perform the tests with three-dimensional models, a ray-tracing engine based
on the methods by Wald and Seidel[162] and by Adamson and Alexa[3] was im-
plemented. The ray-tracing implementation was tested withdifferent point sets
on a standard PC with a 3.4 GHz processor and 2 GB of RAM. Performance mea-
surements were carried out with a400× 300 target viewport. Comparisons with
the implicit surface definitions by Adamson and Alexa and by Kolluri were also

78 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.11: Effect of the number of iterations and the shapeparameterǫ on the approx-
imation. From left to right:3, 4 and5 iterations. From top to bottom:ǫ = 0.4, ǫ = 0.8,
ǫ = 1.22, ǫ = 2.0

performed for these models. In all cases, the same implementation of the ray-
tracer was used, changing only the corresponding surface approximation method.
The performance results in seconds per frame are shown in Table 4.1. As ex-
pected, the method presented here performs worse in terms ofcomputational time
compared to Adamson and Alexa’s and to Kolluri’s methods. This is due to the
iterative process performed to correct the approximation so as to fit irregularly
sampled data. Recall that the implicit definitions by Adamson and Alexa and by
Kolluri are targeted at regularly spaced data. Also, the implicit function based on
AMLS combines the simplicity of implicit formulations withthe reconstruction
quality of moving least-squares polynomial surface approximation and RBF im-
plicit surface interpolation. A visual comparison among the three methods can be

4.3. Approximate MLS Surfaces 79

��
��
��
��
��

��
��
��
��
��

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
�������� x

xi

xj
xk

n(x)

xi − x

xj − x
xk − x

��
��
��
��
��

��
��
��
��
��

��������
��������
��������

��������
��������
�������� �

�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������������

�
�
�
�

�
�
�
�

x

xi

xj
xk

n(x)

xi − x

xj − x

xk − x

Figure 4.12: During normal vector estimation, weighing thepoints based on〈n(x),xi−x〉
produces good results only for points on or near the surface.At points not on the surface
(x on the top figure) this measure may assign large weights to neighbors (e.g. xi) not
expected to greatly influence the computations. For points on the surface (x in the right
figure), on the other hand, the measure assigns larger weightto neighbors on the same
plane asx or near to it (xj andxk).

seen in Figure 4.10. It is important to mention that the same smoothing factorh
was used for all methods. For the AMLS implicit function of the Stanford Bunny
and of the Armadillo Man, 3 iterations withǫ = 0.8 were performed. It can be
seen that the AMLS implicit surface better approximates thesample points. How-
ever, for low-sampled models, such as the Stanford Bunny, some regions with flat
spots appear when too many iterations are performed or the shape parameter is set
too high. Another interesting comparison is shown in Figure4.8, where it can be
seen that, by using higher-order generating functions, theresulting approximation
fits the surface more tightly. In order to show the effect of the shape parameter
and the number of iterations on the approximation, tests with different values for
ǫ were carried out and the surface was rendered at each iteration. The resulting
renderings are shown in Figure 4.11. As can be seen,ǫ affects the convergence
ratio of the iterative process. Therefore, both parametersmust be estimated at the
same time as described by Fasshauer and Zahn[48].

4.3.2 Introducing sharp edges

Here, a method that automatically approximates sharp edgesis provided, which
is easy to understand and to implement. This method is based on the robust esti-
mation of normal vectors. The approach proposed to robustlyestimate the normal
vectors, at any point on the implicit surface, is based on theminimization of the

80 Chapter 4. Meshless Surfaces from Point Clouds

Adamson’s MLS Approx. Approx.
Model (points) implicits (degree 2)O(h6) sharp edges

Cube (6K) 6 140 14 24
Fan Disc (26K) 17 234 21 32

Stanford Bunny (35K) 20 503 30 45
Armadillo Man (173K) 16 122 17 23

Table 4.2: Performance measurements in seconds per frame for Adamson and Alexa’s
implicit formulation, moving least-squares surfaces withlocal polynomial approximations
and the method proposed without and with bilateral filteringfor approximating sharp
edges. The performance increase in the Armadillo dataset isdue to the number of rays
that effectively intersect the surface. Note that, differently from the results presented
above, the iterated method was not performed here, which results in lower computational
times. Furthermore, a smaller viewport was used, which accounts for the difference in the
results for Adamson’s method.

following expression
N∑

i=1

ϑ(gi)ωMLS(x,xi) (4.22)

with respect togi, wheregi = 〈n,xi − x〉2,

ϑ(t) = 1− exp

(
− t

2σϑ

)

andσϑ is a parameter that controls the sensitivity of the expression to outliers and
edges, subject to the restriction||n|| = 1. The robustness is introduced by the
functionϑ. Other functionsϑ, as well as their properties, are given in the work by
van de Weijer and van den Boomgaard[155]. The normal vectorn obtained with
this minimization provides an estimative that approximates sharp edges, since the
sample points near the plane defined by the normal vectorn and the pointx will
have a greater influence in the estimative (see Figure 4.12).

To minimize this equation, its derivative is used, which results in a non-linear
system, which can be computationally expensive to solve. Therefore, the fact that
the normal vectors at the sample points were already estimated (see previous sec-
tion) is exploited to define an iterative process to approximate the normal vectors
at points on the surface. Given a first estimativen(0)(x) of the normal vector at
x, the normal vector approximation can be refined using the following iterative
process:

n(n+1)(x) =

∑N
i=1 niϕ

(n)
i (x)

‖∑N
i=1 niϕ

(n)
i (x)‖

. (4.23)

4.3. Approximate MLS Surfaces 81

Figure 4.13: Renderings of the Fan Disc, Cube and Icosahedron datasets with moving
least-squares polynomial surface approximation (top) andthe method proposed with sharp
edges enhancement (bottom).

Here,ϕ(n)
i is defined as follows. Since the derivative ofϑ, obtained from deriving

Equation 4.22 to minimize it, results in a robust weight

ω
(n)
RMLS(x,xi) = exp

(
−〈n

(n)(x),xi − x〉2
2σϑ

)
,

the radial weight used for the generating function is given by

ωMLS(x,xi)ω
(n)
RMLS(x,xi),

which leads to

ϕ
(n)
i (x) =

exp
(
−s(n)

i (x)
)

π3/2

(
35

8
− 7

2
s
(n)
i (x) +

1

2
s
(n)
i (x)2

)
,

where

s
(n)
i =

‖x− xi‖2
h2

+
〈n(n)(x),xi − x〉2

2σϑ
.

This is done in the spirit ofbilateral filters[44], and of the results of the work
by Fenn and Steidl[49], who derived an iterative process for robust data approx-
imation based on the work by van den Weijer and van den Boomgaard [155].

82 Chapter 4. Meshless Surfaces from Point Clouds

Note that, although each iteration of this process is an approximate moving least-
squares approximation, the robust formulation of Equation4.22 is not a moving
least-squares approximation. In the experiments performed, 5 iterations sufficed
in all cases to obtain a good approximation to the sharp feature.

One important issue of the iterative normal vector improvement process given
by Equation 4.23 is that the pointx where the normal vector is estimated must be
on or near the surface as shown in Figure 4.12.

To perform the tests, this process was included in the ray-tracing engine. The
performance results in seconds per frame are shown in Table 4.2. As before,
compared to the implicit definition by Adamson and Alexa, themethod presented
here performs slightly worse. However, when the approach presented here based
on bilateral filtering is used, the method is able to approximate sharp edges with
low additional computational effort. The results are shownin Figure 4.13, where
the method proposed for sharp edges approximation is compared with moving
least-squares polynomial surface approximation. As can beseen, the bilateral
filter corrects the normal vectors near the edges while maintaining smooth areas
unaltered. Even for the low-sampled Icosahedron model withonly 600 points and
wide angles, the method proposed was able to approximate sharp edges. However,
note that, although sharp edges are preserved, corners are slightly smoothed in this
same model. This might be due to the fact that the points in theneighborhood of
the corner lay on three (or more) intersecting planes, whichreduces the effect of
the bilateral filters. Note that this normal vector correction process is applied only
on points on the surface. Thus, since the actual surface definition is based on a
smooth vector field, theC0-continuity of the approximate surface is mantained.

4.4 Adaptive Partition of Unity Implicits

Among the surface reconstruction methods based on implicitfunctions, methods
based on partition of unity have been recently used due to their nice properties
concerning processing time, reconstruction quality and capacity to deal with mas-
sive data sets[122; 113]. Basically, these methods determine a domain subdivi-
sion for which local functions are computed and combined to define a continuous
global implicit approximation for the point set.

In this section, a method[58] developed to tackle important issues from previ-
ous surface reconstruction techniques based on partition of unity is described. The
proposed surface reconstruction method effectively combines the space subdivi-
sion with an adaptive construction of local polynomial approximations by means
of multivariate orthogonal polynomials[18]. This makes it possible to increase
the degree of the polynomial at locations where higher-degree polynomials are
needed to obtain a good approximation to the surface. Contrary to previous meth-
ods, the iso-surface is extracted directly from the data structure used to subdivide

4.4. Adaptive Partition of Unity Implicits 83

Figure 4.14: Stanford Lucy (16M Points) reconstructed withthe proposed method.

the space, namely, theJ1
A . This enables the adaptive surface extraction to take ad-

vantage of refinement information obtained during functionapproximation. Fur-
thermore, as theJ1

A is composed of tetrahedra, the surface extraction algorithm
guarantees topologically coherent surfaces. The aspect ratio of the triangles gen-
erated by means ofJ1

A polygonization is usually poor, which motivates the use of
a simple, but effective,J1

A vertex displacement technique that is able to consider-
ably improve mesh quality.

In general, least-squares formulations solved by normal equations using canon-
ical polynomials lead to ill-conditioned systems of equations. By using a basis of
orthogonal polynomials, no system of equations must be solved and stability is

84 Chapter 4. Meshless Surfaces from Point Clouds

improved without requiring expensive computations in contrast to other methods
such as QR decomposition with Householder factorization, singular value decom-
position or pre-conditioned conjugate gradient. Furthermore, the use of orthog-
onal polynomials makes it possible to efficiently increase the degree of the local
polynomial approximation due to the recursive nature of their construction. For
this reason, the method proposed is also adaptive with respect to the degree of the
local fittings.

Contrary to previous work on multi-level partition of unityimplicits, the pro-
posed method is able to avoid generating spurious surface sheets and surface arti-
facts. This is achieved by using tests that discard approximations considered non-
robust,i.e., approximations which oscillate within the local support.However, in
some cases, the automatic reconstruction algorithm may cause loss of details in
some regions due to the use of low-order polynomial functions. Moreover, even
with good robustness criteria, partition of unity implicits are particularly sensitive
to noise. As before, changing the robustness conditions to tighten the solution
may lead to over-smoothing effects without assuring the removal of all problems.
Thus, allowing the user to locally edit the global approximation to place more
suitable shape functions is an interesting feature proposed here.

This machinery allows the definition of a two-fold adaptive partition of unity
method in the sense that both the degree of the local approximation and the space
subdivision are adapted to better fit the surface. An exampleof a surface recon-
structed with the proposed method is depicted in Figure 4.14.

4.4.1 Multi-level partition of unity implicits

Partition of unity implicits are defined on a finite domainΩ as a global approx-
imationMfPU obtained with a linear sum of local approximations. As with
other implicit surface approximation methods, the surfaceis defined as the zero
set ofMfPU . For this purpose, a set of non-negative weight functionsΦ =
{φ1, . . . , φK} with compact support, where

∑K
i=1 φi(x) ≡ 1, x ∈ Ω, and a set

F = {f1, . . . , fK} of local signed distance functionsfi must be defined onΩ.
Given the setF andΦ, the functionMfPU : R3 → R is defined as:

MfPU(x) ≡
K∑

i=1

fi(x)φi(x), x ∈ Ω. (4.24)

A set of non-negative functionsΘ = {θ1, . . . , θK} with compact support pro-
duces the partition of unity as

φi(x) =
θi(x)

∑K
k=1 θk(x)

,

whereθi is a weight function with compact support. The domainΩ is covered
by a set of supports and, for each one, a functionfi and a weight functionφi

4.4. Adaptive Partition of Unity Implicits 85

are defined. Otahkeet al. subdivide the domain using an octree and define a
spherical support for each cube. The functionsfi : R3 → R at each local support
are computed using the set of points in the support by initially defining a local
coordinate system(ξ, η, ν) at the center of the support where(ξ, η) define the local
plane (domain) andν coincides with the orthogonal direction (image). Hence,fi

is defined asfi(x) = w − gi(u, v), where(u, v, w) is x in the(ξ, η, ν) basis. The
function gi is obtained by the two-dimensional least-squares method. Note that
this method requires points equipped with consistently oriented normal vectors.

4.4.2 TheJ
1
A

triangulation

Casteloet al. [29] proposed theJ1
A triangulation as an adaptive structure with an

underlying algebraic description that allows both efficient memory usage and the
ability of being defined in any dimension. Such algebraic description is based
on two mechanisms: the first is used to uniquely identify a simplex within the
triangulation, and the second is used to allow traversals inthe structure.

TheJ1
A triangulation is conditioned by a grid of blocks which correspond to

n-dimensional hypercubes inRn. TheJ1
A simplices are obtained by the division of

such blocks in a way that each simplex is coded by the6-tupleS = (g, r, π, s, t, h).
The first two components are related to the location of the block within the grid,
whereas the last four identify the simplex within the block.Specifically, then-
dimensional vectorg provides the location of a particular block in a particular
refinement levelr. Figure 4.15 illustrates, on the left, a two-dimensionalJ1

A and,
on the right, a highlighted block of refinement levelr = 0 (0-block) andg =
(3, 1). Also in Figure 4.15, one can find blocks with refinement levelr = 1 (1-
block) depicted in dark blue.

Before explaining how simplices are described, it is important to mention that
an n-dimensionalJ1

A allows the refinement of ani-block by splitting it into2n

(i+ 1)-blocks. It is also worth to notice that, in order to accommodate the newly
created blocks, some other blocks may be forced to be refined so that the dif-
ference in the refinement level of two neighboring blocks never becomes greater
than one. The last part of this accommodation process is to impose that whenever
blocks whose refinement levels differ by one are neighbors, the one having the
smallestr is transformed into a transition block. Such a block is the one that pos-
sesses only some of itsk-dimensional faces (0 < k < n) refined. The situation
is illustrated by Figure 4.15 in which basic 0-blocks are colored light-blue, basic
1-blocks are colored dark-blue and transition blocks are colored light-red. In par-
ticular, the highlighted transition block has only its leftedge refined. From now
on, for the sake of clarity, non-transition blocks will be referred to as basic blocks.

The simplex representation is based upon the fact that all simplices in a block
share at least the vertexv0, which is the center of then-dimensional hypercube.
So, starting inv0, the next step is taken in the positive or negative directionof

86 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.15: TheJ1
A triangulation: on the left, a sample two-dimensional adaptive trian-

gulation and, on the right, examples of pivoting operations(see color plates).

one chosen coordinate axis. This will producev1 as the center of an(n − 1)-
dimensional face and, as the process continues, the vertices v2 . . . vn will be de-
fined as the center of(n−2), . . . , 0 dimensional faces respectively. In other words,
simplices can be represented by the path traversed fromv0 to vn which is coded by
π ands. Theπ vector stores a permutation ofn integers from1 to n representing
coordinate axes, whiles represents the direction, positive or negative, that must
be followed in each axis. For instance, in Figure 4.15, Simplex 3 is represented by
π = (1, 2) ands = (1,−1), which means that, fromv0, the path is traced through
axisπ1 = 1 (x, in the figure) in the positive direction (sπ1

= 1) and then through
axisπ2 = 2 (y, in the figure) in the negative direction (sπ2

= −1).
For simplices inside basic blocks and simplices inside transition blocks that do

not reach any refined face, the information provided byπ ands suffices. However,
in the remaining cases, further information must be provided, because when a
refinedk-dimensional face is reached, there is not only one center, but 2k centers.
For this reason, the scalarh is used to inform how many steps are taken before
a refined face is reached, while vectort defines extra signs for axisπh+1 . . . πn

that are used for selecting one center from all possibilities. For instance, in Figure
4.15, Simplex 1 is represented byπ = (1, 2), s = (−1,−1), h = 1 andt = (0, 1)
because only one step is taken before reaching a refined edge and the chosen
center for placingv1 is in the positive direction ofπh+1.

Besides describing the location of simplices, theJ1
A triangulation also defines

pivoting rules for traversing the triangulation without using any other topological
data structure. These rules are completely algebraic in that they take a simplex
description (S ′, for instance) as input and outputs another simplex description

4.4. Adaptive Partition of Unity Implicits 87

(S ′′) as the result of the pivoting operation. Figure 4.15 illustrates two pivoting
operations in which simplices1 and2 are pivoted in relation to verticesv2 andv1

respectively, generating simplices3 and4. All pivoting rules can be found in the
work by Casteloet al.

4.4.3 Robust adaptive partition of unity implicits

Traditionally, adaptive partition of unity implicits are built using an octree to parti-
tion the space and calculate local approximations that are subsequently combined
using weights. The more details the object possesses, the more refined the octree
must be. Thus, the octree can be used to identify complicatedor soft features on
the surface. Hence, the goal was to use this information acquired during function
approximation to obtain an adaptive polygonization. Therefore, asJ1

A has an un-
derlying restricted octree as its backbone, the triangulation was adapted to serve
both approximation and polygonization purposes. The achieved adaptiveness al-
lows capturing fine details without using refined grids. Another important feature
of the method is the increased quality of the local approximations compared to
previous methods, which prevents spurious sheets and surface artifacts.
Local approximations. The local approximationsfi : R3 → R are generated
in the spherical supports of the weight functionsφi, which are defined as the
circumspheres of the blocks enlarged by a factor greater than one (e.g., 1.5).

The functionfi at each block is computed using the set of points encompassed
by its support by initially defining a local coordinate system (ξ, η, ν), as explained
before, at the center of the support. Recall thatfi is defined asfi(x) = w −
gi(u, v), where(u, v, w) is x in the(ξ, η, ν) basis.

In the method proposed, the local functions are approximated by means of
polynomial least-squares fitting. However, instead of using a canonical basis
{uivj : i, j ∈ N}, a basis of orthogonal polynomials with respect to the inner
product induced by the normal equation is chosen. This way, it is not neces-
sary to solve any system of equations. To find such a basis, themethod by Bar-
tels and Jezioranski[18] is used.

Then, given a set of orthogonal polynomialsΨ = {ψ1, . . . , ψM}, the polyno-
mial fitting in local coordinates can be computed as:

gi(u, v) =
M∑

j=1

ψj(u, v)

∑
Si
wkψj(uk, vk)∑

Si
ψj(ul, vl)ψj(ul, vl)

; i = 1, · · · , K, (4.25)

whereSi ≡ supp(ci, Ri), ci andRi are the center and radius of the blocki re-
spectively, and(ui, vi, wi) is xi in the basis(ξ, η, ν). Thus,gi provides an approx-
imation to the solution of

min
g

∑

(ui,vi)

(g(ui, vi)− wi)
2.

88 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.16: The figure in the left side depicts the behavior of theJ1
A during function ap-

proximation. The figure in the right side shows an illustration of the effect of the coverage
domain on the polynomial approximation. The left side of this figure depicts a case that
can arise when a high-order polynomial is used to approximate the surface inside the local
domain (blue circle). Since a large region of this domain is void of points, the polynomial
approximation may oscillate. Thus, the coverage domain (blue line) is computed and the
ratio of the area of the coverage domain and the area of the plane (yellow line) is calcu-
lated. This ratio determines the degree of the polynomial used. Decreasing the degree of
the polynomial when this ratio is below a threshold reduces the oscillation as can be seen
on the right side of the figure (see color plates).

The main motivation for using such orthogonal polynomials is their ability
of generating higher-degree approximations from previously computed approxi-
mations with low additional computational effort. As stated before, this property
enables the definition of a method that is adaptive not only inthe spatial subdi-
vision but also in the local approximation. However, a downside of employing
high-degree polynomials as local solutions is the fact thatsuch functions may
present oscillatory behavior and, even if they present a small least-squares error,
they may be a poor approximation inside the region of interest. For instance, in
Figure 4.16 on the left, the polynomial is close to the samplepoints inside the
support, but the signs obtained when the function is evaluated at the vertices of
theJ1

A block are not correct. Therefore, depending on the neighborsolutions, this
situation may lead to extra surface sheets or artifacts.

Before presenting a solution, one must notice that this problem occurs because
even though high degree polynomials are able to approximatepoint data nicely in-
between points, they can also oscillate at locations in which there are not points
to restrain the solution, as illustrated on left side of Figure 4.16. Based on this
fact, it can be observed that the distribution of points inside the support is as
important for generating a good function as the number of points used in the least-
squares minimization. Figure 4.18c and Figure 4.18d depicta real application of
the coverage domain.

Thus, an approximate, but computationally inexpensive, way to assess how

4.4. Adaptive Partition of Unity Implicits 89

well the points are distributed inside the support is presented. As in the proposed
method the local domains are actually planes, it is necessary to determine how
large is the area of these planes covered with points. For this, the ratio (k) between
the projection of the support of the block and the projectionof the bounding box
of the points over the plane is calculated. To that end, a coverage criterion for
polynomials was created by establishing a minimum value ofk for each polyno-
mial degree (for instance, 0.4, 0.8 and 0.85 can be used as thedefault parameters
for second, third and fourth degree polynomials). In Figure4.16 the importance
of the coverage domain for aiding the choice of the correct function is illustrated,
since, in the example, a lower degree approximation (on the right) is more suitable
than a higher one (on the left).

As mentioned before, besides the coverage criterion, it is also necessary to
take into account the minimum number of points that should beused for each
polynomial degree (the default is twice the number of polynomial bases for each
degree). The union of both of these criteria constitute the robustness test used in
the proposed method.

An immediate issue that arises from this minimum point test is that not ev-
ery block in the domain encloses enough points for the polynomial approximation
described previously. Therefore, we created a strategy forhandling blocks with
few or without points that differs from previous work because, instead of iter-
atively growing the support of the block until the minimal number of points is
reached[122], which may cause a local approximation to influence a large part
of the domain, or using the approximation of the parent of theblock [113], which
can be a poor approximation, this situation is addressed by searching the nearest
cluster of points to the current block and performing a first degree approximation.

Such cluster of points is determined by finding the nearest sample pointr to
the center of the block, by querying enough neighbors aroundr (the default is 20
points), and by approximating a least-squares plane. However, depending on the
point distribution, the plane can be orthogonal to the expected resulting plane[10].
This situation is detected by comparing the normal vector ofthe plane with the
average of the normal vectors ofr neighbors. If the angle is greater thanπ/6, the
least-squares function is substituted by the plane with thenormal vector equals to
the computed average and the origin equals to the average neighbor position. This
last test is considered as the third robustness condition ofthe method.

Now that the most important concepts of the proposed approach were clari-
fied, an algorithmic outline of the method is provided: aftersetting up the initial
J1

A configuration, for each block that does not have an approximation defined,
the number of points inside the support of the block is queried, originating three
different situations:(i), the number of points is enough for performing approxi-
mations;(ii), the number of points is not enough even for a least-squares plane;
and(iii), the number of points is greater than a specified maximum threshold.

90 Chapter 4. Meshless Surfaces from Point Clouds

Initially, in case(i), a test that measures the variation of point normal vectors
by Ohtakeet al. [122] is used to determine the presence of two or more surface
sheets inside the same support. If they exist, the method refines the block and the
process starts again for the newly created blocks. If only one sheet is detected, a
polynomial with degree one is calculated and its degree is recursively increased
until the error criterion is met, or until the robustness test does not allow a higher
degree or until the degree of the polynomial is equal to the maximum allowed
(four as default). If the previous process finishes and the error is acceptable, the
approximation is stored in the block, otherwise, the block is refined, unless its
support possesses a critical number of points (e.g., less than 100). In this situation,
the subdivision may be aborted if the new approximation blocks would increase
the error instead of decreasing it, due to the fact that the new blocks would enclose
small amounts of points that would not allow high degree approximations.

In both parts of the above description in which the refinementis suggested, the
block may be already in the user-defined maximum allowed refinement level, so
there is no other option rather than using the best approximation calculated so far.

The approximation case(ii) is handled by searching the nearest cluster of
points from the current block and performing a first degree approximation as ex-
plained above. Finally, case(iii) in a heuristic employed to avoid useless and
expensive calculations. It is an unnecessary effort to calculate minimizations for
more than one thousand points. Thus in this case, subdivision of the block is
forced whenever the maximum refinement was not reached, otherwise the ap-
proximation is computed anyway.

This section is concluded by elucidating the difference between block refine-
ments caused by approximation conditions and those triggered byJ1

A restrictions
(explained in Section 4.4.2). In the latter case, new approximations do not have
to be computed if the approximation for the block being refined is already good.
Figure 4.16 illustrates a case in which not all leaf nodes hold approximations as-
sociated to them. In the figure, the blue circles represent leaf blocks that hold
approximations and points inside them, the orange ones are also leaves that hold
approximations despite of not having points in their supports, and the green one
stands for a non-leaf node that holds the approximation and was only divided due
to theJ1

A accommodation process.
Function evaluation and adaptive polygonization.Given a pointx inside the
domain, an octree-like traversal of theJ1

A blocks is conducted to determine which
blocks encompassx within their supports. The value ofMfPU(x) is obtained as
a combination of all local functions from the supports foundto containx:

MfPU(x) =

∑M
i=1,x∈Si

fi(x)θi(x)
∑M

i=1,x∈Si
θi(x)

,

4.4. Adaptive Partition of Unity Implicits 91

whereθi(x) = θ(‖x − ci‖/Ri) and the weight functionθ(t) = (1 − t2)4 that
assumes zero value fort ≥ 1.

The polygonization finds first an initial simplex, which is a straightforward
task when a point near the surface is available. Then, a traversal of all simplices
that intersect the surface throughJ1

A pivoting rules is conducted, while generating
the adaptive surface mesh.

4.4.4 Extensions to the method

Here, two extensions to the method above presented are proposed. The difficulty
in handling parameters in most surface reconstruction approaches suggests that in
some cases it may be useful to allow manual edition of the function so that the
user can either fix undesirable artifact or enhance the approximation quality by
choosing more appropriated functions. This constitutes the first extension to the
method.

The second extension is related to the low quality presentedby the meshes
generated by theJ1

A polygonizer. It is actually an computationally inexpensive
and memory efficient technique that displacesJ1

A vertices in order to enhance the
aspect ratio of the triangles.
Interactive implicit function editing. For the function editing feature, one of
the advantages presented by partition of unity implicits methods over other tech-
niques, such as moving least-squares or radial basis functions, is exploited, namely,
the fact that the global function is defined by a set of independent local functions in
subdomains,i.e., changing one of these functions only affects the global function
locally. Thus, changing local traits of the function consists in locating the desired
block and switching the associated approximation. Findingsuch a block in theJ1

A

triangulation is quite straightforward, since its structure consists of a restricted oc-
tree. The calculation is made by testing the blocks that contain the desired point,
in different refinement levels, until the one with the function is found.

In the implementation used, a graphic tool was developed forchoosing points
over a reconstructed model and selecting either a new degreefor the polynomial
approximation or a constant function, which can be defined bythe user or auto-
matically computed.
Mesh enhancement.To approach the problem of the poor quality of some trian-
gles generated from theJ1

A , the mesh displacement technique was chosen because
it is quite simple to implement and does not impose a heavy overhead on the time
and memory complexities of the polygonizer. However, as thedegrees of freedom
for movingJ1

A vertices without invalidating the structure are constrained, the im-
provement is limited. The idea is to move theJ1

A vertices away from the surface
a distance inversely proportional to the function value, inorder to improve the
aspect ratio of the mesh elements.

The displacements are applied only onJ1
A vertices belonging to simplices that

92 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.17: Illustration of the deformation of aJ1
A block: the vertex displacement tech-

nique is able to create more uniform mesh elements.

intersect the surface during the polygonization. For that reason, no extra memory
is needed and the extra computational effort is due to the calculation of an approx-
imation for the maximum value of the function and for evaluating the gradient of
the function at every displaced vertex. The following equation presents how a
vertexx is taken to its new positionxnew

xnew = x +

[
sign (MfPU(x))

‖∇MfPU‖

(Mfmax
PU −MfPU(x)

Mfmax
PU

)2
e(l)

4
α

]
∇MfPU(x)

wheresign (MfPU(x)) represents the function sign atx,Mfmax
PU is an estimative

to the maximum of the function in the domain,l is the refinement level associated
to the vertex,e(l) is the size of aJ1

A block edge in the refinement levell, and
0 < α < 1 determines the maximum amplitude of the movement.

For basic blocks, the refinement level associated with a vertex l is equal to the
refinement of the blockr, whereas, for transition blocks, it is equal to(r + 1)
for vertices that lie in refined faces and equal tor for the remaining ones. It is
worth to mention thate(l)/4 is the maximum amplitude of the displacement, in
any direction, allowed by theJ1

A structure. In Figure 4.17 a representation of the
displacement of the vertices is depicted in two dimensions.

In Figure 4.18, the importance of the coverage domain is illustrated, as well
as the interactive function editing procedure. In Figure 4.18a, the 362K raw data
Stanford Bunny was reconstructed using the method by Ohtakeet al. using its
default parameters, while in Figure 4.18b, we selected the parameters to match
those used with the method proposed (maximum refinement 9 anderror thresh-
old 0.002). Note that this set of points is the raw Stanford Bunny dataset (362K
points), whereas the Stanford Bunny dataset used in previous sections contains
the vertices of the reconstructed versions (35K points). InFigure 4.18c, the pro-
posed technique was used to reconstruct the same model without the coverage

4.4. Adaptive Partition of Unity Implicits 93

(a) (b) (c)

(d) (e) (f)

Figure 4.18: Function editing: (a)-(b) method by Ohtakeet al. with its default parameters
and with suggested parameters. (c) reconstruction using the proposed method without
coverage domain; (d) reconstruction with coverage domain;(e) user selected imperfec-
tions; (f) function changed in order to eliminate imperfections. Comparisons against other
surface reconstructions can be found in the work by Kazhdan and Hoppe.

criterion. One can notice the presence of several artifactson the surface and some
extra sheets, that were almost eliminated with the use of thecoverage test (Fig-
ure 4.18d). In Figure 4.18e, a selection of blocks was defined, for which a constant
function was set with positive values (0.002), in order to eliminate some of the
surface flaws. Finally, Figure 4.18f depicts the bunny afterthe function editing.

The models reconstructed using Ohtake’s technique presented a series of ex-
tra sheets and surface artifacts. In the work by Kazhdan and Hoppe[79], similar
problems were presented for other techniques. Nevertheless, the differences with
the results presented by Kazhdan and Hoppe are due to polygonization technique
they employed, which generated the mesh for only one connected component.
This was responsible for hiding most of the spurious sheets.The situation il-
lustrated by Figure 4.18, shows that the set of solutions proposed in this paper
considerably enhances the robustness of the reconstructions, given the fact that,
even without the coverage criterion and in the presence of noise, the method was
able to minimize the number of defects.

Also concerning function editing, in Figure 4.19 another example is presented,

94 Chapter 4. Meshless Surfaces from Point Clouds

(a) (b) (c)

Figure 4.19: Enhancing the model using function editing: (a) model without high order
approximations (due to configuration), (b) selected blocksfor function changing and (c)
final result.

Figure 4.20: The Filigree model (514K points). The back and front views of the model
are shown, in which the left half was generated with Ohtake’stechnique and the right half
was generated with the method proposed.

in which planar functions, employed due to a user-defined configuration (Fig-
ure 4.19b), were replaced by second degree polynomials. Differently from the
previous example, in this one we used the function editing toenhance the qual-
ity of the function and not to remove defects. The comparisonbetween Fig-
ures 4.19a and 4.19c illustrates the gain in reconstructionquality.

It is important to mention that the method proposed here performs slightly
worse in terms of computation time than the method by Ohtakeet al. (about
5% slower). One major difference between the methods is that, in the approach
presented, the evaluation is decoupled from the function approximation, in the
sense that the whole function is built before the first evaluation is made. This fact
means that for coarse grids or small ray tracer viewports, Ohtake’s method tends
to be faster, but as soon as the number of required function evaluation increases,

4.4. Adaptive Partition of Unity Implicits 95

Figure 4.21: Comparing the iso-mesh produced fromJ1
A (left) against the iso-mesh ob-

tained fromJ1
A with displacement (right). See color plates.

the methods perform similar in terms of processing time.
Another substantial difference between the methods is the function behavior

in regions away from the zero-set. The proposed method presents a bounded
maximum gradient magnitude for the whole domain due to the robustness criteria
applied during the approximation phase. For instance, for the model presented
in Figure 4.20, the ray-tracer algorithm we employed[128] showed a maximum
gradient magnitude of 1.9 for the method presented and of1010 for Ohtake’s.

In order to illustrate the results of the mesh displacement technique, the Chi-
nese dragon model (665K points) was reconstructed using a maximum refinement
level 7. Figure 4.21 shows, on the left, the original mesh and, on theright, the
model generated with mesh displacement. Both meshes are composed of 535 605
triangles and the time taken for polygonizing the models was39.433s and 202.9s
for the normal and the displacedJ1

A version, respectively. This slow-down was
expected for the displaced version, since it requires more evaluations of the func-
tion to compute the approximation of the gradient; but even so, this extra cost is
constant and does not affect the complexity of the algorithm.

To assess the improvement of the triangles caused by the displacement, the
aspect ratio measureα∆ =

√
3emaxP
12A

was used, whereemax is the largest edge,P
is the perimeter andA is the area of the triangle. Notice that the best aspect ratio
is 1.0 (equilateral triangle).

For the normal mesh, the average aspect ratio was 5.55 and thestandard de-
viation was 128.09, whereas for the enhanced mesh, the average was 1.68 and
the standard deviation was 0.61. This result confirms the effectiveness of the
technique because it was able not only to enhance the averagethe quality of the
triangles but also to decrease the variation of the aspect ratio, which means that
the whole mesh presents a reasonable overall aspect ratio.

96 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.22: A CSG difference operation involving the Neptune model and a cylinder (see
color plates).

Finally, in Figure 4.22, a CSG difference operation betweenthe Neptune
model and a cylinder is demonstrated. The support for such operations is an im-
portant advantage of implicit surface definitions.

4.5 GPU-based Rendering of Meshless Surfaces

Meshless surface representations can be directly visualized by using meshless sur-
face rendering algorithms instead of generating a surface mesh. There exist a wide
range of algorithms but the focus of this sections is on surface rendering algo-
rithms for surface representations based on projection operators and on implicit
functions. Specifically, it is shown how ray-tracing can be implemented on the
GPU to render such surface representations.

4.5. GPU-based Rendering of Meshless Surfaces 97

4.5.1 Rendering surfaces based on projection operators

A GPU algorithm for ray-tracing surface representations based on projection op-
erators, which is considerably faster than CPU implementations[150; 151], is pre-
sented here. This GPU implementation is based on the ray-tracing algorithms for
moving least-squares surfaces proposed by Adamson and Alexa [3] and is tuned
for the moving least-squares projection operator proposedby Levin [98] but can
be naively modified to support other projection operators.

The process is described below where each step represents a rendering pass.
As in the work by Adamson and Alexa, support balls are defined around the sam-
ple points, which will be rendered during the steps ‘intersection’, ‘form covariance
matrix’, and ‘form system for polynomial fitting’. During the steps ‘find normals’
and ‘solve linear system and find projection’ a quad coveringthe entire viewport
is rendered to generate a fragment per ray. The step ‘initialapproximation’ is
performed only once as a pre-processing step.
Initial approximation. In this render pass, local polynomial approximations for
each sample pointxi are calculated. For this, a single quad is rendered to generate
a fragment per sample point. Each fragment calculates the corresponding local
polynomial following Alexa’s method to project a point ontothe surface1, for
which, given the pointr to project, the approximate tangent plane is obtained by
solving

min
n,t

N∑

i=1

〈xi − (r + tn),n〉2ωMLS(xi, r + tn).

The local polynomial fitting remains as described in Section4.1 for Levin’s defi-
nition. Since the point to be projected is the sample point itself, and is thus near
the moving least-squares surface,t = 0 is assumed and the normaln is calculated
using covariance analysis. Oncen is defined, the polynomial is approximated
in the local coordinate system (withxi as the origin andn as one of the vectors
of the orthonormal basis), withxi asr and using neighborhood information pre-
stored in a 3D texture to obtain the neighbors of the sample point xi. The result
(coefficients) is rendered to a 32-bits per-channel float texture for further use.
Intersection. The nearest intersection of each ray with the local polynomials
stored at the sample points defines the first approximation ofthe intersection of the
ray with the point set surface. To find this intersection, viewport-aligned discs with
radiusρ are rendered as shown in Figure 4.23 (as a 2D example). Each fragment
belonging to a disc calculates the intersection of the ray that passes through it
with the polynomial stored at the respective sample point (top-right zoom in the
figure). For this, the ray is transformed into the local coordinate system, defined

1Note, however, that Alexa’s projection procedure does not generate points on the surface as
noted by Amenta and Kil[11].

98 Chapter 4. Meshless Surfaces from Point Clouds

xi

ρ

n

Figure 4.23: Calculating the intersection of the ray with the local approximation stored in
each sample point (see color plates).

by xi andn in the 2D example, wheren is the normal calculated in the first step
of the algorithm. If there is no intersection or if the intersection is outside the ball,
the fragment is killed. Thus, using depth tests the nearest intersectionr of the ray
with the local polynomials is obtained. Oncer is determined and stored in a float
texture, its projection on the moving least-squares surface is found. This is done
in the four next steps.

Form covariance matrix. Since the pointr found in the last step is assumed to
be reasonably close to the moving least-squares surface,t = 0 is assumed andn is
found using covariance analysis. For that, the covariance matrix must be formed
using the nearest neighbors of the pointr. Since performingk-nearest neighbors
spatial searches is expensive, a range query is performed instead by rendering
discs with a radiusρ sufficiently large to influence the points in the neighborhood
of each point, beingρ = 2h a good estimate for homogeneously sampled point
clouds, where, as before,h is the fill size.

Each fragment generated this way calculates its distance tothe intersection
point on the ray passing through it in order to ensure that it is in the neighborhood
of the intersection. In Figure 4.23 the zoomed disc influences the intersection
point on the ray since it is within a distanceρ, whilst the influence of the disc
in the back is discarded by means of a kill instruction for thefragment through
which the ray passes. Each fragment belonging to the disc corresponding toxi

that passes the proximity test calculates(xi − r)(xi − r)TωMLS(xi − r). The
results of the fragments in the neighborhood ofr are accumulated using one to
one blending to three 16-bit-per-channel float textures that hold the3 × 3 matrix
(since blending to a 32-bit-per-channel texture is prohibitively slow).

4.5. GPU-based Rendering of Meshless Surfaces 99

Find normals. In this step a single quad covering the viewport is rendered to
generate a fragment per ray. Each fragment calculates the eigenvector associated
to the smallest eigenvalue of the matrix obtained in the previous step, using a
GPU implementation of the inverse power method. The result is written to a float
texture.
Form system for polynomial fitting. Once the normal at each intersection point
is found, we must calculate the polynomial approximation using WLS. For that, a
linear system is formed whose solution will provide the coefficients of the poly-
nomial. The process is similar to the one of the step ‘form covariance matrix’
with the difference that the value calculated by each fragment belonging to the
disc corresponding toxi is twofold, a4× 4 matrixωMLS(xi, r)aa

T and a vector
ωMLS(xi, r)a of size4, wherea = [(xi − r)2

x (xi − r)2
y (xi − r)x(xi − r)y 1]T .

These results are accumulated by means of blending to four float textures to be
used as input for the next step.
Solve linear system and find projection.The linear system formed in the last
step is solved in a further render pass by rendering a quad covering the viewport.
Each fragment (ray) solves the respective linear system using conjugate gradient.
Then, the intersectionr is projected onto the polynomial. If the distance between
r and its projection is smaller than a threshold, the intersection of the ray with the
surface has been found to ber. Otherwise, the intersection of the ray and the local
approximation is calculated. If the intersection is insidethe ball with its center in
the original sample pointxi and with radiusρ, this intersection is written into a
float texture in order to use it in the next iteration.

The next iteration starts in the step ‘intersection’ where,from the second iter-
ation on, it is necessary to check if the result of the last iteration,i.e., the result of
‘solve linear system and find projection’, is already the intersection with the mov-
ing least-squares surface, in which case no further processing is done in any of the
following steps. Otherwise, if the result of the last iteration is a valid intersection
point within the ball defined byxi andρ, the following steps are performed using
this intersection as the new pointr. If not, the nearest intersection, after the cur-
rentr, between the local approximations and the ray is found by means of depth
tests as in the first iteration, killing all fragments with depth less or equal the depth
of the currentr.

As reported by Adamson and Alexa, two to three iterations areneeded to find
all intersecting points between the primary rays and the moving least-squares sur-
face. It is important to note that in the case of calculating the intersection between
the moving least-squares surface and a set of rays that are not consistently ori-
ented as the primary rays (e.g. secondary rays) the search for the intersection in
step ‘intersection’ must follow another strategy. A naive brute force scheme was
used, checking all local polynomial approximations for each ray (fragment). This
can be performed using nested loops and/or multiple rendering passes. Since in

100 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.24: GPU-based ray-tracing of the moving least-square surfaces for the Skeleton
Hand point cloud.

this case it is not possible to perform the range queries as described above, this first
intersection can be used as a rough approximation of the intersection between the
ray and the moving least-squares surface for secondary reflected, refracted, and
shadow rays. Thus, for these secondary rays none of the four remaining steps is
performed.

Ray-tracing a moving least-squares surface on the CPU couldbe prohibitively
slow, whilst the proposed implementation achieved up to 6.25 fps for the Stanford
Bunny (36K points), 4.54 fps for the Horse (48K) and 2.22 fps for the Skeleton
Hand (109K) using the GPU implementation described with 2 iterations. In the
case of 3 iterations the frame rate dropped to 4.16fps, 3.13 fps and 1.37 fps for
the Bunny, the Horse and the Skeleton Hand respectively. However, 2 iterations
suffice to generate a high-quality rendering as shown in Figure 4.24. The test were
carried out on an Nvidia Geforce 8800 Ultra graphics card.

For the tests performed, a single reflection secondary ray and a depth of2 were
used. The use of secondary rays in the implementation described is currently lim-
ited by the lack of a proper data structure for performing range queries efficiently
on the GPU. Therefore, the inclusion of such a data structureis of major impor-
tance and is addressed in the next section for rendering implicit surfaces.

The advantages of hardware-accelerated rendering of moving least-squares

4.5. GPU-based Rendering of Meshless Surfaces 101

Figure 4.25: Point set surface for the vertices of an iso-surface mesh extracted from the
Knee dataset with marching cubes.

surfaces could be exploited for accurate rendering of surfaces modeled as point
clouds extracted from different sources, like medical data. For instance, the ver-
tices of a surface mesh generated from MRI data by means of traditional meth-
ods, such as marching cubes or surface reconstruction techniques applied over
the result of a segmentation algorithm, could be used as input to the ray-tracing
algorithm. This will provide a smooth noise-free renderingof the iso-surface ex-
tracted. Figure 4.25 shows an example of this process for theKnee dataset.

4.5.2 Rendering implicit surfaces

Implicit surfaces can be rendered with the approach briefly described in Chap-
ter 2. A GPU implementation of this approach is presented here. As in the case
of hardware-accelerated rendering of surface definitions based on projection op-
erators, the implementation presented here is based on the assumption that the
surface is defined on a tubular region aroundX and this region can be approxi-
mated as the union of the enclosing spheres with radiusρ (see above) centered at
the sample points.

The implementation for implicit surfaces is considerably easier than the imple-
mentation for projection operators. The algorithm, in thiscase, performs a single
render pass. View-aligned discs with radiusρ centered at the sample points are
rendered as described above. In this case, since no initial local polynomial surface
approximation is available, each fragment computes the intersection points be-
tween the corresponding ray and the enclosing sphere of the sample point, whose
disc generated the fragment. The implicit function is evaluated at both points and,

102 Chapter 4. Meshless Surfaces from Point Clouds

in case a surface crossing is detected by comparing the signsof the resulting eval-
uations, the bisection method is used as depicted in Figure 2.2. To that end, the
sample points in the neighborhoods of the evaluation pointsmust be available.
This can be accomplished using two different GPU data structures as explained in
the following.
Gridded neighborhood. The first data structure is built by creating a three-
dimensional Cartesian grid covering the domain ofX , with cell size equal to
H. Eachxi is then assigned to the cellC in the grid containing it (in the Eu-
clidean space). Additionally,xi is added to the neighboring cells that intersect
the support of the middle point ofC. This support, in the implementation de-
scribed here, is radial and, since Gaussian weighting functions were used for the
implicit functions tested, all cells in a radiusκH from the center are considered.
The parameterκ must be large to ensure that all points that have a significantin-
fluence in the evaluation of the function at any evaluating point x ∈ C. A good
choice isκ = 4, since larger values compromise the performance. Once the grid
containing the lists of points stored in each cell is created, the points in each cell
are arranged consecutively in a two-dimensional array. Twosuch arrays are ac-
tually created, one containing the point positions and one containing the point
normal vectors pre-calculated using covariance analysis as described throughout
the chapter. This increases considerably the memory space required in favor of
higher frame rates.

Three textures are then created with the grid and these arrays. The first tex-
ture (grid) is a three-dimensional texture with size equal to the resolution of the
grid. Each texel in the texture contains the number of pointsstored in the corre-
sponding cell as well as texture coordinates pointing to specific positions in the
textures containing the arrays of positions and normal vectors (positions and
normals respectively). To clarify what these last texture coordinates are, it is
necessary to explain how the point positions and normal vectors are arranged in
the two-dimensional arrays (which are directly mapped to two-dimensional tex-
ture). Since both arrays are arranged in the same way, the following discussion is
valid for both the positions and the normal vectors arrays. The goal of the arrange-
ment is to accelerate the fetching of the points stored in a cell. Thus, starting at
the position(i, j) in the array containing the first point in the list stored in the cell
C, the goal in turn is to require updating only the indexi to access the following
point in the list of points stored inC. To that end, the entire list ofC, with size
NC , must be stored inNC consecutive positions in the array (row-wise). This can
be accomplished by fixing the width of the two-dimensional array as being equal
to
√
M , whereM is the sum of the sizes of all lists in the grid. Then, the listsin

the gird are successively stored row-wise in the array untilthe number of points
in a row is larger than the width. In this case, the next process continues with the
next row in the two-dimensional array starting with the listthat caused the over-

4.5. GPU-based Rendering of Meshless Surfaces 103

Figure 4.26: Renderings of the Fertility and Buste point sets using the GPU implementa-
tion described here with Kolluri’s surface definition.

flow in the previous row (note that this entire list is stored in the new row and not
partitioned among the two rows). Although this process causes further overhead
in the storage requirements, it facilitates the access to the points in the fragment
program.

During function evaluation in the fragment program, the cell Cx containing
the evaluation pointx is found and its texture coordinates in texturegrid are
computed using the resolution of the grid and the extent of the domain. The data
in the corresponding cell is then fetched, which, as may be recalled, includes the
size of the list of points stored in the cell as well as the texture coordinates of
the position of the first point in the list in texturespositions andnormals.
With this information, it is possible to access the texels containing the points in
the neighborhood ofx (this is, the points stored inCx).
Sample-centered neighborhood.The sample-centered data structure is similar
to the gridded structure presented above. For each pointxi, a list containing the
points within a radiusκH from xi is computed. Thus, instead of creating a grid, a
two-dimensional array of width and height equal to⌈

√
N⌉, whereN is as before

the number of points inX , is used in order to generate enough array positions to
correspond with all points inX . Thus, the texturespositions andnormals
are arranged in the same manner as before using the lists stored at the sample
points and the texture coordinates to the first position of each list are stored in the
corresponding position in the two-dimensional array replacing the grid, which is

104 Chapter 4. Meshless Surfaces from Point Clouds

stored in textureneighborhoods.
In this case, given an evaluation pointx, the neighborhood ofx is obtained

by computing in the vertex program the texture coordinates(tx, ty) in texture
neighborhoods where the data of the sample point corresponding to the cur-
rently processed disc is stored. For this, the index of the sample point is given
as an element of the texture coordinatestCPU passed by the application to the
vertex processor for each disc. The resulting texture coordinates(tx, ty) are then
passed to the fragment processor. Then, the fragment program uses(tx, ty) to
fetch the number of points in the neighborhood and the texture coordinates in tex-
turespositions andnormals where the first point in the neighborhood is
stored. The entire list of neighboring points is then accessed as described above
each time the implicit function must be evaluated. The new capabilities for work-
ing with arrays offered by the NVIDIA’s G80 graphics cards was explored to fetch
the positions and normal vectors only once, storing them in aglobal array, but this
produced a dramatic performance decrease.

Independently from the data structure used, the list of points traversed for
evaluating the implicit function contains points that may not lie inside the support
of the weighting function centered at the evaluation pointx. Thus, in the fragment
program, it is important to check for this condition when evaluating the function
so as to discard those points in the list that do not belong to the support.

Both data structures delivered the same results in terms of surface approxima-
tion, as observed in Figure 4.26 where rendering of two pointclouds using the
data structures described above for Kolluri’s[83] surface definitions are shown.
Adamson and Alexa’s[2] definition produced similar reconstruction and perfor-
mance results. Although both data structures produce the same surface approx-
imation, the sample-centered neighborhood out-performs the gridded neighbor-
hood in terms of processing time. Using an NVIDIA Geforce 8800 Ultra graphics
card, for the Fertility point set (107K points), gridded neighborhoods achieved
3.27 fps and sampled-centered neighborhoods 4.36 fps, whereas for the Buste
point set (125K points), gridded neighborhoods delivered 1.28 fps and sample-
centered neighborhoods 2.19 fps. Despite being faster, sample-centered neigh-
borhoods are not adequate when following secondary rays in aray-tracing im-
plementation. In this case, the gridded neighborhoods better accommodate the
requirement of finding the neighboring points for an arbitrary position on an arbi-
trary ray.

CHAPTER

5 MESHLESSSURFACES FROMVOLUMES

Volume visualization can benefit from meshless techniques that are currently be-
ing applied to surface data. A number of authors have explored this possibility
in the last years. The most natural application for meshlesssurface modeling and
rendering techniques in the context of volumetric data is the extraction and ren-
dering of surfaces that are normally used to visualize volumetric data, such as
isosurfaces and stream-surfaces.

Thus, in this chapter, results on meshless techniques developed for extracting
surfaces from volumetric data are reported. In Section 5.2,a method for extract-
ing moving least-squares surfaces from volumetric data is presented,which was
developed in collaboration with João Paulo Gois from the Universidade de São
Paulo. In Section 5.3, a method for the interactive extraction and rendering of
stream-surfaces and path-surfaces is described. This method was developed in
collaboration with Tobias Schafhitzel from the Universit¨at Stuttgart, who must be
credited for the hardware-accelerated technique used to generate a dense set of
streamlines. Before detailing the techniques developed, related work is described.

5.1 Meshless Surface Extraction from Volume Data

Rendering volumetric data using meshless strategies has been addressed by differ-
ent authors in the last years. Coet al. [34] proposed a method for isosurface ren-
dering of volumetric data stored in Cartesian grids, named ‘iso-splatting’, which
samples points in the domain and projects them onto the isosurface. The projected
points are then rendered using splatting. The sampling is performed by finding the
voxels that intersect the isosurface and adding its middle point to the list of sam-
ples. The sampled points are then projected onto the surfaceusing either an exact
or an approximate projection method. The projection ofx is calculated by defin-
ing a rayr = x + td and finding the root of

fI = f(x + td),

for t, wherefI is the isovalue andf is the tri-linear reconstruction of the scalar
field. In practice, the directiond defining the ray is given by the vertices of the
corresponding voxel that lies on the opposite side of the isosurface with respect to
x. This approach is slow since the roots of a cubic polynomial must be calculated.
Therefore, the authors find an approximation by means of the Newton-Raphson
method.

105

106 Chapter 5. Meshless Surfaces from Volumes

Co et al. [32] addressed the problem of generating isosurfaces from multi-
block datasets with non-conformal cells. Their approach starts by generating an
isosurface mesh with marching cubes. This mesh is then used to generate a set of
sample points. The sample points are the input to a correction algorithm based on
radial basis functions which melds the non-conformal surfaces obtained with the
marching cubes algorithm. The correction algorithm uses a meshless radial basis
functions interpolation of the isosurface and projects thesample points onto it.
The interpolation is obtained by constructing a regular grid and using the middle
point of each cell as center of the radial function. The projected points are then
rendered using surface splatting.

The authors extended this approach to extract isosurfaces from large scattered
datasets[35]. To that end, marching tetrahedra is used, instead of marching cubes,
over a set of local tetrahedralizations which are computed so that their union cov-
ers the entire domain. This is achieved by constructing a regular grid covering
the domain and storing the scattered points in the respective cell of this grid. Fur-
thermore, a scattered point is added at the center of each void cell. Thus, the
computations can be parallelized by dividing the regular grid into blocks, each of
which is processed by a thread. The points in the block are used to construct a
Delaunay tetrahedralization. As mentioned before, marching tetrahedra is used
to obtain an isosurface mesh which is in turn used to perform the same meshless
correction described above for multiblock datasets.

Livnat and Tricoche[107] proposed an hybrid view-dependent method for iso-
contouring based on points and triangles. Nested-grids areemployed to traverse
the domain and decide whether a triangle or a single point must be rendered. Start-
ing at the root node, the algorithm prunes the current node inthe traversal if the
isovalue is outside the range stored in the node. In case the isovalue is contained
in the node, and if the node is a leaf, geometry is generated. Otherwise the visi-
bility of the children is determined and visible children are processed in visibility
order. The geometry extraction step represents a node with asingle point in case
the projection of the cell covers a pixel or less. Otherwise,marching cubes is used
to generate a local surface mesh.

Miriah et al. [116] address the problem of generating isosurfaces from data
obtained from simulations that make use of the high-order finite element method,
which is defined by basis functions inreference space, that give rise to aworld
spacesolution through a coordinate transformation, which does not necessarily
has a closed-form inverse. Since methods such as marching cubes and ray-casting,
which perform operations in world space, must compute an expensive nested root
finding process, the authors address the problem with particle systems. A set of
particles is thus distributed on the surface using geometric information from the
world-space isosurface while performing the sampling in reference space. Given
the set of input particle positionsX = {x1 · · · ,xN} to be distributed across the

5.1. Meshless Surface Extraction from Volume Data 107

surface and an implicit functionf(x), whose level setc is the desired isosurface,
the positionsxi; i = 1, · · · , N , are iteratively refined as

xi ← xi − f(xi)
fx(xi)

fT
x (xi)fx(xi)

, (5.1)

wherefx(xi) is the gradient of the implicit function atxi, until all particles lie
within an error thresholdǫT of the surface. For each particle on the surface, a
compact monotonically decreasing energy kernelE is associated. The energyEi

at a particle is then given by

Ei =

N∑

j=1,j 6=i

Eij =

N∑

j=1,j 6=i

E

(‖rij‖
α

)
,

whererij = xi − xj, andα defines the extent of the kernel such that when|rij| >
α, Eij = 0. Since using Euclidean distance fails to cull spatially close neighbors
that lie on adjacent surfaces, the neighbors with normal vectors that are more than
a90-degree difference from the normal of the particlexi are discarded.

The derivative ofEi with respect to the position of the particle is used to move
the particle to a to a locally lower energy state

vi = −∂Ei

∂xi
= −

N∑

j=1;j 6=i

∂Eij

∂‖rij‖
rij

‖rij‖
.

The particle positions are then updated using the projection of the derivative ofEi

onto the local tangent plane

xi ← xi +

(
I − fx(xi)f

T
x (xi)

fT
x (xi)fx(xi)

)
vi,

whereI is the identity matrix.
Since performing this operation can result in particles pushed off the surface,

a re-projection using Equation 5.1 is necessary to ensure that the particles are
within ǫT of the surface. This iterative two-steps process generatesparticles on
the surface that are evenly distributed. To adapt the density of the particle sample
to the details on the surface, the radius of the energy function can be scaled, for
instance, according to the curvature. This mathematical framework is applied
to high-order finite elements by means of expressions carefully formulated using
Einstein notation in order to achieve world space adaptivity using reference space
evaluations of the basis functions, mapping functions and their derivatives. This
is done in order to avoid computing the inverse of the mappingfunction between
reference space and world space.

108 Chapter 5. Meshless Surfaces from Volumes

5.2 Moving Least-squares Iso-surfaces

Moving least-squares surfaces proposed by Levin[98] have been further studied
by Amenta and Kil[10; 11], who noted important properties about the domain of
a moving least-squares surface and the behavior of the moving least-squares and
weighted least-squares minimization strategies in the context of moving least-
squares surfaces. Based on their observations, a novel technique to extract sur-
faces from volumetric data is proposed, inspired by the well-known ‘predictor-
corrector’ principle. The method proposed is able to provide good approximations
to the surfaces defined by a given feature in the volume, such as isosurfaces and
surfaces located at regions of high gradient magnitude (HG-surfaces). This last
class of surfaces is addressed since, as Knisset al.[81] pointed out, although there
is no mathematical prove, regions of interest are assumed tobe located at regions
of high gradient magnitude.

Mesh surfaces extracted from volumetric data have some inherent disadvan-
tages, such as the need for defining the polygon characteristic size and the need for
storing topological information. Also, important detailsmay be omitted or coarse
regions might be excessively detailed. Although more sophisticated methods were
introduced in order to handle these problems[138; 139; 115], the mesh must be
locally recomputed and refined, which is computationally expensive. Also, it is
necessary to define an initial surface, implying that the user must knowa priori
some characteristics of the object in order to define a good initial approximation.
The authors also mention the possibility of handling noisy data if sophisticated
strategies of refining and displacement of vertices are used.

On the other hand, the method presented handles these problems naturally.
Since it is based on local polynomial approximations, the precision of the model
can be locally defined. Also, low frequency noise in the data is easily handled, due
to the fact that the local approximations are computed by means of least-squares
approaches. The method presented generates smooth surfaces avoiding the piece-
wise approximation of mesh-based methods. As proof of concept, the hardware-
accelerated ray-caster presented in the previous chapter was extended to handle
the surfaces defined here. This is done since, as stated by Adamson and Alexa[3],
moving least-squares surfaces have clear advantages over other representations
when ray-tracing is used, namely the locality of the computations, the possibility
of defining a minimum feature size and the fact that the surface is smooth and a
two-manifold. As seen in the previous chapter, beside the inherent implications
of these three characteristics, the second advantage can beexploited when com-
puting the intersection of the ray with the surface, whilst the last one turns CSG
operations feasible.

As stated before, a strategy inspired by predictor-corrector methods, which
make use of two numerical approaches to solve ordinary differential equations, is

5.2. Moving Least-squares Iso-surfaces 109

defined here for extracting the surfaces. The first approach is a ‘predictor’ which
provides a first rough solution but requires only limited information. This solution
is the input to the ‘corrector’ which then finds a final more accurate solution.
These processes can be iterated in order to improve the solution obtained.

5.2.1 Computing MLS surfaces from volumetric data

The first step of the method is performed by solving a moving least-squares ap-
proximation problem to find an initial estimate for the projection of a given point
using a carefully defined weight function that characterizes the surface. This
makes it possible to deal with points that are relatively farfrom the surface. As dis-
cussed before, the weights traditionally used in moving least-squares minimiza-
tion schemes are given by some monotone decreasing functionof the distance
from the pointr to be projected to the point (voxel in this case)xi in the input set
X . Here, However, in this step information on ‘how close a voxel is to a feature in
the volume’ is used in order to weigh the voxelsxi. The functionωj; j = {1, 2}
used to weigh the voxelsxi determines the feature that defines the surface and
therefore the surface itself. Isosurfaces can be generatedwith the approach pro-
posed by using

ω1(xi) = exp

(
−|v − f(xi)|2

ρ2
1

)
,

wherev is the isovalue defining the isosurface,f(xi) is the scalar value atxi and
ρ1 is a scaling factor (also regarded as a smoothing factor). Also, assuming that
regions of interest are located at regions of high gradient magnitude, a class of
surfaces that depicts changes in the material properties can be obtained by using

ω2(xi) = exp

[
− 1

ρ2
2

(
1− ‖∇f(xi)‖

max{‖∇f(xi)‖}

)2
]
,

whereρ2 is also a scaling factor. With these weighting functions a local approx-
imating plane is computed by findingq and n = n(q); ‖n‖ = 1, so thatn
minimizes

epISO(q,n(q)) =
∑

xi∈N (r)

〈n,xi − q〉2ωj(xi); j = 1, 2, (5.2)

whereN (r) is the set of neighbors ofr, n is in the direction of the line throughr
andq, and the directional derivative ofJpISO(q) = epISO(q,n(q)) in the direction
of n(q), evaluated atq is zero,i.e., ∂n(q)JpISO(q) = 0.

After the minimization a local coordinate system is defined by the planeH(n,q).
On this local coordinate system, weighted least-squares isused to find a bivariate
polynomialg(η, ζ) that locally approximates the surface using as weighting func-
tion ω{1,2}. Definingp as the projection ofq on the fitted polynomialg(η, ζ), the

110 Chapter 5. Meshless Surfaces from Volumes

corrector scheme starts by computing a second approximating plane by findingx
anda = a(x); ‖a‖ = 1, so thata minimizes

ecISO(x, a) =

N∑

i=1

〈a,xi − x)〉2Θ(xi) (5.3)

whereΘ(xi) = ω{1,2}(xi)ωMLS(xi,x), a is in the direction of the line throughp
andx, and the directional derivative ofJcISO(x) = ecISO(x, a(x)) in the direction
of a(x), evaluated atx is zero,i.e., ∂a(x)JcISO(x) = 0. Recall thatωMLS(p,q) ≡
w(‖p− q‖), wherew is a monotonically decreasing function.

Then, as in the predictor step, a local coordinate system is defined on the
planeH(a,x) and a polynomial approximation is computed using weighted least-
squares with the weighting functionΘ instead ofω{1,2}. The projectionγ of x

on this polynomial fitting is the final projection ofr on the moving least-squares
surface. The resulting projected points can be input to any point-based rendering
method, such as EWA surface splatting[129]. In the following, however, the
focus is on describing a modified version of the ray-casting engine for surface
definitions based on projection operators, to accommodate moving least-squares
surfaces extracted from volumetric data.

5.2.2 Hardware-accelerated MLS Iso-surfaces and HG-surfaces

To interactively render a moving least-squares surface directly from the volumet-
ric data, viewport-aligned slices clipped with the bounding box of the volume are
rendered, separated from each other by a distance ofρ = kh (in the direction of
the view vector), where0.5 < k < 1 andh is the smoothing parameter used in
ωMLS during the corrector step. The idea behind this operation isthat, since the
minimal feature size of the moving least-squares surface must be greater thanh,
by taking steps smaller thanh it is ensured that the intersection between each ray
and the surface will be found.

In order to reduce the computation time, the per-voxel information to be used
is pre-computed and those fragments for which this information is smaller than
a pre-defined threshold are discarded. For the case of isosurfaces this data is
|v− f(xi)| and for the surfaces located in regions of high gradient magnitude it is
‖∇f(xi)‖. This threshold must be low enough to ensure that a sufficientnumber
of fragments is used for the rest of the process.

For each fragment generated that passes the above mentionedtest, the follow-
ing computations are performed in a single rendering pass. The predictor step
starts by minimizing Equation 5.2 defining the pointr to be projected as the po-
sition of the fragment in space. This minimization is performed by means of an
iterative process in whichq andn are updated in each iteration until the change

5.2. Moving Least-squares Iso-surfaces 111

(a) (b) (c)

Figure 5.1: The Bucky Ball dataset. (a) The final result of applying the predictor-corrector
method. (b) The points projected by the predictor at a distance greater than a pre-defined
threshold are shown in red. (c) The output points from the predictor projected by the
corrector at a distance greater than the threshold are shownin green (see color plates).

in q falls below a given threshold. The process starts by settingq = r. In each it-
eration,q is first fixed and covariance analysis is used to obtain the normal vector
n. To that end, the3× 3 covariance matrix

C1(q) =
N∑

i=1

(xi − q)⊗ (xi − q)ω1,2(xi)

is calculated and the eigenvector associated with the smallest eigenvalue of the
matrix is computed using the inverse power method. This eigenvector gives us
the normal vectorn. Then,n is fixed and Equation 5.2 is minimized by finding
t, so thatq + tn, whereq is the current solution. Then we setq ← q + tn
and the next iteration starts. Findingt is straightforward since by fixingn the
minimization of Equation 5.2 becomes a linear univariate minimization problem.
Note that the pointsxi that have a significant influence for these computations are
the neighboring voxels ofq. Thus, no spatial search is required during the whole
projection process.

Oncen andq are found, a polynomial approximation to the surface is calcu-
lated in a local coordinate system defined over the planeH(n,q) using weighted
least-squares and weighting the pointsxi in the neighborhood ofq with ω1,2(xi).
To exploit the capabilities of the GPU to handle vector operations for vectors of
size4, the polynomial

g(η, ζ) = Aη2 +Bζ2 + Cηζ +D

is used for the local approximation (note that(η, ζ) is in the local coordinate sys-
tem). Therefore, the matrix of the linear system to be solvedis of size4 × 4 and

112 Chapter 5. Meshless Surfaces from Volumes

Size (voxels) Predictor Predictor-Corrector

Cadaver Head2562 × 154 2.92 0.14
Engine 2562 × 110 5.88 0.27
Fuel 643 9.26 0.88

Bucky 323 50.10 2.60

Table 5.1: Performance in frames per second for the moving least-squares surface extrac-
tion from volumetric data method.

thus easily handled in the shader. The projection ofq on the local approximation
gives us the pointp which is used as input to the corrector step.

In the corrector step, the minimization of Equation 5.3 is performed in the
same way as in the predictor step. The main difference is thatwhena is fixed to
find x, the minimization of Equation 5.3 remains non-linear. Thus, theBrent with
derivativemethod was implemented to solve this problem. Also, the covariance
matrix used for findinga is in this case given by

C2(x) =
N∑

i=1

(xi − x)⊗ (xi − x)Θ(xi).

As before, oncex anda are found, a local system is defined and weighted least-
squares is used to compute a local approximating, this time using the weighting
functionΘ. The projectionγ of x on this polynomial gives us the projection of
the fragment’s positionr on the approximate surface.

Then, the ray-casting algorithm continues. If the distancebetweenγ andr is
less than a pre-defined error,r is the intersection of the ray with the approximate
surface. Otherwise, as described in the last chapter, the intersection between the
polynomial and the ray is found. If the intersection is within a region of confidence
defined by a ball with radiusρ and centerr, the projection process is started again
definding the intersection found as the newr. This process is repeated until the
distance between the projection andr is less than the error, or the intersection is
outside the ball. In the last case the fragment is killed, which, since depth tests are
used, simulates the jump to the next ball used by Adamson and Alexa.

Rendering and performance results of the methods proposed are presented
in the following. All tests were carried out on a standard PC with a 3.4 GHz
processor, 2GB of RAM and an NVIDIA Geforce 8800 Ultra graphics card. The
size of the viewport used for the performance measurements was5122.

In Table 5.1, the results obtained for the extraction of surfaces from volumet-
ric data are presented, performed using only the predictor step and the extraction
performed using one iteration of the predictor and one iteration of the corrector
steps. As can be noticed in the table, the corrector step addsa significant overhead

5.2. Moving Least-squares Iso-surfaces 113

Figure 5.2: Moving least-squares surfaces extracted for the Engine and the Cadaver Head
datasets using the gradient magnitude (top) and isovalues (bottom).

to the processing time. Although this step improves the accuracy of the result, for
interactive applications where precision is not important, the predictor suffices to
generate an already good approximation to the moving least-squares surface. This
fact is depicted in Figure 5.1 where the effect of the predictor and the corrector
steps on the input points (fragments) is shown. The predictor step projects a sig-
nificant percentage of the points at a distance greater than apre-defined threshold,
set to test this effect. On the other hand, although the effect of the corrector step
over the points already projected by the predictor is reduced to a small amount of
points, this further projection could be important for applications where precision
is the main concern.

114 Chapter 5. Meshless Surfaces from Volumes

The results obtained are promising considering the complexity of the computa-
tions involved. Although the implementation for extracting moving least-squares
surfaces from volumetric data is not interactive for the predictor-corrector case,
the processing time is considerably low in relation the large amount of fragments
projected. Also, the renderings are of good quality as shownin Figure 5.2.

5.3 Point-based Stream Surfaces

Stream surfaces are a direct extension of streamlines, thatis, surfaces that are
everywhere tangent to the vector field. They are effective insimultaneously dis-
playing various kinds of information of a flow, such as flow direction, and torsion
of a vector field as well as in conveying vortex structure[55]. Despite these ad-
vantages, stream surfaces are not common in flow visualization. Such a lack of
popularity may be due to the fact that stream surfaces require more advanced al-
gorithms than streamlines; interactive visualization is not as easy to achieve as for
streamlines; wide stream surfaces lack internal visual structure, leading to pos-
sible perception problems; and stream surfaces have been traditionally restricted
to steady flow. These issues are addressed here by devising a new point-based
algorithm for stream surface construction and rendering. Thereby, an expensive
triangulation of the stream surface is avoided. Particle tracing starts at a curve of
seed points and results in a collection of particles that represent the stream sur-
face. More specifically, the issues mentioned above are addressed by developing
a point-based computation of stream surfaces that maintains an even density of
particles on the surface and by rendering the points by meansof splatting. An ex-
tension to path surfaces of unsteady flows and the combination with texture-based
flow visualization on stream surfaces and path surfaces to show inner flow struc-
ture on those surfaces are also described. Furthermore, it is shown how these al-
gorithms can be mapped to efficient GPU implementations. Thevisualization ap-
proach makes it possible to interactively generate and render stream surfaces and
path surfaces, even while seed curves are modified by the useror time-dependent
vector fields are streamed to the GPU. Figure 5.3 illustratesan example of stream
surfaces generated by the algorithm presented.

While the concept of a stream surface is straightforward, its implementation
is more challenging than for streamlines because a consistent surface structure
needs to be maintained. Hultquist[73] describes an algorithm that geometrically
constructs a stream surface based on streamline particle tracing. In particular, his
algorithm takes into account the stretching and compression of nearby streamlines
in regions of high absolute flow divergence. Garthet al.[55] show how Hultquist’s
algorithm can be improved in order to obtain higher accuracyin areas of intricate
flow. An alternative computation is based on implicit streamsurfaces[157], which
however cover only a subclass of stream surfaces. A related line of research ad-

5.3. Point-based Stream Surfaces 115

Figure 5.3: Visualization of the flow field of a tornado with: (left) a point-based stream
surface; (right) the combination of a stream surface and texture-based flow visualization
to show the vector field within the surface. Each stream surface is seeded along a straight
line in the center of the respective image (see color plates).

dresses the issue of how stream surfaces are displayed effectively, for example,
they can be chosen according to principal stream surfaces[27], rendered at sev-
eral depths by using ray casting[53], or visualized through surface particles to
reduce occlusion[156]. Previous methods are restricted to stream surfaces, to
steady flow or instantaneous vector fields of unsteady flow, whereas the approach
proposed is designed for steady and unsteady flow alike.

The approach proposed here adopts line integral convolution (LIC) [26], ex-
tended to tangential flow on curved surfaces. While several methods exist for
texture-based flow visualization on surfaces[93], a hybrid object/image space
LIC method[166] is used because it can process vector field data extracted by
point-based rendering. The object/image space LIC is similar to texture advection
in image space[94; 159], but achieves better filter quality and guarantees tem-
poral coherence under camera motion. The basic visualization strategy described
here resembles recent work by Larameeet al. [92], which combines mesh-based
stream surfaces with texture advection for an improved visualization of steady
flow: by construction, a vector field carved out on a stream surface is always tan-
gential to the surface; therefore, a projection of a 3D vector field onto a surface is
avoided. In addition, the visualization method proposed isdesigned for steady and
unsteady flow alike as mentioned before. Typically, the texture-based visualiza-
tion of unsteady flow leads to smeared-out texture patterns,as present in texture
advection[77; 158] or UFLIC [142; 106; 102]. We show that the approach pre-
sented leads to clear line patterns that show a certain choice of path lines. More
background information on flow visualization in general canbe found in the book
chapter by Weiskopf[165].

5.3.1 Streamlines and path-lines generation

Stream surfaces are surfaces that are everywhere tangent toa time-independent
vector field. According to Hultquist[73], a stream surface can be represented as

116 Chapter 5. Meshless Surfaces from Volumes

a 2D parametric surface embedded in a 3D flow. A natural choiceof parame-
terization uses one parameter,s ∈ [0, 1], in order to label streamlines according
to their respective seed points. Assuming a parameterized representation of the
seed curve, we bases on that curve parameterization. The actual streamlines are
computed by solving the ordinary differential equation forparticle tracing,

dx(t)

dt
= v(x(t), t), (5.4)

wherex is particle position andv is the vector field at timet. The seed points
represent the initial values for the ordinary differentialequation. Then, the second
parameter of the stream surface is the time,t ∈ [0, tmax], along the streamline inte-
gration. This choice of surface parameterization results in two meaningful classes
of isoparameter curves: for constants and varyingt, streamlines are obtained; for
constantt and varyings, time lines are obtained, which are advected images of
the initial seed line.

For stream surfaces, a time-independent vector fieldv is assumed. However,
the above construction is already designed for time-dependent vector fields. In
this case, particle tracing leads to pathlines instead of streamlines, which in turn
results in the construction ofpath surfacesinstead of stream surfaces.

As the aim is to provide an interactive tool for the generation and visualization
of those surfaces, the algorithm for generating streamsurfaces and path-surfaces is
designed for a GPU implementation. The basic algorithm consists of three parts:
the generation of the seed points, the integration of the particles along the given
vector field, and insertion/removal events to maintain an evenly dense sampling
of the surface by particles. The first part is executed once only at the beginning,
whereas the second and third parts are repeatedly executed in an interleaved man-
ner to incrementally construct the stream surface. A roughly even density of par-
ticles is maintained in order to obtain a good reconstruction of the surface during
the point-based rendering process.

The data structures of the algorithm can be represented as two-dimensional
textures. Textureparticles stores the positions of the particles in the object
space of the surface. The organization of theparticles texture is rather sim-
ple: the number of rows stands for the number of particles, whereas the columns
describe the number of integration steps. Actually, the number of rows has to beη
times greater than the number of initial particles to allow for additional room for
particles inserted during surface construction. Texturestates is introduced to
store additional data values and has the same size as textureparticles. This
texture contains indices to the left and right neighbors of the respective streamline.
The vector field additionally is held in a three-dimensionaltexture.

In the first step of the algorithm, the seed points are generated. To generate
the seed points, the user defines a seed curve by placing a straight line at a spe-

5.3. Point-based Stream Surfaces 117

cific region of interest. Seeding is implemented by rendering only one column of
textureparticles (Figure 5.4a). The height of the quadrilateral used for ren-
dering represents the number of initial particles. Similarly, thestates texture is
initialized with indices to streamline neighbors.

After initialization, the integration of particle traces is performed in the sec-
ond step. First-order Euler integration is applied to solveEquation 5.4, but higher-
order methods could be used as well. Particle tracing updates textureparticles
in a column-wise manner, where each column corresponds to a specific time. The
previous position of a particle is obtained by a texture lookup using the texture
coordinates that refer to the previous column. Then, the updated position is writ-
ten to the current column. A ping-pong rendering scheme is used for updating the
particle positions. Thestates texture is treated in the same manner to maintain
consistent connectivity information.

The third step of the algorithm implements the insertion or removal of par-
ticles. This step relies on criteria[73] that decide whether a particle remains,
needs to be added, or has to be removed. In addition, a stream surface may tear,
for example in regions of very high divergence or when the flowhits an interior
boundary. Letxi,t be the position of thei-th particle at timet andθ(x,y) be the
distance between pointsx andy. Then, a particle is inserted if

θ(xi,t,xi+1,t) > αθ(xi,0,xi+1,0) (5.5)

and
θ(xi,t,xi+1,t)− θ(xi,t−1,xi+1,t−1) < β θ(xi,t−1,xi,t), (5.6)

whereα andβ are usually set to2. The first inequality tests if the current distance
is larger thanα times the initial distance between two adjacent particles.The sec-
ond inequality guarantees that the distance between two neighbors does not grow
more thanβ times faster than the distance between its previous and its current
position. The surface tears if Equation 5.5 is true and Equation 5.6 is not met.
A particle dies if the distance between two neighboring particles is too small, for
example, when particles enter a convergent area of the flow. Aparticle is removed
if the following conditions are fulfilled:

(
xi,t − xi−1,t

‖xi,t − xi−1,t‖

)
·
(

xi+1,t − xi,t

‖xi+1,t − xi,t‖

)
≈ 1 (5.7)

and

θ(xi,t,xi+1,t) < γ θ(xi,0,xi+1,0)

∧ θ(xi,t,xi−1,t) < γ θ(xi,0,xi−1,0), (5.8)

whereγ should be less than1. The dot product in Equation 5.7 tests for collinear-
ity of the particle and its neighbors. If this is true, both distances from the particle

118 Chapter 5. Meshless Surfaces from Volumes

to its neighbors are checked. Equation 5.8 defines that a particle needs to be re-
moved if the distances to its neighbors are smaller than the distances att = 0,
scaled byγ.

The computation of the different criteria requires data from the local neighbor-
hood of a particle. The temporal neighborhood (i.e., access to previous time step)
is intrinsically encoded in theparticles texture because a row of that texture
corresponds to different time steps of the same particle. The spatial neighborhood
is explicitly stored in thestates texture, which holds indices to the left and right
neighbors.

Particle removal is implemented by marking “dead” particles in the texture
particles so that they are not processed any further during particle tracing
and surface rendering. By using render targets with floatingpoint precision, no
additional color channel is necessary. There exist at leasttwo channels, containing
the neighbors which cannot be negative. If the particle dies, one of these chan-
nels is used to store this additional information, by negating its current value. The
implementation of particle insertion uses two additional textures that store inter-
mediate results. The first one contains the positions of the new particles, and the
other one contains the corresponding states. Both textureshave the same height as
the originalparticles andstates textures. Each existing particle is tested
with its right neighbor using Equations 5.5 and 5.6. If both inequalities are true,
a new particlex′

i,t is created by linear interpolation betweenxi,t andxi+1,t. Then,
the particle position and connectivity are written to the additional textures. The
neighbors are assigned to the new particle by using the coordinates ofxi,t as left
andxi+1,t as right neighbors.

The problem is that the intermediate textures may contain only a few particles
that were actually inserted. In fact, most of the cells of those textures will con-
tain inactive elements. Therefore, the intermediate textures must be condensed
by removing all inactive particles and putting the active particles in a consecu-
tive order. Such a reordering is rather complicated for a GPUimplementation.
The histogram pyramids proposed by Ziegleret al. [173] are adopted and slightly
modified to fulfill this task. The main idea is to merge the positions of the new
particles, which are distributed over the whole texture. Due to the fact that the
particles’ positions are updated column by column, the merging algorithm is re-
stricted to a 1D domain. In fact, all new particles are storedin one column, in
which either a texel is filled with a new particle or is empty.

A binary tree is built over this column by using a pyramid stack of 1D textures,
where each level of the pyramid has at least half of the heightof the previous
level, representing one level of the binary tree. The finest leveln represents the
new particle itself. In the implementation presented, a flagis used to notify a
texel if it contains a new particle (φ = 1) or not (φ = 0), which serves as basis
for the binary tree generation. If rendering leveln − 1 of the binary tree is the

5.3. Point-based Stream Surfaces 119

(a) (b) (c)

Figure 5.4: Illustration of different steps of the algorithm: (a) during the initialization of
the particles texture only one column is rendered (the height of the strip represents the
number of initial particles) and (b) during creation of the binary tree the new particles
build the highest level and the contents are summed up until the root contains the overall
number of particles to be inserted. In (c) the lifetime of theindividual particles is shown.
The color gradient is defined from red (att = 0) to green and illustrates the increasing
lifetime. The areas with red lines at the left and bottom-right parts of the image show
regions with many new streamlines (see color plates).

current one, for example, always two texels of leveln are accumulated and stored
into one texel of leveln − 1. This is continued until the root level0 is reached,
which is represented by one texel containing the overall number of new particles
(Figure 5.4b). The creation of the binary tree requiresn render passes to build the
tree levels in a bottom-up manner.

After the binary tree is created, the new particles are addedto the actual tex-
tureparticles. Here, the number of new particles is read back from graphics
memory. Due to the small texture size (one texel) the textureread back does
not affect the performance significantly. Then a quadrilateral is created with a
height equal to the number of new particles. According to thehistogram pyramid
method, each texel rendered by the quadrilateral is numbered from 0 to k − 1,
wherek stands for the number of new particles. The adapted top-downtraversal
algorithm by Ziegleret al. [173] works as follows. Starting from the first level
of the binary tree, the key value is compared with the entry ofthe current cell.
If the key value is smaller than the cell value, the tree is traversed downward. If
the key value is greater or equal, the value of the current cell is stored and the
binary tree is traversed downward following the pointer of the successor. This is
repeated until the algorithm reaches leveln. Finally, the value of the current cell
plus the number of predecessors gathered during the traversal is compared to the
key value. If the key value is smaller, the new particle corresponding to the key

120 Chapter 5. Meshless Surfaces from Volumes

value is found, otherwise the successor cell is used. By rendering the position
and the corresponding states at the current fragment, the new particle is inserted
containing all the necessary information for the growing ofthe stream surface. In
fact, the left neighbor is the particlexi,t, which has created the new particle, and
the right one is the old neighbor ofxi,t, which wasxi+1,t.

To restore the consistency of the particle system, the old particles need to be
updated as well. When a new particle is created, its index in theparticles
texture is yet unknown because of the particle merging mechanism. To build the
connectivity information, the binary tree is used to obtainthe relation of the new
particles to their old predecessors. Now, the tree is traversed bottom-up, from the
leaves to the root. The particlex′

i,t stored in the temporary texture serves as basis
of the traversal (note that it represents the leaf leveln of the binary tree). While
the binary tree is traversed upwards, each cell is tested if it builds the first or the
second entry of a tuple. If it has a predecessor, the predecessor’s value is accumu-
lated before the algorithm ascends to the next tree level. When the root node is
reached, the gathering algorithm stops and the accumulatedvalue represents the
number of predecessors. This information and the texture coordinates of the new
particles are sufficient for reassigning the new neighbors.Please note that this al-
gorithm has to be executed for all particles which have created a new one, as well
as for their former right neighbors, because they also need to be informed about
their new left neighbors.

The complete stream surface is constructed by applying the particle inser-
tion/removal and particle integration processes several times. Figure 5.4c illus-
trates the lifetime of the individual particles. Color encodes an increasing lifetime
of particles by red to green. New particles are identified as red areas surrounded
by green streamlines. The maximum integration length is user-specified. The
algorithm proposed is able to create stream surfaces and path surfaces alike.

For the subsequent LIC calculation the vector field is neededon the surface.
The remaining three channels provided by theparticles andstates textures
are used to store the attached vector of the flow. Regardless of whether steady or
unsteady flow is visualized, only the vector used for the integration of the current
time step is stored.

5.3.2 Point-based surface rendering

The fact that particles are added when divergence in the flow is present ensures a
sufficiently dense sampling to cover the image space consistently. This way, it is
only necessary to generate enough particles and render themas small point sprites
in order to obtain a closed surface. However, in order to obtain lit surfaces, the
normal vectors at each position on the surface must be determined. Therefore,
the normal vectors are firstly estimated at the particles positions, which can be
performed by means of covariance analysis, as in previous sections.

5.3. Point-based Stream Surfaces 121

Given a pointq in R3 and a set of pointsX = {xi, . . . ,xN} on the surface
(the particle positions), the3× 3 weighted covariance matrixC is given by

C(q) =
∑

pi∈N (q)

(xi − q)⊗ (xi − q)ωCOV (xi,q), (5.9)

whereN (q) (X is the set of neighbors ofq andωCOV is a non-negative mono-
tonically decreasing function. Note that in practice, as done in all implementations
described in this thesis, only the neighborhood ofq is used instead of the entire
data set to reduce computational costs, since the locality of the definitions (though
the compact weighting functions) allows it. Once the matrixC(q) is calculated,
the normal vector atq is estimated as the eigenvector ofC(q) corresponding to
the smallest eigenvalue. To find this eigenvector the inverse power method is used.

Given the layout of the texture holding the particles, this processing can be
performed in one render pass. For a given particle positionq, the setN (q) is
defined as thexi corresponding to the particles of the previous and next timesteps
in the neighboring streamlines. These particles positionscan be accessed using the
connectivity information stored in theparticles andstates textures. Then,
the computation ofC(q) is straightforward and can be implemented in a single
fragment shader, together with the inverse power method to obtain the normal
vector at each particle position. This process is performedby rendering a single
quadrilateral of the same size as the particles texture. Theinput to the fragment
program are the texturesparticles andstates. The former is used to fetch
the particles’ positions and the latter to fetch the neighboring particles’ texture
coordinates. The results of this render pass are stored in the texturenormals.

Once the estimated normals are available, three further render passes are per-
formed. The final result of this process is stored in three further textures, namely,
the intersections texture with the intersection points on the surface; the
lit surface texture, which holds the projected and lit surface; and texture
vectors with the interpolated vector of the flow at each position on the pro-
jected surface.

The process is started, for the first rendering pass, by rendering a quadrilateral
for each particle centered at the particle position and perpendicular to the normal
vector corresponding to the particle. The quadrilaterals are trimmed in the frag-
ment program by means of clipping operations to obtain discsof radiusρ, where
0.5h < b < h, whereh is, as before, the smoothing factor. For this, in the ver-
tex program, it is necessary to attach to each vertex of the disc its position and
the position of the particle in object-space coordinates (since the normal vectors
were also computed in object-space coordinates). The fragment program writes
the position of the fragment (if not clipped) to the textureintersections.

This texture and the texturenormals are the input to the second render pass.
Discs centered at each particle position are rendered as in the previous pass. The

122 Chapter 5. Meshless Surfaces from Volumes

vertex program in this case fetches the normal vector corresponding to the particle
and attaches it to the vertex in addition to the positions of the vertex and the
particle in object space. Each fragment thus generated writes the normal vector
to the RGB channels andωSTR(‖xj − qi‖, ‖xj − zk‖) to the alpha channel of a
first target textureweighted normals. Thexj andqi are the positions of the
fragment and of the particle in object space respectively, andzk is the intersection
point from the textureintersections, stored in the texel corresponding to the
fragment position in clipping space. The functionωSTR is defined

ωSTR(r, s) = exp

(
− r

2

h2
− s2

µ2h2

)
,

where the parameterµ controls the influence of the fragments that are behind the
intersection point. This parameter is chosen to avoid the influence in the result
of fragments that are not in the 2D neighborhood (surface) ofthe intersection
point. Also, to obtain sharp intersections as in Figure 5.5,it is important to test
if the texture coordinates (along thex-axis in the texture) corresponding toqi

are in the neighborhood of the texture coordinates of the particle corresponding
to zk. This is done to ensure that only particles in the neighboring time steps
are considered to calculate the normal and velocity vectors. A second texture
weighted vectors is attached to a second render target, where the fragment
program writes, in the RGB channels, the velocity vector at the particle position
and, in the alpha channelωSTR(‖xj − qi‖, ‖xj − zk‖). By using alpha blend-
ing, for each ray (pixel), the vectors

∑
xj
ωSTR(‖xj − qi‖, ‖xj − zk‖)ni, and∑

xj
ωSTR(‖xj −qi‖, ‖xj − zk‖)vi, are obtained, whereni andvi are the normal

and velocity vectors atqi, and the set{xj} is the set of fragments projected onto
the pixel. By normalizing these two vectors, smoothly interpolated normal and
velocity vectors are obtained for each projected position on the surface.

This fact is used in the third render pass, where a single quadrilateral cover-
ing the viewport is rendered, and each generated fragment fetches the respective
weighted sum of normal and velocity vectors from theweighted vectors
andweighted normals textures. The normalized interpolated normal vector
is used to compute the lit surface, which is written to the texturelit surface.
The normalized interpolated velocity vector is written to the texturevectors.
The lit surface can be then displayed, or these two textures,together with the tex-
tureintersections can be input to the process described in the next section,
where LIC is added to the lit surface.

5.3.3 LIC on the point-based surface

The point-based rendering process of the previous section provides a projection
of the stream or path surface onto the image plane, along withinformation about

5.3. Point-based Stream Surfaces 123

Figure 5.5: Path surface of an unsteady flow: on the left side,the time of the unsteady
flow field is shown by colors (red for for early times, green forlater times); on the right
side the combination of the path surface and time-dependentLIC is illustrated (see color
plates).

the 3D position on the surface and the attached normal and velocity vectors. The
LIC computation implemented using these results can be considered a G-buffer
algorithm[134] because it relies on image-space information to perform particle
tracing and convolution. It is important to distinguish between the dimensionality
of the domain and the dimensionality of the attached data. Animage-space or G-
buffer method always uses a 2D domain (the image plane), but the attached data
(i.e., the G-buffer attributes) can be of other dimensionality.

The hybrid object/image space method[166] needs the following G-buffer
attributes: (1) the 3D position of the respective pixel in object space (in tex-
ture intersections) and (2) the 3D vector field in object space (in texture
vectors). The only other data that is used for LIC is an input noise. This
noise is modeled as a 3D solid texture to ensure temporal coherence under camera
motion. According to Weiskopfet al. [166], the LIC textureI is computed by

I(x0
I , y

0
I) =

∫
k(τ − τ0)M(rO(τ − τ0; x0

I , y
0
I)) dτ, (5.10)

where the subscriptI denotes parameters given in image space, the subscriptO

denotes parameters given in object space,τ is integration time,M is the 3D noise,
k is the filter kernel, andrO represents positions along a pathline. The pathline is
determined by the initial image-space position(x0

I , y
0
I), which has a corresponding

initial 3D object-space position on the surface at initial timeτ0.
The original implementation[166] was designed for older Shader Model 2.0

GPUs and uses multiple render passes to step along particle paths and to dis-
cretize the LIC integral. Current GPUs with Shader Model 3.0support allow for a
single-pass LIC implementation using loops. Input to this implementation are the
two G-buffer texturesintersections (object-space positions) andvectors

124 Chapter 5. Meshless Surfaces from Volumes

Figure 5.6: Path surface of the unsteady flow around a cylinder.

(object-space vector field), which are initialized by the point-based rendering pro-
cess described above. The actual particle tracing is done in3D object space co-
ordinates in order to achieve higher accuracy than pure image-space advection
methods. Before the vector field can be accessed, the current3D object space po-
sition is transformed to image space by applying the model, view, and projection
matrices.

LIC improves the visualization on stream or path surfaces because a LIC tex-
ture provides additional information that cannot be encoded by a surface alone.
Figure 5.3 shows an example: the stream surface is quite wideand without LIC
lines (Figure 5.3) the flow structure within the stream surface is not displayed;
in contrast, Figure 5.3 shows the stream surface with LIC, conveying the internal
flow structure and the flow direction. Here, the LIC texture iscombined with the
regularly rendered and illuminated surface (fromlit surface texture) in order
to show the flow and the surface shape at the same time.

The above LIC algorithm works for steady and unsteady flow alike. Since the
steady case is rather simple, the focus of the following discussion is on the un-
steady scenario, which generally is challenging for texture-based flow visualiza-
tion. Typically, the texture-based visualization of unsteady flow leads to smeared-
out texture patterns. For example, texture advection[77; 158] constructs an over-
lay of streaklines (or inverse streaklines). Since streaklines may intersect each
other, the weighted average of noise input from those streaklines could result in
a convolution that is not restricted to a curved line. Therefore, texture patterns
could be smeared out in a 2D area. Similarly, the feed forwardand value deposit-
ing mechanisms of UFLIC[142; 106; 102] can lead to changing widths of line
patterns.

5.3. Point-based Stream Surfaces 125

The fundamental problem is that there is not a single, uniquevector for a single
spatial position in a time-dependent flow. In fact, the vector depends on how far in
time the integration along a particle trace has progressed.The above texture-based
methods mix, at the same position, vector fields of differenttime. In contrast, the
surface LIC implemented obtains the vector field from path surface construction,
which usually yields a single vector for a certain spatial position because that spa-
tial position is linked to a specific time. Figure 5.5 shows a color coding of this
time. Still, a path surface could intersect itself, which corresponds to two different
times and two different vector values at an intersection point. Figure 5.5 illustrates
such a self intersection. Fortunately, those intersectionpoints typically form only
a zero set (i.e., a 1D line on a 2D surface) and lead to different flow regions in
image space that are clearly separated by the intersection lines. As illustrated in
Figure 5.5, surface LIC is capable of generating crisp, line-like LIC textures for
those different flow regions. The proposed method was testedon a PC with a
2.21 GHz CPU and 2 GB of RAM. Two different GPUs were used: an NVIDIA
GeForce 8800 GTX and an NVIDIA GeForce 7900 GTX. For the performance
test, an unsteady data set was used, simulating the flow around a cylinder with 17
time steps. Figure 5.6 shows a visualization of the test dataset. For the steady
measurements, only the first time step is used. The vector field is given on a uni-
form grid of size256× 128× 256. Table 5.2 shows the results of a measurement
with 256 particles that are integrated along 256 time steps.In the unsteady case,
the vector field is updated each256/17 ≈ 15 time steps. The performance for
rendering the plain surface mainly depends on the size of theprojected surface,
which can be explained by the fragment-based surface approximation. Applying
the surface LIC reduces the rendering speed by a factor of2.5. Since the current
driver of the new NVIDIA GeForce 8800 does not provide the full power of the
architecture, particulary when rendering to texture is applied, the GPU was re-
placed with its predecessor, the NVIDIA GeForce 7900 GTX formeasurements
that need render-to-texture functionality. With that GPU,frame rates of6.5 and
5.5 fps were measured for integrating particles in a steady and unsteady flow, re-
spectively. Further experiments showed that the performance of particle tracing
strongly depends on the size of the vector field and the numberof time steps,
which corresponds to the number of texture uploads.

The vector field, which is already accessed for particle integration, is stored
and later reused by an image/object space LIC method to compute flow textures
on the stream surfaces and path surfaces. Only this additional surface texture
gives a detailed impression of the flow behavior within the surface, facilitating the
identification of flow divergence and vortices, and supporting the perception of
the surface shape. Stream and path surfaces have the advantage that they, by con-
struction, “carve” a tangential vector field out of the underlying 3D flow. There-
fore, a projection of the vector field and corresponding interpretation problems are

126 Chapter 5. Meshless Surfaces from Volumes

Computation Steady Unsteady

Surface only1 63.9 ∗

Surface with LIC1 26.4 ∗

Integration only2 6.5 5.5
1 Measured with an NVIDIA 8800 GTX GPU.

2 Measured with an NVIDIA GeForce 7900 GTX GPU.

∗ The rendering speed does not differ from the steady case.

Table 5.2: Performance using a 256×128×256 unsteady data set with 17 time steps (in
fps). Rendering speed does not depend on the underlying flow field and can be considered
similar for both steady and unsteady flow. While the first two entries of the table consider
only the rendering of the surface, the performance of the particle integration is given
separately.

avoided. Finally, the novel combined path surface/LIC approach provides clearly
defined, texture-based path-lines which is not possible with previous methods.

CHAPTER

6 MESHLESSVOLUME V ISUALIZATION

Rendering volumetric data stored in structured and unstructured meshes has been
addressed in the past with methods specific to each mesh type.The main difficulty
in developing a unified approach is the data filtering,i.e., the reconstruction of the
function from the sampled data. Filtering for Cartesian grids has been widely
studied[117; 153] and the interactive rendering of volumetric data stored in such
grids is nowadays well documented[45]. Although filtering for other mesh types
has not received the same attention within the visualization community, various
rendering methods for curvilinear grids[85], tetrahedral meshes[85], adaptive-
mesh-refinement meshes[161] and multiblock meshes[95] have been proposed,
usually using some parameterization inside the cell in order to perform linear in-
terpolation. However, some of this mesh types pose problemsthat have not been
completely solved yet. For instance, adaptive-mesh-refinement meshes, where the
volumetric value is stored at the center of cells of different sizes, and multiblock
meshes, with multiple overlapping meshes, are cases where the interpolation of
the data is not trivial (see Figure 6.1). Discontinuities and artifacts are often gen-
erated during isosurface extraction from non-conformal multiblock meshes, which
are usually treated during post-processing using geometric strategies[33; 91; 140;
146; 169].

Furthermore, meshes containing mixed cell types can be found [30]. Interpo-
lating the data in these meshes can be performed usingmean value coordinates,
proposed recently by Floateret al. [52], which are a generalization of barycentric
coordinates (see Chapter 2). This method can effectively parametrize the domain
within a cell, however onlyC0-continuity is ensured across the cell boundaries
and requires triangulating the faces of the polyhedron. It is possible to triangu-
late the faces of any polyhedron, the uniqueness of the triangulation cannot be
ensured and therefore the resulting mean value coordinatesdepend on the choice
of the triangulation.

Thus, rendering volume data using higher-order reconstructions of data stored
in meshes with cells of arbitrary type is still an open problem. This problem is the
focus of this chapter. A straightforward approach to solve this problem would be
to disregard the mesh and treat the case as a scattered data interpolation problem.
However, the connectivity information of a mesh is important and cannot be sim-
ply replaced by the spatial queries (k-nearest-neighbors,natural-neighbors and
range-queries) usually performed by scattered data approximation approaches.

127

128 Chapter 6. Meshless Volume Visualization

Figure 6.1: Wireframe rendering of the Space Shuttle LaunchVehicle multiblock dataset.
Interpolating/approximating volumetric data stored in adaptive-mesh-refinement meshes
or multiblock datasets is not trivial since the data is stored at the center of non-conformal
cells of different sizes and even overlapping meshes are found.

Therefore, and since points (vertices) are too weak to represent complex data by
themselves, the power of a meshless technique must be provided by the approx-
imation method. Thus, results of approximation theory on moving least-squares,
bilateral filtering, orthogonal polynomials, radial basisfunctions and approximate
approximation are used here to approach this problem.

One important advantage of the approaches described in thischapter is that
they are completely mesh-free in the sense that no mesh must be constructed
as done by previous approaches, such as those based on radialbasis functions,
wavelets and B-splines. However, it is shown how the mesh connectivity can be
used to apply the methods to highly-anisotropic domains effectively. Moreover,
the methods presented are matrix-free,i.e., no system of equations must be solved,
which facilitates its implementation on commodity graphics hardware. This work
was developed in collaboration with João Paulo Gois from the Universidade de
São Paulo.

The problem of meshless volume deformation is also addressed in this chapter
and the advantages of moving least-squares in the context ofvolume manipula-
tion to support exploratory tasks are studied. To that end, recent results on non-
physically-based moving least-squares deformation are used and an interactive
hardware-accelerated implementation applicable to structured and unstructured
grids is presented. A comparison with physically-based tetrahedral mesh defor-
mation is presented in terms of interactivity, for which graphics hardware imple-
mentations were developed for both the moving least-squares and the physically-
based deformations. The work on moving least-squares volume deformation was
developed in collaboration with Alvaro Cuno from the Universidade Federal do

6.1. Meshless Methods for Volume Visualization 129

Rio de Janeiro and Siegfried Hodri from the Universität Stuttgart.

6.1 Meshless Methods for Volume Visualization

Janget al.[76] and Weileret al. [163] used radial basis functions to encode scalar
and vector fields stored in structured and unstructured meshes. Since a functional
representation is obtained, evaluating derived measures is straightforward. The
authors use truncated Gaussian functions as basis functions. To accurately repre-
sent local features, the widths of each truncated Gaussian is adaptively specified.
Thus, the functional representation is given by

f(x) = ω0 +

M∑

i=1

ωi exp

(‖x− µi‖2
2σ2

i

)
,

whereM is the number of radial basis functions,ω0 is the bias andσ2
i , ωi andµi

are the width, the weight and the center of the radial basis function respectively.
To determine the center location, the authors make use ofprincipal components
analysisto cluster the data points and, in each cluster, the center isselected as
the weighted cluster average point or the maximum error point as chosen by the
user. The width is determined by a hybrid gradient-descent nonlinear optimiza-
tion technique (Levenberg-Marquardt method). The mean square error over all
data points is used during optimization. The individual weight and global bias
are computed by minimizing the sum squared error for all datapoints. Using this
method, radial basis functions are incrementally added in clusters with the largest
errors until the user specified error criteria is satisfied. Encoding errors are cal-
culated as the difference between the original value and theevaluated radial basis
function representation at each input data point.

Janget al. [75] extended their work to ellipsodial basis functions in orderto
reduce the number of basis functions required to encode a volume and to bet-
ter reconstruct data where long features are present. They explore the use of
axis-aligned and arbitrary directional ellipsoidal basisfunctions. Using theMaha-
lanobis distance, the ellipsoidal basis function, specifically the ellipsoidal Gaus-
sian function, in three dimensions can be represented in matrix form as

ωEBF (x, µ,V−1) = exp

(
−1

2
(x− µ)TV−1(x− µ)

)
,

whereµ is the center andV−1 is positive definite and is defined by a rotation
matrixR and a scaling matrixS asV−1 = RṠ−1Ṡ−1ṘT . The parameters ofV−1

are found performing a nonlinear optimization of the sum of the squared error as
before.

Leeet al. [96] approach the problem using B-splines. Although good results
are obtained, the need for a regular grid of control points isa major drawback.

130 Chapter 6. Meshless Volume Visualization

This is also the case for Wavelet-based methods[61]. More flexible splines de-
fined on more general domains have been also proposed but numerical problems
arise and computational costs are significantly increased.Moreover, underlying
connectivity information is still necessary. Rösslet al.[132] also presented a scat-
tered data interpolation method based on splines and local least-squares built upon
Bernstein-Bézier basis and a tetrahedral spatial decomposition. One of the main
computational efforts of the method is related to the singular value decomposi-
tion needed for each least-squares computation, which is repeated until an error
criterion is satisfied.

Andersonet al. [12] approached the problem of visualizing volumetric data
stored in tetrahedral meshes by defining ellipsoidal point primitives. Differently
from the work by Janget al., the focus of the method presented by Andersonet al.
is on rendering and not on function reconstruction. The algorithm is comprised
of three steps. The first step is a pre-processing where the points are created;
each point having a representative transform and scalar value associated with it.
An entire tetrahedron is thus represented by a single point.The scalar value at
the point is defined as the mean value of the scalar data storedat the vertices of
the tetrahedron. Since the point primitives are rasterizedas squares, their shape
must be transformed to better approximate the tetrahedra they represent. The
transform is obtained by defining a regular tetrahedron centered at the origin such
that it is inscribed in the unit sphere. The transform is thencalculated as the
transformationT that transforms the regular tetrahedron to the tetrahedronbeing
processed. In the second step, the points are sorted front-to-back on the CPU.
Then, in the third step, the point primitives are rendered and the vertex program
resizes each point using its transform to ensure that the tetrahedron is adequately
represented. The fragment program culls fragments based onthe shape of the
approximating element. Pre-integration is then used to better approximate the
volume rendering integral.

Points had been previously used to render volumetric data[135]. The authors
proposed a method that renders a set of tiny particles generated taking into account
a user-specified transfer function. The main advantage of this technique, based
on the emission-absorption model, is that the particles canbe projected onto the
image plane without performing any sorting process. As seenin Chapter 2, the
volume rendering integral for the emission-absorption model has the form

L(D) = L0 exp

(
−
∫ D

0

τ(t)dt

)
+

∫ D

0

Le(s)τ(s) exp

(
−
∫ s

0

τ(t)dt

)
ds.

If L0 = 0 then,

L(D) =

∫ D

0

Le(s)τ(s) exp

(
−
∫ s

0

τ(t)dt

)
ds

6.2. Moving Least-Squares Volume Visualization 131

is obtained. This integral can be solved numerically by subdividing the domain
of integration inton sub-domains in which the emissionLe can be regarded as
constant, which gives us

L(D) = L1 + L2 + L3 + · · ·+ Lk + · · ·+ Ln,

where

Lk =

∫ tk

tk−1

L[k]
e τ(s) exp

(
−
∫ s

0

τ(t)dt

)
ds

andL[k]
e is the constant emission in thek-th sub-domain. An opacity valueαk, in

thek-th subdomain, can be defined as

αk = 1− exp

(
−
∫ tk+1

tk

τ(t)dt

)
≈ 1− exp(−τk∆t),

where∆t is the length of the subdomain andτk is a representative density. Usu-
ally, the opacity is specified from scalar values. A particledensity relates to a
scalar valuef(x) implicitly as

α(f(x)) = 1− exp (−τ(x)∆t) ,

τ(x) =

{ − log(1−α(f(x)))
∆t

α(f(x)) ≤ 1− exp(−∆t)
1.0 otherwise,

wherex is a position on the viewing ray. Thus, the particle density can be de-
termined from an opacity value converted from a scalar valueusing the transfer
function. The particles are generated according to the density distribution func-
tion τ(x) given above using thehit-and-missor metropolismethods. The image
is then created by projecting the generated particles onto the image plane. On the
image plane, each pixel can be divided into several sub-pixels. The color of each
pixel is determined by averaging the colors of its sub-pixels.

6.2 Moving Least-Squares Volume Visualization

In this section, a method based on moving least-squares to render volumetric data
using higher-order approximations, that can be applied to meshes of arbitrary ge-
ometry and topology, is presented. To preserve important details in the data, the
approximation method by Fennet al. [50], based on bilateral filtering, is extended
to three dimensions. Although extending this method to the three-dimensional
domain is in theory straightforward, this leads to an ill-conditioned problem for
which basic numerical methods diverge. Pre-conditioning and regularization can
be used together with expensive more stable methods to solvethis problem. How-
ever, it was approached using multi-variate orthogonal polynomials since this al-
lows to avoid solving systems of equations while improving stability. Further-
more, performance is increased since orthogonal polynomials present properties

132 Chapter 6. Meshless Volume Visualization

that can be used to reduce the number of operations needed to calculate the ap-
proximation. Also, as in the case of surface approximation (Chapter 4), the recur-
sive nature of the revised Gram-Schmidt orthogonalizationused can be exploited
to increase the degree of the approximating polynomial using the results of pre-
viously computed lower-degree polynomials. Thus, the degree of the polynomial
can be set adaptively without incurring in a high extra computational effort as
would be the case with other methods.

An empirical comparison, in the context of the method proposed, in terms of
stability and performance between orthogonal polynomialsand methods applied
both on the overdetermined system and on the normal equationwas carried out.
Specifically, experiments with the Conjugate Gradient (CG)method on normal
equations, Singular Value Decomposition (SVD), QR factorization via House-
holder transformations and Gauss-Jordan (GJ) with pivoting applied on normal
equations[20] were performed. As will be shown, orthogonal polynomials out-
perform these methods in terms of speed of computation whilebeing sufficiently
stable for the purposes of the problem at hand. Additionally, to improve the qual-
ity of the approximation obtained with the method presented, ellipsoidal weights
are used in the moving least-squares formulation presented. Results using Carte-
sian grids, unstructured meshes, curvilinear grids, adaptive-mesh-refinement and
multiblock datasets with multiple overlapping meshes are presented.

6.2.1 Detail-preserving volume data approximation

The problem addressed here is the general approximation problem described in
Chapter 3 in the context of volumetric data. Thus, here the focus is on the three-
dimensional case. Given a set of sample pointsX = {x1, · · · ,xN} (R3, and a
functionf : R3 → R evaluated onX , generating the setF = {f1, . . . , fN} (R,
find a functionMf such thatMf(xj) ≈ fj; j = 1, · · · , N .

As seen in Chapter 3, given a polynomial basisΨ = {ψ1, . . . , ψM}, a moving
least-squares polynomial approximation

Mf(x) =

M∑

j=1

cj(x)ψj(x)

to a functionf is found by minimizing

minE(x) =
N∑

i=1

(fi −Mf(xi))
2 ω(x,xi), (6.1)

with respect tocj; j = 1, · · · , N . When computing a detail-preserving local
approximation, on the other hand, the aim is to minimize the following energy

6.2. Moving Least-Squares Volume Visualization 133

functional:

minR(x) =

N∑

i=1

Υ
(
(fi −MfRMLS(xi))

2)ω(x,xi), (6.2)

where
Υ(p) = 1− exp (− p

2σρ

)

and σρ is a parameter that determines the sensitivity of the expression to out-
liers. Other functionsΥ can be found in the literature[50; 155]. The goal of this
minimization is to consider not only the distance between the evaluation pointx
and the sample pointsxi; i = 1, · · · , N , but also the difference betweenfi and
MfRMLS(xi) for weighting the influence of the sample points on the result. In
this case the system of equations that minimizesR(x) becomes

{
M∑

j=1

〈Ψk,Ψj〉ωΥ′cj = 〈Γ,Ψk〉ωΥ′ ; k = 1, . . . ,M, (6.3)

whereΓ = [f1, · · · , fN], Ψj = [ψj(x1), . . . , ψj(xN)], Υ′ is the first derivative of
Υ and

〈Ψj,Ψk〉ωΥ′ =
N∑

i=1

ψj(xi)ψk(xi)ω(x,xi)Υ
′((MfRMLS(xi)− fi)

2).

The solution of System 6.3 can be obtained with a fixed point iteration as
follows. Let

Mf
(n)
RMLS(x) =

M∑

j=1

c
(n)
j (x)ψj(x)

be the solution for iterationn, and(c
(0)
1 (x), . . . , c

(0)
M (x)) an initial guess obtained

by solving System 3.4, rewritten here for convenience:

{
M∑

j=1

〈Ψi,Ψj〉ωcj = 〈Γ,Ψi〉ω; i = 1, . . . ,M (6.4)

Therefore, the inner products are fixed, for iterationn, as

〈Ψj,Ψk〉(n)
ωΥ′ =

N∑

i=1

ψj(xi)ψk(xi)ω(x,xi)Υ
′((fi −Mf

(n−1)
RMLS(xi))

2),

134 Chapter 6. Meshless Volume Visualization

Figure 6.2: Slice82 of the Engine volume dataset (left). Whilst moving least-squares
smooths the data (center-left), the robust approximation preserves the details (center-
right). Shepard’s interpolation (right) is shown for sake of comparison.

and, thus, the solution for iterationn is obtained by solving the system

{
M∑

j=1

〈Ψk,Ψj〉(n)
ωΥ′c

(n)
j = 〈Γ,Ψk〉(n)

ωΥ′ ; k = 1, . . . ,M . (6.5)

Then, for each iteration, a moving least-squares approximation is performed to
find a new(c

(n+1)
1 (p), . . . , c

(n+1)
M (p)). Although convergence is not proven for this

iterative process, in practice5 iterations suffice to obtain a good approximation
if the initial guess is computed by solving System 6.4. Note that in the above
discussion the sums are on the entire setX . However, as before, in practice only a
subset ofX is used to approximate the function at pointx. This subset is defined
as the neighborhood ofx, that usually is given by thek nearest neighbors, where
k > M .

The implementation of this robust approximation is straightforward. The first
approximating function computed by solving System 3.4 is used as starting point
for the iterative process given by System 6.5.

6.2.2 Matrix-free detail-preserving volume data approximation

Although the process described in the previous section results in a detail-preserving
approximation of the volumetric data (see Figure 6.2), a very large number of
small systems of equations must be solved. More importantly, the systems of
equations are ill-conditioned and solving them with known techniques such as
Gauss-Jordan (with pivoting) or Conjugate Gradient leads to instabilities. More
expensive techniques, such as preconditioned Conjugate Gradient or SVD and QR
factorizations with regularization can be used to improve stability. Good results
are obtained with these methods as will be discussed. However, the computational
effort is prohibitive and increasing the degree of the approximation means having
to compute the new approximation and to discard the previously computed ap-
proximation. Orthogonal polynomials, on the other hand, are well suited for this
task due to their recursive construction while being competitive in terms of stabil-

6.2. Moving Least-Squares Volume Visualization 135

(a) (b) (c) (d) (e) (f)

Figure 6.3: Volumetric data approximation for a slice of theCombustion Chamber dataset:
(a) Gauss-Jordan with pivoting, (b) Conjugate Gradient on normal equations, (c) QR, (d)
SVD and (e) orthogonal polynomials. Noise represents evaluation points where instabili-
ties led to a poor approximation. In (f), the result with linear interpolation on the original
mesh is shown. Note that, for these results, onlyfloat precision was used to increase the
numerical instability. In practice, choosing a sufficiently large support and usingdouble
precision, orthogonal polynomials produce results visually indistinguishable from those
obtained with QR and SVD (see color plates).

ity compared to expensive techniques and in terms of performance compared to
basic techniques.

Note that, in order to be able to define orthogonal polynomials,Υ andω must
hold Υ′ > 0 andω > 0 ensuring that〈, 〉(n)

ωΥ′ defines a new inner product for
each iteration. Using orthogonal polynomials, the robust approximation is also
an iterative process. The approximation in the first iteration is obtained using the
inner product〈, 〉ω, where the weight functionω is positive and decreasing. Based
on this weight a first set of orthogonal polynomials is found using the process
described in Chapter 3. The first approximation to the solution is then given by

Mf
(0)
RMLS(x) =

M∑

i=1

ψi(x)
〈Γ,Ψi〉ω
〈Ψi,Ψi〉ω

.

With this first result the iterative process is started. In each iterationn a new set of
orthogonal polynomials is constructed using the inner product 〈, 〉(n)

ωΥ′ and a new
approximated solution is found as

Mf
(n)
RMLS(x) =

M∑

i=1

ψi(x)
〈Γ,Ψi〉(n)

ωΥ′

〈Ψi,Ψi〉(n)
ωΥ′

.

The implementation of the method was tested with regular volumes (Cartesian
grids), structured curvilinear grids, tetrahedral meshes, adaptive-mesh-refinement
meshes and multiblock datasets. From the tests performed itwas found that the

136 Chapter 6. Meshless Volume Visualization

Figure 6.4: Volume and isosurface rendering of different data. From left to right: the
Bucky Ball structured dataset, the Heat Sink unstructured dataset, the Penguin adaptive-
mesh-refinement mesh, the Space Shuttle Launch Vehicle multiblock dataset with multi-
ple overlapping curvilinear meshes and the Combustion Chamber curvilinear dataset (see
color plates).

approximation reconstructs the function preserving details while filtering low fre-
quency noise. This can be seen in Figure 6.2, where a comparison of Shepard’s
interpolation, moving least-squares approximation and the detail-preserving ap-
proximation is shown. Although Shepard’s interpolation isfaster, it fails to recon-
struct the function accurately, while moving least-squares smoothes the data.

As mentioned before, several solvers were implemented besides the approach
based on orthogonal polynomials. Specifically, SVD and QR factorization meth-
ods were used due to their stability, as well as the ConjugateGradient on normal
equations (see Section 13 of the report by Schewchuk[145]) and Gauss-Jordan
with pivoting due to their simplicity and high performance.Visual results of the
approximation obtained with these methods for a slice of theCombustion Cham-
ber dataset are shown in Figure 6.3. For sake of comparison, the resulting linear
interpolation on the original mesh obtained with barycentric coordinates is also
shown. For this test, alldouble variables where changed tofloat to increase
the probability of incurring in numerical instabilities. It is important to mention
that, although a cutting plane is shown, the approximation was performed in the
three dimensional domain. As can be seen in the figure, the SVDand QR fac-

6.2. Moving Least-Squares Volume Visualization 137

Method

Polynomial degree Orth. Pol CG Gauss-Jordan QR SVD

2 0.19 0.43 0.76 0.46 0.87
3 0.47 0.61 0.93 1.15 2.84
4 0.76 0.82 1.83 2.19 8.35

Table 6.1: Processing time (in milliseconds), for a single evaluation of the approximation,
with orthogonal polynomials, Conjugate Gradient (CG), Gauss-Jordan, and QR and SVD
factorizations.

torizations are the most stable followed by orthogonal polynomials. Conjugate
Gradient and Gauss-Jordan with pivoting are not able to perform well due to the
high condition number of the matrix. It is important to remark that Gauss-Jordan
and orthogonal polynomials are used to solve Systems 6.4 and6.3 while SVD,
CG and QR are directly applied on the overdetermined systemsthat result from
Equations 6.1 and 6.2[20].

Although the SVD and the QR factorizations are more stable than orthogo-
nal polynomials, they are considerably slower. Table 6.1 summarizes the per-
formance measurements carried out. Since the function approximation does not
depend on the mesh type, the performance for all datasets wassimilar. The perfor-
mance measurements were carried out on a standard PC equipped with a 3.4GHz
64-bit processor and 2GB of RAM. As can be seen, orthogonal polynomials are
faster than any other method tested. Furthermore, orthogonal polynomials have
a clear advantage when the degree of the polynomial approximation increases.
This can also be observed in the table, which shows the computation time for ap-
proximations of degrees 2 to 4. This is possible due to the recursive nature of
the revised Gram-Schmidt orthogonalization process, which allows to use previ-
ously computed low-degree polynomial approximations to obtain a higher degree
polynomial. This means that the processing time in Table 6.1for the orthogonal
polynomials of degree 3, for instance, includes the computation of the orthogonal
basis for polynomial approximations of degree 0 to 3.

To accommodate the method to anisotropic meshes, ellipsoidal weight func-
tions are used. This allows to handle meshes with irregular sampling for which
spherical weights do not present good results as can be seen in Figure 6.5. It is im-
portant to notice that, although an ellipsoidal Gaussian weight is used, in practice,
its support is truncated to the ellipsoidal region defined bythe neighborhood of
the evaluation point. Using double precision and the ellipsoidal weight functions,
the orthogonal polynomials proved to be stable, accurate and fast to compute. As
a proof of concept, a ray-caster was implemented to generatedirect volume ren-
derings and isosurface renderings of the test datasets. Theresults can be seen in

138 Chapter 6. Meshless Volume Visualization

Figure 6.5: Comparison between the use of spherical (left) and ellipsoidal (right) weights
(Oxygen Post dataset).

Figure 6.4 where renderings of different datasets are shown. Note that the isosur-
faces are smooth even for the adaptive-mesh-refinement and multiblock datasets
with no need for post-processing or special handling.

Orthogonal polynomials have shown to be a good choice due to their stability
in volumetric data approximation, while being faster than any of the other four
approaches implemented to solve the systems of equations. Several advantages
of using orthogonal polynomials were found, namely, the fact that the method
becomes matrix-free and the recursive nature of the Gram-Schmidt orthogonal-
ization. This allows us to reconstruct the underlying function of the data stored
in meshes of any type preserving details in the data by means of bilateral filtering
and ellipsoidal weight functions. Also, if the degree of thepolynomial approxima-
tion is increased, the new polynomials that must be added to the set of orthogonal
polynomials can be calculated using previously computed polynomials. Thus, the
degree of the polynomial could be increased by the user untilthe desired approx-
imation order is achieved.

Although the fact that the method is matrix-free,i.e., that no system of equa-
tions must be solved, was exploited to implement it on commodity graphics hard-
ware, it was found that, despite being faster than solving the system, calculating
the orthogonal polynomials is still slow for visualizationpurposes. Therefore, ap-
proximate approximations were explored to address this problem as will be seen
in the next section.

6.3 Approximate MLS Volume Visualization

In this section, a further volume rendering method that can be applied to meshes
of arbitrary geometry and topology is presented. This method is based on the it-
erated approximate moving least-squares approximation[48] which is applied to
anisotropic domains to reconstruct the volumetric data during rendering in this
work. This allows to preserve important details on the data,in the same spirit as
in surface reconstruction from point clouds[41]. To provide gradient information

6.3. Approximate MLS Volume Visualization 139

for shading and other visualization purposes, the gradientat each vertex of the
mesh is estimated by means of weighted least-squares[110]. During rendering,
the gradient at the evaluation point is reconstructed usingiterated approximate
approximation as done for the raw volumetric data. It is worth to mention that it-
erated approximate moving least-squares approximation with anisotropic weights
has not been previously addressed. In this work, it is shown how this combination
is possible and how efficient it is in the context of volume rendering.

Although a meshless interpolation method is used, anisotropic meshes con-
taining highly stretched cells are handled properly and automatically by means
of ellipsoidal weight functions calculated from mesh information. For this, the
construction of the ellipsoidal supports are explored in more detail here. The lo-
cal ellipsoidal weight functions make the method robust andsuitable for different
meshes. The results show that no parameter tuning is necessary since the same
values produced good results. The implications of using ellipsoidal weights in the
iterated approximate moving least-squares approximationare also discussed and
an adaptive iterative approximate approximation is defined.

In order to accelerate the method, a GPU version was implemented based on
spatial data structures which is able to handle non-convex meshes with highly
stretched cells. It is shown how to pre-compute the result ofthe iterative process
at the sample points, so that during rendering the method reduces to a weighted
sum of the data stored at the vertices.

Additionally, the fact that no system of equations must be solved can be men-
tioned as an advantage of the method. Also, as discussed in the previous section,
no pre-processing to define a new topological data structureof the data is needed,
such as done in methods based on radial basis functions, wavelets and B-splines.

6.3.1 Ellipsoidal weight functions revisited

As mentioned in the last section, ellipsoidal weight functions produce better re-
construction results for moving least-squares approximations of volumetric data.
In this section, it is further discussed how ellipsoidal supports can be used in the
context of approximate approximation. Since Gaussian weight functions are used,
in practice, the weight function is truncated to force compact support. Special
care must be taken into defining this support so as to ensure that any significant
contribution from the sample points to the reconstructed value is always taken into
account. This is achieved by choosing a suitable fill size parameter. With this con-
sideration, the ellipsoidal support is computed with a straightforward approach.

Given a sample pointxi, the setVi = {xj ∈ X : xj ∈ star(xi)} is computed,
i.e., the set of points that share an edge in the mesh withxi. These points are used
as input for a principal components analysis. For this, the covariance matrix

C =
∑

x∈Vi

(x− xi)⊗ (x− xi)

140 Chapter 6. Meshless Volume Visualization

is calculated. The eigenvectorsek; k = 1, · · · , 3 of C are the main directions of
the ellipsoid. The eigenvalues can be used to define the support of the ellipsoidal
weight. Here, however, the maximal distance in each of the main directions be-
tweenx ∈ Vi andxi is used,i.e., ηk = κmaxx∈Vi

|〈x− xi, ek〉|, whereηk defines
the size of the support in the directionek. Thus, the transformation matrixM that
defines the local support is given by

M = diag(η1, η2, η3)

e1

e2

e3

 .

This support is used to define the ellipsoidal Gaussian weight as explained below.
The constantκ scales the support in all directions. This constant hast to be set so
as to include enough data points according to the order of thegenerating function
used. The role of this constant will be further discussed later in this section.

Note that this computation is similar to the one used by Janget al. [75]. How-
ever, since they need to compute the center of the support, a non-linear system
must be solved for each support, which increases the computational cost. Another
important difference is the use of an stencil obtained from the mesh information.
This helps to adapt the method to both highly anisotropic andisotropic meshes,
as will be shown in the results. Thus, differently from Jang,it is not necessary to
decide between using axis-aligned ellipsoidal weights, arbitrarily oriented ellip-
soidal weights or spherical weights for each data set. The approach used to com-
pute the weight function using the stencil from the mesh has shown to be reliable
and to produce good results for all the test meshes used. The anisotropic support
used is also similar to the one proposed by Dinhet al. [41] for reconstructing sur-
face from point clouds. The authors also use anisotropic basis functions built upon
covariance analysis. They argue that by defining suitable anisotropic functions on
the data, it is possible to represent sharp details of the original object.

6.3.2 Anisotropic iterated approximate moving least-squares

The use of anisotropic spaces is not new and it has delivered very satisfactory re-
sults in the past,e.g., in mesh generation[144], in scalar function encoding[75]
and in surface reconstruction[41]. However, the use of anisotropic spaces in iter-
ated approximate approximation is, to the extent of our knowledge, discussed for
the first time here. It is worth to mention that, despite the lack of a rigorous math-
ematical proof regarding convergence, numerical results show good results. The
importance of iterated approximate approximation appliedon anisotropic spaces
is that it can generate a good reconstruction of the volumetric data without the
need for solving systems of equations and no new space decomposition model
of the data must be generated. Thus, it is very simple to implement on modern
commodity graphics hardware.

6.3. Approximate MLS Volume Visualization 141

The original iterated approximate moving least-squares method was defined
under the canonical inner product〈x,y〉 = xty. By simply recalling the results
presented by Fasshauer and Zhang[48], it is not difficult to verify that these results
can also be extended to the inner product

〈x,y〉A = xtAy,

induced by a positive matrixA. To apply this to the problem of rendering ar-
bitrary meshes, the inverseRi of the transformation matrixMi is calculated for
the support of each sample point as described above. Then, a symmetric positive
matrix

Ai = RiR
T
i

is defined for each sample, which induces a local inner product 〈x,y〉Ai
, since

Ai is positive-definite. The implications of this inner product definition in the
practical set of the problem addressed can be better understood by looking to a
specific case. Thus, let the Laguerre-Gaussianϕi(x) be the generating function
for each sample pointxi, as in Chapter 3, so that the approximated value atx is
given, as before, by

MfV AMLS(x) =

N∑

i=1

fiϕi(x).

In three dimensions, the generating functionsϕi are given, for orderO(h2),O(h4)
andO(h6), by

ϕi(x) =
ǫ3

π3/2
exp (−ri(x)) ,

φi(x) =
1

π3/2

(
5

2
− ri(x)

)
exp (−ri(x)) ,

and

φi(x) =
1

π3/2

(
35

8
− 7

2
ri(x) +

1

2
ri(x)2

)
exp (−ri(x)) ,

respectively. The functionri(x) is redefined as

ri(x) =
ǫ2x̂iAix̂

T
i

h2
,

wherex̂i = x−xi. Thus, the term̂xiAix̂
T
i can be regarded as the squared distance

betweenx andxi in the space with origin atxi defined by the transformation
matrixRi (recall that this distance is also known as Mahalanobis distance). Thus,
κ fulfills the role of the fill size and the actual fill sizeh can be set to a constant,
e.g., 0.25, which ensures that all data points in the support are considered for the
approximation. Note that using the Mahalanobis distance, the effect obtained is

142 Chapter 6. Meshless Volume Visualization

that of a local anisotropic fill size. The iterated process that converges, in this case
to an ellipsoidal basis functions interpolation, is given by

Mf
(0)
V MLS(x) =

N∑

i=1

fiϕi(x), (6.6)

Mf
(n+1)
V MLS(x) = Mf

(n)
V MLS(x) +

N∑

i=1

(
fi −Mf

(n)
V MLS(xi)

)
ϕi(x). (6.7)

6.3.3 Gradient estimation

The least-squares gradient estimation by Mavriplis[110], which is independent
of the topology of the mesh, is generalized here to three dimensions. The method
relies on defining a stencil which identifies relevant pointson the star of the vertex
where the gradient must be evaluated. Let us consider a pointxi = (xi, yi, zi)
where the derivative must be evaluated andxk = (xk, yk, zk) ∈ V(xi). The
following weighted least-squares allows us to estimate thegradient∇f(xi) =
((fx)i, (fy)i, (fz)i):

min
∑

x∈Vi

exp(−〈xk − xi,xk − xi〉Ai
)(Eik)

2, (6.8)

where

(Eik)
2 = ((fx)i · dxik + (fy)i · dyik + (fz)i · dzik − dfik) , (6.9)

dfik = f(xk)−f(xi) and, analogously,dxik = xk−xi, dyik = yk−yi, dzik = zk−
zi. Since the number of neighbors, in general, is small and the point positions can
be arbitrarily defined, singular value decomposition is used to find the unknowns
((fx)i, (fy)i, (fz)i) more precisely. Thus, the gradient at any pointx in the domain
is obtained as

∇f(x) =
N∑

i=1

∇f(xi)ϕi(x).

Similarly to the volumetric data, the gradient approximation is obtained with iter-
ated approximation as

∇f (0)
V MLS(x) =

N∑

i=1

∇f(xi)ϕi(x),

∇f (n+1)
V MLS(x) = ∇f (n)

V MLS(x) +
N∑

i=1

(
∇f(xi)−∇f (n)

V MLS(xi)
)
ϕi(x).

6.3. Approximate MLS Volume Visualization 143

6.3.4 GPU-based rendering

As mentioned before, modern commodity graphics hardware isused to accelerate
the rendering process. Here we describe the pre-computations performed to re-
duce the rendering time, as well as the data structures, their map to textures stored
in graphics memory and the render passes implemented for thevolume rendering
engine.
Pre-processing.The data points(xi, fi) are stored in a two-dimensional texture
of size

√
N . The gradients at the vertices of the mesh are then pre-computed as

described above. This allows to perform shading and enable the use of other visu-
alization methods based on gradient information. During rendering, the gradients
are reconstructed at the evaluation point using the adaptive iterated approximate
approximation as done for the raw volumetric data. This is done since the results
by Fasshauer and Zang[48] do not apply to derived data. The pre-computed gra-
dients are packed into a two-dimensional texture of the samesize of the texture
holding the positions and data of the vertices of the mesh. The matrixAi is also
pre-computed for each vertex of the mesh, which is then stored in three further
two-dimensional textures of the same size as the first two.

Finally, since by rearranging Equation 6.7, we obtain

Mf
(n+1)
V MLS(x) =

N∑

i=1

[
fi +

n∑

j=0

(
fi −Mf

(j)
V MLS(xi)

)]
ϕi(x),

it is possible to accumulate the results of the iterative process at each vertex as

g(xi) = fi +

n∑

j=0

(
fi −Mf

(j)
V MLS(xi)

)
, (6.10)

and store them in the texture holding the data points insteadof the scalar values
fi. During rendering, the reconstructed value at the evaluation pointx is simply
calculated as

Mf
(n+1)
V MLS(x) =

N∑

i=1

g(xi)ϕi(x).

Similar arguments are used for the gradient vector.
Data structure. A Kd-tree subdivision is used to generate a partition of the space
so as to limit, to an upper bound, the number of vertices of themesh fetched to
evaluate the function at a given position. The idea was to limit in turn the number
of vertex supports intersecting a leaf node, including the supports completely con-
tained in the node. Although using grids of linked lists, as is usual done in GPU
implementations for which proximity queries are required,is a better choice in
terms of performance, to ensure this upper limit a very fine grid would have to be

144 Chapter 6. Meshless Volume Visualization

constructed when dealing with highly anisotropic meshes where the cell sizes vary
considerably. For instance, the Blunt Fin dataset is a well known dataset which
does not impose a challenge to currently available rendering methods. However,
meshless methods suffer from its particularly stretched cells [75]. In the tests,
for this dataset, the kd-tree partition needed about 3000 leaf nodes to ensure an
upper limit of 250 supports intersecting a single leaf, while the grid of linked lists
needed2k × 1.5k × 5k cells.

The construction of the Kd-tree was performed as usual by subdividing the
nodes at a position determined by means of a bisection process so as to minimize
the difference between the number of intersecting supportsat each child node,
i.e., to approach the ratio of supports in each child to1. The direction of the
normal vector to the dividing plane is chosen along the axis for which the best ratio
is obtained. The process stops after a user-defined number ofiterations. Since
traversing a Kd-tree on the GPU is computationally expensive, it was decided to
render each leaf node in a different render pass and blend theresult of each leaf
node using alpha blending, as explained in the following.
Render passes.To handle mesh boundaries different from the bounding box of
the volume, two initial render passes are performed every time the viewing vector
is changed. The first render pass stores the intersection of each ray with the front
faces of the surface mesh in a texture bound to aframebuffer object. In
the second render pass the same operation is performed for the back faces. A
singleframebuffer object can be used for the two texture attachments to
reduce the number offrambebuffer bindings. A limitation of this approach is
that the meshes must be convex.

These two textures are then used in the render passes performed for rendering
each leaf node. For this, the textures containing the vertexpositions, gradients,
volumetric data and transformation matrices are input to each render pass. Since
each leaf has more than one support intersecting it, a list ofvertices whose sup-
ports intersect the leaf is constructed. The list contains the texture coordinates of
the actual information of each vertex stored in the previously mentioned textures.
All lists are then stored in a further two-dimensional texture to be accessed in the
fragment program. To access this list, during each render pass, the texture coordi-
nates of the first position of the list in the texture is passedas an uniform variable,
together with the number of vertices in the list. With this information, and the
entry and exit points of the ray in the leaf, computed in the vertex and fragment
programs respectively as explained below, the ray in the fragment program is tra-
versed calculating the reconstructed value as in Equation 6.10. The entry point of
the ray in the leaf is calculated by rendering the front facesof the bounding box
of the leaf node and interpolating the positions of the vertices at each fragment.
With the ray direction, given by the normalized vector from the camera position
to the entry point, the exit point is calculated in the fragment program using the

6.3. Approximate MLS Volume Visualization 145

information of the planes tangent to the back faces of bounding box of the leaf
node (recall that a leaf node has an axis aligned bounding box). The entry and
exit points of the ray in the bounding box of the leaf node are compared to the
entry and exit points of the ray in the mesh calculated as described above, so that
the sampling is ensured to be performed inside the mesh at alltimes. In order to
obtain a correct forward blending of the results of each leafnode, the nodes are
rendered in order of proximity to the camera position.

The convergence to radial basis functions interpolation ofthe method de-
scribed above was confirmed with numerical tests where the reconstructed value
at the vertices of the mesh using iterated approximate approximation was com-
pared to the input data stored in a curvilinear mesh with highly stretched cells.
The data was generated by sampling three different functions at the vertices of the
grid, namely,

f1(x, y, z) =
(1.25 + cos(5.4y)(cos(6z)))

(6 + 6(3x− 1)2)
.

f2(x, y, z) =
(tanh(9z − 9x− 9y) + 1)

9
,

f3(x, y, z) = 0.75 exp

[
−(9x− 2)2 + (9y − 2)2 + (9z − 2)2

4

]

+ 0.75 exp

[
−(9x+ 1)2

49
− (9y + 1)2

10
− (9z + 1)2

10

]

+ 0.5 exp

[
−(9x− 7)2 + (9y − 3)2 + (9z − 5)2

4

]

− 0.2 exp
[
−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

]
,

The domain of these functions isC = [0, 1] × [0, 1] × [0, 1] and their ranges
are[−0.37, 0, 37], [0.0, 0.22] and[−0, 1, 1.1] respectively. After an average of50
iterations the method converged and mean and maximum errorsof 8E − 9 and
5E−8, respectively, were obtained. It is worth to mention that nodivergence was
obtained in the tests. On the other hand, the convergence is slow and, as stated by
Fasshauer and Zhang[48], by testing new values ofǫ it can be possible to reach
convergence faster, but divergence can occur. However, since the results of the
iterated process are pre-computed, this slow convergence did not have any impact
in the processing time during rendering.

Regarding performance, tests using an Nvidia GeForce 8800 Ultra graphics
card were carried out. The main difficulty in the implementation of the method on
the GPU was finding an effective way to deal with proximity queries. The use of
a Kd-tree allowed us to limit the number of vertices visited for reconstructing the
function at a given point, but the performance was dramatically decreased by the

146 Chapter 6. Meshless Volume Visualization

Figure 6.6: Renderings of the Blunt Fin, Bucky Ball, Oxygen Post, and Combustion
Chamber datasets (see color plates).

large number of render passes. Implementing the method in a single render pass
with a cleverer approach is a task that must be addressed in the future. Thus, for
the Blunt Fin (40 × 32 × 32 cells), Fighter (70125 tetrahedra) and Oxygen Post
(38 × 76 × 38 cells) the processing time was2.95s, 2.97s and4.45s per frame
respectively. On the other hand, the performance with the Heat Sink (121668
tetrahedra), Nucleon (41×41×41 cells), and Combustion Chamber (57×33×25
cells) datasets decreased and these datasets were renderedin 11.64s, 11.72s and
10.09s respectively.

Visual rendering results are shown in Figure 6.6 with different datasets. In all
cases, including the numerical tests reported above, a fill sizeh = 0.25 and scaling
parameterǫ = 0.9. These values provided good results both visually and in terms
of accuracy. This is a further advantage of the method presented compared to
approaches where parameter tunning is needed for each dataset.

Although the method proposed presents convergence in all the test cases, it is
necessary to prove similar results to the presented by Fasshauer and Zhang[48], in
order to demonstrate the convergence to an ellipsoidal basis function. Numerical
tests regarding the dependence of the quality of the solution with respect to the

6.4. Moving Least-Squares Volume Deformation 147

cell size, cell aspect ratio and frequency of the test function sampled at different
locations in the domain must be also carried out.

6.4 Moving Least-Squares Volume Deformation

Volume deformation is used for a wide range of applications.While physically-
based methods yield a plausible deformation, in applications such as volume reg-
istration and volume exploration the interest focuses on providing a fast and easy
to manipulate means for modeling volumes. Deformation algorithms for different
types of grids based on a combination of atomic transformations, such as scale,
twist, squeeze, taper or bend have been proposed. Although these transformations
are easy to use separately, a combination of them to generatecomplex deforma-
tions is a difficult problem. Moreover, most of them are not suitable for direct
manipulation by the user even when they can be controlled using few parameters.

A meshless approach was proposed by Mülleret al. [119] based on the idea
of performing the registration of two point sets, where a polar decomposition of
a quadratical matrix is used. Interactive deformation of volumetric data is also
addressed in the work by Chenet al. [31] and by Westermannet al. [170] by
using free-form deformations. An hyperpatch with64 control points is used to
deform the enclosing space and thus the object. Gibson[57] proposed the 3D-
Chainmail algorithm, which is based on the propagation of the deformation at the
vertices of the grid, where the deformation of a vertex is based on the deformation
of its neighbors.

Deformation based on the idea of providing an as-rigid-as-possible deforma-
tion has gained popularity in the last years. The term as-rigid-as-possible was
introduced by Alexaet al. [6] to describe a deformation for which the scaling and
shearing are minimal. This yields a natural and plausible deformation, as has been
shown by Schaeferet al. [136] and Igarashiet al. [74] who presented deforma-
tion algorithms for bidimensional images. The advantage ofthe method presented
by Schaeferet al. is that, by using moving least-squares, it is not necessary that
the image be triangulated and that a closed-formula for the deformation can be
obtained. An efficient and effective extension of this method to three dimensions
was proposed by Cunoet al. [37] which is the basis of the work presented in this
section. Cuno’s approach was chosen to solve the minimization problem because
of its advantages compared to other methods which will be discussed later in this
section, when a description of how the minimization problemcan be solved using
orthogonal matrices and quaternions is given.

Since the goal of the method presented here is to aid in the process of vol-
ume exploration, the aim was to provide a means to deform the volume that per-
mits the use of known hardware-accelerated volume rendering methods. As men-
tioned before, Cuno’s generalization to three dimensions of Schaefer’s moving

148 Chapter 6. Meshless Volume Visualization

least-squares deformations was used. Although Cuno’s method was proposed for
surface meshes, the mathematical background can be appliedto three-dimensional
meshes straightforwardly. Since the goal is to provide a means to deform any type
of volume, the approach used is based on calculating a displacement map to obtain
undeformed positions from deformed ones, as in the work by Rezk-Salama[131].
This is the reason why the GPU implementation presented, as will be seen later,
focuses on creating a Cartesian grid with displacement vectors, which can be used
to recover the position given by the inverse map of the deformation. Therefore, a
backward mapping is defined in contrast to the forward mapping defined by Cuno.

One important contribution presented here is the inclusionof nonlinear poly-
nomial transformations in the set of moving least-squares deformations originally
proposed by Schaefer and extended to three dimensions by Cuno, which com-
prises affine, similarity and rigid transformations. This way, a further set of poly-
nomial transformations is available, which complies with the requirement of being
represented by a closed formula. To that end, orthogonal polynomials are used in
order to be able to define a moving least-squares polynomial approximation free of
systems of equations. Nonlinear polynomial transformations are able to provide
deformations, such as bending, that cannot be modeled with linear transforma-
tions. The GPU implementation of this polynomial transformations has shown
interactive frame rates as will be discussed in the results.It is also shown how
cuts can be simulated and the special handling needed to use them in a moving
least-squares deformation is described.

6.4.1 Affine, similarity and rigid deformations

In this section, moving least-squares deformations in three dimensions for back-
ward mapping are described, which are obtained from the forward mapping ver-
sion[37] straightforwardly by means of variable exchange.

Moving least-squares deformation uses control points to let the user manip-
ulate the volume. The set ofN control points{pi} and their deformed posi-
tions {qi} is the only input to the method. A functionMfDMLS is then ap-
proximated that maps any pointu in the undeformed volume to a pointv in the
deformed volume. The functionMfDMLS is a continuous interpolating function,
i.e.,MfDMLS(pi) = qi, which holds that if∀pi = qi thenMfDMLS(pi) = pi;
i = 1 · · ·N .

By using moving least-squares to findMfDMLS, Schaefer computes a differ-
ent transformationlu for each pointu by solving

min

N∑

i=1

ωi(lu(pi)− qi)
2. (6.11)

The weighting function used in the moving least-squares approximation evaluated
in pi andu is denoted here, differently from previous sections, byωi, and defined

6.4. Moving Least-Squares Volume Deformation 149

as

ωi =
1

(pi − u)2α

andα = h2, whereh is the fill size. The functionMfDMLS that minimizes this
expression provides a forward mapping. However, as stated before, in order to
better fit the deformation method to rendering algorithms such as ray-casting, the
aim is to find the backwards transformationl−1

v that maps each deformed position
v to its positionu in the undeformed volume. This is easily accomplished by
formulating the minimization as

min

N∑

i=1

ω′
i(pi − l−1

v (qi))
2, (6.12)

where

ω′
i =

1

(qi − v)2α
.

This is an advantage of moving least-squares deformations compared to, for in-
stance, free-form deformations, where the inverse transformation is not so simple
to find. Thus, the deformationMfDMLS is defined as

MfDMLS(v) = l−1
v (v).

Sincel−1
v is an affine transformation, it can be written as

l−1
v (x) = xM + t, (6.13)

whereM and t describe a rotation and a translation respectively. As doneby
Schaefer,t can be written as

t = p∗ − q∗M,

wherep∗ andq∗ are the weighted centers of mass of the manipulation points

p∗ =

∑N
i=1 ω

′
ipi∑N

i=1 ω
′
i

q∗ =

∑N
i=1 ω

′
iqi∑N

i=1 ω
′
i

.

Therefore, it is possible to rewrite Equation 6.13 as

l−1
v (x) = (x− q∗)M + p∗, (6.14)

and, by lettinĝpi = pi − p∗ andq̂i = qi − q∗, the moving least-squares problem
from Equation 6.12 becomes

min
N∑

i=1

ω′
i‖q̂iM− p̂i‖2. (6.15)

150 Chapter 6. Meshless Volume Visualization

The transformation matrixM determines the behavior of the deformation and
is not restricted to affine transformations. Specifically, an as-rigid-as-possible de-
formation is obtained by restrictingM to represent a rotation. In the following, the
backward mapping versions of the affine, rigid and similarity three-dimensional
moving least-squares deformations are described. Closed formulas are obtained
for these deformations. Thus, as mentioned before, later itis shown how closed
formulas for non-linear deformations can be obtained by using orthogonal poly-
nomials.
Affine deformations. If no restriction is imposed onM in Equation 6.15, the
solution is an affine transformation that can be obtained by deriving the equation
with respect toM:

∂
∑N

i=1 ω
′
i‖q̂iM− p̂i‖2
∂M

=
∂
∑N

i=1 ω
′
i(q̂iM− p̂i)(q̂iM− p̂i)

T

∂M

=
∂
∑N

i=1 ω
′
i

(
q̂iMMT q̂i − 2p̂iM

T q̂T
i + p̂ip̂

T
i

)

∂M

= 2
N∑

i=1

ω′
i

(
q̂T

i q̂i

)
M− 2

N∑

i=1

ω′
iq̂

T
i p̂i.

The root of this equation gives the transformation matrix

M =

(
N∑

i=1

ω′
iq̂

T
i q̂i

)−1 N∑

i=1

ω′
iq̂

T
i p̂i. (6.16)

Since this requires the inversion of a3×3 matrix, for which analytic solutions ex-
ist, Equation 6.14 can be considered a closed formula. This solution is exactly the
same as the one presented by Schaefer and collaborators for the two-dimensional
case. Onlyqi andpi where interchanged. However, in this case, no pre-processing
is possible as in the method by Schaefer, since the pointsqi are not fixed. It is
important to note that the control points cannot be coplanar. Otherwise the ma-
trix becomes singular and the deformation function is undefined. From this, the
minimum number of control points (4) follows.
Rigid deformations. As done by Schaefer, to obtain a rigid deformation it is
necessary to restrictM to a rotation matrix,i.e., M ∈ SO3(R), whereSO3(R)
is the group of real orthogonal3× 3 matrices, with the property∀M ∈ SO3(R),
detM = 1. With this restriction, the optimization problem becomes

min
M∈SO3(R)

N∑

i=1

ω′
i‖q̂iM− p̂i‖2. (6.17)

6.4. Moving Least-Squares Volume Deformation 151

The formulation by Schaefer for the two-dimensional case restricts the matrix
to be a2 × 2 orthogonal matrix,i.e., MT M = I. In two dimensions this suf-
fices to restrict the solution to a rotation, since in this case detM = 1 always
holds. For the three-dimensional case this is however not enough since3× 3 or-
thogonal matrices can have determinant±1 and therefore a rotation as well as a
mirroring can be represented by such matrices. Independently from the procedure
to solve the problem, a deformation that is not as-rigid-as-possible is obtained
when det M = −1. Therefore, the matrix must be restricted toMTM = I

anddetM = 1. Alternatively it is possible to use another representation such
as quaternions or rotation angle/axis. This latter approach is used by Cuno for
surface meshes and is applied here to compute the displacement map as will be
described in the following.

To solve the moving least-squares problem of Equation 6.17,it is rewritten as
a maximization problem that only involves matrix and vectormultiplications. For
the rotation matrix a new representation of the rotation by means of rotation axis
and angle is used, which makes it easier to solve the optimization problem. The
estimation of the rotation axis and angle is carried out as aneigenvalue-finding
problem that is solved by finding the roots of a polynomial of degree4. For this,
Equation 6.17 is rewritten as

min
M∈SO3(R)

(
−2

N∑

i=1

ω′
iq̂iMp̂T

i +

N∑

i=1

ω′
ip̂ip̂

T
i +

N∑

i=1

ω′
iq̂iMMT q̂T

i

)
.

Note that in this equationMMT = I and therefore the last two terms are
constant and can be disregarded in the minimization problem. Since the first term
is negative, the problem can be rewritten as the maximization problem

max
M∈SO3(R)

N∑

i=1

ω′
iq̂iMp̂T

i . (6.18)

Three-dimensional rotation.In the three-dimensional space it is possible to rep-
resent a rotation by using matrices, quaternions, Euler angle or rotation axis and
rotation angle. In order to find a rotation matrix that solvesEquation 6.18 it would
be necessary to find nine unknowns. Therefore, a representation that uses fewer
variables, specifically a rotation axise and a rotation angleα is used. The rotation
matrix depends on vectore and scalarα as

M = eTe + cos(α)(I− eTe) + sin(α)

0 ez −ey

−ez 0 ex

ey −ex 0

 . (6.19)

152 Chapter 6. Meshless Volume Visualization

By replacing this in Equation 6.18, we obtain

max
‖e‖=1,cos(α)2+sin(α)2=1

(
eCeT + cos(α)(s− eCeT

)
+ sin(α)keT), (6.20)

where

C =

N∑

i=1

ω′
ip̂

T
i q̂i, (6.21)

s = trace(C) andk =
∑N

i=1 ω
′
ip̂i × q̂i. The first restriction in the maximization

problem given by Equation 6.20 makes the vectore be normalized. The second
restriction is apparently unnecessary sincecos(α)2 + sin(α)2 = 1 is always true.
However, this restriction is used to solve Equation 6.20 forsin(α) andcos(α) that
hold this restriction. For this, the Lagrange function

L(e, sin(α), cos(α);λ1, λ2) = eCeT + cos(α)(s− eCeT) + sin(α)keT +

λ1(1− ‖e‖) +

λ2(1− cos(α)2 − sin(α)2)

is used. Hereλ1 andλ2 are the Lagrange multipliers. The stationary points of
L are obtained as the roots of the first partial derivatives ofL with respect toe,
cos(α) andsin(α):

(1− cos(α))e(C + CT) + sin(α)k = λ1e (6.22)

s− eCeT = 2λ2 cos(α) (6.23)

keT = 2λ2 sin(α). (6.24)

From Equation 6.24,sin(α) = keT

2λ2
, which replaced in Equation 6.22 gives

e(C + CT) +
1

2λ2(1− cos(α))
keTk =

λ1

1− cos(α)
e. (6.25)

By letting

N = C + CT

a =
1

2λ2(1− cos(α))
(6.26)

λ =
λ1

1− cos(α)

it is possible to rewrite Equation 6.25 as

e(N + akTk) = λe, (6.27)

6.4. Moving Least-Squares Volume Deformation 153

which means that the rotation axise is an eigenvector of the matrix(N + akT k)
corresponding to the eigenvalueλ. Sinceλ is a root of the characteristic polyno-
mial P (λ) of the matrix(N + akT k), using the Frobenius norm‖ · ‖F and the
approximation

det(I + A) ≈ 1 + trace(A),

we have

P (λ) ≈ λ3 − λ2 [trace(N) + a]kkT

+λ

[
1

2
(trace(N)2 − ‖N‖2F) + a(kkT trace(N)− kNkT)

]

− det(N)(1 + kN−1kTa).

The variablea in P (λ) is unknown, since it depends onλ2. It is possible to show
thata andλ are related. For that,eT is multiplied to both sides of Equation 6.22
and by using Equations 6.23 and 6.24,

2(1− cosα)(s− 2λ2 cosα) + 2λ2 sinα sinα = λ1ee
T

is obtained. By rearranging this equation, noting thateeT = 1 and using the
Definition 6.26, we obtain

a =
1

λ− 2s
. (6.28)

Thus, the equationP (λ) = 0 becomes

0 = λ4 − λ34s+ λ2
[
6s2 − 2‖C‖2F

]
+

λ
[
4
(
‖C‖2F − s2

)
s− 2kCkT − det(N)

]
+

det(N)(2s− kN−1kT).

To find the root of this polynomial, it is converted to a depressed quartic function
by replacingy = λ− s:

0 = y4 −
y2
(
2‖C‖2F

)
−

y (8 det(C)) +

det(N)(2s− kN−1kT)− 8 det(C)s+ 2‖C‖2Fs2 − s4,

which can be solved using the method by Ferrari. Since the problem at hand
is a maximization problem (Equation 6.18), the largest rootrmax of this quartic
function gives the solution.
Determining the rotation axis and angle.Given the maximal root of the character-
istic polynomial, by substitutingy = λ− s and using Equation 6.28, the rotation

154 Chapter 6. Meshless Volume Visualization

Figure 6.7: Examples of affine (left), rigid (center) and similarity (right) moving least-
squares deformations. The top row shows the undeformed object, whereas the bottom
row shows the corresponding deformation.

axise can be obtained as an eigenvector of(N+akTk) corresponding to the now
known eigenvalueλ. For small deformations, this approach can be problematic
sincea can be very large. By substituting̟ = −akeT andu = e

̟
it is possible

to rewrite Equation 6.27 as
u(N− λI) = k. (6.29)

With this,e is obtained by normalizingu, which is obtained by means of a matrix
inversion. To obtain the rotation angleα, the optimization problem given by Equa-
tion 6.20 is solved with respect tosin(α) andcos(α). From Equations 6.26 and 6.28
we have

λ− 2s = 2λ2(1− cos(α)).

By adding Equation 6.23 we obtain, forλ2,

2λ2 = λ− s− eCeT .

Therefore, from Equations 6.23 and 6.24 we obtain

cos(α) =
s− eCeT

λ− s− eCeT
and sin(α) =

keT

λ− s− eCeT
.

Similarity deformations. A generalization of the rigid deformations is the simi-
larity deformation, which consists of a rotation and an uniform scaling. By intro-

6.4. Moving Least-Squares Volume Deformation 155

ducing a scaling factorµs ∈ R into Equation 6.12 a new minimization problem
can be stated as

min
M∈SO3(R)

N∑

i=1

ω′
i‖µsq̂iM− p̂i‖.

This can also be restated as a maximization problem as

max
M∈SO3(R)

2µs

N∑

i=1

ω′
iq̂iMp̂T

i − µ2
s

N∑

i=1

ω′
iq̂iq̂

T
i .

By assembling the Lagrange functions and deriving with respect toµs the opti-
mality condition

N∑

i=1

ω′
iq̂iMp̂T

i − µs

N∑

i=1

ω′
iq̂iq̂

T
i = 0

is obtained. Since the optimality condition of Equation 6.20 states that solving∑N
i=1 ω

′
iq̂iMp̂T

i = rmax suffices, we obtain

µs =
rmax∑N

i=1 ω
′
iq̂iq̂

T
i

.

The matrixM is calculated as in the case of rigid deformations.

6.4.2 Nonlinear polynomial deformation

As mentioned before, nonlinear polynomial transformations are able to provide
deformations, such as bending, that cannot be modeled with linear transforma-
tions. Non-linear moving least-squares deformations can be easily obtained by
solving Equation 6.12 with the functionl−1

v (x) being a polynomial of arbitrary de-
gree. LetΨ = {ψ1, . . . , ψM}, whereψj are basis functions (polynomial functions
in this case) andF = {p1, . . . ,pN} (R. Let alsoΨj = [ψj(q1), . . . , ψj(qN)],
Γ = [p1, . . . ,pN] and define the inner product〈, 〉ω′ : Rn × Rn → R+ as a
weighted sum:

〈ξ, η〉ω′ =

N∑

i=1

ξiηiω
′
i, (6.30)

Then, the new minimization problem can be formulated as

min

N∑

i=1

ω′
i(pi − ̺−1

v (qi))
2, (6.31)

where

̺−1
v (v) =

M∑

j=1

cj(v)ψj(v)

156 Chapter 6. Meshless Volume Visualization

andcj are the unknown coefficients to be found. Note thatΨ must not contain
constant terms since the translationt is not directly computed (see Equation 6.14).
These coefficients can be obtained by solving the corresponding normal equation
given by {

M∑

j=1

〈Ψk,Ψj〉ω′cj = 〈Γ,Ψk〉ω′ ; k = 1, . . . ,M . (6.32)

Solving this problem would mean having to invert, for instance, for a complete
quadratic polynomial, a10 × 10-matrix and for a cubic polynomial a20 × 20-
matrix. The interest here lies on providing a closed formulation of the polynomial
transformation of arbitrary degree. This can be achieved bymeans of multi-variate
orthogonal polynomials described in Chapter 3.

Thus, a setΨ is defined, as before using some orthogonalization process,such
that the inner product satisfies〈Ψi,Ψj〉ω′ = κijδij, whereδij is the Kronecker
delta, System 6.32 becomes a linear system where the coefficient matrix is diago-
nal. Thus, the approximation is given by the sum

̺−1
v (x) =

M∑

j=1

ψj(x)
〈Γ,Ψj〉ω′

〈Ψj,Ψj〉ω′

. (6.33)

Again,Ψ must not contain constant terms. The mappingl−1
v is then given by

l−1
v = ̺(x− q∗) + p∗.

6.4.3 GPU-based MLS displacement map computation

As stated before, since the goal is to be able to efficiently perform rendering of the
deformed volume, GPU-implementations of the transformations described above
were developed. The approach followed is based on computinga displacement
mapD covering the domain of the volume, which provides the displacement of
the backwards mapping given byl−1

v . The size of the displacement map can be
chosen so as to balance performance and accuracy of the displaced position.

The displacement map is stored in a three-dimensional floating point texture.
Linear interpolation is used to obtain the displacement vector at any point in the
domain. Thus, in a GPU-based volume renderer, it suffices to fetch the displace-
ment vector corresponding to the current position on the rayfrom the displace-
ment texture. This is the only change that any volume renderer must suffer to
accommodate the deformed volume. However, if gradient information is needed
by the volume renderer, some considerations must be taken into account, which
are described later.

Since the computation of the displacement map can be performed in parallel
and few texture fetches are needed while a significant amountof mathematical

6.4. Moving Least-Squares Volume Deformation 157

Figure 6.8: Examples of a nonlinear polynomial deformationfor the Knee dataset. The
bending effect shown is achieved by moving one control point(out of 15) at the bottom
of the model.

operations must be performed, this problem is well-suited for a GPU implementa-
tion. Besides the performance increase in calculating the deformed positions for
each voxel in the displacement map, by calculating it on the GPU no data transfer
is needed to upload the map to the graphics hardware memory.

To fill the three-dimensional texture holding the displacement map, the result
is rendered into the texture by means offramebuffer objects, for which
3D textures are supported by the NVidia GeForce 8 graphics cards. During ren-
dering of the slices of the 3D texture each fragment represents a voxel in the
displacement map texture, whose position is given to the fragment shader as tex-
ture coordinates. Given the position for the fragment, the shader calculates the
undeformed position (backwards mapping) as detailed previously.

To perform this computation, the deformed and undeformed positions of the
control pointsqi andpi, i = 1, · · · , N , respectively, are required. SinceN varies
and arrays with dynamic size are not supported, a constant equal toN is added
dynamically as first line of the shader code. This constant isused throughout the
code to define the arrays holding the control points deformedand undeformed
positions and partial results obtained during the computation. Then, the shader is
compiled in run-time. Since the number of control points doest not change often,
the cost of compiling the code in run-time is not relevant.

The fragment shader implementation of the actual algorithms to calculate the
undeformed position for each voxel of the displacement texture is straightforward
thanks to the capabilities of the latest graphics hardware and is identical to the
CPU implementation. One consideration must be pointed out however in the case

158 Chapter 6. Meshless Volume Visualization

Figure 6.9: A two-dimensional depiction of a volume being cut.

of the non-linear deformations. Since only Shader Model 4 supports more than 32
TEMP variables and implementing the Gram-Schmid orthogonalization requires
a number of temporal variables depending on the number of control points, the
non-linear deformation is only supported by the NVidia GeForce 8 series.
Introducing cuts into moving least-squares deformations.In order to introduce
cuts to support the interactive exploration of the volume, the GPU implementation
of the deformation algorithms described above is extended.The use of cuts with
the rigid transformation provides a plausible behavior andis flexible enough to
support different types of cuts on the same model.

A cut can be realized by using a two-dimensional cutting element,e.g., a plane,
that divides a portion of the volume in two pieces. Without loosing generality, the
following discussion will use half-planes. The behavior ofthe cut is depicted in
Figure 6.9, where a half-plane (represented by the yellow line) slices a volume.
The cut is only apparent after a deformation is performed. Inthe figure it is also
possible to see two features of cuts with moving least-squares deformations: one
of the manipulation points does not influence the portion of the volume on the
other side of the cut, and void regions are created when deforming the volume.

In order to obtain these features for cutting volumes deformed with the moving
least-squares approaches described above, a new weight function depending on
the position of the point to be deformed relative to the cutting plane is defined.
This weight function limits the influence of the control points on the other side of
the cutting plane, and is defined as

ω′
i = d(v,qi)

1

‖qi − v‖2α
,

whered is a damping function that defines how much influence a displaced control
pointqi has on a voxelv. If qi andv are not occluded one from the other by the
cutting plane, thend(v,qi) = 1. The functiond tends asymptotically to0 with
the size of the coverage. The damping function used in the tests was

d(v,qi) =

(‖qi − v‖
‖qi − v‖+ φ(v,qi)

)ν

,

6.4. Moving Least-Squares Volume Deformation 159

Figure 6.10: Example of a cutting plane in combination with arigid moving least-squares
deformation.

whereφ returns the length of the shortest indirect path fromqi to v that does not
cross the cutting plane (Figure 6.9) and the factorν > 1 makesd decrease more
rapidly.

The choice of the damping functiond influences directly how the cut will look
like. If d is discontinuous, undesired sharp edges are obtained,e.g., during iso-
surface rendering. Also,φ must be strictly monotonically decreasing relatively to
the occlusion betweenv andqi, since the influence of a heavily occluded control
point must be smaller than that of lighter occluded control points.

To create the void regions it does not suffices to use the damping functiond,
since this only accounts for the result of the deformation when a cutting plane is
present. For this, a test checking if the deformed and the undeformed positions
of v are occluded one from the other by the cutting plane is performed, in which
case the deformed position is not taken into account for the rendering.

To visualize the surface of a cut,e.g., during isosurface rendering, the alpha
channel of the displacement map is used to store the value1 if the deformed
position of the voxel belongs to a void region. During rendering, the current
position on the ray is discarded if the interpolated value ofthe alpha channel
is greater than0.5. In order to better represent the surface of the cut, adaptive
sampling is performed during the rendering with higher frequencies around cut
boundaries. The regions around the cut boundaries are easily recognized from the
interpolated value in the alpha channel. As one moves forward towards a cut, this
interpolated value increases up to1.

On the left side of Figure 6.7 it is possible to see the characteristic behavior
of the affine deformations. The deformed volume presents shears and scales, that

160 Chapter 6. Meshless Volume Visualization

Figure 6.11: Visual comparison of the different moving least-squares deformation meth-
ods. From left to right: original model, affine deformation,similarity deformation, rigid
deformation and nonlinear polynomial deformation of degree 2. The polynomial defor-
mation shows a bending effect that cannot be accomplished with other deformations.

turns it very dissimilar to the original volume. The effect obtained with these
deformations seems very unnatural since most objects in reality are not subject
to such transformations. An example of the rigid deformation can also be seen
in Figure 6.7. With the deformation it is possible to leave the neck undeformed
while pulling the head back. The similarity deformation shown in the figure, on
the other hand, depicts clearly the expected scaling.

A visual comparison of the deformations is shown in Figure 6.11. In the figure
it is possible to see the characteristics of each transformation. The affine transfor-
mation scales the cube, while the similarity transformation increases the size of
the top of the cube. The rigid transformation avoids the scaling but the bump
on the top is very pronounced as expected. The non-linear deformation (degree
2) shows how bending can be achieved by moving only one manipulation point.
This can also be seen in Figure 6.8.
Deforming normal vectors. Volume rendering algorithms need the gradient in-
formation, for instance, to render isosurfaces or provide lighting effects for direct
volume rendering. After a deformation, the gradient vectors calculated from the
data at the undeformed position must be corrected. This can be done using the de-
formation texture holding the displacement vectors and cutinformation stored in
the alpha channel and an adaptation to backward mapping of the method proposed
by Barr [17]. Barr describes the transformation of a normal vector for a forward
mappingF as

nq = detJF

(
J−

F 1
)T

np,

whereJF is the Jacobi matrix ofF , np is the normal vector at the undeformed
point p andnq is the unknown normal vector at the deformed pointq. To adapt
this method to backward mapping, let

nq =
1

det JG
(JG)T

np,

whereJG is the Jacobi matrix of the backward mappingG. It is easy to see that
for the Jacobi matrixJD of the displacement map,JG = I + JD, whereI is the

6.4. Moving Least-Squares Volume Deformation 161

identity matrix. Thus,

nq =
1

det I + JD

(I + JD)T
np.

Since the normal vectors (gradient vectors) for lighting purposes are normalized,
the factor 1

det I+JD
can be neglected.JD can be computed from the displacement

texture by means of finite differences. To accelerate the rendering, the matrix
(I + JD)T can be pre-computed and stored in an additional texture. Thegradient
vector at the cut boundaries must be also recomputed. This vector can be easily
calculated as the gradient of the values in the alpha channelof the displacement
texture.

In Figure 6.10, a cut obtained with a rigid deformation is depicted. With the
cut, it is possible to see the interior of the teapot. The use of manipulation points
allows the user to easily change the appearance and nature ofthe cut. Although
implementing the functionφ on the GPU for a half-plane is straightforward, for
more complex geometric cutting objects it could become expensive.

Table 6.2 shows the performance of the deformation algorithms on the CPU
and the GPU for different displacement map sizes and number of control points.
The tests were performed on a standard PC equipped with a 2GHzprocessor and
1GB RAM. It is important to note that due to the use of backwardmapping, no
pre-processing can be applied to accelerate the computation of the displacement
map as it was done by Schaeferet al. [136] and Cunoet al. [37]. As expected,
it is possible to see that the processing time is proportional to the size of the
displacement texture. The computation of the displacementmap is not interactive
for medium and large resolutions. On the other hand, the GPU is well suited for
this problem as shown in Table 6.2 where it can be seen that interactive frame
rates are achieved having a performance increase of a factorof 100 compared to
the CPU implementation. The graphics card used was an NVidiaGeForce 8800
Ultra. It is important to note that in the case of the GPU implementation, the
processing time is not proportional to the size of the displacement texture. In
this case, an increase of 8 times the number of voxels in the texture doubles the
processing time. By examining other measurements, it is possible to see that the
processing time on the GPU is proportional to the number of slices in the 3D
textures. This is because the largest part of the processingtime is taken by the
binding of the current slice to theframebuffer object.

6.4.4 Other approaches for moving least-squares deformation

In this section, other potential methods for solving the minimization problem
given by Equation 6.12 that are not based on rotation axis andangles are dis-
cussed. Disadvantages and limitations will be discussed.

162 Chapter 6. Meshless Volume Visualization

Deformation algorithm (CPU/GPU)

Size affine rigid similarity nonlinear (degree 2)

64× 64× 64 0.633/0.004 1.125/0.008 1.133/0.008 9.27/0.102
128× 128× 128 4.868/0.015 8.779/0.045 8.976/0.045 117.18/0.46
256× 256× 256 38.55/0.104 69.97/0.325 70.55/0.325 793.00/0.73

Table 6.2: Processing time for the CPU and GPU implementations of the deformation
methods (in seconds) for displacement maps of different sizes.

By lettingω′
i = 1, the minimization problem

min
M∈SO3(R)

N∑

i=1

‖q̂iM− p̂i‖2 (6.34)

is obtained, which is a least-squares problem. This problemis namedorthogo-
nal procrustes problemby Golub and Van Loan[60] and Viklands[160] and is
regarded as the problem of fitting two three-dimensional point clouds or as the
search for the opposite orientation of two coordinates systems. In general, the
orthogonal procrustes problem is formulated forn-dimensional spaces, however
in this case it is only meaningful in three dimensions. Analytic solutions to Equa-
tion 6.34 are available, for instance, by means of quaternions[71] and orthogonal
matrices[70; 13].
Orthogonal matrices. For the orthogonal procrustes problem of Equation 6.34,
the method by Golub, based on the singular value decomposition of the unweighted
(ω′

i = 1) correlation matrixC (Equation 6.21), can be used. For anym×n-matrix,
the singular value decomposition gives a decomposition of the formA = USVT ,
where them×m-matrixU and then×n-matrixV are orthogonal while them×n-
matrixS is diagonal. The rows ofU are the eigenvectors ofAAT and the columns
of V the eigenvectors ofATA. The diagonal elements ofS are the square roots
of the eigenvalues ofAAT . In this case,U, V andS are3× 3-matrices.

To obtain the rotation matrix that solves Equation 6.34, thesingular value
decompositionUCSCVT

C of C is computed. Then, the rotation matrix is given
by M = UCdiag(1, 1, det(UCVT

C))VT
C, wherediag(1, 1, det(UCVT

C)) is intro-
duced to ensuredet(M) = 1 in case thedet(UCVT

C) = −1. This does not
influence the orthogonality ofM.

This method does not produce the expected results as can be seen in Fig-
ure 6.12. Actually, there are many locations where the deformation obtained is
identical to the deformation produced by the method based onrotation angle and
axis, but there is nonetheless an abrupt change in the appearance of the deforma-
tion, which shows, additionally, noise at the boundaries due to numeric instabili-

6.4. Moving Least-Squares Volume Deformation 163

Figure 6.12: Result obtained with orthogonal matrices for the Boston Teapot model.

ties. An explanation for these results is given by Viklands[160], who presented
an analysis on the weighted orthogonal procrustes problem,which corresponds to
the moving least-squares problem. The weighted orthogonalprocrustes problem
has, in contrast to the orthogonal procrustes problem, not only one but up to eight
minima. Although this number of minima cannot be theoretically proven and was
only empirically obtained, it is enough that a single minimum cannot be ensured
for the method to be unsuitable for the problem at hand. This approach is very
similar to the work by Horn[70] and by Arunet al. [13], which are therefore also
unsuitable for our problem.

By the polar decomposition, as used by Mülleret al. [121] for the registration
of two point clouds, the matrix

∑N
i=1 ω

′
iq̂

T
i p̂i is decomposed in the formRS,

whereR is a orthogonal matrix andS is a symmetric matrix.R is then used as the
rotation matrix for the rigid deformation. However, there is a dependency between
the polar and the singular value decompositions, which states thatR = UVT and,
therefore, the problem persists.

Quaternions. The method described here for rigid deformations based on finding
the rotation axis and angle shows visually no unpleasantness. A search for the
optimal rotation by means of quaternions as done by Horn[71] should produce
the same results as the method based on the rotation axis and angle. In the method
based on quaternions, a closed formula is presented also based on the search for a
normed rotation axis and angle in the form of a quaternion. For that, the eigenvec-
tor corresponding to the largest eigenvalue of a symmetric4 × 4-matrix is com-
puted, which results in the minimizing quaternion. It is important to mention that
the solutions by Horn[71; 70] were originally proposed only for the least-squares
formulation to register two coordinate systems.

164 Chapter 6. Meshless Volume Visualization

6.4.5 Comparison with physically-based mesh deformation

The interactive simulation of stiff deformable objects is aproblem well suited for
the application of the high programmability of current graphics hardware. Thus, a
hardware-accelerated simulation system for deformable tetrahedral meshes based
on implicit integration[149] was developed and is presented here as opposing case
to the meshless deformation described above. As in moving least-squares defor-
mations, with the simulation performed on the GPU, rendering the deformed body
can be realized directly without the need for readbacks and downloads from/to
the graphics hardware. For means of performance comparison, different explicit
solvers were implemented on the GPU. This allows us to bettercompare in terms
of performance the GPU implementations of the moving least-squares deforma-
tion algorithm and of a traditional physically-based mesh-oriented deformation
method.

It is important to mention here, related work that has been developed in the last
years. Mülleret al.[118] presented a approach based on the finite element method
for real-time deformations. By estimating the rotational part of the deformation
and using linear elasticity, they create plausible animations free of the disturbing
artifacts present in linear models and faster than non-linear models. However,
since they solve a linear system on the CPU for the implicit integration, its use
with large meshes is still limited. Teschneret al. [152] perform deformations on
low resolution tetrahedral meshes, coupled with high resolution surface meshes
used to visualize the deformed body. Explicit Verlet integration on the CPU is
used to solve Newton’s equation of motion. The actual deformation process is
able to handle up to25000 tetrahedra at interactive rates.

Physically-based simulation on the GPU has been addressed by researchers
during the last years to simulate a variety of phenomena[65; 66; 56; 86; 23].
The approach by Georgiiet al. [56] is of particular relevance in the context of
this work. They simulate mass-spring models at interactiveframe rates through a
GPU-based computation of the Verlet integration method over tetrahedral meshes,
where the edges of the tetrahedra represent springs that join the particles. Al-
though the frame rates reported are interactive, instabilities arise for large time
steps due to the use of an explicit method and to the stiffnessof equations with
high spring constants. Thus, here implicit integration on the GPU is addressed.
Implicit integration of the physical model. The physical model is based on the
set ofN interacting particles in a given tetrahedral mesh. Particle i interacts with
the setNi of theNi particles connected to it by an edge. Interaction is represented
by a linear spring model, for which the energy functionE for two particlesi and
j is given by

E =
1

2
κs(‖xij‖ − L)2, (6.35)

6.4. Moving Least-Squares Volume Deformation 165

whereL is the original distance between the particles,xi andxj their positions,
xij = xj−xi, andκs the spring constant. Given the particles velocitiesvi andvj ,
damping forces exerted on particlei from the interaction with particlej are also
included. Thus, the forces acting on particlei due to particlej are

f
[s]
ij = −∂E

∂xi

= κs(‖xij‖ − L)
xij

‖xij‖
(6.36)

f
[d]
ij = −κd(vi − vj). (6.37)

The combined forcefi over particlei is given byfi =
∑

j∈Ni
(f

[s]
ij + f

[d]
ij) + f

[e]
i ,

wheref
[e]
i is the sum of external forces applied on the particle that do not depend

on its position or velocity. Then, the derivatives of the force with respect to the
position and the velocity are the matrices given by

∂fi
∂xj

= κs

xijx
T
ij

xT
ijxij

+ κs

(
1− L

‖xij‖

)(
I− xijx

T
ij

xT
ijxij

)
(6.38)

∂fi
∂vj

= κdI. (6.39)

Arranging the forces, positions and velocities of allN particles in three arrays
F = [f1, .., fN], X = [x1, ..,xN] andV = [v1, · · · ,vN], respectively, and given
the3N × 3N diagonal matrixM = [m1, m1, m1, · · · , mN , mN , mN], wheremi

is the mass of particlei, the dynamical problem can be written in terms of the
second-order differential equation

ẍ = M−1f(x, ẋ) (6.40)

Given the known positionx(t) and velocityv(t) of the system at timet, the goal
is to find the new positionx(t + h) and the new velocityv(t + h) at timet + h,
whereh is the time step.

Definingv = ẋ, Equation 6.40 is converted to a first-order differential equa-
tion:

d

dt

(
x

v

)
=

(
v

M−1f(x,v)

)
. (6.41)

Letting ∆x = x(t + h) − x(t) and∆v = v(t + h) − v(t), the implicit Euler
method approximates∆x and∆v as

(
∆x

∆v

)
= h

(
v(t) + ∆v

M−1f(x(t) + ∆x,v(t) + ∆v)

)
(6.42)

Following the groundbreaking work by Baraff and Witkin[16], ∆x = h(v(t) +
∆v) in the lower part of Equation 6.42 is replaced and the first order approxi-
mation of a Taylor series expansion onf is taken, to form the systemA∆v = b

166 Chapter 6. Meshless Volume Visualization

Figure 6.13: Texturesneighbors andneighborhood hold the information of the
neighboring particles.

(
I− hM−1 ∂f

∂v
− h2M−1 ∂f

∂x

)
∆v = hM−1

(
f(t) + h

∂f

∂x
v(t)

)
(6.43)

which must be solved for∆v in order to findx(t+ h) andv(t+ h).
Hardware-accelerated simulation.To solve the linear system of Equation 6.43
on the GPU, the input data is stored in 32 bit floating point textures. These textures
hold the state information (vectorsx andv), the externals forcesf [e], connectivity
information, and partial results obtained during the simulation.

The input data is stored in five 2D textures, namely,external forces,
positions, velocities, neighbors, andneighborhood, with dimen-
sions given by⌈

√
N⌉, with the exception ofneighbors whose dimensions are

⌈
√∑n

i=1Ni⌉1.
For each particlei, texturepositions holds its position in space, while tex-

turevelocities holds its velocity and mass. The sum of the external forces is
stored inexternal forces. Connectivity information is stored in two sepa-
rate textures (See Figure 6.13). Textureneighborhood stores a pointer to the
position of textureneighbors, where the information of theNi neighbors of the
particle is stored. This information includes a pointer back to the position of the
neighbor in the first four textures, the original distance between the particle and
the neighbor, and the index of the particle. The number of neighborsNi is stored
in one channel of textureneighborhood. Althoughκs, κd, andh are passed as
environment parameters,κs could be stored alternatively in the remaining channel
of textureneighborhood to allow the use of different local material properties.

This arrangement maps nicely to hold the sparse non-banded matrix com-
puted when forming the linear system. Each row ofNi neighbors in texture
neighbors can be regarded as being the non-zero non-diagonal positions of

1Better choices for the dimensions of these textures could beachieved using the results given
in the work by Bolz[23].

6.4. Moving Least-Squares Volume Deformation 167

the i-th row in the matrix. This holds, since only the elements of the matrix cor-
responding to two connected particles are non-zero.

A typical implementation of the simulation algorithm is given in the following,
where the description of the GPU implementation of each stepof the algorithm is
detailed. The first step computes∂f

∂x
, ∂f

∂v
andf = f [s] + f [d] + f [e]. Two render-

ing passes are performed to compute the derivatives and forces. In the first pass,
the non-diagonal elements of∂f

∂x
are calculated. For this, a quadrilateral covering

a viewport of size⌈
√∑N

i=1Ni⌉ is rendered to generate the fragments represent-

ing the non-zero non-diagonal elements of∂f
∂x

. Since each element of∂f
∂x

is a
3×3-matrix, the result of each fragment has9 elements. Thus, the results are ren-
dered to three target texturesnon diagonal dfdxk, k = 0, 1, 2. The texture
non diagonal dfdxk will hold the results of the non-zero non-diagonal ele-
ments of the(3× i+ k)-th row of ∂f

∂x
, in the texels corresponding to the neighbors

of thei-th particle. Texturespositions, neighbors, andneighborhood,
as well as the parametersκs andh, are input to this pass.

In the second pass the diagonal elements of∂f
∂x

and the force vectorf are
computed. Each diagonal element of∂f

∂x
is given by the negation of the sum of

the non-diagonal elements in its row. Thus, in the second rendering pass, the di-
agonal elements are computed by generating(⌈

√
N⌉)2 fragments, and summing

in each fragment the results of the previous rendering pass corresponding to its
neighbors. Therefore, texturesnon diagonal dfdxk are inputs to the current
rendering pass. To access the information in texturesnon diagonal dfdxk,
the texturesneighborhood andneighbors are required. As the combined
forces are also computed in this pass, texturespositions, velocities, and
external forces are also needed as input. Thus, fragmenti calculates the
3 × 3-matrix corresponding to thei-th diagonal element of∂f

∂x
, and the com-

bined force corresponding to particlei. The result is stored in four target textures:
diagonal dfdxk; k = 0, 1, 2 andforces.

The third step is forming the linear systemA∆v = b given by Equation 6.43.
The linear system is formed in three rendering passes. In thefirst pass the right
sideb of Equation 6.43 is calculated by generating(⌈

√
N⌉)2 fragments. Each

fragment calculates three elements of vectorb to be stored in textureb. Since
matrixM−1 is diagonal, it is only needed to loop over the neighbors of the parti-
cle i corresponding to the fragment to calculatef(t) + h ∂f

∂x
v(t) and multiply the

result by h
mi

. For this, texturesnon diagonal dfdxk, diagonal dfdxk,
andforces are required, so as the texturesneighbors, neighborhood,
andvelocities and the parameterh.

Next, the matrixA on the left side of the linear system must be computed. In
the second pass, the non-diagonal elements given by−hM−1 ∂f

∂v
− h2M−1 ∂f

∂x
are

168 Chapter 6. Meshless Volume Visualization

Figure 6.14: Surface rendering of deformed tetrahedral meshes.

calculated. To that end, we generate(⌈
√∑N

i=1Ni⌉)2 fragments. Each fragment

multiplies the input fromnon diagonal dfdxk by − h2

mi
, to obtain a partial

result. Note that the indexi of the corresponding particle (row) is needed, which
can be fetched from the alpha channel of textureneighbors. Then,−κdh

mi
is

added to the diagonal elements of the partial result, and this final result is written
to the texturesnon diagonal Ak, k = 0, 1, 2.

To compute the diagonal elements,(⌈√n⌉)2 fragments are generated, provid-
ing as input texturesdiagonal dfdxk, and their content is multiplied by− h2

mi

for fragmenti. 1− κdhNi

mi
is added to the diagonal elements and then the result is

written to texturesdiagonal Ak; k = 0, 1, 2. Note that texturesvelocities
andneighborhood are also needed as input due tomi andNi.

The third and final pass solves the linear system for∆v and updates the vectors
x andv. With the texturesdiagonal Ak, non diagonal Ak, andb holding
the matrixA and vectorb, the problem fits nicely to the GPU-based implemen-
tation of the Conjugate Gradients algorithm proposed by Kr¨ugeret al. [86]. The
arrangement of the data we use differs from the one proposed by Krüger and is
more similar to the one proposed by Bolzet al. [23]. Thus, the GPU matrix oper-
ations proposed by Krüger were fitted to work with our arrangement. One of the
major differences with both works is the implementation of the reduction operator.
Instead, a two pass reduction operator was implemented, compared to thelogN
passes needed by Krüger and Bolz. In the first pass, a reduction by a factor of255
is performed. This result is then combined in a second pass, so it is possible to
handle vectors of up to2552 elements. Further passes or nestedLOOP instructions
would be needed for larger vectors. We also eliminate the need for multiple passes

6.4. Moving Least-Squares Volume Deformation 169

Mesh size Frame rates [fps] CPU Euler [fps]

Tetrahedra Expl. Euler Verlet Veloc. Verlet Impl. Euler Explicit Implicit

Bar 80 3880 3408 3454 282 5824 67
Dolphin 13766 1039 764 764 113 102 ∗

Panda 17312 945 612 614 100 80 ∗

Elephant 24106 900 539 541 48 58 ∗

Knee 112299 169 119 119 22 14 ∗

Foot 156612 220 149 149 12 10 ∗

∗ Maximum response time exceeded.

Table 6.3: Performance in fps of the integration methods on the GPU and CPU.

looping on the non-zero elements of each row and using the information stored on
the alpha channel of textureneighbors to access the corresponding element in
the vector to be multiplied by the matrix. Each fragment generated performs this
operation and then adds the result to the contribution of thediagonal element.

Once the linear system is solved, the solution vector∆v is used as input to
a final rendering pass, wheren fragments are generated to update the position
and velocity of each particle. The result is rendered to texturespositions and
velocities, and then the next iteration of the simulation is started. During
rendering, to access the deformed vertex positions, each vertex fetches its correct
position from the resulting textures, which is then transformed and passed to the
rasterizer. This allows to avoid costly readback operations from the GPU.

Figures 6.14 and 6.15 show deformations performed on two tetrahedral meshes
using our approach. Results describing the performance of the algorithms are pre-
sented here. All performance measurements were carried outon a standard PC
equipped with an NVIDIA GeForce 7800 graphics board, a 3.8 GHz P4 CPU, and
2GB RAM. Table 6.3 shows the comparative results of the GPU-based implicit
Euler and the straightforward GPU implementations of the explicit Euler, Verlet
and velocity Verlet solvers, which are thus not described here. Frame rates for
the integration process (not including rendering time) aregiven in fps. Timings
for the naive CPU versions of the implicit and explicit Eulerare also included. In
some cases, the CPU implementation of the implicit Euler wasnot able to solve
the equation before the program aborted due to exceeded timewithout response.
In debugging mode, the program solved the linear system successfully with a sig-
nificant increase of the processing time. It is important to remark that, for the Bar
mesh, it was possible to use a maximum time step ofh = 0.001s for κs = 3000
with the explicit integration methods. With higherκs or largerh, instability oc-
curred. On the other hand, with the implicit Euler andh = 0.01s no stability

170 Chapter 6. Meshless Volume Visualization

Figure 6.15: Original and deformed mesh of the Foot dataset.A detail on a toe is shown
in the upper left corner of each image.

problem was found usingκs larger than30000.
In terms of performance, physically-based deformations solved on the GPU

with explicit methods are as fast as computing a low-sampleddisplacement map
(64 × 64 × 64), for rigid deformations, on the GPU for a similar number of
elements (cells). However, as mentioned before, explicit methods are in gen-
eral instable. When compared to the GPU implementation of the implicit Euler
method, the computation of the displacement map performs faster. Nonetheless,
both approaches provide interactive frame rates. As initially predicted, physically-
based deformations and meshless deformations perform better in different tasks.
While physically-based deformations are suitable for simulation tasks and visu-
alization problems where realism is important, it has been observed that moving
least-squares deformations are more suitable for exploratory tasks due to the ease
of manipulation, for instance, in illustrative, educational and entertainment soft-
ware. One task that is difficult to accomplish with both physically-based and non-
physically-based deformations is performing cuts. Correaet al. [36] addressed
this issue for the case of displacement maps by introducing discontinuous dis-
placements. In the case of moving least-squares deformations this is easily ac-
complished by modifying the weighting function as was shownabove. Finally,
meshless physically-based deformation has been addressedby other authors and
the interested reader can find a number of works on the field,e.g., [119; 80; 120;
125].

CHAPTER

7 MESHLESSMETHODS IN V ISUALIZATION

In this work, surface and volume data reconstruction and rendering were ad-
dressed with meshless techniques. Most of the techniques presented are based
on the moving least-squares approximation method, which gained popularity in
the last years within the computer graphics community, specially for surface ap-
proximation from unorganized point sets. The meshless methods developed by the
surface reconstruction community generate astonishinglygood results compared
to traditional methods based on combinatorial structures,which can be regarded
as mesh-based methods and dominated the area for decades.

However, despite the success of meshless surface reconstruction methods,
some problems persist and new problems arose. Thus, the approaches developed
in the context of the work reported in this thesis, initiallytargeted problems found
in meshless surface reconstruction algorithms. The resulting set of techniques can
be seen in Figure 7.1. The first problem addressed resulted inthe curvature-driven
projection operator proposed in Section 4.2, which was developed to reduce the
number of operations needed for calculating the polynomiallocal approximations
to the surface. This was done, since the number of local approximations that must
be calculated to fully represent or render a surface using moving least-squares is
very large. With the projection operator based on curvatureit was possible to
model the local approximations using non-complete quadratic polynomials. This
can be exploited in different scenarios. For instance, graphics hardware imple-
mentations can benefit from the reduced size of the matrix of the normal equation,
since4× 4-matrices are natively supported by current commodity graphics cards.
With this goal in mind, a graphics hardware implementation of the original mov-
ing least-squares surfaces definition was presented. This made it possible to ob-
tain interactive framerates for rendering a surface. One further contribution of the
work on the curvature-driven projection operator was the computation of the cur-
vature itself for unorganized point sets. As shown in the literature, the curvature
information can be used not only to have a quantitative measure to analyse the sur-
face, but for rendering purposes, for instance, for performing non-photorealistic
rendering or accessibility shading.

A number of works on implicit moving least-squares surfaceswas developed
the last years by many authors, addressing sampling, reconstruction and perfor-
mance issues. However, one of the major drawbacks of the techniques presented
is the linear nature of the surface approximation. Thus, recent results on approxi-

171

172 Chapter 7. Meshless Methods in Visualization

Figure 7.1: Guideline for the use of a (incomplete) set of meshless techniques in the
context of surface approximation. The methods proposed in this thesis are marked with
red borders (see color plates).

mate approximation were used in this work to combine the simplicity of implicit
definitions with the high-order approximation of projection operators. The result-
ing method is presented in Section 4.3. This method benefits from the matrix-free
nature of approximate approximations, which allows the computation of higher-

173

order approximations without having to solve systems of equations. This allowed
the definition of an implicit function, whose zero set provides an approximation
to the surface that, differently from previous definitions,is not linear. Also, it
was shown that this simplicity can be exploited to introducenew mechanisms to
model specific features of the surface, specifically, sharp edges. Bilateral filtering
was introduced into the surface definition as an iterative processing to model sharp
features in the model. Despite the results being an approximation to the moving
least-squares approximation, the fact that no system of equations must be solved
helps to avoid numerical instabilities.

Another family of meshless surface approximation methods is comprised by
the partition of unity implicts. These implicit definitionssuffer from robustness
and algorithmic problems. The latter refer specifically to the need for different
data structures to perform the surface approximation and toextract the output
mesh. Also, spatial adaptiveness is sometimes not enough toaccommodate com-
plex surfaces. Thus, a method based on orthogonal polynomials and on theJ1

A

data structure was devised (Section 4.4), which provides not only spatial adap-
tiveness but also approximation order adaptiveness. Specifically, the degree of the
polynomial approximation matches the local complexity of the surface. However,
with this approach the robustness of the method worsens due to the oscillations
produced by high-degree polynomials. To attack this problem, different algorith-
mic solutions were combined with satisfactory results.

The potential advantages of using meshless approximation methods for vol-
ume data visualization were also explored (Figure 7.2). Meshless reconstruction
methods in this context were relegated to scattered data in the past and were ba-
sically built upon partition of unity, inverse distance weighting and similar ap-
proaches. The work in this direction was started by directlyextending the moving
least-squares surface definitions to isosurfaces and surfaces located at regions of
high gradient magnitude. A combination, in the sense of a predictor-corrector ap-
proach, of weighted least-squares and moving least-squares was defined, which
increased the domain of the definition while maintaining thequality of the rep-
resentation. The result of this technique is a smooth two-manifold representing
some feature in the volume.

The flexibility of points was used in several works to render surfaces. This
flexibility was the reason why rendering dynamic surfaces extracted from volu-
metric data using points was explored in Section 5.3. Specifically, the interactive
rendering of streamsurfaces, and the novel path-surfaces,was addressed. Com-
modity graphics hardware capabilities were used to generate a dense sampling of
the streamsurface or path-surface. This sampling was then used to render a closed
surface with splatting. Interactive frame rates were achieved, allowing the user to
place the probe for generating the streamsurface or path-surface and to animate
the path surface in real time.

174 Chapter 7. Meshless Methods in Visualization

Figure 7.2: Guideline for the use of a (incomplete) set of meshless techniques in the
context of volume visualization. The methods proposed in this thesis are marked with red
borders (see color plates).

Methods for rendering volumetric data stored in a wide rangeof mesh types
were developed as well (Sections 6.2 and 6.3). The goal was toexploit the flexi-

175

bility of meshless approximation methods for defining a reconstruction technique
independent of the mesh type. The first approach to solve thisproblem led to the
combined use of detail-preserving weighting functions andmoving least-squares.
While the reconstruction results were promising, numerical instabilities often oc-
curred and a large number of systems of equations had to be solved. Thus, orthog-
onal polynomials were used to tackle both problems with goodresults. Perfor-
mance increased considerably while improving stability enough for the purposes
of visualization. Despite this fact, a graphics hardware implementation proved to
be still slow for visualization tasks. Therefore, approximate approximation was
used to increase performance. Although the method based on orthogonal poly-
nomials produces more accurate solutions than the method based on approximate
approximation, the latter proved easy to implement and fastto compute compared
to the former.

Implementing orthogonal polynomials on the graphics hardware for other pur-
poses might deliver interactive frame rates. This is the case for the non-linear
polynomial moving least-squares deformations proposed inSection 6.4. This
method is based on recent work on moving least-squares deformations in three
dimensions, which provided closed solutions for computingaffine, similarity and
rigid deformations. Thus, in some sense, the non-linear polynomial deformations
proposed complete this set of moving least-squares deformations since by using
orthogonal polynomials a closed solution for higher-orderpolynomial approxi-
mations (interpolations in this case) can be obtained. Thisfact was exploited, as
hinted before, to develop hardware-accelerated algorithms for the complete set of
moving least-squares deformations, which allowed to achieve interactive frame
rates. Although these results were used for volume deformation, surface defor-
mation can be as well addressed with the same concept as hinted in Figure 7.1. It
is maybe worth mentioning that a hardware-implementation of a physically-based
algorithm for deforming tetrahedral meshes was also developed and is included
within the discussion of meshless volume deformation as a comparative model.

Albeit being conceptually interesting and setting a base for future work, the
meshless methods presented in this thesis need to be accelerated to deliver inter-
active frame rates. Although it is highly probable that nextgeneration of graphics
hardware will be able to accomplish such task, the size of thedatasets to be visu-
alized will also grow. However, we believe that the use of newresults from ap-
proximation theory can help overcome this problem. Also, rigorous mathematical
proofs of convergence must be developed to better sustain the methods. Nonethe-
less, in the same way that meshless techniques have proved tobe advantageous
in comparison to mesh-based techniques for surface reconstruction, not only from
unorganized point sets but also from polygon soups and polygonal meshes, they
could also deliver interesting results in the context of volume data visualization.

176 Chapter 7. Meshless Methods in Visualization

COLOR PLATES

Mf
x

t

Figure C.1:Ray-casting implicit surfaces (left) and surfaces defined as the set of static points of
some projection operator (right). For implicit definitions, a surface cross is found by sampling the
ray at regular intervals. With the two last sampled points, the bisection method is applied to find
an approximation to the intersection point. In the case of projection operators, the approximate
intersection is projected onto the surface. If the distancet to the projection is less than a threshold,
the current approximation is the intersection point. Otherwise a local approximationMf to the
surface is computed and its intersection with the ray definesthe new approximate intersectionx.
In both cases the process starts with a point near the surface∂S depicted by the circled point.

Figure C.2:Object-order volume rendering algorithms. Clockwise (from top left): splatting, cell
projection, object-aligned, and view-aligned texture-based volume rendering. Note that splatting
and cell projection are not restricted to regular grids.

177

178 Color Plates

Figure C.3:Volume ray-casting. From left to right: at least one ray is traced for each pixel in
the image (ray casting), on each ray the volume is sampled a number of times (sampling), the
contribution of each segment is computed (shading), and thecontributions of all ray segments are
composited to determine to final color of the pixel (composition).

Figure C.4: Rendering of the approximate surface for the EtiAnt datasetobtained with the
curvature-driven projection operator described in this section.

Color Plates 179

β1

δβ2

δβ3

x2

x3

x1

νx
1

νx
2

ν1

ν2

ν3η

ζ

Figure C.5:Estimating directional curvatures on the approximated tangent plane atx.

Figure C.6:Approximated surface for the Stanford Dragon obtained as the zero set of the implicit
function based on approximate moving least-squares approximation.

180 Color Plates

Figure C.7:Plot of the value of the implicit function for a regularly (top) and an irregularly (bot-
tom) sampled dataset. From left to right: AMLS implicits with 5 iterations, AMLS implicits with
20 iterations, Adamson and Alexa’s implicits and Kolluri’simplicits. The white line shows the
zero set of the function while colors map the value of the implicit function with red corresponding
to low values and blue to high values.

Figure C.8:TheJ1

A
triangulation: on the left, a sample two-dimensional adaptive triangulation

and, on the right, examples of pivoting operations.

Color Plates 181

Figure C.9:The figure in the left side depicts the behavior of theJ1

A
during function approxima-

tion. The figure in the right side shows an illustration of theeffect of the coverage domain on the
polynomial approximation. The left side of this figure depicts a case that can arise when a high-
order polynomial is used to approximate the surface inside the local domain (blue circle). Since a
large region of this domain is void of points, the polynomialapproximation may oscillate. Thus,
the coverage domain (blue line) is computed and the ratio of the area of the coverage domain and
the area of the plane (yellow line) is calculated. This ratiodetermines the degree of the polynomial
used. Decreasing the degree of the polynomial when this ratio is below a threshold reduces the
oscillation as can be seen on the right side of the figure.

Figure C.10:Comparing the iso-mesh produced fromJ1

A
(left) against the iso-mesh obtained

from J1

A
with displacement (right).

182 Color Plates

Figure C.11:A CSG difference operation involving the Neptune model and acylinder.

(a) (b) (c)

Figure C.12:The Bucky Ball dataset. (a) The final result of applying the predictor-corrector
method. (b) The points projected by the predictor at a distance greater than a pre-defined threshold
are shown in red. (c) The output points from the predictor projected by the corrector at a distance
greater than the threshold are shown in green.

Color Plates 183

xi

ρ

n

Figure C.13:Calculating the intersection of the ray with the local approximation stored in each
sample point.

Figure C.14:Visualization of the flow field of a tornado with: (left) a point-based stream surface;
(right) the combination of a stream surface and texture-based flow visualization to show the vector
field within the surface. Each stream surface is seeded alonga straight line in the center of the
respective image.

Figure C.15:Path surface of an unsteady flow: on the left side, the time of the unsteady flow field
is shown by colors (red for for early times, green for later times); on the right side the combination
of the path surface and time-dependent LIC is illustrated.

184 Color Plates

(a) (b) (c)

Figure C.16:Illustration of different steps of the algorithm: (a) during the initialization of the
particles texture only one column is rendered (the height ofthe strip represents the number of initial
particles) and (b) during creation of the binary tree the newparticles build the highest level and the
contents are summed up until the root contains the overall number of particles to be inserted. In (c)
the lifetime of the individual particles is shown. The colorgradient is defined from red (att = 0)
to green and illustrates the increasing lifetime. The areaswith red lines at the left and bottom-right
parts of the image show regions with many new streamlines.

(a) (b) (c) (d) (e) (f)

Figure C.17:Volumetric data approximation for a slice of the CombustionChamber dataset: (a)
Gauss-Jordan with pivoting, (b) Conjugate Gradient on normal equations, (c) QR, (d) SVD and
(e) orthogonal polynomials. Noise represents evaluation points where instabilities led to a poor
approximation. In (f), the result with linear interpolation on the original mesh is shown. Note that,
for these results, onlyfloat precision was used to increase the numerical instability. In prac-
tice, choosing a sufficiently large support and usingdouble precision, orthogonal polynomials
produce results visually indistinguishable from those obtained with QR and SVD.

Color Plates 185

Figure C.18:Renderings of the Blunt Fin, Bucky Ball, Oxygen Post, and Combustion Chamber
datasets.

Figure C.19:Volume and isosurface rendering of different data. From left to right: the Bucky
Ball structured dataset, the Heat Sink unstructured dataset, the Penguin adaptive-mesh-refinement
mesh, the Space Shuttle Launch Vehicle multiblock dataset with multiple overlapping curvilinear
meshes and the Combustion Chamber curvilinear dataset.

186 Color Plates

Figure C.20:Guideline for the use of a (incomplete) set of meshless techniques in the context of
surface approximation. The methods proposed in this thesisare marked with red borders.

Color Plates 187

Figure C.21:Guideline for the use of a (incomplete) set of meshless techniques in the context of
volume visualization. The methods proposed in this thesis are marked with red borders.

188 Color Plates

BIBLIOGRAPHY

[1] Bart Adams and Philip Dutré. Interactive boolean operations on surfel-
bounded solids.ACM Transactions on Graphics, 22(3):651–656, 2003.

[2] Anders Adamson and Marc Alexa. Approximating and intersecting sur-
faces from points. InProceedings of Eurographics/ACM Symposium on
Geometry Processing, pages 230–239. Eurographics Association, 2003.

[3] Anders Adamson and Marc Alexa. Ray tracing point set surfaces. InPro-
ceedings of the Shape Modeling International, page 272, Washington, DC,
USA, 2003. IEEE Computer Society.

[4] Gady Agam and Xiaojing Tang. A sampling framework for accurate cur-
vature estimation in discrete surfaces.IEEE Transactions on Visualization
and Computer Graphics, 11(5):573–583, 2005.

[5] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David
Levin, and Claudio T. Silva. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graphics, 9(1):3–15,
2003.

[6] Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid-as-possible
shape interpolation. InProceedings of the ACM SIGGRAPH, pages 157–
164, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing
Co.

[7] Peter Alfeld. Scattered data interpolation in three or morevariables. In
T. Lyche and L. Schumaker, editors,Mathematical Methods in Computer
Aided Geometric Design, pages 1–34. Academic Press, 1989.

[8] Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-
based surface reconstruction algorithm. InProceedings of the SIGGRAPH,
pages 415–421, New York, NY, USA, 1998. ACM Press.

[9] Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The power crust.
In Proceedings of the ACM symposium on Solid modeling and applications,
pages 249–266, New York, NY, USA, 2001. ACM Press.

[10] Nina Amenta and Yong J. Kil. The domain of a point set surfaces. In Pro-
ceedings of the Eurographics Symposium on Point-based Graphics, pages
139–147. Eurographics Association, 2004.

189

190 Bibliography

[11] Nina Amenta and Yong Joo Kil. Defining point-set surfaces.ACM Trans-
actions on Graphics, 23(3):264–270, 2004.

[12] Erik Anderson, Steven Callahan, Carlos Scheidegger, John Schreiner, and
Claudio Silva. Hardware-Assisted Point-Based Volume Rendering of Tetra-
hedral Meshes. InProceedings of SIBGRAPI, pages 163–170. IEEE CS,
2007.

[13] K. S. Arun, Thomas S. Huang, and Steven D. Blostein. Least-squares fitting
of two 3-d point sets.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9(5):698–700, 1987.

[14] Anthony Atkinson and Marco Riani.Robust diagnostic Regression Analy-
sis. Springer-Verlag, New York, 2000.

[15] Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. Automatic re-
construction of surfaces and scalar fields from 3D scans. InProceedings of
the SIGGRAPH, pages 109–118, New York, NY, USA, 1995. ACM Press.

[16] David Baraff and Andrew Witkin. Large steps in cloth simulation. In
Proceedings of ACM SIGGRAPH, pages 43–54, 1998.

[17] Alan H. Barr. Global and local deformations of solid primitives. InPro-
ceedings of the ACM SIGGRAPH, pages 21–30, New York, NY, USA,
1984. ACM.

[18] Richard H. Bartels and John J. Jezioranski. Least-squares fitting using
orthogonal multinomials.ACM Transactions on Mathematical Software,
11(3):201–217, 1985.

[19] Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Cl´audio Silva, and
Gabriel Taubin. The ball-pivoting algorithm for surface reconstruction.
IEEE Transactions on Visualization and Computer Graphics, 5(4):349–
359, 1999.

[20] Ake Björck. Numerical Methods for Least Squares Problems. SIAM, Lon-
don, U.K., 1996.

[21] Jules Bloomenthal. An implicit surface polygonizer. In Paul Heckbert,
editor,Graphics Gems IV, pages 324–349. Academic Press, Boston, 1994.

[22] Jean-Daniel Boissonnat. Geometric structures for three-dimensional shape
representation.ACM Transactions on Graphics, 3(4):266–286, 1984.

Bibliography 191

[23] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schröder.Sparse matrix
solvers on the GPU: conjugate gradients and multigrid.ACM Transactions
on Graphics, 22(3):917–924, 2003.

[24] Richard L. Burden and J. Douglas Faires.Numerical Analysis. PWS Pub-
lishing Co., Boston, MA, USA, 4th edition, 1989.

[25] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering
and tomographic reconstruction using texture mapping hardware. InPro-
ceedings of the Symposium on Volume Visualization, pages 91–98, New
York, NY, USA, 1994. ACM Press.

[26] Brian Cabral and Leith Casey Leedom. Imaging vector fields using line
integral convolution. InProceedings of ACM SIGGRAPH, pages 263–270,
1993.

[27] Wenli Cai and Pheng-Ann Heng. Principal stream surfaces. InProceedings
of IEEE Visualization, pages 75–80, 1997.

[28] Manfredo P. Do Carmo.Differential Geometry of Curves and Surfaces.
Prentice-Hall, 1976.

[29] Antonio Castelo, Luı́s Gustavo Nonato, M.F. Siqueira, Rosane Minghim,
and G. Tavares. Thej1

a triangulation: An adaptive triangulation in any
dimension.Computer & Graphics, 30(5):737–753, 2006.

[30] CD-ADAPCO. http://www.cd-adapco.com, 2007.

[31] Yan Chen, Qing hong Zhu, A. Kaufman, and Shigeru Muraki. Physically-
based animation of volumetric objects. InProceedings of the Computer
Animation, page 154, Washington, DC, USA, 1998. IEEE Computer Soci-
ety.

[32] C. S. Co, S. D. Porumbescu, and K. I. Joy. Meshless isosurfacegeneration
from multiblock data. InProceedings of Eurographics/IEEE TCVG Sym-
posium on Visualization, pages 273–281. Eurographics Association, 2004.

[33] C. S. Co, S. D. Porumbescu, and K. I. Joy. Meshless isosurfacegenera-
tion from multiblock data. InProceedings of Eurographics/IEEE TCVG
Symposium on Visualization VisSym, pages 273–281, 2004.

[34] Christopher S. Co, Bernd Hamann, and Ken I. Joy. Iso-splatting: A point-
based alternative to isosurface visualization. In J. Rokne, W. Wang, and
R. Klein, editors,Proceedings of Pacific Graphics, pages 325–334, 2003.

192 Bibliography

[35] Christopher S. Co and Ken I. Joy. Isosurface generation for large-scale
scattered data visualization. InProceedings of Vision, Modeling, and Visu-
alization, pages 233–240, 2005.

[36] Carlos D. Correa, Deborah Silver, and Min Chen. Discontinuous Displace-
ment Mapping for Volume Graphics . InProceedings of EUROGRAPHICS
- IEEE VGTC Symposium on Visualization, pages 9–16, 2006.

[37] Alvaro Cuno, Claudio Esperança, Antonio Oliveira, and Paulo Roma. 3D
as-rigid-as-possible deformations using MLS. InProceedings of Computer
Graphics International, pages –, 2007.

[38] Philips J. Davis.Interpolation and Approximation. Blaisdell, New York, 1
edition, 1963.

[39] Carl de Boor. B-from basics. Technical summary report, Wisconsin Univ-
Madison Mathematics Research Center, 1986.

[40] Tamal K. Dey and Jian Sun. An adaptive MLS surface for reconstruction
with guarantees. InProceedings of the Eurographics Symposium on Ge-
ometry Processing, page 43, Aire-la-Ville, Switzerland, Switzerland, 2005.
Eurographics Association.

[41] Huong Quynh Dinh, Greg Turk, and Greg Slabaugh. Reconstructing sur-
faces using anisotropic basis functions. InProceedings of the International
Conference on Computer Vision, pages 606–613, 2001.

[42] Jean Duchon. Splines minimizing rotation-invariant seminorms in sobolev
spaces. Constructive Theory of Functions of Several Variables, Lecture
Notes in Mathematics, 571:85–100, 1977.

[43] Herbert Edelsbrunner and Ernst P. Mücke. Three-dimensional alpha
shapes.ACM Transactions on Graphics, 13(1):43–72, 1994.

[44] Michael Elad. On the origin of the bilateral filter and ways toimprove it.
IEEE Transactions on Image Processing, 11(10):1141–1151, 2002.

[45] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, and
Daniel Weiskopf.Real-Time Volume Graphics. Ak Peters, 2006.

[46] Gregory Fasshauer. Approximate moving least-squares approximation: A
fast and accurate multivariate approximation method. InCurve and Surface
Fitting, pages 139–148, Saint-Malo, 2002. Nashboro Press.

Bibliography 193

[47] Gregory Fasshauer. Toward approximate moving least squares approxima-
tion with irregularly spaced centers.Computer Methods in Applied Me-
chanics & Engineering, 193:1231–1243, 2004.

[48] Gregory Fasshauer and Jack Zhang. Iterated approximate moving least
squares approximation. In C. Alves V. M. A. Leitao and C. A. Duarte,
editors,Advances in Meshfree Techniques, page to appear. Springer-Verlag,
2007.

[49] Markus Fenn and Gabrielle Steidl.Robust local approximation of scattered
data, volume 31 ofComputational Imaging and Vision, pages 317–334.
Springer-Verlag, Dordrecht, 2005.

[50] Markus Fenn and Gabrielle Steidl.Robust local approximation of scattered
data, volume 31 ofComputational Imaging and Vision, pages 317–334.
Springer-Verlag, 2005.

[51] Shachar Fleishman, Daniel Cohen-Or, and Claudio T. Silva. Robust moving
least-squares fitting with sharp features.ACM Transactions on Graphics,
24(3):544–552, 2005.

[52] Michael S. Floater, Géza Kós, and Martin Reimers. Mean value coordinates
in 3D. Computer Aided Geometric Design, 22(7):623–631, 2005.

[53] Thomas Frühauf. Raycasting vector fields. InProceedings of IEEE Visual-
ization, pages 115–120, 1996.

[54] Michael P. Garrity. Raytracing irregular volume data. InProceedings of
the Workshop on Volume Visualization, pages 35–40, New York, NY, USA,
1990. ACM Press.

[55] Christoph Garth, Xavier Tricoche, Tobias Salzbrunn, Tom Bobach, and
Gerik Scheuermann. Surface techniques for vortex visualization. InPro-
ceedings of EG/IEEE VGTC Symposium on Visualization, pages 155–164,
2004.

[56] Joachim Georgii and Rüdiger Westermann. Mass-spring systems on the
GPU. Simulation Modelling Practice and Theory, 13(8):693–702, 2005.

[57] Sarah F. Gibson. 3D chainmail: a fast algorithm for deforming volumetric
objects. InProceedings of the Symposium on Interactive 3D Graphics,
pages 149–ff., New York, NY, USA, 1997. ACM.

194 Bibliography

[58] Joao Paulo Gois, Valdecir Polizelli-Junior, Tiago Etiene,Eduardo Te-
jadaand Antonio Castelo, Thomas Ertl, and Luis G. Nonato. Robust and
Adaptive Surface Reconstruction using Partition of Unity Implicit. In Pro-
ceedings of SIBGRAPI, pages 95–104. IEEE CS, 2007.

[59] Joao Paulo Gois, Eduardo Tejada, Tiago Etiene, Luis G. Nonato, Anto-
nio Castelo, and Thomas Ertl. Curvature-driven Modeling and Rendering
of Point-Based Surfaces. InProceedings of the Brazilian Symposium on
Computer Graphics and Image Processing, pages 27–36. IEEE CS, 2006.

[60] Gene Golub and Charles Van Loan.Matrix Computations. John Hopkins
Press, 1989.

[61] Markus H. Gross, Lars Lippert, R. Dittrich, and S. Häring. Two methods
for wavelet-based volume rendering.Computers and Graphics, 21(2):237–
252, 1997.

[62] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In
Proceedings of ACM SIGGRAPH, page 23, New York, NY, USA, 2007.
ACM.

[63] Xiaohu Guo, Jing Hua, and Hong Qin. Touch-based haptics for interac-
tive editing on point set surfaces.IEEE Computer Graphics Applications,
24(6):31–39, 2004.

[64] Roland L. Hardy. Multiquadric equations of topography and other irregular
surfaces.Journal of Geophysical Research, 76:1905–1915, 1971.

[65] Mark Harris and Greg James. Physically-
based simulation on graphics hardware, 2003.
http://developer.nvidia.com/docs/IO/8230/GDC2003PhysSimOnGPUs.pdf.

[66] Mark J. Harris, Greg Coombe, Thorsten Scheuermann, and Anselmo Las-
tra. Physically-based visual simulation on graphics hardware. InProceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware, pages 109–118, 2002.

[67] John C. Hart. Ray tracing implicit surfaces. Technical report EECS-93-014,
Washington State University, 1993.

[68] Charles Hirsch.Numerical Computational of Internal and External Flows,
volume 1. A Wiley-Interscience Publication, 1989.

Bibliography 195

[69] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganizedpoints. InPro-
ceedings of the SIGGRAPH, pages 71–78, New York, NY, USA, 1992.
ACM Press.

[70] Berthold Horn. Closed-form solution of absolute orientation using
orthonormal matrices. Journal of the Optical Society of America,
5(7):1127–1135, 1987.

[71] Berthold Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America, 5(4):629–642,
1987.

[72] Jianbing Huang and Chia-Hsiang Menq. Combinatorial manifold recon-
struction and optimization from unorganized point cloud with arbitrary
topology.Computer-Aided Design, 1(34):149–165, 2002.

[73] Jeff P. Hultquist. Constructing stream surfaces in steady 3D vector fields.
In Proceedings of IEEE Visualization, pages 171–178, 1992.

[74] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. As-rigid-as-
possible shape manipulation. InProceedings of the ACM SIGGRAPH,
pages 1134–1142, New York, NY, USA, 2005. ACM.

[75] Yun Jang, Ralf P. Botchen, Andreas Lauser, David S. Ebert, Kelly P.
Gaither, and Thomas Ertl. Enhancing the Interactive Visualization of Pro-
cedurally Encoded Multifield Data with Ellipsoidal Basis Functions. In
Proceedings of Eurographics, page 587. Eurographics Association, 2006.

[76] Yun Jang, Manfred Weiler, Matthias Hopf, Jingshu Huang, David S. Ebert,
Kelly P. Gaither, and Thomas Ertl. Interactively Visualizing Procedurally
Encoded Scalar Fields. InProceedings of Eurographics/IEEE TCVG Sym-
posium on Visualization VisSym, pages 35–44. Eurographics Association,
2004.

[77] Bruno Jobard, Gordon Erlebacher, and M. Youssuff Hussaini.Lagrangian-
Eulerian advection of noise and dye textures for unsteady flow visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
8(3):211–222, 2002.

[78] Thouis R. Jones, Fredo Durand, and Matthias Zwicker. Normalimprove-
ment for point rendering. IEEE Computer Graphics and Applications,
24(4):53–56, 2004.

196 Bibliography

[79] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface
reconstruction. InProceedings of Eurographics Symposium on Geometry
Processing, pages 61–70. Eurographics Association, 2006.

[80] Richard Keiser, Matthias Müller, Bruno Heidelberger, Matthias Teschner,
and Markus Gross. Contact handling for deformable point-based objects.
In Proceedings of Vision, Modeling, Visualization, pages 339–347, 2004.

[81] Joe Kniss, Gordon L. Kindlmann, and Charles D. Hansen. Interactive vol-
ume rendering using multi-dimensional transfer functionsand direct ma-
nipulation widgets. InProceedings of IEEE Visualization, pages 255–262,
2001.

[82] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in
computer graphics.Computers & Graphics, 28(6):801–814, 2004.

[83] Ravikrishna Kolluri. Provably good moving least squares. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms, pages 1008–1017,
Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathe-
matics.

[84] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and JamesF. O’Brien.
Spectral surface reconstruction from noisy point clouds. In Proceedings of
the Eurographics/ACM SIGGRAPH symposium on Geometry processing,
pages 11–21, New York, NY, USA, 2004. ACM Press.

[85] Martin Kraus. Direct Volume Visualization of Geometrically Unpleasant
Meshes. PhD thesis, University of Stuttgart, 2003.

[86] Jens Krüger and Rüdiger Westermann. Linear algebra operators for GPU
implementation of numerical algorithms.ACM Transactions on Graphics,
22(3):908–916, 2003.

[87] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-
warp factorization of the viewing transformation. InProceedings of the
SIGGRAPH, pages 451–458, New York, NY, USA, 1994. ACM Press.

[88] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares
methods.Mathematics of Computation, 37(155):141–158, 1981.

[89] Peter Lancaster.Polynomial and Spline Approximation, chapter Moving
weighted least-squares methods, pages 103–120. Reidel, 1979.

[90] Carsten Lange and Konrad Polthier. Anisotropic smoothing of point sets.
Computer Aided Geometry Design, 22(7):680–692, 2005.

Bibliography 197

[91] Robert Laramee and R. Daniel Bergeron. An isosurface continuity al-
gorithm for super adaptive resolution data. InProceedings of Computer
Graphics International, pages 215–237, 2002.

[92] Robert S. Laramee, Christoph Garth, J. Schneider, and Helwig Hauser. Tex-
ture advection on stream surfaces: A novel hybrid visualization applied to
CFD simulation results. InProceedings of EG/IEEE VGTC Symposium on
Visualization, pages 155–162, 2006.

[93] Robert S. Laramee, Helwig Hauser, Helmut Doleisch, B. Vrolijk, F. H.
Post, and D. Weiskopf. The state of the art in flow visualization: Dense
and texture-based techniques.Computer Graphics Forum, 23(2):143–161,
2004.

[94] Robert S. Laramee, Bruno Jobard, and Helwig Hauser. Image space based
visualization of unsteady flow on surfaces. InProceedings of IEEE Visual-
ization, pages 131–138, 2003.

[95] Jinho Lee, Lance C. Burton, Raghu Machiraju, and Donna S. Reese. Ef-
ficient rendering of multiblock curvilinear grids with complex boundaries:
Research articles.Comput. Animat. Virtual Worlds, 16(1):53–68, 2005.

[96] Seungyong Lee, George Wolberg, and Sung Yong Shin. Scattered data
interpolation with multilevel b-splines.IEEE Transactions on Visualization
and Computer Graphics, 3(3):228–244, 1997.

[97] David Levin. The approximation power of moving least-squares. Mathe-
matics of Computation, 67(224):1517–1531, 1998.

[98] David Levin. Mesh-independent surface interpolation. In Guido Brun-
nett, Bernd Hamann, Heinrich Müller, and Lars Linsen, editors,Geometric
Modeling for Scientific Visualization, pages 37–49. Springer-Verlag, 2003.

[99] Marc Levoy. Display of surfaces from volume data.IEEE Computer
Graphics and Applications, 8(3):29–37, 1988.

[100] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The digital Michelangelo
project: 3D scanning of large statues. InSIGGRAPH ’00: Proceedings
of the 27th annual conference on Computer graphics and interactive tech-
niques, pages 131–144, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

198 Bibliography

[101] Marc Levoy and Turner Whitted. The use of points as a display primitive.
Technical report, University of North Carolina at Chapel Hill, 1985.

[102] Guo-Shi Li, Xavier Tricoche, and Charles Hansen. GPUFLIC: Interactive
and accurate dense visualization of unsteady flows. InProceedings of EG/
IEEE VGTC Symposium on Visualization, pages 29–34, 2006.

[103] Yaron Lipman, Daniel Cohen-Or, and David Levin. Error bounds and op-
timal neighborhoods for MLS approximation. InProceedings of the Euro-
graphics Symposium on Geometry Processing, pages 71–80, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Association.

[104] Yaron Lipman, Daniel Cohen-Or, and David Levin. Data-dependent MLS
for faithful surface approximation. InProceedings of Eurographics Sym-
posium on Geometry Processing, pages 59–67, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

[105] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tal-Ezer.
Parameterization-free projection for geometry reconstruction. ACM Trans-
actions on Graphics, 26(3):22, 2007.

[106] Zhang Liu and Robert Moorhead. AUFLIC: An accelerated algorithm for
unsteady flow line integral convolution. InProceedings of EG/IEEE TCVG
Symposium on Visualization, pages 43–52, 2002.

[107] Yarden Livnat and Xavier Tricoche. Interactive point-based isosurface ex-
traction. InProceedings of the IEEE Conference on Visualization, pages
457–464, Washington, DC, USA, 2004. IEEE Computer Society.

[108] Jean-Louis Maltret and Marc Daniel. Discrete curvatures and applications:
a survey. Technical Report LSIS.RR.2002.002, Laboratoiredes Sciences
de l’Information et des Systèmes, 2002.

[109] Stephen R. Marschner and Richard J. Lobb. An evaluation of reconstruc-
tion filters for volume rendering. InProceedings of the IEEE Conference
on Visualization, pages 100–107, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

[110] Dimitri J. Mavriplis. Revisiting the least-squares procedure for gradient re-
construction on unstructured meshes. Technical Report CR-2003-212683,
NASA, 2006.

[111] Nelson Max. Optical models for direct volume rendering.IEEE Transac-
tions on Visualization and Computer Graphics, 1(2):99–108, 1995.

Bibliography 199

[112] Vladimir Maz’ya. Approximate approximation, in the mathematics of finite
elements and applications.Highlights, 77, 1994.

[113] Boris Mederos, Sueni Arouca, Marcos Lage, Helio Lopes, and Luiz Velho.
Improved partition of unity implicit surface reconstruction. Technical Re-
port TR-0406, IMPA, Brazil, 2006.

[114] Boris Mederos, Luis Velho, and Luis Henrique Fiqueiredo. Robust smooth-
ing of noisy point clouds. InSIAM Conference on Geometric Design and
Computing, Seatle, 2003. Nashboro Press.

[115] Miriah Meyer, Robert M. Kirby, and Ross Whitaker. Topology,accuracy,
and quality of isosurface meshes using dynamic particles.IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1704–1711, 2007.

[116] Miriah Meyer, Blake Nelson, Robert M. Kirby, and Ross Whitaker. Particle
systems for efficient and accurate high-order finite elementvisualization.
IEEE Transactions on Visualization and Computer Graphics, 13(5):1015–
1026, 2007.

[117] Torsten Möller, Raghu Machiraju, Klaus Mueller, and Roni Yagel. Evalu-
ation and design of filters using a Taylor series expansion.IEEE Transac-
tions on Visualization and Computer Graphics, 3(2):184–199, 1997.

[118] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and
Barbara Cutler. Stable real-time deformations. InProceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
pages 49–54, 2002.

[119] Matthias Müller, Bruno Heidelberger, Matthias Teschner,and Markus
Gross. Meshless deformations based on shape matching.ACM Transac-
tions on Graphics, 24(3):471–478, 2005.

[120] Matthias Müller, Richard Keiser, Andrew Nealen, Mark Pauly, Markus
Gross, and Marc Alexa. Point based animation of elastic, plastic and melt-
ing objects. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS
Symposium on Computer Animation, 2004.

[121] Matthias Müller, Matthias Teschner, and Markus Gross. Physically-based
simulation of objects represented by surface meshes. InProceedings of
Computer Graphics International, pages 26–33, Washington, DC, USA,
2004. IEEE Computer Society.

200 Bibliography

[122] Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turk, and Hans-
Peter Seidel. Multi-level partition of unity implicits.ACM Transactions on
Graphics, 22(3):463–470, 2003.

[123] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Sparse surface
reconstruction with adaptive partition of unity and radialbasis functions.
Graphical Models, 68(1):15–24, 2006.

[124] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross. Shape
modeling with point-sampled geometry.ACM Transactions on Graphics,
22(3):641–650, 2003.

[125] Mark Pauly, Dinesh Pai, and Leonidas J. Guibas. Quasi-rigidobjects in
contact. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS Sym-
posium on Computer Animation, pages 109–119, 2004.

[126] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross.
Surfels: surface elements as rendering primitives. InProceedings of
the SIGGRAPH, pages 335–342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[127] Wilfried. Philips. Orthogonal base functions on a discretetwo-dimensional
region. Technical Report DG 91-20, ELIS, RUG, UniversiteitGent, 1992.

[128] PovRay. Persinstence of vision. http://www.porvay.org, 2007.

[129] Liu Ren, Hanspeter Pfister, and Matthias Zwicker. Object space EWA sur-
face splatting: A hardware accelerated approach to high quality point ren-
dering. InComputer Graphics Forum, volume 21, pages 461–470, 2002.

[130] Patrick Reuter, Pierre Joyot, Jean Trunzler, Tamy Boubekeur, and
Christophe Schlick. Surface reconstruction with enrichedreproducing ker-
nel particle approximation. InEurographics Symposium on Point-Based
Graphics, pages 79–87. Eurographics Association, 2005.

[131] Christof Rezk-Salama, Michael Scheuering, Grzegorz Soza,and Günther
Greiner. Fast volumetric deformation on general purpose hardware. InPro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graph-
ics Hardware, pages 17–24, New York, NY, USA, 2001. ACM.

[132] Christian Rössl, Frank Zeilfelder, Günther Nürnberger, and Hans-Peter Sei-
del. Spline approximation of general volumetric data. InProceedings of
the ACM Symposium on Solid Modeling and Applications, pages 71–82,
Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

Bibliography 201

[133] Miguel Sainz, Renato Pajarola, and Roberto Lairo. Points reloaded: Point-
based rendering revisited. InProceedings of the Eurographics Symposium
on Point-based Graphics, pages 121–128. Eurographics Association, 2004.

[134] Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of
3-D shapes. InProceedings of ACM SIGGRAPH, pages 197–206, 1990.

[135] Naohisa Sakamoto, Jorji Nonaka, Koji Koyamada, and SatoshiTanaka.
Volume rendering using tiny particles. InProceedings of the IEEE Interna-
tional Symposium on Multimedia, pages 734–737, Washington, DC, USA,
2006. IEEE Computer Society.

[136] Scott Schaefer, Travis McPhail, and Joe Warren. Image deformation us-
ing moving least squares.ACM Transactions on Graphics, 25(3):533–540,
2006.

[137] Gunther Schmidt. Approximate approximations and their applications. In
J. Rossmann, P. Takác, and G. Wildenhain, editors,Operator Theory: Ad-
vances and Applications, volume 109 ofThe Maz’ya Anniversary Collec-
tion, v.1, pages 111–136. Birkhäuser, 1999.

[138] John Schreiner, Carlos E. Scheidegger, Shachar Fleishman,and Claudio T.
Silva. Direct (re)meshing for efficient surface processing. In Proceedings
of Eurographics, pages 527–536, 2006.

[139] John Schreiner, Carlos E. Scheidegger, and Claudio T. Silva. High quality
extraction of isosurfaces from regular and irregular grids. In Proceedings
of IEEE Visualization, pages 1205–1212, 2006.

[140] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-
based decimation of marching cubes surfaces. InProceedings of the IEEE
Conference on Visualization, pages 335–ff., Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

[141] Chen Shen, James F. O’Brien, and Jonathan R. Shewchuk. Interpolating
and approximating implicit surfaces from polygon soup. InProceedings of
ACM SIGGRAPH, pages 896–904, New York, NY, USA, 2004. ACM.

[142] Han-Wei Shen and D. L. Kao. A new line integral convolution algorithm for
visualizing time-varying flow fields.IEEE Transactions on Visualization
and Computer Graphics, 4(2):98–108, 1998.

[143] Donald Shepard. A two-dimensional interpolation functionfor irregularly-
spaced data. InProceedings of the ACM national conference, pages 517–
524, New York, NY, USA, 1968. ACM Press.

202 Bibliography

[144] Jonathan Richard Shewchuck. What is a good linear element? Interpola-
tion, conditioning, and quality measures. InEleventh International Mesh-
ing Roundtable, pages 115–126, 2002.

[145] Jonathan R. Shewchuk. An introduction to the conjugate gradient method
without the agonizing pain. Technical report, Carnegie Mellon University,
1994.

[146] Renben Shu, Chen Zhou, and Mohan S. Kankanhalli. Adaptive marching
cubes.The Visual Computer, 11(4):202–217, 1995.

[147] Jasper V. Stokman, C. F. Dunkl, and Y. Xu. Orthogonal polynomials of
several variables.Approximation Theory, 112(2):318–319, 2001.

[148] Gabriel Taubin. Estimating the tensor of curvature of a surface from a
polyhedral approximation. InProceedings of the International Conference
on Computer Vision, pages 902–907. IEEE Computer Society, 1995.

[149] Eduardo Tejada and Thomas Ertl. Large steps in GPU-based deformable
bodies simulation.Simulation Practice and Theory, 13(9):703–715, 2005.

[150] Eduardo Tejada, Jõao P. Gois, Luis G. Nonato, Antonio Castelo, and
Thomas Ertl. Hardware-accelerated extraction and rendering of point set
surfaces. InProceedings of EUROGRAPHICS - IEEE VGTC Symposium
on Visualization, pages 21–28, 2006.

[151] Eduardo Tejada, Tobias Schafhitzel, and Thomas Ertl. Hardware-
accelerated point-based rendering of surfaces and volumes. In Proceedings
of WSCG 2007 Full Papers, pages 41–48, 2007.

[152] Matthias Teschner, Bruno Heidelberger, Matthias Müller,and Markus
Gross. A versatile and robust model for geometrically complex deformable
solids. InProceedings of the Computer Graphics International, pages 312–
319, 2004.

[153] Thomas Theußl, Torsten Möller, Jiřı́ Hladůvka, and Meister Eduard Gröller.
Reconstruction issues in volume visualization. TechnicalReport TR-186-2-
01-14, Institute of Computer Graphics and Algorithms, Vienna University
of Technology, 2001.

[154] Wai-Shun Tong and Chi-Keung Tang. Robust estimation of adaptive tensors
of curvature by tensor voting.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(3):434–449, 2005.

Bibliography 203

[155] Joost van de Weijer and Rein van den Boomgaard. Least squaresand robust
estimation of local image structure.International Journal of Computer
Vision, 64(2/3):143–155, 2005.

[156] Jarke J. van Wijk. Flow visualization with surface particles. IEEE Com-
puter Graphics and Applications, 13(4):18–24, 1993.

[157] Jarke J. van Wijk. Implicit stream surfaces. InProceedings of IEEE Visu-
alization, pages 245–252, 1993.

[158] Jarke J. van Wijk. Image based flow visualization.ACM Transactions on
Graphics, 21(3):745–754, 2002.

[159] Jarke J. van Wijk. Image based flow visualization for curved surfaces. In
Proceedings of IEEE Visualization, pages 123–130, 2003.

[160] Thomas Viklands.Algorithms for Weighted Orthogonal Procrustes Prob-
lem and other Least Squares Problems. PhD thesis, Department of Com-
puting Science, Umeå University, Umeå, Sweden, 2006.

[161] Joachim Vollrath, Tobias Schafhitzel, and Thomas Ertl. Employing com-
plex GPU data structures for the interactive visualizationof adaptive mesh
refinement data. InProceedings of the International Workshop on Volume
Graphics, pages 55–58, 2006.

[162] Ingo Wald and Hans-Petter Seidel. Interactive ray tracing of point-based
models. InProceedings of the Eurographics Symposium on Point-Based
Graphics, pages 1–8. Eurographics Association, 2005.

[163] Manfred Weiler, Ralf P. Botchen, Simon Stegmaier, Jingshu Huang, Yun
Jang, David Ebert, Kelly Gaither, and Thomas Ertl. Hardware-assisted
feature analysis and visualization of procedurally encoded multifield volu-
metric data.Computer Graphics and Applications, pages 72–81, 2005.

[164] Morris Weisfeld. Orthogonal polynomials in several variables. Numerical
Mathematics, 1:38–40, 1959.

[165] Daniel Weiskopf and Gordon Erlebacher. Overview of flow visualization.
In Charles. D. Hansen and Christopher R. Johnson, editors,The Visualiza-
tion Handbook, pages 261–278. Elsevier, Amsterdam, 2005.

[166] Daniel Weiskopf and Thomas Ertl. A hybrid physical/device-space ap-
proach for spatio-temporally coherent interactive texture advection on
curved surfaces. InProceedings of Graphics Interface, pages 263–270,
2004.

204 Bibliography

[167] Eric W. Weisstein. Laguerre polynomial. From MathWorld–A Wolfram
Web Resource. http://mathworld.wolfram.com/LaguerrePolynomial.html,
2007.

[168] Holger Wendland. Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree.Advances in Computational
Mathematics, 4(1):389–396, 1995.

[169] Rüdiger Westermann, Leif Kobbelt, and Thomas Ertl. Real-time explo-
ration of regular volume data by adaptive reconstruction ofisosurfaces.The
Visual Computer, 15(2):100–111, 1999.

[170] Rüdiger Westermann and Christof Rezk-Salama. Real-time volume defor-
mations.Computer Graphics Forum, 20(3):–, 2001.

[171] Lee Westover. Footprint evaluation for volume rendering. In Proceedings
of the ACM SIGGRAPH, pages 367–376, New York, NY, USA, 1990. ACM
Press.

[172] Martin Wicke, Matthias Teschner, and Markus Gross. CSG-tree rendering
for point-sampled objects. InProceedings of the Pacific Graphics, pages
160–168. IEEE CS, 2004.

[173] Gernot Ziegler, Art Tevs, Christian Theobalt, and Hans-Peter Seidel. On-
the-fly point clouds through histogram pyramids. InProceedings of Work-
shop on Vision, Modeling, and Visualization, pages 137–144, 2006.

	List of Abbreviations and Acronyms
	Abstract and Chapter Summaries
	Zusammenfassung und Kapitelzusammenfassungen
	Introduction
	Goals of This Thesis
	Outline of This Thesis
	Acknowledgments

	Interactive Visualization
	Visualization Pipeline
	Surface Visualization
	Surface data
	Surface reconstruction
	Surface rendering

	Volume Visualization
	Volume data
	Volume data reconstruction
	Volume rendering

	Visualization and Graphics Processing Units
	The rendering pipeline
	General-purpose GPU programming

	Meshless Approximation Methods
	Radial Basis Functions
	Moving Least-Squares
	Orthogonal Polynomials in Moving Least-Squares
	Indexing orthogonal polynomials
	Constructing orthogonal polynomials
	Avoiding repetitive computations

	Approximate Approximation
	Approximate moving least-squares approximation
	Connecting RBF and Iterated AMLS

	Meshless Surfaces from Point Clouds
	Meshless Surface Approximation
	Curvature-driven Projection Operator
	Principal directions and curvatures
	Projection and rendering procedures

	Approximate MLS Surfaces
	Iterated AMLS implicits
	Introducing sharp edges

	Adaptive Partition of Unity Implicits
	Multi-level partition of unity implicits
	The J1A triangulation
	Robust adaptive partition of unity implicits
	Extensions to the method

	GPU-based Rendering of Meshless Surfaces
	Rendering surfaces based on projection operators
	Rendering implicit surfaces

	Meshless Surfaces from Volumes
	Meshless Surface Extraction from Volume Data
	Moving Least-squares Iso-surfaces
	Computing MLS surfaces from volumetric data
	Hardware-accelerated MLS Iso-surfaces and HG-surfaces

	Point-based Stream Surfaces
	Streamlines and path-lines generation
	Point-based surface rendering
	LIC on the point-based surface

	Meshless Volume Visualization
	Meshless Methods for Volume Visualization
	Moving Least-Squares Volume Visualization
	Detail-preserving volume data approximation
	Matrix-free detail-preserving volume data approximation

	Approximate MLS Volume Visualization
	Ellipsoidal weight functions revisited
	Anisotropic iterated approximate moving least-squares
	Gradient estimation
	GPU-based rendering

	Moving Least-Squares Volume Deformation
	Affine, similarity and rigid deformations
	Nonlinear polynomial deformation
	GPU-based MLS displacement map computation
	Other approaches for moving least-squares deformation
	Comparison with physically-based mesh deformation

	Meshless Methods in Visualization
	Color Plates
	Bibliography

