Towards Meshless Volume Visualization

Von der Fakultat Informatik, Elektrotechnik und Informations-
technik der Universitat Stuttgart zur Erlangung der Wirde
eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung

Vorgelegt von

Eduardo Jose Tejada-Gamero

aus Arequipa

Hauptberichter: Prof. Dr. T. Ertl
Mitberichter: Prof. Dr. D. Weiskopf
Prof. Dr. L. G. Nonato

Tag der mindlichen Prufung: 26. Marz 2008

Institut fur Visualisierung und Interaktive Systeme
der Universitat Stuttgart

2008

Berichte aus der Informatik

Eduardo Jose Tejada-Gamero

Towards Meshless Volume Visualization

Gedruckt mit Unterstiitzung des Deutschen Akademischen Austauschdienstes

D93 (Diss. Universitat Stuttgart)

Shaker Verlag
Aachen 2008

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the Internet at
http://dnb.d-nb.de.

Zugl.: Stuttgart, Univ., Diss., 2008

Copyright Shaker Verlag 2008

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission
of the publishers.

Printed in Germany.

ISBN 978-3-8322-7389-7

ISSN 0945-0807

Shaker Verlag GmbH e P.O. BOX 101818 e D-52018 Aachen

Phone: 0049/2407/9596-0 e Telefax: 0049/2407/9596-9
Internet: www.shaker.de e e-mail: info@shaker.de

A Paola y Andes,
quienes son la luz en mi vida.

CONTENTS

\List of Abbreviations and Acronvms\

1
Abstract and Chapter Summaries 3
\Zusammenfassung und Kapitelzusammenfassungen 9
1 Introduction 15
1.1 Goalsof ThiS TRESIS . . . o v v v v oo et 16
1.2 Outline of ThISTNESIS o oot 17
1.3 Acknowledgmentso 18
2 Interactive Visualization 21
2.1 Visualization Pipeline 21
2.2 Surface Visualization 23
221 Surfacedata. 23
2.2.2 Surface reconstruction 23
2.2.3 Surface rendering oo 25
2.3 Volume Visualization o oo 27
231 Volumedata 27
2.3.2 \olume data reconstruction 29
2.3.3 \olume rendering L L oo 35

2.4 Visualization and Graphics ProcessingUnits 41
2.4.1 The rendering pipeline

................... 41
2.4.2 General-purpose GPU programming 43
3 Meshless Approximation Methods 45
3.1 Radial Basis FUNCHONS v oo 45
3.2 Moving Least-Squares 47
3.3 Orthogonal Polynomials in Moving Least-Squares 47
3.3.1 Indexing orthogonal polvnomibls 48
3.3.2 Constructing orthogonal polynomials 49
3.3.3 Avoiding repetitive computations 50
3.4 Approximate Approximation 51
3.4.1 Approximate moving least-squares approximation ... 51

3.4.2 Connecting RBF and Iterated AMLS

Il Contents

4 Meshless Surfaces from Point Clouds 55
4.1 Meshless Surface Approximation. 56
4.2 Curvature-driven Projection Operator 62

4.2.1 Principal directions and curvatures 4 6
4.2.2 Projection and rendering procedhres 66
4.3 Approximate MLS SUMaCES . . v v e 71
4.3.1 lterated AMLS implicits oo 74
4.3.2 Introducingsharpedges, 79
4.4 Adaptive Partition of Unity Implicits 82
4.4.1 Multi-level partition of unity implicits 84
4.42 Thelltriangulation 85
4.4.3 Robust adaptive partition of unity implid:its R Y4
4.4.4 Extensionstothemethod 91
4.5 GPU-based Rendering of Meshless Surfaces 96.
4.5.1 Rendering surfaces based on projection ope\rators o 97
4.5.2 Rendering implicitsurfaces 101
5 Meshless Surfaces from Volumes 105
5.1 Meshless Surface Extraction from Volume Data105
\5.2 Moving Least-squares Iso-surfdces 108
5.2.1 Computing MLS surfaces from volumetric data 910
5.2.2 Hardware-accelerated MLS Iso-surfaces and HGsesfa110

5.3 Point-based Stream SUrfaces 114
5.3.1 Streamlines and path-lines generétion 15 1
5.3.2 Point-based surface rende\ring 120
5.3.3 LIConthe point-based surface 122

6 Meshless Volume Visualization 127

6.1 Meshless Methods for Volume Visualization 129

6.2 Moving Least-Squares Volume Visualization. 131
6.2.1 Detail-preserving volume data approximation132
6.2.2 Matrix-free detail-preserving volume data appraadion . 134

6.3 Approximate MLS Wolume Visualization. 34
6.3.1 Ellipsoidal weight functions revisited 139
6.3.2 Anisotropic iterated approximate moving Ieast-sqﬁla_ . 140
6.3.3 Gradientestimation 142
6.3.4 GPU-basedrendering. 143

6.4 Moving Least-Squares Volume Deformation 147
6.4.1 Affine, similarity and rigid deformations 148
6.4.2 Nonlinear polynomial deformation. 155

6.4.3 GPU-based MLS displacement map computbtion 156

Contents 1

6.4.4 Other approaches for moving least-squares defaymati 161
6.4.5 Comparison with physically-based mesh deformation .164

\7 Meshless Methods in Visualization 171
Color Plates 177

Biblioéraéhi 189

Contents

AMLS

bit
bspw.
CG
CPU
CUDA

CT
CT™M

Dr. rer. nat.
EBF
e.g.

et al.
etc.

fps

GB
GHz
GPGPU

GPU

HG
IAMLS

LI1ST OF ABBREVIATIONS AND ACRONYMS

Approximate Moving
Least-Squares

binary digit
beispielsweise
Conjugate Gradient
Central Processing Unit
Compute Unified Device
Architexture

Computer Tomography
Close To Metal

Doctor rerum naturalium
Elliptical Basis Functions
exempli gratia

et alii, et aliae, et alia

et cetera

frames per second
gigabyte

gigahertz

i.e.
LIC
LS
MB
MLS
MRI

PC

pixel
Prof. Dr.
PU
RAM
RBF
RGB
RGBA

S

SIMD

general computations on surfel

the GPU

Graphics Processing
Unit

high-gradient

Iterated Approximate
Moving Least-Squares

SVD

texel
voxel
WLS

id est

Line Integral Convolution
Least-Squares
megabyte

Moving Least-Squares
Magnetic Resonance
Imaging

Personal Computer
picture element
Professor Doctor
Partition of Unity
Random Access Memory
Radial Basis Functions
red, green, blue

red, green, blue, alpha
second

Single Instruction,
Multiple Data

surface element
Singular Value
Decomposition

texture element

volume element
Weighted Least-Squares

Abbreviations and Acronyms

ABSTRACT AND CHAPTER SUMMARIES

Abstract

In this thesis, novel meshless methods for surface and @laa reconstruc-
tion and rendering are proposed. Surface reconstructmn tmorganized point
sets is first addressed with projection operators. Speltyfi@acurvature-driven
projection operator is presented which defines an apprdgisaface for a given
point cloud based on a diffusion equation and on curvatuienagon for point
sets. Implicit formulations for surface approximation ateo addressed. An im-
plicit surface definition based on approximate moving leagtares approxima-
tion is introduced, which is able to provide high-order loapproximations to
the surface without requiring to solve systems of equatid@ikateral filters are
introduced into this surface definition in order to bettgrresent sharp features
by robustly estimating normal vectors. An adaptive implformulation based
on partition of unity and orthogonal polynomials is alsogweed. This formu-
lation addresses approximation and robustness issuesnpedsy previous work
on partition of unity implicits. To accelerate the rendgrof these surface defini-
tions, hardware-accelerated ray-casting of implicitacets and surfaces defined
by projection operators is also discussed.

The results obtained for surface approximation are thehiexppo volume
data in order to extract surfaces that represent some &mtuhe volume. Re-
garding scalar data, a moving least-squares surface dafimst proposed which
is able to approximate iso-surfaces and surfaces locatedegions with high
gradient magnitude. The rendering of such surfaces is peeid on graphics
hardware to accelerate the computations. Visualizatioreofor fields is also ad-
dressed, specifically the interactive computation andegnd of streamsurfaces
and of the novel path-surfaces. To that end, a hardwardesated streamlines
and path-lines generation process is presented, whicHag@bproduce a quasi-
regular sampling of the surface. This allows the use of knpaint-based surface
rendering algorithms to interactively visualize the stnsarface or path-surface.

Volume visualization is then addressed using meshlessadsthThese visu-
alization methods are based on a meshless volume modettextfaom the data.
This model is obtained using the moving least-squares appetion method. In
order to preserve details in the reconstruction of the veluwim data, bilateral fil-
tering is used which, together with the use of orthogonaypaials, provides
a matrix-free detail-preserving reconstruction of theunok data. To further ac-
celerate the computation of the function reconstructibe, use of approximate
approximation is also explored in this context. To that erdanisotropic iterated

3

4 Abstract and Chapter Summaries

approximate moving least-squares approximation of tharael data is defined,
which converges to an ellipsoidal-basis-functions indéapon of the data. Fi-

nally, volume deformation by means of moving least-squaresldressed and a
closed formulation for nonlinear polynomial deformatiamnproposed. An imple-

mentation of the set of moving least-squares deformatiasaodware graphics is
also presented and used to interactively compute volunwmetions by means
of displacement maps.

Chapter Summaries
An overview of this thesis is given in this section as chaptenmaries.

Chapter 1: Introduction

This chapter introduces the topic of the thesis. The need feconstruction of
the volume model in the context of volume visualization isdias starting point
for the discussion. The problem of reconstructing the ugaey function which
represents the volume model using meshless methods is #iefQthis work.
Thus, the methods developed were based on the success déssaEthniques
in solving problems from surface modeling and renderingctvtechniques based
on combinatorial structures have failed to solve in the.pa@hkis leads to a brief
description of the research performed, initially in the teom of meshless surfaces
from point clouds and volumes and latter of meshless voluisiglization.

Chapter 2: Interactive Visualization

In this chapter an overview of topics on interactive viszatiion is given. The
chapter starts by describing the visualization pipeling itsstages. Then a brief
discussion on surface data, modeling and rendering is gi8arce the focus of
the research reported in this work is on meshless methodsgamized point sets
and polygon soups are mentioned as the primary source ofatateodeling and
rendering algorithms based on meshless techniques.

Groundbreaking work on meshless surface reconstructibichsget the basis
for the development of the area in the last decade, is theerided. These ap-
proaches represent the main trends in meshless surfagestegzdion that have
gained the attention of the community lately; namely, stefaepresentations
based on projection operators and surface representdtasesi on implicit for-
mulations. The methods based on projection operators défen@pproximate
surface as the set of static points for a certain map, whéenkthods based on
implicit formulations define the approximate surface asd#ieof points belong-
ing, usually, to the zero set of the function.

Meshless surface rendering is then addressed. Renderithgpasebased on
points have gained popularity in the last years. Many woekselbeen proposed
and their detailed description is beyond the scope of tlasigh Nonetheless, the

Abstract and Chapter Summaries 5

main ideas are mentioned with emphasis on ray-castingifsadly on the com-
putation of the intersection of a ray with the meshless setfdn latter chapters
this description is detailed further in the context of thehteiques presented.

After addressing surface visualization in the context ef\itsualization pipe-
line, the same approach is taken for volume visualizatidarti®g with the vol-
ume data types usually found in various applications atbaglifferent grid types
that must be handled by volume visualization methods areritbesl. The sources
of the volume data are many and different, which in turn ti@es into a large
variation in the nature of the volume data, including thel gype, which is of par-
ticular interest to the techniques presented latter infibsis. This is due to fact
that part of the research described in this work is focusegaroviding a means to
reconstruct volume data stored in meshes of arbitrary tgyohnd geometry.

After addressing reconstruction methods, volume renderiathods are then
described, specifically direct volume rendering. Themefdine derivation of the
rendering integral for the emission-absorption modelvei Finally, the chapter
ends with basic concepts of graphics processing units anegring. The ren-
dering pipeline implemented by most commodity graphicslare is described.
Since graphics processing units were used to a large exiéime iapproaches de-
scribed in this work in order to accelerate the computatitiresconcept of general
purpose programing using graphics processing units isiaiismiuced.

Chapter 3: Meshless Approximation Methods

In this chapter, an overview of the meshless approximatietihods used through-
out the thesis is given. The scattered data approximatidrirdarpolation prob-
lems are defined followed by a description of radial basistions, where the
concept of radial basis functions interpolation is introgld as well as the most
widely known radial functions. Then, the polynomial movilegst-squares ap-
proximation is approached with a simple and general dedimiti

With this basis set, orthogonal polynomials in the contdxtnoving least-
squares are addressed. For this, the concept of orthogooéla polynomial
basis for a specific inner product defined by a given weighfiimgtion is intro-
duced. Then, an indexing that has proven to be efficient ingied the number of
operations performed to orthogonalize a polynomial bagisthve Gram-Schmidt
orthogonalization is described.

Lastly, approximate moving least-squares approximatsodescribed as an
efficient and matrix-free approach to approximate scaltei@a. This method
produces an approximation to the solution of the movingtiegaares method
and is based on specific generating functions by means ofrwdotutions of
different approximation orders can be obtained. Radialsbfasctions and ap-
proximate approximation have been recently connectedigifiran iterative pro-
cess that, starting from an approximate approximationvexes to a radial basis

6 Abstract and Chapter Summaries

functions interpolation. This process is also briefly digssat here.

Chapter 4: Meshless Surfaces from Point Clouds

This chapter presents novel approaches for surface reaotish from unorga-
nized point sets. Projection operators are firstly addcedsehis context, a novel
curvature-driven projection operator is proposed, whichased on the computa-
tion of a non-complete second degree polynomial defined &éyptimcipal curva-
tures and directions at a given point on the surface. Thexetbe robust compu-
tation of the principal curvatures and directions for a dgbants is addressed.
This result is then used, together with an anisotropic diffn equation, to define
the projection operator, which is included in a ray-casemgine to render the
surface.

Implicit surfaces are also addressed in this chapter. Tvferdnt implicit
approaches are taken to tackle the problem of surface reaotisn from point
clouds. The first approach proposed is based on movingseasires surfaces and
addresses approximation and performance issues predgnteeém. By using
approximate approximation, the reconstruction processfisiently performed
while enabling the computation of high-order approximasito the surface. Fur-
thermore, the iterative process mentioned above to obtadial basis functions
interpolation can be used to produce interpolating susfatée efficiency of the
method is exploited to introduce bilateral filtering in the@ess in order to ro-
bustly estimate the normal vectors at the surface points. akes it possible to
better visually represent sharp edges since the changee imotmal field on the
surface are more important to the perception of sharp featilman the approxi-
mation to the surface itself.

The second approach taken to reconstruct surfaces frorh@ouds is based
on partition of unity implicits. Firstly, a review of the ginal method is given.
This method presents robustness issues, which are addiragkes chapter. Fur-
thermore, the method proposed here is twofold adaptiveattkie space is adap-
tively partitioned to fit the details on the surface and thgrde of the polynomial
approximation is set adaptively to better approximate tiéase. This can be
done by means of orthogonal polynomials. This, howeverphices robustness
problems, which are addressed by developing coverage damigria that guide
the approximation process. Moreover, an interactive toal €nables the user to
edit the surface is also presented, which allows the useon@at errors in the
approximate surface or to improve the quality of the appr@ation. Lastly, the
mesh resulting from the triangulation performed on the datacture used, thé}

, presents triangles with low quality. To solve this probJenmesh enhancement
procedure based on vertex displacements is applied as gmestssing. This
procedure successfully improves the quality of the triaagl

In the final section of this chapter, commodity graphics hane is used to

Abstract and Chapter Summaries 7

accelerate the rendering of surfaces defined with projedijzerators and with
implicit functions. Specifically, a ray-tracing engine ilemented on graphics
hardware able to render such meshless surfaces is described

Chapter 5: Meshless Surfaces from Volumes

Meshless methods can be exploited in volume visualizatowell. Thus, in
this chapter, techniques addressing two different vigatibn problems are in-
troduced. The first problem is the extraction of surfacesesgmting meaning-
ful information from volume scalar data; in this case, istetes and surfaces
located at regions of high gradient magnitude. This is dopeldfining suit-
able weighting functions and using them in the moving leagtares surface ap-
proximation method. Moreover, a novel combination of a Wweg least-squares
approach with the moving least-squares approximation, predictor-corrector
sense, widens the domain of the definition allowing to prtopeaints far from
the surface onto it. This process is implemented in the harekaccelerated ray-
casting engine and applied to Cartesian grids. To that éedmplementation is
accommodated to fit the nature of the data and of the projeptiocess.

The second problem addressed is the interactive genertgireamsurfaces
and of the novel path-surfaces proposed here. The mainiissugualizing vec-
tor fields using streamsurfaces is the need for trianguwdtie input streamlines.
This process can be slow and if the user interactively chatige seed points,
this could lead to long waiting times. This problem is monéaal in the case of
path-surfaces which are generated from path-lines sire@dhtor field is time-
dependent. Thus, streamlines and path-lines are genenatde fly in this work
using graphics hardware, which allows to interactivelyorestruct them when the
user modifies the position of the seeding points. Moreoudretable to better sup-
port point-based rendering methods, the density of thasiliees and path-lines
is maintained nearly constant by adaptively seeding andvarg lines according
to the evolution of the integration. This allows the use dagmg to render the
surface which eliminates the need for triangulating it. tRemmore, line integral
convolution is calculated on the surface to better depetitails of the flow.

Chapter 6: Meshless Volume Visualization

This chapter proposes novel methods for visualizing voldata stored in meshes
of arbitrary topology. These methods are based on meslpessxamation tech-
niques to reconstruct the underlying function in the dat&is problem is ad-
dressed using two different approaches. The first appraabhded on a detail-
preserving approximation of the volume data, obtained hyimmiing a specific
function. However, this problem is ill-conditioned andy& the formulation re-
sults in an iterative method based on moving least-squaietbidateral filtering,
the performance is considerably reduced compared to atheles, albeit unsta-

8 Abstract and Chapter Summaries

ble, meshless methods. Therefore, orthogonal polynoraralsised to accelerate
the computation of the approximation in each iteration e/imhproving stability.
This also allows to implement the technique on graphicsware since no system
of equations must be solved.

A less accurate approach based on approximate approximabte to reduce
computation times considerably, is also proposed. Thiscgmh uses the iterated
approximate approximation method to produce a result ghataeximates a radial
basis functions interpolation of the data. This way, besidesasing performance
in comparison to both moving least-squares approximatnshradial basis func-
tions interpolation, a compromise between accuracy andstolss to noise can
be achieved. However, like all meshless methods appliediso@opic domains,
the method must adapt to the anisotropy, which in the caseds gontaining vol-
ume data is given by the configuration of the grid elementsémiting the result
at the evaluation point. Therefore, ellipsoidal weightdtions are introduced into
the process and a novel anisotropic iterated approximgt®aimation is defined.
Thus, the iterative process converges to an ellipticakfasictions interpolation.
This method is also implemented on graphics hardware tostaect the function
for performing ray-casting.

Lastly, volume manipulation using moving least-squaredde presented. To
that end, previously developed methods for image and sidaeformation based
on moving least-squares are extended to volumes and nanladynomial de-
formations are introduced. The key point of this novel nosdir moving least-
squares deformation is the closed formulation provided¢ivis one of the main
advantages of the rigid, similarity and affine moving lesgtrares deformations
proposed previously by other authors. Thus, the nonlinetorthation is an ad-
dition to the set of moving least-squares deformationslavia. This complete
set of deformations was implemented in graphics hardwaaedelerate the com-
putation of displacement maps to support volumetric defdions. By redefining
the deformations as backward mappings, it is possible tmutzkE this displace-
ment map in a way that allows their use in commonly known hareévaccelerated
volume rendering methods. The chapter finishes with a casganf meshless
deformations with physically-based deformations foraeédral meshes imple-
mented on graphics hardware. Besides providing an oppasingparison case
to meshless deformations, the novel description of theviaretaccelerated im-
plementation of implicit integration methods for solvirtgetdifferential equation
governing the deformation is a further contribution.

Chapter 7: Meshless Methods in Visualization

The last chapter of the thesis provides guidelines for tleeofishe methods pro-
posed in this work for surface and volume modeling and rendeA discussion
on the advantages and issues to be addressed in the futise ggven.

ZUSAMMENFASSUNG UND
KAPITELZUSAMMENFASSUNGEN

Zusammenfassung

Interaktive Volumenvisualisierung hat in den letzten &ahin vielen Bereichen
Anwendung gefunden. Wichtige Fortschritte wurden gemaasbtche die algo-
rithmische Performanz sowie die Fahigkeit von Visuatisngstechniken fur Vo-
lumendatenuntersuchung verbessert haben. UnabhangigeroArt der Daten
und der Paradigmen der verwendeten Visualisierungsteamnss ein Modell der
Daten zur Verfugung stehen. Allerdings sind die Losungthrmden in den mei-
sten Fallen nicht vorhanden und daher muss ein Volumenindeleabgetaste-
ten Funktion rekonstruiert werden. Fur die interaktivesudlisierungsmethoden
wird meistens ein Volumenmodell gewahlt ohne die ursglighe Losungsme-
thode zu beachten. Trotz existierender Forschungen imberpblation hoherer
Ordnung und Filterung von Volumendaten wird oft ein einfare@s Modell be-
nutzt bspw. Rekonstruktion mittels linearer Interpolatio

Anderseits sind gitterlose Methoden fur Oberflachennekwktion popular
geworden. Gitterlose Methoden haben verschiedene \ertgie Skalierbarkeit
auf verschiedenen Datentypen, Unabhangigkeit von atgliKonnektivitat und
wenig Speicherverbrauch. Zusatzlich sind gitterloserAgpnationstechniken ge-
nau und einfach zu berechnen. Theoretische Ergebnisse poatkitische Anwen-
dungen wurden mit Erfolg entwickelt. Zu Beginn beschafsigh diese Disser-
tation mit gitterloser Oberflachenapproximation undlstetue Methoden in die-
sem Bereich vor. Die Ergebnisse werden dann auf Volumendatgewendet,
um Oberflachen zu extrahieren, welche bestimmte Eigeftechan den Daten
reprasentieren. Diese Richtung wird weiterverfolgt urauvhenvisualisierung
wird dann mit gitterlosen Methoden behandelt. Diese Visi&ungsmethoden
basieren auf einem gitterlosen Volumenmodell, das aus @erDund der Kon-
nektivitatsinformation des Gitters extrahiert wird. D&gl dieser Arbeit ist eine
Grundlage zu bilden, um eine allgemeine Methode zu definjetlie auf verschie-
denen Volumendatentypen anwendbar ist und auf Technik&erbadie in ande-
ren Bereichen bereits erfolgreich verwendet wurden.

Kapitelzusammenfassungen

EineUbersicht dieser Dissertation wird in den folgenden Absitén als Kapitel-
zusammenfassungen gegeben.

10 Zusammenfassung und Kapitelzusammenfassungen

Kapitel 1: Einfihrung

Dieses Kapitel fuhrt in das Thema dieser Dissertation Ber. Bedarf fur eine
Rekonstruktion des Volumenmodells im Kontext der Volumeualisierung wird
als Ausgangspunkt fur die Diskussion verwendet. Das Brolaler Rekonstrukti-
on der zu Grunde liegenden Funktion, welche das Volumenhiegeasentiert,
mit gitterlosen Methoden ist das Ziel dieser Arbeit. Datesibrt diese Arbeit auf
dem Erfolg von gitterlosen Methoden im Rahmen der Oberéaotodellierung
und -darstellung, welche Methode, die auf kombinatoriachteukturen basieren,
bisher nicht Iosen konnten. Das ist die Argumentationjadiesem Kapitel ein-
gefuhrt wird. Dies fuhrt zu einer kurzen Beschreibung Berschungsarbeiten,
die sowohl die Rekonstruktion von gitterlosen Oberflaches Punktmengen und
Volumina als auch die gitterloser Volumenvisualisierueténdelt.

Kapitel 2: Interaktive Visualisierung

In diesem Kapitel wird eituberblick tiber interaktive Visualisierung gegeben. Das
Kapitel fangt mit einer Beschreibung der Visualiserungsfine an. Diese Pipeli-
ne wird dann fur den spezifischen Fall von Oberflachen aaggtpund eine kurze
Diskussion uiber Oberflachendaten, Modellierung und Bend wird gegeben.
Da der Fokus dieser Arbeit auf gitterlose Methoden liegtidea Punktmengen
undPolygon Soupals elementare Datenquellen fur gitterlose Modelliesinond
Renderingmethoden erwahnt.

Bezuglich der Modellierung sind Rekonstruktionsmethoales Punktmengen
im Fokus der Diskussion. Daher werden grundlegende Anbelts gitterlosen
Oberflachenrekonstruktion beschrieben, welche die Basdse in der letzten De-
kade entwickelten Arbeiten darstellen. Dabei werden didebelauptrichtungen
von gitterlosen Oberflachenrekonstruktion eingefirdmlich Oberflachenrepra-
sentationen basierend auf Projektionsoperatoren undarliziten Formulierun-
gen. Die Methoden basierend auf Projektionsoperatorenidedn die approxi-
mierte Oberflache als die Menge statischer Punkte furgegebene Abbildung.
Die Methoden basierend auf impliziten Formulierungen defen die approxi-
mierte Oberflache als die Menge von Punkten, die zur Nulgeeatter Funktion
gehoren. Moving-Least-Squares-Oberflachen konneoislawit Projektionsope-
ratoren als auch mit impliziten Formulierungen definiertaes, wie spater dis-
kutiert werden wird.

Gitterloses Oberflachenrendering wird als nachstes Bhieemandelt. Dabei
sind Methoden basierend auf Punkten als Renderingpriiiiden letzten Jahren
popular geworden. Da sehr viele Arbeiten in diesem Berearestellt wurden,
Ubersteigt inre detailierte Behandlung den Umfang diBsssertation. Allerdings
werden die Hauptideen erwahnt und der Fokus auf Ray-Gpggsetzt, speziell
auf die Berechnung des Schnittspunktes zwischen einerhl Sind der gitterlo-

Zusammenfassung und Kapitelzusammenfassungen

sen Oberflache. In spateren Kapiteln wird diese Besalngilim Rahmen der in
dieser Arbeit vorgestellten Techniken weiter detailliert

Nachdem Oberflachenvisualisierung basierend auf deal\fserungspipeline
behandelt wird, wird der gleiche Ansatz fur Volumenvissiarung verwendetet.
Die unterschiedlichen Datentypen und Gittertypen, weletie den Visualisie-
rungsmethoden behandelt werden, werden beschrieben.r8ites $pektrum der
Gitterypen ist in dieser Arbeit speziell wegen des Bedanfaiaterschiedlichen
Rekonstruktionstechniken fur unterschiedliche Giyigeh wichtig. Ein Teil der
in dieser Dissertation beschriebenen Forschung koneetrgrch auf der Entwick-
lung einer Technik fur die Rekonstruktion von in Gitterntineliebigen Topolo-
gie und Geometrie gespeicherten Volumendaten. NachderarBekktionsme-
thoden beschrieben sind, werden Volumerenderingtechrdkegestellt, speziell
direktes Volumenrendering. Dabei wird das Renderingnatidgr das Emissions-
Absorptions-Modell abgeleitet.

Schlie3lich endet das Kapitel mit den grundlegenden Koereger Grafik-
hardwareprogrammierung. Die von der meisten Grafikharewaplementierte
Renderingpipeline wird beschrieben. Da Grafikhardwareeseat Arbeit oft be-
nutzt wird, um die Berechnungen zu beschleunigen, wirdgiedas Konzept von
Allzwecksgraphikhardwareprogrammierung eingefuhrt.

Kapitel 3: Gitterlose Approximationsmethoden

11

In diesem Kapitel wird eirberblick tiber gitterlose Approximationsmethoden

gegeben. Die Scattered-Daten-Interpolations- und Appratonsprobleme wer-
den definiert. Dann werden radiale Basisfunktionen besbln, wobei das Kon-
zept der radialen Basisfunktionen-Interpolation, sowie loekanntesten radia-
len Basis-Funktionen eingefuihrt werden. Danach wird digmomiale Moving-
Least-Squares-Approximation mit einer einfachen undeatiginen Definition be-
handelt.

Zusatzlich zu diesen Grundlagen werden orthogonale Batgnim Rahmen
von Moving-Least-Squares beschrieben. Dafur wird daszéphvon Orthogona-
litat einer Polynombasis fir von einer bestimmten Gewinlgsfunktion definier-
te Skalarprodukte eingefuihrt. Dann wird eine effizientdizierung beschrieben,
welche die Anzahl von notwendigen Operationen fir die Kikdion einer or-
thogonalen Basis mit Gram-Schmidt-Orthogonalisierumiy zeert.

Schliel3lich wird die approximierte Moving-Least-Squafggroximation als
eine effiziente matrizenlose Methode fir die Approximation Scattered-Daten
beschrieben. Diese Methode liefert eine ApproximatiorL@sung eines Moving-
Least-Squares-Problems. Die Methode basiert auf spémisGenerierungsfunk-
tionen, wobei man Losungen mit verschiedenen Approxiomabrdnungen erhal-
ten kann. Ferner wurden radiale Basis-Funktionen und apprerte Approxi-
mationen mittels eines iterativen Prozesses miteinaneidunden. Dieser Pro-

12 Zusammenfassung und Kapitelzusammenfassungen

zess fangt mit einer approximierten Approximation an undJergiert zu einer
radialen Basisfunktionen-Interpolation. Da dieser Pssz@ dieser Dissertation
verwendet wird, um Oberflachen und Volumendaten zu rekoiesen, wird ein
Uberblick tiber die in dieser Arbeit verwendeten Theorigeiren.

Kapitel 4: Gitterlose Oberflachen aus Punktmengen

Dieses Kapitel stellt neue Methoden zur Oberflachenrakokison aus Punkt-
mengen vor. Zu Beginn werden bisherige gangige Verfahrilare Projekti-
onsoperatoren werden zuerst behandelt. In diesem Kontekieim neuer kriim-
mungsbasierter Projektionsoperator vorgestellt, welelié der Berechnung von
einem Polynom zweiten Grades basiert. Dieses Polynom winaien Hauptrich-
tungen und Krimmungen an einem gegebenen Punkt definianerDwird die
robuste Berechnung der Hauptrichtungen und KrimmungsnPamktmengen
gezeigt. Diese Ergebnisse werden dann zusammen mit eirsatrapen Diffu-
sionsgleichung dazu benutzt, um den Projektionsoperatatetinieren. Dieser
Operator wird dann in einen Raycaster integriert, um dierflmhe zu rendern.

Ein weiteres Thema bilden die impliziten Oberflachen. Zweischiedene
Methoden werden benutzt, um das Problem von Oberflachens&kiktion aus
Punktmengen zu losen. Die erste Methode basiert auf Melveagt-Squares-
Oberflachen und behandelt Performanz- und Approximgpiaideme solcher
Oberflachen. Approximierte Approximation wird verwendet den Rekonstruk-
tionsprozess zu beschleunigen und Approximationen ledl@ndnung zu ermogli-
chen. Ferner wird der oben genannte iterative Prozess @smuizy, interpolieren-
de Oberflachen zu generieren. Die Effizienz dieser Methad®eausgenutzt, um
bilaterale Filterung in den Prozess einzufuihren, damit eiae robuste Berech-
nung von Normalenvektoren erhalt. Dies ermoglicht eiassiere Reprasentation
von scharfen Kanten, da dinderungen in dem Normalenfeld wichtiger fur die
Perzeption von scharfen Kanten als die eigentliche Appnakion der Oberflache
sind.

Die zweite in dieser Arbeit vorgeschlagene Methode firRigonstruktion
von Oberflachen aus Punktmengen basiert auf Partitionidsr Erstens wird ein
Uberblick der urspriinglichen Methode gegeben. Diese btithat jedoch Pro-
bleme mit der Robustheit, was in diesem Kapitel behandet.viderner ist die
hier vorgeschlagene Methode zweifach adaptivim Sinnes dasRaum adaptiv
geteilt wird und das Grad des Polynomes adaptiv gesetzt winddie Approxi-
mation den Details der Oberflache anzupassen. Dies kanelsmirthogonalen
Polynomen umgesetzt werden. Allerdings fuhrt dies Prolkeléer Robustheit ein,
welche durch die Entwicklung von sogenannten Domanenes&kuaingskriteria
behandelt werden. Ferner wurde ein interaktives Tool exkieli, damit der Benut-
zer die Oberflache editieren kann, um Fehlern zu korrigieder um die Qualitat
der Approximation zu verbessern. Schlie3lich wird eine iele basierend auf

Zusammenfassung und Kapitelzusammenfassungen

Vertexverschiebungen dazu benutzt, um die Qualitat deidke des resultieren-
den Gitters zu verbessern.

Im letzten Abschnitt dieses Kapitels wird die Grafikhardevdazu verwen-
det, um das Rendering von Oberflachen basierend auf Piamekperatoren oder
impliziten Funktionen zu beschleunigen. Speziell wirdieider Grafikhardware
implementierter Raycaster fur gitterlose Oberflachesthaeben.

Kapitel 5: Gitterlose Oberflachen aus Volumina

Gitterlose Methoden konnen im Rahmen der Volumensvisigailing eingesetzt
werden. Daher werden in diesem Kapitel zwei verschiedesaalisierungspro-
bleme behandelt. Das erste Problem ist die Extraktion voeri@then, die ei-
ne bestimmte Eigenschaft von einem Skalarfeld repréemti In diesem Fall
werden spezifisch Isoflachen und Oberflachen in der NaheBayeichen mit
hohem Gradientbetrag extrahiert. Dies wird durch die Dedfinivon geeigne-
ten Gewichtungsfunktionen fir Moving-Least-Squaresachen gemacht. Die
Domain der Definition wird mittels der Kombination von Mogileast-Squares
und Weighted-Least-Squares erweitert. Dies ermogliehPdojektion von Punk-
ten, die weit weg von der Oberflache sind. Der Prozess wadahfikhardware-
basierter Raycaster implementiert und auf kartesischterGihgewendet.

Das zweite Problem ist die interaktive Generierung von r8t@berflachen
und der neuen Pfad-Oberflachen. Das Hauptproblem in de@N$serung von
Vektorfeldern mit Strom-Oberflachen ist der Bedarf an deafigulierung von
der Stromlinien. Dieser Prozess kann langsam sein besoimddfall von Pfad-
Linien. Deshalb werden in dieser Arbeit Strom- und Pfadidmmittels einer Gra-
fikhardwareimplementierung generiert. Damit wird die Kioaktion der Strom-
und Pfad-Linien schnell genug, um eine interaktAederung der Saatpunkte
zu ermoglichen. Ferner wird die Dichte der Strom- und Rfaden nach der
Auswertung der Integration adaptiv gesetzt, um punktbi@skRenderingmetho-
den besser zu unterstiitzen. Dies ermoglicht die Bengtzan Splatting, um die
Oberflache zu rendern und damit wird der Bedarf an Triaeguiig vermindert.
Line-Integral-Convolution (LIC) wird au3erdem verwendein die Details der
Stromung besser darzustellen.

Kapitel 6: Gitterlose Volumenvisualisierung

Dieses Kapitel fuhrt neue Methoden fiir die Visualisiggwon Gittern mit belie-
bigen Topologie und Geometrie an. Diese Methoden basieregitterlosen Ap-
proximationstechniken, um zugrundeliegende Funktiorekomstruieren. Dieses
Problem wird mit zwei verschiedenen Methoden behande#. édste Methode
basiert auf einer Detail-erhaltenden Approximation dduktendaten. Dies wird
mittels der Minimierung einer spezifischen Funktion gemagsklche die Details
in den Daten erhalten kann. Allerdings ist dieses Problemesbt konditioniert

14 Zusammenfassung und Kapitelzusammenfassungen

und da eine iterative Methode aus dieser Formulierung tiegulwird die Per-
formanz deutlich reduziert. Deswegen werden orthogonaligi®me verwendet,
um den Approximationsprozess in jedem Schritt zu bescideun wodurch die
Stabilitat verbessert wird. Dies ermoglicht die Implemierung der Technik in
Grafikhardware, weil kein Gleichungsystem gelodst werdeissn

Eine billigere ungenauere Methode wird auch vorgestedisidrend auf ap-
proximierter Approximation, welche die Berechnungszeitttich reduziert. Die-
se Methode benutzt iterative approximierte Approximatimelche eine radia-
le Basis-Funktionen-Interpolation approximiert. Aul3és Berformanz im Ver-
gleich zu Moving-Least-Squares-Approximation und ragiBhsis-Funktionen-
Interpolation zu verbessern, kann man mit dieser MethodeneKompromiss
zwischen Genauigkeit und Robustheit erreichen. Allerslimyiss sich diese Me-
thode an die Anisotropie der Gitter anpassen. Daher wenlipeenformige Ge-
wichtungsfunktionen in den Prozess eingefiihrt und eine @@isotrope iterative
approximierte Approximation definiert. Folglich konvezgider iterative Prozess
zu einer ellipsenformigen Basisfunktionen-InterpaatiDiese Methode wird auch
in Grafikhardware implementiert, um die Funktion im Rahmgreg Raycasters
zu rekonstruieren.

Schlie3lich wird Volumenmanipulation mittels Moving-LsteSquares vorge-
stellt. Dafur werden Moving-Least-Squares Methodendi@ Deformation von
Bildern und Oberflachen erweitert, um Volumina zu untgesi und nicht-lineare
polynomiele Deformationen werden eingefuihrt. Der Haupig dieser neuen,
nicht-linearen Deformationen ist die geschlossene Faanuig, welche einer
der Vorteile von Moving-Least-Squares-Deformationenbsése Deformationen
wurden in Grafikhardware implementiert, um die BerechnumgDisplacement-
Maps zu beschleunigen. Daher ist es durch die Definition @édoinationen als
Ruckwartsabbildungen moglich, die Displacement-Maperechnen, so dass be-
kannte Grafikhardwarebeschleunigte Volumenrenderinignaketn benutzt werden
konnen. Das Kapitel endet mit einem Vergleich zwischeteddasen Deforma-
tionen und Grafikhardwarebeschleunigten physikalischefoiinationen fur Te-
traedernetze. AulRer einen Vergleich anbieten zu konisemlieé neue Beschrei-
bung der Grafikhardwareimplementierung von impliziteregnationsmethoden
fur physikalische Deformationen ein weiterer BeitragseieArbeit.

Kapitel 7: Gitterlose Methoden in der Visualisierung

Das letzte Kapitel dieser Dissertation bietet Richtliniéndie Benutzung der in
dieser Arbeit vorgeschlagenen Methoden an. Eine Disknd#er die Vorteile,
Probleme und zukiinftige Arbeiten kann auch in diesem kagafunden werden.

CHAPTER

1 INTRODUCTION

Volume visualization has become commonplace in the lagsydzifferent tech-
nigues aimed at both improving algorithmic performance @wdeasing the in-
sight gained from the data have been presented by numerthusrsuin the vi-
sualization community. The range of visualization and rpalation techniques
developed to help users gain a better understanding of thenetric data at hand
is very wide. However, independently of the nature of the@ization technique
and of the paradigms upon which it is based, a volume modelsheebe avail-
able.

The volume model is the mathematical abstraction of theiaitoun or simu-
lation process that was used to generate the data. Howesengdthod of solution,
In most cases, is not attached to the volumetric data andftirera volume model
must be reconstructed from the sampled data, which can beds&b scattered
positions or in the elements of a mesh. This model definitbomarmally based
on the sampled data and some kind of neighborhood informatiostencil, that
defines which samples have influence upon the reconstruotathetric data at
a given position in the domain. This stencil is usually defilbg thek nearest
neighbors, in the case of scattered data, and by the neigigbelements, be-
ing vertices or cells, in the case of meshes. In most casesbdel is chosen
without regarding the original method of solution sincestded before, it is not
available. The volume model in interactive visualizatioethods is usually very
simple. For instance, linear interpolation is a popularicbaespite the fact that
research on reconstruction filters and interpolation/axpration methods that
provide a higher-order reconstruction has been reported.

On the other hand, meshless methods in the context of volataevisualiza-
tion have been restricted to scattered data. However, ifatligears, the use of
mehless techniques for solving tasks addressed in the thshethods based on
combinatorial structures has gained popularity, spgcveithin the surface recon-
struction community. Meshless methods provide a numbedweértages, such
as scalability to a variety of data, independence from eiptionnectivity and
low storage requirements. Additionally, meshless appnaxion techniques have
proven to be accurate and easy to compute. Theoreticatsesulvell as practical
solutions have been reported with success.

Despite the good results obtained with meshless methodsuféace approx-
imation, open issues remain to be addressed. Therefondisrém approxi-

15

16 Chapter 1. Introduction

mation theory are explored in the context of the work rembrtethis thesis to

approach problems presented by meshless surface readimsirmethods. Per-
formance issues due to the computation of local approxonatare addressed
by means of mathematical results as well as algorithmictispis implemented

on commodity graphics hardware. Furthermore, robustnegsiamerical issues
found in meshless surface approximation methods are attesd new mech-
anisms for modeling challenging surface features, suclhapsedges, are pro-
vided.

The results obtained in addressing the issues presenteddijess surface re-
construction techniques are then applied to volume dataderdo extract surfaces
that represent some feature in the volume. Thus, meshlas®dsefor modeling
smooth manifolds that approximate iso-surfaces and sesfiacated at regions of
high gradient magnitude were developed and are presentied imork. Meshless
methods are not restricted to modeling, but have been ugbdnereasing popu-
larity in rendering. A large number of works based on locé&dimation to render
a surface have been proposed. The flexibility of such apprsaexploited here
to interactively render streamsurfaces and path-surfasieg graphics hardware
algorithms.

Following this direction, volume visualization is then aéssed using mesh-
less approximation methods. The visualization methodsldped are based on
a meshless volume model extracted from the data using covibemformation
available in the mesh as well as the sampled data stored atdheents of the
mesh. Although the visualization methods used as proof n€ept in this work
are direct volume rendering and iso-surface renderinggémerality of the ap-
proximation methods presented allows their use with anyaligation technique
that needs to reconstruct the underlying function from dachgata. Furthermore,
the flexibility of meshless methods allows the use of the psep techniques with
a wide range of meshes. With this, we aim at laying the basiarids defining a
general method applicable to a variety of grid types basadeshless techniques
that have proven successful in other areas.

1.1 Goals of This Thesis

Since the main application area of meshless methods withimpater graphics
nowadays is surface reconstruction and rendering fromgamized point clouds,
a specific goal of this work is to address performance andoxppation issues
of known meshless surface approximation techniques. fqely, to improve

the robustness of the surface reconstruction and to aeteldre approximation
process without compromising the quality of the reconsiomc This is done to
set the basis for the use of surface reconstruction in vohiswelization prob-
lems. Thus, a further specific goal of this work is to modife tinoving least-

1.2. Outline of This Thesis 17

squares surface approximation method to reconstructcasthat represent some
feature of interest in the volume, specifically iso-surtaaad surfaces located at
regions with high gradient magnitude. Thereby, manifoldfages representing
these features can be obtained. Furthermore, exploitm@divantages of mesh-
less techniques not only for the reconstruction but alsaHervisualization of
surfaces extracted from volume data is sought in this workis 75 the goal of
the techniques developed to interactively sample and restdeamsurfaces and
path-surfaces.

As stated before, the main goal of this work is to explore the af mesh-
less methods for volume visualization. Approximate appmnation, orthogonal
polynomials and bilateral filtering are used to define messhlaethods for re-
constructing the underlying function in the data. The djpegoal is to obtain
an efficient means to reconstruct the function indepengenftihe geometry and
topology of the grid. Thus, the focus of the last part of thsrkvis to define a
method to compute the function reconstruction requiredsnalization applica-
tions from data stored in meshes of arbitrary type. Detailthe data must be
preserved and the methods must be easy to understand anthputeo Since
the use of these techniques in practical applications ipetial importance, the
acceleration of the computations by means of hardware mmgreations of the
different techniques proposed is also a specific goal ofwbik.

1.2 Outline of This Thesis

Chapter 2 provides an introduction to interactive viswalan, focused on sur-
face and volume visualization. Popular methods for recanghg the underlying
function of the data are described as well as rendering iethgas for surfaces and
volumes. For the latter, we focus on direct volume renderspgcifically for the
emission-absorption model. This description is given i ¢bntext of the visu-
alization pipeline, which is introduced in the first sectioh brief discussion of
graphics hardware and the rendering pipeline enclosehtq@er.

In Chapter 3, the mathematical background that is the bagtbdalgorithms
presented in this work is given. Since the focus of the wodknisneshless meth-
ods, the chapter is dedicated to offer a general descripfioroving least-squares,
radial basis functions, orthogonal polynomials, and apipnate approximation.

The main part of this thesis can be found in Chapters |4 to 6 revheesh-
less methods for modeling and rendering surfaces and valuare proposed.
Chapter 4 is dedicated to meshless methods for surfacexaption from point
clouds. Issues found in meshless techniques are addressedraributions to the
area in terms of numerical stability, robustness and perdoice of the methods
are presented. The natural extension to this work is thecgtigin of meshless
surface approximation and rendering methods to surfaceacted from volu-

18 Chapter 1. Introduction

metric data. This is the focus of Chapter 5, where methodxtia& smooth
two-manifolds from volumetric data and to interactivelynder streamsurfaces
and path-surfaces are proposed.

In Chapter 6, volume visualization based on meshless mstiscaiddressed.
Firstly, the problem of devising a volumetric data approxion method, from
the visualization point of view, valid for a wide range of rhes and grids, is
approached. The use of meshless approximation methodsl&aaahoice to
address this problem since, as opposed to methods basedameperizations
of the position of the evaluation point with respect to thenaknts of the mesh,
they are independent of the mesh connectivity. Howevedrpatih the approxi-
mation method itself is completely meshless, mesh infaonanhust be used to
influence the approximation obtained so as to include théro@snectivity infor-
mation in the computations. The main concern in defining teéwuds proposed
in this chapter is on the accuracy of the approximation,esimeshless approxi-
mation methods tend to smooth the data; on the performam the locality
of the computations turns into the need for solving a largelmer of systems
of equations; and on stability. Secondly, interactive neshvolume deforma-
tion is addressed by using moving least-squares defornsaitioplemented on the
graphics hardware. Affine, similarity, rigid and the novehiinear polynomial
deformations are addressed.

Finally, Chapter 7 concludes the thesis with an overviewhefrhethods pro-
posed and a discussion of the usefulness of meshless teelsnigthe visualiza-
tion. Guidelines on the cases where the techniques preserag be applied are
also provided.

1.3 Acknowledgments

| am greatly indebted and most grateful to my advisor, Thofdls who sup-
ported and guided my work, provided a great environment tckwa and was
always more than ready to make sure that my stay at the UitivefsStuttgart,
and in Germany in general, be positive and constructivepnlyt professionally.
Many thanks to him. | would like to express my deep gratitwd@aniel Weiskopf
and Luis G. Nonato for their valuable and detailed commemdsfar their help in
developing different methods presented in this work.

| thank the German Academic Exchange Service (DAAD) for oy the
financial support for carrying out this work. Special than&kdRosa Nagel and
Maria-Luise Nunning for their help with different mattetaring my stay in Ger-
many.

| am very grateful to Joao P. Gois, with whom | developed pathe tech-
niques presented in this work; to Antonio Castelo for hisfulseomments on
mathematical issues; to Tobias Schafhitzel, for our worknderactive stream-

1.3. Acknowledgments 19

surfaces and on hardware-assisted rendering of meshldasesiand volumes,
for proofreading Chapter 4, for the long constructive dsstons, and for his help
on many different matters; to Ralf Botchen, for proofregd®hapter 6, for his
valuable help on different matters, and for our still onsgpivork on higher-order
data visualization; to Magnus Strengert and Thomas Kleinahswering an aw-
ful amount of technical questions about visualization arapgics hardware, and
for proofreading Chaptet (Magnus) and Chaptet (Thomas); to Tiago Etiene
and Valdecir Polizelli-Junior, for their collaboration developing the curvature-
driven projection operator and the adaptive partition otyummplicits; to my
advised students, Siegfried Hodri, Clemens Spenrath, igla@ilden, and Tjark
Bringewat, for the great work; and to Joao Dihl Comba ands@ian Pagot for
their hospitality and the pleasure of working with them intB8d\legre.

Although not included in this thesis, the works on multiwole fMRI ren-
dering developed with Friedemann RoR3ler, Markus Knauff @homas Fang-
meier and on pre-integrated illustrative methods develoygth Nikolai Svakhine,
David Ebert and Kelly Gaither, were of particular importate me. To them, and
to Martin Kraus for his essential help in making the pre-gméted illustrative tech-
niques work, my deep gratitude. Special thanks to Friedaenfi@nproofreading
Chapter 5.

Many thanks to Michel Westenberg, my first office mate, for rtieny con-
structive discussions; to Ulrike Ritzmann, for her helphaite formalities; and to
the persons | had the pleasure to work with at the Univers$i8tattgart; in partic-
ular (in alphabetical order, without the ones mentionedsapdSven Bachthaler,
Katrin Bidmon, Rita Borgo, Marianne Castro, Carsten Ddbpeleher, Joachim
Diepstraten, Mike Eissele, Thomas Engelhardt, Martin Rdiirk Giereth, Frank
Grave, Sebastian Grottel, Rul Gunzenhauser, Gunter heide, Andreas Hub,
Steffen Koch, Sebastian Klenk, Hermann Kreppein, Andressgjahr, Dietmar
Lippold, Christoph Miiller, Thomas Miuller, Guido Reinaalthias Ressel, Dirc
Rose, Martin Rotard, Martin Schmid, Waltraud Schweikha&itnon Stegmaier,
Christiane Taras, Markusffinger, Joachim Vollrath, and Manfred Weiler.

The models and datasets used in this work were provided fareliit persons
and organizations. The EtiAnt pointset in Figure 4.1 is tesy of Tiago Etiene.
The Stanford Bunny model in Figures 4.6, 4.10 and 4.18, thefStd Dragon
model in Figures 4.7 and 4.11, the Armadillo Man model in Fég.10, and the
Lucy model in Figure 4.14 are courtesy of the Stanford CompGraphics Lab-
oratory. The Skeleton Hand point set in Figure 4.24 is froenSkereolithography
Archive at Clemson University. The Neptune model in Figui224the Fertility
and Buste models in Figure 4.26, the Chinese Lion model inrEig.21, and the
Filigree model in Figure 4.20 are provided by the AIM Shap@d&itory. The
Rocker Arm model in Figure 4.5 is courtesy of Cyberware Inc.

The Knee volume in Figures 4.25 and 6.8 is courtesy of the Degat of

20 Chapter 1. Introduction

Radiology, University of lowa. The Boston Tee Pot scan iruFég 6.10 and 6.12
is courtesy of Terarecon Inc., MERL and the Brigham and WdsnElospital.
The Foot volume in Figure 6.15 is courtesy of Philips Redeafde tretrahedral
mesh extracted from the Foot dataset is courtesy of Alex @sadThe Bucky
Ball dataset in Figures 5.1 and 6.4 is courtesy of AVS. Theifgolume in
Figures 5.2, 6.2 and 6.7 is courtesy of General Electric. Jdmaver Head volume
in Figures 5.2 and 6.7 is courtesy of the North Carolina Meatdbtospital. The
Bonsai Tree scans in Figure 6.7 are courtesy of Stefan &ottg

The Space Shuttle Launch Vehicle dataset in Figures 6.1 dhdh@ Oxygen
Post dataset in Figures 6.5 and 6.6, and the Blunt Fin dateB&jure 6.6 are pro-
vided by the NASA repository. The Combustion Chamber in Fégi6.3 and 6.4 is
from the Visualization Toolkit (VTK). The Tornado datasetRigure 5.3 is cour-
tesy of Roger Crawfis. The Cylinder dataset in Figure 5.6 istesy of Octavian
Frederich.

It goes without saying that | am most thankful to my family tbeir constant
support. To my wife, Paola Oviedo, many thanks for her lowé @mderstanding
and for the many useful suggestions to my work.

Eduardo Tejada

CHAPTER

2 INTERACTIVE VISUALIZATION

Visualization is the process performed to provide a gragtdepiction of the in-
formation contained in a given raw data. The popularizatibmisualization in
the last decades is due, in part, to the increasing complekithe data avail-
able nowadays. Many different data sources exist, whicklywe usually very
complex data of a specific nature. Simulations and data sitigui techniques
are able to produce data with different geometry, inclugliamt clouds, polygon
soups, and polygonal and polyhedral meshes. If the geadta itself is the
input to the visualization process, we deal with computapgics problems such
as surface approximation, mesh healing, and finite-elemanipulation. On the
other hand, in scientific visualization the geometric datiaally has some kind of
measured or simulated data attached to the geometric elenfem instance, vol-
umetric data obtained from computer tomography, magnesonmance imaging,
computational fluid dynamics simulations, and sonar eqaiptto name a few,
are input data with scalar, vectorial or tensorial quagdistored in geometric and
topological structures, normally meshes.

In this chapter, an overview of interactive visualizatieotiniques, related to
the research reported in this work, is given. Interactiwgaalization has been the
focus of research of a large number of works in the past theeadks. Different
approaches based on parallel computing, efficient datatates, compression
and level-of-detail, signal processing, and hardwarelacated techniques have
been presented. Of particular interest in the context oftiinésis are hardware-
accelerated techniques, which take advantage of currestnads in graphics
hardware. Thus, in this chapter, basics concepts on veai@n and graphics
hardware are given.

2.1 Visualization Pipeline

Thevisualization pipelinalescribes the stages of the process used to visualize a
dataset. Although there are many different versions of thealization pipeline,
they all describe the data flow that transforms the raw dadesinimage displayed
on some device. Figure 2.1 shows the stages of the visuahzapeline, namely,
data acquisitionfiltering, mappingandrendering The intermediate data is also
shown.

Data acquisitionis comprised by the methods used to producerévedata
such as computer simulations or measurements of naturabpiena. Usually,

21

22 Chapter 2. Interactive Visualization

PROCESSING DATA

Data acquisition B
N > Raw data |
Filtering J‘* J
N > Visualization data |
Mapping j J
\ > Geometric data |
Rendering j J
N > Image data |

Figure 2.1: Stages and intermediate data of the visualizgipeline.

this raw data is not well-suited for visualization algonits. The task of processing
this data to provide the desired input to the display metkazlledfiltering. Fil-
tering includes several operations of different naturehsas interpolation, clip-
ping, and deformation. The data obtained from the filterihgyisualization data
is then used to generate a geometric representation diwemgappingstage. The
geometric dataesulting from the mapping is independent from the methadius
for displaying it and takes the form of geometric primitiaesmplicit definitions,
as well as properties such as color. The graphical resalf issproduced during
therenderingstage which generates the sought visualization of the déttaough
this visualization pipeline arose from the visualizatiamonunity, it can be di-
rectly applied to other areas of computer graphics. Thisimirtant for the focus
of this thesis, since the flow of the line of research repdnt@ goes from surface
modeling and rendering to volume modeling and rendering.

An important filtering task is the reconstruction of the valkitric data at any
given point in the domain. As will be seen, interpolation apgroximation tech-
niques have been developed to accomplish this task for anaitge of different
input data. This filtering partially determines the mappiecghnique to be used.
It is worth mentioning that in the last years, a renewed @geon mapping tech-
niques based on implicit definitions and meshless modelasganisen, specially
in problems related to surface representations. The ajaitof such techniques
to volume data has not been fully explored yet. Howeverythse in this sce-
nario poses new problems for the interactive rendering @fidita resulting from
mapping techniques based on them. As mentioned befores Hresthe issues

2.2. Surface Visualization 23

addressed in this thesis.

2.2 Surface Visualization

Although the term surface visualization is often used irestfic visualization
applications, some authors use it to refer, in general, ¢opttocess described
by the visualization pipeline applied to surface data. lis thesis, for sake of
consistency, this latter approach is followed to betterhié tescription of the
research reported in Chapters 4 and 5 within the visuatimatbntext.

Here, an overview of basic concepts on surface data, suré@omstruction,
and surface rendering focused on the approximation of eesférom sampled
data is given. We will see in later chapters that this samgéesd can refer both to
surface and to volumetric data.

2.2.1 Surface data

In the context of this thesis, input surface data can comm ftwo different
sources. The first type of such input data is comprised by ¢healled point
cloudsor unorganized point setsA point cloud is a seft = {x;,---,xy} Of
points sampled on the surfadé of an objectS c R3. This sampling is usually
performed by means of a three-dimensional scanner (seadtanice the Digital
Michelangelo Projedi100). Other information, such as the normal vector to the
surface at the sample position, radius, and material ptiegecan be attached to
the point data. In this case, each sample is referred tsag@ short forsurface
element Currently available technology is able to generate vemydaoint sets
with tens and even hundreds of millions of points, usuallhyiroblems such as
noise, non-uniformity, or regions devoid of data.

Polygon soupsire a further type of surface data that has been handleg latel
with meshless methods. A polygon soup is a/Sedf polygons with no inherent
structurej.e., a list of polygons with no connectivity information betwethem.
Sources of polygon soups are often polygonal data setsinomgeholes, gaps,
T-junctions, self intersections, and non-manifold stuwet Thus, the term can be
used to describe collections of polygons that do not possasagtees concerning
their structure.

Polygonal meshes can also constitute input surface datasbless methods,
for instance, when polygons with bad aspect ratio are foondip-sampling or
down-sampling the surface is the task to perform.

2.2.2 Surface reconstruction

The work on surface reconstruction from sampled surfaca datast and vari-
ate. One can broadly divide the approaches found in thalitez into meshless
approaches and approaches based on combinatorial sésigter mesh-based
approaches. In the latter group, approaches uSiglgunay triangulation§22;

24 Chapter 2. Interactive Visualization

84], alpha shape$19; 43; 19 andVoronoi diagramsan be found8; 9]. These

methods usually generate jagged triangle meshes or tedangkhes with poor
guality. Therefore, algorithms to smooth the surface angrave the quality of

the triangles are often used as post-processing.

On the other hand, meshless approaches do not rely on anyiraorial
structure, although the result of the method can be a meslke $neshless tech-
nigues are the focus of this work, and the mathematical fatiod upon which
they are based is given in the next chapter, a descriptionesft techniques will
be given later throughout the thesis. However, it may be mambdto mention here
two groundbreaking works upon which much current reseatiased: Hoppe’s
implicit surface definitio[69] and Levin’'smoving-least-squares surfacggs).
These two works are representatives of the two main appesachmeshless sur-
face reconstruction, namely, the definition of the surfajeaé a level set of an
implicit function and (b) as the set of static points for sopmejection operator.
It must be noted, however, that it has been proven that meeast-squares sur-
faces can also be stated as an implicit surfddg. As discussed later, implicit
surfaces have a number of advantages, their suitability for CSG operations or
the simplicity of their definition.

Hoppe and collaborators defined the approximate surfadeeazetro set of a
function fy that approximates thgigned distancé&om a pointx to the surface
0S. A simplicial surface is then constructed by means of a ammg algorithm.
The functionfy is defined as

fr(x) = (x = x;,n;),

where(,) is the scalar produck; is the nearest point te, andn,; is the approxi-
mation of the normal vector to the surfagé atx;. The vectom,; is estimated by
means of covariance analysis. To that endxfgothe covariance matrix

Ci= Y, (—x)®(x—x)

X;j EN(XZ')

is calculated, wherd/(x;) is the set ofM nearest neighbors to;. If \;; k& =
1,---,3 denote the eigenvalues 6f, where\; < A, \,, associated with the
eigenvectore;,; k = 1,-- - , 3, respectively, the vectat; is chosen to be eithes
or —es. The actual orientation is computed afterwards by statiegarientation
problem as a graph optimization, so as to obtain consigtemiénted normal
vectors.

On the other hand, Levin defines thmving least-squares surfata a point
cloud as the set of stationary points of a certain nfigps : R*> — R3. Although
the moving least-squares methaldescribed in the next chapter, the definition

2.2. Surface Visualization 25

of moving least-squares surfaces is given here since tla@slet moving least-
squares are not necessary to understand this surfaceidefinit

Given a pointr € R? neardsS to be projectedf,;.s(r) is defined in two steps
as follows. First, a local approximating plafe= {x : (a,x) — (a,q) = 0,x €
R3} is computed by finding; anda = a(q); ||a|| = 1, so thata minimizes

emrs(q,a) = Z ((a,x;) — (a, Q>)2 wirrs(9, X;) (2.1)

i=1

wherea is in the direction of the line througy andr, the directional derivative
of Jarrs(q) = emrs(q,a(q)) in the direction ofa(q), evaluated ady is zero,i.e,
Oa(@IMmrs(d) = 0, andwyzs(p,q) = w(||p — ql|), wherew is a monotonically
decreasing function, typically a Gaussian

whereh is the fill size. Once is found, a local polynomial approximation is
computed. To that end, Iéik; : « = 1,--- , N} be the orthogonal projections of
the points{x; : i = 1,--- , N} onto H, represented in an orthonormal coordinate
system or¥ defined so that is projected onto the origin. Also, I¢t = (x;,a) —
(q,a); 1 = 1,---, N, be the heights of the poinfx; : i = 1,--- | N} overH.
Find a polynomiap € [, as

N

p=argmin Y (p(X;) — fi)’ warrs(a, xi), (2.2)
pengn =1

wherell? is the space of-variate polynomials of degree. The projection of
is defined as

furs(r) = q+p(0)a (2.3)
Then,
MoS = {X € Rs X = fMLS(X)}-

Many extensions to these methods have been proposed, arh@igare those
presented in Chapter 4.

2.2.3 Surface rendering

A large number of computer graphics techniques are invoivesdirface render-
ing, ranging from visible surface determination to glotlaimination algorithms.
As stated before, the output of the meshless surface appatixin method can be
used to generate a mesh, in which case traditional render@tigods can be used.

26 Chapter 2. Interactive Visualization

On the other hand, if the meshless surface representattorbis direct input to
the rendering method, some considerations must be takemdiance, for the
ray/surface intersection calculation. There is a conaldleramount of work on
meshless rendering methods and many of them will be destirii&e following
chapters. However, some seminal works on the topic are orexdihere.
Image-order algorithms. Ray-casting (or ray-tracing) meshless surface repre-
sentations has been approached both for implicit surfaefsitions[2] and for
surfaces defined as the set of static points of a projectierabqr[3]. In the case
of implicit surfaces, the surface/ray intersection prablean be regarded as the
problem of finding the roots of the implicit function on therdain of the line de-
fined by the ray. Analytical and numerical approaches haes Ipeoposed67].
However, for general implicit functions, the most widelyedsapproach is the bi-
section method (Figure 2.2), where the ray is sampled witbgalar step size
starting at a point neadS, until a change in the sign of the implicit function is
found. Then, the bisection method is applied starting whth two last points
(one on each side of the surface). Note that this processeisfgpto implicit
definitions where the inside/outside state is given by tge ef the function.
Computing the intersection of a ray with a surface defined Ipyagection
operator takes a different approach. Starting with a pogarA.S, an iterative
process that provides an approximation to the intersedsigerformed[3]. In
each iteration, the projection of the current approximatersection is computed.
If the distance between the point and its intersectian Figure 2.2) is less than
a predefined threshold, the process ends and the resultesitteat approximate
intersection. Otherwise, a local approximation to theatefe.g, a polynomial
approximation, is computed and its intersection with thedefines the new ap-
proximate intersection. Details on how to compute the lapgiroximation to the
surface, on defining its support, and on the data structsed for accelerating
the intersection computation are given in Chapters 4 and 5.
Object-order algorithms. A number of techniques are able to generate a dense
sampling of points from the original input set of points. lrés surface definition
is an example of this, since the projection operator can jpetitevely applied on a
dense set of points nedf in order to project them onto the approximated surface.
When a sufficiently dense sampling is availalpejnt-based surface rendering
can be applied. The idea behind point-based rendering igloiethe advantages
of points as graphical primitives compared to trianglesnely, the compactness
of the representation, ease of manipulation, and flexbilithe first work on
point-based rendering was published by Levoy and Whiiéd]. Nowadays,
renderingsurfels e.g, by means of surface splatting, is the most widely used
approach for rendering a dense point set. As stated beforigls are points
which have additional information attached to them, fotanse, normal vectors,
radii and material properties. This information can be dal@d if not available

2.3. Volume Visualization 27

Figure 2.2: Ray-casting implicit surfaces (left) and scefa defined as the set of static
points of some projection operator (right). For implicitfidéions, a surface cross is
found by sampling the ray at regular intervals. With the tast|sampled points, the
bisection method is applied to find an approximation to thergection point. In the
case of projection operators, the approximate intersedsiprojected onto the surface. If
the distance to the projection is less than a threshold, the current aqpition is the
intersection point. Otherwise a local approximatidtf to the surface is computed and
its intersection with the ray defines the new approximaterggctionx. In both cases the
process starts with a point near the surfé¢edepicted by the circled point (see color
plates).

as there is a large amount of work on these topics. The remgleximplemented
by projecting the surfels onto the image plane and commagsitie contribution
of each surfel to the color of the pixels in the projectiagd.

2.3 \Volume Visualization

The visualization pipeline applied to volumes is known akiree visualization.
The goal in volume visualization is to create a graphicatesgntation of the in-
formation contained in the volume data to help the user gesight into it. To that
end, many methods that address modeling, filtering and rempef the volume
have been developed. The goal is not only to generate a gedphpresentation
of the data, but to provide the user with a means to betterrstaded it. How-
ever, since the literature on volume visualization is vextersive, this section
will be focused on basic volume visualization concepts #ratused throughout
this thesis.

2.3.1 \Volume data

Since volume data is acquired by a large number of differezgms, such as com-
puter simulation and medical imaging, the type, domain andtire of the data,

28 Chapter 2. Interactive Visualization

STRUCTURED GRIDS UNSTRUCTURED GRIDS

e

Figure 2.3: Classification of common grids types found imstfic visualization.

Uniform Rectilinear Curvilinear

in turn, can vary largely. The data type, for instance, rarfgem scalar data to
higher-order tensor data, and very often it is possible td fiolume data with
multiple fields of different type.

Concerning the structure, volume data can be stored, inrgers scattered
data or at the elements of a grid (Figure 2.3). Grids are lyssiabdivided in two
broad types, namelgtructuredandunstructured grids The sample positions in
structured grids can be indexed, for the three-dimensicas#, by(i, j, k), where
1€ 1,5 € J,andk € K, andZ, 7, K denote indexing sets. Among struc-
tured gridsyegular gridspossess the most ‘regular’ geometry and the position of
each sample, j, k, for the three-dimensional case, is implicitly stored aad be
reconstructed by

vk = (iAz, jAy, kAz) R + t,

whereR is a rotation matrixt is a translation vector, anfiz, Ay andAz are the
grid cell size in each direction. A specific subtype of reggjads areCartesian
grids, for whichAz = Ay = Az.

A more general type of structured grids aeetilinear gridswhich possess
irregularly spaced vertices in each dimension, so that

vijk = (2(1),y(7), 2(k)) R + t.

Curvilinear gridshave the same connectivity as rectilinear grids howevevehe
tex position cannot be implicitly defined and must be explicspecified as a
position in space

Vijk = (ZE(Z,], k)v y(laja /{j), Z(i,j, k?)) R +t.

The advantage of curvilinear grids is that the domain of iheukation can be
better represented without having to increase the resolas it would be the case
with rectilinear grids. Also, the implicit nature of the awattivity is maintained.
This type of structured grids is largely used in the aircaaiti car manufacturing
industries.

2.3. Volume Visualization 29

-

Conformal Semi-conformal Non-conformal Overlapping Adaptive

Figure 2.4: Different multiblock grid types.

Unstructured gridsare the most general grid type since the connectivity is
explicitly stored. These grids are also referred to as padyal meshes. A polyhe-
dral mesh is a finite set of polyhedra where the intersecti@mny two polyhedra
is either empty or a face, edge or vertex of each; or for anttjgar of the set into
two subsets, there is always at least one polygon that iseadaa polyhedron
from each subset. The term cell and polyhedron will be usedrsymously in
the following. In practice, the cells in these grids are Uigdimnited to tetrahedra,
hexahedra, prisms, and pyramids. As shown in Figure 2.3rugtared grids can
have cells of different type.

Multiblock grids(Figure 2.4) are also often found as result of computer sim-
ulations. Multiblock grids are formed by two or more gridsafy of the pre-
viously mentioned grid types. Multiblock grids can be cihed asconformal
semi-conformalnon-conformakndoverlapping grids Conformal grids are the
easiest to handle, since a natural continuity in the comnscts present. This
Is also the case for semi-conformal grids, where the maireisisat must be ad-
dressed is the different ‘resolutions’ of the grids. Nomfoomal grids, on the
other hand, can be arbitrarily placed with the only constrtdiat the intersection
of two grids is non-void and the meshes do not overlap as isabke with overlap-
ping grids. A very important grid type that can be includedagthe multiblock
grids is comprised by thadaptive mesh refinemegptids. These grids are formed
by a set of grids, where the grids of greater resolution atlkimthe coarser grids
and the boundaries of the former are identical to the boueslaf the cell in the
latter that contains it. This type of grid adapts the resofubf each block to
the accuracy requirement of each part of the domain. Intatipg in multiblock
grids is a challenging task, which is addressed in Chapter 6.

2.3.2 \olume data reconstruction

In general, visualization algorithms require as input anstruction of the vol-
ume data from the samples on the entire domain. This datans&cation is
usually associated with interpolation methods. Howevgpy@aximation methods
can also be useful, for instance, when noisy data is to beléénd/olume data
reconstruction is also referred to filtering, specially in reconstruction methods

30 Chapter 2. Interactive Visualization

for Cartesian grids. Here, an overview of the most commomaggies for vol-
ume data reconstruction is given. In the next chapter, reeshdpproximation
methods that are directly related to the research repanttds thesis will be de-
scribed in detail. As will be seen in Chapter 6, these metlwaaisbe used for
volume data reconstruction in arbitrary grids, while pchrg a means to define
a unified approach that is able to generate both interposind approximations
of the volume data. That is, a method that is able to effelgtaeal with data with
and without noise stored in arbitrary meshes will be pressknin the following,
let X be the set of sample points € R3; i = 1,..., N, in a three-dimensional
domain. The sample points can be the vertices of a grid, theergers of a grid
or scattered samples. The sampled data at samplexpasiteferred to byf;.
Scattered data. In general, there are two basic approaches to scatterededata
construction. The first is based only on the scattered positwhile the second
makes use of some sort of spatial decomposition to aid tlkeepokation process.
In the latter approach, once the spatial decomposition mspeed, the values
are reconstructed using reconstruction methods for gdidid¢a, such as the de-
scribed below. On the other hand, meshless scattered datasteuction methods,
as mentioned above, are applied directly on the scattersplea. Since meshless
data interpolation and approximation are directly relatethe research reported
here, a detailed description that includes methods baspdrtition of unity, least-
squares, and radial basis functions will be given in the nbapter as part of the
mathematical foundations. However, here the two most wi#ebwn recon-
struction methods for meshless scattered data reconstiate briefly described,
namely, Shepard’s methdd43, also known asnverse distance weighingnd
Sibson’s interpolatiofh7]. Shepard’s interpolation can be written as

_ sz\il fiws(xa Xi)
Zi]\il ws(x, Xi)

fs(x)

I

where
(xy) = ——

ST =y
Shepard’s method producé¥-continuous interpolations and cusps, corners and
flat spots can be obtained. Modifications to this method thdtess this issue
have been proposed, which fall within the category of metHmased on partition
of unity. Shepard’'s method can be regarded as the simplsstafahe moving
least-squares method.

On the other hand, data interpolation using Sibson’s paexmzation pro-
ducesC!-continuous interpolations. Sibson’s method takes intmant only the
natural neighborsof the evaluation poink to calculate the interpolated value.
TheVoronoi diagramr of the setY’ is a domain partitioning into regioris(x;),

2.3. Volume Visualization 31

such that any point i’ (x;) is closer tositex; than any other site;. The regions

V (x;) are calledvoronoi cells Givenf andf , wheref is the Voronoi diagram
of the setX U {x}, with Voronoi ceIIs\A/(p); p € X U {x}, the set\;(x) of
natural neighbors at is comprised by the sites of the neighboring Voronoi cells
to the cell of the sitex. The Sibson’s interpolant is then calculated as

EXZ'GNF (x) fiwc(x7 Xi)

ZXiENF (x) wC(X7 XZ)

fC(X> =

~

wherew,.(x,y) = v(V(x) N V(y)) andw is a function that returns the volume of
aregion.

Rectilinear grids. The simplest reconstruction method used in rectilineatgri
is thenearest-neighbor interpolatignvhere the reconstructed valyg(x) at the
evaluation poink is given byf;, where||x; — x|| < ||x; — x||; Vj # . Since this
interpolation is discontinuous, unpleasant abrupt changthe visual representa-
tion (rendering) are obtained. On the other hand, piecetniiaear interpolation
generateg’’-continuous reconstructions and due to its simplicityeezfscoding,
and low computational cost, is widely used in visualizatoethods. Given the
verticesx,,; kK = 1,...,8, of the cellC, such thatx is in the interior ofC, the
reconstructed valug (x) is in this case obtained as

filx) = I-a)(1=0)1=7) fo+a(l=58)1-7) fo
+aB(l=9) fo+(1—a)B(1—=7)f
+(1—=a) (1 =0)7 fes +a (1 =058)7 fe
+afByfet (1 —a)B7 fe

with

~
o ||X6102 - XC1||

o — o ||§C1C4 _ XCIH

B ||XC4 — Xy ||

;P

||X02 — Xe ||
wherex,,.,, X.,.,» andX,.,.. are the projections af on the lines defined by the
pairs of verticesx., , x.,), (X¢,, X,), and(x,, , X,) respectively. If the data is cell
centered, the dual mesh is used.

Higher-order reconstruction schemes sucBasplines Catmull-Rom splines
and,windowedkinc filters are also used in visualization applicatidd9. These
schemes argeparable filterswhich can be written as(1J, o, <) = h(9)hs(0)hs(s).
The reconstructed value is obtained as the sum over the senmalints,

fn(x) = Z [ih (¥, 0i,),

32 Chapter 2. Interactive Visualization

where(9;, 0;,5;) = x; — x. Catmull-Rom splines and cubic B-splines belong to
the family of cubic splines

(6 —2b) — (18 — 12b — 6¢)[s|® + (12 — 9b — 6¢)|]? 5] <1
8(b+ 3c) — 12(b + 4c)[s] + 6(b+ 5¢)[s|*> — (b+ 6c)[s]®* 1 <] <2
0 otherwise,

where differenth andc generate different cubic splines. Note that this assumes
that the distances between two neighboring samples in angrdiion is one. If
this is not the case, a normalization in each dimension i®paed. B-splines are
obtained by setting = 1 andc = 0, while Catmull-Rom splines are obtained with

b = 0 andc = 0.5. Windowedkinc filters, on the other hand, approximate the ideal
sinc filter with a filter of finite support. Since simple truncatiohthesinc filter
causes ringing artifacts, it is multiplied with functiorigat drop smoothly at the
boundaries of the support. The defining equation of a windiosugc, considering
one window, is

ma(s) = { 4T esrslamDsinelic/on) el <o

whereg,, is the radius of the support. Note that this filter needs to drenal-
ized to ensure the unity of its integral on the domain. As @& sidte, tri-linear
interpolation is also a separable filter.

Lagrange interpolatiorcan also be found to a lesser extent in visualization
methods. In the univariate case, the approach fits a polyalghof degreel — 1
to d points(x;, f;);j: 1,...,d, as

7=1

where .
X — Xk
Pi(x)=f, .
=5 11 o=

k=1

k]

The method can be extended to the three-variate case foinesat grids to obtain
a reconstructiorf;(x) of the value ak by successively applying the interpolation
to higher dimensions.

Curvilinear and unstructured grids. Linear interpolation in unstructured and
curvilinear grids is also widely used in visualization dpgations. The most com-
mon approach is to partition each polyhedral cell into te¢tha and compute the

2.3. Volume Visualization 33

linear interpolation on the tetrahedral partition. Notewver, that this interpo-
lation depends on the partition used. Given a p&im the interior of a tetrahe-
dronT = [x,,,X,,, X4, Xy, | IN the tetrahedral mesh, the barycentric coordinates
Mk =1,..., 4, of x with respect tdl" are obtained by solving

4
E Akka = X,
k=1

Then, the volumetric data can be linearly interpolated with as

ft(x) = Z)\kka
k=1

Barycentric coordinates are a parameterization of thetipasof a point with
respect to the tetrahedra. Similangean value coordinateshere recently pro-
posed by Floateet al.[52] to parameterize any star-shaped polyhedra.(Let
R? be the domain defined by the set of cells of a polyhedral mestth&more,
let C' C €2 be a polyhedron in the mesh, with triangular facets and cest,, ;

k = 1,...,m. The kernelK of C is the open set consisting of all points
in the interior of C' with the property that for alk = 1,...,m, the only in-
tersection between the line segméxtx,, | and the boundargC' is x,,. C'is
star-shapedif K is non-empty. The bounda@C' of C' is a mesh of triangles.
For anyx in K, each oriented triangle = [x,,, x,,,X,,,] defines a tetrahedron
T = [X,Xy;, Xy, Xy, |. Given the angles.,; r,s = 1,...,3, between two line
segmentsx, x,, | and [x, x,,|, and the unit normah,., to the facex, x,, ,x,.],
pointing into the tetrahedrdnh, the barycentric coordinates gfwith respect ta”
are defined by

A = e—
’ Z?:l wy,’
where
1
Wy = — Z Uj,H,
J HBX'UJ-
rj =[x —x;[/ and

A Brem + Bik{0km, Dim) + B (Dngs Dgn)
»H 2(ej, N,

34 Chapter 2. Interactive Visualization

where
o _ Xy, — X
T Ik, = xII
Higher-order approximation in tetrahedral meshes is Wp@adressed with
the Bernstein-Bzier formof trivariate spline439]. Therefore, a tetrahedral par-
tition must be constructed. Lék be a tetrahedral partition ¢f in R3. Then for
any integerd) < r < d, the associated space of polynomial splines of dedree

and smoothnessis defined by
SH(A) ={s € C"(Q) : s|p € Py, all tetrahedra T' € A},

whereP, is the space of trivariate polynomials of degreeAlthough there is no
general theory, there are a féWw trivariate spline spaces which have been shown
to be useful in applications, such as the classical finkeaeht spaces witth= 9
on general tetrahedral partitions and finite-element spatth d = 5, d = 3, and
d = 2 on subpartitions oA where every tetrahedron is split into four, twelve, and
twenty four tetrahedra respectively.

Given a tetrahedroft’ = [x,,, X,, X.;, Xu,], &Ny cubic spling on A, can be
written in its piecewise Berstein-Bézier form

d
sl = E CijkiBijrs Cigr € R,
i+j+k+i=d

wherec;;,; are called th&ernstein-Bzier coefficientsf the polynomial piece|
associated with thBézier points

{frkz _ Xy, + JXoy + KXy + Xy, }
! d itjtktl=d

Here, theBernstein basis polynomiats degreed with respect tdl” are

d
Bl

(x) = 7@,!j”’€!“/\§>\§)\’§/\ﬁl, i+j+k+l=d

If s € C"(Q2) with » > 1, then the coefficients;;;; must satisfy certain
smoothness conditions. Suppose that two tetrah&dea,[x,, , X,,, Xy, X,,| @Nd
T = [Xus, Xuy, Xus, Xu, |, Share the facé€’ = [x,,, x,,, X,,]. Suppose also that

d
S|T = E Cijlez‘jlgla

itj+k+i=d

_ ~ Dd
sz = E Cijki By

i+j+k+l=d

2.3. Volume Visualization 35

v~vhere{§fjm}i+j+k+l:d are the Bernstein polynomials of degréassociated with
T. Givenl <3 <d, let

i 2 : ~ i
Tikl = Cijkl — CV,j"‘M,k'Hin‘LBu;u@L (Ul).
v4pt+Kr+i=1

forall j + k£ + 1 = d — i. Note that for a given pair of adjoining tetrahedr?m
is uniquely associated with the domain pajﬁgl. The splines is C" continuous
across the facé’ if and only if

T;kls:O, forallj+k+l=d—-iandi=0,...7.

Thus, the reconstructed valuesat T'is f,(x) = s|r(x).

Multiblock grids. Reconstructing the volume data stored in multiblock grids i
challenging task depending on the grid type. Conformal imloitk grids can be
addressed with the approaches described above. Semirg@tfmon-conformal,
and adaptive-mesh-refinement grids can be addressed stagdting the value
inside each cell independently if linear interpolationfeafs. However, discon-
tinuities are often introduced. Overlapping multiblockdgrpose an even more
difficult problem, since the domains of two or more grids ¢aer As mentioned
before, this problem is addressed in Chapter 6.

2.3.3 Volume rendering

Volume rendering is the process in the visualization pigelihat generates the
graphical representation of a volume data set. Volume remglenethods can be
broadly divided intodirect volume renderingnethods andndirect volume ren-
dering methods. The former regard the volume data as a non-opaqué of
particles, and visualize it directly by modeling certairypical effects, while the
latter visualize some derived modelg, anisosurface meshSince indirect vol-
ume rendering in the context of this thesis, as will be se¢harsubsequent chap-
ters, is in the form of surface visualization, the above @nésd description of
surface rendering suffices. Therefore, direct volume nengés the focus of the
following discussion.

Direct volume rendering aims at visualizing a volume by mioggthree phys-
ical effects affecting the appearance of non-opaque nadédeamissionabsorp-
tion andscattering Emission refers to the light coming from chemical readion
or excitation on an atomic level. In a scattering processagrhinteracts with
a scattering center and emerges from the event moving irfexetit direction in
general with a different frequencynglastic scatteriny If the frequency does
not change, one speaks elfastic scattering Absorption refers to the attenua-
tion of light between a particle and a light source. In thédiwing, the focus of
the discussion is on the so-callethission-absorption modethich will be used

36 Chapter 2. Interactive Visualization

Figure 2.5: Ray through the volume.

throughout the rest of the thesis. A detailed descriptiodifiérent models in-
cluding scattering, shadowing and multiple scatteringlmafound in the work by
Max [111].
Volume rendering integral. Consider a cylinder with length centered around a
viewing ray that passes through the volume, whose radiusad nough so that
volume properties change only along its length (Figure. 2280, consider a light
source positioned at the end of the cylindes, the extreme opposite to the view
point, with radiancel, (per wavelength) in the direction of the ray. The color
of the pixel corresponding to the ray is determined by théarame L (D) coming
from the front of the cylinder. Consider furthermore a thiabsof this cylinder
with base ared’ and lengthAs. Finally, consider a participating medium with
particle density. In the emission-absorption model, as the light ray flowsglo
the directionAs the particles absorb the light that they intercept and emit n
light. For simplicity, assume that all particles are ideatispheres with radius
The area of the projection of each particle on the base ofléeisA = 7r2. The
volume of the slab iF#As and therefore contain§ = pFEAs patrticles. IfAs is
small enough, the particle projections on the base of thehssae low probability
of overlap. Thus, the area of the base of the slab occludedhdyarticles is
approximated byW A = pAFE As and the fraction of light occluded when flowing
through the slab is

ApEAs/E = pAAs. (2.4)

As stated above, in addition to absorbing light, the pasi@mit light with inten-
sity C' per unit projected area. Thus, the radiance of the lighttechiby the/N
particles in the slab i€ AN = CpAFEAs which gives an added flux per unit area
equal to

CpAAs. (2.5)

Thus, considering the light occluded (Equation 2.4) anditite emitted (Equa-
tion|2.5) by the particles in the slab per unit area, sinc&aapproaches zero, the

2.3. Volume Visualization 37

probability of overlap also approaches zero, the changeeimadiance of a ray of
light through the volume can be defined as

O~ C)pls)A — pls)AL(s)
= O(s)7(s) — T(s)L(s)
= Le(s) — 7(s)L(s). (2.6)

The quantityr(s) is called theextinction coefficierend L. (s) is called thesource
term

To solve this differential equation, the ternts)L(s) is brought to the left
hand side and both sides are multiplied by the integratintpfaxp ([, 7(¢)dt)

giving
(% + L(S)T(S)) exp (/OST(t)dt) = L.(s) exp (/OST(t)dt)
% (L(S) exp (/OS T(t)dt)) = Le(s) exp (/OS T(t)dt) _

Integrating froms = 0, at the back end of the volume, to= D, at the eye, we

obtain
L(D) exp (/OD T(t)dt) — Ly = /OD L.(s) exp (/Osf(t)dt) ds,

which can be rewritten as

L(D) = Lo exp <— /0 ’ T(t)dt) + /0 ’ Le(s) exp (- /0 ST(t)dt> ds. (2.7)

An analytic solution of this integral is, in general, notdéde. Thus, numer-
ical integration is needed. The most common numerical aqmation of the
volume rendering integral is done by means of Riemann sunfsllagis. The
interval from0 to D is divided inton equal segments of lengthe = D/n and a
sampler; at each segment is choses toihe= iAx. Then

exp <— /0 ’ T(x)dg;) ~ exp (- iﬁ?(i&)&)

= H exp (—7(iAx)Ax) H t®,

or

38 Chapter 2. Interactive Visualization

Let LY = L.(iAt) and define

exp (— /iD T(x)dx) ~ ﬁ t0),

Ax

The Riemann sum for

/0 ’ Le(s) exp (- /0 S T(t)dt) ds

- o - £0),
2 1 1

j=i+1

becomes

and the final estimate of Equation 2.7 is

Lo ﬁt(i) + zn: Lﬁj) ﬁ 1)
i=1 i=1

j=i+1
= L ¢ (L0 4y (02 (L0 1O L))

L(D)

Q

which gives us the back-to-front compositing formulation
L — LS) + (1 _ a(i))L(i—l)’

where L® is the accumulated color for thefirst ray segmentsy® = 1 — ¢
can be thought of as the opacity of thth segment along the ray, add® = L,.
LY is know as theore-multiplied coloror associated colom volume rendering
algorithms.

A better approximation to the volume rendering integrallcaobtained by us-
ing pre-integrated classificatiof85], where a continuous, piecewise linear scalar
function is reconstructed along the viewing ray and the m@wendering integral
between each pair of successive samples of the scalar fielgligated by table
look-ups.

Image-order algorithms. The evaluation of the volume rendering integral is
common to all direct volume rendering algorithms. As in tlase of surface
rendering, these algorithms can be subdivided into olgest¢r and image-order
algorithms. Ray-casting techniques for volume renddi®9y54 are image-order
algorithms, where usually at least one ray is traced for ¢acdl in the image
from the view point to the volume. The volume is traversedgleach ray and
the final color is composited using the color and opacitiesmestructed at each
sample point on the ray. In Figure 2.6 the ray-casting pmceslepicted. The

2.3. Volume Visualization 39

ore

Figure 2.6: Volume ray-casting (see color plates). Frormteefright: at least one ray
is traced for each pixel in the image (ray casting), on eaghthia volume is sampled
a number of times (sampling), the contribution of each segrisecomputed (shading),
and the contributions of all ray segments are composite@terohine to final color of the
pixel (composition).

four main steps are shown, namefy casting sampling shading andcomposit-
ing. During ray casting, the rays for each pixel are traced frobemtiew point
to the volume. Each ray is then sampled at specific locatisaspling). The
sampling locations are not necessarily evenly spaced apeindeargely on the
grid type and on the volume ray-casting techniques impleetkp.g, accelera-
tion techniques and feature enhancement methods. The wagottiribution of
each ray segment is computed can also vary due to the spéeitilmg technique
used and to the numerical approximation of the volume iaefgr the individual
segment. The contributions of all ray segments are therdbtktogether during
the compositingas explained above. In the last years, one of the main prablem
approached by researches has been the acceleration ohthexing process by
means of graphics hardwa45].

Object-order algorithms. In contrast to image-order algorithms, object-order
volume rendering algorithms compute the contribution alividual parts of the
volume to the rendering integral. Usually, each part cbatas to the integral
along many rays. One of the most widely used image-orderrighgas is cell
projectionwhere cells in the grid are projected onto the image planésibility
order (see Figure 2.7). The contributions of the cells toitibegral along a ray
are blended using compositing as described above. Ano#rgrwell known
object-order algorithm isplatting[171], which generates the image by computing
for eachvoxel (a cell in a Cartesian grid together with its volumetric data
contribution to the result in all pixels which overlap witls footprintin image
space. The computation is performed by slicing the voluntepaoject each slice
onto the image plane. The footprint of each voxel is actutléy reconstruction
kernel centered around it (see the section on volume dabasé&ciction above).

The support for texture mapping by graphics hardware madsilple the de-

40 Chapter 2. Interactive Visualization

Figure 2.7: Object-order volume rendering algorithms. dklaise (from top left): splat-
ting, cell projection, object-aligned, and view-alighexkture-based volume rendering.
Note that splatting and cell projection are not restrictecegular grids (see color plates).

velopment oftexture-based volume renderimgethods for Cartesian grid25]
(Figure[2.7). Where two-dimensional texturing is avaéablolume rendering
can be accomplished by projecting object-aligned textstiegs onto the image
plane. The contribution of the slices to the final image amamosited together
by means of the blending operations supported by the greplaiciware. In this
case, three stacks of slices aligned along the axis of thecbbpordinate sys-
tem are used. During rendering, the stack correspondinetatis closest to the
viewing direction is used. This requirement of maintainithgee stacks of tex-
tures is alleviated with the support for three-dimensidagtures, in which case
the volume is sliced orthogonally to the viewing directiofhe resulting slices
are textured directly by accessing the three-dimensi@xalite holding the vol-
ume. An approach related to texture-based volume rendesitige shear-warp
algorithm[87] where the viewing transformation is factorized such thatrtbar-
est facet of the volume becomes axis aligned with an offestimage buffer with
a fixed scale of voxels to pixels. The volume is then renddre® this buffer
using this more favorable memory alignment. Once all slafedbe volume have
been rendered, by rasterizing them in software, the bugféran warped into the
desired orientation and scale in the displayed image.

2.4. Visualization and Graphics Processing Units 41

2.4 Visualization and Graphics Processing Units

In the last years, the rapid technological advances in geagtardware has been
exploited in different areas of computer graphics to ace&deprocesses that ac-
complish tasks not necessarily restricted to those for lwthie graphics process-
ing units (GPU) are designed. This includes the implemeamntain graphics hard-
ware of many visualization algorithms for modeling and ey volume data
sets, which has provided interactive means for the read-gmploration and ma-
nipulation of simulated and measured data.

The capabilities of commodity graphics hardware have b&ploied for ac-
celerating the techniques presented in this thesis. Towerah this section, basic
concepts of commodity graphics hardware and their use iargéprogramming
tasks will be introduced.

2.4.1 The rendering pipeline

The process performed by the graphics hardware to display af lprimitives is
known as theendering pipelingsee Figure 2/8). This list of primitives, generated
by the application, is input to the rendering pipeline infibien of vertices. These
vertices are then transformed, firstvworld coordinatesthen toeye coordinates
clip coordinates normalized device coordinateand finally towindows coordi-
nates by the vertex processor (which in Figure|2.8 includes timaitive assembly
stage). The spatial relationships among the local coorelnsystems of the ob-
jects are defined in world coordinates. The per-vertex ilnghtomputations and
the specification of texture coordinates are also performeaabrid coordinates.
Eye coordinates result from positioning a virtual cameraragrbitrary location
in world coordinates. The transformation to eye space isrdehed by the posi-
tion, the viewing direction and the up vector of the camernalli@y is performed
in eye coordinates since the visibility of the polygons isedmined by the line-
of-sight and the normal vector and center of each polygore Véitices in eye
coordinates are then projected onto the viewing plane @olhttwo-dimensional
representation of the scene in clip coordinates. In thisespaipping and removal
of hidden surfaces are performed. Perspective divisidreis performed to obtain
normalized device coordinates. The normalized devicedinates are then trans-
formed to window coordinates by means of a viewport tramsédion. Finally,
in the last stage of the rendering pipeline, the projectdggoms are rasterized.
Rasterization is the process by which the representatidheopolygons in win-
dow coordinates is converted into raster format, vertexoaties are interpolated
and perfragmentshading (including texturing) and hidden surface remavpkr-
formed. Afragmentcan be regarded as a pixel with additional information such
as depth and texture coordinates.

Since the introduction of thgrogrammable pipelinghe operations performed

42 Chapter 2. Interactive Visualization

CPU/Application

¢ \ Memory Resorces

Vertex Ops. B (Buffer, Texture, Constant Buffer)

]

—— Streams Output
—

Geometry Shader
-

\—> Rasterization ——p Fragment Ops. —p Framebuffer, Tests & Blending

Figure 2.8: The programmable rendering pipeline.

by the vertex and fragment processors can be defined by tigegpnoner by writ-
ing GPU programs. Additionally, the geometry shader stageldeen introduced
into the pipeline recently. Aertex programs a graphics processing function that
performs mathematical operations on the vertex data, geometrical transfor-
mations, per-vertex lighting and texture coordinates aataons. It is important
to note that the operations are performed on the vertex dat# to the render-
ing pipeline by the application or on data previously writtgy thestream output
stage later described. Ayeometry shadeon the other hand, can generate new
primitives from existing primitives. The geometry shaderekecuted after the
vertex program shader and its input is the primitive withaadncy information.
During the stream output stage, the vertex data generatdtelyeometry shader
is streamed out to buffers in graphics memory, always as tEmprimitives but
without the adjacency information. As hinted before, threamed data can be
read back into the pipeline, which would be processed in aelent rendering
pass. Similarly, the operations performed by the fragmentgssor, can be pro-
gramed by means dfagment programs These operations are performed on a
per-fragment basis.

One important aspect of the rendering pipeline is that th&) G&h only pro-
cess independent vertices and fragments. However, it caaeps many of them
in parallel. That is, the GPU is in some sense a stream processl the pro-
grams (kernels) perform the same operations on all elenfestisces, primitives,
fragments) in parallel. This fact has been exploited by mautors to perform
tasks for which the GPU was not originally designed. Thisaaelby mapping
the programming problem at hand into a stream processinggmoin order to
exploit the high parallelism and computational power of@fU, as will be seen
in the following.

2.4. Visualization and Graphics Processing Units 43

2.4.2 General-purpose GPU programming

The use of the GPU for solving general computing problemads aggeneral-
purpose computations on the GRGPGPU). Since GPUs are designed to per-
form graphics tasks, their programing is very restrictioenpared to the CPU.
However, problems that can be solved using stream progesambe effectively
tackled using the GPU. In this context, the programmablegssors of the GPU
are seen as resources that perform the operations defindte tketnels. The
capabilities of the rasterizer for creating fragments ardrpolating per-vertex
constants are also often exploited in GPGPU applicatiodgtarecent introduc-
tion of the geometry shader has given programmers a new ittolvw capabil-
ities for solving problems. The texture unit and the franflyucan be seen as
read-only and write-only memory interface respectivelyvdte-only texture can
be attached to the framebuffer in order to store results iAitother possibility
is given by the recently introduced stream-out stage. Siheantroduction of
Shader Model 3branching and loops are supported by the processors. Howev
such flow control structures have a significant performarergalty. Currently
available hardware supports single floating point prenigicll its stages, as well
as in the texture unit. This has boosted the used of GPUs irgregrhical appli-
cations.

Recently, in order to overcome the limitations of the userapics hardware
in stream processing, NVIDI®R) and ATIR developed the Compute Unified
Device Architecture (CUDAV) and Close To Metd(CTM) technologies re-
spectively. CUDA allows the use of the computing featuretheflatest NVIDIA
GPUs through the standard C programming language. Thaeishader kernels
are replaced by kernels written in C. The advantage of usldBAon NVIDIA
GPUs is the possibility of processing thousands of threiaislsneously in com-
parison with multi-core CPUs that can execute only a fewattiseat the same time.
Additionally, the threads on NVIDIA GPUs can communicateoag themselves.

CTM, on the other hand, is a hardware interface that givesldpers access
to the native instruction set and memory of the AMD Streanc@ssors and its
Radeon GPUs. The use of CTM opens up the architecture ofrensprocessors
and offers developers the low-level, deterministic, argkegable access to hard-
ware that is essential to develop compilers, debuggers$enstical libraries, and
applications platforms.

44

Chapter 2. Interactive Visualization

CHAPTER

3 MESHLESSAPPROXIMATION METHODS

Meshless approximation methods were originally used teesgéoscience prob-
lems. Eventually, applications in other areas such as P&figcial intelligence,
signal processing, sampling theory, and optimizatiortetiamaking use of these
tools. This popularization was due to the need of standarthaods, such as
splines, for an underlying mesh to define the basis functidree most widely
known multivariate meshless method, often referred ioasse distance weight-
ing, was introduced by Shepalti43. Hardy[64] proposed thenultiquadricand
inverse multiquadrianethods, while Duchof42] developedhin plate splines
Lancaster andalkauska§g9; 84 generalized the idea of Shepard’s functions to
define themoving least-squaresiethod. On the other hand, the amount of re-
search orradial basis functionss vast. However, the work by Wendlahti6g
is of special significance, since Wendland presented fofitbetime a class of
compactly supported radial basis functions. This madeiblesthe use of com-
putationally efficient meshless radial basis function radth

In this chapter, a brief overview of radial basis functiomsl dhe moving
least-squares method is given. Also, the usertiiogonal polynomialsindap-
proximate approximatiowithin the context of moving least-squares is described.
The definitions presented here are used throughout this tiegsropose meshless
modeling and visualization techniques.

3.1 Radial Basis Functions

The general approximation problem can be defined as follo@isen a set of
pointsX = {xi,---,xy} € R? and a functionf : R®* — R evaluated on
X, generating the set = {fi,..., fv} € R, find a functionM f such that
Mf(x;) = fj;5=1,---,N, thatis, a functionM f that approximates the data
(x;,f5);7:1,...,N.

On the other hand, in the case of interpolation, the funcfidri must hold
Mf(x;) = f;. An usual approach to solve both the approximation and tlee-in
polation problems is to regard the functigf f as a linear combination of certain

basis functiong,:
N

MF(x) = i), (3-1)

k=1
wherex € R®. Solving the interpolation problem using this approachiseto

45

46 Chapter 3. Meshless Approximation Methods

a system of linear equations of the forAx = f, whereA = {ﬁk(xj)}szl,

c=|c, - ,en]tandf = [fi,-- -, fy]". Thus, a unique solution to the problem
exists if and only ifA is non-singular. It is known thatositive definitenatrix is
non-singular. Thus, sinceddrictly positive definite functiors a functionf such
that for any real numbers,, - - - , zy, the N x N matrixM = {f(z; — :cj)}szl
is a positive definite matrix, to ensure thats non-singular, one can choose a set
of strictly positive definite functions (x) = 1)(x — x;) as basis functions. Thus,
the functionM f is atranslation invariantinterpolant.

A function¢ : R®* — R is calledradial if there exists a univariate function
o :[0,00) — R such that

Y(x —xp) = o(r),

wherer = ||x — x;||. Thus, radial functions are not only invariant under transl
tion but also under rotation and reflection. More importgritie approximation
problem becomes insensitive to the dimension

There is a variety of basis functions that have been studid@pplied in com-
puter graphics, among which attein plate splinesmultiquadricsand Gaussian
functions. Thin plate splines were presented by Duchih, who defined the
radial function as

o(r) = { r?log(r) r#0

0 otherwise.

The functiono is the fundamental solution of the biharmonic equatid (x) =
0 whereA is theLaplace operator

Multiquadrics and inverse multiquadrics where introdutgdHardy. The
multiquadric and inverse multiquadric basis functionsdeéned as

o(r) = Va2 + r?

and

respectively, for some constamt
Gaussian functions of the type

o(r) = exp(—er?),
wheree is a constant, are the most widely used basis functions irpatengraph-

ics applications, perhaps due to their smoothness and daiay despite serious
drawbacks such as their sensitiveness to the choice of thenptere.

3.2. Moving Least-Squares a7

3.2 Moving Least-Squares

For a set of basis functions (polynomial functions throughibiis thesis)¥y =
{41, ...,%u}, the moving least-squares methf&8] aims at defining a linear
combination ofl that approximateg. Let us define the vectots= [f, -, fn]
and¥; = [¢;(x1), ..., 1;(xy)]. Let us also define the inner produci,, : RY x
RY — R, as a weighted sum:

N
= Z §imiw (X, X;), (3.2)
1=1

wherew(p,q) = w(||p — q|), w : R — R, being a monotonically decreasing
function. Note thatv depends on the evaluation posxandX’. A function M f
that minimizes

Mz

— Mf(x)) w(x, x;), (3.3)

min E
=1

where
M

x) = ¢(x)1;(x)

j=1

is known asmoving least-square@iLS) polynomial approximation because as
x changes, the minimization changes,, the solution depends on the evaluation
point.

It is known[38] that M f can be found by solving the system:

(U, ¥1)e - (U, Um)u || @ (T, W),
: : P = : (3.4)
<\I[M7 ‘I’1>w . <\I’M7 ‘I’M>w CyM <F7 \I[M>w

or compactly written

M
{Z@pi,\ymcj = (0, W));i=1,..., M.

j=1

3.3 Orthogonal Polynomials in Moving Least-Squares

If a setW¥ is defined such that the inner product satisfies V)., = x;;d;;, where
d;; is the Kronecker delta, System 8.4 becomes a linear systegnevthe coef-
ficient matrix is diagonal. This means thitis a set of orthogonal polynomials

48 Chapter 3. Meshless Approximation Methods

with respect to the inner product. Thus, the moving leas&ses approximation
is given by the sum

Zm \Ij - > (3.5)

A set ¥ with such property can be obtained by making use of the naultiv
ate Gram-Schmidt orthogonalization process. Howeves,ghocess is computa-
tionally unattractive. On the other hand, the revised G&oshmidt process for
several variables by Weisfe[d64] provides a generalization of the recurrence of
three termg24] for polynomials of several variables, making it a more ative
method in terms of computational performance. Bartels @ztbdanski18] im-
proved the results by Weisfeld and presented an even moceeatfmethod. The
authors argue that the revised Gram-Schmidt process is efftrient than calcu-
lating and solving System 3.4. Although the method by Bar#gld Jezioranski
is used in this thesis, there are different ways to consttibbgonal polynomials
in several variables, since the construction is not enstré@ unique. Methods
to construct the se¥ can be found in the works by Stokmanal.[147] and by
Philips[127]. Here, the method by Bartels and Jezioranski is used siabeatys
produces a matrix-free (or system-free) moving least+sgiapproximation,e.
no systems of equations must be solved, and is easy to uadershd to imple-
ment for discrete domains without losing efficiency. Theref this method is
described below fos = 3.

3.3.1 Indexing orthogonal polynomials

In the following bold formatting€.g, x) will be used for points ifR* and indexed
normal formatting €.g.z;) for the components of the pointe., x = (z1, z2, x3).
The approach by Bartels and Jezioranski to construct a setladgonal polyno-
mials ¥ is based on a special ordering of a $ef'z?25* : s, € T C N;i =
1,2,3} of multinomials and a mapping of such ordered multinomialinteger
numbers so as to reduce the number of operations performbid. miethod is
described here for the three-variate case for sake ofylarit

Let us arrange the multinomials in a recursive trianguldtepa where the-th
row contains all multinomials gfr —1)-th power and each row, with the exception
of the first, is organized intd groups (ranges): row (1) contains the multinomial
1; row (2) contains} ranges with multinomials,, x4, x3; and row () has as their
1st, 2nd and3rd ranges the multinomials found by multiplying, x> andxz by
each member, in order, of range<, 3; 2,3 and3 in row r — 1 respectively. For
instance the second, third and fourth rows of the triangarieay are (recall that
the first row contains only the monomig)t:

3.3. Orthogonal Polynomials in Moving Least-Squares 49

Row 2. x; X3
| I R B | | —
Row 3. 27 zy79 7173 o3 mow3 23
1 1L

L 1

Row 4. 3 ziwy x3x3 1173 X1Tow3 X175 TS Tixs Tow: T3
L 11

|

where the symbol indicates a range. The set of positions in this tablg js=
{1,2,3,4,5,6,...}, thatis,e.g, the multinomial in positior is z;z,. The set of
multinomials is{3(i)} = {1, x1, zo, x3, 2%, 1129, 173, T3, Tox3, . . . } and the set
of vectors of exponents associated Wjth(i) } is given by{~(i)} = {(0,0,0),
(1,0,0),(0,1,0),(0,0,1),(2,0,0),(1,1,0),(1,0,1),...}.

During the construction of the orthogonal polynomialssiimportant to track
polynomials previously constructed. Therefore, the ptedsor;’ of position j
in the triangular array is defined as follows: for the firstganwe havey(j) =
(71, 72, j3) which is in the rowj; + js + j3 + 1. The position of the predecessor
j' of j in the array can be found by considering’) = (j; — 1, j2, j3). Thus by
looking fory(j’) in the set{~(¢)} it is possible to identify the positiofi (which
isinrow (71 — 1) + jo + js + 1). For instance, let us considgr= 6, which is in
the first range. Thusj(6) = z22 whosey(6) = (1,1,0) and~(;5’) = (0,1,0).
Therefore,;’ = 3. For the second range, similar arguments can be followed:
~v(4) = (0, j, j3) which is in the rowj, + j3 + 1. The position of;’ can be found
by consideringy(;’) = (0,j2 — 1,73). The predecessqt is in this case in row
(jo — 1) + js + 1. For the third rangey(7) = (0, 0, j3) which is in the rowj; + 1.
Thus,;’ is found by considering(j’) = (0,0, js—1), which isin row(j; —1)+1.

Based on this ordering, the construction of the set of ohagpolynomials
is performed following the same triangular pattern so a®ta correspond to
position: in the array.

3.3.2 Constructing orthogonal polynomials

The revised Gram-Schmidt process is given by the followetyirrence relation

7j—1
¢1 f—]_ and¢j — l‘kjd)j/ —_ Z O[j,lwlm] = 2, 3, ey
=1

wherexr;,; = x; when the predecessgfis in the first ranger,, = z,, whenj' is
the second range and, = x3 whenj’ is in the third range,

(Tr, W0, U)o
Qjp = —F——,

(U, W)

and (a, Uy, U}, = SOy, eyl lulil where the upper inde] means the
function evaluated at point; andv;, is thej’-th orthogonal polynomial.

50 Chapter 3. Meshless Approximation Methods

The traversal of the table of muItinomiaIs is performed ia fbllowing way.
As j runs through one rangk (1,2, or, 3), j' runs from ranget; to 3 in row
r — 1 (note that in both cases there are the same number of mulatg)mVhen
J jumps from rangé; to k; + 1, j is set back to the beginning of rangge+ 1 in
rowr — 1. A similar process is also considered for the predecegsof j'.

The first six orthogonal polynomials calculated with thi®gess have the
following structure: ¢ (x) = 1, ¥(x) = =1 + a, ¥3(x) = 9 + b 21 + ¢,
Ya(x) = x5 +dae+exy + f, Ps5(x) = v1¢a(x) + g5+ hae+ 021 + 7,
andig(x) = z193(x) + k 22 + | 23 +m x3 + n x1 + o, Wherea througho are
constants depending cnand X'

Here, the three-variate polynomials,, form = 2, --- | 10, obtained with this
method are shown (recall that(x) = 1.)

E?:l x[f}wm

¢2(X) = 1 — En_l w[l]
_ _ > i 1% [Z] wt!
P3(x) = @ z:: o Q/Jz Mo mwl(x)
[Z] [4]
’QZ)4(X) = x3— Z Zz 1.1’3 w w (X)
= = 1wl [Z]
_ Zz Lz [Z] [Z] Wl
V5(x) L1t (x Z S 1%[1% @/)z(X)
_ ZZ T ¢[Z]¢[Z]w[z]
,QZ)G(X) ffﬂ/}?, Z ZZ 1¢I[Z]w (X
Zi ! ¢[Z]¢[Z]w[z]
¢7(X) — $1w4 Z Zzll I[Z]Z;)l[l}lw[l} ¢I(X)
(1],]
TR —— Zzil o ﬁ L
i=1
[Z] li] 1]
Po(x) = Tathu(x Zzilﬁﬁ] (T 1(x

Y10(x)

Zi 123 ¢E]¢}Z]w[z]
9031/14 Z il 1] (] ’ll)l(X)
Zz VU w

3.3.3 Avoiding repetitive computations

To reduce the computational cost, two important resultsdoydds and Jezioranski
are used : (1¥i < 7" = «,, = 0 wherej” is the predecessor gf, and (2) if

3.4. Approximate Approximation 51

J,1, p andm are such thatw 1y, ¥1)e = (Tr, Yy, ¥m)w, then

<\I]m7 \I]m>w
;1 = Oy -
J»l D, <\I]l, \I]l>w

The former helps to identify the’s with value equal td and the latter makes it
possible to reuse inner products previously computed.

3.4 Approximate Approximation

Approximate moving least-squar@MLS) [46] is a computationally efficient
approach free of systems of equations that is able to achigher-order approx-
imations. However, this method provides good approxinmatianly for regularly
spaced points. On the other hand, radial basis functioegaolkation methods are
known to produce good results in many applications. Howewemerical insta-
bilities arise during the computation of radial basis fumes interpolations due
to the nature of the system of equations that must be solveg system is in
general large and ill-conditioned.

Recently, théterated approximate moving least-squanesthod[48] was de-
veloped to overcome the issues mentioned above of both dppate moving
least-squares and radial basis functions. This method gsea sequence of ap-
proximated solutions that converges to a radial basis fomginterpolation. This
turns the method suitable for irregularly spaced samplatpoiSince it is based
on approximate approximations, no systems of equations Ineusolved and thus
numerical instabilities are better avoided.

3.4.1 Approximate moving least-squares approximation

Maz'ya [112 proposed higher-order approximation methods free of pystef
equations, which achieve approximations up to a certaiwratidn error which
can be negligible due to computer precisidf]. Maz’ya developed such approx-
imate approximations for the numerical solution of differal operators, such as
multidimensional integro-differential operatdds37. Fasshauer observed that the
approximate approximation by Maz’ya can be regarded as sti@ned moving
least-squarept6]. In addition, he presents methods to efficiently define such a
approximation, therefore named approximate moving lsgetres approxima-
tion. Although itis a promising theory which can be usefut@veral applications
due to its computational simplicity, to our knowledge, oflgsshauef47; 44
makes use of the theory in practical problems, specificatg dompression.
Consider, as before, a set of poimts = {xg,...,xy} C R° and the set
F = {f(x0),..., f(xy)} of values of some functiorf € C? evaluated on¥.
Fasshauel47; 46 defines the approximate moving least-squares approximatio

52 Chapter 3. Meshless Approximation Methods

for a regularly spaced set of poimt§ as the functionM f that approximateg as

fo0) = MPx) = 3 fiwil), (36)

for suitable pre-definedgenerating functions;. For instance, Fasshauer pro-

proses.
pi(x) = H/ L (ri(x)) exp (=1i(x)) . (3.7)

wherer;(x) = €*||x — x;||2/h2, L%/* are the generalized Laguerre polynomials of

degreel [167], h is the fill distance of the data setjs the dimension, andis the
shape parameter that controls the saturation error byngddle basic weight func-
tion. Using such generating functions, also known as Lagu@aussian func-
tions, it is possible to ensure an approximation orded of2¢*2).

Although there are important results extending this metbadegularly spaced
points, they are difficult to implemei#6]. However, Fasshauer and Zhadg]
proved recently an interesting result that helps overcamb deficiency. Specifi-
cally, the authors proved a connection between approximateng least-squares
and radial basis functions interpolation. It was shown thiatpossible to obtain
a radial basis functions interpolation using an iteratix@cpss based on approx-
imate moving least-squares. Thus, this connection bridgargages from both
approaches; on the one hand the matrix-free nature of ajppatx approxima-
tions and, on the other hand, the capacity of radial basistifums to interpolate
functions from irregularly spaced points.

3.4.2 Connecting RBF and Iterated AMLS

Based on Equation 3.6, Fasshauer and Zld8lgproposed the following iterative
process, built upon approximate moving least-squares,

N

Mf(o)(x) = Zfi%(x)a (3.8)
N

M) = MO+ Y (fi = MM (x0) @ilx), (3.9)

i=1

and named iterated approximate moving least-squares approximei@nLS).
Fasshauer and Zhang proved, under easy-to-check corgditiothe matrixA =

{ei(x)},,_, , that

HA”Q <2= Mf(n)(x) - MfR(X) whenn — oo,

3.4. Approximate Approximation 53

where M fx(x) is the radial basis function interpolation for the bagis}. In

fact, such a matricial condition is easily achieved, fotanse, if{y;} define a
partition of unity, the matrix norm becomégs\ |, = 1. It is worth to mention

that radial basis functions methods can suffer from nurakcstability, for in-
stance, for smalk when Gaussian basis functions are used. On the other hand,
since the IAMLS produces a sequence of smooth solutionshatooverges to

the radial basis functions solution, it produces more stabsults as shown by
Fasshauer and Zhang.

54

Chapter 3. Meshless Approximation Methods

CHAPTER

4 MESHLESSSURFACES FROMPOINT CLOUDS

Meshless surface rendering methods have been around fadeewith the first
work on point-based surface rendering proposed by Levoywdhiited in 1985.
However, it was not until some years ago that meshless nrgpehd rendering
became popular. We refer the reader to surveys on the [bB&; 84. Note that
meshless methods are not limited to point-based techniduoéact, a number of
works on point-based rendering are based on a meshlesseuéjresentation
defined by an implicit function or by a projection operatoerltiraps the ground-
breaking work that most influenced this trend nowadays, esvitbrk by Levin
on moving least-squares surfack®g]. At this point, it is necessary to remark
that meshless surface approximation techniques can beéagederate a mesh as
output. Nonetheless, the techniques remain meshless.

In this chapter, work developed upon recent results on ngoMast-squares
surface approximation is reported. As seen before, moeastisquares is a pow-
erful approximation method. Levil®7] studied the approximation power of the
moving least-squares, setting the basis for a number ofsttbek used the method
to solve a large range of problems in several areas incluchngputer graphics.
The clear advantage of the moving least-squares methoatishte accuracy of
the approximation can be concentrated around a determmiatip the domain,
e.g, the point where the function is evaluated. Although thisansethat an ap-
proximation has to be computed for every point where thetfands evaluated,
a very important consequence is that the data can be adguaipf@oximated on
the entire domain using polynomials of low degree locally.

The work described in Sections 4.2 and|4.3 was carried oubliatmora-
tion with Joao Paulo Gois from the Universidade de Saodd&razil. Valdecir
Polizelli-Junior and Tiago Etiene from the Universidades@® Paulo were active
collaborators during the development of the techniquesgmted in Section 4.4
and must be credited for the implementation of the technane development
of the extensions to improve robustness. Different detdithe hardware imple-
mentation of ray-tracing for projection operators (Set#o5.1) were separately
developed in collaboration with Tobias Schafhitzel frora thniversitat Stuttgart
and Jdao Paulo Gois from the Universidade de Sao Paulo.

55

56 Chapter 4. Meshless Surfaces from Point Clouds

4.1 Meshless Surface Approximation

Before detailing the methods introduced here, an overvieprevious work is
given. The techniques presented in this thesis are to a gxé&sit based on mov-
ing least-squares surfaces where, given a pointtset {x;,---,xy} C R3
sampled on a surfa@#s, we wish to find an approximatioM 05 to 9S. As seen
in Chapter 2, Levin defines1dS as the stationary points of a mdp; s, given
as a two-step procedure.

Amenta and Kil[11] generalized the moving least-squares surfaces and de-
finedextremal surfacesTo that end, they start by giving an explicit definition of
the moving least-squares surfaces as described in thevfoto Firstly, consider
a vector field

n(x) = argmin ey;rs(X, a),
aes?

wheree,, 5 is, as in Chapter 2, defined as

N
emrs(aa) = Y ((a,x) — (a,)’ wars(a, x).
=1
This vector field can be usually uniquely determined sicefixed and therefore
emrs 1S @ quadratic function ai. As noted by Amenta and Kil, the set of points
wheren is not well-defined form surfaces which separate the spdoeégions,
within each of whichn is a smooth function ok.

Then, given the lind, ,,x) throughx with directionn(x), Amenta and Kil
characterize the moving least-squares surfaces as thé geints x for which
n(x) is well-defined andk locally minimizese,;.s(y, n(x)), wherey € Iy nx)-
The authors presented a proof that this characterizatitamesegpoints on the mov-
ing least-squares surface and generalized it to defineneatreurfaces by letting
n be any function that assigns directions to points in spadaiaimg any function
e(x,a) as energy function. Furthermore,rifis a consistently oriented smooth
vector field, the implicit surface associated with an exekesurface defined by
ande(x, a) is given by

9(x) = (n(x), Vye(y, n(x))l) =0,

whereV e(y, n(x))|, is the gradient ot as a function of;, whenn(x) is fixed,
evaluated ak.

Implicit definitions using moving least-squares have beedied by other au-
thors as well. Adamson and Alek2] presented a simple surface definition based
on weighted averages and weighted covariances. Given &ygoihe weighted
average is given by
Zﬁil XiWSMLS(X7 Xi)

Z?;l uJSMLS(X, Xi)

a(x) =

Y

4.1. Meshless Surface Approximation 57

where

wsmrrs(x,xi) = exp(—|[x — x;[|*/1?),
and the weighted covariance atin directionn, describing how well a plane
(n,x — x;) fits the weighted points, is given by

o (x) _ Zﬁ\;l<n7x - Xz’>2WSMLS(Xa Xz').

Zij\il WSMLS(Xa Xi)

Let o(x) be the vector of weighted covariances along the directidtissocanon-
ical basej.e.,
0(1,0,0) (x)
o(x) = | 00,1,0(x)
0(0,0,1)(X)
then the directions of smallest and largest weighted camads ak can be com-
puted as the eigenvectors of the bilinear form

where an eigenvalue is the covariance along the directitimeohssociated eigen-
vector. Thus, the normal directiain(x) atx is given by the direction of smallest
weighted covariance. The implicit definition of the surfatéhis case is given as
the zero set of the function

Isyrs(x) = (n(x),a(x) — x).

Kolluri [83] analyzed the implicit moving least-squares surface dafimdrig-
inally proposed by Sheet al.[141] to approximate polygon soups when used to
approximate a point cloud. BS is a smooth closed surface and each peiris
equipped with an outside surface normnmg) the approximated surfac®19s is
defined as the zero set of the function

Zj-vzl wrmLs(X, X;) (X — x;, n;)
]IMLS(X) = N ,
> wivrs(X, X;)

where

wivrs (X, Xi) = exp(—[x — x;|*/h?) /A;
and A; is the number of samples inside a ball of radiusentered ak;. Kolluri
proved that the functiod;,,;;s is a good approximation to the signed distance
function to the surfacéS and thatM oS is geometrically close and homeomor-
phic todS under the following sampling condition. Let thexal feature siz¢ (x)
of a pointx € 05 be the distance from to the nearest point of the medial axis

58 Chapter 4. Meshless Surfaces from Point Clouds

of 0S. A point setX’ is anh-sample if the distance from any pomte 0S5 to

its closest sample i&t is less thariF (x). The proof of correctness presented by
Kolluri requires auniformh-sampling The setY’ is a uniformh-sampling if, af-
ter having being scaled so thatx) > 1; Vx € 95, the distance from each point
x € 05 toits closest sample is less thanAlso, for each samplg;, the distance
to its closest surface poiptshould be less thal?. Moreover, the angle between
n, of a samplex; and the normah,, of the closest surface point tg should be
less thanh. Finally, leta, be the number of samples inside a ball of radius
centered ak. Kolluri assumes that for each poirt if «, > 0, the number of
samples inside the ball of radi@s centered ak is at mosBa.

Dey and Sur{40], following on the work of Kolluri, presented an implicit
moving least-squares surface definition able to deal witipidely sampled points.
Thus, the sampling condition is similar to that of Kollurittvithe exception of the
uniform sampling density. The form of the implicit functiam this case is the
same as in the work by Kolluri with the exception of the weigbtunction. Con-
cretely, the implicit function is defined as

Zj-vzl wamrs (X, X;) (X — x;, ;)
Tavps(x) = < :
Zj:l wamLs(X, Xj)

where
W (x,x;) = ex ——\/QHX — x|’
R T TR)

wherex andx; are the nearest points foandx; on dS respectively. The function
f is a smooth function arbitrarily close fo, i.e.,

[f(x) = F(x)| < BF(x)

for arbitrarily smallg > 0. This is done sinc¢ is not smooth everywhere on
dS. The factory/2 in the exponent of the weighting function is introduced for
convenience in the proofs of correctness presented by Deean.

Multi-level partition of unity implicits were proposed byhiakeet al.[122].
To define the supports of the partition of unity, the domaidégsomposed using
an octree. The reconstructed surface mesh is then obtaioedaf regular grid
(resampled from the octree) using Bloomenthal’s polyger(i21]. The implicit
function is given by

[MPU(X> = Z Q; (X)@'(X),

where{¢,,--- , ¢y} is as set ofl/ non-negative functions with compact support

4.1. Meshless Surface Approximation 59

such that
M
D eix) =1,
=1

Q; € V;, andV; is a set of local approximation functions associated witthea
sub-domaisupp(¢;). The set of functiong¢,} can be generated by letting

warpy(Ci, X)
S warpy(ci)’
where the quadratic B-spliriét) is used to generate weight functions
3[Ix — il
X)) =b (o
prU(c X) (2RZ

centered at; and having a spherical support of radids An interpolation ofY
can be obtained by using

¢i(x) =

(R — HX—CzH)+r’

owruten) = |
T (A

where

(a), = a ifa>0
T 7) 0 otherwise

Given an octree patrtition of the space, which defines theeceritand radiiR; of
the supports, the local fitting of the data is calculatedgigeneral (three-variate)
quadrics or bivariate quadratic polynomials. In the latise, a local coordinate
system(n, ¢, x) is defined for each suppoft;, ;) with origin atc;, such that
the planeg(n, ¢) is orthogonal tan; and the positive direction of coincides with
the direction ofn;, wheren,; is the normal vector estimated@tusing covariance
analysis. Once the local system is constructed, the lodghpmial approxima-
tion is defined as

Qi(x) = x — (an® + 2canC + 3¢ + can + csC + c6) -

The unknown coefficients,; k = 1, - - - , 6, are determined by minimizing
N
Z Qi(xj)QWMPU(Cia X;)-
j=1
Ohtakeet al.[123 later extended their work to improve the resulting surfage b

using normalized radial basis functions. Basically, thplioit function is defined
as

M M
Inypy =Y Qi(X)i(x) + > 7iti(x),
=1 =1

60 Chapter 4. Meshless Surfaces from Point Clouds

where{¢;} is a set of normalized radial basis functions, apdi = 1,--- , M,
are the coefficients of the radial basis functions interppmteto be determined.
Kazhdanet al. [79] proposed an interesting approach in which the surface

approximation is formulated as a Poisson problem. This atefiresents sev-
eral advantages over other formulations, but its procgssime is higher than
the one needed by partition of unity and moving least-squimenulations. This
technique is based on the insight that there is an intededloaship between ori-
ented points sampled from the surface of a model andnttheator functionof
the model. The indicator functiopg for a modelS is defined ad at the points
insideS, and0 outsideS. Given a patchP,, C 95 for eachx;, the authors start
by constructing a gradient field

N

Vi) =3P

i=1

ﬁxi (X>nl7

whereF, (x) = F(x — x;), F' is a smoothing filter, antP, | is the area of the
patchPy,. This vector field approximates the gradient field of theridteindicator
function,i.e., N

V(X)=V(xs*F)~V,

where(-x-) is the convolution operator. This problem can be regardedassson
problem, for which the solution of the Poisson equation

AY=V -V

provides the best least-squares approximation.

Lipmanet al. [104] presented an approximation technique based on moving
least-squares able to faithfully reconstruct piecewrseath surfaces from unor-
ganized point sets. The method finds, for each projected,paiproper local
approximation space of piecewise polynomials. The locedigstructed spline
encapsulates the local singularities which may exist irdita, which constitutes
a very important contribution for the meshless surfacenstaction community.
This technique will be described in detail later in this desin the context of the
work on approximate moving least-squares surfaces preséetre.

Lipman et al. [105 also developed a projection operator for surface recon-
struction, which is parameterization free, in the senseé ihdoes not rely on
estimating a local parametric representation, such a®tat tangent planes used
by most of the approaches described in this section. Givennghut point set
X ={x; : i =1,---,N} C R3 the operator maps an arbitrary point set
POl = {pg.(” j=1,--- ,M} C R3 onto the set¥’. The goal is to compute a

set of projected point® = {q; :j =1,---, M} C R? such that it minimizes

4.1. Meshless Surface Approximation 61

the sum of weighted distances to pointstdfwith respect to radial weights cen-
tered at the same set of poirfs Furthermore, the points i@ should not be too
close to each other. Thus, the desired set of pahis defined as the fixed point
solution of the equation
Q=G(Q),
where
G(C) = argmin {E(P,X,C) + Ey(P,C)},

N M
E((P,X.C) = > Y |Ip; — xillwror(c;, xi),
i=1 j=1
M M
Ey(P.C) = > M > nlpk —cil)wrop(cs, cx),

k=1 j=1j#k
wherew,op(p,q) = wrop(||lp — q||), andwop, as before, is a fast-decreasing
smooth weight function with compact support radiuslefining the size of the
influence radiusy(r) is another decreasing function penalizisgwhich become
too close to other points, anl = {\; : £k = 1,--- , M} is a set of balancing
terms. Intuitively, the ternt’; drives the projected points i@ to approximate the
geometry ofY, and the ternt; strives at keeping the distribution of the points in
Q fair. The authors prove the approximation order of the dperand provide a
means to compute suitable values fgr

Guennebaud and Grof32] presented a surface approximation method based

on moving least-squares fitting of algebraic spheres. Tleeofishe algebraic
sphere to locally approximate the data improves stabiliges low sample rates
and in the presence of high curvature. An algebraic spheatefised as the zero
set of the scalar field, (x) = [1,x’, x"x|u, whereu = [ug, - - - ,u, 1] € RS2
is the vector of coefficients describing the sphere, wibleing the dimension. In
degenerate casascorresponds to the coefficients of a plane wiglrepresenting
the distance from the originy,, - - - , u,]” being its normal, and,,,, = 0. To
fit the algebraic sphere to a set &fpoints, letW (x) andD respectively be the
N x N diagonal weight matrix and th¥ x (s + 2) design matrix defined as

1 xF xTx,

W (x) = [wapss(x1,X), -+ ,wapss(xn,x)], D=| . . : ;
1 x5 xExy
where

WAPPS(XiaX) =9 (L;XH)

62 Chapter 4. Meshless Surfaces from Point Clouds

and

A=t r<i
o(r) = { 0 otherwise.

Then, the solutiom(x) can be expressed as

2

(4.1)

u(x) = argmin HW%(X)DU
u,u#0

In order to avoid the solution(x) = 0, Pratt’s constraint is used where the norm
of the gradient at the surface of the sphere is constrainagitéength by means of
a quadratic normalization, namelyu., - - - , us)||* — 4ugusy1 = 1. This ensures
that the algebraically fitted sphere is close to the leagtuss Euclidean best fit.
This minimization is only used to estimate the normal vextgrat the points in
X. Once the normals are available, as input or by means of tivegfdescribed
above, the actual sphere fitting to reconstruct the surlageiformed. To that
end, the constraint¥s,(x;) = n; are added to the minimization problem of
Equation 4.1. Therefore, the implicit function is defined as

Lipss = Sux(x) = [1,x",x"x] u(x).

This method is able to provide curvature information as @imduct of the fitting

process. We, on the other hand, first estimate the curvatargigen point on the
surface and exploit it to perform polynomial fitting usingmoomplete quadratic
polynomials instead of full polynomials, as described ia thilowing.

4.2 Curvature-driven Projection Operator

In this section, a novel projection operator for surfacerapination from unorga-
nized point sets is presented, based on the approximataineational curvatures
and the diffusion equatiofb9]. The anisotropic diffusion equation used helps
preserve the geometry of the original surface and makessgiple to represent
thin features in the model. Also, it is shown how principahvaiures and di-
rections can be estimated for point clouds. This curvatoferination may be
used to defined a local polynomial approximation as will lsalescribed. The
fact that the local approximation performed by the methamppsed is defined
as a non-complete quadratic polynomial can help decreagartitessing time of
algorithms that perform intensive intersection compotaisuch as ray-tracing.
The ray-tracing algorithm by Adamson and Aleb@ is used to render the sur
faces defined by the curvature-driven projection operaforthat end, the inter-
section computation must be modified to fit the proposed ptioje operator. This
ray-tracer is used to demonstrate the quality of the apprations obtained (see
Figure 4.1 for an example).

4.2. Curvature-driven Projection Operator 63

Figure 4.1: Rendering of the approximate surface for tharitidlataset obtained with the
curvature-driven projection operator described in thidiea (see color plates).

Lange and Polthief90] adapted the well known mesh-oriented method by
Taubin[14§ for surface fairing to the point cloud context. In their wotke
authors used the method by Taubin together with an anisotdiffusion equation
for removing noise from point clouds without smoothing sheorners.

Curvatures and principal directions estimation for regglads and polygonal
meshes has been extensively studied in both the qualitatgethe quantitative
cases. Maltred and Danif10g presented a survey on classical work on curva-
ture estimation and a classification based on the requirenaenl constraints of
the methods described. Although there are many methodsstonating prin-
cipal curvatures and directions, almost all of them need shm®nly recently,
effective methods to estimate curvature information diyeicom point sets were
presented4; 154; 90; 72.

Tong and Tand154] presented a robust curvature estimation method based on
adaptive curvature tensors by means of tensor voting. litiaddthey presented
an analytical comparison with classical and efficient meéshwith respect to their
input (point clouds or mesh models), their requirementsifgetrical measures)
and their outputs (quantitative or qualitative estimatjorHuang and Menji72]
proposed a curvature estimation method built upon the-Egstres scheme and
Euler’s theorem from differential geometry. Although thethnod was proposed
to locally optimize unstructured surface meshes, it is slst@ble for point clouds.

64 Chapter 4. Meshless Surfaces from Point Clouds

We derive the method presented from this work, since it capasdy adapted to
support weighting functions, which is an important coraditfor the quality of the

models generated by meshless techniques. Thus, the a@restimation method
by Huang and Menq was modified to introduce weighting fumdio order to

improve the robustness of the method. These weighting itumeivere carefully
constructed and are specific to the problem at hand.

4.2.1 Principal directions and curvatures

The directional curvatures at a po#bn a smooth surfaceS are defined in terms
of the curvatures of smooth curves containkagl he minimum and maximum di-
rectional curvatures computed from the curves are caltedtipal curvaturesand
their respective directions are callpdncipal directions One important result is
that principal directions are orthogonabaf2§g].

Euler’'s theorem from differential geometry states thatrgwkrectional cur-
vature inx € 9S can be described as a function of its principal direction$ an
curvatures. More formally, let us define the principal dil@ts and curvatures
atx asvy andvy, andxY and k3 respectively. Euler's theorem states that the
curvature ak in the directiony is given by:

K*(1) = K cos®(a) + k¥ sin*(a), 4.2)

wherey = cos(a)vf + sin(a)vy.

Let us consider the approximated tangent plahet x, where a local or-
thonormal coordinate systefw, ¢, x) with origin atx is defined, such that the
plane(n, () is parallel toH (Figure 4.2). The projections; on H of the points
x; € X are computed, which define the directians In practice only a sub-
set of X' consisting of the nearest neighborsxofre used. However, as before,
this restriction is not included in the formulation herencg later by introducing
weighting functions, it is ensured that only the meaningfaints in X’ for the
computations ak are taken into account.

By sorting such directions in counterclock direction, theglaso; from n to x;
are obtained. Denote iy the counterclockwise angle from the principal direction
v¥ to v;. The directional curvature can be approximated by

lix(l/i) =, (43)

wheren(x) is the normal vector at ando’ = x; — x for x;. The following non-
linear overdetermined system is obtained from Euler'si@cand the directional
curvatures approximation (Equation 4.3)

{Fff cos?(B1 + 03) + k¥ sin®(By + 03) = k¥(s); i=1,..., N, (4.4)

4.2. Curvature-driven Projection Operator 65

Figure 4.2: Estimating directional curvatures on the apipnated tangent plane at(see
color plates).

whereés; = [5; — /1 = 0; — 6;. Note thatég; = 0. Following the work by
Huang and Menq, let us define

1 . x x
n =GR+ R3), 72 = —cos(2B1)(k3 — K1), s = sin(261) (k3 — K7),
to obtain the following overdetermined linear system
{71 + Y2 c0s(2003;) + v3sin(203;) = k*(v3); i=1,...,N . (4.5)

Therefore, the normal equation for System 4.5 becomes

N N 7 r N 7
N E C; E S; E R;
i=1 i=1 i=1
N N N ot N
2 . .
E C; E C; E CiS; Y2 | = E RiCi | (4.6)
i=1 i=1 i=1 Y3 i=1
N N N N
g S; E CiS; E s? g R;S;
L =1 i=1 =1 i L =1 i

wherec; = cos(200;), s; = sin(203;) ands; = x*(v;). Thus, the principal

directions and curvatures are straightforwardly obtaineah v,, 1 < i < 3.
Although Huang and Menq state that the method is robust fayrdata, ro-

bustness for the problem at hand was only achieved by additepe weights.

66 Chapter 4. Meshless Surfaces from Point Clouds

0\ 25

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

Figure 4.3: Examples of “M"-like function graphs. From l&dtright: 4 = 2 and¢ = 1,
h=1and¢ =1, andh = 1 and¢ = 2.

To that end, the following weighting function was introddder the first time in
the process

X — X 2
wepo(X,X) =[x — Xz‘||2§ exp <—%>) (4.7)

where¢ € N*. Note that this function is an “M”-like function. Thus, byttg
w; = wepo(Xi,x), the normal equation becomes

- N N N T r N
E Wi E wiC; E Wi S E wiki
i=1 i=1 i=1 i=1

N N N " N
2 A
E W;C; E Wi C; E W;CiS; Y2 = E Wi K;C; . (4 8)

N N N N
sz‘si sz‘CZ‘SZ‘ Zwis? Zwi/%isi
L =1 =1 =1 . L =1 .
The use of an “M”-like function is very important to obtainapbresults with
the method proposed. This is due to the fact that the direatiourvatures ob-
tained by Equation 4.3 are dependent on the position of tirespand their nor-
mal vectors. A small perturbation in the position of paintan produce a quite
different solution with the original method by Huang.
In the “M”-like function, ||x—x;||* controls the influence of the points close to
x on the solution. The largeris, the smaller the region arousdw~hich will have
significant influence in the solution is. The exponential rhemof the function
maintains the same behavior of the traditional Gaussiaotiom Examples of
graphs of this function are presented in Figure 4.3 withedé#fit parameter values.
Unlike a Gaussian weight, the “M”-like function is able tols®the prob-
lem and to increase robustness. This will be shown in the sextion after the
description of the surface approximation procedure.

4.2.2 Projection and rendering procedures

As mentioned before, traditional projection-based s@feeconstruction tech-
nigues define the approximated surface for a given pointicdsithe set of station-

4.2. Curvature-driven Projection Operator 67

ary points for a carefully designed projection operatorisMmy, the input point
cloud can be resampled by projecting a sufficiently large memof points from
its neighborhood onto the approximated surface. With thixgdure, a dense
sampling that covers the image space consistently can benelt

In this section, a new projection operator, derived fromdiieision equation
and directional curvature information, is described. Asdocal approximation
to the surface, that is not part of the projection procedisreptained using the
method for computing principal curvatures and directioivelg in the previous
section and a result from differential geometry, whicheddhat a surface can be
approximated locally (in the neighborhood of a patrk: 0S) by

Miul&n) = 5 (€ + 5?) (4.9)

where (&, n) is in the local coordinate system defined by the principaaions
atx.

The projection procedure is based on the surface fairingpoaeproposed by
Lange and Polthiel90] for point clouds. The authors make use of an anisotropic
diffusion equation, which is useful to preserve sharp c@nket us consider the

diffusion equation

ox
“— =)\A 4.10
whereAx is the Laplacian ok and) is the diffusive term. The Laplace operator

can be approximated by the umbrella operator
~ 1
Ax = 9 Z w; - (x; — X)), (4.11)
x; EN(x)
whereN (x) is the set of nearest neighbors of, k being user-defined,

1
W, = —=
i — x|
andQ = > w;. The explicit forward Euler method for Equation 4.10 leaals t
x™D = x™ 4 \stAx™), (4.12)

wheredt is the step size ang(™ is the integration at iteration. It must be
observed thahdt must satisfy the time step conditiof88]. Lange and Polthier
modified the traditional umbrella operator to obtain an ain@pic operator by
introducing a suitable real function which offers informoatrelated to the shape
of the object. This operator is able to move a point onto thiéasa fairly. The
anisotropic Laplacian becomes

~ 1
Apx = 9 Z A - (x; — x), (4.13)
x; EN (x)

68 Chapter 4. Meshless Surfaces from Point Clouds

whereA; is a real function which depends on the directional cunegt(Equation
4.3) atx. Lange and Polthier argued for the use of one of the folloviimgtions
for a given threshold

_ 1w <e
Ai= { 0 otherwise; (4.14)
1 (1) < &
N2 10(|R* (3)|—N)2 otherwise.

With this framework, the projectiop of a pointr onto the surface and the
local approximation to the surfacejtcan be found using following procedure:

1 Find the planed with normal vectod = % > w; - n; passing through
o= % > w; - x;, Wheren, is the normal vector at;;

2 Find the projectiory of r on H;

3 Find the projected poinp resulting from using the anisotropic diffusion
equation starting af;

4 Calculate the principal directiong’, ¥ and curvatures?, <% atp;

5 Define a local coordinate system with axig’, %) and origin atp;

6 The polynomiall (xP¢2 + k5n?), where¢ andy are in the local coordinate
system, approximates the surface locally.

The approximated surface is defined as the set of statior@ngspfor the
projection process described above. To render the appatedisurface, the ray-
tracing algorithm proposed by Adamson and Al¢3his used, changing only the
projection procedure. This can be done because the prolsegs described pro-
vides not only the projection of the point but also a localypoimial approxima-
tion to the surface (see Section 2/2.3). However, a goothettiof the principal
curvatures £%, %) and directions«?, ¥) is of major importance to obtain a
good local approximation to the surface (Equation 4.9). laswed in the previ-
ous section, only by introducing suitable weights into thevature estimation a
robust approximation can be obtained. Figure 4.4 showsftbet ®f introducing
weights into System 4.8. As can be seen, a Gaussian weightriesolve the
problem. The use of the “M”-like function was inspired by tlaet that instabil-
ities may arise in the estimate of the directional curvagiven by Equation 4.3
whenx — x; for somex; € X'. Note, however, that the “M”-like function is used
only for the curvature estimation, while a Gaussian weightsed for the rest of
the process.

The moving least-squares-based surface approximationathgtroposed by
Alexaet al.[5] was implemented to compare the results obtained with thetinoul
and the method presented here. The goal was to be able to abtamparable
approximation to the surface using a reduced polynomiaiobt from the cur-
vature information. Therefore, complete quadratic poiyrads were used in the

4.2. Curvature-driven Projection Operator 69

Figure 4.4: Polynomial approximations obtained (fromteftight) without weights, with
Gaussian weights and with the “M”-like function (top row).

Figure 4.5: Ray-tracing of the approximated surface forRbeker Arm dataset obtained
with the moving least-squares-based (left) and the cureattiven (right) methods.

implementation of Alexa’s method. In Figure 4.5 the resaoftboth the moving
least-squares-based approximation and the curvatwerdapproximation for the
Rocker Arm dataset are shown. In both cases, the ray-tratgogithm by Adam-
son and Alexa was used to render the approximated surfaceamse seen in the
figure, the results are equally good, however the methocekpted is between 1.5
to 2.5 times faster. For these performance tests, the moaasks rendered with
no reflection or refraction effects to583 x 400 viewport. More complex scenes
were also rendered and are shown in Figures 4.6 and 4.1. Nattéhin features
in the EtiAnt model in Figure 4.1 were correctly reconsteactvith our method.
The difference in the processing time is due to the fact takhough the
method proposed makes use of trigonometric functions tetooct the normal
equation, it only needs to solve a linear system with thrdenawns and thus
closed formulations can be used. Although a complete qtiagralynomial can
better approximate a larger neighborhood than the non-tEenguadratic poly-
nomial used, for the local computations involved in the rodtproposed this latter
guadratic polynomial approximates the surface accuratelpther important ad-
vantage of the method developed is the availability of adiexgharacterization
of the surface by means of the curvature information. Alagpractical terms,
when computing the local approximation, the points for hice “M”-function

70 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.6: Rendering of the approximate surface for thafStd Bunny dataset obtained
with the curvature-driven projection operator describethis section.

has values lower than a threshold are discarded. This naeswhe computational
cost since less trigonometrical operations are perforrAeditionally, it reduces

the possibility of numerical instability during the locgd@oximation computa-
tion.

As mentioned before, the use of a non-complete quadratympatial for the
polynomial approximations simplified the ray-surface iséetion computation.
However, it would be desirable to analyze the performangauohof the principal
directions and curvature estimation process and of the#ojsc diffuse equation
(although it was found that this latter process needs fexatitans to converge).
Acceleration techniques can be introduced into the impigat®n of the ray-
tracing algorithm in order to be able to exploit the simpliaf the intersection
computation.

Besides the potential gain in computation time, the avaitglof curvature
information is important for a number of applications. Tlas clear advantage
of the method presented over other surface approximatedmiques. There are
few works in the literature for curvature estimation froroudis of points and so

4.3. Approximate MLS Surfaces 71

far there is no work presenting comparisons among theseau&thA mathe-
matical and computational efficiency study of such methodstrbe performed.
Although, with the method proposed, local characteriratibthe surface offered
by the principal directions and curvatures is availableotld be of interest to
define global propertie®.g, the Euler characteristic.

4.3 Approximate MLS Surfaces

In this section, two problems of approximation techniquasdal on moving least-
squares are addressed. The first one is the need for sohangeaiumber of small
systems of equations when local polynomials are used t@ajppate the surface.
This computational effort can be high for large models arvpiort resolutions,
turning the approaches prohibitively slow. On the otherdhamethods that define
the surface as the zero set of an implicit function are camataly faster. How-
ever, the implicit formulations presented in previous wpr&vide a planar fitting
to the surface, which is not able to model details in the datevell as methods
based on local polynomial approximations of higher ordelthdugh the work
by Guennebaud and GroBs2] is an exception in that the implicit definition is
based on local spheres fitting, a more general polynomiedditnight be desir-
able. Therefore, the goal is to define a surface approximaltiat combines the
approximation power of local polynomial approximationgasbed with moving
least-squares and the simplicity and performance of théigihformulations. To
that end, a method free of systems of equations is proposed recent results
on approximate moving least-squares approximation. Cdiores between the
theories on radial basis functions and on approximate ngoldast-squares ap-
proximation enable the use of such functions for meshledasimodeling and
rendering of irregularly sampled point sets. By performargiterative correc-
tion process, an approximation to the surface that bettethifé sample points is
obtained. The iterative process defined with iterated apprate moving least-
squares generates a family of implicit surfaces ranginghftbe approximated
moving least-squares implicit surface to a radial basistions interpolated solu-
tion. The method is able to deal with noisy point sets by caimnguan estimate
of the optimal number of iterations of this correction prege An example of a
surface reconstructed with this method is shown in Figure 4.

The second problem addressed is the modeling of sharp ésater, discon-
tinuities in the approximating function or its derivativeBoint-based modeling
and rendering techniques are, in general, not able to atitatigrepresent sharp
edges. This problem is depicted in Figure 4.8, where rengsmf the Cube and
Fan Disk datasets obtained with known point-based methedsw@awn. As can be
seen, the surface approximation based on local polynomm@bximations pro-
duces good results, but the edges are still smooth. Thie tsas been addressed

72 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.7: Approximated surface for the Stanford Dragadtaioled as the zero set of the
implicit function based on approximate moving least-sgaaapproximation (see color
plates).

by point-based methods so far using extensive tests, caraptecomputationally
expensive statistical tools, auxiliary meshes, piecewgaoximations and user
intervention[104; 51; 130.

Fleishmaret al. [51] make use of boolean operations where sharp edges are
modeled by identifying them through detection of outliéiree method by Fleish-
manet al. uses a robust statistical technique, called forward sdadhto define
piecewise local approximations. Given a patrtb be projected onto the surface,
the method computes a set of piecewise smooth surfacesmeitpeborhood ok.
This is done by an incremental statistical method that addgpprogressively to
the local approximation, investigating the quality of thgpeoximation each time
a new point is added. Once such set of piecewise smooth sarigcefined, the
method projects the point according to possible neighbmitsituations. Other
methods making use of boolean operations have been préviaidressed63;
1;124; 173. To the extent of our knowledge, only the work by Reweal.[130]
and by Lipmaret al.[104] do not make use of boolean operators among point sets
to define sharp edges.

The method by Reutest al. makes use of thenriched reproducing kernel
particle approximationto substitute the local polynomial approximation in the
operator defined by Alexat al. [5] for a local approximation that considers not
only polynomial terms, but also enriched functions thatcdég, in some sense,
discontinuous derivatives. The main drawbacks are theawbomatic process

4.3. Approximate MLS Surfaces 73

A}

N v
\\\ \ \3‘:

\ ’»,,
L \ N

Figure 4.8: Surface approximations for the Cube and FansDistasets. From left to
right: EWA splatting, Adamson and Alexa’s implicit surfadefinition, moving least-
squares polynomial surface approximation (degree 2) améhtplicit function based on
approximate approximation (ordéx(h9)).

to define the domain of the enriched functions and the neehVestigating the
properties of the enriched functions to ensure that theesysif equations is in-
vertible. Oriented normal vectors are also required by theshod and, more
importantly, a user-driven tagging of the points near slf@agures.

Lipmanet al.[104] presented a very interesting method that effectively repre
sents singularities of the model. The method compusasgularity indicator field
which intuitively assigns to each point an estimate of itsqgmity to a singularity.
The computation of this field is based on the constructionlohweer bound of the
derivative at each sample point which is in turn based ontttoe expresion of the
moving least-squares approximation previously presebgethe authorg§103.
Once the singularity indicator field is calculated, the siagty is approximated
as an one-manifold by means of moving least-squares usangitigularity indi-
cator field to influence the weighting functions. This onenif@d is then used to
generate either a discontinuous approximation or a contispiecewise-smooth
approximation. The discontinuous approximation is oladiby separating the
space in two halves (limited by the one-manifold) and apjpnaxing the surface
on both sides independently. The continuous piecewiseoappation is gener-
ated by aligning one axis of the local coordinate system thig¢itangent line to the
one-manifold at the origin of the local system and using theece of continuous
piecewise bivariate polynomials of certain degrefor computing the approxi-
mation to the surface instead of the complete space of bhieapgolynomials of

74 Chapter 4. Meshless Surfaces from Point Clouds

degreed.

In this section, an efficient iterative method to represdrars features is
presented, which does not require any user interventiosedan bilateral fil-
tering. This method is coupled with the proposed implicitface definition
based on approximate approximation. Bilateral filters Hasen previously used
to robustly de-noise point sets by modifying either the sashpoint positions
(Mederoset al.[114]) or the normal vectors at the sampled points (Jentes[78]).
The main difference between the method by Mederoal. and the method by
Joneset al. is that, while the former interprets the estimation of thenmal as
a minimization of a robust approximation formulation, tlad¢tér interprets it as
the transformation of the normal vector given by the trassploinverse of the
Jacobian matrix of the bilateral filter.

Similar results are used here to more accurately estimataaiosectors at
points on the implicit surface. For this, consistently otésl normal vectors must
be available at the sample points. If not, they can be preatedp Traditionally,
weighted covariance analysis has been used to estimatetimahvectors at the
sample points when they are not availal8k However, to represent sharp fea-
tures using the approach presented here the input normersest the sample
points must be robust and noise-free. This can be achieviedtiaé method by
Mederoset al.[114] for denoising point clouds. In order to ensure a consistent
orientation of the estimated normal vectors at the sampietpahe method by
Hoppeet al.[69] to orient normal vectors can be used.

4.3.1 Iterated AMLS implicits

The advantages of iterated approximate moving least-sequae twofold, firstly,

it is possible to compute local approximations from scatigroints without solv-
ing any linear system. Secondly, the number of iteratiomsthe shape parameter
can be set so as to produce an approximation that betterditdatta but does not
interpolate noise. Fasshauer and Zhf4f§) present an iterative approach to es-
timate the optimal number of iterations and shape paramé&tezse advantages
are exploited to define an implicit functioM f4,,1.5 : R®> — R, whose zero set
approximates the input point set, as

M fanrs(x) = Zgi%(x) (4.16)

whereg;, = (x; — x,n;) andn; is the normal vector, given or estimated,xat

This makes it possible to handle irregularly sampled pdotiads and to provide
a family of approximations ranging from approximate moviegst-squares sur-
faces to radial basis functions interpolated surfaces. ifEnative process for the

4.3. Approximate MLS Surfaces 75

Figure 4.9: Plot of the value of the implicit function for ayrdarly (top) and an irregularly
(bottom) sampled dataset. From left to right: AMLS imphcivith 5 iterations, AMLS
implicits with 20 iterations, Adamson and Alexa’s impliiand Kolluri's implicits. The
white line shows the zero set of the function while colors rtrepvalue of the implicit
function with red corresponding to low values and blue tdhiglues (see color plates).

surface approximation proposed is similarly defined as

Mfiis(x) = Zgz’%(x) (4.17)
M) = MfAMLS<)+

N

> [gz' - Mf,%’}hs(xi)] pi(x). (4.18)

=1

If g; were not dependent of, it would be possible to pre-compute this iterated
process in order to obtain the approximation by simply penfog a weighted
sum, as will be done in Chapter 6 for approximating voluncetiata. Unfortu-
nately this is not the case.

The direction of the normal vector atcan be also similarly stated as an iter-
ative process as follows

nis(x) = D nipi(x)

N
n+1 n n
n,(41\—|/}L)S(X) = n,(cu%us(x) + Z [n n,(éue/[LS(XZ) Pi(x).

This is done, since convergence was not proved for the devaf the iterated

76 Chapter 4. Meshless Surfaces from Point Clouds

Adamson’s Kolluri's AMLS implicits

Model (points) implicits implicits 1 iter. 3 iter. 10 iter.
Stanford Bunny (35K) 30 29 103 107 126
Horse (48K) 50 52 183 283 389
Fan Disk (103K) 30 30 79 97 109
Armadillo Man (172K) 30 32 106 152 236
Stanford Dragon (400K) 116 120 361 499 778

Table 4.1: Performance measurements in seconds per frardddmson and Alexa’s im-
plicit formulation, Kolluri's implicit formulation and AMS implicits. The performance
increase in the Fan Disc and Armadillo Man datasets is dubgamtimber of rays that
effectively intersect the surface.

approximate approximation. That is, no theoretical gu@esare available that
supports deriving Equations 4,17 and 4.18 to obtain a gooahsdruction of the
gradient. It is important to note that singeis fixed for eachx during the whole
iterative process, the fact that it dependsxotioes not affect the convergence of
the method.

In the tests performed, for

e*llx — xil|?
=T
Laguerre-Gaussian functions of orde¢h?),

€3

pulx) = S exp (-ni(x) (419)
orderO(h?)
vi(x) = # (g — ri(x)) exp (—r;(x)) (4.20)
and ordeiO (1)
i(x) = # (3; — g'r’i(x) + %T’Z'(X)Q) exp (—r;(x)) (4.21)

were used. Higher-order functions can be used, but the wepment would not be
visually perceived and controlling their shape parameatarare difficult. One can
easily generate the generalized Laguerre polynomialgyusiathematical soft-
ware such as MATHEMATICA167.

Comparisons with the implicit surface definitions by Kolll83] and by Adam-
son and Alexd?2] were performed for a two-dimensional synthetic point seé (s

4.3. Approximate MLS Surfaces 77

Figure 4.10: Renderings of the surfaces obtained with Adanand Alexa’s implicit
function (left), Kolluri’s implicit function (center) anAMLS implicits (right)

Figure 4.9). Irregularity was introduced into the pointteatiustrate the adaptive-
ness of each method to these cases. Although Adamson ana'$\end Kolluri’s
definitions are targeted to regularly sampled point clodlls,method based on
AMLS is compared with them due to the fact that the simplioityheir definition
match that of the AMLS implicits. Also, this helps to appegei the impact on
the performance caused by the iterative AMLS when comparedtter similar
implicit surface definitions.

As can be seen in Figure 4.9, the AMLS implicit function gextes an ap-
proximation that fits the data more tightly without beingyran interpolant. The
smoothness of the approximation can be controlled with hlapes parameter and
the number of iterations. In the detail windows of the figuiesan be appreci-
ated that withp iterations, the approximation moves towards an interpmidbut
effectively filters noise. Afte20 iterations however, the function fits the data even
better and consequently starts to interpolate noise.

To perform the tests with three-dimensional models, aragiig engine based
on the methods by Wald and Seid&62 and by Adamson and AleXa] was im-
plemented. The ray-tracing implementation was tested diiferent point sets
on a standard PC with a 3.4 GHz processor and 2 GB of RAM. Redoce mea-
surements were carried out witht80 x 300 target viewport. Comparisons with
the implicit surface definitions by Adamson and Alexa and fil¢i were also

78 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.11: Effect of the number of iterations and the stgrametek on the approx-
imation. From left to right:3, 4 and5 iterations. From top to bottorme = 0.4, ¢ = 0.8,
€e=1.22,¢=2.0

performed for these models. In all cases, the same implatientof the ray-
tracer was used, changing only the corresponding surfgo®&mation method.
The performance results in seconds per frame are shown iie #ab. As ex-
pected, the method presented here performs worse in tercosrgfutational time
compared to Adamson and Alexa’s and to Kolluri's methodsis Thdue to the
iterative process performed to correct the approximatmas to fit irregularly
sampled data. Recall that the implicit definitions by Adamaaod Alexa and by
Kolluri are targeted at regularly spaced data. Also, thdititgunction based on
AMLS combines the simplicity of implicit formulations witthe reconstruction
guality of moving least-squares polynomial surface appnaxion and RBF im-
plicit surface interpolation. A visual comparison among three methods can be

4.3. Approximate MLS Surfaces 79

(@] 4 (o5 ninll _ s X
. ’I’L(X) / X] X %
H IS H /
i Tl ;IO XEp—X ' ,
; IR / H
Y 2
- 7
i -7 i / . —
‘a -~ z S XX
H e H /
e X; — X /
,/'/ /
L &7 ¥ 4
o o

Figure 4.12: During normal vector estimation, weighinggbets based ofn(x), x; —x)
produces good results only for points on or near the surfatpoints not on the surface
(x on the top figure) this measure may assign large weights ghheis €.g. x;) not
expected to greatly influence the computations. For pointthe surfacex in the right
figure), on the other hand, the measure assigns larger wiigtgighbors on the same
plane asc or near to it &; andxy).

seen in Figure 4.10. It is important to mention that the sameashing factorh
was used for all methods. For the AMLS implicit function oétS8tanford Bunny
and of the Armadillo Man, 3 iterations with= 0.8 were performed. It can be
seen that the AMLS implicit surface better approximatesstraple points. How-
ever, for low-sampled models, such as the Stanford Bunmyesegions with flat
spots appear when too many iterations are performed or #pegrarameter is set
too high. Another interesting comparison is shown in Figu where it can be
seen that, by using higher-order generating functions:gbglting approximation
fits the surface more tightly. In order to show the effect & thape parameter
and the number of iterations on the approximation, tests difterent values for
e were carried out and the surface was rendered at eachaterafhe resulting
renderings are shown in Figure 4.11. As can be seaffects the convergence
ratio of the iterative process. Therefore, both parameterst be estimated at the
same time as described by Fasshauer and F#in

4.3.2 Introducing sharp edges

Here, a method that automatically approximates sharp edgasvided, which
Is easy to understand and to implement. This method is bas#teaobust esti-
mation of normal vectors. The approach proposed to robastiynate the normal
vectors, at any point on the implicit surface, is based omtiremization of the

80 Chapter 4. Meshless Surfaces from Point Clouds

Adamson’s MLS Approx. Approx.

Model (points) implicits (degree 2)0(h%) sharp edges
Cube (6K) 6 140 14 24
Fan Disc (26K) 17 234 21 32
Stanford Bunny (35K) 20 503 30 45
Armadillo Man (173K) 16 122 17 23

Table 4.2: Performance measurements in seconds per framdaléanson and Alexa’s

implicit formulation, moving least-squares surfaces wgttal polynomial approximations
and the method proposed without and with bilateral filteriag approximating sharp

edges. The performance increase in the Armadillo dataskidgo the number of rays
that effectively intersect the surface. Note that, diffele from the results presented
above, the iterated method was not performed here, whiciitses lower computational

times. Furthermore, a smaller viewport was used, whichwatsdor the difference in the
results for Adamson’s method.

following expression
N

> (g wnrns(x,%;) (4.22)

i=1

with respect tay;, whereg; = (n, x; — x)?,

(1) = 1 — exp G%)

andoy is a parameter that controls the sensitivity of the expogsts outliers and
edges, subject to the restrictigm|| = 1. The robustness is introduced by the
functiond. Other functions}, as well as their properties, are given in the work by
van de Weijer and van den Boomgaét®5. The normal vecton obtained with
this minimization provides an estimative that approxiraaearp edges, since the
sample points near the plane defined by the normal vectord the poini will
have a greater influence in the estimative (see Figure 4.12).

To minimize this equation, its derivative is used, whiclufesin a non-linear
system, which can be computationally expensive to solveréfbre, the fact that
the normal vectors at the sample points were already estth{aée previous sec-
tion) is exploited to define an iterative process to appratérihe normal vectors
at points on the surface. Given a first estimatif® (x) of the normal vector at
x, the normal vector approximation can be refined using theviahg iterative

process:
N) (n)
n(n+1) (X) Zi:1 n;p; (X) (423)

- N n :
I8, np” (x))

4.3. Approximate MLS Surfaces 81

B N
‘ \
<

B N

|
x\\ o

h

<

<

Figure 4.13: Renderings of the Fan Disc, Cube and Icosahathktasets with moving
least-squares polynomial surface approximation (topxaadiethod proposed with sharp
edges enhancement (bottom).

Here,goE”) is defined as follows. Since the derivativelhfobtained from deriving
Equation 4.22 to minimize it, results in a robust weight

(0 (x), x; — x>2> |

20',9

the radial weight used for the generating function is given b

WMLS (X’ Xi)wgl]\)/[LS (X’ Xi)v

which leads to

) exp (_Sgn)(x)) (35 7S(n) (x) + %SE")(XV) ’

3/2 g8 27
where
w _ Ix=xl? n"(x),x —x)?
i h2 2019

This is done in the spirit dbilateral filters[44], and of the results of the work
by Fenn and Steidi49], who derived an iterative process for robust data approx-
imation based on the work by van den Weijer and van den Boordda&5.

82 Chapter 4. Meshless Surfaces from Point Clouds

Note that, although each iteration of this process is anaqipiate moving least-
squares approximation, the robust formulation of Equadi®?® is not a moving
least-squares approximation. In the experiments perfdrméeerations sufficed
in all cases to obtain a good approximation to the sharp featu

One important issue of the iterative normal vector improgehprocess given
by Equation 4.23 is that the poirtwhere the normal vector is estimated must be
on or near the surface as shown in Figure 4.12.

To perform the tests, this process was included in the &jirtg engine. The
performance results in seconds per frame are shown in TaBle As before,
compared to the implicit definition by Adamson and Alexa, tiiethod presented
here performs slightly worse. However, when the approaekegnted here based
on bilateral filtering is used, the method is able to appr@tersharp edges with
low additional computational effort. The results are shawRigure 4.13, where
the method proposed for sharp edges approximation is caudpaith moving
least-squares polynomial surface approximation. As casdam, the bilateral
filter corrects the normal vectors near the edges while ramimgy smooth areas
unaltered. Even for the low-sampled Icosahedron modelevitin 600 points and
wide angles, the method proposed was able to approximate stiges. However,
note that, although sharp edges are preserved, cornetgateysmoothed in this
same model. This might be due to the fact that the points iméighborhood of
the corner lay on three (or more) intersecting planes, wreduaces the effect of
the bilateral filters. Note that this normal vector correctprocess is applied only
on points on the surface. Thus, since the actual surfaceitt#iins based on a
smooth vector field, thé°-continuity of the approximate surface is mantained.

4.4 Adaptive Partition of Unity Implicits

Among the surface reconstruction methods based on imfilicdtions, methods
based on patrtition of unity have been recently used due io rtiee properties
concerning processing time, reconstruction quality apacady to deal with mas-
sive data setf122; 113. Basically, these methods determine a domain subdivi-
sion for which local functions are computed and combinec:tfiné a continuous
global implicit approximation for the point set.

In this section, a methdb8] developed to tackle important issues from previ-
ous surface reconstruction techniques based on partitiomty is described. The
proposed surface reconstruction method effectively caetthe space subdivi-
sion with an adaptive construction of local polynomial ap@mations by means
of multivariate orthogonal polynomial48]. This makes it possible to increase
the degree of the polynomial at locations where higherekgolynomials are
needed to obtain a good approximation to the surface. Qgritygrevious meth-
ods, the iso-surface is extracted directly from the datectire used to subdivide

4.4. Adaptive Partition of Unity Implicits 83

Figure 4.14: Stanford Lucy (16M Points) reconstructed i proposed method.

the space, namely, thg, . This enables the adaptive surface extraction to take ad-
vantage of refinement information obtained during funcapproximation. Fur-
thermore, as thd}, is composed of tetrahedra, the surface extraction algorith
guarantees topologically coherent surfaces. The aspgxiofahe triangles gen-
erated by means of} polygonization is usually poor, which motivates the use of
a simple, but effective/} vertex displacement technique that is able to consider-
ably improve mesh quality.

In general, least-squares formulations solved by normaons using canon-
ical polynomials lead to ill-conditioned systems of eqoas. By using a basis of
orthogonal polynomials, no system of equations must beesiohnd stability is

84 Chapter 4. Meshless Surfaces from Point Clouds

improved without requiring expensive computations in casitto other methods
such as QR decomposition with Householder factorizatioigdar value decom-
position or pre-conditioned conjugate gradient. Furtleenthe use of orthog-
onal polynomials makes it possible to efficiently incredsz=degree of the local
polynomial approximation due to the recursive nature oirtbenstruction. For

this reason, the method proposed is also adaptive withcegpthe degree of the
local fittings.

Contrary to previous work on multi-level partition of unityplicits, the pro-
posed method is able to avoid generating spurious surfastshnd surface arti-
facts. This is achieved by using tests that discard appratkims considered non-
robust,i.e., approximations which oscillate within the local suppatowever, in
some cases, the automatic reconstruction algorithm masedass of details in
some regions due to the use of low-order polynomial funstidioreover, even
with good robustness criteria, partition of unity implgcére particularly sensitive
to noise. As before, changing the robustness conditiongien the solution
may lead to over-smoothing effects without assuring theorexhof all problems.
Thus, allowing the user to locally edit the global approxima to place more
suitable shape functions is an interesting feature prapbsee.

This machinery allows the definition of a two-fold adaptiafgion of unity
method in the sense that both the degree of the local appatiximand the space
subdivision are adapted to better fit the surface. An examwipéesurface recon-
structed with the proposed method is depicted in Figure.4.14

4.4.1 Multi-level partition of unity implicits

Partition of unity implicits are defined on a finite domdeinas a global approx-
imation M fpy; obtained with a linear sum of local approximations. As with
other implicit surface approximation methods, the surfagogefined as the zero
set of M fpy;. For this purpose, a set of non-negative weight functiéns-
{¢1,...,¢Kx} with compact support, Whergfi1 ¢i(x) = 1, x € O, and a set
F = {f1,..., fx} of local signed distance function% must be defined ofu.
Given the sefF and®, the functionM fpy : R* — R is defined as:

K
Mfru(x) =) filx)¢i(x), x € Q. (4.24)
=1
A set of non-negative functior8 = {6,, ..., 0} with compact support pro-
duces the partition of unity as
91' X
<Z>z'(X) =](<7)7
> 1 O (x)

wheref; is a weight function with compact support. The domgins covered
by a set of supports and, for each one, a functfpand a weight function;

4.4. Adaptive Partition of Unity Implicits 85

are defined. Otahket al. subdivide the domain using an octree and define a
spherical support for each cube. The functignsR®> — R at each local support
are computed using the set of points in the support by ihit@dfining a local
coordinate systertt, n, v) at the center of the support whéete) define the local
plane (domain) and coincides with the orthogonal direction (image). Henfe,

is defined ag;(x) = w — g;(u, v), where(u, v, w) is x in the (¢, n, v) basis. The
function g; is obtained by the two-dimensional least-squares methaxte Nhat
this method requires points equipped with consistentlgraad normal vectors.

4.4.2 TheJ), triangulation

Casteloet al.[29] proposed the/}; triangulation as an adaptive structure with an
underlying algebraic description that allows both effitier@mory usage and the
ability of being defined in any dimension. Such algebraiccdpson is based
on two mechanisms: the first is used to uniquely identify apdex within the
triangulation, and the second is used to allow traversalsdrstructure.

The J} triangulation is conditioned by a grid of blocks which c@pend to
n-dimensional hypercubes . TheJ} simplices are obtained by the division of
such blocks in a way that each simplex is coded bythepleS = (g, r, 7, s,t, h).
The first two components are related to the location of thekolaithin the grid,
whereas the last four identify the simplex within the blo&pecifically, then-
dimensional vectoy provides the location of a particular block in a particular
refinement level. Figure 4.15 illustrates, on the left, a two-dimensiosigland,
on the right, a highlighted block of refinement level= 0 (0-block) andg =
(3,1). Also in Figure 4.15, one can find blocks with refinement levet 1 (1-
block) depicted in dark blue.

Before explaining how simplices are described, it is imaotto mention that
an n-dimensional/} allows the refinement of aitblock by splitting it into2”

(7 + 1)-blocks. It is also worth to notice that, in order to accomiiedhe newly
created blocks, some other blocks may be forced to be refiongtas the dif-
ference in the refinement level of two neighboring blockseméaecomes greater
than one. The last part of this accommodation process ispgosethat whenever
blocks whose refinement levels differ by one are neighbdies,one having the
smallest- is transformed into a transition block. Such a block is the thrat pos-
sesses only some of itsdimensional faced)(< k < n) refined. The situation
is illustrated by Figure 4.15 in which basic 0-blocks areocet light-blue, basic
1-blocks are colored dark-blue and transition blocks alered light-red. In par-
ticular, the highlighted transition block has only its lefige refined. From now
on, for the sake of clarity, non-transition blocks will béamed to as basic blocks.

The simplex representation is based upon the fact thataglgies in a block
share at least the vertey, which is the center of the-dimensional hypercube.
So, starting invy, the next step is taken in the positive or negative directibn

86 Chapter 4. Meshless Surfaces from Point Clouds

0 1 2 | 3
~ Y
© « x
; =
< S
- = /Uli
” 1 .
o — /02‘ 0 3 Ul
Hf TR
o © V2

ol1l2!3/4ls5lgly

Figure 4.15: The/} triangulation: on the left, a sample two-dimensional afaptrian-
gulation and, on the right, examples of pivoting operati(see color plates).

one chosen coordinate axis. This will produgeas the center of afn — 1)-
dimensional face and, as the process continues, the \&erttice. v,, will be de-
fined as the center ¢fh—2), . . ., 0 dimensional faces respectively. In other words,
simplices can be represented by the path traverseddgaow,, which is coded by

m ands. Ther vector stores a permutation ofintegers froml to »n representing
coordinate axes, while represents the direction, positive or negative, that must
be followed in each axis. For instance, in Figure 4.15, Saxflis represented by
7= (1,2) ands = (1, —1), which means that, fromy, the path is traced through
axism; = 1 (z, in the figure) in the positive direction,{ = 1) and then through
axisms = 2 (y, in the figure) in the negative directiog,(= —1).

For simplices inside basic blocks and simplices insidesitaom blocks that do
not reach any refined face, the information providedands suffices. However,
in the remaining cases, further information must be prayjdeecause when a
refinedk-dimensional face is reached, there is not only one cenieptxenters.
For this reason, the scalaris used to inform how many steps are taken before
a refined face is reached, while vectodefines extra signs for axig, ;... 7,
that are used for selecting one center from all possikslitier instance, in Figure
4.15, Simplex 1 is represented by= (1,2),s = (—1,—1), h=1andt = (0,1)
because only one step is taken before reaching a refined edgthe chosen
center for placing is in the positive direction of, . ;.

Besides describing the location of simplices, tHetriangulation also defines
pivoting rules for traversing the triangulation withouingany other topological
data structure. These rules are completely algebraic inthies take a simplex
description §’, for instance) as input and outputs another simplex desmmnip

4.4. Adaptive Partition of Unity Implicits 87

(S”) as the result of the pivoting operation. Figure 4.15 ilats two pivoting
operations in which simplicesand2 are pivoted in relation to vertices anduv;,
respectively, generating simplicgsand4. All pivoting rules can be found in the
work by Casteleet al.

4.4.3 Robust adaptive partition of unity implicits

Traditionally, adaptive partition of unity implicits araiitt using an octree to parti-
tion the space and calculate local approximations thatudreexjuently combined
using weights. The more details the object possesses, treerefined the octree
must be. Thus, the octree can be used to identify complicatedft features on
the surface. Hence, the goal was to use this informationigegjduring function
approximation to obtain an adaptive polygonization. Tfeee asJ} has an un-
derlying restricted octree as its backbone, the trianguiavas adapted to serve
both approximation and polygonization purposes. The aeli@adaptiveness al-
lows capturing fine details without using refined grids. Arestimportant feature
of the method is the increased quality of the local approkimna compared to
previous methods, which prevents spurious sheets anccsuféfacts.

Local approximations. The local approximationg; : R*> — R are generated
in the spherical supports of the weight functiopns which are defined as the
circumspheres of the blocks enlarged by a factor greaterdgha €.g, 1.5).

The functionf; at each block is computed using the set of points encompassed
by its support by initially defining a local coordinate syst&, n, v/), as explained
before, at the center of the support. Recall tfiats defined asf;(x) = w —
gi(u,v), where(u, v, w) isx in the (¢, n, v) basis.

In the method proposed, the local functions are approxidhbjemeans of
polynomial least-squares fitting. However, instead of gisincanonical basis
{uv’ : i,j € N}, a basis of orthogonal polynomials with respect to the inner
product induced by the normal equation is chosen. This wayg, mot neces-
sary to solve any system of equations. To find such a basisnétieod by Bar-
tels and Jezioranski gl is used.

Then, given a set of orthogonal polynomidls= {v, ..., ¥y}, the polyno-
mial fitting in local coordinates can be computed as:

gi(u, _j—l IS i (s vy () _

whereS; = supp(c;, R;), ¢; and R; are the center and radius of the blacke-
spectively, andu;, v;, w;) IS x; in the basig¢, n, v). Thus,g; provides an approx-
imation to the solution of

88 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.16: The figure in the left side depicts the behavidhe./; during function ap-
proximation. The figure in the right side shows an illustratof the effect of the coverage
domain on the polynomial approximation. The left side of thgure depicts a case that
can arise when a high-order polynomial is used to approxries surface inside the local
domain (blue circle). Since a large region of this domairoisof points, the polynomial
approximation may oscillate. Thus, the coverage domaime(bhe) is computed and the
ratio of the area of the coverage domain and the area of time fleellow line) is calcu-
lated. This ratio determines the degree of the polynomiedlu®ecreasing the degree of
the polynomial when this ratio is below a threshold redubesoscillation as can be seen
on the right side of the figure (see color plates).

The main motivation for using such orthogonal polynomialgheir ability
of generating higher-degree approximations from pre\yoosmputed approxi-
mations with low additional computational effort. As sthteefore, this property
enables the definition of a method that is adaptive not ontppénspatial subdi-
vision but also in the local approximation. However, a dowef employing
high-degree polynomials as local solutions is the fact st functions may
present oscillatory behavior and, even if they present dl deast-squares error,
they may be a poor approximation inside the region of interiésr instance, in
Figure 4.16 on the left, the polynomial is close to the sanpalmts inside the
support, but the signs obtained when the function is evatlat the vertices of
the 7} block are not correct. Therefore, depending on the neigbblottions, this
situation may lead to extra surface sheets or artifacts.

Before presenting a solution, one must notice that thislproloccurs because
even though high degree polynomials are able to approxipwate data nicely in-
between points, they can also oscillate at locations in vthere are not points
to restrain the solution, as illustrated on left side of Fegd.16. Based on this
fact, it can be observed that the distribution of pointsdesihe support is as
important for generating a good function as the number afgsaised in the least-
squares minimization. Figure 4.18c and Figure 4.18d depietl application of
the coverage domain.

Thus, an approximate, but computationally inexpensive; teaassess how

4.4. Adaptive Partition of Unity Implicits 89

well the points are distributed inside the support is presgknAs in the proposed
method the local domains are actually planes, it is necgdsaletermine how
large is the area of these planes covered with points. Fgyrttie ratio £) between

the projection of the support of the block and the projectbthe bounding box
of the points over the plane is calculated. To that end, aregeecriterion for

polynomials was created by establishing a minimum valuk foir each polyno-

mial degree (for instance, 0.4, 0.8 and 0.85 can be used aefaelt parameters
for second, third and fourth degree polynomials). In Fighud6 the importance
of the coverage domain for aiding the choice of the corresttion is illustrated,

since, in the example, a lower degree approximation (ondt)ris more suitable
than a higher one (on the left).

As mentioned before, besides the coverage criterion, itsis mecessary to
take into account the minimum number of points that shouldided for each
polynomial degree (the default is twice the number of poiyired bases for each
degree). The union of both of these criteria constitute teistness test used in
the proposed method.

An immediate issue that arises from this minimum point teghat not ev-
ery block in the domain encloses enough points for the patyabapproximation
described previously. Therefore, we created a strategitdadling blocks with
few or without points that differs from previous work becausstead of iter-
atively growing the support of the block until the minimalmber of points is
reached 122, which may cause a local approximation to influence a large pa
of the domain, or using the approximation of the parent ofloek [113, which
can be a poor approximation, this situation is addressecascking the nearest
cluster of points to the current block and performing a fiesireée approximation.

Such cluster of points is determined by finding the nearespgapointr to
the center of the block, by querying enough neighbors areuitite default is 20
points), and by approximating a least-squares plane. Hexveepending on the
point distribution, the plane can be orthogonal to the etgubesulting plangl0)].
This situation is detected by comparing the normal vectahefplane with the
average of the normal vectors ofieighbors. If the angle is greater thay6, the
least-squares function is substituted by the plane witmtreal vector equals to
the computed average and the origin equals to the averagfebweiposition. This
last test is considered as the third robustness condititimeaiethod.

Now that the most important concepts of the proposed approace clari-
fied, an algorithmic outline of the method is provided: atetting up the initial
J} configuration, for each block that does not have an appraiomalefined,
the number of points inside the support of the block is querieiginating three
different situationsi(z), the number of points is enough for performing approxi-
mations;(ii), the number of points is not enough even for a least-squdaeg;p
and(ii), the number of points is greater than a specified maximunstiotd.

20 Chapter 4. Meshless Surfaces from Point Clouds

Initially, in case(i), a test that measures the variation of point normal vectors
by Ohtakeet al.[122] is used to determine the presence of two or more surface
sheets inside the same support. If they exist, the methateeethe block and the
process starts again for the newly created blocks. If ong/sireet is detected, a
polynomial with degree one is calculated and its degreeasrsévely increased
until the error criterion is met, or until the robustnesg tieses not allow a higher
degree or until the degree of the polynomial is equal to th&imam allowed
(four as default). If the previous process finishes and thar € acceptable, the
approximation is stored in the block, otherwise, the blaxkefined, unless its
support possesses a critical number of poietg,(less than 100). In this situation,
the subdivision may be aborted if the new approximation kdogould increase
the error instead of decreasing it, due to the fact that tindahecks would enclose
small amounts of points that would not allow high degree apipnations.

In both parts of the above description in which the refinensestiggested, the
block may be already in the user-defined maximum allowedegfent level, so
there is no other option rather than using the best apprdiomeaalculated so far.

The approximation casg@:) is handled by searching the nearest cluster of
points from the current block and performing a first degrggr@xmation as ex-
plained above. Finally, casgii) in a heuristic employed to avoid useless and
expensive calculations. It is an unnecessary effort toutatie minimizations for
more than one thousand points. Thus in this case, subdivididhe block is
forced whenever the maximum refinement was not reachedyvatdeethe ap-
proximation is computed anyway.

This section is concluded by elucidating the differenceveen block refine-
ments caused by approximation conditions and those teggey ./} restrictions
(explained in Section 4.4.2). In the latter case, new apprations do not have
to be computed if the approximation for the block being refireealready good.
Figure 4.16 illustrates a case in which not all leaf nodesl lapiproximations as-
sociated to them. In the figure, the blue circles represeaitdcks that hold
approximations and points inside them, the orange onedsuvdeaves that hold
approximations despite of not having points in their supga@nd the green one
stands for a non-leaf node that holds the approximation aslomly divided due
to the J}; accommodation process.

Function evaluation and adaptive polygonization.Given a pointx inside the
domain, an octree-like traversal of ttig blocks is conducted to determine which
blocks encompass within their supports. The value d¥1 fp;; (x) is obtained as
a combination of all local functions from the supports fotodontainx:

>t s, Ji(%)0:(x)
>l xes, 0i(%)

Mfpy(x) =

9

4.4. Adaptive Partition of Unity Implicits 91

wheref;(x) = 0(||x — ¢;||/R;) and the weight functiod(¢) = (1 — ¢*)* that
assumes zero value foe> 1.

The polygonization finds first an initial simplex, which is @masghtforward
task when a point near the surface is available. Then, argalef all simplices
that intersect the surface through pivoting rules is conducted, while generating
the adaptive surface mesh.

4.4.4 Extensions to the method

Here, two extensions to the method above presented areggopdhe difficulty
in handling parameters in most surface reconstructioncggbres suggests that in
some cases it may be useful to allow manual edition of thetfomeso that the
user can either fix undesirable artifact or enhance the appation quality by
choosing more appropriated functions. This constituteditist extension to the
method.

The second extension is related to the low quality presebyethe meshes
generated by thd’, polygonizer. It is actually an computationally inexpersiv
and memory efficient technique that displadgsvertices in order to enhance the
aspect ratio of the triangles.

Interactive implicit function editing. For the function editing feature, one of
the advantages presented by partition of unity implicitthmds over other tech-
niques, such as moving least-squares or radial basis funscis exploited, namely,
the fact that the global function is defined by a set of indeeenlocal functions in
subdomains,e., changing one of these functions only affects the globattion
locally. Thus, changing local traits of the function cotsis locating the desired
block and switching the associated approximation. Findingh a block in the’}
triangulation is quite straightforward, since its struetaonsists of a restricted oc-
tree. The calculation is made by testing the blocks thataorthe desired point,
in different refinement levels, until the one with the fuoctis found.

In the implementation used, a graphic tool was developedHoosing points
over a reconstructed model and selecting either a new dégréee polynomial
approximation or a constant function, which can be definethbyuser or auto-
matically computed.

Mesh enhancement.To approach the problem of the poor quality of some trian-
gles generated from thg, , the mesh displacement technique was chosen because
it is quite simple to implement and does not impose a heaviheasl on the time

and memory complexities of the polygonizer. However, asldgrees of freedom

for moving J} vertices without invalidating the structure are consedirthe im-
provement is limited. The idea is to move thg vertices away from the surface

a distance inversely proportional to the function valuepider to improve the
aspect ratio of the mesh elements.

The displacements are applied only.dhvertices belonging to simplices that

92 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.17: lllustration of the deformation of/d block: the vertex displacement tech-
nique is able to create more uniform mesh elements.

intersect the surface during the polygonization. For thason, no extra memory
is needed and the extra computational effort is due to tleaitzdlon of an approx-
imation for the maximum value of the function and for evailogthe gradient of
the function at every displaced vertex. The following equapresents how a
vertexx is taken to its new positior,,.,,

sign (M fru(x) (MFEF = Mfru(x)* e(l)
Xaew =X+ [roairal) “] VM Ipul)
wheresign (M fpy(x)) represents the function sign=at M f25* is an estimative
to the maximum of the function in the domains the refinement level associated
to the vertexe(l) is the size of a/} block edge in the refinement leveland
0 < a < 1 determines the maximum amplitude of the movement.

For basic blocks, the refinement level associated with &xérs equal to the
refinement of the block, whereas, for transition blocks, it is equal (i0+ 1)
for vertices that lie in refined faces and equal-tior the remaining ones. It is
worth to mention that()/4 is the maximum amplitude of the displacement, in
any direction, allowed by thg} structure. In Figure 4.17 a representation of the
displacement of the vertices is depicted in two dimensions.

In Figure 4.18, the importance of the coverage domain istilated, as well
as the interactive function editing procedure. In Figuk84, the 362K raw data
Stanford Bunny was reconstructed using the method by Otdalé using its
default parameters, while in Figure 4.18b, we selected #rarpeters to match
those used with the method proposed (maximum refinement @m@adthresh-
old 0.002). Note that this set of points is the raw StanforaiiBudataset (362K
points), whereas the Stanford Bunny dataset used in preweations contains
the vertices of the reconstructed versions (35K points¥idure 4.18c, the pro-
posed technique was used to reconstruct the same modeluivithe coverage

4.4. Adaptive Partition of Unity Implicits 93

(d) (e) (f)

Figure 4.18: Function editing: (a)-(b) method by Ohtakal. with its default parameters

and with suggested parameters. (c) reconstruction usigbposed method without

coverage domain; (d) reconstruction with coverage dom@hnuser selected imperfec-
tions; (f) function changed in order to eliminate imperiess. Comparisons against other
surface reconstructions can be found in the work by Kazhddr+oppe.

criterion. One can notice the presence of several artitatthe surface and some
extra sheets, that were almost eliminated with the use oftherage test (Fig-
ure/4.18d). In Figure 4.18e, a selection of blocks was defiioeavhich a constant
function was set with positive values (0.002), in order ion@late some of the
surface flaws. Finally, Figure 4.18f depicts the bunny dfierfunction editing.

The models reconstructed using Ohtake’s technique presgenseries of ex-
tra sheets and surface artifacts. In the work by Kazhdan amppe{79], similar
problems were presented for other techniques. Neverthelesdifferences with
the results presented by Kazhdan and Hoppe are due to patagion technique
they employed, which generated the mesh for only one coedemmponent.
This was responsible for hiding most of the spurious she@&tse situation il-
lustrated by Figure 4.18, shows that the set of solutionpgsed in this paper
considerably enhances the robustness of the reconstractioven the fact that,
even without the coverage criterion and in the presence isknthe method was
able to minimize the number of defects.

Also concerning function editing, in Figure 4.19 anotheareple is presented,

94 Chapter 4. Meshless Surfaces from Point Clouds
[— ‘/"'
- B =

) . /‘\\‘

(@) (b) (c)

Figure 4.19: Enhancing the model using function editing:ngadel without high order
approximations (due to configuration), (b) selected bldokgunction changing and (c)
final result.

Figure 4.20: The Filigree model (514K points). The back awdtfviews of the model
are shown, in which the left half was generated with Ohtatexinique and the right half
was generated with the method proposed.

in which planar functions, employed due to a user-definedigoration (Fig-

ure'4.19b), were replaced by second degree polynomialderBiitly from the

previous example, in this one we used the function editingnioance the qual-
ity of the function and not to remove defects. The comparisetween Fig-

ures 4.19a and 4.19c illustrates the gain in reconstrugtiatity.

It is important to mention that the method proposed hereopas slightly
worse in terms of computation time than the method by Ohttkal. (about
5% slower). One major difference between the methods is thahe approach
presented, the evaluation is decoupled from the functiggrag¢imation, in the
sense that the whole function is built before the first evsdnas made. This fact
means that for coarse grids or small ray tracer viewportsakal’s method tends
to be faster, but as soon as the number of required functialua@ion increases,

4.4. Adaptive Partition of Unity Implicits 95

Figure 4.21: Comparing the iso-mesh produced febin(left) against the iso-mesh ob-
tained fromJ}; with displacement (right). See color plates.

the methods perform similar in terms of processing time.

Another substantial difference between the methods isuhetibn behavior
in regions away from the zero-set. The proposed method mpiesebounded
maximum gradient magnitude for the whole domain due to thastness criteria
applied during the approximation phase. For instance,Hermhodel presented
in Figure! 4.20, the ray-tracer algorithm we employ&8g showed a maximum
gradient magnitude of 1.9 for the method presented ar@'6ffor Ohtake’s.

In order to illustrate the results of the mesh displacemestirtique, the Chi-
nese dragon model (665K points) was reconstructed usingamae refinement
level 7. Figure 4.21 shows, on the left, the original mesh and, orritite, the
model generated with mesh displacement. Both meshes angoseah of 535 605
triangles and the time taken for polygonizing the models 8&433s and 202.9s
for the normal and the displacet, version, respectively. This slow-down was
expected for the displaced version, since it requires mvakiations of the func-
tion to compute the approximation of the gradient; but ew@rtlss extra cost is
constant and does not affect the complexity of the algorithm

To assess the improvement of the triangles caused by thiackspent, the
aspect ratio measurey, = % was used, where,,... is the largest edge?
is the perimeter and is the area of the triangle. Notice that the best aspect ratio
is 1.0 (equilateral triangle).

For the normal mesh, the average aspect ratio was 5.55 arstiaingard de-
viation was 128.09, whereas for the enhanced mesh, thegeveras 1.68 and
the standard deviation was 0.61. This result confirms thecefieness of the
technique because it was able not only to enhance the avédraggiality of the
triangles but also to decrease the variation of the asp#&of mhich means that
the whole mesh presents a reasonable overall aspect ratio.

96 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.22: A CSG difference operation involving the Neygtimodel and a cylinder (see
color plates).

Finally, in Figure 4.22, a CSG difference operation betw#esn Neptune
model and a cylinder is demonstrated. The support for suehatipns is an im-
portant advantage of implicit surface definitions.

4.5 GPU-based Rendering of Meshless Surfaces

Meshless surface representations can be directly visahly using meshless sur-
face rendering algorithms instead of generating a surfa&shmnilrhere exist a wide
range of algorithms but the focus of this sections is on serf@ndering algo-
rithms for surface representations based on projectionatgs and on implicit
functions. Specifically, it is shown how ray-tracing can bgwiemented on the
GPU to render such surface representations.

4.5. GPU-based Rendering of Meshless Surfaces 97

4.5.1 Rendering surfaces based on projection operators

A GPU algorithm for ray-tracing surface representationseblaon projection op-
erators, which is considerably faster than CPU implemantaf150; 151, is pre-
sented here. This GPU implementation is based on the rayyalgorithms for
moving least-squares surfaces proposed by Adamson and [deand is tuned
for the moving least-squares projection operator propbyedevin [98] but can
be naively modified to support other projection operators.

The process is described below where each step represestidexring pass.
As in the work by Adamson and Alexa, support balls are defimedral the sam-
ple points, which will be rendered during the steps ‘intetie®’, ‘form covariance
matrix’, and ‘form system for polynomial fitting’. During &steps ‘find normals’
and ‘solve linear system and find projection’ a quad covetirggentire viewport
is rendered to generate a fragment per ray. The step ‘i@paloximation’ is
performed only once as a pre-processing step.

Initial approximation. In this render pass, local polynomial approximations for
each sample point; are calculated. For this, a single quad is rendered to genera
a fragment per sample point. Each fragment calculates thresponding local
polynomial following Alexa’s method to project a point ontioe surface for
which, given the point to project, the approximate tangent plane is obtained by

solving
N

mnitn (x; — (r +tn),n)’wy (X, T + tn).
Ti=1

The local polynomial fitting remains as described in Sectidnhfor Levin’s defi-
nition. Since the point to be projected is the sample pos#lfit and is thus near
the moving least-squares surfates 0 is assumed and the normails calculated
using covariance analysis. Onaeis defined, the polynomial is approximated
in the local coordinate system (withy as the origin andh as one of the vectors
of the orthonormal basis), witk;, asr and using neighborhood information pre-
stored in a 3D texture to obtain the neighbors of the samplet gg. The result
(coefficients) is rendered to a 32-bits per-channel floautexor further use.
Intersection. The nearest intersection of each ray with the local polymasni
stored at the sample points defines the first approximatitreahtersection of the
ray with the point set surface. To find this intersectionypert-aligned discs with
radiusp are rendered as shown in Figure 4.23 (as a 2D example). Ezgpimént
belonging to a disc calculates the intersection of the ray plasses through it
with the polynomial stored at the respective sample poop-(ight zoom in the
figure). For this, the ray is transformed into the local camaite system, defined

Note, however, that Alexa’s projection procedure does eoiegate points on the surface as
noted by Amenta and K{l11].

98 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.23: Calculating the intersection of the ray with khcal approximation stored in
each sample point (see color plates).

by x; andn in the 2D example, where is the normal calculated in the first step
of the algorithm. If there is no intersection or if the intecton is outside the ball,
the fragment is killed. Thus, using depth tests the neanéstsectionr of the ray
with the local polynomials is obtained. Oncés determined and stored in a float
texture, its projection on the moving least-squares sarfaéound. This is done
in the four next steps.

Form covariance matrix. Since the point found in the last step is assumed to
be reasonably close to the moving least-squares sutfacé,is assumed ana is
found using covariance analysis. For that, the covarianaixnmust be formed
using the nearest neighbors of the painSince performing:-nearest neighbors
spatial searches is expensive, a range query is perfornséehoh by rendering
discs with a radiug sufficiently large to influence the points in the neighborthoo
of each point, being = 2h a good estimate for homogeneously sampled point
clouds, where, as beforg,is the fill size.

Each fragment generated this way calculates its distantieetantersection
point on the ray passing through it in order to ensure thatiit the neighborhood
of the intersection. In Figure 4.23 the zoomed disc influsribe intersection
point on the ray since it is within a distange whilst the influence of the disc
in the back is discarded by means of a kill instruction for fifagyment through
which the ray passes. Each fragment belonging to the disesmrnding tax;
that passes the proximity test calculates — r)(x; — r)Twys(x; — r). The
results of the fragments in the neighborhoodrafre accumulated using one to
one blending to three 16-bit-per-channel float texturestibld the3 x 3 matrix
(since blending to a 32-bit-per-channel texture is prahiély slow).

4.5. GPU-based Rendering of Meshless Surfaces 99

Find normals. In this step a single quad covering the viewport is rendeoed t
generate a fragment per ray. Each fragment calculatesdkewactor associated
to the smallest eigenvalue of the matrix obtained in the ipte/step, using a
GPU implementation of the inverse power method. The resuwltritten to a float
texture.

Form system for polynomial fitting. Once the normal at each intersection point
is found, we must calculate the polynomial approximationgi$VLS. For that, a
linear system is formed whose solution will provide the @ogfnts of the poly-
nomial. The process is similar to the one of the step ‘formaciance matrix’
with the difference that the value calculated by each fragnbelonging to the
disc corresponding te; is twofold, a4 x 4 matrixwy,zs(x;, r)aal and a vector
wyrs(x;, r)a of size4, wherea = [(x; —)2 (x; —)] (x; —r).(x; — 1), 1]7.
These results are accumulated by means of blending to faatrtBatures to be
used as input for the next step.

Solve linear system and find projection. The linear system formed in the last
step is solved in a further render pass by rendering a quastioovthe viewport.
Each fragment (ray) solves the respective linear systengusinjugate gradient.
Then, the intersectionis projected onto the polynomial. If the distance between
r and its projection is smaller than a threshold, the inteérseof the ray with the
surface has been found to beOtherwise, the intersection of the ray and the local
approximation is calculated. If the intersection is indigke ball with its center in
the original sample point; and with radiusp, this intersection is written into a
float texture in order to use it in the next iteration.

The next iteration starts in the step ‘intersection’ whémemn the second iter-
ation on, it is necessary to check if the result of the lasatten,i.e., the result of
‘solve linear system and find projection’, is already theiséection with the mov-
ing least-squares surface, in which case no further prowessdone in any of the
following steps. Otherwise, if the result of the last itevatis a valid intersection
point within the ball defined by; andp, the following steps are performed using
this intersection as the new point If not, the nearest intersection, after the cur-
rentr, between the local approximations and the ray is found bynsieadepth
tests as in the first iteration, killing all fragments withpde less or equal the depth
of the current.

As reported by Adamson and Alexa, two to three iterationsaesled to find
all intersecting points between the primary rays and theingoeast-squares sur-
face. Itis important to note that in the case of calculatimgihtersection between
the moving least-squares surface and a set of rays that ansistently ori-
ented as the primary rays.@. secondary rays) the search for the intersection in
step ‘intersection’ must follow another strategy. A naivatb force scheme was
used, checking all local polynomial approximations forteeay (fragment). This
can be performed using nested loops and/or multiple remglgrasses. Since in

100 Chapter 4. Meshless Surfaces from Point Clouds

Figure 4.24: GPU-based ray-tracing of the moving leasasgsurfaces for the Skeleton
Hand point cloud.

this case it is not possible to perform the range queriesasithed above, this first
intersection can be used as a rough approximation of thesettgon between the
ray and the moving least-squares surface for secondarygtesflerefracted, and
shadow rays. Thus, for these secondary rays none of thedmaining steps is
performed.

Ray-tracing a moving least-squares surface on the CPU taeybdohibitively
slow, whilst the proposed implementation achieved up té 62 for the Stanford
Bunny (36K points), 4.54 fps for the Horse (48K) and 2.22 fpsthe Skeleton
Hand (109K) using the GPU implementation described withefations. In the
case of 3 iterations the frame rate dropped to 4.16fps, $d&mnd 1.37 fps for
the Bunny, the Horse and the Skeleton Hand respectively. edexy 2 iterations
suffice to generate a high-quality rendering as shown inrgigi24. The test were
carried out on an Nvidia Geforce 8800 Ultra graphics card.

For the tests performed, a single reflection secondary rdaaepth o were
used. The use of secondary rays in the implementation @estis currently lim-
ited by the lack of a proper data structure for performingyeaqueries efficiently
on the GPU. Therefore, the inclusion of such a data strucsuné major impor-
tance and is addressed in the next section for renderingargurfaces.

The advantages of hardware-accelerated rendering of mdeast-squares

4.5. GPU-based Rendering of Meshless Surfaces 101

Figure 4.25: Point set surface for the vertices of an iséasarmesh extracted from the
Knee dataset with marching cubes.

surfaces could be exploited for accurate rendering of sasfanodeled as point
clouds extracted from different sources, like medical d&t@r instance, the ver-
tices of a surface mesh generated from MRI data by meansdifitraal meth-
ods, such as marching cubes or surface reconstructionitee®applied over
the result of a segmentation algorithm, could be used ag topine ray-tracing
algorithm. This will provide a smooth noise-free renderaighe iso-surface ex-
tracted. Figure 4.25 shows an example of this process fdflee dataset.

4.5.2 Rendering implicit surfaces

Implicit surfaces can be rendered with the approach brieflscdbed in Chap-
ter/2. A GPU implementation of this approach is presented.h&s in the case
of hardware-accelerated rendering of surface definiti@set on projection op-
erators, the implementation presented here is based orssiuenation that the
surface is defined on a tubular region arouwicand this region can be approxi-
mated as the union of the enclosing spheres with rad{see above) centered at
the sample points.

The implementation for implicit surfaces is consideralagier than the imple-
mentation for projection operators. The algorithm, in ttase, performs a single
render pass. View-aligned discs with radjusentered at the sample points are
rendered as described above. In this case, since no ioit@l polynomial surface
approximation is available, each fragment computes thersattion points be-
tween the corresponding ray and the enclosing sphere oathple point, whose
disc generated the fragment. The implicit function is eatdd at both points and,

102 Chapter 4. Meshless Surfaces from Point Clouds

in case a surface crossing is detected by comparing the aigins resulting eval-
uations, the bisection method is used as depicted in Fig@reT» that end, the
sample points in the neighborhoods of the evaluation paimist be available.
This can be accomplished using two different GPU data strastas explained in
the following.

Gridded neighborhood. The first data structure is built by creating a three-
dimensional Cartesian grid covering the domaingf with cell size equal to
H. Eachx; is then assigned to the cell in the grid containing it (in the Eu-
clidean space). Additionally; is added to the neighboring cells that intersect
the support of the middle point @f. This support, in the implementation de-
scribed here, is radial and, since Gaussian weighting iometwere used for the
implicit functions tested, all cells in a radiug? from the center are considered.
The parameter. must be large to ensure that all points that have a signifioant
fluence in the evaluation of the function at any evaluatingfe € C. A good
choice isk = 4, since larger values compromise the performance. Oncerithe g
containing the lists of points stored in each cell is creatieel points in each cell
are arranged consecutively in a two-dimensional array. Suah arrays are ac-
tually created, one containing the point positions and am#aining the point
normal vectors pre-calculated using covariance analygsdeacribed throughout
the chapter. This increases considerably the memory spacdred in favor of
higher frame rates.

Three textures are then created with the grid and thesesariiye first tex-
ture @r i d) is a three-dimensional texture with size equal to the rgswi of the
grid. Each texel in the texture contains the number of patdsged in the corre-
sponding cell as well as texture coordinates pointing taigpepositions in the
textures containing the arrays of positions and normaloredgposi t i ons and
nor mal s respectively). To clarify what these last texture coortbsaare, it is
necessary to explain how the point positions and normabvecire arranged in
the two-dimensional arrays (which are directly mapped to-tiimensional tex-
ture). Since both arrays are arranged in the same way, tloe/fol discussion is
valid for both the positions and the normal vectors arrayge Joal of the arrange-
ment is to accelerate the fetching of the points stored inlla Taus, starting at
the position(z, j) in the array containing the first point in the list stored ia tell
C, the goal in turn is to require updating only the indew access the following
point in the list of points stored in'. To that end, the entire list @f, with size
N¢, must be stored itV consecutive positions in the array (row-wise). This can
be accomplished by fixing the width of the two-dimensionahpias being equal
to v/M, where)M is the sum of the sizes of all lists in the grid. Then, the lists
the gird are successively stored row-wise in the array timilnumber of points
in a row is larger than the width. In this case, the next precestinues with the
next row in the two-dimensional array starting with the tisat caused the over-

4.5. GPU-based Rendering of Meshless Surfaces 103

Figure 4.26: Renderings of the Fertility and Buste poing sising the GPU implementa-
tion described here with Kolluri’s surface definition.

flow in the previous row (note that this entire list is storedhe new row and not
partitioned among the two rows). Although this process eadsrther overhead
in the storage requirements, it facilitates the accesse@dints in the fragment
program.

During function evaluation in the fragment program, thd €&l containing
the evaluation poink is found and its texture coordinates in textgpei d are
computed using the resolution of the grid and the extentefitmain. The data
in the corresponding cell is then fetched, which, as may belled, includes the
size of the list of points stored in the cell as well as theusxtcoordinates of
the position of the first point in the list in texture®si t i ons andnor mal s.
With this information, it is possible to access the texelstaming the points in
the neighborhood af (this is, the points stored ify).

Sample-centered neighborhood.The sample-centered data structure is similar
to the gridded structure presented above. For each ggiat list containing the
points within a radiug H from x; is computed. Thus, instead of creating a grid, a
two-dimensional array of width and height equaltdN], whereN is as before
the number of points itt’, is used in order to generate enough array positions to
correspond with all points iX’. Thus, the textureposi ti ons andnor mal s

are arranged in the same manner as before using the lisesistbthe sample
points and the texture coordinates to the first position ohdiat are stored in the
corresponding position in the two-dimensional array rejplg the grid, which is

104 Chapter 4. Meshless Surfaces from Point Clouds

stored in textur@ei ghbor hoods.

In this case, given an evaluation poiqtthe neighborhood of is obtained
by computing in the vertex program the texture coordindtest,) in texture
nei ghbor hoods where the data of the sample point corresponding to the cur-
rently processed disc is stored. For this, the index of tinepsa point is given
as an element of the texture coordinates; passed by the application to the
vertex processor for each disc. The resulting texture éoates(z,,t,) are then
passed to the fragment processor. Then, the fragment pnogsas(t,.t,) to
fetch the number of points in the neighborhood and the textaordinates in tex-
turesposi ti ons andnor mal s where the first point in the neighborhood is
stored. The entire list of neighboring points is then acegsss described above
each time the implicit function must be evaluated. The nepabdities for work-
ing with arrays offered by the NVIDIA's G80 graphics cardssrexplored to fetch
the positions and normal vectors only once, storing thengilobal array, but this
produced a dramatic performance decrease.

Independently from the data structure used, the list of tsdiraversed for
evaluating the implicit function contains points that may ke inside the support
of the weighting function centered at the evaluation pginthus, in the fragment
program, it is important to check for this condition whenlagéing the function
so as to discard those points in the list that do not belongesupport.

Both data structures delivered the same results in termsrfafce approxima-
tion, as observed in Figure 4/26 where rendering of two pcimtids using the
data structures described above for KollutBsS] surface definitions are shown.
Adamson and Alexa’$2] definition produced similar reconstruction and perfor-
mance results. Although both data structures produce the sarface approx-
imation, the sample-centered neighborhood out-perfolmaggtidded neighbor-
hood in terms of processing time. Using an NVIDIA Geforce @80tra graphics
card, for the Fertility point set (107K points), gridded gigorhoods achieved
3.27 fps and sampled-centered neighborhoods 4.36 fps,eatidor the Buste
point set (125K points), gridded neighborhoods delivereég8 Ips and sample-
centered neighborhoods 2.19 fps. Despite being fastemplsarentered neigh-
borhoods are not adequate when following secondary raysraty-&racing im-
plementation. In this case, the gridded neighborhood®baticommodate the
requirement of finding the neighboring points for an arbyaosition on an arbi-
trary ray.

CHAPTER

5 MESHLESSSURFACES FROMVOLUMES

Volume visualization can benefit from meshless technigbasdre currently be-
ing applied to surface data. A number of authors have expltrs possibility
in the last years. The most natural application for mestdagsce modeling and
rendering techniques in the context of volumetric data ésektraction and ren-
dering of surfaces that are normally used to visualize veluim data, such as
iIsosurfaces and stream-surfaces.

Thus, in this chapter, results on meshless techniquesasetfor extracting
surfaces from volumetric data are reported. In Section&rethod for extract-
ing moving least-squares surfaces from volumetric dataesgnted,which was
developed in collaboration with Jodo Paulo Gois from thevehsidade de Sao
Paulo. In Section 5.3, a method for the interactive extoactind rendering of
stream-surfaces and path-surfaces is described. Thisothetas developed in
collaboration with Tobias Schafhitzel from the UniveasiStuttgart, who must be
credited for the hardware-accelerated technique usedrtergiee a dense set of
streamlines. Before detailing the techniques develomtatad work is described.

5.1 Meshless Surface Extraction from Volume Data

Rendering volumetric data using meshless strategies leasdulressed by differ-
ent authors in the last years. @bal.[34] proposed a method for isosurface ren-
dering of volumetric data stored in Cartesian grids, nanmasplatting’, which
samples points in the domain and projects them onto therifsasu The projected
points are then rendered using splatting. The samplingfeimeed by finding the
voxels that intersect the isosurface and adding its middietfo the list of sam-
ples. The sampled points are then projected onto the sufang either an exact
or an approximate projection method. The projectiox @ calculated by defin-
ing a rayr = x + td and finding the root of

f[- f(X+td)7

for ¢, where f; is the isovalue and is the tri-linear reconstruction of the scalar
field. In practice, the directiod defining the ray is given by the vertices of the
corresponding voxel that lies on the opposite side of theudace with respect to
x. This approach is slow since the roots of a cubic polynomiadtbe calculated.
Therefore, the authors find an approximation by means of #stdh-Raphson
method.

105

106 Chapter 5. Meshless Surfaces from Volumes

Co et al. [32] addressed the problem of generating isosurfaces from -multi
block datasets with non-conformal cells. Their approaehntsty generating an
isosurface mesh with marching cubes. This mesh is then oggeherate a set of
sample points. The sample points are the input to a correatgorithm based on
radial basis functions which melds the non-conformal sie$aobtained with the
marching cubes algorithm. The correction algorithm useesghtess radial basis
functions interpolation of the isosurface and projectssample points onto it.
The interpolation is obtained by constructing a regulad gnd using the middle
point of each cell as center of the radial function. The prigd points are then
rendered using surface splatting.

The authors extended this approach to extract isosurfemeslérge scattered
dataset$35]. To that end, marching tetrahedra is used, instead of maychibes,
over a set of local tetrahedralizations which are compubettiat their union cov-
ers the entire domain. This is achieved by constructing alaegrid covering
the domain and storing the scattered points in the resgectiN of this grid. Fur-
thermore, a scattered point is added at the center of eachcetli Thus, the
computations can be parallelized by dividing the regulat opto blocks, each of
which is processed by a thread. The points in the block ard teseonstruct a
Delaunay tetrahedralization. As mentioned before, magchetrahedra is used
to obtain an isosurface mesh which is in turn used to perfblersame meshless
correction described above for multiblock datasets.

Livnat and Tricoch¢107] proposed an hybrid view-dependent method for iso-
contouring based on points and triangles. Nested-grideragdoyed to traverse
the domain and decide whether a triangle or a single point beuendered. Start-
ing at the root node, the algorithm prunes the current nodedriraversal if the
isovalue is outside the range stored in the node. In casesdalue is contained
in the node, and if the node is a leaf, geometry is generatéuer@ise the visi-
bility of the children is determined and visible childrem grocessed in visibility
order. The geometry extraction step represents a node gitigée point in case
the projection of the cell covers a pixel or less. Otherwisatching cubes is used
to generate a local surface mesh.

Miriah et al. [116 address the problem of generating isosurfaces from data
obtained from simulations that make use of the high-ord@efeglement method,
which is defined by basis functions raference spagehat give rise to avorld
spacesolution through a coordinate transformation, which doasnecessarily
has a closed-form inverse. Since methods such as marchieg end ray-casting,
which perform operations in world space, must compute ae®esige nested root
finding process, the authors address the problem with pagystems. A set of
particles is thus distributed on the surface using geometformation from the
world-space isosurface while performing the sampling fenence space. Given
the set of input particle position¥ = {x; --- ,xy} to be distributed across the

5.1. Meshless Surface Extraction from Volume Data 107

surface and an implicit functiofi(x), whose level set is the desired isosurface,
the positions;; 7 =1,--- , N, are iteratively refined as

fX(Xi)
JE(x3) f (i)
where f,(x;) is the gradient of the implicit function a;, until all particles lie
within an error threshold, of the surface. For each particle on the surface, a

compact monotonically decreasing energy ketitiés associated. The enerdy
at a particle is then given by

= = Iy

=1, j=1,j#i

(5.1)

x; — X; — f(x)

wherer;; = x; — x;, anda defines the extent of the kernel such that whey) >
a, E;; = 0. Since using Euclidean distance fails to cull spatiallyselmeighbors
that lie on adjacent surfaces, the neighbors with normdbvethat are more than
a90-degree difference from the normal of the particleare discarded.

The derivative off; with respect to the position of the particle is used to move
the particle to a to a locally lower energy state

N

ox 2=, 0wyl T

The particle positions are then updated using the projectioche derivative of;
onto the local tangent plane

where! is the identity matrix.

Since performing this operation can result in particleshedsoff the surface,
a re-projection using Equation 5.1 is necessary to ensuatethie particles are
within e of the surface. This iterative two-steps process genepsdgles on
the surface that are evenly distributed. To adapt the deokihe particle sample
to the details on the surface, the radius of the energy fonaan be scaled, for
instance, according to the curvature. This mathematieahéwork is applied
to high-order finite elements by means of expressions dirééumulated using
Einstein notation in order to achieve world space adaptiwing reference space
evaluations of the basis functions, mapping functions &ed derivatives. This
is done in order to avoid computing the inverse of the mappingtion between
reference space and world space.

108 Chapter 5. Meshless Surfaces from Volumes

5.2 Moving Least-squares Iso-surfaces

Moving least-squares surfaces proposed by LE28) have been further studied
by Amenta and Ki[10; 111, who noted important properties about the domain of
a moving least-squares surface and the behavior of the mde@st-squares and
weighted least-squares minimization strategies in theestrof moving least-
squares surfaces. Based on their observations, a noveligeehto extract sur-
faces from volumetric data is proposed, inspired by the -“&mtiwn ‘predictor-
corrector’ principle. The method proposed is able to pregjdod approximations
to the surfaces defined by a given feature in the volume, ssicsoaurfaces and
surfaces located at regions of high gradient magnitude $H@aces). This last
class of surfaces is addressed since, as Katiak[81] pointed out, although there
is no mathematical prove, regions of interest are assumied kacated at regions
of high gradient magnitude.

Mesh surfaces extracted from volumetric data have someenheisadvan-
tages, such as the need for defining the polygon charaatesit and the need for
storing topological information. Also, important detaitgy be omitted or coarse
regions might be excessively detailed. Although more ssiffated methods were
introduced in order to handle these problefh38; 139; 115 the mesh must be
locally recomputed and refined, which is computationallpensive. Also, it is
necessary to define an initial surface, implying that the usest knowa priori
some characteristics of the object in order to define a gatidliapproximation.
The authors also mention the possibility of handling noiayadf sophisticated
strategies of refining and displacement of vertices are.used

On the other hand, the method presented handles these mpobigturally.
Since it is based on local polynomial approximations, thexgion of the model
can be locally defined. Also, low frequency noise in the datassily handled, due
to the fact that the local approximations are computed bynseé least-squares
approaches. The method presented generates smooth swavaaging the piece-
wise approximation of mesh-based methods. As proof of qundee hardware-
accelerated ray-caster presented in the previous chapgeextended to handle
the surfaces defined here. This is done since, as stated Imgssteand Alexd3],
moving least-squares surfaces have clear advantages therrepresentations
when ray-tracing is used, namely the locality of the comipora, the possibility
of defining a minimum feature size and the fact that the sarfasmooth and a
two-manifold. As seen in the previous chapter, beside thergnt implications
of these three characteristics, the second advantage oaxplmted when com-
puting the intersection of the ray with the surface, whits tast one turns CSG
operations feasible.

As stated before, a strategy inspired by predictor-coorectethods, which
make use of two numerical approaches to solve ordinaryrdiftéal equations, is

5.2. Moving Least-squares Iso-surfaces 109

defined here for extracting the surfaces. The first appraaaHpredictor’ which
provides a first rough solution but requires only limitedimhation. This solution
is the input to the ‘corrector’ which then finds a final more wede solution.
These processes can be iterated in order to improve thesoblitained.

5.2.1 Computing MLS surfaces from volumetric data

The first step of the method is performed by solving a movirgtesquares ap-
proximation problem to find an initial estimate for the pijen of a given point
using a carefully defined weight function that charactexridtee surface. This
makes it possible to deal with points that are relativelyram the surface. As dis-
cussed before, the weights traditionally used in movingtlsguares minimiza-
tion schemes are given by some monotone decreasing funaftitre distance
from the pointr to be projected to the point (voxel in this case)n the input set
X. Here, However, in this step information on ‘how close a Voxéo a feature in
the volume’ is used in order to weigh the voxels The functionw;; j = {1, 2}
used to weigh the voxels; determines the feature that defines the surface and
therefore the surface itself. Isosurfaces can be genevatbdhe approach pro-

posed by using
v — X; 2
wn(x1) = exp G#) |
P1
whereuv is the isovalue defining the isosurfagéx;) is the scalar value at; and
p1 1S a scaling factor (also regarded as a smoothing factoigo,Adssuming that

regions of interest are located at regions of high gradiesgmitude, a class of
surfaces that depicts changes in the material propertrebeabtained by using

Vexp |~ L (1o AVICIL Y
wa(x;) = p[02 (1 maX{HVf(Xi)H})] ’

wherep, is also a scaling factor. With these weighting functions@l@pprox-
imating plane is computed by finding andn = n(q); ||n|| = 1, so thatn
minimizes

epISO(qan(q)) = Z <n7Xi - Q>2Wj(xz)a j = 17 27 (52)
x;EN(r)

whereN (r) is the set of neighbors af n is in the direction of the line through
andq, and the directional derivative 0f;s0(q) = e,rs0(q, n(q)) in the direction
of n(q), evaluated ady is zero,i.e., Oy (q)Jprso(a) = 0.

After the minimization a local coordinate system is defingthe planed (n, q).
On this local coordinate system, weighted least-squangsead to find a bivariate
polynomialg(n, ¢) that locally approximates the surface using as weightimgfu
tion wy 23. Definingp as the projection of on the fitted polynomiad(n, ¢), the

110 Chapter 5. Meshless Surfaces from Volumes

corrector scheme starts by computing a second approxigiplame by findingc

anda = a(x); ||al| = 1, so thata minimizes
N
ec[SO(X7 a) = Z<aa Xi — X)>2@(Xi> (53)

i=1

whereO(x;) = w23 (X)wmrs(x;, x), a is in the direction of the line through

andx, and the directional derivative 0f ;50 (x) = e.rs0(X, a(x)) in the direction
of a(x), evaluated ak is zero,i.e., Ja(x)Jers0(x) = 0. Recall thatuy;.s(p, q) =

w(||p — ql|), wherew is a monotonically decreasing function.

Then, as in the predictor step, a local coordinate systenefieed on the
planeH (a, x) and a polynomial approximation is computed using weigheadt-
squares with the weighting functiad instead ofw, 5;. The projectiony of x
on this polynomial fitting is the final projection ofon the moving least-squares
surface. The resulting projected points can be input to amytfbased rendering
method, such as EWA surface splattifi9. In the following, however, the
focus is on describing a modified version of the ray-castingiree for surface
definitions based on projection operators, to accommodaigng least-squares
surfaces extracted from volumetric data.

5.2.2 Hardware-accelerated MLS Iso-surfaces and HG-surfzes

To interactively render a moving least-squares surfacztlyr from the volumet-

ric data, viewport-aligned slices clipped with the boundiox of the volume are
rendered, separated from each other by a distanpe-ofc/ (in the direction of

the view vector), wher@.5 < k£ < 1 andh is the smoothing parameter used in
w s during the corrector step. The idea behind this operatidhat since the
minimal feature size of the moving least-squares surfacst imel greater thah,

by taking steps smaller thanit is ensured that the intersection between each ray
and the surface will be found.

In order to reduce the computation time, the per-voxel mi@tion to be used
is pre-computed and those fragments for which this infolomas smaller than
a pre-defined threshold are discarded. For the case of faosarthis data is
|v — f(x;)| and for the surfaces located in regions of high gradient ritad@ it is
|V f(x:)]|. This threshold must be low enough to ensure that a sufficiember
of fragments is used for the rest of the process.

For each fragment generated that passes the above mengshetie follow-
ing computations are performed in a single rendering pasee predictor step
starts by minimizing Equation 5.2 defining the poirtb be projected as the po-
sition of the fragment in space. This minimization is pemied by means of an
iterative process in which andn are updated in each iteration until the change

5.2. Moving Least-squares Iso-surfaces 111

@) (b) (©

Figure 5.1: The Bucky Ball dataset. (a) The final result ofldpg the predictor-corrector
method. (b) The points projected by the predictor at a distayreater than a pre-defined
threshold are shown in red. (c) The output points from thalipter projected by the
corrector at a distance greater than the threshold are simograen (see color plates).

in q falls below a given threshold. The process starts by seitiagr. In each it-
eration,q is first fixed and covariance analysis is used to obtain thenabvector
n. To that end, th& x 3 covariance matrix

N

Ci(q) = Z(Xz —q) @ (x; — Qwi,2(x;)

i=1

is calculated and the eigenvector associated with the estaigenvalue of the
matrix is computed using the inverse power method. Thisnegetor gives us
the normal vecton. Then,n is fixed and Equation 5.2 is minimized by finding

t, so thatq + ¢n, whereq is the current solution. Then we s@t— q + tn

and the next iteration starts. Findinmgs straightforward since by fixing the
minimization of Equation 5.2 becomes a linear univariateimization problem.
Note that the pointg; that have a significant influence for these computations are
the neighboring voxels af. Thus, no spatial search is required during the whole
projection process.

Oncen andq are found, a polynomial approximation to the surface iswealc
lated in a local coordinate system defined over the pkfwe, q) using weighted
least-squares and weighting the poirtsn the neighborhood o with w; 5(x;).

To exploit the capabilities of the GPU to handle vector opens for vectors of
size4, the polynomial

9(n,¢) = Ap® + B+ Cn¢ + D

is used for the local approximation (note tiiat() is in the local coordinate sys-
tem). Therefore, the matrix of the linear system to be soisa size4 x 4 and

112 Chapter 5. Meshless Surfaces from Volumes

Size (voxels) Predictor Predictor-Corrector

Cadaver Head 2562 x 154 2.92 0.14
Engine 2562 x 110 5.88 0.27
Fuel 643 9.26 0.88
Bucky 323 50.10 2.60

Table 5.1: Performance in frames per second for the movagg+squares surface extrac-
tion from volumetric data method.

thus easily handled in the shader. The projectioq of the local approximation
gives us the poinp which is used as input to the corrector step.

In the corrector step, the minimization of Equation 5.3 isf@ened in the
same way as in the predictor step. The main difference isthaha is fixed to
find x, the minimization of Equation 5.3 remains non-linear. ThbeBrent with
derivativemethod was implemented to solve this problem. Also, the tanee
matrix used for finding is in this case given by

N
Ca(x) = (xi — %) ® (x; — X)O(x;).
=1
As before, once anda are found, a local system is defined and weighted least-
squares is used to compute a local approximating, this tsngguhe weighting
function®. The projectiony of x on this polynomial gives us the projection of
the fragment’s positiom on the approximate surface.

Then, the ray-casting algorithm continues. If the distaretsveeny andr is
less than a pre-defined erreris the intersection of the ray with the approximate
surface. Otherwise, as described in the last chapter, teesaction between the
polynomial and the ray is found. If the intersection is withiregion of confidence
defined by a ball with radius and center, the projection process is started again
definding the intersection found as the newThis process is repeated until the
distance between the projection ants less than the error, or the intersection is
outside the ball. In the last case the fragment is killed cwhsince depth tests are
used, simulates the jump to the next ball used by Adamson &@&A

Rendering and performance results of the methods propasedrasented
in the following. All tests were carried out on a standard Pithva 3.4 GHz
processor, 2GB of RAM and an NVIDIA Geforce 8800 Ultra gragshtard. The
size of the viewport used for the performance measuremeass >

In Table 5.1, the results obtained for the extraction ofaze$ from volumet-
ric data are presented, performed using only the preditéprand the extraction
performed using one iteration of the predictor and one titmeof the corrector
steps. As can be noticed in the table, the corrector stepaasigsificant overhead

5.2. Moving Least-squares Iso-surfaces 113

Figure 5.2: Moving least-squares surfaces extracted &oEtigine and the Cadaver Head
datasets using the gradient magnitude (top) and isovahog®).

to the processing time. Although this step improves the r@oyuof the result, for

interactive applications where precision is not importém predictor suffices to
generate an already good approximation to the moving kxpsares surface. This
fact is depicted in Figure 5.1 where the effect of the prediend the corrector
steps on the input points (fragments) is shown. The predstep projects a sig-
nificant percentage of the points at a distance greater tpagdefined threshold,
set to test this effect. On the other hand, although the teffiethe corrector step
over the points already projected by the predictor is redtoe small amount of

points, this further projection could be important for apalions where precision
is the main concern.

114 Chapter 5. Meshless Surfaces from Volumes

The results obtained are promising considering the contglekthe computa-
tions involved. Although the implementation for extragtimoving least-squares
surfaces from volumetric data is not interactive for thedmt®r-corrector case,
the processing time is considerably low in relation thedaaghount of fragments
projected. Also, the renderings are of good quality as shaviAigure 5.2.

5.3 Point-based Stream Surfaces

Stream surfaces are a direct extension of streamlinesjghatrrfaces that are
everywhere tangent to the vector field. They are effectiv@nmultaneously dis-
playing various kinds of information of a flow, such as flowedition, and torsion
of a vector field as well as in conveying vortex struct[66]. Despite these ad-
vantages, stream surfaces are not common in flow visuaizatuch a lack of
popularity may be due to the fact that stream surfaces requare advanced al-
gorithms than streamlines; interactive visualizationdsas easy to achieve as for
streamlines; wide stream surfaces lack internal visuacsire, leading to pos-
sible perception problems; and stream surfaces have beditianally restricted
to steady flow. These issues are addressed here by devisiey paint-based
algorithm for stream surface construction and renderinger@by, an expensive
triangulation of the stream surface is avoided. Particeing starts at a curve of
seed points and results in a collection of particles thatesgmt the stream sur-
face. More specifically, the issues mentioned above aresadéed by developing
a point-based computation of stream surfaces that mam&aineven density of
particles on the surface and by rendering the points by mefesdatting. An ex-
tension to path surfaces of unsteady flows and the combmaiitn texture-based
flow visualization on stream surfaces and path surfacesaw gimer flow struc-
ture on those surfaces are also described. Furthermoseshiolwn how these al-
gorithms can be mapped to efficient GPU implementations.vidwalization ap-
proach makes it possible to interactively generate anderestdeam surfaces and
path surfaces, even while seed curves are modified by theousere-dependent
vector fields are streamed to the GPU. Figure 5.3 illustratesxample of stream
surfaces generated by the algorithm presented.

While the concept of a stream surface is straightforwasdiniplementation
is more challenging than for streamlines because a consisteface structure
needs to be maintained. Hultqui38] describes an algorithm that geometrically
constructs a stream surface based on streamline paraciedr. In particular, his
algorithm takes into account the stretching and comprassdinearby streamlines
in regions of high absolute flow divergence. Gatlal.[55] show how Hultquist’s
algorithm can be improved in order to obtain higher accura@reas of intricate
flow. An alternative computation is based on implicit streamface$157), which
however cover only a subclass of stream surfaces. A relatewf research ad-

5.3. Point-based Stream Surfaces 115

Figure 5.3: Visualization of the flow field of a tornado witHeff) a point-based stream
surface; (right) the combination of a stream surface antlitexbased flow visualization
to show the vector field within the surface. Each stream sarisseeded along a straight
line in the center of the respective image (see color plates)

dresses the issue of how stream surfaces are displayetivefigcfor example,
they can be chosen according to principal stream surfi@@srendered at sev-
eral depths by using ray castii§3], or visualized through surface particles to
reduce occlusiof156. Previous methods are restricted to stream surfaces, to
steady flow or instantaneous vector fields of unsteady flowereds the approach
proposed is designed for steady and unsteady flow alike.

The approach proposed here adopts line integral convaltitC) [26], ex-
tended to tangential flow on curved surfaces. While sevesthats exist for
texture-based flow visualization on surfad@€8], a hybrid object/image space
LIC method[166 is used because it can process vector field data extracted by
point-based rendering. The object/image space LIC is airtoltexture advection
in image spac¢94; 159, but achieves better filter quality and guarantees tem-
poral coherence under camera motion. The basic visualizatrategy described
here resembles recent work by Laraneg¢eal. [92], which combines mesh-based
stream surfaces with texture advection for an improvedalization of steady
flow: by construction, a vector field carved out on a strearfasaris always tan-
gential to the surface; therefore, a projection of a 3D veledd onto a surface is
avoided. In addition, the visualization method proposettsgned for steady and
unsteady flow alike as mentioned before. Typically, theuexbased visualiza-
tion of unsteady flow leads to smeared-out texture patt@spresent in texture
advection[77; 158 or UFLIC [142; 106; 102 We show that the approach pre-
sented leads to clear line patterns that show a certain €lobipath lines. More
background information on flow visualization in general bafound in the book
chapter by Weiskoplf165.

5.3.1 Streamlines and path-lines generation

Stream surfaces are surfaces that are everywhere tangeritnb@-independent
vector field. According to Hultquidi73], a stream surface can be represented as

116 Chapter 5. Meshless Surfaces from Volumes

a 2D parametric surface embedded in a 3D flow. A natural choigearame-
terization uses one parameterc [0, 1], in order to label streamlines according
to their respective seed points. Assuming a parametergaesentation of the
seed curve, we baseon that curve parameterization. The actual streamlines are
computed by solving the ordinary differential equationparticle tracing,

dx(t)
& v(x(t),1), (5.4)

wherex is particle position and is the vector field at time¢. The seed points
represent the initial values for the ordinary differenéiguation. Then, the second
parameter of the stream surface is the titne,[0, tmay/, @long the streamline inte-
gration. This choice of surface parameterization resalta/o meaningful classes

of isoparameter curves: for constardnd varying;, streamlines are obtained; for
constant and varyings, time lines are obtained, which are advected images of
the initial seed line.

For stream surfaces, a time-independent vector flaklassumed. However,
the above construction is already designed for time-deganekector fields. In
this case, particle tracing leads to pathlines insteadreéstlines, which in turn
results in the construction @lath surfacesnstead of stream surfaces.

As the aim is to provide an interactive tool for the generatiad visualization
of those surfaces, the algorithm for generating strearasesfand path-surfaces is
designed for a GPU implementation. The basic algorithmistsef three parts:
the generation of the seed points, the integration of theghes along the given
vector field, and insertion/removal events to maintain aengvdense sampling
of the surface by particles. The first part is executed ontg atrthe beginning,
whereas the second and third parts are repeatedly exeowednterleaved man-
ner to incrementally construct the stream surface. A roughén density of par-
ticles is maintained in order to obtain a good reconstrmatibthe surface during
the point-based rendering process.

The data structures of the algorithm can be represented asdimensional
textures. Textur@arti cl es stores the positions of the patrticles in the object
space of the surface. The organization of plae t i cl es texture is rather sim-
ple: the number of rows stands for the number of particlegreds the columns
describe the number of integration steps. Actually, thelemof rows has to be
times greater than the number of initial particles to allowddditional room for
particles inserted during surface construction. Texgirat es is introduced to
store additional data values and has the same size as tgsute cl es. This
texture contains indices to the left and right neighborsiefrespective streamline.
The vector field additionally is held in a three-dimensiaeature.

In the first step of the algorithm, the seed points are geedrafo generate
the seed points, the user defines a seed curve by placingghsimae at a spe-

5.3. Point-based Stream Surfaces 117

cific region of interest. Seeding is implemented by rendpanly one column of
textureparti cl es (Figure 5.4a). The height of the quadrilateral used for ren-
dering represents the number of initial particles. Sinyldhest at es texture is
initialized with indices to streamline neighbors.

After initialization, the integration of particle traces performed in the sec-
ond step. First-order Euler integration is applied to s&lgeation 5.4, but higher-
order methods could be used as well. Particle tracing updaéurepar ti cl es
in a column-wise manner, where each column correspondsgedcis time. The
previous position of a particle is obtained by a texture lgokising the texture
coordinates that refer to the previous column. Then, thatgatposition is writ-
ten to the current column. A ping-pong rendering schemead i updating the
particle positions. Thet at es texture is treated in the same manner to maintain
consistent connectivity information.

The third step of the algorithm implements the insertionemaoval of par-
ticles. This step relies on criteri@3] that decide whether a particle remains,
needs to be added, or has to be removed. In addition, a stigdace may tear,
for example in regions of very high divergence or when the fiois an interior
boundary. Letk,; be the position of the-th particle at timg andé(x,y) be the
distance between pointsandy. Then, a particle is inserted if

Q(Xi,taxi—i—l,t) > Oé‘9(Xz‘,0>Xi+1,o) (5.5)

and
O(Xit, Xit1,) — O(Xi -1, Xiv14-1) < BO(Xi-1,Xi 1), (5.6)

wherea andg are usually set t@. The first inequality tests if the current distance
is larger thany times the initial distance between two adjacent particlé® sec-
ond inequality guarantees that the distance between twghbeis does not grow
more thang times faster than the distance between its previous andiiterd
position. The surface tears if Equation 5.5 is true and Egnd.6 is not met.
A particle dies if the distance between two neighboringiples is too small, for
example, when particles enter a convergent area of the flquar#cle is removed

if the following conditions are fulfilled:

(Xt — Xi—1p¢)) < Xi+1,t — Xt) ~ 1 (5 7)
||Xi,t - Xi—l,t” ||Xi+1,t - Xz‘,t”
and
9(Xz‘,t7 Xi+1,t> < H(Xz’,(]a Xz’+1,0)
AN O(XiXim1e) < 70(Xi0,Xi-10), (5.8)

wherey should be less thah The dot product in Equation 5.7 tests for collinear-
ity of the particle and its neighbors. If this is true, botktdinces from the particle

118 Chapter 5. Meshless Surfaces from Volumes

to its neighbors are checked. Equation 5.8 defines that &leaneeds to be re-
moved if the distances to its neighbors are smaller than idtarctes at = 0,
scaled byy.

The computation of the different criteria requires datafitbhe local neighbor-
hood of a particle. The temporal neighborhood.(access to previous time step)
is intrinsically encoded in thpar t i cl es texture because a row of that texture
corresponds to different time steps of the same particle.spatial neighborhood
is explicitly stored in thest at es texture, which holds indices to the left and right
neighbors.

Particle removal is implemented by marking “dead” parscie the texture
parti cl es so that they are not processed any further during partiekrig
and surface rendering. By using render targets with flogiimgt precision, no
additional color channel is necessary. There exist at temsthannels, containing
the neighbors which cannot be negative. If the particle,ddeg of these chan-
nels is used to store this additional information, by neggitis current value. The
implementation of particle insertion uses two additiomxttires that store inter-
mediate results. The first one contains the positions of gveparticles, and the
other one contains the corresponding states. Both textaresthe same height as
the originalparti cl es andst at es textures. Each existing particle is tested
with its right neighbor using Equations 5.5 and 5.6. If batequalities are true,
a new particlec;, is created by linear interpolation betweepy andx;, ;. Then,
the particle position and connectivity are written to thelisdnal textures. The
neighbors are assigned to the new particle by using the twies ofx;, as left
andx; ., as right neighbors.

The problem is that the intermediate textures may contdinafew particles
that were actually inserted. In fact, most of the cells ofsthtextures will con-
tain inactive elements. Therefore, the intermediate testunust be condensed
by removing all inactive particles and putting the activetipbes in a consecu-
tive order. Such a reordering is rather complicated for a GRplementation.
The histogram pyramids proposed by Ziegteal.[173 are adopted and slightly
modified to fulfill this task. The main idea is to merge the fiosis of the new
particles, which are distributed over the whole texture.e D the fact that the
particles’ positions are updated column by column, the mgrglgorithm is re-
stricted to a 1D domain. In fact, all new particles are staredne column, in
which either a texel is filled with a new particle or is empty.

A binary tree is built over this column by using a pyramid &tat1D textures,
where each level of the pyramid has at least half of the hedgithe previous
level, representing one level of the binary tree. The fine&tlln represents the
new particle itself. In the implementation presented, a &agsed to notify a
texel if it contains a new particlep(= 1) or not (» = 0), which serves as basis
for the binary tree generation. If rendering lewvel- 1 of the binary tree is the

5.3. Point-based Stream Surfaces 119

integrations

particles

new particles

[e]o]-]=[-[=]o[-]

. time
accumulate partlcles]

(@) (b) (©)

Figure 5.4: lllustration of different steps of the algonith(a) during the initialization of
the particles texture only one column is rendered (the hafjthe strip represents the
number of initial particles) and (b) during creation of theary tree the new particles
build the highest level and the contents are summed up tetildot contains the overall
number of particles to be inserted. In (c) the lifetime of igividual particles is shown.
The color gradient is defined from red ¢at= 0) to green and illustrates the increasing
lifetime. The areas with red lines at the left and bottonhrigarts of the image show
regions with many new streamlines (see color plates).

current one, for example, always two texels of levalre accumulated and stored
into one texel of leveh — 1. This is continued until the root levélis reached,
which is represented by one texel containing the overalllvemof new particles
(Figure 5.4b). The creation of the binary tree requireender passes to build the
tree levels in a bottom-up manner.

After the binary tree is created, the new particles are adol¢ide actual tex-
tureparti cl es. Here, the number of new particles is read back from graphics
memory. Due to the small texture size (one texel) the texteael back does
not affect the performance significantly. Then a quadniédtes created with a
height equal to the number of new particles. According tohilseogram pyramid
method, each texel rendered by the quadrilateral is nurddeven 0 to & — 1,
wherek stands for the number of new particles. The adapted top-diaversal
algorithm by Ziegleret al. [173 works as follows. Starting from the first level
of the binary tree, the key value is compared with the entrshefcurrent cell.

If the key value is smaller than the cell value, the tree igersed downward. If
the key value is greater or equal, the value of the currenticstored and the
binary tree is traversed downward following the pointerhad successor. This is
repeated until the algorithm reaches lexwelFinally, the value of the current cell
plus the number of predecessors gathered during the tedversompared to the
key value. If the key value is smaller, the new patrticle cgpanding to the key

120 Chapter 5. Meshless Surfaces from Volumes

value is found, otherwise the successor cell is used. Byemamgl the position
and the corresponding states at the current fragment, theasicle is inserted
containing all the necessary information for the growinghaf stream surface. In
fact, the left neighbor is the particle ;, which has created the new particle, and
the right one is the old neighbor &f ;, which wasx; ; ;.

To restore the consistency of the particle system, the atticfes need to be
updated as well. When a new particle is created, its indekerparti cl es
texture is yet unknown because of the particle merging nr@sha To build the
connectivity information, the binary tree is used to obthia relation of the new
particles to their old predecessors. Now, the tree is teseebottom-up, from the
leaves to the root. The particig , stored in the temporary texture serves as basis
of the traversal (note that it represents the leaf levef the binary tree). While
the binary tree is traversed upwards, each cell is testedifiids the first or the
second entry of a tuple. If it has a predecessor, the pres@cgsalue is accumu-
lated before the algorithm ascends to the next tree leveleWhe root node is
reached, the gathering algorithm stops and the accumwhatead represents the
number of predecessors. This information and the texturedomates of the new
particles are sufficient for reassigning the new neighb@lsase note that this al-
gorithm has to be executed for all particles which have edckatnew one, as well
as for their former right neighbors, because they also nedd informed about
their new left neighbors.

The complete stream surface is constructed by applying #necle inser-
tion/removal and particle integration processes sevaras. Figure 5.4c illus-
trates the lifetime of the individual particles. Color edes an increasing lifetime
of particles by red to green. New particles are identifiedegisareas surrounded
by green streamlines. The maximum integration length is-sigecified. The
algorithm proposed is able to create stream surfaces ahdpeaces alike.

For the subsequent LIC calculation the vector field is needethe surface.
The remaining three channels provided byplae t i cl es andst at es textures
are used to store the attached vector of the flow. Regardieglsether steady or
unsteady flow is visualized, only the vector used for thegragon of the current
time step is stored.

5.3.2 Point-based surface rendering

The fact that particles are added when divergence in the #gweasent ensures a
sufficiently dense sampling to cover the image space cemsigt This way, it is
only necessary to generate enough particles and renderthiemall point sprites
in order to obtain a closed surface. However, in order toinbdiasurfaces, the
normal vectors at each position on the surface must be detedm Therefore,
the normal vectors are firstly estimated at the particlestipos, which can be
performed by means of covariance analysis, as in previaipss.

5.3. Point-based Stream Surfaces 121

Given a pointq in R? and a set of point&’ = {x;,...,xy} on the surface
(the particle positions), the x 3 weighted covariance matr is given by

C(q) = Z (xi —q) ® (x; — Q)weov (%4, q), (5.9)
p:eN(a)

whereN (q) € X is the set of neighbors ef andwcoy is @ non-negative mono-
tonically decreasing function. Note that in practice, asalio all implementations
described in this thesis, only the neighborhoodjo$ used instead of the entire
data set to reduce computational costs, since the locdlibhealefinitions (though
the compact weighting functions) allows it. Once the ma€ifq) is calculated,
the normal vector af; is estimated as the eigenvector@{q) corresponding to
the smallest eigenvalue. To find this eigenvector the ir/posver method is used.

Given the layout of the texture holding the particles, thisgessing can be
performed in one render pass. For a given particle posiiotie set\'(q) is
defined as the&; corresponding to the particles of the previous and next siteps
in the neighboring streamlines. These particles posittande accessed using the
connectivity information stored in thear t i cl es andst at es textures. Then,
the computation ofC(q) is straightforward and can be implemented in a single
fragment shader, together with the inverse power methodtaio the normal
vector at each particle position. This process is perforimetendering a single
quadrilateral of the same size as the particles texture.iffhg to the fragment
program are the texturggrti cl es andst at es. The former is used to fetch
the particles’ positions and the latter to fetch the neigimgpparticles’ texture
coordinates. The results of this render pass are storee itexturenor nal s.

Once the estimated normals are available, three furthelergrasses are per-
formed. The final result of this process is stored in threthrtextures, namely,
thei nt er secti ons texture with the intersection points on the surface; the
lit_surface texture, which holds the projected and lit surface; andutext
vect or s with the interpolated vector of the flow at each position oa fino-
jected surface.

The process is started, for the first rendering pass, by rengpa quadrilateral
for each particle centered at the particle position andgredjzular to the normal
vector corresponding to the particle. The quadrilateredstammed in the frag-
ment program by means of clipping operations to obtain dicadiusp, where
0.5h < b < h, whereh is, as before, the smoothing factor. For this, in the ver-
tex program, it is necessary to attach to each vertex of theith position and
the position of the particle in object-space coordinatexésthe normal vectors
were also computed in object-space coordinates). The fagprogram writes
the position of the fragment (if not clipped) to the texturg er sect i ons.

This texture and the textureor mal s are the input to the second render pass.
Discs centered at each particle position are rendered &g iprevious pass. The

122 Chapter 5. Meshless Surfaces from Volumes

vertex program in this case fetches the normal vector cooreding to the particle
and attaches it to the vertex in addition to the positionshef tertex and the
particle in object space. Each fragment thus generateésmiite normal vector
to the RGB channels andsrz(||x; — q.||, [|[x; — zx||) to the alpha channel of a
first target texturevei ght ed_nor mal s. Thex; andq; are the positions of the
fragment and of the particle in object space respectivalyza is the intersection
point from the textureé nt er sect i ons, stored in the texel corresponding to the
fragment position in clipping space. The functiog, is defined

T2 82
wsTr(r, $) = exp <—ﬁ - MQhQ))

where the parameter controls the influence of the fragments that are behind the
intersection point. This parameter is chosen to avoid tHaence in the result
of fragments that are not in the 2D neighborhood (surfacethefintersection
point. Also, to obtain sharp intersections as in Figure B.5, important to test
if the texture coordinates (along theaxis in the texture) corresponding &p
are in the neighborhood of the texture coordinates of thegbaicorresponding
to z,. This is done to ensure that only particles in the neighlgpotime steps
are considered to calculate the normal and velocity vectérsecond texture
wei ght ed_vect or s is attached to a second render target, where the fragment
program writes, in the RGB channels, the velocity vectohatgarticle position
and, in the alpha channelsrz(||x; — qi||, ||x; — zx||). By using alpha blend-
ing, for each ray (pixel), the vectols, wsrr(lx; — @il [[x; — zl[)n;, and
>_x,; wsrr(lIX; = qill, [[x; — z&||)v;, are obtained, whene; andv; are the normal
and velocity vectors af;, and the sefx;,} is the set of fragments projected onto
the pixel. By normalizing these two vectors, smoothly ipt#ated normal and
velocity vectors are obtained for each projected positiothe surface.

This fact is used in the third render pass, where a singlerdatatal cover-
ing the viewport is rendered, and each generated fragmtafiefe the respective
weighted sum of normal and velocity vectors from thei ght ed_vect ors
andwei ght ed_nor mal s textures. The normalized interpolated normal vector
is used to compute the lit surface, which is written to théued i t _sur f ace.
The normalized interpolated velocity vector is written e texturevect or s.
The lit surface can be then displayed, or these two texttowgsther with the tex-
turei nt er sect i ons can be input to the process described in the next section,
where LIC is added to the lit surface.

5.3.3 LIC on the point-based surface

The point-based rendering process of the previous sectmndes a projection
of the stream or path surface onto the image plane, alongimfithmation about

5.3. Point-based Stream Surfaces 123

Figure 5.5: Path surface of an unsteady flow: on the left ghietime of the unsteady
flow field is shown by colors (red for for early times, green ffter times); on the right
side the combination of the path surface and time-deperidénis illustrated (see color
plates).

the 3D position on the surface and the attached normal anditelectors. The

LIC computation implemented using these results can beideres a G-buffer

algorithm[134] because it relies on image-space information to perforrtighar

tracing and convolution. It is important to distinguishween the dimensionality
of the domain and the dimensionality of the attached datainfage-space or G-
buffer method always uses a 2D domain (the image plane)hiutttached data
(i.e., the G-buffer attributes) can be of other dimensionality.

The hybrid object/image space methidb6 needs the following G-buffer
attributes: (1) the 3D position of the respective pixel ifjeab space (in tex-
turei nt er secti ons) and (2) the 3D vector field in object space (in texture
vect ors). The only other data that is used for LIC is an input noise.isTh
noise is modeled as a 3D solid texture to ensure temporatenbe under camera
motion. According to Weiskopét al.[166], the LIC texturel is computed by

T(ad,y2) = / k(r — 7o) M(ro(r — ;2%) dr, (5.10)

where the subscript denotes parameters given in image space, the subgcript
denotes parameters given in object spads,integration time)M/ is the 3D noise,

k is the filter kernel, and, represents positions along a pathline. The pathline is
determined by the initial image-space positieh, 4?), which has a corresponding
initial 3D object-space position on the surface at initiadet .

The original implementatiofil66] was designed for older Shader Model 2.0
GPUs and uses multiple render passes to step along paréttls pnd to dis-
cretize the LIC integral. Current GPUs with Shader Modelstipport allow for a
single-pass LIC implementation using loops. Input to tmplementation are the
two G-buffer textures nt er sect i ons (object-space positions) an@ct or s

124 Chapter 5. Meshless Surfaces from Volumes

Figure 5.6: Path surface of the unsteady flow around a cylinde

(object-space vector field), which are initialized by thénpdnased rendering pro-
cess described above. The actual particle tracing is doBB iabject space co-
ordinates in order to achieve higher accuracy than pure erspgce advection
methods. Before the vector field can be accessed, the c@Denibject space po-
sition is transformed to image space by applying the modely,\and projection
matrices.

LIC improves the visualization on stream or path surfacesibse a LIC tex-
ture provides additional information that cannot be enddole a surface alone.
Figure 5.3 shows an example: the stream surface is quite avidewithout LIC
lines (Figure 5.3) the flow structure within the stream stefés not displayed;
in contrast, Figure 5!3 shows the stream surface with LI@yeging the internal
flow structure and the flow direction. Here, the LIC textureasnbined with the
regularly rendered and illuminated surface (frbimt _sur f ace texture) in order
to show the flow and the surface shape at the same time.

The above LIC algorithm works for steady and unsteady flokealSince the
steady case is rather simple, the focus of the followingudision is on the un-
steady scenario, which generally is challenging for teednmsed flow visualiza-
tion. Typically, the texture-based visualization of urshe flow leads to smeared-
out texture patterns. For example, texture advedfiah 15§ constructs an over-
lay of streaklines (or inverse streaklines). Since stiaaklmay intersect each
other, the weighted average of noise input from those direskcould result in
a convolution that is not restricted to a curved line. Themref texture patterns
could be smeared out in a 2D area. Similarly, the feed fonaadlvalue deposit-
ing mechanisms of UFLIC142; 106; 102 can lead to changing widths of line
patterns.

5.3. Point-based Stream Surfaces 125

The fundamental problem is that there is not a single, unigaeor for a single
spatial position in a time-dependent flow. In fact, the ved&gpends on how far in
time the integration along a particle trace has progresBaelabove texture-based
methods mix, at the same position, vector fields of diffetené. In contrast, the
surface LIC implemented obtains the vector field from pattfese construction,
which usually yields a single vector for a certain spatiaipon because that spa-
tial position is linked to a specific time. Figure 5.5 showsoboc coding of this
time. Still, a path surface could intersect itself, whiclhresponds to two different
times and two different vector values at an intersectionfpdiigure 5.5 illustrates
such a self intersection. Fortunately, those intersegimnts typically form only
a zero seti(e,, a 1D line on a 2D surface) and lead to different flow regions in
image space that are clearly separated by the interseaties IAs illustrated in
Figure 5.5, surface LIC is capable of generating crisp,-like LIC textures for
those different flow regions. The proposed method was tested PC with a
2.21 GHz CPU and 2 GB of RAM. Two different GPUs were used: ariNX
GeForce 8800 GTX and an NVIDIA GeForce 7900 GTX. For the perénce
test, an unsteady data set was used, simulating the flow@eoaylinder with 17
time steps. Figure 5.6 shows a visualization of the test sletta For the steady
measurements, only the first time step is used. The vectdrifigiven on a uni-
form grid of size256 x 128 x 256. Table 5.2 shows the results of a measurement
with 256 particles that are integrated along 256 time stepthe unsteady case,
the vector field is updated ea@h6/17 ~ 15 time steps. The performance for
rendering the plain surface mainly depends on the size optbjected surface,
which can be explained by the fragment-based surface appation. Applying
the surface LIC reduces the rendering speed by a factdbofSince the current
driver of the new NVIDIA GeForce 8800 does not provide the fawer of the
architecture, particulary when rendering to texture isliegp the GPU was re-
placed with its predecessor, the NVIDIA GeForce 7900 GTXnfmasurements
that need render-to-texture functionality. With that GPlame rates obf.5 and
5.5 fps were measured for integrating particles in a steady asteady flow, re-
spectively. Further experiments showed that the perfocmar particle tracing
strongly depends on the size of the vector field and the numbgme steps,
which corresponds to the number of texture uploads.

The vector field, which is already accessed for particlegirggon, is stored
and later reused by an image/object space LIC method to denfilpw textures
on the stream surfaces and path surfaces. Only this adalittamface texture
gives a detailed impression of the flow behavior within thdaste, facilitating the
identification of flow divergence and vortices, and suppgrtihe perception of
the surface shape. Stream and path surfaces have the aypb/dvaathey, by con-
struction, “carve” a tangential vector field out of the urgieig 3D flow. There-
fore, a projection of the vector field and correspondingrjprietation problems are

126 Chapter 5. Meshless Surfaces from Volumes

Computation Steady Unsteady
Surface only 63.9 *
Surface with LIC 26.4 *
Integration only 6.5 5.5

1 Measured with an NVIDIA 8800 GTX GPU.
2 Measured with an NVIDIA GeForce 7900 GTX GPU.

* The rendering speed does not differ from the steady case.

Table 5.2: Performance using a 26B28x256 unsteady data set with 17 time steps (in
fps). Rendering speed does not depend on the underlying ttaheind can be considered
similar for both steady and unsteady flow. While the first twtries of the table consider
only the rendering of the surface, the performance of thégbarintegration is given
separately.

avoided. Finally, the novel combined path surface/LIC apph provides clearly
defined, texture-based path-lines which is not possiblie priévious methods.

CHAPTER

6 MESHLESSVOLUME VISUALIZATION

Rendering volumetric data stored in structured and unsired meshes has been
addressed in the past with methods specific to each meshTiipanain difficulty
in developing a unified approach is the data filterirgy, the reconstruction of the
function from the sampled data. Filtering for Cartesiardgrnas been widely
studied[117; 153 and the interactive rendering of volumetric data storediths
grids is nowadays well documentptb]. Although filtering for other mesh types
has not received the same attention within the visualinatmmmunity, various
rendering methods for curvilinear gridl85], tetrahedral meshd85], adaptive-
mesh-refinement meshgss1] and multiblock meshek95] have been proposed,
usually using some parameterization inside the cell inrai@@erform linear in-
terpolation. However, some of this mesh types pose probteaishave not been
completely solved yet. For instance, adaptive-mesh-nefame meshes, where the
volumetric value is stored at the center of cells of différgimes, and multiblock
meshes, with multiple overlapping meshes, are cases wheraterpolation of
the data is not trivial (see Figure 6.1). Discontinuitied artifacts are often gen-
erated during isosurface extraction from non-conformdtitmiock meshes, which
are usually treated during post-processing using geoorsdtategie$33; 91; 140;
146; 169.

Furthermore, meshes containing mixed cell types can bedff&0). Interpo-
lating the data in these meshes can be performed usean value coordinates
proposed recently by Floatet al.[52], which are a generalization of barycentric
coordinates (see Chapter 2). This method can effectivelyrpetrize the domain
within a cell, however onlyC°-continuity is ensured across the cell boundaries
and requires triangulating the faces of the polyhedrons fidssible to triangu-
late the faces of any polyhedron, the uniqueness of thegwiation cannot be
ensured and therefore the resulting mean value coordidefgnd on the choice
of the triangulation.

Thus, rendering volume data using higher-order reconstngof data stored
in meshes with cells of arbitrary type is still an open prowl&his problem is the
focus of this chapter. A straightforward approach to sohe problem would be
to disregard the mesh and treat the case as a scatteredtegpaliation problem.
However, the connectivity information of a mesh is impottamd cannot be sim-
ply replaced by the spatial queries (k-nearest-neighbmagjral-neighbors and
range-queries) usually performed by scattered data appaton approaches.

127

128 Chapter 6. Meshless Volume Visualization

e S sl

Figure 6.1: Wireframe rendering of the Space Shuttle Laiatticle multiblock dataset.
Interpolating/approximating volumetric data stored imygiil’e-mesh-refinement meshes
or multiblock datasets is not trivial since the data is stagthe center of non-conformal
cells of different sizes and even overlapping meshes aredfou

Therefore, and since points (vertices) are too weak to septecomplex data by
themselves, the power of a meshless technique must be pblidthe approx-

imation method. Thus, results of approximation theory owimg least-squares,
bilateral filtering, orthogonal polynomials, radial baiiactions and approximate
approximation are used here to approach this problem.

One important advantage of the approaches described ichhjster is that
they are completely mesh-free in the sense that no mesh rsustristructed
as done by previous approaches, such as those based onbaglgafunctions,
wavelets and B-splines. However, it is shown how the mesectvity can be
used to apply the methods to highly-anisotropic domainescéffely. Moreover,
the methods presented are matrix-fiies, no system of equations must be solved,
which facilitates its implementation on commodity graghh@rdware. This work
was developed in collaboration with Jodo Paulo Gois froemUWiversidade de
Sao Paulo.

The problem of meshless volume deformation is also addilesshkis chapter
and the advantages of moving least-squares in the contextiaie manipula-
tion to support exploratory tasks are studied. To that eecknt results on non-
physically-based moving least-squares deformation aeel asnd an interactive
hardware-accelerated implementation applicable to wtred and unstructured
grids is presented. A comparison with physically-basedletdral mesh defor-
mation is presented in terms of interactivity, for which gnacs hardware imple-
mentations were developed for both the moving least-sguard the physically-
based deformations. The work on moving least-squares wheformation was
developed in collaboration with Alvaro Cuno from the Unsielade Federal do

6.1. Meshless Methods for Volume Visualization 129

Rio de Janeiro and Siegfried Hodri from the Universitattgrt.

6.1 Meshless Methods for Volume Visualization

Janget al.[76] and Weileret al.[163 used radial basis functions to encode scalar
and vector fields stored in structured and unstructured esesince a functional
representation is obtained, evaluating derived measarsgaightforward. The
authors use truncated Gaussian functions as basis fuacfloraccurately repre-
sent local features, the widths of each truncated Gaussiaaaptively specified.
Thus, the functional representation is given by

M

I — pal|®
160 =00+ > wew (P20)

i=1

where M is the number of radial basis functions, is the bias and?, w; andy;
are the width, the weight and the center of the radial basistion respectively.
To determine the center location, the authors make ugeintipal components
analysisto cluster the data points and, in each cluster, the centszlésted as
the weighted cluster average point or the maximum errortsrchosen by the
user. The width is determined by a hybrid gradient-descentimear optimiza-
tion technique (Levenberg-Marquardt method). The meamrggerror over all
data points is used during optimization. The individual gieiand global bias
are computed by minimizing the sum squared error for all gatats. Using this
method, radial basis functions are incrementally addetlisters with the largest
errors until the user specified error criteria is satisfiedcdgling errors are cal-
culated as the difference between the original value andévakiated radial basis
function representation at each input data point.

Janget al. [75] extended their work to ellipsodial basis functions in ortter
reduce the number of basis functions required to encode lanehlnd to bet-
ter reconstruct data where long features are present. TXmgre the use of
axis-aligned and arbitrary directional ellipsoidal bdsisctions. Using thaha-
lanobis distancgthe ellipsoidal basis function, specifically the ellipgali Gaus-
sian function, in three dimensions can be represented irxiatm as

e, V) = exp (< x = TV x =0)

where . is the center and/ ! is positive definite and is defined by a rotation
matrix R and a scaling matri$ asV~—! = RS~!S~'R”. The parameters of ~!
are found performing a nonlinear optimization of the sumhef $quared error as
before.

Leeet al.[96] approach the problem using B-splines. Although good result
are obtained, the need for a regular grid of control points major drawback.

130 Chapter 6. Meshless Volume Visualization

This is also the case for Wavelet-based metHeds More flexible splines de-
fined on more general domains have been also proposed butinahpgoblems
arise and computational costs are significantly increadéateover, underlying
connectivity information is still necessary. Roeshl.[1327 also presented a scat-
tered data interpolation method based on splines and keast-squares built upon
Bernstein-Bézier basis and a tetrahedral spatial decsitiggo. One of the main
computational efforts of the method is related to the siagublue decomposi-
tion needed for each least-squares computation, whictpesated until an error
criterion is satisfied.

Andersonet al. [12] approached the problem of visualizing volumetric data
stored in tetrahedral meshes by defining ellipsoidal paimbipives. Differently
from the work by Jangt al,, the focus of the method presented by Andersioal.
is on rendering and not on function reconstruction. Theralgm is comprised
of three steps. The first step is a pre-processing where timéspare created,;
each point having a representative transform and scalae\adsociated with it.
An entire tetrahedron is thus represented by a single pdineé scalar value at
the point is defined as the mean value of the scalar data shbibeé vertices of
the tetrahedron. Since the point primitives are rasteraggedquares, their shape
must be transformed to better approximate the tetrahednwa répresent. The
transform is obtained by defining a regular tetrahedronesedtat the origin such
that it is inscribed in the unit sphere. The transform is tbaltulated as the
transformatioril” that transforms the regular tetrahedron to the tetraheleory
processed. In the second step, the points are sorted &rdyaek on the CPU.
Then, in the third step, the point primitives are renderedl e vertex program
resizes each point using its transform to ensure that trehiedron is adequately
represented. The fragment program culls fragments basdteoshape of the
approximating element. Pre-integration is then used ttebejpproximate the
volume rendering integral.

Points had been previously used to render volumetric [d&8. The authors
proposed a method that renders a set of tiny particles geexlteking into account
a user-specified transfer function. The main advantageisftéchnique, based
on the emission-absorption model, is that the particlesbeaprojected onto the
image plane without performing any sorting process. As sedThapter 2, the
volume rendering integral for the emission-absorption eibés the form

L(D) = Lyexp (_ /O Dr(t)dt) + /0 7 Lu(s)r(s) exp (— /0 S T(t)dt) ds.

If Lo = 0then,

6.2. Moving Least-Squares Volume Visualization 131

is obtained. This integral can be solved numerically by subiohg the domain
of integration inton sub-domains in which the emissidn can be regarded as
constant, which gives us

LD)=Ly+ Lo+ Lg+---+Lp+---+ Ly,

tr s
Ly, :/ L¥7(s) exp (—/ T(t)dt) ds
te—1 0

where

and LM is the constant emission in tieth sub-domain. An opacity valug,, in
the k-th subdomain, can be defined as

Tt
ar =1—exp (—/ T(t)dt) ~ 1 — exp(—T,At),
tg

whereAt is the length of the subdomain amglis a representative density. Usu-
ally, the opacity is specified from scalar values. A partdénsity relates to a
scalar valuef (x) implicitly as

a(f(x)) = 1—exp(=7(x)Al),

—log(1—a(f(x
rx) = G a(f(x)) < 1 - exp(—At)
1.0 otherwise,

wherex is a position on the viewing ray. Thus, the particle denség be de-
termined from an opacity value converted from a scalar vakieg the transfer
function. The particles are generated according to theiyedistribution func-
tion 7(x) given above using thkit-and-missor metropolismethods. The image
is then created by projecting the generated particles tvetontage plane. On the
image plane, each pixel can be divided into several subgiXée color of each
pixel is determined by averaging the colors of its sub-pixel

6.2 Moving Least-Squares Volume Visualization

In this section, a method based on moving least-squaresder@olumetric data
using higher-order approximations, that can be appliedestras of arbitrary ge-
ometry and topology, is presented. To preserve importaiailden the data, the
approximation method by Ferat al.[50], based on bilateral filtering, is extended
to three dimensions. Although extending this method to kned-dimensional
domain is in theory straightforward, this leads to an ilkd@ioned problem for
which basic numerical methods diverge. Pre-conditionimgdj i@gularization can
be used together with expensive more stable methods to thioévyeroblem. How-
ever, it was approached using multi-variate orthogonajmpaials since this al-
lows to avoid solving systems of equations while improvitgpogity. Further-
more, performance is increased since orthogonal polyrismrasent properties

132 Chapter 6. Meshless Volume Visualization

that can be used to reduce the number of operations needetttdate the ap-
proximation. Also, as in the case of surface approximati@mapter 4), the recur-
sive nature of the revised Gram-Schmidt orthogonalizaiged can be exploited
to increase the degree of the approximating polynomialgusie results of pre-
viously computed lower-degree polynomials. Thus, the eegf the polynomial

can be set adaptively without incurring in a high extra cotapanal effort as

would be the case with other methods.

An empirical comparison, in the context of the method pregesn terms of
stability and performance between orthogonal polynonaat$ methods applied
both on the overdetermined system and on the normal equatsrcarried out.
Specifically, experiments with the Conjugate Gradient (@&&Xhod on normal
equations, Singular Value Decomposition (SVD), QR fae@iion via House-
holder transformations and Gauss-Jordan (GJ) with pigagioplied on normal
equationd20] were performed. As will be shown, orthogonal polynomials-ou
perform these methods in terms of speed of computation vleileg sufficiently
stable for the purposes of the problem at hand. Additionedlymprove the qual-
ity of the approximation obtained with the method presengdigpsoidal weights
are used in the moving least-squares formulation preseResults using Carte-
sian grids, unstructured meshes, curvilinear grids, adaptesh-refinement and
multiblock datasets with multiple overlapping meshes aesgnted.

6.2.1 Detail-preserving volume data approximation

The problem addressed here is the general approximatidasigonodescribed in
Chapter 3 in the context of volumetric data. Thus, here tagas on the three-
dimensional case. Given a set of sample paitits: {x,--- ,xy} C R? and a
function f : R* — R evaluated onY, generating the sef = {f,..., fv} C R,
find a functionM f such thatM f(x;) ~ f;; 7 =1,--- , N.

As seen in Chapter 3, given a polynomial babis- {11, ...,y }, @ moving
least-squares polynomial approximation

to a functionf is found by minimizing

min E

Mz

— Mf(x;) w(x,x;), (6.1)

i=1

with respect toc;; 7 = 1,---, N. When computing a detail-preserving local
approximation, on the other hand, the aim is to minimize tikWwing energy

6.2. Moving Least-Squares Volume Visualization 133

functional:

min R(x) = Z T ((f; — ./\/lfRMLS(xZ-))z) w(x,x;), (6.2)

where

T(p) =1 - exp (—50-)
Op

ando, is a parameter that determines the sensitivity of the esedo out-
liers. Other function& can be found in the literatuf&0; 155. The goal of this
minimization is to consider not only the distance betweenavaluation poink

and the sample points;; : = 1,---, N, but also the difference betweghand
M frurs(x;) for weighting the influence of the sample points on the redult
this case the system of equations that minimizés) becomes

M
{Z(Wkaq;])w'r’cj = <F7 qjk)w'r’; k= 17"'7M7 (63)

J=1

wherel’ = [f1, -+, fn], ¥; = [¥j(x1),...,¢;(xn)], X' is the first derivative of
T and

(T, e Zw]) (52w (5, %) T (M frarzs (%:) — £)).

The solution of System 6.3 can be obtained with a fixed poeratton as
follows. Let

(n)
C

M:

MLS
j=1

be the solution for iteration, and(cgo) (x),.. cg?()) an initial guess obtained
by solving System 3.4, rewritten here for convenience:

{ZOI&, Vi)oe; = (0, ¥i)w; i=1,..., M (6.4)

j=1

Therefore, the inner products are fixed, for iteratig@s

(5,)Y, ij ;) r () w(x, %) Y ((fi — M finrrs(x0))?),

134 Chapter 6. Meshless Volume Visualization

¥

isa

Figure 6.2: Slice82 of the Engine volume dataset (left). Whilst moving leasteags
smooths the data (center-left), the robust approximatiemseyves the details (center-
right). Shepard’s interpolation (right) is shown for sakke@mparison.

and, thus, the solution for iterationis obtained by solving the system

M
{Z@k, Uy =) k=1, M. (6.5)

J=1

Then, for each iteration, a moving least-squares apprdiome performed to
findanew(c" ™ (p), ..., "™ (p)). Although convergence is not proven for this
iterative process, in practiceiterations suffice to obtain a good approximation
if the initial guess is computed by solving System 6.4. Ndiat in the above
discussion the sums are on the entire’setHowever, as before, in practice only a
subset oft’ is used to approximate the function at paintThis subset is defined
as the neighborhood &f, that usually is given by thg nearest neighbors, where
k> M.

The implementation of this robust approximation is stréfigtwvard. The first
approximating function computed by solving System 3.4 &duss starting point
for the iterative process given by System 6.5.

6.2.2 Matrix-free detail-preserving volume data approximation

Although the process described in the previous sectioritsaswa detail-preserving
approximation of the volumetric data (see Figure 6.2), & Varge number of
small systems of equations must be solved. More importatity systems of
equations are ill-conditioned and solving them with knowohniques such as
Gauss-Jordan (with pivoting) or Conjugate Gradient leadgsgtabilities. More
expensive techniques, such as preconditioned Conjugatié€st or SVD and QR
factorizations with regularization can be used to impraabisity. Good results
are obtained with these methods as will be discussed. Haoytheecomputational
effort is prohibitive and increasing the degree of the agpnation means having
to compute the new approximation and to discard the prelyiaxsmputed ap-
proximation. Orthogonal polynomials, on the other hand,vaell suited for this
task due to their recursive construction while being coiitipetin terms of stabil-

6.2. Moving Least-Squares Volume Visualization 135

D o T(?Wﬂ@*'}"o*ﬁf

@) (b)

Figure 6.3: Volumetric data approximation for a slice of @@mmbustion Chamber dataset:
(a) Gauss-Jordan with pivoting, (b) Conjugate Gradient@mal equations, (c) QR, (d)
SVD and (e) orthogonal polynomials. Noise represents atialu points where instabili-
ties led to a poor approximation. In (f), the result with Bménterpolation on the original
mesh is shown. Note that, for these results, dlpat precision was used to increase the
numerical instability. In practice, choosing a sufficigridrge support and usirdpubl e
precision, orthogonal polynomials produce results vigualdistinguishable from those
obtained with QR and SVD (see color plates).

ity compared to expensive techniques and in terms of pednom compared to
basic techniques.

Note that, in order to be able to define orthogonal polynosni@landw must
hold T/ > 0 andw > 0 ensuring that,)""), defines a new inner product for
each iteration. Using orthogonal polynomials, the robygireximation is also
an iterative process. The approximation in the first iterats obtained using the
inner product,,), where the weight functioa is positive and decreasing. Based
on this weight a first set of orthogonal polynomials is foursing the process
described in Chapter 3. The first approximation to the sofui then given by

M‘f}(%ol\)/fLS sz ‘I’ \II>

With this first result the iterative process is started. Icheigerationn a new set of
orthogonal polynomials is constructed using the inner pebd,)fu"%, and a new
approximated solution is found as

RMLS Z %

The implementation of the method was tested with regularmels (Cartesian
grids), structured curvilinear grids, tetrahedral meshdaptive-mesh-refinement
meshes and multiblock datasets. From the tests perfornveaksifound that the

(0, w),

\IIU ; >wT’ .

136 Chapter 6. Meshless Volume Visualization
‘o l
. R

Figure 6.4: Volume and isosurface rendering of differertada=rom left to right: the
Bucky Ball structured dataset, the Heat Sink unstructusgdset, the Penguin adaptive-
mesh-refinement mesh, the Space Shuttle Launch Vehiclébtoak dataset with multi-
ple overlapping curvilinear meshes and the Combustion @eakurvilinear dataset (see
color plates).

approximation reconstructs the function preserving tketelile filtering low fre-
quency noise. This can be seen in Figure 6.2, where a coropasfsShepard’s
interpolation, moving least-squares approximation amddeétail-preserving ap-
proximation is shown. Although Shepard’s interpolatiofasster, it fails to recon-
struct the function accurately, while moving least-sqaamoothes the data.

As mentioned before, several solvers were implementediégsihe approach
based on orthogonal polynomials. Specifically, SVD and Qf®ofization meth-
ods were used due to their stability, as well as the Conju@eaeient on normal
equations (see Section 13 of the report by SchewdhdK) and Gauss-Jordan
with pivoting due to their simplicity and high performancdésual results of the
approximation obtained with these methods for a slice ofdbmbustion Cham-
ber dataset are shown in Figure 6.3. For sake of comparisengsulting linear
interpolation on the original mesh obtained with barydentoordinates is also
shown. For this test, aloubl e variables where changed td oat to increase
the probability of incurring in numerical instabilitiest i important to mention
that, although a cutting plane is shown, the approximatias performed in the
three dimensional domain. As can be seen in the figure, the &DQR fac-

6.2. Moving Least-Squares Volume Visualization 137

Method
Polynomial degree Orth. Pol CG Gauss-Jordan QR SVD
2 0.19 0.43 0.76 0.46 0.87
3 0.47 0.61 0.93 1.15 2.84
4 0.76 0.82 1.83 2.19 8.35

Table 6.1: Processing time (in milliseconds), for a singi@@ation of the approximation,
with orthogonal polynomials, Conjugate Gradient (CG), &adordan, and QR and SVD
factorizations.

torizations are the most stable followed by orthogonal poiyials. Conjugate
Gradient and Gauss-Jordan with pivoting are not able tmparfvell due to the
high condition number of the matrix. It is important to reé#nat Gauss-Jordan
and orthogonal polynomials are used to solve Systems 6.4 &hdhile SVD,
CG and QR are directly applied on the overdetermined systeatgesult from
Equations 6.1 and 6[20].

Although the SVD and the QR factorizations are more statde thrthogo-
nal polynomials, they are considerably slower. Table 6rhrearizes the per-
formance measurements carried out. Since the functiorogppation does not
depend on the mesh type, the performance for all datasetsiméar. The perfor-
mance measurements were carried out on a standard PC edjwiipa 3.4GHz
64-bit processor and 2GB of RAM. As can be seen, orthogonghpmials are
faster than any other method tested. Furthermore, ortredgumlynomials have
a clear advantage when the degree of the polynomial appatiimincreases.
This can also be observed in the table, which shows the catipatime for ap-
proximations of degrees 2 to 4. This is possible due to thersae nature of
the revised Gram-Schmidt orthogonalization process, lvhilows to use previ-
ously computed low-degree polynomial approximations taioba higher degree
polynomial. This means that the processing time in Table€d.the orthogonal
polynomials of degree 3, for instance, includes the contmrtaf the orthogonal
basis for polynomial approximations of degree 0 to 3.

To accommodate the method to anisotropic meshes, elliglaeight func-
tions are used. This allows to handle meshes with irrega@armpéing for which
spherical weights do not present good results as can berséeguire 6.5. Itis im-
portant to notice that, although an ellipsoidal Gaussiaigktes used, in practice,
its support is truncated to the ellipsoidal region definedh®/neighborhood of
the evaluation point. Using double precision and the ediighsl weight functions,
the orthogonal polynomials proved to be stable, accuraddast to compute. As
a proof of concept, a ray-caster was implemented to gendnatet volume ren-
derings and isosurface renderings of the test datasetsreShts can be seen in

138 Chapter 6. Meshless Volume Visualization

Figure 6.5: Comparison between the use of spherical (Ieft)edlipsoidal (right) weights
(Oxygen Post dataset).

Figure 6.4 where renderings of different datasets are shblgte that the isosur-
faces are smooth even for the adaptive-mesh-refinement ahiblock datasets
with no need for post-processing or special handling.

Orthogonal polynomials have shown to be a good choice dugeiogtability
in volumetric data approximation, while being faster thawy af the other four
approaches implemented to solve the systems of equatiewersd advantages
of using orthogonal polynomials were found, namely, the faat the method
becomes matrix-free and the recursive nature of the Gramsit orthogonal-
ization. This allows us to reconstruct the underlying fimctof the data stored
in meshes of any type preserving details in the data by mdaikteral filtering
and ellipsoidal weight functions. Also, if the degree of pfudynomial approxima-
tion is increased, the new polynomials that must be addduktedt of orthogonal
polynomials can be calculated using previously computéghmonials. Thus, the
degree of the polynomial could be increased by the usertinetiiesired approx-
imation order is achieved.

Although the fact that the method is matrix-free,, that no system of equa-
tions must be solved, was exploited to implement it on comigaplaphics hard-
ware, it was found that, despite being faster than solviegsistem, calculating
the orthogonal polynomials is still slow for visualizatiparposes. Therefore, ap-
proximate approximations were explored to address thisleno as will be seen
in the next section.

6.3 Approximate MLS Volume Visualization

In this section, a further volume rendering method that caafplied to meshes
of arbitrary geometry and topology is presented. This netibdbased on the it-
erated approximate moving least-squares approximédiglnwhich is applied to
anisotropic domains to reconstruct the volumetric datandurendering in this
work. This allows to preserve important details on the dat#he same spirit as
in surface reconstruction from point cloudl]. To provide gradient information

6.3. Approximate MLS Volume Visualization 139

for shading and other visualization purposes, the gradieeiach vertex of the
mesh is estimated by means of weighted least-squafé}. During rendering,

the gradient at the evaluation point is reconstructed ugargted approximate
approximation as done for the raw volumetric data. It is Wwaootmention that it-

erated approximate moving least-squares approximatitmamisotropic weights
has not been previously addressed. In this work, it is shawnthis combination

is possible and how efficient it is in the context of volumederning.

Although a meshless interpolation method is used, anig@tnmeshes con-
taining highly stretched cells are handled properly andmatically by means
of ellipsoidal weight functions calculated from mesh imf@tion. For this, the
construction of the ellipsoidal supports are explored imerdetail here. The lo-
cal ellipsoidal weight functions make the method robustsunthble for different
meshes. The results show that no parameter tuning is negessee the same
values produced good results. The implications of usingsidal weights in the
iterated approximate moving least-squares approximatieralso discussed and
an adaptive iterative approximate approximation is defined

In order to accelerate the method, a GPU version was impleddrased on
spatial data structures which is able to handle non-conveshes with highly
stretched cells. It is shown how to pre-compute the resut@iterative process
at the sample points, so that during rendering the methaatesdto a weighted
sum of the data stored at the vertices.

Additionally, the fact that no system of equations must Heexbcan be men-
tioned as an advantage of the method. Also, as discussed prekiious section,
no pre-processing to define a new topological data structufes data is needed,
such as done in methods based on radial basis functionsl|eisaad B-splines.

6.3.1 Ellipsoidal weight functions revisited

As mentioned in the last section, ellipsoidal weight fuos produce better re-
construction results for moving least-squares approxonatof volumetric data.
In this section, it is further discussed how ellipsoidalpons can be used in the
context of approximate approximation. Since Gaussianhidignctions are used,
in practice, the weight function is truncated to force cootpupport. Special
care must be taken into defining this support so as to ensataily significant
contribution from the sample points to the reconstructéde/es always taken into
account. This is achieved by choosing a suitable fill sizampater. With this con-
sideration, the ellipsoidal support is computed with aigtréiorward approach.

Given a sample point;, the setV;, = {x; € X : x; € star(x;)} is computed,
I.e., the set of points that share an edge in the meshxyitihese points are used
as input for a principal components analysis. For this, th@gance matrix

C:Z(X—Xi)®(x—xi)

xeV;

140 Chapter 6. Meshless Volume Visualization

is calculated. The eigenvectasg; k = 1,--- ,3 of C are the main directions of
the ellipsoid. The eigenvalues can be used to define the gupdbe ellipsoidal
weight. Here, however, the maximal distance in each of thie mhaections be-
tweenx € V; andx; is usedj.e., n, = kK maxxev, |(X — X;, €;)|, wheren, defines
the size of the support in the directiep. Thus, the transformation matriM that
defines the local support is given by

€

M = diag(nlv 2, 773) €2
€3

This support is used to define the ellipsoidal Gaussian weig/lexplained below.
The constank scales the support in all directions. This constant hasétsdb so
as to include enough data points according to the order ajeherating function
used. The role of this constant will be further discusseer liat this section.

Note that this computation is similar to the one used by &drad, [75]. How-
ever, since they need to compute the center of the suppodndimear system
must be solved for each support, which increases the cotnmeahcost. Another
important difference is the use of an stencil obtained froenrhesh information.
This helps to adapt the method to both highly anisotropiciaattopic meshes,
as will be shown in the results. Thus, differently from Jahg not necessary to
decide between using axis-aligned ellipsoidal weightsitiarily oriented ellip-
soidal weights or spherical weights for each data set. Theoagh used to com-
pute the weight function using the stencil from the mesh hasva to be reliable
and to produce good results for all the test meshes used. riig@ti@pic support
used is also similar to the one proposed by Danlal.[41] for reconstructing sur-
face from point clouds. The authors also use anisotropis li@sctions built upon
covariance analysis. They argue that by defining suitabso&mpic functions on
the data, it is possible to represent sharp details of thygnadi object.

6.3.2 Anisotropic iterated approximate moving least-squiees

The use of anisotropic spaces is not new and it has delivengdsatisfactory re-
sults in the paste.g, in mesh generatiofil44], in scalar function encodinky5]
and in surface reconstructi¢dl]. However, the use of anisotropic spaces in iter-
ated approximate approximation is, to the extent of our Kadge, discussed for
the first time here. It is worth to mention that, despite tlok laf a rigorous math-
ematical proof regarding convergence, numerical reshltsvggood results. The
importance of iterated approximate approximation appliercgnisotropic spaces
is that it can generate a good reconstruction of the volumd#ata without the
need for solving systems of equations and no new space desitiop model
of the data must be generated. Thus, it is very simple to imefe¢ on modern
commodity graphics hardware.

6.3. Approximate MLS Volume Visualization 141

The original iterated approximate moving least-squarethatewas defined
under the canonical inner produgt, y) = x'y. By simply recalling the results
presented by Fasshauer and Zhg8, it is not difficult to verify that these results
can also be extended to the inner product

<X7 y)A = XtAyu

induced by a positive matriA. To apply this to the problem of rendering ar-
bitrary meshes, the inverd®; of the transformation matrid; is calculated for
the support of each sample point as described above. Thgmraedric positive
matrix

A; = R,RT

is defined for each sample, which induces a local inner prio@ug)a,, since
A, is positive-definite. The implications of this inner protlgefinition in the
practical set of the problem addressed can be better unddrbly looking to a
specific case. Thus, let the Laguerre-Gaussidsi) be the generating function
for each sample point;, as in Chapter|3, so that the approximated value iat
given, as before, by

N
Mfyamrs(x) = Z fipi(x).
i—1

In three dimensions, the generating functignare given, for orde©(h?), O(h*)
andO(h"), by

63

pi(x) = —373 ©XP (=ri(x)),

6 =~ (3~ 160 exp (1),
and 1 35 7 1
6 = =i (5 = 560+ 3160) exp (=),

respectively. The function;(x) is redefined as

2%, Ax!

="
wherex; = x—x;. Thus, the tern; A, x! can be regarded as the squared distance
betweenx andx; in the space with origin ak; defined by the transformation
matrix R; (recall that this distance is also known as Mahalanobisdgst). Thus,
« fulfills the role of the fill size and the actual fill siZecan be set to a constant,
e.g, 0.25, which ensures that all data points in the support are censidfor the
approximation. Note that using the Mahalanobis distartee effect obtained is

142 Chapter 6. Meshless Volume Visualization

that of a local anisotropic fill size. The iterated procesd tonverges, in this case
to an ellipsoidal basis functions interpolation, is givgn b

Mf MLS(x) = Zfi%(x), (6.6)

N

MfVT/;BS() = MfVMLS()+Z(f MfVMLS()) i(x). (6.7)

=1
6.3.3 Gradient estimation

The least-squares gradient estimation by Mavriflisdl, which is independent
of the topology of the mesh, is generalized here to three msines. The method
relies on defining a stencil which identifies relevant poortshe star of the vertex
where the gradient must be evaluated. Let us consider a ppiat (x;, y;, 2;)
where the derivative must be evaluated and= (=, yx, 2x) € V(x;). The
following weighted least-squares allows us to estimategitaelientV f(x;) =

((fe)is (fy)is (f2)i):

min Y exp(—(xy, — Xi, X5, — X;),) (Eix)?, (6.8)
xeV;
where
(Bi)? = ((f2)i - dwiw + (fy)i - dyir + (f2)i - dzae — dfix) (6.9)

dfie = f(xx)— f(x;) and, analogouslylz;, = i, —x;, dyi, = Y —Yi, Az = 25—

z;. Since the number of neighbors, in general, is small and ¢ positions can
be arbitrarily defined, singular value decomposition isdugefind the unknowns
((f2)i, (fy)i, (f2):) more precisely. Thus, the gradient at any paiitt the domain

is obtained as
N

VX)) =) VI(x:)pilx).

i=1

Similarly to the volumetric data, the gradient approxiraatis obtained with iter-
ated approximation as

vaMLS() = va(xz')%(x)a

Vfé%is() = vaMLS()+Z<Vf(xz) fVMLS()) @i(x).

i=1

6.3. Approximate MLS Volume Visualization 143

6.3.4 GPU-based rendering

As mentioned before, modern commodity graphics hardwarsad to accelerate
the rendering process. Here we describe the pre-compusgberformed to re-
duce the rendering time, as well as the data structures ttag to textures stored
in graphics memory and the render passes implemented foothme rendering
engine.
Pre-processing.The data point$x;, f;) are stored in a two-dimensional texture
of size/N. The gradients at the vertices of the mesh are then pre-cedps
described above. This allows to perform shading and enhblade of other visu-
alization methods based on gradient information. Durimgleging, the gradients
are reconstructed at the evaluation point using the adapgvated approximate
approximation as done for the raw volumetric data. This isedsince the results
by Fasshauer and Zafg8] do not apply to derived data. The pre-computed gra-
dients are packed into a two-dimensional texture of the ssime=of the texture
holding the positions and data of the vertices of the mesie. matrix A; is also
pre-computed for each vertex of the mesh, which is then dtor¢hree further
two-dimensional textures of the same size as the first two.

Finally, since by rearranging Equation 6.7, we obtain

N

n+1
MLS

i=1

Y (fi- Mfé@’m(x»)] oi(x).
=0
it is possible to accumulate the results of the iterativeess at each vertex as

= fi+ Z (fi = MFDrs(x)) (6.10)

and store them in the texture holding the data points instédice scalar values
f;. During rendering, the reconstructed value at the evalogipintx is simply
calculated as

n+1
VML)S ZQ (x:)pi(x

Similar arguments are used for the gradlent vector.

Data structure. A Kd-tree subdivision is used to generate a partition of {hecs
S0 as to limit, to an upper bound, the number of vertices oitlesh fetched to
evaluate the function at a given position. The idea was td lirturn the number
of vertex supports intersecting a leaf node, including thpsrts completely con-
tained in the node. Although using grids of linked lists, @sisual done in GPU
implementations for which proximity queries are requireda better choice in
terms of performance, to ensure this upper limit a very fing would have to be

144 Chapter 6. Meshless Volume Visualization

constructed when dealing with highly anisotropic meshesresthe cell sizes vary
considerably. For instance, the Blunt Fin dataset is a wedlhn dataset which
does not impose a challenge to currently available rengeniethods. However,
meshless methods suffer from its particularly stretchdls ¢5]. In the tests,
for this dataset, the kd-tree partition needed about 3080nedes to ensure an
upper limit of 250 supports intersecting a single leaf, wihiie grid of linked lists
neededk x 1.5k x 5k cells.

The construction of the Kd-tree was performed as usual bdisigding the
nodes at a position determined by means of a bisection pF@weas to minimize
the difference between the number of intersecting sup@resach child node,
i.e, to approach the ratio of supports in each childitoThe direction of the
normal vector to the dividing plane is chosen along the atig/hich the best ratio
is obtained. The process stops after a user-defined numbierations. Since
traversing a Kd-tree on the GPU is computationally expenstwas decided to
render each leaf node in a different render pass and blene:shét of each leaf
node using alpha blending, as explained in the following.

Render passes.To handle mesh boundaries different from the bounding box of
the volume, two initial render passes are performed everg the viewing vector

is changed. The first render pass stores the intersecticacbfray with the front
faces of the surface mesh in a texture bound to anebuf f er obj ect. In

the second render pass the same operation is performedefdrattk faces. A
singlef r anebuf f er obj ect can be used for the two texture attachments to
reduce the number &fr anbebuf f er bindings. A limitation of this approach is
that the meshes must be convex.

These two textures are then used in the render passes pedidonrendering
each leaf node. For this, the textures containing the vertsitions, gradients,
volumetric data and transformation matrices are input thheander pass. Since
each leaf has more than one support intersecting it, a ligedices whose sup-
ports intersect the leaf is constructed. The list contdiegéxture coordinates of
the actual information of each vertex stored in the previooentioned textures.
All lists are then stored in a further two-dimensional tegtto be accessed in the
fragment program. To access this list, during each rendses, plae texture coordi-
nates of the first position of the list in the texture is passedn uniform variable,
together with the number of vertices in the list. With thisormation, and the
entry and exit points of the ray in the leaf, computed in theexeand fragment
programs respectively as explained below, the ray in thgnient program is tra-
versed calculating the reconstructed value as in Equatih @ he entry point of
the ray in the leaf is calculated by rendering the front famfethe bounding box
of the leaf node and interpolating the positions of the gediat each fragment.
With the ray direction, given by the normalized vector fradme tamera position
to the entry point, the exit point is calculated in the fragingrogram using the

6.3. Approximate MLS Volume Visualization 145

information of the planes tangent to the back faces of bawghtox of the leaf

node (recall that a leaf node has an axis aligned boundiny bidxe entry and

exit points of the ray in the bounding box of the leaf node ammpared to the

entry and exit points of the ray in the mesh calculated asritestabove, so that
the sampling is ensured to be performed inside the mesh @tak. In order to

obtain a correct forward blending of the results of each tesfe, the nodes are
rendered in order of proximity to the camera position.

The convergence to radial basis functions interpolatiorthef method de-
scribed above was confirmed with numerical tests where ttenstructed value
at the vertices of the mesh using iterated approximate appeation was com-
pared to the input data stored in a curvilinear mesh with lgiglretched cells.
The data was generated by sampling three different fureabthe vertices of the
grid, namely,

(1.25 + cos(5.4y)(cos(62))) '

M@z = 6+ 6(3z — 1)?)
h@y.2) = (tanh(9z — 9:6 —9y) +1)
fa(z,y,2) = 0.75exp { 956 — 2"+ (% - 2)* + (92 — 2) }
9l’+1 C(9y+1)? (92 +1)?
+ 0.75exp { T _ " }
+ 05exp[(92 —) +(9y4 3)* + (92 = 5)]

— 0.2exp [—(9:6 — 4)2 — (9y — 7)2 — (92 — 5)2})

The domain of these functions & = [0, 1] x [0, 1] x [0, 1] and their ranges
are[—0.37,0,37], [0.0,0.22] and[-0, 1, 1.1] respectively. After an average 6
iterations the method converged and mean and maximum ef®&& — 9 and
5FE — 8, respectively, were obtained. It is worth to mention thativergence was
obtained in the tests. On the other hand, the convergent®nsad, as stated by
Fasshauer and Zhaii48], by testing new values afit can be possible to reach
convergence faster, but divergence can occur. Howevere sire results of the
iterated process are pre-computed, this slow convergade®thave any impact
in the processing time during rendering.

Regarding performance, tests using an Nvidia GeForce 8808 graphics
card were carried out. The main difficulty in the implemeiotabf the method on
the GPU was finding an effective way to deal with proximity ges. The use of
a Kd-tree allowed us to limit the number of vertices visitedfeconstructing the
function at a given point, but the performance was dramiitidecreased by the

146 Chapter 6. Meshless Volume Visualization

Figure 6.6: Renderings of the Blunt Fin, Bucky Ball, Oxygeos® and Combustion
Chamber datasets (see color plates).

large number of render passes. Implementing the methodimgkesender pass
with a cleverer approach is a task that must be addressed intilre. Thus, for
the Blunt Fin ¢0 x 32 x 32 cells), Fighter 70125 tetrahedra) and Oxygen Post
(38 x 76 x 38 cells) the processing time was95s, 2.97s and4.45s per frame
respectively. On the other hand, the performance with that I5enk (21668
tetrahedra), Nucleonl{ x 41 x 41 cells), and Combustion Chambéf7(x 33 x 25
cells) datasets decreased and these datasets were reimdéresds, 11.72s and
10.09s respectively.

Visual rendering results are shown in Figure 6.6 with défdrdatasets. In all
cases, including the numerical tests reported above, &&lhs= 0.25 and scaling
parameter = 0.9. These values provided good results both visually and mger
of accuracy. This is a further advantage of the method ptedezompared to
approaches where parameter tunning is needed for eacledatas

Although the method proposed presents convergence inealesi cases, it is
necessary to prove similar results to the presented by &asshnd Zhanfyg], in
order to demonstrate the convergence to an ellipsoidas hasction. Numerical
tests regarding the dependence of the quality of the solwtith respect to the

6.4. Moving Least-Squares Volume Deformation 147

cell size, cell aspect ratio and frequency of the test femcsampled at different
locations in the domain must be also carried out.

6.4 Moving Least-Squares Volume Deformation

Volume deformation is used for a wide range of applicatioihile physically-
based methods yield a plausible deformation, in applioatguch as volume reg-
istration and volume exploration the interest focuses oniging a fast and easy
to manipulate means for modeling volumes. Deformationraigms for different
types of grids based on a combination of atomic transfomatisuch as scale,
twist, squeeze, taper or bend have been proposed. Althbegk transformations
are easy to use separately, a combination of them to germraiplex deforma-
tions is a difficult problem. Moreover, most of them are natahle for direct
manipulation by the user even when they can be controlletydsiv parameters.

A meshless approach was proposed by Migteal. [119 based on the idea
of performing the registration of two point sets, where aapalecomposition of
a quadratical matrix is used. Interactive deformation dinetric data is also
addressed in the work by Chen al. [31] and by Westermanaet al. [170 by
using free-form deformations. An hyperpatch with control points is used to
deform the enclosing space and thus the object. GiSdnproposed the 3D-
Chainmail algorithm, which is based on the propagation efdéformation at the
vertices of the grid, where the deformation of a vertex ildam the deformation
of its neighbors.

Deformation based on the idea of providing an as-rigid-@ssjble deforma-
tion has gained popularity in the last years. The term ad-ag-possible was
introduced by Alexat al.[6] to describe a deformation for which the scaling and
shearing are minimal. This yields a natural and plausiblerdeation, as has been
shown by Schaefeet al.[136 and Igarashet al. [74] who presented deforma-
tion algorithms for bidimensional images. The advantage@method presented
by Schaefeet al. is that, by using moving least-squares, it is not necess$ety t
the image be triangulated and that a closed-formula for #ferchation can be
obtained. An efficient and effective extension of this mettmthree dimensions
was proposed by Curet al.[37] which is the basis of the work presented in this
section. Cuno’s approach was chosen to solve the miniroizatioblem because
of its advantages compared to other methods which will beugdsed later in this
section, when a description of how the minimization probtam be solved using
orthogonal matrices and quaternions is given.

Since the goal of the method presented here is to aid in theepsoof vol-
ume exploration, the aim was to provide a means to deformahene that per-
mits the use of known hardware-accelerated volume renglengthods. As men-
tioned before, Cuno’s generalization to three dimensidnSohaefer’s moving

148 Chapter 6. Meshless Volume Visualization

least-squares deformations was used. Although Cuno’sadetas proposed for
surface meshes, the mathematical background can be appllede-dimensional
meshes straightforwardly. Since the goal is to provide ansi&adeform any type
of volume, the approach used is based on calculating a deplant map to obtain
undeformed positions from deformed ones, as in the work [akfSalamd 131].
This is the reason why the GPU implementation presentedjlaserseen later,
focuses on creating a Cartesian grid with displacemenbv&atvhich can be used
to recover the position given by the inverse map of the defion. Therefore, a
backward mapping is defined in contrast to the forward mapgéiined by Cuno.

One important contribution presented here is the inclusiamonlinear poly-
nomial transformations in the set of moving least-squaedsrahations originally
proposed by Schaefer and extended to three dimensions by, @ilmch com-
prises affine, similarity and rigid transformations. Thigya further set of poly-
nomial transformations is available, which complies wité tequirement of being
represented by a closed formula. To that end, orthogonghpatials are used in
order to be able to define a moving least-squares polynopypabaimation free of
systems of equations. Nonlinear polynomial transfornmegtiare able to provide
deformations, such as bending, that cannot be modeled inghrl transforma-
tions. The GPU implementation of this polynomial transfations has shown
interactive frame rates as will be discussed in the resifts also shown how
cuts can be simulated and the special handling needed tdheseih a moving
least-squares deformation is described.

6.4.1 Affine, similarity and rigid deformations

In this section, moving least-squares deformations inetlsienensions for back-
ward mapping are described, which are obtained from thedawnapping ver-
sion[37] straightforwardly by means of variable exchange.

Moving least-squares deformation uses control pointsttthke user manip-
ulate the volume. The set af control points{p;} and their deformed posi-
tions {q;} is the only input to the method. A functiaM fp, s is then ap-
proximated that maps any pointin the undeformed volume to a pointin the
deformed volume. The functiaM fp, 1.5 IS @ continuous interpolating function,
i.e, Mfpurs(pi) = di, which holds that ifVp; = q; then M fpy5(p:) = pi;
1=1---N.

By using moving least-squares to fid 1,15, Schaefer computes a differ-
ent transformatiom, for each poinix by solving

minz wi(la(pi) — qi)? (6.11)

The weighting function used in the moving least-squaresadmation evaluated
in p; andu is denoted here, differently from previous sectionswhyand defined

6.4. Moving Least-Squares Volume Deformation 149

as
1

(pi —u)*

anda = h?%, whereh is the fill size. The function\ ;15 that minimizes this
expression provides a forward mapping. However, as statéurdy in order to
better fit the deformation method to rendering algorithnhsas ray-casting, the
aim is to find the backwards transformatigr that maps each deformed position
v to its positionu in the undeformed volume. This is easily accomplished by
formulating the minimization as

Ww; =

N
minng(pi — 15), (6.12)
=1
where
, 1
(qz _ V)Qa

This is an advantage of moving least-squares deformatiomgared to, for in-
stance, free-form deformations, where the inverse tramsfon is not so simple
to find. Thus, the deformatioM fp,/1.s IS defined as

M fpurs(v) =151 (V).
Sincel, ! is an affine transformation, it can be written as
IJ4(x) = xM +t, (6.13)

whereM andt describe a rotation and a translation respectively. As diyne
Schaefert can be written as

t = p. —q.M,
wherep,. andq, are the weighted centers of mass of the manipulation points
_ Zz’]\il wiP;i _ Ez’]\il wiQi
P Zi\il wj 4 Zi\il wj .
Therefore, it is possible to rewrite Equation 6.13 as
I'(x) = (x —q.)M + p., (6.14)

and, by lettingp; = p; — p« andq; = q; — q., the moving least-squares problem
from Equation 6.12 becomes

N
min Y~ w]|q:M — py|*. (6.15)

i=1

150 Chapter 6. Meshless Volume Visualization

The transformation matri¥ determines the behavior of the deformation and
is not restricted to affine transformations. Specificaltyaa-rigid-as-possible de-
formation is obtained by restrictimyl to represent a rotation. In the following, the
backward mapping versions of the affine, rigid and simpyattiree-dimensional
moving least-squares deformations are described. Clasedifas are obtained
for these deformations. Thus, as mentioned before, laterstitown how closed
formulas for non-linear deformations can be obtained bypgisirthogonal poly-
nomials.

Affine deformations. If no restriction is imposed oM in Equation 6.15, the
solution is an affine transformation that can be obtaineddsviohg the equation
with respect taVI:

AN wlllaM — py)? oSN, wi(@M — p)(aM — p;)”
oM oM
YN, w (GMM”q; — 2p;MTGT + pipl)
oM

N N
= 2) wi(@a)M-2) vl b
=1

=1
The root of this equation gives the transformation matrix

N
M = (Z wzfﬁq@-) > wialps. (6.16)
=1 =1

Since this requires the inversion o8& 3 matrix, for which analytic solutions ex-
ist, Equation 6.14 can be considered a closed formula. Bhisisn is exactly the
same as the one presented by Schaefer and collaboratong fiova-dimensional
case. Onlyy; andp; where interchanged. However, in this case, no pre-praugssi
is possible as in the method by Schaefer, since the pqinése not fixed. It is
important to note that the control points cannot be copla@dherwise the ma-
trix becomes singular and the deformation function is umeefi From this, the
minimum number of control points) follows.

Rigid deformations. As done by Schaefer, to obtain a rigid deformation it is
necessary to restri@l to a rotation matrixj.e, M € SO3(R), whereSO3(R)

is the group of real orthogonalx 3 matrices, with the propertyM € SO3(R),
det M = 1. With this restriction, the optimization problem becomes

N
min Wil M — py 2. 6.17
Mesog(R); llaM - i (6.17)

6.4. Moving Least-Squares Volume Deformation 151

The formulation by Schaefer for the two-dimensional castricts the matrix
to be a2 x 2 orthogonal matrixj.e, M”M = 1. In two dimensions this suf-
fices to restrict the solution to a rotation, since in thisecdss M = 1 always
holds. For the three-dimensional case this is however mmigimsince3 x 3 or-
thogonal matrices can have determinafitand therefore a rotation as well as a
mirroring can be represented by such matrices. Indepelydenh the procedure
to solve the problem, a deformation that is not as-rigigp@ssible is obtained
whendet M = —1. Therefore, the matrix must be restrictedM' M = I
anddet M = 1. Alternatively it is possible to use another representatioch
as quaternions or rotation angle/axis. This latter apgraoaased by Cuno for
surface meshes and is applied here to compute the displatema@ as will be
described in the following.

To solve the moving least-squares problem of Equation & i’rewritten as
a maximization problem that only involves matrix and vectaitiplications. For
the rotation matrix a new representation of the rotation l®ans of rotation axis
and angle is used, which makes it easier to solve the optiloizproblem. The
estimation of the rotation axis and angle is carried out asigenvalue-finding
problem that is solved by finding the roots of a polynomial efjee4. For this,
Equation 6.17 is rewritten as

N N N
min (-2 > wiaMp! + > wipibl +) wgqiMMTqiT> .

MeSO3(R) i=1 i=1 i=1

Note that in this equatiodMM’ = I and therefore the last two terms are
constant and can be disregarded in the minimization prab&nce the first term
is negative, the problem can be rewritten as the maximizggroblem

N
I A AT

M 2 w;q;Mp; . (6.18)
Three-dimensional rotationin the three-dimensional space it is possible to rep-
resent a rotation by using matrices, quaternions, Euleleamgotation axis and
rotation angle. In order to find a rotation matrix that solizegiation 6.18 it would

be necessary to find nine unknowns. Therefore, a repregenthat uses fewer
variables, specifically a rotation axtsand a rotation angle is used. The rotation
matrix depends on vecterand scalary as

M =e’e +cos(a)(I—ele) +sin(a) | —e. 0 e, |. (6.19)

152 Chapter 6. Meshless Volume Visualization

By replacing this in Equation 6.18, we obtain

max (eCe” + cos(a)(s — eCe") + sin(a)ke”), (6.20)

llell=1,cos(a)?+sin(a)2=1
where

N
C=) wpa (6.21)
i=1

s = trace(C) andk = Zﬁil wip; X q;. The first restriction in the maximization
problem given by Equation 6.20 makes the veetdre normalized. The second
restriction is apparently unnecessary sineg«a)? + sin(a)? = 1 is always true.
However, this restriction is used to solve Equation 6.2Giofa) andcos(«) that
hold this restriction. For this, the Lagrange function

L(e,sin(a),cos(a); A1, \a) = eCe” + cos(a)(s — eCe’) + sin(a)ke” +
A1 —lef]) +
Ao (1 — cos(a)? — sin(a)?)

is used. Here\; and)\, are the Lagrange multipliers. The stationary points of
L are obtained as the roots of the first partial derivative$ wfith respect tce,
cos(a) andsin(a):

(1 —cos(a))e(C+ CT) +sin(a)k = Ae (6.22)
s—eCe’ = 2)\;cos(a) (6.23)
kel = 2)\sin(a). (6.24)

From Equation 6.24in(a) = % which replaced in Equation 6.22 gives

e(C+C")+ ol _lcos(a))keTk = #;S(a)e. (6.25)
By letting
N = C+CT1
T = S = o)) (6.26)
A= 1_#@

it is possible to rewrite Equation 6.25 as

e(N + ak’k) = e, (6.27)

6.4. Moving Least-Squares Volume Deformation 153

which means that the rotation axiss an eigenvector of the matri®N + ak’k)
corresponding to the eigenvalue Since) is a root of the characteristic polyno-
mial P(\) of the matrix(N + ak”k), using the Frobenius normh- || and the
approximation

det(I+ A) ~ 1 + trace(A),

we have
P(A\) =~ A\ — A [trace(N) + a] kk”
+A %(trauce(N)2 — [IN]|2) + a(kk”trace(N) — kNk”)
—det(N)(1 +kN""k"a).

The variablez in P()) is unknown, since it depends 0. It is possible to show
thata and)\ are related. For thag! is multiplied to both sides of Equation 6,22
and by using Equations 6.23 and 6.24,

2(1 — cosa)(s — 2Xgcosa) + 2\ysinasina = A\ ee’

is obtained. By rearranging this equation, noting teat = 1 and using the
Definition 6.26, we obtain

(6.28)
Thus, the equatio®(\) = 0 becomes

0 = A= Ns 42 [65" = 2|[C|[F] +
A4 (IC)F — s*) s — 2kCk" — det(N)] +
det(N)(2s — kKN~'k").

To find the root of this polynomial, it is converted to a degessquartic function
by replacingy = A — s:

0 = y4 —
¥ (2ICII2) -
y (8det(C)) +
det(N)(2s — kN'k”) — 8det(C)s + 2||C||55* — s*,

which can be solved using the method by Ferrari. Since thblgmo at hand
is @ maximization problem (Equation 6.18), the largest rggt, of this quartic
function gives the solution.

Determining the rotation axis and angl&iven the maximal root of the character-
istic polynomial, by substituting = A — s and using Equation 6.28, the rotation

154 Chapter 6. Meshless Volume Visualization

Figure 6.7: Examples of affine (left), rigid (center) and iamity (right) moving least-
squares deformations. The top row shows the undeformedtobybereas the bottom
row shows the corresponding deformation.

axise can be obtained as an eigenvecto(Nf+ ak’k) corresponding to the now
known eigenvalue\. For small deformations, this approach can be problematic
sincea can be very large. By substituting = —ake” andu = £ it is possible
to rewrite Equation 6.27 as

u(N - AI) =k. (6.29)

With this, e is obtained by normalizing, which is obtained by means of a matrix
inversion. To obtain the rotation anglethe optimization problem given by Equa-
tion6.20 is solved with respect tm(a) andcos(a). From Equations 6.26 and 6.28
we have

A —2s =2Xy(1 — cos(a)).

By adding Equation 6.23 we obtain, fa,
2X =X —s—eCel.
Therefore, from Equations 6.23 and 6.24 we obtain

s —eCel 4 sin(a) = kel
A — s —eCeT anc. smie A —s—eCel’

Similarity deformations. A generalization of the rigid deformations is the simi-
larity deformation, which consists of a rotation and an amif scaling. By intro-

cos(a) =

6.4. Moving Least-Squares Volume Deformation 155

ducing a scaling factot, € R into Equation 6.12 a new minimization problem
can be stated as

N
i I SAZ'M - AZ' .
Merg(gg(m;wz!m @M — p||

This can also be restated as a maximization problem as

N N
max 2us Y waMpl — 12y wiaql
a2 ; 1 Mp; u; .

By assembling the Lagrange functions and deriving with @espo 1., the opti-
mality condition

N N
> wlaMp] — .y Wil =0
i=1 i=1

is obtained. Since the optimality condition of Equation®s?ates that solving
SV WiqMPT = 7,4, Suffices, we obtain
Tmax

N o a AT
Zi:1 w;qi49;

The matrixM is calculated as in the case of rigid deformations.

Hs =

6.4.2 Nonlinear polynomial deformation

As mentioned before, nonlinear polynomial transformatiare able to provide
deformations, such as bending, that cannot be modeled ingharl transforma-
tions. Non-linear moving least-squares deformations aaedsily obtained by
solving Equation 6.12 with the functidp' (x) being a polynomial of arbitrary de-
gree. Letv = {91, ..., ¥}, wherey; are basis functions (polynomial functions
in this case) and® = {p4,...,pn} C R. Letalso¥; = [¢;(a1), ..., ¢;(an)],

I' = [p1,...,pn] and define the inner produ¢t),, : R* x R — R, as a
weighted sum:

N
(& =Y &, (6.30)
=1
Then, the new minimization problem can be formulated as
N
min Z wi(pi — 0y (qy))?, (6.31)

where

156 Chapter 6. Meshless Volume Visualization

andc; are the unknown coefficients to be found. Note tframust not contain
constant terms since the translattas not directly computed (see Equation 6.14).
These coefficients can be obtained by solving the correspgmidbrmal equation
given by

M
{Zm,\p dorC; = (0, W) s k=1,..., M. (6.32)
7=1

Solving this problem would mean having to invert, for ingt@nfor a complete
guadratic polynomial, 40 x 10-matrix and for a cubic polynomial 20 x 20-
matrix. The interest here lies on providing a closed formaiteof the polynomial
transformation of arbitrary degree. This can be achievadégns of multi-variate
orthogonal polynomials described in Chapter 3.

Thus, a set is defined, as before using some orthogonalization prosash,
that the inner product satisfié¥,, V,),, = «;;d;;, whered;; is the Kronecker
delta, System 6.32 becomes a linear system where the ceeffinatrix is diago-
nal. Thus, the approximation is given by the sum

Z v;(x \I, \Ij > (6.33)

Again, ¥ must not contain constant terms. The mapgingis then given by
L' = o(x —q.) + p..

6.4.3 GPU-based MLS displacement map computation

As stated before, since the goal is to be able to efficientiop® rendering of the
deformed volume, GPU-implementations of the transforomatidescribed above
were developed. The approach followed is based on compatoigplacement
mapD covering the domain of the volume, which provides the disptaent of
the backwards mapping given ldy'. The size of the displacement map can be
chosen so as to balance performance and accuracy of thaaiggbosition.

The displacement map is stored in a three-dimensional figgiint texture.
Linear interpolation is used to obtain the displacementorest any point in the
domain. Thus, in a GPU-based volume renderer, it sufficestal fthe displace-
ment vector corresponding to the current position on thefm@y the displace-
ment texture. This is the only change that any volume remdarest suffer to
accommodate the deformed volume. However, if gradientiétion is needed
by the volume renderer, some considerations must be takemacount, which
are described later.

Since the computation of the displacement map can be peztbrmparallel
and few texture fetches are needed while a significant ammiumathematical

6.4. Moving Least-Squares Volume Deformation 157

Figure 6.8: Examples of a nonlinear polynomial deformafienthe Knee dataset. The
bending effect shown is achieved by moving one control p@at of 15) at the bottom
of the model.

operations must be performed, this problem is well-suitefGPU implementa-
tion. Besides the performance increase in calculating #fierched positions for
each voxel in the displacement map, by calculating it on tR&J@&o data transfer
is needed to upload the map to the graphics hardware memory.

To fill the three-dimensional texture holding the displaeatmap, the result
is rendered into the texture by meansfofanebuf f er obj ect s, for which
3D textures are supported by the NVidia GeForce 8 graphiascduring ren-
dering of the slices of the 3D texture each fragment reptesarvoxel in the
displacement map texture, whose position is given to thgnfient shader as tex-
ture coordinates. Given the position for the fragment, theder calculates the
undeformed position (backwards mapping) as detailed postly.

To perform this computation, the deformed and undeformesitipas of the
control pointsg; andp;,i = 1,--- , N, respectively, are required. Sindévaries
and arrays with dynamic size are not supported, a constari ég/V is added
dynamically as first line of the shader code. This constaunséd throughout the
code to define the arrays holding the control points deforaredi undeformed
positions and partial results obtained during the compmnaf hen, the shader is
compiled in run-time. Since the number of control pointsslo®t change often,
the cost of compiling the code in run-time is not relevant.

The fragment shader implementation of the actual algosttorcalculate the
undeformed position for each voxel of the displacementiexis straightforward
thanks to the capabilities of the latest graphics hardwackisiidentical to the
CPU implementation. One consideration must be pointed oweker in the case

158 Chapter 6. Meshless Volume Visualization

Figure 6.9: A two-dimensional depiction of a volume beingj cu

of the non-linear deformations. Since only Shader Modelgpsus more than 32
TEMP variables and implementing the Gram-Schmid orthogon@hizaequires
a number of temporal variables depending on the number dfagooints, the
non-linear deformation is only supported by the NVidia Gele series.
Introducing cuts into moving least-squares deformationsin order to introduce
cuts to support the interactive exploration of the volurhe,GPU implementation
of the deformation algorithms described above is extendliaéd. use of cuts with
the rigid transformation provides a plausible behavior enflexible enough to
support different types of cuts on the same model.

A cut can be realized by using a two-dimensional cutting elete.g, a plane,
that divides a portion of the volume in two pieces. Withoutdimg generality, the
following discussion will use half-planes. The behaviottld cut is depicted in
Figure 6.9, where a half-plane (represented by the yello®) Islices a volume.
The cut is only apparent after a deformation is performedhénfigure it is also
possible to see two features of cuts with moving least-sgudeformations: one
of the manipulation points does not influence the portionhef tolume on the
other side of the cut, and void regions are created whenmgfgrthe volume.

In order to obtain these features for cutting volumes de&atmith the moving
least-squares approaches described above, a new weigiibfudepending on
the position of the point to be deformed relative to the agtfplane is defined.
This weight function limits the influence of the control p@mn the other side of

the cutting plane, and is defined as
= d(v.q)—
w; =)T T e
la; — v||?

whered is a damping function that defines how much influence a displaontrol
pointq,; has on a voxel. If g; andv are not occluded one from the other by the
cutting plane, ther/(v, q;) = 1. The functiond tends asymptotically t6 with
the size of the coverage. The damping function used in the \ess

las — i)
d i) —)
v q) <||qz- ot)

6.4. Moving Least-Squares Volume Deformation 159

Figure 6.10: Example of a cutting plane in combination witig&d moving least-squares
deformation.

whereg returns the length of the shortest indirect path frgnto v that does not
cross the cutting plane (Figure 6.9) and the factor 1 makesd decrease more
rapidly.

The choice of the damping functiehinfluences directly how the cut will look
like. If d is discontinuous, undesired sharp edges are obtaemgdduring iso-
surface rendering. Als@; must be strictly monotonically decreasing relatively to
the occlusion between andq;, since the influence of a heavily occluded control
point must be smaller than that of lighter occluded contmhts.

To create the void regions it does not suffices to use the dapfpnctiond,
since this only accounts for the result of the deformatioemvh cutting plane is
present. For this, a test checking if the deformed and thefonched positions
of v are occluded one from the other by the cutting plane is pexdr; in which
case the deformed position is not taken into account forehdering.

To visualize the surface of a cu#,g, during isosurface rendering, the alpha
channel of the displacement map is used to store the Valfiehe deformed
position of the voxel belongs to a void region. During remagr the current
position on the ray is discarded if the interpolated valughaf alpha channel
is greater thard.5. In order to better represent the surface of the cut, adaptiv
sampling is performed during the rendering with higher ieucies around cut
boundaries. The regions around the cut boundaries arg eastignized from the
interpolated value in the alpha channel. As one moves fahtavards a cut, this
interpolated value increases uplto

On the left side of Figure 6.7 it is possible to see the charatic behavior
of the affine deformations. The deformed volume presentarstend scales, that

160 Chapter 6. Meshless Volume Visualization

Figure 6.11: Visual comparison of the different moving tesguares deformation meth-
ods. From left to right: original model, affine deformatiaimilarity deformation, rigid
deformation and nonlinear polynomial deformation of degee The polynomial defor-
mation shows a bending effect that cannot be accomplishiédothier deformations.

turns it very dissimilar to the original volume. The effeditained with these
deformations seems very unnatural since most objects lityreae not subject

to such transformations. An example of the rigid defornratan also be seen
in Figurel 6.7. With the deformation it is possible to leave tteck undeformed
while pulling the head back. The similarity deformation winan the figure, on

the other hand, depicts clearly the expected scaling.

A visual comparison of the deformations is shown in Figudel 61n the figure
it is possible to see the characteristics of each transfitomarhe affine transfor-
mation scales the cube, while the similarity transfornratitcreases the size of
the top of the cube. The rigid transformation avoids theisgabut the bump
on the top is very pronounced as expected. The non-linearrdation (degree
2) shows how bending can be achieved by moving only one mbatipn point.
This can also be seen in Figure [6.8.

Deforming normal vectors. Volume rendering algorithms need the gradient in-
formation, for instance, to render isosurfaces or provigleting effects for direct
volume rendering. After a deformation, the gradient vextmiculated from the
data at the undeformed position must be corrected. Thiseaobe using the de-
formation texture holding the displacement vectors andrdotmation stored in
the alpha channel and an adaptation to backward mapping ai¢tthod proposed
by Barr[17]. Barr describes the transformation of a normal vector faravérd
mappingF’ as

ng = detJp (J51)" ny,
whereJ is the Jacobi matrix of”, n, is the normal vector at the undeformed
pointp andng is the unknown normal vector at the deformed pejnfTo adapt
this method to backward mapping, let

1
a7 et I
wherelJ is the Jacobi matrix of the backward mappifig It is easy to see that
for the Jacobi matrixd , of the displacement mag,; = I + Jp, wherel is the

(JG)T Np,

6.4. Moving Least-Squares Volume Deformation 161

identity matrix. Thus,

1

== 1+3) ' n..
Do = ot g, LHIp) me

Since the normal vectors (gradient vectors) for lightinggmses are normalized,
the factorm can be neglectedl , can be computed from the displacement
texture by means of finite differences. To accelerate thderng, the matrix
(I+ Jp)T can be pre-computed and stored in an additional texture giddient
vector at the cut boundaries must be also recomputed. Thisnvean be easily
calculated as the gradient of the values in the alpha chaniriee displacement
texture.

In Figure 6.10, a cut obtained with a rigid deformation isidega. With the
cut, it is possible to see the interior of the teapot. The diseamipulation points
allows the user to easily change the appearance and natthie ofit. Although
implementing the functiow on the GPU for a half-plane is straightforward, for
more complex geometric cutting objects it could become espe.

Table 6.2 shows the performance of the deformation algostbn the CPU
and the GPU for different displacement map sizes and nunfamndrol points.
The tests were performed on a standard PC equipped with a péidessor and
1GB RAM. It is important to note that due to the use of backwaapping, no
pre-processing can be applied to accelerate the compuiaitihhe displacement
map as it was done by Schaefsral. [136 and Cuncet al.[37]. As expected,
it is possible to see that the processing time is proportiomaéhe size of the
displacement texture. The computation of the displacemeatis not interactive
for medium and large resolutions. On the other hand, the GRAIl suited for
this problem as shown in Table 6.2 where it can be seen tharaictive frame
rates are achieved having a performance increase of a faici®0 compared to
the CPU implementation. The graphics card used was an N@dfeorce 8800
Ultra. It is important to note that in the case of the GPU immatation, the
processing time is not proportional to the size of the disgraent texture. In
this case, an increase of 8 times the number of voxels in #tiereedoubles the
processing time. By examining other measurements, it isiplesto see that the
processing time on the GPU is proportional to the number ioéslin the 3D
textures. This is because the largest part of the procesisnagis taken by the
binding of the current slice to tHer anebuf f er obj ect .

6.4.4 Other approaches for moving least-squares deformatn

In this section, other potential methods for solving the imimation problem
given by Equation 6.12 that are not based on rotation axisaagles are dis-
cussed. Disadvantages and limitations will be discussed.

162 Chapter 6. Meshless Volume Visualization

Deformation algorithm (CPU/GPU)
Size affine rigid similarity nonlinear (degree 2)

64 x 64 x 64 0.633/0.004 1.125/0.008 1.133/0.008 9.27/0.102
128 x 128 x 128 4.868/0.015 8.779/0.045 8.976,/0.045 117.18/0.46
256 x 256 x 256 38.55/0.104 69.97/0.325 70.55/0.325 793.00/0.73

Table 6.2: Processing time for the CPU and GPU implememsitaf the deformation
methods (in seconds) for displacement maps of differeessiz

By lettingw, = 1, the minimization problem

N
i LM — pil|? 6.34
in Z; |&:M — bl (6.34)

is obtained, which is a least-squares problem. This proliéenamedorthogo-
nal procrustes problenby Golub and Van Loaf60] and Viklands[160 and is
regarded as the problem of fitting two three-dimensionahpcliouds or as the
search for the opposite orientation of two coordinatesesyst In general, the
orthogonal procrustes problem is formulated fiedimensional spaces, however
in this case it is only meaningful in three dimensions. Atialgolutions to Equa-
tion/6.34 are available, for instance, by means of quatesiitl] and orthogonal
matriceq70; 13.

Orthogonal matrices. For the orthogonal procrustes problem of Equation 6.34,
the method by Golub, based on the singular value decompositihe unweighted
(w} = 1) correlation matrixC (Equation 6.21), can be used. For any n-matrix,
the singular value decomposition gives a decompositiohefarmA = USVT,
where then xm-matrix U and then x n-matrix V are orthogonal while the, x n-
matrix S is diagonal. The rows dfJ are the eigenvectors &A™ and the columns
of V the eigenvectors cA” A. The diagonal elements &f are the square roots
of the eigenvalues oA A7 In this caselU, V andS are3 x 3-matrices.

To obtain the rotation matrix that solves Equation 6.34, slmgular value
decompositiolJcScVE of C is computed. Then, the rotation matrix is given
by M = Ucdiag(1, 1,det(UcVE))VE, wherediag(1, 1, det(UcVE)) is intro-
duced to ensurdet(M) = 1 in case thelet(UcV)) = —1. This does not
influence the orthogonality a¥1.

This method does not produce the expected results as carebhears&ig-
ure 6.12. Actually, there are many locations where the dedtion obtained is
identical to the deformation produced by the method basadtation angle and
axis, but there is nonetheless an abrupt change in the apmeaof the deforma-
tion, which shows, additionally, noise at the boundaries thunumeric instabili-

6.4. Moving Least-Squares Volume Deformation 163

Figure 6.12: Result obtained with orthogonal matricestierBoston Teapot model.

ties. An explanation for these results is given by Viklahtéd, who presented

an analysis on the weighted orthogonal procrustes probidrch corresponds to
the moving least-squares problem. The weighted orthogmoakustes problem
has, in contrast to the orthogonal procrustes problem, migtane but up to eight

minima. Although this number of minima cannot be theordifgaroven and was

only empirically obtained, it is enough that a single minimoannot be ensured
for the method to be unsuitable for the problem at hand. Tppsa@ach is very

similar to the work by Hord70] and by Arunet al.[13], which are therefore also
unsuitable for our problem.

By the polar decomposition, as used by Mukeial. for the registration
of two point clouds, the matrigﬁlwgqui iIs decomposed in the forRS,
whereR is a orthogonal matrix an8l is a symmetric matrixR is then used as the
rotation matrix for the rigid deformation. However, thesaidependency between
the polar and the singular value decompositions, whiclkestaiR = UVT and,

therefore, the problem persists.

Quaternions. The method described here for rigid deformations based dimfin
the rotation axis and angle shows visually no unpleasastn@ssearch for the
optimal rotation by means of quaternions as done by H@fh should produce
the same results as the method based on the rotation axisgled bn the method
based on quaternions, a closed formula is presented aled baghe search for a
normed rotation axis and angle in the form of a quaterniomtiiat, the eigenvec-
tor corresponding to the largest eigenvalue of a symmeétsici-matrix is com-
puted, which results in the minimizing quaternion. It is wn@nt to mention that
the solutions by Horifi71; 7d were originally proposed only for the least-squares
formulation to register two coordinate systems.

164 Chapter 6. Meshless Volume Visualization

6.4.5 Comparison with physically-based mesh deformation

The interactive simulation of stiff deformable objects igrablem well suited for
the application of the high programmability of current drags hardware. Thus, a
hardware-accelerated simulation system for deformalbiahtedral meshes based
on implicit integratior{ 149 was developed and is presented here as opposing case
to the meshless deformation described above. As in movasj-gquares defor-
mations, with the simulation performed on the GPU, rendgttve deformed body
can be realized directly without the need for readbacks amwehbbads from/to
the graphics hardware. For means of performance compad#terent explicit
solvers were implemented on the GPU. This allows us to betterpare in terms
of performance the GPU implementations of the moving lsgstares deforma-
tion algorithm and of a traditional physically-based mesiented deformation
method.

Itis important to mention here, related work that has beewrldped in the last
years. Milleret al.[11§ presented a approach based on the finite element method
for real-time deformations. By estimating the rotationattpof the deformation
and using linear elasticity, they create plausible aniometifree of the disturbing
artifacts present in linear models and faster than noratimeodels. However,
since they solve a linear system on the CPU for the impli¢ggration, its use
with large meshes is still limited. Teschretral. [152 perform deformations on
low resolution tetrahedral meshes, coupled with high rggm surface meshes
used to visualize the deformed body. Explicit Verlet intggm on the CPU is
used to solve Newton’s equation of motion. The actual defdion process is
able to handle up t25000 tetrahedra at interactive rates.

Physically-based simulation on the GPU has been addregsessbarchers
during the last years to simulate a variety of phenoml@#a 66; 56; 86; 2R
The approach by Georgit al. [56] is of particular relevance in the context of
this work. They simulate mass-spring models at interadtasme rates through a
GPU-based computation of the Verlet integration method tateahedral meshes,
where the edges of the tetrahedra represent springs timatheiparticles. Al-
though the frame rates reported are interactive, instedsilarise for large time
steps due to the use of an explicit method and to the stiffaksguations with
high spring constants. Thus, here implicit integrationfmGPU is addressed.
Implicit integration of the physical model. The physical model is based on the
set of N interacting particles in a given tetrahedral mesh. Particiteracts with
the set\; of the IV; particles connected to it by an edge. Interaction is reptese
by a linear spring model, for which the energy functibrior two particles; and
j is given by

1
B = shullxill =), (6.35)

6.4. Moving Least-Squares Volume Deformation 165

whereL is the original distance between the particlesandx; their positions,
X;; = X; — X;, andx; the spring constant. Given the particles velocitieandv;,
damping forces exerted on particlérom the interaction with particlg are also
included. Thus, the forces acting on particldue to particle are

oF X,
flel ——— = ky(||xs]| — L)—2 (6.36)
’ 0x; ’ 5]
fi[;-ﬂ = —ra(Vv; —Vj). (6.37)

. . L. . s d e
The combined forcd; over particlei is given byf; = ZjeM(fi[j] + f.U) + £l

17 7
wherefi[e] is the sum of external forces applied on the particle thatatalepend
on its position or velocity. Then, the derivatives of theclmwith respect to the
position and the velocity are the matrices given by

of; Xi'XZT' L XZ--XZT-
= Ky—m]+/{S(1—) - — (6.38)
ox; X Xij (Bl X Xij
of;
= kgl (6.39)
an
Arranging the forces, positions and velocities of &llparticles in three arrays
F =[fi,.. . fy], X = [x41,..,xy] @ndV = [vq,- -+, vy], respectively, and given
the3N x 3N diagonal matrixdM = [my, my, mq,- -+, my, my, my|, Wherem,

is the mass of particlé, the dynamical problem can be written in terms of the
second-order differential equation

% = M 'f(x,%) (6.40)

Given the known positios(¢) and velocityv(t¢) of the system at timg, the goal
is to find the new positiox(¢ + /) and the new velocity (¢ + k) at timet + h,
whereh is the time step.

Definingv = x, Equation 6.40 is converted to a first-order differentialaq

tion:
% < v) B < M—lf“f(x’ v)) : (6.41)

Letting Ax = x(t + h) — x(t) andAv = v(t + h) — v(t), the implicit Euler
method approximatedx andAv as

< 23) - h(M—lf(x(t‘)/i)gxi‘:(t) +AV)) (6.42)

Following the groundbreaking work by Baraff and WitKib6], Ax = h(v(t) +
Av) in the lower part of Equation 6.42 is replaced and the firseoapproxi-
mation of a Taylor series expansion bis taken, to form the systetdAv = b

166 Chapter 6. Meshless Volume Visualization

Neighbors
N;
External Forces \ nbichb
Neighborhood E —nne/'?i
0 SR
[il= RIG]
J u

Figure 6.13: Texturesei ghbor s andnei ghbor hood hold the information of the
neighboring particles.

(I — hM—lg—i — hQM‘lg—i> Av = hM™ (f(t) + hg—iv(t)) (6.43)
which must be solved fofAv in order to findx(¢ +) andv(t + h).
Hardware-accelerated simulation. To solve the linear system of Equation 6.43
on the GPU, the input data is stored in 32 bit floating pointutess. These textures
hold the state information (vectoxsandv), the externals force8¢, connectivity
information, and partial results obtained during the satioh.

The input data is stored in five 2D textures, namelyt er nal f or ces,
posi tions,vel ocities,nei ghbors, andnei ghbor hood, with dimen-
sions given by[v/N|, with the exception ofiei ghbor s whose dimensions are
[V N

For each particle, textureposi t i ons holds its position in space, while tex-
turevel oci ti es holds its velocity and mass. The sum of the external forces is
stored inext er nal _f or ces. Connectivity information is stored in two sepa-
rate textures (See Figure 6,13). Textae ghbor hood stores a pointer to the
position of texturenei ghbor s, where the information of th&’; neighbors of the
particle is stored. This information includes a pointerkbtcthe position of the
neighbor in the first four textures, the original distancenaen the particle and
the neighbor, and the index of the particle. The number ajm®ars/V; is stored
in one channel of textuneei ghbor hood. Although«,, x4, andh are passed as
environment parameters, could be stored alternatively in the remaining channel
of texturenei ghbor hood to allow the use of different local material properties.

This arrangement maps nicely to hold the sparse non-bandedxncom-
puted when forming the linear system. Each row/gf neighbors in texture
nei ghbor s can be regarded as being the non-zero non-diagonal pasition

!Better choices for the dimensions of these textures coulatheeved using the results given
in the work by Bolz[23].

6.4. Moving Least-Squares Volume Deformation 167

thei-th row in the matrix. This holds, since only the elementshef thatrix cor-
responding to two connected particles are non-zero.

A typical implementation of the simulation algorithm is givin the following,
where the description of the GPU implementation of each atéipe algorithm is
detailed. The first step computéb, &£ andf = fl*! 4 fl¢ + £l Two render-
ing passes are performed to compute the derivatives andsfofn the first pass,
the non-diagonal elements §§; are calculated. For this, a quadrilateral covering

a viewport of size] vazl N;] is rendered to generate the fragments represent-

ing the non-zero non-diagonal elementsgéf Since each element (% is a

3 x 3-matrix, the result of each fragment iaslements. Thus, the results are ren-
dered to three target texturasn_di agonal _df dxk, k£ = 0,1,2. The texture
non_di agonal _df dx£ will hold the results of the non-zero non-diagonal ele-
ments of th&3 x i + k)-th row ofg—i, in the texels corresponding to the neighbors
of thei-th particle. Textureposi ti ons, nei ghbor s, andnei ghbor hood,

as well as the parametets andh, are input to this pass.

In the second pass the diagonal element%f(ohnd the force vectof are
computed. Each diagonal element%f is given by the negation of the sum of
the non-diagonal elements in its row. Thus, in the secondemrng pass, the di-
agonal elements are computed by generatingN'|)? fragments, and summing
in each fragment the results of the previous rendering passsponding to its
neighbors. Therefore, texturasn_di agonal _df dx are inputs to the current
rendering pass. To access the information in texta@s_di agonal _df dxk,
the texturesiei ghbor hood andnei ghbor s are required. As the combined
forces are also computed in this pass, textpi@si t i ons,vel oci ti es, and
ext er nal f orces are also needed as input. Thus, fragmecalculates the
3 x 3-matrix corresponding to théth diagonal element o%, and the com-
bined force corresponding to particleThe result is stored in four target textures:
di agonal _df dxk; £ =0,1,2andf or ces.

The third step is forming the linear systeim\v = b given by Equation 6.43.
The linear system is formed in three rendering passes. Ifirsigass the right
sideb of Equation 6.43 is calculated by generatiffg/N])? fragments. Each
fragment calculates three elements of vedido be stored in texture. Since
matrix M~ is diagonal, it is only needed to loop over the neighbors efghrti-
clei corresponding to the fragment to calculéte) + h‘g—iv(t) and multiply the
result by%. For this, texturesion_di agonal _df dxk, di agonal _df dxk,
andf or ces are required, so as the textunesi ghbor s, nei ghbor hood,
andvel oci ti es and the parametér.

Next, the matrixA on the left side of the linear system must be computed. In
the second pass, the non-diagonal elements givearvi ' 2£ — p2M~1 2L are

168 Chapter 6. Meshless Volume Visualization

Figure 6.14: Surface rendering of deformed tetrahedraheses

calculated. To that end, we generafe/> " | N;])? fragments Each fragment

multiplies the input fromnon_di agonal _df dxk by —2-, to obtain a partial
result. Note that the indexof the corresponding partlcle (row) is needed, which
can be fetched from the alpha channel of textue¢ ghbor s. Then, —’ih is
added to the diagonal elements of the partial result, asditial result is wrltten
to the texturesmion_di agonal Ak, k=0,1,2.

To compute the diagonal elementk,/n])? fragments are generated, provid-
ing as input texturedi agonal _df dxk, and their content is multiplied byh—2

for fragmenti. 1 — 2" js added to the diagonal elements and then the result is
written to texturesli agonal _Ak: k = 0,1,2. Note that texturesel oci ti es
andnei ghbor hood are also needed as input duertpandV;.

The third and final pass solves the linear systemforand updates the vectors
x andv. With the texturesli agonal _Ak, non_di agonal _Ak, andb holding
the matrixA and vectorb, the problem fits nicely to the GPU-based implemen-
tation of the Conjugate Gradients algorithm proposed bygérét al. [86]. The
arrangement of the data we use differs from the one propogédiger and is
more similar to the one proposed by Beltzal.[23]. Thus, the GPU matrix oper-
ations proposed by Kruger were fitted to work with our aremgnt. One of the
major differences with both works is the implementationhaf teduction operator.
Instead, a two pass reduction operator was implementedya@u to théog N
passes needed by Kruiger and Bolz. In the first pass, a redustia factor o255
is performed. This result is then combined in a second past,is possible to
handle vectors of up 255 elements. Further passes or nest&DP instructions
would be needed for larger vectors. We also eliminate thd fagenultiple passes

6.4. Moving Least-Squares Volume Deformation 169

Mesh size Frame rates [fps] CPU Euler [fps]
Tetrahedra Expl. Euler Verlet Veloc. Verlet Impl. Euler Hgjp Implicit

Bar 80 3880 3408 3454 282 5824 67
Dolphin 13766 1039 764 764 113 102 *
Panda 17312 945 612 614 100 80 *
Elephant 24106 900 539 541 48 58 *
Knee 112299 169 119 119 22 14 *
Foot 156612 220 149 149 12 10 *

* Maximum response time exceeded.

Table 6.3: Performance in fps of the integration method$herGPU and CPU.

looping on the non-zero elements of each row and using tloenTetion stored on
the alpha channel of textureei ghbor s to access the corresponding element in
the vector to be multiplied by the matrix. Each fragment gatezl performs this
operation and then adds the result to the contribution oflihgonal element.

Once the linear system is solved, the solution vedteris used as input to
a final rendering pass, wherefragments are generated to update the position
and velocity of each particle. The result is rendered toutegposi t i ons and
vel oci ti es, and then the next iteration of the simulation is started rifu
rendering, to access the deformed vertex positions, eatéxvetches its correct
position from the resulting textures, which is then transfed and passed to the
rasterizer. This allows to avoid costly readback operatioom the GPU.

Figures 6.14 and 6.15 show deformations performed on twattetiral meshes
using our approach. Results describing the performandedlgorithms are pre-
sented here. All performance measurements were carriedmatstandard PC
equipped with an NVIDIA GeForce 7800 graphics board, a 3.& B# CPU, and
2GB RAM. Table 6.3 shows the comparative results of the GREeH implicit
Euler and the straightforward GPU implementations of thgieit Euler, Verlet
and velocity Verlet solvers, which are thus not describe@ h&rame rates for
the integration process (not including rendering time)g@ven in fps. Timings
for the naive CPU versions of the implicit and explicit Eudee also included. In
some cases, the CPU implementation of the implicit Euler neasable to solve
the equation before the program aborted due to exceedednitimeut response.
In debugging mode, the program solved the linear systenessdly with a sig-
nificant increase of the processing time. It is importanetoark that, for the Bar
mesh, it was possible to use a maximum time step ef 0.001s for x, = 3000
with the explicit integration methods. With higher or largerh, instability oc-
curred. On the other hand, with the implicit Euler alnd= 0.01s no stability

170 Chapter 6. Meshless Volume Visualization

Figure 6.15: Original and deformed mesh of the Foot dataseetail on a toe is shown
in the upper left corner of each image.

problem was found using; larger thars0000.

In terms of performance, physically-based deformatiorigesbon the GPU
with explicit methods are as fast as computing a low-samgigplacement map
(64 x 64 x 64), for rigid deformations, on the GPU for a similar number of
elements (cells). However, as mentioned before, expligthods are in gen-
eral instable. When compared to the GPU implementationefrtiplicit Euler
method, the computation of the displacement map perforsierfaNonetheless,
both approaches provide interactive frame rates. As llyijimedicted, physically-
based deformations and meshless deformations perforer etifferent tasks.
While physically-based deformations are suitable for $aton tasks and visu-
alization problems where realism is important, it has bdeseosed that moving
least-squares deformations are more suitable for explgréasks due to the ease
of manipulation, for instance, in illustrative, educa@aband entertainment soft-
ware. One task that is difficult to accomplish with both plbgdly-based and non-
physically-based deformations is performing cuts. Coetal. [36] addressed
this issue for the case of displacement maps by introducisgpdtinuous dis-
placements. In the case of moving least-squares defomsatios is easily ac-
complished by modifying the weighting function as was sh@kove. Finally,
meshless physically-based deformation has been addriegs®ter authors and
the interested reader can find a number of works on the fiedd[119; 80; 120;
124.

CHAPTER

7 MESHLESSMETHODS INVISUALIZATION

In this work, surface and volume data reconstruction andleeng were ad-
dressed with meshless techniques. Most of the techniqesemed are based
on the moving least-squares approximation method, whiateggpopularity in
the last years within the computer graphics community, isfigdor surface ap-
proximation from unorganized point sets. The meshlessoastteveloped by the
surface reconstruction community generate astonishiggbd results compared
to traditional methods based on combinatorial structusésch can be regarded
as mesh-based methods and dominated the area for decades.

However, despite the success of meshless surface recctimtrumethods,
some problems persist and new problems arose. Thus, thezghes developed
in the context of the work reported in this thesis, initigdklygeted problems found
in meshless surface reconstruction algorithms. The iagudet of techniques can
be seen in Figure 7.1. The first problem addressed resultbd turvature-driven
projection operator proposed in Section 4.2, which was ldeeel to reduce the
number of operations needed for calculating the polynologall approximations
to the surface. This was done, since the number of local appations that must
be calculated to fully represent or render a surface usingmgdeast-squares is
very large. With the projection operator based on curvaiuveas possible to
model the local approximations using non-complete quadpalynomials. This
can be exploited in different scenarios. For instance, lgcgphardware imple-
mentations can benefit from the reduced size of the matrixeohbrmal equation,
since4 x 4-matrices are natively supported by current commodity lgicgocards.
With this goal in mind, a graphics hardware implementatibthe original mov-
ing least-squares surfaces definition was presented. Téike mh possible to ob-
tain interactive framerates for rendering a surface. Oniééu contribution of the
work on the curvature-driven projection operator was thaatation of the cur-
vature itself for unorganized point sets. As shown in therditure, the curvature
information can be used not only to have a quantitative nteaswanalyse the sur-
face, but for rendering purposes, for instance, for periognmon-photorealistic
rendering or accessibility shading.

A number of works on implicit moving least-squares surfacas developed
the last years by many authors, addressing sampling, reaotisn and perfor-
mance issues. However, one of the major drawbacks of thaitpess presented
is the linear nature of the surface approximation. Thusmeresults on approxi-

171

172 Chapter 7. Meshless Methods in Visualization

I\
‘/ Surface data ’

l Point clouds

Manipulate
e \/ e

— Physically

l No
| ﬂ MLS Deformation b [—
Y

S Implicit
> Proj ec.tl(.)n Op./
Implicit def.
— . Third-party SW ’ \/
Proj. Op.

Curvature-driven

A

A

HW-accel. PBS

égg IAMLS Surfaces bq—No Generate mesh D
- ? * Yes
. Adaptive MPU b <

Figure 7.1: Guideline for the use of a (incomplete) set of tess techniques in the
context of surface approximation. The methods proposebisntihesis are marked with
red borders (see color plates).

mate approximation were used in this work to combine the kamyof implicit
definitions with the high-order approximation of projectioperators. The result-
ing method is presented in Section|4.3. This method benedits the matrix-free
nature of approximate approximations, which allows the potation of higher-

173

order approximations without having to solve systems ofigus. This allowed
the definition of an implicit function, whose zero set prasdan approximation
to the surface that, differently from previous definitiomsnot linear. Also, it
was shown that this simplicity can be exploited to introdoe& mechanisms to
model specific features of the surface, specifically, shdges. Bilateral filtering
was introduced into the surface definition as an iteratiee@ssing to model sharp
features in the model. Despite the results being an appedomto the moving
least-squares approximation, the fact that no system aiteans must be solved
helps to avoid numerical instabilities.

Another family of meshless surface approximation methedmprised by
the partition of unity implicts. These implicit definitiorssiffer from robustness
and algorithmic problems. The latter refer specificallytie heed for different
data structures to perform the surface approximation anekt@act the output
mesh. Also, spatial adaptiveness is sometimes not enougtctonmodate com-
plex surfaces. Thus, a method based on orthogonal polyteoara on thes}
data structure was devised (Section 4.4), which providéonly spatial adap-
tiveness but also approximation order adaptiveness. fadly, the degree of the
polynomial approximation matches the local complexityref surface. However,
with this approach the robustness of the method worsensadtie toscillations
produced by high-degree polynomials. To attack this problkifferent algorith-
mic solutions were combined with satisfactory results.

The potential advantages of using meshless approximatethauds for vol-
ume data visualization were also explored (Figure 7.2). Hléss reconstruction
methods in this context were relegated to scattered dateipdst and were ba-
sically built upon partition of unity, inverse distance gieiing and similar ap-
proaches. The work in this direction was started by direstlgnding the moving
least-squares surface definitions to isosurfaces andcgegrfacated at regions of
high gradient magnitude. A combination, in the sense of dipter-corrector ap-
proach, of weighted least-squares and moving least-ssjweae defined, which
increased the domain of the definition while maintaining dli@lity of the rep-
resentation. The result of this technique is a smooth twoHola representing
some feature in the volume.

The flexibility of points was used in several works to renderfaces. This
flexibility was the reason why rendering dynamic surfacesagxed from volu-
metric data using points was explored in Section 5.3. Spedlifi the interactive
rendering of streamsurfaces, and the novel path-surfacesaddressed. Com-
modity graphics hardware capabilities were used to gemerdense sampling of
the streamsurface or path-surface. This sampling was tehto render a closed
surface with splatting. Interactive frame rates were agdeallowing the user to
place the probe for generating the streamsurface or pathesuand to animate
the path surface in real time.

174 Chapter 7. Meshless Methods in Visualization

§

)' Volume data ’

l Any grid
‘ Manipulate
p No
Yes
— Physically
based
l No
"
2 i MLS Deformation —_—
\ 4
DVR
DVR/Surface
Third-party SW I v

GPU-based Def.

Surface

*
@ MLS Iso-surfaces | €——— Scalar/Vector
Scalar \/

Vector

Stream/Pathsurf <

l Yes
IAMLS Vol. Ren. <
Third-party SW '

Figure 7.2: Guideline for the use of a (incomplete) set of tess techniques in the
context of volume visualization. The methods proposedimttiesis are marked with red

borders (see color plates).

— No Model -«
’ Orth. Pol. Vol. Ren. w

Methods for rendering volumetric data stored in a wide raoigmesh types
were developed as well (Sections 6.2 and 6.3). The goal waspioit the flexi-

175

bility of meshless approximation methods for defining a nstaiction technique
independent of the mesh type. The first approach to solvethldem led to the
combined use of detail-preserving weighting functions mroying least-squares.
While the reconstruction results were promising, numéritsabilities often oc-
curred and a large number of systems of equations had towedsdrhus, orthog-
onal polynomials were used to tackle both problems with gesalts. Perfor-
mance increased considerably while improving stabilityuegh for the purposes
of visualization. Despite this fact, a graphics hardwarplementation proved to
be still slow for visualization tasks. Therefore, approateapproximation was
used to increase performance. Although the method basedtlomgonal poly-
nomials produces more accurate solutions than the mettszditman approximate
approximation, the latter proved easy to implement andéasbmpute compared
to the former.

Implementing orthogonal polynomials on the graphics harwor other pur-
poses might deliver interactive frame rates. This is the das the non-linear
polynomial moving least-squares deformations propose8ection 6.4. This
method is based on recent work on moving least-squaresmdafions in three
dimensions, which provided closed solutions for compudéfime, similarity and
rigid deformations. Thus, in some sense, the non-lineamaohial deformations
proposed complete this set of moving least-squares defamsasince by using
orthogonal polynomials a closed solution for higher-ordetynomial approxi-
mations (interpolations in this case) can be obtained. fRuswas exploited, as
hinted before, to develop hardware-accelerated algostiomthe complete set of
moving least-squares deformations, which allowed to aehieteractive frame
rates. Although these results were used for volume defoomasurface defor-
mation can be as well addressed with the same concept ad mrfiggure 7.1. It
is maybe worth mentioning that a hardware-implementati@physically-based
algorithm for deforming tetrahedral meshes was also deeel@and is included
within the discussion of meshless volume deformation asw@perative model.

Albeit being conceptually interesting and setting a basduture work, the
meshless methods presented in this thesis need to be atedley deliver inter-
active frame rates. Although it is highly probable that rgemeration of graphics
hardware will be able to accomplish such task, the size ofiéittasets to be visu-
alized will also grow. However, we believe that the use of mesults from ap-
proximation theory can help overcome this problem. Alsgorous mathematical
proofs of convergence must be developed to better susem#thods. Nonethe-
less, in the same way that meshless techniques have prowedadvantageous
in comparison to mesh-based techniques for surface reaatien, not only from
unorganized point sets but also from polygon soups and pabigneshes, they
could also deliver interesting results in the context oiwmoé data visualization.

176 Chapter 7. Meshless Methods in Visualization

COLORPLATES

Figure C.1:Ray-casting implicit surfaces (left) and surfaces defiretha set of static points of
some projection operator (right). For implicit definitigmssurface cross is found by sampling the
ray at regular intervals. With the two last sampled poirts, ltisection method is applied to find
an approximation to the intersection point. In the case ofgution operators, the approximate
intersection is projected onto the surface. If the distarioghe projection is less than a threshold,
the current approximation is the intersection point. Othise a local approximatiofn f to the
surface is computed and its intersection with the ray definesiew approximate intersectien

In both cases the process starts with a point near the suifadepicted by the circled point.

Figure C.2:0Object-order volume rendering algorithms. Clockwise irmp left): splatting, cell
projection, object-aligned, and view-aligned textursdmhvolume rendering. Note that splatting
and cell projection are not restricted to regular grids.

177

178 Color Plates

A4

Figure C.3:Volume ray-casting. From left to right: at least one ray &#d for each pixel in
the image (ray casting), on each ray the volume is sampledreauof times (sampling), the
contribution of each segment is computed (shading), anddhgibutions of all ray segments are
composited to determine to final color of the pixel (composit

Figure C.4: Rendering of the approximate surface for the EtiAnt datateained with the
curvature-driven projection operator described in thigise.

Color Plates 179

Figure C.6:Approximated surface for the Stanford Dragon obtained@géio set of the implicit
function based on approximate moving least-squares ajypation.

180 Color Plates

Figure C.7:Plot of the value of the implicit function for a regularly ffpand an irregularly (bot-
tom) sampled dataset. From left to right: AMLS implicits Wk iterations, AMLS implicits with
20 iterations, Adamson and Alexa’s implicits and Kolluiirsplicits. The white line shows the
zero set of the function while colors map the value of the inifdflunction with red corresponding
to low values and blue to high values.

0 \ 1 | 2 l 3
~ y L
© « €Z
- s
= ~
<
; _
T L]
~
; -
- o
o

0l 112131 4lslgly

Figure C.8:The J} triangulation: on the left, a sample two-dimensional aagriangulation
and, on the right, examples of pivoting operations.

Color Plates 181

Figure C.9:The figure in the left side depicts the behavior of tHeduring function approxima-
tion. The figure in the right side shows an illustration of #dfect of the coverage domain on the
polynomial approximation. The left side of this figure depia case that can arise when a high-
order polynomial is used to approximate the surface ingidddcal domain (blue circle). Since a
large region of this domain is void of points, the polynon@pproximation may oscillate. Thus,
the coverage domain (blue line) is computed and the ratibeoftea of the coverage domain and
the area of the plane (yellow line) is calculated. This rdgtermines the degree of the polynomial
used. Decreasing the degree of the polynomial when this imthelow a threshold reduces the
oscillation as can be seen on the right side of the figure.

Figure C.10:Comparing the iso-mesh produced froh (left) against the iso-mesh obtained
from J} with displacement (right).

182 Color Plates

Figure C.11:A CSG difference operation involving the Neptune model acglimder.

Figure C.12:The Bucky Ball dataset. (a) The final result of applying thedictor-corrector
method. (b) The points projected by the predictor at a digt@neater than a pre-defined threshold
are shown in red. (c) The output points from the predictojguted by the corrector at a distance
greater than the threshold are shown in green.

Color Plates 183

Figure C.13:Calculating the intersection of the ray with the local apjimation stored in each
sample point.

Figure C.14Visualization of the flow field of a tornado with: (left) a paibased stream surface;
(right) the combination of a stream surface and texturedé&sw visualization to show the vector
field within the surface. Each stream surface is seeded aasigpight line in the center of the
respective image.

Figure C.15:Path surface of an unsteady flow: on the left side, the timeetinsteady flow field
is shown by colors (red for for early times, green for latards); on the right side the combination
of the path surface and time-dependent LIC is illustrated.

184 Color Plates

integrations

particles

new particles

[e]o]-]-[-[=]o[-]

accumulate particles

@) (b)
Figure C.16:lllustration of different steps of the algorithm: (a) dugithe initialization of the
particles texture only one column is rendered (the heigtite@strip represents the number of initial
particles) and (b) during creation of the binary tree the particles build the highest level and the
contents are summed up until the root contains the overailmu of particles to be inserted. In (c)
the lifetime of the individual particles is shown. The cofpadient is defined from red (&t= 0)
to green and illustrates the increasing lifetime. The anatisred lines at the left and bottom-right
parts of the image show regions with many new streamlines.

(@) (b) (©) (d) (e) ()

Figure C.17:Molumetric data approximation for a slice of the Combusiiramber dataset: (a)
Gauss-Jordan with pivoting, (b) Conjugate Gradient on rbeguations, (¢) QR, (d) SVD and
(e) orthogonal polynomials. Noise represents evaluatimntp where instabilities led to a poor
approximation. In (f), the result with linear interpolation the original mesh is shown. Note that,
for these results, onlfyl oat precision was used to increase the numerical instabilityprac-
tice, choosing a sufficiently large support and ugittybl e precision, orthogonal polynomials
produce results visually indistinguishable from thoseaoted with QR and SVD.

Color Plates 185

v 4
o s"

Figure C.18:Renderings of the Blunt Fin, Bucky Ball, Oxygen Post, and Gostion Chamber
datasets.

‘. l
B a

Figure C.19:Volume and isosurface rendering of different data. Frorhtlefight: the Bucky
Ball structured dataset, the Heat Sink unstructured datisePenguin adaptive-mesh-refinement
mesh, the Space Shuttle Launch Vehicle multiblock datagbtmultiple overlapping curvilinear
meshes and the Combustion Chamber curvilinear dataset.

186 Color Plates

\
“/ Surface data '

l Point clouds

Manipulate
e R e
Yes
— Physically
based
l No
' MLS Deformation —
\/ .
A Implicit
> Proj ec.tlc.)n Op./
Implicit def.
— . Third-party SW ' \/
Proj. Op.

Curvature-driven

A

A

HW-accel. PBS

; é TAMLS Surfaces No (}en(aten'y <

v

Adaptive MPU

A

Yes

A

Figure C.20:Guideline for the use of a (incomplete) set of meshless igales in the context of
surface approximation. The methods proposed in this tlaesimarked with red borders.

Color Plates 187

}' Volume data '
l Any grid
Manipulate
S O
Yes
— Physically
based
l No
"
pe] MLS Deformation —_—
\
DVR
DVR/Surface
Third-party SW I] \/

GPU-based Def.

Surface

Y
@ MLS Iso-surfaces | €———— Scalar/Vector
Scalar \/

Vector

Stream/Pathsurf <

l Yes
IAMLS Vol. Ren. <
Third-party SW '

Figure C.21:Guideline for the use of a (incomplete) set of meshless igcles in the context of
volume visualization. The methods proposed in this thesisrearked with red borders.

| No Model -«
’ Orth. Pol. Vol. Ren. 3 \availamy

188 Color Plates

[1]

[2]

[3]

[4]

(5]

[6]

[7]

8]

[9]

[10]

BIBLIOGRAPHY

Bart Adams and Philip Dutré. Interactive boolean operetion surfel-
bounded solidsACM Transactions on Graphigc82(3):651-656, 2003.

Anders Adamson and Marc Alexa. Approximating and inteisgcsur-
faces from points. IrProceedings of Eurographics/ACM Symposium on
Geometry Processingages 230-239. Eurographics Association, 2003.

Anders Adamson and Marc Alexa. Ray tracing point set sustatiePro-
ceedings of the Shape Modeling Internatignelge 272, Washington, DC,
USA, 2003. IEEE Computer Society.

Gady Agam and Xiaojing Tang. A sampling framework for acteieur-
vature estimation in discrete surfacéSEE Transactions on Visualization
and Computer Graphi¢c4.1(5):573-583, 2005.

Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar FreashDavid
Levin, and Claudio T. Silva. Computing and rendering poettsurfaces.
IEEE Transactions on Visualization and Computer Graph®d):3-15,
2003.

Marc Alexa, Daniel Cohen-Or, and David Levin. As-rigid{aasssible
shape interpolation. IRroceedings of the ACM SIGGRAPphges 157—
164, New York, NY, USA, 2000. ACM Press/Addison-Wesley Rsitihg

Co.

Peter Alfeld. Scattered data interpolation in three or maneables. In
T. Lyche and L. Schumaker, editofgathematical Methods in Computer
Aided Geometric Desigmpages 1-34. Academic Press, 1989.

Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A n@fonoi-
based surface reconstruction algorithmPhoceedings of the SIGGRAPH
pages 415-421, New York, NY, USA, 1998. ACM Press.

Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. The eoarust.
In Proceedings of the ACM symposium on Solid modeling andegifaing
pages 249-266, New York, NY, USA, 2001. ACM Press.

Nina Amenta and Yong J. Kil. The domain of a point set surfate$ro-
ceedings of the Eurographics Symposium on Point-basedhBrgmages
139-147. Eurographics Association, 2004.

189

190

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bibliography

Nina Amenta and Yong Joo Kil. Defining point-set surfaca&M Trans-
actions on Graphic23(3):264—-270, 2004.

Erik Anderson, Steven Callahan, Carlos Scheidegger, Johre®er, and
Claudio Silva. Hardware-Assisted Point-Based Volume Rend of Tetra-
hedral Meshes. IProceedings of SIBGRAPpages 163-170. IEEE CS,
2007.

K.S. Arun, Thomas S. Huang, and Steven D. Blostein. Leastss fitting
of two 3-d point setslEEE Transactions on Pattern Analysis and Machine
Intelligence 9(5):698-700, 1987.

Anthony Atkinson and Marco RianRobust diagnostic Regression Analy-
sis Springer-Verlag, New York, 2000.

Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. témuatic re-
construction of surfaces and scalar fields from 3D scanBrdoeedings of
the SIGGRAPHpages 109-118, New York, NY, USA, 1995. ACM Press.

David Baraff and Andrew Witkin. Large steps in cloth simidat In
Proceedings of ACM SIGGRARHages 43-54, 1998.

Alan H. Barr. Global and local deformations of solid primés. InPro-
ceedings of the ACM SIGGRAPIHages 21-30, New York, NY, USA,
1984. ACM.

Richard H. Bartels and John J. Jezioranski. Least-squatig fusing
orthogonal multinomials.ACM Transactions on Mathematical Software
11(3):201-217, 1985.

Fausto Bernardini, Joshua Mittleman, Holly Rushmeieaudio Silva, and
Gabriel Taubin. The ball-pivoting algorithm for surfacecoestruction.
IEEE Transactions on Visualization and Computer Graphiagl):349—
359, 1999.

Ake Bjorck. Numerical Methods for Least Squares Proble®g\M, Lon-
don, U.K., 1996.

Jules Bloomenthal. An implicit surface polygonizer. In Phieckbert,
editor,Graphics Gems lVpages 324-349. Academic Press, Boston, 1994.

Jean-Daniel Boissonnat. Geometric structures for thmeeasional shape
representationACM Transactions on Graphic8(4):266—286, 1984.

Bibliography 191

[23] Jeff Bolz, lan Farmer, Eitan Grinspun, and Peter Schro8parse matrix
solvers on the GPU: conjugate gradients and multigh@dM Transactions
on Graphics22(3):917-924, 2003.

[24] Richard L. Burden and J. Douglas Fairésumerical AnalysisPWS Pub-
lishing Co., Boston, MA, USA, 4th edition, 1989.

[25] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated voliandearing
and tomographic reconstruction using texture mappingvarel InPro-
ceedings of the Symposium on Volume Visualizapages 91-98, New
York, NY, USA, 1994. ACM Press.

[26] Brian Cabral and Leith Casey Leedom. Imaging vector fieldsgukne
integral convolution. IrProceedings of ACM SIGGRARHages 263-270,
1993.

[27] Wenli Cai and Pheng-Ann Heng. Principal stream surfaceBrdneedings
of IEEE Visualizationpages 75-80, 1997.

[28] Manfredo P. Do Carmo.Differential Geometry of Curves and Surfaces
Prentice-Hall, 1976.

[29] Antonio Castelo, Luis Gustavo Nonato, M.F. Siqueira, Res&linghim,
and G. Tavares. Thg! triangulation: An adaptive triangulation in any
dimension.Computer & Graphics30(5):737-753, 2006.

[30] CD-ADAPCO. http://www.cd-adapco.com, 2007.

[31] Yan Chen, Qing hong Zhu, A. Kaufman, and Shigeru Muraki. Riay-
based animation of volumetric objects. Pmoceedings of the Computer
Animation page 154, Washington, DC, USA, 1998. IEEE Computer Soci-
ety.

[32] C.S.Co,S.D. Porumbescu, and K. I. Joy. Meshless isosugfameration
from multiblock data. InProceedings of Eurographics/IEEE TCVG Sym-
posium on Visualizatigrpages 273—-281. Eurographics Association, 2004.

[33] C.S. Co, S. D. Porumbescu, and K. I. Joy. Meshless isosugecera-
tion from multiblock data. InProceedings of Eurographics/IEEE TCVG
Symposium on Visualization VisSymages 273-281, 2004.

[34] Christopher S. Co, Bernd Hamann, and Ken |. Joy. Iso-sptaté point-
based alternative to isosurface visualization. In J. RpkdeWang, and
R. Klein, editors Proceedings of Pacific Graphicpages 325-334, 2003.

192

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bibliography

Christopher S. Co and Ken I. Joy. Isosurface generationdiaelscale
scattered data visualization. Rroceedings of Vision, Modeling, and Visu-
alization, pages 233-240, 2005.

Carlos D. Correa, Deborah Silver, and Min Chen. Discontiusudisplace-
ment Mapping for Volume Graphics . Proceedings of EUROGRAPHICS
- [EEE VGTC Symposium on Visualizatigages 9-16, 2006.

Alvaro Cuno, Claudio Esperanca, Antonio Oliveira, andlB&oma. 3D
as-rigid-as-possible deformations using MLS Pimceedings of Computer
Graphics Internationglpages —, 2007.

Philips J. DavisInterpolation and ApproximatiarBlaisdell, New York, 1
edition, 1963.

Carl de Boor. B-from basics. Technical summary report, \dfistn Univ-
Madison Mathematics Research Center, 1986.

Tamal K. Dey and Jian Sun. An adaptive MLS surface for recansbn
with guarantees. IProceedings of the Eurographics Symposium on Ge-
ometry Processingage 43, Aire-la-Ville, Switzerland, Switzerland, 2005.
Eurographics Association.

Huong Quynh Dinh, Greg Turk, and Greg Slabaugh. Reconstgisur-
faces using anisotropic basis functionsPimceedings of the International
Conference on Computer Visigmages 606—613, 2001.

Jean Duchon. Splines minimizing rotation-invariant sesmms in sobolev
spaces. Constructive Theory of Functions of Several Variables,tiuec
Notes in Mathematic$71:85-100, 1977.

Herbert Edelsbrunner and Ernst P. Mucke. Three-dimensiatpha
shapesACM Transactions on Graphic43(1):43-72, 1994.

Michael Elad. On the origin of the bilateral filter and waysrtgprove it.
IEEE Transactions on Image Processiig(10):1141-1151, 2002.

Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezkaga, and
Daniel Weiskopf.Real-Time Volume Graphic#&k Peters, 2006.

Gregory Fasshauer. Approximate moving least-square®zaippation: A
fast and accurate multivariate approximation metho@unve and Surface
Fitting, pages 139-148, Saint-Malo, 2002. Nashboro Press.

Bibliography 193

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Gregory Fasshauer. Toward approximate moving least ssjapproxima-
tion with irregularly spaced center€Computer Methods in Applied Me-
chanics & Engineering193:1231-1243, 2004.

Gregory Fasshauer and Jack Zhang. Iterated approximatengneast
squares approximation. In C. Alves V. M. A. Leitao and C. A.de,
editors,Advances in Meshfree Techniqupage to appear. Springer-Verlag,
2007.

Markus Fenn and Gabrielle SteidRobust local approximation of scattered
data volume 31 ofComputational Imaging and Visiompages 317-334.
Springer-Verlag, Dordrecht, 2005.

Markus Fenn and Gabrielle Stei@Robust local approximation of scattered
data, volume 31 ofComputational Imaging and Visiompages 317-334.
Springer-Verlag, 2005.

Shachar Fleishman, Daniel Cohen-Or, and Claudio T. SileduRt moving
least-squares fitting with sharp featuresCM Transactions on Graphics
24(3):544-552, 2005.

Michael S. Floater, Géza Kbs, and Martin Reimers. Meanerabordinates
in 3D. Computer Aided Geometric DesigzP(7):623—-631, 2005.

Thomas Fruhauf. Raycasting vector fieldsPhoceedings of IEEE Visual-
ization, pages 115-120, 1996.

Michael P. Garrity. Raytracing irregular volume data. Aroceedings of
the Workshop on Volume Visualizatjgmages 35—-40, New York, NY, USA,
1990. ACM Press.

Christoph Garth, Xavier Tricoche, Tobias Salzbrunn, Tonbd&h, and
Gerik Scheuermann. Surface techniques for vortex visataia. InPro-
ceedings of EG/IEEE VGTC Symposium on Visualizapages 155-164,
2004.

Joachim Georgii and Rudiger Westermann. Mass-springesysbn the
GPU. Simulation Modelling Practice and Theqrd/3(8):693—-702, 2005.

Sarah F. Gibson. 3D chainmail: a fast algorithm for defogninlumetric
objects. InProceedings of the Symposium on Interactive 3D Graphics
pages 149—ff., New York, NY, USA, 1997. ACM.

194

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Bibliography

Joao Paulo Gois, Valdecir Polizelli-Junior, Tiago Etieljuardo Te-
jadaand Antonio Castelo, Thomas Ertl, and Luis G. NonatobuRband
Adaptive Surface Reconstruction using Partition of Uniplicit. In Pro-

ceedings of SIBGRAPpages 95-104. IEEE CS, 2007.

Joao Paulo Gois, Eduardo Tejada, Tiago Etiene, Luis G. Nomatto-
nio Castelo, and Thomas Ertl. Curvature-driven Modelind Rendering
of Point-Based Surfaces. Broceedings of the Brazilian Symposium on
Computer Graphics and Image Processipgges 27-36. IEEE CS, 2006.

Gene Golub and Charles Van Loaklatrix Computations John Hopkins
Press, 1989.

Markus H. Gross, Lars Lippert, R. Dittrich, and S. Haringvolmethods
for wavelet-based volume renderingomputers and Graphi¢21(2):237—-
252, 1997.

Gaél Guennebaud and Markus Gross. Algebraic point seacesf In
Proceedings of ACM SIGGRARIHdage 23, New York, NY, USA, 2007.
ACM.

Xiaohu Guo, Jing Hua, and Hong Qin. Touch-based hapticsnft@rac-
tive editing on point set surface$EEE Computer Graphics Applications
24(6):31-39, 2004.

Roland L. Hardy. Multiquadric equations of topography attteoirregular
surfacesJournal of Geophysical Researcr6:1905-1915, 1971.

Mark Harris and Greg James. Physically-
based simulation on graphics hardware, 2003.
http://developer.nvidia.com/docs/I0/8230/GDC20®18/sSimOnGPUs.pdf.

Mark J. Harris, Greg Coombe, Thorsten Scheuermann, andmodeas-
tra. Physically-based visual simulation on graphics haréwInProceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Geaphi
Hardware pages 109-118, 2002.

John C. Hart. Ray tracing implicit surfaces. Technical repECS-93-014,
Washington State University, 1993.

Charles HirschNumerical Computational of Internal and External Flgws
volume 1. A Wiley-Interscience Publication, 1989.

Bibliography 195

[69] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Surface reconstruction from unorganmeats. InPro-
ceedings of the SIGGRARKages 71-78, New York, NY, USA, 1992.
ACM Press.

[701 Berthold Horn. Closed-form solution of absolute oriematiusing
orthonormal matrices. Journal of the Optical Society of America
5(7):1127-1135, 1987.

[71] Berthold Horn. Closed-form solution of absolute oriertatusing unit
guaternions. Journal of the Optical Society of America(4):629-642,
1987.

[72] Jianbing Huang and Chia-Hsiang Meng. Combinatorial mashifecon-
struction and optimization from unorganized point cloudhaarbitrary
topology. Computer-Aided Desigri(34):149-165, 2002.

[73] Jeff P. Hultquist. Constructing stream surfaces in steddlyéctor fields.
In Proceedings of IEEE Visualizatippages 171-178, 1992.

[74] Takeo Igarashi, Tomer Moscovich, and John F. Hughes. Ad-dg-
possible shape manipulation. PRroceedings of the ACM SIGGRAPH
pages 1134-1142, New York, NY, USA, 2005. ACM.

[75]1 Yun Jang, Ralf P. Botchen, Andreas Lauser, David S. Ebertly k&
Gaither, and Thomas Ertl. Enhancing the Interactive Vigatibn of Pro-
cedurally Encoded Multifield Data with Ellipsoidal Basisriations. In
Proceedings of Eurographicpage 587. Eurographics Association, 2006.

[76] Yun Jang, Manfred Weiler, Matthias Hopf, Jingshu Huang,iB&: Ebert,
Kelly P. Gaither, and Thomas Ertl. Interactively VisuatigiProcedurally
Encoded Scalar Fields. FProceedings of Eurographics/IEEE TCVG Sym-
posium on Visualization VisSympages 35—-44. Eurographics Association,
2004.

[77]1 Bruno Jobard, Gordon Erlebacher, and M. Youssuff Husshagrangian-
Eulerian advection of noise and dye textures for unsteady fisual-
ization. |EEE Transactions on Visualization and Computer Graphics
8(3):211-222, 2002.

[78] Thouis R. Jones, Fredo Durand, and Matthias Zwicker. Normptove-
ment for point rendering. IEEE Computer Graphics and Applicatigns
24(4):53-56, 2004.

196 Bibliography

[79 Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poissoface
reconstruction. IrProceedings of Eurographics Symposium on Geometry
Processingpages 61-70. Eurographics Association, 2006.

[80] Richard Keiser, Matthias Muller, Bruno Heidelberger, Mas Teschner,
and Markus Gross. Contact handling for deformable poisetadbjects.
In Proceedings of Vision, Modeling, Visualizatjgpages 339-347, 2004.

[81] Joe Kniss, Gordon L. Kindlmann, and Charles D. Hansen. doti&e vol-
ume rendering using multi-dimensional transfer functiand direct ma-
nipulation widgets. IrProceedings of IEEE Visualizatippages 255-262,
2001.

[82] Leif Kobbelt and Mario Botsch. A survey of point-based teicjues in
computer graphicsComputers & Graphic28(6):801-814, 2004.

[83] Ravikrishna Kolluri. Provably good moving least squaresPtoceedings
of the ACM-SIAM Symposium on Discrete Algorithpeges 1008-1017,
Philadelphia, PA, USA, 2005. Society for Industrial and Aggp Mathe-
matics.

[84] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and JaFn&¥'Brien.
Spectral surface reconstruction from noisy point cloud$?rbceedings of
the Eurographics/ACM SIGGRAPH symposium on Geometry psoug
pages 11-21, New York, NY, USA, 2004. ACM Press.

[85] Martin Kraus. Direct Volume Visualization of Geometrically Unpleasant
Meshes PhD thesis, University of Stuttgart, 2003.

[86] Jens Kriiger and Rudiger Westermann. Linear algebra tuperfor GPU
implementation of numerical algorithmACM Transactions on Graphics
22(3):908-916, 2003.

[87] Philippe Lacroute and Marc Levoy. Fast volume renderinggisi shear-
warp factorization of the viewing transformation. Rroceedings of the
SIGGRAPHpages 451-458, New York, NY, USA, 1994. ACM Press.

[88] P.Lancaster and K. Salkauskas. Surfaces generated bygesst squares
methods.Mathematics of ComputatioB7(155):141-158, 1981.

[89] Peter LancasterPolynomial and Spline Approximatipehapter Moving
weighted least-squares methods, pages 103-120. Reidél, 19

[90] Carsten Lange and Konrad Polthier. Anisotropic smoothingoint sets.
Computer Aided Geometry Desidt?(7):680-692, 2005.

Bibliography 197

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100

Robert Laramee and R. Daniel Bergeron. An isosurface coityiral-
gorithm for super adaptive resolution data. Rroceedings of Computer
Graphics Internationglpages 215-237, 2002.

Robert S. Laramee, Christoph Garth, J. Schneider, and gélauser. Tex-
ture advection on stream surfaces: A novel hybrid visuabmeapplied to
CFD simulation results. IRroceedings of EG/IEEE VGTC Symposium on
Visualization pages 155-162, 2006.

Robert S. Laramee, Helwig Hauser, Helmut Doleisch, B. VkplF. H.
Post, and D. Weiskopf. The state of the art in flow visual@atiDense
and texture-based techniqu&3omputer Graphics Forun23(2):143-161,
2004.

Robert S. Laramee, Bruno Jobard, and Helwig Hauser. Imaamedpsed
visualization of unsteady flow on surfaces.Rroceedings of IEEE Visual-
ization, pages 131-138, 2003.

Jinho Lee, Lance C. Burton, Raghu Machiraju, and Donna Ss&eEf-
ficient rendering of multiblock curvilinear grids with cotep boundaries:
Research articles<Comput. Animat. Virtual World4.6(1):53—-68, 2005.

Seungyong Lee, George Wolberg, and Sung Yong Shin. Sacatteta
interpolation with multilevel b-spline$EEE Transactions on Visualization
and Computer Graphi¢$8(3):228-244, 1997.

David Levin. The approximation power of moving least-sgsaMathe-
matics of Computatiqr67(224):1517-1531, 1998.

David Levin. Mesh-independent surface interpolation. md® Brun-
nett, Bernd Hamann, Heinrich Muller, and Lars Linsen, @ditGeometric
Modeling for Scientific Visualizatigpages 37—49. Springer-Verlag, 2003.

Marc Levoy. Display of surfaces from volume datdEEE Computer
Graphics and Applications$(3):29-37, 1988.

Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewid2avid
Koller, Lucas Pereira, Matt Ginzton, Sean Anderson, JanasssDJeremy
Ginsberg, Jonathan Shade, and Duane Fulk. The digital Néiobelo
project: 3D scanning of large statues. SIFGGRAPH '00: Proceedings
of the 27th annual conference on Computer graphics andawctere tech-
niques pages 131-144, New York, NY, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

198

[101]

[102

[103

[104

[105

[104

[107

[108

[109

[110

[111]

Bibliography

Marc Levoy and Turner Whitted. The use of points as a disptayipve.
Technical report, University of North Carolina at Chapell Hi985.

Guo-Shi Li, Xavier Tricoche, and Charles Hansen. GPUFLI@edactive
and accurate dense visualization of unsteady flow®raceedings of EG/
IEEE VGTC Symposium on Visualizatipages 29-34, 2006.

Yaron Lipman, Daniel Cohen-Or, and David Levin. Error bosiiathd op-

timal neighborhoods for MLS approximation. Rroceedings of the Euro-
graphics Symposium on Geometry Processiagies 71-80, Aire-la-Ville,
Switzerland, Switzerland, 2006. Eurographics Assoamtio

Yaron Lipman, Daniel Cohen-Or, and David Levin. Data-dejsm MLS
for faithful surface approximation. IRroceedings of Eurographics Sym-
posium on Geometry Processjmages 59-67, Aire-la-Ville, Switzerland,
Switzerland, 2007. Eurographics Association.

Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel Tater.
Parameterization-free projection for geometry recomsion. ACM Trans-
actions on Graphic26(3):22, 2007.

Zhang Liu and Robert Moorhead. AUFLIC: An accelerated atbor for
unsteady flow line integral convolution. Rroceedings of EG/IEEE TCVG
Symposium on Visualizatippages 43-52, 2002.

Yarden Livnat and Xavier Tricoche. Interactive point-bdsosurface ex-
traction. InProceedings of the IEEE Conference on Visualizatjmages
457-464, Washington, DC, USA, 2004. IEEE Computer Society.

Jean-Louis Maltret and Marc Daniel. Discrete curvaturesapplications:
a survey. Technical Report LSIS.RR.2002.002, Laborat#® Sciences
de I'Information et des Systemes, 2002.

Stephen R. Marschner and Richard J. Lobb. An evaluationcoin®ruc-
tion filters for volume rendering. IRroceedings of the IEEE Conference
on Visualization pages 100-107, Los Alamitos, CA, USA, 1994. IEEE
Computer Society Press.

Dimitri J. Mavriplis. Revisiting the least-squares proaesifor gradient re-
construction on unstructured meshes. Technical Repor2@RB-212683,
NASA, 2006.

Nelson Max. Optical models for direct volume renderinGEE Transac-
tions on Visualization and Computer Graphid$2):99-108, 1995.

Bibliography 199

[112

[113

[114

[115

[114

[117

[11§

[119

[120

[121]

Vladimir Maz’'ya. Approximate approximation, in the mathainas of finite
elements and applicationslighlights, 77, 1994.

Boris Mederos, Sueni Arouca, Marcos Lage, Helio Lopes, and \elho.
Improved partition of unity implicit surface reconstruati Technical Re-
port TR-0406, IMPA, Brazil, 2006.

Boris Mederos, Luis Velho, and Luis Henrique Fiqueiredob&ki smooth-
ing of noisy point clouds. I'&8IAM Conference on Geometric Design and
Computing Seatle, 2003. Nashboro Press.

Miriah Meyer, Robert M. Kirby, and Ross Whitaker. Topologgcuracy,
and quality of isosurface meshes using dynamic partidEEE Transac-
tions on Visualization and Computer Graphid8(6):1704-1711, 2007.

Miriah Meyer, Blake Nelson, Robert M. Kirby, and Ross WhaakParticle
systems for efficient and accurate high-order finite elerweutalization.
IEEE Transactions on Visualization and Computer GraphicX5):1015—-
1026, 2007.

Torsten Moller, Raghu Machiraju, Klaus Mueller, and Roag¥él. Evalu-
ation and design of filters using a Taylor series expandiBRE Transac-
tions on Visualization and Computer Graphi&$2):184—-199, 1997.

Matthias Muller, Julie Dorsey, Leonard McMillan, Robedghow, and
Barbara Cutler. Stable real-time deformations. Hroceedings of the
2002 ACM SIGGRAPH/Eurographics Symposium on Computeraiiam
pages 49-54, 2002.

Matthias Miller, Bruno Heidelberger, Matthias Teschnand Markus
Gross. Meshless deformations based on shape matcA@lyl Transac-
tions on Graphics24(3):471-478, 2005.

Matthias Miuller, Richard Keiser, Andrew Nealen, Mark Bawlarkus
Gross, and Marc Alexa. Point based animation of elastistigland melt-
ing objects. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS
Symposium on Computer Animatj@©04.

Matthias Muller, Matthias Teschner, and Markus Gross. sRiafly-based
simulation of objects represented by surface meshesPrdoeedings of
Computer Graphics Internationapages 26—-33, Washington, DC, USA,
2004. IEEE Computer Society.

200 Bibliography

[122 Yutaka Ohtake, Alexander Belyaev, Marc Alexa, Greg Turkg &fans-
Peter Seidel. Multi-level partition of unity implicitACM Transactions on
Graphics 22(3):463-470, 2003.

[123 Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seigeitsd surface
reconstruction with adaptive partition of unity and radiakis functions.
Graphical Models68(1):15-24, 2006.

[124 Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus GrosShape
modeling with point-sampled geometrACM Transactions on Graphics
22(3):641-650, 2003.

[129 Mark Pauly, Dinesh Pai, and Leonidas J. Guibas. Quasi-objécts in
contact. InProceedings of the ACM SIGGRAPH/EUROGRAPHICS Sym-
posium on Computer Animatippages 109-119, 2004.

[126] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, antdaGross.
Surfels: surface elements as rendering primitives. Ptoceedings of
the SIGGRAPH pages 335-342, New York, NY, USA, 2000. ACM
Press/Addison-Wesley Publishing Co.

[127] Wilfried. Philips. Orthogonal base functions on a disctete-dimensional
region. Technical Report DG 91-20, ELIS, RUG, Universi@ént, 1992.

[128 PovRay. Persinstence of vision. http://www.porvay.ofif)2

[129 Liu Ren, Hanspeter Pfister, and Matthias Zwicker. ObjectsENA sur-
face splatting: A hardware accelerated approach to hightgaint ren-
dering. InComputer Graphics Forunpvolume 21, pages 461-470, 2002.

[130 Patrick Reuter, Pierre Joyot, Jean Trunzler, Tamy Boubekend
Christophe Schlick. Surface reconstruction with enricregtoducing ker-
nel particle approximation. liEurographics Symposium on Point-Based
Graphics pages 79-87. Eurographics Association, 2005.

[131] Christof Rezk-Salama, Michael Scheuering, Grzegorz Saad,Ginther
Greiner. Fast volumetric deformation on general purposévirare. InPro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop onhGrap
ics Hardware pages 17—-24, New York, NY, USA, 2001. ACM.

[132 Christian Rossl, Frank Zeilfelder, Gunther Nurnbeyged Hans-Peter Sei-
del. Spline approximation of general volumetric data.Phoceedings of
the ACM Symposium on Solid Modeling and Applicatigreges 71-82,
Aire-la-Ville, Switzerland, Switzerland, 2004. Euroghags Association.

Bibliography 201

[133 Miguel Sainz, Renato Pajarola, and Roberto Lairo. Pointacded: Point-
based rendering revisited. Rroceedings of the Eurographics Symposium
on Point-based Graphi¢gpages 121-128. Eurographics Association, 2004.

[134] Takafumi Saito and Tokiichiro Takahashi. Comprehensibledering of
3-D shapes. IfProceedings of ACM SIGGRARPBages 197-206, 1990.

[1359 Naohisa Sakamoto, Jorji Nonaka, Koji Koyamada, and Satdahaka.
Volume rendering using tiny particles. Rroceedings of the IEEE Interna-
tional Symposium on Multimedipages 734—737, Washington, DC, USA,
2006. IEEE Computer Society.

[136 Scott Schaefer, Travis McPhail, and Joe Warren. Image ohefion us-
ing moving least square&CM Transactions on Graphic25(3):533-540,
2006.

[1371 Gunther Schmidt. Approximate approximations and theitiagfions. In
J. Rossmann, P. Takac, and G. Wildenhain, editoperator Theory: Ad-
vances and Applicationsolume 109 ofThe Maz’ya Anniversary Collec-
tion, v.1 pages 111-136. Birkhauser, 1999.

[138 John Schreiner, Carlos E. Scheidegger, Shachar FleislandrClaudio T.
Silva. Direct (re)meshing for efficient surface processiigProceedings
of Eurographicspages 527-536, 2006.

[139 John Schreiner, Carlos E. Scheidegger, and Claudio T..Siligh quality
extraction of isosurfaces from regular and irregular grillsProceedings
of IEEE Visualizationpages 1205-1212, 2006.

[140 Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Qbrrctree-
based decimation of marching cubes surfacefroteedings of the IEEE
Conference on Visualizatippages 335—ff., Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

[141] Chen Shen, James F. O'Brien, and Jonathan R. Shewchuk pdiatng
and approximating implicit surfaces from polygon soupPhaceedings of
ACM SIGGRAPHpages 896-904, New York, NY, USA, 2004. ACM.

[142 Han-Wei Shen and D. L. Kao. A new line integral convolutiogaaithm for
visualizing time-varying flow fields.IEEE Transactions on Visualization
and Computer Graphicgl(2):98-108, 1998.

[143 Donald Shepard. A two-dimensional interpolation functionirregularly-
spaced data. IRroceedings of the ACM national conferenpages 517—
524, New York, NY, USA, 1968. ACM Press.

202 Bibliography

[144] Jonathan Richard Shewchuck. What is a good linear elemené¢?pbla-
tion, conditioning, and quality measures. Hreventh International Mesh-
ing Roundtablegpages 115-126, 2002.

[149 Jonathan R. Shewchuk. An introduction to the conjugateignadgnethod
without the agonizing pain. Technical report, CarnegielbfeUniversity,
1994.

[146 Renben Shu, Chen Zhou, and Mohan S. Kankanhalli. Adaptivehiray
cubes.The Visual Computed1(4):202—-217, 1995.

[147 Jasper V. Stokman, C. F. Dunkl, and Y. Xu. Orthogonal polyiadsnof
several variablesApproximation Theoryl12(2):318-319, 2001.

[148 Gabriel Taubin. Estimating the tensor of curvature of aaeffrom a
polyhedral approximation. IRroceedings of the International Conference
on Computer Visiorpages 902—-907. IEEE Computer Society, 1995.

[149 Eduardo Tejada and Thomas Ertl. Large steps in GPU-basednatile
bodies simulationSimulation Practice and Theorg3(9):703-715, 2005.

[150 Eduardo Tejada, Jdao P. Gois, Luis G. Nonato, Antonio @Gastnd
Thomas Ertl. Hardware-accelerated extraction and rengexi point set
surfaces. IrProceedings of EUROGRAPHICS - IEEE VGTC Symposium
on Visualizationpages 21-28, 2006.

[151] Eduardo Tejada, Tobias Schafhitzel, and Thomas Ertl. Harew
accelerated point-based rendering of surfaces and volumBsoceedings
of WSCG 2007 Full Paperpages 41-48, 2007.

[152 Matthias Teschner, Bruno Heidelberger, Matthias Mulkend Markus
Gross. A versatile and robust model for geometrically campleformable
solids. InProceedings of the Computer Graphics Internatiqpalges 312—
319, 2004.

[153 Thomas TheuRl, Torsten Moller, Jifi Hladlivka, and Mei&duard Groller.
Reconstruction issues in volume visualization. TechriRegdort TR-186-2-
01-14, Institute of Computer Graphics and Algorithms, Viaruniversity
of Technology, 2001.

[154 Wai-Shun Tong and Chi-Keung Tang. Robust estimation of tikafensors
of curvature by tensor votingEEE Transactions on Pattern Analysis and
Machine Intelligence27(3):434-449, 2005.

Bibliography 203

[155

[156

[157

[15§

[159

[160

[161]

[162

[163

[164

[165

[166

Joost van de Weijer and Rein van den Boomgaard. Least scaradt@sbust
estimation of local image structurelnternational Journal of Computer
Vision, 64(2/3):143-155, 2005.

Jarke J. van Wijk. Flow visualization with surface particléEEE Com-
puter Graphics and Application43(4):18—-24, 1993.

Jarke J. van Wijk. Implicit stream surfaces. Proceedings of IEEE Visu-
alization pages 245-252, 1993.

Jarke J. van Wijk. Image based flow visualizatidkCM Transactions on
Graphics 21(3):745-754, 2002.

Jarke J. van Wijk. Image based flow visualization for curvedages. In
Proceedings of IEEE Visualizatippages 123-130, 2003.

Thomas Viklands.Algorithms for Weighted Orthogonal Procrustes Prob-
lem and other Least Squares Problen®D thesis, Department of Com-
puting Science, Umea University, Umea, Sweden, 2006.

Joachim \ollrath, Tobias Schafhitzel, and Thomas Ertl. Ewyipg com-
plex GPU data structures for the interactive visualizatibadaptive mesh
refinement data. IProceedings of the International Workshop on Volume
Graphics pages 55-58, 2006.

Ingo Wald and Hans-Petter Seidel. Interactive ray tracingoint-based
models. InProceedings of the Eurographics Symposium on Point-Based
Graphics pages 1-8. Eurographics Association, 2005.

Manfred Weiler, Ralf P. Botchen, Simon Stegmaier, Jingshartd, Yun
Jang, David Ebert, Kelly Gaither, and Thomas Ertl. Hardwassisted
feature analysis and visualization of procedurally endadeltifield volu-
metric data.Computer Graphics and Applicatiofysages 72—-81, 2005.

Morris Weisfeld. Orthogonal polynomials in several vatéesh Numerical
Mathematics1:38-40, 1959.

Daniel Weiskopf and Gordon Erlebacher. Overview of flow wigzation.
In Charles. D. Hansen and Christopher R. Johnson, edifbesVisualiza-
tion Handbookpages 261-278. Elsevier, Amsterdam, 2005.

Daniel Weiskopf and Thomas Ertl. A hybrid physical/devgpace ap-
proach for spatio-temporally coherent interactive textadvection on
curved surfaces. IProceedings of Graphics Interfacpages 263-270,
2004.

204 Bibliography

[167] Eric W. Weisstein. Laguerre polynomial. From MathWorld—Aokvam
Web Resource. http://mathworld.wolfram.com/LagueritgiRamial.html,
2007.

[168 Holger Wendland. Piecewise polynomial, positive definitd aompactly
supported radial functions of minimal degre&dvances in Computational
Mathematics4(1):389-396, 1995.

[169 Rudiger Westermann, Leif Kobbelt, and Thomas Ertl. Ra&aktexplo-
ration of regular volume data by adaptive reconstructios@gurfacesThe
Visual Computerl5(2):100-111, 1999.

[170 Rudiger Westermann and Christof Rezk-Salama. Real-twhewe defor-
mations.Computer Graphics Forup20(3):—, 2001.

[171] Lee Westover. Footprint evaluation for volume renderingPtoceedings
of the ACM SIGGRAPHvages 367-376, New York, NY, USA, 1990. ACM
Press.

[172 Martin Wicke, Matthias Teschner, and Markus Gross. CS@+teadering
for point-sampled objects. IRroceedings of the Pacific Graphigsages
160-168. IEEE CS, 2004.

[173 Gernot Ziegler, Art Tevs, Christian Theobalt, and HansP&eidel. On-
the-fly point clouds through histogram pyramids.Aroceedings of Work-
shop on Vision, Modeling, and Visualizatiggages 137-144, 2006.

	List of Abbreviations and Acronyms
	Abstract and Chapter Summaries
	Zusammenfassung und Kapitelzusammenfassungen
	Introduction
	Goals of This Thesis
	Outline of This Thesis
	Acknowledgments

	Interactive Visualization
	Visualization Pipeline
	Surface Visualization
	Surface data
	Surface reconstruction
	Surface rendering

	Volume Visualization
	Volume data
	Volume data reconstruction
	Volume rendering

	Visualization and Graphics Processing Units
	The rendering pipeline
	General-purpose GPU programming

	Meshless Approximation Methods
	Radial Basis Functions
	Moving Least-Squares
	Orthogonal Polynomials in Moving Least-Squares
	Indexing orthogonal polynomials
	Constructing orthogonal polynomials
	Avoiding repetitive computations

	Approximate Approximation
	Approximate moving least-squares approximation
	Connecting RBF and Iterated AMLS

	Meshless Surfaces from Point Clouds
	Meshless Surface Approximation
	Curvature-driven Projection Operator
	Principal directions and curvatures
	Projection and rendering procedures

	Approximate MLS Surfaces
	Iterated AMLS implicits
	Introducing sharp edges

	Adaptive Partition of Unity Implicits
	Multi-level partition of unity implicits
	The J1A triangulation
	Robust adaptive partition of unity implicits
	Extensions to the method

	GPU-based Rendering of Meshless Surfaces
	Rendering surfaces based on projection operators
	Rendering implicit surfaces

	Meshless Surfaces from Volumes
	Meshless Surface Extraction from Volume Data
	Moving Least-squares Iso-surfaces
	Computing MLS surfaces from volumetric data
	Hardware-accelerated MLS Iso-surfaces and HG-surfaces

	Point-based Stream Surfaces
	Streamlines and path-lines generation
	Point-based surface rendering
	LIC on the point-based surface

	Meshless Volume Visualization
	Meshless Methods for Volume Visualization
	Moving Least-Squares Volume Visualization
	Detail-preserving volume data approximation
	Matrix-free detail-preserving volume data approximation

	Approximate MLS Volume Visualization
	Ellipsoidal weight functions revisited
	Anisotropic iterated approximate moving least-squares
	Gradient estimation
	GPU-based rendering

	Moving Least-Squares Volume Deformation
	Affine, similarity and rigid deformations
	Nonlinear polynomial deformation
	GPU-based MLS displacement map computation
	Other approaches for moving least-squares deformation
	Comparison with physically-based mesh deformation

	Meshless Methods in Visualization
	Color Plates
	Bibliography

