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 I

Vorwort 

 

1. Veranlassung 

 

1.1 Dynamische Strömungsvorgänge, Druckstöße in Rohrleitungen 

 

Bei jeder Geschwindigkeitsänderung in durchflossenen Gerinnen oder Rohrleitungen 

entstehen Druckschwankungen. Während in einem offenen Gerinne bei plötzlicher 

Durchflussänderung ein Ausgleich der Bewegungsenergie durch ein Anheben oder Absenken 

des Wasserspiegels (Schwall- bzw. Sunkwelle) erfolgt, entsteht bei geschlossenen 

Druckrohrleitungen ein Ausgleich der Bewegungsenergie durch die Elastizität der 

Rohrwandungen und des Wassers selbst. Dieses bedeutet bei einer Verzögerung der 

Fließgeschwindigkeit eine Umwandlung der Bewegungsenergie in Druckenergie (Druckstoß). 

Der Druckstoß ist demnach eine Folge derjenigen Kraft, welche die träge Flüssigkeitsmasse 

der Änderung ihres Bewegungszustandes entgegensetzt. Bei einer Beschleunigung wird 

Lageenergie in Bewegungsenergie umgesetzt. Diese plötzlichen Druckänderungen in einer 

Rohrleitung können erhebliche Größen annehmen und sind bei der Bemessung unbedingt zu 

berücksichtigen. 

 

In Rohrleitungen, die vollständig mit einer Flüssigkeit gefüllt sind, kommt es insbesondere 

dann zu  Druckstößen, wenn Absperr- oder Regelorgane betätigt bzw. Turbinen und Pumpen 

ein- und ausgeschaltet werden. Druckstöße treten auch beim zu schnellen Füllen von 

Rohrleitungen, bei ungenügender Entlüftung, beim pulsierenden Austritt von größeren 

Luftansammlungen aus Druckleitungen, schließlich bei unregelmäßiger Förderung von 

Pumpen als Folge ungenügender Saugrohrentlüftung und bei Kavitationserscheinungen auf.  

 

Bei langen Rohrleitungen und kurzen Regelzeiten müssen bei der Berechnung von 

Druckstößen die weitgehende Inkompressibilität  der Flüssigkeit und die Elastizität der 

Rohrwand berücksichtigt werden, da es an der Störstelle (Regelorgan, Turbinen, Pumpen etc.) 

zu einer Dichteänderung, die sich stets mit der Druckwellengeschwindigkeit fortpflanzt, 

kommt. 
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1.2 Be- und Entlüftungsventile bei Rohrleitungen  

 

Neben Verschluss- und Regelorganen gehören auch Be- und Entlüftungsventile zu der 

Ausrüstung einer Fernleitung. Belüftungsventile gleichen den bei der Entleerung der Leitung 

auftretenden Unterdruck aus. Erheblicher Unterdruck kann sich vor allem dann ausbilden, 

wenn infolge der Drosselung einer Armatur der ursprüngliche Abfluss von der Zulaufseite 

unter dem bestehenden Druckgefälle nicht mehr alleine nachläuft und die Anschlussleitung zu 

saugen beginnt, um die erforderliche Nachströmung zu erhalten. 

 

Hochpunkte und Knickpunkte der Rohrleitung sind ebenfalls durch Unterdruckbildung 

gefährdet. Aus Strömungsstörungen resultierende, zum Überdruck und Unterdruck 

wechselnde Druckwellen durchlaufen die Rohrleitung und können an diesen Punkten ein 

Abreißen der Wassersäule herbeiführen. Umgekehrt entstehen gefährliche, steile 

Druckspitzen beim Zusammenstoßen ursprünglich getrennter Flüssigkeitssäulen. 

 

Als nächste Aufgabe haben die Be- und Entlüftungsventile die in der Rohrleitung 

vorhandenen Gase (Luft, Flüssigkeitsdampf etc.) entweichen zu lassen, die sich durch 

Anhäufung oder durch Ausscheiden aus dem Wasser im Laufe des Betriebes an besonderen 

Rohrstellen angesammelt haben und den freien Strömungsquerschnitt verringern sowie 

Energieverluste und ebenso unerwünschte Druckstöße verursachen können. 

 

Entlüftungen sind normalerweise an geodätischen und in Bezug auf den Verlauf von 

Rohrleitungsdrucklinien an hydraulischen Hochpunkten von Rohrleitungssträngen 

erforderlich, wo es durch Druckerniedrigung oder durch Temperaturerhöhung zur 

Ansammlung von Luft kommen kann. 

 

Für Füll- und Entleerungsvorgänge sind gleichfalls Be- und Entlüftungsventile notwendig. Sie 

befinden sich generell an Leitungshochpunkten und im Abstand von ca. 750 m bei langen 

geneigten Rohrleitungssträngen. Größe und Anzahl richten sich nach Leitungsdurchmesser, 

Füllvolumen und zulässiger Strömungsgeschwindigkeit der Luft im kleinsten 

Strömungsquerschnitt des Ventils.  
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1.3 Auswirkungen von gashaltigen Flüssigkeitsströmungen auf Druckstöße 

 

Die an Hochpunkten einer Rohrleitung sich allmählich ansammelnde Luft kann einerseits als 

Luftpolster dämpfend auf Druckstoßwellen einwirken, andererseits aber auch nachteilig in 

Pumpendruckleitungen sein, wenn sich mit dem Start der Pumpen und der einsetzenden 

Flüssigkeitsströmung hier ein erhöhter Druck je nach Luftmenge und Ausdehnung, auch 

durch Reflektion, einstellt. Lufteinschlüsse verhindern ebenso die in Unterdruckbereichen auf 

Flüssigkeitsdampfbildung zurückzuführende Kavitation.  

 

Bei flüssigkeitsdampf- bzw. gas- (z. B. luft-) haltigen Flüssigkeitsströmungen wird nach 

Zweiphasenströmungen bzw. Zweikomponentenströmungen unterschieden. Während erstere 

Schäden im Rohrleitungssystem verursachen, können Lufteinschlüsse aufweisende 

Wasserströmungen hinsichtlich der Druckwellenausbreitung sich unterschiedlich verhalten. 

Derartige Wasser-Luft-Gemische erfahren interne Reflektionen von Druckwellen mit der 

Folge, dass die Hauptwelle in Wellen kleinerer Ausdehnung gebrochen wird und sich die 

Druckwellengeschwindigkeit verringert. 

 

Es liegt daher auf der Hand, dass die Luftmenge, die Luftblasenverteilung und die Größe 

sowie die Anzahl sich entlang einem unterschiedlich geneigten Rohrstrang bildenden 

Lufttaschen eine erhebliche Rolle für die Ausbreitung und Intensität von Druckstößen spielen, 

wenn schon nicht mit völlig luftfreier Flüssigkeitsbewegung über kilometerlange 

Rohrleitungssysteme gerechnet werden kann. Da kleinere Lufteinschlüsse an Hochpunkten 

eines Rohrleitungssystems offensichtlich zu einer nicht vernachlässigbaren Erhöhung der 

Druckschwankungen infolge plötzlicher Pumpenabschaltungen führen können, bedarf es 

eingehenderer Untersuchungen dieses Problemkreises. Jüngste Forschungsergebnisse weisen 

vereinzelt darauf hin, dass es nicht bei der bisherigen Praxis bleiben kann, grundsätzlich von 

homogenen, einphasigen, ausschließlich den Strömungsquerschnitt ausfüllenden 

Flüssigkeitsströmungen, d. h. frei von Dampfblasen und Lufteinschlüssen, auszugehen. 

 

1.4 Zielsetzung der Dissertation  

 

Die vorgenannte Problemstellung ergab sich bei einer in Mexiko, der Heimat des 

Doktoranden, ausgeführten Fernwasserversorgung. Ihrer nahm sich die Heimat-Universität 

Universidad Nacional Autonoma de México an. Hier wurden bereits zielgerechte 
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Modellversuche ausgeführt und Lösungsvorschläge für bauliche und betriebliche Änderungen 

ausgearbeitet. Letztere sollten nunmehr wissenschaftlich vertieft und zu allgemeinen 

Bemessungsregeln, möglichst auf analytischer Basis, übergeführt werden. Vornehmlich 

stehen die Bewegungsvorgänge von kompakten Lufteinschlüssen und Wasser-Luft-

Gemischen (Zweiphasenkomponenten-Strömung) in Pumpendruckleitungen und deren 

Verhalten beim plötzlichen Abschalten der Pumpenaggregate im Vordergrund. 

 

Hierzu gewährte die vom Staat Mexiko eingerichtete Forschungsgemeinschaft CONACYT 

ein mehrjähriges Stipendium für den Aufenthalt von Herrn Pozos an der Universität Stuttgart, 

Institut für Wasserbau.  

 

2. Zum Inhalt der vorliegenden Schrift  

 

Im 1. Kapitel legt der Autor ausführlich die Problemstellung und die ersten Ansätze zur 

Erfassung lufthaltiger Wasserströmungen dar, die auf experimenteller Basis gewonnen und in 

bekannte Beziehungen der Strömungsmechanik eingebunden worden sind. Im Regelfall 

sammelt sich die Luft entlang der Rohrleitung an Knickpunkten, insbesondere an 

Hochpunkten der Rohrtrasse, und verdichtet sich zu einer Lufttasche, die mehr und mehr ein 

Luftpolster für durchlaufende Druckwellen mit Dämpfungswirkung und Teilreflexionen 

bildet. Kleine Luftblasen nehmen die Form eines Ellipsoids von 1 bis 6 mm Längsausdehnung 

an.  

 

Durch die Häufung von Luftblasen an einzelnen prädestinierten Stellen der 

Rohrleitungsströmung können durchaus den ganzen Strömungsquerschnitt ausfüllende 

Volumina entstehen, wenn Luft z. B. bei Füllung der Leitung infolge Turbulenzen oder aus 

dem Pumpensumpf von Pumpenleitungen, ferner an Armaturen und Rohrverbindungen in 

stärkerem Maße eingetragen wird. Bei abnehmendem Strömungsdruck bis hin zum 

Unterdruck ist ein Ausgasen einer lufthaltigen Wasserströmung möglich, ebenso kann es bei 

einer Unterschreitung des Dampfdruckes der Flüssigkeit zur Bildung von 

Flüssigkeitsdampfblasen führen. Eine ähnliche Wirkung lösen Temperaturerhöhungen aus. 

Entsteht örtlich in einer Strömung eines Wasserluftgemisches ein partieller Füllungsgrad für 

das Wasser und unterschreitet sogar die Wassertiefe unterhalb einer Lufttasche die kritische 

Tiefe, kommt es zu einem hydraulischen Wechselsprung. 
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Erfolgt keine Abführung der Luftansammlung durch standortgerechte Entlüftungsventile, 

ergeben sich vielfach Probleme wie Strömungsbehinderung, Energieverluste, 

Korrosionsanfälligkeit stählerner Rohrleitungen durch Sauerstoff, ferner Schwingungen bis 

hin zu gefahrvollen Resonanzschwingungen von Bauteilen, Druckstöße bis hin zum 

entlastenden plötzlichen Zurückschlagen einer größeren Luftblase. Hierdurch ausgelöste 

Zerstörungen in einem Fernwasserversorgungssystem in Mexiko waren nicht zuletzt der 

Anlass für die vorliegende Dissertation. 

 

Die Fortbewegung einer größeren Luftblase hängt vom Kräftegleichgewicht aus 

Strömungsdruck bzw. statischer Druckhöhe und Geschwindigkeitshöhe, aus Schleppkraft und 

Auftrieb, damit aber auch vom Rohrleitungsgefälle und von den Druckverlusten des 

Luftwassergemisches ab. Hierfür gibt der partielle Strömungsquerschnitt des bewegten 

Wassers im Vergleich zum gesamten Rohrquerschnitt den Ausschlag, ebenso der an der 

Schnittstelle beider Medien Luft und Wasser eintretende hydraulische Wechselsprung. 

 

Hinsichtlich der Fragestellungen des Verbleibens und des Weiterwanderns von Lufttaschen 

aufgrund der örtlichen Strömungsbedingungen oder der Luftabführung durch unterschiedliche 

Be- und Entlüftungsventile legte der Doktorand ausführlich die bisherigen 

Forschungsergebnisse und praktischen Handhabungen dar. Hierbei stellte er auch neben den 

rechnerischen Ansätzen insbesondere jenen in den Mittelpunkt, den er zusammen mit dem 

Betreuer seiner Masterarbeit an der Universidad Nacional Autónoma de México, México, 

aufgestellt hat. Dieser Ansatz spiegelt den auf Modellversuchen und theoretischen 

Untersuchungen aufbauenden Zusammenhang zwischen Durchfluss, Rohrdurchmesser, 

Neigung des Rohrstranges und Erdbeschleunigung wider, nachdem sich eine Lufttasche im 

Anschluss an den Ort des hydraulischen Wechselsprunges im abwärts geneigten Rohrstrang 

entweder nach oben zurück oder nach unten fortbewegt, Letzteres nach Überschreiten einer 

sog. kritischen Strömungsgeschwindigkeit.  

 

Im 2. Kapitel befasst sich der Autor im Detail mit der Analyse der vorerwähnten, mit auf ihn 

zurückgehenden Formel für die Luftblasenbewegung, ferner mit den zugehörigen 

Modelluntersuchungen und der Aufstellung eines Rechenprogrammes. Dieses bindet er in die 

Schilderung zweier Ausführungsbeispiele von Fernwasserversorgungssystemen in Mexiko 

ein. 
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Sowohl die rechnerischen als auch die durchgeführten Modelluntersuchungen bestätigten die 

treffsicheren Aussagen über die Bewegungsabläufe von kleinen Luftblasen als auch von 

großen Lufttaschen stromaufwärts und stromabwärts, sofern sie nicht von Turbulenzen 

beeinträchtigt werden. Hierauf stützt sich die vom Doktoranden entwickelte Software für 

Simulationsrechnungen, mit deren Hilfe die Notwendigkeit von Be- und Entlüftungsventilen 

je nach Rohrleitungsverlauf und Lufteintrag beurteilt werden kann oder statt dessen aus 

ökonomischen Gründen deren Anzahl zu verringern sein könnte, wenn auf einzelnen 

Leitungsabschnitten eine den Betrieb gefährdende Luftblasenanhäufung dank einer 

gesicherten Fortbewegung von Lufteinschlüssen ausgeschlossen werden kann. 

 

Die beiden ausführlich geschilderten Beispiele einer Trinkwasserversorgung in Mexiko, das 

eine mit 54,5 km langen Doppelrohrleitungen aus Spannbeton, das andere mit 6,9 km langer 

Stahlrohrleitung, belegen eindeutig hinsichtlich völlig unerwarteten Betriebsverhaltens und 

eingetretener Schäden an Bauwerken, welche Bedeutung Lufteinschlüssen in großer Menge in 

ausgedehnten Lufttaschen ohne ausreichende Entlüftung beizumessen ist. In beiden 

Versorgungssystemen kam es aufgrund von extremen Luftansammlungen infolge turbulenter 

Strömungen und unterschiedlicher Strömungsraten, ferner ungenügender Anordnung von 

zusätzlichen, teilweise nicht funktionsgerechten Entlüftungsventilen besonders bei größeren 

Durchsätzen im ersten Fall zu erheblichen, auf Druckstoß zurückzuführenden Schäden an 

Bauwerken und im zweiten Fall zum Überlaufen von offenen Wasserbehältern aufgrund 

außerordentlicher Aufschwingungen des Wasserkörpers. 

 

Im 3. Kapitel erfolgen die grundsätzlichen experimentellen und theoretischen 

Untersuchungen zur Erfassung sich an Hochpunkten der Rohrleitung ansammelnder 

Lufttaschen. Untersuchungskriterien sind bei den hier verfolgten Pumpendruckleitungen das 

Wasserluftgemisch, d. h.  die mit Luftblasen mehr oder weniger gleichmäßig durchsetzte 

Wasserströmung, die Bildung großer, sich verselbständigender Luftblasen, die sich durch 

Ausgasung an Hochpunkten der Leitungstrasse einstellen. Je nach den Durchfluss- sowie den 

Druck- bzw. Strömungsverhältnissen verharren Letztere an diesen Stellen oder wandern mit 

der aufgeteilten Wasserströmung, besonders längs Leitungsgefällsstrecken, weiter, bis ein 

durch die beiden Medien bedingter Wechselsprung eintritt und die Luftblasen sich wieder mit 

dem Wasser vermischen.  
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Die Bildung der Luftblasen setzt vor Erreichen des betrachteten Hochpunktes ein; die 

Luftblase nimmt eine bestimmte axiale Länge und damit ein gewisses Volumen ein, das im 

Modellversuch ausgemessen werden kann. Ab einer oberstromigen Grenzlage wächst die 

Luftblase bei weiterem Zufluss bzw. weiterer Luftzufuhr nur noch nach der Unterwasserseite 

hin. Die oberstromige Begrenzung hängt von der Größe des Durchflusses und der kritischen 

Wassertiefe der längs der Unterseite der Luftblase vorbeiziehenden Wasserströmung ab. Der 

schließlich am unterstromigen Ende der Luftblase entstehende hydraulische Wechselsprung 

bedingt Energieverluste. 

 

Die experimentellen Untersuchungen wurden im vorgenannten Universitätsinstitut in Mexico 

City mit mehreren Varianten der Bestimmungsgrößen und ausgeklügelter Messtechnik 

ausgeführt, so dass neben der Boyle-Mariotteschen-Zustandsgleichung für Gase hierauf die 

hydromechanischen Beziehungen als Basis der rechnerischen Analysen gestützt werden 

konnten. Diese beinhalten die Länge und die Volumengröße der Luftblasen, den herrschenden 

Druck, den Reibungsbeiwert, den hydraulischen Radius, die Neigung der Leitungsabschnitte, 

die Wassertiefen unterhalb der Lufttasche und die Fließgeschwindigkeit, schließlich die 

Froude-Zahl. Die Berechnung des die Lufttasche längs begrenzenden Wasserspiegels und des 

Lufteinschlusses selbst erfolgt in 13 Schritten. Die in Tabellen und Grafiken dargelegten 

Rechenergebnisse korrelieren bestens mit den Versuchsdaten. 

 

Im 4. Kapitel werden die vorgenannten Untersuchungsergebnisse in ihrer praktischen 

Nutzanwendung für Pumpendruckleitungen von Wasserversorgungssystemen weiterverfolgt. 

Gewöhnlich beträgt der Luftgehalt von Wasser je nach den vorherrschenden Druck- und 

Temperaturverhältnissen ca. 2 %. Beim Einsatz von Förderpumpen werden auf der Saugseite 

(z. B. Entnahmebrunnen, Wasserbehälter) 5 bis 10 % Luft in den Flüssigkeitsstrom 

eingetragen. Weitere Luftaufnahmen können an Verschluss- und Regelorganen sowie ggfs. an 

Rohrverbindungen geschehen, die in der Summe zu beachtlichen Einschränkungen der 

Förderkapazität und zu gefährlichen Druckstößen führen können, sofern nicht für 

ausreichende Entlüftung durch Be- und Entlüftungsventile an Leitungshochpunkten gesorgt 

wird. 

 

Der Verfasser stellt nach Diskussion von rund einem Dutzend anderweitiger 

wissenschaftlicher Forschungsberichte diesen ein Rechenmodell gegenüber, das mit dem 

Charakteristikenverfahren zur Verfolgung von Lufttaschen innerhalb des eine 
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Zweikomponentenströmung darstellenden Wasserluftgemisches entwickelt worden ist. Die 

Anwendung geht übersichtlich aus dem zugehörigen Flussdiagramm hervor, das auch die 

Grundlage für eine anschließende Fallstudie bildet für eine Pumpendruckleitung mit vier 

parallel geschalteten Kreiselpunkten, 2,3 km langer Stahlleitung von 1,2 m Durchmesser und 

einem zu versorgenden, 397 m höher gelegenen Wasserbehälter bei unterschiedlichen 

Fördermengen und Luftvolumina. Um die verschiedenartigen Auswirkungen letzterer zu 

demonstrieren, wurde gänzlich auf Entlüftungsventile verzichtet. 

 

Die Untersuchungsvarianten zeigen anhand der Verläufe der Drucklinien deutlich deren 

Schwankungsbreite zwischen der Förderung von nicht-lufthaltigem Wasser und mit 

Lufttaschen belastetem Fördermedium. Die durch plötzliche Pumpenabschaltung 

entstehenden Druckwellen werden je nach Luftvolumen und Ausdehnung der an 

verschiedenen Standorten sich ansiedelnden Lufttaschen entweder beachtlich gedämpft oder 

gar reflektiert, sie werden oberstromseitig zum Pumpenstandort und unterstromseitig zum 

Wasserbehälter zurückgeleitet bzw. fortgeführt. Mit wachsendem Luftvolumen nehmen die 

Druckhöhen ab. Mit anderen Worten: Kleine Luftblasen vergrößern gegenüber einer luftfreien 

Wasserströmung in der Rohrleitung eher die instationären Druckdifferenzen, während größere 

Luftblasenvolumen einen vergleichsweise günstigen Einfluss haben, indem sie die 

instationären Druckschwankungen verkleinern. 

 

Aus Gründen der Betriebssicherheit sind die Auswirkungen verschieden großer 

Lufttaschenvolumen von Bedeutung. Hiernach richten sich die Eigenschaften des sich im 

Blasenbereich einstellenden Freispiegelabflusses und damit die instationären 

Druckverhältnisse, z. B. nach Ausfall der Förderpumpen. Daher ist die vorhandene Sicherheit 

durch Variation der Luftblasengröße, der Lage und der Ausdehnung der Lufttaschen innerhalb 

realistischer Grenzen jeweils zu überprüfen. Dieses kann durch die vom Autor frei 

zugänglichen Programm-Module zur instationären Rohrleitungsberechnung geschehen.  

 

Das 5. Kapitel ist in Erweiterung der vorausgegangenen Grundsatzbetrachtungen dem 

gleichzeitigen Auftreten von Lufttaschen an Leitungshochpunkten und gezielt der nach 

Unterstrom gerichteten Fortbewegung eines Wasserluftgemisches aus Wasserströmung und 

darin verteilten feinen Luftblasen als Folge eines hydraulischen Wechselsprunges am 

unterstromigen Ende der Lufttasche gewidmet. Wiederum sollen keinerlei Entlüftungsventile 

in das Leitungssystem eingebunden sein. Die verschiedensten Ausbildungen einer 
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Zweikomponentenströmung aus Luft und Wasser, die der Doktorand vereinfachend als 

Zweiphasenströmung bezeichnet, werden zusammen mit aus Modellversuchen gewonnenen 

Bildern im Einzelnen diskutiert. In gleicher Weise geht der Autor auf die Fließzustände und 

Strömungsbilder eines immer homogener werdenden Wasserluftgemisches ein, das nach dem 

Wechselsprung aus der Lufttasche und dem diese begleitenden Wasserstrom entstanden ist. 

 

Wiederum werden in der analytischen Ergründung der theoretischen Zusammenhänge eine 

große Reihe an vorausgegangenen, veröffentlichten Forschungsarbeiten herangezogen und der 

eigene Rechenansatz mit dem oben erwähnten Stufenmodell unter Einbindung eines 

eindimensionalen Modelles für das als homogen betrachtete Wasserluftgemisch fortgeführt. 

Erneut werden die erforderlichen Rechenschritte in einem übersichtlichen Flussdiagramm 

zusammengefasst. Die Verfahrensschritte bis hin zur grafischen Darstellung der 

variantenreichen Ergebnisse werden anhand des gleichen Wasserversorgungssystems mit vier 

Pumpenaggregaten, Fernrohrleitung und Endbehälter, wie im vorigen Kapitel herangezogen, 

dargestellt. Durch den zusätzlichen Dämpfungseffekt, den das einer Lufttasche nachfolgende, 

über den hydraulischen Wechselsprung mehr oder weniger zustande gekommene 

Wasserluftgemisch ausübt, fallen im Vergleich zu den Ergebnissen einer nur die Lufttaschen 

berücksichtigenden Berechnung nunmehr die Abminderungen der Druckhöhen erheblich 

deutlicher aus. Innerhalb des Wasserluftgemisches kommt es durch Teilreflexionen der durch 

plötzlichen Pumpenstillstand erzeugten Druckwelle an den einzelnen Luftblasen zu deren 

Aufspaltung in einzelne kleinere Druckwellen, die weitaus ungefährlicher für den Bestand der 

Rohrleitung sind. Wiederum ist der Dämpfungseffekt am größten, wenn die Lufttasche ein 

beträchtliches Volumen hat und ein intensiver Luftweitertransport auf deren Unterstromseite 

mittels des Wasserluftgemisches stattfindet.  

 

In zehn Einzeluntersuchungen mit verschiedenen Ausgangsbedingungen hinsichtlich 

Fördermenge, Pumpeneinsatz, mit bis zu vier Standorten und Volumengrößen der Lufttasche 

sowie mit Luftweiterleitung unterhalb der Lufttasche lassen sich die für die Praxis 

interessanten Ergebnislagen anhand der Drucklinienverläufe verfolgen. Ein aufschlussreicher 

Vergleich mit der Situation bei luftfreier Wasserförderung einerseits und mit der Situation bei 

Unterbindung einer Luftweiterleitung auf der Unterstromseite einer Lufttasche andererseits ist 

gleichfalls gegeben.  
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Im abschließenden 6. Kapitel werden die wichtigsten Ergebnisse nochmals erörtert und in 

Verbindung mit praktischen Anforderungen bei Planung, Ausführung und Betrieb von 

Pumpendruckleitungen in Wasserversorgungssystemen gebracht. Gerade im Hinblick auf die 

immer wieder gemachten Erfahrungen, dass die Fernleitungen für Flüssigkeitstransport als 

Folge von Lufteinschlüssen in Transportmedien namhafte Schäden erleiden können, wenn 

nicht sachgemäße Abhilfe durch Anordnung von funktionstüchtigen Be- und 

Entlüftungsventilen unterschiedlichen Bautyps oder durch höchstmögliche Vermeidung von 

Lufteinträgen getroffen wird, sind die vorgelegten Experimente und rechnerischen Ergebnisse 

von grundsätzlichem Wert. 

 

3. Zusammenfassende Betrachtung 

 

Herr Oscar Pozos Estrada legte eine interessante Promotionsschrift in englischer Sprache vor, 

die ihren Ausgang von in seinem Heimatland Mexiko aufgetretenen Schadensfällen bei 

Trinkwasserfernversorgungen mit mehreren zehn Kilometer langen Rohrleitungen genommen 

hat. Diese waren auf überraschende Einträge größerer Luftmengen in das Fördersystem und 

auf entweder gänzlich entfallende oder nicht den Anforderungen genügende Be- und 

Entlüftungseinrichtungen zurückzuführen. Zur eindeutigen Klärung der Ursachen galt es, ein 

Simulationsmodell zur rechnerischen Analyse von Lufteinschlüssen in unterschiedlicher Form 

als Wasserluftgemisch (Zweikomponentenströmung) und als Lufttaschen größerer 

Ausdehnung vornehmlich an Hochpunkten einer Rohrleitung zu entwickeln. Dabei spielen 

eine Rolle die Boyle-Mariottesche-Zustandsgleichung, die verschiedenen hydromechanischen 

Gesetze für Strömungsabläufe, das Verhalten von getrenntem Luftpolster und Wasserkörper, 

von mehr oder weniger homogenen mit Luft angereicherten Wasserströmungen und die durch 

Luftblasen oder gar Lufttaschen ermöglichte Dämpfung von Druckwellen. Nach Möglichkeit 

sollten auch experimentelle Untersuchungen die numerischen Simulationen ergänzen und eine 

Übereinstimmung von Versuch und Rechnung nachweisen.  

 

Tatsächlich ist es gelungen, jeder Zeit nachvollziehbare Lösungswege aufzuzeigen und zu für 

die Baupraxis interessanten Schlussfolgerungen zu gelangen. 

 

 

Stuttgart, im Januar 2007     Jürgen Giesecke 
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ABSTRACT 
 
The main goal of this work is the development of a computational program for the 

quantitative assessment of the effects of entrained air in pipeline systems with respect to their 

operational safety. Likewise, two specific problems are investigated. (1) The effect of 

entrained air in form of pockets on hydraulic transients, during pump shutdown. It can be 

considered the most dangerous maneuver within a pumping pipeline. The computations 

corresponding to this study were evaluated by using the method of characteristics. (2) The 

numerical simulation of fluid transients caused by the shutdown of pumps, considering air 

pockets located at the high points of pumping pipeline systems and a water-air bubble mixture 

immediately downstream of the pockets. The constitutive equations – conservation of the gas 

mass, of the liquid mass, and the mixture momentum – yield a set of differential equations 

that will be solved by the method of characteristics. For the homogeneous model presented 

herein the two phases or components are treated as a single pseudofluid with average 

properties. It is assumed that there is no relative motion or slip between the phases, as well 

as for the momentum equation for the mixture. In the same way to the compressibility of the 

gas, the liquid compressibility and the pipe wall elasticity are included in the system of 

equations. The equation of energy is not used due to the moderate change in temperature of 

the mixture during the transient. In the case of negative impacts on the safety and operability 

of pipeline systems resulting from air entrainment, operational remediation measures will be 

suggested.  

 
In a previous research a computational program has been developed supported on a proposed 

equation, which was validated with experimental investigation made in laboratory. Two 

hydraulic models were designed and constructed to analyze the behavior of stationary air 

pockets located at high points of gravity pipelines, as well as to analyze the air entrained by 

the hydraulic jump at the end of the pocket located in the downward sloping pipe section of 

the models. From a comparison of the experimental measures with the results obtained with 

the program, it can be stated that these agreed well. In addition, a new subroutine was 

implemented to be used in this work to locate the air pockets that are likely to accumulate at 

the high points of pumping pipeline systems. The results obtained with the implementation 

adjusted well with the predictions obtained from other investigators for the pipeline 

configuration analyzed in the case study. 
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The new computational implementations were developed to provide the pipeline designers 

with a quantitative method for studying the movement of air bubbles and pockets and 

identifying the high points in pipelines that are susceptible to accumulate air, as well as the 

effect of entrained air on hydraulic transients caused by the sudden shutdown of pumps can be 

simulated. The program can be used to analyze either pipeline systems during the design stage 

or existing pipeline performance.  

 
Hydraulic model investigations have been carried out in the laboratory with the main aim of 

measuring the volumes of air that form the pockets, as well as to study and observe large air 

pockets located at the high points of the pumping pipeline systems. The experimental 

measures were made in an experimental apparatus composed of a pump with a maximum 

water flow rate of 2.5 l/s; a constant head tank of 5.0 x 1.1 m at the base and 1.0 m height and 

a pipe test section of a 76.2 mm internal diameter acrylic pipe mounted on metallic frames. It 

was formed by an upstream pipe of 6.8 m long followed by a flexible pipe with a length of   

50 cm and by another pipe section of 6.4 m in length. Both pipe sections could be varied in 

slope. During the experiments the water depths underneath the large air pocket for pressurized 

conduit flow, as well as at atmospheric pressure were recorded. The measurements were 

compared with the analytical results obtained with the direct step method used in the analysis 

of gradually varied flow. It was seen, that the flow profiles underneath the air pocket 

determined experimentally and those computed by using the dynamic equation of the 

gradually varied flow showed excellent correlation with the flow profiles. 

 
The air pocket volumes were calculated by applying an equation based on the direct step 

method and were compared with the experimental results obtained in laboratory. The 

computed values are lower than the volumes of air measured in the experiments. Hence, it can 

be stated that the volumes of air estimated with the variables obtained with the direct step 

method increase the factor of safety in pipeline design. This is because the author and other 

investigators have found that small air pockets located at intermediate and high points can 

exacerbate the magnitude of the pressure transients experienced by a sudden or routine pump 

shutdown. However, it can be stated that there is a limit to the air pocket volumes having this 

effect on hydraulic transients. Therefore, it is important to find the critical air pocket volumes 

for any given pipeline configuration to be taken into account during the design stage of 

pipelines to reduce any potential detrimental effect. 
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A photographic study was developed to reinforce the assumptions made in the analytical 

model for the simulation of pressure transients with air pockets and a water-air mixture 

downstream of them.  

 
A case study of a pumping pipeline system without surge suppression devices was simulated 

to demonstrate the potential effect of air pockets with and without a water-air mixture 

downstream of them on hydraulic transients. The boundary condition at the upstream end is a 

pumping station and at the downstream end a constant head tank. Only hydraulic transients 

generated by the shutdown of the pumps are taken into account in this analysis. The pumping 

station operates with four centrifugal pumps connected in parallel and each unit is able to 

deliver a maximum flow discharge of 0.625 m3/s to the constant head tank 396.92 m above 

the sump pump level. The conduction is 2289 m in length and made up of steel pipe with an 

inner diameter of 1.22 m.  

 

The purpose of this research is to demonstrate the potential detrimental and beneficial effects 

on pressure transients of air pockets with and without a water-air mixture downstream of 

them, located at the high points of pumping pipeline systems. The numerical investigation 

developed during this work could serve the designer as guidance to predict more accurately 

the critical conditions for various pipeline configurations. 
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KURZFASSUNG 
 
Einleitung 
 
Es gibt zahlreiche Fälle in der Praxis, in welchen eine Flüssigkeit, die in einem Rohr fließt, 
entweder Dampf oder Gas oder beides als Mischung enthält. Eine fließende Mischung aus 
Dampf und Flüssigkeit der gleichen chemischen Substanz wird Zweiphasenströmung genannt, 
während eine Gas-Flüssigkeitskombination unterschiedlicher Substanzen wie Luft und 
Wasser Zweikomponentenströmung genannt wird. Vereinfachend wird die Bezeichnung 
„Zweiphasenströmung“ häufig auch für Zweikomponentenströmungen eingesetzt. Jedoch 
kann der Effekt des Vorhandenseins von Dampf (Zweiphasenströmung) oder Gas 
(Zweikomponentenströmung) weit reichende Auswirkungen auf Druckstoßvorgänge haben.  
Während der Einfluss der Dampfblasenbildung normalerweise in Bezug auf 
Druckstoßvorgänge schädlich ist, kann freies Gas entweder vorteilhaft oder schädlich sein. 
Dies ist abhängig von der Menge und der Position des kondensierbaren Gases. Offensichtlich 
spielen der Anteil des Dampfes oder des Gases - oder von beiden - in einem Strömungssystem 
eine wichtige Rolle auf die resultierenden Drücke, ebenso wie die Art des Druckstoßes. 
 
Die wesentlichen Effekte der Luft auf Druckstoßvorgänge sind bekannt. Wenn sich Luft 
beispielsweise an einem Hochpunkt ansammelt, dann wirkt sie wie ein Luftpolster, das die 
Druckstoßwellen dämpft, sie kann den Druckstoß aber auch vergrößern, Ewing (1980). Wenn 
die Luft gleichmäßig in Form kleiner Luftblasen verteilt ist, sind die Auswirkungen 
schwieriger vorherzusagen. Der signifikanteste Effekt ist eine Verringerung der 
Druckwellengeschwindigkeit, auch schon bei kleinen Mengen an Luft im System. Die daraus 
resultierende Dämpfung der Druckwelle hat einen vorteilhaften Effekt auf das 
Rohrleitungssystem.  Ewing (1980) gab an, dass die Hauptwelle in Wellen kleinerer Länge 
gebrochen wird, woraus ein schnelleres Abklingen resultiert. Nach Pearsall (1965) wird die 
Dämpfung in Wasser-Luft-Gemischen durch eine interne Reflexion der Druckwelle an der 
luftblasenführenden Flüssigkeit erreicht. 
 
Numerische Methode 
 
Ein Berechnungsprogramm wurde entwickelt, um die Effekte vorhandener Luft in 
Rohrleitungssystemen auf Druckstoßvorgänge resultierend aus Stromausfällen zu 
untersuchen. Das Programm besteht aus zwei Teilprogrammen.  
 
Das Teilprogramm 1 wurde mit dem Hauptziel entwickelt, den Effekt von Lufttaschen auf 
Druckstoßvorgänge in Hochpunkten von Rohrleitungen während Stromausfall zu zeigen. Dies 
ist vielleicht der relevanteste Bemessungsfall für eine Pumpendruckleitung. Die 
Berechnungen dieser Studie basieren auf dem Charakteristikenverfahren und verwenden die 
Methode, die von Wylie und von Streeter (1978) dargestellt und von Wylie et al. (1993) 
ausgewertet wurde.  
 
Teilprogramm 2 verwendet die homogenen Fließgesetze, um Druckstoßvorgänge von 
Strömungen mit Wasser-Luft-Gemischen zu berechnen. Die aufbauenden Gleichungen - 
Erhaltung der Gasmasse, der flüssigen Masse und das Mischungsgleichgewicht - ergeben 
mehrere Differentialgleichungen, die unter Zuhilfenahme des Charakteristikenverfahrens 
gelöst werden. Für das homogene Modell in diesem Programmteil werden die zwei Phasen 
oder Komponenten als Pseudofluid mit durchschnittlichen Eigenschaften behandelt. 
Wie von Martin et al. (1976) und später in Wiggert und Sundquist (1979) beschrieben, wird 
angenommen, dass es keine relative Bewegung oder Reibung zwischen den Phasen gibt, 
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zudem wird den Berechnungen für die Mischung der Impulssatz zu Grunde gelegt. In der 
gleichen Weise wie die Kompressibilität des Gases sind die Kompressibilität der Flüssigkeit 
und die Rohrwandelastizität im Gleichungssystem berücksichtigt. Der Energieerhaltungssatz 
wird aufgrund der geringen Temperaturänderungen der Mischung während des 
Druckstoßvorgangs nicht verwendet. 
 
In einer vorhergehenden Forschungsarbeit wurde vom Verfasser ein Berechnungsprogramm 
entwickelt, das sich auf eine aus Laborversuchen resultierende und validierte Gleichung 
bezieht. Zwei hydraulische Modelle wurden entworfen und konstruiert, um das Verhalten der 
stationären Lufttaschen an den Hochpunkten der Rohrleitung zu analysieren. Ebenso ist 
untersucht worden, wie sich die Luft in einer abwärtsgeneigten Rohrleitung am 
Wechselsprung am unteren Ende der Tasche verhält. Ein Vergleich der Laborversuche mit 
den Berechnungen zeigt eine gute Übereinstimmung. Zusätzlich wurde für diese Arbeit ein 
neues Teilprogram entwickelt, um diejenigen Hochpunkte in Pumpendruckleitungssystemen 
zu ermitteln, an denen Lufttaschen anzutreffen sind. Die Berechnungsergebnisse korrellieren 
gut mit den Aussagen, die andere Forscher für die gleiche Rohrleitungskonfiguration 
getroffen haben, wie sie in der Fallstudie analysiert wurde. 
 
Die neuen Teile des Berechnungsprogrammes wurden entwickelt, um den Konstrukteuren von 
Rohrleitungssystemen einen numerischen Algorithmus zur Verfügung zu stellen. Das 
Programm kann verwendet werden, um Rohrleitungssysteme während des Entwurfs oder die 
Leistung schon vorhandener Rohrleitungen zu analysieren. Ebenso wurden Laborversuche 
durchgeführt, um das Verhalten der Lufteinschlüsse an den Hochpunkten von Rohrleitungen 
zu untersuchen und das Volumen der Luft dieser Lufttaschen zu bestimmen. 
 
Laborversuche 
 
Laborversuche wurden im Labor durchgeführt, um das Volumen der Luft, das zur 
Taschenbildung führt, zu messen sowie das Verhalten der großen Lufteinschlüsse an den 
Hochpunkten der Rohrleitungssysteme zu untersuchen. Der Versuchsaufbau bestand aus einer 
Pumpe mit einem maximalen Durchfluss von 2,5 l/s; einem Oberwassertank von 5,0 x 1,1 m 
Grundfläche und 1,0 m Höhe und einer Rohrleitung mit einem Innendurchmesser von 76,2 
Millimeter aus Acryl, welche in einem metallischen Rahmen gehalten war. An den 
Oberwassertank schloss sich ein 6,8 m langer Rohrleitungsabschnitt an, der über eine flexible, 
50 cm lange Verbindung mit einem weiteren, 6,4 m langen Abschnitt verbunden war. Die 
Neigung beider Rohrleitungsabschnitte war veränderlich. Der Versuchsaufbau ist in 
Abbildung 1 dargestellt.  
 
Während den Versuchen wurden die Wassertiefen unter den Lufttaschen bei atmosphärischem 
Druck sowie unter Druck aufgezeichnet. 
 
Die Versuchsergebnisse wurden mit den analytischen Resultaten der direct step method 
verglichen, die in der Analyse des stufenweise veränderten Flusses verwendet wurde. Die 
analytischen Berechnungen ergeben für Lufttaschen sehr ähnliche Formen wie diejenigen, die 
in den Laborversuchen ermittelt wurden. Die Fließprofile in der teilgefüllten Rohrleitung 
unter den Lufttaschen, die aus der dynamischen Gleichung des leicht ungleichförmigen 
Abflusses berechnet wurden, zeigen eine ausgezeichnete Übereinstimmung mit denen aus den 
Laborversuchen.  
 
Die Werte aus den analytischen Berechnungen sind etwas niedriger als die in den 
Laborversuchen bestimmten Luftvolumina. Daher erhöhen die Ergebnisse aus den 
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Berechnungen mit der direct step method den Sicherheitsbeiwert beim Rohrleitungsentwurf. 
Nach Meinung des Autors und anderer Forschern führen kleinere Lufteinschlüsse an den 
Zwischenhoch- und Hochpunkten eines Rohrleitungssystems zu einer Erhöhung der 
Druckschwankungen aus einer plötzlichen oder routinemäßigen Pumpenabschaltung. Es 
könnte ernsthafte Folgen haben, wenn im Rohrleitungssystem vorhandene Luft während des 
Entwurfs des Rohrleitungssystems nicht beachtet wird. 
 
Zu Untermauerung der Annahmen des analytischen Modells für die Simulation der 
Druckstoßvorgänge mit Lufttaschen und einem daran anschließenden Transport von Luft-
Wasser-Gemischen wurde eine fotographische Studie durchgeführt. Es wurden schießender 
Abfluss sowie unter Druck stehende vollgefüllte Rohrleitungen getestet, als auch die 
Eigenschaften von Wechselsprüngen in den kreisförmigen Rohrleitungen bei 
atmosphärischem Druck und unter Druck. Die Beobachtungen zeigen, dass dem Luft-Wasser-
Gemisch durch den Wechselsprung eine beträchtliche Luftmenge hinzugefügt wird. 
 
 

 
 

Abbildung 1 Schnitt und Grundriss des Versuchsaufbaus 
 
 
Fallstudie 
 
Die Fallstudie eines ausgeführten Pumpendruckleitungssystems ohne druckstoßdämpfende 
Bauteile wurde durchgeführt, um den möglichen Effekt der Lufttaschen mit und ohne den 
Transport eines Luft-Wasser-Gemischs hinter den Luftpolstern auf Druckstoßvorgänge zu 
zeigen. Die Randbedingung auf der einen Seite ist eine Pumpstation und auf der anderen Seite 
ein Hochbehälter. Nur die Druckstöße aus Pumpenabschaltung werden in dieser Analyse 
betrachtet. In der Pumpstation sind vier parallel geschaltete Kreiselpumpen installiert. Jede 
Pumpe hat eine maximale Kapazität von 0,625 m³/s und kann damit Wasser in den 396,92 m 
über dem Pumpensumpfniveau gelegenen Hochbehälter fördern.  
 
Der Leitungsabschnitt ist 2,289 m lang, und die Rohrleitung ist aus Stahl mit einem inneren 
Durchmesser von 1,22 m gefertigt. Die Skizze in Abbildung 2 zeigt einen schematischen 
Schnitt des untersuchten Rohrleitungssystems. 
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Abbildung 2 Schematisches Höhenprofil der Pumpendruckleitung 

 
 
Ergebnisse des analytischen Modells  
 
Im folgenden Abschnitt werden die Ergebnisse vorgestellt, die mit Hilfe des analytischen 
Modells erzielt wurden. Das Modell wurde für Druckstoßvorgänge in homogenen 
Zweiphasen- Wasser- Luftmischungen entwickelt. 
 
Um den Effekt der Lufttaschen auf hydraulische Druckstoßvorgänge mit Hilfe des 
analytischen Modells zu untersuchen, wurde eine Methode entwickelt, die die Lage der 
Lufttaschen in Pumpendruckleitungen erkennt und deren Volumen quantifiziert. Verwendet 
wird eine lineare Gleichung, die von Gonzalez und Pozos (2000) für diese Fragestellung 
empfohlen wird. Diese Gleichung sagt aus, dass sich bei einer Pumpstation mit 3 Pumpen, 
höchstens vier Punkte ergeben, an denen sich die Luft ansammeln kann. Dieses Szenario 
stellte sich als das am meisten kritische für die Analyse heraus. 
 
Die resultierende Einhüllende der maximalen und minimalen Druckhöhe wird mit dem 
Volumen der Lufttaschen in gleicher Höhe verglichen. In diesem Fall jedoch tritt eine 
abwärtsgerichtete Strömung des Wasser-Luft Gemisches ein. Darüber hinaus werden die 
Effekte der Wasser-Luft-Mischung auf die Umhüllende des maximalen und minimalen 
Gesamtdrucks untersucht. Der gravierende Unterschied bei den Ergebnisauswertungen der 
Versuche zeigt sich bei einer möglichen Verminderung während der Ausbreitung der 
Druckwelle entlang des Rohrleitungsprofils. Die Druckhöhe wird hauptsächlich durch die 
Wasser-Luft-Mischung und die Lufttaschen absorbiert.  
 
Abbildung 3 zeigt, dass das größte Lufttaschenvolumen zusammen mit einer abwärts 
gerichteten Strömung der Wasser-Luft-Mischung eine Reduktion der maximalen und 
minimalen Druckhöhe in Pumpendruckleitungen verursacht. Hervorzuheben ist, dass der 
niedrigste und höchste Wert der minimalen und maximalen Umhüllenden, abhängig von dem 
Pumpendurchfluss, nahezu gleich ist. Von geringerer Bedeutung ist dagegen ein Abfluss ohne 
abwärts gerichtetes Wasser-Luft-Gemisch und die Annahme, dass eine Luftaufnahme 
ausgeschlossen wird.  
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Der dämpfende Effekt, hervorgerufen durch den Luftblasengehalt und das daraus 
resultierende große Luftvolumen, auf die maximalen Druckhöhe, ist von größerer Bedeutung 
als das Vorkommen des Wasser-Luft-Gemisches. Eine untergeordnete Rolle spielt der 
Vergleich der zwei Kurven ohne Beachtung des abwärts gerichteten Luft-Wasser-Gemisches. 
 
Abbildung 4 zeigt das Auftreten eines Wasser-Luft-Gemisches unterstrom von den mittleren 
Lufttaschen, mit den Volumen (V1 = 0.761 m3, V2 = 1.235 m3, V3 = 1.747 m3, V4 =0.856 m3) 
und eine damit verbundene deutliche Reduktion der maximalen und minimalen Profile der 
Druckhöhe. Die Reflexion der instationären Druckwellen verschwindet fast vollständig durch 
den Lufttransport, obwohl eine Reflexion oberhalb der Hochpunkte, an denen sich die 
Lufttaschen befinden, und in Richtung des unterstromigen Randes sichtbar wird. Dieser 
Effekt scheint jedoch das System nicht zu zerstören.  
 
Die Ergebnisse, die in Abbildung 5 dargestellt sind, zeigen, dass die kritischste Situation bei 
den vier kleinsten Lufttaschen auftritt (V = 0.145 m3, 0.448 m3, 1.038 m3, 0.412 m3). Obwohl 
direkt unterstrom von jeder Lufttasche ein Netto-Lufttransport auftritt, ist dieser nicht groß 
genug, um die Energie der instationären Welle maßgeblich zu absorbieren. Ebenso ist die 
maximale Druckhöhe am Pumpenauslass größer als ohne die Luftakkumulation in der 
Pipeline. Eine geringe Reflexion der maximalen Druckhöhe wird durch die Lufttaschen am 
unterstromigen Ende verursacht.  
 
Zusammenfassend kann die Aussage getroffen werden, dass mittlere und große Lufttaschen 
im Zusammenspiel mit einem Netto-Lufttransport in unterstromige Richtung einen wichtigen 
Effekt verursachen, indem sie den instationären Druck reduzieren. Der dämpfende Effekt 
macht sich in den maximalen Druckhöhen stärker bemerkbar. Die Simulation, die kleine 
Lufttaschen und ein Wasser-Luft-Gemisch enthält, zeigt eine bedeutende Zunahme der 
Druckhöhe in Richtung der oberstromigen und unterstromigen Ränder des Systems.  
 
Die erzeugten Druckstöße zeigen, dass die minimalen Druckhöhen nach dem Abschalten von 
drei Pumpen erzeugt wurden. Für den Fall von vier Lufttaschen an den Hochpunkten und 
einem Netto-Lufttransport nach Unterstrom wurden die Druckstöße niemals geringer als bei 
den Berechnungen ohne Luft und ohne Netto-Lufttransport. Ebenso zeigen die Ergebnisse der 
maximalen und minimalen Gesamtdrücke für ein bis vier Lufttaschen und entsprechenden 
Netto-Lufttransport an den Hochpunkten, dass die Form der Umhüllenden ungefähr gleich 
bleibt und dass weder Leerraumanteil noch Volumen der Lufttaschen die Prozesse 
bestimmen.  
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Abbildung 3: Maximale und minimale Druckhöhe bei 4 großen Lufttaschen an den 
Punkten 1, 2, 3 und 4 mit und ohne Wasser-Luft Mischung flussabwärts 
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Abbildung 4: Maximale und minimale Druckhöhe bei 4 mittleren Lufttaschen an den 
Punkten 1, 2, 3 und 4 mit und ohne Wasser-Luft Mischung flussabwärts 
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Abbildung 5: Maximale und minimale Druckhöhe bei 4 kleinen Lufttaschen an den 
Punkten 1, 2, 3 und 4 mit und ohne Wasser-Luft Mischung flussabwärts 
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Abbildung 6: Vergleich der maximalen und minimalen Druckhöhe bei den 
unterschiedlichen Lufteinschlussvolumina an den Punkten 1, 2, 3 und 4 mit und ohne 
eine Wasser-Luft Mischung flussabwärts 
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Empfehlungen 
 
Luftansammlungen in den Rohrleitungsystemen sind sowohl unbeabsichtigt als auch 
unvermeidbar und können nicht immer vollständig beseitigt werden. Durch Erkentnisse über 
den Lufteintrag kann der  Ingenieur die Auftretenshäufigkeit reduzieren. Viele Ingenieure 
planen fälschlicher Weise mit der Annahme, dass der Rohrleitungsquerschnitt immer 
vollständig und nie teilweise benetzt durchströmt wird. Dies kann zu kritischen Problemen 
führen, weil die vorhandene eingeschlossene Luft für die Berechnungen nicht in Betracht 
gezogen wird. Folglich sollte ein Planer von Rohrleitungen in der Lage sein, „worstcase“-
Szenarien vorherzusagen und im Falle einer wahrscheinlich negativen Auswirkung das Profil 
der Rohrleitung entsprechend anzupassen oder auch Betriebseinrichtungen einzuplanen, um 
die negativen Effekte zu verringern. Es ist bekannt, dass schon einfachste 
Rohrleitungssysteme unter der eingeschlossenen Luft leiden. Folglich müssen bei allen 
Systemen, insbesondere die mit Steigungsänderungen, alle Fließzustände im Detail analysiert 
werden, ob sich in möglichen Höchst- und Zwischenhochpunkten Luft angesammelt haben 
könnte. Zusätzlich basiert die hydraulisch instationäre Berechnung normalerweise auf der 
Annahme, dass sich keine Luft im Rohrleitungssystem ansammelt. Dies könnte das Versagen 
bzw. den Bruch von Leitungen erklären, welche mit Standardberechnungen nicht 
vorhergesagt werden konnten. Ebenso wenn der Verlauf einer vorhandenen Rohrleitung 
beispielsweise infolge eines Kanals oder Gebäudeneubaus verändert wird, muss eine komplett 
neue Berechnung durchgeführt werden.  
 
Hochpunkte sind auf mögliche Luftansammlungen zu untersuchen. Besteht die 
Wahrscheinlichkeit, dass diese auftreten, muss eine Simulation der Druckstöße erfolgen, um 
negative Effekte zu verringern. Es wird empfohlen, Berechnungen mit eingeschlossener Luft 
routinemäßig anzuwenden, um glaubhaft in der Lage zu sein, betriebliche Szenarien 
darzustellen, welche Druckstöße zur Folge haben. Konstrukteure von Rohrleitungen könnten 
bemängeln, dass numerische und experimentelle Untersuchungen extrem zeitraubend und 
teuer sind. Jedoch können die Reparaturkosten der Rohrleitungen und Prozesse von Personen 
und Geschäftseigentümern bei einem Rohrleitungsausfall gegen den Betreiber dieser Systeme 
um ein Vielfaches zeitaufwendiger und teurer sein. 
 
Zusammenfassende Anmerkungen 
 
Der Vergleich der maximalen und minimalen Druckhöhenumhüllenden mit und ohne 
Luftwassergemisch hebt beide Effekte, Lufttaschen und Luftblasengehalt, bei 
Druckschwankungen hervor. Anschließend hat die Fallstudie gezeigt, dass große und 
mittelgroße Lufttaschen einen polsternden Effekt haben und die maximale Druckhöhe beim 
Stromausfall im Pumpbetrieb herabsetzen. Zusätzlich scheint es, dass kleine Lufttaschen 
Druckstöße beträchtlich erhöhen können. 
 
Das Ziel dieser Arbeit war es, mögliche schädliche und vorteilhafte Effekte der 
eingeschlossenen Luft auf Druckstöße aufzuzeigen, wie beispielsweise bei Luftgasgemischen 
unterhalb von Lufttaschen. Eine Reihe numerischer Simulationen wurde durchgeführt, um 
eine Anleitung zur Vermeidung dieser Probleme zu geben oder zumindest eine Verringerung 
der Gefahr von Rohrleitungsbeschädigung. 
 
Bei der Analyse von Druckstoßvorgängen muss berücksichtigt werden, dass alle 
Rohrleitungssysteme in Betrieb und Konfiguration unterschiedlich sind. Es ist nicht möglich, 
ein einfaches, definitives Ergebnis in Bezug auf die kritischen Volumina der Lufteinschlüsse 
und ihrer Position zu erhalten. Jedoch können die Ergebnisse dazu dienen, die Konstrukteure 
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von Rohrleitungssystemen beim genaueren Ermitteln von kritischen Situationen bei 
verschiedenen Rohrleitungskonfigurationen zu unterstützen. Resultierend aus dem Fortschritt 
der numerischen Methoden gibt es eine Tendenz, Rohrleitungssysteme nur durch numerische 
Simulationen zu entwerfen. Jedoch werden zusätzlich Laborversuche empfohlen, um eine 
ausführliche und genaue Analyse des Effektes der Lufttaschen mit und ohne Luft-Wasser-
Gemisch auf Druckstöße zu ermitteln. 
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1 Air Problems in Pipeline Systems 
 
1.1 Principal problems 
 
The presence of air in pipelines can severally affect the water carrying capacity of the line. In 

gravity systems, stationary air pockets can lead to reducing the effective cross section for the 

passage of water. In pumping systems the presence of air can be reflected in increased energy 

consumption and flow reduction. These problems are still occurring up till now, even in 

pipeline systems constructed recently, due to a lack of design criteria that make gravity 

pipelines, as well as pumping systems, work more efficiently when air enters into the line.  

Water pipelines are usually designed assuming no air in the water and sometimes pipeline 

designers do not take into account the causes of air entrainment and the potential problems 

that can be raised by entrained air.  

 
Most of the times, pipelines contain air in the form of pockets which can build up at high 

points along the profile. The phenomenon occurs because air is lighter than water and 

therefore it will migrate to the high points. 

 
Although free air is beneficial for cavitation prevention, for oxygenation purposes or damping 

effects in hydraulic transients; it can be also detrimental, for example, there are ranges of air 

volumes that can produce an undesirable pressure rise during the pumps start-up. The effect of 

air in both situations depends on the location and amount of the undissolved air as well as the 

configuration of the pipeline. 

 
Landon (1997) [44] wrote: “It has been said that if a pipeline is properly deaerated, you 

cannot guarantee against a line break. However, if you do not properly deaerate a pipeline, 

you should be prepared for one”. 

 
1.2 Air Bubbles Classification Used for the Research  

  
Before explaining the causes of air entrainment and problems caused by air entrainment, the 

definitions of air bubble and air pocket which are used throughout the thesis are presented. 

Air can be found in water pipelines mainly as large or small moving bubbles and as large 

stationary pockets.  

 
Wisner et al. (1975) [87] defined bubbles as small droplets of air with ellipsoidal shape, 

entrapped in water by turbulent action such as a hydraulic jump or the impact of a falling 

nappe of water. These bubbles have a size varying from 1 mm to 5 mm. Kent (1952) [40] 
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reported size of bubbles of 6.35 mm and smaller.  

 
For the purpose of this work, the air cavities formed by the coalescence of air bubbles, which 

have a longitudinal length less than or equal to the diameter of the pipe will also be called 

bubbles. An air pocket will be defined as an air cavity in pipelines, when its longitudinal 

length is greater than the diameter of the pipe. The air pockets may be formed by the 

coalescence of air bubbles, because of entrapment of a large amount of air during the filling of 

the line, due to air leak in through mechanical equipment during vacuum pressure, or by air 

release when the pressure drops below the saturation vapor pressure or by other causes, that 

will be described in detail.  

 
1.3 Causes of Air Entrainment in Pipelines 
 
Air in pipelines cannot be always completely eliminated but understanding the ways how it 

enters a pipe helps the engineers to minimize its occurrence. Air in the line comes from 

different sources including the following:  

 
A pipeline is full of air during its filling. If the air is not completely released through air 

valves, vents and standpipes, air may remain at high points throughout the system in the form 

of air pockets.    

 
Air enters also through mechanical equipment, for example: 
 

• Pumps introduce air by the vortex action of the suction in quantities of 5% to 10% of       

            flow. Hence, air has to be released before the check valve opens. 

 
• When vacuum pressure occurs in the pipeline, air can leak in through packing at joints    

      and valves. 

 
Water contains over 2% air by volume and air solubility in water is proportional to the 

pressure. Dissolved air may form a free gas phase at points in the pipeline where pressure 

drops or the temperature rises.  

 
Pipelines are complex systems formed by hydraulic structures, such as dropshafts, siphons, 

tanks, etc. Air entrainment is commonly found in these structures and beyond their inlets the 

closed conduit sometimes flows partly full, and if the normal depth is less than the critical 

depth a hydraulic jump will occur. If the air cannot be removed by the flowing water or 

mechanical means such as air release valves, it may remain at some high points of the line. 
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The break pressure tank is an important source of air entrainment because of the vortex action 

generated in its intake. When the water level in the structure is very low, the core of the 

vortex can be deep enough to introduce considerable quantities of air into the pipe. 

 
1.4 Problems Caused by Air Entrained 
 
Air entrained in pipelines may lead to a variety of problems. For example, air accumulated at 

high points of the pipeline can reduce the effective pipe cross section, which results in an 

increase of head losses. Air enhances corrosion by making more oxygen available in ferrous 

pipes. Incorrect readings on measurement devices are produced by free air. Vibrations are 

caused by the transition from a partly full pipe to a full pipe because of the presence of air 

pockets. Important quantities of accumulated air cause blowbacks that drive to vibrations and 

structural damage. Air increases the energy consumption of pump equipment. Air may build 

up in important quantities that the air pockets can cause the partial or complete blockage of 

flowing water, reducing the capacity of the pumping systems as well as the gravity pipeline 

systems.  

 
1.4.1 Increase of Head Losses caused by Entrained Air  

 
Air entrained from different causes is conveyed through the pipeline by the inertia of flowing 

water and may accumulate at high points, forming an air pocket that can become larger if 

more air pockets or air bubbles join it. When a pocket reaches a downward slope the water 

pushes it down. If the air pocket is large enough the water flow may not overcome the pocket 

buoyancy force, then the pocket can remain stationary in the pipe and the friction force will 

go to zero.  The forces acting on an air pocket are shown in Figure 1.1.  

 
D    pipe diameter [m] 
S     pipe slope [-]  

Figure 1.1: Forces acting on an air pocket in a pipe flowing full  
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Air binding is a concept introduced by Richards (1957) [62] and refers to the trapping of air 

that reduces the cross section of the pipe in a manner that prevents the pipe from being 

entirely filled up. Thereby the pipe reverts to open channel flow beneath the air pocket and the 

energy gradient is roughly parallel to the pipe slope. 

 
Air binding can be a source of head loss that can reduce the system capacity. Applying the 

energy equation between the top and the bottom of each air pocket, it will show that the loss 

of head is roughly equal to the vertical component of the length of the pocket, see Figures 1.2 

and 1.3. 

 
Richards (1962) [63] commented that is important to recognize that the major head loss is 

caused by the change in the gradient slope from the normal full pipe energy gradient to one 

which is roughly parallel to the pipe slope. The reduction of pipe cross section by the air is not 

the primary or even an important source of loss. 

 
The pipelines that have downward slope sections in the direction of flow can be subjected to 

air accumulation. In pumping systems the air accumulation results in the rising energy 

consumption and flow reduction if air pockets located at high points of the pipeline cannot be 

carried downstream. It may occur that flow entirely stops because the cumulative head losses 

produced by the air pockets can be higher than the pump head capacity. Air buildup in gravity 

pipelines results in capacity reduction. In some gravity pipeline sections entrapped air has led 

to the overflow of vents. Since the available static head is not high enough to overcome the 

water columns separated by air standing at the high points. Richards (1962) [63]. Figures 1.2 

and 1.3 show the effect of air accumulation. 

 
 

∆hAPi  head loss caused by the presence of the air pocket [m] 
 

Figure 1.2: Air pockets in a gravity pipeline system 
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∆hAPi head loss caused by the presence of the air pocket [m] 
  

Figure 1.3: Air pockets in a pumping pipeline system 
 
The problems caused by the reduction of the pipe cross section in consequence of entrapped 

air may occur more oftentimes than records show. If the head losses are just a little less severe 

and do not cause spillage in vents or the complete stoppage of flow in pumping systems, then 

these problems can go unnoticed.       

 
As air accumulates at high points during pipeline filling or any other causes of air 

entrainment, more head is lost. Therefore, the total head losses as a result of air accumulation 

can be evaluated as the sum of the individual head loss of each air pocket.  

 
1.4.2 Blowbacks 
 
The entrained air may accumulate at high points of the pipeline and form air pockets that can 

become relatively large. If the pipe slope is steep downward from the high point, the air 

pocket tends to stabilize along the top of the pipe. At the end of the air pockets a hydraulic 

jump usually occurs. The formation of a hydraulic jump at the end of the air pockets in water 

supply lines is a way by which air can be removed and carried away by the flowing water. 

Beyond the hydraulic jump the air entrained as bubbles can form air pockets and if these are 

large enough the drag force of water cannot overcome the buoyancy force. Then, the bubble 

or the pocket remains in the pipe, getting larger as more bubbles arrive to join them. The air 

pockets further increase their size and reduce their velocity as a result of the buoyant force 

increment. The air pocket can blow back with tremendous force through the hydraulic jump, 

taking water with it, and can partly or completely destroy hydraulic structures, such as break 

pressure tanks and surge tanks.  

 
Sailer (1955) [66] investigated prototype cases in the San Diego aqueduct, which crosses 

several broad valleys in long siphons. The longest siphon has a length of 20.12 km. On these 

long structures a problem arose from the hydraulic jump at the inlet leg. Air entrained and 
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accumulated into large air pockets downstream from the jump. These air pockets blew back 

with enormous force, taking water with them, and destroying the reinforced concrete platform 

on the inlet structure of the siphon on the Belle Fourche Project in South Dakota, U.S.A. 

Sailer (1955) [66] and Falvey (1980) [20] recommended that the possibility of undesirable 

blowbacks must be always investigated in hydraulic models. 

 
1.4.3 Water Hammer Induced by Air Evacuation  
 
The increase in velocity beneath the air pocket may push away part or the entire pocket 

downstream. The abrupt and rapid change in the fluid velocity when the pocket is removed 

and stopped by another high point could lead to a high pressure surge (water hammer). 

Considerable damage to accessories, joins, or even the rupture of the line can occur. This 

phenomenon is the so called water hammer induced by air evacuation. 

 
1.4.4 Reduction of the Pumping System Efficiency because of Entrained Air  
 
Thomas (2003) [77] presented a useful comparison between the efficiency of the pipeline 

systems and the cost for removing the entrained air out of the water pipelines. It is estimated 

that 75% of the cost of operating a pipeline is the cost of pumping. Investigations on a variety 

of water pipelines throughout the world have revealed that entrapped air can reduce their 

efficiency by as much as 30%. Most pipeline systems are commonly operated with air 

contents that diminish system flow efficiencies by 15 to 20%. Pockets of compressed air 

present enormous obstacles to any efforts to pump fluids. Entrapped air increases head 

pressure by 20% and will force pumps to perform 20% harder, and thus demand 20% more 

electrical energy to overcome the restrictions. 

 
In 1999 a large industrial city in South Canada spent 1,600,000 dollars on electricity to power 

the water pumps. Assuming that the machinery has to work 20% harder to push away the air 

blockages throughout their grid, the additional electrical demands cost $320,000. Almost a 

third of a million dollars, spent in a year, to overcome a poorly vented water pipeline system. 

 
1.5 Mechanisms of Air Removal 
 
The causes by which air enters pipelines have been described in the previous section, as well as 

the variety of problems that can take place in water systems because of entrapped air. Within 

this section the two methods to accomplish the removal of air are presented: (1) Hydraulic 

means, using the inertial flowing water to remove the air from pipe; and (2) Mechanical means 

as air valves, open vents and other devices to release the air.    
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1.5.1 Hydraulic Means 
 
Up to now, there are no well accepted analytical solutions for the transport of air bubbles and air 

pockets. Therefore, the design of water pipelines is done using experimental investigations. The 

disadvantage is that recommendations of previous authors vary widely and for some pipelines 

design may not be adequate. The possible causes for this disagreement are that 

conditions adopted by different researchers are not general and the investigations 

were carried out in a diversity of small diameters compared to prototypes. 

     
There is a diversity of clearing velocities found by various investigators. If one of 

these values is used for a specific design, the water velocity may not clear the air 

from prototype giving rise to the variety of problems described before.    

 
Wisner et. al. (1975) [87] described the following terms which are used in this work: 
 

1) Sweeping velocity to denote the minimum flow velocity to transport bodily an air 

pocket or air bubble. 

2) Generation refers to the turbulent action at the downstream end of the pocket 

resembling a hydraulic jump which causes air bubbles to be ripped off. 

3) Entrainment is used to describe the movement of the generated air bubbles to 

downstream. 

4) Clearing velocity is the minimum velocity to remove an air pocket from the line. 

 
Experiments have shown generation may not mean entrainment. Entrainment depends on the 

hydraulic conditions downstream of the air pocket. 

 
Investigators have adopted different approaches to define a clearing velocity. Some used 

stationary pockets in flowing water as criterion, while others used the rising velocity of pockets 

in still water as an index. The recommendations of previous investigators are reviewed 

consecutively: 

 
Kalinske and Robertson (1943) [38] studied the air entrainment due to a hydraulic jump in 

circular pipes. An experimental apparatus made of acrylic pipes with an inside diameter of 

149.4 mm and about 10.7 m length could be set at downward slopes from 0° to 16.7°. The 

results are presented in two experimental graphs. Figure 1.4 represents the condition in which 

all the air entrained by the jump is carried along and discharged out of the line. Considering the 

rate of air entrainment by the hydraulic jump, it should depend on the water discharge and the 
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turbulent action of the jump. The intensive agitation of the hydraulic jump depends on the 

Froude number upstream of the jump, F1. The values of air entrainment by the hydraulic jump 

can be estimated from the empirical relationship                

 

                             4.1
1 )1(0066.0 −= F

Q
Q

w

a    [-]                     (1.1) 

 
where  
 
Qa    air flow rate [m3/s]  
Qw   water flow rate [m3/s]     
F1    Froude number upstream of the hydraulic jump [-] 
 
The authors observed that the air pumped into the flowing water by the jump forms a large 

pocket beyond the jump which extends to the point where all the air leaves the pipeline. 

 
Kalinske and Robertson (1943) [38] provided a second graph presented in Figure 1.5 that shows 

the Froude numbers below which the flowing water carries only a part of the air entrained by 

the hydraulic jump. For any value of y1/D, where y1 is the initial depth, there is a value of the 

Froude number below which only a part of the air entrained by the jump can be carried out of 

the line. 

 
The authors concluded that above a certain critical condition the rate of air removal from an air 

pocket in a pipeline depends on the ability of the hydraulic jump to entrain air. The critical 

condition, for any pipe slope and for any relative flow depth in the air pocket, depends on the 

value of the Froude number of the flow ahead of the jump. Below this critical value of F1 the flow 

beyond the jump will not be able to carry the air entrained by the jump and thus the air removal 

will not be a function of the jump characteristics but rather of the hydraulic features of the flow 

beyond the jump. 
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β       ratio of air flow rate to water flow rate [-] 
F1     Froude number upstream of the hydraulic jump [-] 
Qa     air flow rate [m3/s]  
Qw     water flow rate [m3/s] 

 
Figure 1.4: Correlation of data on rate of air entrained by hydraulic jump (after Kalinske 
and Robertson, 1943) 
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y1    initial depth [m] 
D    pipe diameter [m] 
F1   Froude number upstream of the hydraulic jump [-] 
v1    water velocity upstream of the hydraulic jump [m/s] 
g     acceleration due to gravity [m/s2] 
ye    effective depth [m] 
S     pipe slope [-] 
 
Figure 1.5: Experimental values of critical Froude number (after Kalinske and Robertson, 
1943) 
               
Gandenberger (1957) [26] studied the statistical information related with breaks in certain 

sections of 900 mm diameter cast iron mains. These most frequently occurred near high points 

and during periods when the velocity was lower than 0.3 m/s, and suggested that these failures 

can be attributed to pressure fluctuations caused by the presence of air. In contrast, in other 

mains with less favorable profiles but constantly higher flow rates, no problems resulting from 

air were encountered over a period of 50 years. To recognize the effect of accumulated air, 

Gandenberger accomplished hydraulic model investigations to study the movement of air in 

pipelines. The experiments on the movement of air bubbles and pockets were made in glass 

tubes with diameters of 10.5 mm, 26 mm, 45 mm, and 100 mm steel pipe with slopes varying  

from 0° to 90° and water flowing in upward and downward slopes. The results are presented 

in Figure 1.6 that gives the minimum mean water velocity required to clear a given volume of 
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air from a high point in the profile of a pipe of unit diameter for a certain downward slope. The 

dimensionless parameter to characterise the size of air bubbles and pockets, BS is defined for 

any pipe diameter, D, as BS = ),/(4 3DV π where V is the volume of the air bubble or 

pocket.  The graph covers the range from BS = 0.02 to BS > 1. For any given pipe diameter the 

clearing velocity increases with bubble size up to BS = 1 and thereafter is constant. 

Gandenberger concluded that the graph would be valid for pipe sizes greater than about 0.1 m 

and for air pockets with BS > 1. Later he corroborated his prior conclusion with satisfactory 

agreement, in a posterior test carried out in a pipe with a diameter of 500 mm, having a length 

of 455 m and a slope of 5°.  

 
S     pipe slope [-] 
v     water velocity in the pipe [m/s]  
BS = 4V/(πD3) dimensionless parameter to characterise the size of air bubbles [-] 
 
Figure 1.6: Movement of air bubbles of different sizes in downward slopes                    
(after Gandenberger, 1957) 
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Kent (1952) [40] found that the rate of removing air by the hydraulic jump at the end of the air 

pocket is related to the drag force of water acting on the pocket. An effective rate of air removal 

exists when the mean velocity v of the water is equal to or greater than a certain minimum 

value, designated as vmin. Therefore, equating the drag force exerted by the flowing water and 

the buoyant force of an air pocket, the velocity v is equaled to vmin. Kent developed a semi- 

empirical relationship for the minimum velocity vmin, which is a function of S and D. 

 

           gDSCv 2/1
0min =    [m/s]                   (1.2) 

 
vmin      minimum mean water velocity required to clear a given volume of air [m/s] 
g          acceleration due to gravity [m/s2]  
D         pipe diameter [m] 
S          pipe slope [-] 
 

2/1
0C is a function of the air pocket shape and from the experimental data was found that its 

values become constant for lengths of air pockets greater than 1.5D. Kent’s formula is often 

used in practice because of its simplicity. However, an examination of the formula shows that 

there is a systematic deviation from his experimental results, see Figure 1.7. Kent’s experiments 

were performed in an acrylic pipe line with 100 mm diameter and a straight section of 5.5 m. 

 
Veronese (1937) [80] found a minimum velocity to keep a bubble stationary in the flow. He 

observed that at some higher velocity, generation and entrainment reduced all pockets to a small 

stable size which was defined as the limit bubble. Any increase on velocity did not further 

disrupt the limit bubble but carried it out. The velocity to maintain the limit bubble in 

equilibrium in flowing water is called limit velocity. Veronese suggested a clearing velocity of 

0.59 m/s that should clear the air in pipes with diameters greater than 100 mm. 

 
Kalinske and Bliss (1943) [37] presented information of direct use to the pipeline 

designer. They provided experimental data indicating the water discharge 

necessary to maintain air removal from any given size of pipe laid at any slope. 

The experimental investigation was carried out using acrylic pipes with diameters 

of 102 mm and 152 mm. The line went up to a summit and then was set at 

downward slopes between 0° and 17.5°. 
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S    pipe slope [-] 
v    water  velocity in the pipe [m/s] 
 
Figure 1.7: Relation of the minimum velocity and the downgrade slope (after Kent, 1952)  
 
For all except the very flat slopes, the water was flowing down the sloping pipe in 

a hydraulic jump. The downstream depth of the jump was usually large enough to 

seal the pipe, although in some cases for low flows at flat slopes the jump did not 

fill the conduit. In such cases the depth beyond the jump increased gradually until 

the pipe was filled. Under such conditions the air removal phenomenon was 

considerably different from the case where the jump did fill the pipe. 
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The rate at which the jump entrained the air did not necessarily correspond to the 

rate at which air was removed from the pocket. Downstream of the jump the pipe 

flowed full, except for the air bubbles, and the rate at which the air was eventually 

removed from the pipe depended on the ability of the flowing water in the pipe 

beyond the jump to carry the air bubbles along. For higher water flow discharges 

the jump generated and entrained air at a higher rate than the flow beyond the 

jump could handle. The excess air then blew back periodically through the jump. 

For any pipe size and slope, there was a discharge at which air was carried down 

by the water flow beyond the jump. Below this discharge the removed air 

depended on the ability of the water downstream of the jump in the filled conduit 

to convey air along. Above this discharge the water velocity beyond the jump was 

sufficient to clear all the air entrained by the jump. 

 
Kalinske and Bliss observed that the removal of air was controlled by two 

hydraulic phenomena. For higher discharges the air removal was controlled by the 

hydraulic jump, since the water flow beyond the jump was capable of carrying all 

the air entrained by the jump, and more if it were available. At lower discharges 

the air removal was controlled by the flow characteristics beyond the jump.  

 
For smaller slopes it was found that the entire air pocket would be swept out of the 

pipe very quickly. However, this could always be prevented by having a 

singularity or rough protuberance near the pipe line peak, to which the end part of 

the pocket would cling. It was considered by the authors that in the prototype 

would always be sufficient surface roughness, particularly at joints, to cause the 

upper end of the air pocket to remain in the singularity. 

 
It was noted that smaller air bubbles could be moved more easily than the larger 

ones. However, the smaller ones would gradually coalesce into large bubbles, 

which could not be moved by the water, and these would travel up the pipe and 

pass back through the jump.  

 
The analysis done by Kalinske and Bliss indicated that the ratio of the volumetric 

rate of air removal to water discharge Qa/ wQ  is related to the pipe slope, S, and the 

dimensionless flow rate defined as 2
wQ /gD5, where g is the gravitational 

acceleration and D the pipe diameter. The plotting of the data indicated the 
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existence of such a general relationship, the value of Qa/ wQ  increases with 

2
wQ /gD5 for any slope. The graph is shown in Figure 1.8. 

 
Figure 1.8 Experimental data showing the relation between pipe slope, pipe 
diameter, water flow rate, and hydraulic gradient when air removal starts 
(after Kalinske and Bliss, 1943). 

 
The relationship can be written as   

             SgDQw 707.0/ 52 =    [-]                (1.3) 
 

Qw    water flow rate [m3/s] 
g       acceleration due to gravity [m/s2]  
D      pipe diameter [m] 
S       pipe slope [-] 
 
Replacing the water flow rate, Qw by the water velocity, v the equation can also be 
presented as 
 

               SgDv 146.1/2 =    [-]                  (1.4) 
 

v   water velocity in the pipe [m/s]  
 
The peculiar deviation of the data for the smaller slopes is quite different than 

expected. It was found that for pipe slopes less than 2.5% the experimental data 

deviated from the straight line relationship. This occurred when the hydraulic jump 
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at the lower end of the air pocket did not fill the pipe. Thus, the process of 

entraining air was quite different from that when the downstream depth of the 

jump was greater than the pipe diameter. It is apparent that for pipe slopes less 

than 2.5 % higher water discharges are required to initiate air removal. This 

appears to be a significant finding since it means that no advantage is gained by 

using very flat slopes. Kalinske and Bliss stated that even though the exact 

limiting water discharge was difficult to determine, the measurements obtained are 

sufficiently accurate for practical use. 

 
Wisner et al. (1975) [87] simulated in a physical model, some conditions at which 

different investigators worked in order to appreciate previous authors’ 

recommendations. They investigated the scale effect on the clearing velocity and 

recommended some tools to enable practicing engineers to identify the different 

aspects of air presence and methods for eliminating air, adopting remedial 

measures or both.   

 
After a dimensional analysis Wisner et al. as well as Gandenberger expressed the 

bubble size as a dimensionless parameter BS, in which BS = )/(4 3DV π , where V  is 

the volume of the air pocket and D the pipe diameter.  

 
A hydraulic model with acrylic pipes and a diameter of 244 mm and 7.3 m length 

was used to perform the experiments for moving water and still water situations. 

An experiment was performed to investigate Veronese’s limit bubble. A large 

pocket was introduced in flowing water. The water velocity was changed to keep 

the pocket in equilibrium as disruption progressed. It was observed that the pocket 

was finally reduced to a small stable size and that any increase of the velocity does 

not further disrupt the pocket but sweeps it out. The results obtained extend 

Veronese’s results. The experimental results clarified two important points.        

(1) The limit velocity does not become a constant quantity with increasing 

diameter as suggested by Veronese, but it decreased with diameter, at least in the 

range of Veronese and the writers; and (2) the limit length does not become a 

constant beyond 100 mm in diameter, but decreased at a decreasing flow rate. For 

the 244 mm pipe the limit length and limit velocity were found to be 46 mm and 

0.72 m/s, respectively. 
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The experiments in still water were done to investigate the relationship between 

the Reynolds number Re and gDvr / , where vr is the rise velocity of the pocket. 

The experiments were performed in a downward slope with 18.5° and different air 

pockets sizes were allowed to rise in the still water. The values obtained were 

plotted in terms of gDvr /  and Re for 18.5° together with Gandenberger´s 

results for other pipe sizes. The authors concluded that for values of Reynolds 

number above 105, gDvr /  becomes independent of the Reynolds number. Also 

for the same slope results suggest that gDvr /  becomes independent for BS ≥ 0.8. 

Wisner et al. plotted all available experimental results to provide a lower limit for 

the critical velocity for air removal vcritical. 

 
     825.025.0/ += SgDvcritical     [-]         (1.5) 

 
vcritical  critical velocity for air removal [m/s] 
g       acceleration due to gravity [m/s2]  
D      pipe diameter [m] 
S       pipe slope [-] 
 
The authors recommended that the design values of the velocity parameter should not be much 

higher than this lower bound as this will introduce a problem of blowback. 

  
Falvey (1980) [20] presented a graph showing the limits for air pockets and air bubble motion in 

closed conduits, based on the data presented by Kalinske and Bliss (1943) [37], Runge and 

Wallis (1965) [65] and Colgate (1966) [13]. The author comments that the direction of 

movement taken by the air bubbles or air pockets can be analyzed taking into account the 

relative magnitudes of the drag and buoyant forces upon a stationary bubble in the flow. For 

example bubbles move perpendicularly to the pipe axis only when the upstream component of 

the buoyant force vector is equal to the drag force component. Falvey also reproduced in the 

graph the results obtained by Sailer (1955) [66] related with prototype cases in which large air 

pockets move against the flow  to completely destroy reinforced concrete platforms, see    

Figure 1.9. 
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Qw   water flow rate [m3/s] 
g      acceleration due to gravity [m/s2] 
γ      specific weight of water [kg/m3] 
σ     surface tension [kg/m]  
 
Figure 1.9: Air bubbles and air pockets motion in closed conduits flowing full (after 
Falvey, 1980) 
 
Gonzalez and Pozos (2000) [29] proposed a linear equation to study the behavior of air 

bubbles and air pockets downstream of a hydraulic jump located at the end of a large air 

pocket. Experimental and theoretical investigation was carried out to validate the practical use 

of the equation. The equation was developed based on Kalinske and Bliss (1943) [37] 

investigations, as well as research made by posterior investigators to Kalinske and Bliss. The 

proposed linear relationship is  

 
                  SgDQw =52 /    [-]                      (1.6) 

 
The term Q 2

w /gD5 is named dimensionless water flow rate  

 
Qw  water flow rate [m3/s] 
D    pipe diameter [m] 
g     acceleration due to gravity [m/s2]  
S     pipe slope [-]  
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For the analysis of the air pockets and air bubbles Q 2
w /gD5 is compared with the downward 

sloping pipe sections of the pipeline system. When Q 2
w /gD5 is greater than the pipe slope the 

air bubbles and pockets move downstream along the pipe. When it is lower than S, the air 

bubbles and pockets will move upstream. Measurements and observations in an experimental 

apparatus corroborated that the air behaved as the linear equation (1.6) predicted.  

The experimental investigation was developed in a physical model of acrylic pipes with 

diameter of 101.6 mm. Likewise, the linear equations, as well as experimental and theoretical 

investigations are presented in detail in chapter 2. 

 
Escarameia et. al (2005) [18] described experimental and numerical studies that were conducted 

to enable the development of design guidance on how to minimize the negative effects of the 

presence of air pockets in pipes, particularly for mild slopes. 

 
The tests were carried out in a 150 mm internal diameter pipe at slopes varying between 0° and 

22.5° but, in view of past research findings, the results can be taken as generally valid for slopes 

up to about 40°. The report describes the experimental apparatus, its operation, tests carried out 

and the development of design formulae on critical flow velocity for air pocket movement and 

on the rate of air removal by hydraulic jumps. The authors also presented the results of their 

experiments related to air pocket velocity, bubble velocity downstream of hydraulic jumps. 

 

The general conclusions from the experiments are: 
 
 

• Air moves freely in the direction of the flow on upward slopes of the line due to its own 

buoyancy with no flow. The velocities of air pockets in upward slopes are similar to the air 

pocket velocities observed in downward slopes. 

• A critical or cleaning velocity is required to move air pockets along horizontal and 

downward slope sections of pipes. 

• An equation for the estimation of critical flow velocity for air pocket movement was 

obtained from the experiments which showed the dependency of the critical flow velocity 

on the slope and air pocket size, and implicitly on the pipe diameter. The equation (1.7) 

was developed based on a range of air pocket sizes and the maximum values of critical 

velocity associated with each of the air pocket classes. It can therefore be said that the 

equation was based on an envelope to the data. 
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            v/(gD)0.5 = Sf {0.56(S)0.5 + a}   [-]             (1.7) 

 
v   water velocity in the pipe [m/s] 
g   acceleration due to gravity [m/s2] 
D  pipe diameter [m]  
Sf  safety factor [-] 
S   pipe slope [-] 
a   numerical coefficient [-] 
 
The values of a depend on the dimensionless parameter to characterise the size of air bubbles and 

pockets BS.  

 
The authors recommended that equation (1.7) can be used with reasonable confidence for pipe 

diameters of up to 1.5 m. For this size, the required flow velocity for air pocket movement in a 

horizontal pipe as predicted by equation for large air pockets is 2.1 m/s and 2.6 m/s respectively. 

The applicability of the recommended equation to larger pipe diameters is a matter of debate as it 

would need to be verified in practice. 

 
Little (2002) [49] used the information presented by other investigators and reviewed the 

experimental investigation on air transport movement in pipes with downward slopes and 

undulating profiles. Little’s conclusions are presented here: 

 
• Published data are not always consistent with each other or with case histories.  

Differences may be due to test procedures, data extraction, definitions used and 

variables other than those plotted. 

• Test data show that air bubbles will be transported more easily than air pockets but 

will tend to agglomerate into air pockets at the pipe soffit, because irregularities in the 

pipe wall can cause air pockets to adhere to them.   

• Under normal operating conditions air pockets should be transported forward down 

shallow slopes but will not be transported against steep slopes.  There is a critical 

slope at which air pockets will be trapped, the value depending principally on pipe 

diameter and flow.   

• In addition, free surface hydraulic conditions in the pipe must be studied if it is to be 

assumed that air will wander its way back against the flow. Where possible, air valves 

or vents should be used.    

• Assessment must be made of the full range of flow conditions. 

• Data on air transport in pipes at shallow slopes are few.  On the basis of limited case 

histories, the line apparently based on work by Kent (1952) [39]; Mosvoll (1976) [54];   
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Edmunds (1979) [15]; Wisner et. al. (1975) [87] seems sensible as a guide in 

determining critical gradient within the limits given.  Differences between this line and 

data presented elsewhere Falvey (1980) [20], Kalinske & Bliss (1943) [37], Wisner et. 

al. (1975) [87], Ervine (1998) [16] support the need for caution and may indicate 

particular cases where further study is required. The shape of the line at shallow slopes 

is not well substantiated. 

• The range of data and case histories suggests that factors other than those identified, 

perhaps pipe roughness and local detail, may have some influence. Further research, 

tests, field data and case histories are needed, both for shallow and steep slopes. 

 
Lauchlan et al. (2005) [47] collected and summarized existing knowledge and experience 

relating to air problems in pipelines. The conclusions of this literature review are the following:  

 
There are no generally accepted formulae for the transport of air bubbles or pockets 

in pipelines and there is a wide variation between the various prediction equations. 

Dimensional analysis (Bendiksen (1984) [6], Falvey (1980) [20], and Wisner et al. 

(1975) [87]) has shown that the critical velocity, also called clearing velocity, to 

move an air bubbles or air pockets is a function of surface tension, Froude number, 

Reynolds number and pipe slope. Where the effects of surface tension are negligible, 

the critical velocity for a given pipe slope has been taken by several researchers as 

proportional to (gD)1/2, where g is acceleration due to gravity and D is the pipe 

diameter.  

 
Most formulae suggested by the various investigators relate the cleaning velocity of the 

flow vc with the pipe diameter D and the pipe slope S, as well as with the acceleration due 

to gravity. It should be noted however that many authors' work was carried out using a 

single pipe diameter and therefore dependence on D could not be 

established from their experiments. The authors presented a graph, which plots vc /(gD)0.5 

against (S)0.5 summarizes the findings relating to air pockets and bubbles moving in 

downward sloping pipes, see Lauchlan et al. (2005) [47]. 

 
From an economical standpoint, the hydraulic means are the best to clear the air of the 

pipelines. If the water flow velocity is not high enough to remove the air bubbles and air 

pockets through the line, then mechanical methods must be adopted.    
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1.5.2 Mechanical Means 

Around the beginning of the 20th century, engineers did not understand well the behavior of 

air into water pipelines. Many began placing standpipes believing that large amounts of air 

could be exhausted through them, but standpipes are a solution that can be used, only if the 

hydraulic gradient line is not so far above ground level. A manual control valve is used to 

connect the standpipe to the water main in such a manner that air can be discharged to the 

atmosphere.  

 
Normally, open vents at intermediate summits are not feasible if the distance to the 

hydraulic line from the pipeline exceeds 6 to 10 m. According to Falvey (1980) [20] the 

maximum allowable vent high is determined from topographic, aesthetic and economic 

considerations.  

 
Open fire hydrants are a solution adopted by some engineers and there are still some 

municipalities that use them connected to one side of the pipe to remove air, but a substantial 

amount of air leaves at the roof of the line, Landon (1994) [43]. Another solution was the 

placing of globe and gate valves at the high points of the system to manually exhaust the air. In 

large systems, it is not possible to predict when the valves have to be opened to relief the air. 

This method neither provides continual air release during system operation nor vacuum 

protection. 

Air Valves 

 
Air valves are the most used devices for exhausting the entrapped air during the filling of the 

pipeline or entering a high volume of air into the water line during dewatering, and 

discharging the air introduced after filling or released from solution. Their malfunction or 

total fail can lead to air accumulation since the valves are not able to intercept and release 

the air. Therefore, the correct sizing and appropriate placing of air valves throughout the 

entire length of the pipeline is very important. This also allows that the air valves remain 

working during fluid transients, avoiding problems as water column separation. 

 
Balutto (1996) [4] described pipeline problems related with the malfunction of air valves. The 

inefficient operation of air valves can reduce flow by more than 30% and contributes to high 

energy consumption as pumps are forced to work harder to overcome the entrapped air in the 

line. 
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Estimations indicate that the cost of repairing pipeline breaks in Canada exceeds 100 million 

dollar annually. Based on investigations Balutto stated that the causes of these breaks 

originated from air and the use of conventional air valves, either as the primary causes or as a 

secondary contributing factor. 

 
Types of Air Valves 

 
Up to now air valves are commonly used on pipelines around the world. The mode of 

operation is to automatically release and admit air without personnel assistance. Many 

enterprises offer different configuration and designs of air valves for a wide range of 

applications. 

 
The information on valve types, location, performance and sizing is based on information 

published by Vent-O-Mat, Val-Matic, APCO and the AWWA. 

 
Normally the automatic air valves are divided into three types: 

 
• Air Vacuum Valves or Single Large Orifice Valve 

• Air Release Valves or Single Small Orifice Valve 

• Combination Air Valves or Double Orifice Valve 

Air Vacuum Valves (AVV) 

 
Air vacuum valves admit a large amount of air to avoid destructive conditions from occurring in 

the water line due to water column separation or for dewatering the system. The AVV release 

air during the pump start-up and pipeline filling. The air exhausting should be done in a slowly 

form to avoid pressure surge or other destructive phenomena. 

 
As air is removed from the line, water enters the valve and elevates the float to shut off the 

valve discharge port. The velocity of discharge airflow is a function of the pressure focused on 

the center point of the valve orifice. Air valve sizing criteria are a very important 

consideration, because the size of the valve controls the differential pressure at which the air is 

released. 

During pump shut-down, draining of the system, breakage of pipeline or water column 

separation the valve float drops and permit air to re-enter the pipeline to prevent a 

vacuum. This safeguards the pipeline against collapse. Since the size of the AVV dictates 

the degree of vacuum, correct sizing of the valve is very important. 
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When the air has been removed from the line, the float will seal the AVV orifice. 

Nevertheless, under normal operation the AVV will not relieve built up air. Air Release Valves 

are needed for this purpose. Figure 1.10 shows the (AVV). 

 

                                             
Figure 1.10 Air Vacuum Valve 

                                                  
Air Release Valves (ARV) 
 
Air release valves have a small precision orifice to vent air pockets as they build up at high 

points of the system while the pipeline is operating. The ARV has a hydro-mechanical float 

to sense the presence of air and opens the orifice under full pipeline pressures. 

  
During system performance, small amounts of air separate from water and enter the valve. 

Each particle of air displaces the same volume of liquid inside the valve and lowers the liquid 

level relative to the float. As the liquid is lowered by the air, the float will drop to open the 

valve orifice allowing the release of air. When air is exhausted, the liquid level within the 

valve rises to seal the orifice. This cycle repeats itself as often as air concentrates in the valve. 

 
The ARV have a limited capacity for admitting and exhausting air. Therefore, they are not 

recommended for vacuum protection nor to release large amounts of air when a pipeline of 

large diameter has to be filled, due to their small orifices usually less than 1.27 cm. For this 

purpose a combination air valve is recommended. A sketch of the air release valve is presented 

in figure 1.11. 
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Figure 1.11 Air Release Valve 
 

 
Combination Air Valves (CAV) 

Combination air valves perform the functions of the Air Vacuum Valves and Air Release 

Valves. These devices are also called Double Orifice Valves DOV. A CAV contains an air 

vacuum port and a small air release orifice in one assembly. These valves are installed at all 

high points throughout the pipeline where air release and air vacuum valves are needed to 

protect and vent the system. Two body designs of CAV are available, (1) a single body 

combination and (2) a dual body combination. The single body unit has the advantage of being 

more compact and normally less costly and is used where compactness is preferred. The dual 

body combination design consisting of an ARV piped to an AVV. This dual body CAV has 

the advantage that a variety of ARV with a wide range of orifice with higher operating pressure 

can be used. During maintenance AVV is still working while the ARV is isolated and under 

repair. Since CAV include all air valve functions, some engineers use only these devices and 

do not leave the pipeline unprotected in case of a mistake in field installation or incorrect 

operation of the system. 
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The two types of combination air valves above described are shown in Figures 1.12 (a) – (b). 

 

                     
                    

                 a)  CAV Single Body                                         b) CAV dual Body 
 

Figure 1.12 Combination Air Valves 
 

The Combination Air Valves or Double Orifice Valves described above can be distinguished as 

Kinetic Air Valves and Non-Kinetic Air Valves. These valves function with a large hollow 

spherical float which draws up to seal the orifice when air has released. During dewatering the 

valve allows air to enter into the line. Likewise, considerably changes in the design of the 

CAV have not been made in the last hundred years. Therefore, the hollow spherical float 

sealing the large orifice continues causing some operating problems, which are presented 

below. 

 
Non-Kinetic Air Valves 

 
A number of functional limitations of Non-Kinetic Valves designs include Balutto (1998) [5]: 

 
Poor Sealing and Working Pressures. The hollow float must be perfectly spherical in order 

to produce a leak tight seal against a resilient seat located around the circumference of the 

discharge port of the valve. In practice, it is almost impossible to have a perfect sphere and to 

compensate the lack of uniformity; therefore, a very soft seating seal is often used. The 

adherence of the soft seal to the float can lead to the malfunction of the orifice. 

 
Deformation and Jamming. The hollow structure of spherical floats makes them susceptible 

to permanent deformation and distortion when the valve works under high pressure. Field 

observations have shown that float elongates and becomes wedged into the orifice. Evidently 



 27 

the orifice does not perform neither air intake nor exhausted functions if the float jammed into 

the orifice. 

Premature Closure. Premature Closure is also called Dynamic Closure and refers to the 

tendency of the hollow spherical float to seal the orifice of the ball type air valves at very low 

differential pressures (0.02 - 0.05 bar) without any further discharge, resulting in the 

entrapment of a large volume of air in the pipeline. 

Limitation of Orifice Size and Its Effect on Performance. Some manufacturers recommend 

that the spherical float should not have a diameter less than 3 times the large orifice diameter 

otherwise it may wedge into the orifice. From the economic point of view the large orifice 

diameters are restricted, because also the weight and size of the float increase proportionally. 

For this reason designers choose to reduce somewhat the large orifice, consequently the 

discharge performance is adversely affected. 

Venturi Effect. All air valves designs with spherical floats tend to remain partially closed 

during air suction. As a result of the creation of a lower pressure zone on the upper part of the 

float compared to the pressure experienced in the pipeline.  

 
Kinetic Air Valves 

 
The main purpose of the kinetic valves is to overcome the phenomenon of premature closure 

or dynamic closure. The internal configuration of the valve is modified, thus its aerodynamic 

characteristic can prevent a dynamic closure. The details and effectiveness of such internal 

modifications differ for each valve manufacturer.    

 
When these types of devices are discharging air at high velocities they can create serious 

problems for the operation of the pipeline system, some of which are (Balutto (1998) [5]):  

 
Water Hammer. Air valves discharging air at high velocities and differential pressures will 

cause closure with damaging pressure transients. This is because of the water enters the valve 

abruptly. The effect on the pipeline dynamics is equivalent to the rapid closure of an isolating 

valve. Investigations conducted by authorities and manufacturers proved that the damage 

created by these devices, exhausting air at high velocities, is a problem that cannot be ignored 

in pipeline design. They recommended a differential pressure of 0.05 bar as limit to prevent 

the damage from high pressure transients.    
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Water Spillage. Water spillage can occur when the large orifice control float fails to react as 

water at high velocity enters the valve chamber. The water covers the control float, holding 

the float down, while exiting through the large orifice. The quantity of water spilled in this 

manner is substantial and floods the valve chamber. The spillage of the water can induce a 

pressure surge in the pipeline. 

 
Seal Failure. Seal Failure is a peculiar phenomenon in kinetic air valves. The seal fails 

between the valve and the isolator. This can occur on closure of the large orifice and results in 

water spillage. It is as a result of the transient pressures created on closure. Research 

conducted by fabricants and authorities has concluded that this phenomenon occurs at 80 - 85 

bar, which implies that the transients created by kinetic air valves, discharging at high 

deferential pressures are in excess of 85 bar.  

Under Sizing. Kinetic air valves are more susceptible to being undersized than other air valve 

designs. This is because of the pipeline designers concentrating on their discharge 

requirements, selecting valves to discharge at high differential pressures, and thereby ignoring 

their vacuum requirements. Valve selection based totally on discharge requirements is 

detrimental to the pipeline under vacuum conditions, as the valve may not fully protect the 

pipeline under these conditions. This is especially true for plastic pipes, and pipeline seals 

which cannot withstand very high differential negative pressures. 

Venturi Phenomenon. The Venturi phenomenon described under non kinetic air valves is 

also applicable to kinetic air valves. 

1.6 Location and Sizing of Air Valves 

 
Pump Discharge. An Air Vacuum Valve should be installed on the pump discharge side 

before the check valve to exhaust the air during pump start-up and to permit air to re-enter the 

line after shutdown. These types of devices are not necessary for pumps with positive suction 

head. The valve is sized with the discharge of the pump. It is important that the differential 

pressure does not exceed 0.05 bar during filling operation. 

 
Increase Downslope. A Combination Air Valve is commonly located at abrupt changes in 

downward slope due to the possibility of vacuum and water column separation. The design 

water flow is used to know the size of the air valve required. The differential pressure across 

the large orifice should not be lower than 0.35 bar. During the selection of the air valve the 

“Venturi Effect” has to be taken into account.  
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Decrease Upslope.  An Air Vacuum Valve or Combination Air Valve should be located at 

sharp upward slopes to avoid serious problems in case of water column separation or 

vacuum. The design water discharge is used to find the size of the air valve required. The 

problems and precautions are the same as in the last point.   

 

Long Horizontal Runs. Combination Air Valves are placed at the beginning and end of long 

horizontal sections. Along the horizontal section Air Release Valves are located. 

Investigators and manufacturers recommend various intervals, between 380 and 760 meter, 

where the valves should be considered. Whenever possible long horizontal pipeline sections 

have to be avoided. If it is impossible then more valves should be positioned along the 

horizontal section. The sizing of these two types of devices should be based on the filling rate 

of the pipeline. 

 
Long Ascents. An Air Vacuum Valve or a Combination Air Valve should be considered 

throughout the upward sections of the pipeline at intervals of 400 m to 800 m. These devices 

are required for an adequate discharge during filling of the system and for good ventilation 

when it is being dewatered. For the sizing of the air valves, the filling rate has to be compared 

with the intake demand, calculated for the breakage of the pipe and for the pump failure. If 

the filling rate is greater than the intake rate, the devices are sized based on the filling rate.   

  
Long Descents. An air release valve or a combination air valve should be considered 

throughout of the downward sections of the pipeline at intervals of 400 m to 800 m.  

 
High points. Combination Air Valves should be located at high points to avoid vacuum and 

water column separation and to release the air while filling operation, to discharge the air 

introduced after filling or released from solution and for air inflow during draining.  

 
Generally the size of the valve is determined based on the pipeline rupture calculations.  

The location of the air valves in the pipeline is shown in Figure 1.13 (a) to (g). 

 
As the valves have been selected, it is recommended to analyze the pipeline as a whole to 

ensure that the valves and other devices selected for the adequate performance of the system 

work without problems to avoid the destructive phenomena already described. 
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Figure 1.13: Location of the air valves in the pipeline  
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2 Analysis of Air Pockets Trapped in Gravity Pipeline Systems 
 
2.1 Introduction 

 
As described in the first chapter, Gonzalez and Pozos (2000) [29] proposed a linear equation 

to study the movement of air bubbles and air pockets downstream of a hydraulic jump located 

at the end of a large air pocket in a downward sloping pipe. The equation was developed 

based somewhat on Kalinske and Bliss (1943) [37] investigations, as well as research made by 

investigators posterior to Kalinske and Bliss.   

 
The linear relationship herein presented is supported on theoretical analysis and hydraulic 

model investigation. A computer program was developed by using this equation and it is 

utilized to illustrate two real cases where overflows occurred due to air entrained. 

 
2.2 Theoretical Analysis made to develop the linear relationship to analyze the       

movement of air bubbles and air pockets   
       
The direction of movement of a stationary air bubble or air pocket in flowing water in a 

downward sloping pipe can be analyzed by balancing the magnitudes of the drag force of the 

water and the buoyant force on an air bubble or air pocket. This can be written as: 

 
Drag force = Buoyant force 

where  

Drag Force = 22
critd vCL ρ   

 
C     drag coefficient [-] 
Ld    linear dimension of the air bubble/pocket [m]  
vcrit  critical mean water velocity acting on a stationary air bubble or air pocket [m/s]  
ρ     water density [kgs2/m4] 
  
The air density is neglected since it is much lower than water density.  

 

Buoyant force = gSKLd ρ3  

 
K     constant depending on the air bubble/pocket shape [-] 
g      acceleration due to the gravity [m/s2] 
S      pipe slope [-] 
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Then  

                     22
critd vCL ρ  = gSKLd ρ3  [-]                      (2.1) 

Rearranging the terms  

                    SCKgLv dcrit )/(/2 =    [-]                    (2.2)                  

 

An assumption is made regarding the linear bubble dimension. If Ld simply depends on the 

pipe diameter D, then Ld /D becomes a constant. Consequently Ld can be replaced by D in    

equation (2.2).   

                    SCKgDvcrit )/(/ 1
2 =    [-]                      (2.3)      

Equation (2.3) can be also presented as 

                   SCKgDQcrit )/(/ 2
2 =    [-]                     (2.4) 

                                 
Qcrit = critical water flow rate [m3/s] 

 
Equation (2.4) is the same relation obtained by Kalinske and Bliss (1943) [37]. However, they 

did not give values of the coefficients K and C that depend on the Reynolds number Re.  

 
Walski et al. (1994) [83] determined the values of drag coefficients for gas pockets in model 

but the results were not satisfactory, because the Reynolds numbers were on the order of 1000 

which is often a range where drag coefficients are usually independent of the Reynolds 

number. Likewise, Falvey (1980) [20] stated that the drag coefficient can not be predicted for 

flow in a pipe, therefore the techniques of dimensional analysis must be used to determine the 

significant parameters for correlation that could lead to obtain a more complex equation, due 

to including more dimensionless numbers.  

 
Kalinske and Bliss (1943) [37] found relatively good correlations for the initial movement of 

air bubbles by using the pipe slope S and the Eötvös number γD2/σ. Therefore, equation (2.4) 

can be rewritten as 

                                                )/,(/ 252 σγDSfgDQw =    [-]               (2.5) 

Qw     water flow rate [m3/s] 
g      acceleration due to the gravity [m/s2] 
D     pipe diameter [m] 
S      pipe slope [-] 
γ      specific weight [N/m3] 
σ     surface tension [N/m]  
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Zukoski (1966) [91] and Viana et al. (2003) [81] stated that for turbulent flow conditions, 

viscosity and surface tension effects will be minimal in pipe diameters of 175 mm or larger. 

Hence, the Eötvös number can be neglected. In addition, most of the equations recommended 

by various investigators associate the clearing velocity with the pipe slope S, pipe diameter D, 

as the acceleration of the gravity g. Gonzalez and Pozos (2000) [29] followed the arguments 

of the above authors and backed these statements by own experiments. On this basis the 

following formula as a modification of that proposed by Kalinske and Bliss was suggested, 

which is the same linear relationship presented in equation (1.6), chapter 1.      

 

                         )(/ 52 SfgDQw =    [-]           (2.6) 

 
Qw   water flow rate [m3/s] 

 
Replacing the water flow rate, Qw by the mean water velocity, v in the equation (1.6) or 

equation (2.6) yields 

 

                          SgDv 62.1/2 =    [-]           (2.7) 

v   water velocity in the pipe [m/s] 
 
The suggested equations by previous researchers to assess the clearing velocity in downward 

sloping pipes are listed in Table 2.1, as well as the results computed from the equations to 

compare the velocity obtained by Babb et al. (1968) [3] on a prototype siphon with a diameter 

of 3.66 m, water flow rate of 34.55 m3/s and slope of 0.42. The clearing velocity measured by 

Babb et al. was 3.3 m/s.  

 
Equations Proposed by Value of the Clearing 

Velocity [m/s] 
Kalinske and Bliss (1943) 

vc = 1.07 gDS  
 

Kent (1952) 
vmin = 1.2 gDS  

 
Gonzalez and Pozos (2000)

v = 1.27 gDS  
 

 
4.16 

 
 

4.65 
 
 
 

4.93 
 

Table 2.1: Equations to calculate the clearing velocity for D = 3.66 m, Qw = 34.55 m3/s,  
   S = 0.42 (Clearing velocity measured by Babb et al. was v = 3.3 m/s) 
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Analysing the computed values, it can be readily seen that the highest clearing velocity is the 

one calculated with the equation proposed by Gonzalez and Pozos (2000) [29]. The results 

suggest that equation (2.6) is conservative and the value obtained by its application is on the 

safe side. Therefore, it is recommended to be used either in the design of water pipeline 

systems or to analyze the movement of air bubbles/pockets in existing water lines, because it 

is only a function of the pipe slope and has the advantage that empirical coefficients do not 

have to be taken into account. 

 
2.3 Method of Analysis by Using the Linear Relationship of Gonzalez and Pozos  

 
As discussed in the previous chapter, large air pockets can be trapped at high points of   

pipelines, when air valves are not located at summits likely to air accumulation. Even though 

air valves have been placed, they may fail and air would not be exhausted.  When the large air 

pockets extend downstream in a steep slope the critical depth will be larger than the normal 

water depth, then a hydraulic jump can occur. 

 
 Observations in experimental apparatus indicated that large air pockets can accumulate along 

the control section located at the transition between the subcritical and supercritical slopes, 

Walski et al. (1994) [83]; Gonzalez and Pozos (2000) [29]. Likewise, Mosvell (1976) [55] 

stated that the water flow rate capacity to transport large air pockets decreases, when there is a 

transition between subcritical slope and supercritical slope. Figure 2.1 is a schematic 

description of a large air pocket collected at a high point. 

 
 

 
Ssub   subcritical slope [-] 
Ssup   supercritical slope [-] 
Yc    critical depth [m] 

 
Figure 2.1: Large air pocket accumulate at the transition between Ssub and Ssup  
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Rodal et al. (2000) [64] found that the necessary critical water depth Yc for removing a large 

air pocket from the control section must be equal to or greater than 90% of the pipe diameter. 

Measurements in a physical model permitted to conclude that even the nominal design flow 

rate may not be enough to remove the large pockets located at the control section.  

     
The hydraulic jump at the end of the large pocket will entrain air in form of small bubbles, see 

Figure 2.1. The rate at which the air is removed from the line depends on the ability of the 

water flowing in the pipe below the jump. The equation (2.6) is used to analyze the movement 

of air bubbles and air pockets in a downward sloping conduit flowing full. Small bubbles 

entrained by the jump will rise to the pipe roof coalescing and forming air pockets. The 

pockets and bubbles may move upstream and pass back through the jump, remaining the same 

volume of air in the pipeline. However, if the pipe slopes upward in the direction of the flow, 

air pockets and air bubbles will move downstream. In addition to horizontal pipes, the upward 

component of the buoyancy force does not influence the air bubbles/pockets behaviour, 

therefore it would be expected that the flowing water drags the air. 

  
To determine if large air pockets are likely to remain at slope transitions in the line, the 

dimensionless flow rate 2
wQ /gD5 is assessed for the full range of flow conditions and 

compared with all the downward sloping pipes that make up the pipeline. When 2
wQ /gD5 is 

greater than the downward slope S, air bubbles and air pockets will move with the flow. However, 

when 2
wQ /gD5 is lower than S, the bubbles and pockets will turn and move backward relative to 

the current. In this case, the high or intermediate high point is identified as possible candidate for 

air accumulation, because the inertia of flow is not able to remove the air from the line. Therefore, 

the location of air valves or vents should be taken into account to remove mechanically the 

entrained air.  

 
It is important to highlight that the linear relationship (2.6) does not predict the occurrence of 

destructive blowbacks in pipelines, as described by Sailer (1955) [66]. The method of analysis 

is included in a computational program called AIRE (presented at section 2.4) that has been 

used to predict the movement of air in existing gravity pipeline systems.  

        
2.4 Experimental Investigation 

In order to validate the application of the linear equation (2.6) presented in the previous 

section, experimental investigations were developed. The experimental apparatus was 
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designed and constructed to study the behavior of stationary air pockets at high and 

intermediate high points of pipelines, as well as to analyze the air entrained by the hydraulic 

jump at the end of the pocket located in a downward sloping line. The experimental 

investigation also included the measurement of air bubble velocities by using a high speed 

camera at different sections of the pipe behind the hydraulic jump, to define the boundary 

between the air entrainment and the transport of air to be able to give a limit to the application 

of the proposed linear relationship.    

 
2.4.1 Description of the Experimental Apparatus  

 
The experimental apparatus was designed and made of acrylic pipes with a diameter of       

76.2 mm. In consequence of the presence of free surface flow the Froude number was used as 

design criterion. Figure 2.2 shows a sketch of the test section.  

 

 
y1  initial depth [m] 
 

Figure 2.2: Test Section of the Experimental Apparatus 

 
The downstream sloping section of the line was 6.8 m in length and could be varied in slope, 

whereas the horizontal upstream leg of the model was 6.4 m long. The water was supplied 

from a constant head tank. Two pumps connected in parallel fed the line. The water flow rate 

was controlled by two valves located at the pumps discharge side and measured by orifice 

plates.  

 
2.4.2 Experimental Procedure 

 
While the line was flowing full, air was injected into the pipe by using a compressor. Once in 

the experimental apparatus, air tended to accumulate at the control section in form of a large 

pocket ending in a hydraulic jump. Likewise, the turbulent action of the jump that sealed the 
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duct was able to entrain air that was swept downstream by flowing water. It was observed that 

small air bubbles coalesced into air pockets. Depending on the water flow rate and pipe slope, 

the bubbles and pockets either returned to the hydraulic jump or moved downward in the 

direction of flow. The conjugate depth was measured at the beginning of the jump to calculate 

the air flow rate Qa introduced by the hydraulic jump with equation (1.1). This is the 

empirical relationship developed by Kalinske and Robertson (1943) [38].  

 
The measurements were made for various water flow rates and the downward leg was placed 

at different slopes. During the tests, all the slopes were compared with the full range of 

dimensionless flow rates. Gonzalez and Pozos (2000) [29] observed in the experimental 

apparatus that air bubbles and pockets behaved, as the linear relationship (2.6) predicted. The 

advantage of the parameter Qw
2/gD5 is that it includes the water flow discharge Qw and the 

pipe diameter D, therefore it allows the transfer of results from model to prototype. 

 
Part of the results obtained in the experimental investigation is summarized in table 2.2. 

 
S = 0.089 

y1 (m) Qa (m3/s) Qa (l/s) Qw(m3/s) Qw
2/gD5 Air behavior 

0.019 0.00018 0.18 0.0015 0.0889 moves upstream 

0.021 0.00017 0.17 0.0017 0.1147 moves downstream 

0.024 0.00013 0.13 0.0019 0.1432 moves downstream 

S = 0.060 

y1 (m) Qa (m3/s) Qa (l/s) Qw(m3/s) Qw
2/gD5 Air behavior 

0.022 0.00010 0.10 0.0015 0.0889 moves downstream 

0.023 0.00012 0.12 0.0017 0.1147 moves downstream 

0.024 0.00013 0.13 0.0019 0.1432 moves downstream 

S = 0.052 

y1 (m) Qa (m3/s) Qa (l/s) Qw(m3/s) Qw
2/gD5 Air behavior 

0.021 0.00012 0.12 0.0015 0.0889 moves downstream 

0.024 0.00010 0.10 0.0017 0.1147 moves downstream 

0.025 0.00011 0.11 0.0019 0.1432 moves downstream 

Table 2.2: Movement of air bubbles/pockets in the downward sloping pipe of model with                
D = 76.2 mm, y1 initial depth, Qa air flow rate, Qw water flow discharge  
 
 
2.4.3 Limits of the application of the linear relationship  

 
During the experimental investigation a high speed camera was used to measure the mean and 

instantaneous velocities of air bubbles in flowing water beyond the hydraulic jump. The aim 

was to define the boundary between the air entrainment and air transport. The two phenomena 

are drawn in Figure 2.3. 
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Figure 2.3: Limits of air entrainment and air transport 

 
In order to characterize the behaviour of air bubbles introduced by the jump, these were 

filmed at different sections of a downward sloping pipe, i.e. at distances of 1, 5 and 10 

diameters downstream of the hydraulic jump. The size of the air bubbles varied from 1mm to       

2 mm, approximately. Three different water flow rates were used during the tests,                 

Qw = 1.0 l/s, Qw = 1.5 l/s, Qw = 2.0 l/s. The pipe slope remained constant during all the 

experiments, S = 0.089. 

 
Further analysis of the images was made by a commercial software called OPTIMAS® [93] 

to determine the velocities of the air bubbles. At one diameter beyond the hydraulic jump the 

velocity profiles were strongly influenced by the turbulent action of the jump and the 

velocities distribution was irregular. When the velocities were measured 5 diameters 

downstream of the jump the velocity profiles showed a different behaviour, but the influence 

of the eddying action of the jump was still evident. As well, it was observed than 10 diameters 

behind the hydraulic jump the velocity distribution was very similar to a typical fully 

developed velocity profile in a circular conduit. Then, observations from the velocity profiles 

permitted to conclude that the linear relationship can only predict the movement of air 

bubbles, when these are out of the zone of influence of the turbulent action of the hydraulic 

jump. If the air bubbles are under the influence of turbulent action equation (2.6) should not 

be used, because it will not anticipate the behaviour of the air bubbles. The velocity profiles 

are shown in Figure 2.4. 
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a) Velocity profiles of the air bubbles at 1 diameter downstream of the hydraulic jump 
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b) Velocity profiles of the air bubbles at 5 diameters downstream of the hydraulic jump 
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c) Velocity profiles of the air bubbles at 10 diameters downstream of the hydraulic jump 

 
Figure 2.4: Velocity profiles measured by the high speed camera 
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2.5 Program AIRE  

 
Many engineers design under the assumption that pipelines flow full all the time and never 

partly full. This hypothesis may lead to critical problems, therefore presence of entrained air 

should be taken into account during the design of pipelines.  

 
The computer program AIRE was developed by the author based on equation (2.6),         

Pozos Estrada (2002) [58]. The purpose was to provide the pipeline designers a quantitative 

method for studying the movement of air bubbles and pockets and identifying the summits in 

pipelines that are susceptible to accumulate air. The program can be used to analyze either 

pipeline systems during the design stage or existing pipelines. 

 
The program displays a table, which summarizes the behaviour of air bubbles beyond the 

influence of the turbulent action of the hydraulic jump. In addition, it generates graphs for the 

full range of flow conditions. The graphs show the pipeline profile, the hydraulic grade line, 

and the small squares indicate the high and intermediate high points likely to accumulate air. 

Where the hydraulic grade line intersects the pipeline profile, there will be a transition from 

open channel flow to pressure flow conditions. If the downward slope is steep the critical 

depth will be greater than the normal depth, then the transition will be through a hydraulic 

jump. The equation of Darcy-Weisbach was used to determine the hydraulic gradient line. 

Evidently the use of other equations is not restricted. Figure 2.5 is an example of a graph 

displayed by the program AIRE. 

 
The simplest pipeline system can suffer from entrained air problems. Therefore, all systems, 

especially those with several slope changes, should be reviewed in detail to locate the 

potential high and intermediate high points, where air may be accumulated. Likewise, if the 

pipeline will operate with flow variations, the hydraulic grade line may intersect the profile. 

The necessity of air valves has to be considered. The proper location of air valves can 

minimize potential problems caused by any buildup of air. In addition, air accumulation 

cannot always be controlled by installing a large number of air valves and vents throughout 

the line at the beginning of all downward sloping pipes, because some of these devices would 

probably not be needed. 
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Figure 2.5: Graph displayed by the program AIRE 

 
 
The program has been used to analyze problems related with air entrainment in existing 

pipeline systems. The proposal solutions have allowed a better development of these 

pipelines. Within the next section the program AIRE will be used to exemplify two problems 

related with air entrained, where air accumulation at intermediate high points caused overflow 

over hydraulic structures. 

 
2.6 Presentation of real cases related with entrained air   

 
The study of two gravity pipeline systems with air entrainment problems occurred in field is 

presented, as well as the solutions of these problems supported on the linear equation (2.6), 

hydraulic model investigations and the computer program AIRE.  

 
2.6.1 Break Pressure Tank Valle de Paz (Macrocircuito) 

 
The Macrocircuito is the main system for supplying potable water to the north and eastern                       

municipalities of Mexico City. The distribution is made by two parallel lines. Line 1 and   

Line 2 are 54.5 km in length each. The system takes water from the north branch of the 

Cutzamala System by a tunnel. The section of interest begins at the Bellavista tank (Tank 1), 

approximately 8.5 km downstream of it the Break Pressure Tank Valle de Paz (Tank 2) is 

located, followed by the Emiliano Zapata tank (Tank 3), see Figure 2.6. The (Tank 2) has the 
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aim of limiting the maximum pressure downstream of it, because most of the conduction is 

made up of prestressed concrete pipe with an inner diameter of 1.22 m. Moreover, without 

(Tank 2) in the line the pipe could be damaged by the hydrostatic head, if the valve at the 

entry of (Tank 3) is closed and the pipeline profile from the (Tank 1) to (Tank 3) is 

completely full when the system is out of service, i.e. Qw = 0 m3/s.      
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Figure 2.6: Section of interest of the Macrocircuito  

 
The investigated section reaches from (Tank 2) located at station 8 + 399 to the (Tank 3) 

placed at the station 11 + 247.9, as illustrated in Figure 2.7. The analysis was done by using 

the equation proposed by Gonzalez and Pozos (2000) [29], equation (2.6). In addition, 

hydraulic model investigations were carried out. It was found that downstream of (Tank 2) at 

the change of the horizontal pipe, S = 0.0, to the steep slope, S = 0.51, see Figure 2.8,  a great 

quantity of air can be accumulated in the form of a large air pocket that ends with a hydraulic 

jump. This air buildup gave rise to the overflow over the crown of (Tank 2). Supported on the 

analytical and experimental investigation, it was recommended to place an air release valve 

and a standpipe immediately upstream and downstream of this point, respectively, as shown 

in Figure 2.14 a). An air release valve was originally installed at point 1, see Figure 2.7, but 

the air was not exhausted because it behaved as predicted by equation (2.6), therefore the air 

returned through the hydraulic jump to the pocket.  
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It is important to point out that air did not accumulate in form of pockets at the intermediate 

and high points upstream of (Tank 2), because air release valves are placed where air is likely 

to build up.  
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Figure 2.7: Investigated section of the Macrocircuito 

 
The (Tank 2) configuration is shown in Figure 2.8. The dimensions of the tank are 6 x 6 m at 

the base and 4.5 m height. At the bottom of the tank a vertical segment of steel pipe of 2 m 

length is connected to an elbow of 90°, followed by a horizontal pipe of 35.3 m length  with a 

inside diameter of 1.22 m. Two further downward sloping pipes come after with a diameter of 

1.22 m, with lengths and slopes of 6.58 m and S = 0.51 and 31.0 m and S = 0.58, respectively. 

The beginning of the prestressed concrete pipe is at the end of the last steel pipe. 

 
Within the next subsection the problem and the solution to the overflow of (Tank 2) is 

explained more in detail. 
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Figure 2.8: Configuration of the Tank 2  

 

Description of the Problematic on the (Tank 2) 

 
The Macrocircuito was designed to convey a water flow rate, Qw = 3.0 m3/s, but when the 

delivery through the line was 1.9 m3/s, the (Tank 2) started spilling. Therefore, the National 

Water Commission entered into an agreement with the Institute of Engineering of the 

University of Mexico (UNAM), to conduct the investigation related with the overflow of the 

(Tank 2). Personnel of the Institute visited the tank with the purpose of being able to give a 

preliminary diagnosis. The personnel observed: 

 
• Air entrained through the intake by vortex action in consequence of the low water 

level in the (Tank 2). 

• Observing the behavior of the water in the (Tank 2) it was seen that the oscillations 

from the bottom to the top of the tank were in the order of 20 or 30 minutes, then the 

tank spilled.  

• The personnel also heard a strong noise within the first downward sloping pipe 

section, S = 0.51, associated to the transition from partially pipe flow to full pipe flow 

through a hydraulic jump. 
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• An important volume of air in form of bubbles rose through the water in the tank, 

while strong vibrations were heard in periods of 20 minutes, approximately. This 

phenomenon was related with the air pockets that blew back upstream through the 

hydraulic jump.  

 
A great amount of air entered into the line due to the vortex action at the (Tank 2) discharge. 

A photograph and a diagram of the vortex in the (Tank 2) are shown in Figure 2.9. Once in 

the pipe the air was swept downstream. A large air pocket with a hydraulic jump at its end 

accumulated along the transition between horizontal pipe, S = 0.0, and the steep slope,            

S = 0.51. The water flow rate was insufficient to overcome the buoyant force of the large air 

pocket, hence it remained stationary at the high point of the line. The hydraulic jump 

dispersed small air bubbles beyond the jump in consequence of its turbulent action. Since the 

drag forces are usually greater than the buoyant force for small bubbles, these will move 

downstream. During their downward motion, several of the small bubbles joined together to 

forming air pockets. When the air pockets grew, these reduced their velocity as a result of the 

buoyant force increase and blew back with tremendous force through the hydraulic jump, 

taking water with them. This force was big enough to cause cracks on the walls of the      

(Tank 2). Photographs of the damage caused to the tank by the blowbacks are shown in 

Figures 2.10. 

 

      
 a)                                                                                   b) 

Figure 2.9: Vortex in the (Tank 2): a) section of the vertical vortex, b) sketch of the 
vortex 
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a)                                                                  b)  

Figure 2.10: Damage caused to the tank by the blowbacks: a) cracks on the wall of the  
(Tank 2), b) detail of the cracks   
 
The stationary pocket extended on both sides of the control section reduced the effective cross 

section of passage of water. Hence, the water level in the (Tank 2) rose, stopping the inflow of 

air into the pipeline. Due to the availability of a greater hydraulic head, the velocity 

underneath the air pocket increased, then the air pocket was either swept out bodily or parts of 

the pocket could be removed to downstream remaining a smaller pocket that was disrupted as 

the velocity increased even more, and later removed out. In consequence of this behaviour the 

line was handling 1.9 m3/s, the (Tank 2) drained after 20 or 30 minutes, allowing air to reenter 

and the phenomenon was repeated. The (Tank 2) during the overflow for 1.9 m3/s is shown in 

Figure 2.11. 

 
The slopes of the steel pipe sections downstream of the (Tank 2) were compared with the 

dimensionless water flow rate to analyze the movement of air, using the Qw = 1.9 m3/s,          

D = 1.22m and g = 9.81 m/s2. Qw
2/gD5 = 0.136. The predictions are summarized in Table 2.3.  
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Figure 2.11: overflow over the (Tank 2), Qw = 1.9 m3/s 

 
 

Pipe slope S Qw
2/gD5 = 0.136 

0.00 Air moves downstream 

0.51 Air moves upstream 

0.58 Air moves upstream 

     Table 2.3: Air behavior in the pipes downstream of the (Tank 2)  

  
From the results presented in the table 2.3 it can be concluded that the air bubbles and pockets 

returned through the jump in the pipe sections with steep slope.   

 
Hydraulic Model Investigation 

 
In order to analyze the overflows over the (Tank 2) a model was designed and constructed in 

the laboratory. Due to the presence of free surface flow the Froude number was used as 

criterion of similarity. The used scale was 1:24. The tank was made of acrylic and the 

dimensions are 25 x 25 cm at the base and 18.7 cm in height. A pipe of 5 cm length is 

connected vertically to the tank and is followed by an elbow of 90°. Two more pipes complete 

the model, the first one is horizontal and 163 cm long and the last pipe has a slope, S = 0.51 

and is 157 cm in length. The experimental work was performed by the use of acrylic pipes 

with an inner diameter of 50.8 mm. The water flow was provided by a pump of 746 W and 

controlled by a valve located at the discharge of a pump. A diagram of the model is shown in 

Figure 2.12. 



 48    

 

 
Figure 2.12: Physical model of the (Tank 2) 

 
The water flow rate in the real pipe was Qw = 1.9 m3/s that corresponds in the model to                  

Qw = 0.67 l/s. When the model was fed with a water flow rate of Qw = 0.67 l/s, the unstable 

behaviour observed was very similar as in the real pipe. The water oscillations in the model 

were not regular and occurred more frequently than in field. Probably the difference on time 

is due to the scale effects (time scale 1:4.9). On the other hand, the model does not represent a 

complete reproduction of the prototype. Nevertheless, the reproduction of the instability could 

be satisfactorily represented. The photographic sequence shown in Figure 2.13 allows 

observing the complete cycle of the instability in the tank. 

 

 
Figure 2.13: Complete cycle of the instability in the (Tank 2) 
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Solution to the Problem in the (Tank 2) 

The Institute of Engineering proposed to place an air release valve and a vent immediately 

upstream and downstream of the transition from the horizontal pipe to the steep slope pipe, 

respectively, identified in model as the control section of the air pocket. The unstable 

behaviour disappeared when the vent was located in the model, see Figure 2.14. The vent 

allowed extracting the air that entered the pipeline and fixed the hydraulic jump at the 

downward sloping pipe. The open channel flow will remain at the control section, if the water 

discharge is lower than the nominal design flow rate. 

 

   
a)                                                                            b) 

Figures 2.14: Standpipe and air valve release located at the intermediate high point:                  
a) prototype, b) model 
 
Further blowbacks were not heard and observed, because the air pocket was not able to grow 

due to the air entering through the tank intake being exhausted by the standpipe and the air 

release valve. During the pipeline design, the air release valve and the standpipe were not 

placed at this intermediate high point, because it was not considered likely to accumulate air. 

 
Analysis of the (Tank 2) by using the Program AIRE 
 
The program AIRE is used to illustrate the problem that occurred in the (Tank 2). Figure 2.15 

shows the pipeline profile from (Tank 1) to (Tank 3), the hydraulic grade line for                 

Qw = 1.9 m3/s. Downstream of the (Tank 2), the hydraulic grade line intersects the pipeline 

profile, therefore the pipe flowing partly full will change to pipe flowing full through a 

hydraulic jump. 
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Figure 2.15: Analysis of the (Tank 2), Qw = 1.9 m3/s 

 
In Figure 2.16 the analysis for a water flow rate, Qw = 3 m3/s is presented. The point likely to 

accumulate air downstream of the (Tank 2) disappeared, due to the pipe flows full and no air 

is carried. The point at the station 9+406.5 is not a potential location of air accumulation, 

because the line handles the nominal design flow rate. In addition, there is an air release valve 

located upstream that can exhaust the free air before it gets this station.   

 

 
Figure 2.16: Analysis of the (Tank 2), Qw = 3.0 m3/s 
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2.6.2 Alternative Line, Cutzamala System 

 
The second prototype to review is the Alternative Line which is part of the Cutzamala 

System. Due to problems of stability at the Donato Guerra Channel, the Alternative Line was 

designed and constructed to convey a nominal design water flow rate, Qw = 12 m3/s. The line 

is formed mainly by reinforced concrete pipes with a diameter of 2.74 m and is 10.900 km in 

length, approximately. A sketch of the Cutzamala System is shown in Figure 2.17. The 

Alternative Line is in the dotted grey. 

 

 
Figure 2.17: Plan of the Alternative Line, Cutzamala Pipeline System 

 
 

The Alternative Line began to perform with two pumps per plant (Qw = 8 m3/s). The 

freeboard in the Surge Tank 4 was 9.90 m, when a third pump equipment was placed into 

operation Qw = 12 m3/s, the freeboard was reduced to 4.90 m. After one month of operation, 

the operating personnel reported a water overflow over the crown of the Surge Tank 4, see 

Figure 2.18. 
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Figure 2.18: Overflow of the Surge Tank 4, Qw = 12 m3/s 

 
The first hypothesis formulated was that the Surge Tank 4 spilled, due to the presence of air 

accumulated at the points 6 and 7, where two vents were located, see Figure 2.19. Therefore, 

the Institute of Engineering recommended stopping the system to purge all the air entrained 

and refilling the pipeline to return to the initial condition, as when the system was put in 

operation the first day. The personal carried out the suggested tasks but the result was not 

satisfactory and the overflow took place again, when the three pumps were placed into 

operation in the pumping plants.  

 
Supported on the program AIRE, a second hypothesis was formulated. When the pumping 

plants performed with two equipments the hydraulic grade line grazed the pipe section 

between the highest points 6 and 7. Therefore, the vents located at these high points allowed 

an excessive amount of air entered the line. In addition, the air was slowly moved downstream 

and collected at the intermediate high point 8 that was not equipped with an air release valve 
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during the design, as indicated in Figure 2.19. Colgate (1966) [13] investigated the sizing 

criteria for air vent, and found that if the diameter of the vent is small, portions of large air 

pockets would pass by the vent. To trap all the air it was necessary for the diameter of the 

vent to be equal to the pipe diameter. Additional studies were done to investigate the size of 

the vent structure. It was observed that if the air vent diameter was less than the pipe diameter 

an unsteady flow was established in it, when large quantities of air exited from the vent. This 

unsteady flow pumped air back into the pipeline. He concluded that the diameter should be at 

least of one meter. 

 

 
Figure 2.19: Alternative Line, Qw = 8 m3/s 

 
 

When the pumping plants worked with three equipments, the accumulated air at points 6 and 

7 was swept downstream, joining to the already existing air at point 8 forming a large air 

pocket that obstructed the flow and led to the overflow over the ST4. The Institute of 

Engineering recommended the location of an air release valve at the point 8, which is 

considered as an intermediate high point for air accumulation. In addition, it can be stated that 

air is not   collected at points 9 and 10, since the air will be built up at point 8 as predicted by 

equation (2.6). Likewise, it is important to highlight that air did not accumulate in the form of 

pockets at the points 1 to 5, because air release valves are placed at these locations. 
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The analysis of the two gravity main pipelines revealed that problems related with entrained 

air may be gone unnoticed, if the hydraulic structures had not spilled. Likewise, in the case of 

the Surge Tank 4, if the analysis for partial flow rates had not been made the causes of the 

overflow might not been known. 

 
In chapters 4 and 5, the linear equation herein presented will be used to analyze the behaviour 

of air bubbles/pockets, as well as the possibility of accumulation of large air pockets at high 

and intermediate high points in pumping pipeline systems. Furthermore, the effect of large air 

pockets located at the summits of pumping pipelines on hydraulic transients will be simulated 

with a computational program during pump shutdown. In addition, within the next chapter, 

the investigation developed in an experimental apparatus is presented, where large air pockets 

at high points of pipelines were studied, with the main aim of measuring the air volume of the 

pockets.   

 



 55  

3 Experimental and theoretical investigation of air pockets located at high   
   points of pipelines 
 
3.1 Introduction 
 
As described by various investigators, air pockets can accumulate at summits of water lines 

by air entrainment. For the purpose of studying and observing the large air pockets located at 

high points in pipelines, experimental investigations had been developed in a physical model 

with the main aim of computing the volumes of air that form the pockets. The hydraulic 

model investigation was focused on large air pockets located at high points of pressurized 

conduits for water conveyance also named pumping pipeline systems. 

 
In the first part of the research the water depths underneath the large air pocket at a pressure 

greater than the atmospheric pressure, as well as for free surface flow were recorded. The 

experimental results have been compared with the analytical results obtained with the direct 

step method used in the analysis of gradually varied flow. A method of computation is 

presented to assess the volume of air of the pockets using some variables that result from the 

application of the direct step method.   

 
The hydraulic grade line above the conduit at pressurized flow conditions was measured with 

and without air pocket in the test section to verify the effect of large air pockets and the 

hydraulic jump on the head losses. The hydraulic model investigation described in this 

chapter was executed in the laboratory of the Institute of Engineering at the University of 

Mexico (UNAM).   

 
3.2 Preliminary observations at the test section 

 
Preparatory runs were developed with a water flow rate range from 1.0 to 2.5 l/s to observe 

the behaviour of the large air pocket located at the transition of slope in the test section. When 

the model was filled without releasing the air through the valves, it accumulated at the 

transition of slope. The large air pocket extended in both legs of the test section. At the 

downward section the pocket ended with a hydraulic jump that sealed the duct. In addition, it 

was observed that part of the air pocket located at the upstream leg exceeded the length of the 

test section when the flow rate was lower than 1.3 l/s. In the same way, for flow rates greater 

than 2.3 l/s the upstream end of the pocket started within the flexible pipe. This made it 

impossible to measure the beginning of the pocket. Therefore, the flow rate range from 1.3 to 
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2.3 l/s was selected for the experiments. The photographs in Figures 3.1 and 3.2 show the 

large air pocket at the upstream and downstream legs, respectively. 

 
The observations confirmed that the large air pocket remains at the transition of slope for the 

water flow rate range. Hence, the hypothesis formulated was that the water flow underneath 

the pocket behaved as open channel flow. The test section is equivalent to a pair of connected 

prismatic channels with the same cross section but with different slopes. At the upstream leg 

of the experimental apparatus the flow profiles were very similar as the profiles at open 

channels with adverse, horizontal and mild slope. The control section occurred at the 

upstream end of the supercritical slope, since the flow in a steep channel has to pass through 

the critical control section at the upstream end and then follows the S2 profile, see Figure 

3.18. The critical depth is, therefore, the control depth. 

 
It has been observed that during the air injection the large air pocket began to grow in the 

upstream direction of test section, when it reached its total length the pocket continued 

expanding only in the downstream direction and always ended with a hydraulic jump. 

  

 
Figure 3.1: Beginning of the large air pocket in the upstream leg 
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Figure 3.2: Hydraulic jump at the end of the pocket located in the downstream leg 

 
By increasing the water flow rate without varying the volume of entrapped air, the large air 

pocket moved forward. It was appreciated that the air pocket did not alter its form. When the 

flow rate was constant and part of the air exhausted, the size of the pocket was reduced only 

in the downward sloping pipe of the test section and moving the hydraulic jump upstream. 

Likewise, when more air was injected the pocket only grew at the steep slope. Therefore, it 

could be concluded that the profile of the large air pocket upstream of the control section does 

not change its form when the flow rate remained constant and the volume of air was varied. In 

addition, the length of the large air pockets at the upstream leg of the test section only 

depends on the water flow rate and the particular critical or control depth. Therefore, the 

increment of head losses due to the large air pocket accumulated at the transition of slope can 

be associated to the part of the air pocket distributed at the downward sloping pipe of the test 

section, as well as the energy dissipated by the hydraulic jump. 

 
3.3 Experimental Apparatus 

 
3.3.1 Description of the Experimental Apparatus 

 
The experimental apparatus was constructed as a re-circulating circuit and designed by using 

the Froude number, due to the presence of free surface flow. A sketch of the physical model is 

shown in Figure 3.3.   

 
 
 



 58  

 
Figure 3.3: Profile and plan of the experimental apparatus  

 
 
The experimental apparatus is composed of: 
 

1) Constant Head Tank  

2) Pump ( 1 hp ) 

3) Acrylic Pipe Line (Test section) 

 
1) The dimensions of the constant head tank are 5.0 x 1.1 m at the base and 1.0 m height. 

The tank is divided in two deposits and interconnected by a pipe of 10 cm to avoid 

turbulence at the suction of the pump. The temperature of water is neglected. 

 
2) The pump is used to feed the experimental apparatus. The maximum water flow rate 

that this equipment can pump is 2.5 l/s. The flow is controlled by a ball valve placed 

downstream of the pump discharge. 

 
3) The test section consisted of a 76.2 mm internal diameter acrylic pipe mounted on 

metallic frames. It was formed by an upstream pipe of 6.8 m long followed by a 

flexible pipe with a length of 50 cm and by another pipe section of 6.4 m in length. 

Both pipe sections could be varied in slope. At the end of the test section, a gooseneck 

pipe was implemented and connected by a flexible pipe to a galvanized iron pipe of 

101.6 mm, by which the water returned to the constant head tank. Photographs of a 

general view of the test section and the gooseneck pipe are shown in Figures 3.4 and 

3.5, respectively. 
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a) 

 
 
 

 
b) 
 

Figure 3.4: Test section of the experimental apparatus: a) upstream leg, 
           b) downstream leg 
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Figure 3.5: Gooseneck pipe made up of grey PVC 

 
 

3.3.2 Instrumentation of the Experimental Apparatus  
 

An orifice plate was designed according to the Norm ISO/DIS 5167-1 to measure the flow 

rate ranges between 0 to 2.5 l/s. The plate has a thickness of 2 mm and a concentric orifice 

with diameter of 19 mm.  

 
Valves were placed throughout the test section allowing air to enter and to exhaust during 

filling and dewatering operations, as well as to permit the test section to flow as open channel 

at atmospheric pressure.   

 
A bank of differential manometers connected by plastic tubings to the pressure tapping points 

placed along the test section was used to measure the variation of the hydraulic grade line 

above the acrylic line, when a large air pocket is located at the transition of slope in the test 

section. The pressure tapping points were named measuring stations (Ei). A photograph of the 

bank of manometers is shown in Figures 3.6, and a sketch of the test section with the 

measuring stations is presented in Figures 3.7.  

 



 61  

 
Figure 3.6: Measuring instrument, bank of manometers 

 
 

 
Figure 3.7: Test section with the measuring stations 

 
An open end water manometer was used to measure the total head losses along the test section 

with and without air pocket, see Figure 3.8. The difference in elevation ∆h read directly from 

the manometer was utilized to compute the friction factor λ of Darcy-Weisbach for each run. 

 
A measuring instrument composed of an acoustic metallic sensor and an electronic sound 

system connected by a flexible cable was used to measure the depths of water underneath the 

air pockets through the measuring stations Ei. When the point of the sensor was in contact 

with the water surface the electronic sound system emitted a whistle, then the measurement 

was taken. The measuring instrument is shown by a photograph in Figures 3.9 and by a sketch 

in Figure 3.10.  
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Figure 3.8: Open manometer to measure the difference in elevation ∆h 

 
 
 

 
Figure 3.9:  Measuring instrument to gage the depths of water 
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Figure 3.10: Diagrammatic sketch of the measuring instrument  

 
The system to inject air into the test section consisted of a piston made up acrylic with an air 

capacity of 1 liter, two small valves and plastic tubing allowing to connect the piston to the 

line. In Figure 3.11 a photograph of the piston is presented.    

 

 
Figure 3.11: Air injection system to introduce air into the test section 

 
3.3.3 Experimental Procedure 
 
In order to simulate different flow profiles underneath large air pockets under pressurized 

flow conditions, as well as the free surface flow profiles at atmospheric pressure in a circular 

conduit. Three different experiments have been developed in the physical model. 

Subsequently, experimental data obtained during the measurements were utilized to compute 

the shape of the flow profiles in the test section by using the theory of the gradual varied flow 

to be correlated with the flow profiles obtained experimentally.   
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The upstream pipe leg of the experimental apparatus was set at three different slopes to 

reproduce the profiles A2, H2 and M2, S01 = - 0.0063, S01 = 0.0 and S01 = 0.0060, 

respectively. During the experiments the downward sloping pipe of the test section was kept 

constant, S02 = 0.060. 

 
In each experiment three different tests were developed for a particular water flow rate and 

two different volumes of air. 

 
Test 1. Pressurized flow conditions at the test section, there was not accumulated air at the 

change of slope. In each run there were four independent variables. 

 
1) D     pipe diameter [m] 
2) Qw   water flow rate [m3/s] 
3) S01    slope of the upstream pipe leg [-] 
4) S02    slope of the downstream pipe leg [-] 

 
For pressurized flow conditions the hydraulic grade line was measured and observed in the 

bank of manometers, see Figure 3.12, as well as the difference in elevation ∆h in the open end 

water manometer to compute experimentally the friction factor λexp by the formula of Darcy-

Weisbach, written as 

               2
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=λ    [s2/m]              (3.1) 

 
λexp  experimental friction factor [-] 
∆h   difference in elevation in the manometer [m] 
Lts    length of the test section [m] 
Qw   water flow rate [m3/s] 
D     pipe diameter [m] 
 
The coefficient of Manning n for each run is calculated in terms of the friction factor λexp by 

equating (3.1) with the Manning’s formula (3.2).    
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n   coefficient of Manning [s/m1/3] 
A   total cross section area of the pipe [m2] 
R   hydraulic radius [m] 

Solving equations (3.1) and (3.2) for ∆h/Lts results in a relationship between the friction 

factors n and λexp, written as: 
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exp09.0 Dn λ=    [s/m1/3]         (3.3) 

 
Figure 3.12: Hydraulic grade line for pressurized flow conditions 

 
Test 2. To simulate the flow profile under pressurized flow conditions, known volumes of 

air were injected into the line by a piston at the upstream leg of the test section, while the pipe 

was flowing full. The air moved to the change of slope forming a large air pocket that 

remained at the control section. The manometric pressure of the air pocket is equal to the 

difference between the piezometric head and the elevation of the water surface above the 

horizontal datum. Likewise, the air entrained by the hydraulic jump coalesced into air bubbles 

that returned continuously, therefore the volume of air was considered constant during the 

test. Figures 3.13 and 3.14 show the hydraulic grade line, when a large air pocket is located at 

the transition of slope in the test section. 

 
For each run there were six independent variables.   
 

1) D    pipe diameter [m] 
2) Qw  water flow rate [m3/s] 
3) V    volume of air [m3] 
4) S01  slope of the upstream pipe leg [-] 
5) S02   slope of the downstream pipe leg [-] 
6) Lpocket  length of the air pocket [m] 
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The following variables were measured: 
 
a) The hydraulic grade line in the bank of differential manometers 
 
b) The difference in elevation ∆h in open end water manometer that represents the head      
            loss along the test section, due to the presence of the large air pocket 
 
c) The air pocket and hydraulic jump length was taken by using a tape measure 
  
d) The water depths under the air pocket were recorded by introducing the acoustic     
            metallic sensor in the line through the orifices at the measuring stations Ei.  
 
For this test two runs were carried out with the same water flow rate and two different 

volumes of air. The values are tabulated in Table 3.1. 

  
run 1 run 2 

Pipe 
slope 

Type of 
flow 

Qw  
[m3/s] 

V1  
[m3] 

V2  
[m3] 

Qw  
[m3/s] 

V1  
[m3] 

V2  
[m3] 

Adverse Subcritical 0.0013 0.010 0.015 0.0017 0.005 0.010 
Horizontal Subcritical 0.0017 0.010 0.015 0.002 0.010 0.015 

Mild Subcritical 0.002 0.010 0.015 0.0023 0.010 0.015 
Table 3.1: Water flow rates and volumes of air used in Test 2 

 
 

   

 
Figure 3.13: Comparison of the HGL with and without air at the transition of slope  

     in the test section 
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Figure 3.14: Hydraulic grade line with a large air pocket located at the transition of 
slope in the test section 
 
Test 3. Free surface flow at atmospheric pressure was simulated. The runs were developed 

in the following manner. The valves located at the test section were opened to permit air 

entering the line. Likewise, the gooseneck pipe was inclined, and then the hydraulic grade line 

cut through the test section. The water flow rates and the length of the flow profiles were the 

same as in the runs of test 2. A sketch of the test section with free surface flow is presented in 

Figure 3.15.  

 
Figure 3.15: Test section with free surface flow at atmospheric pressure 

 
In each run there were six independent variables, namely, 
 

1) D    pipe diameter [m] 
2) Qw  water flow rate [m3/s] 
3) S01  slope of the upstream pipe leg [-] 
4) S02   slope of the downstream pipe leg [-] 
5) Lprofile at S01  length of the flow profile at the upgrade pipe [m] 
6) Lprofile at S02  length of the flow profile at the downgrade pipe [m] 
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The following data were recorded: 
 

a) The water depths of the flow profile 
 
b) The length of the two flow profiles upstream and downstream of the control section 

 
The results obtained during the experiments are presented at the end of the chapter.  
 
3.4 Gradually Varied Flow 

 
Gradually varied flow is steady nonuniform flow of a special class. The depth, roughness, 

channel slope, area, hydraulic radius change very slowly along the channel. The basic 

assumption required is that the head loss rate at a given section is given by the Manning 

formula, equation (3.5), Streeter and Wylie (1985) [74]. 

 
For a given water flow rate and channel conditions the normal depth Yn and the critical depth 

Yc lines divide the space in a channel into three zones, Chow (1981) [11]:  

 
Zone 1: The space above the upper line  

Zone 2: The space between the two lines 

Zone 3: The space below the lower line 

 
The flow profiles are classified according to the nature of the channel slope and the zone in 

which the flow surface lies. These types are designated as A2, A3; H2, H3; M1, M2, M3; C1, 

C2, C3; S1, S2, S3; where the letters describe the slope: A for adverse slope, H for horizontal, 

M for mild (subcritical), C for critical, S for steep (supercritical); and where the numeral 

represents the zone number. The flow profiles are shown in Figure 3.16. 

 
3.4.1 Computation of the flow profiles 
 
The dynamic equation of gradually varied flow was used to obtain the various flow profiles 

observed during the experimental work, Chow (1981) [11].   

 

       
fSS

EEx
−
−

=∆ 12    [m]                (3.4) 

∆x  length of the reach [m] 
E1  specific energy at the upstream end of the pipe reach [m] 
E2  specific energy at the downstream end of the pipe reach [m] 
S    pipe slope [-] 
Sf   friction slope [-] 
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n   coefficient of Manning [s/m1/3] 
v   water velocity in the pipe [m/s] 
R   hydraulic radius [m] 
 
The sketch in Figure 3.17 shows the details of the terminology used. 
 
The main purpose of this computation is to verify that the flow profiles under the large air 

pockets accumulated at the break of slope in the circular conduit can be reproduced by the 

dynamic equation of gradually varied flow. The direct step method was applied to compute 

the flow profile, due to its easy applicability to prismatic channels. The step methods are 

characterized by dividing the channel into short reaches and carrying the computation step by 

step from one end of the reach to the other.    

 
At the end of the chapter, the flow profiles computed in this section are compared with the 

shape of the water surfaces obtained in test 2 and test 3. 

 
Yc  critical depth [m] 
Yn  normal depth [m] 
 
Figure 3.16 Classification of flow profiles of gradually varied flow (after Streeter and 
Wylie, 1985) 
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g/v 22
1  velocity head at the upstream end of the pipe reach [m] 

g/v 22
2  velocity head at the upstream end of the pipe reach [m] 

Y1      water depth at the upstream end of the pipe reach [m] 
Y2        water depth at the downstream end of the pipe reach [m] 
 

Figure 3.17: Pipe reach for the derivation of the direct step method 

  
3.4.2 Computational algorithm  
 
With the data obtained during the experimental work the flow profiles were computed. For 

simplicity, the water depth at the transition of the slope is the critical depth. For each run in 

test 2 the critical depths resulted lower than the water depths measured at the upstream leg of 

the test section, therefore the type of flow is subcritical. In addition, the normal depths were 

lower at the downgrade pipe, hence a supercritical profile S2 present. 

 
The flow profiles at the upstream pipe of the test section were computed in the upward 

direction until the estimated level agreed with the inner diameter of the pipe. Likewise, the 

profile S2 was assessed in downstream direction until when the depth approaches the normal 

depth. The computation of the flow profile by the direct step method is shown in table 3.2. 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 

Yi [m] A [m2] R [m] R2/3 [m] v [m/s] v2/2g [m] E [m] ∆E [m] Sf Sfi S - Sfi ∆x [m] Σ∆x [m] 

0,0366 0,0022 0,0186 0,0700 0,6002 0,0184 0,0550 ---- 0,0060 ---- ---- 0,0000 0,0000 

0,0406 0,0025 0,0198 0,0731 0,5268 0,0141 0,0547 0,0003 0,0042 0,0051 0,0114 0,0223 0,0223 

0,0445 0,0028 0,0209 0,0757 0,4698 0,0112 0,0558 0,0011 0,0031 0,0037 0,0100 0,1067 0,0843 

0,0485 0,0031 0,0218 0,0778 0,4247 0,0092 0,0577 0,0019 0,0024 0,0028 0,0091 0,2098 0,2941 

0,0524 0,0033 0,0224 0,0795 0,3885 0,0077 0,0601 0,0025 0,0019 0,0022 0,0085 0,2903 0,5844 

Table 3.2: Flow profile A2 estimated by the direct step method 
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The steps to calculate the shape of the water surface in the test section are explained as                        
follows, Chow (1981) [11]: 
 
Column 1. Depth of flow [m] 
Column 2. Water area corresponding to the depth Y in column 1 [m2] 
Column 3. Hydraulic radius corresponding to Y in column 1 [m] 
Column 4. Two thirds power of the hydraulic radius [m2/3] 
Column 5. Mean flow velocity [m] 
Column 6. Velocity head [m] 
Column 7. Specific energy obtained by adding the depth of flow in column 1 to the velocity   
head in column 6 [m]  
Column 8. Change of specific energy, equal to the difference between the E value in column 
7 and that of the previous step [m] 
Column 9. Friction slope computed by equation (3.5)  
Column 10. Average friction slope between the steps, equal to the arithmetic mean of the 
friction slope just computed in column 9 and that of the previous step 
Column 11. Difference between the pipe slope and the average friction slope  
Column 12. Length of the reach between the consecutive steps, computed by dividing the 
value of ∆E in column 8 by the value in column 11 [m] 
Column 13. Distance of the flow profile, it is equal to the cumulative sum of the values in 
column 12 computed for previous steps [m] 
 
The flow profiles evaluated by the direct step method are illustrated in Fig 3.18 through 3.20 
 

 
LHyd Jump  length of the hydraulic jump [m] 

 
Figure 3.18: Flow profiles A2 and S2  

 

 
 

Figure 3.19: Flow profiles H2 and S2 
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Figure 3.20: Flow profiles M2 and S2 

 
3.5 Computation of the volume of air 
 
As described before, air bubbles entrapped in water lines tend to join together to form large 

air pockets at the intermediate and high points. During the experimental work the volumes of 

air injected were known. In addition, Boyle´s law was used to assess the volume of air 

accumulated in the pockets during test 2. Boyle´s law states that the volume of a definite 

quantity of gas is inversely proportional to its pressure provided the temperature remains 

constant. The working form of the equation used to predict the changes in the volume of air 

due to pressure variation in the test section of the experimental apparatus can be written as 

 
                 V1P1 = V2P2    [m4]                  (3.6) 

 
V1   volume of air injected in the line at atmospheric pressure [m3] 

      V2    volume of air in the test section during test 2 [m3]  
P1    atmospheric pressure in Mexico City, equal to 8.03 [mH2O] 
P2     absolute pressure of the air pocket during test 2 [mH2O] 
 
This relationship indicates that any pressure-volume product equals any other so long as 

temperature is constant. Three of the four variables must be known.  

 
The volumes of air in the pockets were also estimated by applying the water areas and the 

lengths of the pipe reaches obtained with the direct step method, the equation utilized is 

 

           2,1
21

2,1 2
xAAAV ∆⎥⎦

⎤
⎢⎣

⎡ +
−=    [m3]     (3.7) 

  
V1,2    volume of air at the pipe reach [m3] 
A       total cross section area of the pipe [m2]  
A1     water area at the upstream end of the pipe reach [m2] 
A2        water area at the downstream end of the pipe reach [m2] 
∆x1,2  length of the pipe reach [m] 
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The sketch in Figure 3.21 shows the details of the terminology used in equation (3.7).  

 

 
 

Figure 3.21: Volume of air in a pipe reach 
 
It can be observed that the values obtained by using equation (3.6) are greater than the 

volumes of air computed with equation (3.7). It is because the volume of air above the surface 

roller of the hydraulic jump, having a length of LHyd Jump, is not taken into account in equation 

(3.7), see Figure 3.18 to 3.20. In addition, the pipe reaches used for the calculations are not 

small enough to obtain a better approximation of the volume of air. The values obtained by 

utilizing both equations are summarized in Tables 3.3 a), b) through 3.8 a), b).   

 
For practical application, it is recommended to start computing the volume of the air pocket 

upstream of the control section, VUp. This volume of air will remain constant, because as it 

has been observed in laboratory the air pocket grew in the upstream direction of the test 

section, when it reached its total length, the pocket continues growing only in the downstream 

direction. Downstream of the critical depth, different values of air pocket volumes VDown can 

be computed if the cumulative sum of the length of each reach between the consecutive steps 

is considered as the distance of the flow profile, and also assuming that at the end of the air 

pocket a hydraulic jump occurs. The last value of air volume will be obtained when the water 

depth approaches the normal depth. The total air volume contained in the pocket will be the 

sum of VUp and VDown. 
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Figure 3.22 shows the details of the terminology described previously.  
 

 
VUp  volume of the air pocket upstream of the control section [m3]  
VDown  volume of the air pocket downstream of the control section [m3] 
 

Figure 3.22: Volumes of the stationary air pockets 
 
As it has been mentioned, the experimental work was focused on large air pockets located at 

high points of pipeline systems. Therefore, it can be stated that the volumes of air estimated 

with the variables obtained by using the direct step method increase the factor of safety in 

designing pipelines, because it has been found that small air pockets located at intermediate 

and high points can enhance the magnitude of surge pressures experienced by a sudden or 

routine pump shutdown. It could have serious implications, if entrained air is not accounted 

for during the design of pumping pipeline systems. Borrows and Qiu (1995) [9]; Qiu and 

Borrows (1996) [60]; Borrows (2003) [8]. 

 
In the next chapter, the effect of air pockets on surge pressure experienced by pumping 

pipeline systems is studied by using the method of the characteristics, as well as the equation 

(2.6) presented in chapter 2 and the direct step method to compute the volumes of air in the 

pockets. 

3.6 Analysis of results 
 
The comparison between experimental and analytical air pockets profiles yields interesting 

results. The flow profile underneath the air pocket, as computed by the dynamic equation of 

the gradually varied flow, shows excellent correlation with the flow profiles determined 

experimentally as presented in the computed curves in Figure 3.23 to Figure 3.34. In addition, 

tables 3.3 a), b) to 3.8 a), b) present the measurements made during the hydraulic model 

investigation, as well as Tables 3.3 c) to 3.8 c) tabulate the results obtained by applying the 

dynamic equation of the gradually varied flow.  
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For the same water flow rate, the hydraulic grade line measured and observed immediately 

downstream of the hydraulic jump in test 2 is very similar to the hydraulic grade line in test 1. 

The transformation of the kinetic energy of water upstream of the hydraulic jump to pressure 

immediately downstream of the jump, returned the hydraulic grade line to its original value as 

in test 1. 

 
In the length occupied by the large air pockets the hydraulic grade lines are parallel to the 

water surface. The data recorded permitted to verify that the pressure throughout the air 

pocket was uniform, because the pressure variations are negligible in a gas.  

 
With the measurements taken during test 2, it was possible to verify that the elevation of the 

hydraulic grade line with respect to the grade line of test 1 corresponded to the additional 

head losses, due to the reduction of the effective pipe cross section, as well as the energy 

dissipated by the hydraulic jump.  
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4.  Effect of air pockets on hydraulic transients in pumping pipeline systems 
 
4.1 Introduction 
 
Hydraulic transient analysis is usually based on the assumption of no air in the water. 

However, in some pumping systems air entrainment can occur because pumps introduce air 

by the vortex action of the suction in quantities of 5% to 10% of the flow. When vacuum 

pressure occurs in the pipeline, air can leak in through seals at joints and valves. Likewise, 

water contains approximately 2% air by volume and air solubility in water is proportional to 

the pressure. Dissolved air may form a free gas phase at points in the pipeline where pressure 

drops or the temperature rises. In the same way, air pockets at intermediate or high points 

along the pipeline can also be presented due to the incomplete removal of air during filling 

and dewatering operations or progressive upward migration of air pockets. In addition, if air 

pockets located at high points of the pipeline cannot be carried downstream, it may occur that 

flow entirely stops because the cumulative head losses produced by the air pockets can be 

higher than the pump head capacity. The resulting pressure transients with entrained air are 

considerably different from that computed according to the ones without air in the line. 

     
4.2 Effect of air pockets on hydraulic transients 

 
The effect of entrained air in water pumping pipeline systems may be either harmful or 

beneficial, depending on the portion and location of the air as well as the system configuration 

and the causes of the transient, Martin (1976) [50]; Martin (1996) [51].                   

Stephenson (1997) [73] stated that the formation of large air pockets in pipelines can lead to 

further problems. However, if accepted, it may be beneficially used to reduce waterhammer.  

 
The manner pipelines respond to the presence of this free air depends on how it is distributed. 

In a stationary or slowly moving flow it will tend to accumulate in pockets. If these are large, 

they can behave as air cushions and absorb or reflect the energy of transient pressure waves, 

Horlacher and Lüdecke (1992) [34], Kottmann (1992) [42], Thorley (2004) [78]. Likewise, 

the startup of pumps, or rapid opening of valves in piping systems during startup has caused 

many accidents during the past decades, because there is no practical form to remove all the 

entrained air from water lines. During startup, the air valve on the pump should be opened 

slowly to eliminate the air gradually from the pump discharge line to allow compression of 

this air without developing very high pressures. Besides, other cases of entrained air in 

pumping systems have caused the pipes to be pulled from their anchors,                       

Wylie et. al. (1993) [89].     
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Qiu (1995) [59] stated that when air pockets are located at high points along the pipeline, the 

accumulated air is both unintended and unquantifiable. As a consequence, its potential 

influence on pressure transients is not often given consideration, either at design stage or in 

post failure inquiry. Situations where severe hydraulic transients may arise include system 

malfunction, temporary operation during maintenance and repair, or even during normal 

pump shutdown. Therefore, the effect of air pockets on hydraulic transients in pumping 

pipeline systems is studied in this chapter supported by the linear relationship proposed by 

Gonzalez and Pozos (2000) [29], equation (2.6), which can predict if large air pockets are 

likely to remain at intermediate or high points in pipelines. In the same way, the direct step 

method is used to obtain the flow profiles and the variables to estimate the volumes of air in 

the pockets by applying equation (3.7). By knowing the location of the air pockets and their 

volume, an analytical model based on the method of characteristics is utilized for predicting 

hydraulic transients caused by the shutdown in a pumping station. 

 
4.3 Review of the effect of entrained air in pipeline systems 
 
The effect of entrained air on hydraulic transients has been intensively investigated by many 

researchers and several mathematical models have been proposed. The studies of previous 

investigators are reviewed subsequently:   

 
Brown (1968) [7] reported field test results and analytical investigations in two pump 

discharge lines, where the pressures were greater than predicted during design. The theoretical 

analysis was based on the method of characteristics by modifying the water column separation 

solution and considering the effects of entrained air in the pipeline. The total volume of 

entrained air is assumed to be lumped at the computing points equidistantly along the 

discharge line. Brown concluded that:  

 
1) The inherent difficulty of the prediction of water column separation effects is further  being 

complicated by the uncertainty about complete pump operating characteristics and actual 

momentum of inertia of pumps and motors. 

 

2) The effects of air and gas entrained in solution in the water must be considered in the 

analytical solution.  
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3) Entrained air can have a detrimental effect on the hydraulic transients, i.e., large pressure 

surges in the discharge line and higher reverse speeds of the pumps can be caused by its 

presence.   

 
Holley (1969) [33] developed hydraulic model investigations to study air entrainment 

problems when upstream control is used in water pipeline systems. Pressure oscillations in a 

pipeline with check structures space along the pipe were investigated. The pipe check 

structures serve three purposes:  

 
1) Provide an overflow point high enough in elevation to keep the pipe from emptying when 

no water is flowing through the line. 

 
 2) The hydraulic gradient always passes below the top of the structure, therefore it does not 

overflow for the design water flow rate. 

 
 3) Provide an air source to keep negative pressure from developing when the flow rate is 

lower than the design value. The author found that important pressure peaks occurred when 

large amounts of air along the top of the pipe were exhausted from either the upstream pipe 

check structures or the downstream air release vent pipe.     

 
Martin (1976) [50] investigated analytically the effect of entrapped air in pipelines for 

multiple configurations. The numerical solutions showed that entrapped air may be either 

beneficial or detrimental, depending on the amount and location of the air as well as the 

system configuration and the causes of the transient. Martin stated that the most severe causes 

of entrapped air occur during the rapid acceleration of a water column toward a volume of air 

that is completely confined. The resulting pressure peak can be many times the initial imposed 

pressure if the transient is applied rapidly. Results are also included to illustrate the effect of 

the initial location of an unconfined air pocket on the magnitude of the mixture pressure. The 

presence of the air is shown to cause peak pressures that are either greater or less than those 

that would occur without air.    

 
Jönsson (1985) [35] developed analytical and experimental investigation to explain the impact 

of air pockets on hydraulic transients in a sewage pumping station with check valve and low 

water level in the pump sump. He attributed the large peak pressure predicted by the 

analytical study to the compression of an isolated air cushion next to the check valve. The 

author applied a standard model with constant wave speed to show that the pressure peaks 
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will arise stronger than the pressure peaks obtained when no air is let in the line and 

concluded that smaller volumes of air lead to larger pressure peaks. On the other hand, there 

is a lower limit to the volume of air that could be described as behaving as a cushion. Jönsson 

suggested that the strong pressure peaks must be considered at the design stage of the 

pipeline. Later Jönsson (1992) [36] presented and discussed the hydraulic transients computed 

and measured in three different sewage pumping pipelines. A computational model based on 

the air pocket concept and one dimensional compressible flow theory for the water column 

was developed to simulate the effect of the entrained air. The author corroborated his prior 

conclusions.   

      
Hashimoto et al. (1988) [31] studied transients following the rapid opening of a valve on the 

upstream side of a fluid pipeline containing an air pocket, or the gas pipeline containing a 

liquid column. Basic equations of the lumped-element representation for the pipeline system 

and an equation to calculate the surge pressure were used for the theoretical computations and 

solved by applying the fourth-order Runge-Kutta-Gill method. The maximum pressure 

attained is about 2.4 times that of the supply pressure, and it is larger than the results of the 

system without air pocket. The theoretical results were compared with the experimental 

results and agreed well.  

 
Larsen and Borrows (1992) [46] computed pressure transients and compared them with field 

measurements in three different pumping plastic sewer mains. The comparison highlighted 

the effect of cavitation (water column separation) and air pockets at the high points of the 

pipelines followed by pump run-down. The numerical model used in the investigation was 

based on the standard method of the characteristics. The authors found that only by including 

air pockets at the high points of the pumping systems within the numerical model could be 

observed that the measured and computed transient pressures adjusted reasonably well. They 

pointed out that air pockets can either damp or amplify the pressure transients depending on 

their size and causes of the transients. Accordingly one can expect that air pockets in some 

situations can lead to excessive load and even rupture of the line. 

 
Förster (1997) [23] investigated the pressure absorbed by large air pockets located at aerated 

high points of a pipeline model during the occurrence of hydraulic transients experimentally 

and analytically. Likewise, several measurements were carried out in order to identify the 

influence of the geometry and volume of the air pocket on the absorption of the pressure. 

From the results obtained, it can be stated that the dampening effect on the water hammer 
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produced by the air pockets is affected considerably by their free surface. In the same way, 

the author developed a dimensionless representation of the equations utilized in the analytical 

model to study the effect of large air pockets on pressure transients in pipelines with larger 

diameters than that used during the research. 

 
Fuertes (2000) [24] developed a mathematical model to analyze the hydraulic transients due 

to the compression of air pockets located at high points of pipelines. The main assumptions 

made in the model are the use of a lump parameter model (rigid model) and that the water-air 

interface coincides with the pipe cross section. Experimental investigations were carried out 

to validate the theoretical model. The agreement between experimental and analytical results 

was good during the first phase of the transient, which is when peak pressures and velocities 

develop. In a second stage of the investigation, the presence of air valves is included in the 

mathematical model to simulate air pockets and air valves within irregular profile systems. In 

laboratory a great number of experiments were conducted with these devices and theoretical 

and experimental predictions were compared.       

 
Zhou (2000) [92] presented the results of analytical and experimental investigations on the 

effect of trapped air on hydraulic transients in pipelines, especially for sewer trunks during the 

rapid filling stage. The experimental investigation consisted of the rapid filling of different 

pipeline configurations containing trapped air. The computational model used during the 

investigation was based on the rigid column theory. The model was calibrated using the 

experimental data and was found to be able to predict the magnitude of maximum 

waterhammer peak pressure.  

 
Burrows and Qiu (1995) [9] presented case studies to illustrate the influence of air pockets on 

hydraulic transients. In some cases the high peak pressures can severely arise and a 

catastrophic effect might be expected to occur, such as the rupture of the line. Either a single 

small pocket or multiple small air pockets are shown to be especially problematic. Peak 

pressures enhancements as high as 1.6 or even 2 times the normal steady flow duty pressures 

have been predicted. In addition, Qiu and Burrows (1996) [60] concluded that the presence of 

small air pockets in pumping pipeline systems may have a potential effect on hydraulic 

transients, due to an abrupt interruption of flow arising from routine pump shutdown. It is 

suggested that this could trigger serious implications for pipeline systems, where entrained air 

has not been taken into account.   
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Burrows (2003) [8] reported a real case study in which a pumping pipeline suffered from 

cracks and spillage. He determined that the transient pressures induced by the pump shutdown 

would not have been the unique cause for the failures of the line. It was found that a small air 

pocket located at an intermediate high point of the system was identified as likely to generate 

the enhancement of the pressure transients, experienced by a normal pump shutdown.   

     
4.4 Numerical model to investigate the effects of air pockets on hydraulic transients 

 
The numerical model was developed with the main goal to demonstrate the effect of entrained 

air in form of pockets on hydraulic transients caused by pump power failure. It can be 

considered the most severe circumstance within a pumping pipeline. 

 
Computations corresponding to this study were evaluated by using a hydraulic transient 

analysis program based on the method of characteristics and the theory and procedures 

presented by Wylie and Streeter (1978) [88], Chaudhry (1987) [10] and Wylie et al. (1993) 

[89]. The upstream boundary is a pumping station and the downstream boundary a constant 

head tank. The effect of the air pockets is taken into account as outlined below. Some of the 

assumptions made by Borrows and Qiu (1995) [9] during their investigation were taken into 

account for the development of the numerical model: 

 
a) The standard method of the characteristics is applied to obtain the ordinary differential 

equations. These are then solved along the characteristic lines with first order approximation 

and without interpolation to eliminate numerical damping. 

 
b) Air pockets of pre-selected size can be located at chosen nodal points; it is assumed that 

the pocket included will not result in water column separation during the transients, see  

Figure 4.1. Also the air in the pocket does not occupy the entire cross section of the pipe and 

remain in its original position during the time-scale of the hydraulic transient.   

 
c) The transient wave celerity remains invariant during the analysis.  

 
d) The air in the pocket is supposed to follow the polytropic equation of state. 

 
e) Friction and local losses, as well as pumping station losses are considered in the analytical 

model. 
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f) For computational convenience, the pre-selected air pocket coincides with a junction 

between adjacent pipe reaches. 

 
The air pocket is located at the ith junction, see Figure 4.1. 

 
 

Figure 4.1: Notation for the air pocket 
 

The following computational procedure is based on the above references. 
 

The air pocket polytropic change given by equation (4.1) is used as boundary condition: 
 

                             cVH A =ψ
   [m4]                     (4.1) 

in which  
 
HA  absolute head [m]  
V    volume of air [m3] 
ψ    polytropic index [ - ] 
c     constant determined from the initial steady state condition for the air pocket 
 
That can be also presented as 
 

                   1)(
1,

cVHzH UibU ni
=+−

+

ψ    [m4]              (4.2) 
 

1, +niUH  piezometric head above the datum at the section (i,n+1) at the end of the time step [m] 
z      height of the pipe axis above the datum [m] 
Hb   barometric pressure head [m] 

iUV   volume of air at the end of the time step [m3] 
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The value of the index ψ  is equal to 1.0 for a slow isothermal process, and it is equal to 1.4 

for a fast adiabatic process. An average value of ψ = 1.2 is here used.                             

Borrows and Qiu (1995) [9] found that the effect of the polytropic index ψ on the behavior of 

the air pockets during the hydraulic transients is of secondary importance.  

 
The continuity equation at the air pocket can be written as 
 

        [ ])()(
2
1

1,1,1 1,1,1 ++ +−+∆+=
++ niUiUiU QQQQtVV

niii
   [m3]       (4.3) 

 
Vi   volume of the air at the beginning of the time step [m3] 
∆t   size of the time step [s] 

1, +niQ  water flow rate at the upstream end of the air pocket at the beginning of the time step [m3/s] 

1, +niUQ  water flow rate at the upstream end of the air pocket at the end of the time step [m3/s] 

1,1+iQ   water flow rate at the downstream end of the air pocket at the beginning of the time step [m3/s] 

1,1+iUQ  water flow rate at the downstream end of the air pocket at the end of the time step [m3/s] 

 
Note that the variables with subscript U indicate that these are unknown at the end of the time 

step t + ∆t, while the variables without the subscript U refer to their known value at the 

beginning of the time step t. 

 
If the method of characteristics is utilized for the analysis of the hydraulic transients, then the 

positive and negative characteristic equations at the end of each computational time step are 

defined as 

           
                  1,1, )( ++

−= + niini UaU HCCQ    [m3/s]                         (4.4) 
 

                  1,111,1 )( +++
+= − iii UaU HCCQ    [m3/s]                           (4.5) 

          
where  
 

           1,1,1,1,)( +++++ −+= niniiniani QQRHCQC
i    [m3/s]            (4.6) 

                  

          1,11,111,11,1)( 1 +++++− −−=
+ iiiiai QQRHCQC

i    [m3/s]      (4.7) 
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   [m2/s]                                                   (4.11)     

 

λ    Darcy – Weisbach friction factor [-] 
∆t   time step [s] 
D    pipe diameter [m] 
A    total cross section area of the pipe [m2] 
g    gravitational acceleration [m/s2] 
a    transient wave speed [m/s] 
 
In addition, if the head losses in the pipeline at the junction are neglected, then 

        
                                  

1,11, ++
=

ini UU HH    [m]                                     (4.12) 
 

Now there are five unknown variables in five equations, namely, 
1, +niUH , 

iUV , 
1,1+iUQ , 

1, +niUQ , 

1,1+iUH . The elimination of the last four unknowns, yields 
 

   ( ) ( ) 11,11, 2
1 cHCCtCzHH

niiini UaaairbU =⎥
⎦

⎤
⎢
⎣

⎡
+∆+−+

+++

ψ

   [m4]        (4.13) 

 

            ( ))()(1,1,12
1

+−++ −+−∆+= CCQQtVC niiiair    [m3]                    (4.14) 

 
Equation (4.13) can be solved for 

1, +niUH by an iterative method, for example, the bisection 

method. No doubt other methods could also be used. The values of the other unknown 

variables may be evaluated from equations (4.2) through (4.12). 

 
During the computations the finite difference scheme is stable, because the                  

Courant-Friedrich-Lewy condition is always satisfied if ∆t is appropriately selected. 

 
                                    tax ∆≥∆    [m]                                            (4.15) 

  
The numerical model has been written by the author in COMPAQ VISUAL FORTRAN®  

[94]. It is called HT-PAM and is implemented on WINDOWS XP. It is supported somewhat 

on the program PTPS developed by Qiu (1995) [59], which is also based on the method of 

characteristics of finite differences suggested previously by Wylie and Streeter (1978) [88]. 

The new program was expanded to allow a maximum of 400 pipe sections, 30 air pockets that 

can be located at any junction throughout the line, as well as a set of 6 homogeneous pumps 

connecting in parallel per pumping plant. The program generates an output file with the 
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maximum and minimum heads obtained at each nodal point along the pipeline profile during 

the simulation time specified. These data can be transferred to graphics to plot the maximum 

and minimum head envelopes to compare the hydraulic transients computed with and without 

air pockets located at the intermediate and high points of the pipeline. 

 
4.5 Summary of the computation steps and procedure of calculation 
 
The flowchart of Figure 4.2 shows the computational steps for determining the transient 

condition in a pumping pipeline system with air pocket located at their high points. The 

associated equations are presented in Table 4.1.  

 
4.6 Case Study 
 
A study of a pumping pipeline system without surge suppression devices is presented to 

demonstrate the potential effect of air pockets on hydraulic transients. The boundary condition 

at the upstream end is a pumping station and at the downstream end a constant head tank. 

Only hydraulic transients generated by power failure at the pumping station are taken into 

account in this analysis. 

 
The pumping station operates with four centrifugal pumps connected in parallel and each unit 

is able to deliver a maximum water flow rate, Qw = 0.625 m3/s to the constant head tank 

396.92 m above the pump sump level. The conduction is 2289 m in length and made up of 

steel pipes with an inner diameter of 1.22 m. The sketch in Figure 4.3 illustrates schematically 

the investigated pumping pipeline profile. 

 
Before applying the numerical model to investigate the effect of air pockets on hydraulic 

transients, an analysis was developed to identify the location of the air pockets in the pumping 

pipeline system and to quantify their volume. By using the linear equation proposed by 

Gonzalez and Pozos (2000) [29], equation (2.6), it was found that 4 high points are likely to 

accumulate air when the pumping station operates with 3 units (Qw = 1.875 m3/s), see    

Figure 4.4. During the performance of the 4 units in the pumping station (Qw = 2.5 m3/s) only 

an intermediate high point is a possible candidate for air buildup, as shown in Figure 4.5.   
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Figure 4.2 Overview of the procedure of computation of hydraulic transients with air 
pockets located at the high points of pumping pipeline systems 
 
 
 

Inputs and boundary conditions: 

- Pipeline profile  
- Fluid properties ( ρ, ν) 
- Features of the pipe sections (Lpipe, D, λ, a)  
- Range of the water flow rates (

iwQ , … , 
nwQ ) 

- Boundary conditions (NP,NAP,ET) 
- Pump characteristics 

/1/ Identification of the high points at the 
pipeline that are likely to accumulate air  

Are there points likely 
to accumulate air? 

/2/ Determination of the flow profiles

Yes 

/3/ Computation of the volume of air 

/4/ Simulation of the hydraulic transients  
with air pockets located at the high 
points of the pumping pipeline  

No

Simulation of the hydraulic transients 
without considering entrained air  
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Current No. according to Figure 4.2 Associated equations 
/1/       SgDQw =52 /  /Air behavior                      (2.6) 
/2/ 

fSS
EEx

−
−

=∆
0

12 / Dynamic equation of the         (3.4) 

                          gradually varied flow 
 

/3/                V / Volume of air                      (3.7) 
/4/      

iUV / Volume of air at  the beginning         (4.3) 
               of the time step 
  

1, +niUQ / Water flow rate at the upstream       (4.4) 
               end of the air pocket at the end  
               of the time step 
  

1,1+iUQ / Water flow rate at the downstream   (4.5) 
               end of the air pocket at the end  
               of the time step 
  

1, +niUH / Piezometric head at the upstream  (4.12)     
                end of the air pocket at the end  
                of the time step 

Table 4.1: Assignment of the equations to the computation steps represented in      
Figure 4.2  
 
  

 
Figure 4.3: Profile of the pumping pipeline system 
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The results obtained with equation (2.6) are compared with the relationship presented by 

Walski et al. (1994) [83] to describe the behavior of air pockets in pumping pipeline systems. 

The equation can be written as 

  1´
2

=Τ=
gDS
vnomξ

   [-]      (4.14) 

Τ´ is the dimensionless gas pocket number and is equal to the unity when the forces acting on 

the air pocket are balanced. 

ξ    empirical dimensionless coefficient [-] 
nomv   nominal velocity (velocity when no air pocket exist) [m/s] 

S    pipe slope [-] 
D   pipe diameter [m] 
g    gravitational acceleration [m/s2] 
 
ξ can be approximated by equation (4.15) 
 

     ξ = 0.88S0.68   [-]      (4.15) 

 
Substituting equation (4.14) into equation (4.15) gives an equation for determining if gas 

pockets are likely to occur in a pipe section. 

   ´
32.0

288.0
Τ=

gDS
vnom    [-]     (4.16) 

When Τ´ is greater than one for a downward sloping pipe, then the air pockets will move 

downstream. When it is less than one, the pocket will move upstream. 

The results obtained with the equations (2.6) and (4.16) are summed up in Table 4.2. The 

values of the pipe slopes S correspond to the downward sloping pipes, where the air 

bubbles/pockets will move backward relative to the current, then air will accumulate at the 

high points located at the upstream end of the downgrade pipe.  

 
 
 
 
 
 
 
 
 
 
 
 
Table 4.2: Movement of air bubbles/pockets in the downward sloping pipes of the 
pipeline 

Qw  [m3/s] 
1.875 

vnom [m/s] 
1.604 

Pipe Slope S Qw
2/gD5 = 0.1326 0.88 2

nomv /gDS0.32 Behavior 

0.1995 Air moves upstream 0.3168 Air moves upstream 
0.1354 Air moves upstream 0.3587 Air moves upstream 
0.1600 Air moves upstream 0.3400 Air moves upstream 

     0.3226   Air moves upstream            0.2717 Air moves upstream 
Qw [m3/s] 

2.5 
vnom [m/s] 

2.139 
Pipe Slope S Qw

2/gD5 = 0.1326 0.88 2
nomv /gDS0.32 Behavior 

0.3225 Air moves upstream 0.4830 Air moves upstream 
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From the results presented in the Table 4.2, it can be concluded that for this pipeline 

configuration the equations proposed by Walski et al. (1994) [83] and Gonzalez and Pozos 

(2000) [29] predicted the same behavior of the air bubbles and pockets in the downward 

sloping pipes. 

In addition, equation (3.7) was utilized to compute the volumes of air in the pockets, as 

described in section 3.5. The results are summarized in Tables 4.3 and 4.4. 
Qw = 1.875 [m3/s] 

Volume of air in 
the pocket 1 [m3] 

Volume of air in 
the pocket 2 [m3] 

Volume of air in 
the pocket 3 [m3] 

Volume of air in 
the pocket 4 [m3] 

0.145 0.448 1.038 0.412 
0.242 0.576 1.152 0.480 
0.429 0.816 1.368 0.614 
0.761 1.235 1.747 0.856 
1.334 1.944 2.395 1.286 
2.326 3.147 3.503 2.048 
4.099 5.244 5.456 3.449 

Table 4.3: Air pocket volumes when 3 pumps operate at the pumping station 
 

Qw = 2.5 [m3/s] 

Volume of air in  
the pocket 1 [m3] 

0.164 
0.214 
0.325 
0.542 
0.948 
1.702 
3.143 

Table 4.4: Air pocket volumes when 4 pumps operate at the pumping station 
 
4.7 Analysis of results  
 
The effect of different air pocket volumes on hydraulic transients generated by simultaneous 

pump shutdowns at a pumping station without considering protection devices along the 

pipeline is theoretically analyzed within this section. The air pocket volumes summarized in 

tables 4.3 and 4.4 were located at intermediate and high points identified in the analysis. 

Subsequently, a series of numerical simulations by using the numerical model presented in the 

subsection 4.4 were developed to find the worst case scenarios and the critical air pocket 

volumes that may be present in the pumping pipeline. The most critical scenario is that when 

the pumping station operates with three units and the four smallest air pocket volumes 

computed with the equation (3.7) are placed at the points 1 to 4 of the line. In addition, to 

compare the hydraulic transients with and without air pockets located at the intermediate and 

high points of the pumping pipeline, the sudden shutdown of the pumps due to power failure 
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was simulated without considering air accumulated. The analysis was developed based on the 

method of characteristics. This numerical method is used to find the instantaneous head H and 

instantaneous water flow discharge Q for each nodal point throughout the pipeline until the 

desired time duration has been covered. From the head envelopes obtained, only the 

maximum and minimum head envelopes in the system are of particular interest within this 

investigation. The most useful manner to represent these is to plot the maximum and 

minimum values of the head, independently at which time step they were obtained, versus the 

longitudinal section of the pipeline. This provides a quick and easy way to identify critical 

design points in the system and it is useful when reviewing potential surge control strategies. 

The maximum and minimum total head envelopes achieved without regarding air are plotted 

in Figures 4.4 and 4.5. It can be seen from the minimum total head envelopes that part of the 

system will experience subatmospheric pressure that can lead to water column separation. 

This will take place from station 0 + 716.5 to station 0 + 996.9 and 1 + 565.6 to 1 + 719.5 

when four pumps are performing at the pumping station. Subatmospheric pressure will occur 

between the stations 1 + 586.6 and 1 + 699.7 when three units are performing at the station. 

Therefore, surge protection will be required to uplift the minimum total head envelopes in the 

system to within acceptable limits. 

 
When the predictions of hydraulic transients show that water column separation will occur in 

the pipeline, then it has to be studied if the pressures generated when the separated columns 

rejoin are acceptable. Hence, the provision of various control surge devices should be 

investigated. The following are some of the common devices usually employed to prevent 

water column separation or to reduce the pressure rise when the separated columns rejoin: 

 
• Air chamber 

• One way surge tank 

• Flywheels 

• Air-inlet valves 

• Pressure relief or pressure regulating valves 

 
Another relevant aspect that has to be taken into account during the design stage of the 

pipeline is that the wall thickness of the pipe has to withstand the full range of transient 

pressures heads that will occur in the system.  For the dimensioning of the wall thickness the 

envelope of the upper pressures is decisive. 
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It is important to state that the purpose of this work is not to show a rigorous treatment of the 

method of characteristics nor either to simulate the hydraulic transient including surge 

suppression devices. Those interested in the mathematical treatment of the method of 

characteristics and the surge devices to reduce the effect of hydraulic transients in pipeline 

systems should refer to Chaudhry (1987) [10], Horlacher (1992) [34] and                       

Wylie et al. (1993) [89].     

 
4.7.1 Pumping station performing with 3 units (Qw = 1.875 m3/s) and 4 air pockets        
located at the high point 2 and intermediate points 1, 3 and 4. 
 
Three different sets of air pocket volumes were taken into account to demonstrate the effect of 

multiple air pockets located at intermediate and high points of the pumping pipeline, when 

three pumps are performing in the station. The smallest air pocket volumes (V1 = 0.145 m3,  

V2 = 0.448 m3,  V3 = 1.038 m3, V4 = 0.412 m3) were found to be the critical air pockets. The 

subscripts indicate the point where the corresponding air pocket volume is located. Two more 

sets of air pockets were used to compare the maximum and minimum head envelopes 

obtained with the smallest air volumes. The air pocket volumes (V1 = 0.761 m3,                      

V2 = 1.235 m3,   V3 = 1.747 m3, V4 =0.856 m3) are named intermediate in this specific case 

and the largest air pocket volumes are (V1 = 4.099 m3, V2 = 5.244 m3, V3 = 5.456 m3,             

V4 = 3.449 m3).    

 
The presence of the 4 smallest volumes of air lead to the worst scenario, they caused a 

considerable enhancement of the maximum and minimum pressure transients throughout the 

system, see Figure 4.4. The predictions achieved by utilizing the numerical model indicate 

that these pockets absorbed only a part of the transient pressure wave and the rest is reflected 

towards the boundaries at upstream and downstream ends of the pipeline. The amplification 

of the maximum and minimum head envelopes are caused due to the reflection of the transient 

pressure waves at check valves of the pumps, air pockets and the constant head tank.  

   
The maximum and minimum heads decreased with increasing the volumes of air. For 

example, the intermediate volumes of air considered in this analysis reduced significantly the 

reflection of the transient pressure waves towards to the pumping station. The minimum head 

is uplifted to values that are lower than those computed without air. Likewise, the pockets 

located at points 3 and 4 have a similar reflecting effect as the smallest air pockets placed at 

the same points.    
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It can be observed in Figure 4.4 that after the shutdown of three pumps the maximum and 

minimum heads along the pumping pipeline were considerably reduced by the largest air 

pocket volumes located at the points 1 to 4. In this case the cushioning effect produced by the 

air pockets absorbed considerably the transient pressures waves, and only a minor reflection is 

produced by the pocket located at point 3. Hence, it can be stated that these volumes of air are 

optimal for the configuration of the pumping pipeline system. 

 
4.7.2 Pumping station performing with 4 units (Qw = 2.5 m3/s) and an air pocket located  
         at the intermediate high point 1  
 
To demonstrate the effect of an air pocket located at the intermediate high point 1 when four 

pumps are operating in the pumping station, three different volumes of air were considered. 

The smallest air pocket (V = 0.164 m3), the critical air pocket (V = 0.948 m3) and the largest 

air pocket (V = 3.143 m3). The predictions are shown in Figure 4.5. 

 
In the case of the smallest volume of air computed (V = 0.164 m3), the minimum and 

maximum pressure transients along the pipeline are slightly lower than those obtained without 

entrained air, except for the upstream section at the pump discharge. The small pocket 

produced a cushioning effect, absorbing part of the transient pressure wave uplifting the 

minimum head and reducing the maximum head, except for the minimum and maximum head 

values obtained immediately downstream of the discharges of the pumps. 

 
The critical air pocket volume (V = 0.948 m3) caused a considerable enhancement of 

maximum head along the pipeline, when it was placed at point 1. The effect on minimum 

head was also considerable. In addition, the pocket generated an important reflection of the 

maximum pressure transients towards the pumping plant and the constant head tank.  

 
Investigators have shown that peak pressure transients can be enhanced by small air pockets, 

Borrows and Qiu (1995) [9], Qiu and Borrows (1996) [60], Borrows (2003) [8].            

Gahan (2004) [25] highlighted that the small and large air pocket volumes can be defined in 

terms of their effect on hydraulic transients, but there are limits to the volumes of air, outside 

of which, these effects do not occur.   

 
On the contrast, the largest volume of air (V = 3.143 m3) predicted and located at point 1 

generated a positive transient that travelled upstream towards the pumping plant as 

downstream to the constant head tank. The pocket behaved as an air cushion and reflected the 

transient pressure waves in both directions with respect to the position of the pocket. 
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Likewise, the air pocket behaved as an air chamber uplifting the minimum head only 

downstream of the pocket, but produced an important minimum head immediately 

downstream of the pumps discharge. Therefore, it can be stated that for the largest volume of 

air achieved and located in this point, it does not have any beneficial effect on the hydraulic 

transients. 

 
The maximum and minimum heads generated by the shutdown of four pumps were 

exacerbated by the range of volumes of air considered, therefore it can be stated that there was 

not an optimal volume of air for this pipeline, when the pocket is located at the intermediate 

high point 1.  In the same way, it could be observed that the minimum head along the pipeline 

showed an enhancement at the upstream section, as the volume of air was enlarged.  

 
For all the volumes of air, the maximum head immediately downstream of the pumping 

station are above that predicted under the assumption that no air is accumulated at the high or 

intermediate points. Only for the largest volume of air the minimum head computed is lower 

than that achieved without air. 
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5.  Effects of water-air mixtures on hydraulic transients 
 
5.1 Introduction  
 
The numerical simulation of fluid transients caused by the shutdown of pumps, considering 

air pockets located at the high points of the pipeline system and a water-air bubble mixture 

immediately downstream of the pockets is herein presented. The air bubbles are entrained by 

a hydraulic jump that occurs at the end of the pocket. The computations were developed by 

using a numerical model based on the homogeneous model equations, which are solved with 

the method of characteristics, as well as the numerical model described in chapter 4. In 

addition, the transient pressures were simulated without surge suppression devices. Likewise, 

the predictions achieved are compared with the results obtained in the previous chapter, with 

the main goal to demonstrate the effect of the water-air mixture on fluid transients. 

 
5.2 Two-phase flow and two-component flow in fluid transients 

 
There are several circumstances for which a liquid flowing in a pipe contains either gas or 

vapour, or both as a mixture. A gas-liquid mixture of different chemical substances, such as a 

flow of water and air should be called two-component flow, whereas a vapour-liquid 

combination of the same matter would be termed two-phase flow. For convenience the term 

for concurrent flow of water-air is two-phase flow, but strictly speaking it has to be named 

two-component flow.  
 
As described in the previous sections, free gas in pipelines may be either beneficial or 

detrimental during fluid transients, depending on the location and its quantity, whereas the 

effect of the presence of vapor is harmful with respect to waterhammer, for example water 

column separation. Transients associated with two-phase and two-component flow have been 

widely studied by several investigators. Martin (1996) [51] presents an excellent review on 

these themes.  
 
5.2.1 Two-phase flow  

 
The common fluid transient problems related with two-phase vapor-liquid flows are: 

 
1) The well known problem of water column separation. 

2) Rapid depressurization of liquids at high pressure and temperature linked with   

     flashing and potential void collapse.  

3) Sudden impact of steam onto water or vice versa. 
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The formation of a vapour pocket and its subsequent collapse (water column separation) and 

the direct contact of a subcooled liquid and warm vapor can give rise to important transient 

pressures.  

 
5.2.2 Two-component flow     

 
In steady and transient flow, two-component water-air mixtures may occur due to free or 

entrained air or because of the evolution of dissolved air from solution when the pressure 

drops or temperature increases above its saturation level. Examples of gas release can be 

found in hydraulic control systems, aviation fuel lines, and cooling water units. The effect of 

air compressibility on the wave celerity should be taken into account in any fluid transient 

analysis. Small quantities of air in form of bubbles will be favorable due to the significant 

reduction of the wave celerity, resulting in the diminution of potential transients. Larger 

amounts of air in the form of pockets in pipelines followed by a sudden pump shutdown can 

lead to a significant enhancement of transient pressures due to reflection or spring effect of 

the air pockets.   

 
5.3 Flow Patterns 

 
Liquid-gas two-phase flow can occur in numerous patterns depending on the velocities and 

flow rates of the phases, their physical properties and other variables. The determination of 

flow patterns has been done for various pairs of fluids and duct geometries. In transparent 

pipes at moderate velocities, it is possible to classify the flow pattern by direct visual 

observation. At higher velocities, the patterns have a chaotic behavior, therefore other 

techniques should be used to analyze the fluids within the pipe. Investigators have utilized 

flash and cine photography to slow the flow down and extend the range. 

 
It is important to note that there is a considerable disparity in the name given to the flow 

patterns by different authors. Some descriptions of the various patterns in two-phase 

concurrent flow are (Hewitt and Hall-Taylor,1970 [32]) :      

 
Bubble, gas dispersed, gas piston, liquid slug, annular, liquid dispersed, froth, mixed frothy, 

wall film, mist, aerated, piston, churn, wave entrainment, drop entrainment, turbulent, semi-

annular, ripple, plug, wispy annular, stratify, wavy and many more. 
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For the purpose of this work, the most commonly accepted and recognized flow patterns 

classifications are used. 

 
5.3.1 Flow patterns in horizontal concurrent flow  

 
The flow patterns observed in concurrent two-phase flow in horizontal and inclined pipes 

depend on the gas velocity relative to the flow velocity and slope of the conduit. Likewise, the 

acceleration of gravity causes an asymmetric distribution of the phases. The sketches and 

photographs in Figure 5.1 show the flow patterns as described by Alves (1954) [2]. 

 
Bubbly Flow. The gas phase is distributed as small spherical bubbles in a continuous liquid 

phase, which tends to travel in the upper half of the conduit. At moderate flow rates of both 

gas and liquid phases the entire pipe cross section contains bubbles. This pattern is sometimes 

called froth flow.  

 
Plug Flow. As the gas flow rate increases, plug flow occurs because the gas bubbles coalesce 

with plugs and liquid alternately flowing along the upper half of the pipe. The nose of the 

plug of gas is asymmetric. This pattern is also named elongated bubble flow, Shoham (1982) 

[68]. 

 
Stratified Flow. In this case the separation of the two fluids is complete, the liquid flowing at 

the lower half of the pipe and the gas at the top. The stratified flow develops at very low gas 

and liquid velocities. Some authors describe this flow pattern as stratified smooth flow due to 

the smoothness of its surface.  

 
Wavy Flow. As the gas velocity is increased in stratified flow or stratified smooth flow, 

instability of the liquid surface gives rise to the waves that travel in the direction of the 

current. This pattern is also called stratified wavy flow. 

 
Slug Flow. A further increase in the gas velocity in the wavy or stratified wavy flow causes 

wave amplitudes that become large enough to reach the roof of the pipe. The slugs travel with 

a higher velocity than the liquid velocity. The upper surface of the conduit behind the wave is 

wetted by a residual film that drains into the bulk of the liquid. 

 
Annular Flow. As the gas velocity increases still further, it will result in the formation of a 

gas core with a thicker liquid film at the bottom of the pipe than at the top. The film may be 

continuous around the periphery of the duct. Alves also observed a spray or droplet flow 
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pattern where the majority of the flow was entrained in the gas core and is carried as dispersed 

droplets.  

 
Figure 5.1: Flow patterns in horizontal concurrent flow (after Collier, 1981) 

 
5.3.2 Flow patterns in vertical concurrent flow 
 
The sketches and photographs of the flow patterns encountered in vertical upwards concurrent 

flow are presented in Figure 5.2 and are described in the following paragraphs.  Note that the 

flow patterns in vertical pipes are more axisymmetric than flow patterns in horizontal pipes.      

 
Bubbly Flow. At small liquid velocities, the gas phase is distributed as small spherical 

bubbles within the continuous liquid phase. As the liquid rate flow increases the bubbles may 

grow forming large bubbles with spherical cap, which are normally small with respect to the 

pipe diameter.   

 
Slug Flow.  From bubbly flow, with a further increase in gas flow rate some of the small 

bubbles join to form larger gas bubbles with a characteristic bullet-shape. The bubbles have 

approximately the same diameter of the pipe except for a thin liquid film on the wall of the 
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conduit. The slugs of gas are separated by liquid that may contain a dispersion of small 

bubbles. The length of the slugs of gas can vary considerably, until several times the pipe 

diameter. These large gas bubbles or slugs are also called Taylor bubbles. 

 
Churn Flow. As the velocity of the two-phase mixture flowing in slug flow in a pipe is 

increased, the pattern will become instable due to the breakdown of the slugs of gas. The 

instability leads to a churning or oscillatory action, therefore the descriptive name churn flow. 

This pattern is also referred to as froth flow, semi-annular or slug-annular flow. However, 

some investigators use the more general term churn to cover the whole region.  

 
Wispy-annular Flow. Wispy annular flow has been identified as a distinct pattern by    

Hewitt et al. (1970) [32]. The flow in this region has a form of a relatively thin liquid layer on 

the wall of the pipe, while a considerable quantity of liquid is entrained in a central gas core. 

The liquid in the layer is aerated by small gas bubbles and the entrained liquid phase appears 

as large droplets that have agglomerated into long irregular filaments or wisps.   

 
Annular Flow. In annular flow a liquid layer flows on the wall of the pipe, surrounding a 

high velocity gas core. Large amplitude waves are usually presented on the surface of the 

liquid layer, the breakdown of the waves forms a source for droplet entrainment that occurs in 

varying amounts in the central gas core. In this pattern, the droplets are separated rather than 

agglomerated as in the wispy-annular flow. 

 
5.4 Air Entrainment in Hydraulic Structures  
 
Air entrainment is present in hydraulic structures such as siphons, pipelines, vertical 

dropshafts, weirs, etc. The process takes place when a supercritical water jet impacts on a 

body of water with a lower velocity. When the conduit is steeply inclined the process is 

described as impinging jet entrainment and in a slightly sloping conduit may be termed 

hydraulic jump entrainment, Ahmed A. A. et al. (1984) [1].  

 
The process of air entrainment in closed conduits by a hydraulic jump is herein considered to 

compute the air void fraction α and the ratio air flow to water flow β, required to simulate the 

hydraulic transients with air pockets located at high points of the line and a mixture water-air 

flow generated by the entrained air by the jump at the end of the pocket. It is considered that 

the air downstream of the jump returns as predicted by equation (2.6). 
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Figure 5.2: Flow patterns in vertical concurrent flow (after Collier, 1981) 

 
5.4.1 Hydraulic jumps in water pipelines systems  
 
From pipeline designers’ point of view, water-air flows in closed conduits can be divided in 

four general categories. Each category may present only one or a combination of the flow 

patterns described previously. These categories are (Falvey 1980 [20]):  

 
• Flow in partially filled conduits 

• Flow having a hydraulic jump that fills the conduit 

• Flow from control devices 

• Falling water surfaces 

 
For the purpose of this work only the flow having a hydraulic jump that fills the conduit is 

considered. Two-phase water-air flow in which the transition from supercritical flow to 

pressurized conduit flow occurs by a hydraulic jump has been investigated by Lane and 

Kindsvater (1938) [45], Kalinske and Robertson (1943) [38], Fasso (1955) [21], Cohen de 

Lara (1955) [12], Haindl (1957) [30], Rajaratnam (1965) [61], Ahmed et al. (1984) [1], 

Matsushita (1989) [54], and Smith and Chen (1989) [71] and many others. 
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One of the most recent investigations related with hydraulic jumps in circular pipes was 

carried out by Stahl and Hager (1999) [72]. They studied the main characteristics of these 

jumps in Plexiglas pipes of internal diameter of 240 mm and 6 m in length. The free surface 

flow and the hydraulic jumps were simulated at atmospheric pressure at the test section of the 

physical model.   

 
During the investigation developed in the laboratory of the Institute of Engineering at the 

University of Mexico (UNAM), and described in Chapter 3, it was stated that the large air 

pockets subjected to pressurized flow conditions ended with a hydraulic jump that sealed the 

pipe. The main flow features of these jumps were measured and are compared with those 

jumps studied by Stahl and Hager (1999) [72]. They classified the types and appearances of 

hydraulic jumps in function of the filling ratio y1/D and the Froude number F1 upstream of the 

jump, where y1 is the upstream depth and D is the pipe diameter. 

 
For F1 > 2, two types of hydraulic jumps were observed in circular pipes: 

 
• For a filling ratio y1/D > 1/3 and F1 = 2.3, a direct hydraulic jump took place, its 

appearance is similar to the classical jump with a surface roller, straight front, bottom 

forward flow zone and width almost constant along the jump, see Figures 5.3 and 5.4.  

 
• For a filling ratio y1/D < 1/3 and F1 = 4.1, a hydraulic jump with a flow recirculation 

occurred. The width along the jump increased and lateral wings formed at the 

beginning of the jump, as is shown in Figure 5.6 a) and b). It is noticed in Figure 5.6 a) 

that the forward flow concentrates axially as a superficial jet, but it is not apparent in 

Figure 5.6 b) and also the lateral recirculation with the characteristic wedge-shape is 

weak. Probably the differences are due to the scales used for both experimental 

investigations and other factors.  

 
a) 
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b) 

Figure 5.3: Profile of a direct hydraulic jump: a) (after Stahl and Hager, 1999), b) 
picture of the author.  
 
 

 
a) 
 

 
b) 
 

Figure 5.4: Plan of a direct hydraulic jump: a) (after Stahl and Hager, 1999), b) picture 
of the author  
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• For a filling ratio y1/D < 1/3 and F1 = 4.1, a hydraulic jump with a flow recirculation 

occurred. The width along the jump increased and lateral wings formed at the 

beginning of the jump, as is shown in Figure 5.6 a) and b). It is noticed in Figure 5.6 a) 

that the forward flow concentrates axially as a superficial jet, but it is not apparent in 

Figure 5.6 b) and also the lateral recirculation with the characteristic wedge-shape is 

weak. Probably the differences are due to the scales used for both experimental 

investigations and other factors.  

 

 
a) 
 

 
b) 
 

Figure 5.5: Profile of a hydraulic jump with flow recirculation: a) (after Stahl and 
Hager, 1999), b) picture of the author  
 

 
a) 
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b) 

 
Figure 5.6: Plan of a hydraulic jump with flow recirculation: a) (after Stahl and Hager, 
1999), b) picture of the author  

 
Figure 5.7 presents a set of pictures that highlight the large quantity of air that a hydraulic 

jump may entrain. 

 
 

 
a) 
 

 
b) 
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c) 

 
Figure 5.7: Hydraulic jump with a transition to pressurized conduit flow (after Stahl 
and Hager, 1999): a) profile view, b) plan view, c) side view 
 
The Froude numbers obtained during the experiments described in chapter 3 (1.7 < F1 < 4.7, 

F1 = 1.35 and F1 = 7.34) are in the range of the Froude numbers achieved by Stahl and Hager. 

 
5.5 Air entrainment mechanisms  
 
Ervin (1998) [16] investigated the air entrainment in closed conduits and stated that there are 

at least three mechanisms of air entrainment at the plunge or entrainment point, which can be 

listed as follows: 

 
First mechanism. The first mechanism regarding air entrainment in the absence of surface 

disturbances is presented in Figure 5.8. A smooth jet may drag a thin air boundary layer. 

Likewise, the air may be able to enter the slower moving body of water when a gap is formed 

between the recirculating flow and the jet.  

 
Second mechanism. It is related with the role of surface disturbances of the upstream jet on 

the aeration process. Surface disturbances can take place due to different phenomena, such as 

turbulent eddies reaching the free surface, longitudinal vorticity, instabilities, as well as shock 

waves. It has been proposed that the amount of entrained air can be represented by a shaded 

area as shown in Figure 5.9. The size of the surface disturbances can be related to the velocity 

head. The simplicity of this argument was confirmed by dimensional analysis, but it is 

required to be validated with experimental investigation. 



 131 

 

 
Figure 5.8: Aeration due to air boundary layer 

 
   
 

 
Figure 5.9: Aeration due to surface disturbances in an upstream jet 

 
 
 
Third mechanism. This is a free surface aeration mechanism that contributes to the overall 

aeration rate. At high velocities, free surface aeration can be present in the upstream jet. It can 

also arise due to the turbulence on the surface of the receiving body of water as is commonly 

observed in hydraulic jumps, which gives rise to air entrainment through the free surface over 

the part of the length d. The sketch in Figure 5.10 shows the details of the mechanism of air 

entrainment.  
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d length of the free surface of the receiving body of water [m] 

 
Figure 5.10: Free surface aeration in a shear layer 

 
It can be seen that the development of a relationship for the entrainment or plunge point 

aeration is not possible, because at least three different mechanisms of air entrainment exist. 

 
5.6 Transport of air bubbles in downward sloping pipes  
 
The discussion so far has focused on the air entrainment process at the plunge point in 

hydraulic structures. Just as significant is the air bubble transport process downstream of the 

plunge point. When air is entrained at the plunge point it is then either detrained or 

transported downstream, as sketched in Figure 5.11.  

 

 
Figure 5.11: Air entrained by a supercritical jet in a closed conduit 

 
Experimental and theoretical investigations have been conducted to study the ability of the 

vortices in the shear layer to trap air bubbles in their vortex cores and convey them long 

distances along the conduit beyond that expected from the average velocity field. During 
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these investigations also the main forces acting on air bubbles downstream of the entrainment 

point have been identified. These are drag, buoyant, inertia and the lift force due to the shear 

layer velocity. In addition, dimensional numbers have been developed to characterize the air 

bubbles behavior in the shear layer, Thomas et al. (1983) [76] and Sene at al. (1994) [67].          

 
5.7 Quantity of air transported in downward sloping pipes 
 
Ervin (1998) [16] stated that the quantity of air transported along a closed conduit depends not 

only on the rate of air entrainment at the plunge point, but also on the flow conditions 

downstream of the shear layer, as well as on the pipe slope. If flow conditions have exceeded 

the threshold of air bubbles transport, then the single most important parameter affecting 

transport is the length of the pipe downstream of the entrainment point, as demonstrated in 

Figure 5.12. Experimental investigations have shown that there exist broadly three different 

conduit lengths that affect the net rate of air transport.     

 
Short conduits. Short conduits have a length to the conduit diameter ratio (L/D) less than 5. 

In these conduits all the air entrained at the plunge point is transported downstream and 

removed from the pipe. Figure 5.12 a) shows the phenomenon. Once air is entrained at the 

plunge point and trapped in the shear layer vortices, air bubbles reaching the reattachment 

point L/D > 4, can then be transported out of the line. In this case the net air transport rate is 

equal to the entrainment rate.   

 
Intermediate conduits. Intermediate closed conduits have a ratio 5 < L/D < 20. This length is 

sufficient to transport air bubbles that rise to the conduit roof due to their buoyancy force. 

Some of the bubbles coalesce, forming small air pockets at the conduit roof. In this case the 

flow regime presented is a mixture of air bubbles and small air pockets that may reach the exit 

of the conduit, as shown in Figure 5.12 b).  

   
Long conduits. Long conduits have ratio L/D greater than 20. In this third category, the 

coalescence of air bubbles produces the formation of distinct air pockets at the conduit roof, 

and will only be removed along the downward sloping pipe when the flow has the capacity to 

transport or exhaust large air pockets downstream of the conduit. If the flow does not have 

this capacity then air pockets grow in size and eventually blowback upstream through the 

jump towards the large air, see Figure 5.12 c).   
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                      a)                                                   b)                                                    c) 
 
Figure 5.12: Air transported in downward sloping pipes in function of the length and 
conduit diameter (L/D)  
 
5.8 Relationships to compute air entrainment in hydraulic structures 
   
Consider an air pocket that ends in a hydraulic jump at the downward sloping pipe. The 

turbulence action at the jump generates small air bubbles. The air entry will depend on 

different variables, as the upstream Froude number of the jet Kalinske and Robertson (1943) 

[38], jet velocity Kenn and Zanker (1967) [39], the recirculating vortex Goldring et. al. 

(1980) [28], the surface roughness of the jet Ervin and Mckeogh (1980) [17], and other 

factors. The air entrainment will be transported along the pipe in form of small bubbles, part 

of the bubbles join and form larger bubbles that travel on the upper half of the pipe. A portion 

of the air bubbles will return upstream. This phenomenon is named detrainment or 

recirculation. 

 
Some factors that influence the detrainment may be summarized as follows                    

(Ahmed et al. 1984 [1]): 

 
• The slope of the pipe that influences the balance between the buoyant and drag forces on 

an air bubble. 

• The effective air bubble rise velocity in a turbulent shear field. 

• The velocity of the jet when impacting on a slower moving body of water, the angle of     

spread of shear layer, and the velocities or turbulence intensity generated in the vortex 

cores. 
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• The value of the water outlet velocity in the pipe downstream of the hydraulic jump.  

 
 Ahmed et al. (1984) [1], supported on hydraulic model research, stated that air transport as a 

water-air mixture will have a maximum air void fraction α of 42%. The void fraction is given 

by:  

                 
β

βα
+

=
1

   [-]                  (5.1) 

 
α   air void fraction [-] 
β   ratio of air flow to water flow [-] 
 

                    
w

a

Q
Q

=β    [-]                   (5.2) 

where  
 
Qa   air flow rate [m3/s] 
Qw  water flow rate [m3/s] 
 
The two variables presented in equations 5.1 and 5.2 are later used to compute the              

two-component fluid transients in a pumping pipeline system, produced by the shutdown of 

the units in a pumping station. 

 
The values of air entrainment by the hydraulic jump can be estimated from the empirical 

relationship proposed by Kalinske and Robertson (1943) [38].   

             
                4.1

1 )1(0066.0 −= Fβ    [-]             (5.3) 
 

F1  Froude number upstream of the jump [-]  
 
The previous relationship is only valid if all the air entrained by the jump is carried out of the 

water line.   

 
Wisner (1965) [86] conducted experiments for higher velocity flows for hydraulic jumps in a 

rectangular conduit and obtained the following equation  

 
                   4.1

1 )1(014.0 −= Fβ    [-]              (5.4) 
 

After their experiments the U.S. Corps of Engineers [79] found an upper envelop for air 

entrainment in hydraulic jumps in closed conduits, which can be written in the form  

  
                   06.1

1 )1(03.0 −= Fβ    [-]               (5.5) 
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The disadvantage of the relationships above presented is that these do not consider the scale 

effects.   

 
A relationship regarding air entrainment in model siphons was produced by Thomas (1982) 

[75], the parenthesis to the power of three is a factor that allows scale effects. 

 

               
3

1

2
1

8.0101.0 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

v
Fβ    [-]               (5.6) 

 
1v   water velocity upstream of the jump [m/s]  

 

Recently, Escarameia et al. (2005) [18] investigated the rate of expulsion of air through a 

hydraulic jump in circular pipes and provided a relationship to estimate the rate of air 

entrained by the jump with the following equation. 

  
              8.1

1 )1(0025.0 −= Fβ    [-]        (5.7) 
 
Supported on several tests, Ahmed et al. (1984) [1] proposed a relationship for air bubbles 

transport that includes a term dependent of the scale, useful for the comparison between 

model and prototype air-water ratios. 
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jetv  supercritical jet velocity [m/s] 

0v    outlet water velocity [m/s] 
*
0v    critical outlet velocity to transport air [m/s] 

brv  bubble rise velocity [m/s] 
 
The influence of the scale factor is only significant for values of *

00 vv −  lower than 0.25 m/s, 

corresponding to values of 1/)( *
00 <− brvvv . Therefore the terms within the square brackets can 

be considered as unity. Therefore, equation (5.8) can be written as 

 
                  85.0

1 )1(04.0 −= Fβ    [-]           (5.9) 
 

This relationship is used to calculate the air void fraction α in the numerical model 

implemented to simulate the two-component fluid transients, because it is supported on a 

three-year testing programme. A total of 2250 test runs had been made in closed conduits 
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sloping from horizontal to vertical. Likewise, the relationship includes the scale effects arising 

during the air entrainment process.   

 
5.9 Variation of wave speed in water-air mixtures 
 
It is well known that small quantities of free air in the form of bubbles in liquids cause the 

wave propagation speed to be decreased substantially from that in the pure liquid itself, 

Giesecke and Mosonyi (2005) [27]. The effect of gas concentration in a bubbly mixture has 

been investigated in laboratory, Silberman (1957) [70]. Numerous researchers have measured 

the wave celerity in two-phase and two-component flow. Many of the tests were 

conducted in the bubbly-flow regime. The values obtained by Kobori et al. (1955) [41] 

are representative for homogeneous flow wave propagation speeds. Pearsall (1965) [57] 

found by measurements in two sewage pumping pipelines that the wave celerity can be 

reduced by as much as 86 percent as a result of gas content. 

   
Knowledge of the wave propagation speed for other flow patterns such as plug, annular, or 

slug is not as complete. Except for the formation and propagation of shock waves in a bubbly 

mixture in short vertical columns there have been relatively few studies performed on the 

effect of the presence of gas bubbles on pressure surge. For longer conduits in which the 

pressure and void fraction varies along the pipe as a result of boundary friction and elevation 

change, a simple knowledge of acoustic wave speed is inadequate for the prediction of the 

peak pressure caused by a transient. 

 
The theoretical wave propagation speed or acoustic velocity of a pressure wave in a   

two-phase mixture under the associated assumptions of homogeneous flow and no 

relative motion or slip between the phases can be written as, Martin et al. (1976) [53]: 
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amix  velocity of the pressure wave in a water-air mixture [m/s] 
α     void fraction [-] 
ρ     water density [kgs2/m4] 
E     Young’s modulus of elasticity of the pipe material [kg/m2] 
Ew   modulus of elasticity of water [kg/m2] 
Ea   modulus of elasticity of air [kg/m2] 
µ     pipe constraint factor [-] 
e     pipe wall thickness [m] 
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The term D/Ee can be important in single-phase liquid flow or in two-component flow. For 

moderate to low values of α the pipe wall elasticity effect is minimal. The effect of the 

gaseous component is represented by two quantities, the air void fraction α and the 

pressure, as represented by the bulk modulus of elasticity of the gas aE . It has been found 

by Martin (1976) [50], and by Martin and Padmanabhan (1979) [52] that the no-slip 

homogeneous model is quite effective even in the slug-flow regime. 

  
Equation (5.10) will be utilized to evaluate the wave propagation speed in the water-air 

mixture during the fluid transients. 

 
5.10 Models for analyzing hydraulic transients with water–air mixture 
 
A great effort has been done in performing computational programs to simulate transient  

two-phase flow in pipelines. The nuclear industry is the pioneer in the development of these 

computer codes to analyze the possible occurrence of accidents in nuclear reactors. Some of 

the codes have been modified by the oil and gas industry to study the transients in oil 

pipelines. Programming the equations of continuity, momentum and energy for the two fluids 

lead to codes of thousands of lines that require a lot of time to be developed and are very 

complex to use, because the equations are merely more numerous and complicated than those 

for single-phase flow. 

 
The differences among the flow patterns presented above suggest that the development 

of a universal two-phase analytical model is rather remote. As a matter of fact, phase 

interaction, the relative velocity between the fluids and momentum, mass and heat 

transfer can have an important effect on one regime than another. Even though the most 

adequate model may vary depending on the flow pattern investigated, for flow in long 

pipelines the assumption of one-dimensionality is usually quite successful. Likewise, 

the most extensively utilized methods of analysis are the homogeneous model, the 

separated-flow model, and the drift-flux model. 

 
These analytical models are defined by Wallis (1969) [82] as follows: 

 
5.10.1 Homogeneous flow model  

 
The homogeneous model is the simplest method of analysis for studying two-phase or  

two-component flow. Convenient average properties have to be determined and the mixture 
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is treated as a pseudofluid that follows the common equations of single-component flow. 

Therefore, all the standard methods of fluid mechanics can then be applied. The average 

properties required are the velocity, transport properties (e.g., viscosity) and 

thermodynamic properties (e.g., temperature and density). These pseudo properties are 

weighted averages and are not necessarily the same as the properties of either fluid. The 

method to determine suitable properties often begins with the more complex relationships 

and rearranges them until they resemble equivalent equations of single-phase flow.         

 
5.10.2 Separated-flow model  

 
The separated-flow model considers that the two phases can have varying properties and 

different velocities. It may be developed with various degrees of complexity. In the most 

sophisticated formulation, the model will necessitate six equations to represent the 

conservation of mass, momentum, and energy of each of the phases. These equations are 

solved simultaneously, together with rate equations that describe the interaction between 

the phases and with the walls of the pipe. In the simplest version of the model only the 

velocity is allowed to differ from the two phases as the equations of conservation are only 

written for the combined flow. When the number of equations is exceeded in number by 

the variables to be determined, correlations or simplifying assumptions are introduced.     

 
5.10.3 Drift-flux model  

 
The drift-flux model is basically a separated-flow model in which the attention is 

concentrated on the relative motion rather than the motion of the two phases individually. 

This model is particularly remarkable, as the effects of velocity and concentration profiles 

can be included. However, since several empirical relationships are an essential part of the 

drift-flux model, it may not have a general applicability for an ample range of problems.  

 
The advantages and disadvantages of the above models depend on the causes of the 

transient two-phase flow. In some transient and steady flows, the gravitational and inertial 

effects can have an important influence, therefore the relative velocity between the     

two-phases should be taken into account.  

 
5.11 Homogeneous flow model equations 

 
A one dimensional homogeneous model is used to study the fluid transients considering a 

water-air-mixture. The constitutive equations – conservation of the gas mass, of the liquid 
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mass, and the mixture momentum – yield a set of differential equations that will be solved by 

the method of characteristics. 

 
For the homogeneous model presented herein the two phases or components (water-air 

bubbly mixture) are treated as a single pseudofluid with average properties. As explained 

by Martin et al. (1976) [53] and later in Wiggert and Sundquist (1979) [85], it is assumed 

that there is no relative motion or slip between the components in the development of the 

mass conservation equation for each phase, as well as for the momentum equation for the 

mixture. In the same way to the compressibility of the gas, the liquid compressibility and the 

pipe wall elasticity are included in the system of equations. The equation of energy is not 

used due to the moderate change in temperature of the mixture during the transient. 

 
The following assumptions are used with regard to the homogenous model: 

 
a)  The water-air mixture is a homogenous two-component bubbly flow. Although the 

growing bubbles may join, for the most part they remain uniformly distributed in a 

continuous liquid phase along the pipe. 

      b)  The difference in pressure across the air bubble surface is neglected. 

c)  The momentum interchange between the air and water components is ignored; then for 

momentum considerations, the air bubbles and water possess the same velocity. 

d)  The momentum of the air component relative to the liquid is small and hence can be 

neglected.  

e)  The average cross-sectional representation of air void fraction, water-air mixture 

velocity, and component densities can be employed.  

f)  No gas release and absorption takes place during the transients. 

g) The circulation region also called net air transport does not extend beyond the end of 

downward sloping pipe section, as equation 2.6 predicted, see Figure 5.11 and Table 4.2, 

respectively.  

 
The following mathematical development is mainly based on the two above references.       

By using a control-volume approach, Yadigaroglu and Leahy (1976) [90], the conservation 

of mass can be developed for each phase. This formulation is not strictly speaking a 

separated flow model because it is assumed that there is not relative motion between the 

fluids. Therefore, the continuity equation for the gas phase is written as: 
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α   void fraction [-] 
ρa  air density [kgs2/m4] 
Γ   gas production rate per unit volume [kg/m3/s] 
A  pipe cross sectional area [m2] 
va  average air velocity [m/s]  
t   time [s] 
x  axial distance along the pipe [m]  
 
For the liquid phase the continuity equation is given by   
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ρ  liquid density [kgs2/m4]  
 
v  water velocity in the pipe, which has been assumed equal to the gas phase velocity [m/s] 
 
Neglecting the contribution of the gas phase, the mixture momentum balance can be 

formulated from a control-volume as 
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p    average pressure at the particular cross section [kg/m2] 
vm = va = v  mixture velocity [m/s] 
D   pipe diameter [m] 
τo  boundary shear stress [kg/m2] 
θ   angle of pipe inclination from the horizontal [ ° ] 
 
The boundary shear stress is based on the definition of the Darcy-Weisbach resistance 

coefficient λ: 

         mmo vvραλτ )1(
8

−=    [kg/m2]        (5.14) 

   
λ  Darcy – Weisbach friction factor [-] 
 
The mixture density is 
 

            am αρραρ +−= )1(   [kgs2/m4]         (5.15) 
   

ρ  water density [kgs2/m4] 
 
and can be approximated by ραρ )1( −=m  for most of the gas-liquid mixtures.  
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The above equations can be expressed in characteristic form for application of the method of 

characteristics. By introducing the elastic properties of air, water and pipe material, the 

equations (5.11 to 5.13) can be presented in the form: 
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                                         mm vv
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Gas release is not considered for the computations (Γ = 0), therefore ζ1  = ζ 2 = 0. 

 
E     Young’s modulus of elasticity of the pipe material [kg/m2] 
Ew   modulus of elasticity of water [kg/m2] 
Ea   modulus of elasticity of air [kg/m2] 
µ     pipe constraint factor [-] 
e      pipe wall thickness [m] 
ϕ1,ϕ 2,ϕ 3  terms in the characteristic equations  
ζ1,ζ 2,ζ 3   terms in the characteristic equations  
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In equation (5.24) a steady frictional factor of Darcy-Weisbach is assumed.                       

Shuy and Aplet (1983) [69], Fok (1987) [22] and Lee (1991) [48] have shown that the 

utilization of a steady friction factor or an unsteady friction factor will not achieve 

significantly different results.   

 
Equations (5.16) to (5.24) form a base from which a numerical solution can proceed. The 

dependent variables are p = pressure, vm = mixture velocity and α = air void fraction. The 

terms ϕ and ζ account for the gas release, elastic properties of the fluids and pipe, and force 

terms. The compatibility and characteristic relations derived from equations (5.16) to (5.18) 

are  

          0
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mixmix a

dt
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dp ∓           (5.25) 

 
valid along the C(+) and C(-) characteristics lines  

 

                  mmix va
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±=                           (5.26) 

 
For the third characteristic  
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dp αϕ                         (5.27) 

 
the compatibility equation or pathline C is 
 

                       mv
dt
dx

=                               (5.28) 

 
The relationship (5.25) relates to the propagation of pressure waves along the characteristic 

lines in the x-t plane defined by the relationship (5.26). On the other side, equation (5.27) 

establishes the variation of the air void fraction α along the pathline characteristic, 

represented by equation (5.28). The three compatibility equations can be integrated, each 

along its respective characteristic to yield a simultaneous solution for p, vm and α. The 

characteristic lines are illustrated in Figure 5.13. It is also convenient to develop equation 

(5.25) with the water flow rate Q and the head H as dependent variables, that yields  
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In which Cmix = ρmg and A is the total cross section area of the pipe.  

For the situation in which no gas is released from the liquid, equation (5.29) can be used in 

conjunction with equation (5.10) to predict the fluid transients, considering air pockets located 

at the intermediate and high points of the pipeline and a water-air mixture immediately 

downstream of them. The equations (5.30) to (5.37) of the numerical process of 

characteristics derived from equation (5.29) are the same as equations (4.4) to (4.11) with 

different wave celerity. 

                  1,1, 3)( ++
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∆t   time step [s] 
A    total cross section area of the pipe [m2] 
amix  velocity of the pressure wave in a water-air mixture [m/s] 

 
Figure 5.13: Characteristic lines in the x-t plane 
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5.12 Summary of the computation steps and procedure of calculation 
 
The flowchart of Figure 5.14 shows the computational steps for determining the transient 

condition in a pumping pipeline system with air pockets located at their high points and a 

water-air bubble mixture immediately downstream of them. The associated equations are 

presented in Table 5.1.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.14: Overview of the procedure of computation of hydraulic transients with air 
pockets and a water-air bubble mixture immediately downstream of the pockets 
 

Inputs and boundary conditions: 

- Pipeline profile  
- Fluid properties ( ρ, ν) 
- Features of the pipe sections (NL, D, λ, a)  
- Range of the water flow rates (

iwQ , … , 
nwQ ) 

- Boundary conditions (NP,NAP,ET) 
- Pump characteristics 

/1/ Identification of the high points at the 
pipeline that are likely to accumulate air  

Are there points likely 
to accumulate air? 

/2/ Determination of the flow profiles

Yes

/3/ Computation of the volume of air 
and air void fraction 

/4/ Simulation of the hydraulic transients  
with air pockets and a water-air mixture 
located immediately downstream of them 
with the pockets located at the high points 
of the pumping pipeline   

No

Simulation of the hydraulic transients 
without considering entrained air 



 146 

Current No. according to Fig. 5.14 Associated equations 
/1/                SgDQw =52 /  /Air behavior             (2.6) 
/2/  

   
fSS

EEx
−
−

=∆
0

12 / Dynamic equation of the         (3.4) 

                            gradually varied flow 
 
 

/3/         V / Volume of air                          (3.7) 
 

/4/    
iUV / Volume of air at  the beginning             (4.3) 

             of the time step 
 
   mixa / wave celerity of a pressure               (5.10) 
            wave in a water-air mixture 
 

1, +niUQ / Water flow rate at the end of the  
             time step for 
 
         - upstream end of the air pocket               (4.4)  
         - upstream end of the water-air mixture  (5.30) 
 

1,1+iUQ / Water flow rate at the end of the 
             time step for 
               
    - downstream end of the air pocket                (4.5)  
    - downstream end of the water-air mixture   (5.31)            
 

1, +niUH / Piezometric head at the end of the 
              time step for    
  
         - upstream end of the air pocket               (4.12)  
         - upstream end of the water-air mixture  (5.30)      
 

1,1+iUH / Piezometric head at the upstream         (5.31)      
             end of the water-air mixture at  
             the end of the time step 
 

Table 5.1: Assignment of the equations to the computation steps represented in Figure 5.14 
 
5.13 Case Study 
 
In this section the same pumping pipeline system that has been presented in the chapter 4 is 

studied. The profile is sketched in Figure 4.3. The boundary condition at the upstream end is a 

pumping plant with four centrifugal pumps connected in parallel, Qw = 0.625 m3/s per unit, 

and at the downstream end a constant head tank.  

 
The numerical simulation of fluid transients caused by a sudden pump shutdown in two-

component flows has been developed. For this analysis the propagation of the pressure waves 

through a two-component water-air mixture were analytically investigated. It is assumed that 
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the air bubbles are entrained by the hydraulic jumps occurring at the end of the air pockets. 

The computations were performed with the numerical model implemented by using the 

homogeneous model equations. The transient pressures are simulated without surge 

suppression devices to demonstrate the potential effect of air pockets and the water-air 

mixture on hydraulic transients.  

The high points that are likely to accumulate air, when the pumping station operates with 3 

and 4 units identified by utilizing the equations (2.6) and (4.16) are summarized in Table 4.2. 

In addition, the relationships (3.7) and (5.1) were used to calculate the volumes of air in the 

pockets and the air void fraction downstream of them, respectively. The results are summed 

up in Tables 5.2 and 5.3. 

 

Qw = 1.875 [m3/s] 

Small volumes of air Intermediate volumes of air Large volumes of air 

V [m3] α [%] V [m3] α [%] V [m3] α [%] 

0.145 0.64 0.761 2.76 4.099 6.32 

0.448 0.61 1.235 2.55 5.244 5.66 

1.038 0.63 1.747 2.64 5.456 5.94 

0.142 0.69 0.856 2.99 3.449 7.13 

Table 5.2: Air pocket volumes and void fractions when 3 unit operate at the pumping   
 station 
 
Qw = 2.500 [m3/s] 

Small volumes of air Intermediate volumes of air Large volumes of air 

V [m3] α [%] V [m3] α [%] V [m3] α [%] 

0.164 0.66 0.948 3.98 3.143 7.04 

Table 5.3: Air pocket volumes and void fractions when 4 unit operate at the pumping   
 station 

The values of the variables to estimate the wave celerity amix in the water-air mixture, and the 

terms of the characteristic equations are listed subsequently: 

E   = 2.1 x 1010 [kg/m2]   (steel pipe) 
Ew = 2.14 x 108 [kg/m2] 
Ea  = 1.45 x 104 [kg/m2] 
µ   = 1 [-] 
e   = 0.0254 [m] 
ρ  = 101.8 [kgs2/m4] 
ρa = 0.123 [kgs2/m4] 
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5.14 Analysis of the results 
 
 
This section presents the results achieved with the numerical model developed for the 

treatment of flow transients in a two-phase homogenous water-air mixture. The envelopes of 

the maximum and minimum heads with and without air pockets obtained in the previous 

chapter are compared with those achieved with the same air pocket volumes located at the 

same high points, but in this case downstream of the pockets a water-air mixture occurs. 

Likewise, the effect of the water-air mixture on the maximum and minimum heads envelopes 

will be herein analyzed. The marked differences among the groups of results show the 

potential attenuation during the propagation of the transient pressure wave along the pipeline 

profile. The transient pressure is absorbed considerably by the water-air mixture and the air 

pockets. As stated in chapter 4, the envelopes are plotted by using the maximum and 

minimum heads achieved at each nodal point along the pipeline during the simulation time, 

independent at which time step were recorded. For the dimensioning of the wall thickness the 

envelope of the upper pressures is decisive. 

 
The essential effects of free air on fluid transients are well known. For example, if the air 

remains localized at a high point it usually behaves as an air cushion that absorbs the transient 

pressure waves, but also it can act as an unwanted nonlinear spring magnifying surge,    

Ewing (1980) [19]. If the air is uniformly distributed in form of small bubbles its effect is 

more difficult to predict. The most noticeable effect is a large drop in the waterhammer wave 

speed, even with a small mass of free air. The dampening of the pressure waves has an overall 

beneficial effect on the pipeline system. Ewing (1980) [19] stated that the damping occurs due 

to dispersion breaking down of the main wave surge into shorter wave length components, 

which are damped out more readily. Pearsall (1965) [57] found that in the presence of   

water-air mixtures, the most likely cause of the damping observed is due to the internal 

reflection of the wave celerity in bubbly water.  

 
The following figures show that there is a difference between the maximum and minimum 

heads envelopes, when a water-air mixture presents downstream of the air pockets, as well as 

those with only water. 
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5.14.1 Pumping station performing with 4 units (Qw = 2.5 m3/s) with an air pocket 
located at the intermediate high point 1 and a water-air mixture immediately 
downstream of it 
 
Figures 5.15 to 5.17 show the numerical comparisons of the calculated results from the 

simulations of fluid transients with an air pocket located at the intermediate high point 1 with 

and without a water-air mixture immediately downstream of it, as well as the envelopes of the 

maximum and minimum heads without air. The latter forms a good basis for comparison to 

assist in the judgment of degree of the dampening effect. From the graphs, it can be 

demonstrated that the distribution of the air void fraction greatly influence the pressure 

transient. Comparing Figures 5.15 to 5.17, it can be observed that the maximum and 

minimum heads decrease considerably throughout the pipeline profile with increasing the air 

void fraction α and the air pocket volume. 

 
From the computations obtained, it can be seen in Figure 5.15 that the worst scenario takes 

place when a water-air mixture occurs downstream of the smallest air pocket. For this specific 

situation this volume of air with its corresponding air void fraction (V = 0.164 m3,                  

α = 0.66 %) can be called critical, see Table 5.3. It is observed that the maximum head 

envelope obtained with this pocket and the water-air mixture is slightly greater than that 

computed without water-air mixture. The enhancement is produced immediately downstream 

of the pumps discharge and near the downstream end boundary. Ngoh and Lee (1998) [56] 

found that the transient pressure varies with the void fraction α and is sometimes above that 

predicted without considering air. They suggest that this effect is produced by the expansion 

and contraction processes of the air bubbles. In the same way, it is observed that the minimum 

head achieved with a mixture immediately downstream of the pocket is lower than those 

obtained without mixture and no air accumulated. 
    
The results have shown that the air pocket volume (V = 0.948 m3, α = 3.98 %) located at the 

point 1, see Figure 5.16, only partially absorbed the pressure transient even with the presence 

of the water-air mixture. The pocket generated a reflection of the maximum pressure 

transients towards the downstream end boundary and an enhancement at the discharges of the 

pumps. However, the air pocket and water-air mixture produced an important dampening 

effect along the pipeline and the computed values of the maximum head are lower compared 

with those predicted under the assumption of no air accumulated in the line. Therefore, the 

volume of air (V = 0.948 m3) cannot be named critical in this specific case. On the other side, 

it can be said that the pressure transients generated by this air pocket volume with a water-air 
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mixture downstream of it, may have a detrimental effect within the pipeline, mainly close to 

the pumps and from the point 1 towards the constant head tank. 

 
It has been demonstrated that the presence of the largest air pocket with a water-air mixture 

immediately downstream of it (V = 3.143 m3, α = 7.04 %) acts as an effective accumulator 

and suppresses the pressure transients, when four pumps are shutdown at the pumping station, 

as can be seen in Figure 5.17. It is important to highlight that with the occurrence of the 

water-air mixture the maximum head envelope has a lower value than that obtained without 

air; on the other side the wave reflection is marginal. Therefore, it can be stated that this large 

air pocket volume and the water-air mixture in this location have a beneficial effect on this 

pipeline configuration by lowering significantly the transient pressures. 

 
In all the simulations performed with an air pocket located at point 1 and a water-air mixture 

immediately downstream of it, the minimum pressure along the pipeline profile was never 

less than the minimum head envelope without air. Likewise, it has been observed that the 

maximum and minimum head envelopes have similar shapes compared with single-phase 

water flow and are symmetric with respect to the static head. In the same way, the shapes of 

the maximum and minimum head envelopes are roughly the same, independent of the value of 

the air pocket volume and air void fraction, as illustrated in Figure 5.18. 
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5.14.2 Pumping station performing with 3 units (Qw = 1.875 m3/s) and 4 air pockets 
located at the high point 2 and intermediate points 1, 3 and 4 with a water-air mixture 
immediately downstream of the pockets 
 
From the results obtained and depicted in Figure 5.19, it is noticeable that the worst situation 

remains when the four smallest air pocket volumes are placed at the points found as likely to 

accumulate air. Even though a water-air mixture exists immediately downstream of each 

pocket, these are not enough to absorb the energy transient wave considerably. Likewise, the 

maximum head at the pump discharge is greater than that obtained without considering air 

accumulation at the pipeline. In addition, a slight reflection of the maximum head is generated 

by the air pockets located at the points 3 and 4 towards the downstream end boundary. 

 
It is observed in Figure 5.20 that when a water-air mixture occur downstream of the 

intermediate air pockets, the maximum and minimum head profiles are reduced significantly. 

It is important to point out that the reflection of the transient pressure waves almost disappears 

due to the presence of the water-air mixture, although a reflection is evident above the high 

points where the pockets are located and towards the downstream end boundary, but it seems 

not to be detrimental for the system. 

 

It is possible to suggest from Figure 5.21 that the largest air pocket volumes with a water-air 

mixture downstream of them contribute to reduce considerably the maximum and minimum 

head envelopes in the pumping pipeline system. It is important to highlight that the greatest 

and lowest values of the maximum and minimum envelopes occurred at the discharge side of 

the pumps. They are slightly the same, as those obtained without water-air mixture 

downstream of the pockets and under the assumption of no air accumulated. The cushioning 

effect produced by the large air volumes and the corresponding air void fractions on the 

maximum head is even more considerable than that compared without water-air mixture. In 

addition, a minor reflection is observed in both envelopes compared with that obtained 

without considering a water-air mixture downstream of the pockets. 
 
From the previous results, it can be said that the intermediate and large pockets with a     

water-air mixture downstream of them have an important effect by lowering the transient 

pressure. The dampening effect is more noticed on the maximum head envelopes. However, 

the simulation which includes small air pockets and water-air mixture presents an important 

exacerbation of the maximum head towards the upstream and downstream end boundaries.  
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As in the previous subsection, it is observed that the minimum head envelopes generated after 

the shutdown of 3 units at the pumping plant, when 4 air pockets are located at the high points 

of the line and with a water-air mixture immediately downstream of the pockets. These 

minima were never lower than those computed in the absence of air and with air pockets 

without a water-air mixture. Likewise, the results show that the shape of the maximum and 

minimum head envelopes obtained are slightly the same, when the air pockets with their 

corresponding water-air mixture are located at the high points 1 to 4. The value of the air void 

fraction and air pocket volumes, see Figure 5.22, are of no influence. 

 
To highlight the effect of the water-air mixture on pressure transients, a comparison between 

maximum and minimum head envelopes computed with air pockets located at the high points 

of the pumping pipeline with and without a water-air mixture immediately downstream of 

them was done. It can be seen in Figures 5.23 that the results obtained for the simulations with 

small air pockets and a water-air mixture immediately downstream of them, and the 

maximum and minimum head envelopes when intermediate air pockets without water-air 

mixture downstream of them are located at the high points, give similar values across the 

majority of the pipeline profile, except at the points where the intermediate air pockets are 

placed. In this case a pressure wave reflection between the pockets located at points 3 and 4 

and the downstream end boundary exists, due to the small air pockets and the water-air 

mixture were not enough to absorb the reflection. Likewise, the minimum head envelope 

achieved did not show a wave reflection.    

 
In Figure 5.24 are shown the pressure transient simulations with intermediate air pocket 

volumes and a water-air mixture immediately downstream of them and those with large air 

pockets and no water-air mixture. It can again be observed that there are marginal differences 

between the computations. The most notable difference in the two sets of results is the shape 

of maximum head reflection near the locations of the air pockets. On the other side, it can be 

stated that the two minimum head envelopes are very similar. 
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6. Conclusions and Recommendations  
 
6.1 Conclusions 
 
A numerical model based on the homogeneous model equations has been developed to 

investigate the effects of air pockets with a water-air mixture downstream of them on pressure 

transients in pumping pipeline systems. It is assumed that the air bubbles are entrained by the 

hydraulic jumps occurring at the end of the air pockets. The equations of the system are 

solved by the method of characteristics. Likewise, pressure transients two-phase flow with air 

pockets located at the high points of the line with and without a water-air mixture downstream 

of them were simulated. The main purpose was to analyze the influence of the air void 

fraction, size of the air pocket volumes, their locations and pipeline system configuration.  

 
The comparison of the maximum and minimum head envelopes with and without a water-air 

mixture downstream of the pockets highlighted the combined effects of both air pockets and 

water-air mixture on transient pressures. As it has been stated, the small and large air pockets 

can be defined in terms of their effects on fluid transients. For example, small air pockets can 

exacerbate the maximum peak pressure, even though a water-air mixture occurs immediately 

downstream of them. On the other side, large air pockets can behave as an energy 

accumulator that absorbs the transient wave in pipelines. Likewise, there are limits to the 

volumes of air, outside of which these effects do not occur. This implies that there is a critical 

air pocket volume for a particular pipeline configuration.   

 
A case study of a pumping pipeline system without surge suppression devices was simulated 

to demonstrate the potential detrimental and beneficial effects of air pockets with and without 

a water-air mixture downstream of them on hydraulic transients. The boundary condition at 

the upstream end is a pumping station with four units connected in parallel and at the 

downstream end a constant head tank. Only hydraulic transients generated by the sudden 

shutdown of the pumps are taken into account in this analysis. A series of numerical 

simulations has been developed to give guidance for prevention of the problems or else for the 

reduction of the risks of pipeline damage. Likewise, hydraulic model investigations were 

made to understand the behaviour of air pockets at the high points of pipelines and to compute 

the volume of air contained within the pockets.   
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6.1.1 Effect of air pockets with and without a water-air mixture on hydraulic transients  
 
From the computations obtained, it can be seen that the worst scenarios occurred either when 

a single small air pocket or multiple small air pocket volumes are located at the intermediate 

and high points of the pumping pipeline, and a water-air mixture occurs immediately 

downstream of the pockets, as is shown in Figures 5.15 and 5.19. It was found that although a 

water-air mixture occurs downstream of the small pockets, the maximum head enveloped can 

be slightly greater than that achieved without water-air mixture immediately downstream of 

the pockets. It was suggested that this effect is produced by the expansion and contraction 

processes of the air bubbles, see Figure 5.15.  

 
The results have shown that an air pocket located at a high point of the pipeline can give rise 

to the worst situation, when a water-air mixture does not exist immediately downstream of it, 

i.e. the air pocket volume is the critical value for this pipeline configuration. Nevertheless, 

when the bubbly mixture is considered together with the pocket in the computations, it was 

observed that the air pocket and the water-air mixture produced an important dampening 

effect along the pipeline, and the achieved values of the maximum head enveloped are even 

lower than those predicted under the assumption of no air accumulated in the pipeline, 

therefore in this case this air pocket volume cannot be called critical, see Figure 5.16.  

 
It has been demonstrated that the presence either of a single large air pocket or multiple large 

air pockets with a water-air mixture immediately downstream of them act as effective 

accumulators, suppressing the pressure transients, as can be seen in Figures 5.17 and 5.21. It 

is important to highlight that with the occurrence of the water-air mixture, the maximum head 

envelopes have lower values than those obtained without considering air; on the other side the 

wave reflection is marginal. Therefore, it can be stated that the large air pocket volumes with 

a water-air mixture have a beneficial effect for pipelines by lowering significantly the 

transient pressure.    

 
The results have shown that the transient pressures, as well as the wave reflections are 

significantly reduced by increasing the air pocket volume and the air void fraction. It has to be 

pointed out that the maximum head envelopes have a more significant reduction than the 

minimum head envelopes, when a water-air mixture occurs immediately downstream of the 

air pockets. 
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In all the simulations performed either with an air pocket or multiple air pockets located at the 

intermediate or high points of the pipeline and a water-air mixture immediately downstream 

of the pockets, the minimum head envelopes along the pipeline profile were never less than 

the minimum head envelopes without air. In the same way, it has been observed that the 

maximum and minimum head envelopes have similar shapes compared with single-phase 

water flow and are symmetric with respect to the static head. Likewise, the shapes of the 

maximum and minimum head envelopes are roughly the same, see Figures 5.18 and 5.22. It is 

independent of the values of the air pocket volumes and the air void fraction. 

 
6.1.2 Hydraulic model investigation 

 
Previous to this work, experimental investigation in laboratory was made. Two models were 

designed and constructed to analyze the behavior of stationary air pockets at intermediate and 

high points of gravity pipelines, as well as to analyze the air entrained by the hydraulic jump 

at the end of the pocket located in the downward sloping pipe section of the model. The main 

aim of the research was to validate the use of a proposed equation, which describes the 

movement of air bubbles and pockets downstream of the jump. Supported on this relation a 

computational algorithm was developed. From a comparison of the experimental measures 

with the results obtained with the program, it can be concluded that these agreed well. 

Likewise, the proposed relationship was used in this work to determine the location of the air 

pockets in pumping pipeline systems. The results obtained with the equation adjusted well 

with the predictions obtained from other investigators for the pipeline configuration analyzed 

in the case study.  

 
For the purpose of studying and observing the large air pockets located at high points in 

pipelines, experimental investigations were developed in laboratory. The research was carried 

out in a physical model with the main aim of measuring the volumes of air that form the 

pockets. The hydraulic model investigation was focused on large air pockets located at high 

points of pumping pipeline systems. 

 
During the measurements the water depths underneath the large air pocket at atmospheric 

pressure, as well as for pressurized conduit flow were recorded. The experimental results were 

compared with the analytical results obtained with the direct step method used in the analysis 

of gradually varied flow. The comparison of the air pockets profiles yield interesting results. 

The flow profile underneath the air pocket, as computed by the dynamic equation of the 
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gradually varied flow, shows excellent correlation with the flow profiles determined 

experimentally. 

 
The volumes of air of the pockets were calculated by using an equation based on the direct 

step method and were compared with the experimental results obtained in laboratory. The 

computed values are lower than the volumes of air measured in the experiments. Therefore, it 

can be stated that the volumes of air estimated with the variables obtained by using the direct 

step method increase the factor of safety in the pipeline design. This is because the author and 

other investigators have found that small air pockets located at intermediate and high points 

can enhance the magnitude of surge pressures experienced by a sudden or routine pump 

shutdown. It could have serious implications, if entrained air is not accounted for during the 

design of pumping pipeline systems. 

 
A photographic study was developed to reinforce the assumptions made in the numerical 

model for the simulation of pressure transients with air pockets and a water-air mixture 

downstream of them. The supercritical flow to pressurized conduit flow was explored, as well 

as the characteristics of the hydraulic jumps in circular pipes at atmospheric pressure and 

pressurized flow conditions. The observations indicated that the hydraulic jumps may entrain 

a considerable quantity of air into the water-air mixture. 

 
6.2 Recommendations  

 
6.2.1 Design and operation of pipelines 

 
Air accumulation in pipeline systems is both unintentional and unavoidable and cannot be 

always completely eliminated but understanding the ways how it enters a pipe helps the 

engineers to minimize its occurrence. Unfortunately, many engineers design under the 

assumption that pipelines flow full all the time and never part-full and this hypothesis may 

lead to critical problems, because the presence of entrained air was not taken into account 

during the design stage of pipelines. Therefore, the pipeline designer should have the 

knowledge to predict the worst case scenarios and in the case of a likely negative impact, 

modify the profile of the pipeline or suggest operational remediation measures to reduce an 

important detrimental effect. It is known that the simplest pipeline systems can suffer from air 

entrainment problems. Hence, all systems especially those with several slope changes have to 

be analyzed in detail for all flow conditions to locate the potential high and intermediate high 

points, where air may be accumulated. In addition, hydraulic transient analysis is usually 
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based on the assumption of no air accumulated in the pipeline system. That may explain the 

collapse or burst of the line that could not be predicted with a standard surge analysis. 

Likewise, when the profile of an existing pipeline is modified, due to the construction of an 

open channel, a highway or other civil structure, a new complete analysis of the water line has 

to be carried out. The summits in the pipeline that are susceptible to build up air have to be 

identified. If high points likely to accumulate air exist, a simulation of hydraulic transients has 

to be developed to intent to reduce the potential detrimental effect.   

 
During the analysis of hydraulic transients, the pipeline designer should take into account that 

all the water systems are dynamically different in terms of operation and pipeline 

configuration. It is also not possible to obtain a definitive answer in terms of the critical air 

pocket volume and its location. However, the results obtained during the simulations could 

serve to assist the designer to predict more accurately the critical conditions for various 

pipeline configurations. As a result of the progress of numerical methods, there has been a 

tendency to attempt the design of pipeline systems only by numerical simulations. However, 

experimental investigation would be recommended additionally as the ideal in order to 

develop a detailed and rigorous analysis of the effect of air pockets with and without water air 

mixture on pressure transients.  

 
It is recommended to the designers to incorporate the analysis of entrained air in pipelines as a 

matter of routine to be able to report the possible operational scenarios likely to give rise to 

severe pressure transients. Moreover, many pipeline designers can consider that the idea to 

develop numerical and experimental investigation would be extremely time consuming and 

costly. However, the cost of repairing the pipeline and the lawsuit against the system operator 

by the people and businesses affected due to a pipeline failure can rise to thousands or even 

millions of euros. 

 
The comprehensive method developed by the author for the identification and quantification 

of the volume of air entrained into the pumping pipeline systems, can be used by the pipeline 

designers to allow for the effects of air pockets with and without a water-air mixture 

immediately downstream of them on fluid transients, and its impact on the safety of pipeline 

operation. The procedure of computation is summarized in the flowcharts presented in  

chapter 4 and chapter 5. 

 

 



 168 

6.3 Suggestions for further studies 

 
6.3.1 Numerical and experimental investigation 

 
As it has been stated, a numerical model based on the homogeneous model equations has been 

developed to analyze the problem of transient two-phase flow. The method of characteristics 

was chosen to solve the system of equations, due to its simplicity, accuracy and numerical 

efficiency. However, additional work is required to implement more sophisticated methods 

and schemes to compare the results herein achieved and supporting the numerical model. 

Likewise, the numerical model proposed herein this work has not yet been verified 

experimentally, hence a hydraulic model research is needed to be developed to investigate the 

effects of air pockets with a water-air mixture downstream of them on pressure transients in 

pumping pipeline systems. 

 
Normally in the literature simple reservoir/pipe/valve arrangements are presented with low air 

void fractions α < 1 % and the pressure transients are induced by a quick valve closure, 

therefore experiments in more realistic and elaborated hydraulic models with upward and 

downward sloping pipe sections, should be carried out to simulate the transient response of air 

pockets with a flowing bubbly water-air mixture downstream of them subsequent to a 

shutdown of pumps.  

 
6.3.2 Structural safety  

 
The amplification of the maximum and minimum head, due to the reflection produced by the 

air pockets has to be considered during the design stage of the reservoirs or suctions tanks of 

the pumping plants. The pressures may give rise to cracks or to important fractures in the 

structure. In addition, the degree of the pressure transient waves enhancement experienced by 

the upstream end boundary should be taken into account for the selection and design of the 

check valves located at the discharges of the pumps.  

 
As previously highlighted, the transient pressures are simulated without surge suppression 

devices to demonstrate the potential effect of air pockets with and without water-air mixture 

downstream of them on hydraulic transients. In extreme cases the large pressure transients 

arising may be expected to have a potentially catastrophic effect. This numerical investigation 

can be used as guidance for the pipeline designers to minimize the effect of entrapped air on 

pressure transients. However, it is envisaged that further numerical and experimental 
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investigation can provide more specific guidelines. Therefore, the simulation of additional 

case studies is needed, incorporating in the numerical model to analyze the effect of 

suppressor devices as air vessels, surge tanks, air release and vacuum valves on pressure 

transients with entrapped air pockets with and without water-air mixture downstream of them.   
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