

An

Architectural Decision Modeling
Framework for Service-Oriented

Architecture Design

Von der Fakultät Informatik, Elektrotechnik und Informa-
tionstechnik der Universität Stuttgart zur Erlangung der
Würde eines Doktors der Naturwissenschaften (Dr. rer.

nat.) genehmigte Abhandlung

Vorgelegt von
Olaf Zimmermann

aus Salzgitter, wohnhaft in Zürich (Schweiz)

Hauptberichter: Prof. Dr. Frank Leymann
Mitberichter: Prof. Dr. Michael Papazoglou

Tag der mündlichen Prüfung: 17. März 2009

Institut für Architektur von Anwendungssystemen
der Universität Stuttgart

2009

Zusammenfassung

Die Nutzung von Informationstechnologie ist heutzutage für Unternehmen in na-
hezu allen Branchen unentbehrlich. Unternehmensanwendungen unterstützen die
Ausführung von Geschäftsprozessen und automatisieren diese teilweise. Die Ent-
wicklung und Integration qualitativ hochwertiger Unternehmensanwendungen, die
als geschichtete und verteilte Softwaresysteme charakterisiert werden können,
stellt eine große Herausforderung dar. In den letzen Jahren sind die Konzepte der
dienstorientierten Architektur (engl. Service-Oriented Architecture, SOA) zu ei-
nem wichtigen Architekturstil für die Entwicklung und Integration von Unterneh-
mensanwendungen herangereift. Aus Benutzersicht betont SOA die geschäftliche
Ausrichtung der in Software realisierten Dienste. Aus architektonischer Sicht stel-
len Modularität, loose Kopplung (d.h. Plattform-, Orts-, Protokoll-, und Format-
unabhängigkeit) sowie Schichtenbildung und Flussunabhängigkeit wichtige SOA-
Prinzipien dar. Zentrale SOA-Muster sind Dienstnehmer-Geber-Vertrag, unter-
nehmensweiter Dienstbus (engl. Enterprise Service Bus, ESB), Dienstkomposition
und Dienstverzeichnis.

Dienstnehmer und -geber sowie ESB- und Dienstkompositions-Infrastruktur
müssen zahlreiche nichtfunktionale Anforderungen (NFA) erfüllen. Viele NFA
betreffen Software-Qualitätsattribute in Bereichen wie Zuverlässigkeit, Benutzer-
freundlichkeit, Effizienz, Wartbarkeit, und Portierbarkeit. Andere NFA resultieren
aus unternehmensweiten Architekturrichtlinien und Limitationen von Altanwen-
dungen. Von anderen Architekturstilen bereits bekannte, aber auch neue Heraus-
forderungen sind zu meistern, wie zum Beispiel Schnittstellenvertragsgestaltung
und die gleichzeitige Versorgung vieler heterogener Dienstnehmer. Die resultie-
renden Entwurfsfragen sind nicht einfach zu beantworten; es werden daher
Entwurfsmethoden benötigt. Die heute existierenden Entwurfsmethoden stellen
viele Dienstidentifikations- und Dienstspezifikationstechniken zur Verfügung; sie
decken die Dienstrealisierung jedoch nur unzureichend ab. In der Praxis hat sich
gezeigt, dass zur erfolgreichen Realisierung von Diensten hoher Qualität und Ent-
wurfseleganz wesentlich mehr gehört als die Dienste in fachlichen Anforderungen
zu identifizieren, Web Services Description Language (WSDL)-Schnittstellen für
diese Dienste zu spezifizieren und WSDL-nach-Code-Generatoren aufzurufen:
Zahlreiche Architekturentscheidungen müssen getroffen werden.

Die Modellierung von Architekturentscheidungen ist ein aufkommendes Gebiet
in der Softwarearchitekturforschung. Im Unterschied zu anderen Notationen für
Softwarearchitekturen erfassen Architekturentscheidungsmodelle das Wissen, das
zu bestimmten Entwürfen führt und diese begründet (engl. Rationale). Architek-
turentscheidungen betreffen ein Softwaresystem als Ganzes oder die Kernkompo-

IV Zusammenfassung

nenten eines derartigen Systems. Architekturentscheidungen bestimmen die nicht-
funktionalen Eigenschaften eines Softwaresystems, zum Beispiel seine Qualitäts-
attribute. Jede Entscheidung behandelt ein konkretes Entwurfsproblem, für das ei-
ne oder mehrere Lösungsalternativen auszuwählen sind. Beispiele sind die Wahl
von Programmiersprachen und Werkzeugen sowie von Architekturmustern, Integ-
rationstechnologien und Middlewareprodukten.

Zwei Arten von Architekturentscheidungen, die im SOA-Entwurf erforderlich
sind, resultieren aus den oben aufgezählten SOA-Mustern: Eine Art von Architek-
turentscheidungen behandelt Dienstschnittstellenvertragsgestaltung inklusive der
Frage der Granularität (z.B. Struktur der ausgetauschten Nachrichten, Gruppie-
rung von Dienstoperationen). Eine andere Art von Architekturentscheidungen be-
trifft nichtfunktionale Aspekte der ESB-Integration und der Dienstkomposition
wie zum Beispiel Nachrichtenaustauschmuster und Systemtransaktionsgrenzen.

Durch die Vorauswahl des Architekturstils können Architekten von einem gro-
ßen Fundus an Architekturwissen profitieren. Dieses Wissen kann in zwei Berei-
che eingeteilt werden: Wissen, das zu der Definition der SOA-Prinzipien und
SOA-Muster geführt hat und Wissen, das in Projekten gesammelt wurde, welche
die Prinzipien und Muster zuvor angewendet haben. Beide Wissensbereiche beein-
flussen die Architekturentscheidungen, die in SOA-Projekten zu treffen sind.

Um Architekten durch den Architekturentscheidungsprozess zu führen, ist eine
SOA-Entwurfsmethode erforderlich. Der Entwurf einer derartigen Methode ist das
in dieser Arbeit gelöste Problem:

Wie kann das Fällen von Architekturentscheidungen während des SOA-
Entwurfs organisiert werden, ausgehend von funktionalen und nichtfunktionalen

Anforderungen und bereits gesammeltem Architekturwissen, das in Form von
SOA-Prinzipien und -Mustern dokumentiert ist?

Nach dem heutigen Stand der Technik werden Architekturentscheidungen ad
hoc und retrospektiv im aktuellen Projekt dokumentiert; dabei handelt es sich um
eine zeitintensive Aufgabe ohne unmittelbare positive Auswirkungen. Im Gegen-
satz dazu untersuchen wir die Rolle, die wieder verwendbare Architekturentschei-
dungsmodelle während des SOA-Entwurfs spielen können: Wir behandeln wie-
derkehrende Architekturentscheidungen als genuines Konzept in unserer Methode
und stellen ein Architekturentscheidungsmodellierungsrahmenwerk sowie ein
wieder verwendbares SOA-Entscheidungsmodell vor, das Architekten durch den
Entwurfprozess führt. Unsere Methode arbeitet werkzeuggestützt.

In unserem Rahmenwerk stellen wir eine Technik zur systematischen Identifi-
kation von wiederkehrenden Architekturentscheidungen zur Verfügung. Unser
SOA-Entscheidungsmodell ist nach einem Metamodell strukturiert, das Wieder-
verwendung und Zusammenarbeit unterstützt. Die Modellorganisation folgt den
Prinzipien der modellgetriebenen Architektur und separiert länger aktuell bleiben-
de plattformunabhängige Entscheidungen von sich häufig ändernden plattform-
spezifischen. Auf einer konzeptuellen Ebene werden SOA-Muster referenziert,
was die initiale Befüllung und laufende Pflege des Entscheidungsmodells erleich-
tert. Unser Entscheidungsabhängigkeitsmanagement hilft Architekten, die Mo-
dellkonsistenz zu prüfen und irrelevante Entscheidungen gar nicht erst zu betrach-

 Zusammenfassung V

ten. Eine verwaltete Entscheidungsliste (engl. Managed Issue List) führt durch den
Entscheidungsprozess. Um Entscheidungs- und Entwurfsmodelle abzugleichen,
werden Entscheidungsausgangsinformationen in Entwurfsmodelltransformationen
injiziert. Ein Web-basiertes Kollaborationssystem bietet Werkzeugunterstützung
für die Schritte und Konzepte im Rahmenwerk.

Einer der Anwendungsfälle für das Entscheidungsmodellierungsrahmenwerk
und das wieder verwendbare SOA-Entscheidungsmodell ist die Nutzung als Ent-
wurfsmethode; weitere Anwendungsfälle sind Ausbildung, Wissensaustausch, Re-
view-Technik und Steuerungsinstrument (engl. Governance Instrument).

Es folgt eine Zusammenfassung der einzelnen Kapitel.

Kapitel 1: Einleitung

In diesem Kapitel führen wir das Anwendungsgenre der Unternehmensanwendun-
gen sowie SOA-Entwurf als Kontext dieser Arbeit ein. Wir geben einen Überblick
über den Stand der Technik im Bereich SOA-Entwurfsmethoden und leiten sieben
Forschungsprobleme ab. Weiterhin geben wir einen Überblick über unsere Lö-
sung, die aus einem Rahmenwerk für die Modellierung von Architekturentschei-
dungen, einem wieder verwendbaren Architekturentscheidungsmodell für SOA
und Werkzeugunterstützung besteht. Die Kombination von Rahmenwerk und Mo-
dell ergibt die gesuchte entscheidungszentrische SOA-Entwurfsmethode.

Kapitel 2: Stand der Technik und Praxisrealität

In diesem Kapitel charakterisieren wir die Herausforderungen für die Konstrukti-
on von Unternehmensanwendungen und stellen SOA als Architekturstil für die
Entwicklung und Integration von Unternehmensanwendungen vor. Wir verwenden
Architekturprinzipien und -muster, um SOA zu definieren und präsentieren eine
motivierende Fallstudie. Wir zeigen den Stand der Technik in den Bereichen Me-
thoden für Software Engineering und Entwurf, Methoden für Softwarearchitektur-
entwurf, Methoden für Entwicklung und Integration von Unternehmensanwen-
dungen, Methoden für SOA-Entwurf sowie Architekturwissensmanagement auf
und stellen einige in der Praxis verwendete Werkzeuge vor.

Kapitel 3: Anforderungen an SOA-Entwurfsmethoden und
resultierende Forschungsprobleme

In diesem Kapitel etablieren wir zunächst einen Anforderungskatalog für Metho-
den, die den SOA-Entwurf unterstützen. Wir verdichten diesen in die für den Ent-
wurf einer entscheidungszentrischen Methode besonders relevanten Anforderun-

VI Zusammenfassung

gen und formulieren die Forschungsprobleme, die zu lösen sind, damit diese An-
forderungen erfüllt werden können. Abschließend verwenden wir Anforderungs-
katalog und Forschungsprobleme, um die Stärken und Schwächen der den heuti-
gen Stand der Technik repräsentierenden Methoden aus Kapitel 2 zu analysieren.

Kapitel 4: Ein Rahmenwerk zur Modellierung von
Architekturentscheidungen im SOA-Entwurf

In diesem Kapitel führen wir das Konzept eines wieder verwendbaren Architek-
turentscheidungsmodells (engl. Reusable Architectural Decision Model, RADM)
ein. Wir unterscheiden zu treffende Entscheidungen (engl. Issues) von bereits ge-
troffenen (engl. Outcomes). Wir definieren ein Rahmenwerk für die Modellierung
von SOA-Architekturentscheidungen (engl. SOA Decision Modeling, SOAD), das
aus sieben Schritten besteht:

1. Entscheidungen identifizieren.
2. Einzelne Entscheidungen modellieren.
3. Modell strukturieren.
4. Entscheidungen auch zeitlich ordnen.
5. Modell auf Projektbedürfnisse zuschneiden.
6. Entscheidungen treffen unter Verwendung eines Entscheidungsmodells

als Architekturentwurfsmethode.
7. Entscheidungen durchsetzen.

Wir erläutern wie sich das Rahmenwerk in den Software-Lebenszyklus integ-
riert und stellen eine Architektur für die Werkzeugunterstützung des Rahmenwer-
kes vor. Außerdem wenden wir das Rahmenwerk auf den SOA-Entwurf und die
motivierende Fallstudie aus Kapitel 2 an.

Kapitel 5: Umfang wieder verwendbarer
Architekturentscheidungsmodelle festlegen

Entscheidungen identifizieren. Wir stellen eine neuartige Technik für die Identi-
fikation von wieder verwendbarem Architekturentscheidungswissen in Architek-
turmustern als Schritt 1 im Rahmenwerk vor:

Welche Architekturentscheidungen kehren wieder im SOA-Entwurf?
Können solche Entscheidungen systematisch in Mustern identifiziert werden?

Die Technik arbeitet mit mehreren Typen von Entscheidungen:

1. Executive-Entscheidungen zur Projektdefinition und technischen Projekt-
ausrichtung sowie zur Anforderungsanalyse.

2. Entscheidungen zur Selektion und Adoption von konzeptuellen Mustern.

 Zusammenfassung VII

3. Technologieentscheidungen wie zum Beispiel Wahl von Containern, Pro-
tokollen, Betriebssystemen sowie Festlegung von technologiespezifi-
schen Nutzungsprofilen (engl. Technology Profiling).

4. Entscheidungen zur Auswahl und Konfiguration von Softwareprodukten.

Wir stellen Identifikationsregeln für diese Typen auf und führen einen Katalog
von architekturstilunabhängigen Meta-Entscheidungen als Technikelemente ein.

Kapitel 6: Befüllen wieder verwendbarer
Architekturentscheidungsmodelle

Einzelne Entscheidungen modellieren. Für Schritt 2 stellen wir ein Metamodell
für die Architekturentscheidungsmodellierung bereit. Es löst das folgende Prob-
lem:

Welche Informationen sind für jede zu treffende und wiederkehrende
Architekturentscheidung (engl. Issue) zu modellieren?

Aufgrund des Umfangs und der inhärenten Komplexität des Entscheidungswis-
sens hat eine Modellierung der Issues Vorteile gegenüber der Erfassung in struktu-
riertem oder unstrukturiertem Text. Es ist unerlässlich, ein einheitliches Format zu
definieren, um das Entscheidungswissen austauschbar und vergleichbar zu ma-
chen. Dazu erweitern wir existierende Arbeiten aus dem Bereich Architekturwis-
sensmanagement. Um die Entscheidungsmodelle wieder verwendbar zu machen,
modellieren wir den wiederkehrenden Entscheidungsbedarf, das Issue, getrennt
vom projektspezifischen Entscheidungsausgang, dem Outcome.

Modell strukturieren. Schritt 3 behandelt die Organisation eines in den vorheri-
gen beiden Schritten gewonnenen Modells:

Wie können Architekturentscheidungsmodelle in einer intuitiven, anwendungsfall-
getriebenen Art und Weise organisiert werden?

Architekturentscheidungsmodelle sind komplex: sie müssen nicht nur die Is-
sues detailliert beschreiben, sondern auch die logischen Beziehungen zwischen
den Issues. Eine Organisation nach Verfeinerungsebenen und Architekturschich-
ten stellt die Benutzbarkeit derartiger Modelle sicher. Weiterhin können mit dieser
Modellorganisation Entwurfsfehler aufgedeckt werden.

Entscheidungen auch zeitlich ordnen. Um Entscheidungsmodelle als Entwurfs-
methode nutzbar zu machen, klären wir im Schritt 4:

Wie können zeitliche Abhängigkeiten von Entscheidungen repräsentiert werden?
Wir können die Entscheidungen geordnet werden in Vorbereitung der Nutzung ei-

nes Entscheidungsmodells als Methode?

Wir erweitern unser Metamodell um Aspekte der kontextabhängigen, dynami-
schen Nutzung des Entscheidungswissens. Dieses ermöglicht uns, dem Architek-

VIII Zusammenfassung

ten nur eine Untermenge der Entscheidungen im Modell anzubieten basierend auf
bereits getroffenen Entscheidungen. Damit ist der Architekt mit weniger Entschei-
dungen konfrontiert, was zu einem effizienteren Entscheidungsprozess führt.

Kapitel 7: Erstellen und Benutzen von
Architekturentscheidungsmodellen in Projekten

Modell auf Projektbedürfnisse zuschneiden. Nachdem Entscheidungen identifi-
ziert, modelliert und organisiert sind, behandelt Schritt 5:

Wie kann ein wieder verwendbares Architekturentscheidungsmodell auf Projekt-
bedürfnisse angepasst werden?

Das in diesem Schritt eingeführte Konzept ist das Filtern von Entscheidungen.

Entscheidungen treffen. Das in Schritt 6 gelöste Problem ist:

Wie kann ein Architekturentscheidungsmodell als SOA-Entwurfsmethode einge-
setzt werden?

Wir führen eine verwaltete Entscheidungsliste (engl. Managed Issue List), ei-
nen projektweiten Makroprozess und einen entscheidungsweiten Mikroprozess
ein. Um den Methodeneinsatz zu demonstrieren, wenden wir die Prozesse auf die
motivierende Fallstudie aus Kapitel 2 an.

Entscheidungen durchsetzen. Schritt 7 führt Modelltransformationen ein, die
Architekturentscheidungen als Eingabeparameter berücksichtigen:

Wie kann durchgesetzt werden, dass die getroffenen Entscheidungen bei den wei-
teren Entwurfs- und Entwicklungsaktivitäten berücksichtigt werden?

Wie kann der Entscheidungsausgang in Entwurfsmodelle und Programmcode ein-
gebracht werden?

Wir fokussieren auf die Beziehung zwischen Architekturentscheidungsmodel-
lierung und modellgetriebener Softwareentwicklung. Zunächst identifizieren wir
die benötigen Plattformmodelle und definieren Modelltransformationen innerhalb
des Entscheidungsmodells. Anschließend integrieren wir Entscheidungsmodelle
mittels Entscheidungsinjektion in die Entwurfsmodelltransformationskette. Das
vorgestellte Konzept ergänzt existierende Ansätze zur Durchsetzung von Ent-
scheidungen.

 Zusammenfassung IX

Kapitel 8: Ein Kollaborationswerkzeug für die
Modellierung von Architekturentscheidungen

Der konzeptuelle Entwurf und die Implementierung eines Kollaborationssystems
für Architekten, welches die Konzepte des Rahmenwerkes zur Modellierung von
Architekturentscheidungen unterstützt, stellen den letzten Beitrag der Arbeit dar:

Welche Bausteine muss ein Werkzeug haben, das Architekten beim Untersu-
chen, Treffen und Durchsetzen von Architekturentscheidungen unterstützt?
Wie kann die Zusammenarbeit beim Erstellen und Nutzen von Architekturent-

scheidungsmodellen unterstützt werden?

Kapitel 9: Praxistest der Beiträge

In diesem Kapitel diskutieren wir, wie wir Rahmenwerk, Entscheidungsmodell
und Werkzeug im Hinblick auf Praxisnutzen und Benutzbarkeit validiert haben.
Wir klären zunächst die Ziele und Kriterien für die Validierung und stellen unse-
ren Ansatz vor. In einem zweiten Schritt bewerten wir unsere Lösung hinsichtlich
des Anforderungkatalogs aus Kapitel 3. Auf diese Selbsteinschätzung folgen die
Vorstellung von fünf industriellen Fallstudien und eine Diskussion der Rückmel-
dungen aus der Zielgruppe. Abschließend behandeln wir ergänzende Validie-
rungstypen wie Selbstexperimente und Schulungen und fassen die Validierungser-
gebnisse zusammen.

Kapitel 10: Diskussion von Forschungsansatz und
Forschungsergebnissen

Dieses Kapitel enthält eine Reflektion über den gewählten Forschungsansatz, eine
Interpretation der Validierungsergebnisse hinsichtlich der Stärken und Schwächen
des vorgestellten Ansatzes und einen Vergleich mit verwandten Arbeiten. Wir ge-
hen kurz auf die Möglichkeiten zur Implementierung der vorgestellten Konzepte
in marktgängigen Architektur- und anderen Entwicklungswerkzeugen ein.

Kapitel 11: Zusammenfassung und Ausblick

Die Arbeit schließt mit einer Zusammenfassung der erzielten Ergebnisse, einem
Ausblick auf zukünftige Forschungsaktivitäten sowie einer Vision für eine umfas-
sende Nutzung des Rahmenwerkes und wieder verwendbarer Entscheidungsmo-
dellen im industriellen Umfeld.

X Zusammenfassung

Anhang A: Ernten von Architekturentscheidungswissen

Anhang A stellt einen Prozess für das systematische Extrahieren von Wissen über
Architekturentscheidungen aus Projektartfakten vor.

Anhang B: Auszug aus dem „RADM for SOA“

Anhang B ist ein Auszug aus dem im Rahmen der Validierung der Arbeit erstell-
ten, wieder verwendbaren Entscheidungsmodell „RADM for SOA“.

Abstract

Enterprises in numerous industries rely on Information Technology (IT) solutions
today; enterprise applications support and partially automate the execution of the
business processes in these enterprises. It is challenging to develop and integrate
such enterprise applications, which can be characterized as logically layered and
physically distributed software systems. In recent years, Service-Oriented Archi-
tecture (SOA) concepts have matured into an important architectural style for en-
terprise application development and integration. From a usage perspective, a key
principle in SOA is the business alignment of services. From an architectural per-
spective, SOA principles include modularity, loose coupling (i.e., platform, loca-
tion, protocol, and format transparency), as well as logical layering and flow inde-
pendence. Key SOA patterns are service consumer-provider contract, Enterprise
Service Bus (ESB), service composition, and service registry.

Service consumers and providers as well as ESB and service composition infra-
structure have to fulfill numerous Non-Functional Requirements (NFRs). Many
NFRs concern software quality attributes in areas such as reliability, usability, ef-
ficiency, maintainability, and portability. Other NFRs result from enterprise archi-
tecture guidelines and constraints of legacy systems. Old and new challenges
arise, e.g., interface contract design and serving a large number of heterogeneous
service consumers. There are no straightforward answers to the resulting SOA de-
sign questions; design methods are required. Existing design methods provide
many service identification and specification techniques; however, they do not
cover service realization sufficiently. Project experience makes evident that there
is more to realizing services of quality and style than identifying abstract services
in functional requirements, specifying them with technical interface contracts such
as Web Services Description Language (WSDL) port types, and applying WSDL-
to-code transformation wizards: Many architectural decisions are required.

Architectural decision modeling is an emerging field in software architecture
research. Unlike other architecture documentation approaches, architectural deci-
sion models capture the architectural knowledge justifying certain designs (ration-
ale). Architectural decisions concern a software system as a whole, or one or more
of the core components of such a system. Architectural decisions directly or indi-
rectly determine the non-functional characteristics of a system, e.g., its software
quality attributes. Each decision describes a concrete design issue which has sev-
eral potential solutions (alternatives) that are chosen from. Examples are the selec-
tion of programming language and tools, of architectural patterns, of integration
technologies, and of middleware assets.

XII Abstract

Two areas of architectural decisions required during the SOA design work re-
sult from the SOA patterns introduced above: One area of architectural decisions
relates to service contract design including the specification of the service granu-
larity (e.g., structure of the messages exchanged, operation grouping). Another
area concerns non-functional aspects of ESB integration and service composition
such as defining message exchange patterns and system transaction boundaries.

Having preselected the architectural style, architects can benefit from a large
body of knowledge. This knowledge can be split into two parts: knowledge that
resulted in the definition of the SOA principles and patterns, and knowledge
gained on projects that have applied these SOA principles and patterns previously.
Both knowledge parts influence the decisions to be made in an SOA project.

To guide architects through the decision making process, a SOA design method
is required. The design of such a method is the problem solved by this thesis:

How to facilitate the architectural decision making in SOA design, starting
from functional and non-functional requirements and already gathered architec-

tural knowledge captured in SOA principles and patterns?

In the current state of the art, architectural decisions are captured ad hoc and
retrospectively on each project, if at all; this is a labor-intensive undertaking with-
out immediate benefits. On the contrary, we investigate the role reusable architec-
tural decision models can play during SOA design: We treat recurring architec-
tural decisions as first-class method elements and propose an architectural
decision modeling framework and a reusable decision model for SOA which guide
the architect through the SOA design. Our approach is tool supported.

In the framework, we provide a technique to systematically identify recurring
decisions. Our reusable architectural decision model for SOA conforms to a
metamodel supporting reuse and collaboration. The model organization follows
Model Driven Architecture (MDA) principles and separates long lasting platform-
independent decisions from rapidly changing platform-specific ones. The alterna-
tives in a conceptual model level reference SOA patterns. This simplifies the ini-
tial population and ongoing maintenance of the decision model. Decision depend-
ency management allows knowledge engineers and software architects to check
model consistency and prune irrelevant decisions. Moreover, a managed issue list
guides through the decision making process. To update design artifacts according
to decisions made, we inject decision outcome information into design model
transformations. Finally, a Web-based collaboration system provides tool support
for the framework steps and concepts.

One of the use cases for architectural decision modeling framework and reus-
able decision model for SOA is usage as a design method; other use cases are edu-
cation, knowledge exchange, review technique, and governance instrument.

A summary of each chapter follows.

 Abstract XIII

Chapter 1: Introduction

In this chapter, we introduce the enterprise application genre and SOA design as
the context of this thesis. We give an overview of the state of the art regarding
SOA design methods and derive seven research problems from it. We outline our
solution, which comprises an architectural decision modeling framework and a re-
usable architectural decision model for SOA, which yield the desired decision-
centric SOA design method, as well as related tool support.

Chapter 2: State of the Art and State of the Practice

In this chapter, we first introduce the key characteristics of enterprise applications
and SOA as an architectural style for development and integration of such applica-
tions. We use architectural principles and patterns to define SOA. To illustrate the
state of the practice, we present a motivating case study. Furthermore, we describe
the state of the art in software engineering and design methods, software architec-
ture design methods, methods for enterprise application development and integra-
tion, SOA design methods, and architectural knowledge management. Finally, we
give examples for SOA design tools used in practice.

Chapter 3: SOA Design Method Requirements and
Research Problems

In this chapter, we first establish the requirements for methods supporting SOA
design. From these requirements, we distill those which are particularly relevant
for a decision-centric SOA design method and formulate the research problems to
be solved in this thesis to satisfy these requirements. Finally, we use the require-
ments and research problems to analyze the state-of-the-art methods introduced in
Chapter 2 and to demonstrate that the problems have not been properly solved yet.

Chapter 4: An Architectural Decision Modeling
Framework for SOA Design

In this chapter we introduce the concept of a Reusable Architectural Decision
Model (RADM) separating decisions required (issues) from decision made (out-
comes). We introduce a conceptual framework for SOA Decision Modeling
(SOAD). The SOAD framework steps are:

1. Identify decisions.
2. Model individual decisions.

XIV Abstract

3. Structure model.
4. Add temporal decision order.
5. Tailor model.
6. Make decisions, using a decision model as architecture design method.
7. Enforce decisions.

We explain how the framework is positioned in the software engineering proc-
ess and outline context and architecture of a tool supporting the framework con-
cepts. We apply the framework to the motivating case study from Chapter 2.

Chapter 5: Scoping Reusable Architectural Decision
Models

Identify decisions. As SOAD step 1, we present a novel technique for the identi-
fication of reusable architectural decision knowledge in architectural patterns:

Which architectural decisions required (issues) recur during SOA design?
Can such decisions be identified systematically in patterns?

The technique works with several types of issues:

1. Executive decisions regarding project scoping and technical directions, as
well as business requirements analysis.

2. Decisions regarding selection and adoption of conceptual patterns.
3. Technology decisions concerning the selection and profiling of contain-

ers, protocols, operating systems, and the like.
4. Decisions regarding vendor asset selection and configuration.

We provide identification rules for the issue types and present a style-
independent meta issue catalog as technique elements.

Chapter 6: Populating Reusable Architectural Decision
Models

Model individual decisions. A metamodel supporting the modeling of architec-
tural decisions is provided in step 2, solving the following problem:

Which information to model for each architectural decision required (issue)?

Due to the inherent complexity of the architectural decision knowledge, it is
beneficial to model the recurring decisions, rather than capture them in structured
or unstructured text. It is essential to agree on a common format to make the
knowledge exchangeable and comparable. We extend existing work in architec-
tural knowledge management to make decision models reusable: The recurring
part, the issue, is separated from the project-specific part, the outcome.

 Abstract XV

Structure model. Once individual decisions have been identified and documented
as described in steps 1 and 2, we can take step 3:

How to organize architectural decision models in an intuitive, use case-driven
way?

The model resulting from step 2 is fairly complex: It must provide detailed in-
formation about the issues, but also about their logical relations. Organizing the
model by refinement levels and architectural layers makes the model comprehen-
sible. Furthermore, design errors can be detected with this model organization.

Add temporal decision order. In support of constraint management and design
method usage of decision models, we answer the following questions in step 4:

How to represent temporal dependencies between decisions?
How to order the decisions to prepare for decision making?

Based on the metamodel defined in the previous two steps, context-dependent,
dynamic usage of the decision knowledge can be expressed. This allows us to pre-
sent to the architect only a subset of the decisions to be made based on past deci-
sions. Thus, the architect has to cope with fewer decisions, which leads to a more
efficient decision making process.

Chapter 7: Creating and Using Architectural Decision
Models on Projects

Tailor model. Having collected, modeled, and organized the required knowledge
in the previous four steps we can now take step 5:

How to tailor a Reusable Architectural Decision Model (RADM) for a project?

Decision filtering is the concept we introduce to support this step.

Make decisions. The problem we investigate in step 6 is:

How to use an Architectural Decision Model (ADM) as a SOA design method?

We define a managed issue list, a project-wide macro process, and a decision-
wide micro process supporting decision making. To demonstrate the method, we
apply it to the motivating case study introduced in Chapter 2.

Enforce decisions. Step 7 introduces decision-aware model transformations as an
additional solution to the decision enforcement problem:

How to enforce that made architectural decisions are respected during subse-
quent design activities and during development?

How to update design models and code according to outcome information in an
architectural decision model?

XVI Abstract

We focus on the relation between architectural decision modeling and model-
driven development. First we identify the involved platform models and define
model transformations within our decision models. Next we integrate decision
models into a design model transformation chain via decision injection. This semi-
automatic support for decision enforcement complements existing manual ap-
proaches such as coaching.

Chapter 8: A Collaboration Tool for Architectural Decision
Modeling

The conceptual design and implementation of a collaboration tool supporting the
SOAD framework concepts is the final contribution of this thesis:

Which logical building blocks comprise a tool that supports architects when they
investigate, make, and enforce architectural decisions?

How to support collaborative creation and usage of decision models?

Chapter 9: Validation of Research Results

In this chapter we present the validation of SOAD regarding its practical value and
usability. We first clarify the validation objectives and scope, present our ap-
proach, and give an overview of the results. Next we assess if SOAD meets the
requirements for SOA design methods from Chapter 3. After this self assessment
we present five industrial case studies. We also feature supplemental evaluation
techniques such as self experiments, industry workshops, teaching, and implemen-
tation of advanced concepts, and we summarize the validation results.

Chapter 10: Discussion of Research Approach and
Results

In this chapter, we reflect upon our research approach and interpret the pros and
cons of SOAD that became apparent during the validation. We discuss applicabil-
ity criteria and compare SOAD with related work. Finally, we outline how the
SOAD concepts can be realized in existing architecture design and other tools.

Chapter 11: Conclusions and Outlook

This chapter summarizes the thesis and its contributions. It discusses future work
and presents a vision for an extended usage of SOAD in the industry.

 Abstract XVII

Appendix A: Harvesting Architectural Decision
Knowledge

Appendix A defines a four step process to syndicate architectural decision model
content from architectural decisions made on industry projects.

Appendix B: Excerpt from RADM for SOA

Appendix B contains an excerpt from the Reusable Architectural Decision Model
(RADM) for SOA we created during thesis validation.

Acknowledgements

Everybody who has written a book knows it is hard. Having been there, I thought I
knew what was coming. It turned out to be harder. There are a number of people
who stand out in their essential role in having made this work possible. I would
like to thank all of them very sincerely for supporting me on my journey from
practice to research.

Prof. Dr. Frank Leymann for his scientific guidance and passion in supervising
this thesis, especially for availability despite busy schedules, SOA and product ar-
chitect knowledge, and moral support in difficult times.

Prof. Dr. Michael Papazoglou for co-supervising this thesis as well as inspiration
and advice regarding service-oriented computing methods and other related work.

Past and present members of the Business Integration Technologies Team (BIT) at
IBM Zurich Research Laboratory, particularly: Jana Koehler, who provided addi-
tional scientific guidance as well as input to the formalization and reviewed se-
lected thesis chapters. Nelly Schuster who developed Architectural Decision
Knowledge Wiki and reviewed selected thesis chapters. Ronny Polley who im-
plemented the model formalization. Jochen Küster who reviewed early versions of
selected sections. Other Ph. D. students Jussi Vanhatalo, Ksenia Wahler, and Mi-
chael Wahler who went through similar learning curves at the same time. Hagen
Völzer who provided BPMN consulting. Christian Hoertnagel (late arrival).

Paper co-authors for supporting my research ideas, contributing their architectural
knowledge, and providing supplemental technical writing advice: Cesare Pautasso,
Stefan Tai, Uwe Zdun, Jonas Grundler, Thomas Gschwind, and Jochen Küster.

All internal and external PhD students at IAAS for inspiring discussions, pointers
to related work, and university logistics support. Rania Khalaf (IBM Watson Re-
search Center) for her first-of-a-kind thesis work at IAAS and giveback, including
putting up with my many questions about the PhD process at Universität Stuttgart.

Members of the patterns, software architecture, architectural knowledge manage-
ment, and model-driven development communities for review feedback and many
inspiring discussions at conferences, invited talks, guest lectures, and workshops:
Paris Avgeriou, Remco de Boer, Grady Booch, Rafael Capilla, Davide Falessi,
Rik Farenhorst, Harald Gall, Gregor Hohpe, Anton Jansen, Doug Kimelman, Pat-
rick Könemann, Philippe Kruchten, Patricia Lago, Gerald Reif, Willem-Jan van
den Heuvel, Hans van Vliet, and the participants of the Dagstuhl Seminar on
Software Service Engineering.

XX Acknowledgements

Mark Tomlinson, Ulf Hollberg, Albert Maier, and Frank Müller for reviewing the
writeup of the SOAD concepts also from a practitioner’s perspective.

IBM ITA profession leaders, product and solution architects, and creators of IBM
Global Services Method for teaching me how to architect solutions, for sharing
lead architect responsibilities, and/or for taking over responsibilities when I left
services to conduct this research. The following individuals serve as community
proxies (in alphabetical order): Steve Abrams, Jim Amsden, Dan Berg, Michael
Brandner, Kyle Brown, Vadim Dubrovski, Karin Dürmeyer, Peter Eeles, Celso
Gonzalez, Kerard Hogg, Petra Kopp, Sven Milinski, Bertrand Portier, Christian
Ringler, Philippe Spaas, Gerd Watmann, as well as the members of the IBM SWG
Normative Guidance, Team Blueprint, and patterns for e-business working groups.

Members of IBM GTS leadership teams for giving me the opportunity to develop,
harden, and validate the research concepts presented in this thesis in close connec-
tion with practice: Sesh Murthy, Keith (KC) Goodman, Stefan Pappe, Kavita
Chavda, Dale Davis, Tony Shan, Liz Smith, and Marie Wieck.

My past and present management line at IBM Zurich Research Laboratory for
supporting my work: Matthias Kaiserswerth, Krishna Nathan, Peter Buhler, Doug
Dykeman, Michael Waidner, and Jana Koehler. Phil Janson and Andreas Kind and
their teams for joint work, SOA and other architectural decision making domains.

IBM SWG Emerging Internet Technologies and alphaWorks teams for QEDWiki
and Architectural Decision Knowledge Wiki release support: David Sink, Krishna
Akella, Wing Lee, Jim Smith, Keyur Dalal, Terry Finch, Jim Chao, Brent Zupp,
and Lynn Haney.

Executives and technical staff at clients I consulted to from 1999 to 2005 for sup-
plying practical problems and providing me with numerous opportunities to learn
and to grow my solution architect experience. Again there are too many to men-
tion, so one group of individuals serves in proxy role: Michael Craes, Guido Oel-
lermann, Guido Ranft, and Reinhold Nolte from Sparkassen Informatik (at that
time).

Thomas Kasemir and Caro Funk, IBM SWG, for their hospitality during my many
visits to Stuttgart.

Everybody at Gampel 2006, St. Gallen 2007, and Southside 2008.

Last but definitely not least: Family and friends simply for being there before, dur-
ing, and after writing “crunch mode” – you know who you are!

Table of Contents

Zusammenfassung .. III
Kapitel 1: Einleitung...V
Kapitel 2: Stand der Technik und Praxisrealität ...V
Kapitel 3: Anforderungen an SOA-Entwurfsmethoden und resultierende
Forschungsprobleme...V
Kapitel 4: Ein Rahmenwerk zur Modellierung von Architekturentscheidungen
im SOA-Entwurf..VI
Kapitel 5: Umfang wieder verwendbarer Architekturentscheidungsmodelle
festlegen...VI
Kapitel 6: Befüllen wieder verwendbarer Architekturentscheidungsmodelle VII
Kapitel 7: Erstellen und Benutzen von Architekturentscheidungsmodellen in
Projekten...VIII
Kapitel 8: Ein Kollaborationswerkzeug für die Modellierung von
Architekturentscheidungen ..IX
Kapitel 9: Praxistest der Beiträge ..IX
Kapitel 10: Diskussion von Forschungsansatz und Forschungsergebnissen....IX
Kapitel 11: Zusammenfassung und Ausblick ..IX
Anhang A: Ernten von Architekturentscheidungswissen..................................X
Anhang B: Auszug aus dem „RADM for SOA“...X

Abstract ... XI
Chapter 1: Introduction...XIII
Chapter 2: State of the Art and State of the Practice.....................................XIII
Chapter 3: SOA Design Method Requirements and Research Problems......XIII
Chapter 4: An Architectural Decision Modeling Framework for SOA Design
..XIII
Chapter 5: Scoping Reusable Architectural Decision ModelsXIV
Chapter 6: Populating Reusable Architectural Decision Models..................XIV
Chapter 7: Creating and Using Architectural Decision Models on Projects .. XV
Chapter 8: A Collaboration Tool for Architectural Decision ModelingXVI
Chapter 9: Validation of Research Results ...XVI
Chapter 10: Discussion of Research Approach and ResultsXVI
Chapter 11: Conclusions and Outlook ..XVI
Appendix A: Harvesting Architectural Decision Knowledge..................... XVII
Appendix B: Excerpt from RADM for SOA .. XVII

Acknowledgements ...XIX

XXII Table of Contents

Table of Contents ...XXI

List of Figures .. XXVII

List of Tables..XXIX

List of Abbreviations...XXXI

1 Introduction... 1
1.1 Context: Enterprise Applications and SOA Design................................. 1
1.2 State of the Art and the Practice in SOA Design..................................... 3
1.3 A Decision-Centric Approach to SOA Design.. 4
1.4 Research Problems and Contributions Overview 5
1.5 Industrial Use of Presented Solution ... 7
1.6 Thesis Structure... 8

2 State of the Art and State of the Practice .. 9
2.1 Introduction to Problem Domain... 9

2.1.1 The Enterprise Application Genre... 9
2.1.2 Characteristics of Enterprise Applications 11
2.1.3 Enterprise Application Development and Integration 13
2.1.4 Principles and Patterns in SOA Design ... 15

2.2 State of the Practice: Motivating Case Study .. 21
2.2.1 An Insurance Industry Scenario: Customer Enquiry Processing ... 22
2.2.2 Business Process Model .. 22
2.2.3 Business Rules, NFRs, and Legacy Constraints 24
2.2.4 Candidate Architectures .. 25
2.2.5 Design Issues in the Case .. 29

2.3 State of the Art Regarding Methods for SOA Design 31
2.3.1 Software Engineering Methods and Design Methods 31
2.3.2 Software Architecture Design Methods... 33
2.3.3 Enterprise Application Development and Integration Methods 35
2.3.4 SOA Design and Service Modeling Methods................................ 35
2.3.5 Architectural Knowledge Management ... 37

2.4 SOA Design Tools Used in Practice.. 38
2.5 Summary of the Problem Domain Characteristics 40

3 SOA Design Method Requirements and Research Problems................ 41
3.1 Requirements for SOA Design Methods ... 41

3.1.1 General Requirements for Software Engineering Methods 42
3.1.2 Software Architecture Design Method Requirements 43
3.1.3 Requirements Specific to the Enterprise Application Genre 44
3.1.4 SOA-Specific Design Method Requirements 45
3.1.5 Requirements for Architectural Knowledge Management 46

3.2 Research Problems and Questions... 47
3.3 Analysis of State-of-the-Art Design Methods 49

 Table of Contents XXIII

3.4 Overall Problem Statement and Summary...54

4 An Architectural Decision Modeling Framework for SOA Design.......55
4.1 Key Concepts: Decision Reuse and Modeling.......................................55
4.2 Framework Concepts in Architecture Design Context59

4.2.1 Separating Design Issues from Decision Outcomes60
4.2.2 The Framework in the Software Engineering Process...................61
4.2.3 Tool Support for Framework Concepts ...62

4.3 Application of the Framework to SOA Design......................................63
4.4 Discussion and Summary ..67

5 Scoping Reusable Architectural Decision Models69
5.1 Framework Step 1: Identify Decisions ..70

5.1.1 State of the Art and the Practice ..70
5.1.2 A Technique for Decision Identification and Model Scoping70
5.1.3 Technique Concept: Identification Rules.......................................71
5.1.4 Artifact Screening and Meta Issue Catalog73

5.2 A Reusable Architectural Decision Model for SOA..............................76
5.3 Discussion and Summary ..82

6 Populating Reusable Architectural Decision Models85
6.1 Framework Step 2: Model Individual Decisions85

6.1.1 State of the Art and the Practice ..85
6.1.2 Concepts: Metamodel Extensions for Reuse and Collaboration....86
6.1.3 Sample Application to SOA: Invocation Transactionality Pattern 89
6.1.4 Discussion and Summary ..94

6.2 Framework Step 3: Structure Model..95
6.2.1 State of the Art and the Practice ..95
6.2.2 Concepts: Multi-Level Decision Model and Logical Constraints..95
6.2.3 Sample Application to SOA: Transaction Management..............103
6.2.4 Discussion and Summary ..105

6.3 Framework Step 4: Add Temporal Decision Order.............................107
6.3.1 State of the Art and the Practice ..107
6.3.2 Concepts: Temporal Relations and Production Rules..................107
6.3.3 Sample Application to SOA: Transaction Management..............110
6.3.4 Discussion and Summary ..111

7 Creating and Using Architectural Decision Models on Projects113
7.1 Framework Step 5: Tailor Model ..113

7.1.1 State of the Art and the Practice ..114
7.1.2 Tailoring Technique and Decision Filtering Concept..................114
7.1.3 Sample Application to SOA and Motivating Case Study116
7.1.4 Discussion and Summary ..117

7.2 Framework Step 6: Make Decisions..118
7.2.1 State of the Art and the Practice ..118
7.2.2 Concepts: Managed Issue List and Decision Making Processes .119

XXIV Table of Contents

7.2.3 Sample Application to SOA and Motivating Case Study............ 124
7.2.4 Discussion and Summary .. 127

7.3 Framework Step 7: Enforce Decisions .. 129
7.3.1 State of the Art and the Practice .. 129
7.3.2 Concept: Decision Injection in Model-Driven Development 130
7.3.3 Sample Application to SOA .. 132
7.3.4 Discussion and Summary .. 133

8 A Collaboration Tool for Architectural Decision Modeling 135
8.1 State of the Art and the Practice .. 135
8.2 Conceptual Design of an Application Wiki for SOAD 136
8.3 Implementation of the Conceptual Design .. 139
8.4 Discussion and Summary .. 141

9 Validation of Research Results .. 143
9.1 Validation Overview ... 143

9.1.1 Objectives.. 143
9.1.2 Approach and Rationale .. 144

9.2 Method Requirements Coverage ... 146
9.2.1 General Requirements for Software Engineering Methods 147
9.2.2 Software Architecture Design Method Requirements 148
9.2.3 Requirements Specific to the Enterprise Application Genre 148
9.2.4 SOA-Specific Design Method Requirements 149
9.2.5 Requirements for Architectural Knowledge Management 150
9.2.6 Overall Fit-Gap Assessment.. 151

9.3 Industrial Case Studies .. 151
9.3.1 Case Study 1: Professional Services Firm, SOA Coaching......... 153
9.3.2 Case Study 2: Professional Services Firm, SOA Design............. 154
9.3.3 Case Study 3: Professional Services Firm, Development of an SOA
Infrastructure Reference Architecture ... 156
9.3.4 Case Study 4: Software Vendor, SOA Design for Clients........... 158
9.3.5 Case Study 5: Telecommunications Firm, Web Service Design . 159
9.3.6 Other Cases.. 160
9.3.7 Survey and Summary .. 161

9.4 Additional Industrial Validation Activities ... 163
9.5 Summary of Validation Results... 165

10 Discussion of Research Approach and Results 167
10.1 Research Challenges, Approach, and Evolution of Results............. 167

10.1.1 Challenges ... 167
10.1.2 Selected Research Approach and Notations 169
10.1.3 Evolution of Framework Concepts, Model Content, and Tool 170

10.2 Strengths and Weaknesses of Solution .. 171
10.2.1 Suited Projects, Application Genres, and Architectural Styles 171
10.2.2 Benefits.. 172
10.2.3 Liabilities... 173

 Table of Contents XXV

10.3 Comparison with Related Work ..174
10.3.1 Software Engineering ..174
10.3.2 Software Architecture..175
10.3.3 Enterprise Application Development and Integration176
10.3.4 SOA Design and Service Modeling Methods..........................176
10.3.5 Architectural Knowledge Management177
10.3.6 Commercial Products...177

10.4 Summary..178

11 Conclusions and Outlook..179
11.1 Thesis Summary ..179
11.2 Answers to Research Questions...181
11.3 Future Work...184
11.4 Extended Usage Scenario and Summary ...186

12 Appendix A: Harvesting Architectural Decision Knowledge187
12.1 Overview of Knowledge Engineering Activities187
12.2 Bottom Up Knowledge Harvesting Process188
12.3 Experience and Decision Modeling Guidance.................................190

12.3.1 Experience With the Review Step ...190
12.3.2 Guidance for the Integrate, Harden, Align Steps191

12.4 Decision Drivers in EAD, EAI, and SOA Design193

13 Appendix B: Excerpt from RADM for SOA...195

References ..199

Index ...211

List of Figures

Figure 1. SOA Decision Modeling (SOAD) contributions overview.....................5
Figure 2. System context diagram for a sample enterprise application landscape10
Figure 3. EAD/EAI design activities in software engineering process.................14
Figure 4. SOA patterns in UML (logical viewpoint) ..16
Figure 5. Analysis-phase BPM for customer enquiry processing.........................23
Figure 6. Customer enquiry architecture 1 (three-tier client-server)26
Figure 7. Logical decomposition of mid-tier layers..27
Figure 8. Customer enquiry architecture 2 (SOA)..28
Figure 9. Method anatomy and project adoption ..32
Figure 10. State of the practice regarding SOA design tools................................39
Figure 11. SOAD users and framework steps...56
Figure 12. RADM and ADM elements...60
Figure 13. Decision modeling as a guide through the architecture design work ..61
Figure 14. An architecture for a SOAD tool and its context.................................62
Figure 15. Decision identification in motivating case study.................................65
Figure 16. SOAD step 1 and step 5 in context..69
Figure 17. Identification rules in decision identification technique......................72
Figure 18. Structure of RADM for SOA (adapted from [ZKL+09])77
Figure 19. Architectural decision capturing template with SOAD extensions86
Figure 20. SOAD metamodel as UML class diagram (adapted from [ZKL+09]) 88
Figure 21. QOC+ diagram for INVOCATION TRANSACTIONALITY PATTERN.........89
Figure 22. INVOCATION TRANSACTIONALITY PATTERN alternatives [ZGT+07]...90
Figure 23. Pattern primitives in Pattern Adoption Decisions (PADs) [ZGT+07].91
Figure 24. General organization of an architectural decision tree [ZKL+09].......97
Figure 25. An instantiated example tree (RADM for SOA excerpt) [ZKL+09]...98
Figure 26. Architectural decision model with logical relations [ZKL+09]101
Figure 27. SOAD framework steps during asset consumption on projects113
Figure 28. SOAD step 5: Decision filtering ...115
Figure 29. SOAD step 5: RADM tailoring in motivating case study117
Figure 30. SOAD step 6: Issue list manager with managed issue list.................119
Figure 31. SOAD step 6: Macro process for decision making on projects.........120
Figure 32. SOAD step 6: Micro process for making single decision..................122
Figure 33. Model transformations in ADM..131
Figure 34. SOAD step 7: Decision injection into design models and code132
Figure 35. Component model of Architectural Decision Knowledge Wiki........138
Figure 36. Architectural Decision Knowledge Wiki screen caption...................140

XXVIII List of Figures

Figure 37. Four step decision model content syndication process......................188
Figure 38. Decision driver categorization for EAD and EAI193

List of Tables

Table 1. SOA principles and patterns ...16
Table 2. General requirements for software engineering methods42
Table 3. Software architecture design method requirements43
Table 4. EAD- and EAI-specific architecture design method requirements44
Table 5. SOA-specific design method requirements...45
Table 6. Architectural decision knowledge capturing and sharing requirements..46
Table 7. Research problems distilled from method requirements.........................47
Table 8. Research problems and existing solutions (methods and other assets) ...49
Table 9. Research problems solved by framework steps, concepts, and tool59
Table 10. Motivating case study: Architectural decisions made already66
Table 11. Motivating case study: Architectural decisions made now...................66
Table 12. Motivating case study: Architectural decisions still required66
Table 13. Identification rules, cardinalities, and artifacts to be screened..............73
Table 14. Meta issue catalog for EAD and EAI..75
Table 15. Subset of RADM for SOA issues ...81
Table 16. Logical relations between architectural decision issues......................100
Table 17. Logical relations between architectural decision alternatives.............102
Table 18. Mapping of conceptual patterns to primitives and SCA qualifiers104
Table 19. Temporal relation in architectural decision models108
Table 20. Decision types and exemplary scope, phase, and role attributes.........116
Table 21. Entry points, eligible, and pending decisions in example (1)124
Table 22. Entry points, eligible, and pending decisions in example (2)125
Table 23. SOA decisions in motivating case study made in macro design.........125
Table 24. Validation overview..145
Table 25. Software engineering method requirements coverage147
Table 26. Software architecture design method requirements coverage.............148
Table 27. EAD/EAI method requirements coverage ..149
Table 28. SOA design method requirements coverage.......................................149
Table 29. Architectural decision capturing and sharing requirements coverage.150
Table 30. Overview of industrial case studies ..151
Table 31. Overview of SOAD framework user survey results162
Table 32. Evolution of RADM for SOA over time and project phases170
Table 33. Architectural decision making without and with SOAD172
Table 34. INVOCATION TRANSACTIONALITY PATTERN (RADM for SOA)195

List of Abbreviations

ACD Asset Configuration Decision
ACE Attempto Controlled English
ACID Atomicity, Consistency, Isolation, Durability
AD Architectural Decision
ADD Attribute-Driven Design
ADM Architectural Decision Model
a.k.a. also known as
ASC Architectural Separation of Concerns
ASD Asset Selection Decision
ASR Architecturally Significant Requirement
BA Business Activity
BAPO Business Architecture Process and Organization
BDD Business-Driven Development
BPEL Business Process Execution Language
BPEL4WS Business Process Execution Language for Web Services
BPM Business Process Model, Business Process Modeling
BPMN Business Process Modeling Notation
BR Business Rule
CAD Custom Application Development
CBAM Cost Benefit Analysis Method
CBDI-SAE CBDI Service Architecture & Engineering
CEI Common Event Infrastructure
CMMI Capability Maturity Model Integration
CORBA Common Object Request Broker Architecture
CRC Class, Responsibility, Collaborator
CRUDS Create, Read, Update, Delete, Search
CT Communication Transactionality
DAG Directed Acyclic Graph
DCE Distributed Computing Environment
DDD Domain-Driven Design
DDR Design Decision Rationale
Dojo (not an acronym)
DSS Decision Support System
EA Enterprise Application
EAD Enterprise Application Development
EAI Enterprise Application Integration
ECOWS European Conference on Web Services

XXXII List of Abbreviations

EJB Enterprise JavaBean
EP Entry Point
ER Enterprise Resource
ESB Enterprise Service Bus
FTP File Transfer Protocol
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IAAS Institut für Architektur von Anwendungssystemen
IAT Invocation Activity Transactionality
IC Integrity Constraint
ICSOC International Conference on Service-Oriented Computing
IDE Integrated Development Environment
IDL Interface Description Language
IIOP Internet Inter-ORB Protocol
ILD Integration Layer Decisions
IR Identification Rule
IT Information Technology
ITP Invocation Transactionality Pattern
J2EE Java 2 Enterprise Edition
JAX-WS Java XML Web Services
JEE Java Enterprise Edition
JMS Java Message Service
JSON JavaScript Object Notation
KBSE Knowledge-Based Software Engineering
LC Legacy Constraint
MDA Model Driven Architecture
MDD Model-Driven Development
MOF Meta Object Facility
MOM Message-Oriented Middleware
MQ Message Queuing
MSOA Mainstream SOA Method
MVC Model-View-Controller
NFA Nichtfunktionale Anforderung
NFR Non-Functional Requirement
OCL Object Constraint Language
OOA Object-Oriented Analysis
OOAD Object-Oriented Analysis and Design
OOP Object-Oriented Programming
OOPSLA Object-Oriented Programming, Systems, Languages, and Appli-

cations
PAD Pattern Adoption Decision
PAT Process Activity Transactionality
PHP PHP: Hypertext Preprocessor
PIM Platform-Independent Model
PoEAA Patterns of Enterprise Application Architecture
POJO Plain Old Java Object

 List of Abbreviations XXXIII

POSA Patterns of Software Architecture
POX Plain Old XML
PSD Pattern Selection Decision
PSM Platform-Specific Model
QOC Question, Option, Criteria
QoS Quality of Service
RADM Reusable Architectural Decision Model
RDBMS Relational Database Management System
REST Representational State Transfer
RIHA Review, Integrate, Harden, Align
RPC Remote Procedure Call
RUP Rational Unified Process
S4V Siemens Four Views
SC System Context
SCA Service Component Architecture
SCL Service Composition Layer
SCLD Service Composition Layer Decisions
SDLC Service Development Lifecycle
SLD (Atomic) Service Layer Decisions
SOA Service-Oriented Architecture
SOAD SOA Decision Modeling, Service-Oriented Analysis and Design
SOAP (not an acronym)
SOMA Service Oriented Modeling and Architecture
SQL Structured Query Language
SRD SOA Service Realization Decisions
SSL Secure Sockets Layer
ST Service Provider Transactionality
SWOT Strengths, Weaknesses, Opportunities, Threats
TDD Test-Driven Design
TLS Transport Layer Security
TOGAF The Open Group Architecture Framework
TPD Technology Profiling Decision
TSD Technology Selection Decision
Tx Transaction
UDDI Universal Description, Discovery, and Integration
UMF Unified Method Framework
UML Unified Modeling Language
UNIX (not an acronym)
UPIS User, Process and Resource Integrity, Integration, Semantics
URL Uniform Resource Locator
VP Viewpoint
WBM IBM WebSphere Business Modeler
WID IBM WebSphere Integration Developer
WPS IBM WebSphere Process Server
w.r.t. with respect to
WS Web Service

XXXIV List of Abbreviations

WSAT Web Services Atomic Transaction
WSDL Web Services Description Language
WS-I Web Services Interoperability
WWW World-Wide Web
XML Extended Markup Language
XSD XML Schema

1 Introduction

In this chapter, we introduce the enterprise application genre and SOA design as
the context of this thesis. We give an overview of the state of the art regarding
SOA design methods and derive seven research problems from it. We outline our
solutions to these problems, which comprise an architectural decision modeling
framework, a reusable architectural decision model for SOA, and tool support.

1.1 Context: Enterprise Applications and SOA Design

Enterprises in many industries rely on Information Technology (IT) solutions to-
day; enterprise applications such as customer relationship and supply chain man-
agement systems support and partially automate the execution of business pro-
cesses such as order management and procurement of production goods. For many
functional areas, enterprise applications are available as commercially-off-the-
shelf software packages. In other areas, custom development is conducted, either
because no suited packages exist or because enterprises seek to gain a competitive
advantage with specialized in-house solutions.

It is challenging to develop such custom enterprise applications [Fow03] and to
integrate them [HW04]. As logically layered and physically distributed software
systems, they have to serve multiple user channels and integrate heterogeneous
backend systems. The integrity of the business processes and many underlying re-
sources, for instance the content of databases and message queues, has to be man-
aged. Many fields contribute to the body of knowledge required to solve these de-
sign problems. Important areas of research that have been adopted in enterprise
application development and integration are relational database management sys-
tems [SKS02], transaction processing [GR93], distributed computing [TV03],
component-based development [Eme03], business process management [LR00],
and software engineering [Som95].

In recent years, Service-Oriented Architecture (SOA) concepts [KBS05] have
matured into an important architectural style for the enterprise application genre;
Web services [ACK+03] and other technologies are used to implement these con-
cepts. In this thesis, we define the SOA style through its architectural principles
and patterns: From a usage perspective, a key principle in SOA is the business
alignment of services. From an architectural perspective, the defining principles
include modularity, loose coupling (i.e., platform, location, protocol, and format
transparency), as well as logical layering and flow independence. Key SOA pat-

2 1 Introduction

terns are service consumer-provider contract, Enterprise Service Bus (ESB), ser-
vice composition, and service registry. When these patterns are applied, service
consumers do not interact with service providers directly but exchange messages
via the ESB. Loose coupling is achieved with service registry lookups and ESB
capabilities such as message queuing, dynamic routing, and message mediations;
logical layering and flow independence are supported by the composition of ser-
vices into executable workflows [WCL+05].

Service consumers and providers as well as ESB and service composition infra-
structure have to fulfill numerous Non-Functional Requirements (NFRs). Many
NFRs concern software quality attributes [BCK03] in areas such as reliability, us-
ability, efficiency (e.g., performance, scalability), maintainability, and portability
[ISO01]. Other NFRs result from enterprise architecture [SZ92] guidelines. The
constraints of already existing enterprise applications, often called legacy systems,
form a third source of NFRs.

To satisfy NFRs, the right architectural decisions must be made. Architectural
decisions concern a software system as a whole, or one or more of the core com-
ponents of such a system. Architectural decisions directly or indirectly determine
the non-functional characteristics of a system [ZGK+07]. Unlike other notations
for software architecture design, architectural decision models capture the knowl-
edge justifying a certain design (i.e., its rationale). Each decision describes a con-
crete design issue for which several potential solutions exist; one or more of these
alternative solutions are chosen. Examples are the selection of programming lan-
guages and tools, of architectural patterns, of integration technologies, and of
middleware assets.

When conducting SOA design activities, software architects make architectural
decisions when defining the service contracts and when designing service con-
sumers and providers. Two areas of such architectural decisions result from the
SOA patterns introduced above: One area of architectural decisions pertains to
service contract design including the specification of the service granularity (e.g.,
structure of the messages exchanged, operation grouping). Another area concerns
non-functional aspects of ESB integration and service composition such as defin-
ing message exchange patterns and system transaction boundaries [ZZG+08].

Having preselected the architectural style, architects can benefit from a large
body of architectural knowledge. This knowledge can be split into two parts:
knowledge that resulted in the definition of the SOA principles and patterns, and
knowledge gained on projects that have applied these SOA principles and patterns
previously. Both knowledge parts impact the decisions made in an SOA project.

To guide architects through the decision making process, an SOA design
method is required [ZKL07]:

How to facilitate the architectural decision making in SOA design, starting
from functional and non-functional requirements and already gathered architec-

tural knowledge captured in SOA principles and patterns?

The design of such a method is the problem solved by this thesis.

 1.2 State of the Art and the Practice in SOA Design 3

1.2 State of the Art and the Practice in SOA Design

A rather large body of related work from different fields is relevant in this design
context, for instance software engineering processes [Boe88] and design methods
such as object-oriented analysis and design [Boo94], architectural patterns
[BMR+96], and software architecture design methods [HKN+07]. Genre-specific
methods for enterprise application development and integration [CCS07] and SOA
[AGA+08, CBD+06, PV06] also are eligible. Concepts from design decision ra-
tionale and architectural knowledge management help to capture and share knowl-
edge about principles, patterns, and their application [LL91, KLV06].

General purpose software engineering processes and design methods [Boe88,
Boo94] organize the required design activities, for instance “define quality attrib-
utes” or “specify interface contract”. They do not elaborate on concrete quality at-
tributes pertaining to individual SOA design issues, pros and cons of alternatives
available, and logical dependencies between them. Architectural patterns present
proven solutions such as “broker” [BMR+96] and “macroflow” [ZD06]. Such pat-
terns are highly educational, but do not aim at guiding software architects through
the genre-specific decision making [ZZG+08].

Software architecture design methods such as the five ones presented in
[HKN+07] can also be applied. Moreover, refinements of software engineering
processes and design methods that are specific to enterprise application develop-
ment and integration such as Custom Application Development (CAD) in the
IBM Unified Method Framework (UMF) [CCS07] exist. Being independent of
any architectural style, such assets can not provide SOA-specific design advice,
for instance regarding the service contract granularity, ESB integration, and trans-
actionality issues outlined in Section 1.1.

Existing service modeling methods [AGA+08, CBD+06, PV06] define the
stages of SOA design, for instance service identification, specification, and reali-
zation. However, they insufficiently cover service realization and the architectural
decisions required to transition from business-level service identification to the in-
stantiation and adaptation of SOA patterns. They address only superficially how to
cope with NFRs such as quality attributes and legacy system constraints.

Many of the architectural decisions made during SOA design materialize in the
analysis and design artifacts produced. Others are less tangible; however, the lit-
erature argues that architectural decisions should be made explicit [KLV06]. In
architectural knowledge management, metamodels and ontologies for decision
capturing exist. Existing work focuses on capturing and representing decisions
that have been made already (which we call outcomes). It does not advise archi-
tects how to anticipate and resolve architectural decisions required (which we call
issues) when applying SOA principles and patterns in a particular design context
on an enterprise application development and integration project.

As a consequence, making architectural decisions remains a challenge for prac-
ticing architects [ZGK+07]: Intuition often is the only, but not always a suitable
decision driver; educated guesses and personal preferences dominate the decision
making. A champion-apprenticeship model is the primary model for education and

4 1 Introduction

knowledge transfer. This leads to low decision maker productivity. It remains hard
to trace whether architectural decisions made have been implemented accurately;
inconsistencies between architectural documentation and code occur often. Such a
lack of rigor in architectural decision making leads to acceptance issues and qual-
ity problems with the SOA under construction. The constructed enterprise applica-
tions fail to meet stakeholder expectations and project requirements; technical pro-
ject risk often is high. There is little reuse of architectural knowledge and cross-
project collaboration beyond copy-paste of document fragments.

1.3 A Decision-Centric Approach to SOA Design

In this thesis, we reveal how the decision making challenges outlined in Section
 1.2 can be overcome. Many of the architectural decisions required (issues) are not
specific to any particular project; they recur due to the availability of SOA princi-
ples and patterns as well as corresponding technology standards. This allows us to
develop a method that follows a novel paradigm: Instead of focusing on process
(i.e., responsible roles, activities to be performed, and artifacts to be produced),
our method centers on reuse of genre- and style-specific architectural knowledge;
it anticipates many of the issues. In our decision-centric method, the architect is
presented only eligible issues in the context of decisions already made.

Objectives and use cases. For this purpose, we develop a conceptual SOA Deci-
sion Modeling (SOAD) framework and a Reusable Architectural Decision Model
(RADM) for SOA. SOAD is a framework for an active, tool-supported manage-
ment of issues and decisions made. It has the following use cases:

• Education, informing inexperienced architects about the details of the is-
sues, e.g., the NFRs and candidate solutions to consider (alternatives).

• Knowledge exchange, facilitating discussions about the issues (and the
rationale for certain outcomes) in communities of practicing architects.

• Design method, presenting an ordered subset of issues to an architect
confronted with a particular design task in a given project context.

• Technical quality assurance review technique, allowing architects to ana-
lyze and compare architectures via the decisions made.

• Governance instrument, customizing SOAD framework and RADM for
SOA to establish architectural guidelines for an entire enterprise.

The RADM for SOA is a knowledge repository, capturing decisions required
(issues). Taking an active, guiding role during the design, it goes beyond the capa-
bilities of a passive repository of decisions made. As a side effect, the RADM for
SOA captures proven designs as recommendations (often called “best practices”).

We do not propose a Decision Support System (DSS) or automated expert sys-
tem with artificial intelligence, or design wizard; architectural thinking, taking
project-specific requirements into account, is still required when applying SOAD.
In the foreseeable future, this requires the skills and experience of humans.

 1.4 Research Problems and Contributions Overview 5

1.4 Research Problems and Contributions Overview

The objective of this thesis is to realize the design method use case for SOAD
outlined in Section 1.3. This requires solutions to the following research problems:

• Where and how to identify the architectural decisions required during
SOA design (issues)?

• Which information to model for each identified issue?
• How to structure the resulting decision model in a user-friendly way?
• How to represent logical and temporal decision dependencies?
• How to use the decision model as an architecture design method?
• How to enforce that the decisions made are implemented correctly?
• How to support the SOAD framework in a decision modeling tool facili-

tating collaboration between decision makers and other stakeholders?

Solutions to these research problems are the contributions of this thesis; they
define the SOAD framework steps. Figure 1 introduces these steps, along with the
excerpts from the RADM for SOA used as examples later in this thesis:

Step 1 (T):
Identify

Decisions

Step 2 (N):
Model

Individual
Decisions

Step 3 (N):
Structure

Model

Step 4 (N):
Add Temporal

Decision
Order

Step 7 (S):
Enforce

Decisions

Step 6 (P):
Make

Decisions

Types of Contributions (Method Elements):
(P) Process
(N) Notation
(T) Technique

(C) Content (RADM for SOA)

(S) System/Tool

Collaboration System and Decision Modeling Tool (S)

RADM for SOA
Overview (C)

Transactional
Workflows (C)

Granularity,
Integration (C)

Transactional
Workflows (C)

Transactional
Workflows (C)

Step 5 (T):
Tailor
Model

Decisions in
Motivating
Case Study

SOA Decision Modeling
(SOAD)

Figure 1. SOA Decision Modeling (SOAD) contributions overview

The SOAD framework is organized in seven steps which contribute process,
notation, technique, or system elements. The RADM for SOA is an additional the-
sis contribution (method content); it supplies examples for all steps. SOAD frame-
work and RADM for SOA yield the desired SOA design method. Our final contri-
bution is the design of a collaboration system providing tool support for SOAD.

6 1 Introduction

Step 1: Identify decisions. To support this step, we provide a novel technique for
the systematic identification of reusable architectural decision knowledge. As dis-
cussed previously, SOA is an architectural style which we define through princi-
ples and patterns; many of the architectural decisions required when applying the
patterns recur. The related architectural decision knowledge can be identified sys-
tematically and classified into levels of refinement:

1. Executive decisions dealing with project scoping and technical directions,
as well as business requirements analysis.

2. Decisions about the selection and adoption of conceptual patterns.
3. Decisions about technology choices such as selection and configuration

of containers, protocols, operating systems, and the like.
4. Decisions regarding vendor asset selection and configuration.

We provide identification rules for these levels, as well as a catalog of style-
independent meta issues. To demonstrate the technique, we use 35 of the 389
issues we captured during thesis validation. The architectural decision knowledge
modeled by these issues was harvested from industry projects.

Step 2: Model individual decisions. Due to the inherent complexity of architec-
tural decision knowledge and the many dependencies between decisions, it is
beneficial to model the decisions and their dependencies rather than capture them
in structured or unstructured text. To support this step, we define a common meta-
model. This metamodel extends existing work in architectural knowledge man-
agement to make the knowledge in metamodel instances such as our RADM for
SOA reusable, exchangeable, and comparable: We separate the recurring part, the
issue, from the project-specific part, the outcome, and introduce attributes that
support decision lifecycle management and an alignment with software engineer-
ing processes. Decisions required when designing transactional workflows for
SOA serve as our example in this step.

Step 3: Structure model. A model resulting from step 2 is fairly complex: It has
to provide detailed information about the issues, but also about their dependencies
in order to become comprehensive and comprehensible. To make such a model
comprehensive we integrate descriptions of the patterns identified in step 1. To
make it comprehensible we introduce containment and logical dependency rela-
tions, which allow knowledge engineers to organize the model content by refine-
ment levels, architectural layers, and other structuring principles.

Step 4: Add temporal decision order. This step addresses the decision depend-
ency management problem. We express dynamic usage of the architectural deci-
sion knowledge by adding temporal dependency relations to our metamodel. This
allows us to present to the architect only a subset of the decisions to be made. This
subset is calculated from past decisions and other context information. As a con-
sequence, the architect has to cope with fewer decisions, which results in a more
efficient decision making process.

Step 5: Tailor model. In this step we demonstrate how to tailor a model for a par-
ticular design context on a project. Such tailoring is required to adapt a reusable

 1.5 Industrial Use of Presented Solution 7

decision model for a certain SOA project; issues are removed, updated, and added
during the tailoring. We introduce decision filtering as a supporting concept.

Step 6: Make decisions. In this step we leverage the decision model as design
method. We define a managed issue list. This list is used in two decision making
processes we also introduce: Architects use a (project-wide) macro process and a
(decision-wide) micro process to traverse the decision model and choose alterna-
tives solving the issues. The rationale for the selection is recorded in outcomes.

Step 7: Enforce decisions. We focus on the relation between architectural deci-
sion modeling and Model-Driven Development (MDD) in this step. We specify
the platform models and model transformations within a decision model and pre-
sent decision injection as a new concept for integrating decision models into a de-
sign model transformation chain. This semi-automatic support for decision en-
forcement complements existing manual approaches such as coaching.

Finally, we propose a collaboration system as a tool for decision modeling,
making, and sharing which we call Architectural Decision Knowledge Wiki. This
tool supports the SOAD use cases and framework steps. It is implemented.

1.5 Industrial Use of Presented Solution

Project initiation motivated by practical problems. The base set of architectural
knowledge captured by the Reusable Architectural Decision Model (RADM) for
SOA originates from industry projects conducted from 2001 to 2005.

The proposed decision-centric method has its roots in these projects, as well as
our key hypothesis that the architectural decisions required in SOA design (issues)
recur. For instance, we observed that there was significant overlap between the is-
sues we encountered in two projects realizing diverse business services and proc-
esses in the finance and the telecommunications industries [ZMC+04, ZDG+05].

Validation approach. Software engineering contributions in general and architec-
ture design methods in particular must be validated in practice. Several non-trivial
validation challenges must be overcome: Experiments are costly to set up as there
are many influencing factors and the participants must have certain skills and ex-
perience. Industry projects face high economic pressure and other external forces
that limit their ability to experiment with emerging concepts and technologies. We
were able to conduct five industrial case studies and supplemental activities such
as self experiments and teaching to validate the results of this thesis in an iterative
and incremental fashion. Action research was applied in two of the cases.

Validation results and industrial adoption. The presented decision-centric SOA
design method has been used in ten industry projects. We found evidence for an
acceleration of decision identification. The case study participants also reported
improvements of decision making quality.

SOAD has already begun to be adopted in practice on a broader scale. We be-
gan to train practitioners in SOAD (about 120 at the time of writing). Architectural

8 1 Introduction

Decision Knowledge Wiki was released on IBM alphaWorks, an emerging tech-
nologies Web portal. It is in company-internal use within a community of software
architects. Leveraging the results of this thesis, IBM Global Technology Services
(GTS) has announced an SOA Architecture Decision Accelerator.

1.6 Thesis Structure

The remainder of this thesis is structured in the following way. Chapter 2 defines
the enterprise application genre as the problem domain (context) addressed by this
thesis. It also introduces SOA as an architectural style for enterprise application
development and integration. The chapter illustrates the state of the practice in a
motivating case study that also serves as a source of examples throughout the the-
sis. Chapter 2 also introduces the state of the art in software engineering processes
and design methods, software architecture design methods, methods for enterprise
application development and integration, SOA design methods, and architectural
knowledge management. Finally, SOA design tools used in practice are presented.

The following Chapter 3 compiles a set of requirements for SOA design meth-
ods and derives the seven research problems outlined in Section 1.4 as well as de-
tailed research questions for them. The chapter also assesses the state of the art to
demonstrate that the problems have not been solved satisfyingly so far.

Chapter 4 introduces the SOAD framework and its key concepts. It also posi-
tions our work in the software engineering process and outlines the architecture of
a tool for SOAD. Finally, it applies SOAD to SOA design.

The following Chapters 5 to 8 then detail the SOAD framework steps and their
implementation. Chapter 5 and 6 cover decision model asset creation, beginning
with identification of reusable architectural decision knowledge for SOA design
(Chapter 5) and progressing to modeling individual decisions, model structuring,
and dependency management (Chapter 6). Chapter 5 also gives an overview of the
RADM for SOA we created during thesis validation; excerpts from this decision
model serve as examples in Chapter 6. Asset consumption is described in Chapter
7, comprising tailoring of decision models, their usage as design method, and de-
cision enforcement in model-driven development. Finally, Chapter 8 presents de-
sign and implementation of Architectural Decision Knowledge Wiki, our collabo-
ration system providing tool support for the SOAD steps and concepts.

Chapter 9 presents how we validated SOAD framework, RADM for SOA, and
tool. The subsequent Chapter 10 discusses research approach and results, as well
as strengths and weaknesses observed in the validation. The chapter also compares
SOAD with related work and outlines how our concepts can be supported in
commercial tools. Finally, Chapter 11 concludes with a summary of the thesis re-
sults, answers to the research questions, and an outlook to future work. It also pre-
sents a grand vision for a broader adoption of SOAD in the industry.

There are two appendices: Appendix A presents our bottom-up process for har-
vesting architectural decision knowledge from projects, and Appendix B contains
excerpts from the RADM for SOA developed during thesis validation.

2 State of the Art and State of the Practice

In this chapter, we first characterize the enterprise application genre and introduce
Service-Oriented Architecture (SOA) principles and patterns (Section 2.1). Next,
we present a case study motivating the state of the practice in SOA design (Sec-
tion 2.2). Furthermore, we describe the state of the art regarding SOA design
methods (Section 2.3), which we will later analyze (Chapter 3) and compare with
our solution (Chapter 10). Finally, we present SOA design tools used in practice
(Section 2.4).

2.1 Introduction to Problem Domain

In this section, we introduce the enterprise application genre, related development
and integration challenges, and SOA as an architectural style for this genre.

2.1.1 The Enterprise Application Genre

Companies in industries such as finance, telecommunications, automotive, as well
as retail and distribution rely on Information Technology (IT) systems today. For
instance, customer relationship management systems reach out to customers over
Web-based self service channels to improve customer satisfaction and retention.
In order management scenarios, the IT systems partially automate certain business
functions such as inventory checking so that processing times and cost can be re-
duced. Supply chain management systems integrate business partners into the
company-internal processes, which makes the procurement of production goods
and other materials more efficient and more flexible.

Such IT systems support the business processes in a company, which comprise
multiple business activities [LR00]. In such a setting, business information is rep-
resented in data structures, industry domain-specific algorithms operate on these
data structures, and user interfaces display input and output of the algorithms to
humans. From an information management perspective, complex and sometimes
ambiguously defined entities such as customer profiles, invoices, and bills of ma-
terial have to be represented in software. The algorithms range from simple data
transfer logic to sophisticated calculations and computations as well as long-
running process control flows that codify a company’s intellectual property. The
human-computer interactions deal with a variety of users such as customers and

10 2 State of the Art and State of the Practice

staff who are served over multiple channels. Business processes execution can be
triggered by human users, but also systems such as sensors. First and foremost,
such IT systems are distributed systems [TV03]:

Definition 2.1 (Enterprise Application, System Context, User Channel). An
enterprise application is a distributed, software-intensive system that automates
parts or all of selected business processes and business activities in an enterprise
and supports human users during strategic planning and operations. An enter-
prise application has a system context, which we define as the set of its uses rela-
tions [BCK03] with primary and secondary actors [RJB99]. A user channel is the
technical realization of a uses relation between a primary actor and an enterprise
application. The actors can be human users or other systems.

Figure 2 gives an example. An insurance company exposes its customer care,
contract, and risk management applications to three types of external and internal
human users, its customers, independent agents, and internal back office staff:

CreatePolicy

Customer Self Service
Channel

Agent Channel Back Office Channel

Customer Care
EA

Contract
EA

Risk Management
EA

Customer Database
ER:

Customer Profiles

Policy Backend
ERs:

Offers, Policies

Government
Information

Server

SignContract
Enquire Enquire

CalculateRate
AssessRisk

uses usesuses

uses usesuses

SC 1 SC 2 SC 3

EA – Enterprise Application, SC – System Context, ER – Enterprise Resource

uses uses

Figure 2. System context diagram for a sample enterprise application landscape

There are three user channels, a customer self service, an agent, and a back of-
fice channel. Each of these channels supports one or more business activities initi-
ated by users: enquire, assess risk, calculate rate, sign contract, and create policy.
Let us assume that these activities jointly realize a customer enquiry process.

The applications work with a customer database, a policy backend, and a go-
vernment information server, which appear in the system contexts of the applica-
tions. Additional uses relations indicate how the enterprise applications interact

 2.1 Introduction to Problem Domain 11

with each other. For instance, the customer care application communicates with
the contract application (e.g., when processing a customer or agent enquiry).

To fulfill their responsibilities, the enterprise applications use enterprise re-
sources, which may reside inside or outside their system context boundaries:

Definition 2.2 (Enterprise Resource, Backend System, Backend Channel). An
enterprise resource is a persistent data entity which provides business-relevant in-
formation to one or more of the enterprise applications in an enterprise. It is
stored by one of the enterprise applications using it, which may be a backend sys-
tem. A backend system is an enterprise application whose primary actors are en-
terprise applications, not human users. A backend channel is the technical realiza-
tion of a uses relation between an enterprise application and a backend system.

In the example, the three enterprise applications store their enterprise resources
(customer profiles, offers, and policies) in the customer database and in the policy
backend as shown in Figure 2, which creates uses relations between these systems.
The policy backend is only accessed from the contract and the risk management
application; it is not exposed to any human user directly. Backend systems that
have been developed some time ago are often called legacy systems.

The government information server in the system context of the risk manage-
ment application is an example of an external system that is not operated by the
insurance company. It does not host any enterprise resources in the example, but
may provide additional statistical data required to perform risk assessments.

2.1.2 Characteristics of Enterprise Applications

Several properties make enterprise applications such as the customer care, con-
tract, and risk management applications in the example difficult to develop and in-
tegrate. As distributed systems, enterprise applications must deal with challenges
such as addressing, remote communication, workload and failover management,
and concurrency [Fow03]. Software quality attributes in the areas defined in
ISO/IEC specification 9126-2001 [ISO01] must be respected (see Chapter 1).1 We
now refine these general quality attributes in a genre-specific way. User and chan-
nel diversity, process and resource integrity, integration needs, and semantic am-
biguities are four related characteristics.

User and channel diversity. Many enterprise applications serve multiple human
users with rather diverse wants and needs, skills, and IT experience (quality attrib-
ute: usability). In automation scenarios, non-human actors such as sensors also
must be served. Multiple lines of business and external legal entities (e.g., custom-
ers and suppliers) collaborate during business process execution. Hence, multiple
user channels must be provided. These channels differ in the way they allow users
to interact with an enterprise application (e.g., interactive vs. batch processing).

1 For instance, an aspect of scalability is that a system is able to cope with a growing num-

ber of concurrent users and requests without an unacceptable negative impact on other
quality attributes such as performance and usability.

12 2 State of the Art and State of the Practice

The security requirements, e.g., regarding access control and data privacy, also
vary by channel: Channels crossing company boundaries have demanding authen-
tication, authorization, and confidentiality requirements. The number and the na-
ture of the user channels change often over time.

Process and resource integrity. The integrity of business processes must be pre-
served until they terminate, which may take days, months, or even years (quality
attribute: accuracy). In the example (Figure 2), multiple users (i.e., customers and
agents) might login to the customer care application simultaneously and interact
with it in a conversational fashion (i.e., users send multiple related requests within
a single login session). The user request processing has to be coordinated: conver-
sational state must be managed throughout the process lifetime [ZDG+05]. Fur-
thermore, the integrity of the involved enterprise resources (e.g., customer pro-
files) must be ensured during these conversations throughout the process lifetime:
Phantom reads, loss of updates, deadlocks, and other concurrency problems must
be avoided [Fow03]. Relational Database Management Systems (RDBMS)
[SKS02] and system transactions are commonly used to store enterprise resources
persistently and to prevent the concurrency problems from happening. Less ad-
vanced data management technologies such as flat, custom formatted files are still
used in practice as well; not all of these technologies support transactional invoca-
tion. Moreover, in long running processes, system transactions alone are not suffi-
cient to manage the integrity of the enterprise resources; business transactions
[Fow03] such as compensation [LR00] are complementary approaches.

Integration needs. Modern enterprises are geographically distributed; virtual en-
terprises exist. In the insurance industry example, some of the users are external
parties; the applications must be physically distributed and provide remote
interfaces. Secondly, enterprise applications are strategic assets for a company,
which means that their lifecycle often spawns several years (or even decades).
Technology evolves over the lifetime of the applications. Thirdly, most modern
enterprise applications are composites; already existing software packages, custom
developed applications, and external systems must be integrated [HW04]. Finally,
enterprise applications often use off-the-shelf middleware assets to manage proc-
esses and enterprise resources. The various enterprise applications and the used
middleware assets often follow different architectural principles and run on multi-
ple technology platforms (e.g., operating systems, programming languages). En-
terprise applications have to cope with such heterogeneity and the resulting inte-
gration needs (quality attribute: interoperability).

Semantics. The vagueness and change dynamics of the business information cap-
tured by enterprise resources is another challenge (quality attribute: functionality).
This challenge is also known as conceptual dissonance [Fow03]. For example,
semantics of real-world concepts such as “customer” must be modeled. In our ex-
ample, a master data management solution might refer to a customer as a “party”
and use its own data model to represent parties. It is rather difficult to define such
entities precisely so that they are machine readable, as they convey the human un-
derstanding of a particular business. Humans are able to interpret data flexibly

 2.1 Introduction to Problem Domain 13

(e.g., work with synonyms and homonyms) and to identify and handle exceptional
cases in a nondeterministic way. This is more difficult for machines if many am-
biguities and contradictions in the IT representation of enterprise resources exist.2

When constructing enterprise applications, these challenges must be overcome.

2.1.3 Enterprise Application Development and Integration

To construct enterprise applications, software engineering concepts are applied:

Definition 2.3 (Enterprise Application Development, Enterprise Application
Integration). Enterprise Application Development (EAD) comprises all software
engineering activities required to construct an enterprise application, i.e., analy-
sis, design, development, testing, integration, and operations [Som95]. Enterprise
Application Integration (EAI) provisions messaging and other distributed comput-
ing technologies to let enterprise applications with a uses relation exchange in-
formation about enterprise resources and invoke each other’s functions [HW04].

In this thesis, we focus on analysis, design, and integration. During analysis,
functional requirements, often articulated as use cases [BMR99], process models
[LR00], or user stories [Bec00], describe what the features of an enterprise appli-
cation are; Non-Functional Requirements (NFRs) define quality attributes and
constraints regarding how an enterprise application delivers this functionality.
NFRs usually are captured in free form or structured text, although more rigid ap-
proaches have been proposed.

During design, software architectures are viewed from multiple viewpoints. An
example of such an approach is the 4+1 views model of software architecture
[Kru95]. It defines five viewpoints – the logical, the process, the development, the
physical, and the scenario viewpoint.3 The rationale for this is to manage complex-
ity and divide labor without compromising overall integrity and consistency. For
instance, the focus on a logical view is different from a focus on the physical view.
The logical view defines components (with certain functional responsibilities) and
their connectors. The physical view focuses on IT infrastructure such as operating
system processes and hardware nodes; the NFRs drive its design. Different skills
are required to create logical and physical designs; architectural diagrams for these
views range from informal rich pictures to Unified Modeling Language (UML)
[RJB99] class diagrams profiled for architecture design to proprietary representa-
tions of deployment units, nodes, locations, and network topologies [CCS07].

With the support of a viewpoint schema, we can position the EAD and EAI de-
sign activities in the software lifecycle [Som95] (Figure 3). The top row of Figure
3 shows that the software lifecycle defines a software engineering process includ-
ing design phases on EAD and EAI projects. We use terms from the IBM Unified

2 Fuzzy logic, neuronal networks, advanced database technologies, and the semantic Web

movement aim at improving the situation. Even with such support, the challenge remains.
3 This work was fed into a standard for documenting architecture descriptions, IEEE 1471

(equivalent to ISO / IEC, 42010) [IEEE07]. Other viewpoint schemas exist [CCS07].

14 2 State of the Art and State of the Practice

Method Framework (UMF) to decompose the design phase into solution outline,
macro design, and micro design activities (shown in the middle part of the fig-
ure).4 During these design phases, architects produce the architecture documenta-
tion (bottom of the figure). Not all design activities qualify as architecture design
activities; hence, we position architecture design as a sub-phase of design.

Design Phase 1:
Solution Outline Activities

Design Phase 2:
Macro Design Activities Design Phase 3:

Micro Design Activities

Scenario

Scenario

Scenario

Architecture Documentation 4+1 Views and Decision Log (Captured Decision Outcomes)

Architectural
Decision Capturing

Architectural
Decision Capturing

Architectural
Decision Capturing

Software Engineering Process

Analysis Design Development Test Integration Operations

Logical

ProcessPhysical

Dev.

Logical

ProcessPhysical

Dev.

Logical

ProcessPhysical

Dev.

4+1 Viewpoints

4+1 Viewpoints

4+1 Viewpoints

defines design phases of EAD/EAI project

produces updates,
produces updates, produces

Reusable Asset
(e.g., method, see Section 2.3)

Project
(e.g., motivating case study,

see Section 2.2)

Figure 3. EAD/EAI design activities in software engineering process

The architecture documentation is organized into views, which follow a particu-
lar viewpoint scheme. In this case, we chose the 4+1 views defined by [Kru95]. In
each of the three design phases, the views are elaborated progressively. Figure 2 is
an example of a diagram that is part of architecture documentation; showing the
system contexts of three applications, it provides a scenario view.

To rationalize a design, the architectural decisions [KLV06, TA05] should be
captured; we defined the term in Chapter 1. The resulting decision log becomes an
additional architectural view [DC05].

To refine the genre-specific challenges from Section 2.1.2 is part of the analysis
activities. The selection of architectural patterns [BMR+96] is an example of a
design activity. We investigate such patterns next.

4 Alternatively, we could have used the taxonomy from [Kru03] or [PV06].

 2.1 Introduction to Problem Domain 15

2.1.4 Principles and Patterns in SOA Design

When designing an architecture, architects can start from scratch or base their de-
sign work on already existing assets. The four user channel (U), process and re-
source integrity (P), integration (I), and semantics (S) challenges outlined in Sec-
tion 2.1.2 can also be observed in other software-intensive systems; hence many
related architectural principles [OG07] and patterns have already been docu-
mented, e.g., in object-oriented programming [Mey00, GHJ+95], in distributed
computing [BHS07, VKZ04], and in genre-specific literature [Fow03, HW04].

In recent years, the existing principles and patterns have been combined and ex-
tended to form an important architectural style [BCK03, SG96] for EAD and EAI:
Service-Oriented Architecture (SOA) [KBS05]. As the term architectural style is
used ambiguously in the literature, let us clarify its meaning for this thesis:

Definition 2.4 (Architectural Style). An architectural style consists of a set of ar-
chitectural principles and patterns that are aligned with each other to make de-
signs recognizable and design activities repeatable: The principles express archi-
tectural design intent; the patterns adhere to the principles and are commonly
occurring (proven) in practice. They can be combined into workable solutions.

Architects apply an architectural style to benefit from already gained architec-
tural knowledge and to ensure their solutions to complex design problems are
workable. One example of an architectural style is pipes and filters, which is ap-
plied in UNIX to aggregate shell commands from predefined ones and in the
World Wide Web to create composite applications such as Yahoo! Pipes [Yah].

Most existing architectural patterns take a logical viewpoint to define compo-
nents and connectors that comprise the pattern; patterns for other viewpoints can
also be found. The architectural patterns appearing in the definition of an architec-
tural style may be assembled from more primitive ones [ZHD07] or from design
patterns [GHJ+95]; if that is the case, we call them composite patterns.

As we positioned SOA as an architectural style for EAD and EAI, we can de-
fine SOA with application genre-specific principles and patterns. To do so, we
take multiple perspectives, (a) a business analysis perspective, (b) an architecture
design perspective, and (c) a development perspective. The perspectives corre-
spond to phases in the software engineering process from Figure 3:5

Definition 2.5 (Service-Oriented Architecture). (a) From a business analysis
perspective, an SOA provides a set of services that an organizational unit of an
enterprise exposes to its customers, business partners, and company-internal or-
ganizational units. Business alignment of enterprise applications and underlying
IT infrastructure is the principle motivating the introduction of this pattern.

(b) From an architecture design perspective, SOA introduces a service con-
sumer (a.k.a. requestor), a service provider, and a service contract (see Definition
2.6). This pattern promotes the principles of modularity and platform transpar-
ency. A composite architectural pattern, Enterprise Service Bus (ESB), governs

5 Many other definitions of SOA exist, none of which is precise and detailed enough to base

a decision-centric SOA design method on it. Our definition evolved from [Ars04].

16 2 State of the Art and State of the Practice

the service consumer-provider interactions and physical distribution in support of
principles such as protocol transparency and format transparency (Definition 2.7).
The service composition pattern organizes the processing logic, adhering to the
principles of logical layering and flow independence (Definition 2.8). The service
registry pattern defines how service providers are looked up; the related principles
are location transparency and service virtualization (Definition 2.9).

(c) As far as the development perspective is concerned, SOA provides a stan-
dardization of an implementation and deployment model, which may be realized
by technology standards such as Web services [ACK+03], Service Component Ar-
chitecture (SCA) [OSOA], and Java Web services [SunWS].

Table 1 summarizes these perspectives, principles, and patterns defining SOA,
and relates them back to the EAD and EAI challenges from Section 2.1.2:

Table 1. SOA principles and patterns

Perspective Principle (Challenge) Pattern or Technology
(a) Business analysis Business alignment (U, S) Service

Modularity (U, P, I, S)
Platform transparency (I) Service consumer-provider contract

Protocol transparency (U, I)
Format transparency (I) Enterprise Service Bus (ESB)

Logical layering (U, P, I)
Flow independence (P, I) Service composition

Location transparency (I)

(b) Architecture design
(logical and physical
viewpoint)

Service virtualization (S, I) Service registry

Web services specifications
Service Component Architecture (SCA)

(c) Development

Standardization (I)

Java Web services

Figure 4 describes the architectural patterns from Definition 2.5 in a UML class
diagram.

Figure 4. SOA patterns in UML (logical viewpoint)

 2.1 Introduction to Problem Domain 17

The essence of the style is the decoupling of service consumer and service pro-
vider via the service contract, ESB messaging, and the service registry. We now
introduce all four patterns from Definition 2.5 and Figure 4 in detail.

Definition 2.6 (Service Consumer-Provider Contract). A service contract de-
fines a service invocation interface. The contract has a functional and a behav-
ioral part. The functional contract is machine-readable and specifies one or more
operations which comprise request and, optionally, response messages. A service
provider realizes the operations defined in the contract; a service consumer in-
vokes them. We jointly refer to a service provider-contract pair as service. A ser-
vice consumer sends a request message to invoke an operation defined in the func-
tional contract; optionally, the service provider returns a result as a response
message. The behavioral part of the service contract defines the non-functional
characteristics of the message exchange and the operation invocation semantics.

The motivating principles for this pattern are modularity [Mey00] and platform
transparency. As a foundation of all four patterns, the modularity principle indi-
rectly addresses all four challenges from Section 2.1.2; platform transparency ad-
dresses the integration challenge. The service contract separates interface and im-
plementation; it is the only knowledge shared by service consumer and service
provider. Security policies are examples of non-functional aspects expressed in the
contract (e.g., should a request message be encrypted?). Operation invocation se-
mantics include pre- and postconditions. The service lifecycle (e.g., provisioning
and decommissioning of providers) is not exposed in the behavioral part of the
contract, i.e., no distributed call stacks or heaps exist, which would require a re-
mote memory management. This gives services an “always-on” appearance from a
consumer’s perspective. As a consequence, the request and response messages can
only be exchanged as documents which do not include any memory references.

Once such contract has been agreed upon, the implementation details of service
providers are hidden from the consumers; they can change without effect on ser-
vice consumers. Consumer and provider do not have to be implemented in the
same programming language; they can run on multiple hardware and operating
system platforms. Assuming that service invocations do not have any unspecified
side effects such as uncoordinated manipulations of enterprise resources, service
consumers can share and reuse service providers freely.

The principles and similar patterns are known from object-oriented program-
ming [Mey00] and distributed (client/server) computing [TV03]. Many technol-
ogy platforms can be used to implement them. If Web services technologies are
used, the Web Services Description Language (WSDL) [W3C03] defines func-
tional service contracts. WS-Policy [W3C07] can be used to specify non-
functional characteristics. Web Service Semantics (WSDL-S) [AFM+05] anno-
tates WSDL contracts with semantic descriptions; several other notations have
been proposed.6 At runtime, service consumers and providers exchange SOAP
[W3C01] messages to transfer request and response documents which are format-

6 In practice, the service invocation semantics are often specified informally, e.g., in text.

18 2 State of the Art and State of the Practice

ted according to the WSDL contract. All these technologies are based on XML
languages [W3C00].

The next pattern focuses on the integration challenge from Section 2.1.2. It de-
tails the message exchange capabilities introduced in Definition 2.6:

Definition 2.7 (Enterprise Service Bus). The ESB pattern is the SOA-specific re-
finement of the general broker pattern [BMR+96]: An ESB provides a remote
communication infrastructure that allows service consumers and service providers
to exchange request and response messages using one or more message exchange
patterns, communication protocols, and message exchange formats [KBH+04].

In general, brokers provide many-to-many connectivity between technically di-
verse and physically distributed communication parties; they decouple the parties
from each other. The primary responsibility of an ESB is to route request and re-
sponse messages. Introducing a central ESB and a service registry (Definition 2.9)
creates a hub-and-spoke architecture known from EAI middleware; a direct com-
munication variant of the broker pattern also exists, in which the communication
partners know about each other and address each other directly [BMR+96]. ESBs
support message exchange patterns such as synchronous request-reply invoca-
tions, asynchronous one way messaging, and publish-subscribe [HW04].

Unlike traditional message brokers, an ESB is aware of the type and structure
of the messages exchanged: The ‚S‘ in the pattern name refers to a machine-
readable service contract as introduced in Definition 2.6. The ‚E‘ in the pattern
name indicates that the ESB must provide architectural qualities that make it pos-
sible to overcome the integration challenges outlined in Section 2.1.2. For in-
stance, high volumes of messages have to be processed, possibly exchanging large
amounts of data over local or wide area networks when transferring enterprise re-
source information (data). Channels serving human users must respond instantly;
sub-second response times are often required. If devices such as sensors and ac-
tuators are integrated into the SOA to monitor and control the physical environ-
ment, communication may have to happen in real time.

The World Wide Web (WWW) as a distributed communication infrastructure
partially implements the ESB pattern, providing universal connectivity over a sin-
gle protocol, HTTP [W3C04]. Advanced ESBs also provide protocol transpar-
ency. Multiple communication protocols are supported, including HTTP, but also
asynchronous message queuing, e.g., via Java Message Service (JMS) providers
[SunJMS], and, with the help of adapters, proprietary protocols used by legacy
systems [KBH+04]. Other advanced ESB capabilities are content- and workload-
based routing and mediations. Mediations transform request and response mes-
sages if service consumer and provider use different formats. This provides format
transparency to service consumers and providers. ESBs also provide access to the
message payload (i.e., request and response message data) for security and sys-
tems management purposes, e.g., authentication, authorization, monitoring, and
billing. The service contract is interpreted to process the payload.

The next pattern addresses the process and resource integrity challenges from
Section 2.1.2. This is required when a large number of services are integrated:

 2.1 Introduction to Problem Domain 19

Definition 2.8 (Service Composition). If two or more service providers are as-
sembled into an additional service provider we speak of service composition. This
additional service provider invokes the assembled service providers via their ser-
vice invocation interfaces. Service composition may form a dedicated architec-
tural layer in an SOA, which we call service composition layer.

If an enterprise application employs SOA principles such as modularity, many
different service providers with rather diverse responsibilities may exist, e.g.,
technical logging services, atomic business functions such as customer lookups
and address validations, and entire business processes such customer enquiries and
claim processing in the insurance industry example. The characteristics of these
service providers differ. To avoid a tight coupling between service consumers and
providers with different responsibilities and quality attributes as well as undesired
dependencies between the services, the permitted invocations must be defined. For
instance, a process service may be permitted to invoke a business function service,
but not to invoke a technical service directly. Similarly, a technical logging service
should be unaware of its consumers and not call a process service itself. Other-
wise, a change to the interface of the process service, which is required to respond
to a change in the business requirements, requires the technical utility service to be
changed as well (if the change is not backward compatible). This violates the
modularity principle and degrades the maintainability and portability of the appli-
cation.

As a solution, the SOA should be organized into three or more logical layers.
Selecting the layers pattern [BMR+96] is an architectural decision driven by the
desire for structure and flexibility: Architectural elements in a particular logical
layer fulfill a certain architectural responsibility jointly and cohesively. They only
interact with each other and with architectural elements in adjacent lower layers;
interfaces isolate the layers from each other. As a result, layer implementations
can seamlessly switch from one technology to another, without causing a need to
change the architectural elements contained within one of the adjacent layers.

Traditionally three logical layers are used in EAD [Fow03]: The presentation
layer contains all rich or thin client logic displaying user interfaces to human us-
ers. In an SOA, many service consumers reside in the presentation layer. The do-
main layer contains business logic such as control flow, but also calculations and
modifications of enterprise resources. It is typically activated in response to stim-
uli from the presentation layer or from other systems (e.g., when realizing busi-
ness event and timeout management). The data source layer lets enterprise re-
sources and other data persist. It also provides interfaces allowing the domain
layer to access the data when executing its logic.

The service composition pattern refines the above logical layering scheme: The
domain layer is divided into two sub-layers, a service composition layer and an
atomic service layer. Service providers either reside in the atomic service layer or,
as composed services, in the service composition layer. The implementations of
atomic services in a programming language may also reside in the atomic service

20 2 State of the Art and State of the Practice

layer or be placed in an additional component layer. The ESB and the service reg-
istry patterns are co-located in a separate integration layer [Ars04].7

Business activities that are assigned to end users8 are placed in the service com-
position layer. The service composition layer keeps track of the conversational
state. Business activities invoke services in the atomic service layer. The atomic
service layer contains calculations and manipulations of enterprise resources,
which are not permitted to invoke services in the service composition layer. A
business process manager [HW04] (e.g., a workflow management system [LR00])
is the central middleware component in the service composition layer. It is aware
of the business activities that have to be performed and the appropriate order,
which defines an executable business process control flow (a.k.a. workflow). Each
process manager can host more than one process; it is responsible for creating and
terminating process instances, and relating incoming requests to such process in-
stances (correlation). Such process instances may run for a long time: The process
manager can ensure that the logical order of the process execution is adhered to
and that the integrity of enterprise resources is preserved throughout the process
lifetime and across user channels (coordination). This includes handling logical
and technical processing errors (e.g., invalid request data, network connectivity
problems). The process manager can also ensure that process instances complete
in a timely manner if that is a business requirement.

Having divided the business logic this way, flow independence can be
achieved; just like presentation and domain layer are unaware of the way a rela-
tional database stores the enterprise resource data and optimizes access to it (pro-
viding data independence [SKS02]), the basic computations in the atomic service
layer are unaware of the way they are composed into business processes.

If workflow patterns and technologies are used to realize the service composi-
tion layer, the formal foundations for its execution semantics can be Petri nets, Pi-
calculus, or graph theory [LR00]. One technology option is the Web Services
Business Process Execution Language (WS-BPEL or, in short, BPEL), which
evolved from several proprietary languages and has been standardized [OAS07].

Our fourth and final pattern addresses the integration and semantics challenges
from Section 2.1.2, extending the ESB pattern:

Definition 2.9 (Service Registry). A service registry provides information about
services that can be invoked via the ESB. It makes service contracts and service
provider access information available to the ESB and to service consumers. Or-
ganizational information such as service ownership, service level agreements, and
billing information can optionally be stored in the service registry as well.9

To ensure flexibility during deployment and service invocation, service con-
sumers should not use fixed service provider addresses; ideally, they should even
be unaware of the actual service provider and let the ESB decide where to route a

7 At present, no single SOA layering scheme has been agreed upon; many proposals exist.
8 End users are primary or secondary actors (in UML terminology [RJB99]) in the system

context with business relevance. Actors can be human users or other systems.
9 If used at design time, the service registry is also referred to as service repository. We use

the terms interchangeably in this thesis.

 2.2 State of the Practice: Motivating Case Study 21

service request to (e.g., for load balancing purposes). To provide such location
transparency is the objective of the service registry pattern.

A service registry provides a design time interface to architects and developers
which allows these users to publish and lookup service contracts and providers. At
runtime, a service registry may also act as a service provider, so that ESB and ser-
vice consumers in other applications have access to the information about service
contracts and service providers that is stored in the registry.

Selecting service providers at runtime is an advanced usage scenario for a ser-
vice registry; such dynamic lookup requires semantic annotations that can be used
to automate the provider lookup based on the Quality of Service (QoS) expected
by a consumer. Service consumers and providers are no longer aware of each
other (service virtualization). Many open research and industry adoption chal-
lenges exist, such as trust, negotiation, and monitoring of dynamically negotiated
service level agreements.

This pattern is the SOA pendant of naming and directory services known from
the Common Request Broker Architecture (CORBA) [OMG04], Java Enterprise
Edition (JEE) [SunJEE], Distributed Computing Environment (DCE) [OG97], and
other remoting middleware. The Universal Description, Discovery, and Integra-
tion (UDDI) [OAS04] specifications realize the service registry pattern in a Web
services context; vendor-specific UDDI extensions and alternative realizations ex-
ist. An example is the IBM WebSphere Service Repository and Registry (WSRR)
[IBM]. A detailed analysis of the novelties of the pattern and its implementation
alternatives is out of scope of this thesis.

With application genre characterized and SOA principles and patterns defined,
we can define what we mean by SOA design in this thesis:

Definition 2.10 (SOA design). SOA design comprises all architecture design ac-
tivities on EAD and EAI projects employing SOA principles and patterns.

2.2 State of the Practice: Motivating Case Study

To demonstrate the state of the practice in EAD and EAI and to motivate the de-
sign issues that occur in SOA design, we introduce a scenario from the insurance
industry in this section. The scenario concerns a fictitious company, which we al-
ready used in [ZTP03]. Business scenario, requirements, and technical design con-
siderations in the case originate from real SOA projects conducted in several in-
dustries, e.g., [ZMC+04, ZDG+05]. Due to space constraints, we simplify the
case. However, we present it in such a way that it is still representative for the
state of the practice and helps to motivate our research problems.

22 2 State of the Art and State of the Practice

2.2.1 An Insurance Industry Scenario: Customer Enquiry Processing

Let us assume that PremierQuotes Inc., a fictitious insurance company, acquired
DirtCheap Insurance, another fictitious insurance company, and formed the Pre-
mierQuotes Group to fulfill the growth expectations of its stakeholders [ZTP03].

Shortly after the takeover, a strategic initiative to improve the customer enquiry
processing is established by the executive management. The objectives of the ini-
tiative are to improve customer service, measured by the conversion rate (i.e., ratio
between accepted offers and enquiries processed), and increase profit by not mak-
ing an offer if there is a high risk of fraudulent claims.

To contribute to the strategic initiative, the Chief Information Officer (CIO)
launches an EAD and EAI project, with the goal to develop a new process-centric
customer enquiry system which reuses logic from existing customer care, contract,
and risk management applications operated by the two merged companies. We in-
troduced these enterprise applications in Figure 2 on page 10. Let us further as-
sume that the policy backend and the risk management application are COBOL
applications running on the IBM System z platform [IBM]. The contract applica-
tion is a Java Enterprise Edition (JEE) application [SunJEE]. Customer care is a
Web application consisting of PHP scripts. An external data source, currently pro-
vided by a government information server available on the Internet, has to be inte-
grated, providing the crime statistics (fraud history) for a certain geographical area
in a proprietary file format.

2.2.2 Business Process Model

To understand the business needs and solicit functional requirements from a sce-
nario viewpoint, a Business Process Model (BPM) can be created. Such analysis-
phase BPMs are typically created by business domain experts, not software archi-
tects or workflow technology specialists.10

Figure 5 gives an example, using the Business Process Modeling Notation
(BPMN). The users of the new system are prospective customers, independent
agents, and the PremierQuotes Group back office staff. Each horizontal swim lane
in the diagram represents one user channel shown in Figure 2 (page 10). The busi-
ness event triggering the process execution is a customer enquiring about an offer
for a certain type of insurance, e.g., health care. The processing can either start be-
cause a prospective customer enquires about insurance over the self service chan-
nel or because an agent enquires on behalf of the customer. The following busi-
ness activities are conducted by the involved parties: request offer, assess risk,
calculate rate, receive offer, sign contract, and create policy. The enterprise re-
sources are displayed as documents accessed or manipulated by the business ac-
tivities (e.g., customer profile in assess risk activity).

10 Use case modeling [RJB99] is another requirements analysis technique; the agile com-

munity favors user stories [Bec00] over BPM and use cases.

 2.2 State of the Practice: Motivating Case Study 23

Calculate
Rate

Pr
em

ie
r Q

uo
te

s
B

ac
k

O
ffi

ce

Risk
Acceptable?

Yes

No Offer

In
de

pe
nd

en
t

A
ge

nt

Request
Offer

Pr
os

pe
ct

iv
e

C
us

to
m

er
Rate

Attractive?
Yes

No

C
us

to
m

er
 E

nq
ui

ry
 P

ro
ce

ss
in

g

Assess
Risk

Request
Offer

Policy

Receive
Offer

enquire
for customer

enquire

Sign
Contract

Create
Policy

Customer Profile
Figure 5. Analysis-phase BPM for customer enquiry processing

Note that the processing is not fully specified: It is not clear what happens in
the customer swim lane if no offer is made and what happens in the back office if
the customer does not sign the contract until a certain date. Such information
could be added to the diagram. However, even if such information is added, the
diagram does not provide enough information to design an SOA or implement any
Web services. Important technical information is missing:

• User information such as their location and supporting IT infrastructure
(e.g., hardware, user channel middleware, and existing applications).

• Data structures transferred from one business activity to another, e.g.,
from request offer to assess risk, and data definitions for enterprise re-
sources, e.g., customer profile, offer, and policy.

• Request correlation and process instance management required to over-
come the process and resource integrity challenges (see Section 2.1.2).

• Technical error handling needs (e.g., network and server timeouts).
• Quality of Service (QoS) requirements and other non-functional con-

cerns, e.g., regarding transactionality, security, and reliability.
• Availability and interfaces of involved enterprise applications (e.g., leg-

acy systems), network topology layout, and used integration middleware.

Such technical aspects are not expressed as the BPM is created during business
requirements analysis. The model can be exported to BPEL to become directly ex-
ecutable in a BPEL process manager that implements the service composition pat-

24 2 State of the Art and State of the Practice

tern (Definition 2.8). However, such a direct execution often is not sufficient for
production workflows as the source model does not cover the above design con-
cerns sufficiently.11

2.2.3 Business Rules, NFRs, and Legacy Constraints

More information about the requirements than that provided by the analysis-phase
BPM is required so that the customer enquiry processing system can be designed.
We now summarize the architecturally significant business rules, non-functional
requirements, and legacy constraints. These requirements concretize the generic
user channel, process and resource integrity, integration, and semantics challenges
from Section 2.1.2. They are solicited during the analysis phase of the project.

Business Rules (BRs) capture functional requirements that can not be expressed
easily in control-flow oriented BPMs or stimulus-response-based use case models:

BR 1. Only one offer should exist per customer at any given time.

BR 2. To improve customer service and conversion rate, PremierQuotes Group
must respond to a prospective customer within three working days.

BR 3. A prospective customer can see the status of the enquiry processing via a
Web application, but not the detailed justification for the calculated rate, or any in-
formation belonging to the profiles of other existing and prospective customers.

BR 4. The back office must always be able to obtain up-to-date information about
the processing (enquiry status). All customer-facing activities must be monitored.

BR 5. If the customer does not accept an offer within two weeks (sign contract ac-
tivity), the enquiry processing is terminated and archived in the customer database
(so that the archived information can be used later for risk calculation purposes).

Non-Functional Requirements (NFRs) state how a system performs its func-
tions, rather than what functions it provides:12

NFR 1. The system must be able to handle up to 50 concurrent users. This NFR
has been calculated based on the number of active agents, the existing customers
and the business growth strategy. The average customer self service and agent ses-
sion length is ten minutes; one customer enquiry process instance is triggered per
session. Back office users are logged in permanently during regular business hours
and trigger up to one business activity per second.

NFR 2. New communication protocols and interfaces should be built on mature,
open industry standards if these standards are supported by at least two vendors.

11 This is not a language limitation, but a role and phase issue: Defining technical properties

is not a responsibility of business domain experts analyzing the functional requirements.
12 The NFRs may differ per user channel and per used backend system. They should be

specified per business activity or use case, not globally (a common mistake in practice).

 2.2 State of the Practice: Motivating Case Study 25

NFR 3. Other business processes must be able to work with a customer profile
while a customer enquiry process is using it. Update conflicts must be prevented.

NFR 4. Sub-second response time is required in the customer self service and the
agent channels (for all processing steps defined in the analysis-phase BPM). The
system must be available during working hours, after hours, and on weekends.

NFR 5. The request volumes are expected to grow if the business strategy suc-
ceeds. The new customer enquiry application should be portable, as an IT infra-
structure migration project is currently underway. Additional functionality is
likely to be required in future releases; for instance, the board members of Pre-
mierQuotes Group have already expressed a desire to run business simulations.

Legacy Constraints (LCs) are a special type of NFRs. LCs are architecturally
relevant characteristics of other systems appearing in the system context of the en-
terprise applications that can not be changed within the scope of the current pro-
ject. The backend and external systems in the case introduce the following LCs:

LC 1. The only interface to the customer database is a Structured Query Language
(SQL) [SKS02] interface provided by a Relational Database Management System
(RDBMS). To format customer profiles, the customer database interface uses
identifiers and data types that are different from those understood by the contract
application.

LC 2. The policy backend offers a synchronous Remote Procedure Call (RPC)
[HW04] interface. The risk management application provides an asynchronous
Message-Oriented Middleware (MOM) interface [HW04]; both of these interfaces
are non-transactional from a consumer’s perspective.

LC 3. The government information server, which must be integrated to be able to
perform the risk assessment, does not provide an online interface. A proprietary
file transfer format is defined. A batch job can be run to obtain the fraud history
data from a Website accessible via FTP. When a request file is uploaded, it takes
up to 24 hours until result data or an error report becomes available for download.

Our exemplary compilation of BRs, NFRs, and LCs is not complete; on indus-
try projects, several hundred of such requirements typically have to be dealt with.

2.2.4 Candidate Architectures

To illustrate the complexity of the application genre and the need for architectural
decision making, we present two conceptual architectures for the case now: A tra-
ditional client-server architecture and one based on SOA principles and patterns.

Client-server architecture. Figure 6 illustrates a three-tier client-server architec-
ture [ACK+03, OHE99] for the customer enquiry system, not yet using any SOA
pattern.

26 2 State of the Art and State of the Practice

Customer Self Service
Channel

Agent Channel Back Office Channel

Customer Database Policy Backend Government
Information Server

EAI Middleware
incl. Backend Adapters

Customer Care EA Contract EA Risk Management EA

Presentation Logic

Domain Logic
(Control Flow,

Calculations, ER Management)

Resource (Data) Access Logic

Presentation Logic

Resource (Data) Access Logic

Presentation Logic

Resource (Data) Access Logic

World-Wide Web (WWW) Infrastructure (Internet, Intranet)

Client Logic

Client Tier

Mid Tier

Backend Tier

EAI Middleware
incl. Backend Adapters

EAI Middleware
incl. Backend Adapters

Client Logic Client Logic

Domain Logic
(Control Flow,

Calculations, ER Management)

Domain Logic
(Control Flow,

Calculations, ER Management)

Figure 6. Customer enquiry architecture 1 (three-tier client-server)

The three physical tiers are the client tier, the mid tier hosting presentation,
domain, and resource (data) access logic, and the backend tier. World-Wide Web
(WWW) infrastructure connects the client tier with the mid tier (over the Internet
for the customer self service channel and the agent channel, over an intranet for
the back office channel). Traditional Enterprise Application Integration (EAI)
middleware is used to connect the mid tier with the backend tier.

The client tier contains all application components directly serving the users
appearing in the system context diagram (Figure 2 on page 10) and the analysis-
phase BPM (Figure 5 on page 23). Examples are Web browsers and rich client ap-
plications running on Personal Computers (PCs) used by customers, agents, and
back office staff. This tier is out of scope of our integration-centric case study.

The mid tier comprises the three applications shown in the system context dia-
gram. These applications are logically layered13 into presentation, domain, and re-
source (data) access logic layers. Typical responsibilities of the mid tier are input
validation, processing control, session state management, calculations, and ma-
nipulations of enterprise resources in response to the EAD and EAI challenges
discussed in Section 2.1.2. We detail the architecture of this tier in Figure 7.

The backend tier stores enterprise resources persistently and coordinates con-
current access to the enterprise resources (i.e., customer profiles, offers, and poli-
cies). This tier hosts database servers, but also other systems which in themselves
may be physically tiered, but are located external to the company or in another or-

13 Tiers provide separation of concerns in the physical viewpoint, layers in the logical one.

 2.2 State of the Practice: Motivating Case Study 27

ganizational domain. The policy backend and the government information server
are examples. This tier is out of scope of our case study as well.

Figure 7 decomposes the mid tier of the contract application according to
Fowler’s and Brown’s layering scheme [Fow03] and shows the logical compo-
nents required to realize the contract application:

Contract
EA

Presentation Logic

Domain Logic (Calculations, ER Management)

Resource (Data)
Access Logic

Domain Logic
(Control Flow)

BA Forms BA Controllers BA Result Views

Customer RDBMS
Adapter Interface

Policy Backend RPC
Adapter Interface

Risk Management MOM
Adapter Interface

BA Precondition Checker BR Enforcer

Rate Calculator

ER Locator

ER Update

Dialog Manager

Error Handler

Error View

ER Lookup

Timer Utility

BA – Business Activity (e.g., Create Policy)
BR – Business Rule (e.g., BR1)
ER – Enterprise Resource (e.g., Customer Profile, Policy, Offer)

Access Control

RDBMS – Relational Database Management System
MOM – Message-Oriented Middleware

RPC – Remote Procedure Call

State Manager

Figure 7. Logical decomposition of mid-tier layers

The presentation logic validates user input, controls which domain logic to in-
voke for each incoming request, and prepares the result views. The domain logic
verifies whether all prerequisites for request processing are met, coordinates the
requests, and controls the processing flow (upper part); it also performs calcula-
tions and creates, reads, updates, and deletes enterprise resources such as customer
profiles, offers, and policies (lower part). The resource (data) access logic con-
nects the mid tier with other enterprise applications and the backend tier (here:
customer database, policy backend, and risk management application via adapt-
ers). We do not introduce all logical components in detail here, but refer the reader
to the literature [Fow03, ZDG+05]. The mid tiers of the other two applications
(customer care, risk management) have similar logically layered architectures.

All business activities specified in the analysis-phase BPM and related use
cases can be supported with such architecture. One of its strengths is that the logi-
cal layering principle is followed; the layers in the three applications can be de-
veloped independently of each other. Another advantage is that design time reuse
can be achieved through code libraries [Mey00]. For instance, the policy ER
lookup component and the timer utility may also be needed in the customer care
application.14

However, it is rather difficult to maintain overall consistency of the processing
state (as required to satisfy BR 1, 2, 4, and 5) because the contract application is

14 In practice, such code is often duplicated due to organizational matters.

28 2 State of the Art and State of the Practice

only one of three applications; it can influence the processing in the customer care
and in the risk management applications only via information exchanges over the
EAI middleware or via the customer RDBMS. Business activity monitoring, time-
out management, and business transaction management as required by the busi-
ness rules and NFRs from Section 2.2.3 can be implemented this way; however,
this is a labor-intense and error-prone undertaking. The required custom code of-
ten is hard to maintain.

Another drawback is the peer-to-peer approach to integration (i.e., no hub-and-
spoke broker [HW04] is used). Each application has its own resource (data) access
logic and adapter; a change in a backend interface (e.g., addition of a parameter)
causes changes in all adapters. The format transparency principle is not followed.
SOA. Figure 8 outlines an alternative architecture, now employing SOA principles
and patterns to organize the tiers: The system context and application boundaries
from Figure 6 no longer exist; the mid tier domain logic is refactored into atomic
services (i.e., providers with contracts). The ESB and service composition patterns
are applied. In this architecture, SOA layers from Definitions 2.8 are used: inte-
gration, presentation, service composition, and atomic services layer.
Customer Self Service
Channel

Agent Channel Back Office Channel

Customer Database Policy Backend

Enterprise Service Bus (ESB) Gateway incl. World-Wide Web Access

Risk Management Provider

Process Manager incl. Customer Care, Contract, Risk Management Control Flow

Presentation Logic

Customer Care Contract Risk Management

Contract Provider
Calculations, ER Management
(Request Offer, Sign Contract)

Customer Care Provider
Calculations, ER Management

(Create Policy)
Calculations, ER Management
(Calculate Rate, Assess Risk)

Client Logic

Internal ESB incl. Resource (Data) Access Logic and Backend Adapters

Presentation Layer

Integration Layer

Service Composition Layer

Atomic Service

Integration Layer

Atomic Service Atomic Service

Presentation Logic Presentation Logic

Government
Information Server

Client Logic Client Logic

Figure 8. Customer enquiry architecture 2 (SOA)

The atomic services comprise the calculations and enterprise resource man-
agement part of the domain logic layer from the traditional tree-tiered architecture.
There is one service provider per refactored application; each service operation
implements the calculations and enterprise resource management required by one

 2.2 State of the Practice: Motivating Case Study 29

business activity from the analysis-phase BPM.15 Each provider exposes a service
contract, which is used by service consumers in higher layers to prepare request
messages and process response messages before and after service invocation.

The internal ESB (see Definition 2.7) is responsible for providing resource
(data) access logic and adapters (which was formerly implemented in the three ap-
plications and traditional EAI) and for request routing. It is aware of the service
contracts and can monitor service invocations in response to BR 4.

The process manager consolidates the control flow part of the domain logic
formerly spread over the domain layers of the three applications. The seven busi-
ness activities from the BPM (Figure 5 on page 23) appear in the executable proc-
ess model (this is not shown in Figure 8). The process manager interfaces with the
presentation logic which serves the customer, agent, and back office channels. It is
responsible for preserving correct processing states, which helps to enforce the BR
1, 2, 4, and 5. Modern process managers (e.g., BPEL engines) provide rather so-
phisticated timeout and compensation management capabilities, which can be lev-
eraged to satisfy business rules such as BR 2 (respond within three days).

The ESB gateway provides the users of the customer enquiry SOA access to the
presentation layer, which invokes services in the lower layers, starting with the
business activities hosted by the process manager.

Like in the previous architecture, design time reuse is possible. Business and
resource (data) access logic can also be shared at runtime: Being exposed on the
internal ESB, the contract service can be used by the contract consumer, but also
by the customer care consumer. This makes the architecture more flexible, but
causes extra runtime dependencies between consumers and providers.

Note that we do not claim either one of the two architectures to be superior to
the other; they merely serve as examples of EAD and EAI challenges, of the usage
of the SOA patterns, and of related design issues. We present such issues next.

2.2.5 Design Issues in the Case

When receiving functional specifications like the one in Figure 5 and producing
architecture design models such as Figure 6, Figure 7, and Figure 8, software ar-
chitects have to select an appropriate architectural style. As already discussed,
SOA is a state-of-the-art option; a more conservative alternative is to develop
three separate three-tier applications. Many follow-up design issues arise before
the design can be implemented with Web services and/or other technologies.

Strategic design issues. Assuming that SOA is the preferred option, a particular
SOA reference model must be selected, which includes agreeing on terminology
and identifying relevant pattern languages, and setting technology and product
procurement directions. The business strategy16 and technical principles, e.g., to

15 This is a simplification which is acceptable at this design refinement stage.
16 E.g., mergers and acquisitions planned, or divestitures and outsourcing?

30 2 State of the Art and State of the Practice

prefer or ban open source assets and to prefer certain software vendors and server
infrastructures, must be considered. NFR 2 is an example of a related requirement.

Conceptual design issues. Next, conceptual patterns must be selected and
adopted, decomposing the ones that define SOA as an architectural style. All
components appearing in Figure 4 on page 16 have to be refined, e.g., the router in
the ESB pattern. Functional requirements, business rules, NFRs, and legacy con-
straints such as those from Section 2.2.3 influence the design work.

In the case, we identified customer care, contract, and risk management ser-
vices. It is required to design service providers for these services. The granularity
of the service contracts in terms of number of service operations and structure of
request and response messages (see Definition 2.6) must be decided. Once such
service contracts are in place, it becomes possible to design service consumers.

The detailed design and configuration of the internal ESB and the ESB gateway
triggers another set of concerns: According to our ESB definition, message ex-
change patterns and formats, as well as mediation, routing, and adapter patterns
have to be selected (or banned). In this pattern selection and adoption process,
format transformations, security settings, service management (e.g., monitoring),
and communications transactionality must be defined precisely.

The service composition design also must be refined if this SOA pattern is se-
lected. As already outlined, the choice of a central process manager implementing
workflow concepts as opposed to distributed state management in individual ap-
plications is an important architectural concern. Other key architecture design is-
sues regarding service composition are where to draw the line between the service
composition layer and the atomic service layer, how to interface with the presenta-
tion layer (in terms of request correlation and coordination), and how to integrate
legacy workflows, e.g., those residing in software packages. System transaction
boundaries and higher level error handling strategies such as business transactions
and compensation handlers have to be defined as well.

In the case, we did not introduce a service registry (Definition 2.9) in the archi-
tecture. If we had done so, several design issues would deal with the adoption and
implementation of this pattern, as well as the related operational aspects. Design
time versus runtime registry lookup is an example of a related design issue.

Platform-related design issues. Implementation technologies for the conceptual
patterns must be selected and profiled, for instance WS-* [WCL+05] or another
integration technology. Once technologies have been chosen, implementation plat-
forms must be selected and configured. Many of the SOA patterns are imple-
mented in commercial or open source middleware assets. It must be decided
whether middleware assets should be procured and how the chosen ones should be
installed and configured. Performance, scalability, interoperability, and portability
are key quality attribute types when selecting and configuring implementation
platforms.

In summary, PremierQuotes Group has two architecture alternatives when sup-
porting the customer enquiry process with enterprise applications: SOA (Figure 8)
or three-tiered client-server applications integrated via traditional EAI middleware

 2.3 State of the Art Regarding Methods for SOA Design 31

(Figure 6). Making this decision is only the start of the architecture design; de-
tailed design work follows. Numerous design issues are encountered, which qual-
ify as architectural decisions as per our introduction of the term in Chapter 1. The
design issues differ substantially depending on the architectural style and patterns
chosen. Numerous, often conflicting forces influence the decision making: Quality
attributes in categories such as reliability, usability, efficiency (performance, scal-
ability), maintainability and portability, as well as the four user channel, process
and resource integrity, integration, and semantics challenges drive the selection of
architectural style, the adoption of conceptual patterns, and the design of their
platform-specific refinements. Many dependencies exist between the design issues
encountered on the project, but also from and to those on other projects.

Various methods and other assets help the architect cope with this complexity
and to overcome these challenges.

2.3 State of the Art Regarding Methods for SOA Design

As the introduction to the problem domain and the motivating case study demon-
strated, SOA design is a broad and interdisciplinary topic; a wide range of related
work is eligible. In this section, we focus on software engineering methods and
design methods and particularly relevant supporting assets. Many such assets ex-
ist, which vary in scope, maturity, and practical adoption widely. In the interest of
space, we only introduce selected representatives in this section, e.g., those con-
tributing important concepts and those popular in practice.

The section is structured according to categories of design methods: General
purpose software engineering methods and design methods (Section 2.3.1), soft-
ware architecture design methods that narrow the focus to the architecturally rele-
vant design activities (Section 2.3.2), enterprise application genre-specific meth-
ods (Section 2.3.3), and SOA style-specific methods (Section 2.3.4). As a
supplemental field that is orthogonal to all method categories, we also cover archi-
tectural knowledge management (Section 2.3.5).

We use these methods several times throughout the thesis: To define our focus
area, we conduct a fit/gap analysis for them in Chapter 3. Furthermore, we refer-
ence elements from these methods when developing our solution in Chapters 4 to
8. We complete the related work coverage with a comparison between the existing
methods and our solution in Chapter 10.

2.3.1 Software Engineering Methods and Design Methods

Software engineering covers the entire spectrum of the software lifecycle, from
analysis to design, development, test, integration, and operations [Som95]. The
literature provides a rich body of supporting concepts, including software engi-
neering methods; design methods then focus on the design phase. Such methods
are reusable assets [OMG05] that define:

32 2 State of the Art and State of the Practice

• Processes and notations that advise when to produce which artifacts.
Process and notation are mandatory method elements [OMG08].

• Techniques to create artifacts and sample or reference artifact content.
Comprehensive and mature methods provide such method elements.

 Figure 9 shows this method anatomy on its left side. It also emphasizes that as
a reusable asset a method must be adopted for project usage. The project incarna-
tion of the method is shown on right side:

Software Engineering (SE) Method (Asset)

Process

Techniques

Notation

Content
(Reference, Sample)

Roles
Phases, Activities, Tasks

Artifact Formats
Viewpoint Schema

suggest/prescribe

format

adopt

tailor

use

Project Usage of SE Method

Project
Plan

Deliverables

Project Documentation

Performing Resources
Work Breakdown Structure

Documents
Models for Views

specify

comprise

Figure 9. Method anatomy and project adoption

Methods define performing roles and a breakdown of their process into phases,
activities, and tasks [OMG08]. Boehm’s spiral model is an example of such proc-
ess [Boe88]. Some processes are rather lightweight and agile [Bec00]. Others pre-
scribe process and notation in great detail. An example of such comprehensive
process is the Rational Unified Process (RUP) [Kru03].

Roles distinguish technical professions and areas of responsibility and speciali-
zation, e.g., lead and subsystem architects, developers, and technology platform
specialists; processes define roles such as “application architect”, “integration ar-
chitect”, “developer”, and “tester”. Comprehensive methods define the skills re-
quired to create artifacts and recommend a related education curriculum. The in-
volved roles change during a project; e.g., analysis is performed by a business
domain expert; design, development, test, and integration by software engineers
specializing on certain subject matters.

Artifacts (a.k.a. work products [OMG08]) are the output of a task within a
process. If the method supports an iterative and incremental process, the same arti-
facts are worked upon multiple times, going through several refinement steps
[LL07]. The method prescribes or suggests a notation for the artifacts; using a
common notation allows practitioners to exchange and reuse artifacts seamlessly.
Examples are architecture documentation artifacts and code, but also test cases.
Many requirements analysis and software design notations can be used to describe
the artifacts, e.g., the Unified Modeling Language (UML) [RJB99]. In RUP, the
role “software architect” creates the artifact “software architecture document”,
which is structured according to Kruchten’s 4+1 viewpoints (see Section 2.1.3);
UML can be used to model this architectural artifact [YRS+99]. The diagrams in

 2.3 State of the Art Regarding Methods for SOA Design 33

Section 2.2 are examples of analysis and design artifacts, which may be deliver-
ables of the PremierQuotes SOA project.

Techniques and sample and/or reference content educate the method user how
to create certain artifacts in a method-conformant way. They make the application
of the method reproducible and repeatable.

OOAD. Object-Oriented Analysis and Design (OOAD) [Boo94] is an example of
a mature design method. OOAD leverages UML or another object-oriented mod-
eling language; RUP is one of many OOAD processes (although it has outgrown
its OOAD heritage in recent years). Use cases capture the functional behavior of a
system observable at the system context boundary. UML class diagrams specify
the attributes and the behavior of the entities that are relevant in a particular do-
main, as well as various types of associations between them. Sequence and col-
laboration diagrams describe the interaction dynamics. Many OOAD techniques
support class design, for example Class, Responsibility, Collaborators (CRC)
cards [BC89]. The “OOPSLA school of software development” [Fow07] is par-
ticularly popular nowadays; it combines an agile OOAD process with Test-Driven
Development (TDD) [Bec02] and Domain-Driven Design (DDD) [Eva03] tech-
niques. Reusable design advice (content) is conveyed in pattern form.

Patterns. Architecture and design patterns capture proven solutions to commonly
occurring problems. In 1995, Gamma et al. published the seminal Design Patterns
book [GHJ+95]. Many different types of patterns have been documented since
then, for example Patterns of Software Architecture (POSA) [BMR+96], Java de-
sign patterns [ACM03], domain analysis patterns [Fow97], and even patterns for
non-IT topics. A pattern is a proven solution to a problem in a context. The con-
text refers to a recurring set of situations in which the pattern applies. The problem
refers to a set of goals and constraints that typically occur in this context and in-
fluence the pattern’s solution, called the forces of the pattern [ZZG+08]. To sys-
tematically explain how to apply a number of patterns in combination, many pat-
tern authors document patterns within larger pattern languages, containing rich
pattern relationships and extensive examples and known uses sections.

Software engineering assets cover the entire software lifecycle. We now narrow
our focus to architecturally relevant design activities and artifacts.

2.3.2 Software Architecture Design Methods

Software architecture [BCK03] is a sub-discipline of software engineering. A
large body of software architecture literature focuses on software quality attributes
[ISO01] as architecturally significant requirements [HKN+07]. Defining different
stakeholders and viewing architectures from multiple viewpoints [Kru95, CCS07]
are important complexity management strategies in software architecture.

Due to the problem solved in this thesis we focus on architecture design meth-
ods here. Five prominent examples of such methods are introduced and compared
in [HKN+07], which we briefly review now. They emphasize an iterative architec-

34 2 State of the Art and State of the Practice

ture design process, use viewpoints to organize the architectural artifacts, and pro-
vide certain techniques for important architecture design activities.

Five industrial methods. Attribute-driven design (ADD) [BCK03] uses software
quality attributes as its base. ADD follows a recursive decomposition process, dur-
ing which architectural tactics and patterns are chosen. Five decomposition steps
define the ADD process: choose the architectural drivers, choose an architectural
pattern that satisfies the drivers, instantiate modules and allocate functionality
from use cases, define interfaces of the child modules, and verify and refine the
use cases and quality attributes, making them constraints for the child attributes
[HKN+07]. The artifacts to be produced are defined in [BCK03] as well. ADD
can be used with traditional and with agile software engineering methods.

Siemens Four Views (S4V) [HNS00] defines four views, conceptual, execution,
module and code architecture plus a global analysis activity in which organiza-
tional, technological, and product factors are identified. From these views and ac-
tivities, the key architectural issues or challenges are identified; the method is
aware that there are many related factors, which may conflict. From a process per-
spective, S4V emphasizes the need for iterations. The concept of an issue card and
many illustrative examples of issues are introduced in [HNS00]. In the method
anatomy shown in Figure 9 on page 32, issue cards can be positioned as artifacts.
The design issues in the motivating case study may be represented by such cards.

In Section 2.3.1, we positioned RUP as a general purpose software engineering
process. Combined with UML, RUP covers the full method anatomy (i.e., process,
notation, techniques, and content). It specifically supports architecture design
tasks; the notation of elaboration points emphasizes the importance of an iterative
and incremental architecture design process. The discipline concept organizes the
method by concerns. RUP emphasizes risk mitigation and defines an issue list arti-
fact. The design issues in the motivating case study may appear in such list.

The Business Architecture Process and Organization (BAPO) method was de-
veloped by Philips Research. BAPO defines five views to organize the artifacts:
customer, application, functional, conceptual, and realization. Quality attributes
are used across these views to assess whether the architecture, which is developed
iteratively, already provides enough information to start the implementation and to
assess whether the design is free of discrepancies.

Nokia developed Architectural Separation of Concerns (ASC), which is also
known as the ARES System of Concepts. ASC has the notion of design inputs and
Architecturally Significant Requirements (ASRs). ASRs can be grouped. ASC also
introduces the notion of architecturally relevant design decisions and links them to
the ASRs. Separation of concerns is applied during the project phases (design,
build, upgrade, load, and runtime). ASC supports the concept of an issue backlog.

Architectural patterns and other architectural knowledge. Complementary to
architecture design methods, architectural patterns provide reusable designs
(method content). Examples are general architectural patterns [BMR+96], patterns
related to message-based integration [HW04], and remoting patterns [VKZ04]. As
part of his Software Architecture Handbook project, Booch compiled and catego-
rized more than 2000 patterns commonly used in various application genres [Boo].

 2.3 State of the Art Regarding Methods for SOA Design 35

We now narrow our focus to the enterprise application genre.

2.3.3 Enterprise Application Development and Integration Methods

All general purpose software engineering and architecture design methods pre-
sented so far can be applied to EAD and EAI. Genre-specific method extensions
and additional methods also exist. They have the same general characteristics as
the more general methods, but tend to put more emphasis on Business Process
Modeling (BPM) and model-driven development.

OOAD extensions. OOAD processes are commonly applied on EAD and EAI
projects. For instance, UMF [CCS07] defines a method extension for “Custom
Application Development (CAD)” which embraces OOAD (but also structured
analysis [You89]). Version 4 defines more than 100 artifacts such as “system con-
text diagram”, “process definition”, “use case model”, “nonfunctional require-
ments”, “component model”, “operational model”, and “architectural decisions”.
The method is tailored at project startup to identify an adequate subset of artifacts.

RUP provides a business modeling discipline, which uses UML activity dia-
grams as BPM notation both during analysis and during design. Domain-specific
method extensions can be integrated [Joh05]. Business-Driven Design (BDD)
[Mit05] starts from BPM artifacts and progresses to the design and implementa-
tion level, leveraging UML along the way.

Model-Driven Development (MDD). In MDD, models are formal abstractions of
systems [Wah08]. Analysis, design, and other types of models are distinguished.
From a method perspective, the models are project deliverables which correspond
to artifacts. Model Driven Architecture (MDA) defined by the Object Management
Group introduces the Meta Object Facility (MOF) as a metametamodel and distin-
guishes between platform-independent and platform-specific models to make de-
signs portable and facilitate incremental design refinement. Model transformations
between different types of models are defined [OMG03].

EAD/EAI patterns and other genre-specific knowledge. Enterprise application
architecture [Fow03] and integration [HW04] patterns provide method content.
Workflow patterns exist [VT]; however, fine-grained language primitives (e.g.,
split, merge) do not qualify as common solutions to recurring design problems.

Enterprise architecture frameworks [SZ92] and maturity models [AH05, SEI]
define their own methods and method content which can be used for governance
purposes. Industry reference models such as SCOR [Sup] and IBM Industry Mod-
els [IBM] provide method content; many such reference models come with their
own, domain-specific design processes and artifact creation techniques.

We now narrow focus a third time, this time to methods for design and imple-
mentation of enterprise applications employing a certain architectural style, SOA.

36 2 State of the Art and State of the Practice

2.3.4 SOA Design and Service Modeling Methods

All methods presented so far can be applied to SOA design, particularly to design
individual services [ZKG04, ZSW+05]. We focus on style-specific methods next.

CBDI-SAE. CBDI Service Architecture & Engineering (CBDI-SAE) is defined
through a series of reports [CBD+06] and, more recently, through a knowledge re-
pository available online. It provides a reference model for SOA defining four
concepts, glossary, SOA principles, service lifecycle, and SOA metamodel. Twelve
principles are defined (both abstract and technical), resembling those from Defini-
tion 2.5. The metamodel provides eight views on SOA (from business modeling to
specification and implementation to runtime). A service-oriented process frame-
work is defined, comprising ten steps covering the entire service lifecycle. CBDI-
SAE also gives some guidance how to define high quality services.

SDLC. Web Services Development Lifecycle (SDLC) [Pap08] is a multi-step proc-
ess for service-oriented design and development. It defines the service lifecycle to
spawn from planning to analysis and design to construction and test to provision-
ing to deployment to execution to monitoring. Within SDLC, top-down, bottom-
up, and meet-in-the-middle approaches to development can be taken. Six mile-
stones establish high-level architectural principles and design goals (as method
content): Reusing existing functionality, minimizing costs of disruption, employ-
ing an incremental mode of integration, providing increased flexibility, providing
scalability, and complying with standards. Qualities such as low coupling and
high cohesion (in multiple dimensions) and the distinction between coarse and
fine granularity (i.e., scope of functionality) provide further method content. Con-
crete design advice is given how to deal with legacy systems and how to realize
service monitoring. Web services concepts are presented in detail (corresponding
to the development perspective in our Definition 2.5). To recommend techniques
for each of its steps, SDLC embraces a rich set of existing work in software engi-
neering [Kru03], business process modeling [Sup], and service modeling [Joh05].

SOMA. Service-Oriented Modeling and Architecture (SOMA) is the service mod-
eling method from IBM [AGA+08, Ars04]. Service identification, specification,
and realization are three of the process activities in SOMA. SOMA covers top-
down service identification in business process models and other business analysis
artifacts, suggesting techniques for goal service modeling, domain decomposition,
and process decomposition (adhering to the SOA principle of business alignment).
To specify services, SOMA defines a service model artifact, which works with the
elements of the service contract introduced in Definition 2.6 and the organiza-
tional information to be stored in a service registry according to Definition 2.9. A
service litmus test assists with the decision whether an identified service should be
realized. Making architectural decisions is seen as a key activity during service re-
alization. A conceptual model for SOA exists.

Other methods. Several other proposals exist, which resemble the presented ones.
Many of them only cover a subset of the method anatomy, i.e., they focus on the

 2.3 State of the Art Regarding Methods for SOA Design 37

process aspect and put less emphasis on notation, techniques, and content. The
importance of the business alignment principle is often stressed.

Erl proposes a full service design method called Mainstream SOA Method
(MSOAM). He defines a process and related guidance in [Erl05]. SOA principles
are defined in [Erl08], SOA patterns in [Erl09]. The concepts in the process are
abstractions of those found in SOA technology specifications. For example, BPEL
knows a concept partner link; hence, Erl’s method defines a step “formalize part-
ner service conversations”. A main use case of the method is education.

Erradi et al. define their SOA Framework (SOAF) in overview form [EAK06].
The main focus of SOAF is to define five process steps along with inputs, activi-
ties, and deliverables; some high-level advice regarding service identification and
aspects such as granularity is given. Shishkov et al. describe a process called
“software derived from business components” in [SVQ06] and [SVT07]. Princi-
ples such as layering and loose coupling are promoted; 13 process steps are de-
fined. Norm analysis gives guidance regarding interaction design. Chang et al.
present a service-oriented analysis and design approach to developing adaptable
services and a comprehensive approach to service adaptation [CLK07, CK07].
There is an SOA metamodel; five process phases are defined. The main focus is
on a single quality attribute, adaptability. Types of variability are defined.

SOA patterns. SOA patterns have emerged over recent years, e.g., ESB patterns
[KBH+04] to connect distributed system components (see Definition 2.7), and
process-driven SOA [ZD06] patterns to realize long-running sequences of business
activities as service compositions and workflows (Definition 2.8).

All methods presented to far promote a process- and artifact-centric approach.
Architectural knowledge appears in artifacts serving as input or output of activi-
ties, or in the form of techniques and method content. Another stream of existing
work focuses on the explicit management of such knowledge. We cover this field
next as it is relevant for our decision-centric method creation paradigm.

2.3.5 Architectural Knowledge Management

Having been neglected both in academia and industry for a long time, the impor-
tance of capturing architectural decisions as defined in Chapter 1 (page 2) is now
widely acknowledged: The architectural knowledge management [KLV06] field
has its roots in Design Decision Rationale (DDR) [LL91, MYB+91]. The main fo-
cus of the field is architecture documentation, which may happen during or after
the design work. Decisions made are stored in a repository; after-the-fact reuse is
possible. The field distinguishes a tacit personalization strategy for architectural
knowledge management from one based on explicit codification [Jan08].

IBM Unified Method Framework (UMF) [CCS07], which has been in use on
IBM client engagements since 1998 (under a different name), defines an artifact
“architectural decisions”. The artifact description defines a text table template for
decision capturing. It advises architects to capture all their decisions and the ra-
tionale behind them in a decision log. The rationale includes motivation, alterna-

38 2 State of the Art and State of the Practice

tives considered, final decision with justification, assumptions, implications, and
related decisions.

One of the IBM reference architectures comes with a filled out architectural de-
cisions artifact containing decisions made during Web application design. Having
worked with this artifact, Tyree and Akerman defined another rich decision cap-
turing template, structured into 13 sections: issue, decision, status, group, assump-
tions, constraints, positions, argument, implications, related decisions, related arti-
facts, related principles, and notes [TA05].

In [KLV06], Kruchten, Lago, and van Vliet present an ontology that describes
the attributes that should be captured for a decision, the types of decisions to be
made, how decisions are made (i.e., their lifecycle), and decision dependencies.
The ontology defines certain types such as executive, existence, and property de-
cisions, dependencies such as constrains, forbids, enables, subsumes, con-
flictsWith, overrides, comprises, isAnAlternativeTo, isBoundTo, and isRelatedTo,
as well as a decision lifecycle implementing a basic status management.

Jansen and Bosch view software architecture as a composition of a set of design
decisions. Their model for architectural design decisions focuses on the time di-
mension, defining a dedicated entity representing architectural modifications oc-
curring over the software lifecycle. Hence, their model is not only useful for archi-
tecture documentation, but also during design and operations (maintenance).

Architecture Rationale and Element Linkage (AREL) uses UML to capture de-
sign rationale [Ta07]. A UML profile is defined for that purpose.

Several other decision capturing templates and metamodels exist in industry
and academia [Bre], which resemble the presented ones.

Before we analyze the presented existing assets, we complete the introduction
to the problem domain with an overview of tools used on SOA projects today.

2.4 SOA Design Tools Used in Practice

In this section we give a brief overview of tools supporting the method concepts
and other assets introduced in this chapter. The information originates from per-
sonal experience and contacts with the target audience (see Chapter 9 for details).
It has exemplary character and does not aim to be complete.

Conceptual and technology view. The following tools are commonly used by
practicing architects during SOA design on industry projects:

• Method browsers expose process, notation, techniques, and content de-
fined in a method to users, following the method anatomy and relation-
ships between the method elements introduced in Section 2.3.

• Modeling and development environments provide graphical editors sup-
porting the creation of analysis, design, and development artifacts such as
those shown in Section 2.1 and Section 2.2. They may also support code
generation.

 2.4 SOA Design Tools Used in Practice 39

• Office suites and traceability management tools are used to process struc-
tured and unstructured text, e.g., issue lists and decision logs.

• Reusable asset repositories are used to exchange knowledge, including,
but not limited to industry models, patterns, and code libraries [OMG05].

• Architects also work with project management software when perform-
ing tasks such as work breakdown structure creation.

Figure 10 illustrates this tooling landscape and how architects use the tools to
create or review artifacts such as analysis-phase BPMs, process models of concep-
tual (i.e., design time) workflows, and service contracts as well as their BPEL and
WSDL refinements. These artifacts implement the concepts from Definitions 2.6
to 2.9. Other users of the tools exist but are not shown in Figure 10, e.g., require-
ments engineers (a.k.a. business analysts and domain experts) and developers.

Project
Management
Software

Software Architect

Project Plan incl.
Work Breakdown Structure

Design Modeling EnvironmentAnalysis Modeling Environment

Business
Activities

Analysis-Phase
BPM

Business
Processes

Business
Activities

Analysis-Phase
BPM

Business
Processes

Development
Environment

WSDL
Configuration

Files,
Test Cases

BPEL

Service
Contracts

Design Model
(e.g., UML)

Conceptual
Workflow

Tacit ADs

Technique
Papers

Roles Process
Phases/Activities/Tasks

Method
Browser Artifacts

Reusable
Asset
Repository

Industry
Models

Sample
Content

Enterprise
Architecture

Pattern
Literature

Code
Libraries

Other
Content

Review
Create

Consult, tailor

Maintain

Executive ADs
(Project Scoping)

Setup, review

Create, review

Traceability
Management Tool

Issue List
(ADs)

NFRs

Java

Office Suite

Decision Log

NFRs

Office Suite

Decision Log

NFRs

ADs – Architectural Decisions

Tacit ADs

Figure 10. State of the practice regarding SOA design tools

Architectural decisions are not only captured in a central decision log, but also
materialize in other tools and artifacts (this is shown as tacit ADs in Figure 10).

Exemplary mapping to vendor assets. Numerous commercial products and open
source assets provide implementations of all tools introduced conceptually in
Figure 10. In the interest of space, we only give a few examples here.

Microsoft Office Project 2007 [MS07] is an example of a project management
software which can be used to create and monitor a work breakdown structure and
capture project scoping decisions. IBM Rational Method Composer (RMC) [IBM]
is a method authoring and browsing product for method engineers and practitio-

40 2 State of the Art and State of the Practice

ners following a method defined in RMC. The method content can be exported
from RMC so that only method engineers have to work with the product.

IBM Rational RequisitePro [IBM] can be used as a traceability management
tool. As indicated by the product name, the metamodel of the tool supports re-
quirements management by default. It can also be configured to capture architec-
tural decisions, e.g., formatted according to the suggestion in the description of the
architectural decisions artifact in UMF (which we introduced in Section 2.3.5).

IBM Rational Software Modeler [IBM] is one of many UML tools. It can be
used for all OOAD activities, e.g., serve as an analysis and as a design modeling
environment. It extends Eclipse which is a popular platform for Integrated Devel-
opment Environments (IDEs) supporting Java and other languages [Ecl]. Many
commercial and open source BPEL editors are also based on Eclipse.

IBM Rational Asset Manager [IBM] is one example of an asset repository. Cus-
tom developed repositories such as wikis are a popular choice in practice.

2.5 Summary of the Problem Domain Characteristics

Enterprise applications are distributed, software-intensive systems facing particu-
lar user channel, process and resource integrity, integration, and semantics chal-
lenges. SOA is a state-of-the-art architectural style for developing and integrating
such enterprise applications. Many NFRs including software quality attributes
must be met when developing service consumers and providers and integrating
them with the help of the ESB, service composition, and service registry patterns.
Numerous architectural decisions must be made during the SOA design activities.

Many software engineering as well as phase-, genre-, and style-specific design
methods exist. These methods take a process- and artifact-centric approach; archi-
tectural decisions are captured retrospectively. The methods do not anticipate the
architectural decisions required when applying the patterns defining the SOA
style; there is no notion of recurring SOA decisions taking an active, guiding role.

SOA design is supported by many methods and tools. These assets treat archi-
tectural decisions as documentation artifacts, not as genuine method elements.

We provide more evidence for this statement when assessing state of the art and
the practice in SOA design methods in detail in the next chapter, Chapter 3.

3 SOA Design Method Requirements and
Research Problems

In this chapter, we first establish requirements for methods supporting SOA design
(Section 3.1). From these requirements, we distill the ones that are particularly
relevant for a decision-centric SOA design method and formulate the research
problems that must be solved to satisfy them (Section 3.2). Finally, we use the re-
quirements and research problems to analyze the methods introduced in Chapter 2
(Section 3.3) and derive an overall problem statement for this thesis (Section 3.4).

3.1 Requirements for SOA Design Methods

In this section we establish requirements for methods supporting the design and
integration of enterprise applications employing SOA as their architectural style.
We classify the requirements according to the categories we used to introduce ex-
isting methods and supporting assets in Chapter 2:

1. The software engineering method category covers the entire software en-
gineering process independent of any application genre.

2. The software architecture design method category focuses on the subset
of the design phase of the software engineering process that deals with
architecturally relevant design issues and artifacts.

3. Requirements specific to methods targeting the enterprise application
genre form the next category.

4. SOA-specific requirements follow.
5. Finally, a cross-cutting architectural knowledge management category

comprises requirements for capturing and sharing architectural decisions.

The requirements catalog originates from three sources of input: academic and
industrial literature [HKN+07], interviews with members of our target audience,
practicing software architects (see Chapter 9), and personal industry project ex-
perience [ZMC+04, ZDG+05]. An earlier version of the requirements catalog was
presented in [ZZG+08]. Obviously, such a catalog will never be complete. We
will use the presented version to establish the focus area for this thesis and assess
existing methods (Sections 3.2 and 3.3), to justify the design and implementation
of our decision-centric SOA design method (Chapters 4 to 8), and to assess
whether our method meets its design goals (Chapter 9).

42 3 SOA Design Method Requirements and Research Problems

3.1.1 General Requirements for Software Engineering Methods

The state of the art and the practice we introduced in Chapter 2 suggests require-
ments shared by all methods, general purpose ones as well as those specializing on
certain project phases, application genres, and architectural styles. Table 2 lists
these requirements and recapitulates their rationale:

Table 2. General requirements for software engineering methods

Requirement Justification
R1-1: Method anatomy = process + notation
+ supporting techniques and content

Clarifies method scope [Boe88, Boo94, OMG08];
techniques and content ensure repeatability [Kru03]

R1-2: Provide standard description format,
metamodel, or formal underpinning

Allows developing tool support, e.g., supporting
collaboration and knowledge exchange [OMG08]

R1-3: Be broadly applicable and actionable,
e.g., provide templates and examples

Method elements must fit in the software lifecycle
and be detailed and concrete [ZZG+08]

R1-4: Provide link between requirements
engineering (analysis) and design work

Makes requirements traceable in design, helps to
verify soundness of design [Kru03]

R1-5: Provide link to project management
methods

Supports secondary responsibility of software engi-
neers and architects on industry projects [ZZG+08]

R1-6: Ease method content authoring (ex-
tensibility)

Projects are different; ease of authoring makes
method adaptable and broadly applicable [ZZG+08]

R1-7: Be consumable and comprehensible,
provide tailoring means (usability)

Content must be easy to understand and customize;
user must be able to remove irrelevant parts and add
missing elements rapidly [ZZG+08]

Methods must provide both a process, defining which role has to produce
which artifact at which point in time in the project, and a notation, specifying the
layout of the artifacts to be produced when following the process. To ensure re-
peatability, there should be techniques as well as reference or sample content
teaching method users how to produce method-conformant artifacts (R1-1).

To ensure that artifacts produced by different method authors and project users
can be exchanged seamlessly, it is necessary that the artifacts are documented ac-
cording to a standard description format or metamodel (R1-2). A formal defini-
tion of the metamodel makes tool development feasible. To be useful on many dif-
ferent projects, the method content must be broadly applicable and actionable,
e.g., reside on a sufficient level of detail and support one or more phases; to accel-
erate the creation of artifacts, documentation templates should be available (R1-3).

Methods targeting architects should be integrated with those used by other roles
on development and integration projects, for instance requirements engineering
(R1-4) and project management (R1-5). Such integration is required in practice.
Finally, extensibility (R1-6) and usability (R1-7) of the method documentation are
important. Extension points make a method adaptable and broadly applicable. It
must be simple to contribute method elements of various sizes; a quality assurance
and maintenance process should be defined. Providing rapid orientation in prob-
lem and solution space is an important usability aspect as practitioners have a lim-
ited education budget. It must be possible to locate reusable assets and tailor them
according to project needs rapidly; the benefit must not be overcompensated by
the effort.

 3.1 Requirements for SOA Design Methods 43

3.1.2 Software Architecture Design Method Requirements

General purpose methods target multiple practitioner roles and cover the entire
software lifecycle. Design, and more specifically architecture design, focuses on
one role (software architect) and one phase (design) in this lifecycle. Therefore,
there is an opportunity – and a necessity – to become more specific and concrete
(e.g., in response to R1-3 and R1-7). Table 3 enumerates the related requirements
originating from the consensus view of the creators of five industrial methods pre-
sented in [HKN+07] and from our own experience:

Table 3. Software architecture design method requirements

Requirement Justification
R2-1: Refine general purpose methods:
Provide multiple architectural viewpoints

Required to deal with complex design issues and to
support division of labor [HKN+07]

R2-2: Be driven by quality attributes and
stakeholder goals

Quality attributes are key to success, but often con-
flicting, “architectural concerns, context”[HKN+07]

R2-3: Support decomposition of complex
design issues (architectural analysis)

Top-down refinement of design problem [ZZG+08],
“candidate architectural solutions” [HKN+07]

R2-4: Support composition of resolved de-
sign issues (architectural synthesis)

Bottom-up assembly into overall design, prototype or
full scope (“validated architecture” in [HKN+07])

R2-5: Define relationships between design
issues and leverage them in method design

To maintain consistency and remove irrelevant
method elements during method tailoring [ZZG+08]

R2-6: Provide a managed to do list “Backlog” concept in [HKN+07]
R2-7: Support architecture evaluation,
feedback loops, and backtracking

To ensure architecture meets requirements, e.g., with
prototyping, to improve design iteratively [HKN+07]

Architecture design methods must complement general purpose methods in a
phase-specific way, e.g., supporting multiple architectural viewpoints. IEEE stan-
dard 1471 [IEEE07] and the 4+1 model from [Kru95] are examples of such view-
point schemes (R2-1). The design method must be driven by architecturally sig-
nificant requirements, particularly stakeholder goals and NFRs including software
quality attributes (R2-2). To overcome analysis-paralysis effects, the design me-
thod has to support the top-down decomposition of a complex problem to be
solved by a software system into smaller, more manageable design issues (R2-3).17
To create end-to-end architectures and support cross-project reuse, it must be pos-
sible to compose solutions to resolved design issues into complete architecture de-
signs (R2-4). Furthermore, it must be possible to express dependency relation-
ships between the design issues; such dependencies have to be taken into account
during the architecture planning, design, and evaluation activities (R2-5). To fa-
cilitate team work and keep track of open issues, there should be a managed to do
list. Such dynamic backlog (a.k.a. issue list) can serve as a checklist and a re-
minder function for the architect (R2-6). Finally, the method should advise how to
evaluate architectures. It must be possible to backtrack and to provide feedback
across roles whether designs are sound, e.g., technically feasible (R2-7).

17 The nature of design issues depends on the method creation paradigm: General purpose

methods typically suggest a process- and artifact-centric approach. The issue can also be
a single quality attribute, a pattern, a design model element, or an architectural decision.

44 3 SOA Design Method Requirements and Research Problems

3.1.3 Requirements Specific to the Enterprise Application Genre

In Chapter 2, we introduced enterprise applications as a particular application
genre. Enterprise application architectures have several genre-specific characteris-
tics (as discussed in Section 2.1.2). Taking these genre-specific characteristics into
account, Table 4 establishes five requirements specific to EAD and EAI:

Table 4. EAD- and EAI-specific architecture design method requirements

Requirement Justification
R3-1: Refine architecture design
methods for EAD and EAI: Support
pattern-based architecture design

Mature general purpose patterns and EAD/EAI-specific
ones exist [Fow03, HW04]; high-level application archi-
tecture and candidate styles known upfront [ZZG+08]

R3-2: Align with analysis methods
(e.g., BPM, OOA), enterprise architec-
ture frameworks, and maturity models

Common forms of requirements engineering (analysis) in
EAD [Mit05, Boo94]; enterprise architecture assets used
for IT governance and maturity management [AH05]

R3-3: Cover integration of legacy
systems and software packages

Often hosting enterprise resources and/or containing other
valuable data and logic (asset character) [Fow03]

R3-4: Support model-driven develop-
ment concepts, use industry models

Separate platform-independent from platform-specific
concerns, support portability and reuse [ZZG+08]

R3-5: Align with contemporary com-
mercial EAD and EAI project delivery
and procurement practices

Executive decisions such as in-house development vs.
procurement of packages, offshoring and outsourcing in-
fluence the technical design work [HKN+07, ZMC+04]

Architectural patterns are a state-of-the art form of capturing established
knowledge. Pattern knowledge originates from successful software architectures
in which a pattern author has observed a common solution (the pattern). EAD and
EAI patterns should therefore be integrated into the method (R3-1).

Well-established forms of requirements engineering such as Business Process
Modeling (BPM) and OOAD should be supported. Similarly, enterprise architec-
ture frameworks, governance methods, and maturity models should be integrated
as the principles established by such assets have a significant impact on the archi-
tectural decision making (R3-2). It must also be possible to find advice how to
deal with existing legacy systems and software packages (R3-3), for instance,
when to leave as-is, when to adapt and integrate, and when to redesign a legacy
system. The EAD and EAI challenges from Section 2.1.2 must be addressed.

Many EAD and EAI design issues require abstract conceptual thinking as well
as detailed technology expertise or vendor-specific know how. A design method
should therefore separate technology platform-independent and platform-specific
concerns. This also makes a design portable and reusable. Modeling is one way of
addressing the requirement. Support for other Model-Driven Development (MDD)
concepts such as model transformations facilitates automation (R3-4).

Finally, it is important that a method is applicable in today’s business environ-
ments (R3-5). For instance, requirements engineering and project management
might be performed in-house, but a professional services firm might be contracted
for design and development, possibly involving offshoring and outsourcing. The
process defined in a method must respect that; a balance between standardization
and flexibility must be found so that organizational changes do not cause major

 3.1 Requirements for SOA Design Methods 45

method adjustment efforts. It must be possible to use the method in collaborative
environments; the responsibilities of the involved roles (parties) must be defined.

3.1.4 SOA-Specific Design Method Requirements

General purpose and software architecture design methods deliberately do not
make any assumptions about a particular application genre. EAD- and EAI-
specific methods do so, but are independent of any architectural style. An SOA-
specific design method, however, must meet additional requirements to become
comprehensive and actionable. Table 5 derives such SOA-specific requirements:

Table 5. SOA-specific design method requirements

Requirement Justification
R4-1: Refine previous three categories:
Support service engineering process

E.g., SDLC phases [Pap08] and SOMA service identifi-
cation, realization, and specification steps [AGA+08]

R4-2: Define notation for multiple ser-
vice contract dimensions

Express functional and behavioral service contract: Syn-
tax, QoS, semantics as per Definition 2.6 and [Joh05]

R4-3: Integrate SOA principles and pat-
terns (Definitions 2.6 to 2.9)

Service consumer-provider contract, ESB, service com-
position, service registry patterns must be refined

R4-4: Give advice regarding granularity
and other SOA-specific design issues

Many recurring design issues pertain to the patterns de-
fining SOA as an architectural style (see Chapter 2)

R4-5: Cover service lifecycle manage-
ment, e.g., ownership and versioning

Full lifecycle of a shared service transcends that of a
single application or EAD/EAI project [Pap08, KBS05]

To support the service engineering process (R4-1), the entire software lifecycle
introduced in Section 2.1.3 must be covered. An SOA design method must define
how services can be constructed systematically, starting from analysis artifacts
(e.g., business process models, use cases, or user stories) and covering the entire
service engineering process defined in the literature [Pap08].

Regarding service contract dimensions (R4-2), functional and behavioral as-
pects such as syntax, Quality of Service (QoS) policies, and invocation semantics
must be covered by the notation defined by a method (see Definition 2.6).

Taking advantage of our definition of SOA, the principles and patterns defined
in Chapter 2 (Definitions 2.6 to 2.9) initiate the SOA design; general software
quality attributes, EAD- and EAI-specific challenges steer the subsequent activi-
ties (R4-3). Methods must provide techniques and content in addition to process
and notation to satisfy R1-1; in an SOA context, it is essential for SOA design
methods to provide SOA-specific content, e.g., providing design advice regarding
granularity and other recurring SOA design issues such as those discussed in Sec-
tion 2.2.5 (R4-4). Designing for composability and reuse are related challenges.

Regarding service lifecycle management (R4-5), it is not sufficient to focus on
early stages such as service identification and specification: A shared service de-
serves a more sophisticated approach to lifecycle management than an OOAD
class or component if it is treated as a company asset (e.g., if it has product status).
A related design issue is how to version shared services when supporting multiple
service consumers. These service consumers usually evolve independently of each
other; their change management plans may differ, e.g., in their release schedules.

46 3 SOA Design Method Requirements and Research Problems

3.1.5 Requirements for Architectural Knowledge Management

This last requirements category does not refine a previous one, but is orthogonal to
these predecessors. It is required because our method creation paradigm centers on
architectural decision knowledge. Some of the requirements in the previous cate-
gories already dealt with such decision knowledge implicitly (as method content).

In [FBC06], thirteen general use cases for decision capturing are identified,
covering a wide range of activities such as conflict detection, validation, docu-
mentation, coordination, and communication. Due to our extended usage of archi-
tectural decisions, additional requirements for building up architectural decision
knowledge apply, particularly if the decision making responsibilities are shared
within and across teams. R1-7 (usability), R2-6 (managed issue list), R3-5 (com-
mercial EAD and EAI project delivery practices) and R4-4 (SOA design advice)
lead to a set of cross-cutting collaboration requirements (Table 6):

Table 6. Architectural decision knowledge capturing and sharing requirements

Requirement Justification
R5-1: Obtain re-
quired knowledge

Obtain architectural knowledge from third parties, e.g., company-wide enter-
prise architecture group [SZ92] or community of practice [GR01]

R5-2: Adopt identi-
fied knowledge

Tailor obtained knowledge according to project-specific needs: delete, up-
date, and add content, e.g., design issues and solution alternatives [SZP07]

R5-3: Delegate de-
cisions

Delegate architecture design work to other architects and lead developers and
support review activities with bidirectional feedback loops [FBC03]

R5-4: Involve com-
munity

Involve network of peers in search of additional expertise during architecture
design work, e.g., platform specialists [FBC03]

R5-5: Document
decisions

Enforce decision outcome via generation of artifacts, e.g., decision log and
code snippets serving as architectural templates [FBC03, KLV06]

R5-6: Align with
other models

Inject decision outcome into design models, development, and deployment
artifacts such as source code, configuration files, and test cases (R3-4)

R5-7: Share gained
knowledge

Share gained architectural knowledge with third parties such as the actors
from R5-1, having cleansed the project deliverables [SZP07]

If architectural decisions are supposed to be used actively during design, broad
and deep architectural decision knowledge from different sources is required. It
must be possible to obtain such knowledge from completed projects. The overhead
of reusing such knowledge must be low (R5-1). Furthermore, it must be possible
to tailor the method content (R5-2). In support of R5-3, it is required to ensure the
consistency of decisions in a global context (having delegated decisions to multi-
ple team members, e.g., subsystem architects or platform specialists). Further-
more, it should be possible to compare decisions from different projects with each
other and with industry best practices. It is often desirable to involve peers (R5-4);
this requires a common understanding of problem and solution space and a com-
mon vocabulary. R5-5 and R5-6 deal with communicating decisions and propagat-
ing them to design model elements and code. The exchange of architectural
knowledge across project and, possibly, company boundaries must be supported
(R5-7): To cleanse the projects deliverables, project-specific and company-
internal information has to be removed and text and figure elements renamed to
avoid confidentiality problems and misunderstandings regarding terminology.

 3.2 Research Problems and Questions 47

3.2 Research Problems and Questions

The requirements for SOA design methods that we compiled in the previous sec-
tion indicate that the creation of a decision-centric architecture design method is
an ambitious undertaking. A detailed investigation of all 31 requirements would
exceed the scope of this thesis. Hence, we now distill those that are specific to our
decision-centric method creation paradigm and have open research problems at-
tached which must be solved to create a decision-centric SOA design method.
These research problems constitute the focus area of this thesis.

Problem identification in method requirements. We identified seven research
problems to be particularly relevant in the requirements context from Section 3.1.
Table 7 introduces them and indicates from which requirements they originate:

Table 7. Research problems distilled from method requirements

Research Problem Method Requirements Rationale (from Section 3.1)
Decision identification R1-4, R2-2, R3-2, R4-3, R5-1 To create and reuse knowledge, to en-

sure applicability and extensibility
Decision modeling R1-2, R1-3, R1-6, R1-7, R2-3,

R2-4, R3-4, R5-3, R5-5
To make knowledge exchangeable, to
partially automate its processing

Model structuring R1-2, R1-6, R1-7, R2-1, R3-2,
R5-2, R5-4

To organize method content, to ensure
logical consistency and usability

Dependency
management

R2-3, R2-4, R2-5 To order decisions for design method
usage, to prune irrelevant ones

Design method usage R1-1, R2-6, R3-1, R4-1 To facilitate decision making
Decision enforcement R3-4, R5-5, R5-6 To align decisions with other artifacts
Collaboration system R3-5, R5-3 to R5-7 To support teamwork

The remaining requirements (i.e., those not listed in the table) continue to be
relevant and serve as input to the design of our solution presented in Chapters 4 to
8. We will return to all requirements in Chapter 9 to assess our solution.

To specify the seven problems, we formulate the corresponding research ques-
tions now.

Decision identification. The first problem we distilled from the requirements
deals with scoping the method and finding related architectural knowledge:

1. What are the architectural decisions required during SOA design (is-
sues)? Do these issues recur?

2. If so, can the issues be identified systematically in patterns?
3. Can this systematic approach be transferred to other application genres

and architectural styles?18

Decision modeling. Our second problem concerns the documentation of individ-
ual issues which are identified with the help of solutions to the first problem:

18 Positive answers to the questions form the hypotheses to be verified or falsified during

validation, e.g.: Architectural decisions required (issues) recur; an identification tech-
nique can be defined. We will return to these questions and hypotheses in Chapters 4 to 8
when presenting solutions to them and in Chapter 9 when presenting validation results.

48 3 SOA Design Method Requirements and Research Problems

4. Which information to model for each issue (and its alternatives)?
5. Which level of detail is appropriate so that the given advice is detailed

enough to be actionable and generic enough to be broadly applicable and
not subject to overly frequent, unmanageable changes?

6. Which aspects are not covered by existing templates and metamodels
used to document architectures and to capture decisions made?

Model structuring. Due to the broad scope a decision-centric SOA design
method must have, many decisions have to be modeled. The third problem inves-
tigates how to structure the resulting decision models:

7. Assuming that a large number of issues recurs, how can a decision model
be organized in an intuitive, use case-driven way?

8. How to separate rarely changing conceptual knowledge from rapidly
evolving technology information and platform-specific know how?

9. How to leverage existing problem solving concepts such as architectural
layers and viewpoints in the decision models?

Dependency management. Architectural decisions rarely occur in isolation. Our
fourth problem deals with the many relations between intertwined decisions:

10. Which logical and temporal dependencies exist between decisions? How
can such dependencies be represented in decision models?

11. Can these dependencies be used to detect design errors, to organize the
decision making process, and to prune irrelevant decisions?

12. If so, how to order the decisions to prepare for decision making?

Design method usage. The fifth problem investigates how to realize our primary
use case for decision models, taking the current design context into account:

13. How to use an architectural decision model as an SOA design method?
14. Can a process be defined that considers only the decisions required by a

particular role in a certain project phase and design context?
15. What is the relation to software engineering and design methods?

Decision enforcement. Our sixth problem concerns the connection between deci-
sion models and design models as well as other development artifacts:

16. How to enforce that made architectural decisions are respected during
subsequent design activities and during development?

17. How to update design models and code according to outcome informa-
tion in an architectural decision model?

18. What is the relation between decision models and Model-Driven Devel-
opment (MDD)?

Collaboration system. The seventh and final problem deals with tool design:

19. Which logical building blocks comprise a tool that supports architects
when they investigate, make, and enforce architectural decisions?

20. How to support collaborative creation and usage of decision models?
21. How to integrate such tool with other tools used during SOA design?

 3.3 Analysis of State-of-the-Art Design Methods 49

We now return to the existing methods and other assets introduced in Chapter 2
and investigate whether they fully or partially solve these problems.

3.3 Analysis of State-of-the-Art Design Methods

In this section, we assess the methods introduced in Chapter 2 with respect to the
seven problems we identified in Section 3.2. The objective of this analysis is to as-
sess whether the problems have been solved partially or fully already and to locate
the concepts in existing work we can build upon. Table 8 gives an overview of the
features in existing assets that are particularly relevant for this analysis:19

Table 8. Research problems and existing solutions (methods and other assets)

Research
Problem

Software
Engineering

Software
Architecture

EAD/EAI
Methods

SOA
Methods

Decision
identification

OOAD (classes),
pattern literature

Architecturally sig-
nificant requirements

BPM; EAD and
EAI patterns

Service model
[AGA+08]

Decision
modeling

Pattern templates AREL UML profile
[Ta07], decision cap-
turing metamodels

MDA MOF
[OMG03], UMF
artifact template

–

Model
structuring

Pattern languages
and catalog tax-
onomies [Boo]

Viewpoints [Kru95],
ontology in [KLV06]

MDA model
types, enterprise
architecture

SOA reference
models
[Ars04]

Dependency
management

Pattern relations Ontology in
[KLV06]

– –

Design
method usage

OOAD, patterns-
based design
[BHS07]

Issue cards in S4V,
ASC backlog, RUP
issue list [HKN+07]

BPM methods
(analysis), RUP/
UMF extensions

e.g., CBDI-
SAE, SDLC,
SOMA

Decision
enforcement

Agile develop-
ment, governance
models

Architectural evalu-
ation [HKN+07]

MDD, code
generation

–

Collaboration
system

Eclipse plugins,
wikis, Jazz [Jaz]

Decision capturing
tools [AGJ05, Jan08]

– –

Decision identification. OOAD defines how candidate classes can be identified in
use cases. However, this identification technique deals with domain models rather
than architectural knowledge. The pattern literature presents conceptual solutions,
but does not elaborate on the origin of the knowledge and the architectural deci-
sions required when adopting the pattern. Advice how to realize the conceptual
design in a technology or vendor asset is given in the form of examples, if at all.

The architecture design methods presented in [HKN+07] define a backlog (or
similar concepts), but it is undefined where the entries of this backlog, the design
issues, come from. The starting points for decision identification are architectur-

19 To simplify the discussion without loosing generality, we assume that all general purpose

and SOA design methods can be used in combination, e.g., ADD plus UMF plus SDLC.
Within OOAD, this is the case; e.g., the UML notation is the result of the fusion work of
the “three amigos”. It yet has to be proven that such a fusion is possible in SOA design.

50 3 SOA Design Method Requirements and Research Problems

ally significant requirements. Architectural knowledge management focuses on
decisions made already, not on sources of decisions yet to be made.

BPMs can be used to identify services; service models as created in SOMA also
can be used to initiate the SOA design work. However, it remains unclear which
architectural decisions have to be made during this work. We demonstrated this
when listing the design issues in the motivating case study in Chapter 2. EAD and
EAI patterns exist, but they have not been fully integrated into emerging SOA de-
sign methods yet. They have the same limitations as general purpose patterns.

In summary, no existing approach gives the software architect advice how to
identify the SOA design issues, e.g., the architectural decisions required when re-
alizing services or SOA infrastructures with ESBs and service composition en-
gines. We can conclude that the decision identification problem is unsolved so far.

Decision modeling, model structuring, and dependency management. A simi-
lar assessment can be made for the decision modeling problem. In the patterns
community, several pattern templates exist; pattern languages specify relations be-
tween patterns in a particular domain. Formalizations of these concepts have been
proposed [Zdu07]. Many different interpretations of the term “pattern” exist; there
is no consensus on a single template or metamodel. In all templates, the main fo-
cus is on the presented solution rather than the design problem solved [ZZG+08].

Architecture knowledge management advises to capture decision knowledge in
structured or unstructured text; several metamodels and ontologies exist [Bre,
DFL+07, JB05, TA05]. Harrison, Avgeriou, and Zdun [HAZ07] propose to mini-
mize the capturing effort by referencing already published patterns such as “lay-
ers”. The Architecture Rationale and Element Linkage (AREL) method [Ta07]
uses UML to capture rationale. AREL sees UML as the only architectural nota-
tion; the decision rationale is embedded in and added to UML models with the
help of profiles. This can lead to usability issues if the rationale texts are large. All
these approaches focus on architecture documentation rather than design method
support.

The Meta Object Facility (MOF) in Model Driven Architecture (MDA)
[OMG03] provides a formal underpinning for modeling. However, not all existing
implementations are faithful to the original vision of MDA; the practical adoption
of the paradigm is limited at present (see discussion in Section 7.3).

The existing service modeling methods provide rich texts describing what good
services are (in terms of design principles and design activities to be performed).
However, they do not capture such SOA decision rationale in model form.

Partial solutions to the model structuring problem are available: Pattern cata-
logs [Boo] structure the solution domain, but not the problem domain. Viewpoint
models from software and enterprise architecture [Kru95, OG07], decision on-
tologies [KLV06], and MDA model types [OMG03] provide suitable structuring
mechanisms, but have not yet been applied to SOA issues steering design work.

Decision dependency management has been studied in a pattern education or
architecture documentation context only [KLV06], not in architecture design.

We can conclude that while partial solutions to the decision modeling, model
structuring, and dependency management problems exist, none of them is suffi-

 3.3 Analysis of State-of-the-Art Design Methods 51

cient to support a usage of architectural decisions as a design method. However,
we can build on existing assets to create our decision-centric design method.

Design method usage. As explained in Chapter 2, general purpose software engi-
neering as well as software architecture design methods, EAD and EAI methods,
and service modeling methods can be applied during SOA design. These methods
vary in their support for architectural decisions and phases and roles supported.

Software engineering methods, design methods, and patterns. OOAD meets re-
quirements R1-1 to R1-7. For instance, the Classes, Responsibilities, and Collabo-
rators (CRC) card technique is not limited to class design; service contracts can be
conceptualized with it as well. A customization of OOAD processes, notations,
and techniques to SOA design is possible with some restrictions [ZKG04].20

However, OOAD by default focuses on the development viewpoint rather than
logical and physical architectures. It was designed before the Internet and XML
became popular; there is no inherent support for SOA-specific principles and pat-
terns such as ESB and the related Web service design issues (R4-3, R4-4). A de-
sign issue that is not addressed by the OOAD literature properly is finding the
right service granularity (i.e., number of operations and their message parameter
structure) when facing requirements such as shared service usage and distribution
over possibly slow network connections that do not preserve a message sequence.

While patterns accurately describe the technological options to solve a given
design problem, they are not designed to guide through the pattern selection and
overall architecture design process. Relationships between the patterns are only
defined within a single pattern language. However, many industry projects use
multiple pattern languages. Systematic approaches to identify and evaluate candi-
date patterns from different languages are only beginning to emerge [ZAH+08].

Software architecture design methods. Software architecture design methods go a
long way in supporting practitioners when designing enterprise applications.
However, the methods introduced in Chapter 2 fail to provide SOA-specific guid-
ance. To give an example, none of the existing approaches gives concrete advice
which predefined patterns to select in the motivating case study and how to refine
them into a design that can be implemented. While an issue backlog has been sug-
gested in [HKN+07], it remains unclear how to populate, order, and process it.

EAD- and EAI-specific methods and method extensions. Just like the general pur-
pose and architecture design methods, the EAD- and EAI-specific methods and
method extensions introduced in Section 2.3.3 have a process- and artifact-centric
anatomy. There is no emphasis on architectural decisions required during design.

Due to their breadth, depth, and popularity in architect and developer communi-
ties, we consider Fowler’s patterns [Fow03] a de facto standard for enterprise ap-
plication development. However, the patterns in the book mainly focus on Web

20 It is important to take SOA-specific principles into account. For instance, remote object

references should not be modeled as this would violate the principle of defining service
providers with “always on” semantics. ESB messaging does not support the passing of
remote object references (“programming without a call stack” [Hoh07], Definition 2.7).

52 3 SOA Design Method Requirements and Research Problems

applications. Hohpe and Woolf’s enterprise integration patterns [HW04] describe
messaging patterns accurately and in great detail; the book is widely accepted as
the “lingua franca” of messaging. However, the authors take a middleware- rather
than an application-centric viewpoint. Generally speaking, older enterprise appli-
cation literature does not cover all elements of the SOA style. For instance, the
two mentioned pattern languages do not present patterns for service composition
with workflows. Top-down guidance from problem to solution is given informally
and incompletely; giving such advice is not the main objective of patterns books.

SOA-specific methods and method extensions. Existing service modeling methods
structure the SOA design process. For instance, CBDI-SAE, SDLC, and SOMA
define the phases, activities, and/or tasks in their processes. However, they do not
cover all phases of the service lifecycle on the same level of detail (R4-1).

The reference model, SOA principles, metamodel, and process framework in
CBDI-SAE addresses all requirements for SOA design methods. Multiple view-
points are taken. The method has been developed over several years; supporting
techniques and content are available. However, quality attributes and architectural
decisions are only touched upon. They are not a first class citizen in the method.

The advice about versioning and service lifecycle in SDLC is highly educa-
tional. There is coverage of software quality attributes and design tasks. However,
all advice is given in text form. SOA concepts and Web services technologies are
not separated. Most of the advice pertains to the design of individual services, not
an entire SOA. For instance, logical layering is covered incompletely.

SOMA outlines several service identification techniques, e.g., goal service
modeling and process decomposition. It has a service specification format (service
model) and a litmus test governing service exposure; Web services usage is not
mandated. SOMA sees architectural decisions as an important service realization
concept. However, no detailed catalog of such service realization decisions exists.

MSOAM evolved from two text books on Web services technology [Erl04] and
SOA concepts [Erl05]. It serves well to educate readers about these concepts and
technologies, which is different from a requirements- and context-driven SOA de-
sign process. The SOA principles and patterns in [Erl08, Erl09] reside on an ab-
stract, vendor-independent level; their descriptions are not detailed enough to sup-
port all of the architectural decision making activities required during SOA design.
The high number of patterns in the catalog (85) calls for additional guidance.

Other articles on service-oriented analysis and design from authors in industry
and academia fail to satisfy requirement R1-1 and R1-3: They are not broad, deep,
and mature enough to be able to assist during SOA design on industry projects.
For instance, Shiskov’s discussion remains on a high level; while some advice is
valuable, most method elements repeat advice already known from non-SOA lit-
erature [SVQ06, SVT07]. Chang’s phases are specified informally without stating
artifacts as input and output of the phases. Design techniques and information
about the responsible roles are missing [CLK07, CK07].

In all methods presented in Section 2.3.4, SOA-specific design advice is given
in text form in technique papers and method extensions. Design patterns can be in-
tegrated (R3-1, R4-3). However, the required architectural decisions are not stated.

 3.3 Analysis of State-of-the-Art Design Methods 53

EAD/EAI challenges such as those discussed in Section 2.1.2 and SOA design is-
sues such as those from Section 2.2.5 are not covered in depth. Service interface
design, communication protocol selection, and transactional management settings
are examples for issues that are not addressed sufficiently (R4-4). Furthermore,
technology and vendor recommendations (often called “best practices”) are not in-
tegrated well; if present, they tend to oversimplify the picture.

We see another point of critique regarding existing SOA design methods: The
state of the art in software engineering and architecture has not been taken into ac-
count sufficiently. Supporting multiple viewpoints (R2-1) and quality attribute-
driven design (R2-2) are key aspects in this regard. Several commercial methods
provide technique papers, but only few validated research results exist. None of
the existing assets provides a strong connection with SOA principles and patterns
or explicit support for tradeoff analysis and architecture evaluation (based on cost,
quality attributes, and other criteria). It remains unclear when and how to make
which architectural decision when applying the SOA principles and patterns.

We can conclude that the problem has not been solved yet; none of the existing
methods follows a decision-centric paradigm for method creation and provides
SOA-specific method content that satisfies all requirements from Section 3.1.

Decision enforcement. Regarding the decision enforcement problem, agile devel-
opment has been designed to provide a close connection between architecture de-
sign and development (which are seen as one activity [Fow03]). On the other end
of the spectrum, governance and maturity models such as The Open Group Archi-
tecture Framework (TOGAF) and Capability Maturity Model Integration (CMMI)
can be leveraged to ensure consistency between designs and emerging implemen-
tations. In these approaches, decision enforcement remains a human activity.

Existing software architecture design methods [HKN+07] emphasize the im-
portance of architectural evaluation, but do not see MDD as a solution. Conven-
tional techniques such as prototyping and incremental design dominate.

While MDD transformation chains for BPM and SOA [BB06] support code
generation, none of the existing implementations allows using architectural deci-
sions as input to model transformations; it is unclear how to address NFRs when
transforming and how to integrate architectural viewpoints and method roles.

SOA design and service modeling assets do not provide any style-specific ex-
tensions to the decision enforcement capabilities of the more general methods.

This problem is also unsolved: Today’s enforcement techniques are informal.
The existing MDD approaches do not integrate architectural decisions properly.

Collaboration system. Regarding the collaboration system problem, existing de-
cision capturing and sharing tools [AGJ05, CNP+06, Jan08] have architecture
documentation and knowledge exchange as their primary use cases, not active de-
sign method support. Existing design tools with collaboration support do not use
architectural decisions as their central metaphor and do not implement solutions to
the previous six problems; they have been created to support other roles.

In the proposed extended usage context for architectural decisions, design
method support, the collaboration system (tool) problem is open as well.

54 3 SOA Design Method Requirements and Research Problems

3.4 Overall Problem Statement and Summary

As we have shown in Chapter 2, SOA principles and patterns make the high-level
architectures of enterprise applications straightforward to design. However, when
refining such high-level architectures, many architectural decisions must be made
to satisfy numerous, often conflicting requirements. Hence, a method is required
that assists software architects when making these decisions.

Full lifecycle methods define a process with roles, as well as input and output
of the tasks in the process; they do not give advice how to design solutions (e.g.,
applicable NFRs and potential solutions to particular design issues). OOAD is a
mature general design method which can be applied to SOA design, but does not
exploit any SOA-specific principles and patterns. By default, OOAD focuses on
the analyst and the developer rather than the architect, although its concepts can be
applied to architecture design. Pattern languages mainly have educational charac-
ter; their usage as design method has been proposed, but stands at an early stage.

Software architecture design methods focus on the design phase and the archi-
tect role; however, they do not follow a decision-centric approach although the no-
tion of a backlog has been proposed. Backlog management remains a manual task.
Furthermore, software architecture design methods do not provide any enterprise
application genre- or SOA style-specific design guidance.

Several application genre-specific methods add BPM as an analysis technique,
but fail to use architectural knowledge and model-driven development in a practi-
cal way. Their main focus is on the analyst and the developer, not the architect.

A variety of service modeling methods has been defined in recent years, some
of which have already matured. However, the advice given in these methods is in-
formal and not always driven by software quality attributes. These methods inte-
grate existing work from software architecture research insufficiently; they focus
on ensuring the business alignment of conceptual services (targeting the analyst)
and on best practices for Web services implementations (targeting the developer).

In summary, existing methods do not cover all SOA design aspects sufficiently.
The main reason for that is that they do not treat the architectural decisions re-
quired in SOA design as genuine method elements. To overcome this limitation,
decision identification, decision modeling, model structuring, dependency man-
agement, decision making, and decision enforcement problems must be solved:

An SOA design method is required which:
(a) identifies architectural decisions in patterns and project-specific artifacts,

(b) guides architects through the decision making when they refine the patterns
into platform-specific designs, and

(c) supports architects during the enforcement of the decisions made.

The definition of such a method is the objective of the subsequent chapters:
Chapter 4 introduces the method and its supporting concepts. Chapter 5 covers
part (a) in detail, targeting knowledge engineers. Chapter 6 defines a metamodel
supporting and underlying parts (a), (b), and (c). Chapter 7 completes the coverage
of part (a) and covers part (b) and (c) in detail, targeting software architects.

4 An Architectural Decision Modeling Framework
for SOA Design

In this chapter we introduce a conceptual framework for architectural decision
modeling. We call it SOA Decision Modeling (SOAD) framework.21 SOAD con-
cepts and tool support for them solve the research problems from Chapter 3.
SOAD framework and a particular SOA decision model we developed with it
comprise our decision-centric SOA design method. This method and related tool
support satisfy the requirements from Chapter 3.

The chapter is organized in the following way: Section 4.1 introduces the two
key framework concepts, decision reuse and decision modeling, and seven frame-
work steps. Section 4.2 positions SOAD in the software engineering process and
proposes a tool architecture supporting the framework. Section 4.3 applies SOAD
to SOA design and the motivating case study from Chapter 2. Section 4.4 summa-
rizes the chapter. Chapters 5 to 7 then cover SOAD steps and concepts in depth.

4.1 Key Concepts: Decision Reuse and Modeling

With SOAD, we extend the usage of architectural decisions from architecture
documentation to architecture design method. As defined in Chapter 2, a method
is a reusable asset [OMG05] that is created by a method engineer for use on mul-
tiple projects. Hence, SOAD must provide a concept for decision reuse. As a first
step towards decision reuse, we define two phases of knowledge processing:

1. Asset creation is performed by a knowledge engineer, i.e., a software ar-
chitect [BCK03] tasked with the creation of a reusable asset comprising
architectural decision knowledge. The asset is created for (and with input
from) a community [GR01], e.g., the architects in one enterprise.

2. During asset consumption one or more software architects use the archi-
tectural decision knowledge in the reusable asset on their projects.

We model the decisions in the reusable asset rather than capture them in text:
We specify the structure of and the relations between decisions in a metamodel.
This makes it possible to exchange the knowledge and to automate parts of the

21 Despite its name, the framework is applicable to multiple application genres and architec-

tural styles. It supports several use cases. We focus on its usage as a SOA design method
in this thesis. Applicability to other genres and styles is discussed in Chapter 10.

56 4 An Architectural Decision Modeling Framework for SOA Design

knowledge processing, e.g., model instantiation, export and import of knowledge,
consistency checking, and report generation.

In support of these two concepts, we introduce two forms of architectural deci-
sion models. They are treated differently during asset creation and consumption.

Definition 4.1 (Reusable Architectural Decision Model, RADM). A Reusable
Architectural Decision Model (RADM) is a reusable asset containing knowledge
about architectural decisions required when applying an architectural style (com-
prising of architectural principles and patterns according to Definition 2.4) in a
particular application genre. A RADM is shared by a community of architects.

Such a RADM can capture architectural knowledge from already completed
projects that employed the architectural style for which the RADM is created.
SOA is such an architectural style (see Definitions 2.4 and 2.5 in Chapter 2).22

Project-specific architectural decision models are created from such RADMs:

Definition 4.2 (Architectural Decision Model, ADM). The Architectural Deci-
sion Model (ADM) for a project contains knowledge about architectural decisions
required, but also captures information about architectural decisions made.

An ADM is created and used during the asset consumption phase, reusing one
or more RADMs. Information about decisions made is added throughout the pro-
ject; it can be fed back to the RADM after project closure (we call the feedback
process asset harvesting). Figure 11 shows the ADM and RADM processing:

ADM Creation and Usage
(Chapter 7)

RADM Population
(Chapter 6)

Reusable Architectural Decision Model
(RADM)

create

Architectural Decision Model
(ADM)

2. Model Individual
Decisions

3. Structure
Model

5. Tailor Model
Method Part (a)

6. Make Decisions
Method Part (b)

7. Enforce Decisions
Method Part (c)

RADM Scoping
(Chapter 5)

1. Identify Decisions

create,
usereuseupdate

Knowledge Engineer Software Architects

Asset Creation Phase Asset Consumption Phase

4. Add Temporal
Decision Order

harvest
(Appendix A)

Project
Legend :

Community

Figure 11. SOAD users and framework steps

22 As part of the thesis validation activities we created one particular RADM, which we call

RADM for SOA. Excerpts from this RADM for SOA serve as examples in this thesis.

 4.1 Key Concepts: Decision Reuse and Modeling 57

Figure 11 also introduces the seven steps that are performed by the knowledge
engineer during asset creation and software architects during asset consumption.
The asset creation steps are organized into two sub-phases: the RADM is first
scoped and then populated. Asset consumption does not have sub-phases. We now
give an overview of the steps, which are specified in detail in Chapters 5 to 7.

RADM scoping (asset creation phase). To define the boundaries of a RADM
during asset creation, a knowledge engineer performs the following step:

1. Identify decisions required when applying an architectural style in an ap-
plication genre. This step starts with a review of the patterns defining the
style. It returns a list of decisions to be included in the RADM.

This step can be performed top down, starting from the definition of the archi-
tectural style in use, or bottom up, studying architectural artifacts from previous
projects. It is possible to combine top-down and bottom-up RADM scoping.

To make the framework flexible and to avoid an overloading of the individual
steps, we separate the identification of decisions (RADM scoping) from their de-
tailed documentation (RADM population):

RADM population (asset creation phase). A knowledge engineer performs the
following steps to populate a RADM:

2. Model individual decisions. In this step, the decisions in the list delivered
by step 1 are documented in such a way that the modeled knowledge can
support the decision making on projects. The required level of detail de-
pends on the software engineering method adopted by the project and the
knowledge sharing practices in the community: A model targeting com-
munities that employ an agile process and a knowledge personalization
strategy (as introduced in Chapter 2) can be less detailed than a model
targeting communities that apply traditional processes and a knowledge
codification strategy (also introduced in Chapter 2).

3. Structure model according to logical dependencies between decisions.
The model structure developed in this step has the objective to make the
RADM easy to navigate and to adapt to project needs.

4. Add temporal decision order by modeling temporal decision dependen-
cies. This order is leveraged during the decision making step 6.

It is worth noting that steps 1 to 4 may be executed repeatedly and in an over-
lapping fashion to scope and populate a RADM iteratively and incrementally.

Having completed the asset creation phase with its four steps, we can progress
to asset consumption on a project:

ADM creation and usage (asset consumption phase). ADMs are created and
used on projects that apply SOAD. Three steps are performed by the architects:

5. Tailor model, creating an ADM from one or more RADMs by taking pro-
ject-specific requirements into account. An initial set of decisions re-
quired on the project is determined in this step. These may or may not
appear in the tailored RADMs; hence, architectural decision knowledge

58 4 An Architectural Decision Modeling Framework for SOA Design

can be added, updated, or deleted in this step. Together with steps 1 to 4
(asset creation), this step realizes the decision identification part (a) of the
decision-centric design method sketched in Section 3.4.

6. Make decisions. In this step, architects review the architectural decision
knowledge in the ADM created in step 5, match this information against
the project requirements, make their decisions, and update the ADM.
When locating the relevant parts of the model in a given project situation,
they are assisted by the model structure and the temporal order of the de-
cisions developed in steps 3 and 4. This step realizes the decision making
part (b) of the decision-centric design method sketched in Section 3.4.

7. Enforce decisions. In this step, architects share the rationale for the deci-
sions made in step 6 and captured in the ADM. They update other archi-
tectural artifacts accordingly. Via decision logs, they instruct the project
team which chosen alternatives to implement. Furthermore, they provide
fragments of development artifacts to demonstrate how to implement cer-
tain architectural concepts. This step realizes the decision enforcement
part (c) of the decision-centric design method sketched in Section 3.4.

It is worth noting that steps 5 to 7 may be executed repeatedly and in an over-
lapping fashion. The execution rhythm depends on the software engineering
methods and design practices in use (see discussion in Section 7.2 in Chapter 7).
For instance, agile processes advise practitioners to reprioritize and reorganize the
design work daily [Yip]; they put little emphasis on upfront architecture design.

The architectural knowledge gained on the project and captured in the ADM
can be fed back to the community-level RADM. Details of the architectural deci-
sion harvesting activities are out of scope here; they are covered by Appendix A.

Supporting concepts. The seven steps required to create and consume a RADM
asset are not straightforward to perform. To assist knowledge engineers and archi-
tects using SOAD, we provide supporting concepts corresponding to these steps:

1. A pattern-centric technique for decision identification provides instruc-
tions how to scope a RADM in a reproducible way (step 1). Starting from
the definition of an architectural style, the technique uses identification
rules and style-independent meta issues to scope a RADM for this style.

2. A common metamodel for RADMs and ADMs ensures that individual
decisions are modeled consistently and can be exchanged within the
community (step 2). To facilitate reuse, we extend existing work and dis-
tinguish decisions required from decisions made in our metamodel.

3. Modeling logical dependencies such as decision refinement and decom-
position organizes RADMs and ADMs into levels and layers (step 3).

4. A formal definition of temporal dependencies creates an order in a deci-
sion model that can be followed during design (step 4).

5. Decision filtering supports the RADM tailoring into an ADM (step 5).
6. The above concepts allow us to define a macro and a micro process for

decision making (step 6). The project-wide macro process is supported by

 4.2 Framework Concepts in Architecture Design Context 59

an actively managed issue list comprising decisions required and deci-
sions made. It launches the micro process for each decision required.

7. Decision injection into logical design models and development artifacts
integrates ADMs and models for other architectural viewpoints (step 7).
This makes it possible to reflect decisions in other artifacts.

In addition to the concepts, tool support for them is required so that the frame-
work steps can be applied by knowledge engineers and teams of software archi-
tects easily. Table 9 gives an overview how the concepts and tool support for them
solve the research problems from Chapter 3 and where in this thesis these solu-
tions are described.

Table 9. Research problems solved by framework steps, concepts, and tool

Research
Problem

SOAD Step and
Coverage in Thesis

State of the Art
(from Section 3.3)

SOAD Concept
(Chapters 5 to 8)

Step 1: Identify decisions
(Chapter 5)

Identification rules,
meta issue catalog

Decision
identification

Step 5: Tailor model
(Chapter 7, Section 7.1)

To be pulled from
literature (patterns),
as well as analysis
and design artifacts

Decision filtering

Decision
modeling

Step 2: Model individual
decisions
(Chapter 6, Section 6.1)

Metamodels in archi-
tectural knowledge
management

Existing metamodels ex-
tended for reuse and col-
laboration in new context

Model
structuring

Step 3: Structure model
(Chapter 6, Section 6.2)

Decision ontologies,
MDA model types

Model formalization, re-
finement levels, topic
group hierarchy starting
with layers, decomposition

Dependency
management

Step 3: Structure model
(Chapter 6, Section 6.2)
Step 4: Add temporal de-
cision order
(Chapter 6, Section 6.3)

Pattern relations, on-
tologies in architec-
tural knowledge
management (for
decisions made)

Formalization of logical
and temporal dependency
relations, integrity con-
straints, production rules
(for decisions required)

Design
method usage

Step 6: Make decisions
(Chapter 7, Section 7.2)

Backlog (manual up-
dates)

Managed issue list, macro
and micro process

Decision
enforcement

Step 7: Enforce decisions
(Chapter 7, Section 7.3)

Agile development,
governance models

Decision injection in mo-
del-driven development

Collaboration
system

Tool support for seven
SOAD steps (Chapter 8)

Plugins to rich client
tools, standard wikis

Design of an application
wiki for decision modeling

This section provided sufficient information to proceed with Chapters 5 to 7,
which present the SOAD framework steps and concepts from the bottom up. In the
remainder of this chapter, we give a framework overview in a top-down manner.
We also demonstrate how to apply the framework to SOA design.

4.2 Framework Concepts in Architecture Design Context

In this section we first explain how SOAD advances from retrospective decision
capturing to proactive decision modeling. Next we position SOAD in the software
engineering process and the SOA design tool context introduced in Chapter 2.

60 4 An Architectural Decision Modeling Framework for SOA Design

4.2.1 Separating Design Issues from Decision Outcomes

In the current state of the art and the practice, architectural decisions are captured
after they have been made on a particular project. Decision reuse as motivated in
Section 4.1 is hard to achieve with such a retrospective approach [TAG+05]. To
facilitate such reuse, we distinguish decisions made from decisions required:

Definition 4.3 (Outcome). A decision outcome is the record of a decision actu-
ally made on a project and its justification. Outcomes may only appear in ADMs.

Figure 3 on page 14 showed outcomes to appear in the decision log. Such a log
is an architecture documentation artifact, providing rationale for a certain design.
Decision logs with outcomes convey valuable, but project-specific information.
To make decision knowledge reusable, we introduce the notion of issues:

Definition 4.4 (Issue). A design issue informs the architect that a particular de-
sign problem exists and that an architectural decision is required. It presents de-
cision drivers (e.g., quality attributes), and references potential design alternatives
which solve the issue along with their pros (advantages), cons (disadvantages)
and known uses. It may also make a recommendation about the alternative to be
selected in a certain requirements context. Issues appear in RADMs and in ADMs.

The design issues in the motivating case study, which we outlined in Section
 2.2.5 in Chapter 2, are examples of such issues. Figure 12 zooms into RADM and
ADM from Figure 11 and shows their issue, alternatives, and outcome content:

SOAD step 5:
Tailor Model

(reuse RADM,
create ADM)

RADM

Issues (Decisions Required)

Alternatives (Potential Solutions)

Pros Cons

Decision Drivers

Recommendation

Known Uses

ADM RADM + Project-Specific Decisions

Issues (Open and Resolved)

Alternatives (Considered Solutions)

Decision Drivers

Recommendation

Outcomes (Decisions Made)

Justification

Pros Cons Known Uses
n m

SOAD Meta Model
(Chapter 6)

instantiatedInto

instantiatedInto

harvest
(Appendix A)

Chosen Altern.

Figure 12. RADM and ADM elements

RADMs and ADMs are instances of the SOAD metamodel. Issues convey
knowledge about design problems that may occur (RADM) or actually occurred
(ADM). Outcomes document alternatives chosen; they are created by the archi-
tects to complete the architectural decision capturing on projects. An outcome re-
fers to an issue, which may come from a RADM or may have been created in the
ADM. Issues without outcomes are open issues. Resolved issues have outcomes;
they comprise the decision log. Open and resolved issues form the managed issue

 4.2 Framework Concepts in Architecture Design Context 61

list for the architects. We will define these concepts in Chapters 6 (metamodel)
and 7 (managed issue list).

Having introduced issues and outcomes, we can now investigate where SOAD
framework, RADMs, and ADMs fit in the software engineering process.

4.2.2 The Framework in the Software Engineering Process

To support the envisioned extended usage of architectural decision models during
design, our architectural decision modeling framework has to tie in with the soft-
ware lifecycle and software engineering process introduced in Chapter 2. The in-
tegration points with concepts in existing work must be clarified, e.g., artifacts and
process phases in software engineering methods and architectural viewpoints.

As a reusable asset, a SOAD RADM guides the architect through the design ac-
tivities; it complements artifact- and process-centric software engineering methods
such as Rational Unified Process (RUP) [Kru03] or IBM Unified Method Frame-
work (UMF) [CCS07] with architectural decision knowledge. An ADM is a pro-
ject-specific architecture documentation artifact; such artifact is known in many
methods. The ADM is updated during the architectural decision modeling activi-
ties, which become part of the process defined by the method. Figure 13 shows
this RADM and ADM positioning as an extension of Figure 3 on page 14:

Design Phase 1:
Solution Outline Activities Design Phase 2:

Macro Design Activities Design Phase 3:
Micro Design Activities

Architecture Documentation
Artifacts

Software Engineering Process

updates
updates

updates

define process for EAD/EAI project activities and notation for artifacts

4+1 Views

Tailor Model (reuse
RADM, create ADM)

SOAD Framework and
Reusable ADM (RADM)

Issues
Alternatives

Architectural
Decision Modeling

Analysis Design Development Test Integration Operations

Reusable Asset

Project
(e.g., motivating case study)

4+1 Views

Architectural
Decision Modeling

4+1 Views

Architectural
Decision Modeling

Tailored RADM
Issues, Alternatives + Outcomes (Desc. Log)

Architectural Decision
Model (ADM)

Logical

ProcessPhysical

Dev.
Logical

ProcessPhysical

Dev.

Logical

ProcessPhysical

Dev.

Figure 13. Decision modeling as a guide through the architecture design work

62 4 An Architectural Decision Modeling Framework for SOA Design

Figure 13 uses the same process as Figure 3: The architecturally relevant
documentation artifacts are updated during the three UMF design phases. We use
Kruchten’s 4+1 view model [Kru95], introduced in Chapter 2, to structure the ar-
chitecture design activities and documentation artifacts: Issues and outcomes per-
tain to architecture elements that appear in these views, e.g., components and con-
nectors [BCK03] in the logical and nodes [YRS+99] in the physical view.

Having clarified when and by whom RADMs and ADMs are created and used,
we propose the architecture of a tool supporting the SOAD framework next.

4.2.3 Tool Support for Framework Concepts

To make the architectural decision modeling activities efficient, a tool can support
the SOAD framework. Such a tool must fit into the various tools already used dur-
ing SOA design (shown in Figure 10 on page 39).

We use Object-Oriented Analysis and Design (OOAD) [Boo94] terms to intro-
duce the SOAD tool context: The steps we introduced in Section 4.1 realize the
design method use case for SOAD.23 Knowledge engineers and software architects
are the primary actors of SOAD; other stakeholders are secondary actors, e.g.,
developers and project managers.

Figure 14 introduces the tool architecture we propose from a logical viewpoint:

Roles

Use Cases

Process
Phases/Activities/Tasks

Analysis Modeling
Environment

Development
Environment

Configuration
Files

SOAD Framework Tool

Conceptual
Workflows

Code
(Java, BPEL, etc.)

Artifacts

Test Cases

Decision
Enforcement

View

Decision
Investigation

View

Business Process
Model (BPM)

NFRs

Design Modeling
Environment

Service
Contracts

Knowledge Engineer, Software Architect

(b) Make decisions (step 6)

(a) Create RADM asset, tailor into ADM (steps 1 to 5)

(c) Enforce decisions (step 7)

Decision
Making
View

(R)ADM
Repository

Issues

Alternatives

Outcomes

Decision Log
(generated)

RADM Report
(Issues, Altern.)

ADM Report
(Issues, Altern.,

Outcomes)

Method
Browser

Issue List Manager
(Controller)

Models for Other
Viewpoints

Other Tools

Figure 14. An architecture for a SOAD tool and its context

23 As motivated in Chapter 1, secondary use cases are education, knowledge exchange, re-

view technique, and governance instrument. We focus on the design method usage here.

 4.3 Application of the Framework to SOA Design 63

A SOAD tool used during design has to provide interfaces with analysis model-
ing, design modeling, and development environments as well as method browsers.
These tools contain artifacts that trigger or reflect architectural decisions. Accord-
ing to Figure 10, project management software, office suites and traceability man-
agement tools, as well as asset repositories also have to be interfaced with; these
tools are not shown in Figure 14.

As a tool for SOAD must respond to user stimuli and be extensible, we define a
component-oriented architecture [Eme03] and organize it according to the model-
view-controller pattern [BMR+96]. The framework steps from Section 4.1 are
supported by five components:

1. The decision investigation view supports the asset creation steps 1 to 4 and
model tailoring step 5, taking analysis and design models as input.

2. There is a decision making view for step 6.
3. The decision enforcement view supports step 7 with decision log (report)

generation and development environment integration capabilities.
4. An issue list manager controls the RADM and ADM processing. It is pri-

marily used in step 6, but also connects the asset consumption steps 5 to 7.
5. The RADM and ADM repository is structured according to a common

metamodel, which comprises the model elements introduced in Section
 4.2.1. RADMs and ADMs are instantiated from this metamodel.

In contrast to the fragmented situation in Figure 10, our SOAD tool stores and
manages architectural decision knowledge via dedicated, centralized components.

We now apply SOAD framework steps to SOA design, returning to the moti-
vating case study and the artifacts and tools introduced in Chapter 2.

4.3 Application of the Framework to SOA Design

To give an example how to use SOAD in SOA design, we continue with a subset
of the architecture design activities we initiated in Chapter 2. Steps 1 to 4 are in-
dependent of the motivating case study; steps 5 to 7 are case-specific.

Step 1: Identify decisions. Decision identification scopes a RADM and the SOA
design work: The SOA patterns (Definitions 2.6 to 2.9) led to the exemplary de-
sign issues we motivated in Section 2.2.5 beginning on page 29. We categorized
them into strategic design issues, conceptual design issues, and platform-related
design issues. Let us recapitulate and name the issues now.

SERVICE COMPOSITION PARADIGM, WORKFLOW LANGUAGE, and BPEL
ENGINE24 are issues that refine the process manager component that appears in
Definition 2.8 (see Figure 4 on page 16): First, a conceptual paradigm how to real-
ize the process manager must be selected (e.g., WORKFLOW). Moreover, a lan-
guage technology implementing the paradigm must be chosen (e.g., BPEL). Fi-

24 From now on, issues and alternatives are set IN THIS FONT (SMALL CAPS).

64 4 An Architectural Decision Modeling Framework for SOA Design

nally, a middleware product or open source asset supporting this language must be
picked (e.g., WEBSPHERE PROCESS SERVER). The three issues are related to each
other; logical dependencies between their alternatives exist.

The issues INTEGRATION PARADIGM, INTEGRATION TECHNOLOGY, and SOAP
ENGINE pertain to the ESB pattern from Definition 2.7, following the same re-
finement hierarchy. We explain these issues in Chapter 5.

IN MESSAGE GRANULARITY, OUT MESSAGE GRANULARITY, OPERATION-TO-
SERVICE GROUPING, MESSAGE EXCHANGE PATTERN, TRANSPORT PROTOCOL
BINDING, and INVOCATION TRANSACTIONALITY PATTERN decisions must be made
for each operation realized by a service provider (Definition 2.6). WEB SERVICES
API is one of many issues regarding service consumers (Definition 2.6). All these
issues appear in the RADM for SOA; we will cover them in Chapters 6 and 7.
Some of them are featured in separate publications [ZGT+07, ZZG+08, PZL08].

All these issues recur, which qualifies them for inclusion in a RADM such as
the RADM for SOA we created during thesis validation. In this step 1, we only
identify the issues by name to scope the RADM; in steps 2 to 4, we add detailed
architectural decision knowledge to populate the RADM.

Steps 2, 3, and 4: Model individual decisions, structure model, and add tem-
poral decision order. In these steps, architectural knowledge about the issues is
added to the RADM, e.g., decision drivers, alternatives, and recommendations.
For instance, a problem statement for INTEGRATION TECHNOLOGY is “which re-
moting technology should be used to let the activities in the business process
communicate with Web services?”. Selected decision drivers are quality attributes
such as “interoperability”, “reliability”, and “tool support”. Alternatives known to
be used on projects are WS-* [WCL+05] and RESTFUL INTEGRATION [Fie00].

In step 1 above we already gave first examples of model structure and decision
dependencies; more examples will follow in Chapter 6.

Step 5: Tailor model for SOA project. The system context diagram (Figure 2 on
page 10) indicates which existing PremierQuotes Group systems are involved
(e.g., customer care, contract, and risk management) and which mandatory distri-
bution requirements are introduced by the user channels. The analysis-phase BPM
(Figure 5 on page 23) captures functional requirements about one business process
(customer enquiry). The business rules and NFRs including legacy constraints (see
Section 2.2.3) provide us with decision drivers, e.g., concerning process integrity,
interoperability, standards usage, and already existing backend interfaces.25

Let us assume that all issues identified in step 1 above are relevant in this case
as they arise from the adoption of the service consumer-provider contract, ESB,
and service composition patterns. Detailing the SOA from Figure 8 on page 28,
the following Figure 15 assigns the issues from step 1 to logical components in the
architecture. The issues are shown as questions. Several of them appear multiple
times, e.g., those about the ESB and those dealing with the three atomic services

25 Typically not all decision drivers are specified in explicit form. In practice, explicit NFRs

may be incomplete and/or unrealistic as they are difficult to agree upon. Tacit knowledge
advises the architect how to deal with this situation. The RADM can give related advice.

 4.3 Application of the Framework to SOA Design 65

(customer care service, contract service, and risk management service). This is the
case because the respective patterns are applied multiple times in the architecture.
As the service registry pattern is not used, no related issues arise on this project.

Customer Self Service
Channel

Agent Channel Back Office Channel

Customer Database Policy Backend Government
Information Server

Enterprise Service Bus (ESB) Gateway – (same issues as for Internal ESB)

Internal ESB – INTEGRATION PARADIGM? WS-* (WSDL/SOAP) or RESTFUL INTEGRATION TECHNOLOGY? SOAP ENGINE?

Risk Management Service

Customer Enquiry Process Manager – SERVICE COMPOSITION PARADIGM? WORKFLOW LANGUAGE? BPEL ENGINE?

WEB SERVICES API?

Customer Care Contract Risk Management

Contract Service

IN MESSAGE GRANULARITY?
OUT MESSAGE GRANULARITY?

OPERATION-TO-SERVICE GROUPING?

Customer Care Service

Client Logic

MESSAGE EXCHANGE PATTERN?
TRANSPORT PROTCOL BINDING?

INVOCATION TRANSACTIONALITY?

Atomic Service Atomic Service Atomic Service

Presentation Layer

Integration Layer

Service Composition Layer

Integration Layer

Client Logic Client Logic

IN MESSAGE GRANULARITY?
OUT MESSAGE GRANULARITY?

OPERATION-TO-SERVICE GROUPING?
MESSAGE EXCHANGE PATTERN?
TRANSPORT PROTCOL BINDING?

INVOCATION TRANSACTIONALITY?

IN MESSAGE GRANULARITY?
OUT MESSAGE GRANULARITY?

OPERATION-TO-SERVICE GROUPING?
MESSAGE EXCHANGE PATTERN?
TRANSPORT PROTCOL BINDING?

INVOCATION TRANSACTIONALITY?

WEB SERVICES API? WEB SERVICES API?

Figure 15. Decision identification in motivating case study

Step 6: Make decisions. During this step, the PremierQuotes Group architects se-
lect alternatives resolving the open issues based on project-specific requirements.
During their SOA design and architectural decision modeling activities (shown in
the middle of Figure 13 in Section 4.2.2), they capture the justifications for their
decisions in outcomes, which refer to issues (see Section 4.2.1).

 The SOAD tool proposed in Section 4.2.3 can support this step: The decision
making view filters and orders issues by practitioner role, project phase, and archi-
tecture element as defined by method and viewpoint schema in use. To do so, the
view is supported by the issue list manager and the (R)ADM repository.

Pattern selection decisions such as using WORKFLOW as SERVICE COMPOSITION
PARADIGM (refining the abstract process manager from the service composition
pattern, Definition 2.8) may be made during the solution outline phase. In macro
design, implementation technologies such as BPEL as WORKFLOW LANGUAGE
may be selected. Product selection (e.g., for a particular BPEL ENGINE such as
WEBSPHERE PROCESS SERVER) would best be conducted in macro or micro de-
sign; however, practical challenges such as procurement processes often mandate
that executives make (and/or approve) such decisions at an early stage, e.g., solu-
tion outline (or even prior to project start). Product configuration typically takes
place in the micro design and in the later development, test, and integration
phases.

66 4 An Architectural Decision Modeling Framework for SOA Design

Continuing the case study, let us assume the SOA project to be in the macro de-
sign phase; several key decisions have already been made during solution outline.
This becomes apparent in Figure 15, e.g., a service composition layer and two
ESBs have already been introduced in the architecture. Table 10 gives five more
examples for decisions already made, captured as outcomes. The issues and alter-
natives come from the RADM for SOA scoped in step 1 and populated in steps 2
to 4. The sample justifications are specific to the case, referring or paraphrasing
the requirements for the motivating case study which we stated in Chapter 2.

Table 10. Motivating case study: Architectural decisions made already

Resolved Issue Alternative Chosen as Out-
come (and Rejected Ones)

Examples of Justifications for
Decisions Made (Rationale)

ARCHITECTURAL
STYLE (not shown in
Figure 15)

SOA MESSAGING (DEF. 2.7)
(FILE TRANSFER, SHARED
DATABASE, RPC [HW04])

Strategic initiative, cross platform
integration required and desired, re-
liability needs (see Section 2.2.3)

LAYERING (sketched
only in Figure 15)

LAYERS FROM DEFINITION 2.8
(POEAA LAYERING [Fow03])

Defined by enterprise architecture
team; no industry standard

INTEGRATION
PARADIGM

ESB [KBH+04] (TRADITIONAL
EAI, CUSTOM CODE)

Integration needs (legacy constraints
1 to 3), service monitoring required

SERVICE
COMPOSITION
PARADIGM

WORKFLOW [LR00]
(HUMAN USER, OBJECT-
ORIENTED PROGRAMMING)

Long running process, central pro-
cess manager can preserve integrity
across channels (business rule 2)

SERVICE
REGISTRY

NONE (UDDI, VENDOR
PRODUCTS) [ZTP03]

Only a few services appear in BPM,
no business case for a registry

Refining the previously made decisions, the ones in the following Table 11
proceed from conceptual to platform-specific design. A decision dependency is
mentioned, relating the WORKFLOW LANGUAGE and BPEL ENGINE issues:

Table 11. Motivating case study: Architectural decisions made now

Resolved Issue Alternative Chosen as Out-
come (and Rejected Ones)

Examples of Justifications for
Decisions Made (Rationale)

INTEGRATION
TECHNOLOGY

WS-* WEB SERVICES [ZTP03]
(RESTFUL INTEGRATION [PZL08])

Interoperability and standardization
requirements (NFRs), tool support

WORKFLOW
LANGUAGE

BPEL [OAS07]
(PROPRIETARY LANGUAGES)

Standardized (NFR 2), used by
BPEL ENGINE selected (see below)

SOAP ENGINE IBM WEBSPHERE (APACHE AXIS2) Comes with BPEL ENGINE
BPEL ENGINE WEBSPHERE PROCESS SERVER

(ORACLE BPEL PROCESS
MANAGER, ACTIVE BPEL)

Operational procedures and enter-
prise license agreement in place (ex-
ecutive decision before project start)

So far, we merely captured decisions already made and their rationale. Table 12
lists additional issues, this time issues still open at the current project stage:

Table 12. Motivating case study: Architectural decisions still required

Open Issue Alternatives Decision Drivers
(RADM for SOA)

IN MESSAGE
GRANULARITY (see

DOT PATTERN
DOTTED LINE PATTERN

Structure and amount of enterprise re-
sources to be exchanged, message ver-

 4.4 Discussion and Summary 67

Chapter 7 for introduction
of pattern alternatives)

BAR PATTERN
COMB PATTERN

bosity, programming convenience and
expressivity, change friendliness

OPERATION-TO-SERVICE
GROUPING

SINGLE OPERATION
MULTIPLE OPERATIONS

Cohesion and coupling in terms of secu-
rity context and versioning

MESSAGE EXCHANGE
PATTERN

ONE WAY
REQUEST-REPLY

Consumer semantics and availability
needs, provider up times

TRANSPORT
PROTOCOL
BINDING

SOAP/HTTP
SOAP/JMS
POX/ HTTP

Provider availability, data currency needs
from consumer’s perspective, systems
management considerations

INVOCATION
TRANSACTIONALITY

TRANSACTION ISLANDS
TRANSACTION BRIDGE
STRATIFIED STILTS

Resource protection needs, legacy system
interface capabilities, process lifetime
(see Chapter 6 for discussion of issue)

We will resolve these issues and create outcomes in Chapter 7 in Section 7.2.

Step 7: Enforce decisions. In this step, the PremierQuotes architects create re-
ports about decisions made: The outcome content of Table 10 and Table 11 is ex-
ported to a decision log, e.g., an architectural decisions artifact in UMF [CCS07].
This artifact is then shared within the technical project team (e.g., other architects,
developers, and system administrators) and other stakeholders. The made deci-
sions are executed, e.g., through procurement, installation, and configuration of
the selected BPEL ENGINE and through BPEL and Java development activities.

We will give more enforcement examples in Chapter 7. Appendix B provides a
complete example of a resolved issue accompanied by an outcome instance.

4.4 Discussion and Summary

In this chapter, we motivated the concepts of decision reuse and decision model-
ing. We introduced the SOAD framework which comprises seven steps to scope
and populate RADMs within a community and tailor them into ADMs used during
architecture design on EAD and EAI projects. RADMs and ADMs are instantiated
from and adhere to a common metamodel. We presented the architecture of a
SOAD tool and applied framework and tool to SOA design.

Justification. The design of the SOAD framework and tool architecture is justi-
fied by the 31 method requirements we established in Chapter 3. RADM and
ADM are instantiated from a metamodel for architectural decision knowledge
(R1-2 and R1-3). The context shown in Figure 14 is justified by the integration
needs (e.g., R1-4 and R1-5). The three tool views realize the design method use
case for SOAD and address the usability requirement (R1-7). The decision making
step 6 addresses the software architecture design method requirements (R2-1 to
R2-7) such as the need for a managed issue list (R2-6) and the collaboration re-
quirements (R5-1 to R5-5 and R5-7). The rationale for step 7 can be found in the
collaboration needs (R5-5, R5-6).

R3-1 (patterns usage) is satisfied by step 1. The EAD and EAI requirements
R3-2 to R3-5 and the SOA requirements (R4-1 to R4-5) are less architecturally
significant than the previous ones; they are addressed by the RADM for SOA con-
tent and its organization into levels and layers. Hence, we can design the SOAD

68 4 An Architectural Decision Modeling Framework for SOA Design

framework steps and the supporting tool in such a way that other application gen-
res and architectural styles can also be supported in addition to enterprise applica-
tions and SOA. Such generic design also satisfies the extensibility requirement
R1-6. We discuss SOAD applicability and extensibility in Chapter 10.

A benefit of our decision-centric approach to method creation is that the target
audience, software architects, knows the core metaphor, architectural decisions,
from a different usage scenario, architecture documentation. Furthermore, the
metaphor is easy to relate to: Making decisions is important in many fields, not
just in software architecture design. It is also part of everyday life.

Our selection of presented issues might appear to be rather arbitrary or too
SOA-specific. It is justified by several criteria: The examples must be realistic so
that they motivate the value of decision reuse and modeling, but also simple to be
understandable and self containing. We decided to present examples that deal with
service contract design, ESB integration styles and technologies, and service com-
position using workflow concepts. Additional examples are featured in other pub-
lications [ZKL07, ZZG+08, PZL08]. Many more issues appear in the RADM for
SOA developed during thesis validation (see Chapter 5 for an introduction).

Assumptions. SOAD assumes that many of the issues recur: If this assumption
does not hold, the RADM asset will not provide sufficient value to justify its crea-
tion as the effort will outweigh the benefits. If multiple projects in the same appli-
cation genre employ the same architectural style, there are good chances that this
assumption holds; only the design issue must recur, not the actual decision out-
come. We present several industrial case studies that verify this hypothesis in
Chapter 9.

We assume that architectural knowledge for the chosen architectural style is al-
ready available, e.g., in the form of patterns or decision logs harvested from com-
pleted projects (see Appendix A for harvesting process and related guidance), and
that a community is willing to make this knowledge explicit. If this is not the case,
our decision identification technique (step 1) can also be applied during the design
work on a project rather than to scope a reusable asset. Steps 2 to 4 can be reduced
in their scope (or even skipped) if a lightweight knowledge sharing strategy is fol-
lowed, e.g., personalization.

Consequences. To become adopted in practice, a RADM has to meet higher qual-
ity standards than project-specific, retrospective decision logs. We discuss this as-
pect in more detail in Chapter 9 when presenting the results from the validating
industry case studies. A funding model as well as a review, approval, and mainte-
nance process must exist.

Asset harvesting must be supported in the framework, e.g., concepts and tools
to upgrade ADM information from completed projects to RADM knowledge. Ap-
pendix A covers such bottom-up knowledge engineering (asset harvesting).

Next steps. In Chapter 5, Chapter 6, and Chapter 7, we present the seven SOAD
framework steps in depth and introduce all supporting concepts.

5 Scoping Reusable Architectural Decision
Models

In this chapter, we present SOAD step 1: In Section 5.1 we introduce a pattern-
centric technique which identifies the issues to be included in a Reusable Archi-
tectural Decision Model (RADM). Next we demonstrate how the technique can be
applied to scope a RADM for SOA (Section 5.2) and discuss its rationale (Section
 5.3). The technique addresses the decision identification problem from Chapter 3:

Which architectural decisions required (issues) recur during SOA design?
Can such decisions be identified systematically in patterns?

As motivated in Chapter 4, we split the solution to this problem into two steps
to facilitate reuse and collaboration: Step 1 is to identify decisions during asset
creation; like the following model population steps 2 to 4, it is performed by the
knowledge engineer. Step 5 is to tailor a model for a project; this step is performed
by the software architect to initiate the asset consumption on a project. Figure 16
shows all seven SOAD steps along with the responsible roles and the design arti-
facts involved, patterns (step 1) and analysis and design models (step 5):

Analysis and Design
Models

(e.g., motivating
case study)

Patterns defining
Architectural Style

(e.g., SOA,
Definitions 2.6 to 2.9)

Software Architect
(Project)

Knowledge Engineer
(Community)

ADM

RADM

Meta Issue Catalog

Decision Identification

Asset
Creation
Phase

Asset
Consumption

Phase

Analysis and Design
Models

(e.g., motivating
case study)

Patterns defining
Architectural Style

(e.g., SOA,
Definitions 2.6 to 2.9)

Software Architect
(Project)

Knowledge Engineer
(Community)

ADM

RADM

Meta Issue Catalog

Decision Identification

Asset
Creation
Phase

Asset
Consumption

Phase

Step 5:
Tailor Model
(create ADM)

Step 1:
Identify

Decisions Steps 2-4:
Populate

Steps 6-7:
Use

Figure 16. SOAD step 1 and step 5 in context

In this chapter, we focus on step 1; step 5 will be described later in Chapter 7
(Section 7.1). We introduce a generic, style-independent meta issue catalog
which, together with the patterns defining the architectural style, serves as step 1
input. The output of step 1 is an initial RADM enumerating the names of the deci-
sions required, which we call issues according to Definition 4.4, in a catalog. To
populate the RADM, issues and alternatives are then modeled in detail in the sub-
sequent steps 2 to 4.

70 5 Scoping Reusable Architectural Decision Models

5.1 Framework Step 1: Identify Decisions

This section briefly reviews the state of the art and the practice, gives an overview
of our decision identification technique, and details its activities and concepts.

5.1.1 State of the Art and the Practice

State of the art. Pattern languages, genre- and style-specific extensions to soft-
ware engineering methods, technical papers, and vendor documentation can be
studied to identify issues. In principle, these sources of information provide deep
coverage of all issues. However, a vast amount of information must be studied; ar-
chitectural decisions are often hidden behind various other material not targeting
architects and therefore not being presented adequately [ZKL06]. Patterns per se
do not aim at guiding the architect through the architecture design activities re-
quired once a certain pattern has been selected. The core metaphor of a pattern is
solution, not problem, even if pattern templates usually contain an intent section or
a problem statement [Fow06]. Pattern authors often reverse engineer the problem
statement from the solution they want to educate the readers about [Hoh07].

State of the practice. Decisions are often identified ad hoc based on personal ex-
perience, not via diligent literature studies, or systematic reuse of knowledge al-
ready gained. Independent of the technique in use, architects have to search for is-
sues and pull the required knowledge from the literature and their experience
today. As a consequence, much time is spent in the solution outline phase to iden-
tify issues and alternatives. This is particularly true for inexperienced architects.26

5.1.2 A Technique for Decision Identification and Model Scoping

To overcome the decision identification challenges, SOAD provides a decision
identification technique. It is applied by knowledge engineers who are tasked with
the creation of a RADM for an architectural style and comprises five activities:

1. For each pattern in the definition of an architectural style, review the pat-
tern descriptions and enumerate the logical components and connectors
[BCK03] referenced in the pattern.

2. Apply identification rules, which we will define in Section 5.1.3 below:
a. Identify issues transcending a particular system context, e.g., busi-

ness domain- and enterprise-wide ones [MB02, Pul06].
b. Identify pattern-specific issues (see below).

3. During activity 2, screen sources of architectural decision knowledge:
a. Screen supplemental design artifacts about the architectural style.
b. Screen catalog of generic meta issues (see below).

26 The assessment is subjective, drawing on input from practicing architects and personal

experience (see Chapter 9 and 10). It is supported by the findings in [DFL+07, TAG+05].

 5.1 Framework Step 1: Identify Decisions 71

This top-down identification activity is detailed in Section 5.1.4 below.
4. Add architectural knowledge gained on projects that have already applied

the architectural style or the patterns (bottom-up identification).
5. Add issues from activities 2 to 4 to RADM if:

a. they are architecturally relevant (i.e., satisfy the definition of an ar-
chitectural decision from Chapter 1),

b. they have a high potential to recur (i.e., they are not project-
specific), and

c. they are not already present in the RADM.

We focus on activities 2 and 3 in this section. Activities 1 and 5 are self ex-
plaining, and Appendix A presents an informal description of activity 4.

5.1.3 Technique Concept: Identification Rules

All architecture design methods introduced in Chapter 2 emphasize the need to re-
fine and elaborate designs iteratively and incrementally. The importance of a
global view is also stressed [HKN+07]. Following the same principles of stepwise
refinement and separating such global view from that on individual design model
elements, we introduce seven Identification Rules (IRs) to organize activity 2 in
our decision identification technique (detailed explanations and rationale follow):

IR1. Identify style-independent issues with project- or enterprise-wide scope.
We call issues identified with IR1 executive decisions, adopting a term
from [KLV06]. IR1 is detailed below.

IR2. For each pattern in the definition of the architectural style, add one issue
to the RADM, deciding whether the pattern is used or not. We call issues
identified with this IR Pattern Selection Decisions (PSDs). Issues select-
ing the SOA patterns in Definitions 2.6 to 2.9 are examples.

IR3. Identify Pattern Adoption Decisions (PADs) in PSDs, already identified
PADs, and the logical components and connectors comprising the pat-
terns involved in these PSDs and PADs. IR3 is explained below.

IR4. For each logical component and connector that is part of a pattern refer-
enced in a PSD or PAD, add one issue concerning its implementation
technology. Such issues may present alternatives regarding integration
middleware and application servers as well as application and network
protocols. We call issues identified with IR4 Technology Selection Deci-
sions (TSDs).

IR5. Identify Technology Profiling Decisions (TPDs) in TSDs. IR5 is ex-
plained below.

IR6. For each technology appearing in a TSD, add one issue deciding which
vendor asset is used to provide the technology. Commercial, open source,
and company-internal assets provide alternatives. We call issues identi-
fied with this IR6 Asset Selection Decisions (ASDs).

IR7. Identify Asset Configuration Decisions (ACDs) in ASDs. IR7 is explained
below.

72 5 Scoping Reusable Architectural Decision Models

Figure 17 illustrates the activities from Section 5.1.2 and the relations between
the seven IRs. We place the IRs in four groups, executive (IR1), conceptual pat-
terns (IR2, IR3), technologies (IR4, IR5), and vendor assets (IR6, IR7) and distin-
guish two types of relations between IRs: Relations between IRs in the same
group are decomposition relations, relations between IRs in different groups re-
finement relations. Later we will organize the groups hierarchically and use the re-
lations to structure RADMs and ADMs (see Section 5.2 and then Section 6.2 in
Chapter 6).

1. Review patterns,
components, connectors in

arch. style definition

2b. For each pattern, start with IR2 and trigger follow-on IRs:

IR1IR1

2a. Identify executive decisions

IR3IR3IR3IR3IR2IR2

IR5IR5IR4IR4

IR7IR6IR6

Conceptual Patterns
(PSDs, PADs)

Technologies
(TSDs, TPDs)

Vendor Assets
(ASDs, ACDs)Decomposition

Refinement

3a. Screen architecture design artifacts when applying any IR
3b. Screen meta issue catalog when applying IR1, IR3, IR5, IR7

1..n 1..n

1..n

1..n

1..n

1..n

Figure 17. Identification rules in decision identification technique

Figure 17 indicates that additional architecture design artifacts and the generic,
style-independent meta issue catalog are used in activities 3a and 3b. We will in-
troduce these concepts shortly; before that, we elaborate on the IRs.

IR1. IR1 deals with executive decisions about strategic technical directions
[KLV06] as well as business requirements analysis [Som95]. It pertains to the
scenario viewpoint in Kruchten’s 4+1 model [Kru95]. Examples of such strategic
issues are platform directions (e.g., programming language, operating system, and
hardware preferences) as well as strategic, cost-intensive decisions regarding net-
work and server topologies (e.g., setup of geographically distributed data centers,
standalone server versus high availability server cluster).

IR2, IR3. The need for PSDs is obvious if a pattern-centric approach is followed.
Patterns can be found in all architectural viewpoints; many existing patterns take a
logical one [Kru95]. PSDs identified with IR2 have a long lasting impact on pro-
ject and solution health; many functional and non-functional decision drivers must
be considered. The user channel, process and resource integrity, integration, and
semantics challenges from Chapter 2 provide many of these decision drivers.

PADs then deal with selected patterns in a detailed way. Many pattern descrip-
tions list variants; one or more variants have to be selected once a PSD has been
made. For instance, the description of the “broker” pattern in [BMR+96] lists “di-
rect communication” as a variant; deciding for or against this variant is a PAD. A
bullet list in the solution part of a pattern text may also indicate variability, requir-
ing a PAD. Many pattern books supply navigable diagrams or decision trees to
show how composite and atomic patterns in a pattern language relate to each other

 5.1 Framework Step 1: Identify Decisions 73

[Eva03]. Pattern grammars are emerging as well [Zdu07]. These design options
may also lead to the identification of one or more PADs.27

IR4, IR5. When refining a conceptual, platform-independent design based on pat-
terns into an implementable, platform-specific one, decisions about implementa-
tion technologies must be made: TSDs identified with IR4 select certain technolo-
gies that implement the patterns selected in PSDs and adopted in PADs. The
development perspective of the SOA Definition 2.5 corresponds to this group.

TPDs identified with IR5 follow TSDs. They specify implementation details,
e.g., which version or subset of a technology standard to employ or which design
alternatives permitted by a standard to pick. XML SCHEMA (XSD) CONSTRUCTS is
a TPD example recurring in SOA design: due to the large scope of the technology
standard, the subset of the XSD language constructs used to model SOAP request
and response messages must be decided (see Definition 2.6).

Technology-level decisions are more concrete than those pertaining to pattern
selection and adoption; measurable decision drivers regarding interoperability,
performance (i.e., response time and throughput), and scalability apply.

IR6, IR7. ASDs and ACDs identified with IR6 and IR7 pertain to assets that pro-
vide and support the technologies selected in TSDs and profiled in TPDs. In SOA
design, commercial products, open source, and company-internal assets supply the
alternatives. Discrepancies between abstract concepts and implementation reality
can be expressed as ACDs: Vendor products may implement a conceptual pattern
in an unusual way, have limitations, or offer proprietary extensions.

Having defined the IRs applied in activity 2 of our identification technique, we
cover activity 3 next, which deals with the top-down identification of knowledge.

5.1.4 Artifact Screening and Meta Issue Catalog

Screen supplemental design artifacts (all IRs). Table 13 repeats the IR cardinal-
ities from Section 5.1.3 and adds information about the artifacts in which archi-
tectural knowledge about the issues can be found, as well as additional follow-on
issues (the dependencies are modeled later in step 3):

Table 13. Identification rules, cardinalities, and artifacts to be screened

Identification Rule Cardinality (Section 5.1.3) Artifacts to be Screened
IR1: Identify executive
decisions

Apply once (specific for appli-
cation genre, but not for archi-
tectural style)

Enterprise architecture documents
[SZ92], project proposals, system con-
text diagrams, meta issues (Table 14)

IR2: Identify PSDs Apply once per pattern in style
definition

Architectural style definition, table of
content, overview diagrams, and cheat
sheets in pattern books, e.g., [Fow03]

27 If two patterns have similar or identical intent, context, or forces sections, they can be

combined into a single PSD. This is a modeling decision of the knowledge engineer.

74 5 Scoping Reusable Architectural Decision Models

IR3: Identify PADs in
PSDs and PADs

Apply multiple times per
PSD/PAD and logical compo-
nent and connector in pattern

Descriptions of architectural patterns
(online, text books), pattern variants
and grammars, meta issues

IR4: Identify TSDs in
PSDs and PADs

Apply once per logical compo-
nent and connector in pattern

Enterprise architecture documents,
standards bodies (e.g., W3C, OASIS)

IR5: Identify TPDs in
TSDs

Apply one or more times per
TSD

Technology standards and primers, tu-
torials, meta issues

IR6: Identify ASDs in
TSDs

Apply once per technology ap-
pearing in a TSD

External parties (analyst reports), en-
terprise architecture documents

IR7: Identify ACDs in
ASDs

Apply one or more times per
ASD

Vendor documentation, previous pro-
jects, existing systems, meta issues

The artifacts appearing in Table 13 are either referenced, e.g., [Fow03], come
from the software engineering methods introduced in Chapter 2 (e.g., system con-
text diagram), or are self explaining (e.g., vendor documentation). They can be
part of the definition of the architectural style for which the RADM is created or
originate from already completed projects which have applied the style.29

Screen catalog of generic meta issues (IR1, IR3, IR5, IR7). IR2, IR4, and IR6
are straightforward to apply. However, architecture design work does not stop
when patterns, technologies, and vendor assets have been selected; hence, pattern
adoption, technology profiling, and vendor asset configuration issues have to be
identified as well. According to our knowledge engineering experience, pattern
texts, technology specifications, and vendor documentation often do not provide
detailed information about such issues; information about platform-dependent
quality attributes such as performance and scalability remains tacit.30 More knowl-
edge is required to make IR1, IR3, IR5, and IR7 reproducible and scope the
RADM in such a way that the issues are concrete and specific enough to be appli-
cable during the design work on a project (i.e., in the asset consumption phase).

To provide such knowledge, we introduce the notion of meta issues: Meta is-
sues are architectural decisions that recur in the application genre, but are not
specific to any architectural style, implementation technology, or vendor asset.
Like issues, meta issues have to meet the qualification criteria for architectural de-
cisions from Chapter 1; for instance, they must pertain to the system as a whole or
to its key components, and impact the quality attributes of the system. However,
they are more abstract and generic than RADM issues, e.g., they do not reference
any particular component or connector in the patterns defining the architectural
style. Unlike patterns, they describe problems (design concerns) rather than solu-
tions to them. Each issue references and instantiates one or more of the meta is-
sues. To give an example: “system transactionality” is a meta issue because usage
of the concept is common in many application genres and architectural styles.
Fowler [Fow03] instantiates the meta issue into an issue giving concrete advice for

29 In the latter case, the bottom up identification activity 4 (see Appendix A) can assist with

the harvesting of the knowledge. Bottom up harvesting is also required for steps 2 to 4.
30 For patterns, this is not the fault of the pattern author: By design, most patterns are “soft

around the edges” [Hoh07] to make them broadly applicable and platform-independent.

 5.1 Framework Step 1: Identify Decisions 75

enterprise application architectures and concurrency management in application
servers that support a Web-based presentation layer.

A meta issue catalog makes formerly tacit knowledge explicit. Table 14 pre-
sents our meta issue catalog which, when combined with the patterns defining the
SOA style, yields concrete executive decisions as well as PAD, TPD, and ACD is-
sues when applying IR1, IR3, IR5, and IR7 to scope a RADM for SOA.

Table 14. Meta issue catalog for EAD and EAI

IR and Artifact Decision Topic Meta Issues
IT strategy Buy vs. build strategy, open source policy IR1: Enterprise architec-

ture documentation
[SZ92, ZTP03]

Governance Methods (processes, notations), tools, ref-
erence architectures, coding guidelines,
naming standards, asset ownership

IR1: System context
[CCS07]

Project scope

External interfaces, incoming and outgoing
calls (protocols, formats, identifiers), ser-
vice level agreements, billing

IR1: Other viewpoints
[Kru95]

Development process Configuration management, test cases,
build/test/production environment staging

Logical layers Coupling and cohesion principles, func-
tional decomposition (partitioning)

Physical tiers Locations, security zones, nodes, load bal-
ancing, failover, storage placement

IR3: Architecture over-
view diagram [Fow03,
CCS07]

Data management Data model reach (enterprise-wide?), syn-
chronization/replication, backup strategy

Presentation layer Rich vs. thin client, multi-channel design,
client conversations, session management

Domain layer (process
control flow)

How to ensure process and resource integ-
rity, business and system transactionality

Domain layer (remote
interfaces)

Remote contract design (interfaces, proto-
cols, formats, timeout management)

Domain layer (compo-
nent-based develop-
ment)

Interface contract language, parameter
validation, Application Programming In-
terface (API) design, domain model

Resource (data) access
layer

Connection pooling, concurrency (auto
commit?), information integration, caching

IR3: Architecture over-
view diagram [Eva03,
Fow03]

Integration Hub-and-spoke vs. direct, synchrony, mes-
sage queuing, data formats, registration

Security Authentication, authorization, confidential-
ity, integrity, non-repudiation, tenancy

IR3: Logical component
[ZTP03]

Systems and network
management

Fault, configuration, accounting, perform-
ance, and security management

Lifecycle management Lookup, creation, deletion, static vs. dy-
namic activation, instance pooling, caching

Logging Log source and sink, protocol, format,
level of detail (verbosity levels)

IR3: Logical component
[ZZG+08]

Error handling Error logging, reporting, propagation, dis-
play, analysis, recovery

Implementation tech-
nology (IR5)

Technology standard version and profile to
use, deployment descriptor settings (QoS)

IR5 and IR7: Compo-
nents and connectors
[ZTP03, CCS07] Deployment (IR7) Collocation, standalone vs. clustered

Capacity planning Hardware and software sizing, topologies IR7: Physical node
[YRS+99]

Systems and IT service
management

Monitoring concept, backup procedures,
update management, disaster recovery

76 5 Scoping Reusable Architectural Decision Models

This particular catalog originates from project experience [ZMC+04, ZDG+05]
as well as the literature, e.g., [Eva03, Fow03, HNS00, HW04]. The meta issues in
this catalog are relevant and recurring in EAD and EAI as introduced in Chapter 2,
and they address the genre-specific design challenges in Section 2.1.2 (i.e., user
and channel diversity, process and resource integrity management, integration, and
semantics). Solutions to them may exist in pattern form; these patterns then be-
come alternatives resolving identified issues. The meta issues do not prerequisite
or imply any architectural style such as SOA. When being combined with the
SOA patterns from Section 2.1.4 (Definitions 2.6 to 2.9), the meta issues in the
catalog are broad and deep enough to reproduce the 389 issues in our RADM for
SOA (see Section 5.2).

The meta issue catalog merely serves as reference; it is not self explaining. To
apply our technique, the knowledge engineer must be familiar with the subject
matter and/or have project experience with the architectural concerns indicated by
the meta issues. The referenced literature provides background information.

Termination. The RADM creation activities continue until the model is rich
enough to support SOAD steps 5 to 7, ADM creation and usage on projects. No
firm termination condition can be given for a technique targeting human knowl-
edge engineers: According to our experience (see case study 3 in Chapter 9) and
assuming a codification strategy for architectural knowledge management, up to a
dozen issues should be added for atomic patterns and about 20 to 30 for composite
patterns. Quality and accuracy have higher priority than quantity.

Extensibility. We do not claim the meta issue catalog to be complete; when ap-
plying SOAD, it is possible to add, update, and delete meta issues in the catalog as
needed. For instance, the following sources of input can be taken into account
when creating a custom meta issue catalog:

• Other architectural patterns [VKZ04], problem descriptions in intent, con-
text, forces, and consequences sections in particular.

• Architectural tactics as defined in software architecture literature [BCK03]
and other architectural knowledge that meets the definition of a meta issue.

• Design challenges explained in genre-specific literature, e.g., BPM tutori-
als, EAI handbooks, and industry reference models [IBM, Sup].

• SOA literature also presenting style-agnostic knowledge [Jos07, KBS05].

This completes the conceptual coverage of SOAD step 1, which scopes an ini-
tial RADM. We give a larger example for this step in the next section.

5.2 A Reusable Architectural Decision Model for SOA

To demonstrate that the concepts from Section 5.1 work for SOA, we now intro-
duce a particular RADM, the RADM for SOA we created during thesis validation.

 5.2 A Reusable Architectural Decision Model for SOA 77

Structure of RADM for SOA. The RADM for SOA is organized into levels and
layers: An overarching executive level comprises issues regarding requirements
analysis and technical decisions of strategic relevance. Picking up the structure
from Figure 17, a conceptual level, a technology level and a vendor asset level fol-
low, taking inspiration from MDA model types [OMG03].31 Architectural layers
further structure the RADM; we adopted the layers from the SOA definitions in
Chapter 2. Figure 18 shows the resulting model structure (each box represents one
group of issues that deal with the same topic area on the same level) :

ExampleExample

Conceptual Level

Technology Level

Vendor Asset
Level

(Technical)
Executive
Decisions

Physical VP:
Conceptual
Decisions

Logical VP:
Conceptual
Decisions

Physical VP:
Technology
Decisions

Logical VP:
Technology
Decisions

Physical VP:
Vendor/Asset

Decisions

Logical VP:
Vendor/Asset

Decisions

MESSAGE EXCHANGE
PATTERN?

TRANSPORT PROTOCOL
BINDING?

ESB TOPOLOGY?
IBM DATA POWER
CONFIGURATION?

Component Layer

Atomic Service Layer

Service Composition Layer
Presentation Layer

Data Source (Resource) Layer

VP – Viewpoint

Executive Level

PLATFORM
PREFERENCES?

IR2 (PSDs)

IR4 (TSDs)

IR3
(PADs)

IR6 (ASDs) IR6 (ASDs)

IR4 (TSDs)

IR2 (PSDs)

IR1 IR1

IR5
(TPDs)

IR7
(ACDs)

Integration Layer

Requirements
Analysis

Decisions
(Scenario VP)

Component Layer

Atomic Service Layer

Service Composition Layer
Presentation Layer

Data Source (Resource) Layer

Integration Layer

Component Layer

Atomic Service Layer

Service Composition Layer

Presentation Layer

Data Source (Resource) Layer

Integration Layer

Figure 18. Structure of RADM for SOA (adapted from [ZKL+09])

With the help of IR1 and the meta issue catalog, we identified the issues on the
executive level. The requirements analysis decisions are required to scope EAD
and EAI project activities; they are related to the scenario viewpoint. In ADMs,
their outcomes define the system context for the solution under construction.
Technical executive decisions include those listed in Section 5.1.3 (page 72).

The second level from the top is the conceptual level, which in MDA terms is
platform-independent [OMG03]. Architectural patterns appear as alternatives of
conceptual decisions. A conceptual design helps to prepare an SOA design for fu-
ture change. The conceptual level contains decisions identified with IR2 and IR3,
called Pattern Selection Decisions (PSDs) and Pattern Adoption Decisions (PADs)
according to the definition of the identification rule in Section 5.1.3.

The technology level comprises Technology Selection Decisions (TSDs) identi-
fied with IR4 and Technology Profiling Decisions (TPDs) identified with IR5.
TSDs and TPDs are platform-specific, but do not deal with any particular SOA
middleware products yet.

31 The level concept will be formally introduced in Chapter 6 (Section 6.2).

78 5 Scoping Reusable Architectural Decision Models

The vendor asset level comprises Asset Selection Decisions (ASDs) identified
with IR6 and Asset Configuration Decisions (ACDs) identified with IR7. It also is
platform-specific. ACDs concern the various implementation, configuration, and
deployment details in SOA middleware. These issues deal with commercial and
open source assets in greater detail than ASDs.

Executive level decisions (IR1 applied). With IR1, we identified the executive
decisions in the RADM for SOA. Two of the executive decisions that we intro-
duced in Chapter 4 are: ARCHITECTURAL STYLE32 with SOA MESSAGING as one of
several alternatives, LAYERING (see Definition 2.8 in Chapter 2), and LANGUAGE
AND PLATFORM PREFERENCES with alternatives such as MICROSOFT .NET/C#,
JEE/JAVA, and LAMPP. TOOLING DIRECTIONS (e.g., OPEN SOURCE, SINGLE
VENDOR) also recur. Identified with IR1, these are one-of-a-kind issues specific to
the genre, but not to SOA. The identifying meta issues from Table 14 are “refer-
ence architectures” and “tools”.

Two examples of business requirements decisions appeared in Section 2.2.2 on
page 22: ANALYSIS-PHASE BPM vs. USE CASE MODELS or USER STORIES as
FUNCTIONAL REQUIREMENTS NOTATION and using BPMN or UML ACTIVITY
DIAGRAMS as BPM NOTATION. They were identified with IR1 as well; the meta
issue is “methods (processes, notations)”.

Conceptual level decisions (IR2 and IR3 applied). The identification rules ad-
vised us to add one PSD per pattern (IR2) and multiple PADs per PSD (IR3). The
resulting PSDs and PADs in the RADM for SOA deal with the following topics:

• Selection and adoption of the SOA patterns from Chapter 2: service con-
sumer-provider contract, ESB, service composition, and service registry.

• Design of abstract, non-technical part of service contract, corresponding
to the WSDL 1.1 [W3C01] port type (interface in WSDL 2.0 [W3C03]).

• Definition of security and service management concepts, e.g., transport-
or message-layer security and business process monitoring concepts.
Unlike in the full RADM for SOA, these issues are out of our scope here.

• Selection of transaction management patterns (see Chapter 6).

Atomic service layer. A PAD related to the service consumer-provider contract
pattern is to decide whether the IN MESSAGE GRANULARITY of the service opera-
tions should be coarse or fine in terms of the breadth and depth of the message
parts (i.e., number of message parts, usage of scalar or complex data types). This
decision is required for each service operation. A similar decision has to be made
about the OUT MESSAGE GRANULARITY. Furthermore, a conscious decision for the
OPERATION-TO-SERVICE GROUPING is also required. “API design” is the IR3 meta
issue for both issues. We return to these three issues in Chapter 7.

A related PAD is MESSAGE EXCHANGE PATTERN, introduced in Chapter 4 and
shown in Figure 18: A “service operation” appears in Definition 2.6, and an IR3
meta issue called “synchrony” appears in Table 14. Combining these two know-
ledge sources during activity 3b (page 70) identified this issue: For each service

32 We set issues and alternatives IN THIS FONT in this thesis (SMALL CAPS).

 5.2 A Reusable Architectural Decision Model for SOA 79

operation invocation, it has to be decided how to invoke atomic services from the
business activities in the service composition layer. Synchronous REQUEST-REPLY
calls and asynchronous ONE WAY messaging are two of the alternatives.

INVOCATION TRANSACTIONALITY PATTERN is an issue we cover in Chapter 6.

Integration layer. INTEGRATION PARADIGM is the PSD that originates from the
ESB pattern (see Section 4.3 in Chapter 4 for alternatives). The pattern text of the
broker pattern in [BMR+96] supplies us with more knowledge about integration
issues: (1) define an object model. (2) decide which type of component interop-
erability the system should offer, binary or Interface Description Language (IDL).
(3) specify the APIs the broker component provides for collaborating with clients
and servers. (4) use proxy objects to hide implementation details from clients and
servers. (5) design the broker component. (6) develop IDL compilers. Step (5) has
nine sub steps: (5.1) on-the-wire protocol, (5.2) local broker, (5.3) direct commu-
nication variant, (5.4) (un)marshalling, (5.5) message buffers, (5.6) directory ser-
vice, (5.7) name service, (5.8) dynamic method invocation, and (5.9) the case in
which something fails. All these steps qualify as PADs, following the
INTEGRATION PARADIGM PSD according to IR3 (see Figure 17 on page 72).

Service composition layer. We already motivated SERVICE COMPOSITION
PARADIGM with alternatives WORKFLOW and OBJECT-ORIENTED PROGRAMMING.
Moreover, a PROCESS LIFETIME issue has to be decided for any executable proc-
ess, with alternatives such as long running MACROFLOW and short running
MICROFLOW [ZD06]. This is a conceptual abstraction of an engine-specific design
issue not handled by the BPEL specification. This issue is out of our scope in this
thesis.

“System transactionality” was one of the meta issues listed in Table 14. The
RADM for SOA contains several issues dealing with this concern. For instance, it
has to be agreed which RESOURCE PROTECTION STRATEGY should be taken, e.g.,
SYSTEM TRANSACTIONS or BUSINESS COMPENSATION (or a combination thereof).
The SESSION MANAGEMENT approach also has to be decided in this context.

Technology level decisions (IR4 and IR5 applied). The identification rules in-
structed us to add one TSD per conceptual pattern in the RADM for SOA (IR4)
and to add multiple TPDs per TSD (IR5). The issues deal with topics such as:

• Selection of technologies implementing the SOA patterns and profiling of
the standards defining these technologies.

• Design of the technical part of the service contract (WSDL binding), and
decisions about SOAP [W3C03], BPEL [OAS07], and UDDI [OAS04].

• Selection of protocols, algorithms, and data formats for security, e.g., au-
thentication, authorization, and encryption with Transport Layer Security
(TLS) [IETF] and/or WS-Security [WSI07] as well as service manage-
ment, e.g., monitoring protocols and formats.

• Technology refinement of transaction management patterns, e.g., the de-
cision to use WS-AtomicTransaction [OAS07a] (see Chapter 6).

80 5 Scoping Reusable Architectural Decision Models

Atomic service layer. For each service invocation, the following TSDs must be
made (Figure 18): Which TRANSPORT PROTOCOL BINDING should be used to in-
voke atomic services from the processes in the service composition layer, e.g.,
HYPERTEXT TRANSFER PROTOCOL (HTTP) or JAVA MESSAGING SERVICE (JMS)?
Which MESSAGE EXCHANGE FORMAT structures request and response messages in
an interoperable manner, e.g., SOAP or JAVASCRIPT OBJECT NOTATION (JSON)?

SOAP COMMUNICATION STYLE with alternatives DOCUMENT/LITERAL or
RPC/ENCODED is a related TPD, assuming that SOAP was decided for as
MESSAGE EXCHANGE FORMAT. The WEB SERVICES API and JAVA SERVICE
PROVIDER TYPE have to be decided per service consumer and service provider;
JAX-RPC vs. JAX-WS and ENTERPRISE JAVABEAN (EJB) [SunEJB] vs. PLAIN
OLD JAVA OBJECT (POJO) are Java alternatives. This issue and its alternatives are
identified with IR4 in activity 3a (see Table 13 on page 73). Moreover, the subset
of XML SCHEMA (XSD) CONSTRUCTS used to define message parts in WSDL
contracts and SOAP messages must be decided. These issues are identified with
IR5, following the IR3-related meta issues about integration and component-based
development; the related meta issue is “API design” (Table 14).

Integration layer. A TSD following the PSD about an INTEGRATION PARADIGM is
to decide for an INTEGRATION TECHNOLOGY such as WS-* WEB SERVICES or
RESTFUL INTEGRATION [PZL08]. It is identified with IR4. TRANSPORT QOS is a
related TPD identified with IR5; it is explained in detail in Chapter 6.

Service composition layer. Already motivated in Chapter 4, a TSD that is required
for each process is the choice of WORKFLOW LANGUAGE, e.g., BUSINESS PROCESS
EXECUTION LANGUAGE (BPEL). Some TPDs follow the TSD to use BPEL: Which
BPEL VERSION and which COMPENSATION TECHNOLOGY to use? We refer the
reader to [ZZG+08] for further explanations about these issues.

Vendor asset level decisions (IR6 and IR7 applied). ASDs are required for all
technologies appearing in TSDs (IR6); ACDs follow ASDs (IR7). Supported by
the IR7 meta issues in Table 14, we identified issues about the following topics:

• Issues pertaining to assets that implement the Web services standards, for
instance, WSDL editors, SOAP engines, BPEL engines, and UDDI regis-
tries.33

• Design of the part of the service contract related to deployment, which
corresponds to the service and port elements in WSDL 1.1.

• Configuration of the selected products to reflect the technology profiling
choices made, including selection and customization of proprietary APIs.

Integration ASDs are the selection of a SOAP ENGINE, of an ESB PRODUCT,
and of a BPEL ENGINE. For instance, the IBM DATAPOWER appliance [IBM] ap-

33 Many of these decisions may be made as executive decisions in practice, e.g., if strategic

partnerships with certain vendors or a single vendor policy have been established. This is
often the case for middleware such as application servers or databases, with justifications
such as direct and indirect costs (e.g., licenses, training, and systems management needs).

 5.2 A Reusable Architectural Decision Model for SOA 81

pearing in Figure 18 is an XML processing hardware which also implements sev-
eral of the WS-Security specifications and can act as an ESB. ESB TOPOLOGY
(IBM DATAPOWER CONFIGURATION) is a related ACD. The BPEL ENGINE deci-
sion has many vendor and open source alternatives, including, but not limited to
IBM WEBSPHERE PROCESS SERVER and ORACLE BPEL PROCESS MANAGER.
SOAP ENGINE has alternatives such as APACHE AXIS2. We will return to a subset
of these issues in Chapter 7.

Table 15 summarizes the RADM for SOA issues we introduced in this section.
The full model comprises 389 issues with close to 2000 alternatives. 86 topic
groups and 683 relations are defined.

Table 15. Subset of RADM for SOA issues

Identification Rule Layer Issue (Decision Required)
IR1: (Technical) ex-
ecutive decisions, re-
quirements analysis
decisions

n/a ARCHITECTURAL STYLE
LAYERING
LANGUAGE AND PLATFORM PREFERENCES
TOOLING DIRECTIONS
FUNCTIONAL REQUIREMENTS NOTATION
BPM NOTATION

IR2 and IR3:
Pattern Selection De-
cisions (PSDs), Pattern
Adoption Decisions
(PADs)

Atomic service layer

Integration layer

Service composition
layer

IN MESSAGE GRANULARITY
OUT MESSAGE GRANULARITY
OPERATION-TO-SERVICE GROUPING
MESSAGE EXCHANGE PATTERN
INVOCATION TRANSACTIONALITY PATTERN
SERVICE PROVIDER TRANSACTIONALITY (ST)

INTEGRATION PARADIGM
COMMUNICATIONS TRANSACTIONALITY (CT)

SERVICE COMPOSITION PARADIGM
PROCESS LIFETIME
SESSION MANAGEMENT
RESOURCE PROTECTION STRATEGY
PROCESS ACTIVITY TRANSACTIONALITY (PAT)

IR4 and IR5:
Technology Selection
Decisions (TSDs),
Technology Profiling
Decisions (TPDs)

Atomic service layer

Integration layer

Service composition
layer

TRANSPORT PROTOCOL BINDING
MESSAGE EXCHANGE FORMAT
SOAP COMMUNICATION STYLE
WEB SERVICES API
JAVA SERVICE PROVIDER TYPE
XML SCHEMA (XSD) CONSTRUCTS

INTEGRATION TECHNOLOGY
TRANSPORT QOS

WORKFLOW LANGUAGE
BPEL VERSION
COMPENSATION TECHNOLOGY

IR6 and IR7:
Vendor Asset Selec-
tion Decisions
(ASDs), Vendor Asset
Configuration Deci-
sions (ACDs)

Atomic service layer

Integration layer

Service composition
layer

SOAP ENGINE

ESB PRODUCT
ESB TOPOLOGY (IBM DATAPOWER
CONFIGURATION)

BPEL ENGINE
INVOKE ACTIVITY TRANSACTIONALITY

82 5 Scoping Reusable Architectural Decision Models

Issues in physical viewpoint. The examples presented so far dealt with the logical
viewpoint introduced in Chapter 2. However, many issues pertain to the physical
viewpoint. Such issues reside on all levels of refinement shown in Figure 18. For
example, several PADs and PSDs are required to create a conceptual operational
model, e.g., about clustering or a certain network topology. Follow on TSDs and
TPDs are required to create a technology operational model, for instance selecting
a certain data replication mechanism supporting backup or failover concepts ap-
pearing on the conceptual level. Even more detailed ASDs and ACDs are required
to create a vendor asset operational model, e.g., concerning the proprietary system
management scripts required to deploy the selected backup or failover technology,
the installation of heartbeat and takeover protocols, and the configuration of serv-
ers and network equipment. Further details regarding decisions pertaining to the
physical viewpoint are out of scope here, but present in the full RADM for SOA.

This concludes the RADM for SOA overview. We will return to some of these
issues in Chapter 6, and tailor this RADM into a project ADM in Chapter 7.

5.3 Discussion and Summary

In this section we introduced SOAD step 1, which deals with RADM scoping in
the asset creation phase. We introduced and demonstrated a technique leveraging
identification rules and a meta issue catalog to define the boundaries of a RADM.

Justification. We propose a human-centric technique for decision identification,
rather than an algorithm than can be implemented in a tool. This is adequate given
the current state of the art and the practice. For further automation, it would be re-
quired to capture expert knowledge in machine-readable form and apply data min-
ing techniques. This appears to be too ambitious, requiring strong assumptions re-
garding the formalization of input models and a highly stable application genre.

Our decision identification approach is pattern-centric: Principles and patterns
such as those defined in Chapter 2 serve as anchor points for the RADM scoping.
They provide conceptual alternatives in the RADM for SOA. Leveraging knowl-
edge already captured in pattern form as conceptual alternatives is a key advantage
of SOAD; it saves the knowledge engineer much documentation effort. Our tech-
nique can be applied even if patterns are not available yet: Logical components
and connectors used on previous projects can be studied instead. The created
RADM then serves as an intermediate step during the pattern harvesting.

As we could observe in one of the case studies presented in Chapter 9 (action
research), the technique increases the productivity of the knowledge engineer.

Assumptions. A key assumption of SOAD is that the architectural decisions re-
quired during design (which we call issues) recur.34 The feedback obtained during
the validating industry case studies (discussed in detail in Chapter 9) indicates that

34 The decision outcome (actual decision made and its justification) has reuse potential as

well, but not as much as the background information. It is valuable knowledge, though.

 5.3 Discussion and Summary 83

this assumption is rather strong, but valid for SOA. The RADM for SOA also
makes evident that the assumption holds: We have identified 35 issues in this
chapter (see Table 15); the full RADM for SOA models 389 recurring issues.

Consequences. The issue names create a language for a problem domain, just like
pattern names create one for a solution domain.

Our identification rules and meta issues leave many modeling choices to the
knowledge engineer; this is deliberate. It is possible to combine or remove issues,
e.g., when a pattern itself already resolves a meta issue or when the related knowl-
edge can not be made reusable.

The presented top-down identification technique must be complemented with a
bottom up knowledge harvesting method to ensure continuous content contribu-
tions from industry projects. This method must provide a process, criteria whether
a decision qualifies for inclusion in a RADM, and decision modeling guidance.
Such process, criteria, and guidance are informally described in Appendix A.

Next steps. The issue catalog produced in this step does not give any advice how
to document and use the issues; so far, we have only named them and touched
upon alternatives and dependencies in anecdotal form. In the following steps, we
present how to model, structure, order, and use issues once they have been identi-
fied.

Related publications

We discuss the complementary and synergetic relationship between pat-
terns and decision models in detail in [ZZG+08].

A RADM for SOA overview is also given in [ZKL+09].

6 Populating Reusable Architectural Decision
Models

In this chapter, we present our concepts for SOAD steps 2 to 4, which are con-
ducted during the asset creation phase: We introduce the SOAD metamodel sup-
porting reuse and collaboration (Section 6.1), structure decision models statically
with refinement levels, topic group trees and logical dependency relations (Section
 6.2), and add a temporal decision order (Section 6.3).

6.1 Framework Step 2: Model Individual Decisions

A metamodel for architectural decision capturing and sharing is required for step 2
in the SOAD framework. Such metamodel solves the following problem:

Which information to model for each architectural decision required (issue)?

Once an issue has been identified as recurring, it has to be described and posi-
tioned in the RADM asset to be populated. This section deals with describing sin-
gle issues; Section 6.2 will then cover issue positioning in the RADM. The input
for this step is a linear list enumerating identified issues (issue catalog). Its output
is an issue catalog containing elaborate descriptions of issues and alternatives.

The section starts with a brief review of the state of the art and the practice and
then progresses to presentation of solution, application to SOA, and discussion.

6.1.1 State of the Art and the Practice

State of the art. As explained in Chapter 2, many templates and metamodels for
decision capturing exist [Bre, DFL+07, JB05, TA05]. A decision log is a key arti-
fact in many industrial methods, e.g., UMF [CCS07] (“architectural decisions”).

State of the practice. Many inhibitors for retrospective decision capturing exist,
e.g., lack of time, immediate benefit, and tools [TAG+05]. Architectural decisions
typically are captured in text documents; e.g., the UMF artifact description sug-
gests a table format. Capturing dependencies and organizing decisions in this form
is manual, time consuming work. The alignment with other artifacts is cumber-
some. Scalability and collaboration challenges can be observed on larger projects:
A large text document with many cross references is difficult to maintain manu-

86 6 Populating Reusable Architectural Decision Models

ally [SZP07]. As a consequence, decisions are often captured in rudimentary form
(e.g., as a spreadsheet or bullet list) or as part of other artifacts (e.g., as an appen-
dix of a document describing the architecture from a logical viewpoint or in a pro-
ject team wiki). They may even remain tacit or vaporize over time [Jan08].35

6.1.2 Concepts: Metamodel Extensions for Reuse and Collaboration

To overcome the inhibitors, we define a metamodel that extends existing templates
for knowledge capturing to support active usage of decision models during design.
We first introduce an informal template and then specify the metamodel precisely.

Architectural Decision (AD) template. We build on existing templates to de-
scribe issues (see Definition 4.4), outcomes (Definition 4.3), and supporting in-
formation. To satisfy the needs of our extended usage context, we add attributes as
indicated in Figure 19. Our template is structured into decision investigation, deci-
sion making, and decision enforcement sections:

Architectural Decision (AD): Issue Name, Short Name

Decision Making Outcome Information

Decision Enforcement
Outcome Information

Design Model and Method Alignment

Scope Phase Role

Enforcement
Recommendation

Chosen
Alternative Justification Consequences

Decision Investigation

Problem
Statement

Decision
Drivers

Alternatives
(with Pros, Cons,

Known Uses)

ChangedBy
ChangedWhen

Asset Information

Owner,
Acknowledgments

Editorial Status,
To Dos

Recommendation

Assumptions

Ex./SOAD
Existing Work

Legend :

Background
Reading

Status

Issue Information

RADM and ADM

ADM

SOAD

Figure 19. Architectural decision capturing template with SOAD extensions

Decision investigation. We model an issue name, e.g., SESSION MANAGEMENT.
This name is the only information that is available after step 1; all other informa-
tion is added during RADM population (steps 2 to 4). There is an abbreviating
short name as well, e.g., “Scl-01”. SCL is the abbreviation of Service Composi-

35 The assessment is subjective, drawing on input from practicing architects and personal

experience (see Chapter 9 and 10). It is supported by the findings in [DFL+07, TAG+05].

 6.1 Framework Step 2: Model Individual Decisions 87

tion Layer, one of the architectural layers introduced in Definition 2.8 (in Chapter
2) and used to structure the RADM for SOA introduced in Chapter 5.

The scope links an issue to types of design model elements such as “business
process”, a component name used in the SOA definitions in Chapter 2. Method
alignment is achieved via project phase (“macro design”) and role (“application
architect”) information, which comes from the software engineering method
adopted. These attributes are particularly useful in step 5 (tailor model) when fil-
tering the RADM: It is possible to select only issues relevant in a particular con-
text. Asset information such as owner, acknowledgments, editorial status, and to
dos captures information about the origin and the maturity of the knowledge.

The problem statement motivates the design issue, often as a question (e.g.,
“How to correlate incoming user requests and server-side session objects?”). De-
cision drivers convey information about the factors that influence the decision
making; the pattern community uses the term forces synonymously [ZZG+08].
Decision drivers may include genre-specific NFRs such as the user, process and
resource integrity, integration, and semantics challenges from Section 2.1.2 in
Chapter 2, but also general software quality attributes [ISO01] and environmental
issues such as project budget, license costs, development efforts, and team skills
(e.g., “size and amount of enterprise resource data to be exchanged, scalability
needs from a service provider perspective”). We provided more examples in
Chapter 4; a genre-specific decision driver categorization appears in Appendix A.

The alternatives element in the template lists available design options (“CLIENT
STATE PATTERN“) with their pros, cons, and known uses. Subjective information
is conveyed in the recommendation, which depending on the decision type can be
a simple rule of thumb (“avoid client-side state if the state information is large”), a
weighted mapping of forces to alternatives, or a pointer to a more complex analy-
sis process to be performed outside the decision model.36 The recommendation
should refer to decision drivers and pros and cons of alternatives. With the back-
ground reading attribute, supporting material such as primers and tutorials can be
referenced (“Fowler [Fow03] describes issue and alternatives in detail”).

Decision making. A status attribute captures the current state of processing (step
6); its values can come from existing ontologies such as that in [KLV06]. The
other decision outcome attributes chosen alternative, justification, assumptions,
and consequences are adopted from an existing capturing tool [ABK+06].

Decision enforcement. A decision enforcement recommendation for step 7 can be
stated, informing the architect about suggested ways to educate developers and
other project stakeholders about a decision made. Examples are “coaching”, “ar-
chitectural templates (code snippets)”, and “code generation”. Attributes such as
changedBy and changedWhen convey decision authoring history and lifecycle
management information to support collaboration.

We now specify the information in the template in a UML class diagram, add-
ing several attributes and basic decision dependency information.

36 A SOA design example is: “Follow the WS-I basic profile, which endorses the docu-
ment/literal SOAP COMMUNICATION STYLE and bans rpc/encoded“ [WSI06].

88 6 Populating Reusable Architectural Decision Models

UML metamodel. Already present in the template, ADIssue, ADAlternative, and
ADOutcome are the core entities in the SOAD metamodel. It is shown in Figure
20; each entity is represented by a UML class. Alternatives are represented as a
separate ADAlternative class now, which has a physical containment relation with
ADIssue (labeled isSolvedBy) Decision dependencies are explicitly modeled as as-
sociations between ADIssues. We introduce a single dependsOn association here;
in Sections 6.2 and 6.3, we refine this link and define several different dependency
relations both on the ADIssue and the ADAlternative level.

Figure 20. SOAD metamodel as UML class diagram (adapted from [ZKL+09])

Two structuring constructs appear in the metamodel: ADLevel and AD-
TopicGroup allow knowledge engineers to group closely related ADIssues and de-
fine topic group hierarchies. We discuss such model structuring in Section 6.2.

To facilitate reuse and distinguish issues and outcomes (as specified by Defini-
tions 4.3 and 4.4), we separate ADOutcome information from ADIssue and ADAl-
ternative knowledge. The rationale behind this modeling choice is that the same
issue might pertain to multiple elements in a design model: Types of components
and connectors are referenced via the scope attribute in the ADIssue. Multiple
ADOutcome instances can be created, and refer to actual design model elements
via their name. In SOA design, an order management process model might state
that three business processes have to be implemented as a set of composed Web
services; while the SESSION MANAGEMENT issue has to be resolved for all three
processes, the chosen alternative might differ per process [ZKL+09].

ADIssue and ADAlternative instances appear in SOAD RADMs. ADOutcome
instances are added to an ADM during RADM tailoring (step 5) and decision
making (step 6). If issues recur, only the outcome has to be documented on each
project (including its justification); the detailed issue description, for instance

 6.1 Framework Step 2: Model Individual Decisions 89

pointers to pattern descriptions, is already present in the tailored RADM. The is-
sue description can be modified in the ADM, e.g., if an alternative is chosen that is
not defined or not described properly in the RADM. Issues can be added as well.

Let us now investigate a comprehensive ADIssue and ADAlternative example.

6.1.3 Sample Application to SOA: Invocation Transactionality Pattern

In this section, we instantiate the SOAD metamodel and capture a complex SOA
design issue, the design of system transaction boundaries in process-centric SOA
[ZHD07]. This issue and its alternatives were first presented in [ZGT+07].

We call this issue INVOCATION TRANSACTIONALITY PATTERN. It can be identi-
fied with IR3 from Chapter 5, combining the service composition pattern with the
meta issue called “system transactionality” (see Table 14 on page 75). The issue
appears in the RADM for SOA introduced in Section 5.2 because it meets the
definition of an architectural decision from Chapter 1 and it recurs multiple times
in each business process supported by an SOA. Figure 21 shows an excerpt from
the issue description in the RADM for SOA (see Appendix B for full description):

Decision Drivers: Enterprise
Resource Protection Needs,
Data Currency, Performance

Scope:
Service

Operation

Conceptual ADIssue Sld-01: INVOCATIONTRANSACTIONALITYPATTERN

Problem Statement: Should process and invoked service operations
run in a single or in multiple system transactions?

Background Reading: See paper presented at ICSOC 2007 [ZGT+07]

ADAlternative 1:
Transaction Islands

Do not share Tx
context

Best performance,
loose coupling, but

no full ACID
protection for

resources.

Phase:
Macro Design

Role:
Application Arch.

Recommendation: Use Transaction Islands as default, Stratified Stilts
for long running, distributed processes.

Enforcement Recommendation: Injection into model transformation
or BPEL code in BPM tool is possible.

ADIssue
Service

Composition
Paradigm

ADAlternative 2:
Transaction Bridge

Share Tx context

Best resource
protection, but

large, long running
Tx tightly coupling
process activities

and services.

ADAlternative 3:
Stratified Stilts

Use asynchronous
messaging and

suspend Tx

Supports loose
coupling best, but

no full ACID
protection.

ADIssue
Process Activity
Transactionality

(PAT)

ADIssue
Communications
Transactionality

(CT)

ADIssue
Service Provider
Transactionality

(ST)

dependsOn

Figure 21. QOC+ diagram for INVOCATION TRANSACTIONALITY PATTERN

The notation introduced in Figure 21 is our variant of Question, Option, Crite-
ria (QOC) diagrams [MYB+91]. QOC diagrams raise a design question which
points to the available options for it; decision criteria are associated with the op-
tions. Option selection can lead to follow-on questions. QOC diagrams are an ef-
fective way of displaying design issues and possible solutions. QOC diagrams
align well with SOAD: The questions can be found in the problem statements of
ADIssues, the options correspond to ADAlternatives, and the criteria are the deci-
sion drivers. Unlike standard QOC diagrams, we do not link criteria to options

90 6 Populating Reusable Architectural Decision Models

graphically. However, our QOC variant adds recommendations, as well as the
scope, phase, and role attributes from the SOAD metamodel from Section 6.1.2.

The scope, phase, and role attributes express which design model element the
ADIssue pertains to, when it should be made, and who is responsible: The scope
attribute of the INVOCATION TRANSACTIONALITY PATTERN issue is set to “service
operation”, a term used by the service consumer-provider-contract pattern (Defini-
tion 2.6). This informs the architect that the decision must be made for each of the
operations defined in a service contract and implemented by a service provider. It
is typically taken in “macro design” phase, and the “application architect” is re-
sponsible. These terms originate from the software engineering method adopted.

Having been identified with IR3, the issue is classified to reside on the concep-
tual level of the RADM for SOA, as it deals with patterns, and not with technol-
ogy- or product-specific design aspects. The problem statement is given in ques-
tion form. It refers to terms from the SOA definitions in Chapter 2 to ensure that it
is understandable. For architects who are not familiar with the problem and with
possible solutions, a technical paper is referred to under background reading.

Figure 21 lists “enterprise resource protection needs, data currency, perform-
ance” as decision drivers [Fow03]. These decision drivers are related to the proc-
ess and resource integrity challenge from Chapter 2.

One incoming and three outgoing dependencies with other issues are defined:
This issue becomes relevant once WORKFLOW is selected as SERVICE COMPOSITI-
ON PARADIGM. We investigate the three depending issues on the right shortly.

A recommendation is also given. It is weak here due to the complexity inherent
to this particular design issue: There is no single, one-size-fits-all solution to it.

Architectural patterns as alternatives of conceptual decisions. Figure 21 al-
ready listed three architectural patterns as ADAlternatives. Figure 22 illustrates
these patterns on a platform-independent, conceptual level:

(1) Process
activities in

SCL

(2) Integration
layer

(3) Service
providers S1 S2

I2UI1

Pattern 1:

TRANSACTION ISLANDS

S2

I2UI1

S1

Pattern 2:
TRANSACTION BRIDGE

U

S1 S2

I2I1

Pattern 3:

 STRATIFIED STILTS

Figure 22. INVOCATION TRANSACTIONALITY PATTERN alternatives [ZGT+07]

TRANSACTION ISLANDS, TRANSACTION BRIDGE, and STRATIFIED STILTS are
commonly used to address enterprise resource integrity requirements. To mini-
mize the RADM creation effort, a RADM can reference already established pat-
terns such as SOA patterns [HZ06], messaging patterns [HW04], and general ar-
chitectural patterns [BMR+96]. In this case, we defined the patterns in [ZGT+07].

 6.1 Framework Step 2: Model Individual Decisions 91

The Service Composition Layer (SCL) from the SOA definitions in Chapter 2
is represented by the white boxes. It implements the tasks from an analysis-phase
BPM as process activities that are part of executable workflows which run in the
process manager that appears in the service composition pattern; here, two invoke
activities I1 and I2 enclose a third activity U, which correspond to a BPEL assign
activity [OAS07] or another utility on the technology level.37 S1 and S2 represent
service providers exposing operations. Service operation invocations are displayed
as dotted lines. A contiguous light grey area represents a single global transaction
[LR00], which may be extended if it is not enclosed by a solid black line.

In the remainder of this section, we present the three patterns in detail; RADM
population and coverage of the SOAD metamodel continues in Section 6.2.

Pattern anatomy. As composite patterns, TRANSACTION ISLANDS, TRANSACTION
BRIDGE, and STRATIFIED STILTS comprise three types of primitives [ZAH+08] cor-
responding to several architectural layers from Definition 2.8 (Chapter 2):

1. Process Activity Transactionality (PAT) primitives on the SCL.
2. Communications Transactionality (CT) primitives modeling the transaction

sharing capabilities of the integration layer.
3. Service provider Transactionality (ST) primitives stating the capability of

service providers to join a transaction. Service providers may reside in the
atomic service layer and in the SCL (see Definition 2.8).

The primitives are conceptual, platform-independent abstractions of concepts
found in BPEL [OAS07] and SCA [OSOA] technology, and can be viewed as de-
sign time statements of architectural intent. From a decision modeling standpoint,
each primitive type offers multiple design options. This requires us to represent
the primitive types as Pattern Adoption Decisions (PADs), shown in Figure 23:

(1) PAT – Process Activity (3) ST – Service Provider(2) CT – Communication

S S

(S
T-

J)
 J

oi
n

(S
T-

N
) N

ew

(P
A

T-
J)

 J
oi

n

I2UI1

I2UI1

(P
A

T-
N

) N
ew

Tr
an

sa
ct

io
n

S

I

S

I

(C
T-

ST
)

S
yn

ch
ro

no
us

 T
ra

ns
ac

tio
na

l

(C
T-

AS
)

A
sy

nc
hr

on
ou

s
S

tra
tif

ie
d

(C
T-

SN
T)

S
yn

ch
ro

no
us

 N
on

-T
ra

ns
ac

tio
na

l

S

I

Figure 23. Pattern primitives in Pattern Adoption Decisions (PADs) [ZGT+07]

To elaborate upon the defining characteristics of the patterns and the primitives,
we now present them in a format commonly used in the design patterns literature.
This knowledge is paraphrased in the RADM (e.g., QOC diagram in Figure 21).

37 An example of such process is the customer enquiry process in the motivating case study.

In practice, the business activities from an analysis-phase BPM are not mapped to execu-
table process activities directly; processes are often refactored during design.

92 6 Populating Reusable Architectural Decision Models

Context. All patterns and primitives share common objectives: To protect enter-
prise resources (Definition 2.2) against integrity and correctness threats that may
occur during concurrent process execution, e.g., when multiple processes and acti-
vities in the SCL invoke service operations via the ESB (Definitions 2.6 to 2.8).

Pattern 1. Decoupled TRANSACTION ISLANDS (PAT-J+CT-SNT+ST-N)

Problem. How to isolate SCL process activities from service operation execution?

Solution. Do not propagate the transaction context from the SCL to the service.

Forces and consequences. If a service operation fails, the process navigation in the
SCL is not affected, and vice versa. If a service works with shared enterprise re-
sources, its operations must be idempotent, as they may be executed more than
once due to the transactional process navigation in the SCL. In many cases, the
service provider must offer compensation operations, and higher-level coordina-
tion of the compensation activities is required (e.g., via business transactions
[Fow03]; various models exist [LR00]). This pattern is often chosen as a default.

Pattern 2. Tightly coupled TRANSACTION BRIDGE (PAT-J+CT-ST+ST-J), with
MULTIPLE BRIDGES variant (PAT-N+CT-ST+ST-J)

Problem. How to couple process activity execution in the SCL and service opera-
tion execution from a system transaction management perspective?

Solution. Configure process activities, communications infrastructure, and service
providers so that the SCL transaction context is propagated to the service.

Forces and consequences. Process activities and the service operations invoked by
them execute in the same transaction. As a result, several service operations can
also participate in the same transaction. A natural limit for their response times ex-
ists (“tenths of seconds to seconds at most” [LR00]). If an operation-internal pro-
cessing error occurs, previous transactional work, which can include process navi-
gation in the SCL and the invocation of other operations, has to be rolled back.

This pattern meets resource protection needs well on the system level, but often
is not applicable, e.g., when processes and operations run for days or months. A
common variation of this pattern is to split a process up into several atomic
spheres, creating MULTIPLE BRIDGES for selected process activity/service opera-
tion pairs. Executing the process activities in a small number of transactions
(TRANSACTION BRIDGE) reduces the computational overhead for process navi-
gation; splitting the process up into several atomic spheres (MULTIPLE BRIDGES)
increases data currency (which is a decision driver appearing in Figure 21).

Pattern 3. Loosely coupled STRATIFIED STILTS (PAT-J+CT-AS+ST-J)

Problem. How to realize asynchronous, queued transaction processing in SOA?

Solution. Use message queuing [HW04] on the integration layer (ESB). I1 and S1
use stratified transactions during service invocation; unlike S1, service S2 reads
the request message and sends the response message within a single transaction.

 6.1 Framework Step 2: Model Individual Decisions 93

Forces and consequences. Services do not have to respond immediately; the de-
livery of the messages is guaranteed by the integration layer (ESB). If the execu-
tion of the service operation fails, the process may not get an immediate response;
additional error handling is required, often involving compensation logic. This
pattern often is the only choice when integrating legacy systems.

PAT primitives. The Process Activity Transactionality (PAT) issue defines two
SCL alternatives, transaction context sharing or Join (J), and transaction context
separation or New (N). If PAT-J is chosen, a process activity executes in the same
transaction context as the adjacent activities in the same process; it joins an exist-
ing context. As a consequence, the process activity’s work might be rolled back if
any other process activity or service operation that participates in the same trans-
action fails. With PAT-N, a process activity is executed in a new transaction con-
text. PAT-J is a valid choice in all three INVOCATION TRANSACTIONALITY
PATTERN alternatives and shown in Figure 22. In TRANSACTION BRIDGE, PAT-N
models the MULTIPLE BRIDGES variant. PAT-N is justified if two process activities
should be isolated from each other from a business requirement point of view.

CT primitives. We model the Communications Transactionality (CT) issue with
alternatives Synchronous Non-Transactional (CT-SNT), Synchronous Transac-
tional (CT-ST), and Asynchronous Stratified (CT-AS). These primitives deal with
system transactions on the integration layer. CT-SNT is forced by the
TRANSACTION ISLANDS pattern. It represents a synchronous service invocation
from the process activity without propagation of the transaction context. As a con-
sequence, the activity waits until the call to the service returns. Until then, the
work conducted by the service can not be influenced. For example, the CT-SNT
service invocation may cause the transaction to exceed its maximum duration
which may result in a transaction timeout and a subsequent rollback. With CT-
SNT, undoing the work of the service can not be included in this rollback.

CT-ST is forced by TRANSACTION BRIDGE. It models a synchronous service in-
vocation with transactional context propagation. As a consequence, the process ac-
tivity waits until the call to the service returns. A rollback may occur after the ser-
vice execution has completed; the service participates in the SCL transaction.

CT-AS is forced by the STRATIFIED STILTS pattern. It represents an asynchro-
nous service invocation without transaction context propagation. In CT-AS, long-
running services can be invoked without loosing transactional behavior, as the
process navigation is part of a stratified transaction [LR00]. At least three trans-
actions are involved in the invocation of a long-running service: the request mes-
sage is sent in a first transaction; in a second transaction, the message is received
by the service provider and the response message is sent; in a third transaction, the
process activity receives the response from the service. Depending on the service
implementation, the second transaction (provider side) may be split up into several
transactions, e.g., receive the message and commit, and later on, send the response
in a new transaction. Such stratification details are described further in [LR00].

ST primitives. Two alternatives exist for the Service Provider Transactionality
(ST) issue: join an incoming transaction (ST-J) or create a new one (ST-N). ST-J

94 6 Populating Reusable Architectural Decision Models

is forced by TRANSACTION BRIDGE, ST-N by TRANSACTION ISLANDS. In ST-J, the
service provider participates in the transaction of the caller (if a transaction exists).
As a consequence, process activity execution in the SCL and the invoked service
operation influence each other, e.g., when causing a rollback. In ST-N, the service
provider does not participate in the incoming transaction. As a consequence, if the
transaction in which the process activity runs is rolled back and the activity is re-
tried later (e.g., due to process engine-specific error handling procedures), the ser-
vice may operate on enterprise resources that have been modified in the meantime.

This completes coverage of the INVOCATION TRANSACTIONALITY PATTERN is-
sue and depending PADs as illustration of SOAD step 1.

6.1.4 Discussion and Summary

In support of step 2, we introduced the SOAD metamodel for capturing individual
issues and presented an SOA example demonstrating the relation with patterns.

Justification. Our metamodel draws on our own decision capturing experience
[ZGK+07], existing assets [ABK+06], and the literature [Jan08, TA05]. It also
takes inspiration from pattern templates [GHJ+95, BMR+96]. The standardization
of the decision capturing template simplifies both asset creation and asset con-
sumption. Only one template has to be learned; guidelines how to use the attrib-
utes can be established (e.g., regarding value ranges and semantics of content).
Standardization also accelerates the knowledge exchange between architects.

Assumptions. We assume that attribute names and formats can be agreed upon.
There is a conflict between flexibility and extensibility on one side and standardi-
zation and exchangeability on the other side. The latter two requirements have
higher priority for us, as reuse is a design goal and key framework concept. The
validation results show that practicing architects consider information such as
problem statement, decision drivers, and pros and cons of alternatives useful; the
attribute names and formats can indeed be agreed upon (see Chapter 9). Other ar-
chitectural knowledge management work draws different conclusions [DFL+07].

Consequences. Creating a RADM and describing the issues according to the
SOAD metamodel causes knowledge engineering efforts. Hence, a decision to
create a fully documented RADM must be in line with the knowledge manage-
ment strategy in place, e.g., codification as opposed to personalization [Jan08].

Next steps. As a next step of RADM population in the asset creation phase, we in-
troduce refinement levels and architectural layers to structure decision models.

Related publications

An earlier version of the SOAD metamodel is described in [ZGK+07]; the
version presented in this section is also featured in [ZSE08] and [ZKL+09].

The decisions and patterns in this section first appeared in [ZGT+07].

 6.2 Framework Step 3: Structure Model 95

6.2 Framework Step 3: Structure Model

With issues identified and modeled (SOAD steps 1 and 2), step 3 can be taken:

How to organize decision models in an intuitive, use case-driven way?

Let us assume that several hundred issues have been identified and modeled in-
dividually. An issue catalog organized as a linear list or table that has to be studied
from beginning to end (as produced in steps 1 and 2) can not improve the decision
making as desired. Hence, the output of this third asset creation step is a hierarchi-
cally structured model that is easier to navigate than a linear list.

The section structure is the same as that we used for steps 1 and 2, starting with
a short review of the state of the art and the practice, then progressing to solution,
application to SOA and motivating case study, and brief discussion of rationale.

6.2.1 State of the Art and the Practice

State of the art. In the architectural knowledge management community, the on-
tology proposed by Kruchten et al. [KLV06] defines three types of decisions: ex-
ecutive, existence, and property decisions (with subtypes such as ban decision).
Booch is in the process of defining a pattern classification taxonomy as part of his
software architecture handbook project [Boo]. Model Driven Architecture (MDA)
distinguishes platform-independent from platform-specific models [OMG03].
Panes in enterprise architecture frameworks such as TOGAF [OG07] also struc-
ture architectural domains. However, we are not aware of any usage of these con-
cepts in the context of structuring reusable architectural decision models.

State of the practice. RADMs for the enterprise application genre and SOA are
not broadly available yet. Hence, basic organizing principles are used when cap-
turing decisions in spreadsheets, word processing templates, and wiki tables. The
resulting decision logs often are ordered chronologically and/or by topic areas
only. This makes them easy to create, but hard to read and maintain. Lack of struc-
ture and resulting maintenance effort are among the many reasons why such deci-
sion logs often are not kept up to date until project end. This inhibits reuse.

6.2.2 Concepts: Multi-Level Decision Model and Logical Constraints

To solve the model structuring problem, we complement the UML model from
Section 6.1 with formal definitions. Basic concepts from set and graph theory are
adequate to define the entities in the UML model and the relations between them.

We begin with representations for the three UML model elements AD-
TopicGroup, ADIssue, and ADAlternative from Figure 20 on page 88:

96 6 Populating Reusable Architectural Decision Models

Definition 6.1 (Architectural Decision Topic Groups T). Let T be a set of archi-
tectural decision topic groups T = {(n, s, d) x n, s, d c Strings} where the tuple (n,
s, d) represents the name, short name, and description of an architectural decision
topic group.38

An architectural decision topic group (short: topic group, topic) represents
closely related design concerns. For instance, in our RADM for SOA, one topic
group per architectural layer is defined on each refinement level (see Figure 18 on
page 77). An example is “Atomic Service Layer Decisions” corresponding to the
atomic service layer from Definition 2.8. It is worth noting that our topic groups
do not represent individual design issues, but group such issues. Representing in-
dividual design issues is the purpose of the next entity:

Definition 6.2 (Architectural Decision Issues I). Let I be a set of architectural
decision issues I = {(n, s, p, r, {tt}) x n, s, p, r, tt c Strings} where n is a name, s
a scope, p a project phase, r a role attribute, and {tt} a set of topic tag strings.

An architectural decision issue (short: issue) represents a single design concern.
Name, scope, phase, and role are describing texts. The name is used to identify
and list issues. The topic tags index the model content. This information can be
used to locate issues by subject area keyword. The architect can query the model
for all issues dealing with “security”, “transaction management”, “workflow”, and
so on.

In our RADM for SOA, the issue MESSAGE EXCHANGE PATTERN deals with the
abstract protocol syntax and synchrony of operation invocations. A second issue is
INVOCATION TRANSACTIONALITY PATTERN, dealing with system transactions pro-
tecting enterprise resources from invalid concurrent access, e.g., lost updates and
phantom reads (see Section 6.1.3). A third issue is IN MESSAGE GRANULARITY,
which concerns the syntactical structure of the in message parameters.

An architectural decision issue captures a single design concern without model-
ing possible solutions to it. Architectural decision alternatives do so:

Definition 6.3 (Architectural Decision Alternatives A, Chosen). Let A be a set
of architectural decision alternatives A = {(n, s, chosen) x n, s c Strings, chosen c
{undefined, true, false}} where n is a name, s is a solution description, and
chosen is a marking that is undefined initially and becomes true when the al-
ternative is chosen by the architect and false when the alternative is rejected.

An architectural decision alternative (short: alternative) presents a single solu-
tion to a design issue. For instance, MESSAGE EXCHANGE PATTERN decides be-
tween synchronous REQUEST-REPLY and asynchronous ONE WAY alternatives. As
presented in Section 6.1.3, two alternatives for INVOCATION TRANSACTIONALITY
PATTERN are TRANSACTION ISLANDS and TRANSACTION BRIDGE.

Definition 6.4 (contains Relations \T, \I, \A, \). Let \T ` T × T be a contains re-
lation defined between topic groups, \I ` T × I be a contains relation defined be-
tween topic groups and issues, and \A ` I × A be a contains relation defined be-

38 The other attributes from the UML model are irrelevant for the model structure.

 6.2 Framework Step 3: Structure Model 97

tween issues and alternatives. Subsequently, we will only speak of the contains re-
lation \ = \T 4 \I 4 \A.

The contains relation \ allows us to define a hierarchical structure. One or more
architectural decision alternatives solve a particular design problem (expressed as
an issue). Related issues can be grouped into topic groups. Related topic groups
can be placed in the same parent topic group. Figure 24 illustrates the tree struc-
ture resulting from the \ relation:

t2t2

i1i1

a1a1

a2a2

t1

t3t3

i3i3 a6a6i2i2

a3a3

a5a5

t4t4

a4a4

topic
group

issueissue

alt.alt.

Figure 24. General organization of an architectural decision tree [ZKL+09]

In the UML metamodel in Section 6.1 (Figure 20 on page 88), the \ relation is
represented by the three associations that express physical containment between
ADTopicGroups, ADIssues and ADAlternatives, respectively (i.e., arrows filled
with solid diamonds at originating end).

Definition 6.5 (Architectural Decision Tree , Root Topic). Using T, I, A, and
the \ relation, we can define an architectural decision tree = (T 4 I 4 A,\)
with a single root node t0 c T called the root topic. In , a topic group contains
zero or more other topic groups and issues, while an issue may contain zero or
more alternatives. In this tree, each topic group t c T except the root topic is con-
tained in exactly one other topic group ti c T:

≤ t, ti , tj c T: (ti \ t) . (tj \ t) u ti = tj

Each issue i c I must be contained in exactly one topic group t c T:

≤ i c I ≥ t c T: (t \ i)
≤ i c I, ti, tj c T: (ti \ i) . (tj \ i) u ti = tj

Each alternative a c A must be contained in exactly one issue i c I:

≤ a c A ≥ i c I: (i \ a)
≤ ii, ij c I, a c A: (ii \ a) . (ij \ a) u ii = ij

Figure 25 instantiates the abstract tree structure for parts of our SOA example:

98 6 Populating Reusable Architectural Decision Models

t2t2

od1od1

t1

t3t3

imd1imd1od2od2

t4t4

OPERATION DESIGN (od) MESSAGE DESIGN (md)

MESSAGE
EXCHANGE
PATTERN

IN MESSAGE
GRANULARITY

COARSE
GRAINED

TX
ISLANDS

TX
BRIDGE

STRAT.
STILTS

REQ
REPLY

ONE
WAY

issueissue

alt.alt.

IN MESSAGE DESIGN (imd)

INVOCATION
TRANSACTIONALITY

PATTERN

ATOMIC SERVICE LAYER DECISIONS
topic
group

Figure 25. An instantiated example tree (RADM for SOA excerpt) [ZKL+09]

Definition 6.6 (Ordered Architectural Decision Tree). We define an ordering
among the child nodes of identical type (topic group, issue, alternative) contained
in a node in order to be able to enumerate sibling nodes of the same type sharing
one parent node, i.e., we introduce <T, <I, <A.

An ordering relation defines a recommended reading and decision making se-
quence, and can be used to express integrity constraints on architectural decision
trees (which we will define later). In the simplest case, the <T, <I, and <A relations
can be the alphanumeric sorting of the topic group, issue, and alternative names.
Note that a topic group may contain other topic groups and issues. In this case, we
order all topic group siblings before all issue siblings. This yields an ordered tree

; we refer to its total order relation as <.
The elementary definitions allow knowledge engineers to capture decisions and

organize the knowledge in a topic group hierarchy. However, the resulting ordered
architectural decision tree does not yet support the envisioned design method us-
age of architectural decision models, in which a managed issue list takes an active,
guiding role. More relations between topic groups, issues, and alternatives must be
defined.39 We now introduce multi-level models and logical constraints.

Definition 6.7 (Architectural Decision Model , Root Topic, Initial Issue). An
architectural decision model is a partially ordered set of architectural decision
trees 00,…, 10,…, km arranged in levels L0,…,Lk. Each tree belongs to exactly
one level and each level must contain at least one tree, i.e., no empty levels exist. A
tree ki is the i-th tree in level k. If k < l, we speak of tree ki having a higher level
than tree lj and lj having a lower level than ki. Each architectural decision
model has exactly one distinguished root topic, which is the root topic of the
initial tree 00 in the highest level L0. Accordingly, the first issue in the distin-
guished root topic (according to <I) is identified as the initial issue.

Architectural decision models define the multi-level structure required for deci-
sion models such as the RADM for SOA introduced in Chapter 5. The partial or-
der assigns topic groups and issues to different levels of abstraction and refine-

39 Note that the UML model in Section 6.1 only defined a generic “dependsOn” association.

 6.2 Framework Step 3: Structure Model 99

ment. For example, as motivated in Chapter 5, a conceptual level issue about an
INTEGRATION PARADIGM can be identified by Identification Rule (IR) 2: Should
the services be integrated via SOA MESSAGING (Definitions 2.6 and 2.7), REMOTE
PROCEDURE CALLS (RPC), FILE TRANSFER, or a SHARED DATABASE [HW04]? A
related technology level issue is to agree on the TRANSPORT PROTOCOL BINDING
such as SOAP OVER HTTP. Finally, a SOAP ENGINE asset can be selected on the
vendor asset level, e.g., APACHE AXIS2 or IBM WEBSPHERE.

We now define several additional relations. They formally capture how issues
residing in different levels and trees of a model can be combined in order to ex-
press that an abstract, conceptual design is elaborated upon on the same or on a
lower, more concrete level of design refinement.

Definition 6.8 (refinedBy, decomposesInto, influences Relations). Let be an
architectural decision model with levels L0,…, Lk and trees 00 ,…, km belonging
to levels L0,…, Lk. The following relations are defined between issues i00 0, …, ikm n
where an issue ikm n is the n-th issue in the m-th tree km contained within level Lk of
a model .

• influences(ijl n, ikm o) with j, k, l, m, n, o arbitrary. The influences relation
captures cross-cutting concerns between issues. It adds additional undi-
rected edges to the model that must not necessarily form a connected
graph. The relation is symmetric, i.e., if ii influences ij, then ij influences
ii. In addition, the influences relation is not reflexive, but transitive. An
issue can influence several other issues and it can also be influenced by
several other issues.

• refinedBy(ijl n, ikm o) with j < k and l, m, n, o arbitrary. The refinedBy re-
lation links issues that have to be investigated at several levels. It adds
additional directed edges to the model that must always lead from an is-
sue in a higher level to an issue in a lower level of the model, i.e., no cy-
cles can occur. The relation is transitive, but neither reflexive nor sym-
metric. If k = j + 1, i.e., the refinement of an issue is contained within the
next lower level, we speak of a strict refinedBy relation. Issues in the
highest level L0 can not refine any other issue, while an issue in the low-
est level Lk can not be refined by any issue. If (i1 refinedBy i2), i1 is also
referred to as having an outgoing refinement relation and i2 is also re-
ferred to as having an incoming refinement relation.

• decomposesInto(ijl n, ikm o) with j = k and l, m, n, o arbitrary. The decom-
posesInto relation expresses functional aggregation. It adds additional
directed edges between issues within the same level. The relation is tran-
sitive, but neither reflexive nor symmetric. No cycles are permitted.

The influences relation can be used to express cross-cutting concerns without
making any assumptions about the level (\) and order (<) of the related issues. For
instance, the choice of a WORKFLOW LANGUAGE also has to do with the WEB
SERVICES API, but the relation type is neither refinement (the two issues belong to
the same refinement level, the technology level) nor decomposition because dif-
ferent design model elements are affected (workflow and service consumer). The

100 6 Populating Reusable Architectural Decision Models

influences relation is often used in rapid decision capturing efforts and replaced by
a more elaborate form such as refinedBy and decomposesInto as the decision
model matures during subsequent knowledge engineering iterations.

The refinedBy relation allows us to model that the same design issue typically
has to be investigated at several stages of the software engineering process. A
level can correspond to a Model Driven Architecture (MDA) model type such as
platform-independent model and platform-specific model [OMG03], to a devel-
opment milestone, e.g., an elaboration point defined in RUP [Kru03], or to a
TOGAF pane [OG07]. A conceptual pattern such as SERVICE COMPOSITION
PARADIGM abstracts away from any particular technology. Consequently, a
WORKFLOW LANGUAGE like BPEL has to be selected in refinement of the concep-
tual decision to adopt the WORKFLOW pattern. Next, a particular BPEL ENGINE
vendor asset has to be selected if BPEL is the selected WORKFLOW LANGUAGE.

The decomposesInto relation expresses functional aggregation of issues. When
following the separation of concerns principle, complex design problems are often
broken down into to smaller, more manageable units of design work. These units
can then be investigated independently of each other. The decomposition of the
transaction management patterns into layer-specific primitives in the Section 6.1.3
was an example of such an approach.

Table 16 summarizes the main properties of the relations.

Table 16. Logical relations between architectural decision issues

Relation Set(s) Reflexive/
Symmetric/
Transitive

Cardinal-
ity

Other Properties

influences I × I no/yes/yes n:m –
refinedBy I × I no/no/yes 0..1:0..1 Introduces one or more addi-

tional Directed Acyclic Graphs
(DAGs), i.e., no cycles permit-
ted; only from higher to lower
level (next lower if strict)

decomposesInto

I × I no/no/yes 0..1:n No cycles permitted. Only
within the same level.

With these relations introduced, we can define two logical constraints on archi-
tectural decision models .

Integrity Constraint 1. The refinedBy and decomposesInto relations are mutu-
ally exclusive.

≤ii, ij: ii refinedBy ij u ￢ (ii decomposesInto ij)

and ≤ii, ij: ii decomposesInto ij u ￢ (ii refinedBy ij)

This follows from our basic definitions, because the refinedBy relation is de-
fined between issues residing on different levels, while the decomposesInto rela-
tion is only defined between issues on the same level.

Integrity Constraint 2. If two issues are related via refinedBy or decomposesInto
relations, they can not be related via an influences relation and vice versa.

 6.2 Framework Step 3: Structure Model 101

≤ ii, ij: ii refinedBy ij - ii decomposesInto ij u ￢ (ii influences ij)
≤ ii, ij: ii influences ij u ￢ (ii refinedBy ij - ii decomposesInto ij)

Figure 26 adds the three levels we introduced in Figure 18 on page 77 (Section
 5.2) to our example, the design of transactional workflows in SOA. The patterns
and primitives are a subset of those shown in Figure 22 (page 90) and Figure 23
(page 91) in Section 6.1.3, now represented as issues that appear in an architec-
tural decision model. The topic group hierarchy is now shown: three SOA layers,
the atomic services layer, the service composition layer, and the integration layer,
are represented by separate topic groups. As explained in Section 6.1.3,
INVOCATION TRANSACTIONALITY PATTERN (ITP) is an example for the decompo-
sition of a complex conceptual issue into two more primitive ones residing on the
same level (here: conceptual). The transactionality of a service operation is a non-
functional design concern. It affects design model elements in the atomic services,
service composition, and integration layers; therefore, ITP has decomposesInto re-
lations with issues in topic groups for two other SOA layers, PROCESS ACTIVITY
TRANSACTIONALITY (PAT) and COMMUNICATIONS TRANSACTIONALITY (CT).
PAT is an issue that pertains to the service composition layer, CT to the integra-
tion layer. Note that SERVICE PROVIDER TRANSACTIONALITY (ST) (also from Sec-
tion 6.1.3) is not shown in the interest of readability.

SLD

PATPAT

SRDSRD

Entry
Point:

ITP

SRD – SOA SERVICE REALIZATION DECISIONS

ITP – INVOCATION
TRANSACTIONALITY

PATTERN

TX
ISLANDS

SCLDSCLD

ILDILD
SCLD – SERVICE COMPOSITION LAYER DECISIONS

ILD –
INTEGRATION LAYER DECISIONS

CTCT

JOINCT

NEW

(d)ecomposesInto

(r)efinedBy

WPSWPS

IATIAT

IAT – INVOKE ACTIVITY
TRANSACTIONALITY

REQUIRES
OWN

PARTI-
CIPATES

WS-*
ESB

TRANSP.
QOS

PLAIN
SOAP

WS-*
ESB DECISIONS

IBM WEBSPHERE PROCESS SERVER
(WPS) BPEL

SERVICE COMPOSITION LAYER DECISIONS

d

fr

r

d

TX
BRIDGE

JOIN

NEW

f

L0

Concep-
tual

L2

Vendor
Asset

L1

Technology

SLD –
ATOMIC SERVICE LAYER

DECISIONS

WSAT

f

f

(f)orces

Figure 26. Architectural decision model with logical relations [ZKL+09]

Furthermore, there are two examples of refinedBy relations: A strict one runs
from the conceptual to the technology level (outgoing issue: CT, incoming issue:

102 6 Populating Reusable Architectural Decision Models

TRANSPORT QOS). Another one goes from the conceptual to the vendor asset level:
The outgoing issue is PAT, the incoming is INVOKE ACTIVITY
TRANSACTIONALITY (IAT).40

Figure 26 also introduces a new type of relation, forces, expressing that certain
alternatives for the conceptual issues PAT and CT mandate the alternatives for the
refining issues on lower levels. This is one of three relations to be defined next,
formally capturing the relationships that may exist between alternatives.

Definition 6.9 (forces, isIncompatibleWith, isCompatibleWith Relations). Let
be an architectural decision model. Let ai, ak be architectural decision alternatives
within . Several relations can be defined between alternatives within the same
or across different levels and trees of :

• forces(ai, ak) with i ! k and ii \ ai, ik \ ak implies ii ! ik. The forces rela-
tion expresses that selecting an alternative ai in one issue necessarily
means to select an alternative ak in another issue. It adds additional di-
rected edges between alternatives. It is not reflexive and not symmetric,
but transitive. The relation must not form any cycles.

• isIncompatibleWith(ai, ak) with i ! k. The isIncompatibleWith relation
expresses that certain combinations of alternatives do not work together.
It adds additional undirected edges to the graph. The relation is symmet-
ric, but neither reflexive nor transitive.

• isCompatibleWith(ai, ak) with i, k arbitrary. The isCompatibleWith rela-
tion expresses that certain combinations of alternatives work together.
The relation defines an equivalence relation, i.e., it is reflexive, symmet-
ric, and transitive and thus identifies classes of compatible alternatives.

Table 17. Logical relations between architectural decision alternatives

Relation Set(s) Reflexive/
Symmetric/
Transitive

Car-
dinal-

ity

Other Properties

forces A × A

no/no/yes n:m Forms a DAG, which does not have
to be connected

isIncompati-
bleWith

A × A no/yes/no n:m –

isCompatibleWith A × A yes/yes/yes n:m Default if no other relation exists be-
tween two alternatives

Our next two integrity constraints pertain to these three relations.

Integrity Constraint 3. A forces relation implies that an alternative in one issue
is incompatible with all other alternatives in that issue:

≤ i, ai, aj, ak, i \ aj, i \ ak, j ! k: ai forces aj u ai isIncompatibleWith ak

40 As we will explain in Section 6.2.3, this must be a vendor asset level issue because the

transactionality of invoke activities is not specified by the BPEL technology standard.

 6.2 Framework Step 3: Structure Model 103

Integrity Constraint 4. The forces, isIncompatibleWith, and isCompatibleWith
relations between alternatives are mutually exclusive; one of them must exist. If
nothing is defined, isCompatibleWith is the default.

≤ai, aj: ai forces aj . ai isIncompatibleWith aj ≡ false
≤ai, aj: ai isIncompatibleWith aj . ai isCompatibleWith aj ≡ false

≤ai, aj: ai forces aj . ai isCompatibleWith aj ≡ false
≤ai, aj: ai forces aj - ai isIncompatibleWith aj - ai isCompatibleWith aj ≡ true

The isIncompatibleWith relation expresses that certain alternatives do not work
with each other, for instance a nontransactional service provider (primitive ST-N
from Section 6.1.3) must not be called from a service consumer that has been de-
cided to share transaction context with its provider (primitive PAT-J). A forces re-
lation specifies that an alternative can only be combined with one alternative in a
different issue. For example, a conceptual primitive ST-J requires the ENTERPRISE
JAVABEAN TRANSACTION ATTRIBUTE (technology) to be set to TX_MANDATORY.

In addition to the four formally defined integrity constraints, several heuristics
can also be defined for an architectural decision model .

Definition 6.10 (Balanced Architectural Decision Model). An architectural de-
cision model is balanced if and only if the following informally defined heuris-
tics regarding its structural properties hold:

1. has at least two, but not more than five levels.
2. Topic groups do not contain more than nine other topic groups and twelve

issues.
3. On all but the lowest level, there is at least one issue that has an outgoing

refinement relation.
4. On all but the highest level, there is at least one issue that has an incoming

refinement relation.
5. The maximum path length to get from the initial issue to any issue via the

contains relation \ and to get from the initial issue to any issue via re-
finedBy and decomposesInto relations is ten.

Quality attributes such as usability and consumability for humans justify these
heuristics: An unbalanced model is difficult to maintain (for the knowledge engi-
neer) and consume (for the software architect) due to the many elements per topic
group and lengthy reasoning paths. We provide more rationale in [ZKL+09].

We now continue the SOA design example and provide more details about the
refinement of the exemplary patterns on the technology and the vendor asset level.

6.2.3 Sample Application to SOA: Transaction Management

Figure 26 showed a balanced architectural decision model with several depend-
ency relations between issues. We now cover the alternatives of the issues residing
on the technology level and the vendor asset level in more detail.

104 6 Populating Reusable Architectural Decision Models

Technology-level refinement. We now map the PAT, CT, and ST primitives to
Business Process Execution Language (BPEL) [OAS07] and Service Component
Architecture (SCA) [OSOA]. We expect that BPEL engines allow configuring the
transactional behavior at least for invoke activities, which correspond to the ab-
stract process activities we introduced in Section 6.1.3. Invoke activities commu-
nicate with services via protocols such as SOAP/HTTP [WSI06], Internet Inter-
ORB Protocol (IIOP) [OMG04], and JMS [SunJMS], which differ in their support
for transaction context propagation and (a)synchrony. The transactional behavior
of SCA components is defined by SCA qualifiers. Qualifiers specify the behavior
desired from the point of view of the service consumer (SCA reference, SCA im-
port) and the service provider (SCA interface, SCA implementation) [ZGT+07].

1. The PAT primitives do not have a direct BPEL realization; typically,
BPEL engine vendors add proprietary support for it. The exact semantics
of PAT are BPEL engine-specific. For example, during a rollback an en-
gine may let the entire process fail, request resolution by a human operator,
or retry one or more activities at a later point in time (potentially with a
different transactional scope). While this is engine-specific behavior out-
side of the scope of the BPEL specification, the architect must be aware of
it when selecting between PAT-J and PAT-N.

2. CT-SNT as a synchronous invocation not propagating the transactional
context maps to native SOAP/HTTP or IIOP as transport protocol. CT-ST
maps to SOAP/HTTP with WS-AtomicTransaction (WSAT) [OAS07a]
support or to IIOP. CT-AS can be implemented with JMS [SunJMS]; how-
ever, no standardized WSDL binding exists at present. CT also determines
the SCA qualifiers on reference, import, and interface level, e.g., Sus-
pendTx and JoinTx.

3. ST can be mapped to the SCA qualifier Transaction on SCA component
implementation level.

Table 18 maps the three conceptual patterns from Section 6.1.3 to CT and ST
primitives and corresponding SCA qualifiers exemplarily. This mapping implies
forces relations, e.g., CT-SNT forces SuspendTx=true.

Table 18. Mapping of conceptual patterns to primitives and SCA qualifiers

Primitive (PADs) CT CT CT ST
 TransportQoS
 TPDs
Pattern

SCA reference
(BPEL process as SCA
component invoking
other components)

SCA import
(reference to
external ser-
vice provider)

SCA in-
terface
(service
provider)

SCA imple-
mentation
(service pro-
vider)

TRANSACTION
ISLANDS

CT-SNT
DeliverAsyncAt=n/a
SuspendTx=true

CT-SNT
JoinTx
=false

CT-SNT
JoinTx
=false

ST-N
(or ST-J)
Transac-
tion
=local|
global|any

TRANSACTION
BRIDGE

CT-ST
DeliverAsyncAt=n/a
SuspendTx=false

CT-ST
JoinTx
=true

CT-ST
JoinTx
=true

ST-J
Transac-
tion
=global

 6.2 Framework Step 3: Structure Model 105

STRATIFIED
STILTS

CT-AS
DeliverAsyncAt
=commit
SuspendTx=false

CT-AS
JoinTx
=n/a

CT-AS
JoinTx
=n/a

ST-J
Transac-
tion
=global

The decision to use SCA is a Technology Selection Decision (TSD) as per IR4
from Chapter 5; each SCA qualifier is an example of a Technology Profiling De-
cision (TPD) as per IR5 (Chapter 5).

Refinement to vendor asset level. IBM WebSphere Process Server (WPS)
[IBM], to be selected in an ASD as per IR6 from Chapter 5, provides a BPEL en-
gine which exposes processes and services as SCA components. In WPS, a BPEL-
based SCL connects to the lower architectural layers via SCA. The SCA qualifiers
from Table 18 govern the transactional context propagation. Furthermore, PAT
translates into a proprietary invoke activity configuration attribute called trans-
actionalBehavior which can be set to requiresOwn (PAT-N) and partici-
pates (PAT-J) as shown in Figure 26. Two additional vendor-specific values ex-
ist, which we did not model as primitives, commitBefore and commitAfter.
The proprietary attribute is modeled as an ACD as per IR7 from Chapter 5.

We implemented this PAT mapping in a decision injection tool prototype
which will be introduced in Chapter 7 (Section 7.3). The tool analyzes the concep-
tual pattern selection decision and configures the BPEL process model in WPS ac-
cordingly.

6.2.4 Discussion and Summary

In this section, we formalized the entities in the SOAD metamodel with the objec-
tive to structure decision models as SOAD step 3. Our primary concepts were re-
finement levels and topic group hierarchies starting with architectural layers.

Justification. When designing enterprise applications, the technical discussions
often circle around detailed features of certain vendor products or the pros and
cons of specific technologies, whereas many highly important strategic decisions
and generic concerns are underemphasized. While these discussions are related,
they should not be merged. Hence, our level structure is inspired by Model Driven
Architecture (MDA) model types: Practitioners in roles such as business analyst,
architect, and developer are involved in SOA design. They create a Platform-
Independent Model (PIM) of the design based on a Computing-Independent
Model (CIM) of requirements analysis results and transform the PIM into one or
more Platform-Specific Models (PSMs) and eventually into code [OMG03].41

Going through at least two refinements steps is good practice, e.g., Fowler
[Fow00] and RUP [Kru03] recommend such an approach for UML class diagrams
used as design models. IBM UMF [CCS07] defines three levels of refinement for
logical component models and physical operational models.

41 With this model structure, we do not imply that MDA concepts such as Meta Object Fa-

cility (MOF), metamodels and model transformations [OMG03] are adopted.

106 6 Populating Reusable Architectural Decision Models

Using layers as a second organizing principle is a natural choice, projecting the
SOA principle of logical layering into the decision models. We introduced SOA
layers in Chapter 2 to motivate the service composition pattern (Definition 2.8).

An explicit representation of logical dependency relations helps uncovering
implicit assumptions, contradictions, and implementation limitations so that a
more objective technical discussion becomes possible (see our example).

Assumptions. The motivating examples came from the SOA domain; however,
the concepts presented in this section can also be applied to other application gen-
res and architectural styles; extensibility is a design goal for SOAD. It is possible
use other structuring schemes, for instance, other refinement levels such as elabo-
ration points from software engineering methods like RUP [Kru03] or panes from
enterprise architecture frameworks like TOGAF [OG07].

In the SOA design example dealing with transaction management, it is possible
to map the primitives to other vendor assets, requiring a different set of ASDs and
ACDs. Furthermore, a non-SOA transaction management attribute refinement is
presented in [WJ05].

Consequences. Comprehending the level structure requires certain skills. Not all
members of the target audience see the benefit of separating concepts and tech-
nologies during design if a single technology or vendor dominates the design.

Next steps. The next section in Chapter 6 presents SOAD step 4, completing the
formalization of the SOAD metamodel with temporal decision dependencies.

Related publications

This part of our metamodel formalization is also described in [ZKL+09].

The SOA design example first appeared in [ZGT+07].

 6.3 Framework Step 4: Add Temporal Decision Order 107

6.3 Framework Step 4: Add Temporal Decision Order

As SOAD step 4, we investigate:

How to represent temporal dependencies between decisions required (issues)?
How to order the decisions in a model to prepare for decision making?

Making this step, we already identified issues, documented them individually,
and structured the model in refinement levels and topic group hierarchies starting
with architectural layers. In this last step in the asset creation phase, we enhance
the decision models with temporal dependency relations.

To structure the section, we evolve from a brief review of the state of the art
and the practice to presentation of our concepts to brief discussion.

6.3.1 State of the Art and the Practice

State of the art. Kruchten et al. introduce dependency types in their ontology
[KLV06]. Some of these dependency types have temporal semantics. However,
the dependencies are not used to define a decision making process. Jansen views
software architecture as a set of decision decisions [Jan08]. His focus is on
changes in the architecture. However, he does not consider how to model temporal
dependencies and when in the design process to make which decision.

State of the practice. As already mentioned in Chapter 2, decision capturing is
often based on text templates and conducted as an after-the-fact documentation ac-
tivity. In such retrospective practices, dependency management and model organi-
zation often have low priority. The ordering of the decision making process is in-
herited from the general software engineering or architecture design method
adopted. The most common ordering approach is intuition: “Worst first” in terms
of external dependencies, effort, and impact on technical risk and project plan is a
common rule of thumb. The methods presented in [HKN+07] give some advice.

6.3.2 Concepts: Temporal Relations and Production Rules

We add a relation to an architectural decision model (see Section 6.2) to order
the decision making process. It is defined between nodes of different types.

Definition 6.11 (triggers Relation). Let be an architectural decision model. Let
ai, aj be architectural decision alternatives in , let ik be an architectural decision
issue in , and let tl be an architectural decision topic group in .

• triggers(ai, ik, tl) with ￢ (ik \ ai) and tl \ ik. An architectural decision al-
ternative ai can trigger another issue ik and with this it triggers the topic
group tl which contains the issue. Indirectly, with the issue, all possible

108 6 Populating Reusable Architectural Decision Models

alternatives are triggered to direct the architect in the decision making
process to the next recommended focus point, i.e., an issue to be resolved
next. The relation adds additional directed edges to the model. The rela-
tion must not form any cycles when combined with ik \ a. If triggers(ai, ik,
tl) we also say that ai triggers ik and that ik is triggered by ai.

Table 19. Temporal relation in architectural decision models

Relation Set(s) Reflexive/
Symmetric/ Transitive

Cardina-
lity

Other Properties

triggers A × I × T n/a

n:m:1 Forms one or several
DAGs, but not a tree.

The triggers relation expresses a temporal ordering during the decision making
process. For example, when a certain INTEGRATION TECHNOLOGY such as
RESTFUL INTEGRATION is decided for, a topic group containing follow-up issues
such as URI DESIGN and HIGH OR LOW REST is triggered, while all issues in a
WSDL PORT TYPE topic group become irrelevant and can be pruned [PZL08].
Note the suggestive nature: It is permitted to resolve issues that have not been
triggered (yet) and multiple triggers may exist per issue. It is possible that an al-
ternative, an issue, and a topic group do not have any triggers relation. It would be
far too restrictive for the architect to define a strictly enforced decision ordering
based on these relations. These triggers must satisfy the following integrity con-
straints:

Integrity Constraint 5. If an issue ii is refined by or decomposes into another is-
sue ij then any alternative ai in ii triggers ij:

≤ ii, ij, ai, ii \ ai: ii refinedBy ij - ii decomposesInto ij u ai triggers ij

Integrity Constraint 6. The forces relation between alternatives implies a trig-
gers relation:

≤ i, ai, aj: i \ aj . ai forces aj u ai triggers i

In the next step, we define two more integrity constraints regarding the triggers
relation. The logical implications caused by integrity constraints 5 and 6 allow us
to define these solely on triggers relations (i.e., it is not required to include re-
finedBy, decomposesInto, and forces in the definitions):

Integrity Constraint 7 (Trigger Compatibility). Let ai triggers ij hold. Let I(ai)
be the set of issues that can be reached from ai following triggers relations and the
contains relation \ within one tree km starting with alternative ai. Note that I(ai)
can reach into other trees ln.42

42 I(ai) can be calculated like this: Initialize I(ai) with all issues triggered by ai. Iterate: For

any issue i added in the last iteration, follow the triggers relations originating in alterna-
tives contained in i and add the target issues. Re-iterate if any new members were added
in this iteration.

 6.3 Framework Step 4: Add Temporal Decision Order 109

Then ai must either have an isCompatibleWith relation with at least one alter-
native ax or a forces relation with exactly one ax for every ij c I(ai) and ij \ ax:

≤ ai, ax c A, ≤ ij c I(ai):
ij \ ax u ai isCompatibleWith ax - ai forces ax

Integrity Constraint 8 (Top-Down Progression). Let ii \ ai and ai triggers ij
hold. ij must then reside on a lower level than ii or, if ii and ij reside on the same
level, ij must be greater than ii according to <.

Certain combinations of forces, triggers, and isIncompatibleWith relations
should not occur. For example, an alternative must not trigger the issue in which it
is contained (\ relation). Less obvious consistency problems can occur when
chaining more issues and alternatives together.

Definition 6.12 (Valid and Strictly Valid Architectural Decision Model). An
architectural decision model is called valid if integrity constraints 1 to 7 hold.
If integrity constraint 8 also holds, is called strictly valid.

The model of the transaction management issues (Figure 26 on page 101) meets
all constraints. It is a strictly valid architectural decision model.

Finally, we can define how architectural decision models can be traversed:

Definition 6.13 (Entry Points, EP). The Entry Point (EP) set is a set of architec-
tural decision issues in an architectural decision model that do not have any in-
coming triggers relations:

EP = { i c I x a a c A: (a triggers i) }

An entry point is a natural starting point for architecture design activities in a
given decision making context. There can be multiple ones. The INVOCATION
TRANSACTIONALITY PATTERN issue is the only entry point in Figure 26, which is
marked as such.

Definition 6.14 (Open Issue, Made Decision). An open issue is an issue which
does not have any chosen alternative. A made decision (a.k.a. resolved issue) is an
issue with exactly one chosen alternative, i.e., where chosen = true (recall Defi-
nition 6.3). We do not allow multiple alternatives to be chosen per issue.

We can further classify issues with the help of the triggers relations:

Definition 6.15 (Eligible Issue). An eligible issue is an open issue whose incom-
ing triggers relations (if existing) originate from alternatives in made decisions.

Definition 6.16 (Pending Issue). A pending issue is an open issue which has one
or more incoming triggers relations and at least one of these relations originates
from an alternative in an open issue.

All open issues are either eligible or pending. Eligible issues can be resolved in
the next decision making step, while pending ones have to wait until the ones they
depend on (due to an incoming triggers relation) have been made. Note that issues
can be eligible or pending because of triggers relations implied by refinedBy, de-
composesInto, or forces relations.

110 6 Populating Reusable Architectural Decision Models

In some cases, issues no longer have to be considered because of other deci-
sions already made and existing forces or isIncompatibleWith relations:

Production Rule 1 (Alternative Pruning). If two alternatives have an isIncom-
patibleWith relation and one of them is chosen during the decision making proc-
ess, then it prunes the other:

≤ ai, aj c A:
ai isIncompatibleWith aj . chosen(ai) ≡ true u chosen(aj) = false

Production Rule 2 (Outcome Implication). If one alternative is chosen and it
forces another, then the second one must be chosen as well:

≤ ai, aj c A: ai forces aj . chosen(ai) ≡ true u chosen(aj) = true

Integrity Constraint 9. Only alternatives that do not have an isIncompatibleWith
relation can be chosen within the same decision making process (i.e., either an is-
CompatibleWith or a forces relation must exist due to integrity constraint 4):

≤ ai, aj c A: chosen(ai) ≡ true . chosen(aj) ≡ true
u (ai isCompatibleWith aj - ai forces aj)

Production Rule 3 (Outcome Instance Status Update) and Definition 6.17
(Implied Decision). An implied decision is an issue with:

Case 1) All but one alternative have been pruned by production rule 1, i.e., cho-
sen ≡ false. The remaining alternative is set to chosen ≡ true. The open issue
becomes a resolved issue (a.k.a. made decision).
Case 2) One alternative has been selected by production rule 2, i.e., chosen ≡
true. All other alternatives can be set to chosen ≡ false.

We can verify whether additional decision making is still required.

Definition 6.18 (Decided and Correct Architectural Decision Model). A valid
architectural decision model is called decided if all decisions are made (all issues
are resolved), i.e., have exactly one of their alternatives marked as chosen. If in-
tegrity constraint 9 holds, a decided architectural decision model is called correct.

When the decision making process completes, all decisions must have been
made, i.e., neither eligible nor pending issues exist. Each issue now has one alter-
native with chosen ≡ true (and all other alternatives are chosen ≡ false) or all
alternatives are chosen ≡ false. All integrity constraints should be satisfied.

Definition 6.18 completes the formalization of our architectural decision meta-
model supporting reuse and collaboration.

6.3.3 Sample Application to SOA: Transaction Management

The concepts introduced in this section can be applied to SOA design. We will
give an SOA decision making example in Chapter 7 (Section 7.2), continuing to

 6.3 Framework Step 4: Add Temporal Decision Order 111

use the excerpt from the RADM for SOA created during thesis validation which
we already used in steps 2 and 3 (transactional workflows in SOA).

6.3.4 Discussion and Summary

In this section, we covered SOAD step 4, the final step in the asset creation phase.
We introduced temporal decision relations as well as integrity constraints, an issue
status classification, and production rules to the SOAD metamodel.

Justification. Active issue management leads to a more dynamic knowledge base
than one provided by static asset repositories and method browsers. This helps to
cope with the challenges in enterprise application development and integration.
For instance, entire topic group trees can be pruned based on the outcome of a de-
cision just made, which reduces the decision making effort. We present an exam-
ple of such pruning in [ZKL+09].

Assumptions. We assume only one outcome instance to be present per ADM is-
sue as we did not formalize ADOutcome instances in this section. Hence, the issue
classification and the production rules do not take the existence of multiple out-
come instances into account. To do so, the formalism is extended in [ZKL+09].

Consequences. While a top-down approach to architecture design is generally
recommended and useful, it can not always be applied in practice. When moder-
nizing enterprise applications, many technology- and vendor asset-level decisions
have already been made prior to project start (e.g., those pertaining to legacy sys-
tems). When procuring a software package, the procurement decision implies the
interface, transaction, and session management design chosen in the package.
When deciding for a certain application server strategically, a vendor asset level
decision is upgraded to the executive level. An architectural decision model for
such a setting does not satisfy integrity constraint 8 (top-down progression). Dif-
ferent integrity constraints and production rules must be defined to reflect such
bottom-up approach to design. We will discuss such applicability and extensibility
issues in the decision making step 6 (Section 7.2 in Chapter 7).

Next steps. With design issues identified (step 1) and modeled according to the
SOAD metamodel (steps 2, 3, and 4), the asset creation phase ends. The RADM is
ready for reuse, i.e., it can now serve as input to the creation of project ADMs
(i.e., asset consumption, described in steps 5 to 7).

Related publications

An extension of the metamodel formalization and additional examples are
presented in [ZKL+09].

7 Creating and Using Architectural Decision
Models on Projects

So far, we focused on the creation of a reusable asset comprising architectural de-
cision knowledge. We now progress to the consumption of such asset (Figure 27):

ADM Creation and Usage
(Chapter 7)

RADM Population
(Chapter 6)

Reusable Architectural Decision Model
(RADM)

create

Architectural Decision Model
(ADM)

2. Model Individual
Decisions

3. Structure
Model

5. Tailor Model
(Section 7.1)

6. Make Decisions
(Section 7.2)

7. Enforce Decisions
(Section 7.3)

RADM Scoping
(Chapter 5)

1. Identify Decisions

create,
usereuseupdate

Asset Creation Phase Asset Consumption Phase

4. Add Temporal
Decision Order

harvest
(Appendix A)

Knowledge Engineer Software ArchitectsProject
Legend :

Community

Figure 27. SOAD framework steps during asset consumption on projects

Each section in this chapter presents one of the steps in the asset consumption
phase: Section 7.1 explains how to tailor a RADM into an ADM, Section 7.2 how
to use an ADM when making decisions, and Section 7.3 how to enforce decisions.

7.1 Framework Step 5: Tailor Model

SOAD step 5 deals with reuse of RADMs scoped and populated in steps 1 to 4:

How to tailor a Reusable Architectural Decision Model (RADM) for a project?

114 7 Creating and Using Architectural Decision Models on Projects

This step takes a RADM asset (see Definition 4.1) with issues and alternatives
(Definition 4.4) as input; project requirements provide further tailoring input. Its
output is an ADM (Definition 4.2), which does not include any outcomes (Defini-
tion 4.3) yet.

We begin with a brief review of state of the art and the practice and then pre-
sent our solution. Next we return to the motivating case study and tailor the
RADM for SOA for it. The section concludes with a brief discussion.

7.1.1 State of the Art and the Practice

State of the art. Model tailoring is part of the unsolved decision identification
problem. Concepts for method tailoring exist in situational method engineering,
e.g., method chunks and method fragments [HGR08]. However, existing methods
are process- and artifact-centric; hence, these concepts are not applicable here.

State of the practice. Leveraging RADMs during design is not common as of to-
day; hence, no tailoring other than copy-paste of document fragments is practiced.

7.1.2 Tailoring Technique and Decision Filtering Concept

RADMs developed with SOAD do not aim to be complete: On the one hand, it
will always be required to capture project-specific issues and outcomes not co-
vered in a RADM. Examples are issues concerning the integration of proprietary
technologies and legacy systems, issues related to environmental conditions (e.g.,
regarding budget and team), and issues dealing with out-of-line situations. On the
other hand, it is not likely that all issues present in a RADM are relevant in a par-
ticular project or phase, e.g., if only a subset of the style-defining patterns is used.
Furthermore, certain issues may have to be resolved more than once. In SOA de-
sign, this is the case if a pattern such as ESB is applied several times or if multiple
business processes and Web services appear in the architecture.

In response to these customization and adoption needs, we provide a model tai-
loring technique. It leverages the SOAD metamodel from Chapter 6 (for an over-
view, see template in Figure 19 on page 86 and example in Figure 21 on page 89).

Technique overview. The SOAD tailoring technique works in the following way:

1. Select RADMs to be tailored, having reviewed the project context. We as-
sume that one or more architectural styles have already been chosen for
the project. If RADMs for these styles are not available, our decision
identification technique (step 1) can be applied to scope an ADM now.

2. Use decision filtering (explained below) to eliminate unnecessary issues.
Requirements and existing architectural artifacts drive this activity.

3. Update issue information, e.g., with project-specific decision drivers or
alternatives not present in the RADM. This additional information is
structured according to the SOAD metamodel introduced in steps 2 to 4.

 7.1 Framework Step 5: Tailor Model 115

4. Add issues known to occur, but not covered by the RADM.
5. Create outcome instances for issues that apply multiple times.

In this section, we focus on the concept supporting activity 2, decision filtering.
The other activities are supported by the concepts we introduced in steps 2 to 4.
Decision filtering. We use decision filtering to select issues from the RADM that
are relevant in a particular project context. All issue attributes defined in the
SOAD metamodel can be used to select relevant issues from a RADM. Three at-
tributes are particularly relevant and were introduced specifically for this purpose:
scope, phase, and role. The scope attribute references an architecture element or
organizational units such as “enterprise”, “domain”, or “project” [Pul06]; the
phase and role attributes link issues to the process defined by a software engineer-
ing or architecture design method. It is also possible to use the level and topic
group hierarchy introduced in Section 6.2. For instance, in SOA design the archi-
tect can select the entire conceptual level or all issues related to the atomic service
layer. The decision dependency relations can be leveraged as well, e.g., selecting
the INVOCATION TRANSACTIONALITY PATTERN issue and all issues it decomposes
into or it is refined by. Finally, topic tags that annotate issues with subject area
keywords such as “transaction management” or “security” can be used (if de-
fined). Figure 28 illustrates the four filtering options (which can be combined):

Software Architect (via Decision Investigation View in SOAD tool)

2. Filter by level and topic group hierarchy

1. Filter by scope/phase/role attributes

3. Filter by logical decision dependencies

4. Filter by topic tag (subject area keyword)

Reusable Architectural
Decision Model (RADM)

Architectural
Decision Model (ADM)

Issue

Alternative

Topic Group

Level 0

Issue

Alternative

Topic Group

Level 0

Issue

Alternative

Topic Group

Level 1

Issue

Alternative

Topic Group

Level 1

Issue

Alternative

Topic Group

Level 1
SOAD step 5:
Tailor Model

(reuse RADM,
create ADM)

n m

i

j

k

i’

j’

k’

scope/phase/role
topic tags

scope/phase/role
topic tags

scope/phase/role
topic tags

refined
By

Figure 28. SOAD step 5: Decision filtering

The level filtering is applied here: Only one of two levels is promoted from the
RADM to the ADM. The appropriate subset of the logical and temporal decision
dependencies (modeled in steps 3 and 4) has to be projected from the RADM to
the ADM. In the example, decomposesInto relations in level 1 are preserved in the
ADM, while refinedBy relations between level 0 and level 1 disappear. As a result,
new entry points into the decision making become available (see Definition 6.13).

116 7 Creating and Using Architectural Decision Models on Projects

We do not mandate any scope, phase, and role taxonomy; selecting one is a de-
cision of the knowledge engineer. Table 20 suggests scope, phase, and role set-
tings for the seven decision types we defined in step 1 (see Table 13 on page 73).

Table 20. Decision types and exemplary scope, phase, and role attributes

Decision Type Scope Phase Role
Executive decisions Enterprise- or pro-

ject-wide
Solution outline Project manager, lead ar-

chitect, business analyst
Pattern Selection Deci-
sions (PSDs)

Per project or per
pattern in style

Solution outline
or macro design

Application or integration
architect (for SOA)

Pattern Adoption Deci-
sions (PADs)

Component or con-
nector in pattern

Macro or micro
design

Application or integration
architect (for SOA)

Technology Selection De-
cisions (TSDs)

Per project or iden-
tifying pattern

Macro or micro
design

Application or integration
architect (for SOA)

Technology Profiling De-
cisions (TPDs)

Per usage of tech-
nology

Micro design Application or integration
architect (for SOA)

Asset Selection Decisions
(ASDs)

Enterprise- or pro-
ject-wide

Solution outline
or macro design

Lead architect, supported
by platform specialist

Asset Configuration De-
cisions (ACDs)

Per physical node
or deployment unit

Micro design Platform specialist, infra-
structure architect

The phases were introduced in Chapter 2; the role names are among those used
by the architect profession program of IBM. Referencing the SOA patterns from
Chapter 2, our RADM for SOA introduced in Chapter 5 defines scopes such as
service consumer, operation invocation, service provider, operation, ESB, and
process.

7.1.3 Sample Application to SOA and Motivating Case Study

We now tailor the RADM for SOA for the PremierQuotes project, following our
tailoring technique and using decision filtering by phase (filter option 1).

Select RADMs. Let us assume that the RADM for SOA introduced in Chapter 5
is selected because SOA has been decided to be the architectural style.

Use decision filtering. Let us assume that the PremierQuotes architects qualify all
389 decisions in the RADM for SOA (see Table 15 on page 81 in Chapter 5 for an
excerpt) to be relevant. We further assume the project to be in the macro design
phase. If the RADM for SOA is queried with this decision filtering information,
148 out of 389 decisions are returned and transferred to the ADM.

Update issue information and add issues. These activities are also part of SOAD
step 2 described in Chapter 6. They do not require any further explanations here.

Create outcome instances. Three service providers appear in Figure 8 (page 28),
as well as two instances of the ESB pattern. There is one process, which originates
from the single application of the service composition pattern. The service registry
pattern is not applied. Figure 29 shows how the architectural elements in Figure 8
and the issues from the RADM for SOA are combined to create the project ADM.

 7.1 Framework Step 5: Tailor Model 117

The decision scoping information comes from the RADM for SOA; in line with
Table 20, these scopes refer to the SOA patterns from Chapter 2 (e.g., <<sp>> for
service provider). Three outcome instances are created for the service provider is-
sues, two for the ESB issues, one for the process manager issues, and 2+1+2=5 for
the issues pertaining to the operations implemented by service providers.
User Channels

Customer Self Service
Agent

Back Office

Customer Database
Policy Backend

Government Information Server

<<esb>> ESB Gateway

<<esb>> Internal ESB

<<op inv>> Customer care invocations (2)
<<op inv>> Contract invocations (1)

<<op inv>> Risk management invocations (2)

<<sc>> Customer Care, Contract, Risk

<<op>> Customer care operations (2)
<<op>> Contract operations (1)

<<op>> Risk management operations (2)

<<sp>> Customer Care, Contract, Risk

<<process>> Customer Enquiry Process
<<activity>> Back office activities (3)

<<scl>> Process Manager

Backend and External Systems

<<project>>

<<scl>>
<<scl>>
<<scl>>

<<process>>

<<op>>
<<op>>
<<sp>>
<<op>>
<<op>>
<<op>>

<<activity>>
<<op>>
<<op>>

<<op inv>>

<<esb>>
<<esb>>
<<esb>>

scope
Attribute

5
5
3
5
5
5
3
5
5
5

IN MESSAGE GRANULARITY (PAD)?
OUT MESSAGE GRANULARITY (PAD)?
OPERATION-TO-SERVICE GROUPING (PAD)?
MESSAGE EXCHANGE PATTERN (PAD)?
TRANSPORT PROTOCOL BINDING (TSD)?
INVOCATION TRANSACTIONALITY PATTERN?
PROCESS ACTIVITY TRANSACTIONALITY?
COMMUNICATIONS TRANSACTIONALITY?
SERVICE PROVIDER TRANSACTIONALITY?
Web SERVICES API (TSD)?

0SERVICE REGISTRY (PSD)?

1
1
1
1

SERVICE COMPOSITION PARADIGM (PSD)?
WORKFLOW LANGUAGE (TSD)?
BPEL ENGINE (ASD)?
PROCESS LIFETIME (PAD)?

2
2
2

INTEGRATION PARADIGM (PSD)?
INTEGRATION TECHNOLOGY (TSD)?
SOAP ENGINE (ASD)?

Outcome
Instances

Issues in ADM
(tailored from RADM for SOA)

<<project>>

<<scl>>
<<scl>>
<<scl>>

<<process>>

<<op>>
<<op>>
<<sp>>
<<op>>
<<op>>
<<op>>

<<activity>>
<<op>>
<<op>>

<<op inv>>

<<esb>>
<<esb>>
<<esb>>

scope
Attribute

5
5
3
5
5
5
3
5
5
5

IN MESSAGE GRANULARITY (PAD)?
OUT MESSAGE GRANULARITY (PAD)?
OPERATION-TO-SERVICE GROUPING (PAD)?
MESSAGE EXCHANGE PATTERN (PAD)?
TRANSPORT PROTOCOL BINDING (TSD)?
INVOCATION TRANSACTIONALITY PATTERN?
PROCESS ACTIVITY TRANSACTIONALITY?
COMMUNICATIONS TRANSACTIONALITY?
SERVICE PROVIDER TRANSACTIONALITY?
Web SERVICES API (TSD)?

0SERVICE REGISTRY (PSD)?

1
1
1
1

SERVICE COMPOSITION PARADIGM (PSD)?
WORKFLOW LANGUAGE (TSD)?
BPEL ENGINE (ASD)?
PROCESS LIFETIME (PAD)?

2
2
2

INTEGRATION PARADIGM (PSD)?
INTEGRATION TECHNOLOGY (TSD)?
SOAP ENGINE (ASD)?

Outcome
Instances

Issues in ADM
(tailored from RADM for SOA)

<<sc>> service consumer, used 3x
<<op inv>> operation invocation, used 2+1+2=5x
<<sp>> service provider, used 3x
<<op>> operation, used 2+1+2=5x
<<esb>> Enterprise Service Bus (ESB), used 2x
<<scl>> Service Composition Layer (SCL), used 1x
<<process>> process, used 1x
<<activity>> process activity in business process, used 3x

Figure 29. SOAD step 5: RADM tailoring in motivating case study

7.1.4 Discussion and Summary

In this section, we presented our tailoring technique and decision filtering (step 5).

Justification. As explained in Chapter 2, method tailoring, also known as method
adoption, is a common concept in commercial methods such as RUP [Kru03] and
UMF [CCS07]. RADM tailoring satisfies the usability requirement from Chapter
3 (R1-7) and makes SOAD applicable to a broad range of projects.

Assumptions. To make the decision filtering efficient, the issues in the RADM
must be attributed with accurate scope, phase, and role information, organized in a
balanced topic group hierarchy, and/or annotated with expressive topic tags.

Consequences. Decision filtering not only helps during tailoring; it also can be
leveraged during decision making to reduce the number of decisions displayed.

Next steps. Having demonstrated model tailoring, we cover decision making next.

118 7 Creating and Using Architectural Decision Models on Projects

7.2 Framework Step 6: Make Decisions

Having identified, modeled, and ordered architectural decisions and structured and
tailored decision models in steps 1 to 5, we can now realize the primary use case
for SOAD as step 6:

How to use an Architectural Decision Model (ADM) as an SOA design method?

This step operates on an ADM created in step 5. The project requirements pro-
vide additional input. When the decision making completes, the ADM contains
project-specific outcome instances capturing decision making rationale.

We begin with a brief review of state of the art and the practice and evolve to
presentation of solution, SOA application, and discussion. We continue with the
design activities in the motivating case study and resolve the open issues.

7.2.1 State of the Art and the Practice

State of the art. We presented five industrial architecture design methods in
Chapter 2, including Attribute-Driven Design (ADD) and Siemens 4 Views (S4V).
Techniques such as Cost-Benefit Analysis Method (CBAM) [BCK03] also sup-
port certain architecture design tasks. These methods and techniques do not order
the decision making process in an application genre- and architectural style-
specific way. While a backlog has been suggested [HKN+07], we did not find any
concepts that support a semi-automatic population of the backlog with genre- and
style-specific issues or an active, dependency-based issue management.

Decision Support Systems (DSS) can be leveraged during architectural decision
making [DC07, SWL+03]. Such existing work helps to make one or more deci-
sions; however, it does not focus on organizing the decision making process.

State of the practice. A major gap exists between research and practice.43 Archi-
tectural decision making is often seen as an art rather than part of an engineering
process. Many architects do not follow a design method, but their personal experi-
ence and intuition (“gut feel”). Issue lists are maintained manually if at all.

Personal preferences have a large impact on the decision ordering and making.
Frequently, a single decision driver (e.g., quality attribute) or issue (e.g., technol-
ogy selection) is overemphasized. Phrases like “we have always done it like that”
or “this is the industry trend” justify decisions rather than sound technical judg-
ment backed by evidence gained in tradeoff analysis activities or technical evalua-
tions. Consequently, the technically best solution is not always selected. Ill-
motivated and poorly organized decision making often is a root cause for project
failure: Too much focus on less relevant issues and suboptimal alternatives may
degrade the quality of the resulting software architecture, or cause unnecessary de-
sign and development efforts which delay the project.

43 This is a subjective assessment; see footnote in Section 5.1.1 for sourcing information.

 7.2 Framework Step 6: Make Decisions 119

7.2.2 Concepts: Managed Issue List and Decision Making Processes

To overcome the gap between the state of the art and the state of the practice, we
leverage an ADM to steer the decision making activities. A managed issue list or-
ders the issues so that only those that are currently relevant are presented to the ar-
chitect. For each of these issues, architectural knowledge required for the decision
making is presented, which originates from previous project experience with the
issue and the alternatives captured in the RADM tailored in the previous step.

In the role of a decision-centric architecture design method, SOAD extends the
software engineering method(s) employed. It adds a macro process for the deci-
sion making on the project. This process is based on the decision ordering con-
cepts from Chapter 6, i.e., logical refinedBy and decomposesInto relations mod-
eled by the knowledge engineer and resulting temporal triggers relations. It
launches a micro process for each issue. This micro process leverages attributes
such as problem statement, decision drivers, and recommendation, which are de-
fined in the SOAD metamodel, to investigate, make, and enforce individual issues.

Definition 7.1 (Managed Issue List). Adopting and adapting the concept of a
backlog suggested in [HKN+07], we define the set of open and resolved issues
(Definition 6.14) in the ADM as our managed issue list and the resolved issues
(a.k.a. made decisions, also Definition 6.14) as our decision log.

Figure 30 zooms into Figure 14 from page 62 in Chapter 4 to introduce the use
cases and components of the issue list manager, including the managed issue list:

Architectural Design Model
(ADM)

Issue List Manager

Scope/Phase/Role
Attribution

Levels
Topic Trees

Eligible and
Pending Issues

Issues

Software Architect (via Decision Making View in SOAD tool)

Cluster Decisions

Get Entry Points/Get Eligible Decisions

Make Decisions, Create and Update Decision Log

OutcomesAlternatives

Integrity
Constraints

Temporal
Decision Order

Production
Rules

Issues By Role Decision Filtering Outcome HistoryContext-Specific Usage

Managed Issue List

ADM Structure

Issue List
Population
Technique

and
Tool

Figure 30. SOAD step 6: Issue list manager with managed issue list

Architects interact with the managed issue list via the decision making view
component of a SOAD tool: When following the macro process defined below,

120 7 Creating and Using Architectural Decision Models on Projects

architects use the get entry points/get eligible decisions, cluster decisions, and
make decisions and create/update decision log features provided by the issue list
manager. The issues by role, decision filtering, and outcome history components
(in the context-specific usage part of the issue list manager) support these opera-
tions with ADM querying capabilities. During decision making, issue states and
temporal decision order are updated continuously, with the help of the triggers re-
lations and production rules defined in Section 6.3. The managed issue list can
check the validity and correctness of the ADM with the help of the integrity con-
straints from Section 6.2 and Section 6.3 (e.g., alternatives of made decisions must
be compatible with each other or force each other). The managed issue list can be
populated semi-automatically with the help of an issue list population technique
and tool.

We demonstrate the capabilities of the managed issue list in an example in Sec-
tion 7.2.3. Chapter 8 provides further information on SOAD tool support.

Macro process (project level). The macro process works with the managed issue
list. We use the phases from the IBM Unified Method Framework (UMF) in this
macro process. As explained in Chapter 2, it comprises three design phases, solu-
tion outline, macro design and micro design. Figure 31 shows the activities to be
conducted in these three phases:

Design Phase 1
(Solution Outline)

Reference Information
(Industry Models,

Reference Architectures)

Existing Systems
(Capabilities, Limitations)

Decision Making Context
(Global View)

Architecture Documentation incl. Decision Log Resolved Issues and Their Outcomes

1.1 Get Entry Points

1.2 Review
Context

1.3 Cluster
Decisions

1.4 Make
Eligible Decisions

1.5 Create
Decision Log

Requirements Models
(e.g., Process Models,

Use Cases, User Stories)

Design Phase 2
(Macro Design)

2.1 Get Eligible Decisions

2.2 Review Context,
Phase 1 Decisions

2.3 Cluster
Decisions

2.4 Make
Eligible Decisions

2.5 Update
Decision Log

Design Phase 3
(Micro Design)

3.1 Get Eligible Decisions

3.3 Cluster
Decisions

3.4 Make
Eligible Decisions

3.5 Update
Decision Log

3.2 Review Context,
Phase 1+2 Decisions

Enterprise
Architecture

Documentation

Figure 31. SOAD step 6: Macro process for decision making on projects

The decision making context [HKN+07] includes reference information, re-
quirements models, and documentation of the enterprise architecture [SZ92] as

 7.2 Framework Step 6: Make Decisions 121

well as existing systems, e.g., legacy systems (Chapter 2). The output of the macro
process is the decision log which becomes part of the architecture documentation.

Activity 1.1, 2.1, 3.1. Activities 1.1, 2.1, and 3.1 in our macro design process can
be characterized as follows, showing mixed initiatives by the architect A and a de-
cision support system S implementing the SOAD concepts:
 getEntryPoints (inout: adm, out: entryPoints)

 [S: Initialize managed issue list mil with adm]
 getEligibleDecisions(mil, entryPoints)

 getEligibleDecisions (inout: mil,
 out: eligible decisions)

 [S: Calculate implied decisions as per Def. 6.17]

 If (adm in mil is not decided as per Def. 6.18)

 [S: Calculate eligible/pending issues in mil adm]
 [S: Return eligible issues]

 Else
 [S: Inform architect: decision making terminated]

 End if

Activities 1.2, 2.2, 3.2. The second activity in each phase of our macro process is a
review activity conducted by the architect. It includes a review of requirements
and architectural documentation already available in the decision making context.
In solution outline, the review includes legacy decisions (i.e., decisions made in a
previous project or pertaining to a different enterprise application). The previous
project might have been a presales activity or the development of a legacy system
a long time ago. In macro and micro design, the decisions made in previous phases
of the macro process are reviewed. These activities are standard analysis and deci-
sion preparation activities that do not require any further explanation here.

Activities 1.3, 2.3, 3.3. These activities deal with decision clustering. Decisions are
rarely made in isolation due to their amount and due to the many dependencies be-
tween them. However, it is not obvious how to group and order the decisions that
are eligible in a particular macro process phase. Grouping decisions into clusters is
typically part of the tacit knowledge of an architect; mature software engineering
and architecture design methods provide related advice. Disciplines and elabora-
tion points in RUP [Kru03] are examples of such groupings.

The decision filtering concept introduced in the tailoring step 5 can be lever-
aged in addition to tacit knowledge about decision clustering:
 clusterDecisions (in: adm)

 [S: Suggest grouping of issues by scope/phase/role,
 by dependencies, by topic tag (subject area)]
 [A: Group issues as suggested or by tacit knowledge]

For (each group)
 [A: Assign group to performing team member]

 End for

Due to the formalization of the SOAD metamodel, tools can give clustering ad-
vice. However, the architect drives the activity. In SOA design, the tool might
suggest to assign all issues about an “ESB router” to be made in the “macro de-

122 7 Creating and Using Architectural Decision Models on Projects

sign” phase to an “integration architect”. The actual grouping depends on the pro-
ject setup (e.g., methods adopted, human resources available) and on the archi-
tects’ experience. The literature provides related criteria, e.g., [HKN+07, RK96].

Activities 1.4, 2.4, 3.4. These activities instruct the architect to make the decisions
that were classified to be eligible in the respective phase. The micro process is
launched from this activity once per issue (see below).
 makeEligibleDecisions (in: admGroups)

For (each open issue oi in each group in admGroups)
 [A: Launch micro process for oi]
End for

 [A: Consolidate and review decisions from each group]

 If (decision model is not correct as per Def. 6.18)
 [A: Reset alternatives to undefined as needed]
 [A: Repeat decision making for one or more groups]

 End if

Activities 1.5, 2.5, 3.5. As the last activity on the macro level, the decision log is
created or updated with the outcome instances created during the execution of the
micro process. It becomes part of the project deliverables. We will describe deci-
sion injection as an additional concept for this step in Section 7.3.

Micro process (issue level). Figure 32 illustrates the micro process:

B.1 Match (N)FRs
and DDs, Dependencies

B.2 Prioritize DDs,
Analyze Conflicts and

Possible Tradeoffs

B.3 Make Decision
(Choose Alternative)

B.4 Document Decision
Outcome and Justification

A.1 Understand
Problem Statement

A.2 Review
Decision Drivers (DDs)

and Dependencies

A.3 Review
Alternatives

A.4 Acknowledge
Recommendation

C.1 Communicate
Decision Outcome

C.2 Review Affected
Design Models & Code

C.3 Evaluate System
Behavior w.r.t. DDs/NFRs

A. Investigate Decision C. Enforce DecisionB. Make Decision

ADM, Managed Issue List, Macro Process Already Resolved Issues
Pending Issues

Resolved Issue (Outcome Instance)

Figure 32. SOAD step 6: Micro process for making single decision

When performing the micro process activities, architects make use of the archi-
tectural knowledge in the ADM, which is structured according to the SOAD

 7.2 Framework Step 6: Make Decisions 123

metamodel, e.g., listing decision drivers and decision dependencies (see template
in Figure 19 on page 86 and example in Figure 21 on page 89).

Step A: Investigate decision. As a first step, the information about an issue in the
ADM must be analyzed; the architects can add missing information. We per-
formed this step for the INVOCATION TRANSACTIONALITY PATTERN issue in Chap-
ter 6. It also supports the education and knowledge exchange use cases of SOAD.

In this step, the problem statement, defined in the SOAD metamodel (Chapter
6), must be understood first; if the motivation for the issue remains unclear, the
referenced background reading can be consulted (activity A.1).

Next, the decision driver attribute is studied (activity A.2). Like the problem
statement, it is an issue attribute; it is reusable, but not project-specific (unless in-
formation about actual requirements has been added during tailoring). Hence, it
can only list types of decision drivers.44 Still in activity A.2, decision dependen-
cies, particularly those to and from already resolved issues (but also open ones)
are investigated. Decisions are rarely made in isolation; the decision maker has to
ensure that the resolution of issues that have dependency relations does not intro-
duce conflicts, i.e., that the ADM remains correct. This can later be verified by
checking Integrity Constraint (IC) 9 defined in Chapter 6 (Section 6.3).

The available alternatives have to be considered next (activity A.3). The pros
and cons information is particularly relevant; when studying it, the decision dri-
vers and project requirements studied in A.1 and A.2 are revisited.

The final investigation activity A.4 is to review and acknowledge the recom-
mendation. This does not mean that the recommendation should always be fol-
lowed. The decision making context determines whether this is possible.

Step B: Make decision. The second step of the micro process is the actual decision
making. In activity B.1, the architect matches the actual (N)FRs on the project
against the decision drivers and decision dependencies investigated in activity A.2.
Activity B.2 advises the architect to prioritize decision drivers according to their
importance and to analyze potential conflicts and tradeoffs. Before an alternative
can be selected, its consequences must be assessed. In many cases, an alternative
which may appear to be suited on the micro process level can not be selected due
to certain constraints which are only visible at the macro process level (e.g., limi-
tations of legacy systems). Activity B.3 is to actually make the decision, based on
the insight gained during the previous step A and step B activities.

Activities B.1 to B.3 are already supported by existing architecture design as-
sets such as ADD [BCK03]; further details are therefore out of scope of SOAD.

In activity B.4, the chosen alternative and the justification for the decision are
documented in outcomes. Decision drivers, pros and cons of alternatives, and the
recommendation should be referenced in the justification. The justification should
not only quote reusable background information such as the types of decision driv-
ers coming from the RADM, but refer to actual project requirements as well
[ZSE08].

44 Appendix A provides a classification of types of decision drivers particularly relevant for

enterprise application development and integration and SOA design.

124 7 Creating and Using Architectural Decision Models on Projects

Step C: Enforce decision. The third step of the micro process deals with enforcing
the decision. The three activities in this step are to communicate the decision out-
come (activity C.1), to review affected design model elements and code (activity
C.2), and to compare the behavior of the emerging implementations of the system
under construction with the decision drivers and actual NFRs including project-
specific quality attributes (activity C.3). It is necessary to re-evaluate on the macro
level, as decisions often unveil their full consequences in combination.45

Termination of macro and micro process. Macro process and, in turn, micro
process continue as long as architectural decision making is still required and the
ADM is not decided (according to Definition 6.18). More than three phases can be
required. It may take a long time to complete the decision making; the managed
issue list can be continued to be used during operations and maintenance [Som95].

Extensibility. We designed the macro process to be customizable for different
software engineering methods. A project adopting an agile process iterates
through all design activities rapidly, e.g., within one day (notion of daily stand ups
[Yip]). Our issue management (step 6), decision filtering (step 5), triggers rela-
tions (step 4), and model heuristics (step 3) concepts must work in such setting.
This is the case if RADM (and consequently ADM tailored from it) are docu-
mented in a compact form and well attributed with decision filtering information.46

7.2.3 Sample Application to SOA and Motivating Case Study

To demonstrate how the macro and the micro process work with the managed is-
sue list, we now apply these concepts to SOA design and the motivating case
study. Due to space constraints, we can only demonstrate a subset of the activities.

Managed issue list and macro process. We presented a subset of the RADM for
SOA issues in detail in Chapter 6 (see Figure 21 on page 89 and Figure 26 on page
101): INVOCATION TRANSACTIONALITY PATTERN is the entry point in that ADM
which comprises five issues. As an initial issue, it resides on the highest level, the
conceptual level. It is eligible initially. Table 21 illustrates the initial decision
making status, returned by getEntryPoints:

Table 21. Entry points, eligible, and pending decisions in example (1)

Eligible Issues Pending Issues Made Decisions
INVOCATION
TRANSACTIONALITY
PATTERN

COMMUNICATIONS TRANSACTIONALITY (CT)
PROCESS ACTIVITY TRANSACTIONALITY (PAT)

TRANSPORT QOS

INVOKE ACTIVITY TRANSACTIONALITY

none

45 Hofmeister et al. see activities C.2 and C.3 as part of architecture evaluation [HKN+07].
46 Further information how to configure SOAD for an agile project is out of scope of this

thesis; such configuration of the SOAD processes requires future work.

 7.2 Framework Step 6: Make Decisions 125

We now choose TRANSACTION ISLANDS for all three service consumers because
process and backend interactions can run for days; it is not affordable to keep the
transaction context open [LR00]. Making this decision does not violate any integ-
rity constraints; however, the model is not decided yet. Once this issue has been
resolved, the related pattern adoption decisions are triggered and become eligible.
Table 22 shows the new status as returned by getEligibleDecisions:

Table 22. Entry points, eligible, and pending decisions in example (2)

Eligible Issues Pending Issues Made Decisions
COMMUNICATIONS TRANSACTIONALITY (CT)
PROCESS ACTIVITY TRANSACTIONALITY (PAT)

TRANSPORT QOS

INVOKE ACTIVITY
TRANSACTIONALITY

INVOCATION
TRANSACTIONALITY
PATTERN (see Table
23 for outcome)

Due to forces relations (see Section 6.2.3), outcomes for one eligible and one
pending issue, the CT and TRANSPORT QOS issues, can be implied by the resolved
INVOCATION TRANSACTIONALITY PATTERN issue. If tool support for the presented
concepts is available, this logical implication can be detected automatically and
presented to the architect as a decision making proposal. This example shows that
modeling decomposition and refinement relations and implying certain outcomes
can accelerate the decision making process (via triggers and production rules) and
improve the quality of the decision making (via integrity constraint checks).

Decision log. In Section 4.3, we left the motivating case study from Chapter 2 at
the end of the solution outline phase, with nine decisions made (see Table 10 and
Table 11 on page 66). Table 23 shows the decision log at the end of the macro de-
sign phase. The decisions from Table 12 on page 66 have now been made as well:

Table 23. SOA decisions in motivating case study made in macro design

Issue (Outcome Instance) Chosen Alternative Justification Examples
IN MESSAGE GRANULARITY
(all service operations, default)

COMB PATTERN
(see below)

API convenience, verbosity not
a problem (low volumes)

IN MESSAGE GRANULARITY
(assess risk operation)

DOTTED LINE PATTERN
(see below)

Legacy system constraint in
government information server
interface (see Chapter 2)

OUT MESSAGE GRANULARITY
(all service operations, default)

COMB PATTERN
(see below)

API convenience, verbosity not
a problem (low volumes)

OUT MESSAGE GRANULARITY
(assess risk operation)

DOTTED LINE PATTERN
(see below)

Legacy system constraints (see
Chapter 2)

OPERATION-TO-SERVICE
GROUPING

SINGLE OPERATION Command pattern followed
(tacit knowledge, experience)

MESSAGE EXCHANGE PATTERN REQUEST-REPLY Consumer semantics (see Chap-
ter 2)

INVOCATION
TRANSACTIONALITY PATTERN

TRANSACTION ISLANDS Long running process, backend
slow and not transactional

INTEGRATION PARADIGM ESB (BROKER) Heterogeneity (see Chapter 2)
SERVICE COMPOSITION
PARADIGM

WORKFLOW Already decided in Section 4.3

RESOURCE PROTECTION
STRATEGY

SYSTEM TRANSACTIONS,
BUSINESS COMPENSATION

See [Fow03] and [LR00]

126 7 Creating and Using Architectural Decision Models on Projects

SERVICE PROVIDER
TRANSACTIONALITY (ST)

ST-N Implied by TRANSACTION
ISLANDS choice

COMMUNICATIONS
TRANSACTIONALITY (CT)

CT-N Implied by TRANSACTION
ISLANDS choice

PROCESS LIFETIME MACROFLOW Business rules from Chapter 2
PROCESS ACTIVITY
TRANSACTIONALITY (PAT)

PAT-J No business or technical need
for MULTIPLE BRIDGES

TRANSPORT PROTOCOL
BINDING (ESB gateway, inter-
nal ESB upstream to process)

SOAP/HTTP Ubiquity, Internet self service

TRANSPORT PROTOCOL
BINDING (internal ESB, down-
stream to backend systems)

PROPRIETARY DATABASE,
MQ INTERFACE,
FILE TRANSFER

Legacy system constraints

SOAP COMMUNICATION
STYLE

DOCUMENT/LITERAL Recommended by WS-
Interoperability organization

XML SCHEMA (XSD)
CONSTRUCTS

CUSTOM SUBSET Sufficient for the domain data
model to be exposed

MESSAGE EXCHANGE FORMAT SOAP Standardized, interoperable,
supported by open source en-
gines

INTEGRATION TECHNOLOGY WS-* WEB SERVICES Interoperability proven, stan-
dardized, tool supported

WEB SERVICES API JAX-WS [SunWS] Standardized, flexible, tools
available

JAVA SERVICE PROVIDER TYPE PLAIN OLD JAVA OBJECT
(POJO)

Simplicity

TRANSPORT QOS PLAIN SOAP
(WITHOUT WSAT)

Implied by TRANSACTION
ISLANDS choice

SCA QUALIFIERS See Table 18 in Chapter 6
(page 104)

Implied by TRANSACTION
ISLANDS choice

WORKFLOW LANGUAGE BPEL Standardized, tools available
BPEL VERSION

2.0 OASIS specification, used by
engine selected in Section 4.3

COMPENSATION TECHNOLOGY BPEL COMPENSATION
HANDLER

Using standards is required as
per NFR 2 (see Chapter 2)

ESB PRODUCT CUSTOM No license costs, available de-
velopment skills, availability of
an in-house command interface

ESB TOPOLOGY

CLUSTERED High availability and failover
requirements

INVOKE ACTIVITY
TRANSACTIONALITY

See Figure 26 in Chapter 6
(page 101)

Implied by TRANSACTION
ISLANDS choice

We now walk through the table, resolving selected issues.

Micro process. We demonstrate the steps of the micro process by resolving the IN
MESSAGE GRANULARITY issue (see Chapter 2 for requirements and Chapter 4 for
motivation).

 Activity A.1 is to understand that the issue deals with the structure of the mes-
sage parts and the data types in the operation signature (see Chapter 4). Let us as-
sume that decision drivers stated in the RADM for SOA and studied in activity
A.2 include “service consumer API convenience, request message verbosity, and
interoperability between Java and .NET”. Also in activity A.2, the architect stu-
dies decision dependencies. For instance, the technology-specific issue of creating

 7.2 Framework Step 6: Make Decisions 127

XML SCHEMA (XSD) CONSTRUCTS for the operations defined in the WSDL con-
tracts of the customer case, contract, and risk management service providers (see
Figure 15 on page 65 as well as Figure 29 on page 117) has to be considered.

Let us further assume that the alternatives listed in the RADM for SOA include
a “deeply nested complex type structure, representing the business domain model
accurately (which we call COMB PATTERN)” and “several flat, serialized strings
(which we call DOTTED LINE PATTERN)”.47 The architect reviews them in activity
A.3. We skip activity A.4 in this example, assuming that no recommendation ex-
ists. Such recommendation can be added to the RADM over time once sufficient
experience with chosen alternatives has been gained on industry projects.

Now switching from RADM content to requirements analysis (activity B.1 and
activity B.2), let us assume that the architect investigates the business rules, NFRs,
and legacy constraints from Chapter 2 and concludes that a rich domain model has
to be exposed, that API convenience has a high priority, and that the verbosity
concerns can be resolved. This is an example of decision rationale that can not be
linked to the requirements in Chapter 2 exclusively, but is also justified by the ex-
perience of the architect. The architect decides for the COMB PATTERN as a default
for all service operations (activity B.3). An exception is the assess risk operation:
It uses the government information server interface which only works with scalar
data (integers); this means that either the DOTTED LINE PATTERN has to be se-
lected or that an ESB mediation must be introduced. The architect documents the
two different decision outcomes and their rationale in activity B.4.

Having made this decision, the architect still has to communicate the decision
outcomes to the development team (activity C.1) and to verify that the decision is
actually implemented (activity C.2) and that this implementation is workable (ac-
tivity C.3).

This walkthrough completes the coverage of the case study. In reality, the deci-
sion making would continue until project closure; many more decisions would
have to be made. The industrial case studies featured in Chapter 9 are such pro-
jects. In [ZZG+08], we present another industrial case study, resolving and giving
rationale for 35 decisions, e.g., about the integration issues listed in Table 23.

7.2.4 Discussion and Summary

In this section we presented SOAD step 6, which works with a managed issue list
and a macro and a micro process for architectural decision making.

Justification. Unlike [HKN+07], we see an opportunity to support the managed
issue list in a tool rather than a simple spreadsheet or wiki page: The decision
making process enactment can be automated this way. Chapter 8 presents such
tool. Macro and micro process, however, are designed for human consumption;
they are not executable in some machine without human intervention.

47 These patterns have not been published yet; we intend to do so in a future publication.

This demonstrates that a RADM can serve as an intermediate step of pattern harvesting.

128 7 Creating and Using Architectural Decision Models on Projects

Assumptions. We assume decision dependencies and filtering information to be
modeled so that entry points can be identified and clustering advice can be given.

Our macro and micro processes are not specific to SOA design; they fit into
any method that defines roles and phases. Software engineering methods also in-
troduce macro-level phases, but only define activities coarsely, e.g., “define soft-
ware architecture” in RUP. Hence, the relation between method phases and re-
finement levels as introduced in Section 6.2 is worth investigating. In the SOA
design example used in step 4 and in our definition of strict validity (Definition
6.12), we assumed that entry points reside on the conceptual level and that
refinedBy relations with issues on lower levels imply triggers relations. This leads
to a top-down macro process. This strong assumption has to be reconsidered when
creating RADMs for other genres and styles, but also other project types and
communities in EAD/EAI and SOA design. In such a case, vendor preferences,
software procurement strategy, and quality of legacy code determine whether a
top-down approach is feasible; often a meet-in-the-middle approach is required
[ZKG04]. An example is a bottom-up design method starting from legacy deci-
sions and technology and asset capabilities rather than patterns and requirements.
In [ZKL+09] we show that the primary change required in such case is the modifi-
cation of Integrity Constraint (IC) 5 from step 4, which implies triggers relations
from logical refinedBy and decomposesInto relations (Section 6.2).

Consequences. Depending on the type of decision to be made in an instance of
the micro process, we can select from a continuum of complementary techniques:
Architecture Tradeoff Analysis Method (ATAM) [BCK03] can be leveraged in ac-
tivity B.2. In B.3, simple recommendations, semi-structured Strengths, Weak-
nesses, Opportunities, Threats (SWOT) tables, Question, Option, Criteria (QOC)
diagrams [MYB+91], Attribute-Driven Design (ADD) [BCK03], Decision Sup-
port Systems (DSS) [SWL+03], hands-on evaluations and formal scoring algo-
rithms can be used. Templates, metamodels, and tools from the architectural
knowledge management community can be leveraged in activity B.4 and in activ-
ity C.1. Various review and evaluation techniques supporting C.2 and C.3 have
been proposed [BCK03]. With this integrative approach, SOAD refers the archi-
tect to existing techniques suited for particular issues and decision making activi-
ties.

Rather often, it will not be possible to make certain decisions that would be re-
quired, for instance if the related requirements have not been captured sufficiently.
This is unavoidable (or even desired when following an agile process [Bec00]);
however, deferring the resolution of an issue should be a conscious decision. It is
possible to overrule the ordering proposed by the issue list manger and to back-
track if it turns out that a certain design does not work. Note that we did not define
any what-if analysis capabilities yet; this would require metamodel extensions.

Next steps. The decision model is now complete and has been applied to the case
study; it remains to be shown how SOAD supports decision enforcement (step 7).

 7.3 Framework Step 7: Enforce Decisions 129

7.3 Framework Step 7: Enforce Decisions

Step 7 in the SOAD framework introduces decision-aware model transformations
as a novel solution to the decision enforcement problem:

How to enforce that made architectural decisions are respected during subse-
quent design activities and during development?

How to update design models and code according to outcome information in an
architectural decision model?

Input to this step are the decisions made in step 6, i.e., outcome instances; its
output comprises modified design models and/or generated code.

We present this step in the same way as the previous ones, starting with a brief
review of the state of the art and the practice, and then progressing to presentation
of solution, application to SOA design, and discussion of rationale.

7.3.1 State of the Art and the Practice

State of the art. Software engineering processes like RUP [Kru03] advise archi-
tects to enforce decisions by refining the design in small and therefore actionable
increments. The agile community emphasizes the importance of face-to-face
communication and team empowerment [Bec00]. This advice is human-centric.

Model-Driven Development (MDD) can help to automate decision enforcement
partially. MDD pertains to multiple project phases from analysis to design, devel-
opment, and test. One of its objectives is to ensure consistency between the arti-
facts created throughout the phases: Model definitions and transformations be-
come key elements of the development process. The standard Model Driven
Architecture (MDA) approach is based on the Meta Object Facility (MOF)
[OMG03].48 Model-Driven Software Development (MDSD) as introduced by
Stahl and Voelter [SV06] uses modeling and code generation in a flexible and
pragmatic way. Brahe et al. present a model transformation chain for process-
enabled SOA starting from business process models created by domain experts
and then incrementally refined during development [BB06].

State of the practice. Informal techniques such as coaching, architectural tem-
plates, and code reviews dominate today. Maturity models such as the Capability
Maturity Model Integration (CMMI) [SEI] and genre-specific governance models
[AH05] recommend rigid approaches to ensure that decision outcome material-
izes, e.g., formal reviews. All of these techniques are valid and relevant in our
SOA design context. However, applying them takes time and their success de-
pends on the architects’ coding and leadership skills. Some of the techniques are
difficult to apply in distributed teams.

48 From now on, we use the generic term MDD in this section. We require a metamodel for

design models to exist; hence, our technique works with MDA and other forms of MDD.

130 7 Creating and Using Architectural Decision Models on Projects

We are not aware of any MDD implementations that respect project phases and
roles defined by software engineering processes like RUP. As a consequence, it is
not clear when in the process to apply which transformation and who is responsi-
ble for doing so. Furthermore, model transformations often are hard to adjust ac-
cording to project-specific architectural decisions [ZKL06]. For example, many
commercial BPM-to-BPEL transformation tools allow the user to make simple de-
cisions, e.g., regarding activity naming, but use fixed defaults for architectural
concerns, e.g., system transaction management boundaries [ZGT+07]. Conse-
quently, development resources have to be invested to change the defaults to the
settings required in a particular design.

OpenArchitectureWare [OAW] is an MDSD framework targeting developers.
OpenArchitectureWare transformations are configurable. However, architectural
decisions are not a genuine modeling concept and transformation input at present.

7.3.2 Concept: Decision Injection in Model-Driven Development

As an additional form of decision enforcement49 in an MDD context, we bridge
the gap between design and decision models. We provide a concept to inject out-
come information into design, code, and deployment artifacts created by model-to-
model and model-to-text transformations. This unidirectional and therefore partial
automation helps to ensure that design models reflect the architectural decisions
made. It is complementary to the existing practices introduced in Section 7.3.1.

Two concepts are required to realize decision injection: First we establish an
MDD concept for SOAD decision models. This allows us to let SOAD decision
models and MDD design models interact with each other in a second step.

MDD concept for SOAD Architectural Decision Models (ADMs). Two existing
concepts make it possible to develop model transformations, metamodeling and
platform model(s) [OMG03]. The SOAD formalization from Chapter 6 qualifies
as a metamodel (although it is not based on MOF). Platform models for SOA as an
architectural style exist, e.g., SoaML [OMG], as well as platform models for tech-
nology platforms such as Java Web services [SunWS].

Figure 33 illustrates a two-step refinement hierarchy and model transformation
chain for SOAD decision models. In SOAD, the conceptual level in the RADM
for SOA introduced in Chapter 5 and formally defined in Chapter 6 serves as Plat-
form-Independent Model (PIM); technology level and vendor asset level are two
types of Platform-Specific Models (PSMs) [OMG03]. Unlike in MDD, these mod-
els are decision models capturing architectural knowledge rather than design mod-
els comprising components and connectors: The decision model elements (i.e., is-
sues, alternatives, and outcomes) are instantiated from the SOAD metamodel.

Figure 33 also shows two model transformations. Exemplary SOA marks
[OMG03] are shown as well; in MDA, such marks steer the transformations. Se-

49 Although enforcement sounds authoritative, we do not imply any leadership style here.

 7.3 Framework Step 7: Enforce Decisions 131

lecting a mark is making a decision. Our exemplary marks map concepts from the
SOA Definitions 2.6 to 2.9 to selected Web services platform elements.

Meta Model

Architectural
Decision
Model
(ADM)

Platform-Independent Model:
Issues on Conceptual Level

Platform Model:
Web Services Architecture

Platform-Specific Model:
Issues on Technology Level

Decision Model Transformation:
Conceptual Technology

Sample Marks:
Process activity BPEL invoke activity
Functional contract WSDL port type
Operation WSDL operation
Message SOAP envelope

SOAD Meta Model
(Steps 2, 3, and 4 in Chapter 6)

Platform-Specific Model:
Issues on Vendor Asset Level

Decision Model Transformation:
Technology Vendor Asset

Platform Model:
e.g., IBM WebSphere (WPS)

Sample Marks:
BPEL WebSphere BPEL engine
Component SCA 0.92
Transactionality

WebSphere BPEL engine settings,
SCA 0.92 qualifiers,
WPS WS-AtomicTransaction config.

Platform Model:
SOA Patterns, Profile

instantiatedInto

Figure 33. Model transformations in ADM

The refinedBy relations defined in Section 6.2 can be leveraged to implement
certain transformations between outcomes on different levels, possibly requiring
additional input from the architect. If this is the case, automation is partial. Section
 6.2.3 provides an exemplary specification of a transformation related to transac-
tional workflows in SOA. As demonstrated in this example, lower-level decisions
can be implied in some cases, e.g., leveraging forces and isIncompatibleWith rela-
tions (production rule 2 in Section 6.3.2). Feasibility depends on the modeling
choices made by the knowledge engineer and the characteristics of the application
genre a decision model is created for: The more variability exists on a lower level
(e.g., technology level, vendor asset level), the fewer opportunities exist to imply
decisions and the stronger is the need for configurable model transformations.

Having aligned SOAD and MDD, we can connect decision and design models.

Decision injection (conceptual design). We formalized ADMs in Chapter 6 and
provided an MDD concept for them above; hence, ADMs can now be used in
model transformations and code generation via decision injection. Figure 34 ex-
tends Figure 33 with decision-aware design model transformations operating on a
platform-specific level (i.e., technology level, vendor asset level). This is a realiza-
tion of the conceptual decision enforcement component in Figure 14 on page 62 in
Chapter 4. It works for ADMs only as it uses outcome instances as input.

132 7 Creating and Using Architectural Decision Models on Projects

Meta Model

Architectural Decision Model (ADM)

Platform-Specific Model:
(e.g., WSDL, BPEL, SCA)

Platform-Specific
Model

(Technology Level,
Vendor Asset Level)

Platform-Specific Model:
BPEL, WPS Configuration Files

Model Transformation with
Additional Information

Design Model

Decision Log

Report
Generation

SOAD Meta Model
(Steps 2, 3, and 4 in Chapter 6)

create, update

name

scopeinstantiatedInto

(Platform-Independent)
Meta Model (e.g., SOA)

Platform Models:
Web Services, IBM WebSphere

Issue

Outcome

chosen
Alternative

(mark)

Figure 34. SOAD step 7: Decision injection into design models and code

Two types of models appear in the figure, SOAD ADMs (shown on the left
side) and MDD design models (shown on the right side). The design model nota-
tion can be UML or a domain-specific language. The name attribute of outcome
instances in the SOAD metamodel is leveraged to identify design model elements
(e.g., UML classes); the scope attribute of an issue specifies the design model
element type (e.g., UML stereotypes defined in a platform model or UML profile).
The outcome instance parameterizes a design model transformation as desired.

One important form of model-to-text transformation is report generation. Also
refining Figure 14, this transformation creates a decision log as an architecture
documentation artifact. With this generation capability, existing decision capturing
templates such as those discussed in Section 6.1 can be supported by SOAD. In
this context, the decision log is a text page that reports on the ADM content. An
example of such report is shown in Appendix B. The report is an HTML decision
log that adheres to the guidelines in the artifact description of IBM UMF [CCS07].

The decision injection concept can be implemented in many modeling envi-
ronments and transformation frameworks. We outline an SOA example now.

7.3.3 Sample Application to SOA

To demonstrate that the presented SOAD-MDD alignment and decision injection
work for SOA design, we implemented a demonstrator for decision injection that
works with resolved INVOKE ACTIVITY TRANSACTIONALITY issues. According to
Chapter 6, this is an architectural decision dealing with a non-functional aspect of
executable business processes. The scope of the issue is “invokeActivity”, a term
from the BPEL specification. The demonstrator injects an alternative chosen in an

 7.3 Framework Step 7: Enforce Decisions 133

outcome (e.g., “requiresOwn” or “participates” from Section 6.2.3) into a BPEL
file [OAS07], which is a technology-specific development artifact:
injectTransactionAtttribute(inout: bpelXmlFile, in: outcome)

The demonstrator is called from a SOAD tool; it implements the above func-
tion, which injects chosen alternatives (see above) into BPEL code, which may
have been generated by a BPM tool that supports BPEL. The BPEL specification
takes the role of the platform model; the sample marks were shown in Figure 33.

7.3.4 Discussion and Summary

In this section we presented a novel concept for decision enforcement (SOAD step
7), connecting SOAD decision and MDD design models via decision injection.

Justification. As pointed out in step 3, there is a natural affinity between our re-
finement levels and MDA model types. We let architects regain control over the
model transformations, which is faithful to the original vision of MDA, (e.g., “ad-
ditional information” in [OMG03]). Unnecessary development can be avoided and
architectural consistency can be ensured this way. To preserve the decision ration-
ale in the design, excerpts from the decision model such as the value of the justifi-
cation attribute can be injected into the design model in addition to the chosen al-
ternative. Traceability from requirements to design models and code can also be
realized. However, our solution does not prevent design models from being up-
dated erroneously after a decision has been injected as it is unidirectional (i.e., in-
jection from decision model into design model, but not in the opposite direction).

Assumptions. We assume an MDD approach to be followed: A design meta-
model, a platform model, and marks must be available. For SOA and Web ser-
vices, this is the case. Moreover, decisions must be scoped (see step 2 and step 5).

Consequences. Our approach seems to violate the separation of concerns princi-
ple for tool design as we let decision and design models interact; these models re-
present different viewpoints on software architecture (decision model: knowledge
viewpoint, design model: traditional viewpoints, e.g., 4+1 [Kru95]). In the current
state of the art and the practice, these models are often isolated from each other,
with the consequence that inherently existing relations remain tacit. In our ap-
proach, they are made explicit and can therefore be managed by tools.

We believe that our approach has a better chance to succeed than traditional
MDD implementations: It increases flexibility and configurability and integrates
architectural knowledge and design process information into the model transfor-
mations. However, the practicality of decision injection remains to be shown:
Unlike the previous SOAD steps, we implemented the described concepts in dem-
onstrator form, but did not validate them in industrial case studies (see Chapter 9).

Next steps. All SOAD framework steps are now introduced conceptually. In the
next chapter, we present a collaboration system providing tool support for them.

8 A Collaboration Tool for Architectural Decision
Modeling

In this chapter, we present the conceptual architecture of a collaboration system
supporting the SOAD framework steps and concepts. Design and implementation
of the collaboration system form the final contribution of this thesis:

Which logical building blocks comprise a tool that supports architects when they
investigate, make, and enforce architectural decisions?

How to support collaborative creation and usage of decision models?

The collaboration system works with the input to steps 1 and 5, patterns (step 1)
and analysis and design models (step 5). It produces a partially or fully decided
Architectural Decision Model (ADM), which is instantiated from the SOAD
metamodel supporting steps 2 to 4. The collaboration system can be used to docu-
ment decisions made in step 6 and to generate reports and inject decision out-
comes into design models as described in step 7.

The chapter starts with a brief review of state of the art and the practice, and
then progresses to design, implementation, example, and discussion of rationale.

8.1 State of the Art and the Practice

State of the art. Active usage of decision models in the design process is a novel
approach; therefore, no tools specifically designed for this purpose exist. How-
ever, more general architectural decision capturing tools have been proposed.

In the 1990s, Knowledge-Based Software Engineering (KBSE) tools such as
Argo stressed that tools for designers should support their cognitive needs such as
reflection in action, opportunistic design, comprehension and problem solving
[RHR96]. To achieve this, a managed to do list was seen as one of several key
features. At that time, regulatory compliance and team collaboration forces were
not as dominating in software engineering as today; aspects specific to these
forces were not addressed explicitly. KBSE did not provide any support specific to
our particular knowledge domain (recurring architectural decisions), application
genre (enterprise applications), or architectural style (SOA).

Architects’ Workbench (AWB) [ABK+06] is an Eclipse plugin that supports
the IBM Architecture Description Standard [YRS+99] in its metamodel. AWB
provides two UMF-conformant viewpoints for architectural decision modeling.
Due to its powerful refactoring capabilities, AWB is well suited for architectural

136 8 A Collaboration Tool for Architectural Decision Modeling

decision knowledge capturing. It can generate reports. However, it was not de-
signed for knowledge exchange and team collaboration.

PAKME [AGJ05] is the prototype of an architecture knowledge management
system implemented on top of an existing groupware platform. It uses 25 tables to
capture various forms of architectural artifacts, including design rationale.
PAKME is populated from patterns repositories and the literature. Jansen [Jan08]
and Falessi [FBC06] present several other tools for the management of architec-
tural knowledge. Being passive knowledge repositories, these tools do not support
the SOAD concepts (see Table 9 on page 59 for an overview of these concepts).

As potential building blocks for our solution, we also evaluated related assets
such as UML tools, native HTML, and standard wiki technologies. None of these
assets meets all requirements from Chapter 3: UML tools specialize on capturing
analysis and design models such as use cases, class, activity, and sequence dia-
grams [RJB99] graphically in the form of diagrams. They fall short when it comes
to modeling knowledge comprising text, often semi-structured and combined with
other formats, e.g., images and URLs, to capture design intent and rationale. Na-
tive HTML and standard wikis provide flexible human user interfaces when de-
signed and configured appropriately. Many development project teams already use
standard wikis for collaboration and information sharing. However, standard wikis
store their content unstructured and/or blended with presentation elements (which
are defined in HTML or a wiki language). Typically there is no communication or
programming interface allowing other tools to access the content apart from the
HTML data sent to the browser via HTTP. Thus, it is difficult to populate the sys-
tem from third party software or to extract any well-structured content for auto-
matic processing. This is required to support an active issue management as de-
fined in Chapters 6 and 7.

State of the practice. Eclipse plug-ins [Ecl] and standard wikis represent the
state-of-the-practice in decision modeling and knowledge exchange tools. Text-
based approaches to designing architectures and sharing rationale are common as
well: Templates defined in Word processors, HTML forms, or groupware data-
bases are frequently used for decision capturing. Much of the knowledge remains
tacit.

8.2 Conceptual Design of an Application Wiki for SOAD

We believe that a lack of collaboration and reuse features and a lack of active
guidance during the design as envisioned by Argo are two of the deficiencies of
existing approaches. We already outlined the architecture of a tool that provides
such features in Chapter 4. We now refine this architecture and add collaboration
and issue management capabilities: Unlike passive knowledge management re-
positories and templates designed for decision capturing, we facilitate the decision
making process and, faithful to Argo’s vision of a managed to do list, make con-
text-specific architectural knowledge available during the design process.

 8.2 Conceptual Design of an Application Wiki for SOAD 137

Architecturally significant requirements. The architectural knowledge man-
agement requirements from Chapter 3 (obtain, tailor, delegate, involve, make, en-
force, and share, R5-1 to R5-7) are the primary use cases for the tool; the concepts
we developed for the seven SOAD steps provide detailed functional requirements.
The tool must focus on the design phase [Som95]. Discussion and interaction sup-
port, e.g., via email, comments and issue tracking, document management, and
versioning are important functional requirements shared with existing wiki-like
collaboration systems. The tool must integrate with others as outlined in Figure 10
on page 39. A communication or programming interface should be provided so
that import and export mechanisms can automatically populate the tool with issues
and outcome instances, e.g., those identified in analysis and design tools. The sys-
tem must be user friendly: Practitioners do not appreciate having to work with yet
another tool to fulfill additional obligations such as decision capturing. It must be
intuitive to browse the content, and users should be attracted to contribute new
knowledge (R1-6, R1-7). User management including simple workflow and basic
security support (i.e., authentication, authorization) is required if decision making
responsibilities are shared within and between teams (R3-5). A thin client eases
deployment and remote access. The tool must support frequent and incremental
updates of RADMs and ADMs so that knowledge engineers can keep the knowl-
edge about issues up to date, e.g., by adding rationale gathered on successful and
failed projects that completed after a RADM or ADM was created.

Conceptual architecture (logical viewpoint). Our key concept is to use an appli-
cation wiki50 as the collaboration system, realizing the tailor, delegate, make, and
enforce use cases specified in Chapter 3 (Section 3.1.5) in dedicated application
logic. Standard wiki features such as user-generated content and comments (dis-
cussion forums) realize the involve use case. Providing import and export capa-
bilities, such an application wiki can also facilitate an exchange of architectural
decision knowledge, which realizes the remaining use cases, obtain and share.

Architectural Decision Knowledge Wiki is such a Web-centric collaboration
system, providing explicit support for sharing architectural decision models. Its
architecture combines the benefits of a rich Web 2.0 [SZP07] front end with those
of the domain model pattern [Eva03] and a Relational Database Management Sys-
tem (RDBMS) [SKS02].

To refine the functional view from Figure 14 into a logical component model
we use layers as our governing architectural pattern [BMR+96]. This allows us to
evolve the layers independently of each other, and to integrate our solution with
other tools. The three layers of Architectural Decision Knowledge Wiki are: pres-
entation layer, domain layer, and persistence layer [Fow03]. The metamodel from
Chapter 6 affects all layers: the metamodel elements topic group, issue, alterna-
tive, and outcome (for an overview, see UML metamodel in Figure 20 on page 88
and example in Figure 21 on page 89) are represented by presentation layer (user

50 An application wiki combines a wiki engine with an application server [SZP07]. It ex-

tends the user and page management capabilities of standard wikis with application
server extensibility and a mash-up (composition) interface. This allows creating and
managing page content programmatically, e.g., with the help of a custom database.

138 8 A Collaboration Tool for Architectural Decision Modeling

interface) components, related domain layer logic, and corresponding database ta-
bles.

The tool architecture provides components that support the SOAD steps and
concepts defined in this thesis. Figure 35 refines Figure 14 on page 62 and illus-
trates the architecture and tool context of Architectural Decision Knowledge Wiki:

Architect Roles
(IBM, other)

(R)ADM
Repository

Method Phases
(RUP, UMF)

Method

Architectural Decision Knowledge Wiki

Other Tools

Reasoner
(e.g., ACE)

(R
ES

Tf
ul

) s
er

vi
ce

in
te

rf
ac

e

G
en

er
at

e
(W

S-
*)

 s
er

vi
ce

ca
ll

Domain Layer (Object-Oriented Programming)

Issue List
Manager

(Controller)

Outcome
Instance
Creator

Outcome
Injector

Enforcement
View Server

Investigation
View Server

Persistence Layer (SQL, RDBMS)

Making
View Server

Presentation Layer (Rich Internet Application)

phase, role

sc
op

e

Knowledge Engineer Software ArchitectKnowledge Engineer Software Architect

Use Cases

Analysis Modeling
Environment

Conceptual
Workflows

Business Process
Model (BPM)

NFRs

Design Modeling
Environment

Service
Contracts

Models for Other
Viewpoints

Development
Environment

Configuration
Files (JEE, SCA)

Code
(Java, BPEL, etc.)

Test Cases
(JUnit)

Decision Log

RADM Report
(Issues, Altern.)

ADM Report
(Issues, Altern.,

Outcomes)

Fi
le

 u
pd

at
e

Topic Groups

Issues Outcomes

Alternatives

Decision Modeling Client (in Web Browser)

Figure 35. Component model of Architectural Decision Knowledge Wiki

Via a common decision modeling client, which runs inside the users’ Web
browser, the presentation layer exposes three server-side views for steps 1 to 5
(which we jointly refer to as investigation), 6 (making), and 7 (enforcement).
These views refine those introduced in Figure 14. The presentation layer also pro-
vides collaboration features such as page editing and versioning (allowing users to
create and update content). Attachments can be added to wiki pages to explain de-
cision drivers, alternatives, and other aspects in more detail than in the (R)ADM
content. The presentation layer is realized as a Rich Internet Application (RIA),
which combines the advantages of a thin client (e.g., no installation effort on the
client side, all users have access to the same ADM on the server) with those of a
rich client (e.g., usability). With this presentation layer design, an entire project
team can share one ADM and participate in the decision making.

Dependency management is a key domain layer responsibility: The domain
layer component issue list manager implements the concepts from Chapter 6 and
7, Section 7.2 in particular (e.g., managed issue list based on dependency relations
such as refinedBy, decomposesInto, forces, and triggers). It also provides import
and export capabilities: A service interface organized according to the service
layer pattern [Fow03] allows clients to create outcome instances via an outcome

 8.3 Implementation of the Conceptual Design 139

instance creator. Decision injection (Section 7.3) is supported with a file update
interface (outcome injector). Additional integrations can be provided by this layer
as well.

The persistence layer implements the RADM and ADM repository as a rela-
tional database. Hence, the extensive capabilities of a RDBMS can be leveraged,
e.g., to create decision logs as database reports, to ensure the integrity of a model,
and to query it. The RADM and ADM repository supports create, read, update, de-
lete, and search operations for the RADM and ADM tables whose table definitions
are derived from the SOAD metamodel (Chapter 6).

Furthermore, the architecture allows integrating Web services available on the
Internet. One example is a reasoning service that accepts and returns Attempto
Controlled English (ACE), a natural controlled language that is formally defined,
but human readable [FS96]. Such reasoning service could implement the produc-
tion rules defined in Chapter 6 (using forces and isIncompatibleWith relations).51

8.3 Implementation of the Conceptual Design

We implemented Architectural Decision Knowledge Wiki on top of a situational
application and Web 2.0 mashup environment called QEDWiki [SZP07]. QED-
Wiki is an application wiki, i.e., a hybrid wiki engine and PHP application server,
providing access to incoming HTTP request data via a command interface. QED-
Wiki is based on the Zend PHP Framework, which extends and runs inside the
Apache HTTP server. It uses relational databases managed by IBM DB2. HTTP
server and QEDWiki provide the required user authentication and authorization.
Through predefined commands, QEDWiki provides support for adding comments,
attachments, and email threads. We extended these commands to provide native
support for the SOAD metamodel, using the Dojo JavaScript library to provide a
user experience as attractive as that of rich clients (in the decision modeling cli-
ent). An issue and all its alternatives are displayed in a single, composite QED-
Wiki page comprising multiple tabs (one tab per view server from Figure 35). The
domain layer is implemented in object-oriented PHP. It accesses the persistence
layer via the active record pattern [Fow03], requiring little coding effort.

We released a base version of Architectural Decision Knowledge Wiki on IBM
alphaWorks [SZ08]. The tool has been used in several industrial projects and
training classes. More than 200 users are registered in a company-internal hosted
instance. 630 users downloaded Architectural Decision Knowledge Wiki in the
first twelve months of public availability.

To demonstrate automatic outcome instance creation, an additional require-
ments management tool interface was implemented in demonstrator form (i.e., it
was not released): This interface comprises an IBM WebSphere Business Modeler

51 If SOAD decision drivers and recommendations and project requirements are articulated

in ACE as well, the reasoning engine can also suggest certain alternatives to the architect.

140 8 A Collaboration Tool for Architectural Decision Modeling

(WBM) [IBM] to Architectural Decision Knowledge Wiki model transformation,
demonstrating decision identification in analysis-phase business process models.

The decision injection concept (see Section 7.3) was also implemented in de-
monstrator form (and not released either): An interface from Architectural Deci-
sion Knowledge Wiki to IBM WebSphere Integration Developer (WID) shows
decision injection in a BPEL editor via a local file update interface and XPath.

Finally, the macro process from Section 7.3 and the ACE interface were only
implemented in experimental form (i.e., not released either).

User interface. We now present Architectural Decision Knowledge Wiki from the
user’s point of view, briefly describing the most important features of its user in-
terface. Figure 36 shows the main page of the decision modeling client from
Figure 35, displaying a decision modeling project overview in the Workspace ex-
plorer on the left and a single issue in the main part of the page:

Figure 36. Architectural Decision Knowledge Wiki screen caption

The issue is the conceptual decision INVOCATION TRANSACTIONALITY
PATTERN, which we introduced in Chapter 6. Several of the SOAD metamodel
elements, e.g., issue attributes such as short name (“Msg-05”), name (“Invocation
Transactionality Pattern”) and problem statement (“What is the system transac-
tionality …”) are visible at first glance. Decision drivers are displayed in another
text field (“Business-level resource protection needs …”); alternatives and their at-
tributes are also displayed (“Transaction Islands”). In support of the involve use
case from Chapter 3, literature links are provided under background reading. More
detailed documentation about this and other attributes can be attached to the page.

Issues can influence each other; their dependency relationships are displayed as
hyperlinks, e.g., from the currently displayed issue to “Process Activity Transac-
tionality (PAT)” and to “Communications Transactionality (CT)”. These issues
were also introduced in Chapter 6.

 8.4 Discussion and Summary 141

The decision models are organized and displayed in a hierarchical structure and
tagged to enable searches. Applying the master-details pattern, issues can be lo-
cated with the Workspace explorer: Clicking on a Workspace explorer entry dis-
plays the details of a topic group or of an issue and its alternatives in the main part
of the page. At the top of the page (to the right of the label “SoadWiki”), a link list
provides an additional means of orientation, flattening the topic group hierarchy
according to the breadcrumbs pattern. The list ends with the name of the topic
group in which the issue is contained (“Message Design Decisions”) and the issue
name (“Invocation Transactionality Pattern”).

The same user interface is used for decision investigation, decision making, and
decision enforcement. Architects can not only identify issues from scratch, but
also import an initial set, which supports the obtain use case from Chapter 3. Ex-
port features also exist, supporting the share use case also introduced in Chapter 3.
Issues carry owner and status information to further facilitate collaboration.

8.4 Discussion and Summary

In this chapter we presented the design and implementation of Architectural Deci-
sion Knowledge Wiki. This application wiki and collaboration system supports the
steps and concepts in the SOAD framework. Its model-driven design centers on a
managed issue list and decision investigation, making, and enforcement views,
which are exposed to users via a common decision modeling (browser) client.

Justification. Using a wiki as a presentation layer, Architectural Decision Knowl-
edge Wiki makes decision models available via Web protocols. We combine
existing concepts such as wiki, domain layer, and relational database in a way that
is sound in our requirements context and novel in the tool development genre.

Assumptions. We assume a stable and agreed upon metamodel to exist. As dis-
cussed in Chapter 6, this is a realistic assumption. The SOAD metamodel has been
in use since September 2006 and the architectural decisions template provided by
the IBM Global Services Method (now called UMF) has been stable since 1998.

The design of Architectural Decision Knowledge Wiki does not assume that en-
terprise applications are developed using the SOA style. The tool has already
proven to be able to model issues from other application genres (see Chapter 9).

User validation. Early adopters reported the combination of a wiki, a domain
layer, and a relational database to be innovative and appealing. The decision in-
vestigation page design was appreciated. However, only few users returned and
used the tool continuously throughout their projects. One explanation can be found
in the non-functional challenges encountered during development of the proto-
type: Our decision to extend an already existing wiki engine caused a rather long
installation procedure: Two hours are required to install the prerequisite software;
up to two Gigabyte disk space is consumed. Moreover, there is no support for
Linux and MySQL. As an application wiki, Architectural Decision Knowledge

142 8 A Collaboration Tool for Architectural Decision Modeling

Wiki requires users to be connected to the server; there are no offline capabilities.
This was criticized by users working in professional services firms, which do not
always have access to project- or company-wide server infrastructures from their
laptops when traveling.

We identified several change cases due to the feedback of the early adopters.
For instance, the hierarchical level and topic group tree shown in the Workspace
explorer appearing on the left side of Figure 36 was not well received by inexperi-
enced practitioners. They reported orientation problems in large models. Further-
more, the display of model elements that are formatted according to the SOAD
metamodel requires the user to read a lot of text in the current implementation. In
response, we designed an additional ADIssue Status Overview view (not shown in
Figure 36). This view provides one window element (tab) for each decision status
type from Section 6.3, i.e., entry points, eligible, pending, and implied issues and
outcome instances. The user navigates from issue to issue via refinedBy and de-
composesInto relations.

Early adopters also requested better integration with other tools used by archi-
tects, for example the analysis and design modeling environments and develop-
ment platforms shown in Figure 10 on page 39 and Figure 14 on page 62, as well
as emerging team collaboration platforms such as Jazz [Jaz]. Due to the positive
overall reactions and the confirmation that the realized use cases are valuable, we
consider implementing such features in our future work.

Next steps. In the following Chapter 9, we present how we validated SOAD.

Related publications

An earlier version of our decision modeling tool is described in [SZP07].

The domain metamodel, decision processing steps, and use cases of Archi-
tectural Decision Knowledge Wiki are also described in an article targeting
practitioners [ZSE08].

9 Validation of Research Results

In this chapter, we demonstrate how we validated the SOA Decision Modeling
(SOAD) framework, the Reusable Architectural Decision Model (RADM) for
SOA, and Architectural Decision Knowledge Wiki regarding their practical value
and usability. First we clarify objectives and scope of the validation and present
our approach in a validation overview (Section 9.1). Next, we assess whether the
requirements for SOA design methods stated in Chapter 3 are satisfied (Section
 9.2). After that, we present five industrial case studies; two of these case studies
involved action research (Section 9.3). We also feature supplemental evaluation
techniques such as self experiments, industry workshops, teaching, and implemen-
tation (Section 9.4). Finally, we summarize the validation results (Section 9.5).

9.1 Validation Overview

In this section, we clarify objectives and scope of the validation activities. We out-
line our approach and its rationale, and give an overview of the validation results.

9.1.1 Objectives

Research contributions in software engineering must be validated. Important vali-
dation objectives are to demonstrate technical feasibility, to confirm the practical
value for the target audience, and to evaluate the usability. A validation of the
monetary value and business benefits such as opportunities to increase revenue or
reduce cost would be required when creating a business case for the development
of a commercial version of our solution. While we touched upon such aspects oc-
casionally, such an analysis was not a primary goal of the thesis validation.

To demonstrate the technical feasibility of the SOAD concepts, we created the
RADM for SOA introduced in Chapter 5 and implemented Architectural Decision
Knowledge Wiki, the collaboration system (tool) presented in Chapter 8. Practical
value and usability remain to be evaluated, i.e., whether practicing architects are
willing and able to apply SOAD and whether such application is beneficial.

144 9 Validation of Research Results

9.1.2 Approach and Rationale

The problem solved in this thesis is the creation of a decision-centric SOA design
method. Due to the design nature of this problem, validation by experience is an
adequate validation type, as opposed to analysis with formal proofs or controlled
experiments [Sha03].

Validation activities. A requirements self assessment, industrial case studies, and
implementation served as our primary validation activity types. Supplemental ac-
tivities were self experiments, teaching, and industry workshops.

Our requirements self assessment is based on the method requirement catalog
we established in Section 3.1. The assessment is presented in Section 9.2.

We validated SOAD in five industrial case studies which are featured in Sec-
tion 9.3. The case studies primarily focused on confirming our key hypothesis that
architectural decisions recur and can be modeled according to a metamodel. The
requirements catalog served as a source of validation criteria for these case stud-
ies. We also conducted a user survey. Particularly relevant quality attributes were:

• Functionality, e.g., are the issues and alternatives relevant and accurately
described? Is the captured architectural knowledge useful during design?

• Usability, e.g., is the RADM for SOA well organized so that issues can be
located easily, is the collaboration system (tool) straightforward to work
with? Is the tailoring effort manageable?

We applied action research [ALM+99] in two of the case studies. This is a
concept with roots in pedagogical research: The researcher joins a project and in-
fluences it actively, for instance as coach, pacemaker, or technical reviewer. This
is different from exposing selected research results to users and merely observing
them (this would be done in a controlled experiment). Applying action research al-
lowed us to experience the practical applicability of our concepts ourselves and to
interact with and learn from other architects while they used SOAD.

We hosted a company-internal test instance of the implementation of Architec-
tural Decision Knowledge Wiki and made the tool available for external download
[SZ08]. For several advanced concepts, we implemented prototypical tool support
without reaching out to practitioners.

Another validation activity was to conduct self experiments. For instance, we
applied SOAD to our own SOA projects retrospectively [ZMC+04, ZDG+05]. We
also used framework, RADM for SOA, and Architectural Decision Knowledge
Wiki for teaching. Additional practitioner feedback was collected regularly
through active participation at various industry workshops. These activities helped
us confirm the state of the practice, to evaluate SOAD in several states of evolu-
tion, and to ensure that the developed concepts are applicable for software archi-
tects independent of their area of expertise, experience, and company affiliation.

Organization. Given the rather broad scope of the thesis, the validation activities
had to be decomposed into controllable and observable parts. We organized the
validation activities by contribution type (i.e., SOAD framework steps, RADM for
SOA, and tool) and by use case (i.e., education, knowledge exchange, design

 9.1 Validation Overview 145

method, review technique, and governance instrument). This approach made the
communication with the early adopters in the industry efficient and allowed us to
confront them with the detailed research questions from Chapter 3. Table 24
summarizes the validation objectives and activities conducted.

Table 24. Validation overview

Validation
Criterion

Primary
Validation Activities

Secondary
Validation Activities

Technical feasibility Concepts used to create RADM for SOA content (389 SOA decisions);
other knowledge also modeled (see Section 9.4); several tool imple-
mentations (see Chapter 8 for tool design and Chapter 10 for evolution)

Practical value Gaps between state of the art and the practice identified in Chapter 2
and assessed in Chapter 3; requirements self assessment conducted and
presented in Section 9.2; practical value of SOAD concepts indicated
in Chapters 5 to 7 and validated in industrial case studies (Section 9.3)

Framework step 1:
Identification technique
RADM for SOA

Case study 3
Case studies 1, 2, 3, 4, 5

Self experiments
Teaching, industry workshops

Framework step 2:
SOAD metamodel and
capturing template

Case studies 1, 2, 3, 4, 5

Knowledge from other domains
modeled, industry workshops

Framework step 3:
Level/layer structure

Case studies 2, 3, 4

Self experiments

Framework step 4:
Ordering concepts

Case study 3

Prototypical implementation

Framework step 5:
Decision filtering

Case study 3, 4, 5

Prototypical implementation

Framework step 6:
Managed issue list
Macro process
Micro process

Self experiment, case study 4
Case study 4, 5 (basic form)
Case studies 1, 2, 4, 5

Prototypical implementation
Prototypical implementation
Teaching

Framework step 7:
Decision injection

Prototypical implementation

–

Collaboration system
(tool)

Case studies 3, 4, hosted wiki
instance, public release

Walkthrough with practicing archi-
tects, classroom training

Additional use cases:
Education
Knowledge exchange
Review technique
Governance instrument

Teaching (practitioners)
Hosted wiki instance (tool)
Case study 5
Additional case study

Guest lectures, industry workshops
Self experiment (Section 9.4)
Smaller cases (Section 9.3.6)
Demonstrations to target audience

Table 24 shows that all framework steps except for step 7 were validated by
experience. Design method usage (step 6) was only partially validated because
adopting a new, immature method has a significant impact on the technical project
risk, and industry projects operating under tight economical constraints can not be
expected to make such strong commitment. The only validation activity for deci-
sion injection (step 7) was the implementation of a prototype due to the limited
adoption of model-driven development on projects suited to apply SOAD (see dis-
cussion in Chapter 10). The additional use cases such as review technique and in-
strument were validated partially.

146 9 Validation of Research Results

Rationale for validation approach. Our validation approach is in line with
Shaw’s recommendations: Our validation type is “experience”, with the objective
to show “correctness, usefulness, and effectiveness” of our concepts [Sha03].

Our validation activities gave us direct access to the target audience and had a
short feedback loop, which allowed us to employ an iterative and incremental
concept development and validation approach. This had the objective to verify (or
falsify) the hypotheses expressed by the research questions from Section 3.2 con-
tinuously throughout the project: Six months after project initiation, we developed
a demonstrator, followed by the implementation of a working tool prototype. This
prototype was enhanced over a two year time span. This allowed us to expose new
concepts to practicing architects rapidly throughout the project. The preliminary
validation results were used to improve subsequent versions of SOAD framework,
RADM for SOA, and tool prototype.

We continued to validate until we had sufficient evidence that the fundamental
hypothesis that issues recur holds true and that the core concepts such as a com-
mon metamodel and refinement levels work in practice. The justification for con-
ducting five case studies is that the selected projects yielded a reasonable coverage
(in terms of breadth and depth) without causing unmanageable validation efforts
for the involved researchers and the case study participants from the industry.

Overview of validation results. All five use cases of the SOAD framework and
RADM for SOA were seen to be relevant and not covered by existing assets prop-
erly. The asset creation phase (steps 1 to 4) and model tailoring steps 5 were seen
to be useful and practical. SOAD was used in design method support role success-
fully, but not as a standalone method (step 6). The implementation of the decision
injection concepts demonstrated technical feasibility (step 7). The core functional-
ity of the tool (see Chapter 8) was well received. For instance, the display of is-
sues and alternatives in a single page was considered useful. Usability challenges
were reported for large models and when accessing the system from remote.

We present the validation results in detail in the remainder of the chapter, start-
ing with the requirements self assessment, followed by industrial case studies, and
additional validation activities such as self experiments and teaching.

9.2 Method Requirements Coverage

In this section we assess SOAD with regards to the SOA design method require-
ments established in Chapter 3. This fit-gap analysis is structured like the re-
quirements catalog: General software engineering method requirements are evalu-
ated first, followed by software architecture design method requirements,
requirements specific to enterprise application development and integration, and
those specific to SOA design. Requirements for capturing and sharing architec-
tural knowledge come last.

 9.2 Method Requirements Coverage 147

9.2.1 General Requirements for Software Engineering Methods

Table 25 assesses whether SOAD meets the general software engineering method
requirements stated in Section 3.1.1.

Table 25. Software engineering method requirements coverage

Requirement SOAD Assessment
R1-1: Method = process +
notation + supporting tech-
niques and content

Micro and macro process (step 6)
+ QOC diagram variant (step 2)
+ identification technique (step
1) + tailoring technique (step 5)
+ RADM for SOA content

Met, can be combined with
existing methods to fill their
gaps described in Section 3.3.
See Chapter 10 for detailed
comparison and positioning.

R1-2: Provide standard de-
scription format, metamodel,
or formal underpinning

UML metamodel (step 2) and
formalization (steps 3 and 4)

Met for architectural decision
knowledge, extending existing
work for new usage context

R1-3: Be broadly applicable
and actionable, e.g., provide
templates and examples

All SOA layers covered, tem-
plate available (step 2), examples
given (steps 2 to 4, step 6)

Met

R1-4: Provide link between
requirements engineering
(analysis) and design work

Scope attribute in metamodel,
outcome instances

Met conceptually and in tool;
instance creation only imple-
mented as demonstrator

R1-5: Provide link to project
management methods

Phase and role attribute in meta-
model

Met conceptually and in con-
tent; basic implementation

R1-6: Ease method content
authoring (extensibility)

Identification technique, meta is-
sues, integrity constraints, heu-
ristics, decision capturing advice

Met conceptually; basic sup-
port in tool: create and update
operations, decision modeling
guidance

R1-7: Be consumable and
comprehensible, provide tai-
loring means (usability)

Existing templates extended, step
3 model structure (levels, layers),
decision filtering (step 5)

Partially met (improvements
required to make tool more
user friendly, e.g., graphical
views)

The main objective of SOAD is to complete existing general purpose and SOA
design methods. Hence, it does not propose a new software engineering process or
architecture design notation (R1-1); it rather defines two decision making proc-
esses (step 6). The feedback from practicing architects and method creators con-
firms that this integrative approach works and is beneficial (see Sections 9.3 and
 9.4). On the case studies, SOAD was used in combination with other methods.

The other requirements are met by SOAD concepts and supporting information.
For instance, the scope, phase, and role attributes of issues in the RADM for SOA
refer to types of analysis and design model elements and method elements, respec-
tively (R1-4). Content authoring is simplified with the pattern-centric identifica-
tion technique (step 1), the integrity constraints and heuristics (step 3), and sup-
porting documentation such as decision capturing advice (R1-6). The case studies
demonstrated that the consumability (R1-7) goal can not be fully met if an un-
structured catalog of decisions or simple topic group tree is provided; practitioners
reported not to have enough time to study lengthy documents during project initia-
tion. Model structure (step 3) and content tailoring features such as decision filter-
ing (described in step 5) solve this problem conceptually.

148 9 Validation of Research Results

9.2.2 Software Architecture Design Method Requirements

Table 26 shows how SOAD meets the architecture design method requirements
stated in Section 3.1.2 (when being combined with existing work):

Table 26. Software architecture design method requirements coverage

Requirement SOAD Assessment
R2-1: Refine general pur-
pose methods: Provide
multiple architectural
viewpoints

Topic groups for viewpoints can be
defined, but viewpoints are not a
genuine concept in our metamodel

Met with help of level for-
malization (step 3), met in
RADM for SOA content

R2-2: Be driven by quality
attributes and stakeholder
goals

Text-based decision driver attribute
in ADIssue in metamodel (step 2)

Partially met, quality attrib-
utes not modeled as genuine
concept in metamodel

R2-3: Support decomposi-
tion of complex design is-
sues (architectural analysis)

ADTopicGroup hierarchy, re-
finedBy and decomposesInto rela-
tions (step 3)

Met, rather fine grained de-
composition approach based
on the dependencies

R2-4: Support composition
of resolved design issues
(architectural synthesis)

Managed issue list, macro and mi-
cro process serve as SOA design
method (step 6)

Partially met, but decision
log is not a complete design
(other artifacts still required)

R2-5: Define relationships
between design issues and
leverage them in method
design

Rich dependency modeling capa-
bilities, several types of relations
defined in metamodel (steps 3 and
4) and used in managed issue list

Met, on issue and on alterna-
tive level

R2-6: Provide a managed
to do list

Concepts for managed issue list
(step 4, step 6)

Met, pre-populated with
SOA-specific design issues

R2-7: Support architecture
evaluation, feedback loops,
and backtracking

Basic support via review use case
for framework, report creation

Partially met, additional
concepts and integration into
existing methods required

Multiple viewpoints can be provided by defining topic group hierarchies (R2-
1). We decided to make the viewpoint support customizable rather than define a
single one in our metamodel because each architecture design method has its own
viewpoint scheme.52

The decision driver attribute allows capturing quality attributes (R2-2); how-
ever, they play a less central role in our metamodel than in other methods. This
does not mean that they are less important in our method; see discussion in Chap-
ter 10 for further rationale.

R2-3 to R2-7 are met or partially met; dedicated SOAD concepts provide re-
lated support as indicated in Table 26.

9.2.3 Requirements Specific to the Enterprise Application Genre

Table 27 assesses whether SOAD meets the method requirements specific to the
development and integration of enterprise applications (see Section 3.1.3):

52 The IEEE 1471 standard suggests viewing architectures from multiple viewpoints and

gives many examples, but does not norm any particular viewpoint scheme [IEEE07].

 9.2 Method Requirements Coverage 149

Table 27. EAD/EAI method requirements coverage

Requirement SOAD Assessment
R3-1: Refine architecture design
methods for EAD and EAI: Support
pattern-based architecture design

Patterns as conceptual alterna-
tives (steps 1 and 3)

Met, core concept and
benefit

R3-2: Align with analysis methods
(e.g., BPM, OOA), enterprise archi-
tecture frameworks, and maturity
models

Outcome instances in meta-
model, service interface in
tool, governance use case

Met conceptually, auto-
matic population imple-
mented in demonstrator
only (not released)

R3-3: Cover integration of legacy
systems and software packages

ADM can be used to analyze
and assess existing assets

No legacy modernization
decisions captured so far

R3-4: Support Model-Driven De-
velopment (MDD) concepts, use
industry models

Metamodel, refinement levels
separating concerns, decision
injection (steps 3 and 7)

Met, makes MDD trans-
formations configurable

R3-5: Align with contemporary
commercial EAD and EAI project
delivery and procurement practices

ADM can take governance
role and can have contractual
relevance; collaboration sys-
tem supports multiple users

Met conceptually, ad-
vanced use cases (such as
governance) only par-
tially validated

A key strength of SOAD is its usage of and alignment with patterns (R3-1). R3-
2 is addressed by the component-oriented tool architecture that provides a service
interface to BPM, OOAD, and other tools; the metamodel design takes the re-
quired alignment into account. Additional architectural knowledge must be har-
vested from projects to meet R3-3. The existing RADM for SOA content does not
focus on legacy modernization specifically; however, the SOAD modeling con-
cepts are generic enough so that decisions related to legacy system evolution can
be captured. R3-4 is met with the level organization from step 3 and the decision
enforcement concept from step 7. SOAD extends the usage of MDD and MDA
concepts such as separation of platform-independent from platform-specific de-
sign concerns and model transformations from design models to decision models.
In response to R3-5, the Web-centric collaboration system is designed to support
distributed teams. The governance use case of SOAD and the role and phase at-
tributes can be leveraged when coordinating the outsourcing and offshoring of de-
sign and development activities.

9.2.4 SOA-Specific Design Method Requirements

Moving from EAD and EAI method requirements to SOA design, Table 28 as-
sesses whether SOAD meets the requirements from Section 3.1.4:

Table 28. SOA design method requirements coverage

Requirement SOAD Assessment
R4-1: Refine previous three
categories: Support service
engineering process

RADM for SOA content covers all
phases of service lifecycle; main fo-
cus is on realization

Met in method and con-
tent; collaboration sys-
tem is SOA agnostic

R4-2: Define notation for
multiple service contract di-
mensions

Not in scope, already met by existing
assets such as UML profiles for soft-
ware services, SOMA, and SCA

Not applicable, met in
combination with other
assets

R4-3: Integrate SOA princi- Service consumer, provider, contract, Met

150 9 Validation of Research Results

Requirement SOAD Assessment
ples and patterns (Definitions
2.6 to 2.9)

ESB, service composition, service
registry issues in RADM for SOA

R4-4: Give advice regarding
granularity and other SOA-
specific design issues

Such issues exist in RADM for SOA,
see examples given in Chapter 5, 6,
and 7 (steps 1 to 6)

Met

R4-5: Cover service lifecycle
management, e.g., ownership
and versioning

Such issues exist in RADM for SOA
(not featured in this thesis)

Met

SOAD does not introduce a new service model artifact, service lifecycle model,
or business modeling and service identification techniques (R4-1, R4-2); it rather
complements and completes existing SOA design methods such as SDLC [Pap08]
and SOMA [AGA+08] with service realization advice (see discussion in Chapter
10 for detailed positioning). Architectural knowledge for all composite SOA pat-
terns introduced in Chapter 2 (Definitions 2.6 to 2.9) is present in the RADM for
SOA (R4-3). In addition to the examples used in Chapters 5, 6, and 7, the RADM
for SOA covers executive and requirements engineering decisions, logical and
physical architecture design, deployment, and governance (R4-4, R4-5).

9.2.5 Requirements for Architectural Knowledge Management

Table 29 assesses if and how SOAD framework and its tool support meet the
knowledge capturing and sharing requirements from Section 3.1.5:

Table 29. Architectural decision capturing and sharing requirements coverage

Requirement SOAD and Architectural Decision
Knowledge Wiki

Assessment

R5-1: Obtain required
knowledge

Importers provide basic support for obtaining
knowledge; decision identification technique

Met in basic form (only
one RADM at a time)

R5-2: Adopt identi-
fied knowledge

Create/read/update/delete, search features in
tool, decision filtering concept (step 5)

Met

R5-3: Delegate deci-
sions

Issue owner, outcome status in SOAD meta-
model and collaboration system (tool)

Met, basic lifecycle im-
plementation

R5-4: Involve com-
munity

Collaboration features, references in back-
ground reading attribute, acknowledgments

Met, loosely coupled
with core features

R5-5: Document deci-
sions

Decision log report generation capability in
collaboration system (tool)

Met, several report for-
matting options

R5-6: Align with
other models

Decision enforcement step 7 in framework,
service interface in collaboration system

Met, implemented as
demonstrator only

R5-7: Share gained
knowledge

Basic exporters in collaboration system, no
content cleansing, no feedback into RADM

Partially met, basic sup-
port in tool

Architectural Decision Knowledge Wiki, our application wiki for architectural
decision knowledge sharing (Chapter 8), has been designed specifically to support
these use cases. R5-1 and R5-7 could only be addressed in a basic form. For in-
stance, the current tool implementation provides a filtered export of ADMs from
ongoing or completed projects. Content cleansing is not supported, and the tool
does not provide any dedicated features to upgrade newly gained knowledge from
an ADM into a RADM.

 9.3 Industrial Case Studies 151

9.2.6 Overall Fit-Gap Assessment

We leveraged existing work from software architecture research, the pattern com-
munity, architectural knowledge management, and model-driven development to
solve the decision identification, decision modeling, model structuring, depend-
ency management, design method usage, decision enforcement, and collaboration
system problems from Chapter 3.

In summary, SOAD satisfies 25 of the 31 method requirements; another four
are partially met (e.g., conceptually, but not supported in tool). The service model-
ing notation requirement (R4-2) was out of scope; it is met when SOAD is com-
bined with existing methods or modeling languages, e.g., SOMA and UML. We
also did not capture issues dealing with legacy modernization (R3-3).

Evidence for this overall fit-gap assessment can not only be found in the self
assessment conducted in this section, but also in the industrial case studies.

9.3 Industrial Case Studies

We validated SOAD in five commercial projects, as well as several smaller indus-
trial cases. Table 30 introduces the case studies and indicates which SOAD steps
were validated in which case:

Table 30. Overview of industrial case studies

Case Study Project SOAD Usage Key Validation Results
Case study 1 SOA coaching Step 2, 6

RADM for SOA
Issues recur; metamodel and RADM for
SOA content practical

Case study 2 SOA design Step 2, 3, 6
RADM for SOA

Issues recur; metamodel and RADM for
SOA content practical

Case study 3
(action research)

Reference
architecture
creation

Step 1, 2, 3, 4, 5
RADM for SOA,
tool

Issues recur; metamodel and RADM for
SOA content practical; additional con-
cepts introduced to manage large models

Case study 4 SOA design
and develop-
ment

Step 2, 3, 5, 6
RADM for SOA
tool

Issues recur; concepts and RADM for
SOA content practical, tool requires us-
ability and installability improvements

Case study 5
(action research)

Web services
design

Step 2, 5, 6
RADM for SOA,
review technique

Issues recur; concepts and RADM for
SOA content practical, review technique
works and speeds up workshop prepara-
tion and execution

Other cases Miscellaneous All concepts Results from five case studies confirmed

Case study 1 was a knowledge transfer to an SOA consultant with five years IT
experience, providing SOA coaching services for the design and development
team in a German government institution.53 Case study 2 was SOA design for a
German multi-channel retailer, supporting project scoping and executive decision
making. The case study was conducted by an experienced IT architect (eight years

53 Some case study participants asked not to be referenced by name. Hence, we present the

case studies in this sanitized form.

152 9 Validation of Research Results

as architect, twelve years in the IT industry). The character of case studies 1 and 2
was similar; the scope of case study 2 was broader than that of case study 1.

Shortly after case studies 1 and 2 completed, case study 3 was initiated in a pro-
fessional information technology services firm, developing a world-wide SOA in-
frastructure reference architecture over two project stages each lasting one year.
The architects had up to 13 years of IT architect experience and were located in
Germany and Switzerland. We participated in the project via action research.

Case study 4 dealt with SOA projects in the professional services arm of a
software firm; two client projects and one internal project used SOAD. The client
projects were full lifecycle SOA development projects for two government clients
(in an East European and an Arabian country). The main user was an IT architect
with two years of experience. Case study 5 was Web services design in a tele-
communications company in a Benelux country. This was a professional services
engagement, which was in the process of developing a work breakdown structure
for a second phase of Web service design. We were involved in the project via ac-
tion research. The results of case studies 1 and 2 were already available when case
study 5 was conducted; case studies 3 and 4 were ongoing. Unlike the other case
studies, this case study comprised a technical review as well as design activities.

We also conducted SOA education workshops for a Northern European gov-
ernment agency and a major American bank. Another professional services firm
was involved. As an additional small case study, we also captured the architectural
decisions made during development of Architectural Decision Knowledge Wiki.

We present the five main case studies in detail now. The presented information
originates from the user survey, short oral interviews with the practitioners con-
ducted to clarify certain answers in some cases, as well as our own project and
workshop protocols. Architects involved in case studies 1, 2, and 4 reviewed our
representation of their projects to make sure they agree with observations made
and conclusions drawn from their SOAD usage reports.

Template. The following template is used to present the case studies:

Project scope and set up. This part of the case study template characterizes the
case by project phase, team size, SOA design problem to be solved, and project
responsibilities of the firm in which the case study was conducted.

Motivation to use SOAD. This part of the template summarizes the status quo of
the case before the architects decided to apply SOAD. It gives the rationale for the
decision to use SOAD, e.g., commenting on skill levels and pain points. It also
qualifies the SOAD use case applied (i.e., education, knowledge exchange, design
method, review technique, and governance instrument).

Actual SOAD usage. In this part, the SOAD concepts and thesis contributions are
investigated. Did the project team use the SOAD metamodel, RADM for SOA
content, and/or tool? Which RADM for SOA content was utilized?

Validation results and action points. This part reports on the projects status after
the SOAD usage: Was the project successful? Did the SOAD concepts work and

 9.3 Industrial Case Studies 153

provide value? Did the architects miss any features or did they encounter any in-
hibitors? Did any action points result, and if so, how were they followed up upon?

9.3.1 Case Study 1: Professional Services Firm, SOA Coaching

The most important result from this early case study was evidence for the central
hypothesis that architectural decisions recur, which is imperative for SOAD to
work. We could also verify that the issues and alternatives in the RADM for SOA
have an adequate level of detail and are useful during SOA design.

Project scope and set up. This case was a project for a social security agency of
the German government. Selected RADM for SOA content was used by a consult-
ant working for a professional services firm which had been contracted by the
agency to provide SOA coaching in an early design phase of the modernization of
a pension plan profile management system. Information from several backend sys-
tems had to be collected, consolidated, processed, and displayed. These systems
were technically heterogeneous for historical reasons.

A mixed team was put in place in the first quarter of 2007, with technical roles
being staffed from the government agency, the professional services firm, as well
as a database vendor and its partners.54

Motivation to use SOAD. The SOA coach was responsible for establishing archi-
tectural principles and directions for the mixed team, leveraging the broad experi-
ence of the professional services firm. The principles and directions were sup-
posed to be reviewed by the entire project team and approved by the agency. A list
of important design concerns for which guidance was needed had already been
compiled by the agency.

The SOA coach had five years experience working for a professional services
firm, mainly as a developer. He had hands-on experience with Web services tech-
nologies from previous projects, but not worked in lead architect role on these pro-
jects. The motivation to apply SOAD was to enable the coach to bring in a broader
set of experience when establishing the architectural principles and giving the re-
quested guidance. The traditional approach for skill and experience transfer would
have been to leverage a coaching or mentoring relation between community lead-
ers in the professional services firm and the SOA coach (and the other members of
the mixed team, in turn). SOAD was seen to add a systematic approach to knowl-
edge sharing and design (metamodel, issue catalog, decision drivers, pros and cons
of alternatives), ensuring a seamless and complete skill and experience transfer.
To facilitate architectural workshops efficiently was another motivation to use
SOAD.

Actual SOAD usage. SOAD was used as an education and knowledge transfer in-
strument, and to frame the design work (steps 2 and 6). The RADM for SOA was

54 The database vendor was a different company than the software vendor involved in case

study 4 (presented in Section 9.3.4).

154 9 Validation of Research Results

used to prepare architectural workshops; translated excerpts became part of the
project deliverables.

Validation results and action points. From a research perspective, the project
provided an early opportunity to validate the key hypothesis that architectural de-
cisions recur if the application genre and architectural style are known, that the
SOAD metamodel with its issue-level decision drivers and explicitly modeled al-
ternatives is an adequate way of representing such knowledge, and that the already
modeled issues are understandable and useful. The initial list of issues compiled
by the agency had 15 entries. For 13 of these issues (e.g., use PLAIN OLD JAVA
OBJECTS or ENTERPRISE JAVABEANS as a JAVA SERVICE PROVIDER TYPE?), de-
tailed advice could be found in the RADM for SOA, which at that time had about
100 entries. The effort required to create an SOA principles deliverable decreased
from eight estimated to five actual person days. For instance, the architect on that
project reused the issue JAVA SERVICE PROVIDER TYPE. The decision drivers in the
RADM for SOA, particularly “transactionality needs and ease of deployment”,
matched with the project requirements, so that the SOAD recommendation to “use
ENTERPRISE JAVABEANS if leveraging the declarative EJB transaction model is
adequate, and to use PLAIN OLD JAVA OBJECTS otherwise”, was directly applica-
ble. The architect also reported that he found several issues in the RADM for SOA
that he had not identified yet, but which turned out to be required: for instance, the
decision to use a SERVICE CATEGORIZATION SCHEME to distinguish technical util-
ity services and business services became a key element of the SOA design
[ZGK+07].

The SOA coach reported a significant productivity increase and quality im-
provements. External feedback for his work was mostly positive, with some criti-
cism coming from the database vendor. The critique turned out to be a political is-
sue; one of the technical recommendations was in conflict with the Web service
middleware design of that vendor. The critique did not pertain to the SOAD ap-
proach, but one particular issue in the RADM for SOA.

The main action point for further development of SOAD was to add the two
missing issues to the RADM for SOA, following the method for content harvest-
ing which we present in Appendix A. Another conclusion was that a translation of
content from English to other languages (in this case German) is required to make
the asset directly usable in project deliverables. Clear rules have to be established
regarding intellectual property rights; users can be granted a non-exclusive right to
use the RADM for SOA content, but can not expect to become owners of such
material via a professional services engagement.55

9.3.2 Case Study 2: Professional Services Firm, SOA Design

On this project, the RADM for SOA content was reviewed in depth and used to
make recommendations to the client and to prepare project deliverables. The two

55 Legal terms and conditions may request such copyright ownership transfer for all project

deliverables including reusable assets that are brought into the project.

 9.3 Industrial Case Studies 155

key validation results were the confirmation that architectural decisions required
(issues) recur and the appropriateness of the SOAD metamodel presented in Chap-
ter 6 (e.g., attributes of issues and alternatives, level and layer structure).

Project scope and set up. This case concerned the project initiation and solution
outline phase of an enterprise-wide SOA redesign of the existing enterprise appli-
cations at a German multi-channel retailer. Having been convinced about benefits
of SOA such as flexible (re-)configuration of application components and reuse of
services, the retailer approached the professional services firm (the same as that
involved in case 1) and asked for a three-week SOA workshop to define a road-
map for SOA adoption, which was supposed to be organized in multiple stages
(rationale: cost control and risk management). The roadmap therefore had to sug-
gest several design options for high priority design issues.

Motivation to use SOAD. High client expectations, time pressure, and insuffi-
cient experience with the SOA style (despite eight years experience as IT architect
at that time and twelve in IT projects in several firms) prompted the architect of
the professional services firm to look for a reusable asset. Being familiar with the
notion of architectural decisions, he requested access to the RADM for SOA,
which at that time (April 2007) had grown to 268 decisions.

Actual SOAD usage. In this case, the lead architect used the SOAD content (in
HTML form) to structure the architecture design activities, to educate the team on
SOA, and, later on, to present the project results to the client. This affected the
project initiation phase (scoping); the expected benefit was that the existing
RADM content could give the practitioner a fast start into the design work (he was
facing a tight project schedule). The recommendations in the RADM for SOA,
e.g., about layering and a stepwise SOA adoption, were used during decision mak-
ing.

The lead architect reviewed 46 decisions in depth and provided detailed feed-
back. This gave us the opportunity to validate SOAD steps 2 and 3, as well a sub-
set of the step 6 processes.

Validation results and action points. The desired reuse effect occurred; the pro-
ject orientation phase indeed could be accelerated. The lead architect marked 28
out of 46 reviewed issues as relevant (note that this is a different validation ele-
ment than that provided in case 1; in case 1, a list of issues was already available).
The feedback also reported a checklist (“safety net”) effect. The SOAD meta-
model was confirmed to be appropriate; the representation of issues and alterna-
tives was assessed to be adequate in terms of depth and breadth. Many detailed
comments concerned the level and topic group positioning of individual issues.

The architect was skeptic whether SOAD can serve as a full design method
(step 6), as there will always be project-specific issues. Technology evolves rather
rapidly, which makes it hard to keep the model content up to date. However,
SOAD was assessed to be a suitable technique supporting existing design meth-
ods. The architect also did not see MDD decision injection (step 7) to be immedi-
ately practicable. SOA was reported not to be mature and stable enough to justify
an investment in MDD, which is a prerequisite for our decision injection concept.

156 9 Validation of Research Results

The architect proposed to use the SOAD approach not just on individual pro-
jects, but also for an SOA reference architecture asset to be released globally.

One main action point from this case study was to improve the content to ad-
dress the comments and concerns from the in-depth review. It was required to per-
form many editorial changes, to refactor and reposition some issues, and to add
missing ones.

Secondly, the RADM contains some managerial decisions, e.g., about project
scoping and team setup. While such issues can be documented in the SOAD
metamodel, using the term architectural decision for them mislead the architect
and caused terminology discussions. We introduced the concept of decision types
to mitigate this problem.

A third important point was to make the prerequisites for SOAD clear, such as
the existence of an SOA reference architecture or pattern language that defines ar-
chitectural layers, service types, and possible values of the scope attribute. Such
prerequisites must be easy to relate to and generally available to the target audi-
ence. Getting started with SOAD must be easy, e.g., a matter of minutes. To be
self-containing without reinventing the wheel and stating the obvious, SOAD must
provide an issue summary and links to detailed information, e.g., text books.
These rather practical concerns resemble general lesson learned for knowledge
management and asset creation. They are key factors to ensure practical applica-
bility.

9.3.3 Case Study 3: Professional Services Firm, Development of an
SOA Infrastructure Reference Architecture

This project used SOAD concepts and RADM for SOA content most intensively
(all steps). It allowed us to create and validate the RADM for SOA asset. Many of
the SOAD concepts such as identification rules, dependency relations, and deci-
sion filtering originate from practitioner feedback gained on this project.

Project scope and setup. In March 2007, another line of business in the profes-
sional services firm56 initiated the development of an SOA infrastructure reference
architecture. An architectural decisions artifact was defined as one of the key ar-
chitecture design artifacts besides a logical component model and a physical op-
erational model. The technical project sponsor and the SOA lead architect (17
years of IT industry experience, 13 of which in architecture roles) decided to apply
SOAD concepts to model the content of this architectural decisions artifact.

The first project phase lasted one year. There were four team members working
part time on this firm-internal project. We conducted action research, joining the
project team and taking ownership of the architectural decisions artifact.

Motivation to use SOAD. A model-driven approach leveraging UML was fol-
lowed for all other artifacts. Hence, the decision modeling approach of SOAD was

56 This line of business focuses on deployment, integration, maintenance, and hosting ser-

vices, the first one on business consulting and application development services.

 9.3 Industrial Case Studies 157

seen to be superior to text template-based decision capturing. Filtered report gen-
eration was an important requirement (easing reviews and reference architecture
customization). Finally, an advantage of SOAD was that it documents the deci-
sions required during adoption of the reference architecture (issues). Previous ref-
erence architectures only captured decisions made during reference architecture
development (outcomes), which was seen as an inhibitor for their adoption.

Actual SOAD usage. We performed the knowledge engineering and created the
architectural decisions artifacts in Architects’ Workbench [ABK+06] and Archi-
tectural Decision Knowledge Wiki (see Chapter 8); the RIHA method (described
in Appendix A) was developed to process the large number of incoming architec-
tural decisions artifacts from more than 30 projects systematically. A 320-issue
decision model was compiled in 2007; all content featured in Chapter 4 is con-
tained in that model. Every three months, there was an intermediate milestone.
ESB integration and security-related decisions were particular focus areas. Sys-
tems management was investigated as well. The SOA lead architect reviewed 160
issues in depth and made the content available to an extended set of reviewers in
the professional services firm. The RADM for SOA content syndication continued
throughout 2008 (see discussion in Chapter 10 for evolution of the content).

Validation results and action points. This case again made evident that architec-
tural decisions recur. Another SOA reference architecture team had already cre-
ated a draft architectural decisions artifact, which we received in January 2007. It
contained 50 entries, some as early drafts. 42 of these issues were already covered
by our RADM for SOA which at that time had about 100 entries.

Depth, breadth, and quality of RADM for SOA content were appreciated by the
reviewers. The decision to create a standalone tool was criticized. Integrations
with UML and requirements management tools were requested to improve trace-
ability and usability and to reduce installation and learning efforts.

One early action point resulting from this case study was to explain the level
and layer concepts (step 3) better. To do so, we added the topic group hierarchy to
the architectural decisions reports generated by Architectural Decision Knowledge
Wiki and improved the documentation of the tool. To make decision type and po-
sition in the level hierarchy clear in the issue name, we defined naming conven-
tions, e.g., using the suffix PATTERN for pattern selection decisions. We also cre-
ated class material, e.g., a three-hour lecture accompanied by hands-on exercises.

Early users appreciated the knowledge captured in every single issue, but
struggled to stay orientated when being confronted with several hundred such is-
sues. This was the case despite already existing concepts such as the scope, phase,
and role attributes as well as the topic group hierarchy. In response, we provided
additional search, filter, and export capabilities for ease of orientation and con-
sumption. Finally, we added the entry point concept (Section 6.3).

The project continued throughout 2008. The reference architecture was released
successfully. A broader SOA practitioner community was coached via a Web con-
ference (SOA infrastructure community of practice, 25 attendees) and a teach-the-
teachers class. The asset was announced commercially after business and technical
executives had become convinced of the SOAD vision and value. A rollout to ad-

158 9 Validation of Research Results

ditional, non-SOA application domains such as archiving solutions and systems
management has been initiated.

9.3.4 Case Study 4: Software Vendor, SOA Design for Clients

In this case study, even more evidence could be gained that design issues recur, as
well as detailed feedback about RADM content and writing style. Several practical
inhibitors that must be overcome became apparent. The collaboration system, Ar-
chitectural Decision Knowledge Wiki, was deployed in a production environment.

Project scope and set up. This case study was conducted by an advanced tech-
nologies group in a software company with middleware focus (process engines,
message brokers) in the second half of 2007. This group performs early adoption
engagements at clients. These engagements range from short-term, often unbilled
proof-of-concept projects to full-scope, fixed-price projects running for several
years. Hence, there is a wide range of methods applied; decision making and cap-
turing rigor varies. Two teams in that group decided to apply SOAD concepts,
content, and tool in three projects:

1. SOA project at a government agency in Eastern Europe.
2. SOA project for a municipality in an Arabian country.
3. Company-internal design and implementation of an end-to-end SOA ref-

erence solution for the telecommunications industry. More than 20 team
members were expected. The project was foreseen to run for several
years and to be staffed with a distributed team with members in Canada,
France, Israel, Great Britain, and the USA. Two architects evaluated Ar-
chitectural Decision Knowledge Wiki and decided for it.

Motivation to use SOAD. In projects 1 and 2, the motivation of the architects was
to benefit from already gained experience, to train and govern project teams in
emerging countries, and to follow a more rigorous decision making approach in a
multi-company, -country, and -culture setup. The primary SOAD user had two
years experience as an architect and eight years IT industry experience.

The architects in project 3 were less interested in reusable content and modeling
concepts, but looking for a knowledge creation and sharing platform, and guid-
ance regarding decision capturing. A wiki with an underlying relational database
was seen as the right solution for the international team.

Actual SOAD usage. The first two projects had the same lead architect and SOA
subject matter expert; he used the RADM for SOA content intensively. Using the
collaboration system would have required offline capabilities, which were not
available in the prototype we had developed. The third project mainly used the
collaboration system; the RADM for SOA supplied examples that were used dur-
ing team enablement (which was conducted as a one hour telephone conference).

Project 1 used several SOAD issues and alternatives directly on the engage-
ment, including those about system transaction management patterns presented in
Sections 6.1 and 6.2. Project 2 also started to use RADM for SOA content, as well

 9.3 Industrial Case Studies 159

as knowledge from project 1; however, due to a negative team-internal review (see
below), the reuse was not as significant as in the first project. Project-specific de-
cision model content was developed. Project 3 used a shared, hosted instance of
Architectural Decision Knowledge Wiki and begun to capture decisions about
backend integration (e.g., access to software packages).

The three projects in this case gave us the opportunity to validate steps 2 and 3
(in full scope), as well as 5 and 6 (in basic form).

Validation results and action points. Decision capturing advice, metamodel, and
organization of content were appreciated on all three projects.

Projects 1 and 2 successfully used RADM for SOA content (architectural deci-
sion knowledge). Project 3 used the tool initially, but struggled with non-
functional issues (usability, response times). The main validation result was the
insight that while the tool promised to be valuable, its prototypical implementation
was not ready for production use.

The main action point from projects 1 and 2 was to clarify scope and objective
of the content (what the RADM for SOA should and should not be used for): No
matter how well the content is documented and how sound the given architectural
advice is, it will always be required to adopt it for the project context (i.e., re-
quirements, architectural principles, and decisions already made). It is not suffi-
cient to transfer generic recommendations into outcome instances and state “this is
the SOAD recommendation” in the justification attribute. Another action point
was to add an editorial status as an attribute in the metamodel to indicate which
issues and alternatives are not yet ready for consumption on industry projects.57

Another conclusion was to make clearer that the level and layer structure is
configurable and to show how to customize the collaboration system. A final les-
son learned was that in a commercial version of a RADM, the content has to have
publication quality; professional editing is required to achieve such quality.

9.3.5 Case Study 5: Telecommunications Firm, Web Service Design

This case study allowed us to investigate several of the SOAD use cases, e.g.,
education, design method usage (steps 2, 5, and 6), and review technique. It also
reconfirmed many of the validation results from the previous case studies.

Project scope and set up. This case study was conducted at a mobile phone ser-
vice provider in a Benelux country. It is the second case of action research: We
joined the consultants working for professional services firm 1 (the same firm as
in case studies 1 and 2) for two workshops in the beginning of a second phase of
Web services design (conducted in the second half of 2007). The first phase had
been completed; hence, the objective was to compare the already existing design
with the industry “best practices” captured in the RADM for SOA and to define a
work breakdown structure for the second project phase.

57 Apart from that change, the metamodel did not have to be modified on any case study.

160 9 Validation of Research Results

Motivation to use SOAD. Demonstrating thought leadership and supplementing
general project management techniques with SOA design-specific elements were
the drivers for SOAD usage. The client and the consultant team also welcomed the
opportunity for best practices sharing and receiving a formal technical quality as-
surance review in a short timeframe. The project had a limited budget; therefore,
efficient use of resources was a seen as a key benefit of SOAD.

Actual SOAD usage. In two on-site workshops and following technical review
activities conducted remotely, SOAD was used as an education tool, design
method, and review instrument. A work breakdown structure for the Web service
design activities was created, drawing upon experience already gained and cap-
tured in the RADM for SOA. The relevant decisions in the RADM for SOA dealt
with service contract design, granularity issues, as well as Java Web service pro-
vider design, e.g., parameter validation, provider type, and transactionality.

Our involvement in the case was limited due to budget and scheduling con-
straints: Two one day workshops were conducted, as well as two document walk-
throughs with following telephone conferences to present findings and recom-
mendations. The main focus was on RADM for SOA reuse and, from a method
perspective, on creating a work breakdown structure for the design activities.

Validation results and action points. The project manager and six IT architects
and IT specialists from the professional services company participated in both
workshops. On site the feedback was very positive: The workshop was considered
a success, i.e., prepared and conducted efficiently. The recommendations about
service granularity and other issues in the RADM for SOA were welcomed. The
project manager appreciated the notion of open issues as an opportunity to clearly
communicate client obligations such as defining an enterprise data model.

Being involved for a limited amount of time was sufficient for our validation
purposes. As the tool was not self explaining yet, continued interactions with the
team would have been required to ensure a sustainable use (e.g., active project
participation after completion of the on-site workshops). Our main action point
was to invest in the accessibility of the RADM for SOA content and to produce
supporting material (e.g., tutorials, packaging, and getting started tips); the SOAD
concepts and RADM for SOA content did not require any further changes. Some
SOA knowledge gained on this project (role of enterprise data model, service
identification in business use cases) could be fed back into the RADM for SOA.

9.3.6 Other Cases

We conducted several additional education, technical review, and method coach-
ing activities for various companies in America and Europe as action research.

An SOA and Web services education event, also serving as an informal design
review, was held for a Norwegian government agency in September 2007. The
main focus was to share best practices regarding general SOA design and service
composition issues. Feedback was obtained in writing both from the government
agency and a professional services firm involved (a competitor of that involved in

 9.3 Industrial Case Studies 161

cases 1, 2, and 3) and from a software vendor (the same as in case study 4, but dif-
ferent from that in case study 1). We could validate SOAD steps 1, 2, and 3 here.

Upon invitation from a large American bank, we presented on SOA best prac-
tices at an education event with focus on industry reference models (October
2007). There are several connections between industry reference models and ar-
chitectural decisions: Reference models standardize a problem domain and/or so-
lution space; hence, many reference model selection and adoption decisions recur,
and reference model content can provide alternatives on the conceptual and on the
technology level. Steps 1, 2, and 3 were validated at this education event.

We also captured decisions made during design and implementation of Archi-
tectural Decision Knowledge Wiki in our own metamodel and tool.

The feedback from these small cases resembled that of the larger case studies
presented in the previous sections. Applicability of SOAD concepts, RADM for
SOA content, and tool was confirmed in several companies and countries.

9.3.7 Survey and Summary

SOAD users on the five large industry case studies presented in Sections 9.3.1 to
 9.3.5 as well as the SOAD tool developers that used SOAD to capture their design
decisions were asked to fill out a questionnaire. The objective of this survey was
to understand who the users are, why they decided to use SOAD (rationale),
whether SOAD concepts could successfully be applied and what has to be im-
proved to make framework, RADM for SOA, and tool usable on a broader scale.

The survey first enquired about demographics, existing practices, and project
characteristics (e.g., job role/profession, IT architecture experience, typical pro-
jects, and current decision capturing and sharing practices). Questions about prac-
tical value and usability of SOAD followed. This second part was structured by
contribution: SOAD framework step, RADM for SOA, and tool (Architectural
Decision Knowledge Wiki). At least one question about each validated SOAD
step and concept was asked. Survey participants were given the opportunity to as-
sess SOAD generally, both retrospectively (as used throughout the project) and
forward looking. Intending not to overburden busy practitioners, but also to be
able to analyze the answers systematically, we decided to offer a choice between
highly decisive yes/no and multiple choice questions on the one hand and open
questions with free text forms for answers on the other hand. The justification is
ease of processing without losing precision: The yes/no questions are simple to
answer; the open questions give participants the opportunity to comment on more
complex aspects, articulate concerns and request additional features. The ques-
tionnaire was tested with two early adopters and improved based on their feedback
about clarity and processing time.

 We only asked architects to fill out the survey that used concepts, content,
and/or tool on actual projects. A 100% return rate could be achieved, and a total of
eight responses. Three of the eight responses originate from SOAD team members
due to the action research conducted and the SOAD usage during the tool design.

162 9 Validation of Research Results

The detailed information from the survey was used to fill out the template for the
cases (see Sections 9.3.1 to 9.3.5).

Table 31 summarizes the survey results:

Table 31. Overview of SOAD framework user survey results

Question Summary of Responses Comments
Role IT architect, consultant, developer,

middleware product expert
Diverse for role, experience; few coun-
tries; only one company affiliation

Experience From 0 to 13 years as architect Broad spectrum
Project type Several different engagement types

(consulting, design, development)
Three long running projects, several
small services engagements

Existing prac-
tices

Mostly text-based decision capturing
and sharing, following a method

Participants indicated to be rather rig-
orous and active users of a method

SOAD frame-
work steps

All steps practical and useful except
for SOAD step 7 (not a SOAD, but
an MDD issue)

Difference between issues and out-
comes not clear initially; SOA domain
not seen to be stable and mature
enough for application of MDD

RADM for
SOA content

Very useful; unclear skills prerequi-
sites and immature editorial quality
of some issues at early stages

Some misunderstandings originating
from our relaxed interpretation of term
architectural decision

Collaboration
system (tool)

Capability: good; practicability: only
for small team or single user

Negative comments affected imple-
mentation limitations, not concepts

General com-
ments

Value of model and content appreci-
ated; no consensus whether tool
should be integrated with other ones

Assumptions and prerequisites to be
clarified, pitfalls to be avoided (intel-
lectual property rights, languages)

Summary Value and usability of solution
largely proven in practice

More requirements identified, as well
as non-functional adoption challenges

The practitioners on all case study projects confirmed the SOAD problem
statement (see Chapter 3), and appreciated the framework steps and the RADM
for SOA content they worked with. Architectural decisions such as those compiled
in the RADM for SOA (see Chapters 4 and 5) recur indeed.

Measurable benefits could be observed in one project situation, in case study 1;
case studies 2, 4, and 5 also reported project acceleration and decision making
quality improvements. Case study 3 would not have been feasible without SOAD
due to the vast amount of knowledge to be processed. The large number of issues
to be managed in the reference architecture called for a systematic harvesting ap-
proach, the metamodel extensions introduced in Chapter 6, the decision filtering
concept from Chapter 7, and the tool support presented in Chapter 8. Case study 4
demonstrated that the RADM for SOA content formatted according to the SOAD
metamodel can even become part of the project deliverables. Case study 5 con-
firmed that SOAD can be used as a review technique, while the other case studies
focused on usage of SOAD during SOA design (including education and knowl-
edge exchange).

Due to these informative validation results, we did not conduct further case
studies.

 9.4 Additional Industrial Validation Activities 163

9.4 Additional Industrial Validation Activities

Practical value and usability of SOAD also became evident in several self experi-
ments, in workshops with industry participation, and in teaching activities.

Self experiments. The decision-centric design style presented in this thesis origi-
nates from our architectural decision making practices on industry projects 1999
to 2005 [ZMC+04, ZDG+05]. To validate the SOAD framework on these projects,
we revisited them and applied SOAD to one of them retrospectively, leveraging
the RADM for SOA, which at that time comprised 130 issues. In a controlled self
experiment, we replayed the architectural decision making and capturing. The sole
decision base was the context and high-level architecture presented in [ZMC+04].
Two hours were sufficient to capture 120 outcomes because the recurring issues
had already been documented in the RADM for SOA. In the walkthrough, the cor-
rect alternative was chosen and a one-sentence justification given, referring to ac-
tual project requirements. The validated SOAD steps were 2, 3, and 4 (metamodel
usage), as well as 6 (macro and micro process) [ZZG+08].

In a second self experiment, we revisited the 26 Web services decisions from a
text book we had co-authored [ZTP03], modeling them with the objective to re-
view and update them if needed.58 Originally, they had been captured in text only
(e.g., in form of bulleted lists). This experiment showed that modeling reusable
decisions previously captured in free form is feasible and improves the quality of
the knowledge. We detected several missing attributes, could perform consistency
checks, and leveraged the SOAD levels to improve the structure of the knowledge.
Service registry decisions turned out to be a topic group for which the book con-
tent was incomplete and had to be updated. The issues in this topic group dealt
with the selection of PROVIDER LOOKUP TIME, SERVICE REGISTRY TECHNOLOGY,
and UDDI REGISTRY ASSET; however, detailed pattern adoption decisions, tech-
nology profiling decisions, and asset configuration decisions were missing. We
could also verify that the 26 issues compiled in 2003 were still valid even if tech-
nology had evolved (in several cases, new technology level alternatives had to be
added and obsolete vendor asset level alternatives had to be replaced). This is a
strong indicator that the decision reuse effect is sustainable.

In a third self experiment, we captured selected knowledge from popular pat-
terns books such as [Fow03, BHR+96, BHS07, HW04] in SOAD to validate the
decision identification technique described as step 1. This turned out to be feasi-
ble, with good overlap with already existing content (e.g., logical layering, session
management, and concurrency), but also new insight (e.g., business patterns, data
access patterns, and presentation layer design). Cheat sheets from inside book
covers and pattern language diagrams were helpful to identify and model decision
dependencies. The formatting of the knowledge according to the SOAD meta-
model added structure to the knowledge, e.g., cross-language dependencies.

58 The book had been used on an industry project in 2004 to follow a decision-centric, me-

thodical approach to Web services design (we were not involved in this project).

164 9 Validation of Research Results

Industry workshops and invited talks. At an early project stage, we hosted two
open space sessions [Fow05] at an invitation-only “European Software Architects
Workshop” (Arosa, Switzerland, January 2007). Participation at this event was di-
verse, including many business partners of an operating system and personal pro-
ductivity software vendor, as well as independent, self-employed consultants.
About 30 attendees participated in the two sessions. None of them had the same
company affiliation as the thesis author. The sessions confirmed the problem
statement, the state of the practice, and the solutions developed until that point in
time, e.g., decision identification, making, and enforcement steps and SOAD
metamodel [ZGK+07].

SOAD was presented to two enterprise architects from a Northern European oil
company in February 2007 and September 2007. This thought exchange led to the
identification of the governance use case. Architectural Decision Knowledge Wiki
was evaluated to be promising and suitable to facilitate a knowledge exchange.

We presented how SOAD can be used as a company-wide knowledge exchange
asset at the IIR conference “Enterprise Architecture Management” (Wiesbaden,
Germany, May 2008). At the conference we discussed SOAD with enterprise ar-
chitects from a large logistics carrier, a bank, and a chemical company, as well as
representatives of enterprise architecture management tool vendors. The discus-
sions confirmed our assessments of the state of the practice (see Chapters 5 to 8).

Interactions with more than 100 practicing architects. To verify that the SOAD
concepts are not limited to SOA as the primary architectural style, we cooperated
with a product architect and a consultant in a software firm who specialize on in-
formation management. They documented their expertise with information inte-
gration and data-centric architectures with SOAD in September 2006. They appre-
ciated the refinement level and the dependency management concepts. The study
results were presented at a company-internal conference and in a workshop paper
[ZKL07]. This helped to validate SOAD steps 1, 2, and 3 at an early stage.

In January 2007, SOAD was presented to twelve members of a regional com-
munity of J(2)EE architects. The architects in the group specialize on application
server technologies, component-based development, and message-based integra-
tion. The session confirmed the value of SOAD. One concrete suggestion was to
model decision drivers as separate entity in the SOAD metamodel. This change
was not implemented due to backward compatibility and flexibility concerns.

A half day workshop was requested by six practicing architects of a profes-
sional services firm in April 2008; the leader of an international SOA center of ex-
cellence also participated. The architects assessed the metamodel to be well de-
signed and nearly complete. It was suggested to capture the organizational reach
of a decision (not just its design model scope) as an issue attribute and to add a di-
rect link to actual requirements to the outcome entity. The value of a collaboration
system (tool) for decision capturing and sharing was acknowledged; the broad and
deep scope of SOAD appreciated. All use cases implemented in Architectural De-
cision Knowledge Wiki were assessed to be valid. Several additional use cases
were identified, for instance, clustering related decisions for joint processing and
the ability to compare the architectural decisions made on different projects.

 9.5 Summary of Validation Results 165

Teaching. We used SOAD and RADM for SOA for teaching at public confer-
ences, guest lectures at universities, and company-internal events such as
OOPSLA tutorials 2005 to 2008, ECOWS 2006, and ECOWS 2007. Each event
had between 10 and 45 students and software engineers attending; overall, more
than 120 practitioners were educated with the help of SOAD project results. For
instance, we educated 24 practitioners at a four-hour lab at a company-internal
technical leadership exchange event. They were presented four lectures accompa-
nied by hands-on exercises using Architectural Decision Knowledge Wiki. Later
on, we presented the material in a one hour Web conference (30 attendees).

At these events, we confronted the attendees with our research questions, e.g.,
enquiring whether they agree that issues recur, and whether reuse is desirable and
possible. The validation results resembled those reported on the case studies.

9.5 Summary of Validation Results

We structure the summary of the validation results by SOAD framework steps and
concepts, RADM for SOA content, and collaboration system (tool).

Framework steps and concepts. The fundamental hypothesis that architectural
decisions recur if the same architectural style is employed on multiple projects in
an application genre was confirmed multiple times (step 1). We interacted with
several hundred architects. Only one of them disagreed openly, which turned out
to be misunderstanding: We do not claim that the decision outcome always is the
same; only the issue, expressing the need for a decision and the related back-
ground information (e.g. alternatives, decision drivers) has to recur. We could
demonstrate this in the industrial case studies.

The attributes in the metamodel (step 2) were rated well. They were seen to be
understandable intuitively, conveying useful information, and giving enough in-
formation about the aspects of a decision that matter during decision making. A
few additional attributes were suggested (see Section 9.3 and Section 9.4). While
the concept of refinement levels (step 3) was acknowledged, the levels in the
RADM for SOA were not seen to be the only required structuring means. Other
content organization schemes such as panes as defined by The Open Group Archi-
tecture Framework (TOGAF) [OG07] were suggested, which is supported by our
formalization. Decision dependency management (steps 3 and 4) was seen as an
important differentiator of decision modeling in comparison to text-based decision
capturing.

Regarding tailoring (step 5) and design method usage (step 6), practitioners
pointed out that many methods exist already and that any additional method must
be aligned with these. SOAD was seen to take a method support role (i.e., as a
technique for decision making embedded in a general purpose method), rather
than a standalone method. Decision filtering was seen to be useful. A standardiza-
tion of the decision processing order was considered to be difficult.

166 9 Validation of Research Results

The MDD integration (step 7) was not received well. The skeptical reaction
was a general MDD critique not caused by our decision injection concept. The
immaturity of SOA was given as an explanation (see case study 2).

After the validation completed, practitioners started to apply SOAD to technical
domains such as software package customization and integration, security, sys-
tems management, as well as server and storage infrastructure design.

RADM for SOA content. The selection of content and level of detail on which
individual issues are represented in the RADM for SOA (steps 2 to 4) was appre-
ciated and seen as appropriate (i.e., not obvious, relevant on SOA industry pro-
jects, and documented in an understandable way). Acceleration of decision identi-
fication and improved decision making quality were reported in the case studies.

Several times users commented that some issues present in the RADM for SOA
do not qualify as architectural decisions according to their interpretation of the
term. Examples are executive decisions dealing with project initiation and enter-
prise architecture and issues dealing with architectural principles. We made a con-
scious decision to stretch the usage of the term architectural decision to the limits
of its definition given in Chapter 1 because senior architects often are confronted
with a wide range of decisions. Decision types (step 1), model structure (step 3),
and decision filtering (step 5) were introduced to avoid misunderstandings.

Some confusion regarding proactive versus retrospective decision modeling oc-
curred; one user simply copied the issue descriptions and the recommendation at-
tribute in the RADM for SOA to outcomes in the client deliverable (an ADM).
This caused negative comments from a senior architect in a team-internal techni-
cal quality assurance review. We can conclude that the writing style (clarity, ob-
jectiveness) has a significant impact on RADM adoption. User expectations must
be managed; SOAD is not designed to make architectural thinking obsolete.

Collaboration system (tool). The user feedback regarding the value of Architec-
tural Decision Knowledge Wiki was encouraging: users appreciated that all know-
ledge required during architectural decision making can be conveniently located in
a single place and that the tool comes with a set of initial content. The realized use
cases were seen to be meeting practitioner wants and needs. The HTML presenta-
tion of issues, alternatives, and outcomes on a single page (with separate tabs for
decision investigation, making, and enforcement) received positive reactions.
However, users reported that they found it rather difficult to orient themselves and
to navigate in large models. In early versions, the static topic group hierarchy was
the only order defined; the dependency relations defined in Section 6.3 were not
fully leveraged at that point. Additional visual elements were requested, as well as
additional views and a tighter integration with other tools.

SOAD framework, Reusable Architectural Decision Model (RADM) for SOA,
and Architectural Decision Knowledge Wiki were validated successfully in indus-
trial case studies. Two of these case studies involved action research. Additional
validation forms were self experiments, teaching, industry workshops, and imple-

mentation of advanced concepts.

10 Discussion of Research Approach and
Results

In this chapter, we reflect upon the research challenges we encountered and the re-
search approach we selected to overcome these challenges (Section 10.1). Inter-
preting the validation results from Chapter 9, we discuss applicability criteria,
benefits, and liabilities of our SOA Decision Modeling (SOAD) framework, Reus-
able Architectural Decision Model (RADM) for SOA, and their tool support (Sec-
tion 10.2). We also compare SOAD with existing work and outline how the
SOAD concepts can be supported in commercial tools (Section 10.3). The chapter
closes with a short summary (Section 10.4).

10.1 Research Challenges, Approach, and Evolution of
Results

In this section, we discuss the conceptual challenges we encountered, our research
approach, and evolution of SOAD concepts, RADM for SOA content, and tool.

10.1.1 Challenges

The creation of a decision-centric SOA design method is an ambitious undertak-
ing. The requirements and research problems from Chapter 3 scoped the required
design work from a functional and non-functional perspective. Many additional
challenges had to be overcome, including scoping and terminology issues, finding
the right level of model depth and breadth, domain complexity and change dynam-
ics, practical adoption challenges, as well as validation challenges.

Scoping and terminology issues. IT and software engineering still are emerging
and relatively immature fields. IT in general and SOA in particular suffer from a
terminology ambiguity and overload problem: Many vocabularies exist, which are
neither well defined nor aligned with each other. At present, there is no commonly
agreed reference model for SOA although standardization has been attempted by
W3C [W3C04], OASIS [OAS06], and Open Group [OG]. Hence, it is unclear
which SOA concepts to consider and how to name issues that have been identi-
fied. Such common understanding simplifies RADM scoping and population; it
also helps users to locate relevant model content during decision filtering.

168 10 Discussion of Research Approach and Results

To overcome these challenges, we documented SOA patterns ourselves and
adopted the layering scheme from one reference architecture [Ars04]. We devel-
oped criteria for inclusion of issues in the RADM. These decision capturing guide-
lines are part of the decision identification technique described as SOAD step 1.

Finding an adequate model depth and breadth. Another challenge is to find the
right depth and breadth for the captured knowledge. If, on the one hand, the cap-
tured knowledge is rather generic, it may be considered to be common sense and
not delivering enough value. If only a few issues are present, prospective users
might not find any relevant advice. If, on the other hand, the RADM content is
very specific, the reuse effect might not be strong enough to justify the creation of
a reusable asset because the captured knowledge is not applicable to multiple pro-
jects. If many issues are present, users might struggle to find the relevant ones.

To overcome this challenge, we developed the step 1 identification rules and
step 2 decision capturing template, as well as supplemental decision capturing
guidelines that complement the metamodel. A subset of the guidelines is presented
in the form of heuristics in Chapter 6 and in Appendix A.

Domain complexity and change dynamics. The enterprise application genre is
complex and faces a large amount of change. Business models and IT strategies
are modified over time. The relevant technical background information also keeps
on changing. For instance, new alternatives arise and further experience with tech-
nology and products is gained continuously. Hundreds, if not thousands of deci-
sions are required on real-world projects; the dependencies between them are both
manifold and subtle. This complexity can not be argued away or hidden by meth-
ods and tools. Making it explicit and manageable is important; however, any reus-
able asset doing so runs the risk of being seen as part of the problem rather than
the solution.

In response, we introduced the separation of issues and outcomes in step 2 and
the refinement level structure in step 3. The validation results demonstrate that our
concepts indeed help to manage complexity and change.

Practical adoption challenges. Enterprises, projects, and people are different. For
instance, there is no consensus how to organize the education and decision making
activities on a project. As a design method based on reusable knowledge, SOAD
may face the critique that that highly capable architects are method-agnostic and
incapable ones do not become capable even if supported by such method.

The writing style used to document issues and alternatives in step 2 helped to
mitigate this problem: We phrase the advice in a suggestive tone which would also
be chosen by a technical mentor. This is opposed to an official design authority as
defined in certain governance frameworks and maturity models. Constructive ad-
vice is easier to accept than firm rules. During our validation activities, both junior
and senior architects gave positive feedback; we reached a fairly large community.

Validation challenges. Software engineering theses must select their validating
case studies carefully. There is a conflict between significance and fidelity and
number of influencing factors: The projects must be representative for real-world
projects in terms of their scope and complexity, but also observable. Action re-

 10.1 Research Challenges, Approach, and Evolution of Results 169

search (i.e., active project participation of the primary investigators of the research
problem) is an efficient validation form. It must not be the only one, however: It
has to be ensured that the validation results are reproducible and that the devel-
oped solutions are broadly applicable. Action research alone can not do so.

The architects on validating case studies must be willing and able to apply a de-
sign method following a novel paradigm, decision centricity. They should be ex-
perienced so that the application of SOAD does not overlap with learning activi-
ties (e.g., regarding software engineering, design method, and software
architecture fundamentals). They must also be able to reflect on experience gained
despite busy schedules. Working with volunteers that believe in reusable assets
and methods may compromise the quality of the validation: Their feedback tends
to be more positive than that of skeptic practitioners.

In our specific case, we also had to ensure that the problems identified and
solved are not germane to a single company or region: The survey participants and
case study architects are affiliated with one company. Geographical distribution
was limited as well, as most of the involved architects work in central Europe.

To mitigate these risks, we worked with architects in different professions with
varying experience, and clarified the purpose of the validation. To broaden our
reach, we interacted with more than 100 architects from many countries and com-
panies in various industry workshops (see Section 9.4). The feedback for SOAD
from these interactions resembled that from the five industrial case studies.

10.1.2 Selected Research Approach and Notations

To overcome the challenges discussed in Section 10.1.1, we selected a research
approach, notations, and tools that increased the productivity of researcher and
knowledge engineer (asset creator) and software architects (asset consumers).

The problem context and challenges outlined above required an engineering
approach: We built the SOAD framework starting from real-world requirements
originating from industrial projects. Intermediary results were exposed to mem-
bers of the target audience early on and throughout the project; the RADM for
SOA content was gathered iteratively and incrementally. This research approach
can be compared to that followed by Cockburn, the creator of the Crystal family
of agile methods. Cockburn’s dissertation is also concerned with method design: it
focuses on people and how they cooperate on development projects [Coc03]. Ac-
tion research is the primary validation type used in that thesis.

The SOAD concepts range from the conceptual design of a method framework
to a pattern-centric decision identification technique to a metamodel to a decision
making process to a prototypical tool implementation. Hence, we followed a best-
of-breed approach to introduce our concepts and selected the notation most ade-
quate for each step: In Chapters 2, 4, and 7, we used various diagram types, e.g.,
informal rich pictures, component-and-connector diagrams, BPMN process mod-
els, UML models, and other standard notations defined in commercial software
engineering methods such as the system context diagram and the component
model artifacts defined in the IBM Unified Method Framework (UMF). Basic set

170 10 Discussion of Research Approach and Results

and graph theory was applied to formalize the SOAD metamodel in Chapter 6.
The rationale for this decision is the generality, expressivity, and precision of this
mathematical notation which allowed us to specify the relations accurately. The
Object Constraint Language (OCL) [OMG06] would have been an alternative.
Lack of experience was one reason for not choosing OCL.

10.1.3 Evolution of Framework Concepts, Model Content, and Tool

In this section, we show how SOAD concepts and implementation evolved over
time.

Metamodel evolution. Our two primary knowledge capturing approaches, pat-
terns and decisions, differ in their maturity and adoption rate. On the one hand,
patterns are used frequently on projects and in many ways, from pattern catalogs
serving as a design reference to patterns becoming architectural templates in
model-driven SOA development. On the other hand, architects capture architec-
tural decisions retrospectively so far (if at all). Therefore, existing templates for
retrospective decision capturing had to be extended to serve the SOAD use cases.
The resulting SOAD metamodel has been stable since September 2006; the valida-
tion results did not make any significant changes necessary since then. SOAD
continued to be used on industry projects after our validation activities completed.

RADM for SOA content evolution. The initial content of our RADM for SOA
originates from successful large-scale SOA projects conducted since 2001. In the
meantime, we have refactored the content several times, which led to the fine-
grained level and layer structure introduced in Chapter 5. We also incorporated
input from a practitioner community (see Appendix A for more information on
decision harvesting). Table 32 shows how the RADM for SOA evolved during
project duration. When the thesis validation activities completed, it consisted of
389 issues. About 200 of these issues are fully modeled according to the SOAD
metamodel; the remaining ones are documented in shorter forms.

Table 32. Evolution of RADM for SOA over time and project phases

SOAD Project Phase Issues Comment
Idea (2004) ~10 Captured selected Web services and enterprise appli-

cation architecture decisions in proof-of-concept
First demonstrator (12/2006) ~100 Identified SOA decisions, e.g., regarding transac-

tional workflows; only small subset fully modeled
First shipment (06/2007) 268 Modeled security, ESB integration, and other issues
Second shipment (12/2007) 320 Added operational modeling and other issues
Third shipment (06/2008) 389 Detailed granularity decisions, presentation layer

Tool implementation. We used Architect’s Workbench (AWB) [ABK+06], an
Eclipse plugin implementing a model-driven approach based on the Architecture
Description Standard (ADS) [YRS+99] for the syndication of the RADM for
SOA. The rationale for this decision was that AWB supports a “Grouping ADs By
Topic” viewpoint and has strong refactoring and dependency management capa-

 10.2 Strengths and Weaknesses of Solution 171

bilities. Viewpoint and refactoring capabilities accelerated content creation and
maintenance. The reminders feature warned about modeling errors.

We also supervised a diploma thesis to implement the SOAD concepts in Ar-
chitectural Decision Knowledge Wiki (see Chapter 8 for rationale). We started to
expose the system to practitioners in April 2007. Based on early adopter feedback
and our own experience working with the tool, we added features en route to ver-
sion 1.0 (March 2008) and version 1.2 (September 2008). Version 1.0 supported
55 uses cases; version 1.2 about 70. The tool is a reference implementation (proof
of concept) not ready for production use (see Chapters 8 and 9 for details).

10.2 Strengths and Weaknesses of Solution

In this section we discuss applicability of SOAD and its benefits and liabilities.

10.2.1 Suited Projects, Application Genres, and Architectural Styles

Several criteria apply when considering an adoption of SOAD, e.g., target audi-
ence and design variability vs. standardization of problem and solution domain.

SOAD targets software architects with some experience, working on full-scope
projects in a stable application genre which is characterized by few alternatives to
be considered during early design stages and many variation points later in the de-
sign work. These two preconditions ensure that issues will recur and make it pos-
sible to use pattern-centric identification rules for RADM scoping in step 1.

SOAD is less suited for first-of-a-kind projects in emerging domains in which
no reuse effect can be expected yet. The same is true for small projects in which
few architectural decisions must be made or in which the consequences of making
the wrong ones are not critical. Small, experienced teams with comprehensive
tacit knowledge and a personalization strategy [Jan08] are less likely to benefit
from explicit, modeled knowledge as promoted by SOAD. In a lightweight setup,
RADM population (Chapter 6) can be reduced to a minimum (or skipped) and
only decision identification (Chapter 5) and model tailoring (Section 7.1) be per-
formed: The RADM then merely lists issues by name to start design discussions.

The SOAD framework can be adopted in other application genres and architec-
tural styles if project experience with that style has already been gained. The main
adoption task is the creation of a RADM asset for the architectural style, follow-
ing SOAD steps 1 to 4 and the harvesting technique presented in Appendix A.
When doing so, the SOAD concepts have to be reviewed for applicability; exten-
sion points are available to modify the concepts as indicated in the respective
steps. It is required to support other sources of decision identification in step 1 if
the architectural style is not defined via patterns, but reference architectures
[BCK03] or other architecture documentation formats. The meta issue catalog
might have to be extended for application genres facing different design chal-
lenges (Chapter 5). As discussed in Section 6.2 and in Section 7.2, it might also be

172 10 Discussion of Research Approach and Results

required to structure the model differently in step 3 (i.e., to use another refinement
level and topic group organization). A different customization of the decision
making order, which is based on temporal decision dependencies, may also be re-
quired (steps 4 and 6). The process presented in Section 7.2 works with triggers
implied by refinedBy and decomposesInto relations, which may not always be ap-
propriate (e.g., on legacy modernization and software package customization pro-
jects). Our formalization provides a foundation for defining other processes.

10.2.2 Benefits

Table 33 shows how common design activities are supported in the SOAD steps,
particularly those defined in the macro and in the micro processes from Chapter 7:

Table 33. Architectural decision making without and with SOAD

Activity
(SOAD Step)

State of the Practice
(Chapters 2 and 3)

SOAD
(Chapters 4 to 8)

Identify issues (1 to 5) One-of-a kind, on project Recurring issues in RADM asset, tai-
loring technique and meta issues

Find alternatives (1 to 5) Tacit, personal experience Already modeled, can be extended
Establish criteria (1 to 5) Tacit, ad hoc (gut feel) Decision driver attribute in RADM
Background research (1) Search Web, repositories Links to relevant literature in RADM
Consult subject matter
expert, delegate (6)

Personal contacts, email,
forums, escalations

Best practices recommendations from
community captured in RADM

Assess alternatives (6) Consulting techniques Same, starting from decision drivers
Review earlier decisions,
predict consequences (6)

Tradeoff analysis methods Modeled logical and temporal decision
dependencies can be leveraged

Make decision (6) Tacit knowledge, architec-
ture design methods, deci-
sion support systems

Integrative approach, access to previ-
ous decisions (RADM), completeness
and error check, managed issue list

Document decision and
assumptions (6)

Word processing, wiki ta-
bles, groupware databases

Only outcomes have to be captured (for
issues present in RADM asset)

Inform project team (6) Send decision log to team
(text document)

Entire team has access to collaboration
system (tool); report generation

Enforce and evaluate de-
cision (7)

Manual: Coaching, coding,
architectural templates

Partial enforcement automation (deci-
sion injection), collaboration tool

Let us now walk through the table, using the views introduced in Chapter 4.

Decision investigation view (steps 1 to 5). As demonstrated in the case studies,
usage of a SOAD RADM as created in steps 1 to 4 and tailored in step 5 increases
productivity during the early project activities such as team orientation and candi-
date asset screening. From the validation results, we estimate that on average one
third of the early project phases is spent on the identification of issues and alterna-
tives, as well as on establishing criteria. Some of this effort will always be re-
quired to give new team members an opportunity to familiarize themselves with
the project context, for instance the business problem to be solved and the project
logistics (tools, build environment, etc.). However, productivity gains can be ac-
complished.

 10.2 Strengths and Weaknesses of Solution 173

Junior architects and developers can use a RADM as a training mechanism to
develop their architectural thinking capabilities. While this is a welcome side ef-
fect, it is not the main usage scenario of SOAD; it can not substitute a software ar-
chitecture curriculum. Due to its reference character, a decision model is rather
dense and therefore tiring to read from beginning to end; architecture overviews,
component interaction diagrams, and code snippets are required to illustrate the al-
ternatives. However, SOAD can assist with education planning, e.g., help to iden-
tify classroom trainings or online courses (via the background reading attribute).

Decision making view (step 6). The managed issue list and its supporting con-
cepts (decision classification by eligibility status and dependencies, decision clus-
tering) make the decision making more efficient and improve the decision making
quality. Detecting and disabling combinations that do not work before a design er-
ror is even made improves software quality and reduces technical project risk. The
managed issue list can simplify the preparation of architecture design reviews and
other architectural workshops when serving as a questionnaire. The tailored
RADM content gives the architects access to architectural knowledge already
gained in a community, e.g., information about certain decision drivers as well as
pros, cons, and known uses of alternatives.

Decision enforcement view (step 7). Decision injection into design models makes
model transformations more flexible with decision outcomes serving as MDA
marks. This leads to less manual development and configuration efforts, which
simplifies the model-code reconciliation and provides traceability between deci-
sions and design. Decision logs can be generated as reports (model excerpts).

SOAD tools can implement a feedback loop between roles, which improves
team communication. With Architectural Decision Knowledge Wiki, decision cap-
turing becomes a shared responsibility; decisions that are openly created, dis-
cussed, and justified are easier to accept than dictated ones. A positive impact on
team communication and climate can be expected.

10.2.3 Liabilities

Constructive criticism obtained during validation concerned content quality and
provenance aspects, as well as complexity and change dynamics.

Content quality and provenance. A challenge is to agree on RADM content and
assure its quality. For instance, recommendations must be correct and up to date.
Depending on the reuse culture in a company, a diligent review and approval
process may have to be established; a self-governing approach is the other ex-
treme. A design method based on reusable architectural decision knowledge will
only be successful if practitioners are motivated to contribute high quality knowl-
edge. Collaborative ownership of the model partially solves this maintenance
problem; the refinement level and layering structure introduced in Chapter 6 and
the basic harvesting method presented in Appendix A help knowledge engineers
to determine where input from projects is needed and how it can be incorporated.

174 10 Discussion of Research Approach and Results

Complexity and change dynamics. The challenges of the enterprise application
genre lead to a rather complex decision model structure. On the technology and
vendor asset levels, thousands of possible solutions exist. New alternatives arise
almost daily; issues also change. Alternatives residing on the vendor asset level
have to be updated whenever a vendor releases a new product version with en-
hanced features or with different non-functional characteristics. If we aimed for
completion, the RADM for SOA would have to contain thousands of issues with
numerous dependencies and alternatives. While this complexity is inherent to the
problem domain, SOAD could be criticized for exposing it. However, according to
our validation results practitioners prefer to be made aware of this complexity.

While the developed concepts were able to solve the complexity and consum-
ability challenges partially (i.e., in the metamodel and in RADMs), the validation
results indicate that further tool innovations are required to fully overcome them.

10.3 Comparison with Related Work

In this section, we compare our work with contributions from the software engi-
neering, software architecture, enterprise application development and integration,
SOA design, and architectural knowledge management fields. We introduced this
related work in Chapter 2 and assessed its strengths and weaknesses in Chapter 3.

10.3.1 Software Engineering

Software engineering and design methods. Our approach complements general
purpose processes such as the Rational Unified Process (RUP). Such assets cover
the entire software lifecycle, but do not focus on the design issues in a specific ap-
plication genre. While they instruct the architect which artifact has to be produced
in which activity, they do not state which design issues must be addressed, which
alternatives are available, and what the pros and cons of these alternatives are with
respect to the decision drivers (e.g., requirements and constraints) germane to an
application genre.

Furthermore, such process- and artifact-centric software engineering methods
have a passive reference character once they have been adopted on a project in a
manual or tool-assisted step; there is no notion of a managed issue list.

SOAD extends such methods in a genre- and style-specific way: The RADM
for SOA focuses on a particular application genre and can therefore draw on
knowledge gathered on previous projects. Using an ADM as a managed issue list
(as shown in step 6) becomes possible if the scope, phase, and role attributes as
well as decision dependencies are set to meaningful values.

Patterns. Patterns primarily have educational character. Using patterns as a design
method has been proposed and is practiced successfully, e.g., by Buschmann and
Henney [BHS07]: Patterns can be applied in an incremental refinement process.
The decision making then is based on the forces. Applying patterns in such a way

 10.3 Comparison with Related Work 175

requires a broad view on how to select from a large body of patterns. The reason is
that patterns do not provide solutions for a particular application genre, but ge-
neric design knowledge. For instance, the INVOKER pattern in [VKZ04] describes
how a middleware invokes remote objects in general. The pattern applies to all
kinds of middleware, but does not explain the specifics of an SOA INVOKER in an
enterprise application. Platform-specific implementation aspects of the pattern are
not covered either.

As a primary source of architectural knowledge, patterns play a pivotal role in
SOAD. Applying a pattern is making a decision; the consequences of applying a
pattern engender more decisions. Our step 1 identification rules use the patterns
defining an architectural style (jointly with principles); pattern selection and adop-
tion decisions are identified in these patterns. In the RADM for SOA, patterns are
positioned as alternatives on the conceptual level. Additionally, SOAD also covers
technology and vendor asset level design issues. As a consequence, the strengths
of patterns and decision models complement each other in SOAD. A patterns-
based RADM can reference the pattern text, which makes it easier to create and
maintain than a self-containing one. Outcomes can be captured in much less detail
because they only record the adoption of the patterns and can reference the pat-
terns for further detail [ZZG+08].

10.3.2 Software Architecture

Software architecture in general. Software quality attributes and viewpoints are
represented in the SOAD metamodel and the RADM for SOA structure. Software
architecture literature introduces these concepts, but does not cover how to satisfy
a set of quality attributes in a given application genre and architectural style.
SOAD complements existing methods with such advice.

Software architecture design methods. Existing architecture design methods are
process- and artifact-centric; a backlog is introduced in [HKN+07]. The existing
methods offer techniques to resolve general architecture design issues, but do not
provide method content that identifies possible solutions based on already gained
knowledge; backlogs are populated and maintained manually. Neither EAD and
EAI challenges nor SOA principles and patterns are addressed explicitly. SOAD
takes inspiration from these methods, for instance the ASR to design decision
linkage in ASC and the global analysis activity and issue cards in S4V (see Chap-
ter 2 for introduction). In contrast to these methods, SOAD treats issues and out-
comes as first class citizens in its metamodel and integrates genre- and style-
specific knowledge: An open issue is an architecture design task. As issues recur
when application genre and architectural style are known, SOAD can populate the
managed issue list (backlog) during decision identification and model tailoring,
e.g., with pattern selection and adoption decisions and related issues residing on
the technology and the vendor asset levels of the RADM for SOA.

We did not propose yet another technique to support the making of an individ-
ual decision, but focused on finding the decisions relevant in a particular genre,

176 10 Discussion of Research Approach and Results

style, and project context; existing decision making techniques can be integrated
into our framework as discussed in step 6 in Chapter 7.

We put less emphasis on quality attributes than the methods described in the
literature. This is not to say that quality attributes are not important (as we pointed
out in Chapters 1 and 2): In our approach, the advice how to deal with certain de-
cision drivers including quality attributes is a key part of the architectural knowl-
edge captured for issues and their alternatives. However, it is not created anew us-
ing some technique, but originates from projects that already encountered and
resolved a similar or the same design problem.

10.3.3 Enterprise Application Development and Integration

Genre-specific design methods. The genre-specific design methods such as those
introduced in Chapter 2 have the same characteristics as software engineering and
software architecture design methods. Hence, SOAD complements them and can
be integrated into them in the same way (see Sections 10.3.1 and 10.3.2).

Enterprise architecture frameworks. While not targeting the design of individ-
ual applications or services, enterprise architecture frameworks such as Zachman
[SZ92] and TOGAF [OG07] influence the SOA design. Enterprise architecture
frameworks cover both logical and physical aspects. Typically, they define struc-
tural viewpoints such as process and data to display entire application landscapes
and system-to-system relations. This helps to position an application under devel-
opment and to avoid unnecessary parallel development; reuse opportunities and
integration needs can be identified. Like software engineering methods, enterprise
architecture frameworks are complementary to SOAD; they can be used to struc-
ture decisions models (step 3). In return, SOAD RADMs can provide enterprise
architecture frameworks with genre- and style-specific architectural knowledge.

10.3.4 SOA Design and Service Modeling Methods

SOA design and service modeling methods cover all phases of SOA design; they
are particularly strong in early phases such as business modeling and service iden-
tification. Typically, they provide less technical advice than our SOAD framework
and RADM for SOA. Architectural decisions are mentioned in SOMA [AGA+08],
but not modeled and managed as first class method elements. The relationship be-
tween these methods and our approach is complementary. For instance, a SOMA
service model can serve as a starting point for RADM tailoring (step 5). To do so,
the scope attribute in the RADM for SOA may refer to a “service” instance pre-
sent in the SOMA service model. Moreover, SDLC [Pap08] and SOMA phases
can be referenced in the SOAD phase attribute to indicate which issues should be
resolved in a certain phase of SOA design and service modeling. In return, the ex-
isting methods can be used to populate a RADM with style-specific knowledge.

 10.3 Comparison with Related Work 177

10.3.5 Architectural Knowledge Management

In the industry, many templates for architectural decision capturing exist. Practi-
tioners perceive the documentation of made decisions to be an unwelcome, time
consuming obligation. There are many real-world inhibitors such as lack of imme-
diate benefits, incentives, budget, and tools [TAG+05]. Hence, a retrospective ap-
proach is hard to implement, even if seen to be beneficial in the long term.

None of the existing approaches supports decision identification in patterns and
requirements, and there is little support for active reuse, i.e., no separation of deci-
sions required (issues) and decisions made and no asset creation phase. Platform-
independent issues are not separated from platform-specific ones. Predefined deci-
sion documents are contained in certain reference architectures used in the indus-
try [TA05]; however, we did not find any concepts for bringing issues into the de-
sign process to provide active guidance. As a consequence, the decision view
typically remains isolated and disconnected from the other architectural views.

Our work enhances the existing modeling approaches in these directions, which
helps to overcome the inhibitors. Unlike existing work, we introduce an asset crea-
tion phase and a decision identification technique to facilitate collaboration and
reuse. In doing so, we apply the ontology and the use cases defined by Kruchten et
al. [KLV06] to EAD, EAI, and SOA design. The pattern, technology, and vendor
asset selection decisions in SOAD map to existence decisions (chosen alterna-
tives) and ban decisions (rejected alternatives); pattern adoption, technology pro-
filing, and vendor asset configuration decisions in SOAD map to property deci-
sions. We discuss this aspect and more related work in detail in [ZKL+09].

10.3.6 Commercial Products

We are not aware of any commercial or open source decision modeling method or
tool that supports decision reuse and modeling or an active issue management (as
opposed to capturing issues and outcomes for documentation purposes).

The SOAD concepts can be implemented in many products, leveraging our re-
quirements catalog (Chapter 3), the conceptual tool architecture (Figure 14 on
page 62 in Chapter 4), and the SOAD metamodel (Chapter 6). Architectural Deci-
sion Knowledge Wiki (Chapter 8) then serves as reference implementation.

A commercial version of SOAD must be highly configurable to accommodate
multiple decision making processes and decision maker preferences. For instance,
additional ways to order decisions must be provided. The SOAD steps are de-
signed to be extensible; the formalization from Chapter 6 helps tools to provide
the required flexibility without compromising other architectural qualities. A criti-
cal success factor is to find an appealing visualization of the managed issue list.

One option is to integrate SOAD concepts into tools for software architects
such as IBM Rational Software Architect [IBM], Telelogic System Architect
[IBM], or ArcStyler from Interactive Objects [IO]. Most of these tools are analysis
and design model-centric; however, support for architectural decision modeling
can be added with a combination of product customization and programming.

178 10 Discussion of Research Approach and Results

Another possibility is to leverage configurable, metamodel-driven requirements
engineering and traceability tools such as IBM Rational RequisitePro [IBM]. De-
pending on the flexibility of the metamodels and the provided interfaces, it is pos-
sible to customize them to support the concepts presented in this thesis. It is re-
quired to integrate the entities defined in the SOAD metamodel. The cardinalities
of the relations defined in Chapter 6 are a critical success factor (e.g., multiple
outcomes per issue). Powerful model tailoring and managed issue list processing
capabilities as defined in steps 4, 5, and 6 (Chapters 6 and 7) are required.

10.4 Summary

We summarize the discussion in this chapter as follows:

Overcoming a number of challenges, SOAD framework, Reusable Architectural
Decision Model (RADM) for SOA, and Architectural Decision Knowledge Wiki
complement existing methods and tools with genre- and style-specific architec-

tural decision knowledge (method content) and active issue management capabili-
ties.

Benefits of SOAD are an acceleration of decision identification, improved deci-
sion making quality, and additional decision enforcement opportunities; manag-

ing complexity and change are liabilities and critical success factors.

The SOAD concepts can be applied to other application genres and architectural
styles. It is possible to integrate SOAD concepts into several existing tools.

11 Conclusions and Outlook

In this chapter we summarize the thesis and its contributions (Section 11.1) and an-
swer the research questions (Section 11.2). We discuss future work (Section 11.3)
and present a vision for an extended usage of our solution (Section 11.4).

11.1 Thesis Summary

In this thesis, we created a decision-centric architecture design method for enter-
prise application development and integration projects employing SOA as their ar-
chitectural style. Our method consists of an architectural decision modeling
framework, which we call SOA Decision Modeling (SOAD) framework, and a Re-
usable Architectural Decision Model (RADM) for SOA. It is tool supported.
SOAD, RADM for SOA, and tool have five use cases: education, knowledge ex-
change, design method, review technique, and governance instrument. The RADM
for SOA is style-specific; framework and tool usage is not limited to SOA design.

Introduction. In Chapter 1, we introduced problem context and related work. We
defined the term architectural decision and outlined the research problems to be
solved. We gave an overview of our solution and the structure of this thesis.

State of the art and the practice. In Chapter 2, we defined enterprise applications
as an application genre and SOA as an architectural style based on principles and
patterns such as service consumer-provider contract, enterprise service bus, service
composition, and service registry. After that, we introduced a motivating case
study. We demonstrated that software architects encounter numerous design issues
during SOA design; they have to make many related architectural decisions to sat-
isfy functional and non-functional requirements. One reason for the size and com-
plexity of this design space is that many technologies and implementation assets
are available for the SOA patterns. Finally, we presented a selection of methods
and supporting assets in five categories: Software engineering and design, software
architecture design, enterprise application development and integration, SOA de-
sign and service modeling, and architectural knowledge management.

SOA design method requirements and research problems. In Chapter 3, we es-
tablished 31 requirements for SOA design methods from personal experience, prac-
titioner input, and the literature. We distilled seven research problems from the re-
quirements as the focus area for this thesis: decision identification, decision
modeling, model structuring, dependency management, design method usage, deci-

180 11 Conclusions and Outlook

sion enforcement, and collaboration system. In an analysis of existing methods, we
demonstrated that none of these problems has been properly solved so far.

Architectural decision modeling framework for SOA design and tool support.
In Chapters 4 to 8, we introduced the SOAD framework and tool support for it.
SOAD consists of seven steps, which are organized in an asset creation and an as-
set consumption phase. The seven steps and supporting concepts are:

1. Identify decisions (concepts: identification rules, meta issue catalog).
2. Model individual decisions (SOAD metamodel).
3. Structure model (logical relations, levels and layers, integrity constraints).
4. Add temporal decision order (temporal relations, production rules).
5. Tailor model (decision filtering).
6. Make decisions (managed issue list, macro and micro processes).
7. Enforce decisions (decision injection).

In Section 11.2, we summarize how the concepts solve the research problems.

Validation of research results. A design method is difficult to validate due to the
large number of influencing factors on real projects and the limited informative
value of classroom experiments. In Chapter 9, we described how we overcame
these validation challenges: We presented a requirements self assessment and five
industrial case studies. In two of the cases, we conducted action research. The case
studies demonstrated that the developed concepts are valuable and work in prac-
tice. As supplemental validation activities, we applied SOAD retrospectively to our
own SOA projects, performed several more self experiments, and used excerpts
from the RADM for SOA for teaching purposes and industry workshops.

Discussion of research approach and results. In Chapter 10, we reflected on our
research approach and the strengths and weaknesses of SOAD. We also compared
SOAD with related work: SOAD extends existing proposals for retrospective ar-
chitectural decision capturing, which in turn are based on existing work in design
decision rationale. We added one assumption: multiple projects must apply the
same architectural style (SOA) in the same application genre (enterprise applica-
tions). This makes it possible to extend the usage of architectural decisions from
architecture documentation to design method support: Our architectural decision
models do not serve as passive knowledge repositories, but take an active, guiding
role during the design work. Because SOA is specified and standardized openly, it
is possible to start from knowledge already captured as patterns. This allows us to
anticipate the decisions required when adopting and refining the patterns and to re-
use related design rationale gathered by communities of practicing architects.

Benefits of SOAD are an acceleration of decision identification, improved deci-
sion making quality, and additional enforcement opportunities. Dealing with the
complexity of the application genre and keeping the RADM for SOA up-to-date,
consistent, and easy to navigate are key challenges for a broader adoption. A re-
lated success factor is to incent users to contribute, not only consume, architectural
knowledge (method content). This has been a challenge for many industrial knowl-
edge management approaches in the past.

 11.2 Answers to Research Questions 181

11.2 Answers to Research Questions

In this thesis, we showed that SOA design requires more than a straightforward
transformation from analysis-phase business process models to executable work-
flows and Web services. Many SOA-specific architectural decisions have to be
made, starting with pattern selection and adoption, followed by technology- and
vendor asset-level decisions. Our overall focus area was (Chapter 1 and Chapter 3):

How to facilitate the architectural decision making in SOA design, starting from
functional and non-functional requirements and already gathered architectural

knowledge captured in SOA principles and patterns?

Research questions regarding seven research problems had to be answered: De-
cision identification, decision modeling, model structuring, dependency manage-
ment, design method usage, decision enforcement, and collaboration system.

Decision identification. What are the architectural decisions required during SOA
design (issues)? Do these issues recur? If so, can the issues be identified systemati-
cally in patterns? Can this systematic approach be transferred to other application
genres and architectural styles?

The patterns that define SOA as an architectural style determine which issues
arise; additional architectural knowledge originates from projects that applied the
SOA patterns. Decisions recur and can be identified systematically: To support
step 1, we provided a novel technique for decision identification. It works with ar-
chitectural patterns, style-independent meta issues, and additional sources of archi-
tectural knowledge. Appendix A provides a basic process for harvesting architec-
tural knowledge from projects, as well as related guidance. Following this process,
we synthesized a RADM for SOA from our own project experience, contributions
from practicing architects, and the literature. It comprises 389 issues. This RADM
for SOA is in use in a company-internal community of architects. 20 of these deci-
sions were published as samples that come with Architectural Decision Knowledge
Wiki [SZ08]; 35 decisions serve as examples in this thesis. Others are introduced
in separate publications [PZL08, ZZG+08, ZGT+07]. Our RADM for SOA is the
first reusable architectural decision model for any architectural style. While we did
not give any decision modeling examples from other domains in this thesis, we
validated that SOAD can be applied to other genres and styles (see Chapter 9). In
Chapter 10, we discussed applicability criteria such as suited target audiences and
design variability.

Decision modeling. Which information to model for each issue (and its alterna-
tives)? Which level of detail is appropriate so that the given advice is detailed
enough to be actionable and generic enough to be broadly applicable and not sub-
ject to overly frequent, unmanageable changes? Which aspects are not covered by
existing templates and metamodels used to document architectures and capture de-
cisions made?

We model individual decisions, rather than capture them in text form: Issues, al-
ternatives, and outcomes are instantiated from a common metamodel, which we in-

182 11 Conclusions and Outlook

troduced in step 2. This metamodel extends existing work to facilitate reuse and
collaboration: Each issue describes a single, concrete design problem that recurs or
has been solved. The issue is separated from the available alternatives and the cho-
sen outcomes. The metamodel also introduces decision driver and decision lifecy-
cle (owner, status) attributes. Phase and role attributes integrate SOAD into soft-
ware engineering methods; a scope attribute links decision models and design
models. The knowledge exchange is facilitated via a recommendations attribute.

Model structuring. Assuming that a large number of issues recurs, how can a de-
cision model be organized in an intuitive, use case-driven way? How to separate
rarely changing conceptual knowledge from rapidly evolving technology informa-
tion and platform-specific know how? How to leverage existing problem solving
concepts such as architectural layers and viewpoints in the decision models?

As there are several hundred recurring SOA decisions, we structured decision
models with the help of refinement levels in step 3. The level structure is inspired
by MDA principles, separating executive, conceptual, technology, and vendor asset
levels. Architectural patterns serve as alternatives of issues residing on the concep-
tual level. Such knowledge changes less rapidly than that on the technology and the
vendor asset level. Within the levels, logical layering serves as a proven structuring
principle. The resulting decision model structure is extensible.

Dependency management. Which logical and temporal dependencies exist be-
tween decisions? How can such dependencies be represented in decision models?
Can these dependencies be used to detect design errors, to organize the decision
making process, and to prune irrelevant decisions? If so, how to order the deci-
sions to prepare for decision making?

RADMs can be fairly complex, issues and alternatives are intertwined heavily.
Hence, we formally defined logical dependency relations in step 3. Logical rela-
tions such as decomposesInto and refinedBy as well as integrity constraints help to
ensure the soundness and usability of models. In step 4, we added temporal trig-
gers relations so that decisions can be ordered for usage during design. We pro-
posed to imply these triggers relations from logical refinedBy and decomposesInto
relations to create a top down design process. These concepts allow a SOAD tool
to actively manage the design work: Only issues that are relevant in a given context
are displayed. Production rules prune irrelevant issues from the model and imply
certain outcomes based on decisions already made. This saves the architect unnec-
essary work. Existing work handles temporal relations informally if at all; there is
no active issue management.

Design method usage. How to use an architectural decision model as an SOA de-
sign method? Can a process be defined that considers only the decisions required
by a particular role in a certain project phase and design context? What is the re-
lation to software engineering and design methods?

With the identification step 1 and the metamodeling steps 2 to 4 completed, a
decision model can fulfill its envisioned purpose, usage as a design method. We
introduced a model tailoring step 5 and a macro and a micro decision making proc-
ess supporting step 6. These processes take a decision-centric view, making use of

 11.2 Answers to Research Questions 183

a managed issue list. The RADM for SOA with its issues and alternatives har-
vested from SOA industry projects makes concrete, genre- and style-specific archi-
tectural knowledge available during process execution.

Our decision-centric design method complements and completes existing soft-
ware engineering methods as well as genre- and style-specific methods: It positions
architectural decisions (open issues) in the software engineering process. Using de-
cision models conforming to a metamodel in a design method context is a new
paradigm for method design. For the first time, a managed issue list can be popu-
lated and maintained semi-automatically with the help of tool support for the meta-
model formalization, the decision identification technique, and the model tailoring
technique (decision filtering). Unlike any other modeling approach or method we
are aware of, SOAD pushes this managed issue list including issues, available al-
ternatives, pros and cons, known uses, and literature references to the architect. In
the current state of the art, such knowledge must be pulled from a repository. Fur-
thermore, we only display currently relevant decision knowledge to the architect,
based on the current decision making context and status information.

Decision enforcement. How to enforce that made architectural decisions are re-
spected during subsequent design activities and during development? How to up-
date design models and code according to outcome information in an architectural
decision model? What is the relation between decision models and Model-Driven
Development (MDD)?

We described MDD alignment and a novel concept for decision injection into
model transformations in step 7. Our decision models are structured according to a
metamodel and are machine-readable; hence, decision logs can be generated in this
step. Furthermore, decision outcome information (e.g., chosen alternative, justifica-
tion) can be injected into design models and code. Unlike the concepts developed
for the previous steps, we did not validate this concept in practice yet: We could
not locate an SOA project willing to apply both SOAD and MDD. Existing tech-
niques such as coaching and code reviews continue to be essential in this step.

Collaboration system. Which logical building blocks comprise a tool that sup-
ports architects when they investigate, make, and enforce architectural decisions?
How to support collaborative creation and usage of decision models? How to inte-
grate such tool with other tools used during SOA design?

We designed Architectural Decision Knowledge Wiki, a collaboration system
(tool) realizing the SOAD concepts in a novel architecture combining Web 2.0
concepts, a logically layered architecture, and a relational database. This tool is an
application wiki for architecture knowledge capturing and exchange. It supports
about 70 use cases in its current implementation. The use cases allow architects to
obtain, tailor, manage, and share architectural decision knowledge and to involve
the project team and subject matter experts during these steps. Decision depend-
ency and state management as well as model tailoring and report generation are
supported. Use cases and display of single decisions were appreciated by early us-
ers. However, they encountered usability problems when working with large mod-
els, which were caused by the absence of a graphical overview making use of the

184 11 Conclusions and Outlook

rich amount of decision dependency information modeled. The tool is in use in a
company-internal community of architects and also available for download.

In summary, we solved the decision identification, decision modeling, model
structuring, and decision dependency management problems. We also provided so-
lutions to the design method usage and decision enforcement problems. The col-
laboration system problem requires further investigations to make the SOAD tool
more user-friendly and to integrate it better with other analysis and design tools.

11.3 Future Work

With the SOAD concepts and one reusable architectural decision model defined,
many opportunities for future work arise. Our main directions are metamodel en-
hancements, improving the decision identification, making, and enforcement steps,
providing additional tool support, and integration with other disciplines.

Decision identification (step 1, step 5). SOA patterns are only one source of input
for decision identification; architecture description languages, reference architec-
tures, and other codifications of architectural styles can also support steps 1 and 5.
Such support makes SOAD applicable in additional application genres and com-
munities which do not follow a pattern-centric knowledge sharing and design ap-
proach. We do not expect additional concepts to be required if the architectural de-
scriptions are available as models (or at least as structured texts), which can serve
as starting points for our technique and enable partial automation.

Metamodel enhancements (steps 2 to 4). Future work regarding the SOAD meta-
model is to formalize the interlock between decision models and other model types.
Such formalization is required to integrate decision modeling tools with other de-
sign tools, e.g., UML modeling environments. Such integration was requested by
some of the architects involved in the industrial case studies.

Decision making (step 6). Our formalization makes it possible to model two types
of decision making orders, top down refinement and technology- or vendor-led de-
sign. In top down refinement, an executive decision is refined by one or more pat-
tern selection decisions which decompose into pattern adoption decisions to be re-
fined on the technology level and on the vendor asset level. We assumed such top
down design process and decision making order in Chapter 6 when we stated that
triggers relations are implied by decomposesInto and refinedBy relations. Another
process is required for legacy system modernization and software package cus-
tomization (as examples of vendor led design): A technology or product selection
decision then implies the selection of conceptual patterns. Additional integrity con-
straints and production rules are required to define a decision making order in such
cases.

To make the decision making process even more efficient, decision outcomes
can be propagated along containment, refinement, and decomposition relations in a
decision model. For instance, a decision that pertains to a composite architectural

 11.3 Future Work 185

component (e.g., business process) can also be applied to its comprising building
blocks (e.g., invoke activities in the process). Examples are non-functional proper-
ties such as transaction boundaries and security settings. Furthermore, sequences of
outcomes which were successfully used earlier in a project (or on a previous pro-
ject) can be captured and applied to additional parts of the architecture without
having to investigate all issues and alternatives in detail again (i.e., to iterate
through the complete macro and micro process multiple times).

Decision enforcement (step 7). Our decision injection concept provides a partial
solution to the decision enforcement problem; each injection deals with a single
decision. To ensure that the injected decision outcome is not overwritten acciden-
tally or deliberately, additional concepts are required (decision governance).

Tool support. A Web-based thin or rich client as provided by Architectural Deci-
sion Knowledge Wiki is only one of several alternatives that can be used to imple-
ment the presentation layer of a SOAD tool. Another alternative is to use Eclipse
[Ecl]. Decision enforcement can be implemented with a design and development
work item component in the emerging Jazz collaboration platform [Jaz], which
complements Eclipse with team development support. This allows shifting work
between practitioner roles (e.g., architects and developers).

Other disciplines. Finally, the interdisciplinary aspects of architectural decisions
are worth studying: Software architects interface with many other project roles and
stakeholders; there are mutual dependencies. Our decision identification and deci-
sion enforcement concepts can be improved when taking these dependencies into
account and communicating related information from and to decision models.

Project managers can use decision models to create work breakdown structures
and effort estimation reports for planning purposes: Open issues correspond to re-
quired activities. Health checks become possible: If there are many frequent design
changes (e.g., switches between alternatives), or important conceptual issues are
still open late in the process, the project is likely to be in a critical situation.

Moreover, it would be worth studying the role of architectural decision models
in software product lines and feature-oriented design [Jan08]. In practice, these ap-
proaches are used to cope with functional variability (although non-functional fea-
tures can be modeled), whereas our work focuses on managing non-functional de-
sign variability. There is a strong connection between the two variability types.

Legacy system analysis is an advanced usage scenario for the SOAD framework
and the RADM for SOA: When modernizing legacy systems, not only the func-
tional behavior has to be analyzed; quality attributes have to be considered as well.
SOAD can serve as an analysis instrument during such bottom-up SOA design if
the architectural decisions once made for a legacy asset are captured retrospec-
tively. The resulting legacy decision model can help to assess whether an already
existing function is suited to implement a certain business process activity.

Finally, asset selection and configuration decisions define which software li-
censes are required, and on which hardware nodes the required software has to be
installed. Hence, the outcome of certain product-specific asset selection and con-
figuration decisions can serve as input to software configuration management.

186 11 Conclusions and Outlook

11.4 Extended Usage Scenario and Summary

Due to the positive, sometimes enthusiastic reactions from the target audience we
received during thesis validation, we believe the concepts presented in this thesis
have a significant potential to benefit communities in professional services firms
and software product documentation.

In response to regulatory compliance requirements, the need for collaboration
during architectural decision making, and the desire to reuse architecture design ra-
tionale, decision models can serve as fine-grained units of knowledge exchange
within and between project teams in professional services firms. The efficiency of
teams can be improved and delivery excellence achieved if issue modeling and
outcome capturing are standardized. If rationale from previous projects is available
in this form, unnecessary design discussions can be avoided. The existence of a
company-wide RADM becomes a competitive advantage for the services firm.

We also envision reusable architectural decision models to improve the docu-
mentation of software products, for example software packages and middleware
with many variation points: Such products could ship with a predefined architec-
tural decision model, which elaborates upon the issues, decision drivers, and possi-
ble alternatives occurring during customization and deployment of the product.
Early users of a new product then complete the architectural decision model by
documenting their lessons learned as outcomes with justifications. Assuming that
the product is successful in the market, the following mainstream projects follow
the advice given and enrich the decision models further, e.g., with known uses and
background references. Over time, the lessons learned evolve into best practices
commonly agreed and captured as issue recommendations. The architectural deci-
sion models from the projects are fed back to development, informing the product
architects how the product was used and how it performed.

We believe that such active usage of architectural decision knowledge promises
to greatly improve the design and integration of enterprise applications.

Our research results summarize as follows:

Defining SOA as an architectural style based on principles and patterns allowed us
to advance the state of the art regarding architecture design methods and propose
a decision-centric SOA design method, which comprises an architectural decision

modeling framework, a reusable architectural decision model for SOA, and related
tool support.

Additional use cases for framework, reusable architectural decision models, and
tool, which we validated in practice, are education, knowledge exchange, review

technique, and governance instrument. Our concepts are designed to work for
other application genres and architectural styles.

Future work concerns metamodel extensions, providing more comprehensive tool
support for the framework steps, integration with other methods and tools, and a
broader use in professional services firms and software product documentation.

12 Appendix A: Harvesting Architectural
Decision Knowledge

In this appendix, we give an overview of the architectural decision knowledge en-
gineering activities we conducted to create the Reusable Architectural Decision
Model (RADM) for SOA introduced in Chapter 5. We present a basic process and
related guidance to harvest architectural decision knowledge from industry pro-
jects. This appendix has the character of an experience report; it targets knowledge
engineers in the industry that apply SOAD.

12.1 Overview of Knowledge Engineering Activities

Receiving input from practicing software architects, we studied a rich set of arti-
facts capturing SOA decisions and other architectural aspects. The first source of
input for our RADM for SOA was personal SOA project experience [ZMC+04,
ZDG+05]. We documented the issues encountered on these and other projects ac-
cording to the SOAD metamodel. As a second step, we integrated input from other
industry projects, leveraging a company-wide SOA and Web services practitioner
community with more than 3500 members. We processed several hundred archi-
tectural decisions from more than 30 projects in several geographies and indus-
tries. A third type of input was systematic literature screening, e.g., technology in-
troductions, vendor white papers, and technical project reports not necessarily
(and not exclusively) focusing on architectural decisions. Pattern books [Fow03,
HW04] provided particularly valuable architectural decision knowledge.

Originally, we had employed an ad hoc approach to incorporate these sources
of input. This approach failed to produce high quality models and it was not effi-
cient. For instance, it caused duplicate entries. Furthermore, the origins of the
knowledge and the dependencies between issues became blurred over time.

To overcome these challenges, we defined a basic harvesting method. It con-
sists of a four step knowledge harvesting process and related decision modeling
guidance. The process is complementary to the top down decision identification
technique described as SOAD step 1 (Chapter 5). Knowledge engineers applying
the SOAD framework to create a reusable ADM for an architectural style and a
community can follow process and guidance independently of each other. Our
process and guidance are informal; they can be combined with existing, formally
defined knowledge engineering and management approaches. Usage of process
and guidance is not limited to the enterprise application genre and the SOA style.

188 12 Appendix A: Harvesting Architectural Decision Knowledge

12.2 Bottom Up Knowledge Harvesting Process

To overcome the limitations of our original ad hoc approach, we defined four ba-
sic knowledge harvesting steps to be performed by a knowledge engineer (i.e., a
software architect working for a community as defined in Chapter 4). Figure 37 il-
lustrates these steps, which we call Review, Integrate, Harden, and Align (RIHA):

Review
Raw Input

Integrate
Into RADM

Harden
New Content

Align With
Other Content

Figure 37. Four step decision model content syndication process

It is worth noting that it is possible to iterate and harvest knowledge incremen-
tally, although Figure 37 suggests a linear process. We now present the steps:

Review. The first step is to review raw input from completed projects. The objec-
tive of this step is to assess the relevance and the quality of the input. Three quali-
fication criteria determine whether a candidate decision is included in a RADM:

1. The first criterion is technical quality: Is a real architecture design prob-
lem described? Is the input an architectural decision according to the
characterization of the term given in Chapter 1 (i.e., does it impact a sys-
tem as a whole or one of its core components, does it have an impact on
the non-functional characteristics of the system)? Are the presented alter-
natives technically sound, particularly the chosen one? Did the contribut-
ing project succeed? Is the architect still content with the decision?

2. The second criterion is the reuse potential: Does the candidate issue per-
tain to one of the principles and patterns defining the architectural style?
Will it recur? Does it have sustainable, long lasting character or is it a
tactical or temporary decision? Does it avoid to reference proprietary de-
sign elements or other information that can not be shared?

3. The third criterion is editorial quality: Does the issue description read
well? Is established terminology used, e.g., are the referenced design
model elements defined in Enterprise Application Development (EAD)
and Enterprise Application Integration (EAI) literature or SOA patterns?
Can issue and outcome be separated from each other?

The first two criteria are mandatory, the third one is optional: If the editorial
quality is poor, it can be improved with reasonable editing effort if there is a
strong need for the decision, e.g., high reuse potential (criterion 2).

Integrate. The second step is to integrate a decision that passes the qualification
criteria into an already existing RADM. An identification rule must be selected
(see Chapter 5). It has to be decided which level (as defined in Section 6.2) to add
the decision to; if a single decision spawns several levels, e.g., covering concep-
tual, technology, and vendor-specific aspects, it has to be split. Furthermore, the

 12 Appendix A: Harvesting Architectural Decision Knowledge 189

decision must be placed into an existing or an additional architectural decision
topic group (without breaking the usability heuristics from Definition 6.10).

In this step, the decision made becomes a decision required (issue): The moti-
vation for the decision becomes the problem statement. Assumptions and justifica-
tion of the decision made become decision drivers of the issue. The chosen alter-
native becomes a recommended alternative; any rejected ones are also included.

A meaningful name for the issue must be found. The patterns community ad-
vises us that finding good names is essential when creating a pattern language, but
also hard [Fow06]; the same holds for issue names. The name should be compact,
but also expressive: A generic name is broadly understandable and does not to
have to be modified often; a concrete one serves well as an issue identifier. In any
case, the name must be self explaining, e.g., when appearing in a tool that does not
display any other attributes in a particular view (e.g., an issue explorer).

Harden. In the hardening step, the issue and alternative descriptions are improved
editorially. Issue and alternative information not present in the raw input, but re-
quired according to the SOAD metamodel is added (for an overview, see template
in Figure 19 on page 86 and example in Figure 21 on page 89).

For instance, decision dependency information is often missing in the output of
the review and the integrate steps. If missing, it is added in this step; if present, it
is reviewed and improved. The integrity constraints and heuristics from Section
 6.2 should be respected when doing so. Scope, phase, role, and subject area infor-
mation is also added in this step, as well as the asset information such as owner,
editorial status, and acknowledgments.

The knowledge engineer should not assume, guess, or strive for premature
completion. It might be required to contact the contributor of the issue in this step
to obtain missing information. This also is an opportunity to enquire about addi-
tional lessons learned if the knowledge engineer is uncertain about one or more of
the three qualification criteria from above (if this has not been done in the review
step already). The justification of a decision given on a project should only be up-
graded to a recommendation if the architect still is content with the decision once
made and if an agreed upon quality assurance gate is passed (e.g., the project
completed successfully and the solution has been running in production success-
fully for a certain amount of time).

If the quality assurance gate is not passed, the issue can be kept if it is relevant
(even if the outcome from the project is not used). It is possible to leave certain at-
tributes empty, or use placeholders to indicate that additional knowledge from the
community has to be obtained at a later stage. A disclaimer should be added to the
model in such a case, indicating that the issue has not been fully modeled and
quality assured yet and that additional contributions are welcome. Asset informa-
tion such as the editorial status and the to do attribute can be used for that purpose.

Align. Finally, the alignment step adds dependencies to and from already existing
issues and removes undesired redundancies.

In this step, already existing decisions in the RADM may have to be modified.
It is important to observe the editorial status during such decision model refactor-
ing, e.g., if certain issues have already been approved, it might not be possible for

190 12 Appendix A: Harvesting Architectural Decision Knowledge

the knowledge engineer to rephrase them freely without causing additional, unde-
sired review efforts.

Note that some redundancies are desired: Due to the introduction of the refine-
ment levels, many architecture design concerns are first presented conceptually,
then on the technology level, and finally on the vendor asset level. Such controlled
redundancies serve didactical purposes, and they also make a design future proof.

It is also required to review the writing style and general editorial maturity in
this step: As reported in Chapter 9, consumers of the RADM expect publication
quality. The standard guidelines for professional writing apply (e.g., to introduce
all acronyms, to use them consistently, etc.). It is also important to manage expec-
tations: a RADM does not intend take over the decision making responsibilities on
a project as a knowledge engineer creating an asset for a community can not be
aware of the project-specific requirements that apply when the RADM is reused.

To complete the four step process, a third path over all attributes is performed,
as well as a final alignment of the decision dependencies (defined in Chapter 6).

If the resulting issue description does not yet meet the quality goals that have
been established (e.g., review and approval by members of the target audience or
by other knowledge engineers), it may be required to return to the harden, the in-
tegrate, or even the review step now.

This completes the description of the RIHA process in this thesis. Obviously it
leaves many choices to the knowledge engineer. We successfully applied it when
creating the RADM for SOA, which was well received in practice (see Chapter 9).

12.3 Experience and Decision Modeling Guidance

In this section, we present several lessons learned during asset harvesting and con-
solidate them into initial decision capturing advice for knowledge engineers.

12.3.1 Experience With the Review Step

Due to the practical inhibitors for retrospective decision capturing reported in the
literature [TAG+05], the incoming knowledge can not be expected to be consis-
tent, complete, and correct, or to adhere to any particular metamodel. According to
our experience, its quality varies from poor to solid. For instance, it often is too
abstract to be useful. Very few decision logs already have the editorial quality that
is required in a reusable asset; e.g., practitioners can not be expected to provide
detailed references to literature or other assets. This does not mean that the archi-
tects are poor technical writers or inexperienced in their profession, but can be ex-
plained by the practical decision capturing inhibitors (see coverage of state of the
practice in Chapter 2 and SOAD step descriptions throughout Chapters 5 to 8).

Our particular input particularly lacked consistency and issue categorization.
Dependency relations were captured only in a few exceptional cases. Conceptual
aspects were sometimes blended with technology and vendor asset level rationale.

 12 Appendix A: Harvesting Architectural Decision Knowledge 191

Many capturing styles were used. For instance, the assumptions and justification
fields in the architectural decisions artifact in IBM UMF [CCS07] were used in
several ways (e.g., to trace a decision back to requirements, to express uncertainty,
or to make tacit context information explicit). Many decisions were hiding, e.g., in
other technical or in project management artifacts. The decision logs often used
other component names than other artifacts, e.g., method technique papers and de-
sign models. However, in a few cases, the decision logs already had publication
quality; a remaining harvesting task was to remove client- and project-specific de-
tails.

Supported by the identification rules from Chapter 5, we detected missing is-
sues. For instance, a pattern selection decision is usually accompanied by pattern
adoption decisions and must be refined by a technology selection decision.

To screen the raw input rapidly and mark architecturally relevant parts for later
processing, we used a color coding for the metamodel elements defined in Chapter
6: Blue marks indicated issues, purple marks alternatives. Yellow marks indicated
decision drivers and recommendations; green stood for pros of alternatives, red for
cons. The initial issue catalog can be derived from such preprocessed input.

12.3.2 Guidance for the Integrate, Harden, Align Steps

In Chapter 6, we defined integrity constraints and quality heuristics for architec-
tural decision models, which advise on the number of nesting levels and how to
work with the dependency relations (Definition 6.10). We now present several ad-
ditional guidelines. All of these guidelines are suggestive rather than normative as
this appendix is an experience report, not a validated research contribution.

Names. Issue and alternative names must be free of vendor jargon. They should
be nouns which reference terms from a pattern language or other definition of the
architectural style, e.g., MESSAGE EXCHANGE PATTERN in SOA design. The names
should already indicate the SOAD refinement level, identification rule, and/or
topic group so that they are self explaining when seen in isolation, e.g., in an in-
dex. Such naming conventions also simplify decision filtering in SOAD step 5.
For instance, the terminology in our RADM for SOA references the enterprise ap-
plication patterns and the SOA literature [Fow03, HW04, Ars04, KBS05].

Alternatives. All alternatives listed for an issue must solve the same problem. All
alternatives of an issue must reside on the same level of refinement; conceptual
and technology alternatives are assigned to different, but related issues so that the
level structure introduced in Chapter 6 is adhered to. The alternatives in an issue
should catch all known “mainstream” solutions as well as a few more exceptional
ones that have been applied in practice. A “good enough” approach is followed;
capturing all potential solutions, including theoretical options, is not a goal of the
asset harvesting process (“if in doubt, leave it out”). By convention, the alterna-
tives are ordered from common and recommended to exceptional; if present, fall-
back alternatives such as CUSTOM CODING and OTHER LANGUAGE appear last.

192 12 Appendix A: Harvesting Architectural Decision Knowledge

Decision drivers. The information about decision drivers should use a consistent
vocabulary. It may originate from enterprise architecture guidelines or an industry
standard such as [ISO01]. The more homogeneous and consistent the vocabulary
is, the easier it becomes to tailor the model and to use it during the decision mak-
ing processes described in Chapter 7. For instance, decision drivers can be
searched for easily if the vocabulary is standardized. Supporting tradeoff analysis
and decision making techniques such as ATAM and ADD [BCK03] can be ap-
plied more easily as well.

It is also worth nothing that decision drivers change over project phases and re-
finement levels; there is a trend from strategic and abstract to tactical and con-
crete. In early phases and higher levels, the decision drivers should be of strategic,
long lasting nature, whereas later in the process and the level structure they be-
come more concrete and tactical.59

Recommendations. The recommendations attribute of an issue should refer to the
decision drivers. The same holds for the pros and cons information in an alterna-
tive. Justifications in outcome instances appearing in ADMs, which are added on
projects, should then reference recommendations and decision drivers in the re-
ferred issue description.

General advice. The description of a decision and its alternatives should not ex-
ceed 1000 to 1200 words or one to three HTML pages in a decision log, which
may have been generated by a SOAD tool (this is the case for the decision shown
in Table 34 in Appendix B). Longer descriptions are difficult to display in a user-
friendly way and time consuming to study. If more information is required, the
RADM entry should summarize the issue and refer to a separate document via the
background reading attribute.

The feedback from SOAD users on industrial case studies must be taken into
account (see Chapter 9): Subjective information must be clearly separated from
objective information. The SOAD metamodel has been designed to facilitate this
separation (e.g., objective decision drivers vs. subjective recommendation). Fur-
thermore, the editorial status should indicate the maturity of the knowledge.

The writing style and editing quality must meet professional standards, e.g., be
informative and neutral (e.g., avoid marketing jargon), but also keep the reader in-
terested. If strong claims are made, evidence for them must be provided. Intellec-
tual property rights must be stated clearly; contributors should be acknowledged.

A suggestive, mentoring tone has higher chances to succeed than an authorita-
tive one: The asset creator (knowledge engineer) should give the asset consumer
(architect) the impression that the RADM intends to help and provide orientation,
not to create additional effort or unnecessary technical complexities.

Further information exceeds the scope of thesis. Additional decision capturing
advice is available in the documentation of Architectural Decision Knowledge
Wiki introduced in Chapter 8 [SZ08] as well a practitioner article [ZSE08].

59 A detailed analysis of the relation between the levels in our RADM for SOA and the de-

cision driver categorization in Section 12.4 requires further study (future work).

 12 Appendix A: Harvesting Architectural Decision Knowledge 193

12.4 Decision Drivers in EAD, EAI, and SOA Design

In Chapter 2, we motivated that many requirements in EAD and EAI are specific
to the genre, such as the integration needs of heterogeneous systems and the busi-
ness rules ensuring the integrity of enterprise resources over long periods of time
(see discussion of EAD and EAI challenges in Section 2.1 and requirements in
motivating case study in Section 2.2). Furthermore, many non-technical factors
have an impact on enterprise application development and deployment, for exam-
ple legacy system constraints and organizational issues such as regulatory compli-
ance rules and legal constraints, cost, and available skills.

To organize the decision drivers and ensure we model relevant information, we
developed a simple decision driver categorization. It can be used when screening
existing architectural artifacts during SOAD step 1 and when applying the RIHA
process from Section 12.2. It can also be used when evaluating whether the system
under construction meets its design goals. Figure 38 introduces the categorization.

Ph. n+1

Phase (Ph.)
n-1

4+1 VPs

Past
Arch. Decisions Architecture Design Work

Reference Information
(Industry Models,

Enterprise Architecture)

Functional Requirements
(BPM, Use Cases, User Stories)

Existing Systems
(Capabilities, Limitations)

Non-Functional Requirements
(incl. Software

Quality Attributes)

Stakeholder Goals
(Existing Practices,
Strategic Directions)

Project Budget
and Timelines

Skills, Experience,
Preferences in Team

Ph. n

4+1 VPs

Future
Arch. Decisions

Nontechnical
Drivers

Technical
Drivers

Figure 38. Decision driver categorization for EAD and EAI

Technical drivers form the top row. They include reference information, for in-
stance industry models and legislative regulations (e.g., accessibility acts and au-
diting compliance rules), enterprise architecture standards, functional require-
ments, Non-Functional Requirements (NFRs), and the results of existing system
analysis activities. The user channel diversity, process and resource integrity, inte-
gration needs, and semantics challenges (Section 2.1.2) and the requirements

194 12 Appendix A: Harvesting Architectural Decision Knowledge

stated for the insurance SOA case study, e.g., the analysis-phase BPM from Sec-
tion 2.2.2 and business rules, NFRs, and legacy constraints from Section 2.2.3 all
fall in this category.

Results from earlier projects and project phases (middle row) also influence
the decision making. It may make sense to make such dependencies explicit not
only via dependency relations (as defined in Chapter 6), but also as decision driv-
ers. The first project phase can be a “phase 0”, i.e., an unbilled presales phase.

There are many non-technical drivers (bottom row): Stakeholder goals, prefer-
ences, disabilities, project budget and timelines, as well as available design and
development skills and experience fall into this category. When conducting pro-
fessional services engagements, contractual obligations regarding education,
maintenance, and support also have to be taken into account. Many of these driv-
ers remain tacit; i.e., they are not specified in requirements documents. In practice,
these drivers often dominate the decision making: The executive-level argument
“there is no budget” is stronger than the technical argument “full portability and
standards compliance is a mandatory NFR”.

13 Appendix B: Excerpt from RADM for SOA

This appendix is a full report of the RADM content for INVOCATION
TRANSACTIONALITY PATTERN, the issue that served as example in Chapter 6. One
outcome instance for the motivating case study has been added.

Table 34. INVOCATION TRANSACTIONALITY PATTERN (RADM for SOA)

AD ID Sld-01 AD
name InvocationTransactionalityPattern

Topic group
hierarchy

ConceptualLevel - SoaServiceRealizationDecisions – AtomicServiceLayerDecisions –
OperationDesignDecisions

Subject area Transaction Management, PSD

Scope Service
 Operation Phase Macro

 Design Role Application
 Architect

Problem
statement

What is the system transactionality of a service (operation) invocation? Transaction
management, e.g., ensuring ACID characteristics, is a system-level response to re-
source integrity requirements. In a business process execution environment, all service
invocations have to decide for certain transaction management settings, e.g., in BPEL
and SCA. Some of these settings are vendor-specific (proprietary). This is one of the
most challenging ADs when designing a process-centric SOA with a Service Composi-
tion Layer (SCL); it also has to be made when no such layer exists.

Decision
drivers

Business-level resource protection and data currency needs, capabilities of the avail-
able service interfaces as well as standard NFRs such as parallelism (number and size
of transactions), manageability, and performance.

Alternatives

[1] Transaction Islands (default)

Description

This pattern isolates process activities in the Service Composition
Layer (SCL) from service operation execution (from a system trans-
action management standpoint). It consists of these settings for the
primitives (see related decisions): PAT-J or PAT-N, CT-SNT, ST-N.

Pros

Transaction Islands is often seen as the only alternative that is faithful
to the SOA vision of loosely coupling consumer and provider. This al-
ternative decouples the service composition layer from the invoked
services (from a system transaction management point of view). The
transactions therefore are rather fine grained and often short running
(see related decision, dealing with the PAT primitive, for a discussion
of the size and duration of the SCL transactions).

Cons

If a service operation has to be rolled back, the transaction in which
the process navigation in the SCL runs is not affected. If a service
works with shared enterprise resources, the service operations must
be idempotent, as they may be executed more than once due to the
transactional process navigation in the SCL. In many cases, the ser-
vice provider must offer a compensation operation, and higher-level
coordination is required (e.g., via business transactions).

Known uses In practice, this pattern is often selected as a default choice.

Background
reading

The paper "Architectural decisions and patterns for transactional
business process in SOA" has detailed explanations. It can be found

196 13 Appendix B: Excerpt from RADM for SOA

here:
http://soadecisions.org/download/ICSOC2007_4749_0081_0093.pdf

[2] Transaction Bridge

Description

Via context sharing, this pattern couples process activity execution in
the service composition layer and service operation execution from a
transaction management perspective. Transaction Bridge consists of
the following primitives: PAT-J or PAT-N, CT-ST, ST-J. See related
decisions for detailed information regarding these primitives.

Pros Covers resource protection needs well on the system level.

Cons

Process activity and invoked service operation execute in the same
transaction. Several service operations can participate in the same
transaction. Therefore, there is a natural limit for the response times
(tenths of seconds to seconds at most). If a service operation has to
be rolled back, e.g., due to a service-internal processing error, previ-
ous transactional work, which can include process navigation in the
SCL and the invocation of other services, has to be rolled back as
well.

Known uses

This pattern often is not applicable, e.g., when processes and opera-
tions are long running or communicate over a slow or unreliable Wide
Area Network (WAN). However, in certain short-running micro flow
scenarios, on subprocess level, it can be the most straightforward
way to meet the resource protection needs.

Background
reading

The paper "Architectural decisions and patterns for transactional
business process in SOA" has detailed explanations [ZGT+07].

[3] Stratified Stilts

Description

Use message queuing as SOA communication infrastructure to real-
ize Queued Transaction Processing (QTP) in SOA. The SCL transac-
tion is suspended during service invocation. Stratified Stilts consists
of the following primitives: PAT-J or PAT-N, CT-AS, ST-J. See related
decisions for detailed information regarding these primitives.

Pros

Process activities are loosely coupled with the services, distributing
work asynchronously. Services are not forced to respond in a timely
fashion; message delivery is guaranteed by the messaging infrastruc-
ture. This pattern is well suited in long running process integration
scenarios that have to use unreliable networks or slow or unreliable
service providers.

Cons

However, if the service operation execution fails, the process may not
get an immediate response; additional error handling is required, of-
ten using timeout and compensation logic. Significant testing and sys-
tems management efforts are required.

Known uses
Most message-based workflow solutions. This pattern often is the
only choice in process-enabled SOA, e.g., when integrating legacy
systems.

Background
reading

Stratification is explained in depth in "Production Workflow" by F.
Leymann and D. Roller [LR00].

[4] Not applicable

Recommendation Transaction Islands as default, Stratified Stilts for long running, distributed processes.

Decision
outcomes

Default for Customer Enquiry process in PremierQuotes SOA

Status decided

Chosen
Alternative Transaction Islands

Justification Legacy system constraints force us to address resource
protection needs with business transactions (compensation).

Background If you need a quick reminder what transaction management is about, take a look at the

 13 Appendix B: Excerpt from RADM for SOA 197

reading following article: http://www.ibm.com/developerworks/java/library/os-ag-
transsup/index.html . If you need a thorough introduction to the topic in a workflow con-
text, we recommend Chapter 7 of "Production Workflow" by F. Leymann and D. Roller.

Related
decisions

influences Cmd-04 ProcessActivityTransactionalityPAT
influences Crd-05 ServiceProviderTransactionalityST
influences Ird-08 CommunicationsTransactionalityCT
influences Ser-05 OperationCompensation
is influenced by Cmd-01 ResourceProtectionStrategy
is influenced by Msg-01 MessageExchangePattern

Editorial
information

Acknowledgments: original SOAD content contributed by Olaf Zimmermann, harvested
from projects 1999-2005. Joint work with Jonas Grundler and Stefan Tai.
Last modification on 2009-03-17 11:48:59.557000
Status: published as alphaWorks sample (minor edits)
Todo: to be reviewed semi-annually
IPR level: COPYRIGHT-PROTECTED ASSET
© Olaf Zimmermann and IBM Research GmbH, 2009. All rights reserved.

References

External References

[ABK+06] Abrams, S., Bloom, B., Keyser, P., Kimelman, D., Nelson, E., Neu-
berger, W., Roth, T., Simmonds, I., Tang, S., and Vlissides, J., Archi-
tectural Thinking and Modeling with the Architects’ Workbench.
IBM Systems Journal, Volume 45, Number 3, 2006. Pages 481-500.

[ACK+03] Alonso G., Casati F., Kuno H., Machiraju V., Web Services: Con-
cepts, Architectures and Applications. Springer, 2003.

[ACM03] Alur D., Crupi J., Malks D., Core J2EE Patterns. Prentice Hall, 2003.
[AFM+05] Akkiraju R., Farell J., Miller J. A., Nagarajan M., Sheth A., and

Verma K., Web Service Semantics – WSDL-S, W3C Submission.
Available online:
http://www.w3.org/2005/04/FSWS/Submissions/17/WSDL-S.htm

[AGA+08] Arsanjani A., Ghosh S., Allam A., Abdollah T., Ganapathy S., Holley
K., SOMA: A Method for Developing Service-Oriented Solutions.
IBM Systems Journal, Volume 47, Number 3, 2008. Pages 377-396.

[AGJ05] Ali Babar M., Gorton I., Jeffery R., Capturing and Using Software
Architecture Knowledge for Architecture-Based Software Develop-
ment. Proceedings of Fifth International Conference on Quality Soft-
ware (QSIC), IEEE Computer Society, 2005. Pages 169-176.

[AH05] Arsanjani A., Holley K., Increase Flexibility with the Service Integra-
tion Maturity Model (SIMM), IBM developerWorks, 2005.

[ALM+99] Avison D., Lau F., Myers M., Nielsen P. A., Action Research. Com-
munications of the ACM, Volume 42 Number 1, 1999. Pages 94-97.

[Ars04] Arsanjani, A., Service-Oriented Modeling and Architecture, IBM de-
veloperWorks, 2004.

[BB06] Brahe S., Bordbar S., A Pattern-Based Approach to Business Process
Modeling and Implementation in Web Services. Proceedings of IEEE
ICSOC Workshops, 2006. Pages 166-177.

200 References

[BC89] Beck K., Cunningham W., A Laboratory For Teaching Object-
Oriented Thinking. Proceedings of OOPSLA 89. ACM, 1989. Pages
1-6.

[BCK03] Bass, L., Clements, P., Kazman, R., Software Architecture in Prac-
tice, Second Edition. Addison Wesley, 2003.

[Bec00] Beck K., Extreme Programming Explained. Addison Wesley, 2000.
[Bec02] Beck K., Test-Driven Development. Addison Wesley, 2002.

[BHS07] Buschmann F., Henney K., Schmidt D., Pattern-Oriented Software
Volume 4 – A Language for Distributed Computing. Wiley, 2007.

[BMR+96] Buschmann F., Meunier R., Rohnert H., Sommerlad P., and Stal M.,
Pattern-Oriented Software Architecture – a System of Patterns. Wiley,
1996.

[Boe88] Boehm B., A Spiral Model of Software Development and Enhance-
ment, IEEE Computer Volume 21(5), 1988. Pages 61-72.

[Boo] Booch G., Handbook of Software Architecture. Available online:
http://www.booch.com/architecture

[Boo94] Booch G., Object-Oriented Analysis and Design with Applications.
Addison Wesley, 1994.

[Bre] Bredemeyer Consulting, Key Architecture Decisions Template.
Available online: http://www.bredemeyer.com/papers.htm

[CBD+06] Everware-CBDI Inc, CBDI Service Architecture & Engineering: A
Framework and Methodology for Service-Oriented Architecture
(SOA). CBDI Report, 2006.

[CCS07] Cook D., Cripps P., Spaas P., An Introduction to the IBM Views and
Viewpoints Framework for IT Systems. IBM developerWorks, 2007.

[CLK07] Chang S. H., La, H. J., Kim S. D., A Comprehensive Approach to
Service Adaptation. Proceedings of SOCA’07, IEEE Computer Soci-
ety, 2007. Pages 191-198.

[CK07] Chang S. H., Kim S. D., A Systematic Analysis and Design Approach
to Develop Adaptable Services in Service-oriented Computing. Pro-
ceedings of SCC’07, IEEE Computer Society, 2007. Pages 375-378.

[CNP+06] Capilla R., Nava F., Perez S., and Duenas J.C., A Web-based Tool for
Managing Architectural Design Decisions. Proceedings of 1st ACM
Workshop on SHaring Architectural Knowledge (SHARK),
SIGSOFT Software Engineering Notes 31, 5, 2006.

[Coc03] Cockburn A., People and Methodologies in Software Development.
Ph. D. Thesis, Faculty of Mathematics and Natural Sciences, Univer-
sity of Oslo, Norway, 2003.

[DC05] Duenas, J. C., Capilla R., The Decision View of Software Architec-

201 References

ture. Proceedings of 2nd European Workshop on Software Architec-
ture (EWSA), Springer LNCS Volume 3527/2005, Pages 222-230.

[DC07] Diaz-Pace J. A., Campo M. R., Using Planning Techniques to Assist
Quality-driven Architectural Design Exploration. Proceedings of
QoSA 2007, Springer LNCS Volume 4880/2008. Pages 33-52.

[DFL+07] de Boer R.C., Farenhorst, R., Lago P., van Vliet H., Clerc V., and
Jansen A. Architectural Knowledge: Getting to the Core. Proceedings
of QoSA 2007, Springer LNCS Volume 4880/2008. Pages 197-214.

[EAK06] Erradi A., Anand S., Kulkarni N., SOAF: An Architectural Frame-
work for Service Definition and Realization. Proceedings of SCC’06,
IEEE Computer Society, 2006. Pages 151-158.

[Ecl] Eclipse Foundation, Eclipse – An Open Development Platform. Avai-
lable online: http://www.eclipse.org

[Eme03] Emerich W., Konstruktion von Verteilten Objekten. Dpunkt, 2003.

[Erl04] Erl T., Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall, 2004.

[Erl05] Erl T., Service-Oriented Architecture: Concepts, Technology & De-
sign. Prentice Hall, 2005.

[Erl08] Erl T., SOA Principles of Service Design. Prentice Hall, 2008.

[Erl09] Erl T., SOA Design Patterns. Pearson, 2009.

[Eva03] Evans E., Domain-Driven Design. Tackling Complexity in the Heart
of Software. Addison Wesley, 2003.

[FBC06] Falessi D., Becker M. Cantone G., Design Decision Rationale: Ex-
periences and Steps Towards a More Systematic Approach. Proceed-
ings of 1st ACM Workshop on SHaring Architectural Knowledge
(SHARK). SIGSOFT Software Engineering Notes 31, 5, 2006.

[Fie00] Fielding R. T., Architectural Styles and the Design of Network-based
Software Architectures, Ph. D. Thesis, University of California, Ir-
vine, 2000.

[Fow97] Fowler M., Analysis Patterns: Reusable Object Models. Addison
Wesley, 1997.

[Fow00] Fowler M., UML Distilled. Addison Wesley, 2000.
[Fow03] Fowler M., Patterns of Enterprise Application Architecture. Addison

Wesley, 2003.
[Fow05] Fowler M., Open Space. Available online:

http://martinfowler.com/bliki/OpenSpace.html
[Fow06] Fowler M., Writing Software Patterns. Available online:

http://www.martinfowler.com/articles/writingPatterns.html

202 References

[Fow07] Fowler M., AltNetConf (OOPSLA school of software development).
Available online: http://martinfowler.com/bliki/AltNetConf.html

[FS96] Fuchs, N. E. and Schwitter, R., Attempto Controlled English (ACE).
Proceedings of CLAW 96, First International Workshop on Con-
trolled Language Applications, University of Leuven, Belgium, 1996.
Pages 124-136.

[GHJ+95] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[GR93] Gray J., Reuter A., Transaction Processing: Concepts and Techniques.
Morgan Kaufman Publishers, 1993.

[GR01] Gongla P., Rizzuto C. R., Evolving Communities of Practice: IBM
Global Services Experience, IBM Systems Journal, Volume 40, Num-
ber 4, 2001. Pages 842-862.

[HAZ07] Harrison N., Avgeriou P., and Zdun U.. Using Patterns to Capture Ar-
chitectural Decisions. IEEE Software, IEEE Computer Society 2007.
Pages 38-45.

[HGR08] Henderson-Sellers, B., Gonzalez-Perez, C., Ralyte, J., Comparison of
Method Chunks and Method Fragments for Situational Method Engi-
neering. Proceedings of 19th Australian Conference on Software En-
gineering. IEEE Computer Society, 2008. Pages 479-488.

[HKN+07] Hofmeister C., Kruchten P., Nord, Obbink J. H., Ran A., America P.,
A General Model of Software Architecture Design Derived from Five
Industrial Approaches. Journal of Systems and Software 80(1), El-
sevier, 2007. Pages 106-126.

[HNS00] Hofmeister C., Nord R., Soni D., Applied Software Architecture. Ad-
dison Wesley, 2000.

[Hoh07] Hohpe G., SOA Patterns: New Insights or Recycled Knowledge?
Keynote at Fifth International Workshop on SOA and Web Services
Best Practices (at OOPSLA), Montreal, Canada, October 21, 2007.

[HW04] Hohpe G., Woolf, B., Enterprise Integration Patterns. Addison
Wesley, 2004.

[HZ06] Hentrich C., Zdun, U., Patterns for Process-Oriented Integration in
Service-Oriented Architectures. Proceedings of 11th European Con-
ference on Pattern Languages of Programs (EuroPLoP 2006), Irsee,
Germany, July 2006.

[IBM] IBM Software Group, http://www.ibm.com/software

[IEEE07] ISO/IEC IEEE Std 1471-2000, Systems and Software Engineering –
Recommended Practice for Architectural Description of Software-
Intensive Systems, ISO/IEC, 2007.

[IETF] Internet Engineering Task Force, Transport Layer Security. Available

203 References

online: http://www.ietf.org/html.charters/tls-charter.html

[IO] Interactive Objects, ArcStyler,
http://www.interactive-objects.com/products

[ISO01] International Standards Organization (ISO), ISO/IEC 9126-1:2001,
Software Quality Attributes, Software Engineering – Product Quality,
Part 1: Quality Model, 2001.

[Jan08] Jansen A., Architectural Design Decisions. Ph. D. Thesis, Groningen
University, Netherlands, 2008.

[Jaz] Jazz Community Site, https://jazz.net/pub/index.jsp
[JB05] Jansen A., Bosch, J., Software Architecture as a Set of Architectural

Design Decisions, Proceedings of the 5th Working IEEE/IFP Confer-
ence on Software Architecture (WICSA’05), IEEE Computer Society,
2005. Pages 109-120.

[Joh05] Johnston, S., RUP Plug-In for SOA V1.0, IBM developerWorks,
2005.

[Jos07] Josuttis N., SOA in Practice – The Art of Distributed Systems Design.
O’Reilly, 2007.

[KBH+04] Keen M., Bishop S., Hopkins A., Milinski S., Nott C., Robinson R.,
Adams J., Verschueren P., and Acharya A., Patterns: Implementing
an SOA Using an Enterprise Service Bus. IBM Redbook, 2004.

[KBS05] Krafzig D., Banke K., Slama D., Enterprise SOA, Prentice Hall, 2005.
[KLV06] Kruchten P., Lago P., van Vliet H., Building up and Reasoning about

Architectural Knowledge. Proceedings of QoSA 2006, LNCS 4214,
Springer 2006. Pages 43-58.

[Kru95] Kruchten P., The 4+1 View Model of Architecture, IEEE Software,
Volume 12, Number 6, November 1995. Pages 42-50.

[Kru03] Kruchten P., The Rational Unified Process: An Introduction. Addi-
son-Wesley, 2003.

[LL91] Lee J., Lai, K., What's in Design Rationale?, Human-Computer Inter-
action, 6(3&4), 1991. Pages 251-280.

[LL07] Ludewig, J., Lichter H., Software Engineering: Grundlagen, Men-
schen, Prozesse, Techniken. dPunkt, 2007.

[LR00] Leymann F., Roller D., Production Workflow – Concepts and Tech-
niques. Prentice Hall, 2000.

[MB02] Malan R., Bredemeyer D., Less is More with Minimalist Architecture.
IT Pro, IEEE Computer Society, October 2002.

[Mey00] Meyer, B., Object-Oriented Software Construction, 2nd edition. Pren-
tice Hall, 2000.

204 References

[Mit05] Mitra T., Business-Driven Development. IBM developerWorks, 2005.

[MS07] Microsoft Corporation, Microsoft Project 2007.
http://office.microsoft.com/en-us/project/FX100487771033.aspx

[MYB+91] MacLean A., Young R., Bellotti V., and Moran T., Questions, Op-
tions, and Criteria: Elements of Design Space Analysis, Human-
Computer Interaction, 6 (3&4), 1991. Pages 201-250.

[OAS04] OASIS, UDDI Version 3.0.2. UDDI Spec Technical Committee
Draft, Dated 20041019. Available online:
http://uddi.org/pubs/uddi_v3.htm

[OAS06] OASIS, Reference Model for Service Oriented Architecture Version
1.0. Committee Specification 1, August 2, 2006. Available online:
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html

[OAS07] OASIS, Web Services Business Process Execution Language (WS-
BPEL), Version 2.0, April 2007. Available online: http://www.oasis-
open.org/committees /tc_home.php?wg_abbrev=wsbpel

[OAS07a] OASIS, Web Services Atomic Transaction (WS-AtomicTransaction)
Version 1.1, OASIS Standard Incorporating Approved Errata, 12 July
2007. Available online: http://docs.oasis-open.org/ws-tx/wstx-wsat-
1.1-spec/wstx-wsat-1.1-spec.html

[OAW] openArchitectureWare Version 4.3. Available online:
http://www.openarchitectureware.org

[OG] Open Group, SOA Reference Architecture Working Group, Available
online:
http://www.opengroup.org/projects/soa/doc.tpl?CALLER=index.tpl&
gdid=13577

[OG97] Open Group, Distributed Computing Environment (DCE) Version
1.2.2, 1997 to 2005. Available online: http://www.opengroup.org/dce

[OG07] Open Group, The Open Group Architecture Framework, Version
8.1.1, 2007. Available online: http://www.opengroup.org/togaf

[OHE99] Orfali R., Harkey D., Edwards J., Client/Server Survival Guide, Third
Edition. Wiley, 1999.

[OMG] Object Management Group, Service oriented architecture Modeling
Language (SoaML) – Specification for the UML Profile and Meta-
model for Services (UPMS) Revised Submission, August 2008.
Available online: http://www.omg.org/docs/ad/08-08-04.pdf

[OMG03] Object Management Group, MDA Guide Version 1.0.1, June 2003.

[OMG04] Object Management Group, CORBA Version 3.0.3, March 2004.

[OMG05] Object Management Group, Reusable Asset Specification, Version
2.2, November 2005.

205 References

[OMG06] Object Management Group, Object Constraint Language Version 2.0,

May 2006.

[OMG08] Object Management Group, Software & Systems Process Engineer-
ing, Metamodel Specification (SPEM), Version 2.0, April 2008.

[OSOA] Open SOA Alliance. Service Component Architecture. Available
online: http://www.osoa.org/display/Main/Service+Component
+ Architecture+Specifications

[Pap08] Papazoglou, M., Web Services: Principles and Technology. Pear-
son/Prentice Hall, 2008.

[Pul06] Pulkkinen, M., Systemic Management of Architectural Decisions in
Enterprise Architecture Planning. Four Dimensions and Three Ab-
straction Levels. Proceedings of the 39th Annual Hawaii International
Conference on System Sciences, Volume 08. IEEE Computer Soci-
ety, Washington, DC, 2006. Page 179.1.

[PV06] Papazoglou M., van den Heuvel W. J., Service-Oriented Design and
Development Methodology, International Journal of Web Engineer-
ing and Technology (IJWET) Volume 2 No 4. Inderscience Enter-
prises, 2006. Pages 412-442.

[RHR96] Robbins J. E., Hilbert D. M., and Redmiles D. F.: Extending Design
Environments to Software Architecture Design. Proceedings of the
11th Knowledge-Based Software Engineering Conference (KBSE).
IEEE Computer Society, 1996. Page 63.

[RJB99] Rumbaugh, J., Jacobson, I., Booch, G., The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1999.

[RK96] Ran A., Kuusela J., Design Decision Trees. Proceedings of 8th Inter-
national Workshop on Software Specification and Design, Interna-
tional Workshop on Software Specifications & Design. IEEE Com-
puter Society, 1996. Pages 172-175.

[SEI] Software Engineering Institute, Capability Maturity Model Integra-
tion (CMMI). Available online: http://www.sei.cmu.edu/cmmi

[SG96] Shaw M., Garlan D., Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[Sha03] Shaw M., Writing Good Software Engineering Research Papers:
Minitutorial. Proceedings of the 25th International Conference on
Software Engineering. IEEE Computer Society, 2003. Pages 726-736.

[SKS02] Silberschatz A., Korth H. F., Sudarshan S., Database System Con-
cepts. McGraw-Hill, 2002.

[Som95] Sommerville I., Software Engineering, Fifth Edition. Addison
Wesley, 1995.

206 References

[SunEJB] Sun Microsystems, Java Platform, Enterprise Edition (Java EE), En-
terprise JavaBeans Technology, http://java.sun.com/products/ejb

[SunJEE] Sun Microsystems, Java EE 5,
http://java.sun.com/javaee/technologies/javaee5.jsp

[SunJMS] Sun Microsystems, Java Message Service,
http://java.sun.com/products/jms

[SunWS] Sun Microsystems, Metro Web Services Overview,
http://java.sun.com/webservices, JAX-WS, https://jax-ws.dev.java.net

[Sup] Supply Chain Council, Supply-Chain Operations Reference Model
(SCOR) Version 9.0. Available online: http://www.supply-
chain.org/cs/root/scor_tools_resources/scor_model/scor_model

[SV06] Stahl T., Völter M., Model-Driven Software Development. Wiley and
Sons, 2006.

[SVQ06] Shishkov B., van Sinderen M., Quartel D., SOA-Driven Business-
Software Alignment. Proceedings of the IEEE International Confer-
ence on e-Business Engineering (ICEBE 2006). IEEE Computer So-
ciety, 2006. Pages 86-94.

[SVT07] Shishkov B., van Sinderen M., Tekinerdogan, Model-Driven Specifi-
cation of Software Services. Proceedings of the IEEE International
Conference on E-Business Engineering (ICEBE 2007). IEEE Com-
puter Society, 2007. Pages 13-21.

[SWL+03] Svahnberg M., Wohlin C., Lundberg L., Mattsson M., A Quality-
Driven Decision Support Method for Identifying Software Architec-
ture Candidates, International Journal of Software Engineering and
Knowledge Management, Volume 13, No. 5, World Scientific, 2003.
Pages 547-573.

[SZ92] Sowa J. F., Zachman, J. A., Extending and Formalizing the Frame-
work for Information Systems Architecture, IBM Systems Journal,
Volume 31, Number 3, 1992. Pages 590-616.

[TA05] Tyree, J., Ackerman, A., Architecture Decisions: Demystifying Ar-
chitecture. IEEE Software Volume 22, Issue 2, 2005. Pages 19-27.

[Ta07] Tang A., A Rationale-Based Model for Architecture Design Reason-
ing, Ph. D. Thesis, Swinburne University of Technology, 2007.

[TAG+05] Tang, A., Ali Babar, M., Gorton, I., and Han, J. 2005. A Survey of the
Use and Documentation of Architecture Design Rationale. Proceed-
ings of the 5th Working IEEE/IFIP Conference on Software Architec-
ture. IEEE Computer Society, 2005. Pages 89-98.

[TV03] Tanenbaum A. S., van Steen M., Distributed Systems. Principles and
Paradigms, International Edition. Prentice Hall, 2003.

207 References

[VKZ04] Völter M., Kircher M., and Zdun U., Remoting Patterns – Founda-

tions of Enterprise, Internet, and Realtime Distributed Object Mid-
dleware. Wiley, 2004.

[VT] v.d. Aalst W.M.P., ter Hofstede A., Workflow Patterns. Available
online: http://www.workflowpatterns.com

[W3C00] Extensible Markup Language (XML) 1.0 (Second Edition). W3C
Recommendation 6 October 2000. Available online:
http://www.w3.org/TR/REC-xml

[W3C01] W3C. Web Services Description Language (WSDL) 1.1. March 2001.
Available online: http://www.w3.org/TR/wsdl

[W3C03] W3C. SOAP Version 1.2, W3C Recommendation 24 June 2003.
Available online: http://www.w3.org/TR/2003/REC-soap12-part0-
20030624

[W3C04] W3C, Web Services Architecture, W3C Working Group Note 11 Feb-
ruary 2004. Available online: http://www.w3.org/TR/2004/NOTE-
ws-arch-20040211

[W3C07] W3C, Web Services Policy 1.5 – Framework, W3C Recommendation
September 2007. Available online:
http://www.w3.org/TR/2007/REC-ws-policy-20070904

[Wah08] Wahler M., Using Patterns to Develop Consistent Design Constraints.
Ph. D. Thesis, Swiss Federal Institute of Technology Zurich, 2008.

[WCL+05] Weerawarana S., Curbera F., Leymann F., Storey T., Ferguson D. F.,
Web Services Platform Architecture. Prentice Hall, 2005.

[WJ05] Witthawaskul W., Johnson R., Transaction Support Using Unit of
Work Modeling in the Context of MDA. Proceedings of the Ninth
IEEE International EDOC Enterprise Computing Conference. IEEE
Computer Society, 2005. Pages 131-141.

[WSI06] Web Services Interoperability. WS-I Basic Profile 1.1, April 2006.
Available online: http://www.ws-i.org/Profiles/BasicProfile-1.1.html

[WSI07] Web Services Interoperability. WS-I Basic Security Profile 1.0,
March 2007. Available online:
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

[Yah] Yahoo Inc., Pipes: Rewire the Web. Available online:
http://pipes.yahoo.com/pipes

[Yip] Yip, J., It's Not Just Standing Up: Patterns of Daily Stand-up Meet-
ings. Available online:
http://www.martinfowler.com/articles/itsNotJustStandingUp.html

[You89] Yourdon E., Modern Structured Analysis. Yourdon Press Computing
Series, 1989.

208 References

[YRS+99] Youngs R., Redmond-Pyle D., Spaas P., and Kahan E., A Standard
for Architecture Description, IBM Systems Journal, Volume 38,
Number 1, 1999. Pages 32-50.

[ZAH+08] Zdun U., Avgeriou P., Hentrich C., and Dustdar S., Architecting as
Decision Making with Patterns and Primitives. Proceedings of the 3rd
International Workshop on Sharing and Reusing Architectural
Knowledge (SHARK '08). ACM, 2008. Pages 11-18.

[ZD06] Zdun, U., Dustdar, S., Model-Driven and Pattern-Based Integration of
Process-Driven SOA Models, Internationales Begegnungs- und For-
schungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany.
Available online: http://drops.dagstuhl.de/opus/volltexte/2006/820

[Zdu07] Zdun U., Systematic Pattern Selection using Pattern Language Gram-
mars and Design Space Analysis. Software: Practice & Experience,
2007.

[ZHD07] Zdun U., Hentrich C., and Dustdar S., Modeling Process-Driven and
Service-Oriented Architectures Using Patterns and Pattern Primitives.
ACM Transactions on the Web (TWEB), Volume 1, No. 3, ACM,
2007.

Refereed Papers Co-Authored by Thesis Author (in Reverse
Chronological Order)

[ZKL+09] Zimmermann O., Koehler J., Leymann F., Polley R., Schuster N.,
Managing Architectural Decision Models with Dependency Relations,
Integrity Constraints, and Production Rules. Accepted for The Journal
of Systems and Software, Special Issue on Design Decisions and Ra-
tionale in Software Architecture. Elsevier, 2009.

[PZL08] Pautasso C., Zimmermann O., Leymann F., RESTful Web Services
vs. Big Web Services: Making the Right Architectural Decision. Pro-
ceedings of WWW 2008, ACM, 2008. Pages 805-814.

[ZZG+08] Zimmermann O., Zdun U., Gschwind T., Leymann F., Combining
Pattern Languages and Architectural Decision Models into a Compre-
hensive and Comprehensible Design Method. Proceedings of IEEE
WICSA 2008, IEEE Computer Society, 2008. Pages 157-166.

[FCZ07] Fernandez E. Colmondeley P., Zimmermann O., Extending a Secure
System Development Methodology to SOA. Proceedings of the 18th
International Conference on Database and Expert Systems Applica-
tions (DEXA 2007). IEEE Computer Society, 2007. Pages 749-754.

[SZP07] Schuster N., Zimmermann O., Pautasso C., ADkwik: Web 2.0 Collabo-
ration System for Architectural Decision Engineering. Proceedings of
the Nineteenth International Conference on Software Engineering &
Knowledge Engineering (SEKE 2007), Knowledge Systems Institute

209 References

Graduate School, 2007. Pages 255-260.

[ZGK+07] Zimmermann O., Gschwind T., Küster J., Leymann F., Schuster N.,
Reusable Architectural Decision Models for Enterprise Application
Development. Proceedings of QoSA 2007, LNCS 4880/2008,
Springer, 2008. Pages 157-166.

[ZGT+07] Zimmermann O., Grundler J., Tai S., Leymann F., Architectural Deci-
sions and Patterns for Transactional Workflows in SOA. Proceedings
of ICSOC 2007, LNCS 4749/2007, Springer, 2007. Pages 81-93.

[ZKL07] Zimmermann O., Koehler J., Leymann F., Architectural Decision
Models as Micro-Methodology for Service-Oriented Analysis and
Design. Proceedings of the Workshop on Software Engineering
Methods for Service-oriented Architecture (SEMSOA 2007).
Available online: http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-244

[ZKL06] Zimmermann O., Koehler J., Leymann F., The Role of Architectural
Decisions in Model-Driven Service-Oriented Architecture Construc-
tion. Proceedings of OOPSLA 2006 Workshop on Best Practices and
Methodologies in Service-Oriented Architectures, Unipub, 2006.
Pages 143-149.

[ZDG+05] Zimmermann O., Doubrovski V., Grundler J., Hogg K., Service-
Oriented Architecture and Business Process Management in an Order
Management Scenario: Rationale, Concepts, Lessons Learned. Com-
panion to the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA '05). ACM, 2005. Pages 301-312.

[ZSW+05] Zimmermann O., Schlimm N., Waller G., Pestel M., Analysis and
Design Techniques for Service-Oriented Development and Integra-
tion, INFORMATIK 2005 – Informatik LIVE! Band 2, Beiträge der
35. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Bonn,
2005. Pages 606-611.

[ZMC+04] Zimmermann O., Milinski S., Craes S., Oellermann F., Second Gen-
eration Web Services-Oriented Architecture in Production in the Fi-
nance Industry, Companion to the 19th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA '04). ACM, 2004. Pages 283-289.

[BCO+04] Brandner, M., Craes, M., Oellermann, F., Zimmermann, O., Web Ser-
vices-Oriented Architecture in Production in the Finance Industry, In-
formatik-Spektrum 02/2004, Springer-Verlag, 2004. Pages 135-145.

210 References

Other Publications Co-Authored by Thesis Author (in Reverse
Chronological Order)

[SZ08] Schuster N., Zimmermann O., Architectural Decision Knowledge
Wiki. Available online:
http://www.alphaworks.ibm.com/tech/adkwik

[TMR+08] Tai S., Mikalsen T., Rouvellou I., Grundler J., Zimmermann O.,
Transactional Web Services. Invited Book Chapter, in: Georgakopou-
los D. and Papazoglou M. P. (eds.), Service-Oriented Computing.
MIT Press, 2008

[ZSE08] Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Archi-
tectural Decisions, Part 1: Concepts. IBM developerWorks, 2008.

[ZKG04] Zimmermann O., Krogdahl, P., Gee C., Elements of Service-Oriented
Analysis and Design. IBM developerWorks, 2004.

[ZM04] Zimmermann O., Müller F., Web Services Project Roles. IBM devel-
operWorks, 2004.

[ZTP03] Zimmermann O., Tomlinson M., Peuser S., Perspectives on Web Ser-
vices: Applying SOAP, WSDL, and UDDI to Real-World Projects.
Springer Professional Computing, 2003.

[WTZ+02] Wahli U., Tomlinson M., Zimmermann O., Deruyk W., Hendricks,
D., Web Services Wizardry with WebSphere Studio Application De-
veloper. IBM Redbook, 2002.

Index

action research, 152
activity (in method), 32
ADD, 34, 118
ADM, 56, 98
ADM repository, 63, 138
agile process, 32, 33, 53, 124
alternative, 60, 96
analysis modeling environment, 38
analysis phase, 13, 22, 78
analysis-phase BPM, 22, 78, 91
application genre, 9
application wiki, 137, 139
architectural analysis, 43
architectural decision, 2, 31, 37, 75, 87
Architectural Decision Knowledge

Wiki, 137
architectural evaluation, 43
architectural knowledge, 2, 37, 46, 176
architectural layers, 19, 77, 101
architectural principle, 15
architectural style, 15
architectural synthesis, 43
architecturally significant requirement,

34
architecture design method, 34, 43, 127,

175
artifact, 32, 61
ASC, 34, 175
asset configuration decision, 71, 73, 80,

81
asset consumption, 55
asset creation, 55
asset harvesting, 56, 187
asset selection decision, 71, 73, 80, 81
atomic service layer, 19, 28, 77

backend channel, 11
backend system, 11
backlog, 34, 43, 118
balanced ADM, 103
BAPO, 34
BAR PATTERN, 66
BPM, 22, 44, 50
business activity, 9
business process, 9, 12, 22
business rule, 24

case study, design issues, 29
case study, industrial, 151
case study, motivating, 21
channel diversity, 11, 16
collaboration system, 47, 183
COMB PATTERN, 66, 127
component layer, 20
components and connectors, 62, 71
conceptual level, 77, 101
contains relation, 96
contribution, 5
correct ADM, 110, 122
CT primitive, 91

data source layer, 19, 26
decided ADM, 110, 121
decision capturing template, 86
decision dependency, 87, 99, 107
decision driver, 60, 64, 87, 89, 123, 193
decision enforcement, 47, 58, 129, 130,

183
decision enforcement view, 63, 138, 173
decision filtering, 114, 121
decision identification, 47, 57, 70, 181
decision injection, 132

212 Index

decision investigation view, 63, 138,
172

decision log, 13, 60, 119, 132
decision making, 58, 118, 127
decision making view, 63, 138, 173
decision modeling, 47, 56, 57, 85, 181
decision modeling guidance, 103, 187
decision order, 57, 107, 120
decision reuse, 55
decomposesInto relation, 99
deliverable, 32
dependency management, 43, 44, 47, 57,

99, 107, 119, 182
design decision rationale, 37
design method, 3, 31, 47, 58, 174, 182
design modeling environment, 38
design phase, 13
development phase, 13
domain layer, 19, 26
DOT PATTERN, 66
DOTTED LINE PATTERN, 66, 127

EAD, 13, 35, 44
EAI, 13, 35, 44
eligible issue, 109, 122
enterprise application, 1, 10, 26, 44
enterprise architecture, 35, 44, 74, 95,

106, 121, 176, 193
enterprise resource, 11, 12, 20, 23, 27,

87
entry point, 109, 115, 121
ESB, 18, 28, 78, 126
executive decision, 71, 72, 78, 81
executive level, 77

flow independence, 16
forces relation, 102
format transparency, 16

governance, 4, 44, 53, 75, 129
granularity, 2, 45, 125

identification rule, 71, 77
implied decision, 110, 121
industry model, 35, 44, 161
influences relation, 99
initial issue, 98
integration layer, 20, 28, 77
integration needs, 12, 16
integration phase, 13

integrity constraint, 100, 102, 103, 108,
109

invocation interface, 17
INVOCATION TRANSACTIONALITY

PATTERN, 89, 90, 140, 195
isCompatibleWith relation, 102
isIncompatibleWith relation, 102
issue, 60, 87, 89, 96
issue list, 34
issue list manager, 63, 120, 138

legacy constraint, 25
legacy system, 2, 11, 44
location transparency, 16
logical dependency relation, 99, 102,

115
logical layering, 16, 19
loose coupling, 1

macro process, 120
made decision, 109, 110
managed issue list, 61, 119, 138
maturity model, 44
MDA, 35, 50, 95, 105, 129
meta issue, 74
meta issue catalog, 75
metamodel, 35, 42, 60, 85, 88, 119, 130
method, 3, 31, 42, 54, 128, 174
method anatomy, 31, 42
method browser, 38
method content, 32, 170
method requirements, 41, 146
micro process, 122
model, 35, 56
Model Driven Architecture, 35, 50, 105,

129
model structuring, 47, 57, 95, 182
model-driven development, 35, 44, 50,

129
modeling heuristics, 103
modularity, 16

NFR, 2, 24
node, 62
notation (in method), 32

OOAD, 33, 51, 62
open issue, 60, 109, 119
operations phase, 13
outcome, 60, 87, 132

213 Index

PAT, 91
pattern, 15, 33, 44, 90, 175
pattern adoption decision, 71, 72, 78, 81
pattern selection decision, 71, 72, 78, 81
pending issue, 109
persistence, 12
phase (in method), 32, 87, 115
platform, 12, 16, 30, 35, 44, 72
platform transparency, 16
platform-independent model, 35, 73, 77,

95, 130
platform-specific model, 35, 73, 77, 95,

104, 130
presentation layer, 19, 26, 28
process (in method), 32
process integrity, 12, 16
production rule, 110, 120
project management, 39, 42, 185
protocol transparency, 16
pruning, 110

quality attribute, 2, 11, 30, 33, 43, 60,

87, 176

RADM, 56
RADM for SOA, 56, 77, 114, 116, 125,

195
RADM repository, 63, 138
recommendation, 60, 87, 90
refinedBy relation, 99
refinement level, 6, 77, 98, 115
requirements engineering, 42
research problem, 5, 47, 59, 181
research questions, 47, 181
resolved issue, 60, 119
resource integrity, 12, 16
reusable asset, 31, 39, 55
role (in method), 32, 87, 115
root topic, 97, 98
RUP, 33, 34, 118

S4V, 34, 118, 175
SCA, 16, 104
scope, 87, 115
scoping, 57, 70
SDLC, 36, 176
semantics, 12, 16
service, 17
service composition, 19, 28, 78, 90

service composition layer, 19, 28, 77,
91, 101

service consumer, 17
service contract, 17, 45
service lifecycle, 36, 45
service lifecycle management, 45
service model, 36
service modeling, 3, 36, 52, 176
service operation, 17
service ownership, 20, 45
service provider, 17
service registry, 20
service virtualization, 16
SOA design, 21, 36, 38
SOA principles and patterns, 15, 28, 45
SOA tool, 38, 62
SOAD, 55
SOAD framework, 4, 55, 180
SOAD steps, 6, 57, 63
SOAD tool, 62, 135
SOAD use cases, 4, 62
software architect, 2
software engineering process, 3, 13, 61,

128
software package, 44
SOMA, 36, 176
ST primitive, 91
stakeholder, 33, 43
standardization, 16
STRATIFIED STILTS pattern, 90
strictly valid ADM, 109
system context, 10

tailoring, 42, 57, 113
technique, 32
technology level, 77, 101, 104
technology profiling decision, 71, 73,

79, 81
technology selection decision, 71, 73,

79, 81
temporal dependency relation, 107
test phase, 13
topic group, 96, 115
traceability management tool, 39
transaction, 12, 74, 89
TRANSACTION BRIDGE pattern, 90
TRANSACTION ISLANDS pattern, 90
triggers relation, 107

UML, 13, 16, 33, 88
user channel, 10

214 Index

user diversity, 11, 16

valid ADM, 109
vendor asset level, 77, 102, 105

viewpoint, 13, 32, 33, 43, 61

Web services, 16

